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Synthèse (en français)

Le sujet principal de cette thèse est l'étude de la propagation des ondes électromagnétiques,
en régime harmonique, dans un milieu hétérogène (en 3D) composé d'un diélectrique et d'un
matériau négatif (c'est-à-dire avec une permittivité diélectrique négative" et/ou une perméabil-
ité magnétique négative� ) qui sont séparés par une interface avec une pointe conique.

En raison du changement de signe de la permittivité" et/ou la perméabilité � , les équations de
Maxwell peuvent être mal posées dans les cadres classiques (basés sur l'espaceL2). Classiquement,
il est connu que l'étude des équations de Maxwell nécessite l'étude de deux problèmes scalaires
qui sont associés à" et � . Dans la littérature, le seul travail qui traite de ce lien entre ces prob-
lèmes, dans le cas où" et/ou � change(nt) de signe(s) est présenté dans . Il a été démontré que
lorsque les deux problèmes scalaires associés, impliquant respectivement" et � , sont bien posés
dans l'espaceH1; les équations de Maxwell sont également bien posées dans les espaces classiques.
La contribution principale présentée dans cette thèse est de proposer une nouvelle théorie pour
l'étude des équations de Maxwell lorsque l'un des /les problème(s) scalaire(s) n'est/ne sont pas
bien posé(s) dans l'espaceH1. La thèse est composée de quatre parties.

Dans la première partie (Chapitre 2,3), en combinant la méthode de la T-coercivité et l'analyse
de Mellin dans les espaces de Sobolev à poids (i.e. la théorie de Kondratièv) nous présentons
une étude détaillée de ces problèmes scalaires. En particulier, nous prouvons que pour chacun
d'entre eux, le caractère bien posé dansH1 est perdu si et seulement si le contraste associé ap-
partient à un ensemble critique appelé intervalle critique. Ces intervalles critiques correspondent
aux ensembles de contrastes négatifs pour lesquels des singularités propagatives, aussi appelées
ondes de trou noir, apparaissent à l'extrémité de la pointe. Ces singularités se comportent comme
r � 1=2+ i� (� 2 R) au voisinage de la pointe (avecr est la distance à la pointe). Elles peuvent être
interprétées comme des ondes qui se propagent vers/depuis la pointe conique. Contrairement
au cas 2D d'une interface avec coin, pour une pointe 3D, plusieurs ondes de trou noir peuvent
exister. Des expressions explicites de ces intervalles critiques sont obtenues pour le cas particulier
des pointes coniques circulaires. Pour les contrastes critiques, en utilisant le principe de radiation
de Mandelstam, nous construisons une in�nité des cadres fonctionnels dans lesquels le caractère
bien posé des problèmes scalaires est restauré. Pour choisir, parmi ces cadres fonctionnels, le
cadre qui est physiquement pertinent nous avons utilisé le principe d'absorption limite.
Au passage, dans la deuxième partie de ce travail (Chapitre 4), nous présentons une nouvelle
méthode numérique pour approcher les solutions des problèmes scalaires dans le cas des con-
trastes non-critiques. Cette nouvelle méthode est basée sur une reformulation des problèmes
scalaires en problèmes de contrôle optimal. Contrairement aux techniques existantes, la con-
vergence cette approche, ne nécessite pas d'hypothèses supplémentaires ni sur le maillage au
voisinage de l'interface ni sur la régularité de la solution.

La troisième partie de la thèse (Chapitre 8) concerne l'étude des équations de Maxwell avec un
ou deux coe�cients critiques. En utilisant de nouveaux résultats de potentiels vecteurs dans
des espaces de Sobolev à poids et de nouveaux résultats de régularité, nous expliquons comment
construire de nouveaux cadres fonctionnels dans lesquels les problèmes électrique et magnétique
sont à nouveau bien posés. Ces cadres sont directement liés à ceux obtenus pour les deux prob-
lèmes scalaires associés. En outre, nous avons prouvé que si nous utilisons le cadre qui respecte
le principe d'absorption limite pour les problèmes scalaires, alors les cadres fournis, par notre
approche, pour les problèmes électrique et magnétique sont également cohérents avec le principe
d'absorption limite.

En�n, dans la dernière partie de ce travail (Chapitre 8), nous sommes intéressés à l'étude des
processus d'homogénéisation des équations de Maxwell (en régime harmonique) et les problèmes



scalaires associés dans un domaine 3D qui contient une distribution périodique d'inclusions dans
un matériau négatif. En utilisant l'approche de T-coercivité et un nouveau résultat de compac-
ité uniforme, nous obtenons des conditions sur les contrastes (associés aux problèmes scalaires
dans les cellules) qui assurent que le processus d'homogénéisation est possible pour les problèmes
scalaires et vectoriels (Maxwell). D'une manière non intuitive, nous montrons que les matri-
ces homogénéisées associées aux problèmes de limites sont soit dé�nies positives, soit dé�nies
négatives.



Contents

Chapter 1 Introduction 9

Chapter 2 Study of the scalar transmission problem in presence of a conical
tip of negative material 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 General properties of the critical interval . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Relation between the critical interval and the spectrum of the Neumann-
Poincaré operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Study of the far problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Study of the problem in the vicinity the boundary . . . . . . . . . . . . . . 28
2.3.3 Final proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Study of the problem in the whole space . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Weighted Sobolev (Kondratiev) spaces . . . . . . . . . . . . . . . . . . . . 31
2.4.2 The Mellin transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.3 De�nition of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.4 Mellin symbol of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.5 Solvability of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.6 Asymptotic of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Application: study of the problem in the unit ball . . . . . . . . . . . . . . . . . . 39
2.6 Study of the initial problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.1 Characterization of the critical interval . . . . . . . . . . . . . . . . . . . . . 43
2.6.2 On the use of the Mandelstam principle to recover Fredholmness of the

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6.3 Selection of the physical solution by means of the limiting absorption principle 54

2.7 Concluding remarks and open questions . . . . . . . . . . . . . . . . . . . . . . . . 63
2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8.1 The Kelvin transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.8.2 The Peetre's Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 3 The study of the Mellin symbol of the problem 66
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 Fredholmness of the symbol and discreteness of the spectrum . . . . . . . . . . . . 68

3.2.1 Fredholmness of the symbol . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 Discreteness of the spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.3 Localization of the spectrum and boundedness of the resolvent . . . . . . . 70
3.2.4 Algebraic multiplicities of eigenvalues in the energy line<e(� ) = � 1=2 . . . 73

3.3 Stability of �( L � ) with respect to perturbations of � . . . . . . . . . . . . . . . . 74
3.3.1 Properties of the spectrum of the perturbed problem . . . . . . . . . . . . . 74
3.3.2 Convergence of the spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.3 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.4 Convergence of the eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . 78

5



3.4 The particular case of circular conical tips . . . . . . . . . . . . . . . . . . . . . . . 79
3.4.1 Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.4.2 Expression of the critical interval . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.3 On the validity of Assumption 2.6.2 for circular conical tips . . . . . . . . 86

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6.1 The T-coercivity approach for the anisotropic scalar problem . . . . . . . . 90
3.6.2 Associated Legendre functions . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 4 An optimal control-based numerical method for scalar transmission
problems with sign-changing coe�cients 100

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 Main assumption on" and reformulation of the problem . . . . . . . . . . . . . . 102
4.3 The smooth extension method for the scalar transmission problem . . . . . . . . . 103

4.3.1 Formal presentation of the smooth extension method . . . . . . . . . . . . . 103
4.3.2 An optimal control reformulation of the problem . . . . . . . . . . . . . . . 103

4.4 Basic properties of the optimization problem and its regularization . . . . . . . . . 106
4.4.1 Properties of the objective function . . . . . . . . . . . . . . . . . . . . . . . 106
4.4.2 The set of minimizers of the functionJ . . . . . . . . . . . . . . . . . . . . 107
4.4.3 Gradient of the function J . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.4.4 Tikhonov regularization of the problem . . . . . . . . . . . . . . . . . . . . 111

4.5 Numerical discretization of the problem . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5.1 Mesh assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5.2 Discretization strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.5.3 Convergence of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.1 Flat interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.2 The case of a circular interface . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.6.3 The case of an interface with corner . . . . . . . . . . . . . . . . . . . . . . 119

4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 5 Maxwell's equations with hypersingularities at a conical plasmonic
tip: the case of one critical coe�cient 122

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Assumptions for the dielectric constants" , � . . . . . . . . . . . . . . . . . . . . . 124

5.2.1 Conical tip and scalar (hyper)singularities . . . . . . . . . . . . . . . . . . . 125
5.2.2 Kondratiev functional framework . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Analysis of the problem for the electric component . . . . . . . . . . . . . . . . . . 128
5.3.1 A well-chosen space for the electric �eld . . . . . . . . . . . . . . . . . . . . 129
5.3.2 De�nition of the problem for the electric �eld . . . . . . . . . . . . . . . . . 130
5.3.3 Equivalent formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3.4 Main analysis for the electric �eld . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.5 Problem in the classical framework . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.6 Expression of the singular coe�cient . . . . . . . . . . . . . . . . . . . . . . 137
5.3.7 Limiting absorption principle . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 Analysis of the problem for the magnetic component . . . . . . . . . . . . . . . . . 143
5.4.1 Equivalent formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.4.2 Norms in Z � �

T (� ) and Zout
T (� ) . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4.3 Main analysis for the magnetic �eld . . . . . . . . . . . . . . . . . . . . . . 146
5.4.4 Analysis in the classical framework . . . . . . . . . . . . . . . . . . . . . . . 148
5.4.5 Expression of the singular coe�cient . . . . . . . . . . . . . . . . . . . . . . 150



7

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6.1 Vector potentials, part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.6.2 Vector potentials, part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.6.3 Dimension ofX out

N (" )=X N (" ) . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Chapter 6 Maxwell's equations with hypersingularities at a conical plasmonic
tip: the case of two critical coe�cients 156

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.2 Setting of the problem and study of the scalar problems with critical coe�cients . 157

6.2.1 The Laplace operator in weighted Sobolev (Kondratiev) spaces . . . . . . . 159
6.2.2 The scalar problems with critical coe�cients . . . . . . . . . . . . . . . . . 160

6.3 Necessity of a new functional framework for the Maxwell's system . . . . . . . . . 162
6.4 The analysis the electric problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4.1 De�nition of the electric problem . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4.2 Equivalent formulation for the electric �eld . . . . . . . . . . . . . . . . . . 167
6.4.3 Equivalent norms in Y �

N (" ) and Y out ;�
N (" ) . . . . . . . . . . . . . . . . . . . 169

6.4.4 Analysis of the principal part . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.4.5 Compactness result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.4.6 Main results about the electric problem . . . . . . . . . . . . . . . . . . . . 172
6.4.7 The limiting absorption principle for the electric problem . . . . . . . . . . 174

6.5 The analysis of the magnetic problem . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.5.1 De�nition of the magnetic problem . . . . . . . . . . . . . . . . . . . . . . . 176
6.5.2 Equivalent formulation for the magnetic �led . . . . . . . . . . . . . . . . . 176
6.5.3 Equivalent norms in Y �

T (� ) and Y out ;�
T (� ) . . . . . . . . . . . . . . . . . . 177

6.5.4 Main results about the magnetic problem . . . . . . . . . . . . . . . . . . . 178
6.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.7.1 Classical Helmholtz decompositions . . . . . . . . . . . . . . . . . . . . . . 179
6.7.2 Weighted regularity of vector potentials . . . . . . . . . . . . . . . . . . . . 179
6.7.3 Vector potentials in weighted Sobolev spaces . . . . . . . . . . . . . . . . . 180
6.7.4 Density results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Chapter 7 Homogenization of Maxwell's equations and related scalar prob-
lems with sign-changing coe�cients 183

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.2 Setting of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.3 Uniform invertibility of the two scalar problems . . . . . . . . . . . . . . . . . . . . 187

7.3.1 First � -dependent criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3.2 Comparison between the criteria of invertibility . . . . . . . . . . . . . . . . 193
7.3.3 Uniform criterion of invertibility . . . . . . . . . . . . . . . . . . . . . . . . 194
7.3.4 Optimality of the criterion and connection to the Neumann-Poincaré operator196

7.4 Analysis of the cell problem and properties of the homogenized tensors . . . . . . . 200
7.4.1 Cell problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.4.2 Homogenized tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.4.3 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.5 Homogenization of Maxwell's equations . . . . . . . . . . . . . . . . . . . . . . . . 206
7.5.1 Homogenization result under uniform energy estimate condition . . . . . . . 207
7.5.2 Proof of the uniform energy estimate . . . . . . . . . . . . . . . . . . . . . . 210
7.5.3 Final result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.6 Appendix. Table of notation for the functional spaces . . . . . . . . . . . . . . . . 213



8

Chapter 8 Conclusions and future directions 214



Chapter 1

Introduction

For the past two decades, the scienti�c community has been particularly interested in the analysis
of Maxwell's equations in unusual situations involving real valued dielectric permittivity " and
magnetic permeability � whose sign changes on the domain of interest. The main motivation for
the study of these problems comes from spectacular progress made in the �eld of plasmonics and
from a more prospective point of view, from the development of the so-called metamaterials.

Plasmonics is the branch of physics that consists in studying the propagation of electromagnetic
waves, or more precisely, of the collective oscillations of electrons, on the surface of a metal at
optical frequencies. These waves are called plasmonic waves or plasmonic resonances. They are
exploited in many interesting realizations such as the Lygurcus cup (see Figure 1.1). This cup
looks green when illuminated from outside but appears red when illuminated from inside. The
explanation of this change of color lies in the fact that it is composed by an alloy of gold and silver
nanoparticles. In particular, when one illuminates the cup from inside, the red color results from
the strong enhancement of the scattered �eld associated to some particular wavelengths due to
the excitation of plasmonic resonances. Recently these waves have been used in new applications
concerning the design of biosensors, cancer therapies, the production of e�cient photovoltaic cells
and many others (see [106]). From a mathematical point of view, the existence of these waves is
mainly due to the fact that at optical frequencies, some metals like silver or gold have a dielectric
permittivity " with a small imaginary part and a negative real part (see [45, Chapter 1] for a
more rigorous explanation). Neglecting the imaginary part, for these ranges of frequencies, we
are led to consider a real-valued" which is negative in the metal and positive in the air around
the metal. This gives us a �rst simple con�guration in which the dielectric permittivity has a
change of sign.

Metamaterials are arti�cial materials with physical properties that can not be found in nature.
Usually they are made of a periodic assembly of a large number of resonant micro-structures
(see Figure 1.1). For these materials, all the game consists in choosing cleverly the structure as
well as the resonators so that the e�ective medium, after an homogenization process, presents
interesting properties. These materials have been intensively studied in the past two decades due
to their potential very exciting applications such as, among others, sub-wavelength imaging and
focusing, cloaking, sensing or data storage (see [135]). Let us mention that concrete realizations
of these materials are still in progress. Mathematically it was proved (see [132]) that it is possible
to design materials modelled by some e�ective" and � that have, in some range of frequencies,
negative real values and small imaginary parts.

We emphasize that all the interesting phenomena related to these negative materials (i.e. metals at
optical frequencies or negative metamaterials for well-chosen ranges of frequencies) arise only when
these materials are associated with classical (positive) ones and importantly when dissipation is
very small. Therefore we will focus our attention on the propagation of electromagnetic waves

9
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inside media where" and � are real valued and where one or the two constants change(s) sign
in the physical domain. Note that this is also the most interesting case for the mathematical
analysis.

Figure 1.1: On the left: the Lygurcus cup [9]. On the right: an example of metamaterial (NASA
Glenn Research/Wikimedia Commons).

In what follows, we will be particularly interested in the study of the time harmonic Maxwell's
equations in a bounded domain1 
 of R3 made of an inclusion of negative material
 2 surrounded
by some positive material
 1. We denote by� the interface between the two regions so that �nally
we have
 2 � 
 , 
 = 
 1 [ 
 2 [ � and � = @
 1 \ @
 2 (see Figure 1.2 for an illustration).
We assume that @
 (the boundary of 
 ) is Lipschitz-continuous and connected. Moreover we
denote by n the unit normal vector to @
 oriented to the exterior of 
 . To set the ideas, in this
introduction we focus our attention on the problem satis�ed by the electric �eld E when 
 is
surrounded by a perfect conductor. This problem writes

curl � � 1curl E � ! 2"E = i! J in 
 and E � n = 0 on @
 : (1.1)

Above ! 2 R is the frequency, J is the injected current density which is assumed to satisfy
div( J ) = 0 in 
 while " (resp. � ) is a piecewise constant function such that" = "1 2 R�

+ (resp.
� = � 1 2 R�

+ ) in 
 1 and " = "2 2 R�
� (resp. � = � 2 2 R�

� ) in 
 2. Because of the change of sign
of the functions " and � , the study of Problem (1.1) can not be made as in the classical case.
In order to identify the di�culties raised by the sign-changing " , �; let us start by recalling in a
brief way how one shows the well-posedness of (1.1) in the standard situation when"2 and � 2

are positive.

The classical con�guration. It is well-known that when " and � are positive, Problem (1.1)
is not elliptic (see [63]). This makes the study of its well-posedness a little bit di�erent from the
analysis of strongly elliptic problems. The choice of the functional framework in which we can
set Problem (1.1) is not unique [63]. The most natural setting is the one which re�ects the fact
that the electromagnetic energy contained in
 is �nite. This boils down to impose that both E
and curl E belong to the spaceL 2(
) := (L 2(
)) 3. This leads us to work in

H N (curl ; 
) := f u 2 L 2(
) j curl u 2 L 2(
) and u � n in 
 g:

Endowed with its natural norm

kukH N (curl ;
) = ( kuk2
L2 (
) + kcurl uk2

L2 (
) )1=2;

H N (curl ; 
) is a Hilbert space. Furthermore, it can be shown that(D (
)) 3, the space of in�nitely
di�erentiable functions with compact support in 
 , is dense inH N (curl ; 
) (see [81]). With this

1 i.e. an open connected subset.
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Figure 1.2: An example of considered geometry where the green (resp. red) part is occupied by

 1(resp. 
 2).

in mind, one can show that when J belongs to L 2(
) , Problem (1.1) set in H N (curl ; 
) is
equivalent to the following variational formulation

Find u 2 H N (curl ; 
) such that�



� � 1curl u � curl v � ! 2

�



"u � v = i!

�



J � v; 8v 2 H N (curl ; 
) :

(1.2)

By observing that for all ' 2 H1
0(
) the vector �eld r ' belongs to the spaceH N (curl ; 
) and

that kr ' kH N (curl ;
) = kr ' kL2 (
) , one can prove that the embedding ofH N (curl ; 
) into L 2(
)
is not compact (see the end of this introduction). Moreover, for the same reason (the fact that
r H1

0(
) � H N (curl ; 
) ), what seems the �principal� part of (1.2) is not coercive. All this to
say that one can not apply the �coercive +compact� theory to prove the well-posedness of (1.2).
One way to solve this di�culty is to exploit the fact that div( J ) = 0 in 
 , which, according to
(1.1), givesdiv( "E ) = 0 in 
 for all ! 6= 0 . Imposing this constraint leads us to work in the space

X N ("; 
) := f u 2 H N (curl ; 
) j div( "u ) = 0 g:

Then we introduce the problem

Find u 2 X N ("; 
) such that�



� � 1curl u � curl v � ! 2

�



"u � v = i!

�



J � v; 8v 2 X N ("; 
) :

(1.3)

It has been proved in [65] that when " is positive, the embedding ofX N ("; 
) into L 2(
) is
compact. Furthermore, using that � is positive, one can prove that the principal part of (1.3)
is coercive. As a result Problem (1.3) is well posed in the Fredholm sense for all! 2 R and in
the Hadamard sense except for a discrete subset of frequencies ofR. To complete the analysis
and to prove in particular that a solution to (1.3) yields a solution to (1.1), we need to show
the equivalence between formulations (1.3) and (1.2). It is obvious that any solution of problem
(1.2) is a solution of (1.3). Let us establish the converse statement. For allv 2 H N (curl ; 
) ,
introduce ' v 2 H1

0(
) the unique function which solves the problem

Find ' v 2 H1
0(
) such that div( " r ' v ) = div( "v): (1.4)

Then we can write v = r ' v + ~v with ' v 2 H1
0(
) and ~v 2 X N ("; 
) : Taking ~v as a test function

in (1.3) and using the fact that for all u 2 X N ("; 
) we have
�



� � 1curl u � curl ~v =

�
� � 1curl u � curl v ;

�



"u � ~v =

�



"u � v and

�



J � ~v =

�



J � ~v;
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we deduce that any function satisfying (1.3) solves (1.2). This ensures that Problem (1.2) is
well-posed in the Fredhlom sense for all! 2 R� and in the Hadamard sense except for a discrete
subset of frequencies ofR� : Now, let us go back to the case of sign-changing coe�cients.

The case of sign-changing coe�cients. In the reminder above, the positivity of " was
used twice, �rst to show that the embedding of X N ("; 
) into L 2(
) is compact and second to
prove the equivalence between (1.3) and (1.2). In addition to that, the positivity of � was the key
argument to show the coercivity of the principal part of the formulation (1.3). When " and/or �
change/changes sign, these arguments must be reconsidered.
However, if we focus our attention on the proof of equivalence between formulations (1.2) and
(1.3), we notice that what is needed is not the positivity of " but rather that the problem (1.4)
is well-posed in the Hadamard sense. Indeed it was proved in [22] that when the problems

Find u 2 H1
0(
) such that � div( " r u) = f 2 (H1

0(
)) � ; (1.5)

Find u 2 H1
# (
) 2 such that � div( � r u) = g 2 (H1

# (
)) � ; (1.6)

are well-posed (for all f 2 (H1
0(
)) � and g 2 (H1

# (
)) � ) in the Hadamard sense, then Problem
(1.3) (resp. (1.2)) is well-posed in the Fredholm sense for all! 2 R (resp. ! 2 R� ) and in the
Hadamard sense for all! 2 Rn� (resp. ! 2 R� n� ) where � is a discrete subset ofR (resp. R� ).
Naturally, this brings us to the following question:

Under which condition(s) on " (resp. on � ) the problem (1.5) (resp. (1.6)) is well-posed
(in the Fredholm sense) for all f 2 (H1

0(
)) � (resp. g 2 (H1
# (
)) � )?

The previous question was the subject of several contributions in the literature [147, 49, 45] (es-
pecially in 2D con�gurations). Let us summarize, in a brief way, the principle conclusions of these
works.

State of the art about the scalar problems. Interestingly, in the literature, two main
approaches have been proposed.

ˆ The �rst one is based on a reformulation of the problem into an integral equation [92, 92,
32, 67] posed on the interface� . Then desired conditions concerning" or � to ensure the
well-posedeness of the problems can be expressed in terms of the spectrum of the so-called
Neumann-Poincaré operator (this will be detailed in Ÿ2.2).

ˆ The second one is variational [147, 49]. It is based on a reformulation of the classical inf-sup
theory called the T-coercivity approach. For example for Problem (1.5), it consists in �nding
an operator T : H1

0(
) ! H1
0(
) such that the sesquilinear form(u; v) 7!

�

 " r u � r (Tv)

becomes coercive onH1
0(
) � H1

0(
) :

When the interface � is smooth (of classC1;
 with 
 2 (0; 1]), the two approaches lead to the
same conclusion: Problem (1.5) (resp. (1.6)) is well-posed in the Fredholm sense as soon as
the contrast � " := "2="1 (resp. � � := � 2=� 1) is such that � " 6= � 1 (resp. � � 6= � 1). We will
show later in Chapter 2 that this is also the case for the general case of interfaces of classC1:
It is worth to note that in some particular situations, for example for symmetric domains (i.e

 1 is the symmetric of 
 2 with respect to � ) in 2D/ 3D, one can show [49] that for � " = � 1
(resp. � � = � 1), Problem (1.5) (resp. (1.6)) has a kernel of in�nite dimension. For more details
concerning the study of the particular case� " = � 1 (resp. � � = � 1), see [117].
As soon as the interface� has geometric singularities (corners, conical points, edges,: : : ), the
situation is totally di�erent. As we shall see in Chapter 2 of this thesis, one can show that for

2H1
# (
) := f u 2 H1(
) j

�

@

u = 0 g:
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the general case of Lipschitz-interfaces, the Fredholmness of (1.5) (resp. (1.6)) can be lost when
the contrast � " (resp. � � ) belongs to some setI "

� (resp. I �
� ) known as the critical interval. The

expression ofI "
� (resp. I �

� ) is not known in general.

For 2D polygonal interfaces, I "
� and I �

� have been obtained explicitly. They are intervals whose
bounds are functions of the sharpest opening angle of� [49, 25].
The approach based on the use of the Neumann-Poincaré operator leads to the same result. This
was done in [125]. Let us mention that the expression of the critical interval can be deduced from
the results of the Phd work of Carleman [44] dating from 1916!
In 3D, the situation is much more complicated, even in the simple case of an interface with a
circular conical tip. Actually, for this particular con�guration, the T-coercivity approach allows us
to get an estimation of the bounds of the critical interval [49], but there is no guarantee about the
optimality of theses bounds. The approach relying on the use of the Neumann-Poincaré operator
was considered in [104], but it seems that there is no clear result about the exact expression
of the critical interval in this con�guration. One of the objectives of this thesis is to �nd a
characterization of the critical intervals I "

� and I �
� in the case when� has a smooth conical tip

(see Figure 1.2). Furthermore, we will show how to combine the T-coercivity approach and the
approach based on the Neumann-Poincaré in order to obtain an explicit expression of the critical
interval.
By applying the results of [22], we can then conclude about the well-posedness of the Maxwell's
problem when � " and � � do not belong respectively toI "

� and I �
� . In Chapter 7, we will explain

how to use these results in order to study the homogenization of the scalar problems and the
time-harmonic Maxwell's equations in a composite medium with periodically distributed small
inclusions of a negative material.
When one of the contrasts� � or � " is critical, i.e. when � " 2 I "

� or � � 2 I �
� , the well-posedness of

the Maxwell's problem in the classical frameworksH N (curl ; 
) and X N ("; 
) is not guaranteed.
This leads us to the following questions:

What happens to the Maxwell's problem (1.1) when " and/or � are/is critical? Is it
well-posed in the classical framework? If yes, how to prove this? If the answer is no,
what would be the appropriate framework (from the physical point of view) in which
we can set the problem?

The answer to these questions is the main motivation of this thesis. To address them, one �rst
needs to study what happens to the scalar problems (1.5) and (1.6) when" or � becomes critical.
To set ideas, let us focus our attention on the problem (1.5). In the literature, to the best of
our knowledge, the only existing work in this direction is [25]. In this article, the authors have
considered the particular case where the interface� has a right corner. They showed, by adapting
the Kondratiev theory [100], that the lost of Fredholmness for (1.5) is due to the appearance of
two strongly oscillating function s� (called propagating singularities or black-hole singularities)
that behave like r � i� (� 2 R�

+ ) near the corner wherer is the distance to the corner vertex. One
can check that these functions do not belong to the spaceH1(
) .

In order to restore well-posedness of (1.5) when� " 2 I "
� ; the authors of [25] used the anal-

ogy with the propagation of waves in waveguides (in this analogy the corner plays the role of
in�nity) to propose a new functional framework, that replaces H1(
) , in which the scalar prob-
lem (1.5) becomes well-posed. This functional framework is obtained by adding one of these
two propagating singularities (the outgoing one) to a well-chosen weighted space (composed by
more regular functions). The selection of the outgoing behavior is done thanks to the limiting
absorption principle: the physical solution of the problem must be the limit (in some space to
de�ne) as � ! 0+ of u� where u� is the unique solution of � div(( � + i� )r u� ) = f . The extension
of this approach to the case of 3D interfaces with a conical point is one of the main results of this
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thesis. This will be the subject of Chapters 2-3.

Now, let us go back to the study of the Maxwell's problem. If, for example, the dielectric
permittivity " is such that � " 2 I � ; the proof of equivalence between (1.2) and (1.3) can not be
done because the scalar problem (1.4) is ill-posed. This suggests that the classicalL 2 setting is
not adapted to the study of the Maxwell's problem in this con�guration. As a result one needs
to propose a new functional framework in order to restore Fredholmness. Intuitively, to ensure
that this new functional framework leads to the physical solution of the problem, it must con-
tain the gradient of the outgoing singularity(ies) (we shall see later that in 3D several outgoing
singularities can exist). This leads us to study the Maxwell's problem in a non-L 2 framework.
From a mathematical point of view, this will prevent us from using many of the classical tools for
the analysis of Maxwell's equations, such as results of existence of vector potentials, Helmholtz
decomposition, compact embedding, ... For this reason, a new theory has to be constructed.
This new theory can be seen as an adaptation of Kondratiev approach [100] to Maxwell's equa-
tions. It is worth to note that our technique is conceptually di�erent from the one used in [65]
(for the classical con�guration) where the Kondratiev theory is used to characterize the singular
behaviour of the classical solutions. Our results in this direction will be presented in Chapters 5-6.

Once the theory will be developed, we will consider the question of the approximation of these
problems by �nite elements methods. Unfortunately, our contributions to this question concern
only the scalar case. Because of the change of sign of" (resp. � ), the convergence of the numerical
approximation to the exact solution as one re�nes the mesh in general is not clear. This leads us
to the following questions:

How to design convergent FEM-based numerical method to approximate the solutions
of scalar problems when they are well-posed?

In the literature, several convergent approaches have been proposed for the non-critical case.
Some of the strategies are based on the use of so-called T-conforming meshes (see [49, 45]). Un-
fortunately, the construction of such meshes seems to be not easy (see[45]), especially when the
interface has corners or in 3D. For general meshes (that respect the interface), other techniques
have been designed. Some of them su�er from the fact that their convergence can not be guaran-
teed for all contrasts for which the (continuous) problem is well-posed. This the case in particular
of the method developed in [147, 51, 119]. In 2017, a new method based on the use of an optimal
control reformulation has been proposed in [1]. It is proved to be convergent on general meshes as
soon as the exact solution belongs to the spacePHs(
) := f u juj 
 1 2 Hs(
 1) and uj 
 2 2 Hs(
 2)g
with s < 3=2: Unfortunately, this regularity condition is not always satis�ed, especially when �
has corners in 2D or conical points in 3D. In Chapter 4, we will present a new strategy which
relies on the use of a di�erent optimal control reformulation and which converges without any
restriction neither on the mesh (the interface simply needs to coincide with edges of the mesh)
nor on the regularity of the exact solution.
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Now, it is time to summarize the outline of our work. This thesis will be divided into four parts.

Part 1: Study of the scalar problems with sign-changing coe�cients. It contains
two chapters (Chapter 2 and Chapter 3) and is devoted to the analysis of the scalar problems
when the interface � has a conical point. In particular, we will give a characterization of the
critical intervals I �

� and I �
� and, more importantly, we will explain how to use the Mandelstam

radiation principle and the limiting absorption principle in order to derive a new (physical) func-
tional framework in which Fredholmness is restored.

Part 2: Numerical approximation of the scalar problems with sign-changing coef-
�cients. This part is made of Chapter 4 in which we will present a new numerical method
to approximate the solution of the 2D/3D scalar transmission problems. It is based on a �nite
elements approximation and we will show that it converges without any restrictive condition on
the mesh near the interface.
Part 3: Time harmonic Maxwell's equations with sing-changing coe�cients. Here we
turn our attention to the study of Maxwell's equations in a situation where the interface has a
conical point and where the contrasts take critical values. In Chapter 5, we study the con�gu-
ration when just one of the electromagnetic parameters is critical. In Chapter 6, we propose an
analysis when both parameters" and � are critical.

Part 4: Homogenization of Maxwell's equations and related scalar problems with
sign-changing coe�cients. In this part, we consider the question of the homogenization of
the scalar problems and of the time-harmonic Maxwell's equations in a composite material with
periodically distributed small inclusions of a negative medium. We explain why the homogeniza-
tion process is possible as soon as the contrast associated to the cell problem is small or large
enough. Our results will be presented in Chapter 7.

As promised above, we �nish this introduction by proving that the embedding of H N (curl ; 
) into
L 2(
) is not compact. Let (' i ) i 2 N be an orthonormal sequence ofH1

0(
) . The sequence of vector
�elds (r ' i ) i 2 N is then orthonormal in H N (curl ; 
) : If the embedding H N (curl ; 
) � L 2(
) was
compact, then one could �nd a sub-sequence, that will be indexed byi , of (r ' i ) i 2 N that converges
in L 2(
) to someu 2 L 2(
) . From the fact that kr ' i �r ' j kH N (curl ;
) = kr ' i �r ' j kL 2 (
) =

p
2

for i 6= j , we conclude that this not possible.



Chapter 2

Study of the scalar transmission
problem in presence of a conical tip
of negative material

2.1 Introduction

In this chapter, we investigate the scalar transmission problem between two domains1 of R3 �lled
with materials modelled by physical coe�cients of di�erent signs. We assume that 
 1 (resp. 
 2)
corresponds to the positive (resp. negative) material and more speci�cally, we consider situations
where the interface� separating the two regions is smooth (of classC1) everywhere except near
some point O, where it has a conical tip. We set
 := 
 1 [ 
 2 [ � and to simplify a little bit
the analysis below, we suppose that
 is connected with a Lipschitz-continuous boundary@
 .
In addition to that, we make the assumption that 
 2 � 
 . This simply means that the domain

 1 surrounds 
 2 and ensures that � \ @
 = ; : Without loss of generality, we suppose that
O = (0 ; 0; 0). A full description of the conical singularity at O can be done via the description of
the domain 
 2 near O: For this purpose, let us describe the intersection between
 2 and B (O; � )
the open ball of R3 of center O and of radius � su�ciently small. We consider the following
con�guration:


 2 \ B (O; � ) = f x 2 R3; jxj < �; x= jxj 2 A g (2.1)

whereA is a smooth (of classC2) sub-domain of S2 the unit sphere of R3: To simplify notations,
we shall assume that� = 1 in (2.1) (in particular this means that B (O; 1) � 
 ). A more precise
description of A will be given below. An example of geometry for which all these assumptions
are satis�ed is given in Figure 2.1. Note that the class of conical tips described by (2.1) contains
the particular case of circular (rotationally symmetric) conical tips obtained by revolution of a
half-line around a �xed axis, say the z axis, in R3. Even though the primary goal of this chapter
is to treat the class of general conical tips of the form (2.1), a particular interest will be devoted
to the case of circular ones because, in such case, explicit calculus can be done.
In the sequel, we denote byK the cone K := f x 2 R3; jxj < �; x= jxj 2 A g: In order to make
the presentation of our results as clear as possible, we limit ourselves to the case where@A can
be parameterized by a functiong 2 C2

per ([0; 2� ]): In other words, we assume that

A = f (r; �; ' ) j r = 1 and � < g (' )g and @K = f (r; �; ' ) j r 2 R+ and � = g(' )g:

Here (r; �; ' ) 2 (0; + 1 ) � (0; � ) � (0; 2� ) are the classical spherical coordinates such that for
x 2 R3, we havex = ( r sin(� ) cos(' ); r sin(� ) sin(' ); r cos(� )) with � 2 (0; � ) and ' 2 (0; 2� ). In
Figure 2.2, we display two examples of geometries that �t into the class of the domains described

1Here domain means an open connected subset ofR3 .

16
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Figure 2.1: An example in which the red part (
 2) is �lled with a negative material and the green
one (
 1) is �lled with a positive one.

Figure 2.2: Shape of the domain@K for a circular conical tip (left) and for a more general conical
tip (right).

previously. It is important to note that all the results that we are going to present below can be
easily extended to the two following situations:

ˆ @A is of classC2 but cannot be parameterized by a single functiong 2 C2
per ([0; 2� ]).

ˆ @A is of classC1 and piecewiseC2.

To complete the description of our transmission problem, we need to introduce a physical pa-
rameter � 2 L1 (
) such that � j 
 1 = � 1 2 R�

+ := (0; + 1 ) and � j 
 2 = � 2 2 R�
� := ( �1 ; 0). We

denote by � � := � 2=� 1 2 (�1 ; 0) the contrast associated with � . Now the transmission problem
that we want to study writes:

Find u 2 H1
0(
) such that � div( � r u) = f 2 (H1

0(
)) � : (2.2)

The properties of the above problem depend on the features of the bounded operatorA � :
H1

0(
) ! (H1
0(
)) � de�ned with the Riesz representation theorem such that

hA � u; vi =
�



� r u � r v; u; v 2 H1

0(
) :

Since � changes sign, Problem (2.2) is not elliptic and its well-posedness (for an arbitrary
f 2 (H1

0(
)) � ) is not guaranteed even in the Fredholm sense (i.e the operatorA � may not be of
Fredholm type2). By dividing A � by � 1; one observes that the Fredholmness ofA � depends only

2An operator B : X ! Y is said to be of Fredholm type if ker(B ) and coker (B ) are of �nite dimensions and its
range is closed. The index ofB is de�ned by index(B ) := dim(Ker ( B )) � dim(coker ( B )) :
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on the contrast � � : To be coherent with the vocabulary used in the literature [50, 25], the set
of contrasts � � for which the operator A � is not of Fredholm type is called the critical interval
and is denoted byI � : However, it is important to note that even though I � is called the critical
interval, there is no result that allows us to say that I � is indeed an interval of the form [a; b]
(� R� ). In particular, I � could be an union of disjoint intervals. All we can say is that I � is
a closed subset ofR� (see Proposition 2.2.1). More information about I � are given in the next
section.

In the 2D con�guration, the study of the scalar transmission problem between a positive and a
negative material with an interface having a corner has been clari�ed in [25]. It was shown that
the critical interval is an interval of R� whose bounds are given explicitly as functions of the
opening angle of the corner. Furthermore, when the contrast belongs to the critical interval, the
loss of the Fredholmness of the operator is caused by the appearance of two strongly oscillating
functions s� (also known as propagating singularities or black hole singularities) that do not
belong to the spaceH1 near the corner (these functions behave liker i� with � 2 R� and r is the
distance to the corner vertex). Using these functionss� , one can construct a Weyl sequence for
the operator A � and show that the range ofA � is not closed. In order to restore Fredholmness
of the problem, the authors of [25] propose a new functional framework that takes into account
theses singular functions. They prove that by adding the space spanned by one of these two sin-
gular functions to a well-chosen weighted space, one obtains a functional framework in which the
problem is again well-posed. Since the physical solution must be outgoing, they used the limiting
absorption principle in order to choose the outgoing singular function (the one that propagates
energy toward the corner).

The main goal of this chapter is to extend the results and the techniques used in [25] to the 3D
con�guration where the interface has a smooth conical tip. More precisely, we want to understand
what are the propagating singularities in 3D and how to use them in order to characterize the
critical interval I � : More importantly, we shall explain how to make use of some of them in order
to de�ne a new functional framework in which the scalar problem is again well-posed and that
is coherent with the classical physical principles: the Mandelstam radiation condition [112, 103]
and the limiting absorption principle.

This chapter is organized as follows. In Section 2.2, we present some results concerning the
critical interval I � . In the process we underline the relation betweenI � and the spectrum of the
so-called Neumann-Poincaré operator. In order to study Problem (2.2), we will use localization
techniques. This will lead us to consider two di�erent localized versions of the problem. The
�rst one is related to what happens far from the origin. We call this problem the far problem
and we study it in Section 2.3. The second one is related to the analysis of the well-posedness of
the problem near the origin. We call it the near problem and its study is the subject of Section
2.5. The main results concerning the features of Problem (2.2) are summarized in Section 2.6.
In particular, in Ÿ2.6.2, we explain how to use the Mandelstam radiation principle in order to
construct an in�nite number of functional frameworks in which Fredholmness of the problem is
recovered when the function� is critical. The selection of the relevant physical framework will
be done via the limiting absorption principle in Ÿ2.6.3. The last section is devoted to present
some conclusions, some possible extensions, the remaining open questions and to give a few words
concerning the numerical approximation of the solution.

2.2 General properties of the critical interval

As mentioned above, the critical interval is de�ned as the set of contrasts� � such that the
operator A � is not of Fredholm type. Along this chapter, when � � belongs to I � , we shall say
that � is critical. The main objective of this section is to present some general results concerning
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the set I � . It will be useful to introduce the operator I 0 : H1
0(
) ! (H1

0(
)) � such that

hI 0u; vi =
�



uv:

Proposition 2.2.1. The set I � is a closed bounded subset of(�1 ; 0):

Proof. First, let us explain why I � is closed. By dividing A � by � 1; one can suppose that� 1 = 1
and � 2 = � � : Furthermore, from the compactness of the embeddingH1

0(
) � L2(
) ; we obtain
the equivalence: � � 2 (�1 ; 0]nI � if and only if A � + iI 0 is an isomorphism. The continuity of
� � 7! A � + iI 0 implies that (�1 ; 0]nI � is open. ThusI � is a closed subset of(�1 ; 0]: The second
step is to show that I � is bounded. For this, we are going to use the T-coercivity approach.
To do so, we �rst start by de�ning the spaces V1(
) , V#

2 (
 2), such that

V1(
 1) := f u 2 H1(
 1) j u = 0 on @
 1n� g; V#
2 (
 2) := f u 2 H1(
 2) j

�

�
u = 0g;

H1=2
# (�) := f u 2 H1=2(�) j

�

�
u = 0g:

Next we introduce the operatorsR2! 1 : H1=2(�) ! V1(
 1) and R1! 2 : H1=2
# (�) ! V#

2 (
 2) that

are de�ned as follows: for all ' 2 H1=2(�) and ' 0 2 H1=2
# (�) we have

R2! 1(' ) 2 V1(
 1) s.t.
� R2! 1(' ) = 0 in 
 1

R2! 1(' ) = ' on �
; R1! 2(' 0) 2 V#

2 (
 2) s.t.
� R1! 2(' 0) = 0 in 
 2

R1! 2(' 0) = ' 0 on � :

Without any di�cultly, one shows that there exists 0 < C such that for all ' 2 H1=2(�) and all
' 0 2 H1=2

# (�) we have

kr R1! 2(' )kL2 (
 1 ) � Ck' kH1=2 (�) and kr R2! 1(' 0)kL2 (
 2 ) � Ck' 0kH1=2 (�) : (2.3)

To obtain the previous estimate, we have used the fact that inV1(
) (resp. V#
2 (
 2)) the appli-

cation u 7! kr ukL2 (
 1 ) (resp. u 7! kr ukL2 (
 2 ) ) is a norm that is equivalent to the classical one.
For all u 2 H1

0(
) ; we denote byu1 and by u2 its restriction to 
 1 and 
 2 respectively. We de�ne
the operators T1 : H1

0(
) ! H1
0(
) and T2 : H1

0(
) ! H1
0(
) such that for all u 2 H1

0(
) ; we have

T1(u) =
u1 in 
 1

� u2 + 2R1! 2(uj � � M � (u)) + 2 M � (u) on 
 2;

T2(u) =
� u1 + 2R2! 1(uj � � M � (u)) in 
 1

u2 � 2M � (u) on 
 2

in which M � (u) is de�ned by

M � (u) =
1

j� j

�

�
u ds:

One can easily check thatT1 and T2 are continuous and bijective (we haveTi � Ti = Id for i = 1 ; 2).
Thanks to Estimate (2.3) and to the continuity of the trace operator (because� is Lipschitz), we
conclude that the numbers

kjR1! 2kj = sup
u2 H1

0 (
) ;u6=0

kr R1! 2(uj � � M � (u))kL2 (
 2 )

kr u1kL2 (
 1 )

kjR2! 1kj = sup
u2 H1

0 (
) ;u6=0

kr R2! 1(uj � � M � (u))kL2 (
 1 )

kr u2kL2 (
 2 )
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are positive and �nite. By applying the results of [50, Theorem 1.1.1] or by working as in [42],
we conclude that A � is an isomorphism if

1=j� � j > kjR1! 2kj2 or j� � j > kjR2! 1kj2:

The result is then proved. �

Remark 2.2.1. The previous result holds if one replaces� by any Lipschitz interface. The proof
is also based on the use of the harmonic extension operators. To the best of our knowledge when
the interface � is not Lipschitz, the question whetherI � is bounded or not is stil l open. In 2D,
there are con�gurations where the critical interval is equal to R� (see [32] for more details). We
conjecture that when the interface� is not Lipschitz, we haveI � = ( �1 ; 0). For an example of
non-Lipschitz interface, think to the surface of two touching conical tips.

Remark 2.2.2. In 2D with corners, the critical interval is known explicitly (see [25]). In 3D
however the situation is much more complicated. In Section 2.6.1, we shall give an explicit
expression ofI � for the case of circular conical tips.

The remaining part of this section is devoted to clarify the link that exists between the set I �

and the essential spectrum of the so-called Neumann-Poincaré operator. Recently, the study of
the spectral properties of this operator was the subject of many contributions such as those of
M. Putinar et al. [97], those of H. Ammari et al. [7] for the case of smooth interfaces, those of
E. Bonnetier et al. for the case of interfaces with corners [32] and those of K. M. Perfekt et al.
[92] for the case of 2D curved interfaces as well as 3D interfaces with conical tips . Our goal is to
explain how the spectrum of the Neumann-Poincaré operator is related toI � :

2.2.1 Relation between the critical interval and the spectrum of the Neumann-
Poincaré operator

Most of results of this paragraph are inspired by the ones developed in [35]. The starting point
is to de�ne the operator T
 2 : H1

0(
) ! H1
0(
) such that for all u 2 H1

0(
) we have
�



r (T
 2 (u)) � r v =

�


 2

r u � r v; 8v 2 H1
0(
) :

The existence and continuity of the operator T
 2 are consequences of the Riesz representation
theorem. In the literature, T
 2 is called the Poincaré variational operator (see [35]). SinceT
 2

is symmetric, it is then a self-adjoint positive operator. In the sequel, we denote by� (T
 2 ) the
spectrum of T
 2 and by � ess(T
 2 ) its essential spectrum which is de�ned as the set of� 2 R for
which the operator T
 2 � �I is not of Fredholm type (here I stands for the identity operator of
H1

0(
) ). To proceed, let us denote by ~A � : H1
0(
) ! H1

0(
) the operator that is de�ned by
�



r ( ~A � (u)) � r v =

�



� r u � r v = hA � u; vi ; 8u; v 2 H1

0(
) :

Clearly we have an equivalence between the Fredholmness ofA � and ~A � : Furthermore, one can
write

~A � = � 1I + ( � 2 � � 1)T
 2 = ( � 2 � � 1)(T
 2 �
1

1 � � �
I ):

This leads us to the following

Lemma 2.2.1. We have� � 2 I � if and only if
�
� � < 0 and 1=(1 � � � ) 2 � ess(T
 2 )

�
.

Without particular di�culty one can prove the following statement.

Proposition 2.2.2. The operator T
 2 satis�es the following properties:
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1. � (T
 2 ) � [0; 1] and 0; 1 2 � ess(T
 2 ):

2. 0; 1 are eigenvalues of in�nite geometric multiplicity of T
 2 . More precisely, the spaces
ker(T
 2 ) and ker(T
 2 � I ) are given by

ker(T
 2 ) = f u 2 H1
0(
) j uj 
 2 = constantg and ker(T
 2 � I ) = f u 2 H1

0(
) j uj 
 1 = 0g:

3. We have the decomposition

H1
0(
) = ker( T
 2 )

?
� ker(T
 2 � I )

?
� N (2.4)

where N is given by

N := f u 2 H1
0(
) j � u = 0 in 
 1 [ 
 2 and h@n (uj 
 2 ); 1i H � 1=2 (�) ;H1=2 (�) = 0g: (2.5)

Since in our study the contrast � � belongs to (�1 ; 0), the real number 1=(1 � � � ) can not be
equal neither to 0 nor to 1: This means that we have the the equivalence:� � 2 I � if and only if
1=(1 � � � ) 2 � ess(T
 2 )nf 0; 1g: Now, let us introduce the space

S := f u 2 H1
0(
) j � u = 0 in 
 1 [ 
 2g:

Starting from the decomposition (2.4), we can easily show that we have the decomposition

S = span(u0)
?
� N:

where the function u0 2 H1
0(
) is the harmonic extension of the function1j 
 2 to the whole domain


 (obviously, one hasu0 2 Ker (T
 2 )). This implies that S is a closed sub-space ofH1
0(
) and

that it is an invariant sub-space for the operator T
 2 : As a consequence,T
 2 induces a linear
operator from S to S that will be denoted by TS


 2
: Without any di�cultly one can show that 0 is a

simple eigenvalue ofTS

 2

and that � ess(TS

 2

) = � ess(T
 2 )nf 1; 0g: Thus, we obtain the equivalence

� � 2 I � if and only if 1=(� � � 1) belongs to � ess(TS

 2

):

The goal of the next paragraph is to explain how the spectrum ofTS

 2

is related to the spectrum
of the Neumann-Poincaré operator.

De�nition of the Neumann-Poincaré operator

Let G3 : R3 � R3 ! C be the Green function of the Laplace operator in the free spaceR3:
Classically, this function is given by

G3(x; y) =
1

4� jx � yj
for all x 6= y 2 R3

and satis�es the equation � yG3(x; �) = � x (where � x is the Dirac distribution at x). We also
need to introduce P the Laplace kernel that is a correction of the function G3 in order to take
into account the homogeneous Dirichlet boundary condition. The functionP is de�ned in 
 � 

by the relation P(x; y) = G3(x; y) + Cx (y) where Cx is the solution of the problem � yCx =
0 in 
 and Cx (y) = � G(x; y) on @
 : This means that the function P satis�es � yP(x; �) = � x

and P(x; �) = 0 on @
 : We introduce the single layer potential S� : H1=2(�) ! H1
0(
) associated

with � such that for all ' 2 H1=2(�) ; we set

S� (' )(x) =
�

�
P(x; y)' (y)d� (y) for almost all x 2 
 :
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By observing that for all x 2 
 1 [ 
 2 the function P(x; �) j � 2 H1=2(�) ; we deduce that the
operator S� can be extended to an operatorS� : H� 1=2(�) ! H1

0(
) : Classically (see [32]), one
can prove that for all ' 2 H� 1=2(�) the function S� (' ) belongs to the spaceS; i.e. S� (' ) is
harmonic in 
 1 [ 
 2: Conversely, it is a classical result that any functionu of the spaceS admits
the representation

u = S� ([@nuj � ]) (2.6)

in which [@nuj � ] = @nu1j� � @nu2j� where n is the outward unit normal vector to @
 2; u1 =
uj 
 1 and u2 = uj 
 2 : This means that S� realizes a bijection (and then it is an isomorphism)
between H� 1=2(�) and S: The normal derivative of S� (' ) is generally discontinuous across� :
This discontinuity can be described by the Plemelj jump relations:

@nS� (' )1 = '= 2 + K np
� (' ) and @nS� (' )2 = � '= 2 + K np

� (' ) (2.7)

where again n is the unit normal vector to @
 2 oriented to the exterior of 
 2, the functions
S� (' )1 and S� (' )2 are, respectively, the restriction of S� (' ) to 
 1 and to 
 2: The Neumann-
Poincaré operator is denoted byK np

� : H� 1=2(�) ! H� 1=2(�) and is de�ned as the extension of
the operator ~K np

� : L2(�) ! L2(�) such that

~K np
� (' )(x) =

�

�
@ny P(x; y)' (y)d� (y) for almost all x 2 �

in which ny stands for the unit outward normal vector to 
 2 at y 2 � : The operator K np
� is not

self-adjoint because it is not symmetric with respect to the classical inner product ofH� 1=2(�) : To
circumvent this di�culty, we introduce the sesquilinear form h�; �i S� : H� 1=2(�) � H� 1=2(�) ! C
such that

h';  i S� =: �h '; S �  i H � 1=2 (�) ;H1=2 (�) ; 8';  2 H� 1=2(�) :

Thanks to an integration by parts and by using the jump relations (2.7), one can show that

h';  i S� =
�



r S� (' ) � r S� ( ): (2.8)

As a result, we infer that h�; �i S� is an inner product in H� 1=2(�) : We denote by k � kS� the norm
associated to this inner product. It is equivalent to the classical onek � kH � 1=2 (�) (see [35]). As

a result, (H � 1=2(�) ; k � kS� ) is a Hilbert space. Note that one can easily see that we have the
identity

k' kS� = kS� (' )kH1
0 (
) ; ' 2 H� 1=2(�) :

By endowing the spaceH� 1=2(�) with this inner product h�; �i S� , one can show thatK �
np becomes

self-adjoint. Furthermore, we also have the following

Lemma 2.2.2. Let � 2 R and de�ne � 0 = 1=2 � �: Then for all ' 2 H� 1=2(�) the function
u = S� (' ) 2 S satis�es

kTS

 2

u � �u kH1
0 (
) = kK np

� ' � � 0' kS� :

Proof. We denote byu1 = uj 
 1 and u2 = uj 
 2 : The �rst step is to compute explicitly the quantity
�



r (TS


 2
u � �u ) � r S� ( )

for an arbitrary  2 H� 1=2(�) : Thanks to an integration by parts and by using the fact that
u; T S


 2
u 2 S, we obtain
�



r (TS


 2
u � �u ) � r S� ( ) = � �

�


 1

r u � r S� ( ) + (1 � � )
�


 2

r u � r S� ( )

= h(�@nu1 + (1 � � )@nu2); S� ( )i H � 1=2 (�) ;H1=2 (�)

By using (2.7)-(2.8) = h� (K np
� ' n + ' n=2) + (1 � � )(K np

� ' n � ' n=2);  i S�

= hK np
� ' n � � 0' n ;  i S� :
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Since for all  2 H� 1=2(�) we havekS� ( )kH1
0 (
) = k kS� ; one deduces that we have

�

 r (TS


 2
u � �u ) � r S� ( )

kS� ( )kH1
0 (
)

=
hK np

� ' � � 0';  i S�

k kS�

; 8 2 H� 1=2(�) nf 0g:

By taking the supremum over all  2 H� 1=2(�) nf 0g; and by recalling that S� : H� 1=2(�) ! S is
an isomorphism (and also the fact that (S; k � kH1

0 (
) ) is a Hilbert space), we obtain the wanted
result:

kTS

 2

u � �u kH1
0 (
) = kK np

� ' � � 0' kS� :

�

Final result

Now, we have all the tools to show the

Theorem 2.2.1. The essential spectra ofTS

 2

: S ! S and K np
� : H� 1=2(�) ! H� 1=2(�) are

linked by the relation
� ess(TS


 2
) = 1 =2 � � ess(K

np
� ):

Proof. Since both operators are self-adjoint(the spaceH� 1=2(�) is endowed with h�; �i S� ), we
can use the characterization of the essential spectrum by means of singular Weyl sequences. The
fact that � 2 � ess(TS

� ) implies that there exists a sequence(un )n2 N of elements ofS such that

kunkH1
0 (
) = 1 for all n 2 N;

un * 0 weaklly in S;

TS

 2

un � �u n ! 0 strongly in S:

Since S� : (H � 1=2(�) ; k � kS� ) ! (S; k � kH1
0 (
) ) is an isomorphism, we introduce(' n )n2 N the

sequence of elements ofH� 1=2(�) such that S� (' n ) = un for all n 2 N: Easily, one can see that
k' nkH � 1=2 (�) = 1 for all n 2 N: Moreover, since for all  2 H� 1=2(�) ; we have

h' n ;  i S� =
�



r un � r S� ( )

and sinceS� ( ) 2 S; we infer that (' )n2 N converges weakly to zero inH� 1=2(�) : According to
Lemma 2.4, we know that for � 0 = � � 1=2 and all n 2 N; we have

kTS

 2

un � �u nkH1
0 (
) = kK np

� ' n � � 0' nkS� :

This shows that K np
� ' n � � 0' n converges to zero asn tends to + 1 : Consequently,� 0 2 � ess(K

np
� ):

The converse statement can be proved in the same way. �

As a consequence of the previous theorem, we obtain

Theorem 2.2.2. There holds � � 2 I � if and only if
� � + 1

2(� � � 1)
2 � ess(K

np
� ): And we have

� ess(K
np
� ) = f

� � + 1
2(� � � 1)

; � � 2 I � g; I � = f
a + 1=2
a � 1=2

; a 2 � ess(K
np
� )g:

Proof. We already know that � � 2 I � if and only if 1=(1 � � � ) 2 � ess(TS

 2

): According to the
previous theorem, we can say that� � 2 I � if and only if 1=2� 1=(1 � � � ) = ( � � + 1) =2(� � � 1) 2
� ess(K

np
� ): The second part of the proof is a simple consequence of the fact that the function

x 7! (x + 1) =(2(x � 1)) is bijective from R�
� to (� 1=2; 1=2) and that it inverse coincides with the

function x 7! (x + 1=2)=(x � 1=2): �
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The previous theorem tells us how the critical interval is related to the essential spectrum of the
Neumann-Poincaré operator. When the interface� is smooth (of classC1;� with 0 < � < 1),
one can prove that K �

np is a Hilbert-Schmidt operator and, then, it is compact. Consequently,
its spectrum is composed by a sequence of real eigenvalues that has zero as only possible point
of accumulation. For a general interface of classC1, K �

np is not necessarily a Hilbert-Schmidt
operator. As a result, its compactness is not guaranteed. In Section 2.3, we are going to show
that when � is of classC1 the critical interval reduces to f� 1g. This implies, using the previous
theorem, that � ess(K �

np) = f 0g: With this in mind, we can show the

Lemma 2.2.3. When the interface � is of class C1, we have � ess(K
np
� ) = f 0g and K np

� :
H� 1=2(�) ! H� 1=2(�) is compact.

Proof. The fact that � ess(K
np
� ) = f 0g is a consequence of the fact that when� is of classC1

then I � = f� 1g (see Ÿ2.3). It remains to explain whyK np
� is compact. From the fact that K np

�
is self-adjoint, we deduce that� disc (K np

� ) (the discrete spectrum ofK np
� ) is either composed by a

�nite number of real eigenvalues or by a sequence(� n )n2 N of real eigenvalues that tends to zero
as n goes to+ 1 : In both cases, we de�ne the space

F := ( �
� 2 � disc (K np

� )
E(� ))?

in which E(� ) stands for the eigenspace associated to� 2 � disc (K np
� ) (note that by de�nition of

the discrete spectrum,E(� ) is �nite dimensional). The space F is then a closed subspace of the
Hilbert space (H � 1=2; k � kS� ): This implies that (F; k � kS� ) is also a Hilbert space. Furthermore,
without any di�culty one shows that F is stable by K np

� and that K np
� : F ! F is self-adjoint

with a spectrum that is reduced to f 0g: Consequently, the spectral radius ofK np
� : F ! F is

equal to 0 and then K np
� vanishes inF: Using this result, we are going to show thatK np

� is the
limit of �nite rank operators and then it is a compact operator. The proof in the case when
� disc (K np

� ) is �nite is obvious. It remains to study the case when� disc (K np
� ) = f � n ; n 2 Ng where

(� )n is a sequence of real number that converges to zero asn tends to 1 : Denote by Fn the
spaceFn := F � n

i =1 E(� i ): Clearly, for all n 2 N the spaceFn is stable by K np
� : Moreover, the

restriction of K np
� to Fn has a �nite range. Let Pn : H� 1=2(�) ! Fn be the orthogonal projector

of H� 1=2(�) into Fn (with respect to h�; �i S� ) and de�ne the �nite rank operator K n := K np
� � Pn :

One can easily see that
jh(K np

� � K n )u; ui S� j � max
n<n

(j� i j)kuk2
S�

:

By letting n tend to + 1 and using the fact that (� n ) tends to 0 as n tends to in�nity, we can
say that K np

� is the limit of (K n )n2 N and then it is compact. �

In the literature, the compactness ofK �
np for C1 interfaces (in 2D) is established in [78]3 by using

technical tools related to the study of integral operator. The proof of the above lemma can be
see as an alternative (more simple) to the one presented in [78].
Let us �nish this section by mentioning that by using the same localization techniques as in the
works of K.M. Perfeket et al [92, 104], one can show the following statement

Lemma 2.2.4. Assume that the interface� is as in (2.1). Then we have� ess(K
np
� ) = � ess(K

np
@K ):

Recall that K = f x 2 R3; jxj < �; x= jxj 2 A g:

2.3 Study of the far problem

This section aims at studying the well-posedness of the far problem. Let us detail this a bit.
For � small enough (e.g. for� < 1=2) we de�ne 
 � = 
 nB (O; � ): Our goal is to study the

3The author would like to thank Charles Dapogny for suggesting this reference.
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well-posedness (in the Fredholm sense) of the problem

Find u 2 H1
0(
 � ) such that � div( � r u) = f (2.9)

for an arbitrary f 2 (H1
0(
 � )) � : We set 
 �

1 := 
 1 \ 
 � , 
 �
2 := 
 2 \ 
 � . The interface between
 �

1
and 
 �

2 is denoted by � � . It is smooth and meets the boundary of
 � orthogonally at @B(O; � ):
As previously, the analysis of the well-posedness (in the Fredholm sense) of (2.9) is equivalent to
study the Fredholmness of the operatorF �

� : H1
0(
 � ) ! (H1

0(
 � )) � such that

hF �
� u; vi :=

�


 �
� r u � r vdx; 8u; v 2 H1

0(
 � ):

The main result of this section is given by the following

Theorem 2.3.1. Assume that � � 1=2. If � � 6= � 1; then the operatorF �
� is a Fredholm operator

of index 0: In particular, we have the estimate

kukH1
0 (
 � ) � C(kF �

� uk(H 1
0 (
 � )) � + kukL2 (
 � ) ); 8u 2 H1

0(
 � )

with C independent ofu:

To prove the previous theorem, we will use localization techniques. For this, we need to study two
di�erent versions of the problem. The �rst one is related to the problem near any point x 2 � � ,
the second one is related to the problem near some pointx 2 � � \ @B(O; � ): A complete proof
of the previous theorem will be given in Ÿ2.3.3.

2.3.1 Preliminaries

Let g : [0; 1]2 ! R be a bounded function of classC1 and let 0 < L: We de�ne 
 L � R3 as

 L = 
 L

1 [ 
 L
2 [ � L where 
 L

1 , 
 L
2 and � L are de�ned as follows:


 L
1 := f (x; y; z) 2 R3 such that (x; y) 2 (0; 1)2 and g(x; y) � L < z < g (x; y)g;


 L
2 := f (x; y; z) 2 R3 such that (x; y) 2 (0; 1)2 and g(x; y) < z < g (x; y) + Lg;

� L := f (x; y; z) 2 R3 such that (x; y) 2 (0; 1)2 and z = g(x; y)g:

We consider the operatorAL
� : H1

0(
 L ) ! (H1
0(
 L )) � such that for all u; v 2 H1

0(
 L ) we have

hAL
� u; vi :=

�


 L
� r u � r v dxdydz

in which the function � is such that � j 
 L
1

= � 1 and � j 
 L
2

= � 2; where0 < � 1 and � 2 < 0: Our goal
is to �nd an explicit condition on � � := � 2=� 1 in order to ensure that A � is an isomorphism. For
this purpose, we are going to use theT-coercivity method.

Lemma 2.3.1. Assume that � is such that max(j� � j; 1=j� � j) > (1 + 2kr gkL1 (�) + 4kr gk2
L1 (�) ):

Then the operator AL
� is an isomorphism.

Proof. The proof is a generalization of the one given in [50, Theorem 1.2.10] for the 2D case.
For all u 2 H1

0(
) , we de�ne the functions u1 and u2 such that u1 = uj 
 L
1

2 H1(
 L
1 ) and

u2 = uj 
 L
2

2 H1(
 L
2 ): We introduce the operators T1; T2 : H1

0(
 L ) ! H1
0(
 L ) such that

T1(u) =

(
u1 in 
 L

1

� u2 + 2R1(u1) in 
 L
2

and T2(u) =

(
� u1 + 2R2(u2) in 
 L

1

u2 in 
 L
2
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where R1 and R2 are the linear operators de�ned as follows

R1(u1)(x; y; z) = u1(x; y; 2g(x; y) � z) for (x; y; z) 2 
 L
2

R2(u2)(x; y; z) = u2(x; y; 2g(x; y) � z) for (x; y; z) 2 
 L
1 :

One can check that for all u 2 H1
0(
 L ), we haveR1(u1) j � L = R2(u2) j � L = uj � L : Moreover, one

can also see thatR1(u1) j@
 L \ @
 L
1

= 0 and R2(u2) j@
 L \ @
 L
2

= 0 : This leads us to conclude that for

all u 2 H1
0(
) , the functions T1(u) and T2(u) belong also toH1

0(
 L ). As a result T1 (resp. T2)
de�nes a linear operators fromH1

0(
 L ) into itself. We de�ne

kjR1kj = sup
u2 H1

0 (
 L );u6=0

kr R1(u1)kL2 (
 L
2 )

kr u1kL2 (
 L
1 )

and kjR2kj = sup
u2 H1

0 (
 L );u6=0

kr R2(u2)kL2 (
 L
1 )

kr u2kL2 (
 L
2 )

:

Now, by applying [50, Theorem 1.1.1], one can say that if

1=j� � j > kjR1kj2 or j� � j > kjR2kj2;

then AL
� is an isomorphism. Therefore, we need to �nd upper bounds ofkjR1kj and kjR2kj. Let

us start with kjR1kj: First, observe that for all u 2 H1
0(
 L )nf 0g we have

�


 L
2

jr R1(u1)j2(x̂; ŷ; ẑ) dx̂dŷdẑ =
�


 L
2

(@̂x (R1(u1))) 2 + ( @̂y(R1(u1))) 2 + ( @̂z(R1(u1))) 2 dx̂dŷdẑ:

By performing the change of variables(x; y; z) = J (x̂; ŷ; ẑ) (this is possible sinceJ is of classC1

and J � J = I ) and by observing that
8
>><

>>:

@̂xR1(u1)( x̂; ŷ; ẑ) = @xu1(x; y; z) + 2 @xg(x; y) @zu1(x; y; z)

@̂yR1(u1)( x̂; ŷ; ẑ) = @xu1(x; y; z) + 2 @yg(x; y) @zu1(x; y; z);

@̂xR1(u1)( x̂; ŷ; ẑ) = � @zu1(x; y; z);

we obtain the estimate
�


 L
2

jr R1(u1)j2(x̂; ŷ; ẑ) dx̂dŷdẑ =
�


 L
1

(@xu1(x; y; z) + 2 @xg(x; y) @zu1(x; y; z))2dxdydz

+
�


 L
1

(@yu1(x; y; z) + 2 @yg(x; y) @zu1(x; y; z))2dxdydz

+
�


 L
1

( @zu1(x; y; z))2dxdydz

� A kr u1k2
L2 (
 L

1 )

with A = (1 + 2 kr gkL1 (� L ) + 4kr gk2
L1 (� L ) ): This means that kjR1kj2 � (1 + 2kr gkL1 (� L ) +

4kr gk2
L1 (� L ) ): Working in a similar way (by exchanging the role of 
 L

1 and 
 L
2 ), we �nd that

kjR2kj2 � (1 + 2kr gkL1 (� L ) + 4kr gk2
L1 (� L ) ): The lemma is then proved. �

Proposition 2.3.1. Assume that g 2 C1([0; 1]2) is such that the function g1 : (x; y; z) 7! z �
g(x; y) satis�es @ng1 = 0 ( here n is the outward normal vector to 
 L ) on @
 L \ � L . Then AL

� is
a Fredholm operator of index zero for all� � 6= � 1:

The assumption @ng1 = 0 on @
 L \ � L is equivalent to say that the normal vector to � L (which
coincides with r g1) is tangential to @
 L in @
 L \ � L : This means that � L meets@
 L orthogonally.

Proof. The proof is inspired by the proof of the a priori estimate obtained in [50, Ÿ1.3.4 ] and
will be based on the use of localization techniques. Near eachx 2 � L ; we denote by(sx ; tx ; wx )
a system of local coordinates of originx (in such way that the plane wx = 0 is tangent to � L at
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x ). The existence of such system of coordinates is due to the fact thatg is of classC1: Near, any
x 2 � L the interface � L can be seen as the graph of a function(sx ; tx ) 7! ~gx (sx ; tx ): Furthermore,
for all x 2 � L ; we can �nd three positive numbers ax ; bx and � x < L such that the domain


 x (ax ; bx ; � x ) := f (sx ; tx ; wx ) j s 2 (� ax ; ax ); tx 2 (� bx ; bx ); wx 2 (� � x +~gx (sx ; tx ); � x +~gx (sx ; tx ))g

is a subset of
 L : With this in mind, we can de�ne the domains 
 x
1 and 
 x

2 such that 
 x
1 (ax ; bx ; � x ) :=


 L
1 \ 
 x (ax ; bx ; � x ) and 
 x

2 (ax ; bx ; � x ) := 
 L
2 \ 
 x (ax ; bx ; � x ). Regarding the de�nition of 
 L

1 and

 L

2 ; one deduces that the domains
 x
1 and 
 x

2 admit the representation


 x
2 (ax ; bx ; � x ) := f (sx ; tx ; wx ) j sx 2 (� ax ; ax ); tx 2 (� bx ; bx ); wx 2 (~gx (sx ; tx ); � x + ~gx (sx ; tx ))g


 x
1 (ax ; bx ; � x ) := f (sx ; tx ; wx ) j sx 2 (� ax ; � ax ); tx 2 (� bx ; bx ); wx 2 (� � x + ~gx (sx ; tx ); ~gx (sx ; tx ))g:

When x 2 � L \ @
 L ; thanks to the assumption made on the functiong; we can �nd a new system
of coordinates(sx ; tx ; wx ) that is obtained by rotating the initial system of coordinates (in which
the plane wx = 0 is tangential to � L at x ) and three positive numbersax ; bx and � x < L such
that the domain


 x (ax ; bx ; � x ) := f (sx ; tx ; wx ) j sx 2 (0; ax ); tx 2 (0; bx ) and wx 2 (� � x +~gx (sx ; tx ); � x +~gx (sx ; tx ))g

is a subset of
 L in which (sx ; tx ) 7! ~gx is a function whose graph coincides with� L near x : We
de�ne the domains 
 x

1 and 
 x
2 as in the case ofx 2 � L : To simplify notations, we shall denote

by ~r the gradient operator with respect to (sx ; tx ; wx ): Since(sx ; tx ; wx ) is obtained by rotating
the original system of coordinates, it follows that for all x 2 � and all u; v 2 H1(
 x ); we have

�


 x (ax ;bx ;� x )
� r u � r v dxdydz =

�

~
 x
� ~r u � ~r v dsx dtx dwx

where ~
 x = ( � ax ; ax ) � (� bx ; bx ) � (� � x ; � x ) when x 2 � L and ~
 x = (0; ax ) � (0; bx ) � (� � x ; � x )
when x 2 � L \ @
 L : Given that for all x 2 � L ; the plane wx = 0 is tangential to � L at x ; we
then have ~r ~gx (0; 0) = 0 and since the function ~gx is of classC1; we can say, using the fact that
� � 6= � 1, that for all x 2 � L ; we can �nd a�

x ; b�
x small enough so that

max(j� � j; 1=j� � j) > (1 + 2k ~r ~gx kL1 (� x ) + 4k ~r ~gx k2
L1 (� x ) )

where� x := 
 x
1 (a�

x ; b�
x ; � x ) \ 
 x

2 (a�
x ; b�

x ; � x ): As a consequence, by applying the results of the previ-
ous lemma, we infer that for all x 2 � L the operator Ax

� : H1
0(
 x (a�

x ; b�
x ; � �

x )) ! (H1
0(
 x (a�

x ; b�
x ; � �

x ))) �

that is de�ned by

hAx
� u; vi :=

�


 x (a�
x ;b�

x ;� x )
� ~r u � ~r v dsx dtx dwx ; 8u; v 2 H1

0(
 x (a�
x ; b�

x ; � �
x ))

is an isomorphism. For allx 2 � L ; we de�ne � x 2 D (
 L ; [0; 1]) that is equal to 1 in 
 x (a�
x =2; b�

x =2; � x =2)
and that vanishes in 
 L n
 x (3a�

x =4; 3b�
x =4; 3� x =4):

By noticing that
[

x 2 �


 x (a�
x =2; b�

x =2; � x =2) covers� L and since the latter is compact, one deduces

that there exist x 1; : : : ; x n 2 � L with n 2 N such that

� L � 
 n := [
x 2f x 1 ;:::;x n g


 x (a�
x =2; b�

x =2; � x =2):

To simplify, for all x 2 f x 1; : : : ; x ng the domain 
 x (a�
x ; b�

x ; � x ) will be denoted by 
 x : To proceed,
denote by 
 0 the domain 
 0 := 
 n
 n and let � 0 2 D (
 L ; [0; 1]) such that � 0

j
 0 = 1 and that

vanishes near� : Starting from the fact that for all x 2 
 ; we have1 � � 0(x ) +
nX

i =1

� x i (x ); we

deduce that for all u 2 H1
0(
 L )nf 0g; we have the estimate

kukH1
0 (
 L ) � k � 0ukH1

0 (supp( � 0 )) +
nX

i =1

k� x i ukH1
0 (
 x i ) : (2.10)
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For all x = x 1; : : : ; x n ; we de�ne the operator T x : H1
0(
 x ) ! H1

0(
 x ) as in the proof of the
previous lemma. We also need to de�ne the operatorT0 : H1

0(supp(� 0)) ! H1
0(supp(� 0)) such

that for all v 2 H1
0(supp(� 0)) ; we have

T0(v) =
v in 
 1 \ supp(� 0)
� v in 
 2 \ supp(� 0):

The local ellipticity of the problem far from � and the continuity of T0 : L2(supp(� 0)) !
L2(supp(� 0)) combined with the relation (2.10) lead us to the estimate

k� 0uk2
H1

0 (supp( � 0 )) � Cjh� r (� 0u); r T0(� 0u)ij

� Cjhdiv( � r u); � 0T0(� 0u)ij + Cjh� r u � r � 0; T0(� 0u)ij

+ Cj(�u r � 0; r T0(� 0u))L2 (supp( � 0 )) j

� C(kAL
� uk(H 1

0 (
 L )) � + kukL2 (
 L ) )kukH1
0 (
 L ) :

Above and in the rest of the proof, C denotes a constant whose value may change from line to
line but that is independent of u: By replacing the operator T0 by T x and supp(� 0) by 
 x in the
above calculi, we conclude that for allx = x 1; : : : ; x n ; we have the estimate

k� x uk2
H1

0 (
 x ) � C(kAL
� uk(H 1

0 (
 L )) � + kukL2 (
 L ) )kukH1
0 (
 L ) :

With the help of (2.10), we infer that we have

kukH1
0 (
 L ) � C(kAL

� uk(H 1
0 (
 L )) � + kukL2 (
 L ) ):

By using that the embedding of H1
0(
 L ) into L2(
 L ) is compact and that AL

� is symmetric we
deduce, by applying Proposition 2.8.2, thatAL

� is a Fredholm operator of index zero. �

2.3.2 Study of the problem in the vicinity the boundary

In this paragraph, we turn our attention to the study of the scalar problem near @B(0; � ): To
do that, we start by de�ning the domain ! � = 
 � \ B (O; 2� ) = B (O; 2� )nB (O; � ) and then we
introduce the operator C �

� : H1
0(! � ) ! (H1

0(! � )) � that is de�ned by the relation

hC �
� u; vi :=

�

! �
� r u � r v dx; u; v 2 H1

0(! � )

where � = � 1 in ! �
1 := 
 1 \ ! � and � = � 2 in ! �

2 := 
 2 \ ! � : Since by assumption we have
� < 1=2; the interface � meets the boundary of ! � orthogonally at @B(0; � ) and at @B(0; 2� ):
Furthermore, one can easily see that thanks to the assumptions made on� near the origin (see
the introduction of this chapter), we have

! �
1 = f (r; �; ' ) j r 2 (� ; 2� ); g(' ) < �; ' 2 [0; 2� ]g

! �
2 = f (r; �; ' ) j r 2 (� ; 2� ); � < g (' ); ' 2 [0; 2� ]g

where g : [0; 2� ] ! [0; � ] is a periodic function of C2(see the introduction of this chapter).

Proposition 2.3.2. Assume that� � 6= � 1: Then the operatorC �
� is a Fredholm operator of index

zero. In particular, we have the estimate

kukH1
0 (! � ) � C(kC �

� uk(H 1
0 (! � )) � + kukL2 (! � ) )

where C is a constant that does not depend inu:
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Proof. By working in spherical coordinates, one can easily see that for allu; v 2 H1
0(! � ) we have

hC �
� u; vi =

�


 �
� r u � r v dx =

� 2�

�

�

S2
� (! )(( r@r u)( r@r v) + r Su � r Sv) drd!:

Above r S stands for the surface gradient operator onS2. By performing the Euler change
of variables (r; ! ) 7! (t; ! ) = (log( r ); ! ); we transform the domain ! � into the domain ~! � :=
(a; b) � S2 where the constantsa and b are given by a = log( � ) and b = log(2 � ): Furthermore, by
using the classical angular coordinates(�; ' ) 2 (0; � ) � (0; 2� ) to parameterize the sphereS2; the
domain ~! � can be also de�ned as follows:

~! � := f (t; �; ' ) j t 2 (a; b); � 2 (0; � ) and ' 2 (0; 2� )g:

To proceed, we de�ne the domains~! �
1 and ~! �

2 , respectively, as the images of the domains! �
1 and

! �
2 by the Euler change of variable. We also denote by~� � := ~! �

1 \ ~! �
2 :

For all u 2 H1
0(! � ); we denote by ~u the function that is de�ned in ~! � by the relation ~u(t; ! ) =

u(et ; ! ) for almost all (t; ! ) 2 ~! � : By observing that @t ~u(t; ! ) = @r u(r; ! )@t r = r@r u(r; ! ); we
deduce that the Euler change of variables induces an isomorphism between the spacesH1

0(! � )
and the space

W1
0(~! � ) = f (t; ! ) 7! ~u(t; ! ) j

�

~! �
et ((@t ~u)2 + jr S ~uj2) dtd! < + 1 and ~u = 0 on @~! � g:

Given that the function (t; ! ) 7! et is bounded in ~! � ; we infer that the spaceW1
0(~! � ) coincides

with H1
0((a; b) � S2): With this in mind, we can say that the Fredholmness of the operator C �

� is
equivalent to the Fredholmness of the operator ~C �

� : H1
0((a; b) � S2) ! (H1

0((a; b) � S2)) � that is
de�ned as follows:

h~C �
� ~u; ~vi =

� b

a

�

A
et � (! )(@t ~u@t ~v + r S ~u � r S~v)dtd!; u; v 2 W1

0(~! � ):

By observing that the function � depends only in � and not in the other two variables t and ';
and by noticing that ~� � meets@~! � orthogonally, one can adapt4 the proofs of the Lemma 2.3.1
and the Proposition 2.3.1 in order to deduce that ~C �

� is a Fredholm operator of index zero as soon
as � � 6= � 1: This leads us to the wanted result. �

2.3.3 Final proof

Here, we shall present a proof of the Theorem 2.3.1.

Proof. The idea is to use localization techniques as in the proof of Proposition 2.3.1. We start
by de�ning the domains A � = 
 � \ B (O; 2� ) and B � = 
 � nB (O; 3�=2): For i = 1 = 1 ; 2; we
also de�ne the domains A �

i = A � \ 
 i and B �
i = B � \ 
 i : Next, we introduce the interfaces

� �
A = A �

1 \ A �
2 and � �

B = B �
1 \ B �

2 : It is worth to note that � �
B \ @
 � = ; and that � � � � �

A [ � �
B :

Given that � B � 
 � is of classC1 and by working as in the proof of the previous proposition (this
is possible since� � 6= � 1), one can show, that for all x 2 � �

B we can �nd 
 x � 
 a neighborhood
of x such that the operator Ax

� : H1
0(
 x ) ! (H1

0(
 x )) � that is de�ned by

hAx
� u; vi :=

�


 x
� r u � r v; 8u; v 2 H1

0(
 x )

4The proof is based on the use of local re�ections with respect to ~� � and local rotation of the system of
coordinates but this time the di�culty comes from the fact that we are working in spherical coordinates. Details
about these techniques can be found in Ÿ3.6.1.
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is an isomorphism (T-coercive). Denote by
 � �
B the open set


 � �
B :=

[

x 2 � �
B


 x :

By observing that 
 � �
B covers the compact setB �

0 := 
 � �
B \ B � ; we can then �nd x 1; : : : ; x n 2 � �

B
(with n 2 N) such that

� �
B � B �

0 �
n[

i =1


 x i :

By applying the partition of unity theorem, we can �nd n smooth functions � 1; : : : ; � n 2 D (
 � )
such that

ˆ x 7! � i (x ) 2 [0; 1] for all all i = 1 ; : : : ; n and for all x 2 
 ;

ˆ � i is compactly supported in 
 x i ;

ˆ
nX

i =1

� i = 1 in B �
0 :

The next step, is to introduce � 0 2 D (
 � ; [0; 1]) that depends only in r = jxj and that is equal to 1
for jxj < 3=2� and that vanishes for7�=4 < jxj: This means that � 0 is supported in A � : We �nish
the series of notations by introducing ~� 2 D (
 � ; [0; 1]) that is equal to 1 in 
 � n(B (O; 3�=2) [ B �

0 )
and that vanishes near� � : Observe that we have

1 � ~� (x ) + � 0(x ) +
nX

i =1

� i (x ); x 2 
 � :

As a result, there exists0 < C such that

kukH1
0 (
 � ) � C(k~�u kH1

0 (supp(~� )) + k� 0ukH1
0 (A � ) +

nX

i =1

k� i ukH1
0 (
 x i ) ) 8u 2 H1

0(
 � ):

Before getting into details, along the rest of this proof, we denote byC a positive constant whose
value may change from line to line but that is independent ofu: Given that the function ~� vanishes
near � � and by means of the T-coercivity approach (see the proof of Proposition 2.3.1), we obtain
the estimate

k~�u k2
H1

0 (supp(~� ) � C(kdiv( � r ukH1
0 (
 � ) � + kukL2 (
 � ) )kukH1

0 (
 � ) :

In the same way, given that the operators Ax i
� are T-coercive and working as in the proof of

Proposition 2.3.1 we arrive to the estimate

k� i uk2
H1

0 (
 x
i ) � C(kdiv( � r u)kH1

0 (
 � ) � + kukL2 (
 � ) )kukH1
0 (
 � ) for i = 1 ; : : : ; n:

The next step is to deal with the term k� 0ukH1
0 (A � ) : Unfortunately, this time, we can not use

T-coercivity approach. However, starting from the result of Proposition 2.3.2, we conclude that
we have the estimate

k� 0ukH1
0 (A � ) � C(kdiv( � r (� 0u))kH1

0 (A � ) � + k� 0ukL2 (A � ) ):

Given that the function � 0 is independent ofr = jxj; one can easily prove that for allv 2 H1
0(A � ),

there holds div( �v r � 0) 2 L2(A � ). Moreover, we have the estimate

kdiv( �v r � )kL2 (A � ) � CkvkH1
0 (A � )

where C that does not depend inv: Combining this with the identity

(� r (� 0u); r v)L2 (A � ) = � (div( � r u); � 0v)L2 (A � ) + ( u; div( �v r � 0))L2 (A � ) + ( �u r � 0; r v)L2 (A � )



31 2.4. Study of the problem in the whole space

for all u; v 2 H1
0(A � ), we get

kdiv( � r (� 0u)kH1
0 (A � ) � � C(kdiv( � r u)kH1

0 (
 � ) � + kukL2 (
 � ) ):

This leads us to
k� 0ukH1

0 (A � ) � C(kdiv( � r u)kH1
0 (
 � ) � + kukL2 (
 � ) ):

By combining all these estimates, we obtain

kukH1
0 (
 � ) � C(kF �

� ukH1
0 (
 � ) � + kukL2 (
 � ) )

where C is independent of u 2 H1
0(
 � ). Since the operator F �

� is symmetric and since the
embedding ofH1

0(
 � ) into L2(
 � ) is compact, Proposition 2.8.2 guarantees thatF �
� is a Fredholm

operator of index zero. �

2.4 Study of the problem in the whole space

In the previous section, we studied the behavior of Problem (2.2) far from the origin. We proved
that it is well-posed as soon as� � 6= � 1: Here, we want to get a closer look on the situation near
the origin. Naturally, this leads us to study the well-posedeness of the problem

Find u 2 H1
loc(R3) such that � div( � r u) = f:

Here the function � is de�ned as follows: � = � 2 in K and � = � 1 in R3nK . The classical way
to study the well-posedness of the previous problem is to use the Fourier transform but since the
function � does not have a constant behavior at in�nity, this approach cannot be used. To cope
with this di�culty, and because the � function is independent of r = jxj; we will use the so-called
Mellin transformation. The use of this transformation will allow us to study the well-posedness of
the problem in weighted Sobolev (Kondratiev) spaces [100, 101]. The analysis conducted in this
section will be of great importance since it will allow, on the one hand to determine a �simple�
condition ensuring the well-posedness (in the Fredholm sense) of (2.2) and on the other hand it
will help us constructing an alternative functional framework in which the scalar problem is again
well-posed when the original problem is ill-posed in the usual setting.

2.4.1 Weighted Sobolev (Kondratiev) spaces

For � 2 R and m 2 N, we introduce the (homogeneous)5 weighted Sobolev (Kondratiev) space
(see [100]) associated to the punctured domainR3 n f Og denoted by Vm

� (R3) and de�ned as the
closure ofD (R3 n f Og) for the norm

k' kV m
� (R3 ) :=

0

@
X

j � j� m

kr j � j� m+ � @�
x ' k2

L2 (R3 )

1

A

1=2

:

Here r = jxj and D (R3 n f Og) denotes the space of in�nitely di�erentiable functions which are
compactly supported in R3 n f Og: Clearly we have V0

0(R3) = L 2(R3): Moreover, one observes
that for all m 2 N� and � 2 R; we have the inclusion Vm

� (R3) � Vm� 1
� � 1 (R3): It is worth to

note that for a given m 2 N and � 1; � 2 2 R such that � 1 < � 2, we have Vm
� 1

(R3) 6� Vm
� 2

(R3)
and Vm

� 2
(R3) 6� Vm

� 1
(R3): It is also interesting to mention that thanks to the classical Hardy

inequalities, one can show (see [101, Theorem 7.1.1]) thatV1
0(R3) = H 1(R3):6

5For the case of nonhomogeneous ones see [101, Chapter 7].
6Note that this is wrong in 2D.
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2.4.2 The Mellin transform

The Mellin transform is one of the classical integral transformations which is a useful tool to study
the properties of partial di�erential equations. Compared to other classical transformations such
as Fourier or Laplace transform, the Mellin transformation has the particularity to be adapted to
the study linear PDE in weighted Sobolev spaces and more generally to the study of linear PDE
near point singularities. Formally, by using this transformation, the study of the well-posedness
of a linear PDE near a singular point and the study of the asymptotic expansion of its solution
(when it is well-de�ned) near these points, reduces to the analysis of the spectral properties of
its Mellin transform (also known as the Mellin symbol). The goal of this paragraph is to recall
some of the basic properties of this transformation that will be used in the next sections.
Let r 7! f (r ) be a smooth function that is compactly supported in R�

+ : The Mellin transform of
f , denoted by f̂ (� ), is the function de�ned for all � 2 C by the formula:

f̂ (� ) =
� 1

0
r � � � 1f (r )dr:

Note that since f has a compact support in (0; 1 ); one can show that � 7! f̂ (� ) is analytic.
When f does not have compact support in(0; 1 ), f̂ (� ) is no longer de�ned for all � 2 C: As
we shall see later, the set of� 2 C for which f̂ (� ) exists depends on the regularity off in
weighted Sobolev spaces. To simplify notations, for all
 2 R; we denote by` 
 the vertical line
` 
 := f � 2 C j < e(� ) = 
 g:

Lemma 2.4.1. [102, Theorem 6.1.3] The Mellin transformation satis�es the following properties.

ˆ For all u 2 D (R�
+ ); we have \(r@r u)( � ) = � û(� ) for all � 2 C:

ˆ For all u; v 2 D (R�
+ ); we have the Parseval equality

� 1

0
r 2� � 1u(r )v(r )dr =

1
2i�

�

` � �

û(� )v̂(� )d�:

As a result the Mellin transformation can be continuously extended as an isomorphism
between the weighted spaceV0

� � 1=2(R+ ) := f u such that r � � 1=2u 2 L2(R+ )g and the space
L2(` � � ):

ˆ If u 2 V0
� 1 � 1=2(R+ ) \ V0

� 2 � 1=2(R+ ) with � 1 < � 2, then � 7! û(� ) is well-de�ned and holo-
morphic in the strip <e(� ) 2 (� � 2; � � 1):

ˆ The inverse Mellin transformation of û(� ) 2 L2(` � � ) is given by

u(r ) =
1

2i�

�

` � �

r � û(� )d� 2 V0
� � 1=2(R+ ):

Now, for u 2 D (R3nf Og); we denote by(�; ! ) 7! û(�; ! ) the partial Mellin transform of u (with
respect to r = jxj) such that for all � 2 C and ! 2 S2

û(�; ! ) =
� + 1

0
r � � � 1u(r! )dr:

Using the properties above, one can easily see that for allu 2 D (R3nf Og) and all v 2 L2(S2) we
have

ĥu(�; ! ); v(! )i L2 (S2 ) =
�

S2
û(�; ! )v(! )d! =

� + 1

0

�

S2
r � � � 1u(r! )v(! )drd! =

�

R3
r � � � 3uvdx

= hu; r � � � 3vi L2 (R3 ) :
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The previous identity will be used to de�ne the Mellin transform of elements of the space(V 1
� (R)) � .

In the rest of this paragraph, we focus our attention on the study of the action of the (partial)
Mellin transform on the weighted Sobolev spacesV0

� (R3) ; V1
� (R3) and (V 1

� (R3)) � for an arbitrary
� 2 R: Let us start with the case of the spaceV0

� (R3): This is the subject of the next

Lemma 2.4.2. A function x 7! u(r! ) belongs to the spaceV0
� (R3) if and only if (�; ! ) 7!

û(�; ! ) ( its partial Mellin transform with respect to r ) belongs to the spaceL2(` � � +1 =2; L2(S2)) :
Additionally, the norm

kuk = (
1

2i�

�

` � � +1 =2

kû(�; ! )k2
L2 (S2 ) d� )1=2

is equivalent to k � kV 0
� (R3 ) :

Proof. By de�nition of V0
� (R3); we can say thatu 2 V0

� (R3) if and only if r 7! u(r! ) 2 V0
� +1 (R+ )

for almost all ! 2 S2 and ! 7! u(r! ) 2 L2(S2) for almost all r 2 R+ : Then The result follows by
applying the second item of the previous lemma. �

With the same idea as in the previous proof, we obtain the

Lemma 2.4.3. A function r! 7! u(r! ) belongs to the spaceV1
� (R3) if and only if the functions

� 7! û(�; ! ) and � 7! � û(�; ! ) belong respectively toL2(` � � � 1=2; H1(S2)) and L2(` � � � 1=2; L2(S2)) :
Furthermore, the norm

kuk = (
1

2i�

�

` � � � 1=2

kû(�; ! )k2
H1 (S2 ) + j� j2kû(�; ! )k2

L2 (S2 ) d� )1=2

is equivalent to k � kV 1
� (R3 ) :

For all � 2 C; we introduce the norm k � kH1 (S2 ;j� j) such that

kukH1 (S2 ;j� j) =: ( kuk2
H1 (S)2 + j� j2kuk2

L2 (S)2 )1=2 for all u 2 H1(S2):

Clearly, for a �xed � 2 C, it is equivalent to the classicalH1(S2) norm. But when j� j tends to + 1
this is no-longer the case. In(H1(S2)) � ; we introduce the norm k � k(H 1 (S2 ;j� )) � which is de�ned as
follows

kf k(H 1 (S2 ;j� j)) � = sup
u2 H1 (S2 )nf 0g

jhf; u ij
kukH1 (S2 ;j� j)

for all f 2 (H1(S2)) � :

The last part of this section is dedicated to the study of the Mellin transform of elements of
the space(V 1

� (R3)) � with � 2 R: For simplicity, we limit ourselves to the case of distributions
with compact support in R3nf Og. Consider r! 7! f (rw ) 2 (V 1

� (R3)) � with compact support in
R3nf Og. Its Mellin transform f̂ (�; �) belongs to(H1(S2)) � and is de�ned by the relation

hf̂ (�; �); vi H1 (S2 ) � ;H1 (S2 ) = hf (r; ! ); r � � � 3v(! )i (V 1
� (R3 )) � ;V 1

� (R3 ) for all v 2 H1(S2): (2.11)

Clearly, the last duality product is well-de�ned because f has a compact support inR3nf Og: This
means that f̂ (�; �) is well-de�ned for all � 2 C:

Lemma 2.4.4. Let f (r; w ) 2 (V 1
� (R3)) � with compact support in R3nf Og. De�ne g(r; w ) =

r 2f (r; ! ): We have the equality

kf kV 1
� (R3 ) � =

1
2i�

�

` � � 1=2

kĝ(�; ! )k(H 1 (S2 ;j� j)) � d�:
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Proof. The proof closely follows the one of Lemma 5.3 of [25] (that deals with the 2D case).
Given that V1

� (R3) is a Hilbert space, there exists a uniqueF 2 V1
� (R3) such that

hf; v i (V 1
� (R3 )) � ;V 1

� (R3 ) =
�

R3
jxj2(� � 1)F v + jxj2� r F � r v dx for all v 2 V1

� (R3):

Furthermore, we have kf kV 1
� (R3 ) � = kF kV 1

� (R3 ) : Since f has a compact support R3nf Og , it

follows that g is also compactly supported inR3nf Og: This implies that ĝ(�; �) is well-de�ned for
all � 2 C. Moreover, one can easily check that for all� 2 C; we have

ĥg(�; ! ); h(! )i H1 (S2 ) � ;H1 (S2 ) = hf; r � � � 1h(! )i (V 1
� (R3 )) � ;V 1

� (R3 ) for all h 2 H1(S2):

In particular for all � 
 = � � 1=2 + i
 with 
 2 R; there holds

hf; r � � 
 � 1h(! )i (V 1
� (R3 )) � ;V 1

� (R3 ) =
�

S2

� 1

0
r 2� � � 
 � 1F (r; ! )h(! )drd!

+
�

S2

� 1

0
r 2� � � 
 � 1r SF (r; ! ) � r Sh(! )drd!

� (� 
 + 1)
�

S2

� 1

0
r 2� � � 
 @r F h(! )drd!:

On the other hand, sinceF 2 V1
� (R3), the function � 7! F̂ (�; ! ) is well-de�ned for all � 2 ` � � � 1=2:

As a result, we obtain

hf; r � � 
 � 1h(! )i (V 1
� (R3 )) � ;V 1

� (R3 ) = hF̂ (� � � 1=2 + i
 ); h(w)i H1 (S2 )

� (� 
 + 1)( � 
 � 2� )( F̂ (� � � 1=2 + i
 ); h(w))L2 (S2 )

= hF̂ (� � � 1=2 + i
 ); h(w)i H1 (S2 )

+ j� 
 j2(F̂ (� � � 1=2 + i
 ); h(w))L2 (S2 ) :

Above, we have used the fact that(� 
 + 1)(2 � � � 
 ) = j� 
 j2 = j � � � 1=2 + i
 j2: Consequently,
one obtains that for all 
 2 R, we have

kĝ(� � 1=2 + i
; �)kH1 (S2 ) � = kF̂ (� � � 1=2 + i
; �)kH1 (S2 ;j� � � 1=2+ i
 j) � :

By integrating the previous estimate with respect to 
 2 R and by using the fact that kf kV 1
� (R3 ) � =

kF kV 1
� (R3 ) , we obtain the wanted result. �

2.4.3 De�nition of the problem

Before de�ning the problem that we want to study, let us start by observing that for all u 2 V1
� (R3)

with � 2 R and all ' 2 D (R3nf Og) we have

�
�

R3
div( � r u)' dx =

�

R3
� r u � r ' dx:

Thanks to the Cauchy-Schwarz inequality, we obtain the estimate

j
�

R3
div( � r u)' j � CkukV 1

� (R3 )k' kV 1
� � (R3 )

with C independent of u and of ': This means that for all u 2 V1
� (R3); we have div( � r u) 2

(V 1
� � (R)) � : The main goal of this paragraph is to study the well-posedness of the problem

Find u 2 V1
� (R3) such that � div( � r u) = f 2 (V 1

� � (R3)) � : (2.12)



35 2.4. Study of the problem in the whole space

Clearly, the well-posedness (in the Fredholm sense) of the previous problem is equivalent to study
the Fredholmness of the operatorW �

� : V1
� (R3) ! (V 1

� � (R3)) � such that

hW �
� u; vi =

�

R3
� r u � r v 8(u; v) 2 V1

� (R3) � V1
� � (R3):

Even in the classical con�guration, i.e. when the function � has a constant sign, the study of the
Fredholmness of the operatorW �

� is not an easy problem. The main di�culty comes from the
fact that we are dealing with a non-symmetric problem (except when� = 0 ) that is set in an
unbounded domain. The classical tool to deal with such di�culty is to use the Mellin transform.
The goal of the next paragraph is to investigate how this idea can be extended to the study of
the Fredholmness of the operatorW �

� when the sign of� is not constant.

2.4.4 Mellin symbol of the problem

As mentioned above, to study the properties of the operatorW �
� ; we are going to use the Mellin

transform. For this, we need to de�ne the so-called Mellin symbol of the problem. For all� 2 C;
introduce the operator L � (� ) : H1(S2) ! (H1(S2)) � such that

hL � (� )� ; � 0i =:
�

S2
� r S� � r S� 0d! � � (� + 1)

�

S2
� � � 0d! 8� ; � 0 2 H1(S2):

The link between the operatorsW �
� and L � (� ) is clari�ed in the next

Lemma 2.4.5. Let u 2 D (R3nf Og): Then for all � 2 C; we have

\r 2W �
� u(�; �) = L � (� )û(�; �):

Proof. It is not di�cult to check that the transformation u 7! r 2u is continuous from W1
� (R3) to

W1
� � 2(R3): This implies that for all u 2 D (R3nf Og) we haver 2W �

� (u) 2 W1
� � � 2(R3) � : Further-

more, one can see thatr 2W �
� (u) is compactly supported inR3nf Og. As a result, for all v 2 H1(S2)

we have

h \r 2W �
� u(�; �); vi H1 (S2 ) � ;H1 (S2 ) = hW �

� u; r � � � 1vi (V 1
� � (R3 )) � ;V 1

� (R3 ) =
�

R3
� (! )r u � r r � � � 1v dx:

On the other hand, there holds

hW �
� u; r � � � 1vi (V 1

� � (R3 )) � ;V 1
� (R3 ) =

�

S2
� (! )(

� + 1

0
r � � � 1r Su(r! ) � r Sv(! )dr )d!

� (� + 1)
�

S2
� (! )(

� + 1

0
r � � � 1(r@r u(r! ))v(! )dr )d!

=
�

S2
� (! )( r Sû(�; ! ) � r Sv(! ) � � (� + 1) û(�; ! )v(! ))d!:

Consequently, by using (2.11), we infer that for all � 2 C and v 2 H1(S2) we have

h \r 2W �
� u(�; �); vi H1 (S2 ) � ;H1 (S2 ) = hL � (� )û(�; �); v(�)i H1 (S2 ) � ;H1 (S2 )

This means that \r 2W �
� u(�; �) = L � (� )û(�; �): The lemma is then proved. �
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2.4.5 Solvability of the problem

In this paragraph, we come back to the study of the Fredholmness of the operatorsW �
� with

� 2 R: By combining the results of Lemma 2.4.5 and Lemma 2.4.4, we can say that the features
of the operator W �

� is directly related to the behavior of L � (� ) along the energy line` � � � 1=2:
Intuitively, one expects that if L � (� ) is invertible along the line ` � � � 1=2 the operator W �

� must
also be invertible. To prepare the ground, let us recall some classical de�nitions and notations,
that we brow from [101], concerning the spectral properties ofL � :
Spectrum of L � : a complex number � is said to be a non-regular point ofL � if and only if
L � (� ) is not invertible. Otherwise we say that � is regular. The set of non-regular points is
called the spectrum ofL � and is denoted by�( L � ): Clearly, the set �( L � ) is closed inC:
Eigenvalues and eigenfunctions : a complex number � 0 2 �( L � ) is said to be an eigenvalue
of L � if and only if L � (� 0) is not injective. All the elements of Ker (L � (� 0))nf 0g are called
eigenfunctions ofL � associated to� 0: The number �g(� 0) := dim(ker( � 0)) 2 N� [ f1g is known
as the geometric multiplicity of � 0:
Jordan chain: Let (�; ' 0) be a pair of eigenvalue and eigenfunction. If there is some ordered
family ' 1; :::; ' n (with n 2 N� [ f1g ) such that the system of equations

8
>><

>>:

dL �

d�
(� 0)' + L � (� 0)' 1 = 0

1
2

d2 L �

d� 2 (� 0)' k� 2 +
dL �

d�
(� 0)' k� 1 + L � (� 0)' k = 0 ; k = 2 ; : : : ; n

is satis�ed, we say that ' 0; : : : ; ' n is a Jordan chain ofL � associated to� 0 of length n + 1 : The
functions ' 1; : : : ; ' n are called generalized eigenfunctions associated to�: The maximal length of
the Jordan chain associated to(�; ' 0) is called the rank of ' 0 and is denoted byrank(' 0):
Index, partial/algebraic multiplicity: Let � be an eigenvalue ofL � and let (' j ) j =1 ;:::;� g (� )
be a basis ofKer (L � (� )) : For each j = 1 ; : : : ; �g(� ) we denote by (' j;k )k=0 ;:::;rank( ' j )� 1 (with
' j; 0 = ' j ) a Jordan chain associated to(�; ' j ): The numbers � j = rank( ' j ) are called the partial
multiplicities of �: The largest one is called the index of� and is denoted by �(� ): The sum of
these partial multiplicities is called the algebraic multiplicity of � and is denoted by�a(� ):
The set f ' j;k gj =1 ;:::;� g (� );k=0 ;:::;� j (� )� 1; is called a canonical system of Jordan chains associated to
�:

Remark 2.4.1. Note that in the de�nition of Jordan chains, the generalized eigenfunctions are
not necessarily linearly independent. In particular, some of them may be zero.

Since the symbolL � is associated with a second order PDE, we have the following

Lemma 2.4.6. Let (� 0; ' 0) 2 C� H1(S2)nf 0g be a eigenpair ofL � : If there is no ' 1 2 H1(S2)nf 0g
such that

dL �

d�
(� 0)' + L � (� 0)' 1 = 0 : (2.13)

then, the rank(' 0) = 1 :

Proof. In the particular case when � 0 = � 1=2; one can see that (2.13) holds when' 1 = ' 0:
The result is then proved for this particular case. Now, let us suppose that� 0 6= � 1=2 and
assume that 2 � rank(' 0): As a consequence, by using the assumption made on' 0; we deduce
that (2� 0 + 1) �' 0 = 0 : Therefore, we have' 0 = 0 which condradtics the fact that ' 0 is an
eigenfunction of L � (� 0): �

Because of the change of sign of� , the study of the spectral properties of the family of operators
(L � (� )) � 2 C does not �t into the general theory presented in [101]. A detailed study of the spectral
properties of (L � (� )) � 2 C is given in the next chapter. By adapting the results of Ÿ3.2.3, one can
prove (see Theorem 3.2.1) the
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Proposition 2.4.1. Assume that � � 6= � 1: The spectrum of L � is composed by isolated eigen-
values with �nite algebraic multiplicities. Furthermore, there exist two positive constantsr0 and

 0 such that

D r 0

 0

:= f z 2 C such that r0 < jz � 1=2j and j< e(z + 1=2)j < 
 0j= m(z + 1=2)jg � Cn�( L � ):

Besides, for all � 2 R such that ` � � � 1=2 \ �( L � ) = ; , there exists0 < C � such that

kukH1 (S2 ;j� j) � C � kL � (� )ukH1 (S2 ;j� j) � u 2 H1(S2; j� j):

Remark 2.4.2. It is worth to mention that the discreteness of�( L � ) combined with the fact that
D r 0


 0
� Cn�( L � ) allow us to say that for all � 1; � 2 2 R such that � 1 < � 2, the set �( L � ) \ f � 2

C j < e(� ) 2 (� 1; � 2)g is �nite.

Now, we have all the tools to prove the following

Theorem 2.4.1. Assume that � � 6= � 1: If � 2 R is such that ` � � � 1=2 \ �( L � ) = ; ; then W �
� is

an isomorphism. Moreover, we have the estimate

kukV 1
� (R3 ) � C � kW � uk(V 1

� � (R3 )) � ; u 2 V1
� (R3)

where C � is a constant that depends only in�:

Proof. Let u 2 D (R3nf Og): According to Lemma 2.4.5 we know that for all � 2 C we have

\r 2W �
� u(�; �) = L � (� )û(�; �):

Since by assumption the operatorL � (� ) is invertible for all � 2 ` � � � 1=2, by using the results of
Proposition 2.4.1, we deduce that there is some constant0 < C � that depends only on � such
that

kû(�; �)kH1 (S2 ;j� j) � C � k \r 2W �
� u(�; �)kH1 (S2 ;j� j) ; � 2 ` � � � 1=2:

By integrating the previous estimate with respect to � along the line ` � � � 1=2 and by using the
result of Proposition 2.4.4, we arrive to the estimate

kukV 1
� (R3 ) � C � kW � uk(V 1

� � (R3 )) � ; u 2 D (R3nf Og):

The density of D (R3nf Og) in V1
� (R3) allows us to deduce the estimate

kukV 1
� (R3 ) � C � kW �

� uk(V 1
� � (R3 )) � ; u 2 V1

� (R3):

This shows that the operator W �
� is injective and that its range is closed. By observing that for

all � 2 R we haveL � (� � � 1=2) = L � (� � 1=2) we infer that the operator W � �
� is also injective

and its range is closed. By noticing that (W �
� ) � = W � �

� we then deduce that W �
� is bijective.

Finally, the open map theorem allows us to say thatW �
� is an isomorphism. �

The proof of the previous theorem combined with the expression of the inverse Mellin transform
leads us to the

Corollary 2.4.1. Assume that � � 6= � 1 and that ` � � � 1=2 is free of eigenvalues ofL � then the
solution of (2.12) can be expressed in the following way

u(r! ) =
1

2i�

�

` � � � 1=2

r � L � (� ) � 1( dr 2f (�; ! ))d�: (2.14)
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2.4.6 Asymptotic of the solution

One of the most important results of the Kondratiev theory for linear strongly elliptic PDE [100]
is the fact that it allows us to derive an asymptotic expansion of the solution at in�nity and near
the origin. Interestingly, these results can be extended to a more general class of PDE. All we
need is to have a precise information about the Mellin symbol generated by the problem under
study. Before explaining how to obtain this expansion for the solutions of (2.12), we need to
de�ne the so-called singularities of the problem.

De�nition 2.4.1. Let � 2 D (R3) be a cut-o� function that depends only onr = jxj and that is
equal to 1 near the origin. We say that s is a singularity of (2.12) if and only if it has the form

s(r! ) = � (r )r �
nX

s=0

1
s!

log(r )s' n� s(! )

where (' s)s=0 ;:::;n is a Jordan chain of L � corresponding to �:

Now, we explain how these singularities are related to Problem (2.12).

Lemma 2.4.7. We have the equivalence:(' s)s=0 ;:::;n is a Jordan chain of L � corresponding to
� if and only if the functions

sk (r! ) = r �
kX

s=0

1
s!

log(r )s' k� s(! )

satisfy div( � r sk ) = 0 for k = 1 ; : : : ; n:

Proof. The proof of this result is given in [101, Theorem 1.1.5]. We limit ourselves to the proof
of the result for s0: Starting from the identity

div( � r (r � ' 0(! ))) = r � � 2(div S(� r S ' 0) + � (� + 1) �' 0) in R3nf Og;

we infer that

div( � r (r � ' 0(! ))) = 0 in R3nf Og () divS(� r S ' 0) + � (� + 1) �' 0 = 0 in S2:

The result follows from the identity

hdivS(� r S ' 0) + � (� + 1) �' 0; ' 0i = hL � (� )' 0; ' 0i ; ' 0 2 H1(S2):

�

From the previous lemma, we deduce that all the singularities of Problem (2.2) satisfy the equation
div( � r S�) = 0 near the origin.

Asymptotic of the solution

Now, we explain how one can �nd an asymptotic expansion of the solution to (2.12). The starting
point is to apply the Residue theorem to the formula (2.14) and to take pro�t from the fact (thanks
to Proposition 2.4.1) that if � � 6= � 1, then near any � 0 2 �( L � ) the operator L (� ) � 1 has the
representation

L � (� ) � 1 =
� (� 0 )X

j =1

1
(� � � 0) j A j +

+ 1X

j =0

(� � � 0) j B j :

Here all the A j are �nite-dimensional operators, the B j are continuous operators and this result
is proved in [101, Theorem 1.1.2 ]. By adapting the proof of [102, Theorem 6.1.5 ], we can prove
the
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Proposition 2.4.2. Assume that � � 6= � 1: Let � 1 < � 2 2 R such that the lines` � � 1 � 1=2 and
` � � 2 � 1=2 are free of eigenvalues ofL � : Denote by� 1; : : : ; � N (with N 2 N� ) the set of eigenvalues
of L � that are located in the strip � � 2 � 1=2 < <e(� ) < � � 2 � 1=2: For each j = 1 ; : : : ; N we
denote by

f ' j
k;sgk=1 ;:::;� g (� i );s=0 ;:::;� k (� j )� 1

a canonical system of Jordan chains associated to� j : The number � j (� i ) stands for the j � th
partial multiplicity of � i : Let f 0 2 (V 1

� � 1
(R3)) � \ (V 1

� � 2
(R3)) � and denote byu1 2 V1

� 1
(R3) (resp.

u2 2 V1
� 2

(R3)) the solution of (2.12) with f = f 0. The function u1 � u2 admits the decomposition

u1(x) � u2(x) =
NX

j =1

� g (� j )X

k=1

� k (� j )� 1X

s=0

cj;k;s r � j
1
s!

log(r )s' i
j;k � s(! ) for almost all x 2 R3

in which all the cj;k;s are complex numbers.

Remark 2.4.3. Clearly, the coe�cients cj;k;s depend on the choice of the canonical system of
Jordan chains associated to each(� j ) j =1 ;:::;N : An explicit formula for the coe�cient ci;j;k can be
be found in [101]. The idea is based on the use of a well-chosen canonical system of Jordan
chains of L � that are associated to(� � j � 1)j =1 ;:::;N (see [108, Ÿ5.4.1]) for which the so-called
biorthogonality condition (see [101, Theorem 5.1.1]) is satis�ed.

2.5 Application: study of the problem in the unit ball

The results of this section are not essential to understand those of the next one. Therefore,
this section can be skipped in a �rst reading. In this paragraph, we are going to study the
Fredholmness of the problem

Find u 2 H1
0(B( O; 1)) such that � div( � r u) = f 2 (H1

0(B( O; 1))) � (2.15)

where � = � 2 in B(O; 1) \ K and � = � 1 in B(O; 1)nK : In order to simplify notations, we shall
denote byB the open unit ball of R3: Moreover, we denote byB1; B2 the domainsB2 := B \ K and
B1 := B nB2. For all m 2 N and � 2 R; we de�ne the space�Vm

� (R3) as the closure ofD (B n f Og)
for the norm

k' k�V m
� (B) =

0

@
X

j � j� m

kr j � j� m+ � @�
x ' k2

L2 (B)

1

A

1=2

:

Note that for all m 2 N� and � 2 R we haveVm
� (B) � Vm� 1

� � 1 (B) : Besides, one can see that for all
m 2 N and � 1; � 2 2 R such that � 1 < � 2 we have the embeddingVm

� 1
(B) � Vm

� 2
(B) : In addition

to that, by using the [101, Theorem 7.1.1] we can prove thatH1
0(B) = V 1

0(B) : We also have the
following

Lemma 2.5.1. Let � 2 H1(S2) then the function x ! r � �( ! ) (where (r; ! ) are the classical
spherical coordinates) belongs toe the spaceV1

� (B) if and only if � 1=2 � �= 2 < <e(� )

Proof. Easily one can show thatx ! r � �( ! ) 2 V1
� (B) if and only if x ! r � �( ! ) 2 V0

� � 1(B) :
This means that x ! r � �( ! ) 2 V1

� (B) if and only if � 1 < 2(<e(� ) + � � 1) + 2 : This ends the
proof. �

Instead of studding the well-posedeness of the (2.15) we are going to study the solvability of the
family of problems:

Find u 2 �V1
� (B) such that � div( � r u) = f 2 (�V1

� � (B)) � :
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Note that when � = 0 ; the previous problem is nothing else than the problem (2.15). Without any
di�cultly, one can check that the study of the Fredholmness of the previous problem is equivalent
to the study of the Fredholness of the operatorL �

� : �V1
� (B) ! (�V1

� � (B)) � such that

hL �
� u; vi :=

�

B
� r u � r v for all (u; v) 2 �V1

� (B) � �V1
� � (B) :

Theorem 2.5.1. Assume that � � 6= � 1: If � 2 R is such that �( L � ) \ ` � � � 1=2 = ; then the
operator L �

� is a Fredholm operator.

Proof. Let � 2 D (R3; [0; 1]) that depends only onr = jxj such that � (x) = 1 for all jxj 2 [0; 1=2]
and � (x) = 0 for all jxj 2 [3=4; + 1 ): To simplify notations, we introduce D := f x 2 R3 j j xj 2
[1=2; 1)g: By observing that the function 1� � is supported in D; we obtain the following estimate

kuk�V 1
� (B) � C(k�u k�V 1

� (B) + k(1 � � )ukH1
0 (D) ); u 2 V1

� (B (0; 1))

in which C is independent ofu: Now by extending the function �u by 0 in R3nB we can say that
�u is then an element of the spaceV1

� (R3): The assumptions made on� � and � allow us to use
the results of Proposition 2.4.1. In particular, we have the estimate

k�u k�V 1
� (B) � Ck�u kV 1

� (R3 ) � Ckdiv( � r �u )k(V 1
� � (R3 )) �

with C independent of u: Using the fact that the function � depends only onr = jxj; we can
say that for all u 2 V1

� (B) the function div( �u r � ) belongs to L2(B) which is supported in D:
Furthermore, we have the estimate

kdiv( �u r � )kV 1
� � (R3 ) � CkukL2 (D)

in which C is independent ofu: By Combining this result with the identity: for all v 2 V1
� � (R3)

we have

hdiv( � r �u ); vi = � (� r u; r �v )L2 (R3 ) � (u; div( �v r � ))L2 (R3 ) + (div( �u r � ); v)L2 (R3 ) (2.16)

we obtain the estimate

kdiv( � r �u )k(V 1
� � (R3 )) � � C(kL �

� (u)k(�V 1
� � (B)) � + kukL2 (D) ):

By adapting the results of Ÿ2.3, we also have the estimate

k(1 � � )ukH1
0 (D) � C(kdiv( � r (1 � � )u)k(H 1

0 (D)) � + kukL2 (D) ):

Using the same idea as in (2.16), we get the estimate

k(1 � � )ukH1
0 (D) � C(kL �

� (u)k(�V 1
� � (B)) � + kukL2 (B 1 ) ):

As a consequence, we obtain the following estimate

kuk�V 1
� (B) � C(kL � (u)k(�V 1

� (B( O;1)) � + kukL2 (B 1 ) ); u 2 �V1
� (B( O; 1)): (2.17)

By observing that the map u ! ujD from �V1
� (B) to L2(D) is compact and by using the results of

Proposition 2.8.1, we deduce thatL �
� has a closed range and that its kernel is �nite dimensional.

Using the fact that L � (� � � 1=2) = L � (� � 1=2); we infer that L � �
� has also a closed range and

a �nite dimensional kernel. By noticing that L � �
� = (L �

� ) � ; we conclude that coker (L�
� ) is �nite

dimensional, this implies that L �
� is of Fredholm type. �
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Proposition 2.5.1. Assume that � � 6= � 1: Let 0 < � such that �( L � ) \ ` � � � 1=2 = ; then L � �
�

is injective and L �
� is surjective.

Proof. According to the previous proposition the operatorsL � �
� are of Fredholm type. SinceL �

�
is the adjoint of L � �

� it su�ces to show that L � �
� is injective. For this, let us suppose that there

exists someu 2 �V1
� � (B( O; 1)) such that div( � r u) = 0 : The goal is then to prove that u = 0 : For

this we are going to use the Kelvin transform and the fact that in our case the operatorsW � �
�

are isomorphism. We de�ne the function ~u such that

~u(r; ! ) =

(
u(r; w ) if r < 1

� u(1=r; w)=r if 1 < r:

Denote by Bc = R3nB(O; 1): According to Lemma 2.8.3, we can say that~ujBc 2 V1
� (Bc): Since ~u

is continuous across the unit sphereS2 and sinceV1
� � (B( O; 1)) � V1

� (B( O; 1)) we conclude that
~u 2 V1

� (R3): To proceed, we denote byB� 1
1 (resp. B� 1

2 ) the image of B1(resp. B2) by the map
(r; ! ) ! (1=r; ! ): Note that we have B1 [ B� 1

1 = K and B2 [ B� 1
2 = R3nK : The next step is to

extend the function � to R3 as follows

� =

(
� 1 in R3nK

� 2 K :

To end the proof, we are going to show that the function~u satis�es the equation div( � r ~u) = 0 in
R3nf Og: Since ~u 2 V1

� (R3) this will implies that W �
� (~u) = 0 and then by applying Theorem 2.4.1

we will be able to deduce that ~u = 0 and thus u = 0 : Starting from the fact that the function u
is harmonic in B1 and B2 and by using Lemma 2.8.1 we deduce that~u is harmonic in B� 1

1 [ B� 1
2 .

It remains to prove �@n ~u is continuous across the unit sphere and across the interface between
B� 1

1 and B� 1
2 : For the case of the unit sphere, the continuity of �@n ~u follows from the fact that

� is continuous. It remains to explain why �@n ~u is continuous acrossB1 \ B2: This comes from
the fact that �@n ~u is continuous acrossB� 1

1 \ B� 1
2 and from the fact that the Kelvin transform

acts only in the radial direction. The Lemma is then proved. �

In the particular case � = 0 ; the results of the previous proposition can be re�ned.

Theorem 2.5.2. Assume that � � 6= � 1: We have the assertions

ˆ if �( L � ) \ ` � 1=2 = ; then L0
� is an isomorphism.

ˆ If �( L � ) \ ` � 1=2 6= ; then the operator L0
� is not of Fredholm type.

Proof. The proof of �rst statement is easy. Since L �
� = L � �

� ; the previous proposition allows
us to say that L0

� is bijective. Since L0
� is continuous the result is then a direct consequence

of the open map theorem. The proof of the second statement follows the lines of the proof of
Proposition 2.6.1. �

The previous theorem gives us a simple way to characterize the set of contrast� � for which the
near problem (2.15) is ill-posed in the Fredholm sense. Since the existence of eigenvalue on the
energy line ` � 1=2 is equivalent to say that the problem (2.12) has singularities that coincide near
the origin with

s�;k (r! ) = r � 1=2+ i�
kX

s=0

log(r )s=s!' k� s(! )

where � 2 R and (' 0; : : : ; ' s� 1) is a Jordan chain associated to� 1=2 + i�: The previous theorem
tell us us that that the existence of such singularities is the main cause of the absence of Fred-
holmness of the problem (2.15). In accordance with the vocabulary used in the 2D con�guration
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Figure 2.3: Examples of propagating singularities (imaginary parts).

[25, 50], these singularities will be calledpropagating (or black hole) singularities . A more
visual description of the behavior of these singularities is given in Figure 2.3.

From a physical point of view these singularities can be interpreted as waves that propagate toward
or outward the conical tip, see the next section for more details. From a mathematical point of
view the existence of these singularities implies that the spaceH1

0(B) is no long the appropriate
framework in which one has to set the problem. Instead, one has introduce a wider framework
that contains these singular functions (or some of them) in order to restore Fredholmness. Since
for all 0 < � the functions s�;s belongs to the space�V1

� (B) ; a natural choice is to work in the
space�V1

� (B) : Unfortunately the next proposition shows that this is not possible.

Proposition 2.5.2. Assume that � 6= � 1 and �( L � ) \ ` � 1=2 6= ; then for all 0 < � the operator
L �

� (resp. L � �
� ) is not injective (resp. not surjective).

Proof. Since theL � �
� ) is the adjoint of L �

� it su�ces to prove that L �
� is not injective. For this we

shall distinguish two situations: the �st one when we can �nd � 2 R� such that � � := � 1=2+ i� 2
�( L � ); the second one is when�( L � ) \ ` � 1=2 = f� 1=2g:
The �rst case: We suppose that there exists� 2 R� such that � � = � 1=2 + i� 2 �( L � ): Denote
by ' � a real valued an eigenfunction ofL � associated to� � (this is possible becauseL � (� ) is
symmetric when <e(� ) = � 1=2). Since (� � ; ' � ) is a pair of eigenvalue and eigenfunction ofL � :

We then introduce the function � � (r! ) = r � � ' � (! ) � r � � ' � (! ): Clearly, the function � � belongs
to �V1

� (B) nf 0g and satis�es div( � r � � ) = 0 : This ends the proof for this case.
The second case: Here, we suppose that�( L � )\ ` � 1=2 = f� 1=2g: Denote by ' 0 an eigenfunction
of L � associated to� 1=2: Without any di�culty we can check that (' 0; ' 0) is a Jordan chain
associated� 1=2: This means that the functions � 0(r! ) := r � 1=2' 0(! ) and � 1(r! ) := r � 1=2(1 +
log(r )) ' 0(! ) satisfy the equation div( � r � i ) = 0 for i = 0 ; 1: This implies that the function
x 7! log(r )� (! ) 2 �V1

� (B) nf 0g belongs to the kernel ofL � : The result is then proved. �

What we learn from the proof of the previous proposition is the fact that in order to construct a
new functional framework in which the problem is again well-posed one need to incorporate some
of the propagating singularities and not all of them. Using the waveguides terminology, one has
to work with just the outgoing ones in order to construct a functional framework that leads to
physical solution of the problem. This will be clari�ed in the next section.
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2.6 Study of the initial problem

In this section, we return our attention to the analysis of the initial problem (2.2). The goal
is to explain how to combine the analysis of the far problem and the near one in order to get
a clear information about the well-posedness of (2.2). This section is divided into three parts.
In the �rst one, we explain how to use the existence of propagating singularities of the problem
(see De�nition 2.6.1) in order to characterize the critical interval I � . After that, by making use
of the Mandelstam principle [112, 103] we explain how to construct several (an in�nite number)
of functional frameworks in which the Fredholmness of the problem is recovered for contrasts
inside the critical interval. The last part is devoted to explain how to use the limiting absorption
principle in order to select, among these mathematical frameworks the one that leads to the
physical solution of the problem.

2.6.1 Characterization of the critical interval

Let us start by de�ning the propagating singularities of the problem (2.2). Once for all, in all this
section, we denote by� a cuto� function that is equal to 1 near the origin and that is supported
in B(O; 1): It is important to mention that all the results obtained below are independent of the
choice of the function �:

De�nition 2.6.1. Assume that the function � is such that � � 6= � 1 and ` � 1=2 \ �( L � ) 6= ; : Let
� � = � 1=2 + i� 2 �( L � ) with � 2 R: We say that a function s is a propagating singularity of the
problem (2.2)(or equivalently of A � ) if and only if it has the form

s(r! ) = � (r )r � 1=2+ i�
kX

s=0

log(r )s

s!
' k� s(! )

where k 2 N is such that (' 0; : : : ; ' k ) is a Jordan chain of L � associated to� � :

It is worthy to note that any propagating singularity of the problem (2.2) belongs to L2(
) nH1(
)
and satis�es the equation div( � r :) = 0 near the origin (see Lemma 2.4.7). Furthermore, it will
be interesting to mention that any propagating singularity s is such that div( � r s) is compactly
supported in 
 and belongs to the spaceL2(
) (this a consequence, in particular, of the fact that
the cuto� function � depends only inr = jxj while � jB( O;1) does not depend on it).

Proposition 2.6.1. Assume that the function � is such that A � has a propagating singularity.
Then A � is not of Fredholm type.

Proof. We proceed by contradiction. Let us suppose that the operatorA � is of Fredholm type.
Given that the embedding H1

0(
) � L2(
) is compact, one can then use the Theorem 2.8.1 to
deduce that there exists0 < C such that

kukH1
0 (
) � C(kA � uk(H 1

0 (
)) � + kukL2 (
) ) for all u 2 H1
0(
) :

Our goal is then to contradict this estimate. To do so, we shall explain how to construct a
sequence(un )n2 N of elements ofH1

0(
) such that

lim
n! + 1

kunkH1
0 (
) = + 1 and kA � unk(H 1

0 (
)) � + kunkL2 (
) remains bounded asn ! 1 :

Since by assumption we know thatA � has a least one propagating singularity, we can say that
there exists � 2 R and � 2 H1(S2)nf 0g such that the function s(r! ) = r � 1=2+ i� �( ! ) satis�es the
equation div( � r s) = 0 in R3 (see Lemma 2.4.7). For alln 2 N; we denote bysn ; un the functions
sn (r! ) := r 1=ns(r! ) and un (r! ) := � (r )r 1=ns(r! ) (recall that � is supported in B(0; 1) and equal
to 1 near the origin). Without any di�culty, one can see that we have lim

n! + 1
kunkH1

0 (
) = + 1 :
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To end the proof it remains to study the behavior of kA � unk(H 1
0 (
)) � + kunkL2 (
) as n ! + 1 : By

observing that s belongs toL2 near the origin and by using the dominated convergence theorem,
we infer that kunkL2 (
) converges asn tends to + 1 to k� skL2 (
) : As a consequence, we just need
to study the behavior of kA � unk(H 1

0 (
)) � as n ! + 1 : Given that D (
 nf Og) is dense inH1
0(
)

(see [101, Theorem 7.1.1]), we deduce that

kA � (un )kH1
0 (
) � = sup

v2 D (
 nf Og)nf 0g

(� r un ; r v)L2 (
)

kvkH1
0 (
)

:

Interestingly, it can be shown (following the results of [101, Theorem 7.1.1]) that we have the
estimate

kr � 1vkL2 (
) � CkvkH1
0 (
) (2.18)

with C that does not depend inv: In the other hand, one can check that for all v 2 D (
 nf Og)
we have

(� r un ; r v)L2 (
) = ( �s n r �; r v)L2 (
) + ( sn ; div( �v r � ))L2 (
) � (div( � r sn ); �v )L2 (supp( � )) :

Note that above, we have used the fact thatdiv( � r sn ) 2 L2(
) and also the fact that for all
function v 2 H1

0(
) we havediv( �v r � ) 2 L2(
) which is true because� depends only onr and
then its normal derivative vanishes at � : The next step is to observe that we have the following
estimate

j(�s n r �; r v)L2 (
) + ( sn ; div( �v r � ))L2 (
) j � CksnkL2 (
) kvkH1
0 (
)

in which C is independent ofv 2 H1
0(
) and of n 2 N: As a result, to �nish the proof it remains

to study the term (div( � r sn ); �v )L2 (supp( � )) : By observing that

(div( � r sn ); �v )L2 (supp( � )) = ( r div( � r sn ); r � 1�v )L2 (supp( � ))

and by means of (2.18) For this, we are going to show thatkr div( � r sn )kL2 (supp( � )) tends to 0 as
n tends to 1 : A direct calculus (using the relation div( � r s) = 0 in B(O; 1)) yields

r div( � r sn ) = � r 1=n� 3=2+ i� (2(� 1=2 + i� ) + 1 � 1=n)�( �; ' )=n in B(O; 1):

Introduce some0 < r 0 < 1 such that supp(� ) � f x 2 R3 j j xj < r 0g: By remarking that (2(� 1=2+
i� ) + 1 � 1=n)�( �; ' ) is uniformly bounded in L2(S2) with respect to n and by means of the
identity � r 0

0
jr 1=n� 3=2+ i� =nj2r 2dr =

1
n2

� r 0

0
r 2=n� 1dr =

1
2n

(r0)2=n � C=n

with C independent ofn, we obtain the wanted result. �

This leads us to the

Theorem 2.6.1. Assume that � � 6= � 1: Then the following statements are equivalent:

1. The operator A � is a Fredholm operator of index zero.

2. The function � is such that A � does not have any propagating singularity.

Proof. Regarding what we have proved in the previous proposition, it is enough to show the direct
implication (' 2' implies '1'). Since by assumptionA � does not have any propagating singularity
and � � 6= � 1, we infer, thanks to Theorem 2.4.1, that the operatorW0

� : V1
0(R3) ! (V 1

0(R3)) � is
an isomorphism. Given that V1

0(R3) = H 1(R3) (see Ÿ2.4.1), we then obtain the estimate

kukH1
0 (R3 ) � C1kdiv( � r u)kH1 (R3 ) � for all u 2 V1

0(R3) = H 1(R3)
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with C independent ofu: Now, take � 0 2 D (R+ ; [0; 1]) a cuto� function that is supported in [0; 1]
and equal to 1 near 0: Thanks to the previous estimate we get

k� 0(r )ukH1
0 (
) � Ckdiv( � r (� 0(r )u)kH1

0 (R3 ) � for all u 2 H1
0(
) :

Using the fact that � 0 depends only onr and working as in the proof of Theorem 2.5.1, we arrive
to the estimate

k� 0(r )ukH1
0 (
) � C(kdiv( � r u)k(H 1

0 (
)) � + kukL2 (
) ) for all u 2 H1
0(
)

with C that does not depend onu: On the other hand, by working as in the proof of Proposition
2.3.1, we deduce that there exists0 < C such that for all u 2 H1

0(
) ; we have

k(1 � � (r ))uk2
H1

0 (
) � C(kdiv( � r u)k(H 1
0 (
)) � + kukL2 (
) )kukH1

0 (
) for all u 2 H1
0(
) :

By combining the last two estimates, we conclude that there is0 < C we have

kukH1
0 (
) � C(kdiv( � r u)k(H 1

0 (
)) � + kukL2 (
) ) for all u 2 H1
0(
) :

This is enough to deduce, thanks to Proposition 2.8.2, thatA � is a Fredholm operator of index
zero. �

Remark 2.6.1. In the next section, we will show that when propagating singularities exist (and
� � 6= � 1) the kernel of A � is �nite dimensional. Since A � is symmetric, the dimension of
coker (A � ) is then �nite. As a consequence, we then deduce that when� � 2 I � nf� 1g; the absence
of Fredholmness ofA � is caused by the fact that its range is not closed in(H1

0(
)) � :

As a consequence of the previous theorem, we conclude that the setI � nf� 1g coincides with the
set of contrasts� � for which A � has at least one propagating singularity. In other words,I � nf� 1g
is equal to the set of contrast� � for which the the symbol L � has at least one eigenvalue in the
energy line <e(� ) = � 1=2: With this in mind and by using the results of Ÿ3.4.2 we arrive to the
following

Theorem 2.6.2. In the case of circular conical tips g(� ) = � 2 (0; �= 2]; the critical interval I �

(that will be also denoted byI � ) is given by

I � = I � = [ � 1; � 2F1(1=2; 1=2; 1; cos2(�= 2)) 2F1(3=2; 3=2; 2; sin2(�= 2))

2F1(1=2; 1=2; 1; sin2(�= 2)) 2F1(3=2; 3=2; 2; cos2(�= 2))
]

in which 2F1 stands for the Gauss hypergeometric function(see Appendix Ÿ3.6.2).

When � = �= 2 (the locally symmetric case), one can easily see thatI � = f� 1g (this is coherent
with the results of [50, Theorem 1.2.1]). For the case� 2 (�= 2; � ) the expression ofI � is given by
I � = 1=I � � � : Compared to the 2D case, the result of the previous theorem is a little bit surprising
becauseI � is from one side of the value� � = � 1: For the case of a general smooth conical tip,
I � cannot be calculated by hand and numerical tools must be developed to do so.

2.6.2 On the use of the Mandelstam principle to recover Fredholmness of the
problem

Along this section, we suppose that the function� is such that � � 2 I � nf� 1g: This means that the
operator A � is not of Fredholm type. Our goal is to explain how to use the Mandelstam principle
in order to construct a functional framework in which the scalar problem is again well-posed in
the Fredholm sense. Before getting into details let us start with some preliminary results.
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Preliminaries

We start by de�ning the weighted Sobolev spaces that are associated to the domain
 nf Og: For
all � 2 R; we de�ne the spacesV0

� (
) and �V1
� (
) such that

V0
� (
) = f u j r � u 2 L2(
) g and �V1

� (
) = f u j r � � 1u 2 L2(
) and r � r u 2 L2(
) g:

Classically (see [102]), the spaceD (
 nf Og) is dense inV0
� (
) and �V1

� (
) for all � 2 R: From their
de�nitions, one see that �V1

� (
) � V0
� � 1(
) for all � 2 R: It will be also interesting to mention

that for all u 2 �V1
� (
) we haveuj! 2 H1(! ) for all open subset! � 
 nf Og: When � = 0 ; we have

V0
0(
) = L 2(
) and �V1

0(
) = H 1
0(
) (see [101, Theorem 7.1.1]). Now, we introduce for all� 2 R;

the operator such that A �
� : �V1

� (
) ! (�V1
� � (
)) � such that

hA �
� u; vi =:

�



� r u � r v for all u 2 �V1

� (
) and v 2 �V1
� � (
) :

By means of localization techniques (using radial cuto� functions) and using the results of The-
orem 2.3.1 and Theorem 2.4.1, one obtains the

Proposition 2.6.2. Assume that � � 6= � 1; then for all � 2 R such that ` � � +1 =2 \ �( L � ) = ;
the operator A � �

� is of Fredholm type.

To proceed, we denote byN t the number of eigenvalues ofL � that are located on the energy
line ` � 1=2 and denote by � 1; : : : ; � N t the elements of the set� � 1=2 := ` � 1=2 \ �( L � ): For each

j = 1 ; : : : ; N t we denote by f ' j
k;sgk=1 ;:::;� g (� j );s=0 ;:::;� k (� j )� 1 a canonical system of Jordan chains

associated to � j : Each � j (j = 1 ; : : : ; N t ) generates �a(� j ) propagating singularities that are
de�ned as follows: for all j = 1 ; : : : ; N t ; k = 1 ; : : : ; �g(� j ); s = 0 ; : : : ; � k (� j ) � 1; we have

sj;k;s = � (r )r � j

sX

p=0

log(r )p

p!
' j

k;s� p(! ) (2.19)

As consequence, we have de�nedT� propagating singularities with

T� =
X

� 2 � � 1=2

�a(� ):

As by assumption the function � is such that � � 6= � 1; the set �( L � ) is discrete without any
�nite accumulation point (see Proposition 2.4.1). Besides, sinceCn�( L � ) � D 
 0

r 0
(see Proposition

2.4.1), we can de�ne the positive number

� 0 := min f 1=2 + <e(� ) j � 2 �( L � ) and � 1=2 < <e(� )g:

Since the set�( L � ) is symmetric with respect to (� 1=2; 0) we can say that

f � 2 C j < e(� ) 2 (� � 0 � 1=2; � 0 � 1=2)g \ �( L � ) = � � 1=2:

By adapting the results of [102, Chapter 6 ], we obtain the next

Proposition 2.6.3. Assume that � � 6= � 1 and let � 2 (0; � 0): Then we have the following
assertions:

1. If there exists u 2 �V1
� (
) such that div( � r u) 2 (�V1

� (
)) � � (�V1
� � (
)) � then u decomposes

as

u = ~u +
N tX

j =1

� g (� j )X

k=1

� k (� j )� 1X

s=0

cj;k;s sj;k;s with ~u 2 �V1
� � (
) and cj;k;s 2 C

in which the functions si;j;k are de�ned in (2.19).
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2. index(A �
� ) � index(A � �

� ) = T� :

3. ker(A � �
� ) is independent of� 2 (0; � 0):

Remark 2.6.2. Since H1
0(
) � �V1

� (
) for all � 2 (0; � 0); the Proposition 2.6.2 allows us to say
that for � � 6= � 1 the kernel of A � is �nite dimensional. Furthermore, thanks to the previous
proposition we obtain the following property: if u 2 H1

0(
) is such that div( � r u) 2 (�V1
� (
)) � for

some� 2 (0; � 0) then u 2 �V1
� � (
) :

As a consequence of the previous proposition we obtain the

Lemma 2.6.1. Assume that � � 6= � 1: The number T� is even. Furthermore, for all � 2 (0; � 0)
we have

� index(A � � ) = index(A � ) = T� =2:

Proof. SinceA �
� is the adjoint of A �

� ; we obtain index(A � ) = � index(A � � ): Combining this with
the fact that index(A � ) � index(A � � ) = T� we get T� = 2 index(A � ): �

We also have the

Lemma 2.6.2. Let � 0 2 ` � 1=2 \ �( L � ) then � 0 2 ` � 1=2 \ �( L � ): Furthermore if (' 0; : : : ; ' s) is
a Jordan chain of L � associated to� then (' 0; : : : ; ' s) is a Jordan chain of L � associated to� 0:
Furthermore, if � 1=2 2 �( L � ) then �a(� 1=2) is even.

Proof. By remarking that for all q 2 N and all '; v 2 H1(S2) we have

h
dL �

d� q (� 0)'; vi = h
dL �

d� q (� 0)'; v i

we obtain the �rst part of the statement. The second part follows from the fact that T� is
even. �

From a physical point of view, the fact that the number of propagating singularities is even can be
explained by the fact that we have two kind of propagating singularities: those which propagate
toward the conical tip and those which propagate outward conical tip. For each� j ; j = 1 ; : : : ; N t ;
we de�ne the space of propagating singularities of singular exponent� j that is de�ned by

S(� j ) := spanf sj;k;s ; k = 1 ; : : : ; �g(� j ); s = 0 ; : : : ; � k (� j ) � 1g

in which sj;k;s are de�ned in (2.19). Next, we denote byS the space of propagating singularities
of the operator A � :

S := �
� 2 � � 1=2

S(� ) = spanf sj;k; ; j = 1 ; : : : ; N t ; k = 1 ; : : : ; �g(� j ); s = 0 ; : : : ; � k (� j ) � 1g

again si;j;k are de�ned in (2.19). Clearly T� = dim( S): To simplify notations, we denote by
N � = T� =2 2 N and we enumerate the singularitiessj;k;s in the following way s1; : : : ; s2N � : This
means that S = spanf sj j j = 1 ; : : : ; 2N � g: In the next paragraph, we are going to explain how
to use the so-called Mandelstam energy radiation principle [112, 103] in order to decompose the
spaceS into the sum of two sub-spacesS+ (a space of outgoing propagating singularities) andS�

(a space of incoming propagating singularities). The reason why we have chosen to work with
Mandelstam principle (i.e the direction of propagation of a propagating singularity is determined
by the sign of its energy �ux near the origin) instead of the classical Sommerfeld radiation
principle (i.e. the direction of propagation of a propagating singularity that is associated to
� � = � 1=2 + i� 2 �( L � ) with � 2 R is determined by the sign of� ) is the fact that Mandelstam
principle allows us to incorporate the case when propagating singularities have a logarithmic
growth near the origin (see [114, Ÿ5.3] for more details).
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The classi�cation of propagating singularities by the Mandelstam principle

The Mandelstam principle relates the direction of propagation of a propagating singularitys 2 S
to the sign of the imaginary part of its energy �ux

Q(s) := lim
" ! 0

�

jx j= "
� (s@r s � s@r s)d!:

Let us explain why the function Q(s) is well-de�ned for all s 2 S: To do so, we start by observing
that for all s 2 S the functions div( � r s); div( � r s) belong to L2(
) and are compactly supported
in 
 nf Og: This implies that div( � r s)s� div( � r s)s 2 L1(
) : Applying the dominated convergence
theorem and integrating by parts we can write that
�



div( � r s)s � div( � r s)s = lim

" ! 0

�


 nB( O;" )
div( � r s)s � div( � r s)s = lim

" ! 0

�

jx j= "
� (s@r s � s@r s)ds:

This shows that Q(s) is well-de�ned for all s 2 S: Furthermore, one can see thatQ(s) is purely
imaginary for all s 2 S: Observe that the value of Q(s) is independent of the choice of the cuto�
function � in (2.19). Now, we present the de�nition of outgoing and incoming (with respect to
the Mandelstam principle) propagating singularities.

De�nition 2.6.2. A propagating singularity s 2 Snf 0g is said to be incoming (resp. outgoing) if
0 < =m(Q(s))( resp. =m(Q(s)) < 0). If Q(s) = 0 ; we say thats is unclassi�ed.

In the following, we will prove that one can �nd a basis of the spaceS that contains N � outgoing
propagating singularities and N � incoming ones. For this we start by introducing q : S� S ! C
the symplectic, i.e. sesquilinear and anti-Hermitian, form associated to the quadratic formQ:
For all u; v 2 S; we set

q(u; v) =
�



div( � r v)u �

�



div( � r u)v:

It will be interesting to note that, by means of the dominated convergence theorem, we have

q(u; v) = lim
" ! 0

�

jx j= "
� (@r u v � u@r v)ds for all u; v 2 S:

Observe that for all s 2 S we haveQ(s) = q(s; s): It will be also interesting to mention that for
all s 2 S we have

q(s; s) = � q(s; s):

Let us recall the de�nition of a non-degenerate symplectic form.

De�nition 2.6.3. Let h : S� S ! C be a symplectic form. We say thath is non-degenerate if the
matrix (h(sj ; sk )) j;k =1 ;:::;2N � is nonsingular or equivalently if the following statement is satis�ed:

x 2 S such that h(x; y) = 0 for all y 2 S =) x = 0 :

Proposition 2.6.4. The symplectic form q is non-degenerate.

Before starting the proof of the previous proposition, let us, �rst, prove the

Lemma 2.6.3. We have the following assertions:

1. Let �; � 0 2 � � 1=2 such that � 6= � 0 then for all (u; v) 2 S(� ) � S(� 0) we haveq(u; v) = 0 :

2. Let � 2 � � 1=2: For all u 2 S(� )nf 0g there existsu0 2 S(� ) such that q(u; u0) = 1 :
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Proof. For eachj = 1 ; : : : ; N t we denote byf ' j
k;sgk=1 ;:::;� g (� j );s=0 ;:::;� k (� j )� 1 a canonical system of

Jordan chains associated to� j 2 � � 1=2 and we de�ne the functionssj;k;s as in (2.19). As explained

in [70, Ÿ3] or [108, Ÿ5.4.1], for eachj = 1 ; : : : ; N t ; we can �nd f  j
k;sgk=1 ;:::;� g (� j );s=0 ;:::;� k (� j )� 1 a

canonical system of Jordan chains ofL � (this is because the operatordiv( � r� ) is formally self-
adjoint) associated to � � j � 1 = � j (because� j 2 ` � 1=2) such that the functions

s0
j;k;s := � r � j

sX

p=0

log(r )p

p!
 j

k;s� p(! ); k = 1 ; : : : ; �g(� j ); s = 0 ; : : : ; � k (� j ) � 1;

satisfy the relations

�
�

R3
div( � r sj;k;s )s0

j 0;k0;s0 = � j;j 0� k;k 0� s;� k (� j 0)� s0� 1 (2.20)

where � �;� stands for the Kronecker symbol. Given that the functions div( � r sj;k;s ) are supported
in B(O; 1) and sincediv( � r s0

j;k;s ) = 0 in R3 (see Lemma 2.4.7), we obtain

� j;j 0� k;k 0� s;� k (� j 0)� s0� 1 = �
�



div( � r sj;k;s )s0

j 0;k0;s0

= �
�



div( � r sj;k;s )s0

j 0;k0;s0 +
�



div( � r s0

j 0;k0;s0)sj;k;s

= lim
" ! 0

�

jx j= "
� (s0

j 0;k0;s0@r sj;k;s � sj;k;s @r s0
k0;s0) = q(sj;k;s ; � (r )s0

j 0;k0;s0):

The �rst item is then proved by observing that the functions (� (r )s0
j;k;s ) j;k;s form a basis ofS(� j ):

The second item is direct consequence of the previous biorthonormality relation. �

Remark 2.6.3. Another interesting way to prove the previous result is to take pro�t of the fact
that the operator div( � r� ) is formally self adjoint and to use the results of [114, Chapter 5].

Now, we can give a proof to the Proposition 2.6.4.

Proof of Proposition 2.6.4. Assume that there existsu 2 Snf 0g such that q(u; v) = 0 for all v 2 S:
SinceS = � � 2 � � 1=2

S(� ); the function u decomposes asu = u1 + � � � + uN t where ui 2 S(� i ) for
i = 1 ; : : : ; N t : Since u 6= 0 ; there exists i � 2 f 1; : : : ; N t g such that ui � 6= 0 : According to the
previous lemma, we can �nd u0

i � 2 S(� i � ) such that q(ui � ; u0
i � ) = 1 and q(uj ; u0

i � ) = 0 for all
j 6= i � : This means that q(u; u0

i � ) = 1 ; which leads to a contradiction. �

The fact that q is non-degenerate implies that its rank is equal to2N � : Now, we can show the

Theorem 2.6.3 (The Mandelstam principle). There exists s�
1 ; : : : ; s�

N �
a basis of the spaceS

such that

q(s�
j ; s�

k ) = � i� j;k , q(s�
j ; s�

k ) = 0 and s+
j = s�

j for all j; k = 1 ; : : : ; N � (2.21)

where � j;k is the Kronecker symbol.

Proof. The starting point is to observe that the sesquilinear form(u; v) 7! � iq(u; v) is hermitian.
Sinceq is non-degenerate; � iq is also non-degenerate. By applying the Sylvester's law of inertia,
we deduce that there exists(K + ; K � ) 2 N� (K + ; K � ) 2 N� (the pair (K + ; K � ) is called the
signature of � iq) such that K + + K � = 2N � and a basis(s�

1 ; : : : ; s�
K � ) for the spaceS such that

� iq(s�
j ; s�

k ) = � � j;k and q(s�
j ; s�

k ) = 0 for all j = 1 ; : : : ; K + ; k = 1 ; : : : ; K � :

Furthermore, the numbers K + and K � are de�ned as follows:

K � = max f dim(A subspace ofS such that � 0 � � iq(x; x ) for all x 2 A))g

Since the spaceS is stable by complex conjugation and� iq(s; s) = iq(s; s) for all s 2 S; we deduce
that K + = K � = N � and then the theorem is proved. �
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Remark 2.6.4. It is important to mention that the basis (s�
j ) j =1 ;:::;N � is not unique in the

previous theorem. Indeed, one can easily see that for alla; b2 R such that a2 � b2 = 1 the set of
functions (w�

j ) j =1 ;:::;N � that are de�ned by the relation

w+
j = as+

j + bs�
j and w�

j = bs+
j + as�

j

form a basis of the spaceS: Moreover, they satisfy the same orthogonality relations as(s�
j ) j =1 ;:::;N � :

De�nition of the problem and its well-posedness

In this paragraph, we denote by(s�
j ) j =1 ;:::;N � a basis of the spaceSsuch that (2.21) is satis�ed. We

de�ne the spaceS+ (resp. S� ) the space of outgoing (resp. incoming) propagating singularities
such that

S� = spanf s�
j ; j = 1 ; : : : ; N � g:

Thanks to the previous theorem we can write that S = S+ � S� : any propagating singularity is
the sum of an outgoing and and an incoming one. Note that since(s�

j ) j =1 ;:::;N � satis�es (2.21), we
obtain S+ = S� : Following the Mandelstam principle (the physical solution must be outgoing),
we de�ne for all � 2 (0; � 0); the spaceVout

� (
) := �V1
� � (
) � S+ : Endowed with the norm

k~u +
N �X

j =1

cj s+
j k = ( k~uk2

�V 1
� � (
)

+
N �X

j =1

jcj j2)1=2 for all ~u 2 �V1
� � (
) and cj 2 C;

the spaceVout
� (
) is a Hilbert space. Then, we introduce the operatorAout

� : Vout
� (
) ! (�V1

� (
)) �

such that for all u = ~u + s+ with (~u; s+ ) 2 �V1
� � (
) � S+ and v 2 �V1

� (
) we have

hAout
� u; vi :=

�



� r ~u � r v �

�



div( � r s+ )v:

Note that hAout
� u; vi is well-de�ned for all u 2 �Vout

� (
) and v 2 �V1
� (
) because the function

div( � r s+ ) belongs to L2(
) and is compactly supported in 
 nf Og: Before getting into details,
let us explain why Aout

� is continuous for all � 2 (0; � 0): This is a consequence of the following

Lemma 2.6.4. There exists a positive constantC such that

j
�



div( � r s)vj � C(

N �X

j =1

jcj j)kvk�V 1
� (
) for all s =

N �X

j =1

cj s+
j 2 S and v 2 �V1

� (
) :

Proof. It su�ces to prove the result with s = s+
j for all j = 1 ; : : : ; N � : For this we start by

recalling that for all j = 1 ; : : : ; N � the function s+
j has the forms+

j = � (r )~s+
j wherediv( � r ~s+

j ) = 0
in B(O; 1) (we remind the reader that the function � is also supported inB(O; 1)). With this in
mind, we can write that for all ' 2 D (
 nf Og) we have

�



div( � r s+

i )' = �
�



� r (� ~s+

i ) � r ' = �
�



�� r ~s+

i � r ' �
�



� ~s+

i r � � r '

=
�



� ' r ~s+

i � r � �
�



� ~s+

i r � � r ':

As � = 1 near the origin, the support of r � is then detached from the origin. This leads us to
the estimate

j
�



div( � r s+

i )' j � Ck' k�V 1
� (
)

with 0 < C independent of ': The wanted result follows from the density of D (
 nf Og) into the
space�V1

� (
) : �
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Remark 2.6.5. By observing that for all v 2 D (
 nf Og) we havehAout
� u; vi = �h div( � r u); vi

and by using the continuity ofAout
� ; we can that we have the equivalence

u 2 �Vout
� (
) such that div( � r u) = 0 if and only if Aout u = 0 :

To proceed, we de�ne the sesquilinear formqout : �Vout
� (
) � �Vout

� (
) ! C such that for all
u; v 2 �Vout

� (
) ; we have

qout (u; v) = hAout
� u; vi � h u; Aout

� vi = hAout
� u; vi � hAout

� v; ui :

It will be interesting to note that the value of q(u; v) for u; v 2 �Vout
� (
) depends only in the

singular part of u and v: Indeed, for all u = ~u + su ; v = ~v + sv 2 �Vout
� (
) ; with ~u; ~v 2 �V1

� � (
)
and su ; sv 2 S+ ; we have

qout (u; v) =
�



� r ~u � r ~v +

�



� r ~u � r sv �

�



div( � r su)~v �

�



div( � r su)sv

�
�



� r ~u � r ~v �

�



� r ~v � r su +

�



div( � r sv)~u +

�



div( � r sv)su

=
�



div( � r sv)su �

�



div( � r su)sv = qout (su ; sv) = q(su ; sv):

(2.22)

Remark 2.6.6. For all 0 < �; we de�ne the space�V in+out
� := �V1

� � (
) � S: We also introduce the

operator A in+out : �V in+out
� ! (�V1

� (
)) � such that for all u = ~u + su 2 �V in+out
� (with ~u 2 �V1

� � (
))

and su 2 S) and v 2 �V1
� (
) we have

hA in+out u; vi :=
�



� r ~u � r v �

�



div( � r s)v:

Observe that for allu 2 �Vout (
) we haveA in+out u = A out u: Working as in the case of the operator
Aout

� ; we can show thatA in+out is continuous. We also de�ne the sesquilinear formqin+out :! C
such that for all u; v 2 �V in+out

� we set

qin+out (u; v) = hA in � out
� u; vi � h u; A in � out

� vi = hA in � out
� u; vi � hA in � out

� v; ui :

By arguing as in the case of the sesquilinear formqout ; we can show that for allu; v 2 �V1
� � (
)

and su ; sv 2 S we have
qin+out (u + su ; v + sv) = q(su ; sv): (2.23)

To simplify a little bit the analysis below, we will make the

Assumption 2.6.1. Assume that � � 6= � 1 and that there exists� � 2 (0; � 0) such that A � � �

� is
injective.

Using the last item of Proposition 2.6.3, we obtain the

Lemma 2.6.5. Assume that Assumption 2.6.1 holds then for all� 2 (0; � 0) the operator A � �
� is

injective. In particular, we have the estimate: there exists0 < C � such that

kuk�V 1
� � (
) � C� kA � �

� k(�V 1
� (
)) � ; u 2 �V1

� � (
)

Using the terminology of the waveguides theory, the previous assumption is equivalent to say that
we suppose that trapped modes do not exist. When it is not satis�ed, a modi�ed version of our
results can be obtained (see Remark 2.6.7). The remaining part of this paragraph is devoted to
prove that under Assumption 2.6.1, the operatorAout

� is an isomorphism for all � 2 (0; � 0): The
injectivity of Aout

� is the subject of the next
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Proposition 2.6.5. Assume that Assumption 2.6.1 holds. Then for all� 2 (0; � 0) the operator
Aout

� is injective.

Proof. Let u = ~u + s+ 2 Vout
� (
) with (~u; s+ ) 2 �V1

� � (
) � S+ such that Aout
� u = 0 : Since by

assumption A � �
� is injective it su�ces to show that s+ = 0 : Given that � is real valued, it follows

that div( � r u) = 0 : This leads us to write that qout (u; u) = 0 : Using (2.22), we deduce that
q(s+ ; s+ ) = 0 : The de�nition of the space S+ suggests that we can decompose the functions+ as
follows

s+ =
N �X

j =1

c+
j s+

j :

By observing that q(s+ ; s+ ) = i (
N �X

j =1

jc+
j j2); we infer that s+ = 0 : The result is then proved. �

Now, we turn our attention to the study of the surjectivity of Aout
� (
) : Before that, we will prove

the following useful result.

Proposition 2.6.6. Assume that Assumption 2.6.1 holds and let� 2 (0; � 0): Then for all j =
1; : : : ; N � there exists a unique pair of functions(s�

j ; ~u�
j ) 2 S� � �V1

� � (
) such that

d�
j = s�

j + s�
j � ~u�

j 2 ker(A �
� ):

Classically, for all j = 1 ; : : : ; N � ; the function d�
j de�ned above is known as the dual singularity

associated tos�
j :

Proof. The proof follows the lines of the proof of [114, Proposition 5.3.3]. The fact thatA � �
�

is injective implies that A �
� is surjective and that N � = index(A �

� ) = dim(Ker (A �
� )) : Denote by

u1; : : : ; uN � a basis ofKer (A �
� ): Thanks to Proposition 2.6.3, for eachj = 1 ; : : : ; N � the function

uj decomposes as

uj =
N �X

k=1

cj;k s+
k +

N �X

k=1

dj;k s�
k + ~uj

where ~uj 2 �V1
� � (
) and all the cj;k ; dj;k 2 C: Denote by C; D 2 MN � (C) the matrices

C = ( cj;k ) j;k =1 ;:::;N � and D = ( dj;k ) j;k =1 ;:::;N � :

To end the proof we are going to show the matricesC and D are nonsingular (with this in mind
one can then �nd linear combinations of the functions uj that lead to the wanted results). We
start with the case of the matrix C: Suppose thatC is not injective. Then there exists a function
u 2 Ker (A �

� )nf 0g that decomposes as

u =
N �X

j =0


 j s�
j + ~u with ~u 2 �V1

� � (
) and 
 j 2 C:

By working as in the proof of Proposition 2.6.5, we infer that u = 0 : This leads to a contradiction.
Thus the matrix C is nonsingular. With the same arguments, we show thatD is nonsingular. �

Now, we can prove the surjectivity of Aout
� :

Proposition 2.6.7. Assume that Assumption 2.6.1 holds. For all� 2 (0; � 0) the operator Aout
�

is surjective.
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Proof. Since A �
� is the adjoint of A � �

� and the latter is assumed to be injective, we infer that
A �

� is surjective. Take f 2 (�V1
� (
)) � : Since 0 < �; we have the embedding�V1

� � (
) � �V1
� (
)

and then, by duality, infer that (�V1
� (
)) � � (�V1

� � (
)) � . This allows us to say that there exists
u 2 �V1

� (
) such that A �
� u� = f: Since f 2 (�V1

� (
)) we know, thanks to Proposition 2.6.3, that
the function u� decomposes as

u� = u� � +
N �X

j =1

c+
j s+

j + c�
j s�

j

with u� � 2 �V1
� � (
) and all the c�

j 2 C: Thanks to Proposition 2.6.3 we know that there exist

u�
1 ; : : : ; u�

N �
2 Ker (A �

� ) such that for all j = 1 ; : : : ; N � we have

u�
j = u� �

j + s�
j +

N �X

k=1


 ks+
k with u� �

j 2 �V1
� � (
) and 
 k 2 C:

By observing that the function u = u� �
N �X

j =1

c�
j u�

j belongs to the space�Vout
� (
) and satis�es the

equation Aout
� u = f; we obtain the wanted the result. �

Since the operatorAout
� is continuous for all � 2 (0; � 0), the open map theorem, combined with

the results of the previous propositions, leads us to the

Theorem 2.6.4. Assume that Assumption 2.6.1 holds. Then for all� 2 (0; � 0) the operator Aout
�

is an isomorphism. Moreover, there exists a constant0 < C such that for all u = ~u + c1s+
1 + � � � +

cN � s+
N �

with ~u 2 �V1
� � (
) and all cj 2 C we have the estimate

k~uk�V 1
� � (
) +

N �X

j =1

jcj j � C � kAout
� (u)k(�V 1

� (
)) � :

For all � 2 (0; � 0); the expression of the singular coe�cients of the solution (i.e. the coe�cients
in front of the singularities s+

j in the decomposition of the solutionu) to the well-posed problem:

Find u 2 �Vout
� (
) such that Aout

� u = f 2 (�V1
� (
)) � (2.24)

can be determined thanks to the following

Lemma 2.6.6. Let 0 < � and let u = ~u +
N �X

j =1

c+
j s+

j 2 �Vout
� (
) (with ~u 2 �V1

� � (
)) : Then for all

j = 1 ; : : : ; N � ; we have
c+

j = hAout u; d+
j i =i

where the function d+
j are de�ned in Proposition 2.6.6.

Proof. For all j = 1 ; : : : ; N � ; the function d+
j belongs to the space�V in+out

� (
) (see Remark 2.6.6).
Furthermore sincediv( � r d+

j ) = 0 in 
 and thanks to the continuity of A in+out (see Remark 2.6.6)

we can say that hA in+out d+
j ; ui = 0 . On the other hand, sinceu 2 �Vout

� (
) � �V in+out
� (
) we have

hAout u; d+
j i = hA in+out u; d+

j i : As a result we can write

hAout u; d+
j i = hA in+out u; d+

j i � h A in+out d+
j ; ui = qin+out (u; d+

j ):

Given that the function d+
j decomposes asd+

j = s+
j + s� + ~uj with s� 2 S� and ~uj 2 �V1

� � (
) we
deduce (thanks to (2.23)) that

hAout u; d+
j i = q(

N �X

k=1

c+
k s+

k ; s+
j + s� ) = ic+

j :

�
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This leads us to the following

Corollary 2.6.1. Assume that Assumption 2.6.1 holds and let� 2 (0; min( � 0; 1)): Then for all
f 2 L2(
) the problem(2.24) is well-posed. Moreover, its solution decomposes asu = ~u + c+

1 s+
1 +

� � � + c+
N �

s+
N �

with ~u 2 �V1
� � (
) where the coe�cients (c+

j ) j =1 ;:::;N � are given by

cj =
1
i

�



f d+

j :

Proof. It su�ces to mention that for all � 2 (0; 1) we have have the embeddingL2(
) � (�V1
� (
)) �

and then to apply Theorem 2.6.4 and Lemma 2.6.6. �

We �nish this paragraph with some remarks.

Remark 2.6.7.

ˆ It is worth to note that since (�V1
� (
)) � � (H1

0(
)) � for all 0 < �; the framework that we
have proposed above does not allow us to de�ne a solution to(2.2) for all given source term
f 2 (H1

0(
)) � :

ˆ In the case when the Assumption 2.6.1 is not satis�ed, i.e. when the operatorA � �
� is not

injective, the operator Aout
� is no longer isomorphism. However, one can show that for

� 2 (0; � 0) the operator Aout
� is Fredholm of index zero. Let us explain, brie�y, how to show

this result. Starting from Proposition 2.15, using the results of Ÿ2.3 we can show that for all
� 2 (0; � 0) the operator Aout

� has closed range and a �nite dimensional kernel. Furthermore,
by working as in the proof of Proposition 2.6.5 we can easily prove that for all� 2 (0; � 0);
we haveker(Aout

� ) = ker(A � �
� ): The last step is to show thatAout

� is of index zero. To do
that, one can follow the lines of the proof of [25, Prposition 4.4].

2.6.3 Selection of the physical solution by means of the limiting absorption
principle

In the previous section, we have explained how it is possible, even in the case of propagating
singularities with logarithmic growth near the origin, to de�ne a radiation condition that allows
us to construct a functional framework in which the scalar problem is well-posed in the Fredholm
sense. However, as explained in Remark 2.6.4, it is possible to construct an in�nite number of
functional frameworks that are coherent with the Mandelstam radiation principle and in which
the problem is also well-posed. This means that almost all the functional frameworks that can be
constructed using the Mandelstam radiation principle do not lead to the physical solution of the
problem. Obviously, the main di�culty is to de�ne a space of outgoing propagating singularities
that has a physical meaning. To do that, we are going to use the limiting absorption principle.
The idea is to say that the physical solution of the problem 2.2 must be de�ned as the limit when
� ! 0+ (in some space to be de�ned) of the(u� ) � where u� solves the well-posed problem

Find u� 2 H1
0(
) such that � div(( � + i� )r u� ) = f 2 (H1

0(
)) � : (2.25)

The well-posedness of the previous problem for all� 2 (0; + 1 ) is guaranteed by the Lax-Milgram
lemma. Introduce the operator A � + i� : H1

0(
) ! (H1
0(
)) � such that

hA � + i� u; vi :=
�



(� + i� )r u � r v for all u; v 2 H1

0(
) :

The case of non-critical coe�cients is treated in the following

Lemma 2.6.7. Assume that the function � is such that � � 62I � and suppose that the source
term f is such that the problem(2.2) is well-posed in the Hadamard sense. Then the sequence
(u� ) � converges as� ! 0+ ; in H1

0(
) to u the solution of (2.2).
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Proof. By de�nition of I � ; we know that since � � 62I � ; the operator A � is a Fredholm operator
of index 0: Furthermore, since by assumption the problem (2.2) has a unique solution, we infer
that A � is injective and thus it is an isomorphism. As a result, we have the estimate

kukH1
0 (
) � Ckdiv( � r u)k(H 1

0 (
)) � ; u 2 H1
0(
)

in which C is a constant that does not depend onu: Combining this with the obvious estimate

kdiv( � r u)k(H 1
0 (
)) � � k div(( � + i� )r u)k(H 1

0 (
)) � + j� jkukH1
0 (
) for all u 2 H1

0(
)

we arrive to
kukH1

0 (
) � Ckdiv(( � + i� )r u)k(H 1
0 (
)) � + Cj� jkukH1

0 (
) :

By taking � such that 0 < � < � 0 := 1=2C; we obtain the following estimate

kukH1
0 (
) � 2Ckdiv(( � + i� )r u)k(H 1

0 (
)) � ; u 2 H1
0(
) :

Applying the previous estimate to the function u� u� whereu and u� are respectively the solutions
to (2.2) and (2.25), we conclude that for all � 2 (0; � 0) we have

ku � u� kH1
0 (
) � 2Cj� jkdiv( r u)k(H 1

0 (
)) � :

The lemma is then proved. �

Now, we turn our attention to the study of the case where the function � is such that � � 2
I � nf� 1g:

De�nition of the space of physical outgoing propagating singularities

The starting point is to introduce the Mellin symbol of the problem (2.25). For all � 2 R�
+ and all

� 2 C we introduce the operator L � + i� (� ) : H1(S2) ! (H1(S2)) � such that for all � ; � 0 2 H1(S2)
we have

hL � + i� (� )� ; � 0i =:
�

S2
(� + i� )r S� � r S� 0d! � � (� + 1)

�

S2
(� + i� )� � 0d!:

We denote by �( L � + i� ) the spectrum of the family of operators (L � + i� (� )) � 2 C. In 3.3, we will
present a study of the spectral properties ofL � + i� : In particular, we will prove the following

Lemma 2.6.8. Assume that the function � is such that � � 2 I � nf� 1g and let � 2 (0; � 0): Then
there exists0 < � � such that for all 0 < � < � � the operator L � + i� has N t eigenvalues in the strip
f � 2 C j � � < 1=2 + <e(� ) < � g of total algebraic multiplicity (i.e. the sum of all the algebraic
multiplicity of these eigenvalues) equal to2N � : Furthermore, we have

lim
� ! 0+

�( L � + � ) \ f � 2 C j � � < 1=2 + <e(� ) < � g = �( L � ) \ ` � 1=2 = � � 1=2: (2.26)

In the rest of this section, we are going to work under the following

Assumption 2.6.2. We suppose that the function� is such that � � 2 I � nf� 1g and such that

ˆ All the eigenvalues ofL � that are located on the energy line<e(� ) = � 1=2 are semi-simple7.
We denote them by� 1; : : : ; � N t :

ˆ There exists 0 < � 0 and 0 < r 0 such for all 0 < � < � 0 and all j = 1 ; : : : ; N t ; we have
B(� j ; r0) \ �( L � + i� ) = f � j;� g:

ˆ All the � j;� (j = 1 ; : : : ; N t ) are semi-simple.
7We say that an eigenvalue of L � is semi-simple if � a (� ) = � g (� ).
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Remark 2.6.8. Clearly, when all the eigenvalues ofL � that are located on <e(� ) = � 1=2 are
simple8 the previous assumption is satis�ed thanks to Theorem 3.3.1.

Lemma 2.6.9. Assume that Assumption 2.6.2 holds. ThenN t is even. Moreover, for all � 2
(0; � 0) there exists0 < � � such that for all � 2 (0; � � ); we have

ˆ the strip f � 2 C j 1=2+ <e(� ) 2 (0; � )g contains N t =2 eigenvalues ofL � + i� of total algebraic
geometric equal toN � :

ˆ For all j = 1 ; : : : ; N t we have�g(� j
� ) = �g(� j ):

Proof. We start by proving that, under Assumption 2.6.2, � 1=2 =2 �( L � ): For this it su�ces
to see that if ' 2 Ker (L � (� 1=2))nf 0g then ('; ' ) is a Jordan chain ofL � associated to� 1=2:
This means that � 1=2 can not be a semi-simple eigenvalue ofL � : Given that the spectrum of
L � is symmetric with respect to (� 1=2; 0); we infer that N t is even. This implies that the strip
f � 2 C j 1=2 + <e(� ) 2 (0; � )g contains N t =2 eigenvalue(s) ofL � :
According to Proposition 3.3.1, we know that �( L � + i� ) \ ` � 1=2 = ; for all 0 < �: As a result,by
using the fact that �( L � + i� ) is also symmetric with respect to(� 1=2; 0) and by means of (2.26),
we deduce that, under Assumption 2.6.2, there exists0 < � � such that for all � 2 (0; � � ) the strip
f � 2 C j 1=2 + <e(� ) 2 (0; � )g contains N t =2 eigenvalue(s) ofL � + i� : Now, let us explain why
�g(� j

� ) coincides with �g(� j ): This is a consequence of Proposition 3.3.3 in which we prove that
the sum of all the algebraic multiplicities of the eigenvalues ofL � + i� that are near � j must be
equal to the algebraic multiplicity of � j : �

Now, let us assume that Assumption 2.6.2 holds. For all� 2 (0; � 0) and all 0 < � su�ciently
small, we denote by(� +

j;� ) j =1 ;:::;N t =2 the set of eigenvalues ofL � + i� that are located in the strip

f � 2 C j 1=2 + <e(� ) 2 (0; � )g: For each j = 1 ; : : : ; N t =2; we denote by (' j
k;� )k=1 ;:::;� g (� +

j;� ) an

orthonormal (with respect to the inner product of H1(S2)) basis of Ker L � + i� (� +
j;� ): Next, we

introduce the functions

s+
j;k;� (r! ) = � (r )r � +

j;� ' j
k;� (! ); j = 1 ; : : : ; N t =2; k = 1 ; : : : ; �g(� j;� ):

Then, we de�ne the spaceS+
� = spanf s+

j;k;� ; j = 1 ; : : : ; N t =2; k = 1 ; : : : ; �g(� j;� )g: It is obvious that
if Assumption 2.6.2 is valid, then for all 0 < � small enough the spaceS+

� is of dimensionN � : For
this reason, we can introduce(s+

j;� ) j =1 ;:::;N � a basis of the spaceS+
� := spanf s+

j;� ; j = 1 ; : : : ; N � g: It
will be interesting to note that for all j = 1 ; : : : ; N t =2 and all k = 1 ; : : : ; �g(� +

j;� ) the function s+
j;k;�

belongs to the spaceH1
0(
) : Moreover, one can easily see that the functionsdiv(( � + i� )r sj;k;� )

vanishes near the origin and then they belong to the spaceL2(
) \ (�V1
� (
)) � for all � 2 R: The

behavior of these functions as� ! 0+ is the subject of the next

Lemma 2.6.10. Assume that Assumption 2.6.2 is valid and let� 2 (0; � 0): Then for j =
1; : : : ; N t =2 and k = 1 ; : : : ; �g(� +

j;� ); the sequence of functions(s+
j;k;� ) � converges, up to a sub-

sequence, as� ! 0+ ; in �V1
� (
) to the function

s+
j;k; 0(r! ) = � (r )r � +

j ' j
k (! )

where� � 1=2 3 � +
j = lim

� ! 0+
� +

j;� is such that �g(� +
j ) = �g(� +

j;� ) and ' j
k 2 ker(L � (� +

j )) : Furthermore,

we have
spanf ' j

k ; k = 1 ; : : : ; �g(� +
j )g = ker( L � (� +

j )) :

In addition to that the sequence of functionsdiv(( � + i� )r s+
j;k;� ) converges, up to a sub-sequence,

as � ! 0+ in (�V1
� (
)) � to div( � r s+

j;k; 0):
8 i.e. if � a (� ) = � g (� ) = 1 :
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Proof. The fact that (� +
j;� ) � converges to some� +

j 2 ` � 1=2 \ �( L � ) is guaranteed by Lemma
2.6.8. The fact that �g(� +

j ) = �g(� +
j;� ) follows form the application of Lemma 2.6.9. The conver-

gence,up to a sub-sequence, of(' j
k;� ) � as � ! 0+ in H1(S2) to an element of ' j

k 2 ker(L � (� +
j )) is

guaranteed by Proposition 3.3.4. Thanks to the fact that (' j
k;� )k=1 ;:::;� (� +

j;� ) are orthogonal allows

to say that (' j
k )k=1 ;:::;� (� +

j ) are linearly independent. This means that(' j
k )k=1 ;:::;� (� +

j ) is a basis of

ker(L � (� +
j )) :

The convergence of(s+
j;k;� ) � to s+

j;k; 0 in �V1
� (
) follows from the application of the dominated

convergence theorem. By observing that for allv 2 �V1
� (
) we have

j
�



(div(( � + i� )r s+

j;k;� ) � div( � r s+
j;k; 0))vj = j

�


 nf r j � (r )=1 g
(div(( � + i� )r s+

j;k;� ) � div( � r s+
j;k; 0))vj

We infer that we have the estimate

kdiv(( � + i� )r s+
j;k;� ) � div( � r s+

j;k; 0)k(�V 1
� (
)) � � Ckdiv(( � + i� )r s+

j;k;� ) � div( � r s+
j;k; 0)kL2 (
)

with C independent of �: The result follows, again, form application of dominated convergence
theorem. �

In the sequel, when Assumption 2.6.2 is satis�ed, we denote by� +
� 1=2 := f � +

j ; j = 1 ; : : : ; N t =2g:

Furthermore, we de�ne the spaceS+
0 := spanf s+

j;k; 0; j = 1 ; : : : ; N � ; g: Thanks to the result of the
previous lemma, we can say thatdim(S+

0 ) = N � : To simplify notations, for all � 2 � � 1=2; we
denote by S(� ) the space

S(� ) = � (r )r � ker(L � (� )) = f s(r! ) = � (r )r � ' (! ) with ' 2 Ker (L � (� ))g:

Without any di�culty, one can see that S+
0 = �

� 2 � +
� 1=2

S(� ): In the remaining part of this paragraph,

we are going to explain how to �nd a simple characterization of the spaceS+
0 (or equivalently the

set � +
� 1=2). The starting point is the next

Lemma 2.6.11. Assume that Assumption 2.6.2 is valid then the spaceS+
0 is of dimension N � :

Furthermore, we have
0 � = m q(u; u) for all u 2 S+

0 :

Proof. The fact that the dimension of S+
0 is equal to N � follows form its de�nition and thanks

to the previous lemma. Furthermore, we know that for all u 2 S+
0 there exists a sequence(u� ) �

of elements ofS+
� such that (u� ) � and (div(( � + i� )r u� )) � converges, as� ! 0+ ; respectively in

�V1
� (
) and in (�V1

� (
)) � to u and div( � r u): As a result, we deduce that

lim
� ! 0+

�



div(( � + i� )r u� )u� � div(( � + i� )r u� )u� = q(u; u):

SinceS+
� � H1

0(
) , one obtains (thanks to an integration by parts) that q(u; u) = lim
� ! 0+

2i�
�



jr u� j2:

This ends the proof. �

Thanks to the previous lemma, we can then introduce(s+
j; 0) j =1 ;:::;N � a basis of the spaceS+

0 :
S+

0 = spanf s+
j; 0; j = 1 ; : : : ; N � g: The second key result to �nd a characterization of the spaceS+

0
is the following

Proposition 2.6.8. Assume that Assumption 2.6.2 holds, then for all� 2 �( L � ) \ ` � 1=2 we
have two possible situations: either0 � = m(q(u; u)) for all u 2 S(� ) or =m(q(u; u)) � 0 for all
u 2 S(� ):
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Proof. By combining the two previous lemmas, we deduce that for all� 2 � +
� 1=2; we have

0 � = m(q(u; u)) ; u 2 S(� ):

This shows the result for all � 2 � +
� 1=2: Given that �( L � ) is symmetric with respect to (� 1=2; 0)

and since � � � 1 = � for all � 2 � � 1=2; we infer that � � 1=2 = � +
� 1=2 [ � +

� 1=2: According to

Lemma 2.6.2 we know that Ker (L � (� )) = Ker (L � (� )) : Given that q(u; u) = � q(u; u); for all
u 2 S: Consequently, for all � 2 � +

� 1=2 we have=m(q(u; u)) � 0 for all u 2 S(� ): The lemma is
then proved. �

Without any di�culty, one can check that for all � = � 1=2 + i� 2 � � 1=2(i.e.� 2 R) and ' 2
Ker L � (� ); the function s(r! ) := � (r )r � ' (! ) 2 S(� ) satis�es the relation:

q(s; s) = 2 i�
�

S2
� j' j2d!: (2.27)

With this in mind, we can show the following result that gives us a very simple characterization
of set � +

� 1=2 and the spaceS+
0 :

Proposition 2.6.9. Assume that Assumption 2.6.2 holds. Let� = � 1=2 + i� 2 ` � 1=2 \ �( L � )
and let ' be an arbitrary eigenfunction of L � associated to�: Then, we have the equivalence

� 2 � +
� 1=2 if an only if 0 < �

�

S2
� j' j2:

Proof. We already know thanks to Lemma 2.6.11 we have0 � � iq(u; u) for all u 2 S+
0 : This

means that � iq is positive hermitian form on S+
0 � S+

0 : By making use of the Cauchy-Schwarz
(applied to � iq) and using the fact that q is non-degenerate, we infer that0 < � iq(u; u) for all u 2
S+

0 nf 0g: This proves the direct implication. The reverse implication follows form the Proposition
2.6.8 and the relation (2.27). �

Lemma 2.6.12. There exists (s+
j ) j =1 ;:::;N � a basis ofS+

0 such that

q(s+
j ; s+

k ) = i� j;k ; for all j; k = 1 ; : : : ; N � :

Proof. We denote by q0 the symplectic form that is the restriction of the symplectic form q
to the space S+

0 : Thanks to Lemma 2.6.11, we know that � iq0 is hermitian and positive, i.e.
0 � � iq0(u; u) for all u 2 S+

0 : Given that

S+
0 = �

� 2 � +
� 1=2

S(� ):

and thanks to the second item of Lemma 2.6.3, we deduce thatq0 is non-degenerate. The wanted
result follows then form the application of Sylvester's law of inertia. �

For all � 2 (0; � 0) we introduce the space a�Vout
0;� := �V1

� � (
) � S+
0 and the operator Aout

0;� : �Vout
0;� !

(�V1
� (
)) � such that for all u = ~u + s+ with ~u 2 �V1

� � (
) and s+ 2 S+
0 we have

hAout
0;� u; vi :=

�



� r ~u � r v �

�



div( � r s+ )v ; v 2 �V1

� (
) :

Using the results of the previous section and with the help of Lemma 2.6.12, we obtain the

Proposition 2.6.10. Assume that the Assumptions 2.6.1-2.6.2 are satis�ed. Then the operator
Aout

0;� is an isomorphism.
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Final proof of the limiting absorption principle

The main result of this section is given by the following

Theorem 2.6.5. Assume that Assumptions 2.6.1-2.6.2 hold and letf 2 (�V1
� (
)) � with � 2

(0; � 0): Then the sequence(u� ) � (u� is the solution of (2.25)) converges in�V1
� (
) to u 2 �Vout

0;� (
) =
�V1

� � (
) � S+
0 the unique solution to the well-posed problemAout

0;� u = f:

The proof of the previous theorem is based on a succession of lemmas. The �rst one is the

Lemma 2.6.13. Assume that Assumption 2.6.2 holds and thatf 2 (�V1
� (
)) � then there exists

� � such that for all 0 < � < � � the function u� (the solution to (2.25)) decomposes as

u� =
N �X

j =1

cj
� s+

�;j + ~u� (2.28)

where ~u� 2 �V1
� � (
) and cj

� 2 C:

Proof. Thanks to Lemma 2.6.9, we know that there exists� � such that for all � 2 (0; � � ); we have
f � 2 C j < e(� ) 2 (� 1=2; � 1=2 + � )g \ �( L � + i� ) = f � +

j;� ; j = 1 ; : : : ; N t =2g: Since by Assumption
the eigenvalues� +

j;� are semi-simple for� 2 (0; � 0) (� 0 is de�ned in the statement of Assumption
2.6.2), the result follows then by replacing� � by min( � � ; � 0) and by adapting the classical results
of [102, Chapter 6 ]. �

Lemma 2.6.14. Assume that Assumption 2.6.1 holds. Then for all� 2 (0; � 0) there exists0 < � �

such that for all � 2 (0; � � ); we have the estimate

kuk�V 1
� � (
) � C� kdiv(( � + i� )r u)k(�V 1

� (
)) � for all u 2 �V1
� � (
)

in which the constant C� is independent ofu and of �:

Proof. Thanks to the Assumption 2.6.1, we know that for all � 2 (0; � 0) we have the estimate
(see Lemma 2.6.5 )

kuk�V 1
� � (
) � C� kdiv( � r u)k(�V 1

� (
)) � for all u 2 �V1
� � (
)

where 0 < C � does not depend onu: By combining the estimate

kdiv( r u)k(�V 1
� (
)) � � C0

� kuk�V 1
� � (
) for all u 2 �V1

� � (
)

(in which C0
� is independent ofu) with the fact that for all � 2 R and all u 2 �V1

� � (
) we have
div( � r u) = div(( � + i� )r u) � i� div( r u); we obtain the estimate

kuk�V 1
� � (
) � C� kdiv(( � + i� )r u)k(�V 1

� (
)) � + C0
� j� jkuk�V 1

� � (
) for all u 2 �V1
� � (
) :

Taking � small enough (e.g.j� j < (2C0
� ) � 1), we get the estimate

k~u� k�V 1
� � (
) � 2C� kdiv(( � + i� )r u)k(�V 1

� (
)) �

which ends the proof. �

Lemma 2.6.15. Assume that Assumption 2.6.1 holds and let� 2 (0; � 0): Let (u� ) � be a sequence
of elements of�V1

� � (
) such that (f � := div(( � + i� )r u� )) � converges, as� ! 0+ ; in (�V1
� (
)) �

then (u� ) � converges in�V1
� � (
) as � ! 0+ :
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Proof. Thanks to the previous lemma, we infer that (u� ) � is bounded in �V1
� � (
) : In order to

prove our claim we are going to show that(u� ) � is a Cauchy sequence. Let�; � 0 2 R�
+ : Starting

from the identity

f � � f � 0 = div(( � + i� )r (u� � u� 0)) + i (� � � 0)div r u� 0

and by using the estimatekdiv( r u)k(�V 1
� (
)) � � Ckuk�V 1

� � (
) for all u 2 �V1
� � (
) (with C indepen-

dent of u) we obtain (thanks to Lemma 2.6.14) the estimate

ku� � u� 0k�V 1
� � (
) � C(kf � � f � 0k(�V 1

� (
)) � + j� � � 0j)

with C that does not depend on�: Since by assumption(f � ) � converges in(�V1
� (
)) � its then a

Cauchy sequence and then the result is proved. �

As a consequence, we can now show the following result.

Lemma 2.6.16. Assume that Assumptions 2.6.1-2.6.2 hold and let� 2 (0; � 0): Then the se-
quences(c�

j ) � in (2.28) are bounded as� tends to 0:

Proof. For all � small enough, we denote byR� = max
j

jcj
� j: To prove our claim it su�ces to

show that (R� ) � is bounded as� vanishes. If this not the case, one can say that there exists a
sub-sequence of(R� ) � ; that will be indexed by � for the reader convenience, such thatjR� j ! + 1
as � ! 0: To simplify notations, we introduce for all j = 1 ; : : : ; N � the sequences(ĉj

� := cj
� =R� ) � :

Note that from the de�nition of R� ; we infer that

max
j

jĉj
� j = 1 : (2.29)

This implies that (ĉ1
� ; : : : ; ĉN �

� ) � is bounded in CN � : As a result, we deduce that up to a sub-
sequence, still indexed by� , the sequence(~c1

� ; : : : ; ~cN �
� ) � converges to some(ĉ1; : : : ; ĉN � ) in CN � :

Note that thanks to (2.29), we deducemax
j

jĉj j = 1 : By observing that ĉ�
1s+

�; 1 + � � � + ĉ�
N �

s+
�;N �

converges, as� ! 0+ to ĉ1s+
0;1 + � � � + ĉ�

N �
s+

0;N �
; by using the fact that � div(( � + i� )r u� =R� ) =

f=R � ! 0 in (�V1
� (
)) � and the result of Lemma 2.6.5, we deduce that(div(( � + i� )r ~u� =R� )) �

converges in(�V1
� (
)) � as � ! 0+ :

Since ~u� =R� 2 �V1
� � (
) for all � 2 (0; � � ) and by applying Lemma 2.6.15 we conclude that

~u� =R� converges in�V1
� � (
) , as � ! 0; to some ~u0 2 �V1

� � (
) : Consequently, the function u =
~u0 + ĉ1s+

0;1 + � � � + ĉN � s+
0;N �

2 �V1
� � (
) � S+

0 and satis�es the equation

div( � r u) = 0 in (�V1
� (
)) � :

Applying the Proposition 2.6.10, we �nd that ĉj = 0 for all j = 1 ; : : : ; N � which contradicts the
fact that max

j
jĉj j = 1 : The Lemma is then proved. �

Proof of Theorem 2.6.5. We know that for 0 < � small enough, the functionu� decomposes as

u� = ~u� +
N �X

j =

cj
� s+

�;j with cj
� 2 C and ~u� 2 �V1

� � (
) :

The previous lemma ensures that(c1
� ; : : : ; cN �

� ) is bounded in CN � : This means that up to a
sub-sequence (that will be indexed by� ), (c1

� ; : : : ; cN �
� ) converges as� ! 0 in CN � to some

(c1; : : : ; cN � ) 2 CN � : Starting from the fact that

div(( � + i� )r ~u� ) = � f � div(( � + i� )r (
N �X

j =1

cj
� s+

�;j ))



61 2.6. Study of the initial problem

and by using Lemma 2.6.10 and Lemma 2.6.15, we deduce that(u� ) � converges in�V1
� (
) to some

u 2 �Vout
0;� (
) = �V1

� � (
) � S+
0 that satis�es the equation

� div( � r u) = f in (�V1
� (
)) � :

Thanks to Proposition 2.6.10, we know that the latter problem has a unique solution. This implies
that (u� ) � converges in�V1

� (
) , as � ! 0, to the unique solution of Aout
0;� u = f: Since this limit is

independent of the chosen sub-sequence, we obtain the wanted result. �

On the relaxation of Assumption 2.6.2

The results obtained in the previous section are also valid of one replaces Assumption 2.6.2 by
the following

Assumption 2.6.3. We suppose that the function� is such that � � 2 I � nf� 1g and such that

ˆ All the eigenvalues ofL � that are located on the energy line<e(� ) = � 1=2 are semi-simple9.
We denote them by� 1; : : : ; � N t :

ˆ There exists 0 < � 0 and 0 < r 0 such for all 0 < � < � 0 and all j = 1 ; : : : ; N t ; the set
B(� j ; r0) \ �( L � + i� ) is either a subset off � 2 C j � 1=2 < <e(� )g or a subset f � 2
C j < e(� ) < � 1=2g: We use the notationB(� j ; r0) \ �( L � + i� ) = f � j;k;� ; k = 1 ; : : : ; N j g with
N j 2 N:

ˆ All the � j;k;� (j = 1 ; : : : ; N t ; k = 1 ; : : : ; N j ) are semi-simple.

The only point that needs to be clari�ed is the proof of the fact that, under the previous assump-
tion, the dimension of the spaceS+

0 is equal to N t =2: To do this, we have to modify a little the
proof of Proposition 2.6.10. Instead of performing a Gram-Schmidt process onS+

� with respect
to their angular component in H1(S2) (which was the case in the proof of Proposition 2.6.10),
one must perform a Gram-Schmidt process onS+

� with respect to �V1
� (
) with 0 < � (which is a

Hilbert space).
Unfortunately, we are not able to �nd a weaker assumption under which we can explain how to
choose, among the functional frameworks constructed by Mandelstam's radiation principle, the
one that is consistent with the limiting absorption principle.
The di�culty comes from the fact that, in general, any assumption made on the nature of the
eigenvalues ofL � which belong to ` � 1=2 does not imply, a priori, any information on the nature
of the eigenvalue ofL � + i� which are near �( L � ) \ ` � 1=2: Note that this di�culty occurs even in
the case of �nite dimensional problems. To be convinced of this, consider for all0 < � the matrix

A � :=

 
1 + � �

0 1 + �

!

:

We can clearly see thatA � tends as� ! 0+ to the identity matrix I 2: Moreover, the spectrum of
A � is equal to f 1 + � g which converges as expected tof 1g which is the spectrum of I 2. However,
when we come to the question of the convergence of the eigenfunctions, the situation is totally
di�erent: while 1 is a semi-simple eigenvalue ofI 2, for all 0 < � the matrix A � has an generalized
eigenfunction associated to1 + �:

Application to the case of circular conical tips

In Ÿ3.4.1 we shall prove that, when� � 6= � 1; the set �( L � ) can be characterized by means of
dispersion relations. Moreover, we will explain that � � 1=2 coincides with

f� 1=2 � i� s.t. 9m 2 N s.t. am (� ) = � � g

where am : R+ ! R are continuous functions. The curves of the functionsam for m = 0 ; : : : ; 3
are displayed in Figure 2.4.

9We say that an eigenvalue of L � is semi-simple if � a (� ) = � g (� ).
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Figure 2.4: Curves of the functions� 7! am (� ) for m = 0 ; 1; 2; 3 and � = �= 4:

Clearly the curves of the functions seems to be disjoint. However, we did not succeed in proving
this observation. In Ÿ3.4.3, we will show that except for the particular values of� = � 1 + i� �

where a0
m (� � ) = 0 for some m 2 N; the assumption 2.6.2 is valid. Furthermore we are going

to show that for these particular values of �; propagating singularities with logarithmic growth
exist.

On the existence of inverse modes and the numerical approximation of the problem
In this paragraph, we will discuss in very brief way the question of the numerical approximation
of the scalar problem. Clearly, one has to distinguish two situations: the case� � =2 I � and the
case� � 2 I � nf� 1g: In the �rst case the approximation of the solution can be done thanks to
the numerical method that we are going to present in Chapter 4. In the case� � 2 I � nf� 1g;
propagating singularities exist. To the best of our knowledge the only existing method to deal
with the problem in 2D has been proposed in [45] and is based on the use of PMLs near the origin.
The adaption of this method to the 3D con�guration is not done yet. This adaptation does not
seem to be an easy task because of the possible existence of inverse modes in the expression of the
physical solution of the problem (i.e the solution obtained by the limiting absorption principle
contains propagating singularities which are associated with singular exponents with opposite
signs). This is exactly the case illustrated by Figure 2.5: we observe that in this situation
Assumption 2.6.2 is valid and that the space of the physical propagating singularities contains
propagating singularities with singular exponents that have opposite sign.

Figure 2.5: The spectrum of L � + i� for � = 0 ; � = 0 :005 for the case of a circular conical tip
(� = �= 4) and � � = � 0:8:
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2.7 Concluding remarks and open questions

In this chapter, we presented a detailed study of the scalar problem (2.2). In particular, we
explained how to characterize the critical interval I � by means of the existence of propagating
singularities. When � � 2 I � nf� 1g, a general approach based on the use of Mandelstam's radiation
principle has been proposed in order to construct functional frameworks in which Fredholmness of
the problem is recovered (even in the presence of propagating singularities with logarithmic growth
near the origin which has not been treated in [25]). The selection of the physical framework has
been done, under Assumption 2.6.2 (or Assumption 2.6.3), by means of the limiting absorption
principle. It seems (thanks to numerical calculations) that Assumption 2.6.2 is satis�ed for the
case of circular conical tips, except for a discrete set of contrasts for which there are propagating
singularities with logarithmic growth near the origin. Of course, all the results we obtained above
hold if we replace the homogeneous Dirichlet boundary conditions by any other elliptic boundary
condition. In addition to that, we expect that our results remain true when the conical tip touches
the domain boundary (see Figure 2.6). Let us conclude this chapter by mentioning two of the
most important questions that can be studied in future works:

1. How to select the physical framework when Assumption 2.6.3 is not satis�ed? In the
literature, is seems that the most important reference, which can help us to deal with this
question, is the book [138].

2. How to adapt the use of PMLs near the origin in order to construct a numerical approxi-
mation of the solution to the scalar problem with propagating singularities? How to deal
with the possible existence of inverse modes ? An interesting work that can help us in this
direction is done in [13].

Figure 2.6: An example of a geometry where the conical tip touches the boundary of the domain.

2.8 Appendix

2.8.1 The Kelvin transform

The Kevin transform is a classical geometrical mapping that permits us to transform problems
set in unbounded domains into other ones set in bounded domains and vice versa. As we shall see
below (Lemma 2.8.1), the Kelvin transform preserves harmonic functions. This property makes
it very adapted to the study of �Laplacian-based� problems. It is also interesting to note that
the Kelvin transform can be used for numerical purposes as an alternative approach to solve
scattering problems (see [69, 111] and the references therein). Along this paragraph, we denote
by B the unit ball of R3: The Kelvin transform of a function u de�ned in Bnf Og is the function
~u de�ned in Bc := R3nB by the relation:

~u(r! ) = u(!=r )=r
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in which (r; ! ) are the classical spherical coordinates. The �rst interesting property is the fact
that the Kelvin transformation of a harmonic function is also harmonic.

Lemma 2.8.1. Let u 2 C2(Bnf Og) be such that� u = 0 . Then we have�~u = 0 in Bc:

Proof. A direct calculus yields �~u(r! ) =
1
r 5 � u(!=r ) for all r! 2 Bc: �

Now, we turn our attention to the study of the action of the Kelvin transform on weighted Sobolev
spaces. We limit ourselves to the spacesV0

� (B) and V1
� (B) for arbitrary � 2 R: The case of the

spacesV0
� (B) is the subject of the following

Lemma 2.8.2. If u 2 V0
� (B) then ~u 2 V0

� � � 2(Bc):

Proof. By de�nition of V0
� (B) ; we have

� 1

0

�

S2
r 2� u2(r! )r 2 drd! < 1 : By performing the change

of variables r 7! 1=r, we get

� 1

1

�

S2
r � 2� u2(!=r )r � 4 drd! =

� 1

1

�

S2
r � 2� � 4~u2(r! )r 2 drd! < 1 :

As a result r � � � 2~u belongs toL2(Bc) and then the lemma is proved. �

The case of the spacesV1
� (B) is treated in the following

Lemma 2.8.3. If u 2 V1
� (B) then ~u 2 V1

� � (Bc):

Proof. Since u 2 V1
� (B) , we deduce that u 2 V0

� � 1(B) and then by using the result of the
previous lemma we can say that~u 2 V0

� � � 1(Bc): To make things as clear as possible, instead of
working with the variable r for the function ~u; we use the variablet = 1=r: With this in mind,
we have the relation t ~u(t! ) = u(r! ) for all r 2 (0; 1): To end the proof, we need to show that
t! 7! @t ~u(t! ) and t! 7! jr S ~u(t! )=tj belong to V0

� � (Bc): It is important to note that using the
variable t instated of r; the spaceV0

� � (Bc) is de�ned as follows

V0
� � (Bc) = f f : Bc ! C such that

� 1

1

�

S2
t � 2� f (t! )2t2dt d! < 1g :

For the case of the function t! ! jr S ~u(t; �)=tj; this follows from the equality (that is obtained
thanks to the change of variabler 7! 1=r)

� 1

0

�

S2
r 2� jr Su(r! )=rj2r 2 drd! =

� 1

1

�

S2
t � 2� jr S ~u(t! )=tj2t2 dtd!:

The case of the function@t ~u is a little bit more involved. The starting point is to observe that
we have

t ~u(t! ) = u(r! ) =) @r u(r! ) = � t2~u(t! ) � t3@t ~u(t! ):

Thus we can write that t3@t ~u(t! ) = @r u(r! )+ u(r! )=r: Using the fact that r! 7! @r u(r! )+ u(r! )=r
belongs to the spaceV0

� (B) ; we then deduce that

� 1

1

�

S2
t � 2� (@t ~u(t; ! ))2t2dt d! =

� 1

0

�

S2
r 2� (@r u(r! ) + u(r! )=r)2r 2dr d! < 1 :

This ends the proof. �
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2.8.2 The Peetre's Lemma

In this paragraph, we present some variants of the classical Peetre's lemma. These results are a
very powerful tools that allow us to prove that a given operator is of Fredholm type. The classical
Peetre's lemma is given by the following

Theorem 2.8.1. [101, Lemma 3.4.1] Let (X; k � kX ); (Y;k � kY ) and (Z; k � kZ ) be three Banach
spaces such thatX is compactly embedded inZ . Let A : X ! Y be a continuous linear operator.
Then the following assertions are equivalent

1. A has a closed range and its kernel is �nite dimensional.

2. The estimate
kukX � C(kA(u)kY + kukZ ); u 2 X

holds with C independent ofu:

In some con�gurations, we may need to use the following alternative version of the Peetre's
Lemma.

Proposition 2.8.1. [124] Let (X; k � kX ); (Y;k � kY ) and (Z; k � kZ ) be three Banach spaces and
let K : X ! Z be a compact operator. If there exists0 < C such that we have the estimate

kukX � C(kA(u)kY + kK (u)kZ ); u 2 X

then A has a closed range and its kernel is �nite dimensional.

For any Banach spaceX; we denote byX � its topological anti-dual. An operator A : X ! X � is
said to be symmetric if and only if hAu; v i = hAv; ui for all u; v 2 X: A direct application of the
Theorem 2.8.1 yields

Proposition 2.8.2. Let (X; k �kX ) and (Z; k �kZ ) be two Banach spaces such thatX is compactly
embedded inZ . Let A : X ! X � be a continuous linear symmetric operator. Then the following
assertions are equivalent

1. A is a Fredholm operator of index zero.

2. The estimate
kukX � C(kA(u)kX � + kukZ ); u 2 X

holds with C independent ofu:
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3.1 Introduction

This chapter is devoted to the study of the "spectral" properties of the Mellin symbol generated
by the scalar problem (2.2) that we have studied in the previous chapter. More precisely, we
are interested in the study of spectral properties of the family of operators(L � (� )) � 2 C that is
de�ned as follows: for all � 2 C; we introduce L � (� ) : H1(S2) ! (H1(S2)) � such that for all
 ;  0 2 H1(S2) we have

hL � (� ) ;  0i :=
�

S2
� r S � r S 0d! � � (� + 1)

�

S2
�  0d!:
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Above d! = sin( � )d�d' where (�; ' ) 2 [0; � ] � [0; 2� ] are the classical (angular) spherical co-
ordinates. Recall that � is a piecewise constant function such that� = � 1 2 R�

+ in S1 and
� = � 2 2 R�

� in which S1 and S2 are two subdomains ofS2 that are de�ned as follows:

S1 = f (�; ' ) 2 [0; � ]� [0; 2� ] such that g(' ) < � g and S2 = f (�; ' ) 2 [0; � ]� [0; 2� ] such that � < g (' )g

where g : [0; 2� ] ! [0; � ] is a periodic function of classC2 (see Figure 3.1). As in the previous
chapter, we denote � � := � 2=� 1: Observe that the particular case whereg coincides with a
constant function corresponds to the case of circular conical tips.

Figure 3.1: An example of the geometry considered: the red (resp. green ) part is �lled with a
negative (resp. positive) material.

Classically, we say that � 2 C is a regular point of L � if and only if the operator L � (� ) is
invertible otherwise we say that � is an eigenvalue ofL � : The set of eigenvalues ofL � is called
the spectrum of L � and is denoted by �( L � ): As we have seen in Ÿ2.4, having an accurate
information about the location of the spectrum �( L � ) in the complex plane is important for the
study of the well-posedness of the problems:

Find u 2 W1
� (R3) such that � div( � r u) = f 2 (W 1

� � (R3)) �

for � 2 R: More precisely, the formula (2.14) tells us that the solvability of the previous problem
is directly related to the invertibility of L � (� ) along the energy line <e(� ) = � � � 1=2 and
on the behavior of L �

� 1(� ) on this line. In addition to that, we have also seen that to obtain
an asymptotic expansion of its solution, near the origin, on needs to have a precise information
about the associated eigenfunctions/generalized eigenfunctions and the algebraic multiplicities of
its eigenvalues (see Ÿ2.4.4 for the de�nition of these objects).
Because of the sign-change in the density function�; the study of the spectral properties ofL �

does not �t into the general theory presented in [101] that concerns the study of the spectral
properties of the Mellin symbols generated by strongly elliptic operators. Our goal is to show
that, even in our situation, some of the well-known results of the classical theory of Fredholm op-
erator pencils can be recovered. Note that, to the best of our knowledge, the results that we shall
present below are new. In some way, these results can be seen as an extension of the ones pre-
sented in [25] for the case of two dimensional transmission problem with sign-changing coe�cients.

The results of this chapter are organized as follows. In Ÿ3.2, we address the question of the
discreteness of the spectrum ofL � and the behavior of its resolvent (i.e. � 7! L � (� ) � 1) for large
values of j� j: Next, in Ÿ3.3, we turn our attention to the study of the behavior of the spectrum
and the associated eigenvectors when one replaces� by � + i� where � is a small parameter. In
the last section (Ÿ3.4), thanks to some explicit computations, we explain how the general results,
obtained in the previous two sections, can be made more precise in the particular case of circular
conical tips.
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3.2 Fredholmness of the symbol and discreteness of the spectrum

In the classical con�guration (when � has a constant sign), one can prove (for instance see the
proof of [101, Lemma 3.6.3]), by means of the analytic Fredholm theorem (see [101, Corollary
1.1.1]), that the spectrum of L � (� ) is discrete and consists of isolated eigenvalues with �nite
algebraic multiplicities. In our con�guration, because of the sign-change in�; the operator L � (� )
is not necessarily of Fredholm type. This means that�( L � ) may contain some eigenvalues of
in�nite algebraic multiplicity or even worse than that, �( L � ) can be not discrete (or possibly
equal to the complex plane).

3.2.1 Fredholmness of the symbol

As in the classical con�guration the �rst step is to endow the space H1(S2) with the norm
kuk2

H1 (S2 ;j� j) such that for all u 2 H1(S2) we have

kuk2
H1 (S2 ;j� j) = kuk2

H1 (S2 ) + j� j2kuk2
L2 (S2 ) :

Obviously, one can say that for all � 2 C; the norm kukH1 (S2 ;j� j) is equivalent to the classical
one (which, by the way, coincides with kukH1 (S2 ;1)). However, when j� j goes to+ 1 these two
norms have two di�erent behaviours. Note that the introduction of this norm is motivated by the
expression of the inverse Mellin transform (2.4.3). We also endow the space(H1(S2); j� j)) � with
the norm k � k(H 1 (S2 ;j� j)) � such that for all f 2 (H1(S2; j� j)) � we set

kf k(H 1 (S2 ;j� j)) � = sup
v2 H1 (S2 )nf 0g

jhf; v ij
kvkH1 (S2 ;j� j)

:

As mentioned above, because of the sign-change in�; the Fredholmness ofL � (� ) may be lost. In
this paragraph, we shall explain how to use theT� coercivity approach in order to prove, under
some condition on the contrast� � ; the Fredholmness ofL � (� ). We have the

Lemma 3.2.1. Assume that � � 6= � 1, then there existst0 2 R+ such that for all t 2 R such that
t0 < jtj the operator L � (� 1=2 + it ) is an isomorphism. More precisely, there exists0 < C such
that for all t0 < jtj and � = � 1=2 + it we have the estimate

kukH1 (S2 ;j� j) � CkL � (� )(u)kH1 (S2 ;j� j) � for all u 2 H1(S2):

Remark 3.2.1. The proof of the previous result is a little bit technical. For pedagogical purposes,
we will limit ourselves here to the study of the particular case of a circular conical tip (i.e.
� = g(' ) = � ) and the study of the general case(g 2 C2[0; 2� ]) will be left as an appendix (see
Appendix 3.6.1).

Proof in the particular case g(' ) = � 2 (0; � ). The main idea is to use theT� coercivity ap-
proach. By dividing L � by � 1 we come back to the study of the particular case where� = 1 in S1

and � = � � in S2: To prove our claim, one has just to study the case� 1 < � � < 0, the other case
(when � � < � 1) can be studied in the same way by exchanging the roles ofS1 and S2: For this
reason, we are going to suppose that� � > � 1: Then, we de�ne the operator T : H 1(S2) ! H1(S2)
such that

T(u)( �; ' ) =
u1(�; ' ) in S1

� u2(�; ' ) + 2 � (� )u1(2� � �; ' ) in S2

where the functionsu1 and u2 are such thatu1 = ujS1 and u2 = ujS2 and in which � : [0; � ] ! [0; 1]
is a cuto� function that is equal to one for � 2 (� � 
 ; � + 
 ) and vanishes for� 2 (0; � � 2
 ) [
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(� + 2 
 ; � ): The parameter 
 must be chosen such that2
 < min( �; � � � ): We also need to
de�ne the positive numbers M 
 ; L 
 and N 
 such that

M 
 = sup
� 2 [� � 2
 ;� +2 
 ]

sin(2� � � )
sin(� )

; L 
 = sup
� 2 [� � 2
 ;� +2 
 ]

sin(� )
sin(2� � � )

and N 
 = sup
� 2 [� � 2
 ;� +2 
 ]

� 0(� ):

It will be useful to note that, at least for 
 small enough, the functions
 7! M 
 and 
 7! L 
 are
continuous. SinceM 0 = L 0 = 1 one deduces that there exists some
 � small enough such that
for all 
 2 (0; 
 � ) one hasmax(M 
 ; L 
 ) < 1=j� � j (this is true because we have supposed that
� 1 < � � < 0). Now, let us come back to the study of the operatorT: First of all, by observing
that for all u 2 H1(S); the function T( u) is continuous across the interfacef � = � g; we infer that
T( u) 2 H1(S). This means that the operator T is well-de�ned. Since for all u 2 H1(S) we have
T � T( u) = u; we deduce that T is a bijective operator. The continuity of T follows from the
following estimates: for all u 2 H1(S2) we have

�

S2
jT( u)j2 d! �

�

S1

ju1j2 d! + 2
�

S2

ju2j2 d! + 8
�

S2

j� (� )u1(2� � �; ' )j2d!

� 2
�

S2
juj2 d! + 8 M 


�

S1

ju1j2 d! � (2 + 8M 
 )
�

S2
juj2d!

�

S2
jr ST( u)j2 d! � 2

�

S2
jr Suj2 d! + 8

�

S2

jr S(� (� )u1(2� � �; ' )) j2d!

� 2
�

S2
jr Suj2 d! + 8

�

S2

j
� (� )@' u1(2� � �; ' )

sin(� )
j2d!

+8
�

S2

j@� (� (� )u1(2� � �; ' )) j2d!

� 2
�

S2
jr Suj2 d! + 8L �

�

S1

jr Su1j2 d! + 8N 
 M 


�

S1

ju1j2d!

+8M 


�

S1

jr Su1j2 d!:

The next step is to computehL (� 1=2+ it )u; T( u)i for an arbitrary u 2 H1(S) and an arbitrary t 2
R: To simplify notations, we shall denote by ~u1 the function (�; ' ) 7! ~u1(�; ' ) = � (� )u1(2� � �; ' )
and by 
 t the real positive number � t = 1=4 + t2: For all t 2 R and all u 2 H1(S2), we have

hL (� 1=2 + it )u; T( u)i =
�

S2
� r Su � r ST( u)d! + � t

�

S2
�u T( u)d!

= ( j� jr Su; r Su)S2 + � t (j� ju; u)S2 + 2 � � (r u2; r (~u1))S2 + 2 � � � t (u2; ~u1)S2 :

Now, by means of the Young's inequality and the de�nition of M 
 one �nds for all 0 < a that

2j(u2; ~u1)S2 j = j
�

S2

u2(�; ' )� (� )u1(2� � �; ' )d! j � aj(u2; u2)S2 j + a� 1M 
 j(u1; u1)S1 j:

For the term (r Su2; r S ~u1)S2 ; we decompose it into the sum of(� (� )r Su2; r S(u1(2� � �; ' ))) S2

and of (r Su2; u1(2� � �; ' )r S� (� ))S2 . Applying the Young's inequality, one obtains that for all
0 < b; c

2j(� (� )r Su1; r S ~u1)S2 j = 2 j
�

S2

� (� )( � @� u2(�; ' )@� u1(2� � �; ' )d! +
@' u2(�; ' )

sin(� )
@' u1(2� � �; ' )

sin(� )
d! j

� b(r Su2; r Su2)S2 +
max(M 
 ; Š
 )

b
(r Su1; r Su1)S1

2j(r Su2; u1(2� � �; ' )r S� (� ))S2 j = j
�

S2

(@� u2(�; ' )@� � (� )u1(2� � �; ' )d! j

� c(r Su2; r Su2)S2 +
N 
 M 


c
(u1; u1)S1 :
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With these estimates, one concludes that for allt 2 R and u 2 H1(S2) we have for all 0 < a; b; c

jhL (� 1=2 + it )u; T( u)ij � (1 �
j� � j max(M 
 ; Š
 )

b
)( r Su1; r Su1)S1 + j� � j(1 � b� c)( r Su2; r Su2)S2

+( � t (1 �
j� � jM 


a
) �

j� � jN 
 M 


c
)(u1; u1)S1 + ( � t j� � j(1 � a))( u2; u2)S2 :

Given that for all 
 2 [0; 
 � ); we have max(M 
 ; L 
 ) < 1=j� � j; we then deduce that for all

 2 (0; 
 � ); one can �nd a; b2 (0; 1) such that

0 < 1 �
j� � j max(M 
 ; Š
 )

b
and 0 < 1 �

j� � jM 


a
:

By taking c 2 (0; 1� b) and t large enough so that0 < (� t (1 �
j� � jM 


a
) �

j� � jN 
 M 


c
); one deduces

that there exists some0 < t 0 such that for all t 2 R satisfying t0 < jtj; we have the estimate

C0kuk2
H1 (S2 ;j� j) � jh L (� 1=2 + it )u; T( u)ij (3.1)

with C0 independent of t: Note that to obtain the previous estimate, we have used the fact that
for all � = � 1=2 + it with t 2 R we have j� j2 = � t : Since T : H 1(S) ! H1(S) is continuous
(here H1(S) is endowed with its natural norm), the operator T : H 1(S; j� j) ! H1(S) is continuous
and uniformly bounded. This, simply, means that for all � 2 C and all u 2 H1(S2) we have the
estimate,

kT( u)kH1 (S2 ) � CkukH1 (S2 ;j� j) for all u 2 H1(S2)

with C independent of � and of u: Inserting this into (3.1), one deduces there is some0 < C
independent ofu 2 H1(S2) and � = � 1=2 + it (with t0 < jtj) such that

kukH1 (S2 ;j� j) � CkL � (� )(u)kH1 (S2 ;j� j) � :

This furnishes the wanted estimate and shows that for all � = � 1=2 + it (with t0 < jtj) the
operator L � (� ) is injective and its range is closed. By observing that for allt 2 R the operator
L � (� 1=2+ it ) is self-adjoint (because it is bounded and symmetric), we deduce thatL � (� 1=2+ it )
is an isomorphism for all t 2 R satisfying t0 < jtj: �

3.2.2 Discreteness of the spectrum

Given that the embedding of H1(S2) into L2(S2) is compact (see [91, Proposition 2.4]), one can
easily see that for all �; � 0 2 C the operator L � (� ) � L � (� 0) is compact. Taking � 0 = � 1=2 + it 0

with t0 as in Lemma 3.2.1, we can say that if� � 6= � 1 the operator L � (� ) is a Fredholm operator
(of index zero) for all � 2 C: Furthermore, by applying the analytic Fredholm theorem (see [101,
Corollary 1.1.1]), one obtains the following

Lemma 3.2.2. Assume that � � 6= � 1: The spectrum of L � is composed by isolated eigenvalues
with �nite algebraic multiplicities. Furthermore, L � (� ) � 1 is analytic in Cn�( L � ):

3.2.3 Localization of the spectrum and boundedness of the resolvent

In this paragraph, we intend to explain how to obtain a more precise information about the
location of the spectrum ofL � in the complex plane. In addition to that, we are going to address
the question of the behaviour ofkjL � 1

� (� )kj when j� j is large (this result is important to show
that the solution constructed by means of the inverse Mellin transform is uniformly bounded
with respect to the source term). Before getting into details, one can easily see that�( L � ) is
symmetric with respect to the point (� 1=2; 0) (i.e. if � 2 �( L � ) then � � � 1 also belongs to it).
Furthermore, since � is real-valued one can also observe that�( L � ) is symmetric with respect
to the lines =m(� ) = 0 (i.e. if � 2 �( L � ) then � 2 �( L � )).
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Theorem 3.2.1. Assume that � � 6= � 1: Then all the eigenvalues ofL � (� ), with the possible
exception of �nitely many, are located outside of some double sector centered at(� 1=2; 0) (i.e.
f z 2 C j < e(z + 1=2)j � � j= m(z + 1=2)jg with 0 < � ) of the complex plane(see Figure 3.2). More
precisely, there exist0 < 
 0; r0 such that

D r 0

 0

:= f z 2 C such that r0 < jz + 1=2j and j< e(z + 1=2)j < 
 0j= m(z + 1=2)jg � Cn�( L � ):

Furthermore, there exists some positive constantC independent of� 2 D r 0

 0

such that

kukH1 (S2 ;j� j) � CkL � (� )ukH1 (S2 ;j� j) � for all u 2 H1(S2):

Proof. Let us start with the case � = � 1=2 + it with t 2 R. We have shown in Lemma 3.2.1
that there is some0 < t 0 such that for all jt j < t 0 we have the estimate

C0kukH1 (S2 ;j� j) � k L � (� )(u)kH1 (S2 ;j� j) � (3.2)

with C0 independent of t: In the rest of the proof we are going to suppose that1=2 < t 0: Now,
for all � 2 [� �= 2; �= 2] and all t 2 R such that t0 < jtj we denote by � t

� the complex number
� t

� = � 1=2 + it ei� : One can easily check that for allu; v 2 H1(S2) we have

h(L � (� t
� ) � L � (� t

0))u; vi = ( � t
� (� t

� + 1) � � t
0(� t

0 + 1))
�

S2
�u vd! = t2(1 � e2i� )

�

S2
�u vd!:

Given that the function x 7! x=(x � 1=2) is decreasing in[t0; + 1 ); we deduce that for all t0 < jtj
and � 2 [� �= 2; �= 2] we have

jt j
j� t

� j
�

jt j
jt j � 1=2

�
t0

t0 � 1=2
:

As a result, for all t0 < jtj and all � 2 [� �= 2; �= 2] we obtain the estimate

kL � (� t
� ) � L � (� t

0)k(H 1 (S2 ;j� � j)) � � C1j1 � e2i� j

with C1 independent of t and of � . Starting from the fact that the operator satis�es the estimate
(3.2), one obtains the following estimate: for allu 2 H1(S2) we have

(C0 � C1j1� e2i� j)kukH1 (S2 ;j� t
� j) = ( C0 � 2C1j sin(� )j)kukH1 (S2 ;j� t

� j) � k L � (� t
� )(u)kH1 (S2 ;j� t

� j) � : (3.3)

Given that � 7! sin(� ) is continuous, we infer that there exists � � 2 (0; �= 2) such that for all
� 2 (� � � ; � � ); we have0 < C 0 � C1j1 � e2i� j: Consequently, we deduce that for all� 2 (� � � ; � � )
and all t0 < jtj we have� t

� =2 �( L � ): Since jt j = j� t
� + 1=2j and � = arg( � t

� + 1=2) � �= 2 we infer
that the region

f z 2 C such that t0 < jz + 1=2j and j< e(z + 1=2)j � tan( � � )j= m(z + 1=2)jg

is free of eigenvalues ofL � . To end the proof, it remains to see that inside the ballB =: f z 2
C such that jz+1=2j < t 0g there is a �nite number of eigenvalues ofL � : This a direct consequence
of the fact that �( L � ) consists of isolated eigenvalues. The theorem is then proved by taking
r0 = t0; 
 0 = tan( � � ) and C = 2=C0: �

Remark 3.2.2. One of the consequences of the previous theorem is the fact that, when� � 6= � 1;
for all � 1 < � 2 the strip <e(� ) 2 (� 1; � 2) contains a �nite number of eigenvalues ofL � :

It is worth to note that in the statement of the previous theorem, the parameters 
 0 and r0

depend on the contrast� � : Let � 2 R; we de�ne ` � =: f � 2 C such that <e(� ) = � g: Using the
same idea as in the proof of the previous theorem, one shows the
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Corollary 3.2.1. Assume that � � 6= � 1: Let � 2 R such that ` � \ �( L � ) = ; then there exists
some constantC� (independent of� ) such that the estimate

kukH1 (S2 ;j� j) � C� kL � (� )uk(H 1 (S2 ;j� j)) �

holds for all u 2 H1(S2) and all � 2 ` � :

Proof. The Theorem 3.2.1, shows that when� 2 ` � \ (D r 0

 0

) (see the statement of Theorem 3.2.1
for de�nition of D r 0


 0
), the estimate

kukH1 (S2 ;� ) � CkL � (� )ukH1 (S2 ;� ) � for all u 2 H1(S2)

holds with someC independent of �: By combining the fact that D r 0

 0

� Cn�( L � ); the fact that
�( L � ) is composed by isolated points and by using the assumptioǹ� \ �( L � ) = ; , one can say
that for � small enough the strip C� =: f � 2 C; <e(� ) 2 [� � �; � + � ]g is free of eigenvalues
of L � . The wanted estimate follows, then, by combining the fact that L � 1

� (� ) is analytic in C�

and the compactness ofC� \ (CnD r 0

 0

). �

r0 �

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
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�

�

=m(� ) = 0

<e(� ) = � 1=2

<e(�
+ 1=2) = � (=m(�

+ 1=2))

<e(� + 1=2) = � � (=m(� + 1=2))

Figure 3.2: A possible distribution of the spectrum ofL � (the red points) for � � 6= � 1: The green
points are associated to propagating singularities (see De�nition 2.6.1).

The previous corollary tells us that when L � (� ) is invertible along the energy line � 2 ` � ;
then, seen as an operator from(H1(S2; j� j)) � to (H1(S2; j� j)) , the operator L � (� ) � 1 is uniformly
bounded with respect to � 2 ` � : However, when it is considered as an operator from(H1(S2)) �

to H1(S2), the result of previous corollary implies that the norm of L � (� ) � 1 does not grow faster
that j� j2 (when � 2 ` � ).
Now, let us consider two real constants� 1 < � 2 such that ` � 1 \ �( L � ) = ` � 2 \ �( L � ) = ; : For
all r 2 R�

+ ; we introduce the closed set

D(r; � 1; � 2) := f � 2 C j � 1 � < e(� ) � � 2gn( [
� 2 �( L � )

B (�; r )) : (3.4)
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Corollary 3.2.2. Suppose that� � 6= � 1 and let � 1 < � 2 2 R such that ` � 1 \ �( L � ) = ` � 2 \
�( L � ) = ; : Then, for all 0 < r there exists0 < C such that

kukH1 (S2 ;j� j) � CkL � (� )uk(H 1 (S2 ;j� j)) � for all � 2 D(r; � 1; � 2) and for all u 2 H1(S2):

Proof. Thanks to Theorem 3.2.1, we obtain the wanted estimate for all� 2 D(r; � 1; � 2) \ D r 0

 0

:
To obtain the wanted estimate for � 2 D(r; � 1; � 2) \ (CnD r 0


 0
) is enough to see that the latter is

a compact subset ofCn�( L � ): �

3.2.4 Algebraic multiplicities of eigenvalues in the energy line <e(� ) = � 1=2

In this paragraph, we are going to prove some useful results concerning the algebraic multiplicities
of eigenvalues ofL � that are located in the energy line` � 1=2: The starting point of our discussion
is the following:

Proposition 3.2.1. Assume that � � 6= � 1: Let � 0 2 ` � 1=2 \ �( L � ): Let (' 1; : : : ; ' � g (� 0 ) ) be a
basis ofKer (L � (� 0)) : Then, we have the equivalence

�g(� ) < � a(� ) i� 9k 2 f 1; : : : ; �g(� 0)g s.t. (2� 0 + 1)
�

S2
�' k ' j = 0 for j = 1 ; : : : ; �g(� 0)

where we refer to Ÿ2.4.4 for the de�nitions.

Proof. Since � � 6= � 1; we know that L � (� 0) is a Fredholm operator of index 0: The fact that
� 0 2 ` � 1=2 implies that L � (� 0) is self-adjoint. By de�nition of �g(� 0) and �a(� 0), we know that
�g(� 0) < � a(� 0) if and only of there exists k 2 f 1; : : : ; �g(� 0)g for which the function ' k has at
least a generalized eigenfunction. This is equivalent to say that the problem

Find u 2 H1(S2) such that L � (� 0)u = �
dL �

d�
(� 0)' k

has a solution. By the Fredholm alternative, we know that the previous equation has a solution
if and only if

h
dL �

d�
(� 0)' k ; ' j i = 0 for j = 1 ; : : : ; �g(� 0):

The result is then proved by observing that h
dL �

d�
(� 0)' k ; ' j i = (2 � 0 + 1)

�

S2
�' k ' j : �

A direct consequence of the previous proposition is the following

Lemma 3.2.3. Assume that � � 6= � 1: Let � 2 ` � 1=2 \ �( L � ) such that �g(� ) = 1 : Let ' 2
Ker (L � (� ))nf 0g: Then

�a(� ) = 1 if and only if (2� + 1)
�

S2
� j' j2 6= 0 :

We also obtain the following

Lemma 3.2.4. Assume that � � 6= � 1: Let � 2 ` � 1=2 \ �( L � ) such that �g(� ) = 2 : Let ' 2
Ker (L � (� )) such that ('; ' ) is a basis ofKer (L � (� )) : Then

(2� + 1)
�

S2
� j' j2 6= 0 = ) �a(� ) = 2 :
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3.3 Stability of �( L � ) with respect to perturbations of �

In the present section, we will be concerned with the study of the spectrum of the operator
L � + i� (� ), where � is a real parameter. Our main goal, is to study the convergence of�( L � + i� )
and the associated eigenfunctions when� tends to 0: Note that the study of such convergence is
essential when one wants to de�ne the physical solution of the original scalar problem by means
of the limiting absorption principle (see Ÿ2.6.3). Since for all� 2 C the operator L � + i� (� ) can be
seen as a small perturbation (of course when� is small) of the operator L � (� ), one may expect
that when � goes to0 the set �( L � + i� ) will converge to �( L � ) (here the convergence must be
understood with respect to the Hausdor� distance (see De�nition 3.3.1)).

3.3.1 Properties of the spectrum of the perturbed problem

Before getting into details, let us start by proving that for all 0 6= � , the set �( L � ) is discrete.
This the object of the following

Proposition 3.3.1. Let 0 < �: The spectrum of L � + i� is discrete and composed by isolated
eigenvalues. Furthermore, we havè� 1=2 \ �( L � + i� ) = ; :

Proof. By observing that for all t 2 R, � 2 R� and all u 2 H1(S2); we have

j= m(hL � + i� (� 1=2 + it )u; ui )j = j� jkuk2
H1 (S2 ;1=4+ t2 ) ;

we deduce that for all t 2 R and � 2 R� the operator L �
� + i� (� 1=2 + it ) is injective and that its

range is closed. By observing thatL �
� + i� (� 1=2 + it ) = L � � i� (� 1=2 + it ); we deduce that for all

� 2 R� and t 2 R the operator L �
� + i� (� 1=2 + it ) is an isomorphism. The rest of the proof is a

direct application of the analytic Fredholm theorem. �

Note that in the previous proposition, there is no assumption about the value of the contrast� � :
We have the analogue of Theorem 3.2.1.

Lemma 3.3.1. Assume that � � 6= � 1: There exist two positive constantsr0; 
 0 independent of�
and 0 < � 0 such that for all � satisfying j� j < � 0 we have

D r 0

 0

:= f z 2 C such that r0 < jz � 1=2j and j< e(z + 1=2)j < 
 0j= m(z + 1=2)jg � Cn�( L � + i� ):

Moreover, there is some0 < C independent of� such that the estimate

kukH1 (S2 ;j� j) � CkL � + i� (� )ukH1 (S2 ;j� j) � for all u 2 H1(S2)

holds for all � such that j� j < � 0 and all � 2 D 
 0
r 0

:

Proof. From the results of Theorem 3.2.1, we already know that there exist two positive constants
r0; 
 0 such that D r 0


 0
� Cn�( L � ): Furthermore, we know that when � 2 D r 0


 0
; the operator

L � (� ) � 1 : ((H 1(S2)) � ; j� j) ! (H1(S2); j� j) is uniformly bounded with respect to � . As a result, to
prove our claim, we need to �nd a uniform estimate ofkjL � (� ) � L � + i� (� )kj(H 1 (S2 ;j� j)! (H 1 (S2 ;j� j)) � )

for � 2 D r 0

 0

: To do so, we start form the fact that for all u 2 H1(S2); � 2 R� and � 2 D r 0

 0

we have

kL � (� )u � L � + i� (� )uk(H 1 (S2 ;j� j)) � � j � j(kukH1 (S2 ) + j� (� + 1) j kukL2 (S2 ) ):

Next, given that 0 =2 D r 0

 0 ; we infer that there exists 0 < � such that � < j� j for all D r 0


 0
: As a

result, we conclude that there exists a constant0 < C 0 independent of � such that

j� (� + 1) j � C0j� j2 for all � 2 D r 0

 0

:

As a consequence, we deduce that for all� 2 D r 0

 0

we have

kjL � (� ) � L � + i� (� )kj(H 1 (S2 ;j� j)! (H 1 (S2 ;j� j)) � ) � Cj� j

where C is independent of� 2 D r 0

 0

and of � 2 R� : This leads to the wanted result. �



75 3.3. Stability of �( L � ) with respect to perturbations of �

3.3.2 Convergence of the spectrum

In this paragraph, we are going to address the question of the convergence of�( L � + i� ): Before
getting into the details, for all � 1 < � 2 we denote byB (� 1; � 2) the strip

B (� 1; � 2) := f � 2 C j � 1 < <e(� ) < � 2g:

The main result of this part is given by the

Theorem 3.3.1. Assume that� � 6= � 1 and let � 1 < � 2 2 R such that` � 1 \ �( L � ) = ` � 2 \ �( L � ) =
; : We have lim

� ! 0
(�( L � + i� ) \ B (� 1; � 2)) = �( L � ) \ B (� 1; � 2):

In the statement of the previous result, the convergence must be understood in the sense of
convergence with respect to the Hausdor� distance. To be more precise, we adopt the following

De�nition 3.3.1. Let E be a closed subset of the complex plane. Let(E � ) � 2 R be a family of
closed subsets of the complex plane. We say that(E � ) � 2 R converges toE (or brie�y lim

� ! 0
E � = E)

if and only if
lim
� ! 0

max( sup
x2 E �

inf
y2 E

jx � yj; sup
x2 E

inf
y2 E �

jx � yj) = 0 :

The proof of the Theorem, will be done thanks to the two following propositions. By working as
in the proof of Lemma 3.3.1 and by using the results of Corollary 3.2.2, one can easily prove the

Proposition 3.3.2. Suppose that� � 6= � 1 and let � 1; � 2 2 R satisfying � 1 < � 2 and such that
` � 1 \ �( L � ) = ` � 2 \ �( L � ) = ; : Then for all 0 < r; there exists0 < � r such that for all � satisfying
j� j < � r ; we have�( L � + i� ) \ D (r; � 1; � 2) = ; (see (3.4)). Moreover, for all � satisfying j� j < � r ;
we have the estimate

kjL � + i� (� ) � 1jk((H 1 (S2 ;j� j)) � ! H1 (S2 ;j� j)) � Cr for all � 2 D(r; � 1; � 2)

in which Cr is a constant that does not depend on�:

Note that the previous result does not apply when� 1 = �1 or when � 2 = + 1 . This is due to
the possible existence of accumulation points at in�nity.

Remark 3.3.1. It is important to mention that near an eigenvalue of L � one can, eventually,
�nd several eigenvalues ofL � + i� for � small enough. This will be indeed illustrated in the next
paragraph.

The second result that we need, is given by

Proposition 3.3.3. Assume that � � 6= � 1: Let � 0 2 �( L � ) and denote by�a(� 0) its algebraic
multiplicity. Let 0 < r such that �( L � ) \ B (� 0; r ) = f � 0g: There exists 0 < � 0 such that for all
� satisfying j� j < � 0; we have

�( L � + i� ) \ B (� 0; r ) 6= ; and { (L � + i� ; B (� 0; r )) = �a(� 0)

where { (L � + i� ; B (� 0; r )) is the sum of the algebraic multiplicities of the eigenvalues ofL � + i�

that are located in B (� 0; r ):

The previous result is a direct consequence of [101, Corollary 1.1.2]. Let us just mention the
idea of the proof. Its is based on three important points. The �rst one is that � 7! L � (� ) and
� 7! L � + i� (� ) are two meromorphic functions. The second one is the fact that�a(� 0) can be
expressed as follows [101, Theorem 1.1.3]:

�a(� 0) =
1

2i�

�

@B(� 0 ;r )

dL � (� )
d�

L � 1
� (� )d�:

The last one is the generalization of Rouché's theorem [101, Theorem 1.1.4 ]. Now, we have all
the tools to prove the Theorem 3.3.1.
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Proof of Theorem 3.3.1. The Proposition 3.3.3 tells us that every � 2 �( L � ) \ B (� 1; � 2) is a
limit, when � tends to 0; of eigenvalues of�( L � + i� ): By means of Proposition 3.3.2, we ensure
that lim

� ! 0
(�( L � + i� \ B (� 1; � 2)) is a subset of�( L � ) \ B (� 1; � 2)) . Since the set�( L � ) \ B (� 1; � 2))

is �nite, we obtain the wanted result. �

We have the following

Corollary 3.3.1. Assume that � � 6= � 1 and let � 2 �( L � ): If � is simple then there exists
0 < r 0; � 0 such that for all 0 < j� j < � 0; the ball B(�; r 0) contains one eigenvalue ofL � + i� :

Proof. The result follows from the fact that the sum of the algebraic multiplicities of the eigen-
values ofL � + i� that are near � is equal to 1: �

3.3.3 Numerical illustration

To illustrate the results obtained above concerning the convergence of the spectrum ofL � + i�

to the one of L � ; we shall use the numerical approximation of the spectrum ofL � + i� and L � ;
by the FEM. Instead of approximating the problem directly in S2; we shall start by write a an
equivalent formulation of the problem that will be posed in B = (0; 2 � ) � (0; � ) (this will allow us
to avoid the discretization of the unit sphere which is not an easy task in general). To do so, we
use the classical angular spherical coordinates('; � ) 2 B to parameterize S2: With this in mind,
we can say that when� � 6= � 1; � 2 �( L � ) if and only if there exists u 2 H1

# (B ) such that for
all v 2 H1

# (B ) we have

�

B
(

� (� )
sin(� )

@' u @' v + � (� ) sin(� )@� u @� v) d� d' = � h(� h + 1)
�

B
� (� ) sin(� )uv d� d'

in which

H1
# (B ) := f ('; � ) 7! u('; � ) j

q
sin(� )u;

q
sin(� )@� u; @' u=

q
sin(� ) 2 L2(B ) and u(0; � ) = u(2�; � )g:

Naturally, this leads us to the following discrete problem: Find (uh ; � h) 2 Vh;# (B ))nf 0g � C such
that for all vh 2 Vh;# (B )

�

B
(

� (y)
sin(y)

@xuh @xvh + � (y) sin(y)@yuh @yvh)dx dy = � h(� h + 1)
�

B
� (y) sin(y)uhvhdx dy

where the spaceVk
h;# (B ) := f u 2 Pk (B) j such that u(0; y) = u(2�; y )g; where Pk (B) stands for

the space of polynomials (of 2 variables) of degree at most equal tok: In order to take into account
the periodicity condition with respect to x; the mesh ofB must be, then, periodic with respect
to x: Moreover, because of the sign-change in� and following the results of [46], we need to use a
mesh that is periodic in the x direction and that is symmetric near the interface � := f y = �= 4g
(we say that the mesh is T-conforming). See Figure 3.3, for an example of T-conforming mesh
that is periodic in the x direction. In our work, we used the library Freefem++for the construction
of the matrices associated to the discrete formulation and we used theeig function of MATLAB
in order to approximate the eigenvalues. To approximate the eigenvalues ofL � + i� , we used the
same strategy as in the case ofL � (one, simply, needs to replace� by � + i� in the formulation
above).
To proceed, we will work with two di�erent values of the contrast � � : � � = � 0:7807; � 0:8: For
these particular choices of� � , we can guaranty that �( L � ) \ ` � 1=2 6= ; : For this reason, we
shall focus our attention on the behavior of the eigenvalues ofL � + i� that are near �( L � ) \ ` � 1=2
as � ! 0: The numerical results for the case� = � 0:8 are displayed in Figure 3.4 and those
associated with the case� � = � 0:7907are presented in Figure 3.5.
What we can learn from these results are the following facts:
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x

y

y = �= 4

Figure 3.3: An example of a periodic T-conforming mesh.

Figure 3.4: Behavior of �( L � + i� ) for � � = � 0:8:

Figure 3.5: Behavior of �( L � + i� ) for the case� � = � 0:7807:

ˆ In both cases, we observe that the convergence of�( L � + i� ) to �( L � ) occurs.

ˆ It seems that in the case� � = � 0:7807; the assumption 2.6.2 is not valid. Indeed, we observe
that there exists an eigenvalue� 2 �( L � ) \ ` � 1=2 which corresponds to the coalescence of
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two eigenvalues ofL � + i� ; one of which comes from the left (i.e. that<e(� ) < � 1=2) and
the other from the right (i.e. � 1=2 < <e(� )).

ˆ We also observe that the rate of convergence depends on the nature of the eigenvalue: we no-
tice that for the eigenvalue which is the limit of two coalescent eigenvalues, the convergence
is slower than for the case of the other eigenvalues that belong tò� 1=2:

Remark 3.3.2. For the case of general smooth conical point (g 2 C2([0; 2� ])), the same numer-
ical approach can be used but this time the construction of T-conforming mesh seems to be a little
bit complicated (see [45, Ÿ2.B]). We will leave this question for a future work.

3.3.4 Convergence of the eigenfunctions

Up to now, we have proved that when� � 6= � 1, the spectrum �( L � + i� ) converges, when� tends
to 0; to �( L � ): Unfortunately, this result alone is not su�cient to derive the theory we need to
de�ne the physical solution of the scalar problem by means of the limiting absorption principle
(see Ÿ2.6.3). To complete it, one has to study the behaviour of the associated eigenfunctions and
the generalized eigenfunctions ofL � + i� as � ! 0:
As we have seen in the previous subsection that, when� � 6= � 1; for any � 2 �( L � ) and 0 < �
small enough L � + i� has one or several eigenvalues near�: The only information that we can
guarantee about the nature of these eigenvalues is that the sum of their algebraic multiplicities
is equal to the algebraic multiplicity of �: This means that even if � is a semisimple eigenvalue
of L � there is no grantee about the fact that all the eigenvalues ofL � + i� are semisimple. To be
convinced, let us consider the following example that comes form the �nite dimensional setting.
For all � 2 R� ; we de�ne the matrix

A � =

 
1 + � �

0 1 + �

!

Clearly, A � is a small analytic perturbation of the identity matrix I 2: The spectrum ofA � coincides
with f 1 + � g which converges when� ! 0, as excepted, tof 1g which is equal to the spectrum of
I 2. We can also see that the algebraic multiplicity of 1 + � (as an eigenvalue ofA � ) is equal to
2: While 1 is a semisimple eigenvalue ofI 2; 1 + � is geometrically simple (there is a Jordan chain
of length 2 composed of an eigenfunction and a generalized eigenfunction). This example shows
that, in general, we are not able to guarantee that the eigenvalues of the perturbed problem and
those of the unperturbed problem have the same nature. This explains, in a way, why we have
made the Assumption 2.6.2 when we used the limiting absorption principle to de�ne a physical
solution to the scalar problem. The main result of this section is given by

Proposition 3.3.4. Assume that � � 6= � 1: Let � 2 �( L � ) and let (� � ) � be a sequence1 of
elements of�( L � + i� ) that converges to� when� tends to0: Consider a sequence(' � ) � of elements
of ker(L � + i� (� � )) such that k' � kH1 (S2 ) = 1 for � small enough. Then,(' � ) � converges (up to a
sub-sequence), inH1(S2), to some ' 0 2 H1(S2) that belongs toker(L � (� )) :

Proof. Since(' � ) � is bounded in H1(S2); one can extract a sub-sequence from it that converges
(when � goes to0) weakly in H1(S2) and strongly in L2(S2) to some ' 0 2 H1(S2): To simplify,
this sub-sequence is still denoted by(' � ) � :
Since(� � ) converges to� , as � ! 0, one deduces that' 0 belongs toker(L � (� )) : It remains, then,
to explain why the convergence of(' � ) � to ' 0 occurs in the strong sense. For this, we start by

1Here and in what follows, a sequence indexed with a non integer parameter refers to an indexed family of
elements.
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observing that sinceL � + i� (� � )' � = 0 ; we have for all t 2 R;

hL � (t)' � ; ' 0i = � i�
�

S2
r S ' � r S ' 0+ i�� � (� � + 1)

�

S2
' � ' 0

+( t2 + 1=4 + � � (� � + 1))
�

S2
�' � ' 0:

As (' � ) � is bounded in H1(S2) and converges inL2(S2) to ' 0; the previous identity shows that
(L � (t)' � ) � converges, as� ! 0; in ( (H1(S2)) � : Owing to Lemma 3.1, we know that for t large
enough, the operatorL � (t) becomes isomorphism. This implies that(' � ) � converges, as� ! 0;
strongly in H1(S2) to some ' 1 2 H1(S2). By uniqueness of the limit in L2(S2); we deduce that
' 0 = ' 1: �

3.4 The particular case of circular conical tips

In the previous paragraphs, the main spectral properties of the family(L � (� )) � 2 C have been
investigated in the case of a general smooth conical tipg 2 C2

per ([0; 2� ]). The main goal of this
paragraph is to study the particular case of circular conical points, in other words, when the
function g coincides with a constant � 2 (0; � ): In this particular case, some of the results that
we have established before can be improved. In addition to that some new results can be obtained.

The main idea is to take advantage from the fact that circular conical tips are rotationally
symmetric. With this in mind, any function of the space H1(S2) can be decomposed, by means
of the Fourier decomposition, into a sum of separated variable functions. This will help us
in getting a deeper information about the spectrum. More precisely, the spectrum ofL � can
be characterized by means of a dispersion relation. Furthermore, since the eigenfunctions are
also known explicitly, some results concerning the existence of generalized eigenvectors for the
particular case of eigenvalues that are on the line<e(� ) = � 1=2 can be obtained. This will help
us studying the validity of Assumption 2.6.2 in this particular con�guration.

3.4.1 Dispersion relation

The goal of this part is to determine a dispersion relation that allows us to characterize the
spectrum L � when the contrast � � 6= � 1: By this, we mean �nding a function f : C ! C such
that � 2 �( L � ) () f (� ) = 0 . According to Lemma 3.2.2, we already know that when� � 6= � 1
the spectrum of L � is composed by discrete eigenvalues. Consequently, it su�ces to �nd the
set of � 2 C for which the equation L � (� )u = 0 has a non trivial solution in H1(S2): As in this
particular geometry, the function � is independent of the variable' 2 [0; 2� ]; we then obtain the
equivalence: � 2 �( L � ) if and only if

9u 2 H1(S2)nf 0g s.t. �
1

sin(� )
@� (� (� ) sin(� )@� u) �

� (� )
sin(� )2 @2

' u = � (� + 1) � (� )u (3.5)

in which the last equation is written in the distributional sense. The key idea (which is also used
in [92, 104]) is to use the fact that every functionu 2 H1(S2) can be decomposed as

u(�; ' ) =
X

m2 Z

um (� )eim' where um (� ) =
1

2�

� 2�

0
u(�; ' )e� im' d' for all m 2 Z:

Note that the previous decomposition in nothing but the classical Fourier decomposition with
respect to ' 2 [0; 2� ]. It is interesting to observe that, in the decomposition above, sinceu 2
H1(S2) one can show that for allm 2 Z; the function um (� ) is such that

p
sin(� ) um ; um =

p
sin(� )
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and
p

sin(� ) d� um belong to L2(0; � ): Now, if u 2 H1(S2) is a solution of (3.5), one deduces that
for all m 2 Z the function um is such that

�
1

sin(� )
d
d�

(� (� ) sin(� )
d
d�

)um +
� (� )

sin(� )2 m2um = � (� + 1) � (� )um for all m 2 Z:

To proceed, let us denote, respectively, byu1m ; u2m the restriction of um to (0; � ) and to (� ; � ).
With this in mind, we arrive to the conclusion that for all m 2 Z the function um satis�es
following transmission problem:

8
>>>>>><

>>>>>>:

�
1

sin(� )
d
d�

(sin(� )
du1m

d�
) +

1
sin(� )2 m2u1m = � (� + 1) u1m in (0; � )

�
1

sin(� )
du2m

d�
(sin(� )

du2m

d�
) �

1
sin(� )2 m2u2m = � (� + 1) u2m in (� ; � )

u1m (� ) = u2m (� ); sin(� )
du1m

d�
(� ) = � � sin(� )

du2m

d�
(� ):

At this stage, and in order to write simpler equations that we can solve by means of classical
special functions, we need to perform the change of variable� ! 
 = cos(� ): After this change
of variable, the new function, which is still denoted by um (
 ); is a solution to the following
transmission problem: For all 2 Z we have

d
d


((1 � 
 2)
d

d

u1m (
 )) + � (� + 1) u1m (
 ) �

m2

(
 2 � 1)
u1m (
 ) = 0 in (cos(� ); 1]

d
d


((1 � 
 2)
d

d

u2m (
 )) + � (� + 1) u2m (
 ) �

m2

(
 2 � 1)
u2m (
 ) = 0 in [� 1; cos(� ))

u1m (cos(� )) = u2m (cos(� )) ; sin(� )2 d
d


u1m (cos(� )) = � � sin(� )2 d
d


u2m (cos(� )) :

(3.6)
Starting from the fact that the function (�; ' ) 7! um (� )e� im' 2 H1(S2) and using the change of

variable � ! 
; one can show that the functions
 7! um (
 ); um (
 )=
q

1 � 
 2;
q

1 � 
 2d
 um (
 ) be-

long to the spaceL2(� 1; 1): This implies, in particular thanks to the fact that 
 7! um (
 )=
q

1 � 
 2 2
L2(� 1; 1); that um (
 ) ! 0 as 
 ! � 1: As a result, we are only interested in the solutions to (3.6)
that vanish near 
 = � 1:
The equation (3.6) tells us that in each of intervals(cos(� ); 1] and [� 1; cos(� )) the function um (
 )
is a solution to the associated Legendre equation in which� 2 C plays the role of the degree and
m 2 Z is the order.
The literature about the associated Legendre's equations is very rich especially when� 2 N,
in that case the solutions are the associated Legendre polynomials (for instance see [3]). In
addition to that, the approximation of these functions is available in almost all scienti�c computing
software.
On the other hand, when � 2 CnZ, many results are also available (see [3]) but when it comes to
the approximation of the associated Legendre functions, almost all open source software do not
provide it.
In order to make this chapter self-contained, we shall present, in Ÿ3.6.2, a brief overview about the
basic properties of these functions. Furthermore, we will explain how to write aC++ program
that can be used to approximate these functions for the general case� 2 C and m 2 Z:
To, proceed, for all m 2 N and � 2 CnJ� m; � 1K[ J0; m � 1K2; we denote by Pm

� (x) (with
x 2 (� 1; 1)) the associated Legendre function of �rst kind of order m and of degree� and by
(Pm

� )0(x) its derivative with respect to x: Besides, for allm 2 N; and � 2 CnJ� m; � 1K[ J0; m � 1K;
we introduce the functions f m (�; � � ) such that

f m (�; � � ) = � � Pm
� (� cos(� ))(P m

� )0(cos(� )) + P m
� (cos(� ))(P m

� )0(� cos(� )) :
2For all a; b 2 Z; we denote by Ja; bK:= [ a; b] \ Z:
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Proposition 3.4.1. Assume that � � 6= � 1: We have the equivalence

� 2 �( L � ) () 9 m 2 N such that � 2 CnJ� m; � 1K[ J0; m � 1Kand f m (�; � � ) = 0 : (3.7)

Proof. Thanks to the modal decomposition (3.6), one can say that the problemL � (� )u = 0 has
a non trivial solution in H1(S2) if and only there exists at least onem 2 Z for which the equation
(3.6) has a non zero solution. Given that the functionum must vanish at 
 = � 1; and by using
the results of Ÿ3.6.2, we infer that this is possible if and only if� 2 CnJ�j mj; � 1K[ J0; jmj � 1K:
In that case, we have

um (
 ) =

(
A Pm

� (
 ) in (cos(� ); 1]

B Pm
� (� 
 ) in [� 1; cos(� )) :

The continuity and the transmission conditions satis�ed by um at 
 = cos(� ) lead us to the
following system of equations:

(
A Pm

� (cos(� )) = B Pm
� (� cos(� ))

A sin2(� )(P m
� )0(cos(� )) = � � � sin2(� )(P m

� )0(� cos(� )) :

The previous linear system of equations has a non trivial solution if and only if

� � Pm
� (cos(� ))(P m

� )0(� cos(� )) = � Pm
� (� cos(� ))(P m

� )0(cos(� )) :

Given that the functions Pm
� and P� m

� are collinear (see (3.16)), we obtain the wanted result. �

The proof of the previous proposition allows us to �nd the expression of the eigenfunctions
associated to� 2 �( L � ): Indeed, if we denote by

A(� ) := f m 2 N j 9� 2 CnJ� m; � 1K[ J0; m � 1Kand f m (�; � � ) = 0 g; (3.8)

we can easily prove that

Ker(L � (� )) = span f um ; u� m j m 2 A(� )g; (3.9)

where the functions u� m are de�ned as follows

u� m
1 (�; ' ) =

(
Pm

� (� cos(� )) P m
� (cos(� ))e� im' if � 2 (0; � )

Pm
� (cos(� )) P m

� (� cos(� ))e� im' if � 2 (� ; � ):

3.4.2 Expression of the critical interval

In this paragraph, we shall explain how to �nd an explicit expression of the critical interval I � in
the particular case of circular conical tips. Recall that for a general interface� ; I � is de�ned as
the set of contrasts� � for which the problem (2.2) is ill-posed in the Fredholm sense. In Theorem
2.6.1, we have proved that for the case of an interface with smooth conical tip, the critical interval
I � can be de�ned as the set of contrasts for which the problem (2.2) has propagating singularities
(see De�nition 2.6.1) or equivalently the set of � � for which �( L � ) \ ` � 1=2 6= ; :
To simplify notations, we shall denote by I � the critical interval in the case of an interface that
has a circular conical tip of opening angle� (i.e. g(' ) = � ).
As we have seen in Ÿ2.2, the determination ofI � is directly related to the determination of the
essential spectrum of the Neumann-Poincaré operator on the in�nite cone

W� := f x = r (sin(� ) cos(' ); sin(� ) sin(' ); cos(� )); r 2 R+ ; ' 2 (0; 2� )g:

This latter question was investigated in details in [92, 104]. But it seems that the results obtained
there are not su�cient to obtain a simple expression of the critical interval.
During an exchange with Karl-Mikael Perfekt, he told us that the missing argument is to show
that when � 2 (0; �= 2) (resp. � 2 (�= 2; � )), the spectrum of the Neumann-Poincaré operator
is positive (resp. negative). In this paragraph, we are going to explain how to combine the
results of [92, 104] and the T-coercivity approach in order to obtain an explicit expression of
I � and by the way, we also answer the question about the sign of the essential spectrum of the
Neumann-Poincaré operator that was left unanswered in [92, 104].
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Expression of the critical interval

According to Proposition 3.4.1, one can say that� = � 1=2 + it (with t 2 R) belongs to �( L ) if
and only if there exists somem 2 N such that

� � Pm
� 1=2+ it (� cos(� ))(P m

� 1=2+ it )0(cos(� )) + P m
� 1=2+ it (cos(� ))(P m

� 1=2+ it )0(� cos(� )) = 0 :

In the literature, the functions Pm
� 1=2+ it (with m 2 N and t 2 R) are known as the conical

functions or the Mehler functions of the �rst kind. They play an important role in the area of
mathematical physics (see [87, 80, 122, 123] for more details). The study of these functions was
the subject of the book [146]. Some basic properties of these functions are, brie�y, recalled in
Ÿ3.6.2. Let us introduce, for allm 2 N; the function am : R ! R such that

am (t) =
Pm

� 1=2+ it (cos(� ))(P m
� 1=2+ it )0(� cos(� ))

Pm
� 1=2+ it (� cos(� ))(P m

� 1=2+ it )0(cos(� ))
for all t 2 R:

As it is proved in Ÿ3.6.2, for allm 2 Z and all t 2 R the function Pm
� 1=2+ it as well as its derivative

are real valued. The functionsam are then real valued. Given that these functions are continuous,
we then denote, for allm 2 N; by I m the interval

I m = f� am (t) : 0 � t � + 1g :

Given that I � coincides with the set of contrasts� � for which �( L � ) \ ` � 1=2 6= ; ; we then obtain,
thanks to Proposition 3.4.1, the following

Proposition 3.4.2 (First de�nition of the critical interval) . Assume that � 2 (0; � ): We have

I � = [
m2 N

I m :

Observe that when � = �= 2, the intervals I m are, all, reduced to the singletonf� 1g: In Figure
3.6, we represent the functions� ! � am (� ) for m = 0 ; 1; 2; 3 and � 2 R+ (the approximation of
the conical functions is achieved by using hypergeometric function of Matlab and by using the
results of Ÿ3.6.2).

Figure 3.6: The graphs of the functions� 7! am (� ) for the cases� = �= 3 (left) and � = �= 4(right).

What we can take away from this �gure is the fact that, when � tends to + 1 all the functions
� am tend to a �xed valued independent of m. Moreover, we also observe that the range of the
functions � am is contained in the one of� a0. These observations, will be con�rmed theoretically,
in the next two Propositions.
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Remark 3.4.1. One can also observe that the curves of the functions� 7! � am (� ) are all
disjoint. Unfortunately we do not succeed in proving this observation. Note that this is equivalent
to say that when � � 2 I � nf� 1g then for all � 2 ` � 1=2; we havedim(ker( L � (� ))) � 2: More
precisely, this is equivalent to say that for all� = � 1=2 + it 2 ` � 1=2 we have

dim(ker( L � (� ))) =

(
1 if � � = � a0(jt j)

2 if 9m 2 N� such that � � = � am (jt j):

In particular, when � = �= 4 and � � = � 0:8; one can see from Figure 3.6 that there exist3
eigenvalues ofL � that belong to `+

� 1=2 := ` � 1=2 \ f � 2 C j 0 < =m(� )g: These eigenvalues are
approximately equal to� 1 = � 1=2 + 1:6i , � 2 = � 1=2 + 3:6i and � 3 = � 1=2 + 4:7i . While � 3 is
geometrically simple, � 1 and � 2 have geometric multiplicity equal to2: The corresponding eigen-
functions for � 1; � 2 and � 3 are known explicitly. In Figures 3.7-3.8, we display an eigenfunction
associated to� 3 and another one associated to� 1.

Figure 3.7: An eigenfunction associated to� 3: Figure 3.8: An eigenfunction associated to� 1:

To proceed, we have the

Proposition 3.4.3. Let � 2 (0; � ): Then for all m 2 N; we have lim
t ! + 1

am (t) = 1 :

It is worth mentioning that this result has been already proved in a very brief way in [122]. Again,
in order to make our work self-contained, we will propose a more detailed proof.

Proof. The idea is to use an asymptotic expansions ofPm
� 1=2+ it (cos(� )) when t tends to + 1 for

a given � 2 (0; � ) and a �xed m 2 N: According to [146], one has for all� 2 (0; � ) and m 2 N the
expansion

Pm
� 1=2+ it (cos(� )) =

tm� 1=2et�
p

2� sin(� )
(1 �

m2 � 1=4
2t

cot(� ) + O(1=t2)) :

Using the recurrence relation (see Ÿ3.6.2)

(Pm
� 1=2+ it )0(cos(� )) =

m cos(� )
sin(� )2 Pm

� 1=2+ it (cos(� )) �
1

sin(� )
Pm+1

� 1=2+ it (cos(� )) ;

we infer that

(Pm
� 1=2+ it )0(cos(� ))=Pm

� 1=2+ it (cos(� )) =
m cos(� )
sin(� )2 �

t
sin(� )

+ O(1) �
t ! + 1

�
t

sin(� )
:
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Exchanging � with � � �; we �nd that

(Pm
� 1=2+ it )0(� cos(� ))

Pm
� 1=2+ it (� cos(� ))

�
t ! + 1

�
t

sin(� )
:

The lemma is then proved by taking � = � in the previous two equivalences and then considering
their quotient. �

The last proposition tells us that for all � 2 (0; � ); the particular value � � = � 1 belongs to the
critical interval I � : Indeed, we have shown that� 1 is an accumulation point of I � but since the
latter is a closed subset ofR� ; it follows that � 1 2 I � : In the rest of this paragraph, we are going
to present two key results that will allow us to obtain an explicit expression of I � : The �rst result
is given in the following

Proposition 3.4.4. Assume that � 2 (0; �= 2): The critical interval I � is a subset of[� 1; 0]:

Proof. It was proved in [50, Theorem 1.6.5], by means of the T-coercivity approach, that when

the contrast � � does not belong to[� 1; �
1 � cos(� )
1 + cos(� )

] the problem 2.15 is well-posed. This implies

that I � � [� 1; �
1 � cos(� )
1 + cos(� )

] � [� 1; 0]: �

The second result that we need in order to obtain an explicit expression ofI � is more involved to
be proved. In fact, as we shall see, it is an adaptation of some of the results obtained by Johan
Helsing and Karl-Mikael Perfekt (see [92]) in the context of the study of the essential spectrum
of the Neumann-Poincaré operator in the case of rotationally symmetric conical points.

Proposition 3.4.5. Assume that � 2 (0; �= 2): Then for all m 2 N and all t 2 R; we have

jam (t)j � j a0(0)j:

Proof. Since the function x ! (x � 1)=(x +1) is increasing in(� 1; 0); and thanks to Proposition
3.4.4, it su�ces to show that

(am (t) � 1)=(am (t) + 1) � (a0(0) � 1)=(a0(0) + 1) :

On the other hand using the same notations of [92], we can write that

(am (t) � 1)=(am (t) + 1) =
1

2�

� + 1

0

� 2�

0
s1=2+ it e� im' K (s)dsd'

in which K (s) is a real valued positive function that is associated to the modal kernel of the
Neumann-Poincaré operator (i.e. associated to the space of functions that have the formu(�; ' ) =
um (� )e� im' 2 H1(S2)) on the in�nite cone W� = f r (sin(� ) cos(' ); sin(� ) sin(' ); cos(� )); r 2
R+ ; ' 2 (0; 2� )g (see [92, 104] for more details). It is important to note that the positivity of the
function K (s) is a consequence of the convexity of the interior of the coneW� : As a result one
can easily see that

0 �
am (t) � 1
am (t) + 1

� j
1

2�

� + 1

0

� �

0
s1=2+ it e� im' K (s)dsd' j

�
1

2�

� + 1

0

� �

0
s1=2K (s)dsd' =

a0(0) � 1
a0(0) + 1

:

which ends the proof. �

We now have all the needed tools to state the �nal expression of the critical interval.
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Proposition 3.4.6. [Final expression of the critical interval]Let � 2 (0; �= 2); we haveI � = I 0 =
[� 1; � a0(0)]: The value ofa0(0) is given by

a0(0) = 2F(1=2; 1=2; 1; cos2(�= 2)) 2F1(3=2; 3=2; 2; sin2(�= 2))

2F1(1=2; 1=2; 1; sin2(�= 2)) 2F1(3=2; 3=2; 2; cos2(�= 2))

in which 2F1 stands for the Gauss hypergeometric function (see Ÿ3.6.2).

Proof. The proposition 3.4.4 tells us that for all m 2 N; the interval I m is a connected subset of
[� 1; 0]: Thanks to Proposition 3.4.3, we can say that for allm 2 N the interval I m has the form
[� 1; � 
 m ] with 
 m 2 [0; 1]: This implies that I � has the form I � = [ � 1; � 
 ] where the value of

 is given by 
 = sup

m2 N

 m : To �nish the proof, one has to use the Proposition 3.4.5, to deduce


 = 
 0 = a0(0): Thanks to the results of Ÿ3.6.2, in particular the relation (3.19), we �nd that

a0(0) =
P0

� 1=2(cos(� ))(P 0
� 1=2)0(� cos(� ))

P0
� 1=2(� cos(� ))(P 0

� 1=2)0(cos(� ))
= 2F(1=2; 1=2; 1; cos2(�= 2)) 2F1(3=2; 3=2; 2; sin2(�= 2))

2F1(1=2; 1=2; 1; sin2(�= 2)) 2F1(3=2; 3=2; 2; cos2(�= 2))
:

�

Remark 3.4.2. When the opening angle� belongs to(�= 2; � ), the critical interval can be de-
termined by exchanging the roles of
 1 and 
 2. More precisely, one hasI � = 1=I � � � : When
� = �= 2; one hasI �= 2 = f� 1g:

Using the results of Ÿ2.2, in particular Lemma 2.2.4, we obtain the

Lemma 3.4.1. Let � 2 (0; �= 2) and denote byW� the cone

W� = f r (sin(� ) cos(' ); sin(� ) sin(' ); cos(� )); r 2 R+ ; ' 2 (0; 2� )g

. Then the essential spectrum of Neumann-Poincaré operator� ess(K W � ; H1=2(W� )) is positive
and given by

� ess(K W � ; H1=2(W� )) = [0 ;
a0(0) � 1

2(a0(0) + 1)
]:

The previous results require some comments.

1. Unlike the 2D con�guration, for a given contrast � � 2 I � nf� 1g, more than two propagating
singularities can exist. In fact, as can be seen in Figure 3.6 and as justi�ed by Proposition
3.4.3, when the contrast � � approaches� 1, the number of propagation singularities that
appear tends to in�nity.

2. It can be proved that the critical interval widens as the opening angle� 2 (0; �= 2) gets
smaller. This can be observed from Figure 3.9. In particular, we show thatI � tends to
[� 1; 0] as � ! 0:

3. As mentioned above, the critical interval is located on one side of the� 1: value. This is a
bit surprising compared to the 2D case. The reader may wonder if this is the case for all
smooth conical tips. To the best of our knowledge, this question remains open.
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Figure 3.9: The behaviour of � a0(0) as a function of � 2 (0; �= 2).

3.4.3 On the validity of Assumption 2.6.2 for circular conical tips

We are interested here in the question of the validity of Assumption 2.6.2 in the case of circular
conical tips. Recall that the Assumption 2.6.2 is valid if and only if:

1. All the elements of �( L � ) \ ` � 1=2 are semi-simple.

2. Near any element of�( L � ) \ ` � 1=2, there exits a unique eigenvalue ofL � + i� for � small
enough.

Validity of the �rst condition

Proposition 3.4.7. Assume that� � 2 I � nf� 1g and let � 0 = � 1=2+ it 0 2 �( L � )\ ` � 1=2. Suppose
that there exists a uniquem0 2 N such that am0 (jt0j) = � � � : Then, we have the equivalence

� 0 is a semi-simple eigenvalue ofL � i� 9' 2 Ker (L � (� 0)) s.t. t0

�

S2
� j' j2 6= 0 :

Proof. As explained in Remark 3.4.1, we know, under the assumption made on� 0; that �g(� 0) �
2: If �g(� 0) = 1 , the wanted result is a direct application of Lemma 3.2.3. So, let us suppose
that �g(� 0) = 2 (this implies that m0 2 N� ). Thanks to the assumption made on � 0 we in-
fer that A(� 0) = f� m0g (the de�nition of A(� 0) is given in (3.8)). Moreover, we also know
that ker(L � (� )) = span( um0

1 ; um0
2 ) where um0

1 ; um0
2 have the form um0

1 (�; ' ) = f (� )ei m 0 ' ; um0
2 =

f (� ))e� i m 0 ' in which f is a real valued function. By observing that
�

S2
�u m0

1 um0
2 d! = 0 and

�

S2
� jum0

1 j2d! =
�

S2
� jum0

2 j2d! =
�

S2
� jf j2d!; (3.10)

we infer that for all �; � 2 C the function ' = �u m0
1 + �u m0

2 satis�es
�

S2
� j' j2d! = ( j� j2 + j� j2)

�

S2
� jf j2d!:

This means that 9' 2 Ker (L � (� 0)) s.t. t0

�

S2
� j' j2 6= 0 () t0

�

S2
� jf j2d! 6= 0 : By using Propo-

sition 3.2.1 and owing to (3.10), we obtain the wanted result. �

As mentioned before, the �gure 3.6 shows that the hypothesis of the previous proposition is valid,
but unfortunately we are not able to prove it theoretically. Moreover, the previous result gives
us, then, a very simple way to check if a� 2 �( L � ) \ ` � 1=2 is a semi-simple or not. Now, let us
explain how to use the previous proposition in order to �nd the set J of contrasts � � for which
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there exists � 2 ` � 1=2 \ �( L � ) which is not semi-simple. Given that I � =
[

m2 N

I m ; it is enough

to �nd for each m 2 N the Jm := J \ I m . Since the interval I m corresponds to the range of the
function am and given that for all 0 < t the function

um
t (�; ' ) =

(
Pm

� 1=2+ it (� cos(� )) P m
� 1=2+ it (cos(� ))eim' if � 2 (0; � )

Pm
� 1=2+ it (cos(� )) P m

� 1=2+ it (� cos(� ))eim' if � 2 (� ; � ):
(3.11)

belongs to Ker (L � t (� 1=2 + it )) where � t (� ) = 1 for � < � and � t (� ) = � am (t) for � < � < �;
we can then write that

Jm = f� am (t) j t 2 R+ ; t
�

S2
� t jum

t j2d! = 0g = f� am (0)g [ f� am (t) j t 2 R�
+ ;

�

S2
� t jum

t j2d! = 0g:

For all m 2 N; we de�ne the function bm : R+ ! R such that bm (t) = sign(
�

S2
� t jum

t j2d! ) for

all t 2 R+ ; where the function sign : R ! f� 1; 0; 1g is such that sign(� x) = � 1 if 0 < � x and
sign(0) = 0 : In Figure 3.10, we display the curves of the functionsam ; bm for m = 0 ; : : : ; 3 for
� = �= 4:

Figure 3.10: Curves ofam (in red) and bm (in blue) for m = 0 (top left), m = 1 (top right),
m = 2 (bottom left) and m = 3 (bottom right).

The approximation of the integral in the expression of the functionsbm has been done using the
integral function of MATLAB. What we can take from these results is the following fact: it seems
that for all m 2 N, the set Jm corresponds to the setf� am (0)g [ f� am (t) j 0 < t and a0

m (t) = 0 g:
We also notice that for the casem = 0 ; generalized eigenfunction exits only when� � = � a0(0)
(which corresponds to one of bounds ofI 0). For the casem 2 N the situation seems to be di�erent:
it seems that for all 1 < m eigenvalues (that belong to` � 1=2) with generalized eigenfunctions
exist for two particular values of � � : The �rst one is when � � coincides with the opposite of the
minimum of am , this value corresponds to one of the bounds onI m (the other bound is � 1). The
second one corresponds to the case� = � am (0) 2 �I m :
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Given that the function am is in fact a function of t2; we infer that for all m 2 N we have
a0

m (0) = 0 : Thus, can then formulate the following conjecture:

Jm = f� am (t) j 0 � t and a0
m (t) = 0 g for all m 2 N:

Unfortunately, we are not able to prove the previous equality (which seems to be true). However,
we succeed in proving the following

Proposition 3.4.8. Assume that � � 2 I � nf� 1g and let � 0 = � 1=2 + it 0 2 �( L � ) \ ` � 1=2 such
that there exists a uniquem0 2 N such that am0 (jt0j) = � � � : Then, we have the implications:

a0
m0

(t0) = 0 = ) � 0 has generalized eigenfunctions=) �g(� 0) < � a(� 0):

Proof. We know that for all 0 � t the function

um
t (�; ' ) =

(
Pm

� 1=2+ it (� cos(� )) P m
� 1=2+ it (cos(� ))eim' if � 2 (0; � )

Pm
� 1=2+ it (cos(� )) P m

� 1=2+ it (� cos(� ))eim' if � 2 (� ; � ):
(3.12)

belongs toKer (L � t (� 1=2+ it )) where � t (� ) = 1 for � 2 (0; � ) and � t (� ) = � am0 (t) for � 2 (� ; � ):
This means that for all v 2 H1(S2) we have

�

S2
� (t)r Sum

t � r Svd! + ( t2 + 1=4)
�

S2
� (t)um

t vd! = 0

Taking the derivative with respect to t of the previous relation at t0, using the fact that the

derivative of � t at t0 vanishes and since
dut

m

dt
jt= t0 2 H1(S2) (see Remark 3.6.5), we infer that

(ut0
m ; i

dut
m

dt
jt= t0 ) is Jordan chain of L � associated to� 0: �

The previous proposition shows therefore that for allm 2 N we have

f� am (t) j 0 � t and a0
m (t) = 0 g � Jm :

Validity of the second condition

Proposition 3.4.9. Assume that� � 2 I � nf� 1g and let � 0 = � 1=2+ it 0 2 �( L � ) \ ` � 1=2 such that
there exists a uniquem0 2 N such that am0 (jt0j) = � � � : Suppose that� 0 is semi-simple. Then,
there exist 0 < r 0; � 0 such that for all 0 < j� j < � 0, the ball B(� 0; r0) contains one eigenvalue of
L � + i� that is semi-simple.

Proof. In the case where� 0 is a simple eigenvalue ofL � , the result follows from Corollary 3.3.1.
It remains, then (thanks to the assumption made on� ), to study the case when�a(� ) = �g(� ) = 2
(in this case we necessarily havem0 2 N� ). Let � � + i� = ( � 2 + i� )=(� 1 + i� ): Using the Fourier
decomposition and working exactly as in the beginning of Ÿ3.4.1, one obtains the same dispersion
relation as in (3.7) where � � is replaced by � � + i� : Given the fact that � 7! Pm

� is an analytic
function, one deduces that� 7! f m (�; � � + i� ) is analytic near � 0 (see Remarque 3.6.3 ). Given
that f m0 (� 0; � � ) = 0 and by using the Rouché's theorem, we can say that there exists0 < r 0; � 0

such that � 7! f m0 (� 0; � � ) has a solution � � that belongs to B(� 0; r ) for all 0 < j� j < � 0: Since
the associated eigenfunctions to� � have the form (�; ' ) 7! f (� )e� im 0 , they are then independent
and thus �g(� � ) = 2 for all 0 < j� j < � 0: Given that �a(� 0) must be greater or equal to�a(� � ); we
obtain that �a(� � ) = 2 : This ends the proof. �

Final conclusion

Thanks to the results proved in the previous two paragraphs and thanks to the numerical results
presented above, we can say that for the case of circular conical tips, Assumption 2.6.2 seems to
be true expect for a discrete set of contrasts for which the energy linè� 1=2 contains eigenvalues
of L � with generalized eigenvectors.
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3.5 Concluding remarks

In this chapter, we presented a detailed study of the Mellin symbol generated by the scalar problem
(2.2). We proved that all the classical results that we need to apply the Kondratiev theory are
valid. Moreover, we studied the e�ect of the introduction of a small dissipation on the spectrum
and on the behavior of the eigenfunctions of the perturbed problem. In the particular case of
circular conical tips, the spectrum of L � has been characterized by means of a dispersion relation.
Furthermore, in this particular con�guration, we investigated the validity of Assumption 2.6.2.
We will conclude this chapter by mentioning that the most important question left unanswered in
this work is about the validity of the Assumptions 2.6.2-2.6.3 in the case of general smooth conical
tip. For this, one needs to have a better understanding of the behavior of the spectrum ofL � + i�

and the associated eigenfunctions/ generalized eigenfunctions as� ! 0: Again an interesting
reference that can hep us dealing with this question is the book [138].
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3.6 Appendix

3.6.1 The T-coercivity approach for the anisotropic scalar problem

The main goal of this section is to present a detailed proof of the Lemma 3.1 when the function
g belongs to the spaceC2

per [0; 2� ] (an example of such con�guration is given in Figure 3.11).

Figure 3.11: The red (resp. green) part is �lled with a negative (resp. positive) materiel.

As in the case of circular conical tip (g(' ) = � 2 (0; � )), the proof will be based on the use of
the T-coercivity method, but this time we need to combine it with some localization techniques.
This will make the proof a little bit technical. In order to make its presentation as simple as
possible, we are going to start with the study of a related problem that will help us simplifying
the �nal proof which will be presented in Ÿ3.6.1.

A simpli�ed version of the problem

For all 0 < L; we de�ne the domains 
 L
1 ; 
 L

2 � R2 such that


 L
1 = f (x; y) j x 2 (0; 2� ) and � L < y < 0g and 
 L

2 = f (x; y) j x 2 (0; 2� ) and 0 < y < L g:

Denote by � = f (x; y) j y = 0g; the interface between
 L
1 and 
 L

2 and by 
 L the union of 
 L
1 ; 
 L

2
and � . We introduce continuous real valued matrix (resp. scalar) function A : 
 L ! M2;2(R)
(resp. � : 
 L ! R). We suppose that A(x; y) (resp. � (x; y)) is symmetric and positive de�nite
(resp. positive) for all (x; y) 2 
 L : This allows us to endow the spacesL2(
 L ) and H1(
 L ) with
the norms:

kukL2 (
 L ) := (
�


 L
juj2� dxdy )1=2 and kukH1 (
 L ) := (

�


 L
Ar u � r u � dxdy +

�


 L
juj2� dxdy )1=2:

Clearly, endowed with theses norms the spacesL2(
 L ) and H1(
 L ) are of Hilbert type. We �nish
this series of notations by introducing a piecewise constant density function� that is equal to
0 < � 1 in 
 L

1 and is equal to � 2 < 0 in 
 L
2 . The contrast � � is de�ned by � � = � 2=� 1: Now,

we have all the tools to de�ne the linear operator A �
t : H1(
 L ) ! (H1(
 L )) � that is de�ned as

follows: for all u; v 2 H1(
 L ) we set

hA �
t u; vi :=

�


 L
� A(x; y)r u � r v � (x; y)dxdy + t2

�


 L
�u v � (x; y)dxdy:

Because of the sing-change in�; the operator A �
t may be not of Fredholm type. On the other

hand, because of the fact that the matrix valued function A does not coincide with the identity
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matrix, the theory presented in [50] can not be used. Our goal is then to �nd some conditions
on the contrast � � ; on the function A and on � under of which A �

t is an isomorphism forjt j large
enough. For the case of the functionsA and �; we need to make the following

Assumption 3.6.1. The exists 0 < � 0 < L such that the function A � 1 and 1=� are continuous
in 
 � 0 :

The main result of this paragraph is given by the following

Theorem 3.6.1. Let 0 < L: Assume that the function A and � are such that Assumption 3.6.1
is satis�ed with 0 < � 0 < L: Then for all � � 6= � 1; there exists0 < t 0 such that for all t0 < jtj
the operator A �

t : H1(
 L ) ! (H1(
 L )) � is an isomorphism. Moreover, we have the estimate

(kuk2
H1 (
 L ) + t2kuk2

L2 (
 L ) )
1=2 � CkA �

t (u)kH1 (
 L ) � for all u 2 H1(
 L )

with C independent ofu and t:

The proof of the previous theorem will be done thanks to a succession of two lemmas. Before
getting into details, let us start by recalling some useful results about the classical Euclidean
norm. For all R 2 M2;2(R); the Euclidean norm of R will be denoted by � (R) and is de�ned by

%(R) =
q

� max (R t R); in which � max (R t R) refers to the largest eigenvalue of the matrixR t R:
Note that when R is positive and symmetric, one has%(R) = � max (R): Furthermore, we have
the following interesting property: for all non-singular symmetric matrices R1; R2 2 M2;2(R); we
have the identity

%(R1R2) = %(R2R1): (3.13)

This is true because the matricesR1R2
2 R1 and R2R2

1R2 are similar. The �rst result that we need
is the following

Lemma 3.6.1. Let 0 < � and let u1 2 H1(
 �
1): We de�ne the function u2(x; y) =: u1(x; � y) 2

H1(
 �
2): The following estimate

�


 �
2

A(x; y)r u2 � r u2 � (x; y)dxdy � C �
�


 �
1

A(x; y)r u1 � r u1 � (x; y)dxdy

holds with C � = sup

 �

1

%(A(x; � y)A � 1(x; y)
� (x; � y)
� (x; y)

):

Proof. The �rst step is to perform the change of variable (x; y) ! (x; � y): This transformation
maps 
 �

2 and 
 �
1: Furthermore, one can easily check that the jacobian matrix of this transforma-

tion coincides with the identity matrix. This leads us to write that

I 0 :=
�


 �
2

A(x; y)r u2 � r u2 � (x; y)dxdy =
�


 �
1

A(x; � y)r u1 � r u1 � (x; � y)dxdy

As a result we have

I 0 =
�


 �
1

p
A � 1(x; y)A(x; � y)

p
A � 1(x; y)

p
A(x; y)r u1 �

p
A(x; y)r u1 � (x; � y)dxdy

� sup

 �

1

%(
p

A � 1(x; y) A(x; � y)
p

A � 1 � (x; � y)
� (x; y)

�


 �
1

A(x; y)r u1 � r u1 � (x; y) dxdy

(by means of (3.13)) = sup

 �

1

%(A(x; � y)A � 1(x; y)
� (x; � y)
� (x; y)

)
�


 �
1

A(x; y)r u1 � r u1 � (x; y) dxdy:

Note that, above the matrix
p

A(x; y) is de�ned as the unique positive de�nite matrix R(x; y) 2
M2;2(R) satisfying the equation R2(x; y) = A(x; y): �
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In order to study the behaviour of C � when � tends to 0; we are going to use the following

Lemma 3.6.2. Let 0 < � 0 and let f be a continuous function in 
 � 0 then the function F (� ) =:
sup

x2 
 �
f (x) is non-decreasing continuous in[0; � 0]:

Proof. The fact that F is non-decreasing is obvious. Let� 2 [0; � 0] and (� n )n2 N be a sequence
of [0; � 0] that converges, asn tends to + 1 to �: We will show that F (� n )n2 N converges toF (� ):
To simplify notations, let us denote by 
 n the domain 
 � n : The starting point is to observe that
dH (
 n ; 
 � ) the Hausdor� distance between 
 � n and 
 � tends to 0 as n tends to 1 : Since the
function f is continuous in 
 � 0 it is then uniformly continuous. This means that for all 0 < "
there is 0 < � " such that for all x1; x2 2 
 � 0 satisfying kx1 � x2k < � " we havejf (x1) � f (x2)j < ":
Now take, somex 2 
 � and 0 < ": Since dH (
 � n ; 
 � ) tends to 0 as n tends to 1 ; there exists
n"

0 2 N large enough such that for all n"
0 < n the domain 
 n contains an elementyn such that

kx � ynk < � " : This implies that for all n0 < n; we have

f (x) � f (yn ) + " =) f (x) � F (� n ) + " for all n"
0 < n:

By letting " tend to 0 and n"
0 to 1 ; we deduce thatf (x) � lim inf

n!1
F (� n ) for all x 2 
 � : Thus we

obtain the inequality F (� ) � lim inf
n!1

F (� n ): By exchanging the roles of
 � and 
 n in the previous

reasoning, we getlim sup
n!1

F (� n ) � F (� ): The lemma is then proved. �

Since, under Assumption 3.6.1, the function(x; y) ! � (A(x; y)A � 1(x; � y)� (x; � y)=� (x; y) is
continuous in 
 � for � small enough, the previous Lemma allows us to deduce thatC � tends to 1
when � tends to 0: At this stage, we have all the needed tools to present a clear proof of Theorem
3.6.1.

Proof of Theorem 3.6.1. Let � be a cuto� function de�ned in R such that � (r ) = 1 for jr j � 1=2
and � (r ) = 0 for 1 � j r j: For all � 2 R; we introduce the function � � such that � � (r ) = � (r=� ):
Note that for all � 2 R� the function � � is supported in [�j � j; j� j]: From now on, we are going to
assume that0 < � < L= 4; other assumptions on� will be made later. As mentioned previously,
the main idea is to use the T-coercivity method. For this, let us start by introducing the map
T : H 1(
 L ) ! H1(
 L ) such that for all u 2 H1(
 L ); we set

T( u)(x; y) =
u1(x; y) in 
 L

1
� u2(x; y) + 2 � � (y)u1(x; � y) in 
 L

2 :

One, can easily check that for allu 2 H1(
 L ), the function T( u) belongs also to the spaceH1(
 L ):
Moreover, we can also check thatT(T( u)) = u for all u 2 H1(
 L ) and then T is bijective. Using
the result of Lemma 3.6.1, one can prove thatT( u) is continuous and satis�es the estimate

kT( u)kH1 (
 L ) � C �
1 kukH1 (
 L ) for all u 2 H1(
 L )

with C �
1 independent of u 2 H1(
 L ). Now, let us �x some u 2 H1(
 L )nf 0g; and let us compute

hA �
t u; T (u)i . Before getting into that, let us denote by ~u1 2 H1(
 L

1 ) and by ~� � the functions
de�ned by ~u1(x; y) = u1(x; � y) and ~� � (x; y) = � � (� y) for all (x; y) 2 
 L

2 : Using these notations,
one �nds that

hA �
t u; T( u)i =

�


 L
j� jA(x; y)jr u � r u� (x; y)dxdy + t2

�


 L
j� juj2� (x; y)dxdy

+2 � 2

�


 L
2

A(x; y)r u2 � r (~u1 ~� � ) � (x; y)dxdy + 2 � 2 t2
�


 L
2

u2 ~� � ~u� (x; y)dxdy:
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The next step is to �nd some upper bounds of the magnitudes of the third and of the last terms
in the previous identity. For that we are going to use the Young's inequality. For the case of the
fourth term, one �nds that for all 0 < a we have

j2
�


 L
2

u2 ~� � ~u� (x; y)dxdyj � a
�


 L
2

ju2j2� (x; y)dxdy + s�
1a� 1

�


 L
1

ju1j2� (x; y)dxdy

in which s�
1 = sup

(x;y )2 
 �

� (x; � y)
� (x; y)

: The third term can be decomposed as

�


 L
2

Ar u2 � r (� � ~u) �dxdy =
�


 L
2

Ar u2 � r (� � ) ~u�dxdy +
�


 L
2

� � Ar u2 � r ~u�dxdy

The Young's inequality tells us that for all 0 < b we have

j2
�


 L
2

Ar u2 � r (� � ) ~u�dxdy j � b
�


 L
2

Ar u2 � r u2�dxdy + s�
2b� 1

�


 L
1

ju1j2�dxdy

where s�
2 = s�

1 sup
(x;y )2 
 �

jAr � � � r � � j: Furthermore, one obtains that for all 0 < c;

j2
�


 2

� � Ar u2 � r ~u �dxdy j � c
�


 2

Ar u2 � r u2�dxdy + s�
3c� 1

�


 1

Ar u1 � r u1�dxdy

in which s�
3 = C� whereC� is given in the statement of Lemma 3.6.1. Inserting all theses estimates

in the expression ofhA �
t u; T( u)i ; we get

jhA �
t u; T( u)ij � j � 1j

�
(1 � j � � js�

3c� 1)
�


 1

Ar u1 � r u1�dxdy + j� � j(1 � b� c)
�


 2

Ar u2 � r u2�dxdy

+( t2(1 � s�
1j� � ja� 1) � j � � js�

2b� 1)
�


 1

ju1j2�dxdy + j� � jt2(1 � a)
�


 2

ju2j2�dxdy
�
:

According to Lemma 3.6.2, we know that, at least for � small enough, under Assumption 3.6.1
the functions � ! s�

1; s�
2; s�

3 are non-decreasing continuous in
 � : In the other hand, one can easily
check that s0

3 = s0
1 = 1 : This means that if the contrast � � is such that 1 < j� � j; there there

exists some0 < � � such that

max(1=s�
3; 1=s�

1) < j� � j for all � 2 (0; � � ):

By taking � = � � =2; a; c 2 (0; 1) such that the coe�cients (1 � j � � js�
3c� 1) and (1 � s�

1j� � ja� 1)
become positive and then by takingb 2 (0; 1 � c) and t large enough we deduce that there exists
some0 < t 0 such that for all t0 < jtj we have the estimate

kuk2
H1 (
 L ) + t2kuk2

L2 (
 L ) � ChA �
t u; T( u)i for all u 2 H1(
 L )

with C independent of u: By recalling the continuity of T; we deduce the wanted result for all
� � satisfying 1 < j� � j: The casej� � j < 1 can be treated, similarly, by exchanging the roles of
 L

1
and 
 L

2 :
�

Remark 3.6.1.

ˆ Using the the fact that the embedding ofH1(
 L ) into L2(
 L ) is compact, one deduces that
when Assumption 3.6.1 is satis�ed and when� � 6= � 1 the operatorA �

0 is a Fredholm operator
of index 0:
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ˆ Since the proof of the Theorem 3.6.1 is based on the use of local re�ection with respect to the
interface � ; one can easily see that if we replace the domain
 L by 
 L 1 [ 
 L 2 with L 1 6= Š 2

then its the statement remains true.

ˆ In the particular case when the domain
 L coincides with the domain(0; 2� ) � (0; � ) and the
interface � is de�ned by the equationy = � 2 (0; � ) and when the matrix function A and

the scalar function � are de�ned by A(x; y) =

 
1=sin(y) 0

0 1

!

and � (x; y) = sin( y) (in this

case the Assumption 3.6.1 is valid thanks to the smoothness of the functions(x; y) 7! sin(y)
and (x; y) 7! 1=sin(y) near � 2 (0; � )) we obtain a proof of Lemma 3.2.1 in the particular
case of circular conical tips (here ' is replaced byx and the variable� is replaced byy).

Proof of Lemma 3.2.1

Here, we go back to the proof of Lemma 3.2.1 when the functiong belongs to the spaceC2([0; 2� ]):
The starting point is to observe that when we use the classical spherical coordinates(�; ' ) 2
(0; � ) � (0; 2� ) to parameterize the unit sphereS2; the expression ofhL � (� )u; vi writes

hL � (� )u; vi =
� 2�

0

� �

0
� ('; � )A('; � )r u�r v � ('; � )d'd� + � (� +1)

� 2�

0

� �

0
� ('; � )uv � ('; � )d'd�

in which A('; � ) =

 
1=sin(� )

0 1

!

; � ('; � ) = sin( � ); r =

 
@'

@�

!

and � ('; � ) =

(
0 < � 1 if � < g (' )

� 2 < 0 if g(' ) < �
:

Using these notations, the normsk � kH1 (S2 ) and k � kL2 (S2 ) are given by

kukL2 (S2 ) = (
� 2�

0

� �

0
ju('; � )j2� (� )d'd� )1=2;

and

kukH1 (S2 ) = ( kuk2
L2 (S2 ) +

� 2�

0

� �

0
A('; � )r u � r u � ('; � )d'd� )1=2:

To simplify notations, we shall denote by 
 1 = f ('; � ) 2 (0; 2� ) � (0; � ) j � < g (' )g; 
 2 = f ('; � ) 2
(0; 2� ) � (0; � ) j g(' ) < � g and by � = f ('; � ) j � = g(' )g: For the reader convenience, we will
denote by 
 the union of 
 1; 
 2 and � : It is worthy to note that in the topological sense 

coincides with S2: Before presenting the �nal proof, let us recall the de�nition of the so-called
" � neighborhood to a curve.

De�nition 3.6.1. Let O be a curve inR2 that can be parameterized by a functionf : [a; b] ! R2

of classC1: For all 0 < "; we de�ne O" = f x 2 R2 such that d(x; O) < " g: We say that O" is an
" � neighborhood if the following conditions are satis�ed:

1. eachx 2 O" possesses a unique closest point� " (x) in O:

2. the map � " : O" ! O is onto.

In this case, O" = f (s; t) j (s; t) 2 [a; b] � (� "; " )g in which (s; t) are the curvilinear coordinates
associated toO:

Unfortunately for the case of C1 curves, the existence of such tubular neighborhood is not guar-
anteed (a counterexample can be constructed by taking the inner parallel curve of the ellipse
(that is not a circle) which passes through the foci3). For the case ofC2 curves, a proof of the
existence of tubular neighborhood can be found in [57, Theorem 3.1.1].

3Details can be found here.
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Final proof of Lemma 3.2.1. Given that the function g is periodic and of classC2; this means
that there exists a least ' � 2 (0; 2� ) such that g0(' � ) = 0 : Without loos of generality, we can
suppose that ' � = 0 (or equivalently ' � = 2 � ). Moreover, sinceg is of classC2; one can �nd
an L � tubular neighborhood to � with some 0 < L: This neighborhood will be denoted byOL :
Using the fact that g0(0) = g0(2� ); we infer that OL can be chosen such thatOL � 
 : We denote
respectively by 
 L

1 and by 
 L
2 the domains 
 1 \ OL and 
 2 \ OL : As in the proof of Theorem

3.6.1, for all 0 < � < L= 4 we introduce a smooth cut-o� function � � that is supported in [� �; � ]
and equal to 1 in [� �= 2; �= 2]: Now, for all 0 < � < L we introduce the map T � : H1(
) ! H1(
)
such that for all u 2 H1(
)

T � (u)( '; � ) =
u1('; � ) in 
 1

� u2('; � ) + 2 R� (u1)( '; � ) in 
 2;

where R� (u1) is de�ned by R� (u)(s; t) = � � (t)u1(s; � t) for all (s; t) 2 
 L
2 , here (s; t) are the

curvilinear coordinates that are associated to� and that are well-de�ned in 
 L
1 (thanks to its

de�nition) and R� (u)(x; y) = 0 for all (x; y) 2 
 2n
 L
2 : One can easily see that the mapT � is

well-de�ned (this is true because of the continuity of T � (u) at �) : Moreover, one can easily check
that for all u 2 H1(
) we haveT � � T � (u) = u and this shows the bijectivity of T � : The continuity
of T � can be shown in the same way as in the proof of Theorem 3.6.1. To proceed, take some
t 2 R and observe that for all u 2 H1(
) we have

hL � (� 1=2 + it )u; T � (u)i =
�


 n
 L
j� jAr u � r u �d'd� + (1 =4 + t2)

�


 n
 L
j� jjuj2�d'd�

+
�


 L
� Ar u � r T � (u) �dxdy + (1 =4 + t2)

�


 L
�u T � (u)�d'd�:

This means that to prove our claim, we just need to study the behaviour of the second part of
the previous sum (the one in which all the integrals are taken over
 L ). Clearly this �ts into
the general problem studied in the previous paragraph, but it is worthy to note that since the
operator R� is written in local coordinates the Theorem 3.6.1 can not be used directly. To be
able to apply it, we need to write all the integrals over 
 L in local coordinates(s; t): If we denote
by J(s; t) the jacobian matrix of the change of variables that allows to pass form('; � ) to (s; t)
in 
 L and by jJ(s; t)j its jacobian (this transformation is well-de�ned thanks to the de�nition of

 L ), one can write that for all u 2 H1(
 L ); we have

�


 L
� Ar u � r T � (u) �d'd� =

�


̂ L
� Jt AJr u � r T � (u) � jJjdsdt

�


 L
�u T � (u)�dxdy =

�


̂ L
�u T � (u)� jJjdsdt

where 
̂ L = f (t; s) 2 (0; 2� ) � (� L ; L )g: Since g is of class C2 the matrix valued function
(s; t) 7! Jt (s; t)A(s; t)J(s; t) as well as the scalar function(s; t) 7! � (s; t)jJ(s; t)j are continuous in


̂ � for all 0 < � < L: Given that in local coordinates � is given by the equation t = 0 ; a direct
application of Theorem 3.6.1, leads us to say that for all� � 6= � 1 there exists0 < t 0 that depends
only on � � and � such that for all t0 < jtj and all u 2 H1(
 L ) we have the estimate

C(
�


 L
Ar u � r u) �dxdy + (1 =4 + t2)

�


 L
juj2�dxdy ) �

�


 L
� Ar u � r T � (u) �dxdy

+(1 =4 + t2)
�


 L
�u T � (u)�dxdy:

with 0 < C independent of u: Inserting this in the expression of hL � (� 1=2 + it )u; T � (u)i ; we
arrive to the estimate

C(
�



Ar u � r u) �dxdy + (1 =4 + t2)

�



juj2�dxdy ) � jh L � (� 1=2 + it )u; T � (u)ij
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for all u 2 H1(
) and t0 < jtj with C independent of u: The rest of the proof is the same as in
the case of a circular conical tip. �

Remark 3.6.2. Clearly the result of Lemma 3.2.1 can be, easily, extended to the following cases:

ˆ When the function g belongs to the spaceC1
per ([0; 2� ]) \ PC2([0; 2� ]):4

ˆ When the interface � is connected curve of classC2 (i.e. can be locally parameterized by
C2 functions).

ˆ More generally, the result holds if � is connected curve of classC1 that has " � tubular
neighborhood.

3.6.2 Associated Legendre functions

The goal of this section is to recall some of the basic properties of the associated Legendre
functions. Let m 2 Z and � 2 C; the associated Legendre equation of orderm and of degree
� 2 C writes: Find a function u 6= 0 such that

d
dx

((1 � x2)
du
dx

) + � (� + 1) u �
m2

1 � x2 u = 0 for all x 2 (� 1; 1): (3.14)

To be more precise, we are interested in the solutions of (3.14) that are bounded near the point
x = 1 : As all second order di�erential equations, the space of solutions of associated Legendre
equation is a vector space of dimension two. Atx = � 1 the equation (3.14) degenerates and its
solution may be singular near these points. In general, except in particular situations that will
be speci�ed later, the space of solutions of (3.14) is generated by a pair of linearly independent
functions denoted by Pm

� and Qm
� and known respectively as the associated Legendre functions

of �rst (resp. second ) kind. It is important to note that, in the literature, theses functions are
also called Ferrers functions of �rst ad second kind (see [3]). While the functionsPm

� are known
to have a regular behaviour near the points� 1; the functions Qm

� are singular near these points
(see the discussion below for more details).
Since the equation (3.14) is unchanged when we exchangem by � m or � by � � � 1 one expects
the functions P� m

� and P� m
� � � 1 (resp. Q� m

� and Q� m
� � � 1 ) are linearly dependent. In order to

make the presentation of properties of the associated Legendre function as clear as possible, we
shall distinguish two situations: the �rst one is when � belongs toZ and the second one is when
� 2 CnZ:

The case � 2 Z

Before getting into details, for all a; b 2 Z; we denote byJa; bK= [ a; b] \ Z: Clearly, if b < a we
have Ja; bK= ; : The starting point is the following

Lemma 3.6.3 (Appendix A of [95]) . Assume that m 2 Z:

ˆ If � 2 J�j mj; � 1K[ J0; jmj � 1K; then any solution of (3.14) is unbounded nearx = 1 :

ˆ When � 2 ZnJ�j mj; � 1K[ J0; jmj � 1Kthe function Pm
� and Qm

� are well-de�ned.

ˆ For all m 2 N and � 2 ZnJ� m; � 1K[ J0; m � 1K: Then, we have the relations: Pm
� =

Pm
� � � 1; Qm

� = Q m
� � � 1 and

P� m
� =

(� � m)!
(� + m)!

Pm
� ; Q� m

� =
(� � m)!
(� + m)!

Qm
� :

4PC 2([0; 2� ]) is the space of piecewiseC 2 functions.
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As a result, we just need to explain how to de�ne the functionsPm
� and Qm

� for m 2 N and � 2 N
such that m � �: Let us start by treating the case m = 0 : In this particular case the equation
(3.14) is know as the Legendre equation. The functionsP0

� and Q0
� for � 2 N are de�ned as

follows: for all x 2 (� 1; 1) we have

P0
� (x) =

1
2� � !

d�

dx� f (1 � x2) � g; Q0
� (x) =

1
2� � !

d�

dx� f (1 � x2) � log(
1 + x
1 � x

)g �
1
2

log(
1 + x
1 � x

)P0
� (x):

When m 2 N� and � 2 NnJ0; m � 1K; the functions Pm
� and Qm

� can be de�ned thanks to the
relations: for x 2 (� 1; 1) we have

Pm
� (x) = ( � 1)m (1 � x2)m=2 dm

dxm P0
� (x) and Qm

� (x) = ( � 1)m (1 � x2)m=2 dm

dxm Q0
� (x):

More explicit formulas to calculate the functions Pm
� and Qm

� will be given in next paragraph.

The case � 2 CnZ

In such con�guration, the functions Pm
� and Qm

� are well-de�ned for all m 2 Z. Let us start with
the case of the second kind ones. As mentioned above, the functionQm

� is singular near x = 1 .
This can be seen from the following expansions and identities (see [3]):

Qm
� (x) �

x=1

1
2

(� 1)m (m � 1)!
�

2
1 � x

� m=2

; Q� m
� (x) = ( � 1)m �( � � m + 1)

�( � + m + 1)
Qm

� (x) for all m 2 Nnf 0g

Q0
� = � log(1 � x)=2 + b� + O(x � 1) for all � 2 CnZ � ; :

Above �( z) is the analytic continuation of the classical Euler gamma function which is de�ned
for z 2 CnZ (see [3]) andb� is a constant that depends, only, on�: For this reason,we shall then
limit ourselves, in the rest of this appendix, to the presentation of the main properties of the
function Pm

� : Classically these functions are de�ned by using the so-called Gauss hypergeometric
function 2F1: For given complex numbersa; b; c;we de�ne the Gauss hypergeometric function2F1

such that

2F1(a; b; c; z) =
+ 1X

n=0

(a)n (b)n

(c)n

zn

n!
for all z 2 C such that jzj < 1

where for all complex number y; the Pochhammer symbol (y)n is de�ned by (y)n =: y(y +
1)(y + 2) : : : (y + n � 1) for n 2 N� and (y)0 = 1 . One can also write for all y 2 CnZ � that
(y)n = �( y + n)=�( y): It can be shown that, except for this casec 2 Z � (in the case(c)n = 0 for
n large), the function z 7! 2F1(a; b; c; z) is well-de�ned for all z 2 C satisfying jzj < 1:
For m 2 N and � 2 CnZ the function Pm

� (x) is de�ned by the following expression:

Pm
� (x) =

(� + 1) m (� � )m

2m m!
(1 � x2)

m
2 2F1(� � + m; � + m + 1 ; m + 1 ;

1 � x
2

)5: (3.15)

With this in mind, one can immediately see that for all � 2 CnZ we havePm
� = P m

� � � 1: In order
to de�ne the function Pm

� (x) for m 2 Z � ; one has to use the relation

P� m
� = ( � 1)m �( � � m + 1)

�( � + m + 1)
Pm

� =
Pm

�

(� + 1) m (� � )m
for all m 2 N: (3.16)

Remark 3.6.3. Given that for all m 2 N the map(a; b) 7! 2F1(a; b; m) is analytic with respect to
a; b2 C (see [75, Ÿ15.2]) we then deduce that for allm 2 Z and x 2 [� 1; 1] the map � 7! Pm

� (x)
is analytic in CnZ:

5 In many references the term (� +1) m (� � )m is written di�erently: (� +1) m (� � )m = ( � 1)m �( � + m +1) =�( � �
m + 1) :
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Remark 3.6.4. It is important to note that the relations (3.15)-(3.16) are also valid for the case
� 2 Z provided that � =2 J�j mj; � 1K[ J0; jmj � 1K: This explains the presence of the normalization
factor (� + 1) m (� � )m =2m m! in the expression of the functionPm

� :

Let us �nish this paragraph with this useful relation that allows us to compute the derivative of
the function Pm

� (x) with respect to x:

d
dx

Pm
� (x) =

mx
1 � x2 Pm

� (x) �
1

p
1 � x2

Pm+1
� (x)

provided that all the functions Pm
� and Pm+1

� are well-de�ned. Other useful relations are also
available (see [3, 95]).

Approximations of the �rst kind associated Legendre functions

Starting from the relations (3.15)-(3.16), one can write a simple code that approximates the func-
tion Pm

� with � 2 C and m 2 Z provided that � =2 J� m; � 1K[ J0; m � 1K: The easiest way to do
that, is to use MATLAB , in which the Gauss hypergeometric function with complex arguments
is already de�ned. However, for practical purposes (visualization, �nite elements approximations,
...), it would be useful to write a C++ program that computes an approximation of these func-
tions. In this case, one has to implement an approximation of the Gauss hypergeometric function
2F1 which is not available in C++ . An implementation of the algorithm that approximates the
functions Pm

� for m 2 Z and � 2 CnJ�j mj; � 1K[ J0; jmj � 1K; is as follows:

1 Complex P( Number m, Complex lam , Complex x ){
2 % Compute _2F1 (- lam+abs (m) , lam+abs (m)+1 , abs (m)+1)
3 Complex res1 =1.; if ( abs(m) >0){ for ( int i = 0; i < abs(m); ++ i) { res= res *( - lam+i) *(

lam +1+ i) ;}}
4 Real tol =1.0e -9; Complex a=- lam+ abs(m) ,b= lam+ abs(m)+1 ,c= abs(m)+1 , term=a*b*x/c ,

value =1.+ term ;
5 Number n=1;
6 while ( abs( term)>tol ) { a=a+1 , b=b+1 , c=c+1 , n=n+1; term= ( term*a*b*x) /(c*n) ; value

+= term ;} value = value *pow (1-x*x ,m/2) ; if (m <0) res1 =1/ res1 ; return value ;}

Note that the previous code was implemented using theC++ library Xlife++ .

The case of conical (or Mehler) functions

Conical functions are a particular class of the associated Legendre functions. More precisely, they
correspond to the particular case when the degree� has the form � = � 1=2 + it with t 2 R: For
the same reasons as above, we shall restrict ourselves to the case of �rst kind ones. Since for all
t 2 R we have� 1=2 + it 2 CnZ, it follows that the functions x 7! Pm

� 1=2+ it (x) are well-de�ned for
all t 2 R: Moreover, one can easily check that for allt 2 R the function x 7! Pm

� 1=2+ it (x) admits
the representation (see [146])

Pm
� 1=2+ it (x) =

mY

k=1

(t2 + (2 k � 1)2=4)

2m m! 2F1(1=2 + m + it; 1=2 + m � it; m + 1 ;
1 � x

2
): (3.17)

This implies that these functions are real-valued and positive for allx 2 [� 1; 1]. In addition to
that, it can be seen that for all t 2 R; we have

Pm
� 1=2+ it = P m

� 1=2� it : (3.18)

Using the results of the previous paragraph, one can say that for allm 2 Z and t 2 R we have
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d
dx

Pm
� 1=2+ it (x) =

mx
1 � x2 Pm

� 1=2+ it (x) �
1

p
1 � x2

Pm+1
� 1=2+ it (x) for all x 2 [� 1; 1]:

This implies in particular that

d
dx

P0
� 1=2+ it (x) = �

1
p

1 � x2
P1

� 1=2+ it (x) for all x 2 [� 1; 1]: (3.19)

Remark 3.6.5. Taking the derviative of the relation (3.17) with respect to t; one can see that

the function x 7!
dPm

� 1=2+ it

dt
(x) is analytic.
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4.1 Introduction

In the present chapter, we study the numerical approximation of the scalar problem with sign-
changing coe�cients. To �x ideas, consider 
 a domain (an open connected subset) ofRd,

100
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d 2 f 2; 3g, formed by the union of two disjoint subdomains 
 1, 
 2 that are separated by an
interface � (see Figure 4.1 for an example). We assume that@
 , @
 1, @
 2 and � are Lipschitz
regular.


 2


 1

�

�

Figure 4.1: Example of geometry.

We also introduce a piecewise constant function" such that " = "1 > 0 in 
 1 and " = "2 < 0 in

 2: The contrast � " is de�ned by � " := "2="1 < 0: For a given source termf 2 L2(
) ; we consider
the problem

Find u 2 H1
0(
) such that � div( " r u) = f 2 L2(
) : (4.1)

The equivalent variational formulation to (4.1) writes

Find u 2 H1
0(
) such that

�



" r u � r v =

�



fv; 8v 2 H1

0(
) : (4.2)

Because of the change of sign of" , the well-posedness of this problem does not �t into the classical
theory of elliptic PDEs and it can be ill-posed. On the other hand, one can show that for large
or small contrasts, Problem 4.2 isT-coercive, i.e. there exists an operatorT : H 1

0(
) ! H1
0(
)

such that (u; v) 7!
�


 " r u � r (T( v)) is coercive, and then it is well-posed. For the case of
polygonal interfaces, the construction of such operatorT is based on the use of local geometrical
transformations (such as re�ections, rotations, ...) near the interface.
The implementation of a general conforming �nite element methods to discretize (4.2) leads us
to consider the problem

Find uh 2 Vh(
) such that
�



" r uh � r vh =

�



fv h ; 8vh 2 Vh ; (4.3)

where Vh(
) is a well-chosen subspaceH1
0(
) : Even in the case where (4.2) isT-coercive, one

can not guaranty that Problem (4.3) is also T-coercive. Indeed, it may happen that for some
vh 2 Vh(
) , there holds T( vh) =2 Vh(
) : To overcome this di�culty, an interesting idea is to
try to construct meshes such that the approximation spacesVh(
) are stable by operatorsT for
which Problem (4.2) is T-coercive. This type of meshes are calledT-conforming meshes. Such
an approach has been investigated in [147, 49, 45]. It works quite well but presents two main
drawbacks:

ˆ The construction of well-suited meshes for curved interfaces, interfaces with corners or 3D
interfaces is not an easy task [45].

ˆ Sometimes the operatorT for which the problem is T-coercive is constructed by abstract
tools and therefore is not explicit. In these situations, one cannot �nd adapted meshes.

Two �rst alternatives have been proposed. The �rst one, presented in [51], consists in adding
some dissipation to the problem (considering" + i� instead of " in (4.2) where � depends on
the meshsize). The second one is developed in [119] and is based on the use of mesh re�nement
techniques. The essential limitation of these two approaches is that, for interfaces with general
shapes, the convergence can not be assured for all contrasts for which Problem (4.2) is well-posed.
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A new technique relying on the use of an optimal control reformulation has been introduced in
[1]. It is proved to be convergent for general meshes (that respect the interface) as soon as the
exact solution of (4.1) belongs to the spacePHs(
) := f u juj 
 1 2 Hs(
 1) and uj 
 2 2 Hs(
 2)g
with s > 3=2: Unfortunately, this regularity condition is not always satis�ed, especially when �
has corners in 2D or conical points in 3D.

In this chapter, we present a new strategy which relies on the use of a di�erent optimal control
reformulation and which converges without any restriction neither on the mesh (the interface
simply needs to coincide with edges of the mesh) nor on the regularity of the exact solution. This
method is inspired by the smooth extension method that was used (without proof of convergence)
in [73] to approximate the solution of some classical scalar transmission problems.

The chapter is organized as follows. In Section 4.2, we start by giving a detailed description
of the problem. Then we explain how to derive an equivalent optimal control reformulation.
Section 4.4 is dedicated to the study of some basic properties of the optimization problem and
its regularization. The proposed numerical method and the proof of its convergence are given in
Section 4.5. Our results are illustrated by some numerical experiments in Section 4.6. Finally we
give a few words of conclusion and discuss some possible extensions.

4.2 Main assumption on " and reformulation of the problem

Introduce the bounded operatorA " : H1
0(
) ! (H1

0(
)) � such that

hA " u; vi =
�



" r u � r v; 8u; v 2 H1

0(
) :

Obviously if A " is an isomorphism then Problem (4.1) is well-posed in the Hadamard sense. In
this chapter, we shall work under the following

Assumption 4.2.1. Assume that " is such that A " is an isomorphism and that the source term
f in (4.1) belongs toL2(
) :

As we have seen in the �rst chapter of this thesis, the previous assumption is satis�ed when the
contrast � " does not belong to the critical interval that will be denoted by I � : The expression of
this interval in general is not known analytically, except for particular geometries like symmetric
domains, simple 2D interface with corners, simple 3D interfaces with circular conical tips..., but
can be approximated numerically.

Remark 4.2.1. In Problem (4.1), we consider homogeneous Dirichlet boundary conditions. Let
us mention that the results below extend quite straightforwardly to other situations, for example
with Neumann or Robin-Fourier boundary conditions which can be homogeneous or not.

To introduce the method, we start by writing an equivalent version of (4.1) in which the unknown
u 2 H1

0(
) is splitted into two partial unknowns de�ned in 
 1 and 
 2: To do so, we observe
that since f 2 L2(
) , the solution u of (4.1) is such that the vector �eld " r u belongs to the
spaceH(div ; 
) = f u 2 (L 2(
)) d such that div( u ) 2 L2(
) g: Consequently, the pair of functions
(uj 
 1 ; uj 
 2 ) satis�es the problem

Find (u1; u2) 2 V1(
 1) � V2(
 2) such that
� "1� u1 = f 1 =: f j 
 1

� "2� u2 = f 2 =: f j 
 2

@nu1 = � " @nu2 and u1 = u2 on �
(4.4)

in which n stands for the unit normal vector to � oriented to the exterior of 
 1 and

V1(
 1) := f u 2 H1(
 1); u = 0 on @
 1n� g; V2(
 2) := f u 2 H1(
 2); u = 0 on @
 2n� g:
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On the other hand, one can check that if (u1; u2) is a solution of (4.4), then the function u
de�ned by uj 
 j = ui for j = 1 ; 2 solves (4.1). The equations satis�ed byu1 and u2 are elliptic
but they are coupled by the transmission conditions on� . As a consequence, we cannot solve
them independently. The purpose of the next paragraph is to explain how to proceed to write
an alternative formulation (an optimization-based one), which can be solved via an iterative
procedure such that at each step one has to solve a set of elliptic problems.

4.3 The smooth extension method for the scalar transmission
problem

The smooth extension method was proposed in [79] and can be considered as a special case of the
�ctitious domain methods (see [11]). It has been adapted to study the classical scalar transmission
problem, i.e. with constant sign coe�cients, in [73]. In this section, we explain how to apply it
to our problem. In order to make the presentation as simple as possible, we start with a formal
presentation of the technique, and then we will make things more rigorous.

4.3.1 Formal presentation of the smooth extension method

The idea behind the smooth extension method is the following: instead of looking for(u1; u2) 2
V1(
) � V2(
 2) solution of (4.4), we search for a pair of functions(~u; u2) 2 H1

0(
) � V2(
) such
that (~uj 
 1 ; u2) is the solution of (4.4). The function ~u is then a particular continuous extension
of u1 to the whole domain 
 : The di�culty is to �nd a good way to de�ne the function ~u: In
particular, we have to describe the equation satis�ed by~u in 
 2: Formally, the idea of the smooth
extension method is to extend the equation satis�ed byu1 to the whole domain 
 : More precisely,
the idea is to suppose that the function ~u satis�es the problem

� "1�~u = f 11
 1 + `1
 2

in which ` is a function to determine so that (~uj 
 1 ; u2) solves (4.4). If one �nds a way to compute
such a`; since the problem that relates` to ~u is elliptic, the function ~u can be be approximated
by the classical FEM. After that, the function u2 can be then approximated by solving the
problem satis�ed by u2 in 
 2 completed by ~uj � (resp. � � 1

" @n ~uj � ) as a Dirichlet (resp. Neumann)
boundary condition on � which is also elliptic. Note that at �rst sight, neither the existence nor
the construction of such` are clear. This will be done thanks to an optimal control reformulation
of (4.4). This is the main goal of the next paragraph in which we also reformulate the idea
presented above in a more rigorous way.

4.3.2 An optimal control reformulation of the problem

For ` 2 (V 2(
 2)) � ; introduce u` the uniquely de�ned function satisfying the problem

Find u` 2 H1
0(
) such that "1

�



r u` � r v =

�


 1

f 1v + `(vj 
 2 ); 8v 2 H1
0(
) :

Clearly the function u`
1 =: u`

j
 1
2 V1(
 1) is such that � "1� u`

1 = f 1 in 
 1. This is the equation
satis�ed by u1 in (4.4). Using this and an integration by parts, for all v2 2 V2(
 2); we obtain

h"1@nu` ; v2i = � "1

�


 2

r u` � r v2 + `(v2):

Now, assume that one �nds` � 2 (V 2(
 2)) � for which u` �

1 coincides with u1 (the solution of (4.4))
in 
 1. Then the function u2 can be deduced either by usingu` �

1 j� or � � 1
" @nu` �

1 j� as a Dirichlet or

as Neumann trace ofu2 on � . More precisely, if one uses� � 1
" @nu` �

1 j� as a Neumann boundary data



Chapter 4. An optimal control-based numerical method for scalar transmission
problems with sign-changing coe�cients 104

for u2 on � ; the problem satis�ed by u2 writes: Find u2 2 V2(
 2) such that for all v2 2 V2(
 2);
we have

"2

�


 2

r u2 � r v2 =
�


 2

f 2v2 � h "1@nu` �
; v2i =

�


 2

f 2v2 � ` � (v2) + "1

�


 2

r u` �
� r v2:

Obviously, the previous problem is well-posed. This leads us to de�ne for all̀ 2 (V 2(
 2)) � the
(well-posed) problem: Find (u` ; u`

2) 2 H1
0(
) � V2(
 2) such that

"1

�



r u` � r v =

�


 1

f 1v + `(vj 
 2 ) 8v 2 H1
0(
)

"2

�


 2

r u`
2 � r v2 =

�


 2

f 2v2 � `(v2) + "1

�


 2

r u` � r v2 8v2 2 V2(
 2):
(4.5)

Using the optimal control terminology, the previous equation plays the role of the state equation
in which ` is the control function and ` � (that we are looking for) is the optimal control. In order
to write an optimal control reformulation of our problem, it remains to �nd an adapted objective
(or cost) function. To do so, the starting point is the following

Proposition 4.3.1. For ` 2 (V 2(
 2)) � , the functions u`
1 and u`

2 are such that

� "1� u`
1 = f 1 in 
 1

� "2� u`
2 = f 2 in 
 2

@nu`
1 = � " @nu`

2 on � :

Proof. Take ' 1 2 C1
0 (
 1) and extend it by 0 to the whole 
 to obtain the function ' 2 C1

0 (
) .
Take v = ' in the problem satis�ed by u` : One �nds that � "1� u`

1 = f 1 in 
 1: Next, take some
' 2 2 C1

0 (
 2), extend it by 0 in 
 1 and denote by ' the new function. By taking v = ' in the
problem satis�ed by u` and v2 = ' 2 in the problem satis�ed by u`

2 one �nds that

"1

�


 2

r u` � r ' 2 = `(' 2) and "2

�


 2

r u`
2 � r ' 2 =

�


 2

f 2' 2 � `(' 2) + "1

�


 2

r u` � r ' 2:

By considering the sum of the two formulations, we conclude that� "2� u`
2 = f 2 in 
 2: To end

the proof, it remains to show that @nu` = � " @nu`
2: To do so, taking v2 = vj 
 2 for an arbitrary

v 2 H1
0(
) in (4.5), integrating by parts in both formulations and then, using the equations

satis�ed by u`
1 and u`

2, we infer that

�h "1@nu`
1; vi = �h "2@nu`

2; vi ; v 2 H1
0(
) :

This gives "1@nu`
1 = "2@nu`

2 on � and ends the proof. �

Thus the introduction of an auxiliary control function ` 2 (V 2(
 2)) � allows us to construct pseudo-
solutions of the equation (4.4) for which the condition on the normal derivatives is automatically
satis�ed. However we do not have in general continuity of the �eld at the interface. Taking this
into account, we get the

Lemma 4.3.1. If there exists ` � 2 (V 2(
 2)) � such that the solution of (4.5) satis�es u` �

j � = u` �

2 j� ,

then (u` �

1 ; u` �

2 ) solves(4.4).

The existence of such̀ � is the subject of the following

Lemma 4.3.2. There exists ` � 2 (V 2(
 2)) � such that the solution of (4.5) satis�es u` �

j � = u` �

2 j� :
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Proof. We proceed by construction, i.e. we �nd ` � 2 (V 2(
 2)) � for which the condition u` �

j � =

u` �

2 j� is satis�ed. Since by assumption Problem (4.1) is uniquely solvable, the functionsu1 and
u2 are well-de�ned. The function u2 can be seen as a continuous extension ofu1 to the domain

 2: Moreover, one can check thatu the solution of (4.1) satis�es the problem

"1

�



r u � r v =

�


 1

f 1v + "1

�


 2

r u2 � r v � "1h@nu1; vi 8 v 2 H1
0(
)

"2

�


 2

r u2 � r v2 =
�


 2

f 2 v2 + "1h@nu1; v2i 8 v 2 V2(
 2):

Now, by observing that the linear form ` � de�ned by

` � (v2) = "1

�


 2

r u2 � r v2 � "1h@nu1; v2i 8 v2 2 V2(
)

is continuous, we obtain the desired result. �

Remark 4.3.1. As pointed out in [73] for the classical transmission problem, the optimal function
` � (for which u` �

j � = u` �

2 j� ) is not unique. Indeed, if one denotes byE(u1) 2 H1
0(
) any continuous

extension of the functionu1 to 
 2, one can show that(E (u1); u2) satis�es the problem

"1

�



r E (u1) � r v =

�


 1

f 1v + "1

�


 2

r E (u1) � r v � "1h@nE(u1); vi 8 v 2 H1
0(
)

"2

�


 2

r u2 � r v2 =
�


 2

f 2 v2 + "1h@nE(u1); v2i 8 v 2 V2(
 2):

The linear form ` � 2 (V 2(
 2)) � de�ned by

` � (v2) = "1

�


 2

r E (u1) � r v2 � "1h@nu1; v2i 8 v2 2 V2(
 2) (4.6)

can be then considered as another optimal function. This implies that the set of optimal functions
` � 2 (V 2(
 2)) � is in�nite. More precisely, we observe that the set of optimal functions` � is in
bijection with the set of continuous extensions ofu1 2 V1(
 1) to a function of H1

0(
) :

Now, we have all the tools to write an equivalent optimal control formulation to (4.4). To do
that, it su�ces to observe that since u`

1j� ; u`
2j� 2 H1=2(�) � L2(�) and by means of Lemma 4.3.1

we can say that ` � is an optimal control if and only if ku` �

1 � u` �

2 k2
L2 (�) = 0 : This allows us to say

that ` � is an optimal control if and only if it solves the problem

Find ` � 2 (V 2(
 2)) � solution of

8
>><

>>:

min
`2 (V 2 (
 2 )) �

1
2

�

�
ju`

1 � u`
2j2d�

where (u` ; u`
2) is the solution of (4.5).

(4.7)

Regarding what we have proved previously, it follows the

Corollary 4.3.1. Problem (4.7) has an in�nite number of solutions.

SinceV2(
 2) is a Hilbert space, the Riesz representation theorem guarantees that for any element
` 2 (V 2(
 2)) � , there is a uniquew` 2 V2(
 2) such that

`(v) =
�


 2

r w` � r v 8v 2 V2(
 2):

Then the optimal control problem (4.7) can be reformulated in the following way

Find w� 2 V2(
 2) solution of min
w2 V 2 (
 2 )

J (w) with J (w) =
1
2

�

�
juw

1 � uw
2 j2d�; (4.8)
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where (uw ; uw
2 ) 2 H1

0(
) � V2(
 2) is the solution of the problem (the state equation)

"1

�



r uw � r v =

�


 1

f 1v +
�


 2

r w � r v 8v 2 H1
0(
) ;

"2

�


 2

r uw
2 � r v2 =

�


 2

f 2v2 + "1

�


 2

r uw � r v2 �
�


 2

r w � r v2 8v2 2 V2(
 2):
(4.9)

The objective of this section is then achieved. The next step is to propose a discretization of
the problem based on FEM and to study its convergence. Before that, we have to prepare the
ground and present some basic properties of the above problem which will help us to prove the
convergence of the proposed discretization method.

As we have seen previously, the minimization problem (4.8) has an in�nite number of solutions.
Therefore, a regularization method may be necessary in order to propose a convergent discretiza-
tion. For that, we will work in Ÿ4.4.4 with the classical Tikhonov regularization of Problem (4.8).
This will guide our intuition in the construction of a convergent numerical method.

4.4 Basic properties of the optimization problem and its regu-
larization

In this section, we focus our attention on the properties of the cost functionJ: In addition, we
compute in Ÿ4.4.3 an explicit expression for the derivative ofJ with respect to w: In the process,
we give useful properties of the set of minimizers ofJ:

4.4.1 Properties of the objective function

The fact that we have used theL2(�) norm instead of the H1=2(�) norm in the de�nition of J
allows us to get the following compactness result.

Lemma 4.4.1. Let (wn ) be a sequence of elements ofV2(
 2) that converges weakly tow0 2
V2(
 2). Then, (J (wn )) converges toJ (w0).

Proof. For all n 2 N; denote by (un ; un
2 ) 2 H1

0(
) � V2(
) the solution of (4.9) with w = wn :
From the ellipticity of the problems involved in (4.9), it follows that (un ) (resp. (un

2 )) converges
weakly in H1

0(
) (resp. V2(
 2)) to some u 2 H1(
) (resp. u2 2 V2(
 2)) such that (u; u2) is the
solution of (4.9) with w = w0:
The continuity of the trace operator from H1(
) to H1=2(�) implies that un

j� � un
2 j� converges

weakly to uj � � u2j� in H1=2(�) : Given that the embedding of H1=2(�) into L2(�) is compact,
un

j� � un
2 j� converges strongly touj � � u2j� in L2(�) : Thus (J (wn )) converges toJ (w0): The result

is proved. �

A direct consequence of the previous Lemma is the following

Lemma 4.4.2. The function J is continuous and convex onV2(
 2):

Proof. While the continuity is a direct consequence of the previous lemma, the convexity follows
from the fact that J : V2(
 2) ! R is the composition of the a�ne map j 1 : V2(
 2) ! L2(�) and
of the convex mapj 2 : L2(�) ! R such that for all w 2 V2(
 2), g 2 L2(�)

j 1(w) = ( uw � uw
2 ) j � where (uw ; uw

2 ) 2 H1
0(
) � V2(
 2) is the solution of (4.9)

j 2(g) =
1
2

�

�
jgj2d�:

(4.10)

�
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4.4.2 The set of minimizers of the function J

As explained above, the set of minimizers of the functionalJ , denoted by M J , is in�nite. More
precisely, one can check the equivalence

w� 2 M J if and only if J (w� ) = 0 :

This allows us to prove the

Lemma 4.4.3. M J is a closed and convex subset ofV2(
) .

Proof. Clearly M J coincides with the set of zeros ofJ . Since J : V2(
 2) ! R is continuous,
we infer that M J is closed. The convexity ofM J is a direct consequence of the positivity and
convexity of J: �

As a direct result of the previous lemma, we can say that the following minimization problem:

min
w2 M J

kr wk2
L2 (
 2 ) (4.11)

has a unique solution (this is a consequence of the strict convexity ofkr � k 2
L2 (
 2 ) and of the fact

that M J is a closed subset ofV2(
 2)). In the following, we shall denote by w�
J the solution of

(4.11), i.e. the smallest minimizer of the function J: By de�nition, we know that for all w 2 M J ;
the function uw 2 H1

0(
) is a continuous extension of theu1 (the restriction of the solution of
(4.1) to 
 1). In particular, this means that for all w1; w2 2 M J we haveuw1

j 
 1
= uw2

j 
 1
: Our next

goal is to �nd a simple characterization of uw �
J :

On the smallest minimizer of J

We already know that for any w 2 V2(
 2); the function uw satis�es

"1

�



r uw � r v =

�


 1

fv +
�


 2

r w � r v 8v 2 H1
0(
) :

This means that that for all w1; w2 2 V2(
 2) we have

"1

�



r (uw1 � uw2 ) � r v =

�


 2

r (w1 � w2) � r v 8v 2 H1
0(
) :

Using the fact that for all w1; w2 2 M J ; we haveuw1
j 
 1

= uw2
j 
 1

we then obtain

"1

�


 2

r (uw1
2 � uw2

2 ) � r v2 =
�


 2

r (w1 � w2) � r v2 8v2 2 V2(
) ; (4.12)

in which for j = 1 ; 2; we set uw
j := uw

j
 j
: Note that, for all w1; w2 2 M J the function uw1

2 � uw2
2

belongs toH1
0(
 2): To proceed, we denote byEH (u1) 2 H1

0(
) the continuous harmonic extension
of u1: In particular, the function EH (u1) j 
 2 satis�es

� EH (u1) j 
 2 = 0 in 
 2 and EH (u1) = u1 on � :

To this particular extension of u1; we can introduce a uniquewH 2 M J such that EH (u1) = uwH

(see Remark 4.3.1). More precisely, the functionswH can be de�ned as the unique solution of
the well-posed problem: FindwH 2 V2(
 2) such that

�


 2

r wH � r v2 = "1

�


 2

r EH (u1) � r v2 � "1h@nu1; v2i 8 v2 2 V2(
 2):
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In particular, we have �


 2

r wH � r v2 = 0 8v2 2 H1
0(
 2): (4.13)

By taking v2 = wH ; w1 = wh and w2 = w�
J 2 M J in (4.12) and by making use of (4.13) we obtain

�


 2

r (wH � w�
J ) � wH = 0 :

This shows, by means of the Cauchy-Schwarz lemma, thatkr wH kL2 (
 2 ) � kr w�
J kL2 (
 2 ) and

then, thanks to the de�nition of w�
J ; we infer that w�

J = wH : This leads us to state the following

Proposition 4.4.1. The function w�
J coincides with wH and uw �

J = EH (u1):

4.4.3 Gradient of the function J

As indicated in the introduction of this chapter, the main objective of this work is to propose a
new numerical method for approximating the solution of (4.1). This method will be based on the
numerical approximation of the solution of the optimization problem (4.8). In this section, we
will explain how to obtain an explicit expression of J 0(w) the gradient of J at somew 2 V2(
) :
The starting point is to explain why the function J is di�erentiable. Again, this is the con-
sequence of the fact thatJ can be written as a composition of the two di�erentiable maps j 1

(which is di�erentiable because it is an a�ne map) and j 2 (which is di�erentiable thanks to the
di�erentiability of the square of the L2(�) norm) that are de�ned in (4.10). Since the function J
is scalar valued, its di�erential at any w 2 V2(
 2) is then a continuous linear form`w on V2(
 2):
By means of the Riesz representation theorem,̀ w can be represented by a unique element of
V2(
 2); this element will be denoted by J 0(w) and is de�ned as follows:

For all h 2 V2(
 2); we have
�


 2

r J 0(w) � r h = lim
t ! 0

J (w + th) � J (w)
t

= `w(h):

Given the fact that J = j 2 � j 1; the natural idea to compute J 0(w); for all w 2 V2(
 2); is to use
the chain rule formula. For this, we need to start by computing the derivative of w ! uw and of
w ! uw

2 (where (uw ; uw
2 ) is the solution of (4.9)) with respect to w 2 V2(
 2): The di�erential of

these maps will be denoted by

duw

dw
2 L (V 2(
 2); H1

0(
)) and
duw

2

dw
2 L (V 2(
 2); V2(
)) :

Without any di�culty, one can check that for any h 2 V2(
 2) we have

duw

dw
(h) = ~uh and

duw
2

dw
(h) = ~uh

2

where (~uh ; ~uh
2) 2 H1

0(
) � V2(
 2) is the unique solution of the well-posed system of equations:

"1

�



r ~uh � r v =

�


 2

r h � r v 8v 2 H1
0(
) ;

"2

�


 2

r ~uh
2 � r v2 = "1

�


 2

r ~uh � r v2 �
�


 2

r h � r v2 8v2 2 V2(
 2):
(4.14)

Note that since w ! uw and w ! uw
2 are a�ne maps, for all w; h 2 V2(
 2) we have the relation

uw+ h = uw +
duw

dw
(h) = uw + ~uh and uw+ h

2 = u2
w +

duw
2

dw
= u2

w + ~uh
2 :

Using these notations, and the fact thatJ is the composition ofj 1 and j 2; we obtain the following
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Proposition 4.4.2. For all w; h 2 V2(
 2); we have
�


 2

r J 0(w) � r h =
�

�
(~uh � ~uh

2)(uw � uw
2 )d�:

where (uw ; uw
2 ) and (~uh ; ~uh

2) are the solutions to (4.9) and (4.14) respectively.

Proof. Let t 2 R be a damping parameter. Thanks to direct calculus, for allw; h 2 V2(
 2) one
�nds that

J (w + th) = 1 =2
�

�
juw+ th � uw+ th

2 j2 d� = 1=2
�

�
juw � uw

2 + t(~uh � ~uh
2)j2 d�:

As a result, we obtain

J (w + th) = J (w) + t
�

�
(~uh � ~uh

2)(uw � uw
2 )d� + o(t):

The lemma is then proved. �

The expressionJ 0(w) that we have obtained above, is not explicit. A more elegant way to get a
simpler expression ofJ 0(w) was proposed in [73]. The idea is based on the use of more general
theory called the adjoint approach that was introduced in [47], and that allows us to compute
the gradient of objective functions that depends in non-explicit way of the main variable of the
problem, but via the solution of PDE (the state equations) in which the main variable plays the
role of a parameter. Here, we are going to explain how to apply this method to our case. The
idea is to introduce a Lagrangian functionL : V2(
 2) � H1

0(
) � V2(
 2) � H1
0(
) � V2(
 2) ! R

such that

L (w; u; u2; �; � 2) =
1
2

�

�
ju � u2j2 d� + a1(w; u; � ) + a2(w; u; u2; � 2)

in which a1(w; u1; � ) and a2(w; u2; � 2) are given by

a1(w; u; � ) = "1

�



r u � r � �

�


 1

f � �
�


 2

r w � r �

a2(w; u; u2; � 2) = "2

�


 2

r u2 � r � 2 �
�


 2

f 2� 2 � "1

�


 2

r u � r � 2 +
�


 2

r w � r � 2:

The functions � 2 H1
0(
) ; � 2 2 V2(
 2) are called the adjoint variables associated tou; u2 re-

spectively. It will be useful to observe that when (u; u2) coincides with (uw ; uw
2 ) (the solution of

(4.9)), we have

L (w; uw ; uw
2 ; �; � 2) = J (w) 8� 2 H1

0(
) ; � 2 2 V2(
 2): (4.15)

Clearly, the function L is di�erentiable with respect to all its variables. In what follows, for all
(w; u; u2; �; � 2) 2 V2(
 2) � H1

0(
) � V2(
 2) � H1
0(
)) � V2(
 2); the partial derivative of L with

respect to the variable w; u; u2; �; � 2 are denoted, respectively, by

@L
@w

;
@L
@u

;
@L
@u2

;
@L
@�

and
@L
@�2

:

They belong, respectively, to the spaces(V 2(
 2)) � ,(H1
0(
)) � ,(V 2(
 2)) � , (H1

0(
)) � and (V 2(
 2)) � :
As a result, for a �xed � 2 H1

0(
) and � 2 2 V2(
 2); by taking the derivative of the relation (4.15)
with respect to w; we can say, by applying the chain rule formula, that for all h 2 V2(
 2) we
have,

hJ 0(w); hi = h
@L
@w

(w; uw ; uw
2 ; �; � 2); hi + h

@L
@u

(w; uw ; uw
2 ; �; � 2);

duw

dw
(h)i

+ h
@L
@u2

(w; uw ; uw
2 ; �; � 2);

duw
2

dw
(h)i
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or equivalently,

hJ 0(w); hi = h
@L
@w

(w; uw ; uw
2 ; �; � 2); hi + h

@L
@u

(w; uw ; uw
2 ; �; � 2); ~uh i + h

@L
@u2

(w; uw ; uw
2 ; �; � 2); ~uh

2 i

where (~uh ; ~uh
2) is de�ned by (4.14).

Now, suppose that we �nd (� w ; � w
2 ) for which the equations

@L
@u

(w; uw ; uw
2 ; � w

1 ; � w
2 ) = 0 and

@L
@u2

(w; uw ; uw
2 ; � w

1 ; � w
2 ) = 0

are satis�ed for all w 2 V2(
 2), this will implies that

J 0(w) =
@L
@w

(w; uw ; uw
2 ; � w

1 ; � w
2 ) 8w 2 V2(
 2):

To investigate the existence of such functions, we need to write down, for an arbitrary(�; � 2) 2
H1

0(
) � V2(
 2); the expression of

@L
@u

(w; uw ; uw
2 ; �; � 2) and

@L
@u2

(w; uw ; uw
2 ; �; � 2):

By a direct calculus, we �nd, for all w; � 2 2 V2(
 2), � 2 H1
0(
) ,

h
@L
@u

(w; uw ; uw
2 ; �; � 2); vi = "1

�



r � w � r v � "1

�


 2

r � w
2 � r v +

�

�
(uw � uw

2 )v 8v 2 H1
0(
)

h
@L
@u2

(w; uw ; uw
2 ; �; � 2); v2i = "2

�


 2

r � w
2 � r v2 �

�

�
(uw � uw

2 )v2 8v 2 V2(
 2):

As a consequence, the functions� w and � w
2 that we are looking for, must satisfy the following

system of equations:

"1

�



r � w � r v = "1

�


 2

r � w
2 � r v �

�

�
(uw � uw

2 )v 8v 2 H1
0(
)

"2

�


 2

r � w
2 � r v2 =

�

�
(uw � uw

2 )v2 8v2 2 V2(
 2):
(4.16)

Clearly the previous system of equations is well-posed. Therefore the function� w , � w
2 are well-

de�ned. Note that, in the literature (see [73, 47]), the previous equations are known as the adjoint
system. To summarize, we have the

Lemma 4.4.4. For all w 2 V2(
 2); there holdsJ 0(w) = � w
2 � � w

1 j
 2
; where � w ; � w

2 are given by
Equation (4.16).

Proof. Take w 2 V2(
 2): From the de�nition of � w and � w
2 ; we deduce that for all h 2 V2(
 2);

we have

hr J 0(w); hi = h
@L
@w

(w; uw ; uw
2 ; � w

1 ; � w
2 ); hi :

Now, let us compute explicitly the value of h
@L
@w

(w; u; u2; �; � 2); hi for any u; u2; �; � 2: Easily, one

�nds that

h
@L
@w

(w; u; u2; �; � 2); hi =
�


 2

r h � r (� 2 � � j 
 2 ):

This shows that J 0(w) = � w
1 j
 2

� � w
2 and then the result is proved. �

We have the following optimality result
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Corollary 4.4.1. We have the equivalence

[ w� 2 V2(
 2) is such that J 0(w� ) = 0
�

() w� 2 M J :

Proof. Let us start with the proof of the direct implication. Suppose that there exists some
w� 2 V2(
 2) such that � w �

j 
 2 = � w �

2 : By taking the sum of the variational formulations of (4.16),
we deduce that �



" r � w �

� r v = 0 8v 2 H1
0(
) :

This means A " (� w �
) = 0 and then, thanks to Assumption 4.2.1, � w �

= 0 : This implies that
� w �

2 = 0 and then by using the second equation of (4.16), thatuw �
= uw �

2 on � : This shows that
w� is a minimizer of J: The reverse implication is a consequence of the fact that ifw�

2 2 M J we
have J (w� ) = 0 and then uw �

= uw �

2 on � : This implies that � w �

2 = 0 and that � w �
= 0 : �

We end this paragraph with the following result that can be useful to prove the convergence of
the classical gradient descent algorithm.

Corollary 4.4.2. The function J 0 : V2(
 2) ! V2(
 2) is Lipschitz continuous.

Proof. Starting from (4.9), we deduce that w 7! uw ; w 7! uw
2 are Lipschitz continuous. Inserting

this into (4.16), we obtain the result. �

4.4.4 Tikhonov regularization of the problem

Tikhonov regularization, which was originally introduced in [137], is a classical method to regular-
ize a convex optimization problem. Classically, this method is used in the context of regularization
of ill-posed inverse problems (see [76] and the references therein). In this paragraph, we study
the convergence of such regularization when it is applied to our problem. For� > 0, we introduce
the functional J � : V2(
 2) ! R de�ned by

J � (w) = J (w) + � kr wk2
L2 (
 2 ) 8w 2 V2(
 2):

Since J is convex and � > 0, the functional J � is strictly convex and coercive. Therefore the
minimization problem

min
w2 V 2 (
 2 )

J � (w)

has a unique solution that we denote byw�
� : Our goal is to study the behaviour of w�

� as � tends
to zero. One may expect that w�

� converge to one of the solutions (4.8). If this is the case and
because the problem (4.8) has an in�nite number of solutions, it will be interesting to characterize
the particular solution to which w�

� converges. Our �ndings are given in the following

Proposition 4.4.3. The sequence(w�
� ) converges when� ! 0 to w�

J the smallest minimizer of
J:

Proof. From the de�nition of w�
� ; we can write that

� kr w�
� kL2 (
 2 ) � J � (w�

� ) � J � (w�
J ) = J (w�

J ) + � kr w�
J kL2 (
 2 ) = � kr w�

J kL2 (
 2 ) :

This means that for all 0 < �; there holds kr w�
� kL2 (
 2 ) � kr w�

J kL2 (
 2 ) : As a result (w�
� ) is

bounded in V2(
 2): This implies that, up to a sub-sequence,(w�
� ) converges, as� tends to 0,

weakly in V2(
 2) to somew0 2 V2(
 2): For the reader convenience, this sequence is also denoted
by (w� ): Now, let us prove that w0 is a minimizer of J: To do that, we start by observing that for
all � > 0, we have

0 � J (w�
� ) � J � (w�

� ) � J � (w�
J ) = � kr w�

J k2
L2 (
 2 ) :
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This shows that (J (w�
� )) converges to zero as� tends to zero. On the other hand, by using the

result of Lemma 4.4.1, we know that(J (w�
� )) converges toJ (w0). Consequently, J (w0) = 0 and

then w0 is a minimizer of J .
The next step is to show that the convergence of(w�

� ) to w0 occurs in the strong sense and that
w0 = w�

J : To do so, we observe that

kr w�
� kL2 (
 2 ) � kr w�

J kL2 (
 2 ) =) lim sup
� ! 0

kr w�
� kL2 (
 2 ) � kr w�

J kL2 (
 2 )

w�
� * w 0 in V2(
 2) =) kr w0kL2 (
 2 ) � lim inf

� ! 0
kr w�

� kL2 (
 2 )
1:

This implies that kr w0kL2 (
 2 ) � kr w�
J kL2 (
 2 ) . Thanks to the de�nition of w�

J ; we deduce that
w0 = w�

J :
With this in mind and with the help of the previous inequality, we conclude that

lim
� ! 0

kr w�
� kL2 (
 2 ) = kr w�

J kL2 (
 2 ) :

SinceV2(
 2) is a Hilbert space, it follows (see [40, Proposition III.30]) that w� ! w�
J in V2(
 2):

By noticing that w�
J is independent of the considered sub-sequence, the result is then proved.�

In conclusion, we can say that the Tikhonov regularization allows us to obtain a stabilized version
of the optimization problem (4.8). This will be used in order to introduce a stabilization of the
�nite element discretization of the problem (4.8), but in that case the stabilization parameter �
must be chosen as a function of the meshsize. This will be detailed in Ÿ4.5.3. Note that the same
idea was employed in [2].

4.5 Numerical discretization of the problem

In this part, we are concerned with the numerical approximation of (4.8) by means of the Finite
Elements Method. To do so, we start by presenting some details and notations about the sequence
of meshes that will be used.

4.5.1 Mesh assumptions

Assumption 4.5.1. Let T be a regular (see [55]) mesh of
 composed by triangles (resp. tetra-
hedrons) whend = 2 (resp. d = 3 ). We suppose that

ˆ each element ofT belongs either to
 1 or to 
 2:

ˆ T does not have any hanging node on� : each vertexv of T that belongs to� ; is a common
vertex betweenT1; T2 2 T such that T1 � 
 1 and T2 � 
 2: See Figure 4.2.

Let (Th)h> 0 be a family of meshes of
 such that Th satisfy Assumption 4.5.1 for all h > 0. The
subscript h stands for the meshsize. For allk 2 N� ; we set

Vk
h(
) := f u 2 H1

0(
) j ujT 2 Pk (T) for all T 2 Thg:

Here Pk (T) stands for the space of polynomials (ofd variables) of degree at most equal tok: In
the same way, we de�ne the spacesVk

i;h (
 1), i = 1 ; 2, such that

Vk
i;h (
 i ) := f u 2 H1(
 i ) j ujT 2 Pk (T) for all T 2 Th and u = 0 on @
 i n� g:

Remark 4.5.1. Since for all h > 0 the meshTh is conforming to � , the spaceVk
i;h (
 i ) coincides

with f uj 
 i ; u 2 Vk
h(
) g, i 2 f 1; 2g.

1This is a consequence of the fact that the norm of a Banch space is weakly lower semicontinuous.
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Figure 4.2: Examples of meshes without (left) and with (right) hanging nodes.

4.5.2 Discretization strategy

For h > 0 and w 2 V2(
) ; de�ne the functions uw
h 2 Vk

h(
) and uw
2;h 2 Vk

2;h(
 2) as the solutions
to the following well-posed problems:

"1

�



r uw

h � r vh =
�


 1

fv h +
�


 2

r w � r vh ; 8vh 2 Vk
h(
)

"2

�


 2

r uw
2;h � r v2;h =

�


 2

f 2v2;h + "1

�


 2

r uw
1 � r v2;h �

�


 2

r w � r v2;h ; 8v2;h 2 Vk
2;h(
 2):

(4.17)
Then introduce the projection operator � k

h : V2(
 2) ! Vk
2;h(
 2) such that for all w 2 V2(
 2),

� k
h(w) is de�ned as the unique element ofVk

2;h(
 2) that satis�es the problem

�


 2

r � k
h(w) � r v2;h =

�


 2

r w � r v2;h 8v2;h 2 Vk
2;h(
 2):

Note that we have the estimate

kr � k
h(w)kL2 (
 2 ) � kr wkL2 (
 2 ) : (4.18)

From the de�nition of � h(w); one can easily see that for allw 2 V2(
 2) we have the identities

u
� k

h (w)
h = uw

h and u
� k

h (w)
2;h = uw

2;h : (4.19)

Now, let us turn our attention to the discretization of the optimization problem (4.8). The natural
way to do that is to replace it by the problem

inf
wh 2 V k

2;h (
 2 )
J h

0 (wh) :=
1
2

�

�
juwh � uwh

2 j2 d�: (4.20)

One can proceed as in the proof of Lemma 4.4.2 to show that the objective functionJ h
0 : Vh;k ! R

(de�ned in (4.20)) is convex and continuous. Unfortunately this result is not su�cient to justify
that the problem (4.20) is well-posed forh > 0 small enough.
The di�culty comes from the fact that, even under Assumption 4.2.1, we do not have the discrete
version of Lemma 4.3.2 since we can not guaranty that the problem

Find uh 2 Vk
h(
) such that

�



� r uh � r vh =

�



fv h 8vh 2 Vk

h(
)
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is well-posed even forh small enough. To cope with this di�culty, an idea is to use the Tikhonov
regularization approach (see Ÿ4.4.4) but with a regularization parameter that depends onh: This
idea was originally proposed in [86] for the case of elliptic equations and then, was used by Assyr
Abdulle et al. in [2] for the case of problems with sign-changing coe�cients. Here, we explain
how to adapt it to our case. The idea is to replace the objective functionJ h

0 in (4.20) by the
function J h : Vk

2;h(
 2) ! R+ such that for all wh 2 Vk
2;h(
 2), we have

J h(wh) :=
1
2

�

�
juwh � uwh

2 j2 d� + � (h)kr whk2
L2 (
 2 )

, where � (h) is a positive function of h that tends to zero as h goes to0. Since � (h) > 0 for
all h > 0; the function J h is strictly convex and coercive. This guarantees that the optimization
problem

min
wh 2 V k

2;h (
 2 )
J h(wh) (4.21)

has a unique solution that we denote byw�
k;h : All the di�culty now is to choose the function � (h)

in order to be able to ensure the convergence of(w�
k;h ) to a solution of (4.8) as h tends to zero.

This is the main goal of the next paragraph.

4.5.3 Convergence of the method

The starting point of our discussion is the following

Lemma 4.5.1. We have the estimate

Jh(w�
k;h ) �

1
2

�

�
ju

w �
J

h � u
w �

J
2;h j2 d� + � (h)kr w�

J k2
L2 (
 2 ) (4.22)

where w�
J is de�ned in (4.11).

Proof. Starting from the fact that � k
h(w�

J ) 2 Vk
2;h(
 2) and using that w�

k;h is the unique solution
of the optimization problem (4.21), we conclude that Jh(w�

k;h ) � Jh(� h(w�
J )) : On the other hand,

the identity (4.19) allows us to write

Jh(� k
h(w�

J )) =
1
2

�

�
ju

w �
J

h � u
w �

J
2;h j2 d� + � (h)kr � h(w�

J )k2
L2 (
 2 ) :

The Lemma is then proved by recalling the estimate (4.18). �

In order to simplify notations, for h > 0 and w 2 V2(
 2); we denote byAh(w) the real number

Ah(w) =
1
2

kuw
h � uw

2;hk2
L2 (�) :

From (4.19), we know that for all w 2 V2(
 2); we haveAh(w) = J h
0 (� k

h(w)) : The main result of
this paragraph is the following theorem.

Theorem 4.5.1. Assume that the function � (h) can be chosen such that the sequences(� (h))
and (Ah(w�

J )=� (h)) converge to zero ash tends to zero. Then,

ˆ the sequence(w�
k;h ) converges, ash ! 0, in V2(
 2) to w�

J :

ˆ The sequences(u
w �

k;h
h ) and (u

w �
k;h

2;h ) converge respectively inH1
0(
) and V2(
 2) to EH (u1)

and u2 where (u1; u2) is the solution of (4.4) and EH (u1) is the harmonic extension ofu1:
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Proof. The strategy of proof is similar to the one of Proposition 4.4.3. To simplify notations,
we denote byuk;h 2 Vk

h(
) and uk;h
2 2 Vk

2;h(
 2) the functions

uk;h = u
w �

k;h
h and uk;h

2 = u
w �

k;h
2;h :

In order to make the proof as clear as possible, we divide it into four steps.
Step 1: weak convergence of (w�

k;h ); (uk;h ) and (uk;h
2 ): Starting from the estimate

kr w�
k;h k2

L2 (
 2 ) � Jh(w�
k;h )=� (h) � Ah(w�

J )=� (h) + kr w�
J k2

L2 (
 2 )

and using the fact that Ah(w�
J )=� (h) tends to 0 as h vanishes, we infer that(w�

k;h ) is bounded in
V2(
 2): This implies that, up to a sub-sequence,(w�

k;h ) converges weakly to somew0 2 V2(
) :
For the reader convenience, this sub-sequence is still denoted by(w�

k;h ).

Since the problem (4.17) is elliptic, we know that the sequence(uk;h ) (resp. (uk;h
2 )) converges

weakly in H1
0(
) (resp. in V2(
 2)) to some u 2 H1

0(
) (resp. u2 2 V2(
 2)). Using the density
of Vk

h(
) (resp. Vk
2;h(
 2)) in H1

0(
) (resp.V2(
 2)), we infer that u = uw0 and u2 = uw0
2 (these

functions are de�ned in (4.9) by replacing w by w0).
Step 2: w0 is a mnimizer of J . The compactness of the embeddingH1=2(�) � L2(�) and the
continuity of trace operator, ensures that

uk;h
j� � uk;h

2 j� ! uw0 � uw0
2

in L2(�) as h ! 0. By noticing that

1
2

�

�
juk;h � uk;h

2 j2 d� = J h
0 (w�

k;h ) � Jh(w�
k;h ) � � (h)(A h(w�

J )=� (h) + kw�
J k2

L2 (
 2 ) )

and using that � (h); Ah(w�
J )=� (h) ! 0 as h goes to zero, we deduce thatuw0 � uw0

2 = 0 : This
shows that w0 is a minimizer of J:
Step 3: strong convergence of (w�

k;h ) to w�
J . Thanks to the fact that Ah(w�

J )=� (h) ! 0 as
h ! 0 and by means of the estimate

kr w�
k;h k2

L2 (
 2 ) � Jh(w�
k;h )=� (h) � Ah(w�

J )=� (h) + kr w�
J k2

L2 (
 2 ) ;

We can write
lim sup

h! 0
kr w�

k;h kL2 (
 2 ) � kr w�
J kL2 (
 2 ) :

On the other hand, since(w�
k;h ) converges weakly tow0 as h ! 0, we infer that

kr w0kL2 (
 2 ) � lim inf
h! 0

kr w�
k;h kL2 (
 2 ) :

This implies that kr w0kL2 (
 2 ) � kr w�
J kL2 (
 2 ) : Since w0 is a minimizer of J; we conclude that

w0 = w�
J : Furthermore, we also deduce that

lim
h! 0

kr w�
k;h kL2 (
 2 ) = kr w0kL2 (
 2 ) :

As a result, by applying [40, Proposition III.30], we infer that (w�
k;h ) converges, strongly, in

V2(
 2) to w0 = w�
J :

Step 4: strong convergence of (uk;h ) and (uk;h
2 ): The ellipticity of Problem (4.17), combined

with the strong convergence of(w�
k;h ) to w�

J , imply the convergence of(uk;h ) in H1
0(
) to uw �

J and

of (uk;h
2 ) in V2(
 2) to u

w �
J

2 :
The Lemma is then proved by using that uw �

J = EH (u1) (see Proposition 4.4.1) and by observing
that these limits are independent of the chosen sub-sequences.

�
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The rest of this paragraph is devoted to explain why it is possible to choose the function� (h) in
such a way that � (h) and Ah(w�

J ) converge to0 as h tends to 0: To do so, one needs to study the
behaviour of Ah(w�

J ) as h tends to 0: For all s � 1; we denote byPHs(
) the space

PHs(
) := f u 2 H1
0(
) such that uj 
 i 2 Hs(
 i ) for i = 1 ; 2g:

Before studding the behavior ofAh(w�
J ); let us start with the following

Proposition 4.5.1. Assume that the solutionu of (4.1) belongs toPH1+ s(
) with s > 0. Then
there existss � s0 > 0 that depends only on the geometry of
 2 and � 2 (0; 1] that depends only
on the geometry of
 such that

kuw �
J � u

w �
J

h kH1
0 (
) � Chp0

kukPH 1+ p0
(
) and ku

w �
J

2 � u
w �

J
2;hkV 2 (
 2 ) � Chp0

ku2kH1+ p0(
 2 ) ;

kuw �
J � u

w �
J

h kL2 (
) � Chp0+ � kukH1+ p0(
) and ku
w �

J
2 � u

w �
J

2;hkL2 (
 2 ) � Chp0+ � ku2kH1+ p0(
 2 )

with C independent ofh and p0 = min( s0; k):

Proof. Along this proof, C denotes a positive constant whose value can change from line to
line but does not depend onh: Given that uw �

J = EH (u1) (see Proposition 4.4.1) and since
u1 2 H1+ s(
 1) then, by means of classical regularity results, we can say that there exists0 < s 0 � s

such that uw �
J 2 PH1+ s0

(
) : Given that u
w �

J
2 = u2 2 Hs(
 2) � Hs0

(
 2) and since the problem
(4.17) is elliptic, we obtain the estimates (see [55])

kuw �
J � u

w �
J

h kH1
0 (
) � Chp0

kukPH 1+ p0
(
) and ku

w �
J

2 � u
w �

J
2;hkV 2 (
 2 ) � Chp0

ku2kH1+ p0(
 2 ) :

By applying the classical Aubin�Nitsche Lemma (see [55, Theorem 3.2.4]), we infer that there
exists 0 < � � 1 such that

kuw �
J � u

w �
J

h kL2 (
) � Chp0+ � kukH1+ p0(
) and ku
w �

J
2 � u

w �
J

2;hkL2 (
 2 ) � Chp0+ � ku2kH1+ p0(
 2 ) :

�

Remark 4.5.2. It is worth to note that the value of s0 depends only on the regularity of the
harmonic extension of the function u1: In particular, if 
 2 is smooth or convex then we have
s0 = s:

Now we have all the tools to study the behaviorAh(w�
J ) as h vanishes.

Proposition 4.5.2. Assume thatu the solution of (4.1) belongs toPH1+ s(
) with 0 < s: There
exists 0 < s 0 � s that depends only on the geometry of
 2 and � 2 (0; 1] that depends only on the
geometry of 
 such that

Ah(w�
J ) � Ch2p0+ �

with C independent ofh and p0 = min( s0; k):

Proof. Applying the multiplicative trace inequality (Proposition 4.8.1) and using the estimates
of Proposition 4.5.1 yield the estimates

kuw �
J � u

w �
J

h k2
L2 (�) � Ch2p0+ � kukPH 1+ p0

(
) and ku
w �

J
2 � u

w �
J

2;hk2
L2 (�) � Ch2p0+ � ku2kH1+ p0(
 2 ) :

By observing that

ku
w �

J
h � u

w �
J

2;hk2
L2 (�) � 2(kuw �

J � u
w �

J
h k2

L2 (�) + ku
w �

J
2 � u

w �
J

2;hk2
L2 (�) );

we conclude that Ah(w�
J ) � Ch2p0+ � : �

The previous proposition gives us a simple way to choose the function� (h) in order to ensure
that (� (h)) and (Ah(w�

J )=� (h)) tend both to 0 as h tends to 0:

Proposition 4.5.3. Any function � (h) of the form � (h) = Chq with C > 0 independent of h
and 0 < q < 2p0+ � satis�es the conditions of Theorem 4.5.1.
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4.6 Numerical experiments

In this section we turn our attention to the validation of the numerical method that we have
proposed. We limit ourselves to the case of 2D domains. The numerical results that we present
below have been obtained using the libraryFreeFem++2. To solve the optimization problem
(4.21), we used theBFGSfunction of FreeFem++.
Since the well-posedness of (4.1) depends on the shape of the interface� ; we test the performance
of our method in three di�erent con�gurations. In the �rst one, � is �at, in the second one, � is
circular interface and in the last one, � has a corner.

4.6.1 Flat interface

In this paragraph, we take


 1 = f (x; y) 2 (0; 1=2) � (0; 1)g and 
 2 = f (x; y) 2 (1=2; 1) � (0; 1)g

(a �at interface and a domain which is symmetric with respect to � ). We consider a mesh
sequence of
 satisfying Assumption 4.5.1 (see Figure 4.3).

Figure 4.3: An example of mesh.

It has been shown in particular with the T-coercivity approach that A " is an isomorphism if and
only if � " 6= � 1. In the rest of this paragraph we suppose that� " 6= � 1: To test the performance
of our method, we work with the same example considered in [2, 51]. De�ne the functionu� "

such that

u� (x; y) =

(
(x2 + bx) sin(�y ) if x < 1=2

a(x � 1) sin(�y ) if 1=2 < x
; where a =

1
2(� " + 1)

and b = �
� " + 2

2(� " + 1)
:

and consider it as an exact solution of (4.1). This is possible becausediv( " r u� ) 2 L2(
) : The
source term f is computed accordingly. Sinceu� 2 PH2(
) and since
 2 is convex, we can take
s = s0 = 1 in Propositions 4.5.1 and 4.5.2.
Furthermore, given that 
 is convex, we have� = 1 : As a result, if we use the LagrangeP1
�nite elements, i.e. p = 1 , a direct application of Proposition 4.5.1 guarantees that by choosing
� (h) = Chq with 0 < q < 3, the method is convergent. In our experiment, we take� (h) = 0 :002h2:
We work with two values of contrasts � " = � 2 and � " = � 1:001. The behavior of the L2 and H1

0
errors with respect to the exact solution in theses two con�gurations are given in Figure 4.4.
We observe that in both situations, the method is of order2 in the L2 norm. We also remark that
the order of convergence in theH1

0 norm is greater than 1: In the particular case � " = � 1:001;
we note a super-convergence in theH1

0 norm.

2See https://freefem.org/.
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Remark 4.6.1. The constant C in � (h) = Chq must be adjusted by the user according to the con-
trast � " in order to obtain a fast convergence of the method. Clearly this depends onkr w�

j kL2 (
 2 ) :
When the solution is such that its normal derivative jump across the interface is large (his the
case when� " approaches� 1), one expects thatkr w�

j kL2 (
 2 ) must be large and thenC must be
chosen small. It is also important to note that that whenh is small enough the choice ofC does
not a�ect the convergence of the method.

Figure 4.4: Behavior of the relativeL2 and H1
0 errors with respect to the meshsizeh �

p
N . Here

N is the total number of nodes of the mesh.

4.6.2 The case of a circular interface

In this paragraph, we consider the case where the domains
 1 and 
 2 are such that 
 1 = f x 2
R2 j j xj < 1g and 
 2 = f x 2 R2 j 1 < jxj < 2g: In Proposition 4.8.2, we prove that A " is an
isomorphism � " =2 f� 1g [ S with S := f� (1 � (1=2)2n )=(1 + (1 =2)2n ) j n 2 N� g: For this we
shall limit ourselves to the case where� " = � 2: Given that both 
 2 and 
 are smooth, we infer
that � = 1 and s0 = s: Again, we are going to work with the LagrangeP1 �nite elements (i.e.
p = 1 ). By taking f as the source term associated to the function

u� " (x; y) =

(
r 2 + b if r < 1

a(r � 2)2 if 1 < r < 2:
; with r =

q
x2 + y2; a = � 1=� " and b = a � 1

and by taking � h = 0 :002h2: We obtain the results displayed in Figure 4.5. We observe that the
method converges with optimal rate.
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Figure 4.5: A member of the mesh sequence (left). The behavior of theL2 and H1
0 errors with

respect to the meshsizeh �
p

N where N is the number of nodes of the mesh(right).

4.6.3 The case of an interface with corner

Now, we consider the con�guration where the interface� has a corner. More precisely, we assume
that 
 := f x 2 R2 jj xj < 1 and arg(x) 2 (0; �= 2)g and 
 1 := f x 2 
 j arg(x) 2 (0; �= 4)g (see
Figure 4.6). In such con�guration, it can be proved (see [74]) that A " is an isomorphism if and
only if � " 2 R�

� n[� 3; � 1]: Furthermore, in contrary to the two previous cases, in this con�guration
the solution of (4.1) can be very singular near the origin. Indeed, it was proved in [49, Chapter
2] that the regularity of the solution of (4.1) depends in � " and can be very low as� " approaches
[� 3; � 1]: To be more complete, one can show that the optimal regularity of the solution of (4.1)
is PH1+ < e(� 0 ) (
) \ H1

0(
) where � 0 is the solution of

� " = � tan(3��= 4)=tan( ��= 4) (4.23)

that has the smallest positive real part. Note that one can show (see [49, Chapter 3]) that all
the solutions to (4.23) are real-valued. In the particular case where� " = � 5; one �nds that
� 0 � 0:458: As mentioned previously this regularity result is optimal. Indeed, one can check that
the function

u� 0 (r; � ) := (1 � r )r � 0

(
sin(�� )=sin(��= 4) � 2 (0; �= 4);

sin(� (� � � ))=sin(3��= 4) � 2 (�= 4; � )

satis�es div( " r u� ) 2 L2(
) : Observe that u� 0 =2 PH� 0+ 
 for all 0 < 
: This means that u� 0 =2
PH3=2: Now, given that 
 and 
 2 are both convex, owing to Proposition 4.5.1, we can say that
by choosing � h = Chq with q < 3� 0; the convergence of the method can be guaranteed. The
behaviors of the relativeL2 error and of the semi-H1

0 one for the case� h = h1:3 are given in Figure
4.6. The expected rate of convergence is equal to� 0 � 0:458 for the case of the semi-H1

0 error
and is equal to2� 0 � 0; 916 for the case of theL2 one. In contrary to the previous two cases, the
rates of convergence of these errors are not optimal but close from the expected ones.
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Figure 4.6: On the left: a member of the mesh sequence. On the right: the behavior of theL2

and H1
0 errors with respect to the meshsizeh �

p
N whereN is the number of nodes of the mesh.

4.7 Concluding remarks

In this chapter, we have presented a new numerical method for approximating the solution of the
scalar transmission problem. We proved that the method converges without any restriction on
the mesh sequence used or on the regularity of the solution. This result has been illustrated by
numerical experiments. We mention some issues/question that can be studied in future work:

ˆ It will be interesting to study how the function � h should be chosen in order to accelerate
the convergence of the method.

ˆ How to extend this extend to the case when the density function is critical? Is it possible
to extend this method to the case of Maxwell's equations?
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4.8 Appendix

Proposition 4.8.1. [39, Theorem 1.6.6] Let 
 be a Lipschitz domain ofRd (d = 2 ; 3). Then the
estimate

kukL2 (@
) � Ckuk1=2
L2 (
) kuk1=2

H1 (
) 8u 2 H1(
)

holds with 0 < C independent ofu:

Proposition 4.8.2. Let 
 1 = f x 2 R2 j j xj < 1g and 
 2 = f x 2 R2 j 1 < jxj < 2g. Assume that
� " =2 f� 1g [ S with

S :=

(

�
1 � (1=2)2n

1 + (1=2)2n j n 2 N�

)

:

Then the operator A " : H1
0(
) ! H1

0(
) is an isomorphism.

Remark 4.8.1. Note that in accordance with the results concerning the Neumann-Poincaré op-
erator, we observe that� 1 is an accumulation point of S .

Proof. [50, Theorem 1.3.3] guarantees thatA " is Fredholm of index 0 when � " 6= � 1: Therefore
it su�ces to study its kernel. Let u 2 H1

0(
) be such that A " u = 0 : Then u1 := uj 
 1 and u2 = uj 
 2

satisfy 8
>><

>>:

� u1 = 0 in 
 1

� u2 = 0 in 
 2

u1(1; � ) = u2(1; � ) and @r u1(1; � ) = � " @u2(1; � ) 8� 2 [0; 2� ]:

Since the problem is invariant with respect to � , by Fourier decomposition for u1, u2 we have the
representations:

u1(r; � ) =
X

n2 N

an r nei n� and u2(r; � ) = b0 ln( r=2) +
X

n2 Z�

bn (( r=2)n � (r=2)� n ) ei n� ;

where an ; bn 2 C. Using the transmission conditions, we get

a0 = b0 ln(1=2); 0 = b0� "

an = bn ((1=2)n � (1=2)� n ); an = bn ((1=2)n + (1 =2)� n )� " ; n 2 N�

0 = bn ((1=2)n � (1=2)� n ); 0 = bn ((1=2)n + (1 =2)� n )� " ; � n 2 N� :

Therefore we deduce thatA " is injective when � " =2 S . �
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123 5.1. Introduction

5.1 Introduction

The present chapter inaugurates the third part of this thesis, which aims to present a detailed
study of 3D (time harmonic) Maxwell's equations in presence of a negative material. Our goal
is explain how the study of the scalar problems associated to the dielectric permittivity " and
the one associated to the the magnetic permeability� can be used to study the 3D Maxwell's
equations. Unlike the study of scalar problems with changing coe�cients which has been the
subject of many contributions, the case of the 3D Maxwell equations has been treated in only
two papers [24, 118]. While the work done in [118] deals with the case where the interface be-
tween the positive and negative material is smooth (classC1), the results obtained in [24] are
valid in the general case (i.e., when the interface separating the two materials is Lipschitz-regular).

In the present work, we consider the con�guration where the interface that separates the positive
and the negative material has a conical point (more details will be given later). Therefore, the
only work that can help us in our study is the one presented in [24]. What we can retain from
this work is the following fact: if the contrasts in " and � do not take critical values, the Maxwell
equations are well-posed (in the Fredholm sense) in the classicalL2� framework. The main tool
used to establish this result was theT-coercivity technique. When one of the functions" or � is
critical or when both of them are critical, the study of the Maxwell's problem has not been done
yet.
In this chapter, we will consider the case where the function" is critical (i.e. propagating singular-
ities exist for the scalar problem associated with" ) and where the function � does not take critical
values. More precisely, our goal is to explain why, in this con�guration, the classical framework
is no longer appropriate to study Maxwell's equations and, more importantly, to explain how
to combine Mellin's analysis in Kondratiev spaces with theT coercivity technique to derive an
appropriate functional framework for Maxwell's equations in such con�guration. We emphasize
that due to the non standard singularities we have to deal with, the results we obtain are quite
di�erent from the ones existing for classical Maxwell's equations with positive materials in non
smooth domains [15, 60, 16, 66, 62]. The case where both functions" and � take critical values
will be studied in the next chapter.

The outline is as follows. In the remaining part of the introduction, we present some general
notation. In Section 5.2, we describe the assumptions made on the dielectric constants" , � .
Then we propose a new functional framework for the problem for the electric �eld and show
its well-posedness in Section 5.3. Section 5.4 is dedicated to the analysis of the problem for
the magnetic �eld. We emphasize that due to the assumptions made on" , � (the contrast in
" is critical but the one in � is not), the studies in sections 5.3 and 5.4 are quite di�erent. We
give a few words of conclusion in Section 5.5 before presenting technical results needed in the
analysis in two sections of appendix. The main outcomes of this work are Theorem 5.3.1 (well-
posedness for the electric problem) and Theorem 5.4.1 (well-posedness for the magnetic problem).

All the study will take place in some domain 
 of R3. More precisely, 
 is an open, connected
and bounded subset ofR3 with a Lipschitz-continuous boundary @
 . Once for all, we make the
following assumption:

Assumption 1. The domain 
 is simply connected and@
 is connected.

When this assumption is not satis�ed, the analysis below must be adapted (see the discussion in
the conclusion). For some! 6= 0 (! 2 R), the time-harmonic Maxwell's equations are given by

curl E � i! � H = 0 and curl H + i! " E = J in 
 : (5.1)

E and H above are respectively the electric and magnetic components of the electromagnetic
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�eld. The source term J is the current density. We suppose that the medium
 is surrounded
by a perfect conductor and we impose the boundary conditions

E � � = 0 and � H � � = 0 on @
 ; (5.2)

where � denotes the unit outward normal vector �eld to @
 . Note that non homogeneous bound-
ary conditions can be considered as well and that the results we obtain below also allow one to
deal with the case of impedance boundary conditions (see Remark 5.3.3). The dielectric permit-
tivity " and the magnetic permeability � are real valued functions which belong toL1 (
) , with
" � 1; � � 1 2 L1 (
) (without assumption of sign). Let us introduce some usual spaces in the study
of Maxwell's equations:

L 2(
) := (L 2(
)) 3

H1
0(
) := f ' 2 H1(
) j ' = 0 on @
 g

H1
# (
) := f ' 2 H1(
) j

�



' dx = 0g

H (curl ) := f H 2 L 2(
) j curl H 2 L 2(
) g
H N (curl ) := f E 2 H (curl ) j E � � = 0 on @
 g

and for � 2 L1 (
) :

X T (� ) := f H 2 H (curl ) j div( � H ) = 0 ; � H � � = 0 on @
 g
X N (� ) := f E 2 H N (curl ) j div( � E ) = 0 g:

We denote indistinctly by (�; �) 
 the classical inner products ofL2(
) and L 2(
) . Moreover, k � k


stands for the corresponding norms. We endow the spacesH (curl ), H N (curl ), X T (� ), X N (� )
with the norm

k � kH (curl ) := ( k � k2

 + kcurl � k2


 )1=2:

Let us recall a well-known property for the particular spacesX T (1) and X N (1) (cf. [139, 8]).

Proposition 5.1.1. Under Assumption 1, the embeddings ofX T (1) in L 2(
) and of X N (1) in
L 2(
) are compact. And there is a constantC > 0 such that

kuk
 � C kcurl uk
 ; 8u 2 X T (1) [ X N (1):

Therefore, in X T (1) and in X N (1), kcurl � k
 is a norm which is equivalent tok � kH (curl ) .

5.2 Assumptions for the dielectric constants " , �

In this document, for a Banach spaceX, X � stands for the topological antidual space ofX (the
set of continuous anti-linear forms onX).
In the analysis of the Maxwell's system (7.5)-(7.6), the properties of two scalar operators associ-
ated respectively with " and � play a key role. De�ne A " : H1

0(
) ! (H1
0(
)) � such that

hA " '; ' 0i =
�



" r ' � r ' 0dx; 8'; ' 0 2 H1

0(
) (5.3)

and A � : H1
# (
) ! (H1

# (
)) � such that

hA � '; ' 0i =
�



� r ' � r ' 0dx; 8'; ' 0 2 H1

# (
) :

Assumption 2. We assume that� is such that A � : H1
# (
) ! (H1

# (
)) � is an isomorphism.

Assumption 2 is satis�ed in particular if � has a constant sign (by Lax-Milgram theorem). We
underline however that we allow � to change sign (see in particular [68, 27, 20, 24] for examples
of sign-changing� such that Assumption 2 is veri�ed). The assumption on " , that will be respon-
sible for the presence of (hyper)singularities, requires to consider a more speci�c con�guration as
explained below.
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5.2.1 Conical tip and scalar (hyper)singularities

We assume that 
 contains an inclusion of a particular material (metal at optical frequency,
metamaterial, ...) located in some domainM such that M � 
 (M like metal or metamaterial).
We assume that @M is of classC2 except at the origin O where M coincides locally with a
conical tip. More precisely, there are � > 0 and some smooth domain$ of the unit sphere
S2 := f x 2 R3 j j xj = 1g such that B (O; � ) � 
 and

M \ B (O; � ) = K \ B (O; � ) with K := f r � j r > 0; � 2 $ g:

Here B (O; � ) stands for the open ball centered atO and of radius � . We assume that" takes the
constant value " � < 0 (resp. "+ > 0) in M \ B (O; � ) (resp. (
 n M ) \ B (O; � )). And we assume
that the contrast � " := " � ="+ < 0 and $ (which characterizes the geometry of the conical tip)
are such that there exist singularities of the form

s(x) = r � 1=2+ i� �( x=jxj) (5.4)

satisfying div( " r s) = 0 in K with � 2 R; � 6= 0 . Here r := jxj while � is a function which is
smooth in $ and in S2 n$ . We emphasize that since the interface between the metamaterial and
the exterior material is not smooth, singularities always exist at the conical tip. However, here
we make a particular assumption on the singular exponent which has to be of the form� 1=2 + i�
with � 2 R; � 6= 0 . Such singularities play a particular role for the operator A " introduced in
(5.3) because they are �just� outside H1. More precisely, we haves =2 H1(
) but r 
 s 2 H1(
) for
all 
 > 0. With them, we can construct a sequence of functionsun 2 H1

0(
) such that

8n 2 N; kunkH1 (
) = 1 and lim
n! + 1

kdiv( " r un )k(H 1
0 (
)) � + kunk
 = 0 :

Then this allows one to prove that the range of A " : H1
0(
) ! (H1

0(
)) � is not closed (see
[28, 20, 30] in 2D). Of course, for any given geometry, such singularities do not exist when� " > 0
because we know that in this caseA " : H1

0(
) ! (H1
0(
)) � is an isomorphism. On the other hand,

when

$ = f (cos� cos�; sin � cos�; sin � ) j � � � � � �; � �= 2 � � < � �= 2 + � g for some� 2 (0; � )
(5.5)

(the circular conical tip, see Figure 5.1), thanks to Theorem 3.4.6, we know that suchs exists for
� " 2 (� 1; � I � ) (resp. � " 2 (� I � ; � 1)) when � < �= 2 (resp. � > �= 2). Here I � is the constant
de�ned by

I � := 2F1(1=2; 1=2; 1; cos2(�= 2)) 2F1(3=2; 3=2; 2; sin2(�= 2))

2F1(1=2; 1=2; 1; sin2(�= 2)) 2F1(3=2; 3=2; 2; cos2(�= 2))
> 0; (5.6)

where 2F1 stands for the Gauss's hypergeometric function. Note that we haveI � = 1=I � � �

and I � 2 (0; 1) for � 2 (0; �= 2). Additionally, there holds for example I �= 4 � 0:218 as well as
lim � ! �= 2 I � = 1 , lim � ! 0+ I � = 0 + , lim � ! � � I � = + 1 .

For a general smooth domain$ � S2 and a given contrast � " , in order to know if such s exists,
one has to solve the spectral problem

Find (� ; � ) 2 H1(S2) n f 0g � C such that�

S2
" r S� � r S� 0ds = � (� + 1)

�

S2
" � � 0ds; 8� 0 2 H1(S2);

(5.7)

and see if among the eigenvalues some of them are of the form� = � 1=2 + i� with � 2 R; � 6= 0 .
Above, r S stands for the surface gradient. With a slight abuse, when" is involved into integrals
over S2, we write " instead of " (� �). Note that since " is real-valued, if � = � 1=2 + i� is an
eigenvalue, we have� (� + 1) = � � 2 � 1=4, so that � = � 1=2 � i� is also an eigenvalue for the
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Figure 5.1: Left: the domain 
 with the inclusion M exhibiting a conical tip. Right: sjM
for the circular conical tip with � = �= 6 (the critical interval is then approximately given by
[� 1; � 0:1032]) and � " = � 0:36. In this situation, we have � � 2.

same eigenfunction. And since� (� + 1) 2 R, we can �nd a corresponding eigenfunction which
is real-valued. Let us mention that this problem of existence of singularities of the form (5.4)
is directly related to the problem of existence of essential spectrum for the so-called Neumann-
Poincaré operator [98, 127, 36, 93]. A noteworthy di�erence with the 2D case of a corner in the
interface is that several singularities of the form (5.4) with di�erent values of j� j can exist in 3D
[96] (this depends on" and on $ ).
For pedagogical purposes, we shall suppose that the function" is such that the problem (5.7)
has exactly two eigenvalues that belong tof � 2 C j < e(� ) = � 1=2gnf� 1=2g that will be denoted
by � �

� := � 1=2 � i� with � 2 R�
+ : Furthermore, we are going to suppose that� �

� are simple (of
algebraic multiplicity (see Ÿ2.4.5) equal to one) eigenvalues of (5.7). In this case, using the results
of Ÿ2.6.2, one can show that the the operatorA " has exactly two propagating singularities that
have the form s� (x) = r � �

� �( x=jxj) in which � is real-valued eigenfunction of (5.7) associated to

� � such that k� kH1 (S2 ) = 1 and satisfying �
�

S2
� j� j2 6= 0 : Exchanging � by � � if necessary, we

can set � so that

�
�

S2
" j� j2ds > 0: (5.8)

Note that the previous condition is equivalent to suppose that s+ is outgoing (with respect to
the Mandelstam radiation principle (see Ÿ2.6.2)). For the circular conical tip introduced in (5.5),
say for � < �= 2, we �nd that the above assumptions are satis�ed for contrasts � " 2 (� I y

� ; � I � )
with a certain I y

� 2 (I � ; 1). For � " 2 (� 1; � I y
� ), the number of hypersingularities is larger than

two (counting � ).

Remark 5.2.1. In the case where several propagating singularities exist (even with logarithmic
growth near the origin), the analysis below can be adapted. If the reader is interested in the
treatment of this con�guration, we refer him to the next chapter.

To �x notations, we set
s� (x) = � (r )r � 1=2� i� �( x=jxj) (5.9)

In this de�nition the smooth cut-o� function � is equal to one in a neighbourhood of0 and is
supported in [� � ; � ]. In particular, we emphasize that s� vanish in a neighbourhood of@
 .

In order to recover Fredholmn property for the scalar problem involving " , an important idea
is too add one (and only one) of the singularities (5.9) to the functional framework. From a
mathematical point of view, working with the complex conjugation, it is obvious to see that
adding s+ or s� does not change the results. However physically one framework is more relevant
than the other. More precisely, we will explain in Ÿ5.3.7 with the limiting absorption princi-
ple why selecting s+ , with � such that (5.8) holds, together with a certain convention for the
time-harmonic dependence, is more natural.
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5.2.2 Kondratiev functional framework

In this paragraph, adapting what is done in [30] for the 2D case, we describe in more details how
to get a Fredholm operator for the scalar operator associated with" . For � 2 R and m 2 N, let
us introduce the weighted Sobolev (Kondratiev) spaceVm

� (
) (see [100]) de�ned as the closure
of C1

0 (
 n f Og) for the norm

k' kV m
� (
) =

0

@
X

j � j� m

kr j � j� m+ � @�
x ' k2

L2 (
)

1

A

1=2

:

Here C1
0 (
 n f Og) denotes the space of in�nitely di�erentiable functions which are supported in


 n f Og. We also denote�V1
� (
) the closure ofC1

0 (
 n f Og) for the norm k � kV 1
� (
) . We have the

characterisation
�V1

� (
) = f ' 2 V1
� (
) j ' = 0 on @
 g:

Note that using Hardy's inequality
� 1

0

ju(r )j2

r 2 r 2dr � 4
� 1

0
ju0(r )j2 r 2dr; 8u 2 C1

0 [0; 1);

one can show the estimatekr � 1' k
 � C kr ' k
 for all ' 2 C1
0 (
 n f Og). This proves that

�V1
0(
) = H 1

0(
) . Now set � > 0. Observe that we have

�V1
� � (
) � H1

0(
) � �V1
� (
) so that (�V1

� (
)) � � (H1
0(
)) � � (�V1

� � (
)) � :

De�ne the operators A � �
" : �V1

� � (
) ! (�V1
� � (
)) � such that

hA � �
" '; ' 0i =

�



" r ' � r ' 0dx; 8' 2 �V1

� � (
) ; ' 0 2 �V1
� � (
) : (5.10)

Working as in [30] for the 2D case of the corner, one can show that there is� 0 > 0 (depending only
on � " and $ ) such that for all � 2 (0; � 0), A �

" is Fredholm of index +1 while A � �
" is Fredholm of

index � 1. Note that we have � 0 = min f< e � +1=2j � eigenvalue of (5.7) such that<e � > � 1=2g.
We remind the reader that for a bounded linear operator between two Banach spacesT : X ! Y
whose range is closed, its index is de�ned asind T := dim ker T � dim coker T, with dim coker T =
dim (Y =range(T)) . On the other hand, application of Kondratiev calculus based in particular on
the residue theorem (see [30, Theorem 5.2], [102, Theorem 5.4.2]) guarantees that if' 2 �V1

� (
) is
such that A+ �

" ' 2 (�V1
� (
)) � (the important point here being that (�V1

� (
)) � � (�V1
� � (
)) � ), then

there holds the following representation

' = c� s� + c+ s+ + ~' with c� 2 C and ~' 2 �V1
� � (
) : (5.11)

Note that s� , with s� de�ned by (5.9), belongs to �V1
� (
) , but not to H1

0(
) , and a fortiori not
to �V1

� � (
) . Then introduce the space�Vout := span(s+ ) � �V1
� � (
) , endowed with the norm

k' kV out = ( jcj2 + k ~' k2
V 1

� � (
)) )1=2; 8' = c s+ + ~' 2 �Vout ; (5.12)

which is a Banach space. Introduce also the operatorAout
" such that for all ' = c s+ + ~' 2 �Vout

and ' 0 2 C1
0 (
 n f Og),

hAout
" '; ' 0i =

�



" r ' � r ' 0dx = � c

�



div( " r s+ )' 0dx +

�



" r ~' � r ' 0dx:

Note that due to the features of the cut-o� function � , we havediv( " r s+ ) 2 L2(
) . And since
div( " r s+ ) = 0 in a neighbourhood of O, we observe that there is a constantC > 0 such that
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jhAout
" '; ' 0ij � C k' kV out k' 0kV 1

� (
) . The density of C1
0 (
 n f Og) in �V1

� (
) then allows us to

extend Aout
" as a continuous operator from�Vout to (�V1

� (
)) � . And we have

hAout
" '; ' 0i = � c

�



div( " r s+ )' 0dx +

�



" r ~' � r ' 0dx; 8' = c s+ + ~'; ' 0 2 �V1

� (
) :

Working as in [30] (see Proposition 4.4.) for the 2D case of the corner, one can prove that
Aout

" : �Vout ! (�V1
� (
)) � is Fredholm of index zero and that ker Aout

" = ker A � �
" . In order to

simplify the analysis below, we shall make the following assumption.

Assumption 3. We assume that" satis�es the conditions of Ÿ5.2.1 so that in particular the
range of A " : H1

0(
) ! (H1
0(
)) � is not closed. Moreover we assume that for� 2 (0; � 0), A � �

" is
injective, which guarantees thatAout

" : �Vout ! (�V1
� (
)) � is an isomorphism.

The second part of this hypothesis boils down to supposing that there are no non zero regu-
lar solutions of the homogeneous problemdiv( " r ' ) = 0 in 
 , ' = 0 on @
 . Note that due to
the change of sign of" , such solutions may exist in very speci�c con�gurations, but they form at
most a �nite dimensional set [105, 29] which can be included in the analysis.

In what follows, we shall also need to work with the usual Laplace operator in weighted Sobolev
spaces. For
 2 R, de�ne A 
 : �V1


 (
) ! (�V1
� 
 (
)) � such that

hA 
 '; ' 0i =
�



r ' � r ' 0dx; 8' 2 �V1


 (
) ; ' 0 2 �V1
� 
 (
)

(observe that there is no" here). Combining the theory presented in [102] (see also the founding
article [100] as well as the monographs [107, 113]) together with the result of [101, Corollary
2.2.1], we get the following proposition.

Proposition 5.2.1. For all 
 2 (� 1=2; 1=2), the operator A 
 : �V1

 (
) ! (�V1

� 
 (
)) � is an
isomorphism.

Note in particular that for 
 = 0 , this proposition simply says that � : H 1
0(
) ! (H1

0(
)) � is an
isomorphism. In order to have a result of isomorphism both forAout

" and A � , we shall often make
the assumption that the weight � is such that

0 < � < min(1=2; � 0) (5.13)

where � 0 is de�ned after (5.10).
To measure electromagnetic �elds in weighted Sobolev norms, in the following we shall work in
the spaces

V 0
� (
) := (V 0

� (
)) 3

�V
1
� (
) := ( �V1

� (
)) 3:

Note that we have V 0
� � (
) � L 2(
) � V 0

� (
) .

5.3 Analysis of the problem for the electric component

In this section, we consider the problem for the electric �eld associated with (7.5)-(7.6). Since the
scalar problem involving " is well-posed in a non standard framework involving the propagating
singularity s+ (see (5.12)), we shall add its gradient in the space for the electric �eld. Then
we de�ne a variational problem in this unsual space, and prove its well-posedness. In Ÿ5.3.5 we
explain why the formulation in the classical framework fails to provide the solution of Maxwell
problem. Finally we justify the choice of the new framework by a limiting absorption principle.
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5.3.1 A well-chosen space for the electric �eld

De�ne the space of electric �elds with the divergence free condition

X out
N (" ) := f u = cr s+ + ~u; c 2 C; ~u 2 L 2(
) j curl u 2 L 2(
) ; div( "u ) = 0 in 
 n f Og;

u � � = 0 on @
 g:
(5.14)

In this de�nition, for u = cr s+ + ~u, the condition div( "u ) = 0 in 
 n f Og means that there holds
�



"u � r ' dx = 0 ; 8' 2 C1

0 (
 n f Og); (5.15)

which after integration by parts and by density of C1
0 (
 n f Og) in H1

0(
) is equivalent to

� c
�



div( " r s+ )' dx +

�



" ~u � r ' dx = 0 ; 8' 2 C1

0 (
) : (5.16)

Note that we have X N (" ) � X out
N (" ) and that dim (X out

N (" )=X N (" )) = 1 (see Lemma 5.6.4 in
Appendix). For u = cr s+ + ~u with c 2 C and ~u 2 L 2(
) , we set

kukX out
N (" ) = ( jcj2 + k~uk2


 + kcurl uk2

 )1=2 :

Endowed with this norm, X out
N (" ) is a Banach space.

Lemma 5.3.1. Pick some� satisfying (5.13). Under Assumptions 1 and 3, for anyu = cr s+ +
~u 2 X out

N (" ), we have~u 2 V 0
� � (
) and there is a constantC > 0 independent ofu such that

jcj + k~ukV 0
� � (
) � C kcurl uk
 : (5.17)

As a consequence, the normk�kX out
N (" ) is equivalent to the normkcurl �k
 in X out

N (" ) and X out
N (" )

endowed with the inner product(curl �; curl �) 
 is a Hilbert space.

Proof. Let u = cr s+ + ~u be an element ofX out
N (" ). The �eld ~u is in L 2(
) and therefore

decomposes as
~u = r ' + curl  (5.18)

with ' 2 H1
0(
) and  2 X T (1) (item iv ) of Proposition 5.6.1). Moreover, sinceu � � = 0 on @


and since boths+ and ' vanish on @
 , we know that curl  � � = 0 on @
 . Then noting that
� �  = curl ~u = curl u 2 L 2(
) , we deduce from Proposition 5.6.2 thatcurl  2 V 0

� � (
) with
the estimate

kcurl  kV 0
� � (
) � C kcurl uk
 : (5.19)

Using (5.15), the condition div( "u ) = 0 in 
 n f Og implies
�



" r (c s+ + ' ) � r ' 0dx = �

�



"curl  � r ' 0dx; 8' 0 2 �V1

� � (
) ;

which means exactly that A �
" (c s+ + ' ) = � div( " curl  ) 2 (�V1

� � (
)) � . Since additionally
� div( " curl  ) 2 (�V1

� (
)) � , from (5.11) we know that there are some complex constantsc�

and some ~' 2 �V1
� � (
) such that

c s+ + ' = c� s� + c+ s+ + ~':

This implies c� = 0 , c+ = c (because' 2 H1
0(
) ) and so ' = ~' is an element of�V1

� � (
) . This
shows thatc s+ + ' 2 �Vout and that Aout

" (c s+ + ' ) = � div( " curl  ): SinceAout
" : �Vout ! (�V1

� (
)) �

is an isomorphism, we have the estimate

jcj + k' kV 1
� � (
) � C kdiv( " curl  )k(�V 1

� (
)) � � C kcurl  kV 0
� � (
) : (5.20)

Finally gathering (5.18)�(5.20), we obtain that ~u 2 V 0
� � (
) and that the estimate (5.17) is valid.

Noting that k~uk
 � C k~ukV 0
� � (
) , this implies that the norms k � kX out

N (" ) and kcurl � k
 are

equivalent in X out
N (" ). �
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Thanks to the previous lemma and by density ofC1
0 (
 n f Og) in �V1

� (
) , the condition (5.16) for
u = cr s+ + ~u 2 X out

N (" ) is equivalent to

� c
�



div( " r s+ )' dx +

�



" ~u � r ' dx = 0 ; 8' 2 �V1

� (
) (5.21)

where all the terms are well-de�ned as soon as� satis�es (5.13).

5.3.2 De�nition of the problem for the electric �eld

Our objective is to de�ne the problem for the electric �eld as a variational formulation set in
X out

N (" ). For some
 > 0, let J be an element ofV 0
� 
 (
) such that div J = 0 in 
 . Consider the

problem

Find u 2 X out
N (" ) such that�



� � 1curl u � curl v dx � ! 2

 



"u � v dx = i!

�



J � v dx; 8v 2 X out

N (" );
(5.22)

where the term  



"u � v dx (5.23)

has to be carefully de�ned. The di�culty comes from the fact that X out
N (" ) is not a subspace of

L 2(
) so that this quantity cannot be considered as a classical integral.
Let u = cu r s+ + ~u 2 X out

N (" ). First, for ~v 2 V 0
� � (
) with � > 0, it is natural to set

 



"u � ~v dx :=

�



"u � ~v dx: (5.24)

To complete the de�nition, we have to give a sense to (5.23) whenv = r s+ . Proceeding as for
the derivation of (5.21), we start from the identity

�



"u � r ' dx = � cu

�



div( " r s+ )' dx +

�



" ~u � r ' dx; 8' 2 C1

0 (
 n f Og):

By density of C1
0 (
 n f Og) in �V1

� (
) , this leads to set
 



"u � r ' dx := � cu

�



div( " r s+ )' dx +

�



" ~u � r ' dx; 8' 2 �V1

� (
) : (5.25)

With this de�nition, condition (5.21) can be written as
 



"u � r ' dx = 0 ; 8' 2 �V1

� (
) :

In particular, since s+ 2 �V1
� (
) , for all u 2 X out

N (" ) we have
 



"u � r s+ dx = 0 and so

�



" ~u � r s+ dx = cu

�



div( " r s+ )s+ dx: (5.26)

Finally for all u = cu r s+ + ~u and v = cv r s+ + ~v in X out
N (" ), using (5.24) and (5.26), we �nd

 



"u � v dx =

�



"u � ~v dx = cu

�



" r s+ � ~v dx +

�



" ~u � ~v dx:

But since v 2 X out
N (" ), we deduce from the second identity of (5.26) that

�



" r s+ � ~v dx = cv

�



div( " r s+ )s+ dx: (5.27)

Summing up, we get
 



"u � v dx = cu cv

�



div( " r s+ )s+ dx +

�



" ~u � ~v dx; 8u ; v 2 X out

N (" ): (5.28)
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Remark 5.3.1. Even if we use an integral symbol to keep the usual aspects of formulas and
facilitate the reading, it is important to consider this new quantity as a sesquilinear form

(u ; v) 7!
 



"u � v dx

on X out
N (" ) � X out

N (" ). In particular, we point out that this sesquilinear form is not hermitian on
X out

N (" ) � X out
N (" ). Indeed, we have

 



"v � u dx =

�



" ~u � ~v dx + cu cv

�



div( " r s+ )s+ dx

so that  



"u � v dx �

 



"v � u dx = 2 icu cv =m

� �



div( " r s+ ) s+ dx

�
: (5.29)

But Lemma 5.3.3 and assumption(5.8) show that

=m
� �



div( " r s+ ) s+ dx

�
6= 0 :

In the sequel, we denote byaN (�; �) (resp. `N (�)) the sesquilinear form (resp. the antilinear form)
appearing in the left-hand side (resp. right-hand side) of (5.22).

5.3.3 Equivalent formulation

Before proving well-posedness inX out
N (" ), we have to make sure that a solution of (5.22) satis�es

the initial problem (7.5)�(7.6). Proceeding as in the case of positive coe�cients, this leads us to
introduce the following space

H out
N (curl ) := span( r s+ ) � H N (curl ) � X out

N (" )

(without the divergence free condition) and to consider the problem

Find u 2 H out
N (curl ) such that

aN (u ; v) = `N (v); 8v 2 H out
N (curl );

(5.30)

where the de�nition of  



"u � v dx

has to be extended to the spaceH out
N (curl ). Working exactly as in the beginning of the proof of

Lemma 5.3.1, one can show that anyu 2 H out
N (curl ) admits the decomposition

u = cu r s+ + r ' u + curl  u ; (5.31)

with cu 2 C, ' u 2 H1
0(
) and  u 2 X T (1), such that curl  u 2 V 0

� � (
) , for � satisfying (5.13).
Then, for all u = cu r s+ + r ' u + curl  u and v = cv r s+ + r ' v + curl  v in H out

N (curl ), a
natural extension of the previous de�nitions leads to set

 



"u � v dx :=

�



" (r ' u + curl  u ) � (r ' v + curl  v ) dx

+
�



cu " r s+ � curl  v + cv " curl  u � r s+ dx

�
�



cu cv div( " r s+ )s+ + cu div( " r s+ )' v + cv ' u div( " r s+ ) dx:

(5.32)
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Note that (5.32) is indeed an extension of (5.28). To show it, �rst observe that for u = cu r s+ +
r ' u + curl  u , v = cv r s+ + r ' v + curl  v in X out

N (" ), the proof of Lemma 5.3.1 guarantees
that ' u , ' v 2 �V1

� � (
) with � satisfying (5.13). This allows us to integrate by parts in the last
two terms of (5.32) to get

 



"u � v dx :=

�



" (r ' u + curl  u ) � (r ' v + curl  v ) dx

+
�



cu " r s+ � (r ' v + curl  v ) + cv " (r ' u + curl  u ) � r s+ dx

� cu cv

�



div( " r s+ )s+ dx:

(5.33)

Using (5.26), (5.27), the second line above can be written as
�



cu " r s+ � (r ' v + curl  v ) + cv " (r ' u + curl  u ) � r s+ dx

= cu cv

�



div( " r s+ )s+ dx + cu cv

�



div( " r s+ )s+ dx:

(5.34)

Inserting (5.34) in (5.33) yields exactly (5.28).

Lemma 5.3.2. Under Assumptions 1 and 3, the �eld u is a solution of (5.22) if and only if it
solves the problem (5.30). As a consequence, ifu satis�es (5.22), then (E ; H ) := ( u ; (i!� ) � 1curl u )
is a solution of (7.5)-(7.6).

Proof. If u 2 H out
N (curl ) satis�es (5.30), then taking v = r ' with ' 2 C1

0 (
 n f Og) in (5.30),
and using that div J = 0 in 
 , we get (5.15), which implies that u 2 X out

N (" ). This shows that u
solves (5.22).

Now assume that u 2 X out
N (" ) � H out

N (curl ) is a solution of (5.22). Let v be an element of
H out

N (curl ). As in (5.31), we have the decomposition

v = cv r s+ + r ' v + curl  v ; (5.35)

with cv 2 C, ' v 2 H1
0(
) and  v 2 X T (1) such that curl  v 2 V 0

� � (
) for all � satisfying (5.13).
By Assumption 3, there is � 2 �Vout such that

Aout
" � = � div( " curl  v ) 2 (�V1

� (
)) � : (5.36)

The function � decomposes as� = �s + + ~� with ~� 2 �V1
� � (
) . Finally, set

v̂ = curl  v � r � = v � r (cv s+ + ' v + � ):

The function v̂ is in X out
N (" ), it satis�es curl v̂ = curl v and from (5.26), we deduce that

 



"u � v̂ dx =

 



"u � v dx:

Using also that J 2 V 0
� 
 (
) for some
 > 0 and is such that div J = 0 in 
 , so that

�



J � v̂ dx =

�



J � v dx;

this shows that aN (u ; v) = aN (u ; v̂ ) = `N (v̂ ) = `N (v) and proves that u is a solution of (5.30).

Now if u satis�es (5.22), and so (5.30), sincer s+ 2 L 1(
) := L 1(
) 3, we have u 2 L 1(
) .
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Therefore there holdscurl u 2 D 0(
) 3 where D 0(
) denotes the set of distributions on
 . And
actually one can verify that curl u 2 L 2(
) becausecurl r s+ = 0 in 
 . Thus we can set
(E ; H ) := ( u ; (i!� ) � 1curl u ) 2 L 1(
) � L 2(
) . Clearly we have curl E = i! � H in 
 . By
taking v 2 C1

0 (
) 3 � H out
N (curl ) in (5.30) and by observing that in this case

 



"u � v dx =

�



"u � v dx;

we obtain curl H + i! " E = J in D 0(
) 3. Moreover, becauseE 2 H out
N (curl ), we haveE � � = 0

on @
 . Finally, using the relation curl E = i! � H in 
 , for ' 2 C1
0 (
 n M ), we �nd

h� H � �; ' i @
 =
�



� H � r ' dx = ( i! ) � 1

�



curl E � r ' dx = 0 :

From the density of traces of elements ofC1
0 (
 nM ) into H1=2(@
) , we infer that � H � � = 0 on

@
 . �

In the following, we shall work with the formulation (5.22) set in X out
N (" ). The reason being

that, as usual in the analysis of Maxwell's equations, the divergence free condition will yield a
compactness property allowing us to deal with the term involving the frequency! .

5.3.4 Main analysis for the electric �eld

De�ne the continuous operators Aout
N : X out

N (" ) ! (X out
N (" )) � and Kout

N : X out
N (" ) ! (X out

N (" )) �

such that for all u ; v 2 X out
N (" ),

hAout
N u; v i =

�



� � 1curl u � curl v dx; hKout

N u; v i =
 



"u � v dx:

With this notation, we have h(Aout
N + Kout

N )u ; v i = aN (u ; v).

Proposition 5.3.1. Under Assumptions 1�3, the operator Aout
N : X out

N (" ) ! (X out
N (" )) � is an

isomorphism.

Proof. Let us construct a continuous operatorT : X out
N (" ) ! X out

N (" ) such that for all u ; v 2
X out

N (" ), �



� � 1curl u � curl (Tv) dx =

�



curl u � curl v dx:

To proceed, we adapt the method presented in [24]. Assume thatv 2 X out
N (" ) is given. We

construct Tv in three steps.

1) Since curl v 2 L 2(
) and A � : H1
# (
) ! (H1

# (
)) � is an isomorphism, there is a unique
� 2 H1

# (
) such that
�



� r � � r � 0dx =

�



� curl v � r � 0dx; 8� 0 2 H1

# (
) :

Then the �eld � (curl v � r � ) 2 L 2(
) is divergence free in
 and satis�es � (curl v � r � ) � � = 0
on @
 .

2) From item ii ) of Proposition 5.6.1, we infer that there is  2 X N (1) such that

� (curl v � r � ) = curl  :

Thanks to Lemma 5.6.2, we deduce that 2 V 0
� � (
) for all � 2 (0; 1=2) and a fortiori for �

satisfying (5.13).
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3) Suppose now that � satis�es (5.13). Then we know from the previous step that div( "  ) 2
(�V1

� (
)) � . On the other hand, by Assumption 3, Aout
" : �Vout ! (�V1

� (
)) � is an isomorphism.
Consequently we can introduce' 2 �Vout such that Aout

" ' = � div( "  ).

Finally, we set Tv =  � r ' . Clearly Tv is an element of X out
N (" ). Moreover, for all u , v

in X out
N (" ), we have

�



� � 1curl u � curl Tv dx =

�



� � 1curl u � curl  dx

=
�



curl u � curl v dx �

�



curl u � r � dx

=
�



curl u � curl v dx:

From Lemma 5.3.1 and the Lax-Milgram theorem, we deduce thatT � Aout
N : X out

N (" ) ! (X out
N (" )) �

is an isomorphism. And by symmetry, permuting the roles ofu and v, it is obvious that T � Aout
N =

Aout
N T, which allows us to conclude thatAout

N : X out
N (" ) ! (X out

N (" )) � is an isomorphism. �

Proposition 5.3.2. Under Assumptions 1 and 3, if (u n = cn r s+ + ~u n ) is a sequence which
is bounded in X out

N (" ), then we can extract a subsequence such that(cn ) and ( ~u n ) converge re-
spectively in C and in V 0

� � (
) for � satisfying (5.13). As a consequence, the operatorKout
N :

X out
N (" ) ! (X out

N (" )) � is compact.

Proof. Let (u n ) be a bounded sequence of elements ofX out
N (" ). From the proof of Lemma 5.3.1,

we know that for n 2 N, we have

u n = cn r s+ + r ' n + curl  n (5.37)

where the sequences(cn ), (' n ), ( n ) and (curl  n ) are bounded respectively inC, �V1
� � (
) ,

X T (1) and V 0
� � (
) . Observing that curl u n = curl curl  n = � �  n is bounded in L 2(
) , we

deduce from Proposition 5.6.3 that there exists a subsequence such that(curl  n ) converges in
V 0

� � (
) . Moreover, by (5.20), we have

jcn � cm j + k' n � ' m kV 1
� � (
) � Ckcurl ( n �  m )kV 0

� � (
) ;

which implies that (cn ) and (' n ) converge respectively inC and in �V1
� � (
) . From (5.37), we see

that this is enough to conclude about the �rst part of the proposition.
Finally, observing that

kKout
N uk(X out

N (" )) � � C (k~ukV 0
� � (
) + jcu j);

we deduce thatKout
N : X out

N (" ) ! (X out
N (" )) � is a compact operator. �

We can now state the main theorem of the analysis of the problem for the electric �eld.

Theorem 5.3.1. Under Assumptions 1�3, for all ! 2 R the operator Aout
N � ! 2Kout

N : X out
N (" ) !

(X out
N (" )) � is Fredholm of index zero.

Proof. Since Kout
N : X out

N (" ) ! (X out
N (" )) � is compact (Proposition 5.3.2) andAout

N : X out
N (" ) !

(X out
N (" )) � is an isomorphism (Proposition 5.3.1),Aout

N � ! 2Kout
N : X out

N (" ) ! (X out
N (" )) � is Fred-

holm of index zero. �

The previous theorem guarantees that the problem (5.22) is well-posed if and only if uniqueness
holds, that is if and only if the only solution for J = 0 is u = 0 . Since uniqueness holds for! = 0 ,
one can prove with the analytic Fredholm theorem that (5.22) is well-posed except for at most a
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countable set of values of! with no accumulation points (note that Theorem 5.3.1 remains true
for ! 2 C).
Note that in practice " is itself a function of ! . For instance, if the inclusion M is metallic, it
is commonly admitted that the Drude's law gives a good model for" . But taking into account
the dependence of" with respect to ! when studying uniqueness of problem (5.22) leads to a
non-linear eigenvalue problem, where the functional spaceX out

N (" ) itself depends on! . This study
is beyond the scope of the present paper (see [90] for such questions in the case of the 2D scalar
problem).
Nonetheless, there is a result that we can prove concerning the cases of non-uniqueness for problem
(5.22).

Proposition 5.3.3. If u = cr s+ + ~u 2 X out
N (" ) is a solution of (5.22) for J = 0 , then c = 0

and u 2 X N (" ).

Proof. When ! = 0 , the result is a direct consequence of Theorem 5.3.1 (because zero is the
only solution of (5.22) for J = 0 ). From now on, we assume that! 2 R n f 0g. Suppose that
u = cr s+ + ~u 2 X out

N (" ) is such that

�



� � 1curl u � curl v dx � ! 2

 



"u � v dx = 0 ; 8v 2 X out

N (" ):

Taking the imaginary part of the previous identity for v = u , we get

=m
�  



"u � u dx

�
= 0 :

On the other hand, by (5.28), we have

 



"u � u dx =

�



" j ~u j2 dx + jcj2

�



div( " r s+ ) s+ dx;

so that

jcj2=m
� �



div( " r s+ ) s+ dx

�
= 0 :

The result of the proposition is then a consequence of Lemma 5.3.3 where it is proved that

=m
� �



div( " r s+ ) s+ dx

�
= �

�

S2
" j� j2ds;

and of the assumption (5.8). �

Remark 5.3.2. As a consequence, from Lemma 5.3.1, we infer that elements of the kernel of
Aout

N � ! 2Kout
N are in V 0

� � (
) for all � satisfying (5.13).

Remark 5.3.3. Using the result of Theorem 5.3.1, we could have studied a problem similar to
(7.5)�(7.6) with an impedance boundary condition replacing the perfect conductor condition. In
this case, using the unique continuation principle, we would have been able to prove uniqueness
of the solution, and so well-posedness of the problem, for all! > 0. Theorem 5.3.1 can also be
employed to consider the scattering of an incident wave by a bounded inclusion (with the same
features asM ) in freespace. In the latter situation, working as in [17, Lemma 2.1 and Proposition
2.1], in particular using the Rellich lemma, one could also establish existence and uniqueness of
the solution (in a framework like X out

N (" )) for all ! > 0.
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5.3.5 Problem in the classical framework

In the previous paragraph, we have shown that the Maxwell's problem (5.22) for the electric �eld
set in the non standard spaceX out

N (" ), and so in H out
N (curl ) according to Lemma 5.3.2, is well-

posed. In order to understand what would fail with a naive approach, here we wish to analyse
the properties of the problem for the electric �eld set in the classical spaceX N (" ) (which does
not contain r s+ ). Since this space is a closed subspace ofX out

N (" ), it inherits the main properties
of the problem in X out

N (" ) proved in the previous section. More precisely, we deduce from Lemma
5.3.1 and Proposition 5.3.2 the following result.

Proposition 5.3.4. Under Assumptions 1 and 3, the embedding ofX N (" ) in L 2(
) is compact,
and kcurl � k
 is a norm in X N (" ) which is equivalent to the normk � kH (curl ) .

Note that we recover classical properties similar to what is known for positive" , or more generally
[24] for " such that the operator A " : H1

0(
) ! (H1
0(
)) � de�ned by (5.3) is an isomorphism (which

allows for sign-changing"). But we want to underline the fact that under Assumption 3, these
classical results could not be proved by using classical arguments. They require the introduction
of the bigger spaceX out

N (" ), with the singular function r s+ .
Let us now consider the problem

Find u 2 X N (" ) such that�



� � 1curl u � curl v dx � ! 2

�



"u � v dx = i!

�



J � v dx; 8v 2 X N (" ):

(5.38)

An important remark is that one cannot prove that problem (5.38) is equivalent to a similar
problem set in H N (curl ) (the analogue of Lemma 5.3.2). Again, the di�culty comes from the
fact that A " is not an isomorphism, and trouble would appear when solving (5.36). Therefore, a
solution of (5.38) is not in general a distributional solution of the equation

curl
�
� � 1curl u

�
� ! 2"u = i! J :

To go further in the analysis of (5.38), we recall that X N (" ) is a subspace of codimension one of
X out

N (" ) (Lemma 5.6.4 in Appendix). Let v0 be an element ofX out
N (" ) which does not belong to

X N (" ). Then we denote by`0 the continuous linear form on X out
N (" ) such that:

8v 2 X out
N (" ) v � `0(v)v0 2 X N (" ): (5.39)

Let us now de�ne the operators AN : X N (" ) ! (X N (" )) � and KN : X N (" ) ! (X N (" )) � by

hAN u; v i =
�



� � 1curl u � curl v dx; hKN u; v i =

�



"u � v dx:

Proposition 5.3.5. Under Assumptions 1�3, the operator AN : X N (" ) ! (X N (" )) � is Fredholm
of index zero.

Proof. Let u 2 X N (" ). By Proposition 5.3.1, for the operator T introduced in the corresponding
proof, one has:

kuk2
X N (" ) = kcurl uk2


 = hAout
N u; Tu i :

Then, using (5.39), we get:

kuk2
X N (" ) = hAN u; Tu � `0(Tu)v0i + hAout

N u; `0(Tu)v0i ;

which implies that
kukX N (" ) � C

�
kAN uk(X N (" )) � + j`0(Tu)j

�
:

The result of the proposition then follows from a classical adaptation of Peetre's lemma (see for
example [144, Theorem 12.12]) together with the fact thatAN is bounded and hermitian. �
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Combining the two previous propositions, we obtain the

Theorem 5.3.2. Under Assumptions 1�3, for all ! 2 R, the operator AN � ! 2KN : X N (" ) !
(X N (" )) � is Fredholm of index zero.

But as mentioned above, even if uniqueness holds and if Problem (5.38) is well-posed, it does not
provide a solution of Maxwell's equations. Note that the phenomenon observed in this paragraph
is very similar to what happens for Maxwell's equations with positive coe�cients in presence of
singularities when one looks at a formulation set inH1(
) 3 (see e.g. [61, 88, 64]).

5.3.6 Expression of the singular coe�cient

Under Assumptions 1�3, Theorem 5.3.1 guarantees that for all! 2 R the operator Aout
N � ! 2Kout

N :
X out

N (" ) ! (X out
N (" )) � is Fredholm of index zero. Assuming that it is injective, the problem (5.22)

admits a unique solution u = cu r s+ + ~u. The goal of this paragraph is to derive a formula allow-
ing one to computecu without knowing u . Such kind of results are classical for scalar operators
(see e.g. [85], [102, Theorem 6.4.4], [71, 72, 10, 89, 145, 121]). They are used in particular for
numerical purposes. But curiously they do not seem to exist for Maxwell's equations in 3D, not
even for classical situations with positive materials in non smooth domains. We emphasize that
the analysis we develop can be adapted to the latter case.

In order to establish the desired expression, for! 2 R, we �rst introduce the �eld w N 2 X out
N (" )

such that
�



� � 1curl v � curl w N dx � ! 2

 



"v � w N dx =

�



" ~v � r s+ dx; 8v 2 X out

N (" ): (5.40)

Note that Problem (5.40) is well-posed whenAout
N � ! 2Kout

N is an isomorphism. Indeed, using
(5.29), one can check that it involves the operator(Aout

N � ! 2Kout
N ) � , that is the adjoint of Aout

N �
! 2Kout

N . Moreover v 7!
�


 " ~v � r s+ dx is a linear form over X out
N (" ).

Theorem 5.3.3. Assume that ! 2 R, Assumptions 1�3 are valid and Aout
N � ! 2Kout

N : X out
N (" ) !

(X out
N (" )) � is injective. Then the solution u = cu r s+ + ~u of the electric problem (5.22) is such

that

cu = i!
�



J � w N dx

� �



div( " r s+ ) s+ dx: (5.41)

Here w N is the function which solves (5.40).

Remark 5.3.4. Note that in practice w N can be computed once for all because it does not depend
on J . Then the value ofcu can be determined very simply via Formula (5.41).

Proof. By de�nition of u , we have
�



� � 1curl u � curl w N dx � ! 2

 



"u � w N dx = i!

�



J � w N dx:

On the other hand, from (5.40), there holds
�



� � 1curl u � curl w N dx � ! 2

 



"u � w N dx =

�



" ~u � r s+ dx:

From these two relations as well as (5.26), we get

i!
�



J � w N dx =

�



" ~u � r s+ dx = cu

�



div( " r s+ ) s+ dx:

But Lemma 5.3.3 below guarantees that=m
�


 div( " r s+ ) s+ dx 6= 0 . Therefore we �nd the
desired formula. �
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Lemma 5.3.3. With the notations of (5.4), we have

=m
� �



div( " r s+ ) s+ dx

�
= �

�

S2
" j� j2ds:

Proof. Set 
 � := 
 n B (O; � ). Noticing that div( " r s+ ) vanishes in a neighbourhood of the
origin, we can write

�



div( " r s+ ) s+ dx = lim

� ! 0

�


 �

div( " r s+ ) s+ dx

= lim
� ! 0

�
�

�


 �

" jr s+ j2dx �
�

@B(O;� )
"

@s+

@r
s+ ds

�
:

Taking the imaginary part and observing that

�

@B(O;� )
"

@s+

@r
s+ ds = �

�
1
2

+ i�
� �

S2
" j� j2ds;

the result follows. �

5.3.7 Limiting absorption principle

In Ÿ5.3.4, we have proved well-posedness of the problem for the electric �eld in the spaceX out
N (" ).

But up to now, we have not explained why we select this framework. In particular, as mentioned
in Ÿ5.2.1, well-posedness also holds inX in

N (" ) whereX in
N (" ) is de�ned as X out

N (" ) with s+ replaced
by s� (see (5.9) for the de�nitions of s� ). In general, the solution in X in

N (" ) di�ers from the
one in X out

N (" ). Therefore one can build in�nitely many solutions of Maxwell's problem as linear
interpolations of these two solutions. Then the question is: which solution is physically relevant?
Classically, the answer can be obtained thanks to the limiting absorption principle. The idea is
the following. In practice, the dielectric permittivity takes complex values, the imaginary part
being related to the dissipative phenomena in the materials. Set

" � := " + i�

where" is de�ned as previously (see (5.2)) and� > 0 (the sign of � depends on the convention for
the time-harmonic dependence (ine� i!t here)). Due to the imaginary part of " � which is uniformly
positive, one recovers some coercivity properties which allow one to prove well-posedness of the
corresponding problem for the electric �eld in the classical framework. The physically relevant
solution for the problem with the real-valued " then should be the limit of the sequence of solutions
for the problems involving " � when � tends to zero. The goal of the present paragraph is to explain
how to show that this limit is the solution of the problem set in X out

N (" ).

Limiting absorption principle for the scalar case

Our proof relies on a similar result for the 3D scalar problem which is the analogue of what has
been done in 2D in [24, Theorem 4.3]. Consider the problem

Find ' � 2 H1
0(
) such that � div( " � r ' � ) = f; (5.42)

where f 2 (H1
0(
)) � . Since � > 0, by the Lax-Milgram lemma, this problem is well-posed for all

f 2 (H1
0(
)) � and in particular for all f 2 (�V1

� (
)) � , � > 0. Our objective is to prove that (' � )
converges when� tends to zero to the unique solution of the problem

Find ' 2 �Vout such that Aout
" ' = f: (5.43)
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We expect a convergence in a space�V1
� (
) with 0 < � < � 0. We �rst need a decomposition of

' � as a sum of a singular part and a regular part. Since problem (5.42) is strongly elliptic, one
can directly apply the theory presented in [102]. In particular, to characterize the singular part,
one is led to consider the spectral problem

Find (� � ; � � ) 2 H1(S2) n f 0g � C such that�

S2
" � r S� � � r S	 ds = � � (� � + 1)

�

S2
" � � � 	 ds; 8	 2 H1(S2):

(5.44)

By assumption (see Section 5.2),� � := � 1=2 � i� (where � is �xed in (5.8)) are eigenvalues of
(5.7) of algebraic multiplicity equal to one. Using Rouché theorem, one can show that for� > 0
small enough, there are exactly two eigenvalues� �

� of (5.44) such that we havej� � � � �
� j � C � ,

whereC is independent of� . Moreover � �
� are of algebraic multiplicity equal to one. By observing

that � � is an eigenvalue of (5.7) if and only� � � � 1 is an eigenvalue of (5.7), we deduce that for
� small enough, there exists one and only one eigenvalue of (5.7), that we denote by� � 2 C, such
that <e � � 2 (� 1=2; � 1=2 + � 0 �

p
� ). Let s� be the corresponding singular function de�ned by

s� (r; �; ' ) = r � �
� � (x=jxj);

where � � is the eigenfunction associated with� � such that (� � ; �) H1 (S2 ) = 1 . Here � is the
function introduced in Ÿ5.2.1 and we will prove in Lemma 5.3.6 that we can indeed impose the
condition (� � ; �) H1 (S2 ) = 1 for � small enough. Observe thats� satis�es div( " � r s� ) = 0 in K . As
in (5.9) for s� , we set

s� (x) = � (r ) r � 1=2+ i� �
� � (x=jxj); (5.45)

where � � 2 C is the number such that � � = � 1=2 + i� � . By applying [102, Theorem 5.4.1], we
get the following result.

Lemma 5.3.4. Let 0 < � < � 0 and f 2 (�V1
� (
)) � . The solution ' � of (5.42) decomposes as

' � = c� s� + ~' � (5.46)

where c� 2 C and ~' � 2 �V1
� � (
) .

� � � 1

�

<e �

=m �

� 1=2

� � � � 1 when � ! 0+

� � when � ! 0+

� � �

0 � 0:5 � 0:965i

0:001 � 0:498� 0:965i

0:01 � 0:487� 0:965i

0:05 � 0:436� 0:963i

0:1 � 0:374� 0:958i

Figure 5.2: Behaviour of the eigenvalue� � close to the line<e � = � 1=2 as the dissipation� tends
to zero. Here the values have been obtained solving the problem (5.44) with a Finite Element
Method. We work in the conical tip de�ned via (5.5) with � = 2 �= 3 and � " = � 1:9. In this case,
using (5.6) we �nd I � � 2:585so that the critical interval is approximately given by [� 2:585;� 1].

Let us �rst study the limit of the singular function.

Lemma 5.3.5. For all � > 0, when � tends to zero, the functions� converges in�V1
� (
) to s+

(see the de�nitions in (5.8) and (5.9)).
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Proof. The �rst step of the proof consists in showing that the limit of (� � ), which we denote by
� 0, is � and not � � . Let ~� > 0 be such that the function � introduced in (5.9) satis�es � = 1 in
the ball B (O; ~� ). From integration by parts, we get

0 =
�

B (O; ~� )
div( " � r s� )s� dx = �

�

B (O; ~� )
" � jr s� j2 dx + ( � 1=2 + i� � )~� � 2= m � �

�

S2
" � j� � j2ds:

Thus we must have

=m
�
(� 1=2 + i� � )~� � 2= m � �

�

S2
" � j� � j2ds

�
> 0: (5.47)

Taking the limit � ! 0+ in (5.47) and using Lemma 5.3.6 below which guarantees that(� � )
converges to� in H1(S2), we obtain the relation

� 0
�

S2
" j� j2 ds > 0: (5.48)

According to the de�nition (5.8) of � , this ensures that � 0 = � and shows that (� � ) converges to
� (and not to � � � 1, see an illustration with Figure 5.2). From the de�nitions (5.9), (5.45) of s,
s� , using again that (� � ) converges to� in H1(S2), we infer that s� converges tos+ (and not to
s� ) in �V1

� (
) . �

Lemma 5.3.6. Let (� � ) be a sequence of eigenfunctions associated with the eigenvalue� � . For
� small enough, we can impose the condition(� � ; �) H1 (S2 ) = 1 . Then � � is uniquely de�ned and
when � tends to zero,(� � ) converges inH1(S2) to the � introduced in Ÿ5.2.1.

Proof. Let ( ~� � ) be a sequence of eigenfunctions associated with the eigenvalue� � such that
k~� � kH1 (S2 ) = 1 . We can extract a subsequence, that we also denote by( ~� � ), which converges
weakly in H1(S2) and strongly in L2(S2) to some ~� 2 H1(S2). For z 2 C, with the Riesz
representation theorem, de�ne the symbolL � (z) : H1(S2) ! H1(S2) such that

(L � (z)	 ; 	 0)H1 (S2 ) =
�

S2
" � r S	 � r S	 0ds � z(z + 1)

�

S2
" � 	 	 0ds; 8	 ; 	 0 2 H1(S2):

First taking the limit � ! 0+ in (L � (� � )� � ; 	 0)H1 (S2 ) = 0 , we get

(L 0(� ) ~� ; 	 0)H1 (S2 ) = 0 ; 8	 0 2 H1(S2):

This shows that either ~� � 0 or ~� is an eigenfunction of (5.7) associated with� . On the other
hand, using someT-coercivity approach on the sphere (mimic the proof [19, Theorem 6.4]), one
can prove that L 0(� 1=2 + it ) : H1(S2) ! H1(S2) is an isomorphism for t > 0 large enough. Let
us decomposeL � (� � ) as

L � (� � ) = L 0(� 1=2 + it ) + R � + K

where R � , K : H1(S2) ! H1(S2) are the operators such that for all 	 , 	 0 2 H1(S2),

(R � 	 ; 	 0)H1 (S2 ) = i�
� �

S2
r S	 � r S	 0ds � � � (� � + 1)

�

S2
	 	 0ds

�

� (� � (� � + 1) � � (� + 1))
�

S2
" 	 	 0ds

(K 	 ; 	 0)H1 (S2 ) = � (� (� + 1) � (� 1=2 + it )(+1 =2 + it ))
�

S2
" 	 	 0ds:

Note that the norm of R � , as a linear operator ofH1(S2), tends to zero when� ! 0+ and that
K is compact. Therefore, using the relationsL � (� � ) ~� � = L 0(� ) ~� = 0 to get

L 0(� 1=2 + it )( ~� � � ~�) = � R � ~� � � K ( ~� � � ~�) ;
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we deduce that ( ~� � ) converges strongly to ~� in H1(S2). This implies k~� kH1 (S2 ) = 1 and proves
that ~� is an eigenfunction of (5.7) associated with� . Since by assumption� is a simple eigenvalue,
~� is proportional to � . Thus for � small enough, we have( ~� � ; �) H1 (S2 ) 6= 0 . Then (� � ), with � � =
~� � =( ~� � ; �) H1 (S2 ) , is a sequence of eigenfunctions associated with� � such that (� � ; �) H1 (S2 ) = 1 .
Now from the convergence of(� � ) to c� with jcj = 1 and (� � ; �) H1 (S2 ) = 1 , we infer that (� � )
converges to� when � tends to zero. Finally, one observes that such a construction is possible
for any subsequence of( ~� � ). �

Then proceeding exactly as in the proof of [30, Theorem 4.3], one can establish the following
result.

Lemma 5.3.7. Let 0 < � < � 0 and f 2 (�V1
� (
)) � . If Assumption 3 holds, then(' � = c� s� + ~' � )

converges to' = c s+ + ~' in �V1
� (
) as � tends to zero. Moreover,(c� ; ~' � ) converges to(c; ~' ) in

C � �V1
� � (
) . In this statement, ' � (resp. ' ) is the solution of (5.42) (resp. (5.43)).

Note that the results of Lemma 5.3.7 still hold if we replace f by a family of source terms
(f � ) 2 (�V1

� (
)) � that converges to f in (�V1
� (
)) � when � tends to zero.

Limiting absorption principle for the electric problem

The problem

Find u � 2 X N (" � ) such that curl � � 1curl u � � ! 2" � u � = i! J ; (5.49)

with X N (" � ) = f E 2 H N (curl ) j div( " � E ) = 0 g, is well-posed for all ! 2 R and all � > 0. This
result is classical when� takes positive values while it can be shown by using [24] when� changes
sign. We want to study the convergence ofu � when � goes to zero. Let(� n ) be a sequence of
positive numbers such that limn! + 1 � n = 0 . To simplify, we denote the quantities with an index
n instead of � n (for example we write "n instead of " � n ).

Lemma 5.3.8. Suppose that(u n ) is a sequence of elements ofX N ("n ) such that (curl u n ) is
bounded in L 2(
) . Then, under Assumption 3, for all � satisfying (5.13), for all n 2 N, u n

admits the decompositionu n = cn r sn + ~u n with cn 2 C and ~u n 2 V 0
� � (
) . Moreover, there

exists a subsequence such that(cn ) converges to somec in C while ( ~u n ) converges to some~u in
V 0

� � (
) . Finally, the �eld u := cr s+ + ~u belongs toX out
N (" ).

Proof. For all n 2 N, we haveu n 2 X N (" � ) � L 2(
) . Therefore, there exist ' n 2 H1
0(
) and

 n 2 X T (1), satisfying curl  n � � = 0 on @
 such that u n = r ' n + curl  n . Moreover, we
have the estimate

k�  n k
 = kcurl u nk
 � C:

As a consequence, Proposition 5.6.2 guarantees that(curl  n ) is a bounded sequence ofV 0
� � (
) ,

and Proposition 5.6.3 ensures that there exists a subsequence such that(curl  n ) converges in
V 0

� � (
) . Now from the fact that div( "nu n ) = 0 , we obtain

div( "n r ' n ) = � div( "ncurl  n ) 2 (�V1
� (
)) � :

By Lemmas 5.3.4 and 5.3.7, this implies that the function' n decomposes as' n = cnsn + ~' n with
cn 2 C and ~' n 2 �V1

� � (
) . Moreover, (cn ) converges toc in C while ( ~' n ) converges to~' in V1
� � (
) .

Summing up, we have that u n = cn r sn + ~u n where ~u n = r ~' n + curl  n converges to ~u in
V 0

� � (
) . In particular, this implies that u n converges tou = cr s+ + ~u in V 0

 (
) for all 
 > 0. It

remains to prove that u 2 X out
N (" ), which amounts to showing that u satis�es (5.26). To proceed,

we take the limit as n ! + 1 in the identity

� cn
�



div( "n r sn )' dx +

�



"n ~u n � r ' dx = 0
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which holds for all ' 2 �V1
� (
) becauseu n 2 X N ("n ). �

Theorem 5.3.4. Let ! 2 R. Suppose that Assumptions 1, 2 and 3 hold, and thatu = 0 is the
only function of X N (" ) satisfying

curl � � 1curl u � ! 2"u = 0 : (5.50)

Then the sequence of solutions(u � = c� r s� + ~u � ) of (5.49) converges, as� tends to 0, to the
unique solution u = cr s+ + ~u 2 X out

N (" ) of (5.22) in the following sense: (c� ) converges toc in
C, ( ~u � ) converges to~u in V 0

� � (
) and (curl u � ) converges tocurl u in L 2(
) .

Proof. Let (� n ) be a sequence of positive numbers such thatlimn! + 1 � n = 0 . Denote by u n the
unique function of X N ("n ) such that

curl � � 1curl u n � ! 2"nu n = i! J : (5.51)

Note that we set again"n instead of " � n . The proof is in two steps. First, we establish the desired
property by assuming that (kcurl u nk
 ) is bounded. Then we show that this hypothesis is indeed
satis�ed.
First step. Assume that there is a constantC > 0 such that for all n 2 N

kcurl u nk
 � C: (5.52)

By lemma 5.3.8, we can extract a subsequence from(u n = cn r sn + ~u n ) such that (cn ) converges
to c in C, ( ~u n ) converges to~u in V 0

� � (
) , with u = ~u + cr s+ 2 X out
N (" ). Besides, since for all

n 2 N, curl u n 2 L 2(
) , there exist hn 2 H1
# (
) and w n 2 X N (1), such that

� � 1curl u n = r hn + curl w n : (5.53)

Observing that (w n ) is bounded in X N (1), from Lemma 5.6.2, we deduce that it admits a
subsequence which converges inV 0

� � (
) . Multiplying (5.51) taken for two indices n and m by
(w n � w m ), and integrating by parts, we obtain

�



jcurl w n � curl w m j2 dx = ! 2

�



("nu n � "m u m ) (w n � w m ) dx:

This implies that (curl w n ) converges inL 2(
) . Then, from (5.53), we deduce that

div ( � r hn ) = � div ( � curl w n ) in 
 :

By Assumption 2, the operator A � : H1
# (
) ! (H1

# (
)) � is an isomorphism. Therefore(r hn )
converges inL 2(
) . From (5.53), this shows that (curl u n ) converges tocurl u in L 2(
) . Finally,
we know that u n satis�es

�



� � 1curl u n � curl v dx � ! 2

�



"nu n � v dx = i!

�



J � v dx

for all v 2 V 0
� � (
) . Taking the limit, we get that u satis�es

�



� � 1curl u � curl v dx � ! 2

 



"u � v dx = i!

�



J � v dx (5.54)

for all v 2 V 0
� � (
) . Since in addition, u satis�es (5.26), (5.54) also holds forv = r s+ and we

get that u is the unique solution u of (5.22).
Second step. Now we prove that the assumption (5.52) is satis�ed. Suppose by contradiction
that there exists a subsequence of(u n ) such that

kcurl u nk
 ! + 1
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and consider the sequence(vn ) with for all n 2 N, vn := u n=kcurl u nk
 . We have

vn 2 X N ("n ) and curl � � 1curl vn � ! 2"nvn = i! J =kcurl u nk
 : (5.55)

Following the �rst step of the proof, we �nd that we can extract a subsequence from (vn ) which
converges, in the sense given in the theorem, to the unique solution of the homogeneous problem
(5.22) with J = 0 . But by Proposition 5.3.3, this solution also solves (5.50). As a consequence,
it is equal to zero. In particular, it implies that (curl vn ) converges to zero inL 2(
) , which is
impossible since by construction, for alln 2 N, we havekcurl vnk
 = 1 . �

5.4 Analysis of the problem for the magnetic component

In this section, we turn our attention to the analysis of the Maxwell's problem for the magnetic
component. Importantly, in the whole section, we suppose that� satis�es (5.13), that is 0 < � <
min(1=2; � 0). Contrary to the analysis for the electric component, we de�ne functional spaces
which depend on� :

Zout
T (� ) := f u 2 L 2(
) j curl u 2 span(" r s+ ) � V 0

� � (
) ; div( � u ) = 0 in 
 ; � u � � = 0 on @
 g

and for � 2 L1 (
) ,

Z � �
T (� ) := f u 2 L 2(
) j curl u 2 V 0

� � (
) ; div ( � u ) = 0 in 
 and � u � � = 0 on @
 g:

Note that we have Z � �
T (� ) � Zout

T (� ) � Z �
T (� ). The conditions div( � u ) = 0 in 
 and � u � � = 0

on @
 for the elements of these spaces boil down to impose
�



� u � r ' dx = 0 ; 8' 2 H1

# (
) :

Remark 5.4.1. Observe that the elements ofZout
T (� ) are in L 2(
) but have a singular curl. On

the other hand, the elements ofX out
N (" ) are singular but have a curl inL 2(
) . This is consistent

with the fact that for the situations we are considering in this work, the electric �eld is singular
while the magnetic �eld is not.

The analysis of the problem for the magnetic component leads to considering the formulation

Find u 2 Zout
T (� ) such that 



" � 1curl u � curl v dx � ! 2

�



� u � v =

�



" � 1J � curl v ; 8v 2 Z �

T (� );
(5.56)

where J 2 V 0
� � (
) . Again, the �rst integral in the left-hand side of (5.56) is not a classical

integral. Similarly to de�nition (5.26), we set
 



r s+ � curl v dx := 0 ; 8v 2 Z �

T (� ):

As a consequence, foru 2 Zout
T (� ) such that curl u = cu " r s+ + � u (we shall use this notation

throughout the section) and v 2 Z �
T (� ), there holds

 



" � 1curl u � curl v dx =

�



" � 1� u � curl v dx: (5.57)

Note that for u , v in Zout
T (� ) such that curl u = cu " r s+ + � u , curl v = cv " r s+ + � v , we have

 



" � 1curl u � curl v dx =

�



" � 1� u � (cv " r s+ + � v ) dx

=
�



" � 1� u � � v dx � cv

�



div( � u ) s+ dx

=
�



" � 1� u � � v dx + cu cv

�



div( " r s+ ) s+ dx:

(5.58)
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We denote by aT (�; �) (resp. `T (�)) the sesquilinear form (resp. the antilinear form) appearing in
the left-hand side (resp. right-hand side) of (5.56).

Remark 5.4.2. Note that in (5.56), the solution and the test functions do not belong to the same
space. This is di�erent from the formulation (5.22) for the electric �eld but seems necessary in
the analysis below to obtain a well-posed problem (in particular to prove Proposition 5.4.1). Note
also that even if the functional framework depends on� , the solution will not if J is regular
enough (see the explanations in Remark 5.4.4).

5.4.1 Equivalent formulation

De�ne the spaces

H � (curl ) := f u 2 L 2(
) j curl u 2 V 0
� (
) g

H out (curl ) := f u 2 L 2(
) j curl u 2 span(" r s+ ) � V 0
� � (
) g:

Lemma 5.4.1. Under Assumptions 1�2, the �eld u is a solution of (5.56) if and only if it solves
the problem

Find u 2 H out (curl ) such that

aT (u ; v) = `T (v); 8v 2 H � (curl ):
(5.59)

As a consequence, ifu satis�es (5.56), then (E ; H ) := ( i (!" ) � 1(curl u � J ); u ) is a solution of
(7.5)-(7.6).

Proof. If u satis�es (5.59), then taking v = r ' with ' 2 H1
# (
) in (5.59), we get that

u 2 Zout
T (� ). This proves that u solves (5.56).

Assume now thatu is a solution of (5.56). Letv be an element ofH � (curl ). Introduce ' 2 H1
# (
)

the function such that
�



� r ' � r ' 0dx =

�



� v � r ' 0dx; 8' 0 2 H1

# (
) :

The �eld v̂ := v � r ' belongs to Z �
T (� ). Moreover, there holdscurl v̂ = curl v and since for

u 2 Zout
T (� ), we have �



� u � r ' dx = 0 ; 8' 2 H1

# (
) ;

we deduce thataT (u ; v) = aT (u ; v̂ ) = `T (v̂ ) = `T (v).

Now if u satis�es (5.56), and so (5.59), one notes that the pair(E ; H ) := ( i (!" ) � 1(curl u � J ); u )
belongs toL 1(
) � L 2(
) . Clearly we havecurl H + i! " E = J in 
 . By taking v 2 C1

0 (
) 3 �
H � (curl ) in (5.59) and by observing that in this case

 



" � 1curl u � curl v dx =

�



" � 1curl u � curl v dx;

we obtain curl E = i! � H in D 0(
) 3. The boundary conditions (7.6) can then be deduced in a
classical way. �

5.4.2 Norms in Z � �
T (� ) and Zout

T (� )

We endow the spaceZ �
T (� ) with the norm

kukZ �
T (� ) = ( kuk2


 + kcurl uk2
V 0

� (
) )1=2;

so that it is a Banach space.
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Lemma 5.4.2. Under Assumptions 1�2, there is a constantC > 0 such that for all u 2 Z �
T (� ),

we have
kuk
 � C kcurl ukV 0

� (
) :

As a consequence, the normk � kZ �
T (� ) is equivalent to the normkcurl � kV 0

� (
) in Z �
T (� ).

Remark 5.4.3. The result of Lemma 5.4.2 holds for all� such that 0 � � < 1=2 and not only
for 0 < � < min(1=2; � 0).

Proof. Let u be an element ofZ �
T (� ). Since u belongs to L 2(
) , according to the item v) of

Proposition 5.6.1, there are' 2 H1
# (
) and  2 X N (1) such that

u = r ' + curl  : (5.60)

Lemma 5.6.2 guarantees that 2 V 0
� � (
) with the estimate

k kV 0
� � (
) � C kcurl  k
 : (5.61)

Multiplying the equation curl curl  = curl u in 
 by  and integrating by parts, we get

kcurl  k2

 � k curl ukV 0

� (
) k kV 0
� � (
) : (5.62)

Gathering (5.61) and (5.62) leads to

kcurl  k
 � C kcurl ukV 0
� (
) : (5.63)

On the other hand, using that
�



� u � r ' 0dx = 0 ; 8' 0 2 H1

# (
)

and that A � : H1
# (
) ! (H1

# (
)) � is an isomorphism, we deduce thatkr ' k
 � C kcurl  k
 .
Using this estimate and (5.63) in the decomposition (5.60), we �nally obtain the desired result. �

If u 2 Zout
T (� ), we havecurl u = cu " r s+ + � u with cu 2 C and � u 2 V 0

� � (
) . We endow the
spaceZout

T (� ) with the norm

kukZ out
T (� ) = ( kuk2


 + jcu j2 + k� u k2
V 0

� � (
) )1=2;

so that it is a Banach space.

Lemma 5.4.3. Under Assumptions 1�3, there is C > 0 such that for all u 2 Zout
T (� ), we have

kuk
 + jcu j � C k� u kV 0
� � (
) : (5.64)

As a consequence, the normkukZ out
T (� ) is equivalent to the normk� u kV 0

� � (
) for u 2 Zout
T (� ).

Proof. Let u be an element ofZout
T (� ). Since Zout

T (� ) � Z �
T (� ), Lemma 5.4.2 provides the

estimate
kuk
 � C kcurl ukV 0

� (
) � C (jcu j + k� u kV 0
� � (
) ): (5.65)

On the other hand, taking the divergence ofcurl u = cu " r s+ + � u , we obtain cu div( " r s+ ) =
� div � u . Using the fact that Aout

" : �Vout ! (�V1
� (
)) � is an isomorphism, we get

jcu j � C kdiv � u k(�V 1
� (
)) � � C k� u kV 0

� � (
) :

Using this inequality in (5.65) leads to (5.64). �
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5.4.3 Main analysis for the magnetic �eld

De�ne the continuous operators Aout
T : Zout

T (� ) ! (Z �
T (� )) � and Kout

T : Zout
T (� ) ! (Z �

T (� )) � such
that for all u 2 Zout

T (� ), v 2 Z �
T (� ),

hAout
T u; v i =

 



" � 1curl u � curl v dx; hKout

T u; v i =
�



� u � v dx: (5.66)

With this notation, we have h(Aout
T � ! 2Kout

T )u ; v i = aT (u ; v).

Proposition 5.4.1. Under Assumptions 1�3, the operator Aout
T : Zout

T (� ) ! (Z �
T (� )) � is an

isomorphism.

Proof. We have

hAout
T u; v i =

�



" � 1� u � curl v dx; 8u 2 Zout

T (� ); 8v 2 Z �
T (� ):

Let us construct a continuous operatorT : Z �
T (� ) ! Zout

T (� ) such that

hAout
T Tu; v i =

�



r 2� curl u � curl v dx; 8u ; v 2 Z �

T (� ): (5.67)

Let u be an element ofZ �
T (� ). Then the �eld r 2� " curl u belongs to V 0

� � (
) . Since Aout
" :

�Vout ! (�V1
� (
)) � is an isomorphism, there is a unique' = � s + + ~' 2 �Vout such that Aout

" ' =
� div( r 2� " curl u ). Observing that w := r 2� curl u � r ' 2 V 0

� (
) is such that div w = 0 in 
 ,

according to the result of Proposition 5.6.4, we know that there is a unique 2 Z �
T (1) such that

curl  = " (r 2� curl u � r ' ):

At this stage, we emphasize that in generalr ' 2 V 0
� (
) n L 2(
) . This is the reason why we are

obliged to establish Proposition 5.6.4. Since is in L 2(
) , when A � : H1
# (
) ! (H1

# (
)) � is an
isomorphism, there is a unique� 2 H1

# (
) such that
�



� r � � r � 0dx =

�



�  � r � 0dx; 8� 0 2 H1

# (
) :

Finally, we set Tu =  � r � . It can be easily checked that this de�nes a continuous operator
T : Z �

T (� ) ! Zout
T (� ). Moreover we have

curl Tu = � " r s+ + � Tu with � Tu = " (r 2� curl u � r ~' ):

As a consequence, indeed we have identity (5.67). From Lemma 5.4.2, we deduce thatAout
T T :

Z �
T (� ) ! (Z �

T (� )) � is an isomorphism, and so thatAout
T is onto. It remains to show that Aout

T is
injective.

If u 2 Zout
T (� ) is in the kernel of Aout

T , we have hAout
T u; v i = 0 for all v 2 Z �

T (� ). In partic-
ular from (5.58), we can write

hAout
T u; u i =

�



" � 1j� u j2 dx + jcu j2

�



div( " r s+ )s+ dx = 0 :

Taking the imaginary part of the above identity, we obtain cu = 0 (see the details in the proof
of Proposition 5.4.3). We deduce that u belongs to Z � �

T (� ) and from (5.58), we infer that
hAout

T u; Tu i = hAout
T Tu; u i . This gives

0 =
�



r 2� jcurl u j2 dx = 0

and shows that u = 0 . �
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Proposition 5.4.2. Under Assumptions 1�3, the embedding of the spaceZout
T (� ) in L 2(
) is

compact. As a consequence, the operatorKout
T : Zout

T (� ) ! (Z �
T (� )) � de�ned in (5.66) is compact.

Proof. Let (u n ) be a sequence of elements ofZout
T (� ) which is bounded. For all n 2 N, we

have curl u n = cu n " r s+ + � u n
. By de�nition of the norm of Zout

T (� ), the sequence(cu n ) is
bounded in C. Let w be an element ofZout

T (� ) such that cw = 1 (if such w did not exist,
then we would have Zout

T (� ) = Z � �
T (� ) � X T (� ) and the proof would be even simpler). The

sequence(u n � cu n w) is bounded in X T (� ). Since this space is compactly embedded inL 2(
)
when A � : H1

# (
) ! (H1
# (
)) � is an isomorphism (see [24, Theorem 5.3]), we infer we can

extract from (u n � cu n w) a subsequence which converges inL 2(
) . Since clearly we can also
extract a subsequence of(cu n ) which converges inC, this shows that we can extract from (u n )
a subsequence which converges inL 2(
) . This shows that the embedding ofZout

T (� ) in L 2(
) is
compact.
Now observing that for all u 2 Zout

T (� ), we have

kKout
T uk(Z �

T (� )) � � C kuk
 ;

we deduce thatKout
T : Zout

T (� ) ! (Z �
T (� )) � is a compact operator. �

We can now state the main theorem of the analysis of the problem for the magnetic �eld.

Theorem 5.4.1. Under Assumptions 1�3, for all ! 2 R the operator Aout
T � ! 2Kout

T : Zout
T (� ) !

(Z �
T (� )) � is Fredholm of index zero.

Proof. Since Kout
T : Zout

T (� ) ! (Z �
T (� )) � is compact (Proposition 5.4.2) and Aout

T : Zout
T (� ) !

(Z �
T (� )) � is an isomorphism (Proposition 5.4.1),Aout

T � ! 2Kout
T : Zout

N ! (Z �
T (� )) � is Fredholm of

index zero. �

Finally we establish a result similar to Proposition 5.3.3 by using the formulation for the magnetic
�eld.

Proposition 5.4.3. Under Assumptions 1 and 3, ifu 2 Zout
T (� ) is a solution of (5.56) for J = 0 ,

then u 2 Z � 

T (� ) � X T (� ) for all 
 satisfying (5.13).

Proof. Assume that u 2 Zout
T (� ) satis�es

 



" � 1curl u � curl v dx � ! 2

�



� u � v = 0 ; 8v 2 Z �

T (� ):

Taking the imaginary part of this identity for v = u , since! is real, we get

=m
�  



" � 1curl u � curl u dx

�
= 0 :

If curl u = cu " r s+ + � u with cu 2 C and � u 2 V 0
� � (
) , according to (5.58), this can be written

as

jcu j2=m
� �



div( " r s+ ) s+ dx

�
= 0 :

Then one concludes as in the proof of Proposition 5.3.3 thatcu = 0 , so that curl u 2 V 0
� � (
) .

Therefore we have" � 1curl u 2 X N (" ) � X out
N (" ). From Lemma 5.3.1, we deduce that" � 1curl u 2

V 0
� 
 (
) for all 
 satisfying (5.13). This shows that u 2 Z � 


T (� ) for all 
 satisfying (5.13). �

Remark 5.4.4. Assume that J 2 V 0
� 
 (
) for all 
 satisfying (5.13). Assume also that zero is

the only solution of (5.56) with J = 0 for a certain � 0 satisfying (5.13). Then Theorem 5.4.1 and
Proposition 5.4.3 guarantee that (5.56) is well-posed for all
 satisfying (5.13). Moreover Propo-
sition 5.4.3 allows one to show that all the solutions of (5.56) for
 satisfying (5.13) coincide.
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Remark 5.4.5. From Lemmas 5.3.2 and 5.4.1, we infer that if u solves the electric problem
(5.22), then (i!� ) � 1curl u is a solution of the magnetic problem (5.56). Conversely, ifu solves
(5.56), then i (!" ) � 1(curl u � J ) is a solution of (5.22). Therefore, under Assumptions 1�3, for
all ! 2 R, the operator Aout

N � ! 2Kout
N : X out

N (" ) ! (X out
N (" )) � is an isomorphism if and only if

Aout
T � ! 2Kout

T : Zout
T (� ) ! (Z �

T (� )) � is an isomorphism.

5.4.4 Analysis in the classical framework

In the previous paragraph, we proved that the formulation (5.56) for the magnetic �eld with a
solution in Zout

T (� ) and test functions in Z �
T (� ) is well-posed. Here, we study the properties of the

naive problem for the magnetic �eld set in the classical spaceX T (� ). More precisely, we consider
the problem

Find u 2 X T (� ) such that�



" � 1curl u � curl v dx � ! 2

�



� u � v =

�



" � 1J � curl v ; 8v 2 X T (� ):

(5.68)

Working as in the proof of Lemma 5.4.1, one shows that under Assumptions 1, 2, the �eldu is a
solution of (5.68) if and only if it solves the problem

Find u 2 H (curl ) such that�



" � 1curl u � curl v dx � ! 2

�



� u � v =

�



" � 1J � curl v ; 8v 2 H (curl ):

(5.69)

De�ne the continuous operators AT : X T (� ) ! (X T (� )) � and KT : X T (� ) ! (X T (� )) � such that
for all u 2 X T (� ), v 2 X T (� ),

hAT u; v i =
�



" � 1curl u � curl v dx; hKT u; v i =

�



� u � v dx:

As for AN and KN , we emphasize that these are the classical operators which appear in the
analysis of the magnetic �eld, for example when" and � are positive in 
 .

Proposition 5.4.4. Under Assumptions 1�3, for all ! 2 C the operator AT � ! 2KT : X T (� ) !
(X T (� )) � is not Fredholm.

Proof. From [24, Theorem 5.3 and Corollary 5.4], we know that under the Assumptions 1, 2, the
embedding ofX T (� ) in L 2(
) is compact. This allows us to prove thatKT : X T (� ) ! (X T (� )) � is
a compact operator. Therefore, it su�ces to show that AT : X T (� ) ! (X T (� )) � is not Fredholm.
Let us work by contradiction assuming that AT is Fredholm. Since this operator is self-adjoint
(it is symmetric and bounded), necessarily it is of index zero.

? If AT is injective, then it is an isomorphism. Let us show that in this case,A " : H1
0(
) !

(H1
0(
)) � is an isomorphism (which is not the case by assumption). To proceed, we construct a

continuous operator T : H1
0(
) ! H1

0(
) such that

hA " '; T' 0i =
�



" r ' � r (T' 0) dx =

�



r ' � r ' 0dx; 8'; ' 0 2 H1

0(
) : (5.70)

When AT is an isomorphism, for any' 0 2 H1
0(
) , there is a unique 2 X T (� ) such that

�



" � 1curl  � curl  0dx =

�



" � 1r ' 0� curl  0dx; 8 0 2 X T (� ):

Using item iii ) of Proposition 5.6.1, one can show that there is a uniqueT' 0 2 H1
0(
) such that

r (T' 0) = " � 1(r ' 0� curl  ):
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This de�nes our operator T : H1
0(
) ! H1

0(
) and one can verify that it is continuous. Moreover,
integrating by parts, we indeed get (5.70) which guarantees, according to the Lax-Milgram theo-
rem, that A " : H1

0(
) ! H1
0(
) is an isomorphism.

? If AT is not injective, it has a kernel of �nite dimension N � 1 which coincides withspan(� 1; : : : ; � N ),
where � 1; : : : ; � N 2 X T (� ) are linearly independent functions such that(curl � i ; curl � j ) 
 = � ij

(the Kronecker symbol). Introduce the space

~X T (� ) := f u 2 X T (� ) j (curl u ; curl � i ) 
 = 0 ; i = 1 ; : : : N g:

as well as the operator~AT : ~X T (� ) ! ~X T (� ) such that

h~AT u; v i =
�



" � 1curl u � curl v dx; 8u ; v 2 ~X T (� ):

Then ~AT is an isomorphism. Let us construct a new operatorT : H1
0(
) ! H1

0(
) to have
something looking like (5.70). For a given' 0 2 H1

0(
) , introduce  2 ~X T (� ) the function such
that

�



" � 1curl  � curl  0dx =

�



(" � 1r ' 0�

NX

i =1

� i curl � i ) � curl  0dx; 8 0 2 ~X T (� ); (5.71)

where for i = 1 ; : : : ; N , we have set� i :=
�


 " � 1r ' 0 � curl � i dx. Observing that (5.71) is also
valid for  0 = � i , i = 1 ; : : : ; N , we infer that there holds

�



" � 1curl  � curl  0dx =

�



(" � 1r ' 0�

NX

i =1

� i curl � i ) � curl  0dx; 8 0 2 X T (� ):

Using again item iii ) of Proposition 5.6.1, we deduce that there is a uniqueT' 0 2 H1
0(
) such

that

r (T' 0) = " � 1(r ' 0� curl  ) �
NX

i =1

� i curl � i :

This de�nes the new continuous operatorT : H1
0(
) ! H1

0(
) . Then one �nds

hA " '; T' 0i =
�



" r ' � r (T' 0) dx =

�



r ' � r ' 0dx �

NX

i =1

� i

�



" r ' � curl � i dx; 8'; ' 0 2 H1

0(
) :

This shows that T is a left parametrix for the self adjoint operator A " . Therefore, A " : H1
0(
) !

H1
0(
) is Fredholm of index zero. Note that then, one can verify that dim ker A " = dim ker AT .

And more precisely, we haveker A " = span(
 1; : : : ; 
 N ) where 
 i 2 H1
0(
) is the function such

that
r 
 i = " � 1curl � i

(existence and uniqueness of
 i is again a consequence of itemiii ) of Proposition 5.6.1). But by
assumption, A " is not a Fredholm operator. This ends the proof by contradiction. �

Remark 5.4.6. In the article [24], it is proved that if A " : H1
0(
) ! H1

0(
) is an isomorphism
(resp. a Fredholm operator of index zero), thenAT : X T (1) ! (X T (1)) � is an isomorphism (resp.
a Fredholm operator of index zero). Here we have established the converse statement.

Remark 5.4.7. We emphasize that the problems (5.38) for the electric �eld and (5.68) for the
magnetic in the usual spacesX N (" ) and X T (� ) have di�erent properties. Problem (5.38) is well-
posed but is not equivalent to the corresponding problem inH N (curl ), so that its solution in
general is not a distributional solution of Maxwell's equations. On the contrary, problem (5.68)
is equivalent to problem (5.69) inH (curl ) but it is not well-posed.
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5.4.5 Expression of the singular coe�cient

Under Assumptions 1�3, Theorem 5.4.1 guarantees that for all! 2 R the operator Aout
T � ! 2Kout

T :
Zout

T (� ) ! (Z �
T (� )) � is Fredholm of index zero. Assuming that it is injective, the problem (5.56)

admits a unique solution u with curl u = cu " r s+ + � u . As in Ÿ5.3.6, the goal of this paragraph
is to derive a formula for the coe�cient cu which does not require to knowu.

For ! 2 R, introduce the �eld w T 2 Z �
T (� ) such that

�



" � 1� v � curl w T dx � ! 2

�



� v � w T dx =

�



� v � r s+ dx; 8v 2 Zout

T (� ): (5.72)

Note that w T is well-de�ned because(Aout
T � ! 2Kout

T ) � : Z �
T (� ) ! (Zout

T (� )) � is an isomorphism.

Theorem 5.4.2. Assume that ! 2 R, Assumptions 1�3 are valid and Aout
T � ! 2Kout

T : Zout
T (� ) !

(Z �
T (� )) � is injective. Let u denote the solution of the magnetic problem (5.56). Then the coe�-

cient cu in the decompositioncurl u = cu " r s+ + � u is given by the formula

cu = i!
�



" � 1J � curl w T dx

� �



div( " r s+ ) s+ dx: (5.73)

Here w T is the function which solves (5.72).

Proof. By de�nition of u , we have
�



" � 1� u � curl w T dx � ! 2

�



� u � w T dx = i!

�



" � 1J � curl w T dx:

On the other hand, from (5.72), we can write
�



" � 1� u � curl w T dx � ! 2

�



� u � w T dx =

�



� u � r s+ dx:

From these two relations, using (5.58), we deduce that

i!
�



" � 1J � curl w T dx =

�



� u � r s+ dx = cu

�



div( " r s+ ) s+ dx:

This gives (5.73). �

5.5 Conclusion

In this work, we studied the Maxwell equations in presence of hypersingularities for the scalar
problem involving " . We considered both the problem for the electric �eld and for the magnetic
�eld. Quite naturally, in order to obtain a framework where well-posedness holds, it is necessary
to modify the spaces in di�erent ways. More precisely, we changed the condition on the �eld
itself for the electric problem and on the curl of the �eld for the magnetic problem. A noteworthy
di�erence in the analysis of the two problems is that for the electric �eld, the searched solution
and the test function in the corresponding sesquilinear form belong to the same space, whereas
for the magnetic �eld we have not been able to do so. We do not know what are the numerical
consequences of this di�erence.
Of course, we could have assumed that the scalar problem involving" is well-posed inH1

0(
) and
that hypersingularities exist for the problem in � . This would have been similar mathematically.
Physically, however, this situation seems to be a bit less relevant because it is harder to obtain
negative � without dissipation. More precisely, materials having an " with a negative real part
can be found easily in nature (metals for certain ranges of frequencies) and additionally they



151 5.6. Appendix

can be very weakly dissipative (small imaginary part of " ). On the other hand, only certain
arti�cially designed metamaterials, made of small resonators, behave macroscopically, after an
homogenization process, as homogeneous materials with a� having a negative real part. But for
the moment, dissipation for these metamaterials still remains very important.
We assumed that the domain 
 is simply connected and that @
 is connected. When these
assumptions are not met, it is necessary to adapt the analysis (see Ÿ8.2 of [24] for the study in
the case where the scalar problems are well-posed in the usualH1 framework). This has to be
done. Moreover, for the conical tip, at least numerically, one �nds that several singularities can
exist (actually this number can be as high as we wish for a contrast close enough to� 1, see the
calculations in [96]). In this case, the analysis should follow the same lines but this has to be
written.
On the other hand, in this work, we focused our attention on a situation where the interface
between the positive and the negative material has a conical tip. It would be interesting to study
a setting where there is a wedge instead. In this case, roughly speaking, one should deal with
a continuum of singularities. We have to mention that the analysis of the scalar problems for a
wedge of negative material in the non standard framework has not been done. Finally, considering
a conical tip with both critical " and � is a direction that we are investigating.

5.6 Appendix

5.6.1 Vector potentials, part 1

Proposition 5.6.1. Under Assumption 1, the following assertions hold.

i) According to [8, Theorem 3.12], if u 2 L 2(
) satis�es div u = 0 in 
 , then there exists a
unique  2 X T (1) such that u = curl  .

ii) According to [8, Theorem 3.17]), if u 2 L 2(
) satis�es div u = 0 in 
 and u � � = 0 on
@
 , then there exists a unique 2 X N (1) such that u = curl  .

iii) If u 2 L 2(
) satis�es curl u = 0 in 
 and u � � = 0 on @
 , then there exists (see [110,
Theorem 3.41]) a uniquep 2 H1

0(
) such that u = r p.

iv) Every u 2 L 2(
) can be decomposed as follows ([110, Theorem 3.45])

u = r p + curl  ;

with p 2 H1
0(
) and  2 X T (1) which are uniquely de�ned.

v) Every u 2 L 2(
) can be decomposed as follows ([110, Remark 3.46])

u = r p + curl  ;

with p 2 H1
# (
) and  2 X N (1) which are uniquely de�ned.

Proposition 5.6.2. Under Assumption 1, if  satis�es one of the following conditions
i)  2 X N (1) and �  2 L 2(
) ,
ii)  2 X T (1), curl  � � = 0 on @
 and �  2 L 2(
) ,
then for all � < 1=2, we havecurl  2 V 0

� � (
) and there is a constantC > 0 independent of 
such that

kcurl  kV 0
� � (
) � C k�  k
 : (5.74)
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Proof. It su�ces to prove the result for � 2 (0; 1=2). Let  2 X N (1)[ X T (1). Sincecurl curl  =
� �  , integrating by parts we get

kcurl  k2

 = �

�



�  �  dx:

Note that the boundary term vanishes because either � � = 0 or curl  � � = 0 on @
 . This
furnishes the estimate

kcurl  k
 � C k�  k
 : (5.75)

Now working with cut-o� functions, we re�ne the estimate at the origin to get (5.74).
Let us consider a smooth cut-o� function � , compactly supported in 
 , equal to one in a
neighbourhood of O. To prove the proposition, it su�ces in addition to (5.75) to prove that
curl (�  ) 2 V 0

� � (
) together with the following estimate kcurl (�  )kV 0
� � (
) � C k�  k
 .

First of all, since curl (�  ) 2 L 2(
) and div( �  ) = r � �  2 L2(
) , we know that �  i 2 H1
0(
)

for i = 1 ; 2; 3 and we have

kcurl (�  )k2

 + kdiv( �  )k2


 =
3X

i =1

kr (�  i )k2

 :

From the previous identity, (5.75) and Proposition 7.2.1, we deduce

 

k k2

 +

3X

i =1

kr (�  i )k2



! 1=2

� C k�  k
 : (5.76)

Note that, (5.76) is also valid if we replace� by any other smooth function with compact support
in 
 . Now setting f i = �( �  i ) for i = 1 ; 2; 3, we have

f i = � �  i + 2 r � � r  i +  i � �: (5.77)

By writing that r � � r  i = div(  i r � ) �  i � � and replacing � by @j � in (5.76) for j = 1 ; 2; 3,
we deduce that for i = 1 ; 2; 3, f i belongs toL2(
) and satis�es

kf i k
 � Ck�  k
 :

Note that since � 2 (0; 1=2), we have �V1
� (
) � V0

� � 1 � L2(
) and so L2(
) � (�V1
� (
)) � . Now

starting from the fact that �  i 2 H1
0(
) in addition to �( �  i ) = f i 2 L2(
) � (�V1

� (
)) � , by
applying Proposition 6.2.1, we deduce that�  i 2 �V1

� � (
) with the estimate

k�  i k�V 1
� � (
) � C kf i k(�V 1

� (
)) � � C kf i k
 :

As a consequence,curl (�  ) 2 V 0
� � (
) and

kcurl (�  )kV 0
� � (
) � C

3X

i =1

k�  i k�V 1
� � (
) �

3X

i =1

kf i k
 � Ck�  k
 ;

which concludes the proof. �

Proposition 5.6.3. Under Assumption 1, the following assertions hold:
i) if ( n ) is a bounded sequence of elements ofX N (1) such that (�  n ) is bounded in L 2(
) ,
then one can extract a subsequence such that(curl  n ) converges inV 0

� � (
) for all � 2 (0; 1=2);
ii) if ( n ) is a bounded sequence of elements ofX T (1) such that curl  n � � = 0 on @
 and
such that (�  n ) is bounded in L 2(
) , then one can extract a subsequence such that(curl  n )
converges inV 0

� � (
) for all � 2 (0; 1=2).
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Proof. Let us establish the �rst assertion, the proof of the second one being similar. Let( n )
be a bounded sequence of elements ofX N (1) such that (�  n ) is bounded in L 2(
) . Observing
that curl curl  n = � �  n , we deduce that (curl  n ) is a bounded sequence ofX T (1). Since
the spacesX N (1) and X T (1) are compactly embedded inL 2(
) (see Proposition 7.2.1), one can
extract a subsequence such that both( n ) and (curl  n ) converge inL 2(
) .
Then, working as in the proof of Proposition 5.6.2, we can show that for a smooth cut-o� function
� compactly supported in 
 and equal to one in a neighbourhood ofO, the sequence(�  n ) is
bounded in V 2


 (
) := (V 2

 (
)) 3 for all 
 > 1=2. To obtain this result, we use in particular the fact

that if O � R3 is a smooth bounded domain such thatO 2 O, then � : V 2

 (O)\ �V1


 � 1(O) ! V0

 (O)

is an isomorphism for all 
 2 (1=2; 3=2) (see [107, Ÿ1.6.2]). Finally, to conclude to the result of the
proposition, we use the factV 2


 (O) is compactly embedded inV 1

 0(O) a soon as
 � 1 < 
 0 ([102,

Lemma 6.2.1]). This allows us to prove that for all � < 1=2, the subsequence(�  n ) converges in
V 1

� � (
) , so that (curl  n ) converges inV 0
� � (
) . �

The next two lemmas are results of additional regularity for the elements of classical Maxwell's
spaces that are direct consequences of Propositions 5.6.2 and 5.6.3.

Lemma 5.6.1. Under Assumption 1, for all � 2 (0; 1=2), X T (1) is compactly embedded in
V 0

� � (
) . In particular, there is a constant C > 0 such that

kukV 0
� � (
) � C kcurl uk
 ; 8u 2 X T (1): (5.78)

Proof. Let u be an element ofX T (1). From the item ii ) of Proposition 5.6.1, we know that there
exists  2 X N (1) such that u = curl  . Using that � �  = curl u 2 L 2(
) , from Proposition
5.6.2, we get that u 2 V 0

� � (
) together with the estimate

kcurl  kV 0
� � (
) � C kcurl uk
 :

This gives (5.78). Now suppose that(u n ) is a bounded sequence of elements ofX T (1). Then
there exists a bounded sequence( n ) of elements ofX N (1) such that u n = curl  n . Since
(curl u n = � �  n ) is bounded in L 2(
) , the �rst item of Proposition 5.6.3 implies that there is
a subsequence such that(u n ) converges inV 0

� � (
) . �

Lemma 5.6.2. Under Assumption 1, for all � 2 (0; 1=2), X N (1) is compactly embedded in
V 0

� � (
) . In particular, there is a constant C > 0 such that

kukV 0
� � (
) � C kcurl uk
 ; 8u 2 X N (1):

Proof. The proof is similar to the one of Lemma 5.6.1. �

5.6.2 Vector potentials, part 2

First we establish an intermediate lemma which can be seen as a result of well-posedness for
Maxwell's equations in weighted spaces with" = � = 1 in 
 . De�ne the continuous operator
BT : Z �

T (1) ! (Z � �
T (1)) � such that for all  2 Z �

T (1),  0 2 Z � �
T (1),

hBT  ;  0i =
�



curl  � curl  0dx:

Lemma 5.6.3. Under Assumption 1, for 0 � � < 1=2, the operator BT : Z �
T (1) ! (Z � �

T (1)) � is
an isomorphism.

Proof. Let  be an element ofZ �
T (1). According to Proposition 6.2.1, there is a unique' 2

�V1
� � (
) such that

�



r ' � r ' 0dx =

�



r 2� curl  � r ' 0dx; 8' 0 2 �V1

� (
) :
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Then denote T 2 Z � �
T (1) the function such that

curl (T ) = r 2� curl  � r ':

Observe that T is well-de�ned according to the item i ) of Proposition 5.6.1. This de�nes a
continuous operator T : Z �

T (1) ! Z � �
T (1). We have

hBT  ; T i =
�



curl  � curl (T ) dx = kr � curl  k2


 = kcurl  k2
V 0

� (
) :

Adapting the proof of Lemma 5.4.2, one can show thatkcurl �kV 0
� (
) is a norm which is equivalent

to the natural norm of Z �
T (1). Therefore, from the Lax-Milgram theorem, we infer that T � BT is

an isomorphism which shows thatBT is injective and that its image is closed in(Z � �
T (1)) � . And

from that, we deduce that BT is onto if and only if its adjoint is injective. The adjoint of BT is
the operator B�

T : Z � �
T (1) ! (Z �

T (1)) � such that for all  2 Z � �
T (1),  0 2 Z �

T (1),

hB�
T  ;  0i =

�



curl  � curl  0dx: (5.79)

If B�
T  = 0 , then taking  0 =  2 Z � �

T (1) � Z �
T (1) in (5.79), we obtain kcurl  k
 = 0 . Since

Z � �
T (1) � X T (1) and kcurl � k
 is a norm in X T (1) (Proposition 7.2.1), we deduce that = 0 .

This shows that B�
T is injective and that BT is an isomorphism. �

Now we use the above lemma to prove the following result which is essential in the analysis of
the Problem (5.56) for the magnetic �eld. This is somehow an extension of the result of itemi )
of Proposition 5.6.1 for singular �elds which are not in L 2(
) .

Proposition 5.6.4. Under Assumption 1, for all 0 � � < 1=2, if u 2 V 0
� (
) satis�es div u = 0

in 
 , then there exists a unique 2 Z �
T (1) such that u = curl  .

Proof. Let u 2 V 0
� (
) be such that div u = 0 in 
 . According to Lemma 5.6.3, we know that

there is a unique 2 Z �
T (1) such that

�



curl  � curl  0dx =

�



u � curl  0dx; 8 0 2 Z � �

T (1):

Then we have �



(u � curl  ) � curl  0dx = 0 ; 8 0 2 Z � �

T (1): (5.80)

Sinceu is divergence free in
 , we also have
�



(u � curl  ) � r p0dx = 0 ; 8p0 2 �V1

� � (
) : (5.81)

Now if v is an element ofV 0
� � (
) � L 2(
) , from item iv ) of Proposition 5.6.1, we know that

there holds the decomposition
v = r p0+ curl  0; (5.82)

for somep0 2 H1
0(
) and some 0 2 X T (1). Taking the divergence in (5.82), we get

� p0 = div v 2 (�V1
� (
)) � : (5.83)

From Proposition 6.2.1, since0 � � < 1=2, we know that (5.83) admits a solution in �V1
� � (
) �

H1
0(
) . Using uniqueness of the solution of (5.83) inH1

0(
) , we obtain that p0 2 �V1
� � (
) . This

implies that curl  0 = v � r p0 2 V 0
� � (
) and so  0 2 Z � �

T (1). From (5.80) and (5.81), we infer
that �



(u � curl  ) � v dx = 0 ; 8v 2 V 0

� � (
) :

This shows that u = curl  . Finally, if  1,  2 are two elements ofZ �
T (1) such that u = curl  1 =

curl  2, then  1 �  2 belongs toX T (1) and satis�es curl ( 1 �  2) = 0 in 
 . From Proposition
7.2.1, we deduce that 1 =  2. �
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5.6.3 Dimension of X out
N (" )=X N (" )

Lemma 5.6.4. Under Assumptions 1�3, we havedim (X out
N (" )=X N (" )) = 1 .

Proof. If u 1 = c1r s+ + ~u 1, u 2 = c2r s+ + ~u 2 are two elements ofX out
N (" ), then c2u 1 � c1u 2 2

X N (" ), which shows that dim (X out
N (" )=X N (" )) � 1.

Now let us prove that dim (X out
N (" )=X N (" )) � 1. Introduce ~s 2 �Vout the function such that

Aout
" ~s = div( " r s� ). Note that since div( " r s� ) vanishes in a neighbourhood of the origin, it

belongs to(�V1

 (
)) � for all 
 2 R. Then set

s = s� + ~s: (5.84)

Observe that s 2 �V1

 (
) for all 
 > 0 and that div( " r s) = 0 in 
 n f Og (s is a non zero element

of ker A 

" for all 
 > 0). Let ~u 2 (C1

0 (
 n f Og))3 be a �eld such that
�


 " ~u � r sdx 6= 0 . The
existence of such a~u can be established thanks to the density of(C1

0 (
 n f Og))3 in L 2(
) ,
considering for example an approximation of1B r s 2 L 2(
) where 1B is the indicator function
of a ball included in M . Introduce � = c s+ + ~� 2 �Vout , with c 2 C, ~� 2 �V1

� � (
) , the function
such that Aout

" � = � div( " ~u). This is equivalent to have

� c
�



div( " r s+ )' 0dx +

�



" r ~� � r ' 0dx =

�



" ~u � r ' 0dx; 8' 0 2 �V1

� (
) :

Clearly r � � ~u = cr s+ + ( r ~� � ~u) is an element ofX out
N (" ). Moreover taking ' 0 = s above, we

get

� c
�



div( " r s+ )sdx =

�



" ~u � r sdx 6= 0 :

This shows that c 6= 0 and guarantees thatdim (X out
N (" )=X N (" )) � 1. �



Chapter 6

Maxwell's equations with
hypersingularities at a conical
plasmonic tip: the case of two critical
coe�cients

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2 Setting of the problem and study of the scalar problems with critical coe�cients 157

6.2.1 The Laplace operator in weighted Sobolev (Kondratiev) spaces . . . . . 159

6.2.2 The scalar problems with critical coe�cients . . . . . . . . . . . . . . . . 160

6.3 Necessity of a new functional framework for the Maxwell's system . . . . . . . 162

6.4 The analysis the electric problem . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4.1 De�nition of the electric problem . . . . . . . . . . . . . . . . . . . . . . 166

6.4.2 Equivalent formulation for the electric �eld . . . . . . . . . . . . . . . . 167

6.4.3 Equivalent norms in Y �
N (" ) and Y out ;�

N (" ) . . . . . . . . . . . . . . . . . 169

6.4.4 Analysis of the principal part . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4.5 Compactness result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.4.6 Main results about the electric problem . . . . . . . . . . . . . . . . . . 172

6.4.7 The limiting absorption principle for the electric problem . . . . . . . . 174

6.5 The analysis of the magnetic problem . . . . . . . . . . . . . . . . . . . . . . . 175

6.5.1 De�nition of the magnetic problem . . . . . . . . . . . . . . . . . . . . . 176

6.5.2 Equivalent formulation for the magnetic �led . . . . . . . . . . . . . . . 176

6.5.3 Equivalent norms in Y �
T (� ) and Y out ;�

T (� ) . . . . . . . . . . . . . . . . 177

6.5.4 Main results about the magnetic problem . . . . . . . . . . . . . . . . . 178

6.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.7.1 Classical Helmholtz decompositions . . . . . . . . . . . . . . . . . . . . 179

6.7.2 Weighted regularity of vector potentials . . . . . . . . . . . . . . . . . . 179

6.7.3 Vector potentials in weighted Sobolev spaces . . . . . . . . . . . . . . . 180

6.7.4 Density results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

156



157 6.1. Introduction

6.1 Introduction

In the previous chapter, we studied time harmonic Maxwell's problems in the presence of a conical
tip of a negative material. More precisely, we studied the case where the function" is critical (i.e.
the scalar problem associated to" is ill-posed in H1

0(
) because of the existence of propagating
singularities) and where the function � is not critical (i.e. the scalar problem associated to�
is well-posed inH1

# (
) ). We have proved that the classical functional frameworks for the study
of Maxwell's problems are no longer appropriate. More importantly, we have explained how
to construct new functional frameworks in which the electric and magnetic problems are again
well-posed. These functional frameworks have been constructed by making use of the weighted
Sobolev spaces and cleverly taking into account the existence of propagating singularities of the
scalar problem associated to": The justi�cation of the adequacy with the physical reality (of the
solutions obtained in these new functional frameworks) has been achieved thanks to the limiting
absorption principle.

In this chapter, we are interested in studying the case where both functions" and � are criti-
cal. From what has been done, in the previous chapter, we expect that, in this con�guration,
the classical frameworks are not suitable for the study of Maxwell problems either (this will be
con�rmed in Ÿ6.3). Our goal is then to explain how to construct adapted functional frameworks
(that are coherent with the limiting absorption principle) that take into account both propagating
singularities generated by the scalar problems associated to" and �: As with the other chapters
in this thesis, we will try to make this chapter self-contained (so it can be read independently of
the previous one).

The plan of our work is the following. In Ÿ6.2, we start by recalling some results, which we
will need, concerning scalar problems with critical coe�cients. Then, in Ÿ6.3, we prove that the
classical approach to study electrical and magnetic problems is no longer valid. The construction
of new adapted functional frameworks for the electric problem and the magnetic problem and the
study of their well-posedness in these new functional frameworks are, respectively, the object of
Ÿ6.4 and Ÿ6.5. The last section is devoted to give a few words of conclusion.

6.2 Setting of the problem and study of the scalar problems with
critical coe�cients

The geometry considered is the same as in the previous chapter. Let
 be an open, simply
connected and bounded subset ofR3 with Lipschitz-continuous boundary @
 . To simplify the
analysis below, we shall suppose that@
 is connected. When this hypothesis is not satis�ed all
our results can be adapted by working as in [22, Ÿ8.2]. In
 ; we de�ne the piecewise constant
functions " and � such that

" =

(
"+ > 0 in 
 nM

" � < 0 in M
; � =

(
� + > 0 in 
 nM

� � < 0 in M

in which M is a subdomain of
 satisfying M � 
 : We suppose that@M is of classC2 except at
the origin O = (0 ; 0; 0) where M coincides, locally, with the the coneK such that

M \ K = K \ B (O; � ) = f x 2 R3; jxj < �;
x
jxj

2 A g; K = f x 2 R3;
x
jxj

2 A g;

in which B (O; � ) is the open ball of R3 of center O and of radius � su�ciently small and A is a
smooth sub-domain of the unit sphere ofR3 (see Figure 6.1). The contrasts associated to" and
� are, respectively, de�ned by � " := " � ="+ and � � := � � =� + :
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Figure 6.1: An example of the geometry considered in whichM is represented in red and
 nM is
in green.

In the distributional sense, the time harmonic Maxwell's problem writes: Find E and H such
that

curl E � i! � H = 0 and curl H + i! " E = J in 
 : (6.1)

E and H are complex vector �elds and denote, respectively, the electric and the magnetic �eld,
! 2 R is the frequency. The vector �eld J stands for the current density injected in the 

and is such that div( J ) = 0 : In this chapter we will also suppose that 
 is surrounded by a
perfect conductor. This leads us to complete the previous system of equations with the boundary
conditions:

E � � = 0 and � H � � = 0 on @
 ; (6.2)

in which � denotes the unit outward normal vector to @
 . In the classic con�guration, when "
and � have constant sign, to study the time harmonic Maxwell's system one has to introduce the
spaces

L 2(
) := (L 2(
)) 3

H (curl ) := f H 2 L 2(
) j curl H 2 L 2(
) g
H N (curl ) := f E 2 H (curl ) j E � � = 0 on @
 g

X T (� ) := f H 2 H (curl ) j div( � H ) = 0 ; � H � � = 0 on @
 g; for � 2 L1 (
)
X N (� ) := f E 2 H (curl ) j div( � E ) = 0 ; E � � = 0 on @
 g; for � 2 L1 (
) :

We endow, the spaceL 2(
) with its natural norm k � kL 2 (
) and the others spaces with the norm

k � kH (curl ) = ( k � k2
L 2 (
) + kcurl � k2

L 2 (
) )1=2:

On can check that, endowed with their natural norms all these spaces are of Hilbert type. For
the particular case � = 1 , it is well-known (see [139, 8]) that in X T (1) (resp. X N (1)) the semi-
norm kcurl � kL 2 (
) is a norm and it is equivalent to k � kH (curl ) . Furthermore, the embedding
of X T (1) (resp. X N (1)) in L 2(
) is known to be compact. It is also, well-understood thanks to
results of [22], that the study of the Maxwell's system in the classicalL2-framework (see Ÿ6.3) is
directly related to the study of the properties of the scalar operatorsA " : H1

0(
) ! (H1
0(
)) � and

A � : H1
# (
) ! (H1

# (
)) � that are de�ned as follows:

hA " '; ' 0i =
�



" r ' � r ' 0dx; 8'; ' 0 2 H1

0(
)

and

hA � '; ' 0i =
�



� r ' � r ' 0dx; 8'; ' 0 2 H1

# (
) :

Above the spaceH1
# (
) := f u 2 H1(
) j (u; 1)L2 (@
) = 0g: It is not di�cult to see that the

properties of A " and A � are, respectively, related to the well-posedeness of the problems:

Find ud 2 H1
0(
) s.t.

� div( " r ud) = f 2 (H1
0(
)) �

ud = 0 on @


Find un 2 H1
# (
) s.t.

� div( � r un ) = g 2 (H1
# (
)) �

@� un = 0 on @
 :

(6.3)
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6.2. Setting of the problem and study of the scalar problems with critical

coe�cients

In particular, it was proved in [22] that when the function " and � are such that A " and A � are of
Fredholm type then the Maxwell's system is well-posed in the classicalL 2� framework (see Ÿ6.3).
In Chapter 2, we have proved that the operatorA " (resp. A � ) is a Fredholm operator if and only
if � " 2 R�

� nI " (resp. � � 2 R�
� nI � ), where I " (resp. I � ) is a closed subset ofR�

� called the critical
interval. As mentioned in the introduction, along this chapter we shall work under the following

Assumption 6.2.1. We suppose that the function" and � are such that � " 2 I " nf� 1g; � � 2
I � nf� 1g:

By de�nition of I " and I � ; we can say that under the previous assumption the operatorsA "

and A � are not of Fredholm type. Thanks to the results of Chapter 2, we know that, in our
con�guration, the Assumption 6.2.1 is equivalent to say that propagating singularities exist for
both A " and A � : In Ÿ6.2.2, we shall recall, brie�y, how construct adapted alternative functional
frameworks in which the scalar problems associated toA " and A � are again well-posed.
To prepare the ground, we will start by recalling the de�nition of weighted Sobolev (Kondratiev)
spaces and some useful results concerning the Laplace operator (with homogeneous Dirichlet and
Neumann boundary conditions) in these spaces.

6.2.1 The Laplace operator in weighted Sobolev (Kondratiev) spaces

The weighted Sobolev spaces

For � 2 R and m 2 N, we introduce the weighted Sobolev (Kondratiev) space (see [100, 107, 102])
associated to the punctured domain
 n f Og: Vm

� (
) de�ned as the closure ofD (
 n f Og) for the
norm

k' kV m
� (
) =

0

@
X

j � j� m

kr j � j� m+ � @�
x ' k2

L2 (
)

1

A

1=2

in which r = jxj. Here D (
 n f Og) denotes the space of in�nitely di�erentiable functions which
are supported in 
 n f Og. For all m 2 N� and � 2 R we have the inclusion

Vm
� (
) � Vm� 1

� � 1 (
) : (6.4)

We also denote by �V1
� (
) the closure of D (
 n f Og) for the norm k � kV 1

� (
) . We have the
characterization

�V1
� (
) = f ' 2 V1

� (
) j ' = 0 on @
 g:

It is obvious that V1
0(
) � H1(
) . Moreover, since
 is bounded, applying the results of [102,

Theorem 7.1.1] yields thatH1(
) = V 1
0(
) and H1

0(
) = �V1
0(
) : For � > 0, one has the inclusions

�V1
� � (
) � H1

0(
) � �V1
� (
) and then (�V1

� (
)) � � (H1
0(
)) � � (�V1

� � (
)) � :

Since for all 0 < � we haveV0
� � (
) � L2(
) ; one deduces, thanks to (6.4), that

L2(
) � V0
� (
) � (H1

0(
)) � :

To obtain the previous inclusions, we have used the fact that(V 0
� (
)) � = V 0

� � (
) . For all � 2 R;
we de�ne the spaceV1

� (
) := f u 2 V1
� (
) j(u; 1)L2 (@
) = 0g: Again, by using [102, Theorem 7.1.1]

we �nd H1
# (
) = V1

0(
) :
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The Laplace operator in weighted Sobolev spaces

In this paragraph, we will recall some results concerning the Laplace operator acting between
weighted Sobolev spaces in the punctured domain
 nf Og. These results will be very useful
throughout this chapter, their proofs can be found in [102, 101, 107] and in the references therein.
We will start with the homogeneous Dirichlet condition. For 
 2 R, we de�ne the operator
A 


D : �V1

 (
) ! (�V1

� 
 (
)) � such that

hA 
 '; ' 0i =
�



r ' � r ' 0dx; 8' 2 �V1


 (
) ; ' 0 2 �V1
� 
 (
) :

Proposition 6.2.1. For all 
 2 (� 1=2; 1=2), the operator A 

D : �V1


 (
) ! (�V1
� 
 (
)) � is an

isomorphism.

Let 0 < r 0 and denote byB(O; r0) the open ball of R3 of center O and of radius r0: We have the
following regularity result

Proposition 6.2.2. [107, Ÿ1.6.2] For all
 2 (
1
2

;
3
2

) the operator � : V 2

 (B( O; r0)) \ �V1


 � 1(B( O; r0)) !

V0

 (B( O; r0)) is an isomorphism. Since for all
 2 (

1
2

; 1) we haveV0

 (B( O; r0)) � (H1

0(B( O; r0))) � ,

the space of solutionsV2

 (B( O; r0)) \ �V1


 � 1(B( O; r0)) can be replaced byV2

 (B( O; r0)) \ H1

0(B( O; r0)) .

Now, we turn our attention to the case of the homogeneous Neumann boundary condition. For
this, we introduce the operator A 


N : V1

 (
) ! (V1

� 
 (
)) � such that

hA 

N '; ' 0i =

�



r ' � r ' 0dx; for all ' 2 V1


 (
) ; ' 0 2 V1
� 
 (
) :

Proposition 6.2.3. For all 
 2 (� 1=2; 1=2), the operator A 

N : V1


 (
) ! (V1
� 
 (
)) � is an

isomorphism.

Note that when 
 = 0 ; we obtain the classical well-known result� : H 1
# (
) ! (H1

# (
)) � is an
isomorphism.

6.2.2 The scalar problems with critical coe�cients

Here, we recall some results, that we have proved in Chapter 2, concerning the construction of
new functional frameworks for the scalar problems when the functions" and � are such that
Assumption 6.2.1 holds. To start, we de�ne, for all � 2 R, the operators A � �

" : �V1
� � (
) !

(�V1
� � (
)) � such that

hA � �
" '; ' 0i =

�



" r ' � r ' 0dx; for all ' 2 �V1

� � (
) ; ' 0 2 �V1
� � (
) : (6.5)

In the same way, for all � 2 R we introduce the operatorsA � �
� : V1

� � (
) ! (V1
� � (
)) � such that

hA � �
� '; ' 0i =

�



� r ' � r ' 0dx for all '; ' 0 2 V1

� � (
) : (6.6)

Observe that, thanks to the fact that �V1
0(
) = H 1

0(
) and V1
0(
) = H 1

# (
) ; we, then, have
A0

" = A " and A0
� = A � :

Lemma 6.2.1. Under Assumption 6.2.1 there exists0 < � D (resp. 0 < � N ) such that the
operator A � �

" (resp. A � �
� ) is of Fredholm type for all � 2 (0; � D ) (resp. � 2 (0; � N )).
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6.2. Setting of the problem and study of the scalar problems with critical

coe�cients

To simplify the analysis below, we shall make the

Assumption 6.2.2. We suppose that" (resp. � ) is such that there exists� � 2 (0; � D ) (resp.
� � 2 (0; � N )) such that A � � �

" (resp. A � � �

� ) is injective.

Using the results of Proposition 2.6.3, we obtain the

Lemma 6.2.2. Assume that Assumptions 6.2.1-6.2.2 hold. Then for all� 2 [0; � D ) (resp.
� 2 [0; � N )) the operator A � �

" (resp. A � �
� ) is injective.

Another useful result is the following

Lemma 6.2.3. Assume that Assumptions 6.2.1-6.2.2 hold. Ifu 2 H1
0(
) (resp. u 2 H1

# (
) ) is
such that div( " r u) 2 (�V1

� (
)) � (resp. div( " r u) 2 (V1
� (
)) � ) with � 2 (0; � D ) (resp. � 2 (0; � N ))

then u 2 �V1
� � (
) (resp. u 2 V1

� � (
) ).

We denote by S" and S� , respectively, the spaces of propagating singularities generated by the
operators A " and A � : Recall that these spaces have �nite dimensions as soon as� " 6= � 1 and
� � 6= � 1: To be more precise, the spaceS" is de�ned as follows:

S" = spanf r! 7! � (r )r � 1=2+ i�
kX

p=0

1
p!

log(r )p' k� p j � 2 R; (' p)p=0 ;:::;k is a Jordan chain ofL " g

(6.7)
where L " is the Mellin symbol of A " and � 2 D (
) is a �xed cuto� function that depends only
in r = jxj and that is equal to 1 near the origin. To de�ne the spaceS� , simply replace " by � .
Interestingly, we have explained in Chapter 2 that S" ; S� � L2(
) in addition to that we proved
that for all s 2 S" (resp. s 2 S� ) we have div( " r s) 2 L2(
) (resp. div( � r s) 2 L2(
) ). This
allows us to de�ne for  = "; �; the quadratic form q : S � S ! C such that

q (u; v) =
�



div(  r v)u � div(  r u)v for all u; v 2 S :

Observe that for all u 2 S (with  = "; � ) we have

q (u; u) = 2 i=m(
�



div(  r u)u):

We also have the

Lemma 6.2.4. Assume that Assumptions 6.2.1-6.2.2 hold. The spacesS" and S� have even
dimensions denoted, respectively, byT" = 2N " and T� = 2N � (N " ; N � 2 N� ). There exists
(s�

";j ) j =1 ;:::;N " (resp. (s�
�;j ) j =1 ;:::;N � ) a basis ofS" (resp. S� ) such that for  = "; � we have

q (s�
 ;j ; s�

 ;k ) = � i� j;k ; q (s�
 ;j ; s�

 ;k ) = 0 and s+
 ;j = s�

 ;j for j; k = 1 ; : : : ; N  :

Remark 6.2.1. As explained in Ÿ2.6.2, the choice of the bases(s�
";j ) j =1 ;:::;N " and (s�

�;j ) j =1 ;:::;N � is
not unique. One can �nd an in�nite number of bases (s�

";j ) j =1 ;:::;N " and (s�
�;j ) j =1 ;:::;N � satisfying

all the conditions of Lemma 6.2.4. From a mathematical point of view, the choice of these bases
is not important: any choice of bases will lead us to construct functional frameworks in which the
scalar problems are again well posed. However, there is a particular choice of these bases which is
consistent with the limiting absorption principle. We will come back to the choice of these bases
in Ÿ6.4.7.

From now on, we �x (s�
";j ) j =1 ;:::;N " (resp. (s�

�;j ) j =1 ;:::;N � ) a basis of S" (resp. S� ) satisfying the
orthogonality relations in Lemma 6.2.4. Moreover, we de�ne the spaces

S+
" := spanf s+

" ;j ; j = 1 ; : : : ; N " g; S+
� := spanf s+

� ;j ; j = 1 ; : : : ; N � g:

Easily, one can show that we have the following
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Lemma 6.2.5. Assume that Assumptions 6.2.1-6.2.2 hold. Ifs 2 S+
" (resp. s 2 S+

� ) satis�es
q" (s; s) = 0 (resp. q� (s; s) = 0 ) then s = 0 :

Next, we de�ne for all 0 < � the spaces

�Vout
� (
) = �V1

� � (
) � S+
" ; Vout

� (
) = V1
� � (
) � S+

� :

For all 0 < �; we de�ne the operator Aout
" : �Vout

� (
) ! (�V1
� (
)) � such that for all u = ~u + s+

" 2
�Vout

� (
) (with ~u 2 �V1
� � (
) and s+

" 2 S+
" ) and v 2 �V1

� (
) we have

hAout
" u; vi :=

�



" r ~u � r v �

�



div( " r s+

" )v:

In the same way, we introduce the operatorAout
� : Vout

� (
) ! (V1
� (
)) � such that for all u =

~u + s+
� 2 Vout

� (
) (with ~u 2 V1
� � (
) and s+

� 2 S+
� ) and v 2 V1

� (
) we know

hAout
� u; vi :=

�



� r ~u � r v �

�



div( � r s+

� )v:

According to the results of Ÿ, we can prove the following

Lemma 6.2.6. Assume that Assumptions 6.2.1-6.2.2 hold. Then for all� 2 (0; � D ) (resp.
� 2 (0; � N )) the operator Aout

" (resp. Aout
� ) is an isomorphism.

Since in our work we are going to use at the same time the results concerning the Laplace operator
with Dirichlet or Neumann boundary conditions as well as those associated with the operatorsA �

"
and A �

� ; we are going to assume once and for all that, when the hypotheses 6.2.1-6.2.2 are satis�ed,
the constants� D and � N are such that � N ; � D < 1=2. Moreover, we denote by� 0 := min( � D ; � N ):

6.3 Necessity of a new functional framework for the Maxwell's
system

After eliminating H and then E in the problem (6.1), one concludes that the electric �eld E and
the magnetic �eld H satisfy the problems

curl � � 1curl E � ! 2"E = i! J in 

E � � = 0 on @
 ;

curl " � 1curl H � ! 2� H = curl " � 1J in 

� H � � = 0 ; " � 1(curl H � J ) � � = 0 on @
 :

(6.8)

In the classical con�guration, when " and � have constant signs, the formulation associated to
the electric �eld E is set in the spaceH N (curl ) and the one associated the magnetic �eldH is
set in the spaceH (curl ): More precisely, whenJ 2 L 2(
) ; the problem associated to the electric
�eld writes

Find u 2 H N (curl ) such that�



� � 1curl u � curl v � ! 2

�



"u � v = i!

�



J � v for all v 2 H N (
) :

(6.9)

Since the embedding ofH N (
) in L 2(
) is not compact (see [8]), the analysis of the previous
problem cannot be treated by classical arguments. For this reason, we prefer to work with the
following formulation which is posed in the spaceX N (" ) � H N (
)

Find u 2 X N (" ) such that�



� � 1curl u � curl v � ! 2

�



"u � v = i!

�



J � v for all v 2 X N (" ):

(6.10)

It was proved in [22] that the previous two formulations are equivalent as soon as the operatorsA "

and A � are isomorphisms. Furthermore, in this situation one can show that (6.10) is well-posed
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except for a discrete set of frequencies where it admits a �nite dimensional kernel. When" and
� are critical, there is no guarantee neither on the equivalence between the formulations (6.9)
and (6.10) nor on their well-posedeness. To proceed, we introduce the operatorsAN : X N (" ) !
(X N (" )) � and KN : X N (" ) ! (X N (" )) � such that for all u ; v 2 X N (" ); we have

hAN u; v i :=
�



� � 1curl u � curl v ; hKN u; v i :=

�



"u � v:

The following lemma can be seen as an extension of the results of [54].

Lemma 6.3.1. Assume that Assumptions 6.2.1-6.2.2 hold. Then the operatorKN is compact.

Proof. Let � 2 (0; � D ). According to Proposition 6.7.3, we know that the spaceX N (" ) is
compactly embedded in the spaceV 0

� � (
) = (V 0
� � (
)) 3. We �nish the proof by remarking that

there exists a positive constantC such that for all u 2 X N (" )

kKN uk(X N ("; 
)) � � C kukL 2 (
) � C kukV 0
� � (
) : (6.11)

�

As a result, even when" is critical, we then have the equivalence between the Fredholmness of
the problem (6.10) and the Fredholmness of the operatorAN : We also have the

Proposition 6.3.1. Under Assumptions 6.2.1-6.2.2 the mapu 7! k curl ukL 2 (
) is a norm in
X N (" ) that is equivalent to thek � kH (curl ) one.

Proof. By the classical open map theorem, its su�ces to show thatu 7! k curl ukL 2 (
) is a norm
in X N (" ): If u 2 X N (" ) such that curl u = 0 ; then by using item iii ) Proposition 6.7.1 we infer
that there exists a unique ' 2 H1

0(
) such that u = r ': Given that div( "u ) = div( " r ' ) = 0 and
owing to Lemma 6.2.2, we obtain the wanted result. �

The main result of this section is given by the following

Theorem 6.3.1. Assume that Assumptions 6.2.1-6.2.2 hold and assume that" and � are such
that � " 2 I " nf� 1g and � � 2 I � nf� 1g. Then either the operator AN is not of Fredholm type or
the problems(6.9) and (6.10) are not equivalent.

Remark 6.3.1. In the case where the operatorAN is of Fredholm type, the absence of equivalence
between the formulations(6.9) and (6.10) means that the solution obtained by solving(6.10) does
not satisfy the equation satis�ed by the electric �eld in the distributional sense (i.e., the �rst part
of (6.8)).

Proof. We will proceed by contradiction. Suppose thatAN is a Fredholm operator and that the
problems (6.9) and (6.10) are equivalent, then we will show thatA � is of a Fredholm operator
which is false by assumption.
The symmetric operator AN is then of Fredholm type; its index must therefore be equal to0.
Without loss of generality, we can suppose thatAN is not injective. Otherwise, the following
proof can be easily adapted. Since the kernel ofAN is of �nite dimension, say N 2 N� , we can
�nd N linearly independent elements ofX N (" ) that will be denoted by � 1; : : : ; � N such that
Ker (AN ) = span( � 1; : : : ; � N ): To proceed, with the help of Proposition 6.3.1, we introduce the
closed space

~X N (" ) := f u 2 X N (" ) j (curl u ; curl � i )L 2 (
) = 0 ; i = 1 ; : : : N g

as well as the operator~AN : ~X N (" ) ! ~X N (" ) such that

h~AN u; v i =
�



� � 1curl u � curl v dx; for all u ; v 2 ~X N (" ):
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Consequently, we obtain the decompositionX N (" ) = ~X N (" )
?
� span(� 1; : : : ; � N ): Moreover, the

operator ~AN is an isomorphism. Now, consider an element' 2 H1
# (
) . Since ~AN is an isomor-

phism, we de�ne  ' 2 ~X N (" ) the unique element of ~X N (" ) satisfying

�



� � 1curl  ' � curl  0dx =

�



� � 1(r ' �

NX

i =1

� i curl � i ) � curl  0dx; 8 0 2 ~X N (" ) (6.12)

in which � i =
�



� � 1r ' � curl � i dx. We emphasis that in (6.12) the test function  0 belongs to

~X N (" ). However, thanks to the de�nition of � i and � i , one can check that (6.12) is also valid for
all  0 2 span(� 1; : : : ; � N ). Indeed, since for all i 2 f 1; : : : ; N g we have � i 2 Ker (AN ) we infer
that �



� � 1curl  ' � curl � i dx = 0 :

On the other hand, thanks to the de�nition of � k for k = 1 ; : : : ; N; we also have

�



� � 1(r ' �

NX

k=1

� kcurl � k ) � curl � i dx = 0 for all i = 1 ; : : : ; N:

As a result, by linearity, we �nd

�



� � 1curl  ' � curl  0dx =

�



� � 1(r ' 0�

NX

i =1

� i curl � i ) � curl  0dx; 8 0 2 X N (" ): (6.13)

But, since by assumption the problems (6.9) and (6.10) are equivalent, the equation (6.13) is,
then, valid for all  0 2 H N (
) and then, by density of (D (
)) 3 in H N (
) , we obtain

curl (� � 1(r ' �
NX

i =1

� i curl � i � curl  ' )) = 0 in 
 :

From item v) of Proposition (6.7.1), we infer that there is a uniqueT' 0 2 H1
# (
) such that

r (T' ) = � � 1(r ' 0�
NX

i =1

� i curl � i � curl  ' ):

As a result, we have de�ned an operatorT : H1
# (
) ! (H1

# (
)) � : One can easily prove thatT is

continuous. Furthermore, since for all ' 2 H1
# (
) ; u 2 X N (" ) we have

�



curl u � r ' 0 = 0 ; we

deduce that for all '; ' 0 2 H1
# (
)

hA � '; T' 0i =
�



� r ' � r (T' 0) dx =

�



r ' � r ' 0dx �

NX

i =1

�



� i curl � i � r ' 0dx: (6.14)

Consequently, the operatorT represents a left parametrix for the self adjoint operatorA � . As a
result (see [109, Lemma 2.23]) the operatorA � : H1

# (
) ! (H1
# (
)) � is a Fredholm operator of

index 0 which is not true by assumption (� is critical). �

In the classical setting, the equivalent variational formulation to the magnetic problem writes:

Find u 2 H (curl ) such that�



� � 1curl u � curl v � ! 2

�



� u � v =

�



" � 1J � curl v for all v 2 H (curl ):

(6.15)



165 6.4. The analysis the electric problem

The results of [22] allow us to show that when� is such that A � is an isomorphism then the
previous formulation is equivalent to the following one

Find u 2 X T (� ) such that�



� � 1curl u � curl v � ! 2

�



� u � v =

�



" � 1J � curl v for all v 2 X T (� ):

(6.16)

If in addition to that the function " is such that A " is an isomorphism, it can be shown that
(6.16) is well-posed except for a discrete set of frequencies at which it has a �nite dimensional
kernel. As in the previous paragraph, we introduce the operatorsAT ; KT : X T (� ) ! (X T (� )) �

such that for all u ; v 2 X T (� ); we have

hAT u; v i :=
�



� � 1curl u � curl v ; hKT u; v i :=

�



"u v:

By working as in the case of the electric problem, one shows the

Theorem 6.3.2. Assume that Assumptions 6.2.1-6.2.2 hold and assume that" and � are such
that � " 2 I " nf� 1g and � � 2 I � nf� 1g. Then the following assertions hold:

ˆ u 7! k curl ukL 2 (
) is a norm in X T (� ) and is equivalent tok � kH (curl ) :

ˆ KT is compact.

ˆ Either the operator MT is not of Fredholm type or the problems(6.15) and (6.16) are not
equivalent.

6.4 The analysis the electric problem

Previously, we have shown that when" and � are critical, the classical frameworkX N (" ) is no
longer the appropriate space to solve the electric problem. In this section, we explain how to
construct a new functional framework in which the problem

curl � � 1curl E � ! 2"E = i! J in 

E � � = 0 on @
 :

(6.17)

is again well-posed. For this, we introduce for all� 2 R the spaces

V 0
� (
) := (V 0

� (
)) 3;
H �

N (curl ) := f u 2 r S+
" � V 0

� � (
) j curl u 2 V 0
� (
) ; u � � = 0 on @
 g;

H out ;�
N (curl ) := f u 2 r S+

" � V 0
� � (
) j curl u 2 � r S+

� � V 0
� � (
) ; u � � = 0 on @
 g:

Observe that the spaceH �
N (curl ) depends on" and that the space H out ;�

N (curl ) depends on"
and �: Above r S+

" and r S+
� stand for the spaces

r S+
" = spanfr s+

";j ; j = 1 ; : : : ; N " g; r S+
� = spanfr s+

�;j ; j = 1 ; : : : ; N � g:

Before getting into details, let us de�ne the norms that we are going to use in the spacesr S+
"

and r S+
� : For  = "; � and � 1r s+

 ; 1 + � � � + � N  r s+
 ;N  

2 r S+
 we de�ne

k
N "X

j =1

� j s+
";j kr S+

 
= (

N "X

j =1

j� j j2)1=2:

On can check that for all 0 < �; we have the inclusions

H out ;�
N (curl ) � H �

N (curl ) � V 0
� (
) : (6.18)
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It is time to present the norms that we are going to use in these three spaces. We start with the
case of the spaceV �

0 (
) . For all u = ( u1; u2; u3) 2 V �
0 (
) ; we denote by

kukV �
0 (
) := (

3X

i =1

kui k2
V �

0 (
) 2 )1=2:

For the case of the spaceH �
N (curl ); we proceed as follows. For allu = ~u + r s+

" 2 H �
N (curl )

(with ~u 2 V 0
� � (
) and s+

" 2 S+
" ) we de�ne

kukH � (curl ) := ( k~uk2
V 0

� � (
) + kr s+
" k2

r S+
"

+ kcurl uk2
V 0

� (
) )1=2:

For all u = ~u + r s+
" 2 H out ;�

N (curl ) (with ~u 2 V 0
� � (
) and s+

" 2 S+
" ) such that curl u =

 u + � r s� (with ~u 2 V 0
� � (
) and s+

� 2 S+
� ) we introduce

kukH out ;�
N (curl ) := ( k~uk2

V 0
� � (
) + kr s+

" k2
r S+

"
+ k u k2

V 0
� � (
) + kr s+

� k2
r S+

�
)1=2:

Given that 
 is Lipschitz-continuous, endowed with theirs associated norms all the previous spaces
are Hilbert spaces. In addition to that, one can show that when� is positive, the embeddings
(6.18) are continuous.
To simplify the presentation of our results, we shall adopt the following notations: for all u 2
H �

N (curl ); we will write u = ~u + r su;" with ~u 2 V 0
� � (
) and su;" 2 S+

" ; for v 2 H out
N (curl ) we

will use the notation curl v =  v + � r sv;� with  v 2 V 0
� � (
) and sv;� 2 S+

� :

6.4.1 De�nition of the electric problem

In Ÿ, we will explain that the appropriate functional framework to set the electric problem is the
spaceH out ;�

N (curl ) (some conditions on� that will be speci�ed later). For this reason we are
going to study the problem

Find u 2 H out ;�
N (curl ) such that

curl � � 1 u � ! 2"u = i! J in 
 nf Og
u � � = 0 on @
 :

(6.19)

The reason why we considered the problem in
 nf Og and not in 
 is to be able to study the
problem in weighted Sobolev spaces (and we will then be able to consider very singular �elds
near the origin). Our goal is to write a well-posed variational formulation which is equivalent
to the problem (6.19). To obtain such a variational formulation, we must choose, with care, the
space of the test functions. To proceed, let us assume, for the moment, that the current density
J belongs to the spaceV 0

� � (
) (in the Theorem 6.4.6, we will explain how to work with more
general current densities) and let us introduce the problem

Find u 2 H out ;�
N (curl ) such that�



� � 1 u � curl v � ! 2

 



"u � v = i!

�



J � v for all v 2 H �

N (curl ):
(6.20)

in which for all u 2 H out ;�
N (curl ) and v 2 H �

N (curl ) we have
 



"u � v :=

�



" ~u � ~v +

�



" r su;" � ~v +

�



" ~u � r sv;" �

�



div( " r su;" )sv;" :

It will be useful to observe that for all u 2 H out ;�
N (curl ) and v 2 H �

N (curl ) we have

 



"u � v �

 



"u � v =

�



div( " r su;" )sv;" �

�



div( " r su;" )sv;" = q" (su;" ; sv;" ): (6.21)
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Proposition 6.4.1. Assume that � 2 [0; 1=2): Then, the problems(6.19) and (6.20) are equiva-
lent.

Proof. Since D (
 nf Og)3 � H �
N (
) ; any solution to (6.20) is a solution to (6.19). Now, let us

show the reverse statement. Starting from the fact that for all � 2 [0; 1=2) the spaceD (
 nf Og)3

is dense in the spaceV = f u 2 H N (curl ) jsu;" = 0g (see Ÿ6.7.4)), we conclude that ifu is a
solution to (6.19) then it satis�es

�



� � 1 u � curl v � ! 2

�



"u � v = i!

�



J � v for all v 2 V :

To end the proof, it remains to show that for all v 2 r S" ; we have
 



"u � v =

�



J � v:

To do so, let v 2 S+
" and denote byv = r v 2 r S+

" : Given that r S" � �V1
� (
) for all 0 < �; there

exists a sequence(' n )n2 N of elements ofD (
 nf Og) such that ' n ! v in �V1
� (
) as n ! + 1 :

This implies that r ' n ! r v in V 0
� (
) : Moreover, since�V1

� (
) � L2(
) for all � < 1; we can say
that for all � 2 [0; 1=2) we have ' n ! v in L2(
) as n ! + 1 : Multiplying (6.19) by r ' n and
integrating by parts yield

�



" ~u � r ' n �

�



div( " r su;" )' n =

�



J � r ' n :

By letting n tend to 1 ; we deduce that
 



"u � r v =

�



J � r v:

This leads to the wanted result. �

6.4.2 Equivalent formulation for the electric �eld

Given that for all ' 2 �V1
� � (
) we haveu = r ' 2 H out ;�

N (curl ); we infer that the operator associ-

ated to the sesquilinear form(u ; v) 7!
 



"u � v is not compact. As in the classical con�guration,

one way to deal with this absence of compactness is to impose the constraintdiv( " �) = 0 on the
spacesH �

N (curl ), H out ;�
N (curl ). This leads us to introduce the spaces

Y �
N (" ) := f u 2 H �

N (curl ) j div( " u ) = 0 g; Y out ;�
N (" ) := f u 2 H out ;�

N (curl ) j div( " u ) = 0 g:

Note that the space Y out ;�
N (" ) depends also on�: In the sequel, we endow the spaceY �

N (" ) and
Y out ;�

N (" ) respectively with the norms of the spacesH �
N (curl ) and H out ;�

N (curl ):

Remark 6.4.1. Let u = ~u + r su;" 2 H �
N (
) . At �rst sight the constraint div( "u ) must be

understood as follows:
�



"u � r ' =

�



" ~u � r ' �

�



div( " r su;" )' =

 



" ~u � r ' = 0 for all ' 2 D (
 nf Og):

Given that for all su;" 2 S" the function div( " r su;" ) belongs toL2(
) and is compactly supported
in 
̂ = 
 nf r! j; � (r ) = 1 g � 
 nf Og (recall that the function � is a �xed cuto� function that
depends only inr = jxj and that is equal to 1 near the origin, see (6.7)). With this in mind
one can show that we have the estimate: there exists0 < C (independent of ' ) such that for all
' 2 D (
 nf Og) we have

j
�



"u � r ' j = j

 



"u � r ' j � Ck' k�V 1

� (
) :
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The density of D (
 nf Og) in �V1
� (
) implies that we have the equivalence

div( "u ) = 0 ()
 



"u � r v = 0 for all v 2 �V1

� (
) : (6.22)

By replacing the spaceH out ;�
N (curl ) by Y out ;�

N (" ) and the spaceH �
N (curl ) by Y �

N (" ) in (6.20),
one obtains the following problem

Find u 2 Y out ;�
N (" ) such that�



� � 1 u � curl v � ! 2

 



"u � v = i!

�



J � v for all v 2 Y �

N (" ):
(6.23)

Without any di�culty (using (6.22)), one can see that for all u 2 Y out ;�
N (" ) and v 2 Y �

N (" ) we
have  



"u � v =

 



"u � ~v =

�



" ~u � ~v �

�



div( " r su;" )sv;" :

Note that to obtain the previous result, we have used the fact that for all v 2 Y �
N (" ); we have

div( "v) = � div( " r sv;" ):

Theorem 6.4.1. Assume that ! 6= 0 .

ˆ Every solution of (6.20) is a solution of (6.23).

ˆ Let � 2 (0; � D ). Under Assumptions 6.2.1-6.2.2, if E is a solution (6.23), then it solves
(6.20). Moreover f E ; (i!� ) � 1curl E g is a solution of (6.1).

Proof. To prove the �rst part of the statement, one needs to justify that every solution u of
(6.20) satis�es the equation div( "u ) = 0 . For that, it su�ces to take v = r ' in (6.20) with
' 2 D (
 nf Og) and then use the fact that div( J ) = 0 in 
 nf Og.
The proof of the second part is little bit more involved. To prove it, let u be a solution of (6.23).
Since Y out ;�

N (" ) � H out ;�
N (
) ; it su�ces to show that the variational formulation (6.23) is also

valid for all v 2 H �
N (
) . For this, let v = ~v + r sv;" 2 H �

N (
) with ~v 2 V 0
� � (
) and sv;" 2 S+

" .
By means of item iv ) of Proposition 6.7.1, the function ~v admits the decomposition ~v = r ' v +
curl � v with ' v 2 H1

0(
) (such that r ' 2 V 0
� � (
) ) and � v 2 X T (1).) By remarking that

curl v = curl curl � v , we infer curl � v 2 X N (1) and then by Proposition 6.7.2 we deduce that
curl � v belongs toV 0

� � (
) for all � 2 [0; 1=2). Observing that div( " curl � v ) 2 (�V1
� (
)) � for all

� 2 (0; � D ) allows us to de�ne the function wv 2 �Vout
� (
) as the unique solution of the well-posed

problem
div( " r wv ) = div( " (curl � v + r sv;" )) 2 (�V1

� (
)) � : (6.24)

Now, we introduce v̂ such that v̂ = v � r ' v + r wv . By observing that div( " v̂ ) = 0 in 
 nf Og,
we deduce that v̂ 2 Y �

N (" ). As a result, one can takev̂ as a test function in (6.23). But, on the
other hand, we have

8
>>>>>>>><

>>>>>>>>:

�



� � 1 u � curl v =

�



� � 1 u � curl �̂v

 



"u � v =

 



"u � �̂v +

 



"u � r (wv � ' v ) =

 



"u � �̂v

�



J � v =

�



J � v̂ :

Hence, u satis�es (6.20) which ends the proof of the �rst part of second item. The rest of the
proof can be done as in Lemma 5.3.2. �
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6.4.3 Equivalent norms in Y �
N (" ) and Y out ;�

N (" )

The goal of this section is to introduce, under some condition on� , new "simpler" equivalent norms
for the spacesY �

N (" ) and Y out ;�
N (" ). Let us start with the case of the spaceY �

N (" ). Following
the same lines of the proof of Proposition 6.5.2, one obtains the

Proposition 6.4.2. Let � 2 (0; � D ) and assume that Assumptions 6.2.1-6.2.2 are satis�ed. Then
there exists a positive constantC such that

k~ukV 0
� � (
) + kr su;" kr S+

"
� Ckcurl ukV 0

� (
) for all u 2 Y �
N (" ): (6.25)

Consequently, the normsk � kY �
N (" ) and kcurl � kV 0

� (
) are equivalent in Y �
N (" ).

Now, we turn our attention to the case of the spaceY out
N (" ). We have the

Proposition 6.4.3. Suppose that Assumptions 6.2.1-6.2.2 hold and let� 2 (0; � 0). Then, there
exists 0 < C such that

k~ukV 0
� � (
) + kr su;" kr S+

"
� C k u kV 0

� � (
) for all u 2 Y out ;�
N (" ) with curl u =  u + r su;� :

(6.26)
Consequentlyu 7! k  u kV 0

� � (
) is a norm in Y out ;�
N (" ) that is equivalent to k � kH �

N (curl )

Proof. Since for all0 < � , we have the inclusionY out ;�
N (" ) � Y �

N (" ) and, by means of Proposition
6.4.2, it su�ces to show that, for all � 2 (0; � 0) � (0; � D ), we have the following estimate

kcurl ukV 0
� (
) � Ck u kV 0

� � (
) for all u 2 Y out ;�
N (" ):

By de�nition of the space Y out ;�
N (" ); we know that for all u 2 Y out ;�

N (" ) we have curl u =
 u + r su;� : Hence, we have the estimate

kcurl ukV 0
� (
) � C(kr su;� kV 0

� (
) + k u kV 0
� (
) ) � C(kr su;� kS+

�
+ k u kV 0

� � (
) ) (6.27)

with C independent ofu : Now, given that for all u 2 Y out ;�
N (" ) we havediv( curl u ) = 0 we then

obtain that
� div( � r su;� ) = div  u :

Using the fact that u � � = 0 on @
 we deduce thatcurl u � � = 0 on @
 and then we conclude
that  u � � = 0 on @
 : With this in mind, we can say that div  u 2 (V1

� (
)) � : Consequently, we
can write that for all v 2 V1

� (
) we have

hAout
� su;� ; vi = �

�



div( � r su;� )v =

�



 u � r v:

Given that Aout
� is an isomorphism for all � 2 (0; � 0), we infer that we have the estimate

ksu;� kS+
�

� k  u kV 0
� � (
)

with C independent ofu : Inserting this into (6.27) yields the wanted result. �

6.4.4 Analysis of the principal part

In this section, we shall study well-posedeness of the problem (6.23) when! = 0 . For this reason,
we introduce the continuous operatorA �

N : Y out ;�
N (" ) 7! (Y �

N (" )) � such that for all u 2 Y out ;�
N (" )

and v 2 Y �
N (" ) we have

hA �
N u; v i =

�



� � 1 u � curl v :
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Before getting into details, observe that for all u ; v 2 Y out ;�
N (" ) we have

hA �
N u; v i =

�



� � 1 u �  v +

�



div( � r su;� )sv;� :

Note that to obtain the previous relation, we have used the fact that for all u 2 Y out ;�
N (" ) we

have
div(  u ) = � div( � r s�;� ):

Theorem 6.4.2. Assume that Assumptions 6.2.1-6.2.2 hold. Let� 2 (0; � 0). Then, there exists
a continuous operator T : Y �

N (" ) ! Y out ;�
N (" ) such that

hA �
N � Tu ; v i :=

�



r 2� curl u � curl v for all u ; v 2 Y �

N (" ):

As a consequence, the operatorAN � T : Y �
N (" ) ! (Y �

N (" )) � is an isomorphism.

Proof. The construction of the operator T will be done in three steps. Let us consider some
u 2 Y �

N (" ).
First step: Since � 2 (0; � 0) � (0; � N ), the operator Aout

� is an isomorphism. As a result, one
can introduce ' u = ~' u + s�

u 2 Vout
� (
) (with ~' u 2 V1

� � (
) and s+
u 2 S� ) as the unique solution of

� div( � r ' u ) = div( � r 2� curl u ) 2 (V1
� (
)) � in 


(r ' u + r 2� curl u ) � � = 0 on @
 :

SinceAout
� is an isomorphism, the function ' u satis�es the following estimate

k ~' u kV1
� � (
) + kr s�

u kr S+
�

� C kr 2� curl ukV 0
� � (
) = Ckcurl ukV 0

� (
) : (6.28)

Second step: We de�ne the function F u = � (r ' u + r 2� curl u ) 2 V 0
� (
) . Easily, one can see

that F satis�es (
div( F u ) = 0 in 


F u � � = 0 on @
 :

Since � < 1=2, one can use Proposition 6.7.1 to deduce that there exists a unique u 2 Z �
N (1)

(see (6.42) for the de�nition of  u 2 Z �
N (1)) such that

curl  u = F u = � (r ' u + r 2� curl u ):

Furthermore, by means of Proposition 6.7.2, since� 0 < 1=2, the function  u belongs to the space
V 0

� � (
) .

Third step: Since by assumption� 2 (0; � 0) � (0; � D ), the operator Aout
" is an isomorphism.

This allows us to de�ne wu = ~wu + s"
u 2 �Vout

� (
) (with ~wu 2 �V1
� � (
) and s"

u 2 S+
" ) as the unique

solution of the problem

div( " r wu ) = div( "  u ) 2 (�V1
� (
)) � in 


wu = 0 on @
 :

We set T( u ) =  u � r wu . One can check thatT( u ) belongs to the spaceY out ;�
N (" ). In addition

to that we have (
 T( u) = � (r ~' u + r 2� curl u )

sT( u);� = s"
u :
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