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Synthése (en francgais)

Le sujet principal de cette thése est I'étude de la propagation des ondes électromagnétiques,
en régime harmonique, dans un milieu hétérogéne (en 3D) composé d'un diélectrique et d'un
matériau négatif (c'est-a-dire avec une permittivité diélectrique négative" et/ou une perméabil-
ité magnétique négative ) qui sont séparés par une interface avec une pointe conique.

En raison du changement de signe de la permittivit€" et/ou la perméabilité , les équations de
Maxwell peuvent étre mal posées dans les cadres classiques (basés sur 'espageClassiquement,

il est connu que I'étude des équations de Maxwell nécessite I'étude de deux problémes scalaires
qui sont associés & et . Dans la littérature, le seul travail qui traite de ce lien entre ces prob-
lemes, dans le cas oli et/ou change(nt) de signe(s) est présenté dans . |l a été démontré que
lorsque les deux problemes scalaires associés, impliquant respectiveméntt , sont bien posés
dans I'espaceH?; les équations de Maxwell sont également bien posées dans les espaces classiques.
La contribution principale présentée dans cette thése est de proposer une nouvelle théorie pour
I'étude des équations de Maxwell lorsque l'un des /les probléme(s) scalaire(s) n'est/ne sont pas
bien posé(s) dans I'espacéi®. La thése est composée de quatre parties.

Dans la premiére partie (Chapitre 2,3), en combinant la méthode de la T-coercivité et lI'analyse

de Mellin dans les espaces de Sobolev a poids (i.e. la théorie de Kondratieév) nous présentons
une étude détaillée de ces problémes scalaires. En particulier, nous prouvons que pour chacun
d'entre eux, le caractére bien posé dansi! est perdu si et seulement si le contraste associé ap-
partient & un ensemble critique appelé intervalle critique. Ces intervalles critiques correspondent
aux ensembles de contrastes négatifs pour lesquels des singularités propagatives, aussi appelées
ondes de trou noir, apparaissent a I'extrémité de la pointe. Ces singularités se comportent comme

r ¥2*1 (2 R) au voisinage de la pointe (avea est la distance a la pointe). Elles peuvent é&tre
interprétées comme des ondes qui se propagent vers/depuis la pointe conigue. Contrairement
au cas 2D d'une interface avec coin, pour une pointe 3D, plusieurs ondes de trou noir peuvent
exister. Des expressions explicites de ces intervalles critiques sont obtenues pour le cas particulier
des pointes coniques circulaires. Pour les contrastes critiques, en utilisant le principe de radiation
de Mandelstam, nous construisons une in nité des cadres fonctionnels dans lesquels le caractére
bien posé des problémes scalaires est restauré. Pour choisir, parmi ces cadres fonctionnels, le
cadre qui est physiqguement pertinent nous avons utilisé le principe d'absorption limite.

Au passage, dans la deuxieme partie de ce travail (Chapitre 4), nous présentons une nouvelle
méthode numérique pour approcher les solutions des problémes scalaires dans le cas des con-
trastes non-critiques. Cette nouvelle méthode est basée sur une reformulation des problemes
scalaires en problémes de contrdle optimal. Contrairement aux techniques existantes, la con-
vergence cette approche, ne nécessite pas d'’hypothéses supplémentaires ni sur le maillage au
voisinage de l'interface ni sur la régularité de la solution.

La troisiéeme partie de la these (Chapitre 8) concerne I'étude des équations de Maxwell avec un
ou deux coe cients critiques. En utilisant de nouveaux résultats de potentiels vecteurs dans
des espaces de Sobolev a poids et de nouveaux résultats de régularité, nous expliguons comment
construire de nouveaux cadres fonctionnels dans lesquels les problémes électrique et magnétique
sont a nouveau bien posés. Ces cadres sont directement liés a ceux obtenus pour les deux prob-
lemes scalaires associés. En outre, hous avons prouvé que si hous utilisons le cadre qui respecte
le principe d'absorption limite pour les problémes scalaires, alors les cadres fournis, par notre
approche, pour les problemes électrique et magnétique sont également cohérents avec le principe
d'absorption limite.

Enn, dans la derniére partie de ce travail (Chapitre 8), nous sommes intéressés a I'étude des
processus d'homogénéisation des équations de Maxwell (en régime harmonique) et les problemes



scalaires associés dans un domaine 3D qui contient une distribution périodique d'inclusions dans
un matériau négatif. En utilisant I'approche de T-coercivité et un nouveau résultat de compac-

ité uniforme, nous obtenons des conditions sur les contrastes (associés aux problemes scalaires
dans les cellules) qui assurent que le processus d'homogénéisation est possible pour les problémes
scalaires et vectoriels (Maxwell). D'une maniére non intuitive, nous montrons que les matri-
ces homogénéisées associées aux problemes de limites sont soit dé nies positives, soit dé nies
négatives.
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Chapter 1

Introduction

For the past two decades, the scienti c community has been particularly interested in the analysis
of Maxwell's equations in unusual situations involving real valued dielectric permittivity " and
magnetic permeability whose sign changes on the domain of interest. The main motivation for
the study of these problems comes from spectacular progress made in the eld of plasmonics and
from a more prospective point of view, from the development of the so-called metamaterials.

Plasmonics is the branch of physics that consists in studying the propagation of electromagnetic
waves, or more precisely, of the collective oscillations of electrons, on the surface of a metal at
optical frequencies. These waves are called plasmonic waves or plasmonic resonances. They are
exploited in many interesting realizations such as the Lygurcus cup (see Figure 1.1). This cup
looks green when illuminated from outside but appears red when illuminated from inside. The
explanation of this change of color lies in the fact that it is composed by an alloy of gold and silver
nanoparticles. In particular, when one illuminates the cup from inside, the red color results from
the strong enhancement of the scattered eld associated to some particular wavelengths due to
the excitation of plasmonic resonances. Recently these waves have been used in new applications
concerning the design of biosensors, cancer therapies, the production of e cient photovoltaic cells
and many others (see [106]). From a mathematical point of view, the existence of these waves is
mainly due to the fact that at optical frequencies, some metals like silver or gold have a dielectric
permittivity " with a small imaginary part and a negative real part (see [45, Chapter 1] for a
more rigorous explanation). Neglecting the imaginary part, for these ranges of frequencies, we
are led to consider a real-valued' which is negative in the metal and positive in the air around
the metal. This gives us a rst simple con guration in which the dielectric permittivity has a
change of sign.

Metamaterials are arti cial materials with physical properties that can not be found in nature.
Usually they are made of a periodic assembly of a large number of resonant micro-structures
(see Figure 1.1). For these materials, all the game consists in choosing cleverly the structure as
well as the resonators so that the e ective medium, after an homogenization process, presents
interesting properties. These materials have been intensively studied in the past two decades due
to their potential very exciting applications such as, among others, sub-wavelength imaging and
focusing, cloaking, sensing or data storage (see [135]). Let us mention that concrete realizations
of these materials are still in progress. Mathematically it was proved (see [132]) that it is possible
to design materials modelled by some e ective’ and that have, in some range of frequencies,
negative real values and small imaginary parts.

We emphasize that all the interesting phenomena related to these negative materials (i.e. metals at
optical frequencies or negative metamaterials for well-chosen ranges of frequencies) arise only when
these materials are associated with classical (positive) ones and importantly when dissipation is
very small. Therefore we will focus our attention on the propagation of electromagnetic waves
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inside media where" and are real valued and where one or the two constants change(s) sign
in the physical domain. Note that this is also the most interesting case for the mathematical
analysis.

Figure 1.1: On the left: the Lygurcus cup [9]. On the right: an example of metamaterial (NASA
Glenn Research/Wikimedia Commons).

In what follows, we will be particularly interested in the study of the time harmonic Maxwell's
equations in a bounded domait  of R® made of an inclusion of negative material , surrounded
by some positive material ;. We denote by the interface between the two regions so that nally
we have > , = 1 2[ and = @1\ @ 2 (see Figure 1.2 for an illustration).

We assume that@ (the boundary of ) is Lipschitz-continuous and connected. Moreover we
denote by n the unit normal vector to @ oriented to the exterior of . To set the ideas, in this
introduction we focus our attention on the problem satis ed by the electric eld E when is
surrounded by a perfect conductor. This problem writes

cul  curl E !'?"E =ilJin and E n=00on@: (1.1)

Above ! 2 R is the frequency, J is the injected current density which is assumed to satisfy
div(J) =0 in while " (resp. ) is a piecewise constant function such that" = "1 2 R, (resp.

= 12R;)in jand"="22R (resp. = 22R )in . Because of the change of sign
of the functions " and , the study of Problem (1.1) can not be made as in the classical case.
In order to identify the di culties raised by the sign-changing ", ; let us start by recalling in a
brief way how one shows the well-posedness of (1.1) in the standard situation wheh and
are positive.
The classical con guration. It is well-known that when " and are positive, Problem (1.1)
is not elliptic (see [63]). This makes the study of its well-posedness a little bit di erent from the
analysis of strongly elliptic problems. The choice of the functional framework in which we can
set Problem (1.1) is not unique [63]. The most natural setting is the one which re ects the fact
that the electromagnetic energy contained in is nite. This boils down to impose that both E
and curl E belong to the spaceL?():=(L 2()) 3. This leads us to work in

Hn(curl ;):= fu2L?) jeulu2L?) andu nin g
Endowed with its natural norm
KUKy curt 1) = (Kukfao(y + keurl ukfz(y )%

Hn (curl ;) isa Hilbert space. Furthermore, it can be shown that(D ()) 3, the space of in nitely
di erentiable functions with compact supportin , is dense inH (curl ; ) (see [81]). With this

'i.e. an open connected subset.
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Figure 1.2: An example of considered geometry where the green (resp. red) part is occupied by
1(resp. 2).

in mind, one can show that whenJ belongs to L?() , Problem (1.1) set in Hy(curl ;) is
equivalent to the following variational formulation

Find u 2 Hy(curl ;) such that

2 (1.2)

Yeurl u curl v "u v=il  J v 8v 2 Hy(curl ;) :

By observing that for all * 2 H(l)() the vector eld r ' belongs to the spaceH \ (curl ;) and
that kr ' kg (cun ;) = Kr ' kpz(y , one can prove that the embedding oH y (curl ;) into L2()
is not compact (see the end of this introduction). Moreover, for the same reason (the fact that
r H%,() Hn (curl ;) ), what seems the principal part of (1.2) is not coercive. All this to
say that one can not apply the coercive +compact theory to prove the well-posedness of (1.2).
One way to solve this di culty is to exploit the fact that div(J) =0 in , which, according to
(1.1), givesdiv("E) =0 in forall ! 6 0. Imposing this constraint leads us to work in the space

Xn(" )= fu22Hy(curl ;) jdiv("u)=0g:
Then we introduce the problem

Find u 2 Xn("; ) such that

12 "y v=il J Vv 8v2Xn("): (1.3)

Iecurl u curl v

It has been proved in [65] that when" is positive, the embedding of X (*; ) into L?() is

compact. Furthermore, using that is positive, one can prove that the principal part of (1.3)

is coercive. As a result Problem (1.3) is well posed in the Fredholm sense for dll 2 R and in

the Hadamard sense except for a discrete subset of frequenciesRf To complete the analysis
and to prove in particular that a solution to (1.3) yields a solution to (1.1), we need to show
the equivalence between formulations (1.3) and (1.2). It is obvious that any solution of problem
(1.2) is a solution of (1.3). Let us establish the converse statement. For al¥ 2 Hy (curl ;) ,

introduce ' 2 Hcl)() the unique function which solves the problem

Find 'y 2 Hé() such that div("r ' ) =div( "v): (1.4)

Then we can writev = r ', + v with ', 2 H}() andw 2 Xy ("; ) : Taking v as a test function
in (1.3) and using the fact that for all u 2 XN ("; ) we have

Ieurl u curl ¥ = Icurl u curl v; u v= u vand J v= J v
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we deduce that any function satisfying (1.3) solves (1.2). This ensures that Problem (1.2) is
well-posed in the Fredhlom sense for all 2 R and in the Hadamard sense except for a discrete
subset of frequencies oR : Now, let us go back to the case of sign-changing coe cients.

The case of sign-changing coe cients. In the reminder above, the positivity of " was
used twice, rst to show that the embedding of X n("; ) into L?() is compact and second to
prove the equivalence between (1.3) and (1.2). In addition to that, the positivity of was the key
argument to show the coercivity of the principal part of the formulation (1.3). When " and/or
change/changes sign, these arguments must be reconsidered.

However, if we focus our attention on the proof of equivalence between formulations (1.2) and
(1.3), we notice that what is needed is not the positivity of " but rather that the problem (1.4)

is well-posed in the Hadamard sense. Indeed it was proved in [22] that when the problems

Find u2 H}() suchthat div("r u)=f 2 (H§()) ; (1.5)
Find u2 Hi () ?suchthat div( ru)= g2 (Hi()) ; (1.6)

are well-posed (for allf 2 (Hé( ) andg?2 (Hi ()) ) in the Hadamard sense, then Problem
(2.3) (resp. (1.2)) is well-posed in the Fredholm sense for all 2 R (resp. ! 2 R ) and in the

Hadamard sense for all 2 Rn (resp.! 2 R n ) where is a discrete subset oR (resp. R ).

Naturally, this brings us to the following question:

Under which condition(s) on " (resp. on ) the problem (1.5) (resp. (1.6)) is well-posed
(in the Fredholm sense) for allf 2 (H3()) (resp. g2 (Hi()) )?

The previous question was the subject of several contributions in the literature [147, 49, 45] (es-
pecially in 2D con gurations). Let us summarize, in a brief way, the principle conclusions of these
works.

State of the art about the scalar problems. Interestingly, in the literature, two main
approaches have been proposed.

The rst one is based on a reformulation of the problem into an integral equation [92, 92,
32, 67] posed on the interface . Then desired conditions concerning' or to ensure the
well-posedeness of the problems can be expressed in terms of the spectrum of the so-called
Neumann-Poincaré operator (this will be detailed in Y2.2).

The second one is variational [147, 49]. It is based on a reformulation of the classical inf-sup
theory called the T-coercivity approach. For example for Problem (1.5), it consists in nding
an operator T : H3() ! H3() such that the sesquilinear form(u;v) 7! "r u r (Tv)
becomes coercive om3()  H3() :

When the interface is smooth (of classCY with 2 (0;1]), the two approaches lead to the
same conclusion: Problem (1.5) (resp. (1.6)) is well-posed in the Fredholm sense as soon as
the contrast - := ",="1 (resp. = ,= 1)issuchthat « 6 1 (resp. 6 1. We will
show later in Chapter 2 that this is also the case for the general case of interfaces of clags-:

It is worth to note that in some particular situations, for example for symmetric domains (i.e

1 is the symmetric of » with respect to ) in 2D/ 3D, one can show [49] that for « = 1
(resp. = 1), Problem (1.5) (resp. (1.6)) has a kernel of in nite dimension. For more details
concerning the study of the particular case - = 1 (resp. = 1), see [117].

As soon as the interface has geometric singularities (corners, conical points, edges; :), the
situation is totally di erent. As we shall see in Chapter 2 of this thesis, one can show that for

Hy():= fu2H'() j u=o0g
@
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the general case of Lipschitz-interfaces, the Fredholmness of (1.5) (resp. (1.6)) can be lost when
the contrast - (resp. ) belongs to some set (resp. | ) known as the critical interval. The
expression ofl  (resp. | ) is not known in general.

For 2D polygonal interfaces,|” and | have been obtained explicitly. They are intervals whose
bounds are functions of the sharpest opening angle of [49, 25].

The approach based on the use of the Neumann-Poincaré operator leads to the same result. This
was done in [125]. Let us mention that the expression of the critical interval can be deduced from
the results of the Phd work of Carleman [44] dating from 1916!

In 3D, the situation is much more complicated, even in the simple case of an interface with a
circular conical tip. Actually, for this particular con guration, the T-coercivity approach allows us

to get an estimation of the bounds of the critical interval [49], but there is no guarantee about the
optimality of theses bounds. The approach relying on the use of the Neumann-Poincaré operator
was considered in [104], but it seems that there is no clear result about the exact expression
of the critical interval in this con guration. One of the objectives of this thesis is to nd a
characterization of the critical intervals |~ and | in the case when has a smooth conical tip
(see Figure 1.2). Furthermore, we will show how to combine the T-coercivity approach and the
approach based on the Neumann-Poincaré in order to obtain an explicit expression of the critical
interval.

By applying the results of [22], we can then conclude about the well-posedness of the Maxwell's
problem when « and  do not belong respectively tol * and | . In Chapter 7, we will explain
how to use these results in order to study the homogenization of the scalar problems and the
time-harmonic Maxwell's equations in a composite medium with periodically distributed small
inclusions of a negative material.

When one of the contrasts  or - is critical, i.e. when 21" or 21 ,the well-posedness of
the Maxwell's problem in the classical frameworksH y (curl ; ) and Xy ("; ) is not guaranteed.
This leads us to the following questions:

What happens to the Maxwell's problem (1.1) when" and/or  arelis critical? Is it
well-posed in the classical framework? If yes, how to prove this? If the answer is nq,
what would be the appropriate framework (from the physical point of view) in which
we can set the problem?

The answer to these questions is the main motivation of this thesis. To address them, one rst
needs to study what happens to the scalar problems (1.5) and (1.6) whehor becomes critical.

To set ideas, let us focus our attention on the problem (1.5). In the literature, to the best of

our knowledge, the only existing work in this direction is [25]. In this article, the authors have

considered the particular case where the interface has a right corner. They showed, by adapting

the Kondratiev theory [100], that the lost of Fredholmness for (1.5) is due to the appearance of
two strongly oscillating function s (called propagating singularities or black-hole singularities)

that behave liker ' (2 R,) near the corner wherer is the distance to the corner vertex. One
can check that these functions do not belong to the spacéi®() .

In order to restore well-posedness of (1.5) when- 2 | ; the authors of [25] used the anal-
ogy with the propagation of waves in waveguides (in this analogy the corner plays the role of
in nity) to propose a new functional framework, that replaces H!() , in which the scalar prob-
lem (1.5) becomes well-posed. This functional framework is obtained by adding one of these
two propagating singularities (the outgoing one) to a well-chosen weighted space (composed by
more regular functions). The selection of the outgoing behavior is done thanks to the limiting
absorption principle: the physical solution of the problem must be the limit (in some space to
dene)as ! 0" ofu whereu is the unique solution of div(( +i )r u)= f. The extension
of this approach to the case of 3D interfaces with a conical point is one of the main results of this
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thesis. This will be the subject of Chapters 2-3.

Now, let us go back to the study of the Maxwell's problem. If, for example, the dielectric
permittivity " is such that « 2 | ; the proof of equivalence between (1.2) and (1.3) can not be
done because the scalar problem (1.4) is ill-posed. This suggests that the classi¢al setting is
not adapted to the study of the Maxwell's problem in this con guration. As a result one needs
to propose a new functional framework in order to restore Fredholmness. Intuitively, to ensure
that this new functional framework leads to the physical solution of the problem, it must con-
tain the gradient of the outgoing singularity(ies) (we shall see later that in 3D several outgoing
singularities can exist). This leads us to study the Maxwell's problem in a nont.? framework.
From a mathematical point of view, this will prevent us from using many of the classical tools for
the analysis of Maxwell's equations, such as results of existence of vector potentials, Helmholtz
decomposition, compact embedding, ... For this reason, a new theory has to be constructed.
This new theory can be seen as an adaptation of Kondratiev approach [100] to Maxwell's equa-
tions. It is worth to note that our technique is conceptually di erent from the one used in [65]
(for the classical con guration) where the Kondratiev theory is used to characterize the singular
behaviour of the classical solutions. Our results in this direction will be presented in Chapters 5-6.

Once the theory will be developed, we will consider the question of the approximation of these
problems by nite elements methods. Unfortunately, our contributions to this question concern
only the scalar case. Because of the change of sign“ofresp. ), the convergence of the numerical
approximation to the exact solution as one re nes the mesh in general is not clear. This leads us
to the following questions:

How to design convergent FEM-based numerical method to approximate the solutiong
of scalar problems when they are well-posed?

In the literature, several convergent approaches have been proposed for the non-critical case.
Some of the strategies are based on the use of so-called T-conforming meshes (see [49, 45]). Un-
fortunately, the construction of such meshes seems to be not easy (see[45]), especially when the
interface has corners or in 3D. For general meshes (that respect the interface), other techniques
have been designed. Some of them su er from the fact that their convergence can not be guaran-
teed for all contrasts for which the (continuous) problem is well-posed. This the case in particular

of the method developed in [147, 51, 119]. In 2017, a new method based on the use of an optimal
control reformulation has been proposed in [1]. It is proved to be convergent on general meshes as
soon as the exact solution belongs to the spadeH®() := fuju; , 2 H3( 1) andu; , 2 H®( 2)g
with s < 3=2: Unfortunately, this regularity condition is not always satis ed, especially when

has corners in 2D or conical points in 3D. In Chapter 4, we will present a new strategy which
relies on the use of a di erent optimal control reformulation and which converges without any
restriction neither on the mesh (the interface simply needs to coincide with edges of the mesh)
nor on the regularity of the exact solution.
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Now, it is time to summarize the outline of our work. This thesis will be divided into four parts.

Part 1: Study of the scalar problems with sign-changing coe cients. It contains
two chapters (Chapter 2 and Chapter 3) and is devoted to the analysis of the scalar problems
when the interface  has a conical point. In particular, we will give a characterization of the
critical intervals | and | and, more importantly, we will explain how to use the Mandelstam
radiation principle and the limiting absorption principle in order to derive a new (physical) func-
tional framework in which Fredholmness is restored.

Part 2: Numerical approximation of the scalar problems with sign-changing coef-

cients. This part is made of Chapter 4 in which we will present a new numerical method
to approximate the solution of the 2D/3D scalar transmission problems. It is based on a nite
elements approximation and we will show that it converges without any restrictive condition on
the mesh near the interface.

Part 3: Time harmonic Maxwell's equations with sing-changing coe cients. Here we
turn our attention to the study of Maxwell's equations in a situation where the interface has a
conical point and where the contrasts take critical values. In Chapter 5, we study the con gu-
ration when just one of the electromagnetic parameters is critical. In Chapter 6, we propose an
analysis when both parameters' and are critical.

Part 4: Homogenization of Maxwell's equations and related scalar problems with
sign-changing coe cients. In this part, we consider the question of the homogenization of
the scalar problems and of the time-harmonic Maxwell's equations in a composite material with
periodically distributed small inclusions of a negative medium. We explain why the homogeniza-
tion process is possible as soon as the contrast associated to the cell problem is small or large
enough. Our results will be presented in Chapter 7.

As promised above, we nish this introduction by proving that the embedding of H (curl ; ) into
L2() is not compact. Let (" |)izn be an orthonormal sequence oH(lJ() . The sequence of vector
elds (r ' i)i2n is then orthonormal in Hy (curl ;) : If the embeddingH y (curl ;) L2() was
compact, then one could nd a sub-sequence, that will be indexed by, of (r ' ;)ion that converges
inL?() tosomeu2 L2() . Fromthe factthat kr ' i r "iKnygeun 5y = krtir ke =002
for i 6 | , we conclude that this not possible.



Chapter 2

Study of the scalar transmission
problem in presence of a conical tip
of negative material

2.1 Introduction

In this chapter, we investigate the scalar transmission problem between two domairisof R® lled
with materials modelled by physical coe cients of di erent signs. We assume that ; (resp. »2)
corresponds to the positive (resp. negative) material and more speci cally, we consider situations
where the interface separating the two regions is smooth (of clas€!) everywhere except near
some point O, where it has a conical tip. We set ;= 1] 2[ and to simplify a little bit
the analysis below, we suppose that is connected with a Lipschitz-continuous boundary @ .
In addition to that, we make the assumption that » . This simply means that the domain

1 surrounds 2 and ensures that \ @ = ;: Without loss of generality, we suppose that
O =(0;0;0). A full description of the conical singularity at O can be done via the description of
the domain » near O: For this purpose, let us describe the intersection between , and B(O; )
the open ball of R® of center O and of radius su ciently small. We consider the following
con guration:

>\ B(O; )= fx2 R%:jxj< :x= jxj2 Ag (2.1)

whereA is a smooth (of classC?) sub-domain of S* the unit sphere of R®: To simplify notations,
we shall assume that =1 in (2.1) (in particular this means that B(O;1) ). A more precise
description of A will be given below. An example of geometry for which all these assumptions
are satis ed is given in Figure 2.1. Note that the class of conical tips described by (2.1) contains
the particular case of circular (rotationally symmetric) conical tips obtained by revolution of a
half-line around a xed axis, say the z axis, in R3. Even though the primary goal of this chapter
is to treat the class of general conical tips of the form (2.1), a particular interest will be devoted
to the case of circular ones because, in such case, explicit calculus can be done.

In the sequel, we denote byK the coneK := fx 2 R3jxj < :x= jxj 2 A g: In order to make
the presentation of our results as clear as possible, we limit ourselves to the case whe@ can

be parameterized by a functiong 2 szer([o; 2 ]): In other words, we assume that

A=f(;")jr=1land <g(')g and @& =f(r;;" )jr2Rs and =g9(')g
Here(r; ;" )2 (0;+1) (0; ) (0;2 ) are the classical spherical coordinates such that for

x 2 R®, we havex = (rsin( )cos( );rsin( )sin(" );rcos()) with 2 (0; Yand' 2 (0;2 ). In
Figure 2.2, we display two examples of geometries that t into the class of the domains described

'Here domain means an open connected subset oR®.

16
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Figure 2.1. An example in which the red part ( ») is lled with a negative material and the green
one ( 1) is lled with a positive one.

Figure 2.2: Shape of the domain@ for a circular conical tip (left) and for a more general conical
tip (right).

previously. It is important to note that all the results that we are going to present below can be
easily extended to the two following situations:

A~

@\ is of classC? but cannot be parameterized by a single functiong 2 szer([o; 2.

@\ is of classC! and piecewiseC?.

To complete the description of our transmission problem, we need to introduce a physical pa-
rameter 2 L' () such that | 12 R, =(0;+1) and »2R =(1 ;0). We

1 i~

denote by = ,= 12 (1 ;0)the contrast associated with . Now the transmission problem
that we want to study writes:
Find u2 HY() suchthat div( ru)=f 2 (H3()) : (2.2)

The properties of the above problem depend on the features of the bounded operatgk
H3() ! (H3()) de ned with the Riesz representation theorem such that

bA u;vi = rurv; u;v 2 H3() -
Since changes sign, Problem (2.2) is not elliptic and its well-posedness (for an arbitrary

f 2 (H(l)( )) ) is not guaranteed even in the Fredholm sense (i.e the operatoA may not be of
Fredholm type?). By dividing A by 1; one observes that the Fredholmness oA depends only

2An operator B : X! Y is said to be of Fredholm type if ker(B) and coker (B) are of nite dimensions and its
range is closed. The index ofB is de ned by index(B) :=dim(Ker( B)) dim(coker(B)):
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on the contrast : To be coherent with the vocabulary used in the literature [50, 25], the set
of contrasts  for which the operator A is not of Fredholm type is called the critical interval

and is denoted byl : However, it is important to note that even though | is called the critical

interval, there is no result that allows us to say that | is indeed an interval of the form [a; b]

( R ). In particular, I could be an union of disjoint intervals. All we can say is thatl is
a closed subset oR (see Proposition 2.2.1). More information aboutl are given in the next
section.

In the 2D con guration, the study of the scalar transmission problem between a positive and a
negative material with an interface having a corner has been clari ed in [25]. It was shown that
the critical interval is an interval of R whose bounds are given explicitly as functions of the
opening angle of the corner. Furthermore, when the contrast belongs to the critical interval, the
loss of the Fredholmness of the operator is caused by the appearance of two strongly oscillating
functions s (also known as propagating singularities or black hole singularities) that do not
belong to the spaceH® near the corner (these functions behave like' with 2 R andr is the
distance to the corner vertex). Using these functionss , one can construct a Weyl sequence for
the operator A and show that the range of A is not closed. In order to restore Fredholmness
of the problem, the authors of [25] propose a new functional framework that takes into account
theses singular functions. They prove that by adding the space spanned by one of these two sin-
gular functions to a well-chosen weighted space, one obtains a functional framework in which the
problem is again well-posed. Since the physical solution must be outgoing, they used the limiting
absorption principle in order to choose the outgoing singular function (the one that propagates
energy toward the corner).

The main goal of this chapter is to extend the results and the techniques used in [25] to the 3D
con guration where the interface has a smooth conical tip. More precisely, we want to understand
what are the propagating singularities in 3D and how to use them in order to characterize the
critical interval | : More importantly, we shall explain how to make use of some of them in order
to de ne a new functional framework in which the scalar problem is again well-posed and that
is coherent with the classical physical principles: the Mandelstam radiation condition [112, 103]
and the limiting absorption principle.

This chapter is organized as follows. In Section 2.2, we present some results concerning the
critical interval | . In the process we underline the relation betweern and the spectrum of the
so-called Neumann-Poincaré operator. In order to study Problem (2.2), we will use localization
techniques. This will lead us to consider two di erent localized versions of the problem. The
rst one is related to what happens far from the origin. We call this problem the far problem
and we study it in Section 2.3. The second one is related to the analysis of the well-posedness of
the problem near the origin. We call it the near problem and its study is the subject of Section
2.5. The main results concerning the features of Problem (2.2) are summarized in Section 2.6.
In particular, in Y2.6.2, we explain how to use the Mandelstam radiation principle in order to
construct an in nite number of functional frameworks in which Fredholmness of the problem is
recovered when the function is critical. The selection of the relevant physical framework will

be done via the limiting absorption principle in ¥2.6.3. The last section is devoted to present
some conclusions, some possible extensions, the remaining open questions and to give a few words
concerning the numerical approximation of the solution.

2.2 General properties of the critical interval

As mentioned above, the critical interval is de ned as the set of contrasts  such that the
operator A is not of Fredholm type. Along this chapter, when belongs tol , we shall say
that is critical. The main objective of this section is to present some general results concerning
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the set| . It will be useful to introduce the operator 1°: H3() ! (H3()) such that
HU:vi= uv:

Proposition 2.2.1. The setl is a closed bounded subset ¢f1 ;0):

Proof. First, let us explain why | is closed. By dividingA by i; one can suppose that 1 =1

and , = . Furthermore, from the compactness of the embedding—%() L2() ; we obtain

the equivalence: 2 (1 ;0lnl if and only if A + il ®is an isomorphism. The continuity of
7' A +il %impliesthat (1 ;0Jnl is open. Thusl is a closed subsetof 1 ;0]: The second

step is to show that| is bounded. For this, we are going to use the T-coercivity approach.

To do so, we rst start by de ning the spaces Vi() , Vg( 2), such that

Vi( 1):=fu2 HY( )ju=0on@1n g  Vi( 2):=fu2 HY( 2)j u=0g;

Hy?():= fu2 HY¥() j u=0g

Next we introduce the operatorsRy 1 : H1=2() ' Vi( 1) and Ry 2: Hfz() ! Vg( 2) that

are de ned as follows: for all' 2 H%() and' °2 H; () we have

Ra 1(")=0 in

Ry 2( 9=0 in
Ra 1(")=" on :

"SRy 2( 92V5( 2) st Ru 2( 9="'2 on

Rar 1(" ) 2 Vi( 1) sit.

Without any di cultly, one shows that there exists 0 < C such that for all * 2 H¥?() and all
' 02 HL?() we have

kr Ry 2(" )kez¢ ;) CK kH1:2() and kr Ry (' ()kLz( ,) CkK q<H1:2() : (2.3)

To obtain the previous estimate, we have used the fact that inV1() (resp. Vg( 2)) the appli-
cation u 7! kr uk 2 ,y (resp. u 7' kr uk_2( ,)) is @ norm that is equivalent to the classical one.
For all u 2 Hcl,() ; we denote byu; and by u, its restrictionto ; and ; respectively. We de ne
the operators Ty : H3() ! H3() and To:H3() ! H() such that for all u2 H3() ; we have

m in 1

Tai(u) = U+ 2Ry (U M (u)+2M (u) on
_ ui + 2Ry 1(Uj M (u) in

T2(u) = u 2M (u) on »

in which M (u) is de ned by
1
M (U) = —
]
One can easily check thafT; and T, are continuous and bijective (we haveTl; T; =Id fori =1;2).
Thanks to Estimate (2.3) and to the continuity of the trace operator (because is Lipschitz), we
conclude that the numbers

uds:

. . kr Ry 2o(up M (u))k2

KRy 2kj = sup kJ K o)
u2H3() ;us0 ruikpze o)

. . kr R 1(up M (u))k2

KiR2i 1kj = sup kj K S
u2H3() ;us0 r UKz )
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are positive and nite. By applying the results of [50, Theorem 1.1.1] or by working as in [42],
we conclude thatA is an isomorphism if

1=j j> ijll 2kj2 or ] j> ijzg 1kj22
The result is then proved.

Remark 2.2.1. The previous result holds if one replaces by any Lipschitz interface. The proof

is also based on the use of the harmonic extension operators. To the best of our knowledge when
the interface is not Lipschitz, the question whetherl is bounded or not is still open. In 2D,
there are con gurations where the critical interval is equal toR (see [32] for more details). We
conjecture that when the interface is not Lipschitz, we havel =( 1 ;0). For an example of
non-Lipschitz interface, think to the surface of two touching conical tips.

Remark 2.2.2. In 2D with corners, the critical interval is known explicitly (see [25]). In 3D
however the situation is much more complicated. In Section 2.6.1, we shall give an explicit
expression ofl  for the case of circular conical tips.

The remaining part of this section is devoted to clarify the link that exists between the setl
and the essential spectrum of the so-called Neumann-Poincaré operator. Recently, the study of
the spectral properties of this operator was the subject of many contributions such as those of
M. Putinar et al. [97], those of H. Ammari et al. [7] for the case of smooth interfaces, those of
E. Bonnetier et al. for the case of interfaces with corners [32] and those of K. M. Perfekt et al.
[92] for the case of 2D curved interfaces as well as 3D interfaces with conical tips . Our goal is to
explain how the spectrum of the Neumann-Poincaré operator is related td

2.2.1 Relation between the critical interval and the spectrum of the Neumann-
Poincaré operator

Most of results of this paragraph are inspired by the ones developed in [35]. The starting point
is to de ne the operator T , : H3() ! H3() such that for all u2 H3() we have

r (T ,(u) rv= rurv; 8v 2 H3() :
2

The existence and continuity of the operator T , are consequences of the Riesz representation
theorem. In the literature, T , is called the Poincaré variational operator (see [35]). Sincd ,

is symmetric, it is then a self-adjoint positive operator. In the sequel, we denote by (T ,) the
spectrum of T , and by ss(T ,) its essential spectrum which is de ned as the set of 2 R for
which the operator T , | is not of Fredholm type (here | stands for the identity operator of
H3() ). To proceed, let us denote byA :H3() ! H3() the operator that is de ned by

r (A (u) rvs= rurvs=nhA uvi; 8u;v 2 H3() :

Clearly we have an equivalence between the Fredholmness &f and A : Furthermore, one can

write
1

A= q+(2 DT,=(2 1T, 1):

1
This leads us to the following

Lemma 2.2.1. We have 21 if and only if < 0and 1=1 )2 ess(T ) .
Without particular di culty one can prove the following statement.

Proposition 2.2.2.  The operator T , satis es the following properties:
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1. (T,) [0;1]and0;12 oso(T ,):

2. 0;1 are eigenvalues of in nite geometric multiplicity of T ,. More precisely, the spaces
ker(T ,) and ker(T , 1) are given by

ker(T ,)= fu2 Hj() juj; , = constantg and ker(T , 1)=fu2Hg() ju; , =0g:
3. We have the decomposition

Hi()=ker( T,) ke(T, 1) N (2.4)
where N is given by

N:=fu2 H§() j u=0in 1[ 2andh@(u; ,);liy 1=2() a2y =0G  (2.5)

Since in our study the contrast  belongs to(1 ;0), the real number 1=(1 ) can not be
equal neither to 0 nor to 1: This means that we have the the equivalence: 2| if and only if
1=(1 ) 2 ess(T ,)nfO; 1g: Now, let us introduce the space

S:=fu2H}() j u=0in 1[ 20

Starting from the decomposition (2.4), we can easily show that we have the decomposition

?
S =span(ug) N:

where the functionup 2 H3() is the harmonic extension of the functionl; , to the whole domain

(obviously, one hasug 2 Ker (T ,)). This implies that Sis a closed sub-space dfij() and
that it is an invariant sub-space for the operator T ,: As a consequenceT , induces a linear
operator from Sto Sthat will be denoted by TSZ: Without any di cultly one can show that Ois a

simple eigenvalue o’r'I'S2 and that ess(TSZ) = ess(T ,)Nf1;0g9: Thus, we obtain the equivalence
21 if and only if 1=( 1) belongs t0 ess(T%)):

The goal of the next paragraph is to explain how the spectrum of‘l’s2 is related to the spectrum
of the Neumann-Poincaré operator.

De nition of the Neumann-Poincaré operator

Let G3 : R® R3®! C be the Green function of the Laplace operator in the free spac&®:
Classically, this function is given by

Gs(x;y) = 4]x1yj forall x 6 y 2 R®

and satis es the equation G3z(x; ) = x (where  is the Dirac distribution at x). We also
need to introduce P the Laplace kernel that is a correction of the function G3 in order to take
into account the homogeneous Dirichlet boundary condition. The functionP is de ned in

by the relation P(x;y) = Gz(x;y) + Cx(y) where Cy is the solution of the problem Cy =
0in  and Cx(y) = G(x;y) on @ : This means that the function P satises (P(X; )= «
and P(x; ) =0 on @ : We introduce the single layer potential S : H72() ! H3() associated
with  such that for all * 2 H¥™?() ; we set

S (" )(x)= P(x;y)" (y)d (y) for almost all x 2
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By observing that for all x 2 1[ » the function P(x; ); 2 H¥?() ; we deduce that the
operator S can be extended to an operatorS : H 7?() ! Hé() . Classically (see [32]), one
can prove that for all * 2 H () the function S (') belongs to the spaceS; ie. S (') is
harmonicin [ 2: Conversely, it is a classical result that any functionu of the spaceS admits
the representation

u=S ([@u; ] (2.6)
in which [@u; ] = @uy; @up; where n is the outward unit normal vector to @ »; Uy =
U , and uz = u; ,: This means that S realizes a bijection (and then it is an isomorphism)
betweenH 72() and S: The normal derivative of S (' ) is generally discontinuous across :
This discontinuity can be described by the Plemelj jump relations:

@S (()1="=2+K™() and @S (")2= '=2+K™() (2.7)

where againn is the unit normal vector to @ » oriented to the exterior of 5, the functions
S (")yand S ('), are, respectively, the restriction of S (") to 1 and to »: The Neumann-
Poincaré operator is denoted byk ™ : H ¥2() 1 H () and is de ned as the extension of
the operator K™ : L?() ! L?() such that

K™ )x)=  @,P(xy) (y)d (y) for aimost all x 2

in which ny stands for the unit outward normal vector to , aty 2 : The operator K "M is not

self-adjoint because it is not symmetric with respect to the classical inner product o () : To
circumvent this di culty, we introduce the sesquilinear form h;is :H () H ¥2() I C
such that

h, is = h"S Iy 1=2() :H172() 8", 2H 1:2() :
Thanks to an integration by parts and by using the jump relations (2.7), one can show that

hH, is = rs()rs(): (2.8)

As a result, we infer that h; is is an inner product in H 72() : We denote byk ks the norm
associated to this inner product. It is equivalent to the classical onek ki 1-2(y (see [35]). As
a result, (H *2() :k ks ) is a Hilbert space. Note that one can easily see that we have the
identity

k ks =kS (' )kp() "2 H ()
By endowing the spaceH 7?() with this inner product h; is , one can show thatkK np becomes
self-adjoint. Furthermore, we also have the following

Lemma 2.22. Let 2 Randdene °=1=2 : Then forall ' 2 H ¥?() the function
u=S (') 2 Ssatises
KTS,u  ukyyy = kk™ ks :

Proof. We denote byu; = u; , anduz = u; ,: The rst step is to compute explicitly the quantity

r(T5u u) rsS()

for an arbitrary 2 H ™2() : Thanks to an integration by parts and by using the fact that
u; TS,u 2 S, we obtain
r(T5,u u) rsS ()= rurS()+@ ) rurS{()

H@nul+(1 )@UZ)aS ( )IH 1=2() H1=2()
h (K™ o+ h=2)+@ WK™, ".=2); is

_ np. o . .
= K™, n, ls:

By using (2.7)-(2.8)
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Since forall 2 H () we havekS ( )knz() = k ks ; one deduces that we have

r(TSu u)rs()_ K™ 0. g

kS (kny) K ks !

8 2H ¥2() nfog:

By taking the supremum over all 2 H '™?() nfOg; and by recalling that S :H () | Sis
an isomorphism (and also the fact that (S; k kH%() ) is a Hilbert space), we obtain the wanted
result:

KTS,u  ukyyy = kk™ ks :

2

Final result
Now, we have all the tools to show the

Theorem 2.2.1. The essential spectra ofTS, : S! Sand K™ : H () I H ¥2() are
linked by the relation
ess(TSZ) =122 es(K™):

Proof. Since both operators are self-adjoint(the spaceH *72() is endowed withh; is ), we
can use the characterization of the essential spectrum by means of singular Weyl sequences. The
factthat 2 ess(TS) implies that there exists a sequencdun)n2n Of elements ofS such that

kunkHé() =1 forall n 2 N;
up* 0 weaklly in S;
TSun un! O stronglyin S
SinceS :(H ¥2() :k ks ) ! (Sk kHé() ) is an isomorphism, we introduce(' n)n2n the

sequence of elements dfl ™?() suchthatS (' ,) = u, for all n 2 N: Easily, one can see that
K' nky 12y =1 for all n2 N: Moreover, since for all 2 H () ; we have

Hn is = r1uy rS ()
and sinceS ( ) 2 S; we infer that (* )non converges weakly to zero inH 2() : According to
Lemma 2.4, we know that for %= 1=2 and all n 2 N; we have
kTSZUn u nkHé() = kK np: n 0 nkS .

This shows thatK ™' ,  © || converges to zero as tends to + 1 : Consequently, %2 ess(K™):
The converse statement can be proved in the same way.

As a consequence of the previous theorem, we obtain

Theorem 2.2.2. There holds 2 | if and only if 2(+11) 2 ess(K™): And we have
npy — +1 . _sat 1=2 npy A
ess(K'™) fiz( 1)’ 21 g I fia 1=’ a2 ess(K™M)o

Proof. We already know that 21 if and only if 1=(1 ) 2 eSS(TSZ): According to the
previous theorem, we can say that 2 | ifandonly if 1=2 1=(1 )=( +1)=2( 1)2

ess(K™): The second part of the proof is a simple consequence of the fact that the function
x 7! (x+1)=(2(x 1)) is bijective from R to ( 1=2;1=2) and that it inverse coincides with the
function x 7! (x +1=2)=(x 1=2):
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The previous theorem tells us how the critical interval is related to the essential spectrum of the
Neumann-Poincaré operator. When the interface is smooth (of classC* with 0 < < 1),
one can prove thatK ,, is a Hilbert-Schmidt operator and, then, it is compact. Consequently,

its spectrum is composed by a sequence of real eigenvalues that has zero as only possible point
of accumulation. For a general interface of clas<C?, Kyp is not necessarily a Hilbert-Schmidt
operator. As a result, its compactness is not guaranteed. In Section 2.3, we are going to show
that when s of classC? the critical interval reduces to f 1g. This implies, using the previous
theorem, that ess(K,,) = f0g: With this in mind, we can show the

Lemma 2.2.3. When the interface is of class C!, we have ess(K™) = fOg and K™ :
H ¥2() ' H ¥2() is compact.

Proof. The fact that ess(K"™) = fOg is a consequence of the fact that when is of classC*
thenl = f 1g (see Y2.3). It remains to explain whyK " is compact. From the fact that K ™
is self-adjoint, we deduce that gisc(K ™) (the discrete spectrum ofK ™) is either composed by a
nite number of real eigenvalues or by a sequencé ,)non Of real eigenvalues that tends to zero
asn goes to+1 : In both cases, we de ne the space

F = E( )’

2 disc (K np)

in which E( ) stands for the eigenspace associated t02 gisc(K ™) (note that by de nition of
the discrete spectrum,E( ) is nite dimensional). The space F is then a closed subspace of the
Hilbert space (H *%;k ks ): This implies that (F;k ks ) is also a Hilbert space. Furthermore,
without any di culty one shows that F is stable by K™ and that K™ : F | F is self-adjoint
with a spectrum that is reduced to f0g: Consequently, the spectral radius ofK ™ : F | F is
equal to 0 and then K " vanishes inF: Using this result, we are going to show thatK " is the
limit of nite rank operators and then it is a compact operator. The proof in the case when

gisc (K ™) is nite is obvious. It remains to study the case when gisc(K™) = f »:n 2 Ngwhere
( )n is a sequence of real number that converges to zero astends to 1 : Denote by F, the
spaceF, := F [, E( i): Clearly, for all n 2 N the spaceF, is stable by K ™: Moreover, the
restriction of K™ to F, has a nite range. Let P, : H () ! F, be the orthogonal projector
of H ¥2() into F, (with respectto h: is ) and de ne the nite rank operator K, := K™ Py:
One can easily see that

iK™  Kp)uuig j ma(j ij)kuk3 :

By letting n tend to +1 and using the fact that ( ) tends to 0 asn tends to in nity, we can
say that K™ is the limit of (K,)n2n @and then it is compact.

In the literature, the compactness ofK ,, for C1interfaces (in 2D) is established in [78] by using
technical tools related to the study of integral operator. The proof of the above lemma can be
see as an alternative (more simple) to the one presented in [78].

Let us nish this section by mentioning that by using the same localization techniques as in the
works of K.M. Perfeket et al [92, 104], one can show the following statement

Lemma 2.2.4. Assume that the interface is as in (2.1). Then we have ess(K™) = ess(K g ):
Recall thatK = fx 2 R%jxj < ;x= jxj2 A g:
2.3 Study of the far problem

This section aims at studying the well-posedness of the far problem. Let us detail this a bit.
For small enough (e.g. for < 1=2) we de ne = nB(O; ): Our goal is to study the

3The author would like to thank Charles Dapogny for suggesting this reference.
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well-posedness (in the Fredholm sense) of the problem

Find u2 HY( ) suchthat div( r u)= f (2.9)
for an arbitrary f 2 (H(l)( )) Weset ;= 1\ , 2= 2\ . The interface between ;
and , is denoted by . It is smooth and meets the boundary of  orthogonally at @RO; ):

As previously, the analysis of the well-posedness (in the Fredholm sense) of (2.9) is equivalent to
study the Fredholmness of the operatorF : Hcl,( ) ! (Hcl,( )) such that

hH uvi = ru r vdx 8u;v 2 H3( ):

The main result of this section is given by the following

Theorem 2.3.1. Assume that 1=2. If 6 1, then the operatorF is a Fredholm operator
of index O: In particular, we have the estimate

kukyi ) C(KF ukgy ) + kukiz( ));8u2 Hg( )
with C independent ofu:

To prove the previous theorem, we will use localization techniques. For this, we need to study two
di erent versions of the problem. The rst one is related to the problem near any point x 2,
the second one is related to the problem near some point 2 \ @RO; ): A complete proof
of the previous theorem will be given in ¥2.3.3.

2.3.1 Preliminaries

Let g: [0;1F ! R be a bounded function of classC* and let 0 < L: We dene - R®as
L= Y1 L[ “where §, 5and ' aredened as follows:

e

=f(xy;2) 2 R2 such that (x;y) 2 (O; 1)2 andg(x;y) L<z<g (X;y)g;

f(x;y;z) 2 R® such that (x;y) 2 (0;1)? and g(x;y) <z <g (X;y) + Lg;

- N
1 1

f(x;y;z) 2 R® such that (x;y) 2 (0;1)? and z = g(x;y)g:

We consider the operatorAt : Hi( L) ! (H3( “)) such that for all u;v 2 H3( “) we have

PALu;vi = r u r vdxdydz

L

in which the function is such that jL= o1 and jL= 2; where0< j;and » < 0: Our goal

is to nd an explicit condition on = = 1 in order to ensure that A is an isomorphism. For
this purpose, we are going to use thél -coercivity method.

Lemma 2.3.1. Assume that is such thatmax(j j;15 j)> (1+2kr gkp1 () +4kr gkfl O )
Then the operator AL is an isomorphism.

Proof. The proof is a generalization of the one given in [50, Theorem 1.2.10] for the 2D case.
For all u 2 Hg() , we dene the functions u; and uz such that uy = u, : Hi( }) and

Uz = Uj g 2 H( 5): We introduce the operators Ty; To: H3( “) ! H3( ') such that

(

Ui in
T1(u) =
1( ) U2+2R1(U1) in

U1+2R2(U2) in

L
! and  To(u) = :
2 uz in

N
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where R1 and R» are the linear operators de ned as follows

Ra(u)(xy;z) = ui(xy; 29(x;y)  2)  for (xy;2) 2
Ro(u2)(X;y;2) = ua(X;y; 20(x;y)  z) for (x;y;z) 2

R N

One can check that for allu 2 H( ), we haveR1(u1); « = Ra(Uz); . = u; .: Moreover, one
can also see thaR1(U1)jg 1\ @ L= 0 and Ra(U2)jg 1\ @ L= 0: This leads us to conclude that for
all u 2 H§() , the functions T1(u) and T»(u) belong also toH3( ). As a result Ty (resp. T)
de nes a linear operators from Hé( L) into itself. We de ne

kr Rl(ul)kLz( L) kr Rz(Uz)kLz( Ly

kiR1kj = sup and KkjRokj = sup
u2H3( Lyueo KI Utkpz( 1) u2H( Lyueo KI UzKiz2( 1)

Now, by applying [50, Theorem 1.1.1], one can say that if
15 j> kjR1kj? or j j> kjRakj?;

then Al is an isomorphism. Therefore, we need to nd upper bounds okjR1kj and kjR.kj. Let
us start with kjR1kj: First, observe that for all u 2 H3( “)nfOg we have

i Ra(U)P(& i) drdgdz = (@(Ra(un))) + (@ (Ra(un))? + ( @(Ra(ur))) ? drdgez:

2

By performing the change of variables(x;y;z) = J(%; §;2) (this is possible sinceJ is of classC*
andJ J = 1) and by observing that

8
3 @QR1(ur)(%:9:2) = Qui(Xy;2) +2@QY(X;Y) @ui(X;y;z)

5 @R1(u)(%; 95 2) = Qua(x;y;z) +2@g(x;y) @ui(X;y;z);
" @R1(u)(% %5 2) = @Qui(xy;z);

we obtain the estimate

r R1(u1)j?(%; ¥; 2) drdyd2

2

) (Qui(x;y;2) +2@a(X;y) @ui(X;y; z))zdxdydz

+

(@ui(xy:2) +2@g(x:y) @ui(x;y; 2)) *dxdydz

+

(@ui(x;y;z))2dxdydz
L
1

with A = (1+2kr gkus ( vy +4kr gkfi ( )): This means that kjR1kj® (1 +2kr gkpa (1) +

4kr gk?1 ( 1)): Working in a similar way (by exchanging the role of § and ), we nd that

KiR2Kj? (1 +2kr gkpx ( 1y +4kr gkfs ( 1): The lemma is then proved.

z) 7! z

Proposition 2.3.1.  Assume thatg 2 C*([0;1]?) is such that the function g* : (x
L. Then Al is

g(x;y) satises @g' =0 (heren is the outward normal vectorto “) on @ -\
a Fredholm operator of index zero forall 6 1

Y
. T

The assumption@g' =0 on @ -\ L is equivalent to say that the normal vector to - (which
coincides withr g') istangentialto @ " in @ "\ L: Thismeansthat - meets@ " orthogonally.

Proof. The proof is inspired by the proof of the a priori estimate obtained in [50, Y1.3.4 ] and
will be based on the use of localization techniques. Near each2 ': we denote by (sy; ty; Wy)
a system of local coordinates of originx (in such way that the plane wy =0 is tangentto b at
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x). The existence of such system of coordinates is due to the fact thag is of classC*': Near, any
x 2 ‘theinterface ' can be seen as the graph of a functiofss,; tx) 7! & (sx;tyx): Furthermore,
forall x 2 .;we can nd three positive numbersay ;b and x <L such that the domain

(ax;be; x) = FlsxitiWx)js2 (axsax)itx 2 ( bob);we 2 (1 x+ g (Sxtx); x+8°(Sx:tx))g

is a subset of 1: With this in mind, we can de ne the domains X and % suchthat ¥(ax;bc; x):=
L\ X(ax;be; x) and 3(ax;be; x) = 5\ X(ax;by; x). Regarding the de nition of } and
5. one deduces that the domains ¥ and % admit the representation

S(ax; b x) = F(Sxit;We)jsx 2 ( ax;ax)itx 2 (b be);wx 2 (69 (sxitx); x + 8 (sx;tx))g
T(axgbg x) = f(sgtawe)isk 2 (ax; ax)itx 2 ( bBab);we 2 (1 x +8°(sx; tx); 8 (Sx; tx)) O

Whenx 2 L\ @ '; thanks to the assumption made on the functiong; we can nd a new system
of coordinates(sy; tx;Wy) that is obtained by rotating the initial system of coordinates (in which
the plane wy = 0 is tangential to L at x) and three positive numbersay; b, and x <L such
that the domain

X(axibe; x) = fsxitxiwk)jsx 2 (05ax);tx 2 (0;b) andwy 2 ( x+g°(Sxitx); x+8 (Sx;tx))g

is a subset of - in which (sy;tyx) 7! g is a function whose graph coincides with | near x: We
de ne the domains % and % as in the case ofx 2 ': To simplify notations, we shall denote
by r~ the gradient operator with respect to (sx;tx; Wx): Since(syx;tx;Wx) is obtained by rotating
the original system of coordinates, it follows that for all x 2 ~ and all u;v 2 HY( *); we have

ru r vdxdydz = ru rrvdstdt*dw”
*(ax;bx; x) —x
where ™ = ( agax) ( bob) ( x; x)whenx 2 “and Y =(0;a) (O;b) ( xi x)
whenx 2 L\ @': Given that for all x 2 L; the planew, = 0 is tangential to L at x; we
then have rg“(0; 0) = 0 and since the functiong® is of classC!; we can say, using the fact that

8 1, thatforall x 2 L;wecan nd ag;b, small enough so that
max(i j;15 j) > (1+2Krgkus ( xy +Akrgkl ()

where * = J(a.:b; x)\ 5(a.;b; x): Asaconsequence, by applying the results of the previ-
ous lemma, we infer that forallx 2 L the operator A* : H3( *(a; b ) ! (H3( *(a:b; )
that is de ned by

PAXu;vi = Fu rrvds‘dt*dw”; 8u;v 2 H3( *(ag; b 4)
*(ag by x)
is an isomorphism. Forallx 2 L;wedene * 2 D( L;[0;1])thatisequalto 1in *(a,=2;b,=2; x=2)
and that vanishes;in Ln *(3a,=4;30,=4;3 «=4):

By noticing that X(a,=2;b,=2; x=2) covers L and since the latter is compact, one deduces
x2
that there exist X1;::::Xn 2 L with n 2 N such that
boaE= ] *(8¢=2 8,22 «=2):
Xx2f X1;:5Xn 0
To simplify, for all x 2 fxq;:::;x,gthe domain *(a,;b; x) will be denoted by *: To proceed,
denote by © the domain °:= n , andlet °2 D( L;[0;1]) such that P, =1 and that

X

vanishes near : Starting from the fact that for all x 2 ; we havel O(x) + Xi(x); we
i=1

deduce that for all u 2 H3( “)nf0g; we have the estimate

X
0 i .
kUkH%( L) k UKH}J(supp( 0)) + . k X UkHé( Xi)' (210)
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For all x = x1;:::;xn; we de ne the operator T* : H3( *) ! H3( *) as in the proof of the
previous lemma. We also need to de ne the operatofT® : Hi(supp( %) ! Hi(supp( %) such
that for all v 2 Hy(supp( °)); we have

in 1\ supp( 9

opn_ |V
TM=1"y i >\ supp( 9):

The local ellipticity of the problem far from  and the continuity of T° : L2(supp( %)) !
L2(supp( °)) combined with the relation (2.10) lead us to the estimate

k Oukaé(supp( oy  Cihr( Ou):r TO( Cuw)ij
cjhdiv( r u); °TOC Cw)ij + Cjh ru r % TOC Owij
+Cj(ur %1 TO %u) L2(supp( o))
C(KA ks 1y + Kukpo( 0))Kukys( 1y

Above and in the rest of the proof, C denotes a constant whose value may change from line to
line but that is independent of u: By replacing the operator T® by T* and supp( °) by X in the

above calculi, we conclude that for allx = x1;:::;%xn; we have the estimate
k XUka(l)( x) C(kALUk(H%( L) + kUkLZ( L))kUkHtl)( L):

With the help of (2.10), we infer that we have
kukpso 1y C(KAMUKG1( 1y + kukpz( 1))

By using that the embedding of H( ') into L2( ‘) is compact and that AL is symmetric we
deduce, by applying Proposition 2.8.2, thatA' is a Fredholm operator of index zero.

2.3.2 Study of the problem in the vicinity the boundary

In this paragraph, we turn our attention to the study of the scalar problem near @(0; ): To
do that, we start by de ning the domain ! = \ B(O;2 )= B(0;2 )nB(O; ) and then we
introduce the operator C : H3(! )! (Hi(' )) thatis de ned by the relation

hC u;vi = rurvdx u;v 2 Hi(! )
!
where = in!;:= 1\ ! and = ,in!, = 2\ I : Since by assumption we have
< 1=2; the interface  meets the boundary of! orthogonally at @RO; ) and at @RO; 2 ):
Furthermore, one can easily see that thanks to the assumptions made on near the origin (see
the introduction of this chapter), we have

f(r;" )ir2(;2)090)<;" 20,2 19
f(r;;" )ir2(:;2); <g()" 2[0,2 ]g

1
!

2
whereg:[0:2 ]! [0; ]is a periodic function of C?(see the introduction of this chapter).

Proposition 2.3.2. Assumethat 6 1. Then the operatorC is a Fredholm operator of index
zero. In particular, we have the estimate

kUkH%(! ) C(kC Uk(Htl)(! y T kUkLz(! ))

where C is a constant that does not depend iru:
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Proof. By working in spherical coordinates, one can easily see that for alli; v 2 H3(! ) we have

2
hC u;vi = rurvdx= (I )(r@u)(r@v)+ r su r gv)drd!:
F?

Above r g stands for the surface gradient operator onS?>. By performing the Euler change
of variables (r;! ) 7! (t;!') = (log(r);!); we transform the domain! into the domain + :=
(a;b) S? where the constantsa and b are given bya =log( ) and b=log(2 ): Furthermore, by
using the classical angular coordinateg ;' )2 (0; ) (0;2 ) to parameterize the sphereS?; the
domain + can be also de ned as follows:

b= (G )jt2 (ab); 2(0; )and' 2(0;2 )g:

To proceed, we de ne the domainsk; and ~,, respectively, as the images of the domains; and
I , by the Euler change of variable. We also denote by~ = F \ k.

For all u 2 Hé(! ); we denote byu the function that is de ned in + by the relation u(t;! ) =
u(et;!) for almost all (t;! ) 2 + : By observing that @u(t;! ) = @u(r;! )@ = r@u(r;! ); we
deduce that the Euler change of variables induces an isomorphism between the spadeé(! )
and the space

Wik )= f(!1) 7T (! )] (@2 + jr stj?)dtd! < +1 andu=0 on @ g:

Given that the function (t;! ) 7! €' is bounded in* ; we infer that the space W(* ) coincides
with Hé((a; b) S?): With this in mind, we can say that the Fredholmness of the operatorC is
equivalent to the Fredholmness of the operatorC : Hj((a;b) SN (H3((a; by $?)) thatis
de ned as follows:

b
hC tw = e (1)(@u@v+r st r gwdtd!; uv 2 W ):
A

a

By observing that the function  depends only in and not in the other two variables t and ',
and by noticing that ~ meets@- orthogonally, one can adapf the proofs of the Lemma 2.3.1
and the Proposition 2.3.1 in order to deduce thatC is a Fredholm operator of index zero as soon
as 6 1 This leads us to the wanted result.

2.3.3 Final proof

Here, we shall present a proof of the Theorem 2.3.1.

Proof. The idea is to use localization techniques as in the proof of Proposition 2.3.1. We start

by de ning the domains A = \ B(O;2)andB = nB(O;3=2):Fori=1=1;2 we
also de ne the domainsA; = A\ ;and B; = B \ ;: Next, we introduce the interfaces

A=A;\A,and g =B;\B,:ltisworthtonotethat g\ @ = ; and that NEY
Giventhat g is of classC! and by working as in the proof of the previous proposition (this

is possible since 6 1), one can show, that for allx 2 5 we can nd
of x such that the operator A* : H( *)! (H3( *)) thatis de ned by

X a neighborhood

hAXu; vi = rurv; 8u;v 2 H( X)

X

“The proof is based on the use of local re ections with respect to and local rotation of the system of
coordinates but this time the di culty comes from the fact that we are working in spherical coordinates. Details
about these techniques can be found in Y3.6.1.
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is an isomorphism (T-coercive). Denote by & the open set

L

X2 g
By observing that & covers the compact seB, := e\ B ;wecanthen nd x1;:::;Xn 2 75
(with n 2 N) such that
n
- B [ Xij -
B 0 -
i=1
By applying the partition of unity theorem, we can nd n smooth functions 1;:::; 2D( )

such that
Tox 7 i(x)2[0;1]forallall i=1;:::;nand forall x 2

i is compactly supported in  *i;
X] .
h i=1in Bg:

i=1
The next step, is to introduce °2 D(~ ;[0;1]) that depends only inr = jxj and that is equal to 1
for jxj < 3=2 and that vanishes for7 =4 < jxj: This means that ° is supported inA : We nish
the series of notations by introducing~2 D( ;[0;1]) thatis equalto 1in  n(B(O;3 =2)[ By)
and that vanishes near : Observe that we have

X
1 ~x)+ °(x)+ (x) x2
i=1

As a result, there exists0 < C such that

X .
kukps( ) C(kt Kygoupp(-y * K “Ukizea )+ K Tukigy <)) Bu2 Hg( ):
=1
Before getting into details, along the rest of this proof, we denote byC a positive constant whose
value may change from line to line but that is independent ofu: Given that the function ~vanishes
near and by means of the T-coercivity approach (see the proof of Proposition 2.3.1), we obtain
the estimate

k4 k,z_{(l) C(kdiv( r ukyy ) + Kukiz( )kukys

(supp(~)
In the same way, given that the operatorsA*' are T-coercive and working as in the proof of
Proposition 2.3.1 we arrive to the estimate

k iukaé( X) C(kdiv( r u)kHé( y + Kukpz ))kukHé( y fori=1;00n

The next step is to deal with the term k OukHl(A ) Unfortunately, this time, we can not use
T-coercivity approach. However, starting from the result of Proposition 2.3.2, we conclude that
we have the estimate

k Cukiza ) Clkdiv( T ( Cu)kyga ) *+k Cukiza )):

Given that the function © is independent ofr = jxj; one can easily prove that for allv 2 H3(A ),
there holdsdiv( vr ©) 2 L2(A ). Moreover, we have the estimate

kdiv(vr )kizia ) Ckvkpia
where C that does not depend inv: Combining this with the identity

(r(Ou)irvzgay= @iv( ru); %)z y+(udivivre ) zgay+(ur %rv)iea
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for all u;v 2 H3(A ), we get
kdiv( r ( Ou)kHé(A) C(kdiv( r u)kH%( y +Kukpze ):

This leads us to
k %ukyia ) C(kdiv( r u)kys ) + kukio( )):

By combining all these estimates, we obtain

where C is independent ofu 2 Hj( ). Since the operator F is symmetric and since the
embedding ofH%( ) into L?( ) is compact, Proposition 2.8.2 guarantees thaF is a Fredholm
operator of index zero.

2.4 Study of the problem in the whole space

In the previous section, we studied the behavior of Problem (2.2) far from the origin. We proved
that it is well-posed as soonas 6 1. Here, we want to get a closer look on the situation near
the origin. Naturally, this leads us to study the well-posedeness of the problem

Find u 2 HL.(R®) such that  div( r u) = f:

Here the function is dened as follows: = ,in K and = ;in R3nK . The classical way
to study the well-posedness of the previous problem is to use the Fourier transform but since the
function does not have a constant behavior at in nity, this approach cannot be used. To cope
with this di culty, and because the  function is independent ofr = jxj; we will use the so-called
Mellin transformation. The use of this transformation will allow us to study the well-posedness of
the problem in weighted Sobolev (Kondratiev) spaces [100, 101]. The analysis conducted in this
section will be of great importance since it will allow, on the one hand to determine a simple
condition ensuring the well-posedness (in the Fredholm sense) of (2.2) and on the other hand it
will help us constructing an alternative functional framework in which the scalar problem is again
well-posed when the original problem is ill-posed in the usual setting.

2.4.1 Weighted Sobolev (Kondratiev) spaces

For 2 Randm 2 N, we introduce the (homogeneous) weighted Sobolev (Kondratiev) space
(see [100]) associated to the punctured domaifR® n f Og denoted by V™(R?®) and de ned as the

closure of D (R® n fOg) for the norm
0 « 1,5
k' ka(R3) = @ krl 1 m* @' kEz(Rs)A

jim

Herer = jxj and D(R® nfOg) denotes the space of in nitely di erentiable functions which are
compactly supported in R® n fOg: Clearly we have VJ(R®) = L 2(R%): Moreover, one observes
that for all m 2 N and 2 R; we have the inclusionV™(R%)  v™ Y(R®): It is worth to
note that for a given m 2 N and 1; » 2 R such that ; < 5, we haveV™(R% 6 V™ (R®)
and sz(R3) 6 le(R3): It is also interesting to mention that thanks to the classical Hardy
inequalities, one can show (see [101, Theorem 7.1.1]) that3(R3) = H 1(R3):®

SFor the case of nonhomogeneous ones see [101, Chapter 7].
®Note that this is wrong in 2D.
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2.4.2 The Mellin transform

The Mellin transform is one of the classical integral transformations which is a useful tool to study
the properties of partial di erential equations. Compared to other classical transformations such
as Fourier or Laplace transform, the Mellin transformation has the particularity to be adapted to
the study linear PDE in weighted Sobolev spaces and more generally to the study of linear PDE
near point singularities. Formally, by using this transformation, the study of the well-posedness
of a linear PDE near a singular point and the study of the asymptotic expansion of its solution
(when it is well-de ned) near these points, reduces to the analysis of the spectral properties of
its Mellin transform (also known as the Mellin symbol). The goal of this paragraph is to recall
some of the basic properties of this transformation that will be used in the next sections.

Let r 7! f (r) be a smooth function that is compactly supported inR, : The Mellin transform of

f , denoted by f( ), is the function de ned for all 2 C by the formula:

()= 1r ¥ (r)dr:
0

Note that since f has a compact support in(0;1 ); one can show that 7! f'( ) is analytic.

When f does not have compact support in(0;1 ), f( ) is no longer de ned for all 2 C: As

we shall see later, the set of 2 C for which f’\( ) exists depends on the regularity off in

weighted Sobolev spaces. To simplify notations, for all 2 R; we denote by" the vertical line
=f 2Cj<e( )= g

Lemma 2.4.1. [102, Theorem 6.1.3] The Mellin transformation satis es the following properties.

"~ Forall u2 D(R,); we have(\r@u)( )= a( ) forall 2C:

For all u;v 2 D(R,); we have the Parseval equality

1

r2 Lu(r)v(r)dr = % ~ ()% )d:

As a result the Mellin transformation can be continuously extended as an isomorphism
between the weighted spacé® ,_,(R.) := fu such thatr *2u 2 L?(R.)g and the space

L2C ):
T fu2 VO (RN VO ,(Ry) with 1< o then 7! 0( ) is well-de ned and holo-
morphic in the strip <e( )2 (  2; 1):

The inverse Mellin transformation of 0( ) 2 L?(C ) is given by

u(r) = % ro()d 2V% L(R:):
Now, for u 2 D(R3nfOg); we denote by(;! ) 7! a(;! ) the partial Mellin transform of u (with
respect tor = jxj) such thatforall 2 Cand! 2 S

a(;! )= O+l ro tu(r! )dr:

Using the properties above, one can easily see that for ail 2 D (R®nfOg) and all v 2 L2(S?) we
have
+1

r lu(rt)v(@)drd! = r Suvdx

;! )v(t )iy ey = 820(;! )v(!)d! . s i

huir 3vipegrey:
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The previous identity will be used to de ne the Mellin transform of elements of the spaceV1(R)) .

In the rest of this paragraph, we focus our attention on the study of the action of the (partial)

Mellin transform on the weighted Sobolev space&°(R3) ; V1(R3) and (V1(R®)) for an arbitrary
2 R: Let us start with the case of the spaceV®(R?): This is the subject of the next

Lemma 2.4.2. A function x 7! u(r! ) belongs to the spac&/°(R®) if and only if (;! ) 7!
a(;! ) (its partial Mellin transform with respect to r) belongs to the spac&?(" .1 ;L?%(S?):
Additionally, the norm

kukz(% \ kKa(;! YkPzgyd )2

+1 =2

is equivalent tok kyogs):

Proof. By de nition of V°(R®); we can say thatu 2 VO(R3) ifand only if r 7! u(r! ) 2 V%, (R+)
for almost all ! 2 S?>and! 7! u(r! ) 2 L2(S?) for almost all r 2 R, : Then The result follows by
applying the second item of the previous lemma.

With the same idea as in the previous proof, we obtain the

Lemma 2.4.3. A function r! 7! u(r! ) belongs to the spac&*(R®) if and only if the functions
700(;! Yand 7! 0(;! ) belong respectively td.?(C 1o HY(S?) and L’ 1-; L%(S?)):
Furthermore, the norm

1 . _
kuk = (5~ Ka( ;! )KGr ey + § 12KO(;! )kZo gy d )12

1=2

is equivalent tok ky1(gs):
Forall 2 C; we introduce the normk Ky (s j) such that
Kukpi(szj ) = (KukGa(ge + ] j2Kukfs(g2) '™ for all u 2 HY(S?):

Clearly, fora xed 2 C, itis equivalent to the classicalH*(S?) norm. But when j j tends to +1
this is no-longer the case. In(H(S?)) ; we introduce the normk Kkgy1s- y Which is de ned as
(GRICI)]
follows ey
- jnuly 12y -
Kf Kqieszi iy = sup ———— forall f 2 (H(S)) :
ST ani(@)ntogkuknnz; )

The last part of this section is dedicated to the study of the Mellin transform of elements of
the space(V1(R®) with 2 R: For simplicity, we limit ourselves to the case of distributions
with compact support in R®nfOg. Considerr! 7! f (rw) 2 (VI(R®) with compact support in

R3nfOg. Its Mellin transform f(; ) belongs to(H(S?) and is de ned by the relation
M5 )ivVinys) mae) = HE(L! )T -3y )ivi(rey vire forall v2 HY(S?): (2.11)

Clearly, the last duality product is well-de ned becausef has a compact support inR®nf Og: This
means that f'\(; ) is well-de ned for all 2 C:

Lemma 2.4.4. Let f(rw) 2 (VY(R®) with compact support in R3nfOg. Dene g(r;w) =
r2f (r;! ): We have the equality

1

kf kvl(Rs) = T

KO(:! IKma(szj gy d-

1=2
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Proof. The proof closely follows the one of Lemma 5.3 of [25] (that deals with the 2D case).
Given that V1(R®) is a Hilbert space, there exists a uniquec 2 V*(R®) such that

Mivigirey vigy = X% YFv+ixj2r Forvdx  forallv2 VI(RY:
: -

Furthermore, we have kf ky1gsy = kFky1(gsy: Sincef has a compact supportR3nfOg , it

follows that g is also compactly supported inR3nf Og: This implies that §(; ) is well-de ned for
all 2 C. Moreover, one can easily check that for all 2 C; we have

fg( | ),h(l )|H1(82) HI(SR) = H,r 1h(| )i(Vl(R3)) V1(R3) for all h 2 Hl(Sz):

In particular for all = 1=2+i with 2 R; there holds
_ 1
Hir *h()iyirey) vire) = r>  F(r;!)h(! )drd!
S

+ r2 Y sF(r;1) r sh(!)drd!

S 1
( +1) r2  @Fh(! )drd!:

S

On the other hand, sinceF 2 V1(R®), the function 7! F(;! )iswell-de nedforall 2 ;-
As a result, we obtain

H; r (1 )ivirey virey = PE( 1=2+i );h(W)ipys
( +D(  2)F(  1=2+i );h(W) o)
= hF( 1=2+i );h(W)ipy s
O PFC 12240 ) h(w) 2w

Above, we have used the fact that(  + 1)(2 Y= %= 1=2 + i j%: Consequently,
one obtains that for all 2 R, we have

Ko 1=2+i; )kuye) = KF( 1=2+ 05 Ykyyszj 1240 )

By integrating the previous estimate with respectto 2 R and by using the fact that kf ky1 gs) =
kF ky1(grs), we obtain the wanted result.

2.4.3 De nition of the problem

Before de ning the problem that we want to study, let us start by observing that for all u 2 V*(R%)
with 2 Rand all' 2 D(R®nfOg) we have

div( r u)dx = rur’dx
R3 R3

Thanks to the Cauchy-Schwarz inequality, we obtain the estimate
j dIV( r U)' J CkUkvl(RS)k' kvl (R3)
R3

with C independent ofu and of : This means that for all u 2 V(R®); we havediv( r u) 2
(V! (R)) : The main goal of this paragraph is to study the well-posedness of the problem

Find u2 VY(R® suchthat div( ru)y=f 2 (V! (R%) : (2.12)
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Clearly, the well-posedness (in the Fredholm sense) of the previous problem is equivalent to study
the Fredholmness of the operatorWW : VY(R3®) ! (V! (R®) such that

W u;vi = rurv  8uv)2VYRY V! (RY:
R3

Even in the classical con guration, i.e. when the function has a constant sign, the study of the
Fredholmness of the operatorW is not an easy problem. The main di culty comes from the
fact that we are dealing with a non-symmetric problem (except when = 0) that is set in an
unbounded domain. The classical tool to deal with such di culty is to use the Mellin transform.

The goal of the next paragraph is to investigate how this idea can be extended to the study of
the Fredholmness of the operato'W when the sign of is not constant.

2.4.4 Mellin symbol of the problem

As mentioned above, to study the properties of the operato’W ; we are going to use the Mellin
transform. For this, we need to de ne the so-called Mellin symbol of the problem. For all 2 C;
introduce the operator L ( ):H(S?) ! (HY(S?) such that

() ; 4= rs rs ( +1) | 8 : %2 HY(SY):
2 S

The link between the operatorsW and L ( ) is clari ed in the next

Lemma 2.4.5. Let u?2 D(R®nfOg): Then for all 2 C; we have
W ou(s )= L ()00 )

Proof. Itis not di cult to check that the transformation  u 7! r?u is continuous fromW?*(R?) to
W1t ,(R®): This implies that for all u 2 D(R3nfOg) we haver®w (u) 2 W! ,(R®) : Further-
more, one can see that?W (u) is compactly supported inR3nfOg. As a result, for all v 2 H(S?)
we have

NATE )iVinie) mys) = W our - Wiy gy virs) = y rurr t

v dx:

On the other hand, there holds

1
W Uit Vit (rey wirey = o (' )( r Irsu(r!) rsv(!)dr)d!
0
1

( +1) () r Lr@u(r ))v(! )dr)d!
2 0

(M) sat;t ) rsv(t)  ( +DuC! v ))dh

Consequently, by using (2.11), we infer that for all 2 C and v 2 H(S?) we have
MW U(s )iVinse) sy = ()00 )iVOins) wis)

This means that r\2W u(; Y=L ()0(; ): The lemma is then proved.
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2.4.5 Solvability of the problem

In this paragraph, we come back to the study of the Fredholmness of the operator§V with

2 R: By combining the results of Lemma 2.4.5 and Lemma 2.4.4, we can say that the features
of the operator W is directly related to the behavior of L ( ) along the energy line” 122"
Intuitively, one expects that if L ( ) is invertible along the line ©~  ;-, the operator W must
also be invertible. To prepare the ground, let us recall some classical de nitions and notations,
that we brow from [101], concerning the spectral properties oL
Spectrum of L : a complex number is said to be a non-regular point ofL if and only if
L () is not invertible. Otherwise we say that is regular. The set of non-regular points is
called the spectrum ofL and is denoted by ( L ): Clearly, the set ( L ) is closed inC:
Eigenvalues and eigenfunctions : a complex number o2 ( L ) is said to be an eigenvalue
of L ifand only if L ( o) is not injective. All the elements of Ker(L ( ¢))nfOg are called
eigenfunctions ofL associated to o: The number 4( o) :=dim(ker( o)) 2 N [flg is known
as the geometric multiplicity of o:
Jordan chain: Let (;' o) be a pair of eigenvalue and eigenfunction. If there is some ordered

family ' 1;:::5" o (with n2 N [flg ) such that the system of equations

8
35 (0 +L (9120

2
B;ddl_z( o)'k2+ddL (0)'k1*+L (0) k=0; k=2;::55n

is satis ed, we say that' o;:::;'  is a Jordan chain ofL associated to ¢ of lengthn+1: The
functions ' 1;:::;"' ,, are called generalized eigenfunctions associated to The maximal length of
the Jordan chain associated to( ;' o) is called the rank of' ¢ and is denoted byrank(' o):

Index, partial/algebraic multiplicity: Let be an eigenvalue oL and let (" j)j=1:; 4 )
be a basis ofKer(L ( )): For eachj = 1;:::; g( ) we denote by (" jk Jk=0:::rank( ;) 1 (With
'j;0 =" j)aJordan chain associated to( ;' j): The numbers j =rank(' j) are called the partial

multiplicities of : The largest one is called the index of and is denoted by ( ): The sum of
these partial multiplicities is called the algebraic multiplicity of  and is denoted by 4( ):

..........

Remark 2.4.1. Note that in the de nition of Jordan chains, the generalized eigenfunctions are
not necessarily linearly independent. In particular, some of them may be zero.

Since the symbolL is associated with a second order PDE, we have the following

Lemma 2.4.6. Let( o' o) 2 C H(S?)nfOg be a eigenpair ofL : Ifthereisno' 1 2 HY(S?)nfOg
such that

dL
T( 0" +L (0)1=0: (2.13)
then, therank(’' o) =1:

Proof. In the particular case when ¢ = 1=2; one can see that (2.13) holds whent 1 = ' ¢:
The result is then proved for this particular case. Now, let us suppose that ¢ 6 1=2 and
assume that2 rank(' ¢): As a consequence, by using the assumption made dry; we deduce
that (2 o+1) ' o = 0: Therefore, we have' ¢ = 0 which condradtics the fact that ' ¢ is an
eigenfunction ofL ( o):

Because of the change of sign of, the study of the spectral properties of the family of operators
(L ( )) 2c doesnot tinto the general theory presented in [101]. A detailed study of the spectral
properties of (L () 2c is given in the next chapter. By adapting the results of ¥3.2.3, one can
prove (see Theorem 3.2.1) the
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Proposition 2.4.1. Assume that 6 1: The spectrum ofL is composed by isolated eigen-
values with nite algebraic multiplicities. Furthermore, there exist two positive constantsrg and
o such that

Drg :=fz2 Csuchthatro<jz 1=2jandj<e(z+1=2)j< gj=m(z+1=2)jg Cn(L ):
Besides, for all 2 R such that” 1=\ (L )=, there existsO< C such that
kuknisj )  C KL ( )ukpyszy j u2 HY(S%j ):

Remark 2.4.2. It is worth to mention that the discreteness of ( L ) combined with the fact that
D@ Cn( L )allow ustosay that forall 1; 2 Rsuchthat 1< , theset (L )\f 2
Cj<e( )2 ( 1; 2)gis nite.

Now, we have all the tools to prove the following

Theorem 2.4.1. Assumethat 6 1. If 2 Ris such that’ 1=\ (L )=;;thenW s
an isomorphism. Moreover, we have the estimate

Kukyirsy C KW UKy1 (gey i U2 VHR®

whereC is a constant that depends only in:

Proof. Let u2 D(R3nfOg): According to Lemma 2.4.5 we know that for all 2 C we have

W u(; )= L ()00 )

Since by assumption the operatorL ( ) is invertible for all 2~ 1=2, Dy using the results of

Proposition 2.4.1, we deduce that there is some constar® < C that depends only on such
that

KOC: ke C KW UG Dk i 20 1

By integrating the previous estimate with respect to along the line~ ;- and by using the
result of Proposition 2.4.4, we arrive to the estimate

Kukyirsy C KW Uky1 (rey 5 U2 D(R®nfOg):
The density of D (R3nfOg) in V1(R®) allows us to deduce the estimate
Kukyirsy C KW uky: gey 5 u2 VHR:

This shows that the operator W is injective and that its range is closed. By observing that for
all 2 Rwe havelL ( 1=2)=L ( 1=2) we infer that the operator W s also injective
and its range is closed. By noticing that(W ) =W  we then deduce thatW is bijective.
Finally, the open map theorem allows us to say thatW is an isomorphism.

The proof of the previous theorem combined with the expression of the inverse Mellin transform
leads us to the

Corollary 2.4.1. Assume that 6 1 and that" 1= IS free of eigenvalues oL then the
solution of (2.12) can be expressed in the following way

u(r! ) = % \ rLo() YRR )d: (2.14)
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2.4.6 Asymptotic of the solution

One of the most important results of the Kondratiev theory for linear strongly elliptic PDE [100]

is the fact that it allows us to derive an asymptotic expansion of the solution at in nity and near
the origin. Interestingly, these results can be extended to a more general class of PDE. All we
need is to have a precise information about the Mellin symbol generated by the problem under
study. Before explaining how to obtain this expansion for the solutions of (2.12), we need to
de ne the so-called singularities of the problem.

De nition 2.4.1. Let 2 D(R®) be a cut-o function that depends only onr = jxj and that is
equal to1 near the origin. We say thats is a singularity of (2.12) if and only if it has the form

X1
s(rt )= (nr ;Iog(r)s‘ n s(!)
s=0 7

Lemma 2.4.7. We have the equivalence(' s)s=o:::n iS @ Jordan chain of L corresponding to
if and only if the functions

X 1
sk(rt)=r §|09(r)s' k s(!)
s=0

Proof. The proof of this result is given in [101, Theorem 1.1.5]. We limit ourselves to the proof
of the result for so: Starting from the identity

div( r(r'o('))=r ?(divs( rs' o)+ ( +1)' o) in R®nfOg;
we infer that
div( r(r " o('))=0 inR3nfOg( divs( rs o)+ ( +1)' ¢=0in S
The result follows from the identity

ivs( rs' o)+ ((+1) " o' = ()9 " P2HYSY:

From the previous lemma, we deduce that all the singularities of Problem (2.2) satisfy the equation
div( r s) =0 near the origin.

Asymptotic of the solution

Now, we explain how one can nd an asymptotic expansion of the solution to (2.12). The starting
point is to apply the Residue theorem to the formula (2.14) and to take pro t from the fact (thanks
to Proposition 2.4.1) that if 6 1,thennearany o2 (L ) the operatorL ( ) ! has the
representation
ko) 1 X1 .

-Aj + ( o) Bj:

L 1= —
( ) j=1 ( O)J i=0

Here all the A; are nite-dimensional operators, the Bj are continuous operators and this result
is proved in [101, Theorem 1.1.2 ]. By adapting the proof of [102, Theorem 6.1.5 ], we can prove
the
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Proposition 2.4.2. Assume that 6 1. let ;< > 2 R such that the lines” |, ;- and

, 1= are free of eigenvalues of. : Denote by ;:::; N (with N 2 N ) the set of eigenvalues
of L that are located in the strip >, 1=2< <¢g( ) < 2 1=2: Foreachj =1;:::;N we
denote by _

f Jk;sgk=1;:::; g( 1)is=05: () 1

a canonical system of Jordan chains associated to;: The number j( ;) stands for thej th
partial multiplicity of i: Letfo 2 (V! (R%) \ (V! ,(R%) and denote byu; 2 V* (R®) (resp.
up 2 V12(R3)) the solution of (2.12) with f = f. The function u;  u, admits the decomposition

Woogk i) ki) 1 E . 5
ui(x) uz(x) = Ciks I ! o log(r)* jx (') foralmostall x2 R
j=1 k=1  s=0 '

in which all the ¢;.s are complex numbers.

Remark 2.4.3. Clearly, the coe cients ¢jxs depend on the choice of the canonical system of

be found in [101]. The idea is based on the use of a well-chosen canonical system of Jordan

chains of L that are associated to( j 1)j=1..:n (see [108, Y¥5.4.1]) for which the so-called

.....

biorthogonality condition (see [101, Theorem 5.1.1]) is satis ed.

2.5 Application: study of the problem in the unit ball

The results of this section are not essential to understand those of the next one. Therefore,
this section can be skipped in a rst reading. In this paragraph, we are going to study the
Fredholmness of the problem

Find u 2 H}(B(0;1)) such that div( r u)= f 2 (H}(B(O;1))) (2.15)

where = ,in B(O;1)\ K and = 1in B(O;1)nK : In order to simplify notations, we shall
denote by B the open unit ball of R3: Moreover, we denote byB1; B, the domainsB, :=B\ K and
B1:=BnB,. Forall m2 Nand 2 R;we de ne the spaceV™(R?) as the closure ofD (B nfOg)
for the norm 0 1,0

X o
=@ erJm+@-k2

kI k LZ(B) A

V™ (B)
jim

Note that forall m2 N and 2 R we havevV™(B) V™ 11(B): Besides, one can see that for all

m2 Nand 3; 22 Rsuchthat 1< > we have the embeddingv™ (B) V™(B): In addition

to that, by using the [101, Theorem 7.1.1] we can prove thatHé(B) =V (1)(8): We also have the
following

Lemma 2.5.1. Let 2 HY(S?) then the functionx ! r (!) (where (r;! ) are the classical
spherical coordinates) belongs toe the spadé!(B) if and only if 1=2 =2< <e( )

Proof. Easily one can show thatx ! r (!)2 V(@B) ifandonlyif x! r (!)2 V% (B):
This means thatx ! r (!)2 VI(B) ifandonly if 1< 2(<e( )+ 1) + 2: This ends the
proof.

Instead of studding the well-posedeness of the (2.15) we are going to study the solvability of the
family of problems:

Find u2 V1(B) suchthat div( ru)=f 2 (V! (B)) :
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Note that when = 0; the previous problem is nothing else than the problem (2.15). Without any
di cultly, one can check that the study of the Fredholmness of the previous problem is equivalent
to the study of the Fredholness of the operatorL : V1(B) ! (V! (B)) such that

h ouvi = ru rvforall (u;v)2 viB) V! (B):
B
Theorem 25.1. Assumethat 6 1. If 2 Rissuchthat (L )\ ° 1=2 = ; then the

operator L is a Fredholm operator.

Proof. Let 2 D(R3;[0;1]) that depends only onr = jxj such that (x) =1 for all jxj 2 [0;1=2]
and (x) = 0 for all jxj 2 [3=4;+1 ): To simplify notations, we introduce D := fx 2 R3jjxj 2
[1=2; 1)g: By observing that the function 1 is supported in D; we obtain the following estimate

kuk,, 1 C(ku ky1g *+ k(1 )ukH%(D)); u2 Vvi(B(0;1))

) B)

in which C is independent ofu: Now by extending the function u by 0in R®nB we can say that
u is then an element of the space/!(R®): The assumptions made on and allow us to use
the results of Proposition 2.4.1. In particular, we have the estimate

ku k

vig CKUkyirey Ckdiv( 1 u)ky: (roy

with C independent of u: Using the fact that the function  depends only onr = jxj; we can
say that for all u 2 V(B) the function div( ur ) belongs toL?(B) which is supported in D:
Furthermore, we have the estimate

kle( ur )kvl (R3) CkUkLZ(D)

in which C is independent ofu: By Combining this result with the identity: for all v 2 V! (R®)
we have

hdiv( r u);vi = (rur v)ggsy (udiv(vr ))egsy +(div( ur );v)z2gsy (2.16)
we obtain the estimate
kdiv( 1 u)ky: gy C(KL (Wky1 gy * Kukizp)):
By adapting the results of Y2.3, we also have the estimate
k(1 Jukyypy Clkdiv( r (1 Jukpipy + kukizp)):
Using the same idea as in (2.16), we get the estimate
k@ Jukypy  C(KL (UkKy1 gy + Kukizg,)):
As a consequence, we obtain the following estimate

kUle(B) C(kL (u)k(Vl(B(O;l)) + kukL2(Bl)); u 2 Vl(B(O,l)) (217)

By observing that the map u! ujp from V1(B) to L?(D) is compact and by using the results of
Proposition 2.8.1, we deduce thatL has a closed range and that its kernel is nite dimensional.
Using the fact that L ( 1=2)=L ( 1=2); we infer that L  has also a closed range and
a nite dimensional kernel. By noticing that L = (L ) ; we conclude thatcoker (L ) is nite
dimensional, this implies that L is of Fredholm type.
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Proposition 2.5.1. Assumethat 6 1l:letO< suchthat(L )\ - =; thenlL
is injective and L is surjective.

Proof. According to the previous proposition the operatorsL  are of Fredholm type. SinceL
is the adjoint of L it su ces to show that L is injective. For this, let us suppose that there
exists someu 2 V! (B(0O;1)) such that div( r u) =0: The goal is then to prove that u = 0: For
this we are going to use the Kelvin transform and the fact that in our case the operatorsw
are isomorphism. We de ne the function & such that

a(r! ) = u(r,w) if r<1
u(l=r,w)=r ifl<r:

Denote by B¢ = R®nB(0O; 1): According to Lemma 2.8.3, we can say thattge 2 V1(B®): Sincew

is continuous across the unit sphereS? and sinceV! (B(0:;1)) V!(B(O;1)) we conclude that

t 2 VI(R®): To proceed, we denote byB, * (resp. B, ) the image of Bi(resp. B») by the map

(r;1)! (1=r;!): Note that we have By [ B;* = K and B, [ B,!= R®nK : The next step is to

extend the function to R® as follows

1 in R®nK
> K :

To end the proof, we are going to show that the functiony satis es the equationdiv( r &) =0 in
R3nfOg: Sincetr 2 V1(R?) this will implies that W (&) = 0 and then by applying Theorem 2.4.1
we will be able to deduce thatt = 0 and thus u = 0: Starting from the fact that the function u
is harmonic in B1 and B, and by using Lemma 2.8.1 we deduce thatt is harmonic in B, l[ B, 1
It remains to prove @t is continuous across the unit sphere and across the interface between
B, and B,*: For the case of the unit sphere, the continuity of @t follows from the fact that

is continuous. It remains to explain why @t is continuous acrossB; \ By: This comes from
the fact that @t is continuous acrossB; 1\ B, ! and from the fact that the Kelvin transform
acts only in the radial direction. The Lemma is then proved.

In the particular case = 0; the results of the previous proposition can be re ned.

Theorem 2.5.2. Assume that 6 1: We have the assertions

~

if (L )\ 10 =; thenL® is an isomorphism.

~

If (L )\ 12 6 ; then the operatorL? is not of Fredholm type.

Proof. The proof of rst statement is easy. SinceL =L ; the previous proposition allows
us to say that L? is bijective. Since L is continuous the result is then a direct consequence
of the open map theorem. The proof of the second statement follows the lines of the proof of
Proposition 2.6.1.

The previous theorem gives us a simple way to characterize the set of contrast for which the
near problem (2.15) is ill-posed in the Fredholm sense. Since the existence of eigenvalue on the
energy line” -, is equivalent to say that the problem (2.12) has singularities that coincide near
the origin with

2 log(r)S=st i o(!)

s=0

where 2 Rand (' ¢o;:::;' s 1) is aJordan chain associated to 1=2+i: The previous theorem
tell us us that that the existence of such singularities is the main cause of the absence of Fred-

holmness of the problem (2.15). In accordance with the vocabulary used in the 2D con guration

sk(rt)=r
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Figure 2.3: Examples of propagating singularities (imaginary parts).

[25, 50], these singularities will be calledpropagating (or black hole) singularities . A more
visual description of the behavior of these singularities is given in Figure 2.3.

From a physical point of view these singularities can be interpreted as waves that propagate toward
or outward the conical tip, see the next section for more details. From a mathematical point of
view the existence of these singularities implies that the spacHé(B) is no long the appropriate
framework in which one has to set the problem. Instead, one has introduce a wider framework
that contains these singular functions (or some of them) in order to restore Fredholmness. Since
for all 0 < the functions s.s belongs to the spaceV!(B); a natural choice is to work in the

spaceV!(B): Unfortunately the next proposition shows that this is not possible.

Proposition 2.5.2. Assumethat 6 1land (L )\ -, 6 ; thenforall 0< the operator
L (resp. L ) is not injective (resp. not surjective).

Proof. Since theL ) isthe adjoint of L it suces to prove that L is notinjective. For this we
shall distinguish two situations: the stone whenwe can nd 2 R suchthat := 1=2+i 2
(L );thesecondoneiswhen( L )\ = »,=f 1=2g:

The rst case: We suppose that there exists 2 R suchthat = 1=2+i 2 (L ): Denote
by * a real valued an eigenfunction ofL associated to  (this is possible becausd. ( ) is
symmetric when<e( )= 1=2). Since( ;' ) is a pair of eigenvalue and eigenfunction of.

We then introduce the function (r' )=r * () r ' (1): Clearly, the function belongs
to V1(B)nfOg and satises div( r ) =0: This ends the proof for this case.

The second case: Here, we supposethat( L )\~ -, = f 1=29: Denote by' o an eigenfunction
of L associated to 1=2: Without any di culty we can check that (' o;' o) is a Jordan chain
associated 1=2: This means that the functions o(r! ):= r ¥ o(! ) and (r! ):= r 21+

log(r))' o(! ) satisfy the equation div( r ;) = 0 fori = 0;1: This implies that the function

x 7! log(r) (!) 2 V!(B)nf0g belongs to the kernel ofL : The result is then proved.

What we learn from the proof of the previous proposition is the fact that in order to construct a
new functional framework in which the problem is again well-posed one need to incorporate some
of the propagating singularities and not all of them. Using the waveguides terminology, one has
to work with just the outgoing ones in order to construct a functional framework that leads to
physical solution of the problem. This will be clari ed in the next section.
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2.6 Study of the initial problem

In this section, we return our attention to the analysis of the initial problem (2.2). The goal
is to explain how to combine the analysis of the far problem and the near one in order to get
a clear information about the well-posedness of (2.2). This section is divided into three parts.
In the rst one, we explain how to use the existence of propagating singularities of the problem
(see De nition 2.6.1) in order to characterize the critical interval | . After that, by making use
of the Mandelstam principle [112, 103] we explain how to construct several (an in nite number)
of functional frameworks in which the Fredholmness of the problem is recovered for contrasts
inside the critical interval. The last part is devoted to explain how to use the limiting absorption
principle in order to select, among these mathematical frameworks the one that leads to the
physical solution of the problem.

2.6.1 Characterization of the critical interval

Let us start by de ning the propagating singularities of the problem (2.2). Once for all, in all this
section, we denote by a cuto function that is equal to 1 near the origin and that is supported
in B(O;1): It is important to mention that all the results obtained below are independent of the
choice of the function :

De nition 2.6.1.  Assume that the function issuchthat 6 land™ -\ (L )6 ;:Let
= 1=2+i 2 (L )with 2 R:We say that a functions is a propagating singularity of the
problem (2.2)(or equivalently of A ) if and only if it has the form

X Jog(r)s,

s(rt )= (r)r 2 <

k s(!)

s=0

It is worthy to note that any propagating singularity of the problem (2.2) belongs to L?() nHY()
and satis es the equationdiv( r :) = 0 near the origin (see Lemma 2.4.7). Furthermore, it will
be interesting to mention that any propagating singularity s is such that div( r s) is compactly
supported in  and belongs to the spacd.?() (this a consequence, in particular, of the fact that
the cuto function  depends only inr = jxj while ;go.1) does not depend on it).

Proposition 2.6.1. Assume that the function is such that A has a propagating singularity.
Then A is not of Fredholm type.

Proof. We proceed by contradiction. Let us suppose that the operatorA is of Fredholm type.
Given that the embedding H3() L2() is compact, one can then use the Theorem 2.8.1 to
deduce that there existsO < C such that

kukH%() C(kA uk(H%()) + Kuki2¢y ) forall u2 Hé() ;

Our goal is then to contradict this estimate. To do so, we shall explain how to construct a
sequencgunp)n2on Of elements ofH(l)() such that

n!Iirpl kunkHé() =+ 1 and kA unk(H%()) + Kupki 2¢y remains bounded asn ! 1

Since by assumption we know thatA has a least one propagating singularity, we can say that
there exists 2 Rand 2 HY(S?)nfOg such that the function s(r! )= r ¥2*1 (1) satis es the
equationdiv( r s) =0 in R® (see Lemma 2.4.7). For alln 2 N; we denote bys; u, the functions
sa(r! )= r¥s(rt Yand un(r! )= (r)r¥"s(r! ) (recall that is supported in B(0; 1) and equal
to 1 near the origin). Without any di culty, one can see that we have n'Iirpl kunkH%() =+1:
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To end the proof it remains to study the behavior of kA unk(Hé()) + kupk 2(y asn! +1:By
observing that s belongs toL? near the origin and by using the dominated convergence theorem,
we infer that kunk 2(y converges as tendsto+1 to k sk 2() : As a consequence, we just need
to study the behavior of kA unk(H%()) asn! +1:Given that D( nfOg) is dense inH3()
(see [101, Theorem 7.1.1]), we deduce that

F Un:l V
KA (Un)kpiy = sup (L tnil Ve :
0 v2D( nfognfog  KVKpi()

Interestingly, it can be shown (following the results of [101, Theorem 7.1.1]) that we have the
estimate
kr vk z() Ckvkys(, (2.18)

with C that does not depend inv: In the other hand, one can check that for allv 2 D( nfOg)
we have

( runr Ve =(sar ;5 rv)eeg +(snsdivivr )2y (div( 1 Sn); V) i2supp( ))-

Note that above, we have used the fact thatdiv( r s,) 2 L?() and also the fact that for all
function v 2 H3() we havediv( vr )2 L?() which is true because depends only onr and
then its normal derivative vanishes at : The next step is to observe that we have the following
estimate

J(snr 5 rv)zgy +(sn;div(vr )2y ] Cksnkgz( kkacl)()

in which C is independent ofv 2 Hé() and of n 2 N: As a result, to nish the proof it remains
to study the term (div( r Sn); V )2(supp( )): BY Observing that

(@div( 1 Sn); V )i2eupp( ) = (FAivV( T Sn)it 1V ) 2supp( )

and by means of (2.18) For this, we are going to show thakrdiv( r sp)ki2upp( ) tends to 0 as
n tends to 1 : A direct calculus (using the relation div( r s) =0 in B(O;1)) yields

rdiv( rsp)= r " 2 (2 1=2+i )+1 1=n)( ;' )=nin B(O;1):

Introduce some0 <r ¢ < 1such thatsupp( ) f x 2 R3jjxj <r og: By remarking that (2( 1=2+
i )+1 1=n)( ;') is uniformly bounded in L%(S?) with respect to n and by means of the
identity
ro r
jr1=n 3=2+i :anerr -
0

with C independent ofn, we obtain the wanted result.

0 1
2=n 1 — 2=n —
— r dr = —(r C=n
n2 2n( 0)
This leads us to the
Theorem 2.6.1. Assume that 6 1: Then the following statements are equivalent:
1. The operator A is a Fredholm operator of index zero.
2. The function is such thatA does not have any propagating singularity.

Proof. Regarding what we have proved in the previous proposition, it is enough to show the direct
implication (' 2' implies '1"). Since by assumptionA does not have any propagating singularity
and 6 1, we infer, thanks to Theorem 2.4.1, that the operatorW® : Vi(R®) ! (V3(R?) is
an isomorphism. Given that V}(R%) = H }(R®) (see Y2.4.1), we then obtain the estimate

kukiiresy  Cikdiv( 1 u)kyi(rsy for all u2 VG(R®) =HY(R%)
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with C independent ofu: Now, take o2 D(R+;[0;1]) a cuto function that is supported in [0; 1]
and equal to 1 near 0: Thanks to the previous estimate we get

k O(r)ukHé() Ckdiv( r ( O(r)u)kH%(Rs) for all u2 H3() :

Using the fact that ¢ depends only onr and working as in the proof of Theorem 2.5.1, we arrive
to the estimate

k o(r)ukH%() C(kdiv( r u)k(H%(» + kuk;2¢y ) forall u2 H3()

with C that does not depend onu: On the other hand, by working as in the proof of Proposition
2.3.1, we deduce that there exist® < C such that for all u2 H3() ; we have

k(1 (r))uka%() C(kdiv( r U)kgi(y + Kukpe() Jkukysy forall u2 H3() :
By combining the last two estimates, we conclude that there isO < C we have
kukH%() C(kdiv( r u)k(H%(» + kuk;2¢y ) forall u2 H3() :

This is enough to deduce, thanks to Proposition 2.8.2, thatA is a Fredholm operator of index
zero.

Remark 2.6.1. In the next section, we will show that when propagating singularities exist (and

6 1) the kernel of A is nite dimensional. Since A is symmetric, the dimension of
coker (A ) is then nite. As a consequence, we then deduce that when 2 | nf 1g; the absence
of Fredholmness ofA is caused by the fact that its range is not closed i|(1H(1)( )

As a consequence of the previous theorem, we conclude that the setnf 1g coincides with the

set of contrasts  for which A has at least one propagating singularity. In other words,| nf 1g

is equal to the set of contrast  for which the the symbol L  has at least one eigenvalue in the
energy line<e( )= 1=2: With this in mind and by using the results of Y3.4.2 we arrive to the

following

Theorem 2.6.2. In the case of circular conical tipsg( ) = 2 (0; = 2]; the critical interval |
(that will be also denoted byt ) is given by

oF1(1=2; 1=2; 1; co( = 2)) 2F1(3=2; 3=2; 2; sin’( = 2))
oF1(1=2; 1=2; 1; sin?( = 2)) 2F1(3=2; 3=2; 2; coZ( = 2))

| =1 =[ 1 ]

in which »F1 stands for the Gauss hypergeometric functior{see Appendix Y3.6.2

When = =2 (the locally symmetric case), one can easily see that = f 1g (this is coherent
with the results of [50, Theorem 1.2.1]). For the case 2 ( =2; ) the expression ofl is given by
| =1= : Compared to the 2D case, the result of the previous theorem is a little bit surprising
becausel is from one side of the value = 1: For the case of a general smooth conical tip,

| cannot be calculated by hand and numerical tools must be developed to do so.

2.6.2 On the use of the Mandelstam principle to recover Fredholmness of the
problem

Along this section, we suppose that the function issuchthat 2 1 nf 1g: This means thatthe
operator A is not of Fredholm type. Our goal is to explain how to use the Mandelstam principle
in order to construct a functional framework in which the scalar problem is again well-posed in
the Fredholm sense. Before getting into details let us start with some preliminary results.
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Preliminaries

We start by de ning the weighted Sobolev spaces that are associated to the domain nf Og: For
all 2 R; we de ne the spacesv®() and V() such that

VOo()= fujr u2L?) gandVi()= fujr w2L?) andr ru2L?) g

Classically (see [102]), the spacB ( nfOg) is dense inv®() andV?!() forall 2 R:From their
de nitions, one see that V() vO () forall 2 R: It wil be also interesting to mention
that for all u2 V*() we haveu; 2 H'(!) for all open subset! nfOg: When =0; we have

Vi()=L %) andV3()=H () (see[101, Theorem 7.1.1]). Now, we introduce for all 2 R;
the operator such that A : V() ! (V! ()) such that

PA u;vi = rurv foralu2Vv() andv2 V! () :
By means of localization techniques (using radial cuto functions) and using the results of The-

orem 2.3.1 and Theorem 2.4.1, one obtains the

Proposition 2.6.2. Assume that 6 1;thenforall 2 R suchthat™ ;-\ (L )=;
the operator A is of Fredholm type.

To proceed, we denote byN; the number of eigenvalues ofL that are located on the energy

line ° -, and denote by i;:::; n, the elements of the set -, := ° ;,\ (L ): For each
j =1;:::;N¢ we denote byf' Jk;sgkzl;::; o( 1)is=07: «( ;) 1 @ canonical system of Jordan chains
associated to j: Each ; (j = 1;:::;N¢) generates 5( j) propagating singularities that are
de ned as follows: forallj =1;:::;Ng; k=151 g( ):;s=0;:::; «(j) 1, we have
x p .
s = (0 FE ) @19
p=0 '

As consequence, we have de ned propagating singularities with

X
T = a( ):

2 1=

As by assumption the function is such that 6 1;the set ( L ) is discrete without any
nite accumulation point (see Proposition 2.4.1). Besides, sinceCn( L ) D,? (see Proposition
2.4.1), we can de ne the positive number

o=minfl=2+<e( )j 2 (L )and 1=2< <¢( )a:
Since the set ( L ) is symmetric with respect to ( 1=2;0) we can say that
f 2Cj<e()2( o 1=2; 0 1=2)g\ (L )= 1=

By adapting the results of [102, Chapter 6 ], we obtain the next

Proposition 2.6.3. Assume that 6 1 andlet 2 (0; o): Then we have the following
assertions:

1. If there existsu 2 V() such thatdiv( r u) 2 (V1()) (V! ()) then u decomposes

as
W ok i) ki) L
j=1 k=1 s=0

in which the functions s;;;x are de ned in (2.19).
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2. index(A ) index(A )=T:
3. ker(A ) is independent of 2 (0; o):

Remark 2.6.2. SinceH3}() V() forall 2 (0; o); the Proposition 2.6.2 allows us to say
that for 6 1 the kernel of A is nite dimensional. Furthermore, thanks to the previous
proposition we obtain the following property: ifu 2 H3() is such thatdiv( r u) 2 (Vi()) for

some 2 (0; o) thenu2 V! () :
As a consequence of the previous proposition we obtain the

Lemma 2.6.1. Assume that 6 1. The numberT is even. Furthermore, for all 2 (0; o)
we have
index(A )=index(A )=T =2

Proof. SinceA is the adjoint of A ; we obtainindex(A )= index(A ): Combining this with
the fact that index(A ) index(A )= T wegetT =2index(A ):

We also have the

Furthermore, if 1=22 (L ) then 4( 1=2) is even.
Proof. By remarking that for all g2 N and all ;v 2 H(S%) we have

dL T o | E— .
hﬂ( 0)1V|—hﬂ( 0)5V i

we obtain the rst part of the statement. The second part follows from the fact that T is
even.

From a physical point of view, the fact that the number of propagating singularities is even can be
explained by the fact that we have two kind of propagating singularities: those which propagate

S( j)=spanfsys;k=1;:::5 g(j);s=0;::10 «( ) 19

in which sjx.s are de ned in (2.19). Next, we denote by S the space of propagating singularities
of the operator A

S:= , S( )=spanfsj ;] =1;::;Ngk=1;::05 g();s=0;::01; k() 19
1=2

again s;jx are dened in (2.19). Clearly T = dim(S): To simplify notations, we denote by

N =T =22 N and we enumerate the singularitiess;.s in the following way s;;:::;spn : This

to use the so-called Mandelstam energy radiation principle [112, 103] in order to decompose the
spaceS into the sum of two sub-spacesS* (a space of outgoing propagating singularities) andS
(a space of incoming propagating singularities). The reason why we have chosen to work with
Mandelstam principle (i.e the direction of propagation of a propagating singularity is determined
by the sign of its energy ux near the origin) instead of the classical Sommerfeld radiation
principle (i.e. the direction of propagation of a propagating singularity that is associated to

= 1=2+i 2 (L )with 2 R isdetermined by the sign of ) is the fact that Mandelstam
principle allows us to incorporate the case when propagating singularities have a logarithmic
growth near the origin (see [114, Y5.3] for more details).
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The classi cation of propagating singularities by the Mandelstam principle

The Mandelstam principle relates the direction of propagation of a propagating singularitys 2 S
to the sign of the imaginary part of its energy ux

Q(s) := Ij,rln0 (s@s s@s)d!:

jxj="

Let us explain why the function Q(s) is well-de ned for all s2 S: To do so, we start by observing
that for all s 2 Sthe functions div( r s);div( r S) belong toL?() and are compactly supported
in  nfOg: This implies that div( r s)5 div( r §)s2 L() : Applying the dominated convergence
theorem and integrating by parts we can write that

div( rs)s div( r s)s=Iim div( rs)s div( r s)s=Ilim (5@s s@s)ds:

Y0 neroM) PO jxj=r

This shows that Q(s) is well-de ned for all s 2 S: Furthermore, one can see thatQ(s) is purely
imaginary for all s2 S Observe that the value of Q(s) is independent of the choice of the cuto
function in (2.19). Now, we present the de nition of outgoing and incoming (with respect to
the Mandelstam principle) propagating singularities.

De nition 2.6.2. A propagating singularity s 2 Snf0Og is said to be incoming (resp. outgoing) if
0< =m(Q(s))(resp. =m(Q(s)) < 0). If Q(s) =0; we say thats is unclassi ed.

In the following, we will prove that one can nd a basis of the spaceS that contains N outgoing
propagating singularities and N incoming ones. For this we start by introducingq:S S! C
the symplectic, i.e. sesquilinear and anti-Hermitian, form associated to the quadratic formQ:
For all u;v 2 S; we set

q(u;v) = div( r v)u div( r u)v:

It will be interesting to note that, by means of the dominated convergence theorem, we have

q(u;v) = Ij‘(nO (@uv u@v)dsforall u;v2 S

jxj="

Observe that for all s2 Swe haveQ(s) = q(s;s): It will be also interesting to mention that for
all s2 Swe have

qass) = qs;s):

Let us recall the de nition of a non-degenerate symplectic form.

De nition 2.6.3. Leth:S S! C be a symplectic form. We say thah is non-degenerate if the
matrix (h(sj;sk))jk=1:::2n IS nonsingular or equivalently if the following statement is satis ed:

x 2 Ssuch thath(x;y)=0 forally2 S=) x=0:

Proposition 2.6.4. The symplectic form q is non-degenerate.
Before starting the proof of the previous proposition, let us, rst, prove the
Lemma 2.6.3. We have the following assertions:
1. Let ; %2, suchthat 6 OCthenforall (u;v)2S() S( 9 we haveg(u;v)=0:

2. Llet 2 ;- Forall u2 S( )nfOg there existsu®2 S( ) such thatg(u;u% =1:
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..........

canonical system of Jordan chains ot (this is because the operatordiv( r ) is formally self-
adjoint) associatedto ; 1= ; (because j 2 = ;) such that the functions

o . ., % logP |

o0 P
satisfy the relations

o div( T Siks)Sokoso = 50 kkO s () ° 1 (2.20)

where . stands for the Kronecker symbol. Given that the functionsdiv( r sixs) are supported
in B(O; 1) and sincediv( r sf.s) =0 in R® (see Lemma 2.4.7), we obtain

. = i ) 0
B0 KkO s (o) 01 T div( T Sjk;s )Sfoxoso

d|V( r Sj;k;S )SJ 0;k0;50+ d|V( r Sj U;kO;so)Sj;k}S

=lim - (Sokos0@Sjkis  Sjkis @Syog0) = USjikss ; (r)sjoo;ko;so):
PO jxj=r

The rstitem is then proved by observing that the functions ( (r)sjc;’k;S )ik;s form a basis ofS( j):
The second item is direct consequence of the previous biorthonormality relation.

Remark 2.6.3. Another interesting way to prove the previous result is to take prot of the fact
that the operator div( r ) is formally self adjoint and to use the results of [114, Chapter 5].

Now, we can give a proof to the Proposition 2.6.4.

Proof of Proposition 2.6.4. Assume that there existsu 2 SnfOg such that q(u;v) =0 forallv2 S
SinceS= , | _,S( );the function u decomposes asi = u; + + un, Whereu; 2 S( ) for
i =1;:::;N¢: Sinceu 6 0; there existsi 2 f1;:::;N¢g such that u; 6 0: According to the
previous lemma, we can ndu? 2 S( ;) such that g(u;i ;u?) =1 and g(uj;u’) = 0 for all
| 6 i : This means that q(u; uio ) = 1; which leads to a contradiction.

The fact that g is non-degenerate implies that its rank is equal to2N : Now, we can show the

Theorem 2.6.3 (The Mandelstam principle). There existss; ;:::;sy a basis of the space5
such that

oS is) = gk A(s 58 ) =0 ands’ = s forall ik =1;::5;N (2.21)
where i is the Kronecker symbol.

Proof. The starting point is to observe that the sesquilinear form(u;v) 7! ig(u;v) is hermitian.
Sinceq is non-degenerate iq is also non-degenerate. By applying the Sylvester's law of inertia,
we deduce that there exists(K*;K )2 N (K*;K ) 2 N (the pair (K*;K ) is called the
signature of iq) suchthat K™ + K =2N and a basis(s, ;::: ;S ) for the spaceS such that

iq(s; ;s )= jk andq(s; ;) =0 forall j = 1;::0 KT k=1;:::;K
Furthermore, the numbers K * and K are de ned as follows:
K =maxfdim(A subspace ofSsuch that 0 ig(x;x) for all x 2 A))g

Since the spacesis stable by complex conjugation and iq(s;s) = iq(s;s) for all s2 S; we deduce
that K* = = N and then the theorem is proved.
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previous theorem. Indeed, one can easily see that for aH;b2 R such that a® =1 the set of

Remark 2.6.4. It is important to mention that the basis (s; )j=1;:;n  is not unique in the

.....

wj+ = asj* +bs andw; = bsj+ + as;

.....

de ne the spaceS" (resp. S ) the space of outgoing (resp. incoming) propagating singularities
such that
S =spanfs;;j =1;::5N o

Thanks to the previous theorem we can write thatS= S" S : any propagating singularity is

.....

obtain S"* = S : Following the Mandelstam principle (the physical solution must be outgoing),
we dene for all 2 (0; o); the spaceV°():= V! () S":Endowed with the norm

X ol = 2 X i2y1=2 1 :
Ko + G s k= (kek{, ot jgj9) < forallx2 V* () andg 2 C;
i=1 j=1

the spaceV°"() is a Hilbert space. Then, we introduce the operatorA® : Vo' () I (v1())
such that for all u= 4+ s* with (#;s*)2 V! () S" andv2 V() we have

[TV re rv div( r s)v:

Note that hA®“'u;vi is well-de ned for all u 2 V() andv 2 V() because the function
div( r s*) belongs toL?() and is compactly supported in nfOg: Before getting into details,
let us explain why A°“ is continuous for all 2 (0; o): This is a consequence of the following

Lemma 2.6.4. There exists a positive constantC such that

X X
j div( rs)vj C( jij)kaVl() for all s= G sj+ 2Sandv2 V() :
j=1 j=1

recalling thatforall j =1;:::;N the function s’ has the forms| = (r)s" wherediv( r §") =0
in B(O;1) (we remind the reader that the function is also supported inB(O; 1)). With this in
mind, we can write that for all ' 2 D( nfOg) we have

div( r s ) = r(s)r= = rs r- sror
= rsor sroor’
As =1 near the origin, the support of r is then detached from the origin. This leads us to

the estimate
i div( rsi*)“j Ck' kvl()

with 0 < C independent of": The wanted result follows from the density of D( nfOg) into the
spaceV!() :
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Remark 2.6.5. By observing that for allv 2 D( nfOg) we havehA®tu;vi = h div( r u);vi
and by using the continuity of A°“'; we can that we have the equivalence

u2 Vo) such thatdiv( r uy=0 ifandonly if A°"u=0:

To proceed, we de ne the sesquilinear formg®t : voUt()  Vv°() 1 C such that for all
u;v 2 VOU() : we have

Ut (u;v) = PAu;vi h U A%Uvi = PA%Mty;vi hAOULy; ui:

It will be interesting to note that the value of q(u;v) for u;v 2 V°U() depends only in the
singular part of u and v: Indeed, for allu = 4+ sy;v = v+ s, 2 VOU() ; with ;v 2 V! ()
and sy;sy 2 S"; we have

gt (u;v) = re rv+ re rsy div( r sy)v div( r sy)5v
ra rv rv rsy+ div( r sy)u+ div( r sv)sy (2.22)
= div( r s)sy div( r su)sv = q°"(su;Sv) = q(Su;sv):

Remark 2.6.6. For all 0< ; we de ne the spacev™°! := v1 () S We also introduce the
operator A*out - y/in*out 1y 1)) gych that for allu = 4+ s, 2 VM™OU (with &2 V! ()
andsy 2 S andv 2 V() we have

STV o rv div( r s)v:

Observe that for allu 2 V() we haveA™out y = A °Uty: Working as in the case of the operator
A°: we can show thatA™°!" is continuous. We also de ne the sesquilinear formgm*°ut :1 C

such that for all u;v 2 V"™out we set
qin+out (U;V) — Min OUtu;Vi h U;Ain outvi — hAin OUtU;Vi hAin outv; ui:

By arguing as in the case of the sesquilinear forng®"; we can show that for allu;v 2 V! ()
and sy;sy 2 Swe have _
gmout (u+ sy v+ sy) = q(Suisy): (2.23)

To simplify a little bit the analysis below, we will make the

Assumption 2.6.1. Assume that 6 1 and that there exists 2 (0; ) such thatA is
injective.

Using the last item of Proposition 2.6.3, we obtain the

Lemma 2.6.5. Assume that Assumption 2.6.1 holds then for all 2 (0; ) the operator A is
injective. In particular, we have the estimate: there exists0 < C such that

kuk C kA k u2 Vvt O

vio() (vi()

Using the terminology of the waveguides theory, the previous assumption is equivalent to say that
we suppose that trapped modes do not exist. When it is not satis ed, a modi ed version of our
results can be obtained (see Remark 2.6.7). The remaining part of this paragraph is devoted to
prove that under Assumption 2.6.1, the operator A°“ is an isomorphism for all 2 (0; o): The
injectivity of A°“ is the subject of the next
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Proposition 2.6.5. Assume that Assumption 2.6.1 holds. Then for all 2 (0; o) the operator
A°" is injective.

Proof. Letu =4+ s" 2 VOU() with (&;s") 2 V! () S such that A°“'u = 0: Since by
assumption A is injective it su ces to show that s* = 0: Given that s real valued, it follows
that div( r o) = 0: This leads us to write that g®(u;u) = 0: Using (2.22), we deduce that
q(s™;s") =0: The de nition of the space S" suggests that we can decompose the functios" as
follows

X
By observing that q(s*;s™) = i( jcj+j2); we infer that s* = 0: The result is then proved.
j=1

Now, we turn our attention to the study of the surjectivity of A°'() : Before that, we will prove
the following useful result.

Proposition 2.6.6. Assume that Assumption 2.6.1 holds and let 2 (0; o): Then for all j =
1;::1;N  there exists a unique pair of functions(s; ;t; ) 2 S Vvl () such that

d =s +s & 2ker(A ):

associated tos; :

Proof. The proof follows the lines of the proof of [114, Proposition 5.3.3]. The fact thatA
is injective implies that A is surjective and that N = index(A ) = dim(Ker(A )): Denote by

u; decomposes as

X X
uj = ikSe + ik S + Y
j Gk Sk ik Sy i
k=1 k=1

where t 2 vl () and all the Cik ;dix 2 C: Denote by C;D 2 My (C) the matrices

..........

To end the proof we are going to show the matricesC and D are nonsingular (with this in mind
one can then nd linear combinations of the functions u; that lead to the wanted results). We
start with the case of the matrix C: Suppose thatC is not injective. Then there exists a function
u 2 Ker (A )nfQOg that decomposes as

X
u= i +dwith a2V () and j2C:
=0

By working as in the proof of Proposition 2.6.5, we infer thatu = 0: This leads to a contradiction.
Thus the matrix C is nonsingular. With the same arguments, we show thatD is nonsingular.

Now, we can prove the surjectivity of A°!:

Proposition 2.6.7. Assume that Assumption 2.6.1 holds. For all 2 (0; o) the operator A°!
is surjective.
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Proof. SinceA is the adjoint of A and the latter is assumed to be injective, we infer that
A is surjective. Takef 2 (V!()) : Since0 < ; we have the embeddingv! () Vi)

and then, by duality, infer that (V1()) (V! ()) . This allows us to say that there exists
u2 V() suchthat A u = f: Sincef 2 (V!()) we know, thanks to Proposition 2.6.3, that
the function u decomposes as

X

u =u + cj+sj++cjsj
j=1

with u 2 V! () and all the G 2 C: Thanks to Proposition 2.6.3 we know that there exist

Up;:iiyuy 2 Ker(A ) suchthatforallj =1;:::;N we have
X . L
uy =u +s + kS With u;  2V*® () and 2 C:
k=1
_ _ X _
By observing that the function u = u G u; belongs to the spaceV°"'() and satis es the

j=1
equation A°'u = f; we obtain the wanted the result.

Since the operatorA°“ is continuous for all 2 (0; o), the open map theorem, combined with
the results of the previous propositions, leads us to the

Theorem 2.6.4. Assume that Assumption 2.6.1 holds. Then for all 2 (0; ) the operator A°Ut
is an isomorphism. Moreover, there exists a constan® < C such that for allu = 4+ ¢;s] +  +
cn Sy with #2 V! () and all g 2 C we have the estimate

%
ketkys () + 1jcjj C KAt (u)k
J:

vt(O)

Forall 2 (0; o); the expression of the singular coe cients of the solution (i.e. the coe cients
in front of the singularities sj+ in the decomposition of the solutionu) to the well-posed problem:

Find u 2 VOU() such that A®tu=f 2 (Vi()) (2.24)
can be determined thanks to the following
X
Lemma 2.6.6. LetO< andletu=t+ ¢'s 2 VoUu() (with &2 V! ()) : Then for all
j=1
¢ = hAtu;dri=i

where the function dj" are de ned in Proposition 2.6.6.

Furthermore sincediv( r dj") =0 in and thanks to the continuity of Aln+out (see Remark 2.6.6)
we can say thathAM*out d’;ui =0. On the other hand, sinceu 2 V°() vinout () we have
PAtu; d"i = PAMOU y; dE it As a result we can write

M°“tu;dj+i — hAin+out u;dj+i h Ain+out dj+;Ui = qin+out (u;dj+):

Given that the function d” decomposes ag = s/ +s +4j with s 2S and; 2 vl () we
deduce (thanks to (2.23)) that

PA®u;dii = o crsis +s )= ic
=1

+.
J [
k
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This leads us to the following

Corollary 2.6.1. Assume that Assumption 2.6.1 holds and let 2 (O; min( o;1)): Then for all
f 2 L?() the problem(2.24) is well-posed. Moreover, its solution decomposes as= H + cis) +

Proof. It su ces to mention that for all 2 (0; 1) we have have the embeddind.?() (Vi)
and then to apply Theorem 2.6.4 and Lemma 2.6.6.

We nish this paragraph with some remarks.

Remark 2.6.7.
It is worth to note that since (V1()) (Hé()) for all 0 < ; the framework that we
have proposed above does not allow us to de ne a solution (8.2) for all given source term
f 2 (H30))

In the case when the Assumption 2.6.1 is not satis ed, i.e. when the operatoA is not
injective, the operator A°“" is no longer isomorphism. However, one can show that for

2 (0; o) the operator A°" is Fredholm of index zero. Let us explain, brie y, how to show
this result. Starting from Proposition 2.15, using the results of Y2.3 we can show that for all

2 (0; o) the operator A°"t has closed range and a nite dimensional kernel. Furthermore,
by working as in the proof of Proposition 2.6.5 we can easily prove that for all 2 (0; o);
we haveker(A°“) = ker(A ): The last step is to show thatA°" is of index zero. To do
that, one can follow the lines of the proof of [25, Prposition 4.4].

2.6.3 Selection of the physical solution by means of the limiting absorption
principle

In the previous section, we have explained how it is possible, even in the case of propagating
singularities with logarithmic growth near the origin, to de ne a radiation condition that allows
us to construct a functional framework in which the scalar problem is well-posed in the Fredholm
sense. However, as explained in Remark 2.6.4, it is possible to construct an in nite number of
functional frameworks that are coherent with the Mandelstam radiation principle and in which
the problem is also well-posed. This means that almost all the functional frameworks that can be
constructed using the Mandelstam radiation principle do not lead to the physical solution of the
problem. Obviously, the main di culty is to de ne a space of outgoing propagating singularities
that has a physical meaning. To do that, we are going to use the limiting absorption principle.
The idea is to say that the physical solution of the problem 2.2 must be de ned as the limit when

I 0" (in some space to be de ned) of the(u ) whereu solves the well-posed problem

Find u 2 H3() suchthat div(( +i)ru)="f 2 H3) : (2.25)
The well-posedness of the previous problem for all 2 (0;+ 1 ) is guaranteed by the Lax-Milgram
lemma. Introduce the operator A .; :H3i() ! (H3()) such that

PA ;iuvii= (+i)rurv foraIIu;VZHé():

The case of non-critical coe cients is treated in the following

Lemma 2.6.7. Assume that the function is such that 621 and suppose that the source
term f is such that the problem(2.2) is well-posed in the Hadamard sense. Then the sequence
(u) converges as ! 0";in H3() to u the solution of (2.2).
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Proof. By de nition of | ; we know that since 62 ;the operator A is a Fredholm operator
of index 0: Furthermore, since by assumption the problem (2.2) has a unique solution, we infer
that A is injective and thus it is an isomorphism. As a result, we have the estimate

in which C is a constant that does not depend oru: Combining this with the obvious estimate
kdiv( r u)k(Hé()) k div(( +i)r u)k(Hé()) + ] jkukHé() forall u2 Hé()

we arrive to

By taking suchthatO0< < :=1=2C; we obtain the following estimate

Applying the previous estimate to the function u u whereu andu are respectively the solutions
to (2.2) and (2.25), we conclude that for all 2 (0; o) we have

The lemma is then proved.

Now, we turn our attention to the study of the case where the function is such that 2
I nf 1g:

De nition of the space of physical outgoing propagating singularities

The starting point is to introduce the Mellin symbol of the problem (2.25). Forall 2 R, and all
2 C we introduce the operatorL 4 ( ):HY(S?) ! (HYS?) suchthatforall ; °2 HY(S?)
we have

. (); 9= (+i)ys rs @ ( +1) ( +i) @
52 2
We denote by ( L +; ) the spectrum of the family of operators(L +i ( )) 2¢. In 3.3, we will
present a study of the spectral properties ofL . : In particular, we will prove the following

Lemma 2.6.8. Assume that the function issuchthat 21 nf l1lgandlet 2 (0; o): Then
there existsO<  such that forall0< < the operatorL ,; hasN; eigenvalues in the strip
f 2Cj < 1=2+ <g( ) < g of total algebraic multiplicity (i.e. the sum of all the algebraic
multiplicity of these eigenvalues) equal t@2N : Furthermore, we have

im (L <)V 2Cj < 12+<e()< g= (L )\ 0= 1o (2.26)

In the rest of this section, we are going to work under the following

Assumption 2.6.2. We suppose that the function is such that 21 nf 1g and such that

~ All the eigenvalues ofL  that are located on the energy line<e( ) =  1=2 are semi-simplé.
We denote them by 1;:::; n,:

" There exists0< gand0O<rgsuchforall0< < gandallj =1;:::;N¢; we have
B( jiro)\ (L +i)=1 j @

" Allthe j (j =1;:::;N¢) are semi-simple.

"We say that an eigenvalue of L is semi-simple if 2( )= 4( ).
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Remark 2.6.8. Clearly, when all the eigenvalues of. that are located on<e( ) = 1=2 are
simple® the previous assumption is satis ed thanks to Theorem 3.3.1.

Lemma 2.6.9. Assume that Assumption 2.6.2 holds. TherN; is even. Moreover, for all 2
(0; o) there exists0 < such that for all 2 (0; ); we have

thestripf 2 Cjl1=2+<e( ) 2 (0; )g contains N;=2 eigenvalues ol. .; of total algebraic
geometric equal toN :

Proof. We start by proving that, under Assumption 2.6.2, 1=22 ( L ): For this it suces
to see thatif' 2 Ker(L ( 1=2))nfOg then (*;' ) is a Jordan chain ofL associated to 1=2:
This means that 1=2 can not be a semi-simple eigenvalue df : Given that the spectrum of
L is symmetric with respect to ( 1=2;0); we infer that N; is even. This implies that the strip
f 2Cjl1=2+ <e( ) 2 (0; )g contains N{=2 eigenvalue(s) ofL

According to Proposition 3.3.1, we know that ( L +; )\ = 1o, = ; forall 0< : As a result,by
using the factthat ( L . ) is also symmetric with respect to( 1=2;0) and by means of (2.26),
we deduce that, under Assumption 2.6.2, there exist® <  such that for all 2 (0; ) the strip
f 2 Cjl=2+ <e( ) 2 (0; )g contains N¢=2 eigenvalue(s) ofL +; : Now, let us explain why
o( ') coincides with 4( j): This is a consequence of Proposition 3.3.3 in which we prove that
the sum of all the algebraic multiplicities of the eigenvalues ofL .; that are near j must be
equal to the algebraic multiplicity of j:

Now, let us assume that Assumption 2.6.2 holds. For all 2 (0; o) and all 0 < su ciently
small, we denote by( J+ )i=1:::N,=2 the set of eigenvalues ot .; that are located in the strip

v )=

f 2Cjl1=2+<e( ) 2 (0; )g: For eachj = 1;:::;N{=2; we denote by (' ‘k ) S an
; k=1 ;

orthonormal (with respect to the inner product of H(S%)) basis of KerL . ( J‘“ ): Nekt, we
introduce the functions

Then, we de ne the spaceS" =spanfs]y. ;j =1;::1;N=2k =1;:::; g( j; )g: Itis obvious that
if Assumption 2.6.2 is valid, then for all 0 < small enough the spaces’ is of dimensionN : For
this reason, we can introduce(sjf )j=1:=n a basis of the spacs’ = spanfsjf j=1;00N gt
will be interesting to note that forall j =1;:::;N¢=2andallk =1;:::; ¢( J+ ) the function s

belongs to the spaceH3() : Moreover, one can easily see that the functiongliv(( + i )r Sj;l;; ’)
vanishes near the origin and then they belong to the spacé?() \ (V!()) forall 2 R: The
behavior of these functions as ! 0" is the subject of the next

Lemma 2.6.10. Assume that Assumption 2.6.2 is valid and let 2 (0; o): Then for j =

sequence, as ! 0":in V() to the function

SheolM )= (k)

+

where 1,3 | = I!mm i issuchthat ¢( )= g J" ) and"' ‘k 2 ker(L ( [)): Furthermore,

ji
we have

In addition to that the sequence of functionsdiv(( +i )r sjfk; ) converges, up to a sub-sequence,
as ! 0"in (VX()) todiv( rs.):

Bie.if a( )= o( )=1:
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Proof. The fact that ( J+ ) converges to somej+ 2 1\ (L )isguaranteed by Lemma
2.6.8. The fact that ¢( j+) = o J+ ) follows form the application of Lemma 2.6.9. The conver-

gence,up to a sub-sequence, ¢f Jk; ) as ! 0" in HY(S?) tQ an element of' jk 2 ker(L ( j")) is

ker(L ( )):
The convergence of(sj’;'k; ) to ka;o in V() follows from the application of the dominated
convergence theorem. By observing that for alv 2 V() we have

joodiv(( +i)rsy ) div(r s o)V = ] ‘ (div(( +i)r s ) div( 1 s o)Vi
nfrj (r)=1g

We infer that we have the estimate
kdiv(( +i)r s ) div( 1 s oK1 Ckdiv(( +1i)r s, ) div( r s oKz

with C independent of : The result follows, again, form application of dominated convergence
theorem.

In the sequel, when Assumption 2.6.2 is satis ed, we denote by *,_, := f j+;j =1;:::;N=2g:
previous lemma, we can say thatdim(S;) = N : To simplify notations, for all 2 120, We
denote by S( ) the space

S()= (r)r ker(L ()= fs(r')= (r)r " () with ' 2Ker(L ())g

Without any di culty, one can see that S = S( ): Inthe remaining part of this paragraph,
1=2

we are going to explain how to nd a simple characterization of the spaces] (or equivalently the

set +1:2). The starting point is the next

Lemma 2.6.11. Assume that Assumption 2.6.2 is valid then the spac&; is of dimension N :
Furthermore, we have
0 = mq(u;u) forall u2 Sj:

Proof. The fact that the dimension of S is equal to N follows form its de nition and thanks
to the previous lemma. Furthermore, we know that for all u 2 S there exists a sequencéu )

of elements ofS" such that (u ) and (div(( + i )r u)) converges, as ! 0"; respectively in
vi() andin (V1()) touanddiv( r u): As a result, we deduce that

!ir’g+ div(( +i)ru)u div(( +i)ru)u = q(u;u):

SinceS"  H}() , one obtains (thanks to an integration by parts) that g(u; u) = IimO+ 2i jr ujZ:
This ends the proof. '

is the following

Proposition 2.6.8. Assume that Assumption 2.6.2 holds, then for all 2 (L )\ = ;- we
have two possible situations: eithe® = m(qg(u;u)) for all u2 S( ) or =m(q(u;u)) 0 for all
u2S():



Chapter 2.  Study of the scalar transmission problem in presence of a conical tip
of negative material 58

Proof. By combining the two previous lemmas, we deduce that for all 2 *, _,; we have
0 = m(q(u;u)); uz2 S():

This shows the result for all 2 +1:2: Giventhat ( L ) is symmetric with respect to ( 1=2;0)

and since 1= forall 2 1=; We infer that -, = %, [ 7, According to

Lemma 2.6.2 we know thatKer(L ( )) = Ker(L ( )): Given that g(u;u) = q(u;u); for all

u 2 S Consequently, forall 2 * _, we have=m(q(u;u)) Oforall u2 S( ): The lemma is
then proved.

Without any di culty, one can check that for all = 1=2+i 2 1=(i.e. 2 Ryand"' 2
KerL ( ); the function s(r! ):= (r)r ' (}) 2 S( ) satis es the relation:

q(s;s) = 2i i' jd: (2.27)
2

With this in mind, we can show the following result that gives us a very simple characterization
of set *,_, and the spaceS;:

Proposition 2.6.9.  Assume that Assumption 2.6.2 holds. Let = 1=2+i 2 ;,\ (L)
and let' be an arbitrary eigenfunction of L associated to : Then, we have the equivalence

2 ", ifanonlyif 0< ; i

Proof. We already know thanks to Lemma 2.6.11 we haved iq(u;u) for all u 2 S: This
means that iq is positive hermitian form on §  ;: By making use of the Cauchy-Schwarz
(applied to iq) and using the fact that qis non-degenerate, we infer thaD < iq(u; u) for all u 2
S, nfOg: This proves the direct implication. The reverse implication follows form the Proposition
2.6.8 and the relation (2.27).

Proof. We denote by gy the symplectic form that is the restriction of the symplectic form g
to the space S : Thanks to Lemma 2.6.11, we know that iqo is hermitian and positive, i.e.
0 iqo(u; u) for all u 2 Sj: Given that

= S()
2 1=2

and thanks to the second item of Lemma 2.6.3, we deduce thay, is non-degenerate. The wanted
result follows then form the application of Sylvester's law of inertia.

Forall 2 (0; o) we introduce the space av3" := V! () S and the operator A3" : V" !
(VY()) suchthatforall u=4+s" with 42 V! () ands" 2 S we have

hAg! u; vi = re rv div( r s")v ; v2 V() :

Using the results of the previous section and with the help of Lemma 2.6.12, we obtain the

Proposition 2.6.10. Assume that the Assumptions 2.6.1-2.6.2 are satis ed. Then the operator
A" is an isomorphism.
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Final proof of the limiting absorption principle

The main result of this section is given by the following

Theorem 2.6.5. Assume that Assumptions 2.6.1-2.6.2 hold and lef 2 (V()) with 2
(0; o): Then the sequencéu ) (u is the solution of (2.25)) converges inV() tou 2 VS;‘“() =
V! () S the unique solution to the well-posed problem§"u = f:

The proof of the previous theorem is based on a succession of lemmas. The rst one is the

Lemma 2.6.13. Assume that Assumption 2.6.2 holds and thaf 2 (V()) then there exists
such that for all0< < the function u (the solution to (2.25)) decomposes as

)
u= s+ (2.28)
j=1

wherewr 2 V! () andd 2 C:

Proof. Thanks to Lemma 2.6.9, we know that there exists suchthatforall 2 (0; );we have
f 2Cj<e( )2 ( 1=2; 1=2+ )g\ (L +i)=f i ;J =1;:::;N¢=20: Since by Assumption
the eigenvalues ;’ are semi-simple for 2 (0; o) ( o is de ned in the statement of Assumption
2.6.2), the result follows then by replacing by min( ; ) and by adapting the classical results

of [102, Chapter 6 ].

Lemma 2.6.14. Assume that Assumption 2.6.1 holds. Then for all 2 (0; ¢) there existsO <
such that for all 2 (0; ); we have the estimate

kuk C kdiv(( +i )r u)k forall u2 Vvl ()

vt () vt(O)

in which the constantC is independent ofu and of :

Proof. Thanks to the Assumption 2.6.1, we know that for all 2 (0; ) we have the estimate
(see Lemma 2.6.5)

kuk,, C kdiv( r u)k forall u2 v ()

1O vVt(O)

where0< C does not depend oru: By combining the estimate

kdiv(r u)k: C%uk,1 o forallu2 vt ()

0)

(in which CP is independent ofu) with the fact that forall 2 Randallu2 V! () we have
div( ru)=div(( + i )ru) i div(r u); we obtain the estimate
kuk,: (,  C kdiv(( +i)r uk + C% jkuk, forall u2 v () :

vt 0!

Taking small enough (e.g.j j < (2C° 1), we get the estimate

ket k 2C kdiv(( +i )r u)k

vt () vt

which ends the proof.

Lemma 2.6.15. Assume that Assumption 2.6.1 holds and let 2 (0; o): Let (u ) be a sequence
of elements ofV! () such that(f :=div(( +i )ru)) converges, as ! 0";in (V1())
then (u ) converges invV! () as ! 0':
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Proof. Thanks to the previous lemma, we infer that (u ) is bounded in V! () : In order to
prove our claim we are going to show that(u ) is a Cauchy sequence. Let; °2 R, : Starting
from the identity

foofo=div(( +i)r(u uo)+ i( 9divr u o
and by using the estimatekdiv(r u)k(vl(» Ckuk, 1 0 forallu2 vl () (with C indepen-

dent of u) we obtain (thanks to Lemma 2.6.14) the estimate

ku uokys C(kF fokyay +] 9

with C that does not depend on : Since by assumption(f ) converges in(V()) its then a

Cauchy sequence and then the result is proved.

As a consequence, we can now show the following result.

Lemma 2.6.16. Assume that Assumptions 2.6.1-2.6.2 hold and let 2 (0; o): Then the se-
quences(c;) in (2.28) are bounded as tends to O:

Proof. For all small enough, we denote byR = max jdj: To prove our claim it su ces to
]

show that (R ) is bounded as vanishes. If this not the case, one can say that there exists a

sub-sequence ofR ) ; that will be indexed by for the reader convenience, such thajR j! +1
as ! 0: To simplify notations, we introduce for all j =1;:::;N the sequencegt = ¢=R) :
Note that from the de nition of R ; we infer that

mjaxjcij =1: (2.29)
This implies that (&%;:::;8" ) is bounded in CN : As a result, we deduce that up to a sub-
sequence, still indexed by , the sequence(e!;:::; €Y ) converges to somge!;:::: &N ) in CN

Note that thanks to (2.29), we deduce mjaxjgj = 1: By observing that ()15“?1 + + &y st

converges, as ! 0" to &S5, +  +%y Soy by using the fact that div(( +i )ru=R)=
f=R ! 0in (V!()) and the result of Lemma 2.6.5, we deduce tha(div(( + i )r & =R ))
converges in(V()) as ! 0:

Sincew =R 2 V! () forall 2 (0; ) and by applying Lemma 2.6.15 we conclude that
t =R converges inV! () ,as ! 0;to somety 2 V! () : Consequently, the function u =
to+&'sgy+  +&" shy 2VE () S and satis es the equation

div( r u)=0 in (V1())

fact that maxj¢j = 1: The Lemma is then proved.
i

Proof of Theorem 2.6.5. We know that for 0 < small enough, the functionu decomposes as

) .
u =4+ ds} withcd2Cande 2V () :
j:

sub-sequence (that will be indexed by ), (c';:::;cV ) converges as ! 0in CN to some

R
div(( +i)re)= f div(( +i) ( ds})
j=1
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and by using Lemma 2.6.10 and Lemma 2.6.15, we deduce théti ) converges invV!() to some
u?2 V8;“t() = vt () S that satis es the equation
div( r u)= f in (V1())

Thanks to Proposition 2.6.10, we know that the latter problem has a unique solution. This implies
that (u) converges invVl() ,as ! 0, to the unique solution of A8;“‘u = f: Since this limit is
independent of the chosen sub-sequence, we obtain the wanted result.

On the relaxation of Assumption 2.6.2

The results obtained in the previous section are also valid of one replaces Assumption 2.6.2 by
the following

Assumption 2.6.3. We suppose that the function is such that 21 nf 1g and such that

~ All the eigenvalues ofL that are located on the energy line<e( )=  1=2 are semi-simplé.
We denote them by 1;:::; n,:
" There exists0 < gand0<rgsuchforall0< < ggandallj =1;:::;N¢; the set

B( jiro)\ (L +i) is either a subset off 2 Cj 1=2 < <e( )g or a subsetf 2
Cj<e( ) < 1=2g: We use the notationB( j;ro)\ (L +i)=1f jx ;k=1;:::;Njg with
Nj 2 N:
" Allthe jx. (j =1;:::;Ni;k=1;:::;N;) are semi-simple.
The only point that needs to be clari ed is the proof of the fact that, under the previous assump-
tion, the dimension of the spaceS; is equal to N;=2: To do this, we have to modify a little the
proof of Proposition 2.6.10. Instead of performing a Gram-Schmidt process 08" with respect
to their angular component in H'(S?) (which was the case in the proof of Proposition 2.6.10),
one must perform a Gram-Schmidt process o' with respect to V() with 0<  (which is a
Hilbert space).
Unfortunately, we are not able to nd a weaker assumption under which we can explain how to
choose, among the functional frameworks constructed by Mandelstam's radiation principle, the
one that is consistent with the limiting absorption principle.
The di culty comes from the fact that, in general, any assumption made on the nature of the
eigenvalues ofL  which belong to ™~ -, does not imply, a priori, any information on the nature
of the eigenvalue ofL .; whicharenear (L )\ ° ;-: Note that this di culty occurs even in
the case of nite dimensional problems. To be convinceq of this, consider for ald < the matrix

1+

A 0 1+

We can clearly see thatA tends as ! 0OF to the identity matrix |,: Moreover, the spectrum of
A isequaltofl+ g which converges as expected t61g which is the spectrum ofl,. However,
when we come to the question of the convergence of the eigenfunctions, the situation is totally
di erent: while 1 is a semi-simple eigenvalue off,, for all 0 < the matrix A has an generalized
eigenfunction associated tol + :

Application to the case of circular conical tips

In Y3.4.1 we shall prove that, when 6 1;the set ( L ) can be characterized by means of
dispersion relations. Moreover, we will explain that 1—, coincides with

f 1=2 i st 9Im2Nst an()= ¢

where ay, : R+ ! R are continuous functions. The curves of the functionsay, for m =0;:::;3
are displayed in Figure 2.4.

We say that an eigenvalue of L is semi-simple if a( )= 4( ).
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Figure 2.4: Curves of the functions 7! an( ) form=0;1;2;3and = =4

Clearly the curves of the functions seems to be disjoint. However, we did not succeed in proving
this observation. In Y3.4.3, we will show that except for the particular values of = 1+ i
where a%( ) = 0 for somem 2 N; the assumption 2.6.2 is valid. Furthermore we are going
to show that for these particular values of ; propagating singularities with logarithmic growth
exist.

On the existence of inverse modes and the numerical approximation of the problem

In this paragraph, we will discuss in very brief way the question of the numerical approximation
of the scalar problem. Clearly, one has to distinguish two situations: the case 21 and the
case 2 | nf 1g: In the rst case the approximation of the solution can be done thanks to
the numerical method that we are going to present in Chapter 4. In the case 2 | nf 1g;
propagating singularities exist. To the best of our knowledge the only existing method to deal
with the problem in 2D has been proposed in [45] and is based on the use of PMLs near the origin.
The adaption of this method to the 3D con guration is not done yet. This adaptation does not
seem to be an easy task because of the possible existence of inverse modes in the expression of the
physical solution of the problem (i.e the solution obtained by the limiting absorption principle
contains propagating singularities which are associated with singular exponents with opposite
signs). This is exactly the case illustrated by Figure 2.5: we observe that in this situation
Assumption 2.6.2 is valid and that the space of the physical propagating singularities contains
propagating singularities with singular exponents that have opposite sign.

Figure 2.5: The spectrum ofL ,; for = 0; = 0:005for the case of a circular conical tip
( = =4and = 08
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2.7 Concluding remarks and open questions

In this chapter, we presented a detailed study of the scalar problem (2.2). In particular, we
explained how to characterize the critical interval I by means of the existence of propagating
singularities. When 2 | nf 1g, ageneral approach based on the use of Mandelstam's radiation
principle has been proposed in order to construct functional frameworks in which Fredholmness of
the problem is recovered (even in the presence of propagating singularities with logarithmic growth
near the origin which has not been treated in [25]). The selection of the physical framework has
been done, under Assumption 2.6.2 (or Assumption 2.6.3), by means of the limiting absorption
principle. It seems (thanks to numerical calculations) that Assumption 2.6.2 is satis ed for the
case of circular conical tips, except for a discrete set of contrasts for which there are propagating
singularities with logarithmic growth near the origin. Of course, all the results we obtained above
hold if we replace the homogeneous Dirichlet boundary conditions by any other elliptic boundary
condition. In addition to that, we expect that our results remain true when the conical tip touches
the domain boundary (see Figure 2.6). Let us conclude this chapter by mentioning two of the
most important questions that can be studied in future works:

1. How to select the physical framework when Assumption 2.6.3 is not satised? In the
literature, is seems that the most important reference, which can help us to deal with this
question, is the book [138].

2. How to adapt the use of PMLs near the origin in order to construct a numerical approxi-
mation of the solution to the scalar problem with propagating singularities? How to deal
with the possible existence of inverse modes ? An interesting work that can help us in this
direction is done in [13].

Figure 2.6: An example of a geometry where the conical tip touches the boundary of the domain.

2.8 Appendix

2.8.1 The Kelvin transform

The Kevin transform is a classical geometrical mapping that permits us to transform problems
set in unbounded domains into other ones set in bounded domains and vice versa. As we shall see
below (Lemma 2.8.1), the Kelvin transform preserves harmonic functions. This property makes

it very adapted to the study of Laplacian-based problems. It is also interesting to note that

the Kelvin transform can be used for numerical purposes as an alternative approach to solve
scattering problems (see [69, 111] and the references therein). Along this paragraph, we denote
by B the unit ball of R3: The Kelvin transform of a function u de ned in BnfOg is the function

t de ned in B®:= R3nB by the relation:

e(r! ) = u(!=r )=r
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in which (r;! ) are the classical spherical coordinates. The rst interesting property is the fact
that the Kelvin transformation of a harmonic function is also harmonic.

Lemma 2.8.1. Let u2 C?{BnfOg) be such that u=0. Then we have ~u =0 in B

. . 1
Proof. A direct calculus yields ~u(r! ) = 5 u('=r) forall rt 2 B%

Now, we turn our attention to the study of the action of the Kelvin transform on weighted Sobolev
spaces. We limit ourselves to the space¥°(B) and V!(B) for arbitrary 2 R: The case of the
spacesV?(B) is the subject of the following

Lemma 2.8.2. If u2 VO(B) thene2 V® ,(B®):

1
Proof. By de nition of V°(B); we have r2 u?(r! Y)r2drd! < 1 : By performing the change
0 &

of variablesr 7! 1=r, we get

1 1
r 2 u(l=r)r 4drd! = r 2 4?(r! )yr?drdl< 1:
1@ 1@

As aresultr 2w belongs toL?(B€) and then the lemma is proved.
The case of the space¥!(B) is treated in the following
Lemma 2.8.3. If u2 V(B) thenu2 V! (BY):

Proof. Sinceu 2 V!(B), we deduce thatu 2 V° 1(B) and then by using the result of the
previous lemma we can say thats 2 V° 1(B®): To make things as clear as possible, instead of
working with the variable r for the function &; we use the variablet = 1=r: With this in mind,
we have the relationte(t! ) = u(r! ) for all r 2 (0;1): To end the proof, we need to show that
t 70 @(t! ) andt! 7!jr su(t! )=tj belong to V® (B®): It is important to note that using the
variable t instated of r; the spaceV® (B®) is de ned as follows

1
VO (B®) = ff :B®! C such that t 2 f(t)%t2%dtdl < 1g:
1 @
For the case of the functiont! !jr su(t; )=tj; this follows from the equality (that is obtained
thanks to the change of variabler 7! 1=r)

1 1
r2 jr su(r! )=rj’r? drd! = t 2 jr se(t! )=tj%t? dtd!:
0 < 1 @
The case of the function@t is a little bit more involved. The starting point is to observe that
we have

te(tl )= u(rt ) =) @u(r! )= tPe(tl) @t ):

Thus we can write that t3@u(t! ) = @u(r! )+ u(r! )=r: Using the factthat r! 7! @u(r! )+ u(r! )=r
belongs to the spacev/®(B); we then deduce that

1 1
t 2 (@u(t;! ))%t%dtd! = r2 (@u(r! )+ u(r! )=r)?r?drd! < 1 :
1 2 0 &£

This ends the proof.
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2.8.2 The Peetre's Lemma

In this paragraph, we present some variants of the classical Peetre's lemma. These results are a
very powerful tools that allow us to prove that a given operator is of Fredholm type. The classical
Peetre's lemma is given by the following

Theorem 2.8.1. [101, Lemma 3.4.1] Let(X; k kx);(Y;k ky) and (Z;k kz) be three Banach
spaces such thaiX is compactly embedded irz. Let A: X ! Y be a continuous linear operator.
Then the following assertions are equivalent

1. A has a closed range and its kernel is nite dimensional.

2. The estimate
kukx  C(KA(u)ky + kukz); u2Xx

holds with C independent ofu:

In some con gurations, we may need to use the following alternative version of the Peetre's
Lemma.

Proposition 2.8.1. [124] Let (X; k kx);(Y;k ky) and (Z; k kz) be three Banach spaces and
let K : X I Z be a compact operator. If there exist®D < C such that we have the estimate

kukxy  C(KA(Wky + kK (u)kz); u2 X
then A has a closed range and its kernel is nite dimensional.

For any Banach spaceX; we denote byX its topological anti-dual. An operator A: X ! X is
said to be symmetric if and only if PAu; vi = PAv;ui for all u;v 2 X: A direct application of the
Theorem 2.8.1 yields

Proposition 2.8.2.  Let (X; k kx) and (Z; k kz) be two Banach spaces such tha€ is compactly
embedded inZ. Let A: X ! X be a continuous linear symmetric operator. Then the following
assertions are equivalent

1. A is a Fredholm operator of index zero.

2. The estimate
kukx  C(kA(u)kx + kukz); u2 X

holds with C independent ofu:
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3.1 Introduction

This chapter is devoted to the study of the "spectral” properties of the Mellin symbol generated
by the scalar problem (2.2) that we have studied in the previous chapter. More precisely, we
are interested in the study of spectral properties of the family of operators(L ( )) »c that is
de ned as follows: for all 2 C; we introduce L ( ) : HY(S?) ! (H(S?) such that for all

. 92 HY(S?) we have

Ho(); 9:= rs< rg al ( +1) R
2 2

66
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Above d! =sin( )dd" where(;' ) 2 [0; ] [0;2 ] are the classical (angular) spherical co-
ordinates. Recall that is a piecewise constant function such that = ; 2 R, in S; and
= ,2 R inwhich S; and S, are two subdomains ofS? that are de ned as follows:

S1=1(;")2][0; ] [0;2 Jsuchthatg(' )< gandS;=f(;" )2[0; ] [0;2 Jsuchthat <g (')g

whereg: [0;2 ]! [0; ]is a periodic function of classC? (see Figure 3.1). As in the previous
chapter, we denote ;= o= 1. Observe that the particular case whereg coincides with a
constant function corresponds to the case of circular conical tips.

Figure 3.1: An example of the geometry considered: the red (resp. green ) part is lled with a
negative (resp. positive) material.

Classically, we say that 2 C is a regular point of L if and only if the operator L ( ) is
invertible otherwise we say that is an eigenvalue ofL : The set of eigenvalues ot. is called
the spectrum of L and is denoted by ( L ): As we have seen in Y2.4, having an accurate
information about the location of the spectrum ( L ) in the complex plane is important for the
study of the well-posedness of the problems:

Find u2 W(R®) such that div( ru)=f 2 (W! (R%)

for 2 R: More precisely, the formula (2.14) tells us that the solvability of the previous problem
is directly related to the invertibility of L ( ) along the energy line<e( ) = 1=2 and
on the behavior of L () on this line. In addition to that, we have also seen that to obtain
an asymptotic expansion of its solution, near the origin, on needs to have a precise information
about the associated eigenfunctions/generalized eigenfunctions and the algebraic multiplicities of
its eigenvalues (see Y2.4.4 for the de nition of these objects).

Because of the sign-change in the density function; the study of the spectral properties ofL
does not t into the general theory presented in [101] that concerns the study of the spectral
properties of the Mellin symbols generated by strongly elliptic operators. Our goal is to show
that, even in our situation, some of the well-known results of the classical theory of Fredholm op-
erator pencils can be recovered. Note that, to the best of our knowledge, the results that we shall
present below are new. In some way, these results can be seen as an extension of the ones pre-
sented in [25] for the case of two dimensional transmission problem with sign-changing coe cients.

The results of this chapter are organized as follows. In Y3.2, we address the question of the
discreteness of the spectrum of.  and the behavior of its resolvent (i.e. 7! L () 1) for large
values ofj j: Next, in Y3.3, we turn our attention to the study of the behavior of the spectrum
and the associated eigenvectors when one replacesby + i where is a small parameter. In
the last section (Y3.4), thanks to some explicit computations, we explain how the general results,
obtained in the previous two sections, can be made more precise in the particular case of circular
conical tips.
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3.2 Fredholmness of the symbol and discreteness of the spectrum

In the classical con guration (when has a constant sign), one can prove (for instance see the
proof of [101, Lemma 3.6.3]), by means of the analytic Fredholm theorem (see [101, Corollary
1.1.1)]), that the spectrum of L ( ) is discrete and consists of isolated eigenvalues with nite
algebraic multiplicities. In our con guration, because of the sign-change in; the operatorL ( )

is not necessarily of Fredholm type. This means that( L ) may contain some eigenvalues of
in nite algebraic multiplicity or even worse than that, ( L ) can be not discrete (or possibly
equal to the complex plane).

3.2.1 Fredholmness of the symbol

As in the classical con guration the rst step is to endow the space H(S?) with the norm
kukﬁl(sz;j j) such that for all u 2 H(S?) we have

Obviously, one can say that for all 2 C; the norm kukyi(s;j j) is equivalent to the classical

one (which, by the way, coincides with kuky1(s2.7)). However, whenj j goes to+1 these two

norms have two di erent behaviours. Note that the introduction of this norm is motivated by the

expression of the inverse Mellin transform (2.4.3). We also endow the spad#i(S?);j j)) with

the norm k Kgy1(sz; jy such that for all f 2 (HY(S%] j)) we set

jhf; vij

Kf Kpisiiy = sup
CETD T @) nrogkVkii (e )

As mentioned above, because of the sign-change in the Fredholmness ofL () may be lost. In
this paragraph, we shall explain how to use theT coercivity approach in order to prove, under
some condition on the contrast ; the Fredholmness ofL ( ). We have the

Lemma 3.2.1. Assumethat 6 1, then there existstg 2 R* such that for allt 2 R such that
to < jtj the operator L ( 1=2+ it) is an isomorphism. More precisely, there existd < C such
that for all to < jtjand = 1=2+ it we have the estimate

Kukpiszj j  CKL ( )(U)kniey ) for all u2 HY(S?:

Remark 3.2.1. The proof of the previous result is a little bit technical. For pedagogical purposes,
we will limit ourselves here to the study of the particular case of a circular conical tip (i.e.

= g(" )= ) and the study of the general caség 2 C2[0;2 ]) will be left as an appendix (see
Appendix 3.6.1).

Proof in the particular case g("' )= 2 (0; ). The main idea is to use theT coercivity ap-
proach. By dividing L by 1 we come back to the study of the particular case where =1 in S;
and = in Sy: To prove our claim, one has just to study the case 1< < 0, the other case

(when < 1) can be studied in the same way by exchanging the roles d§; and S,: For this
reason, we are going to suppose that > 1: Then, we de ne the operator T : H}(S?) | H(S?)

such that
: ui(;" ) in S
T(u)(; = ; . .
) uz(;" )+2 ()ua(2 ') InS
where the functionsu; and uz are such thatu; = ujs, anduz = ujs, and inwhich  :[0; ]! [0;1]
is a cuto function that is equal to one for 2 ( ; + ) and vanishes for 2 (0; 2)1
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( +2 ; ): The parameter must be chosen such that2 < min(; ): We also need to
de ne the positive numbersM ;L and N such that
in(2 :
M = sup M; L = sup ﬁ and N = sup 0( ):
2l 2 +2 1 Sin() 21 2 +2 1SIN(2 ) 2] 2 42 ]

It will be useful to note that, at least for  small enough, the functions 7! M and 7! L are
continuous. SinceMg = Lo = 1 one deduces that there exists some small enough such that
forall 2 (0; ) one hasmax(M ;L ) < 15 j (this is true because we have supposed that

1< < 0). Now, let us come back to the study of the operatorT: First of all, by observing
that for all u 2 HY(S); the function T(u) is continuous across the interffacé = g; we infer that
T(u) 2 HY(S). This means that the operator T is well-de ned. Since for all u 2 H(S) we have
T T(u) = u; we deduce thatT is a bijective operator. The continuity of T follows from the
following estimates: for allu 2 H*(S?) we have

T(u)j?d! juifdl +2 jup?d! +8  j (Ju2 ;' )jAd!
? Sy S, Sy
2 juj’d! +8M juyj?dl  (2+8M )  juj?d!
? St ?
jr sT(u)j?d! 2 jrsuifd +8  jr s( ()ui(2 ;')A
¥ ¥ ® Oewe )
. . . uq ; .
2 ir suj’d! +8 . 2d1
S)21 suj SZJ sin() j
+8  j@( ()ui2 ;')
S

2 jr sujd! +8L jr suzj’d!l +8N M jugj?d
S S S1
+8M jr sugj?d!:
S1
The next step is to computehL ( 1=2+it)u; T(u)i for an arbitrary u 2 H(S) and an arbitrary t 2
R: To simplify notations, we shall denote by & the function (;" ) 7! &1(;" )= ( )us(2 )
and by . the real positive number  =1=4+ t% For all t 2 R and all u 2 H(S?), we have

L ( 1=2+it)u; T(w)i = rsursT(ud + u T(u)d!
Sz 2

=(] jrsuirsu)g+ t(j juiu)e+2  (r uzr (t))s, +2 (U2 th)s;,:

Now, by means of the Young's inequality and the de nition of M one nds for all 0 < a that

Z(uzt)s,i =] u2(;' ) (Jua@ ;T )dj o aj(Uziun)s,i+ a tM j(ug;ua)s,i:
Sy
For the term (r suz;r st1)s,; we decompose it into the sum ofl ( )r suz;r s(ui(2 VN s,
and of (r suz;u(2 ;" )r s ())s,. Applying the Young's inequality, one obtains that for all
O<b;c
. . . DN @uz(;' ) @uy(2 )
. - . . I
max(M ;S
b(r suz;r suz)s, + #(f sU1;r su1)s,
2(r suzur2 ;' )rs (Ns,d =1 . (@u(;" )@ (Jur(2 ;' )dlj
2

c(r suz;r suy)s, + (ug;ur)s,:

dt |
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With these estimates, one concludes that for altt 2 R and u 2 H(S?) we have for allO< a;b;c

(122 + iuT(wi @ MM :S)

)(r suz;r sui)s; +j j(I b o)(r suzr suz)s,

b
o M) DN M s+ (i e,
Given that for all 2 [0; ); we havemax(M ;L ) < 15 |; we then deduce that for all
2 (0; );onecan nd a;b2 (0;1) such that
o<1 ! jmaXéM S) ando<1 1M
j M INM

By taking ¢2 (0;1 b) andt large enough so that0 < ( (1 ) ); one deduces
that there exists some0Q <t ¢ such that for all t 2 R satisfying tg < jtj; we have the estimate

Cokukfi(ey ;) I L ( 122+ it)u; T(u)ij (3.1)

with Cp independent oft: Note that to obtain the previous estimate, we have used the fact that
forall = 1=2+ it with t 2 R we havej j> = ¢ SinceT : HY(S) ! H(S) is continuous
(here HY(S) is endowed with its natural norm), the operator T: H(S;j j)! H(S) is continuous
and uniformly bounded. This, simply, means that for all 2 C and all u 2 H'(S?) we have the
estimate,

KT(u)kpzszy  Ckuky(gy g for all u 2 HY(S?)

with C independent of and of u: Inserting this into (3.1), one deduces there is somé® < C

independent ofu 2 H(S?) and = 1=2+ it (with to < jtj) such that
kUkHl(SZ;j h CkL ( )(u)kHl(SZ;j D .
This furnishes the wanted estimate and shows that for all = 1=2+ it (with tg < jtj) the

operator L ( ) is injective and its range is closed. By observing that for allt 2 R the operator
L ( 1=2+it) is self-adjoint (because it is bounded and symmetric), we deduce thdt ( 1=2+it)
is an isomorphism for allt 2 R satisfying tg < jtj:

3.2.2 Discreteness of the spectrum

Given that the embedding of HX(S?) into L?(S?) is compact (see [91, Proposition 2.4]), one can
easily see that for all ; %2 Cthe operatorL () L ( 9 is compact. Taking °= 1=2+itg
with tg as in Lemma 3.2.1, we can say thatif 6 1the operatorL ( ) is a Fredholm operator
(of index zero) for all 2 C: Furthermore, by applying the analytic Fredholm theorem (see [101,
Corollary 1.1.1]), one obtains the following

Lemma 3.2.2. Assume that 6 1. The spectrum ofL is composed by isolated eigenvalues
with nite algebraic multiplicities. Furthermore, L ( ) !is analyticin Cn( L ):

3.2.3 Localization of the spectrum and boundedness of the resolvent

In this paragraph, we intend to explain how to obtain a more precise information about the
location of the spectrum ofL  in the complex plane. In addition to that, we are going to address
the question of the behaviour ofkjL %( )kj when| j is large (this result is important to show
that the solution constructed by means of the inverse Mellin transform is uniformly bounded
with respect to the source term). Before getting into details, one can easily see that{ L ) is
symmetric with respect to the point ( 1=2;0) (i.e. if 2 ( L ) then 1 also belongs to it).
Furthermore, since is real-valued one can also observe that( L ) is symmetric with respect
to the lines=m( )=0 (i.e.if 2 (L )then 2 (L )).
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Theorem 3.2.1. Assume that 6 1. Then all the eigenvalues ofL ( ), with the possible
exception of nitely many, are located outside of some double sector centered &t 1=2;0) (i.e.

fz2 Cj<e(z+1=2)] j=m(z +1=2)jg with 0< ) of the complex plane(see Figure 3.3. More

precisely, there existO < ¢;rg such that

D' :=fz2 Csuch thatro < jz+1=2j and j<e(z+1=2)j < oj=m(z+1=2)jg Cn(L ):
Furthermore, there exists some positive constanC independent of 2 Drg such that
kukyizj j CKL ( )ukyysj j for all u2 HY(S):

Proof. Let us start with the case = 1=2+ it with t 2 R. We have shown in Lemma 3.2.1
that there is some0 <t g such that for all jtj <ty we have the estimate

Cokukniszj jy kL )(WkKniszy j) (3-2)

with Cp independent oft: In the rest of the proof we are going to suppose thatl=2 < t 5: Now,
forall 2 [ =2;=2]andallt 2 R such that to < jtj we denote by ' the complex number
Y= 1=2+ite : One can easily check that for allu;v 2 H}(S?) we have

L (Y L (wvi=( '(t+1) 5 §+2) B uvdl = t?’(1 &) B u vd!:

Given that the function x 7! x=(x 1=2) is decreasing in[tp; + 1 ); we deduce that for allty < jtj
and 2[ =2; =2]we have

it it to .

it 1=2 tg 1=2'

As aresult, foralltg< jtjand all 2 [ =2; =2] we obtain the estimate
KL (") L ( Okpysy jp Cajl €

with C; independent oft and of . Starting from the fact that the operator satis es the estimate
(3.2), one obtains the following estimate: for allu 2 H(S?) we have

(CO C]_Jl eZi j)kUkHl(S2;j th) = (CO 2C1] Sin( )])kUkHl(sZ‘J th) k L ( t)(U)kHl(Sz;j th) : (33)

Given that 7! sin( ) is continuous, we infer that there exists 2 (0; =2) such that for all

2 ( © );we haveO<Cp Cijl € j: Consequently, we deduce that for all 2 ( p)
and allto< jtjwe have ' 2 (L ):Sincejtj=j '+1=2jand =arg( '+1=2) =2we infer
that the region

fz2 Csuchthattg< jz+1=2j andj<e(z+1=2)] tan( )j=m(z+1=2)jg

is free of eigenvalues of. . To end the proof, it remains to see that inside the ballB =: fz 2
C such that jz+1=2j <t gg there is a nite number of eigenvalues ofL : This a direct consequence
of the fact that ( L ) consists of isolated eigenvalues. The theorem is then proved by taking
ro=tg; o=tan( ) and C =2=Cy:

Remark 3.2.2. One of the consequences of the previous theorem is the fact that, when6 1,
forall 1< ,thestrip<e( )2 ( 1; 2) contains a nite number of eigenvalues ofL

It is worth to note that in the statement of the previous theorem, the parameters o and rg
depend on the contrast :Let 2 R;wedene” =:f 2 Csuchthat<e( )= g Using the
same idea as in the proof of the previous theorem, one shows the
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Corollary 3.2.1. Assume that 6 1:let 2 Rsuchthat™ \ (L )= then there exists
some constantC (independent of ) such that the estimate

Kuknyezj ) C kL ()ukpysz )
holds for allu 2 HY(S?) and all 2°

Proof. The Theorem 3.2.1, shows that when 2~ \ (D'9) (see the statement of Theorem 3.2.1
for de nition of Drg), the estimate

Kukyisz )  CKL ( )ukyig: y forall u2 HY(S?)

holds with some C independent of : By combining the fact that Drg Cn( L ); the fact that

( L ) is composed by isolated points and by using the assumption \ ( L )= ;, one can say
that for  small enough the stripC = f 2 C; <e( ) 2] i+ Jgis free of eigenvalues
of L . The wanted estimate follows, then, by combining the fact thatL ( ) is analytic in C
and the compactness ofC \ (CnDrg).

2

<e( ): 1=2 s

Figure 3.2: A possible distribution of the spectrum ofL  (the red points) for 6 1: The green
points are associated to propagating singularities (see De nition 2.6.1).

The previous corollary tells us that when L ( ) is invertible along the energy line 2 ° ;
then, seen as an operator from(H(S?%;j j)) to (H(S%] j)), the operator L ( ) ! is uniformly
bounded with respect to 2 ° : However, when it is considered as an operator fronfH*(S?))
to H(S?), the result of previous corollary implies that the norm of L () ! does not grow faster
that j j> (when 2 ).

Now, let us consider two real constants 1 < suchthat™ ;\ (L )= ",\ (L )=;:For
all r 2 R, ; we introduce the closed set

D(r 1 2= 2Cj 1 <e() o0, [ BCGr)): (3.4)
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Corollary 3.2.2. Supposethat 6 landlet 1< 2 Rsuchthat /\ (L )= ",\
(L )= ;:Then, forall 0<r there existsO < C such that

Kukpiszj j CKL ( )ukgisj gy forall 2 D(r; 1; 2) and for all u2 HY(S%:

Proof. Thanks to Theorem 3.2.1, we obtain the wanted estimate for all 2 D(r; 1; 2)\ Drg:
To obtain the wanted estimate for 2 D(r; 1; 2)\ (CnD') is enough to see that the latter is
a compact subset ofCn( L ):

3.2.4 Algebraic multiplicities of eigenvalues in the energy line <g¢( )= 1=2

In this paragraph, we are going to prove some useful results concerning the algebraic multiplicities
of eigenvalues ol that are located in the energy line™ 1-,: The starting point of our discussion
is the following:

Proposition 3.2.1. Assume that 6 Lilet o2 31\ (L )iLet ("1 () bea
basis ofKer(L ( ¢)): Then, we have the equivalence

g )< a( )i 9k2f1:::; g( 0)gst. (2 o+1) szl kK j=0forj=1;:::; g( o)

where we refer to Y2.4.4 for the de nitions.

Proof. Since 6 1; we know that L ( o) is a Fredholm operator of index0: The fact that

02 1= implies that L ( o) is self-adjoint. By de nition of 4( o) and a( o), we know that
'« has at
least a generalized eigenfunction. This is equivalent to say that the problem

Find u2 HY(S?) such that L ( o)u = ddLi( 0)' k

has a solution. By the Fredholm alternative, we know that the previous equation has a solution
if and only if

dL . .
hd—( 0k, ji=0forj=1;::1 g( o):
. . dL .
The result is then proved by observing thathd—( 0 k' ji=@ o+l "
?

A direct consequence of the previous proposition is the following

Lemma 3.2.3. Assume that 6 1:let 2 ;5\ (L )suchthat ¢( )=1:Let' 2
Ker(L ( ))nfOg: Then

a( )=21 ifand only if (2 +1) j'jc60:
F

We also obtain the following

Lemma 3.2.4. Assume that 6 1l:let 2 ;5\ (L )suchthat ¢( )=2:Let' 2
Ker(L ( )) suchthat(; 7) is a basis ofKer(L ( )): Then

2 +1) 7760 =) a()=2:
S
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3.3 Stability of (L ) with respect to perturbations of

In the present section, we will be concerned with the study of the spectrum of the operator
L +i ( ), where is a real parameter. Our main goal, is to study the convergence of L +; )
and the associated eigenfunctions when tends to 0: Note that the study of such convergence is
essential when one wants to de ne the physical solution of the original scalar problem by means
of the limiting absorption principle (see Y2.6.3). Since for all 2 C the operatorL .; ( ) can be
seen as a small perturbation (of course when is small) of the operatorL ( ), one may expect
that when goes to0O the set ( L +; ) will converge to ( L ) (here the convergence must be
understood with respect to the Hausdor distance (see De nition 3.3.1)).

3.3.1 Properties of the spectrum of the perturbed problem

Before getting into details, let us start by proving that for all 06 , the set ( L ) is discrete.
This the object of the following

Proposition 3.3.1. Let 0 < : The spectrum of L 4; is discrete and composed by isolated
eigenvalues. Furthermore, we have -\ (L +i)=;:

Proof. By observing that for all t 2 R, 2 R and all u 2 H}(S?); we have
FEm(hl 4 ( 1=2+0t)uui)j = ijkal(Sz;le_tz);

we deduce that for allt 2 R and 2 R the operator L ,; ( 1=2 + it) is injective and that its
range is closed. By observing thal. ,; ( 1=2+it)=L ; ( 1=2+ it); we deduce that for all

2 R andt 2 R the operator L ,; ( 1=2+ it) is an isomorphism. The rest of the proof is a
direct application of the analytic Fredholm theorem.

Note that in the previous proposition, there is no assumption about the value of the contrast
We have the analogue of Theorem 3.2.1.

Lemma 3.3.1. Assume that 6 1. There exist two positive constantsrg; o independent of
and 0 < ¢ such that for all satisfyingj j < ¢ we have

D' :=fz2 Csuchthatro<jz 1=2j andj<e(z+1=2)j< oj=m(z+1=2)jg Cn(L +;):
Moreover, there is some0 < C independent of such that the estimate
Kukpiszj j  CKL +i ( )ukyyszj jy for all u2 HY(S?)
holds for all such thatj j< oandall 2D,?:

Proof. From the results of Theorem 3.2.1, we already know that there exist two positive constants
ro; o such that D" Cn( L ): Furthermore, we know that when 2 D'¢; the operator
L () Y:(HYS) ;i)' (HYSY:] j) is uniformly bounded with respect to . As a result, to
prove our claim, we need to nd a uniform estimate ofkiL () L +i ( )Kinij iy H1(5 i) )
for 2 D'?: To do so, we start form the fact that for all u 2 HY($%); 2R and 2 D" we have

kL ()u L +i ()ukpysgjy J J(kukgyszy + ( +1)jkukiz(e)):

Next, given that 0 2 D'9; we infer that there exists 0 < such that < j j for all Drg: As a
result, we conclude that there exists a constant) < C independent of such that

j ( +1)j Coj j*forall 2D":
As a consequence, we deduce that for all 2 D'J we have
KL () L +i ()Kinyey iy nusgiy ) Cli

where C is independent of 2 D'9 and of 2 R : This leads to the wanted result.
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3.3.2 Convergence of the spectrum

In this paragraph, we are going to address the question of the convergence ¢fL .; ): Before
getting into the details, for all 1 < > we denote byB( 1; 2) the strip

B(1; 2)i=Ff 2Cj 1<<e( )< 20
The main result of this part is given by the

Theorem 3.3.1. Assumethat 6 1landlet 1< 22 Rsuchthat” ,\ (L )=",\ (L )=
;o We havelilmo(( L +i)\B( 1 2)=(L)\B(1; 2):

In the statement of the previous result, the convergence must be understood in the sense of
convergence with respect to the Hausdor distance. To be more precise, we adopt the following

De nition 3.3.1. Let E be a closed subset of the complex plane. LEE ) ,r be a family of
closed subsets of the complex plane. We say thd@ ) ,r converges toE (or briey Ii'mOE = E)

if and only if

lim max(sup infjx yj;sup inf jx yj)=0:

1o «2E Y2E x2E y2E
The proof of the Theorem, will be done thanks to the two following propositions. By working as
in the proof of Lemma 3.3.1 and by using the results of Corollary 3.2.2, one can easily prove the

Proposition 3.3.2. Suppose that 6 1andlet ;; » 2 R satisfying 1 < > and such that
V(L )=",\V (L )= ;:Thenforall 0<r, there existsO< | such that for all satisfying
ji< riwehave( L +i)\ D(r; 1; 2)=; (see(3.4)). Moreover, for all satisfyingj j< ;
we have the estimate

kjL +i ( ) 1jk((H1(Sz;j ) ! HYSZ ) Cr for all 2 D(r, 1, 2)
in which C; is a constant that does not depend on

Note that the previous result does not apply when 1= 1 orwhen > =+ 1. This is due to
the possible existence of accumulation points at in nity.

Remark 3.3.1. It is important to mention that near an eigenvalue of L  one can, eventually,
nd several eigenvalues ofL .; for small enough. This will be indeed illustrated in the next
paragraph.

The second result that we need, is given by

Proposition 3.3.3. Assume that 6 1:let o2 (L ) and denote by 5( o) its algebraic
multiplicity. Let O<r suchthat (L )\ B( o;r) = f 0: There existsO0 < ¢ such that for all
satisfyingj j < o; we have

(L +i)\B(o;r)6;and{(L +i;B( oir))= al 0)

where{ (L +; ;B( o;r)) is the sum of the algebraic multiplicities of the eigenvalues df |
that are located inB( o;r):

The previous result is a direct consequence of [101, Corollary 1.1.2]. Let us just mention the
idea of the proof. Its is based on three important points. The rstoneisthat 7' L ( ) and

7" L +;i () are two meromorphic functions. The second one is the fact that 5( o) can be
expressed as follows [101, Theorem 1.1.3]:

a(o)=i a0

: L I )d:
2 @R oir) d

The last one is the generalization of Rouché's theorem [101, Theorem 1.1.4 ]. Now, we have all
the tools to prove the Theorem 3.3.1.
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Proof of Theorem 3.3.1. The Proposition 3.3.3 tells us that every 2 (L )\ B( 1; 2)isa
limit, when tends to O; of eigenvalues of ( L +; ): By means of Proposition 3.3.2, we ensure
that Iilmo(( L +i \B( 1; 2)isasubsetof( L )\ B( 1; 2)). Sincetheset( L )\ B( 1; 2))

is nite, we obtain the wanted result.
We have the following

Corollary 3.3.1. Assumethat 6 landlet 2 (L ):If is simple then there exists
O0<ryg; osuchthatforallO< j j< g;the ballB(;r o) contains one eigenvalue ot. .; :

Proof. The result follows from the fact that the sum of the algebraic multiplicities of the eigen-
values ofL ,; that are near is equal to1:

3.3.3 Numerical illustration

To illustrate the results obtained above concerning the convergence of the spectrum df .;

to the one of L ; we shall use the numerical approximation of the spectrum ofL ,; andL ;
by the FEM. Instead of approximating the problem directly in S?; we shall start by write a an
equivalent formulation of the problem that will be posedin B =(0;2 ) (0; ) (this will allow us
to avoid the discretization of the unit sphere which is not an easy task in general). To do so, we
use the classical angular spherical coordinate§; )2 B to parameterize S?: With this in mind,
we can say thatwhen 6 1; 2 (L ) if and only if there exists u 2 H} (B) such that for
all v 2 Hi (B) we have

(()

g sin()

@u@v+ ()sin()@u@v)dd = n( n+1) ()sin( juvd o
B

in which
q q q
Hi B)Y:=1(C; Y7 u(; )j sin()u; sin( )@u;@u= sin( ) 2 L2(B) andu(0; )=u(2; )g

Naturally, this leads us to the following discrete problem: Find (un; n) 2 Vh.4 (B))nfOg C such
that for all v, 2 V.4 (B)

( (y)
g Sin(y)

@Qunh QVh +  (Y)Sin(y)@un @QVp)dxdy = h( nh+1) : (y) sin(y)unVhdx dy

where the spaceVf., (B) := fu 2 PX(B) j such that u(0;y) = u(2;y )g; where P¥(B) stands for
the space of polynomials (of 2 variables) of degree at most equal & In order to take into account
the periodicity condition with respect to x; the mesh ofB must be, then, periodic with respect
to x: Moreover, because of the sign-change in and following the results of [46], we need to use a
mesh that is periodic in the x direction and that is symmetric near the interface = fy= =4g
(we say that the mesh is T-conforming). See Figure 3.3, for an example of T-conforming mesh
that is periodic in the x direction. In our work, we used the library Freefem++for the construction
of the matrices associated to the discrete formulation and we used theig function of MATLAB
in order to approximate the eigenvalues. To approximate the eigenvalues dof .; , we used the
same strategy as in the case of (one, simply, needs to replace by + i in the formulation
above).

To proceed, we will work with two di erent values of the contrast : = 0:780% 0:8: For
these particular choices of , we can guaranty that (L )\ ~ ;- 6 ;: For this reason, we
shall focus our attention on the behavior of the eigenvalues of .; thatarenear (L )\ ~ 1o
as ! 0: The numerical results for the case = 0:8 are displayed in Figure 3.4 and those
associated with the case = 0:7907 are presented in Figure 3.5.

What we can learn from these results are the following facts:
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~

Figure 3.3: An example of a periodic T-conforming mesh.

Figure 3.4: Behaviorof (L +; ) for = 08:

Figure 3.5: Behavior of ( L ;) for the case = 0:7807

In both cases, we observe that the convergence of L +; ) to ( L ) occurs.

It seemsthatinthe case = 0:7807% the assumption 2.6.2 is not valid. Indeed, we observe
that there exists an eigenvalue 2 (L )\ ° ;- which corresponds to the coalescence of



Chapter 3. The study of the Mellin symbol of the problem 78

two eigenvalues ofL .; ; one of which comes from the left (i.e. that<e( ) < 1=2) and
the other from the right (i.,e. 1=2< <g( )).

We also observe that the rate of convergence depends on the nature of the eigenvalue: we no-
tice that for the eigenvalue which is the limit of two coalescent eigenvalues, the convergence
is slower than for the case of the other eigenvalues that belong to 1-:

Remark 3.3.2. For the case of general smooth conical pointd 2 C2([0;2 ])), the same numer-
ical approach can be used but this time the construction of T-conforming mesh seems to be a little
bit complicated (see [45, Y2.B]). We will leave this question for a future work.

3.3.4 Convergence of the eigenfunctions

Up to now, we have proved that when 6 1, the spectrum ( L +; ) converges, when tends
to 0;to ( L ): Unfortunately, this result alone is not su cient to derive the theory we need to
de ne the physical solution of the scalar problem by means of the limiting absorption principle
(see Y2.6.3). To complete it, one has to study the behaviour of the associated eigenfunctions and
the generalized eigenfunctionsof. .; as ! O:

As we have seen in the previous subsection that, when 6 1;forany 2 (L )andO<
small enoughL .; has one or several eigenvalues near The only information that we can
guarantee about the nature of these eigenvalues is that the sum of their algebraic multiplicities
is equal to the algebraic multiplicity of : This means that even if is a semisimple eigenvalue
of L there is no grantee about the fact that all the eigenvalues ol. ,; are semisimple. To be
convinced, let us consider the following example that comes form the nite dimensional setting.
For all 2 R ; we de ne the matrix

0O 1+

Clearly, A is a small analytic perturbation of the identity matrix 1,: The spectrum of A coincides
with f1+ g which converges when ! 0, as excepted, tof 1g which is equal to the spectrum of
I>. We can also see that the algebraic multiplicity of 1 + (as an eigenvalue ofA ) is equal to

2: While 1is a semisimple eigenvalue of; 1+ is geometrically simple (there is a Jordan chain
of length 2 composed of an eigenfunction and a generalized eigenfunction). This example shows
that, in general, we are not able to guarantee that the eigenvalues of the perturbed problem and
those of the unperturbed problem have the same nature. This explains, in a way, why we have
made the Assumption 2.6.2 when we used the limiting absorption principle to de ne a physical
solution to the scalar problem. The main result of this section is given by

Proposition 3.3.4. Assume that 6 1 let 2 (L )andlet( ) be a sequenceof
elements of ( L +; ) that converges to when tends to0: Consider a sequencg¢' ) of elements
of ker(L +i ( )) such thatk' kyiszy =1 for small enough. Then,(' ) converges (up to a

sub-sequence), inH(S?), to some' o 2 HY(S?) that belongs toker(L ( )):

Proof. Since(' ) is bounded inH(S?); one can extract a sub-sequence from it that converges
(when goes to0) weakly in HY(S?) and strongly in L?(S?) to some' o 2 HY(S?): To simplify,
this sub-sequence is still denoted by' ) :

Since( ) convergesto ,as ! 0, one deduces that ¢ belongs toker(L ( )): It remains, then,
to explain why the convergence of(' ) to ' g occurs in the strong sense. For this, we start by

"Here and in what follows, a sequence indexed with a non integer parameter refers to an indexed family of
elements.
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observing that sinceL +; ( )" =0; we have for allt 2 R;

hL () ;Iq: [ Szr s rg 0+ ( +1) SZ‘ o

+Ht?+1=4+ ( +1) ' "©
@

As (" ) is bounded in H(S?) and converges inL?(S?) to ' ¢; the previous identity shows that
(L ()" ) converges, as ! 0;in ((H(S?)) : Owing to Lemma 3.1, we know that for t large
enough, the operatorL (t) becomes isomorphism. This implies that(" ) converges, as ! O0;
strongly in H(S?) to some' 1 2 HY(S?). By uniqueness of the limit in L?(S?); we deduce that

‘o= a1

3.4 The particular case of circular conical tips

In the previous paragraphs, the main spectral properties of the family(L ( )) 2c have been
investigated in the case of a general smooth conical tifg 2 szer([o; 2 ]). The main goal of this
paragraph is to study the particular case of circular conical points, in other words, when the
function g coincides with a constant 2 (0; ): In this particular case, some of the results that
we have established before can be improved. In addition to that some new results can be obtained.

The main idea is to take advantage from the fact that circular conical tips are rotationally
symmetric. With this in mind, any function of the space H(S?) can be decomposed, by means
of the Fourier decomposition, into a sum of separated variable functions. This will help us
in getting a deeper information about the spectrum. More precisely, the spectrum ofL can
be characterized by means of a dispersion relation. Furthermore, since the eigenfunctions are
also known explicitly, some results concerning the existence of generalized eigenvectors for the
particular case of eigenvalues that are on the line<e( ) = 1=2 can be obtained. This will help

us studying the validity of Assumption 2.6.2 in this particular con guration.

3.4.1 Dispersion relation

The goal of this part is to determine a dispersion relation that allows us to characterize the
spectrum L when the contrast 6 1. By this, we mean nding a function f : C! C such
that 2 (L ) f()=0. According to Lemma 3.2.2, we already know that when 6 1

the spectrum of L is composed by discrete eigenvalues. Consequently, it suces to nd the
set of 2 C for which the equation L ( )u = 0 has a non trivial solution in H(S?): As in this

particular geometry, the function is independent of the variable' 2 [0;2 ]; we then obtain the

equivalence: 2 ( L ) ifand only if

9u 2 HY(S?)nf0g s.t. Sinl( )@( ( )sin( )@u) Sin(( ))2@3u = ( +1) ()u (3.5)

in which the last equation is written in the distributional sense. The key idea (which is also used
in [92, 104]) is to use the fact that every functionu 2 H(S?) can be decomposed as

X - 1 2 -
u(;' )= Un( )e™ whereun( )= — u(;' e ™ d' forall m2 z:
2
m2Z
Note that the previous decomposition in nothing but the classical Fourier decomposition with
respectto' 2 [0;2 ]. It is interesting to observe that, in the decompBSition above, usceu 2

H1(S?) one can show that for allm 2 Z; the function um( ) is such that sin( ) Um;um=_ sin( )
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and " sin( )d um belong to L2(0; ): Now, if u 2 HY(S?) is a solution of (3.5), one deduces that
for all m 2 Z the function uy, is such that
1
sin( ) d

. d
( ()sin()g)um + sir1(())2m2um = ( +1) ()um forall m2 z:
To proceed, let us denote, respectively, byuin; uom the restriction of u, to (0; ) andto ( ; ).
With this in mind, we arrive to the conclusion that for all m 2 Z the function u, satises
following transmission problem:

8
ZFem - + :
. u . u
“Uin( )= Uzm( )i sin( )= )= sin( )= ):
At this stage, and in order to write simpler equations that we can solve by means of classical
special functions, we need to perform the change of variable ! = cos( ). After this change

of variable, the new function, which is still denoted by un( ); is a solution to the following
transmission problem: For all 2 Z we have

d 5 d m? :

di((:L )?Ulm( N+ ( +1)um( ) ﬁulm( )=0 in (cos( );1]

d d m? .

df((l 2)OTUzm( N+ ( +1)uzm( ) ﬁUZm( )=0 in [ 1;cos())

. d . d
Uim(cos( )) = uzm(cos( )); sin( )Zd—ulm(cos( D= sin( )zd—u2m(cos( ):
_ (3.6)

Starting from the fact that the function (;' ) 7! um( )e ™ 2 Ha(sz) and,using the change of
variable ! ; one can show that the functions 7! um( );um( )= 1 2%, 1 2 uaq( ) be-
long to the spaceL?( 1;1): This implies, in particular thanks to the factthat 7! um( )= 1 22
L?( 1;1);that um( )! Oas ! 1. As a result, we are only interested in the solutions to (3.6)
that vanish near = 1:

The equation (3.6) tells us that in each of intervals(cos( ); 1] and[ 1;cos( )) the function un( )

is a solution to the associated Legendre equation in which 2 C plays the role of the degree and
m 2 Z is the order.

The literature about the associated Legendre's equations is very rich especially when 2 N,

in that case the solutions are the associated Legendre polynomials (for instance see [3]). In
addition to that, the approximation of these functions is available in almost all scienti c computing
software.

On the other hand, when 2 CnZ, many results are also available (see [3]) but when it comes to
the approximation of the associated Legendre functions, almost all open source software do not
provide it.

In order to make this chapter self-contained, we shall present, in Y3.6.2, a brief overview about the
basic properties of these functions. Furthermore, we will explain how to write aC++ program
that can be used to approximate these functions for the general case2 C and m 2 Z:

To, proceed, for alm 2 N and 2 CnJ m; 1K[ JO:m 1K; we denote by P™(x) (with

x 2 ( 1;1)) the associated Legendre function of rst kind of orderm and of degree and by
(PMYx) its derivative with respect to x: Besides, forallm 2 N;and 2 CnJ m; 1K Jo;m 1K
we introduce the functionsf™(; ) such that

f™(; )= P™( cos( ))(P™)Ycos( ))+P M(cos( ))(P™Y cos()):

2For all a;b2 Z; we denote by Ja; bK:=[a; b\ Z:




81 3.4. The particular case of circular conical tips

Proposition 3.4.1. Assume that 6 1. We have the equivalence
2 (L )09 m2Nsuchthat 2CnJ m; 1K[ JO)m 1Kandf™(; )=0: (3.7)

Proof. Thanks to the modal decomposition (3.6), one can say that the problenL ( )u=0 has
a non trivial solution in HY(S?) if and only there exists at least onem 2 Z for which the equation

(3.6) has a non zero solution. Given that the functionuy, must vanish at = 1; and by using
the results of Y3.6.2, we infer that this is possible if and only if 2 CnJj mj; 1K[ JO;jmj 1K
In that case, we have (

AP™() in (cos( );1]
BP™( ) in[ 1;cos()):

The continuity and the transmission conditions satised by u, at = cos( ) lead us to the
following system of equations:

AP™(cos( ))= BP™( cos())
A sin?( )(P™)Ycos( )) = sin?( )(P™Y  cos( )):

The previous linear system of equations has a non trivial solution if and only if
P™(cos( ))(P™Y cos( )= P™( cos( )P ™)Ycos( )):

Given that the functions P™ and P ™ are collinear (see (3.16)), we obtain the wanted result.

Um( )=

The proof of the previous proposition allows us to nd the expression of the eigenfunctions
associatedto 2 ( L ): Indeed, if we denote by

A()=fm2Nj9 2Cn m; 1K[ JOoom 1Kandf™(; )=0g; (3.8)
we can easily prove that

Ker(L ( ))=spanfu™;u "jm2 A( )g; (3.9

where the functionsu ™ are de ned as follows
LT )= P™( cos( ))P™(cos())e 'm if 2 (0; )

PM(cos( ))P™( cos()e M if 2(;):

3.4.2 Expression of the critical interval

In this paragraph, we shall explain how to nd an explicit expression of the critical interval 1 in
the particular case of circular conical tips. Recall that for a general interface ;| is de ned as
the set of contrasts  for which the problem (2.2) is ill-posed in the Fredholm sense. In Theorem
2.6.1, we have proved that for the case of an interface with smooth conical tip, the critical interval
I can be de ned as the set of contrasts for which the problem (2.2) has propagating singularities
(see De nition 2.6.1) or equivalently the set of  for which (L )\ ~ 1,6 ;:

To simplify notations, we shall denote by | the critical interval in the case of an interface that
has a circular conical tip of opening angle (i.e. g(' )= ).

As we have seen in Y2.2, the determination of is directly related to the determination of the
essential spectrum of the Neumann-Poincaré operator on the in nite cone

W = fx = r(sin( )cos( );sin( )sin(" );cos( ));r 2 R+;' 2 (0;2 )g:

This latter question was investigated in details in [92, 104]. But it seems that the results obtained
there are not su cient to obtain a simple expression of the critical interval.

During an exchange with Karl-Mikael Perfekt, he told us that the missing argument is to show
that when 2 (0; =2) (resp. 2 (=2; )), the spectrum of the Neumann-Poincaré operator
is positive (resp. negative). In this paragraph, we are going to explain how to combine the
results of [92, 104] and the T-coercivity approach in order to obtain an explicit expression of
| and by the way, we also answer the question about the sign of the essential spectrum of the
Neumann-Poincaré operator that was left unanswered in [92, 104].
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Expression of the critical interval

According to Proposition 3.4.1, one can say that = 1=2+ it (with t 2 R) belongsto ( L ) if
and only if there exists somem 2 N such that

P™ ui ( cos( )P Mo, it)o(cos( N+P Mo (cos( )(P™My, it)o( cos( ))=0:

In the literature, the functions P™,_,,; (with m 2 N and t 2 R) are known as the conical
functions or the Mehler functions of the rst kind. They play an important role in the area of
mathematical physics (see [87, 80, 122, 123] for more details). The study of these functions was
the subject of the book [146]. Some basic properties of these functions are, briey, recalled in
Y3.6.2. Let us introduce, for allm 2 N; the function a : R! R such that

P™ it (€OS( ))(P ™5, )X cOS( )

am(t) = ™. ( cos( )P, )(cos( ) forall t 2 R:

As it is proved in Y3.6.2, for allm 2 Z and all t 2 R the function P™,_,, ; as well as its derivative
are real valued. The functionsay, are then real valued. Given that these functions are continuous,
we then denote, for allm 2 N; by I, the interval

Im=f an(t):0 t +1g:

Given that | coincides with the set of contrasts  for which ( L )\ ° -, 6 ;; we then obtain,
thanks to Proposition 3.4.1, the following

Proposition 3.4.2  (First de nition of the critical interval) . Assume that 2 (0; ): We have

Izgl:
mNm

Observe that when = =2, the intervals |, are, all, reduced to the singletonf 1g: In Figure
3.6, we represent the functions ! am( )form=0;1,2;3and 2 R. (the approximation of
the conical functions is achieved by using hypergeometric function of Matlab and by using the
results of Y3.6.2).

Figure 3.6: The graphs of the functions 7! a,,( ) forthecases = =3(leftyand = =4(right).

What we can take away from this gure is the fact that, when tends to +1 all the functions

am tend to a xed valued independent of m. Moreover, we also observe that the range of the
functions an, is contained in the one of ag. These observations, will be con rmed theoretically,
in the next two Propositions.
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Remark 3.4.1. One can also observe that the curves of the functions 7! an( ) are all
disjoint. Unfortunately we do not succeed in proving this observation. Note that this is equivalent
to say that when 2 | nf 1gthen for all 2 ° ;-; we havedim(ker(L ( ))) 2: More
precisely, this is equivalent to say that for all = 1=2+it 2" -, we have

(
it = ao(jt))

dim(ker(L =
kerk CM="5 ifom2N suchthat = am (jtj):

In particular, when = =4 and 0:8; one can see from Figure 3.6 that there exisB8
eigenvalues ofL that belong to™",_, := * 1\f 2 CjO< =m( )g: These eigenvalues are
approximately equal to 1 = 1=2+1:6i, = 1=2+3:6i and 3= 1=2+4:7i. While 3 is
geometrically simple, ; and > have geometric multiplicity equal to2: The corresponding eigen-
functions for 1; > and 3 are known explicitly. In Figures 3.7-3.8, we display an eigenfunction
associated to 3 and another one associated to ;.

+

Figure 3.7: An eigenfunction associated to 3. Figure 3.8: An eigenfunction associated to 1:

To proceed, we have the

Proposition 3.4.3. Let 2 (0; ): Then for all m 2 N; we havetllir+n1 am(t)=1:

It is worth mentioning that this result has been already proved in a very brief way in [122]. Again,
in order to make our work self-contained, we will propose a more detailed proof.

Proof. The idea is to use an asymptotic expansions oP™,_,, ;; (cos()) whent tends to +1 for
agiven 2 (0; )anda xed m 2 N: According to [146], one has for all 2 (0; ) and m 2 N the
expansion

tm 1=2¢ m?2 1=4

PM .t (cos()) = p Tn()(l o

cot( ) + O(1=t?)):

Using the recurrence relation (see Y3.6.2)

(P ioos )08 ) = TSP M (000 P (c0S( )
we infer that
(P™cpe )XC0S( ) =P ™y, cos()) = TC0S0) oy t

sin( )2 sin( ) tt+1  sin( ):
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Exchanging with ; we nd that

(Pm1=2+it)0( cos()) -
Pm]_:2+it( COS( )) tlo+1 m

The lemma is then proved by taking = in the previous two equivalences and then considering
their quotient.

The last proposition tells us that for all 2 (0; ); the particular value = 1 belongs to the
critical interval | : Indeed, we have shown that 1 is an accumulation point of | but since the
latter is a closed subset oR ; it follows that 12 | : In the rest of this paragraph, we are going

to present two key results that will allow us to obtain an explicit expression ofl : The rst result
is given in the following

Proposition 3.4.4. Assume that 2 (0; =2): The critical interval | is a subset off 1;0]

Proof. It was proved in [50, Theorem 1.6.5], by means of the T-coercivity approach, that when

the contrast  does not belong to[ 1, “;(;SS((;] the problem 2.15 is well-posed. This implies
1 cos()

hat | 1, ——= 1;0]:

that [ L 1+ cos( )] [ 1,0]

The second result that we need in order to obtain an explicit expression of is more involved to
be proved. In fact, as we shall see, it is an adaptation of some of the results obtained by Johan
Helsing and Karl-Mikael Perfekt (see [92]) in the context of the study of the essential spectrum
of the Neumann-Poincaré operator in the case of rotationally symmetric conical points.

Proposition 3.4.5. Assume that 2 (0; =2): Then for all m 2 N and allt 2 R; we have
jam(t)j | ao(0)j:

Proof. Since the functionx ! (x 1)=(x+1) isincreasingin( 1;0); and thanks to Proposition
3.4.4, it su ces to show that

(am(t) D=am(t)+1) (a0(0) 1)=(a0(0)+1):
On the other hand using the same notations of [92], we can write that

+1 2
(am(t)  1)=(am(t)+1) = Zi siF2tite Im K (s)dsd’
0 0

in which K (s) is a real valued positive function that is associated to the modal kernel of the
Neumann-Poincaré operator (i.e. associated to the space of functions that have the foron ;' ) =
um( )e ™ 2 H(S?)) on the innite cone W = fr(sin( )cos( );sin( )sin(' );cos( ));r 2
R:+;" 2 (0;2 )g (see [92, 104] for more details). It is important to note that the positivity of the
function K (s) is a consequence of the convexity of the interior of the con® : As a result one
can easily see that

am(t) 1 .1 *t 1=2+it o im’ .

an®+1 2 0, O > ° 7 Koy
1" 1=2 . _ 20) 1
5 . sTeK (s)dsd' = 20) + 1

which ends the proof.

We now have all the needed tools to state the nal expression of the critical interval.



85 3.4. The particular case of circular conical tips

Proposition 3.4.6.  [Final expression of the critical intervallLet 2 (0; =2); we havel = 1p=
[ 1; ag(0)]: The value ofag(0) is given by

0) = sF(1=2; 1=2; 1; coS( = 2)) oF1(3=2; 3=2; 2; sin’( = 2))
©)= sF1(1=2; 1=2; 1; sin?( = 2)) 2F1(3=2; 3=2; 2; co( = 2))

in which »F1 stands for the Gauss hypergeometric function (see Y3.6.2).

Proof. The proposition 3.4.4 tells us that for all m 2 N; the interval |, is a connected subset of
[ 1;0]: Thanks to Proposition 3.4.3, we can say that for allm 2 N the interval I, has the form
[ 1, m]with 2 [0;1]: This implies that | has the forml =[ 1; ] where the value of

is given by = sup m: To nish the proof, one has to use the Proposition 3.4.5, to deduce
m2N
= o= ap(0): Thanks to the results of ¥3.6.2, in particular the relation (3.19), we nd that

PO (cos( ))(P° )X cos( )  ,F(1=2;1=2; 1; co( = 2)) 2F1(3=2; 3=2; 2; sin?( = 2)) |
PO, ,( cos( ))(P?,,)qcos( )  2F1(1=2;1=2;1;sin?( = 2)) oF1(3=2;3=2; 2, co( = 2))

a0(0) =

Remark 3.4.2. When the opening angle belongs to( =2; ), the critical interval can be de-
termined by exchanging the roles of 1 and ,. More precisely, one hasl = 1= : When
= =2;one hasl -,=f 1g:

Using the results of Y2.2, in particular Lemma 2.2.4, we obtain the

Lemma 3.4.1. Let 2 (0; =2) and denote byW the cone
W = fr(sin( )cos( );sin( )sin(' );cos( ));r 2 R+;" 2(0;2 )g

. Then the essential spectrum of Neumann-Poincaré operator ess(Kw ; H¥2(W )) is positive
and given by

ess(Kw ; Hl:Z(W ) =1[0; a(0) 1

' 2(a0(0) + 1)

The previous results require some comments.

1. Unlike the 2D con guration, for a given contrast 2 | nf 1g, more than two propagating
singularities can exist. In fact, as can be seen in Figure 3.6 and as justi ed by Proposition
3.4.3, when the contrast  approaches 1, the number of propagation singularities that
appear tends to in nity.

2. It can be proved that the critical interval widens as the opening angle 2 (0; =2) gets
smaller. This can be observed from Figure 3.9. In particular, we show thati tends to
[ 1;0]as ! O

3. As mentioned above, the critical interval is located on one side of the 1: value. This is a
bit surprising compared to the 2D case. The reader may wonder if this is the case for all
smooth conical tips. To the best of our knowledge, this question remains open.
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Figure 3.9: The behaviour of ag(0) as a function of 2 (0; =2).

3.4.3 On the validity of Assumption 2.6.2 for circular conical tips

We are interested here in the question of the validity of Assumption 2.6.2 in the case of circular
conical tips. Recall that the Assumption 2.6.2 is valid if and only if:

1. All the elements of (L )\ ° -, are semi-simple.

2. Near any element of (L )\ ° 1o, there exits a unique eigenvalue ofL .; for small
enough.

Validity of the rst condition

Proposition 3.4.7. Assumethat 21| nf 1gandlet o= 1=2+itg2 (L )\  ;1-. Suppose
that there exists a uniquemg 2 N such thatam,(jtoj) = . Then, we have the equivalence

o is a semi-simple eigenvalue oL i 9" 2 Ker(L ( o)) s.t. tg j"j©60:
2

Proof. As explained in Remark 3.4.1, we know, under the assumption made ong; that ¢( o)

2. If 4( o) =1, the wanted result is a direct application of Lemma 3.2.3. So, let us suppose
that 4( o) = 2 (this implies that mp 2 N ). Thanks to the assumption made on o we in-
fer that A( o) = f mog (the de nition of A( o) is given in (3.8)). Moreover, we also know
that ker(L ( )) = span(ui";u’®) where u'*; u3" have the formul®(;' )= f( )e'mo ;ul° =
f( ))e '™ in which f is a real valued function. By observing that

u Tould! =0 and julejd! = jugojld! = jf jad; (3.10)
S S? S? S?
we infer that for all ; 2 C the function ' = u "+ u 3" satis es

=@ P it
S

This means that9' 2 Ker(L ( o)) s.t. tp i"i60(0 to jfj2d! 6 0: By using Propo-
7 2
sition 3.2.1 and owing to (3.10), we obtain the wanted result.

As mentioned before, the gure 3.6 shows that the hypothesis of the previous proposition is valid,
but unfortunately we are not able to prove it theoretically. Moreover, the previous result gives
us, then, a very simple way to checkifa 2 (L )\ ° ;- is a semi-simple or not. Now, let us
explain how to use the previous proposition in order to nd the setJ of contrasts  for which
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there exists 2 ° ;-\ ( L ) which is not semi-simple. Given thatl = Im; it is enough

m2N
to nd for each m 2 N the J, := J\ |n. Since the interval I, corresponds to the range of the

function ay, and given that for all 0 <t the function

( - _
P™ st ( cos( ))P™ i (cos( ))e™ if 2(0; )

m m im' i (3'11)
P orit(cos( )P ™o, ( cos())e if 2(;):

ui'(st ) =
belongs toKer(L ,( 1=2+it)) where {( )=1 for < and ()= an(t) for < < ;
we can then write that

IJm=f am(t)jt2 Ryt Julj?2dl =0g=f an(0)g[f am(t)jt2R,; (julj?d! =0g:
2 2

For all m 2 N; we de ne the function by, : R+ ! R such that b, (t) = sign( tju{“jzd! ) for
L
all t 2 R4 ; where the function sign: R!f  1;0;1g is such that sign( x)= 1if0< x and

= =4

Figure 3.10: Curves ofay (in red) and by (in blue) for m = 0 (top left), m = 1 (top right),
m = 2 (bottom left) and m =3 (bottom right).

The approximation of the integral in the expression of the functionsh,, has been done using the
integral  function of MATLABNhat we can take from these results is the following fact: it seems
that for all m 2 N, the setJy, corresponds to the sef an(0)g[f am(t)jO<t and a% t)=0g:
We also notice that for the casem = 0; generalized eigenfunction exits only when = ag(0)
(which corresponds to one of bounds offp). For the casem 2 N the situation seems to be di erent:
it seems that for all 1 < m eigenvalues (that belong to™ ;-,) with generalized eigenfunctions
exist for two particular values of : The rst one is when coincides with the opposite of the
minimum of an,, this value corresponds to one of the bounds ohy, (the other bound is 1). The
second one corresponds to the case= an(0) 2 Iy
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Given that the function an, is in fact a function of t%; we infer that for all m 2 N we have
a% (0) =0: Thus, can then formulate the following conjecture:

Jn=1f an(t)j0 tandal(t)=0gforall m2 N:

Unfortunately, we are not able to prove the previous equality (which seems to be true). However,
we succeed in proving the following

Proposition 3.4.8. Assumethat 21 nf 1gandlet o= 1=2+itg2 (L )\~ 41— such
that there exists a uniquemg 2 N such thatam, (jtoj) = : Then, we have the implications:

a%o(to):o =) o has generalized eigenfunctions=)  4( o) < a( o):
Proof. We know that for all 0 t the function

( m m im' ; .
u'r:'n ;u )= Pm1=2+ it( COS( ))nlj) 1=2+it (COS( ))eim' If 2 (01 ) (312)
P™ it (cos( )P ™.t (- cos())e if 2(;):
belongs toKer (L ,( 1=2+it)) where ¢( )=1 for 2 (0; )and ()= am,(t)for 2 ( ; ):
This means that for all v 2 H(S?) we have

(t)r suM™ r svd! +(t2+1=4) (tyuPvd! =0
52

Taking the derivative with respect to t of the previous relation at tg, using the fact that the
t

— . . dup,. .
derivative of { at tp vanishes and smce%hzto 2 HY(S?) (see Remark 3.6.5), we infer that
t

. dup, . . . .
(uﬁg;ld—tmjt:to) is Jordan chain of L associated to g:

The previous proposition shows therefore that for allm 2 N we have

f an(t)jo tandal(t)=0g Jm:

Validity of the second condition

Proposition 3.4.9. Assumethat 21| nf 1gandlet o= 1=2+itp2 (L )\ .- suchthat
there exists a uniquemg 2 N such that am,(jtoj) = : Suppose that ¢ is semi-simple. Then,
there exist0 < rg; o such that forall0O< j j< o, the ball B( ¢;rp) contains one eigenvalue of
L +; thatis semi-simple.

Proof. In the case where g is a simple eigenvalue of. , the result follows from Corollary 3.3.1.
It remains, then (thanks to the assumption made on ), to study the case when 4( )= g( )=2
(in this case we necessarily haveng 2 N ). Let +; =( 2+ i )= 1+ i ): Using the Fourier
decomposition and working exactly as in the beginning of ¥3.4.1, one obtains the same dispersion
relation as in (3.7) where is replaced by .; : Given the fact that 7! P™ is an analytic
function, one deduces that 7! f™(; ;) is analytic near o (see Remarque 3.6.3 ). Given
that f M°( o; ) =0 and by using the Rouché's theorem, we can say that there exist® <r q; o
such that 7! f™°( o: ) has a solution that belongs to B( o;r) forall 0< j j < o: Since
the associated eigenfunctions to have the form (;* ) 7! f( )e ™o, they are then independent
andthus ¢( )=2 forall 0<jj< o: Giventhat ,( o) must be greater or equal to 5( ); we
obtain that ,( ) =2: This ends the proof.

Final conclusion

Thanks to the results proved in the previous two paragraphs and thanks to the numerical results
presented above, we can say that for the case of circular conical tips, Assumption 2.6.2 seems to
be true expect for a discrete set of contrasts for which the energy liné ;-, contains eigenvalues
of L with generalized eigenvectors.
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3.5 Concluding remarks

In this chapter, we presented a detailed study of the Mellin symbol generated by the scalar problem
(2.2). We proved that all the classical results that we need to apply the Kondratiev theory are
valid. Moreover, we studied the e ect of the introduction of a small dissipation on the spectrum
and on the behavior of the eigenfunctions of the perturbed problem. In the particular case of
circular conical tips, the spectrum of L has been characterized by means of a dispersion relation.
Furthermore, in this particular con guration, we investigated the validity of Assumption 2.6.2.
We will conclude this chapter by mentioning that the most important question left unanswered in
this work is about the validity of the Assumptions 2.6.2-2.6.3 in the case of general smooth conical
tip. For this, one needs to have a better understanding of the behavior of the spectrum of |
and the associated eigenfunctions/ generalized eigenfunctions as! 0: Again an interesting
reference that can hep us dealing with this question is the book [138].



Chapter 3. The study of the Mellin symbol of the problem 90

3.6 Appendix

3.6.1 The T-coercivity approach for the anisotropic scalar problem

The main goal of this section is to present a detailed proof of the Lemma 3.1 when the function

g belongs to the spaceszer[O; 2 ] (an example of such con guration is given in Figure 3.11).

Figure 3.11: The red (resp. green) part is lled with a negative (resp. positive) materiel.

As in the case of circular conical tip @(' ) = 2 (0; )), the proof will be based on the use of
the T-coercivity method, but this time we need to combine it with some localization techniques.
This will make the proof a little bit technical. In order to make its presentation as simple as
possible, we are going to start with the study of a related problem that will help us simplifying
the nal proof which will be presented in Y3.6.1.

A simpli ed version of the problem

For all 0<L; we de ne the domains t; 5 R? such that

L=f(x;y)jx2(0;2 Yand L<y< Ogand 5=f(xy)jx2 (0;2 )andO<y<L g

Denote by = f(x;y)jy = 0g; the interface between | and 5 and by ' the unionof %; 5
and . We introduce continuous real valued matrix (resp. scalar) functionA : Y1 M,(R)
(resp. : “1 R). We suppose thatA(x;y) (resp. (x;y)) is symmetric and positive de nite

(resp. positive) for all (x;y) 2 ‘: This allows us to endow the spaces?( ) and HY( ) with
the norms:

kukpa( 1y = ( juj? dxdy )* and kuky:( 1y = ( CAru T U dxdy + juj? dxdy )

Clearly, endowed with theses norms the spaceis?( “) and H!( ') are of Hilbert type. We nish
this series of notations by introducing a piecewise constant density function that is equal to
0< 1in Yandisequalto , < 0in 5. The contrast isdenedby = 5= 1: Now,
we have all the tools to de ne the linear operator A, : HY( “) ! (HY( ')) thatis dened as

follows: for all u;v 2 HY( ) we set
PA; u;vi = A(GY)r u r v (xy)dxdy + t2 uv (x;y)dxdy:
L L

Because of the sing-change in; the operator A; may be not of Fredholm type. On the other
hand, because of the fact that the matrix valued function A does not coincide with the identity
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matrix, the theory presented in [50] can not be used. Our goal is then to nd some conditions
on the contrast ; on the function A and on under of which A, is an isomorphism forjtj large
enough. For the case of the functionsA and ; we need to make the following

Assumption 3.6.1. The existsO< o <L such that the functionA ! and 1= are continuous
in  o:

The main result of this paragraph is given by the following

Theorem 3.6.1. Let 0<L: Assume that the functionA and are such that Assumption 3.6.1
is satised with 0< ¢ < L: Then for all 6 1, there existsO <ty such that for all tg < jtj
the operator A, : HY( %) ! (HY( b)) is an isomorphism. Moreover, we have the estimate

(KukZs oy + tPkuk?s ()72 CKA( (U)kys( vy forall u2 HY( Y)
with C independent ofu and t:

The proof of the previous theorem will be done thanks to a succession of two lemmas. Before
getting into details, let us start by recalling some useful results about the classical Euclidean
norm. Far all R 2 M2:2(R); the Euclidean norm of R will be denoted by (R) and is de ned by

%R) = max(RtR); in which max(R'R) refers to the largest eigenvalue of the matrixR 'R:
Note that when R is positive and symmetric, one has¥R) = max(R): Furthermore, we have
the following interesting property: for all non-singular symmetric matrices R1; R2 2 M2.2(R); we
have the identity

%R1R2) = %R2R1): (3.13)

This is true because the matricesRle R; and RzRfRz are similar. The rst result that we need
is the following

Lemma 3.6.1. Let0< and letu; 2 HY( 1): We de ne the function ux(x;y) =: ui(x; vy) 2
HY( ,): The following estimate

A y)ruz r oz (x;y)dxdy C A(X;y)r up r ug (x;y)dxdy
2 1

holds withC = sup %A(x; y)A *(x; y)u):

(x;y)

1

Proof. The rst step is to perform the change of variable (x;y) ! (x; Yy): This transformation
maps , and ;: Furthermore, one can easily check that the jacobian matrix of this transforma-
tion coincides with the identity matrix. This leads us to write that

lo:= A y)r uz ruz (x;y)dxdy = A(X; y)rup rup (x; y)dxdy

2 1

As a result we have

P—r p— — _
lo = A XYAX y) A 1(x;y)IOA(x;y)r Uy IoA(x;y)r ur (x; y)dxdy
SUp% A I(x;y) A(x y)pAl(é;(,;)/) ACGY)r up T oup (xy)dxdy
(by means of (3.13)) =sup %A(X; Y)A 1(x;y)()(();(.y))/)) A(X;y)r up r up (x;y)dxdy:

1 1

Note that, above the matrix P A(x;y) is de ned as the unique positive de nite matrix R(x;y) 2
M2.2(R) satisfying the equation R2(x;y) = A(X)Y):
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In order to study the behaviour of C when tends to O; we are going to use the following

Lemma 3.6.2. Let 0< g and letf be a continuous function in  © then the function F( ) =:
supf (x) is non-decreasing continuous in[0; o]:
X2

Proof. The fact that F is non-decreasing is obvious. Let 2 [0; o] and ( n)n2n be a sequence
of [0; o] that converges, asn tends to +1 to : We will show that F( ,)n2n COnverges toF ( ):
To simplify notations, let us denote by " the domain ": The starting point is to observe that
dy( ;) the Hausdor distance between n~ and  tends to 0 asn tends to 1 : Since the
function f is continuous in  © it is then uniformly continuous. This means that for all 0 <"
thereisO< -« suchthat for all x1;x2 2  ° satisfying kx; X2k < -« we havejf (x1) f(x2)j <™
Now take, somex 2 and 0< " Sincedy( n; ) tendsto O asn tends to 1 ; there exists
nz) 2 N large enough such that for allnz) < n the domain " contains an elementy, such that
kx ynk < «: This implies that for all ng <n; we have

f(x) f(yn)+"=) f(xX) F(n)+ "foral ng<n:

By letting " tend to 0 and ny to 1 ; we deduce thatf (x) Iiminf F(pn) forall x2 : Thus we
obtain the inequality F( ) Iimlinf F( n): By exchanging the roles of and " in the previous
reasoning, we geﬂin?lsupF( n) F(): The lemma is then proved.

n:

Since, under Assumption 3.6.1, the function(x;y) ! (A Y)A Y(x; y) (x; y)= (x;y) is
continuous in ~ for small enough, the previous Lemma allows us to deduce that tends to 1
when tends to O: At this stage, we have all the needed tools to present a clear proof of Theorem
3.6.1.

Proof of Theorem 3.6.1. Let be a cuto function de ned in R such that (r) =1 forjrj 1=2
and (r)=0 for1l j rj: Forall 2 R; we introduce the function suchthat (r)= (r=):
Note that for all 2 R the function is supported in[j j;j jI: From now on, we are going to
assume that0 < < L= 4; other assumptions on will be made later. As mentioned previously,
the main idea is to use the T-coercivity method. For this, let us start by introducing the map
T:HY Y1t HY( ) such that for all u2 HY( ); we set

ui(x;y) in

T(u)(x;y) = u(X;y)+2  (Y)ur(x; y) in

L
1
L.
2 .
One, can easily check that for allu 2 H( '), the function T(u) belongs also to the spacéi( “):

Moreover, we can also check thaff(T( u)) = u for all u2 HY( ') and then T is bijective. Using
the result of Lemma 3.6.1, one can prove thafT(u) is continuous and satis es the estimate

KT(u)kps( 1y Cykukys 1y forall u2 HY( 4)
with C, independent ofu 2 H( “). Now, let us x some u 2 H}( “)nfOg; and let us compute
PA; u; T (u)i. Before getting into that, let us denote by t; 2 H( &) and by ~ the functions

dened by t(X;y) = ui(x; y)and ~ (x;y)= ( y) forall (x;y) 2 5: Using these notations,
one nds that

PAu; T(u)i = j JAGGY)jr u r o (x;y)dxdy + t2 j juj2 (x; y)dxdy
L L

+2 2 AGGY)ruz (B T) (y)dxdy +2 ot7 U T b (X y)dxdy:
L L

2 2
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The next step is to nd some upper bounds of the magnitudes of the third and of the last terms
in the previous identity. For that we are going to use the Young's inequality. For the case of the
fourth term, one nds that for all 0<a we have

2 up ~w (xy)dxdyj a  juyj? (x;y)dxdy+ s;a !
L L

2 2

Cjua? (xy)dxdy
1

in which s; = sup u The third term can be decomposed as
(X;y)zi (le)
Aruz r ( o) dxdy = Aruy r ( )udxdy + Ar uy r tdxdy
L L

N

2 2

The Young's inequality tells us that for all 0 <b we have

j2 Arup r( )udxdyj b Aru, ruzdxdy +s,b ! jupj?dxdy
L L L
1

2 2

wheres, = s; sup jAr r j: Furthermore, one obtains that for all 0 <c;
(xy)2
ji2 Aru; radxdyj ¢ Arup ruzdxdy +s,c b Arup r o7 dxdy

2 2 1

in which s; = C whereC is given in the statement of Lemma 3.6.1. Inserting all theses estimates
in the expression ofhA; u; T(u)i; we get

AU T(u)if 1 (] jssc D) Aru; ruzdxdy +j j(1 b ¢ Ar uz r Uz dxdy
1 2
2L s jal) jojsb ) juifdxdy +j jt3(1 @) jupj® dxdy
1 2

According to Lemma 3.6.2, we know that, at least for small enough, under Assumption 3.6.1
the functions ! s;;s,;s; are non-decreasing continuous in : In the other hand, one can easily
check that s§ = s§ = 1: This means that if the contrast is such that 1 < j j; there there
exists some0 <  such that

max(l=s;;1=s;) < j jforall 2 (0; ):

By taking = =2; a;c 2 (0;1) such that the coecients (1 j js;C 1y and (1 sy Ja h
become positive and then by takingb2 (0;1 c¢) andt large enough we deduce that there exists
some0 <t o such that for all tg < jtj we have the estimate

Kukfs o)+ tPkuk? oy ChA u; T(u)i for all u2 HY( b)

with C independent of u: By recalling the continuity of T; we deduce the wanted result for all
satisfying 1< j j: The casej j< 1 can be treated, similarly, by exchanging the roles of }
and 5:

Remark 3.6.1.

Using the the fact that the embedding oH*( ) into L?( ) is compact, one deduces that
when Assumption 3.6.1 is satis ed and when 6 1the operatorAj is a Fredholm operator
of index O:
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~

Since the proof of the Theorem 3.6.1 is based on the use of local re ection with respect to the
interface ; one can easily see that if we replace the domain_ by |, [ L, withL;6S,
then its the statement remains true.

In the particular case when the domain “ coincides with the domain(0;2 ) (0; ) and the
interface  is de ned by the equationy = 2 (0; ) and when the matrix function A and
1=sin(y) O
0 1
case the Assumption 3.6.1 is valid thanks to the smoothness of the functiofis;y) 7! sin(y)
and (x;y) 7! 1=sin(y) near 2 (0; )) we obtain a proof of Lemma 3.2.1 in the particular
case of circular conical tips (here' is replaced byx and the variable is replaced byy).

the scalar function are de ned by A(X;y) = and (x;y) =sin(y) (in this

Proof of Lemma 3.2.1

Here, we go back to the proof of Lemma 3.2.1 when the functiog belongs to the spaceC?([0;2 ]):
The starting point is to observe that when we use the classical spherical coordinate§;' ) 2
(0; ) (0:;2 ) to parameterize the unit sphereS?; the expression offL  ( )u;vi writes

2 2
e ()uvi = (5 JA(Q Jrurv (5 o)dd + ( +1) (; Juv (4, )dd
0 0 0 0
] ! (
o , 1=sin( ) , . @ . 0< 1 if <g (")
in which A("; = M =sin( );r = and (% = :
¢ ) o g+ (i )=sin() @ ™ G )= e <
Using these notations, the normsk kyi sy and k ki 22y are given by

2
kuki2(s) = ( . o juc; )iz (Hdd )

and
2

kukp(s2) = (kukfz(g) + L AG ruru (o )dd )i=2;

To simplify notations, we shalldenoteby 1=f("; )2 (©0;2) (©; )j <g(')g; 2=1f(; )2
0;2) (©O; )jog(')< gandby = f(; )j = 9o( )g: For the reader convenience, we will
denote by the union of 1; 2 and : It is worthy to note that in the topological sense
coincides with S?: Before presenting the nal proof, let us recall the de nition of the so-called
" neighborhood to a curve.

De nition 3.6.1.  Let O be a curve inR? that can be parameterized by a functiorf : [a;b! R?
of classC!: For all 0<"; we dene O = fx 2 R? such thatd(x;0) <" g: We say thatO" is an
" neighborhood if the following conditions are satis ed:

1. eachx 2 O" possesses a unique closest point (x) in O:
2.themap «:0" ! Ois onto.

In this case, O = f(s;t)j(s;t) 2 [a;b ( ";")g in which (s;t) are the curvilinear coordinates
associated toO:

Unfortunately for the case of C* curves, the existence of such tubular neighborhood is not guar-
anteed (a counterexample can be constructed by taking the inner parallel curve of the ellipse
(that is not a circle) which passes through the foc?). For the case ofC? curves, a proof of the
existence of tubular neighborhood can be found in [57, Theorem 3.1.1].

%Details can be found here.
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Final proof of Lemma 3.2.1. Given that the function g is periodic and of classC?; this means
that there exists a least’ 2 (0;2 ) such that gX' ) = 0: Without loos of generality, we can
suppose that' =0 (or equivalently * =2 ). Moreover, sinceg is of classC?; one can nd
an L tubular neighborhood to  with some 0 < L: This neighborhood will be denoted by O":
Using the fact that g40) = g42 ); we infer that O- can be chosen such thaD" : We denote
respectively by ; and by 5 the domains ;\ OY and ,\ O': As in the proof of Theorem
3.6.1, forall0< < L= 4 we introduce a smooth cut-o function that is supported in [ ; ]
and equaltolin|[ =2 =2]: Now, forall 0< <L we introduce the mapT :H() ! HY()
such that for all u 2 H()

" — ul('; ) in 1
TG =100 2R W ) in o
where R (u1) is de ned by R (u)(s;t) = (tyug(s; t) for all (s;t) 2 5, here (s;t) are the

curvilinear coordinates that are associated to and that are well-de ned in % (thanks to its

de nition) and R (u)(x;y) = 0 for all (x;y) 2 2n 5: One can easily see that the mapT is
well-de ned (this is true because of the continuity of T (u) at ) : Moreover, one can easily check
that for all u2 H*() we haveT T (u)= u and this shows the bijectivity of T : The continuity

of T can be shown in the same way as in the proof of Theorem 3.6.1. To proceed, take some
t 2 R and observe that for allu 2 H() we have

e ( 1=2+it)u;T ()i = Lj jAru rudd +(1=4+t?) Lj jjuj® dd
n n
o ArurT (u) dxdy +(1=4+ t?) uT (u) d'd :
This means that to prove our claim, we just need to study the behaviour of the second part of
the previous sum (the one in which all the integrals are taken over ‘). Clearly this ts into
the general problem studied in the previous paragraph, but it is worthy to note that since the
operator R is written in local coordinates the Theorem 3.6.1 can not be used directly. To be
able to apply it, we need to write all the integrals over  in local coordinates(s;t): If we denote
by J(s;t) the jacobian matrix of the change of variables that allows to pass form('; ) to (s;t)
in ' and by jJ(s;1)j its jacobian (this transformation is well-de ned thanks to the de nition of
L), one can write that for all u2 HY( L); we have

Aru rT (udd = JAJru r T (u) jJjdsdt
AL
uT (u)dxdy = uT (u) jJjdsdt
L AL

where "t = f(t;s) 2 (0;2 ) ( L;L)g Sinceg is of classC? the matrix valued function
(s;t) 7! J(s;)A(s; 1)JI(s; 1) as well as the scalar function(s;t) 7! (s;t)jJ(s;t)j are continuous in

forall 0< <L: Given that in local coordinates is given by the equationt = 0; a direct
application of Theorem 3.6.1, leads us to say thatforall 6 1 there existsO <t that depends
onlyon and such that for all to < jtj and all u 2 H( ) we have the estimate

C( Aru ru)dxdy +(1=4+t%)  juj®dxdy) Aru r T (u) dxdy
L L L
+(1=4 + t?) uT (u) dxdy:
L

with 0 < C independent of u: Inserting this in the expression of L ( 1=2 + it)u; T (u)i; we
arrive to the estimate

C( Aru ru)dxdy +(1=4+t%) juj?dxdy) jhL ( 1=2+it)u;T (u)ij
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for all u 2 HY() and tg < jtj with C independent of u: The rest of the proof is the same as in
the case of a circular conical tip.

Remark 3.6.2. Clearly the result of Lemma 3.2.1 can be, easily, extended to the following cases:

~ When the function g belongs to the spac€L, ([0;2 )\ PC?([0;2 ]):*

per

When the interface is connected curve of clas<? (i.e. can be locally parameterized by
C? functions).

More generally, the result holds if is connected curve of classC! that has " tubular
neighborhood.

3.6.2 Associated Legendre functions

The goal of this section is to recall some of the basic properties of the associated Legendre
functions. Let m 2 Z and 2 C; the associated Legendre equation of ordem and of degree
2 C writes: Find a function u 6 0 such that

2

ddx((l xz)gu)+ ( +1u u=0 forall x2 ( 1;1): (3.14)

X 1 x2
To be more precise, we are interested in the solutions of (3.14) that are bounded near the point
x = 1: As all second order di erential equations, the space of solutions of associated Legendre
equation is a vector space of dimension two. Ax = 1 the equation (3.14) degenerates and its
solution may be singular near these points. In general, except in particular situations that will
be speci ed later, the space of solutions of (3.14) is generated by a pair of linearly independent
functions denoted by P™ and Q™ and known respectively as the associated Legendre functions
of rst (resp. second ) kind. It is important to note that, in the literature, theses functions are
also called Ferrers functions of rst ad second kind (see [3]). While the function®™ are known
to have a regular behaviour near the points 1; the functions Q™ are singular near these points
(see the discussion below for more details).
Since the equation (3.14) is unchanged when we exchange by m or by 1 one expects
the functions P ™ and P ™ | (resp. Q ™ and Q ™ , ) are linearly dependent. In order to
make the presentation of properties of the associated Legendre function as clear as possible, we
shall distinguish two situations: the rst one is when belongs toZ and the second one is when

2 CnZ:

The case 2 Z

Before getting into details, for all a;b2 Z; we denote byJa;bK=[a; b\ Z: Clearly, if b <a we
have Ja; K= ;: The starting point is the following

Lemma 3.6.3 (Appendix A of [95]). Assume thatm 2 Z:
S If 23Jj mj; 1K[ JO;jmj 1K then any solution of (3.14) is unbounded nearx = 1:
" When 22ZnJj mj; 1K[ JO;jmj 1Kthe function P™ and Q™ are well-de ned.
" Forallm2 Nand 2 zZnJ m; 1K[ Jo;m 1K Then, we have the relations: P™ =
P™ ;Q"=Q™ ;and

E +2;:Pm’Q m_( m)l

pm= = M
( + m)!
4PC?([0;2 ]) is the space of piecewiseC? functions.

Q™:
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As a result, we just need to explain how to de ne the functionsP™ and Q™ form2 Nand 2 N
such that m . Let us start by treating the case m = 0: In this particular case the equation
(3.14) is know as the Legendre equation. The function®® and Q° for 2 N are de ned as
follows: for all x 2 ( 1;1) we have

1 d 1 d 1 1 1
PO = 5ot ) G020 = o F( XD log(; )9 5log(—IP(X):

Whenm 2 N and 2 NnJO;m 1K the functions P™ and Q™ can be de ned thanks to the
relations: for x 2 ( 1;1) we have

m

m — m m= d m — m m= dm .
P"(x)=( Y™ x?) de—mPO(x) andQ"(x)=( 1" x?) de—on(x).

More explicit formulas to calculate the functions P™ and Q™ will be given in next paragraph.

The case 2 CnZz

In such con guration, the functions P™ and Q™ are well-de ned for all m 2 Z. Let us start with
the case of the second kind ones. As mentioned above, the functic@™ is singular nearx = 1.
This can be seen from the following expansions and identities (see [3]):

m=2

Q%= log(1 x)=2+b +O(x 1) forall 2CnzZ ;

QM(x) for all m 2 NnfOg

Above ( z) is the analytic continuation of the classical Euler gamma function which is de ned
for z 2 CnZ (see [3]) andb is a constant that depends, only, on: For this reason,we shall then
limit ourselves, in the rest of this appendix, to the presentation of the main properties of the
function P™: Classically these functions are de ned by using the so-called Gauss hypergeometric
function »F1: For given complex numbersa; b; c;we de ne the Gauss hypergeometric functiomF4
such that .

n
X @n®n2" 2o ¢ such that jzj < 1
h=o (On n!
where for all complex numbery; the Pochhammer symbol (y), is dened by (y)n = y(y +
D(y+2):::(y+n 1)forn2 N and (y)o =1. One can also write for ally 2 CnZ that
(Y)n = ( y+ n)=(y): It can be shown that, except for this casec2 Z (in the case(c), =0 for
n large), the function z 7! ,F1(a;b;c; 2 is well-de ned for all z 2 C satisfying jzj < 1:
For m2 N and 2 CnZ the function P™(x) is de ned by the following expression:

oF1(a;b;c; 9 =

Pm(X)=( * D )m(l x2) % oFy( +m; +m+1;m+l;1 X

i )°: (3.15)

With this in mind, one can immediately see that for all 2 CnZ we haveP™ =P™ ;: In order
to de ne the function P™(x) for m 2 Z ; one has to use the relation

( m+1) . _ pm
( +m+1) ( +Dm( Im

PM=(C 1" for all m 2 N: (3.16)
Remark 3.6.3. Given that for all m 2 N the map(a; b 7! »Fi(a; b; m) is analytic with respect to

a;b2 C (see [75, Y15.2]) we then deduce that for ath 2 Z andx 2 [ 1;1] the map 7! P™(x)
is analytic in CnZ:

°In many references the term ( +1) m(  )m iswritten dierently: ( +1)m( Jm =( 1™ ( +m+1)=(
m+1):
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Remark 3.6.4. It is important to note that the relations (3.15)-(3.16) are also valid for the case
2 Z provided that 2 Jj mj; 1K[ JO;jmj 1K This explains the presence of the normalization
factor ( +1)m( )m=2"m! in the expression of the functionP™:

Let us nish this paragraph with this useful relation that allows us to compute the derivative of
the function P™(x) with respect to x:

d mx 1
—pm - pm Pm+1
P00 = TP 0 PP ()
provided that all the functions P™ and P™*! are well-de ned. Other useful relations are also

available (see [3, 95]).

Approximations of the rst kind associated Legendre functions

Starting from the relations (3.15)-(3.16), one can write a simple code that approximates the func-
tion P™ with 2 Candm 2 Z provided that 2 J m; 1K[ JO;m 1K The easiest way to do
that, is to use MATLAB , in which the Gauss hypergeometric function with complex arguments
is already de ned. However, for practical purposes (visualization, nite elements approximations,
...), it would be useful to write a C++ program that computes an approximation of these func-
tions. In this case, one has to implement an approximation of the Gauss hypergeometric function
2F1 which is not available in C++ . An implementation of the algorithm that approximates the
functions P™ form 2 Z and 2 CnJj mj; 1K[ JO;jmj 1K is as follows:

Complex P( Number m, Complex lam, Complex x ){

%Compute _2F1(-lam+abs(m),lam+abs(m)+1,abs(m)+1)

Complex resl=1.;if (abs(m)>0){ for (int i = 0; i < abs(m); ++i){res=res*(-lam+i)*(
lam+1+i);}}

Real tol=1.0e-9;Complex a=-lam+ abs(m),b=lam+abs(m)+1,c=abs(m)+1,term=a*b*x/c,
value=1.+term;

Number n=1;

while (abs(term)>tol){ a=a+1l, b=b+1, c=c+1, n=n+1l;term= (term*a*b*x)/(c*n);value
+= term;} value=value*pow(1l-x*x,m/2); if (m<0) resl=1/resl; return value;}

Note that the previous code was implemented using theC++ library Xlife++

The case of conical (or Mehler) functions

Conical functions are a particular class of the associated Legendre functions. More precisely, they
correspond to the particular case when the degree has the form = 1=2+ it with t 2 R: For
the same reasons as above, we shall restrict ourselves to the case of rst kind ones. Since for all
t 2 Rwe have 1=2+it 2 CnZ, it follows that the functions x 7! P™,_,, ; (x) are well-de ned for

all t 2 R: Moreover, one can easily check that for alt 2 R the function x 7! P™,_,; (x) admits
the representation (see [146])

v (t*+(@2k 1)°=4)

_ k=1 X
P™ it (X) =

2

. : 1
oF1(1=2+ m+it; 1=2+ m itm +1; ): (3.17)

2Mm!

This implies that these functions are real-valued and positive for allx 2 [ 1;1] In addition to
that, it can be seen that for all t 2 R; we have

P™ it =P M it (3.18)

Using the results of the previous paragraph, one can say that for alm 2 Z and t 2 R we have
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d mx 1
&Pm1:2+ it (X) = melzk it (X) meij i (x) forall x2 [ 1;1]
This implies in particular that
d S0 - 1 1 11
d—XP 1=0+it (X) = 971 sz 1=+t (X) forall x 2 [ 1;1] (3.19)

Remark 3.6.5. Taking the derviative of the relation (3.17) with respect tot; one can see that
daP™. ..
1=2+it

at (x) is analytic.

the function x 7!



Chapter 4

An optimal control-based numerical
method for scalar transmission
problems with sign-changing

coe cients

The results of this chapter were obtained in collaboration with Patrick Ciarlet (POEMS/ENSTA)
and David Lassounon (IRMAR-INSA/Université de Rennes 1).

Contents
4.1 Introduction . . . . . . .. 100
4.2 Main assumption on" and reformulation of the problem . . . ... ... ... 102
4.3 The smooth extension method for the scalar transmission problem . . . . . .. 103
4.3.1 Formal presentation of the smooth extension method . . . . ... .. .. 103
4.3.2 An optimal control reformulation of the problem . . ... ... ... .. 103
4.4 Basic properties of the optimization problem and its regularization . . . . .. 106
4.4.1 Properties of the objective function . . . . . ... ... ... ....... 106
4.4.2 The set of minimizers of the functiond . ... ... ... ........ 107
4.4.3 Gradient of the functionJ . . . . . . . .. ... .. L 108
4.4.4  Tikhonov regularization of the problem . . . .. ... ... ... .... 111
4.5 Numerical discretization of the problem . . . . . ... ... ... ... .... 112
451 Meshassumptions . . . . . . . . . . ... 112
4.5.2 Discretization strategy . . . . . . ..o 113
45.3 Convergence ofthe method . . ... ... ... ... .. ......... 114
4.6 Numerical experiments . . . . . . . . . e 117
46.1 Flatinterface . . . . . . . . . 117
4.6.2 The case of acircularinterface . . . ... ... ... ... ... .. .. 118
4.6.3 The case of an interface with corner . . . . . . ... ... ... ... .. 119
4.7 Concluding remarks . . . . . ... 120
4.8 AppendiX . . .. e e 121

4.1 Introduction

In the present chapter, we study the numerical approximation of the scalar problem with sign-
changing coe cients. To x ideas, consider a domain (an open connected subset) oRY,
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d 2 f 2;3g, formed by the union of two disjoint subdomains 1, » that are separated by an
interface  (see Figure 4.1 for an example). We assume tha® , @ 1, @ » and are Lipschitz
regular.

Figure 4.1: Example of geometry.

We also introduce a piecewise constant functior’ suchthat” = "1 > 0in 1and" = ", < 0in
»: The contrast -« is de ned by -« := ",="; < 0: For a given source termf 2 L?() ; we consider

the problem
Find u2 H}() suchthat div("r u)=f 2 L%() : (4.1)

The equivalent variational formulation to (4.1) writes
Find u2 H}() suchthat "ru rv=  fv; 8v 2 H3() : (4.2)

Because of the change of sign df, the well-posedness of this problem does not t into the classical
theory of elliptic PDEs and it can be ill-posed. On the other hand, one can show that for large
or small contrasts, Problem 4.2 isT-coercive, i.e. there exists an operatofT : Hé() ! Hé()
such that (u;v) 7! "ru r (T(v)) is coercive, and then it is well-posed. For the case of
polygonal interfaces, the construction of such operatoiT is based on the use of local geometrical
transformations (such as re ections, rotations, ...) near the interface.

The implementation of a general conforming nite element methods to discretize (4.2) leads us
to consider the problem

Find unb 2 Vh() suchthat "run, rvy=  fvyp; 8vh 2 W (4.3)

where V() is a well-chosen subspac#ij() : Even in the case where (4.2) isT-coercive, one
can not guaranty that Problem (4.3) is also T-coercive. Indeed, it may happen that for some
Vh 2 Vp() , there holds T(vy) 2 V() : To overcome this diculty, an interesting idea is to
try to construct meshes such that the approximation spacesv,() are stable by operatorsT for
which Problem (4.2) is T-coercive. This type of meshes are called -conforming meshes. Such
an approach has been investigated in [147, 49, 45]. It works quite well but presents two main
drawbacks:

A~

The construction of well-suited meshes for curved interfaces, interfaces with corners or 3D
interfaces is not an easy task [45].

Sometimes the operatorT for which the problem is T-coercive is constructed by abstract
tools and therefore is not explicit. In these situations, one cannot nd adapted meshes.

Two rst alternatives have been proposed. The rst one, presented in [51], consists in adding
some dissipation to the problem (considering” + i instead of " in (4.2) where depends on
the meshsize). The second one is developed in [119] and is based on the use of mesh re nement
techniques. The essential limitation of these two approaches is that, for interfaces with general
shapes, the convergence can not be assured for all contrasts for which Problem (4.2) is well-posed.
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A new technique relying on the use of an optimal control reformulation has been introduced in
[1]. It is proved to be convergent for general meshes (that respect the interface) as soon as the
exact solution of (4.1) belongs to the spacePH®() := fuju; , 2 H%( 1) andu; , 2 H%( »2)g
with s > 3=2: Unfortunately, this regularity condition is not always satis ed, especially when

has corners in 2D or conical points in 3D.

In this chapter, we present a new strategy which relies on the use of a di erent optimal control
reformulation and which converges without any restriction neither on the mesh (the interface
simply needs to coincide with edges of the mesh) nor on the regularity of the exact solution. This
method is inspired by the smooth extension method that was used (without proof of convergence)
in [73] to approximate the solution of some classical scalar transmission problems.

The chapter is organized as follows. In Section 4.2, we start by giving a detailed description
of the problem. Then we explain how to derive an equivalent optimal control reformulation.
Section 4.4 is dedicated to the study of some basic properties of the optimization problem and
its regularization. The proposed numerical method and the proof of its convergence are given in
Section 4.5. Our results are illustrated by some numerical experiments in Section 4.6. Finally we
give a few words of conclusion and discuss some possible extensions.

4.2 Main assumption on and reformulation of the problem

Introduce the bounded operatorA- : H3() ! (H3()) such that
PA-u;vi=  "ru rv; 8u;v 2 H3() :

Obviously if A« is an isomorphism then Problem (4.1) is well-posed in the Hadamard sense. In
this chapter, we shall work under the following

Assumption 4.2.1. Assume that" is such thatA- is an isomorphism and that the source term
f in (4.1) belongs toL?() :

As we have seen in the rst chapter of this thesis, the previous assumption is satis ed when the
contrast - does not belong to the critical interval that will be denoted by | : The expression of
this interval in general is not known analytically, except for particular geometries like symmetric
domains, simple 2D interface with corners, simple 3D interfaces with circular conical tips..., but
can be approximated numerically.

Remark 4.2.1. In Problem (4.1), we consider homogeneous Dirichlet boundary conditions. Let
us mention that the results below extend quite straightforwardly to other situations, for example
with Neumann or Robin-Fourier boundary conditions which can be homogeneous or not.

To introduce the method, we start by writing an equivalent version of (4.1) in which the unknown

u?2 H(l)() is splitted into two partial unknowns dened in ; and »: To do so, we observe
that since f 2 L?() , the solution u of (4.1) is such that the vector eld "r u belongs to the
spaceH(div; )= fu 2 (L%()) Y such that div(u) 2 L?() g: Consequently, the pair of functions
(u; ,;u; ,) satis es the problem

"1 U]_:fl:I fj 1
Find (ui;uz2) 2 Vi( 1) Va( 2) suchthat| ", ux=fo=:f;, (4.4)
@ui = -@u2 and u; = U on

in which n stands for the unit normal vector to  oriented to the exterior of ; and

Vi( 1):=fu2HY( 1);u=00n@ in g Vo( 2):=fu2 HY( 2);u=00n@2n g
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On the other hand, one can check that if (u1;uy) is a solution of (4.4), then the function u
dened by u; ; = uj for j =1;2 solves (4.1). The equations satis ed byu; and u; are elliptic
but they are coupled by the transmission conditions on . As a consequence, we cannot solve
them independently. The purpose of the next paragraph is to explain how to proceed to write
an alternative formulation (an optimization-based one), which can be solved via an iterative
procedure such that at each step one has to solve a set of elliptic problems.

4.3 The smooth extension method for the scalar transmission
problem

The smooth extension method was proposed in [79] and can be considered as a special case of the
ctitious domain methods (see [11]). It has been adapted to study the classical scalar transmission
problem, i.e. with constant sign coe cients, in [73]. In this section, we explain how to apply it

to our problem. In order to make the presentation as simple as possible, we start with a formal
presentation of the technique, and then we will make things more rigorous.

4.3.1 Formal presentation of the smooth extension method

The idea behind the smooth extension method is the following: instead of looking fofus; uy) 2
Vi() V2 ») solution of (4.4), we search for a pair of functions(t; u,) 2 Hé() V() such
that (& ,;Up) is the solution of (4.4). The function t is then a particular continuous extension
of u; to the whole domain : The diculty is to nd a good way to de ne the function t: In
particular, we have to describe the equation satis ed byw in  »: Formally, the idea of the smooth
extension method is to extend the equation satis ed byu; to the whole domain : More precisely,
the idea is to suppose that the functionu satis es the problem

"1*‘U=f111+‘12

in which " is a function to determine so that (& ,;uz) solves (4.4). If one nds a way to compute
such a’; since the problem that relates” to t is elliptic, the function & can be be approximated
by the classical FEM. After that, the function u, can be then approximated by solving the
problem satis ed by uz in  , completed byt; (resp. - 1@u] ) as a Dirichlet (resp. Neumann)
boundary condition on  which is also elliptic. Note that at rst sight, neither the existence nor
the construction of such™ are clear. This will be done thanks to an optimal control reformulation
of (4.4). This is the main goal of the next paragraph in which we also reformulate the idea
presented above in a more rigorous way.

4.3.2 An optimal control reformulation of the problem

For = 2 (V2( 2)) ; introduce u the uniquely de ned function satisfying the problem

Find u 2 HJ() suchthat"s ru rv=  fiv+ (v ,);  8v2Hy() :
1
Clearly the function u; =: u; | 2 Vi( 1) issuchthat "3 u; = fyin 1. This is the equation
satis ed by uz in (4.4). Using this and an integration by parts, for all v, 2 V,( »2); we obtain

Hi@u ;vai = "1 ru rva+ (Vo)
2

Now, assume that one nds" 2 (Va( 2)) for which u; coincides with u; (the solution of (4.4))
in 1. Then the function u, can be deduced either by usingJ1j or . 1@u1 j asa Dirichlet or

as Neumann trace ofu, on . More precisely, if one uses . 1@u\1 ; asaNeumann boundary data
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for up on ; the problem satis ed by u, writes: Find uz 2 V2( 2) such that for all v, 2 Vo( 2);
we have

5 Uy I Vp= fov, h"1@QU Vi = fovo, S (V2)+ "1 ru Vo
2 2 2 2

Obviously, the previous problem is well-posed. This leads us to de ne for all 2 (V2( 2)) the
(well-posed) problem: Find (u ;u,) 2 H(lJ() V>( 2) such that

"Loru rv=s fvE (v ) 8v 2 H}()
‘ : \ (4.5)
2 FUy rvy= fova “(V2)+ "1 ru rv 8v2 2 Vo( 2):
2 2 2

Using the optimal control terminology, the previous equation plays the role of the state equation
in which " is the control function and ~ (that we are looking for) is the optimal control. In order
to write an optimal control reformulation of our problem, it remains to nd an adapted objective
(or cost) function. To do so, the starting point is the following

Proposition 4.3.1.  For ~ 2 (V2( 2)) , the functions u; and u, are such that
"1 U;I_ = fl in 1
) U\2 = f2 in 2

@u,;= -@u, on

Proof. Take' 12 Cg ( 1) and extend it by O to the whole  to obtain the function ' 2 Cg () .
Take v =" in the problem satised by u: One ndsthat "; u; = f1in 1: Next, take some

"o 2 CO1 ( 2), extend itby Oin ; and denote by’ the new function. By taking v =" in the
problem satis ed by u and v, = ' 5 in the problem satis ed by u, one nds that
"1 FU\ I"2=‘(' 2) and ", I’U\z r'o,= fol o \(' 2)+ "1 I’U\ r' o

2 2 2 2

By considering the sum of the two formulations, we conclude that ", u\2 = f,in 5 To end
the proof, it remains to show that @Qu = n@ué: To do so, taking v2 = v; , for an arbitrary
v 2 H}() in (4.5), integrating by parts in both formulations and then, using the equations
satis ed by u; and u,, we infer that

h"1@uqp;vi = h"@upvi;  v2H3() :
This gives "1@u‘1 = "z@ué on and ends the proof.

Thus the introduction of an auxiliary control function ~ 2 (V2( 2)) allows us to construct pseudo-
solutions of the equation (4.4) for which the condition on the normal derivatives is automatically
satis ed. However we do not have in general continuity of the eld at the interface. Taking this

into account, we get the

Lemma 4.3.1. If there exists™ 2 (V2( 2)) such that the solution of (4.5) satis es ujf
then (u; ;u, ) solves(4.4).

u2j!

The existence of such is the subject of the following

1
c
N

Lemma 4.3.2. There exists™ 2 (V2( 2)) such that the solution of (4.5) satis es ujf
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Proof. We proceed by construction, i.e. we nd™ 2 (V( 2)) for which the condition ujf =

uéj is satis ed. Since by assumption Problem (4.1) is uniquely solvable, the functionsu; and
u, are well-de ned. The function u, can be seen as a continuous extension of, to the domain
2. Moreover, one can check thatu the solution of (4.1) satis es the problem

1 rurvs fav+"t  rux; rv "ih@uyvi o 8v2 H3()
1 2

2 s r vo = fz Vo + "ﬂ'@Ul;Vzi 8v?2 V2( 2)Z
2 2

Now, by observing that the linear form = de ned by

) (V2) = "1 s I Vo "1|’@U1;V2i 8V2 2 Vz()
2

is continuous, we obtain the desired result.

Remark 4.3.1.  As pointed out in [73] for the classical transmission problem, the optimal function
(for whichu; = Uz | ) is not unique. Indeed, if one denotes b¥ (uy) 2 HO() any continuous
extension of the functlon u; to 2, one can show that(E (u1);uy) satis es the problem

"1 rE(u) rvs= fiv+"q r E(uy) rv "1h@E(uq);vi 8v2 H%()

1 2

"y Frup r vp= fovo+ "1h@E (uy); voi 8v2Vy 2):
2 2

The linear form ~ 2 (V2( 2)) dened by

T(v2)="1  rE(ui) rve "ih@ua;vai 8va 2 Va( 2) (4.6)

2

can be then considered as another optimal function. This implies that the set of optimal functions
2 (V2 2)) isinnite. More precisely, we observe that the set of optimal functions™ is in
bijection with the set of continuous extensions ofi; 2 V1( ;) to a function of Hé() :

Now, we have all the tools to write an equivalent optimal control formulation to (4.4). To do

that, it su ces to observe that since u1J Uy 2 H¥2() 2() and by means of Lemma 4.3.1
we can say that™ is an optimal control if and only if ku;  u, k,_z() = 0: This allows us to say
that ~ is an optimal control if and only if it solves the problem

8

(N .
2 min_ = ju; uyd
TN . 2
Find * 2 (V2( 2)) solution of _ 2(V2( 2) 4.7)

where (u ;u2) is the solution of (4.5).
Regarding what we have proved previously, it follows the
Corollary 4.3.1. Problem (4.7) has an in nite number of solutions.
SinceVy( ») is a Hilbert space, the Riesz representation theorem guarantees that for any element

"2 (V2 2)) , there is a uniquew- 2 V3( »2) such that

(v) = rw rv 8v2Vy( 2):

2

Then the optimal control problem (4.7) can be reformulated in the following way

Find w 2 V,( 2) solution of ml? )J(W) with  J(w) = % jul  u¥j?d; (4.8)
Va2 2
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where (u";u¥) 2 H()  Va( ») is the solution of the problem (the state equation)

Worv= fiv+  rwrv  8v2HY)

: 2 (4.9)

2 ruy rvy= fovo+ "1 ru’ rovy rw.rwvz 8v2 2 Va( 2):
2 2 2 2

1 ru

The objective of this section is then achieved. The next step is to propose a discretization of
the problem based on FEM and to study its convergence. Before that, we have to prepare the
ground and present some basic properties of the above problem which will help us to prove the
convergence of the proposed discretization method.

As we have seen previously, the minimization problem (4.8) has an in nite number of solutions.
Therefore, a regularization method may be necessary in order to propose a convergent discretiza-
tion. For that, we will work in Y4.4.4 with the classical Tikhonov regularization of Problem (4.8).
This will guide our intuition in the construction of a convergent numerical method.

4.4 Basic properties of the optimization problem and its regu-
larization

In this section, we focus our attention on the properties of the cost functionJ: In addition, we
compute in Y4.4.3 an explicit expression for the derivative o with respect to w: In the process,
we give useful properties of the set of minimizers of:

4.4.1 Properties of the objective function

The fact that we have used theL?() norm instead of the H™?() norm in the de nition of J
allows us to get the following compactness result.

Lemma 4.4.1. Let (w,) be a sequence of elements &f,( ») that converges weakly towg 2
Va( 2). Then, (J(wp)) converges tod (wg).

Proof. For all n 2 N; denote by (u";u}) 2 H3() V() the solution of (4.9) with w = wy:
From the ellipticity of the problems involved in (4.9), it follows that (u") (resp. (u})) converges
weakly in H3() (resp. Va( 2)) to someu 2 HY() (resp. uz 2 Vu( 2)) such that (u;uy) is the
solution of (4.9) with w = wy:

The continuity of the trace operator from HY() to H¥?() implies that ujn ugj converges
weakly to u;  up in H'7?() : Given that the embedding of H*=?() into L?() is compact,
n ugj converges strongly tou; Uy in L2() : Thus (J(wn)) converges toJ (Wp): The result

Y
is proved.

A direct consequence of the previous Lemma is the following

Lemma 4.4.2. The function J is continuous and convex onVa( 2):

Proof. While the continuity is a direct consequence of the previous lemma, the convexity follows
from the fact that J : Vo( 2)! R is the composition of the ane map j1:Va( 2)! L%() and
of the convex mapj,: L%() ! R such that for all w2 Vy( ), g2 L%()

ji(w)=(u" uy); where(u";uy) 2 H3()  Va( 2) is the solution of (4.9)

| . (4.10)
j2(@) = 5 joi%d:
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4.4.2 The set of minimizers of the function J

As explained above, the set of minimizers of the functionall, denoted by M, is in nite. More
precisely, one can check the equivalence

w 2 M; if and only if J(w)=0:
This allows us to prove the
Lemma 4.4.3. Mj is a closed and convex subset &f»() .

Proof. Clearly M; coincides with the set of zeros of]. SinceJ : Vy( 2) ! R is continuous,
we infer that M is closed. The convexity ofM; is a direct consequence of the positivity and
convexity of J:

As a direct result of the previous lemma, we can say that the following minimization problem:

Wr?m kr wkf>( (4.11)

has a unique solution (this is a consequence of the strict convexity dfr k Ez( ) and of the fact
that M; is a closed subset oW ,( »2)). In the following, we shall denote by w; the solution of
(4.11), i.e. the smallest minimizer of the function J: By de nition, we know that for all w2 My;
the function u" 2 H3() is a continuous extension of theu; (the restriction of the solution of

(4.1) to 1). In particular, this means that for all wi;wo 2 M3 we haveu}’”l1 = u}”zl: Our next
goal is to nd a simple characterization of u"s :
On the smallest minimizer of J
We already know that for any w 2 V,( »); the function u" satis es
"1 oru¥ rv= fv+ rwrv 8v2H}):
1 2
This means that that for all wi;w» 2 V,( 2) we have
"Loor (U™t ou"?) rvs= r(wig wy) rv  8v2H}3):
2
Using the fact that for all wy;w; 2 My; we haveu}"’l1 = u}"’zl we then obtain
"por Uyt ud?) rvp= r(wy wp) rv 8vy 2 V() ; (4.12)

2 2

i
belongs toH3( 2): To proceed, we denote byE (u1) 2 H3() the continuous harmonic extension

of uy: In particular, the function Ey (uy); , satis es

in which for j = 1;2; we setu)" = qu : Note that, for all wi;w, 2 Mj the function uy*  u3?

En(uy); ,=0in 2 and Epy(u)= uzon

To this particular extension of uy; we can introduce a uniquewy 2 Mj such that Ey (ug) = u?v
(see Remark 4.3.1). More precisely, the functionsvy can be de ned as the unique solution of
the well-posed problem: Findwy 2 Vo( ») such that

fWhoTV2 =T rER(U) Ve Tah@uival o Bv2 2 Vol o)
2 2
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In particular, we have
rwy rva=0  8vp2 H3( 2): (4.13)

2

By taking v2 = wy ;w1 = wy, and we = wy 2 My in (4.12) and by making use of (4.13) we obtain

r(wqg wj;) wy =0:
2

This shows, by means of the Cauchy-Schwarz lemma, thakr wyk 2 ,) kr wyk2 ,) and
then, thanks to the de nition of w;; we infer that w; = wy : This leads us to state the following

Proposition 4.4.1.  The function w; coincides withwy and u"s = Ey (uy):

4.4.3 Gradient of the function J

As indicated in the introduction of this chapter, the main objective of this work is to propose a
new numerical method for approximating the solution of (4.1). This method will be based on the
numerical approximation of the solution of the optimization problem (4.8). In this section, we
will explain how to obtain an explicit expression of Jqw) the gradient of J at somew 2 V() :
The starting point is to explain why the function J is di erentiable. Again, this is the con-
sequence of the fact thatJ can be written as a composition of the two di erentiable maps |1
(which is di erentiable because it is an a ne map) and j» (which is di erentiable thanks to the
di erentiability of the square of the L?() norm) that are de ned in (4.10). Since the function J
is scalar valued, its di erential at any w 2 Vo( ») is then a continuous linear form™y, on Va( »):
By means of the Riesz representation theorem;,, can be represented by a unique element of
Va( »); this element will be denoted by Jqw) and is de ned as follows:

J(w+th) J(w) _

For all h 2 Vy( 2); we have rdqw) r h= Iti|m0 . = "w(h):
) !

Given the fact that J = j» j1; the natural idea to compute JYw); for all w 2 Vo( »); is to use
the chain rule formula. For this, we need to start by computing the derivative of w! u" and of
w! u¥ (where (u¥;u¥) is the solution of (4.9)) with respect to w 2 V,( »): The di erential of
these maps will be denoted by

du® du

2 Lo M) and T2 L(va( Vo)

Without any di culty, one can check that forany h 2 V( ») we have

du® o du¥ o
d—w(h)—ﬂ and d—w(h)—ﬂ2

where (&"; u*z‘) 2 H3()  Va( ») is the unique solution of the well-posed system of equations:

1 re rvs rhrv  8v2H) ;
. (4.14)
o re)rve="1 rde rw, rhrve  8v22Vy( 2):
2 2 2

Note that sincew! u" andw! u} are ane maps, for all w;h 2 Vy( 2) we have the relation

du

dw

du¥
(hy= u¥++4"anduy* "= u2 + =2 = u2 + ul):

uvth = w4
dw

Using these notations, and the fact thatJ is the composition ofj; and j»; we obtain the following
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Proposition 4.4.2.  For all w;h 2 V,( 2); we have

rdqw) rh= @&" &)Wy ud)d:

where (u%; u%) and (u"; ug) are the solutions to (4.9) and (4.14) respectively.

Proof. Lett 2 R be a damping parameter. Thanks to direct calculus, for allw;h 2 V,( ») one
nds that

Jw+thy=1=2  ju"™  w*™j2d =1=2 ju¥ u¥+te" u)j’d:
As a result, we obtain
Jw+th)= Jw)+t (" eh)(u” uf)d +oft):

The lemma is then proved.

The expressionJ Yw) that we have obtained above, is not explicit. A more elegant way to get a
simpler expression ofJ{w) was proposed in [73]. The idea is based on the use of more general
theory called the adjoint approach that was introduced in [47], and that allows us to compute
the gradient of objective functions that depends in non-explicit way of the main variable of the
problem, but via the solution of PDE (the state equations) in which the main variable plays the
role of a parameter. Here, we are going to explain how to apply this method to our case. The
idea is to introduce a Lagrangian functionL :Va( 2) H3() Va( 2) H}) Vo 2)! R
such that

1. .
L (w;u;ug; 5 2)= 5 u uzj?d + ag(w;u; )+ ax(w;u;up; 2)

in which ai(w;uy; ) and ax(w;uy; ») are given by

aj(w;u; )="1 rur f rwr
1 2

ax(wiujuz; 2)= "2 ruzr faz "1 rur 2+ rwr 2
2 2 2 2

The functions 2 Hé() ; 2 2 Vo( 2) are called the adjoint variables associated tou; u; re-
spectively. It will be useful to observe that when (u; uz) coincides with (u"; uy) (the solution of
(4.9)), we have

L (w;u¥;uss; 2)=J(w) 8 2HG(); 22 Vo 2): (4.15)

Clearly, the function L is di erentiable with respect to all its variables. In what follows, for all
(w;u;uz; ; 2)2Va( 2) HE()  Va( 2) H3()  Va 2); the partial derivative of L with
respect to the variablew; u; uy; ; » are denoted, respectively, by

@ @eaea . @

Qw @u @y’ @ @2
They belong, respectively, to the spacegV2( 2)) ,(Hg()) .(Va( 2)) , (Hg()) and (Va( 2))
As aresult, fora xed 2 H}() and ,2 Va( »); by taking the derivative of the relation (4.15)

with respect to w; we can say, by applying the chain rule formula, that for allh 2 V,( ») we
have,
W
R qw);hi - = h%\;w; uv;uy;; 2)ihi+ %(w; utiuy’ z);ci:N(h)i
Q@ duz

+ h@(w; uv;ugs s o) d—w(h)i
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or equivalently,
h Yw); hi = h%\;w;uw;u‘év; . o) hi+ h%J(W; uvoud; ;o o) e+ %(W; uvud; ;o o) el
where (4"; #}) is de ned by (4.14).

Now, suppose that we nd ( ; %) for which the equations

Q(W; uv;ud; Y %) =0 and g(W; uV:u

@u @u

are satis ed for all w2 V,( 2), this will implies that

NE

.w.
1

Jqw) = %’\A}W;uw;u‘g; Y 8w 2 Vy( »):

To investigate the existence of such functions, we need to write down, for an arbitrary(; 2) 2
H3()  Va( 2); the expression of

Q Q
@J(w; uv;ud; s 2) and @—u(w; uviug; o o)
By a direct calculus, we nd, for all w; 22 Vy( 2), 2 Hé() ,
@' WL WL T = n w n w w w 2Hl
h—@u(w,u sUss 5 2); Vi = 1 T rv " r-3 rv+ (u uy)v 8v o()
2
@' W WL . H— " w w w .
H@U(W,u JUss s 2) Vel = ") r 5 rvs (u uy )va 8v2Vy 2):

As a consequence, the functions" and Y% that we are looking for, must satisfy the following

system of equations:

rv="; r % rvy ("  u)v 8v 2 H3()
2 (4.16)

2 rvy= (uY uY)v, 8vs 2 Vo( 2):

Clearly the previous system of equations is well-posed. Therefore the function”, % are well-
de ned. Note that, in the literature (see [73, 47]), the previous equations are known as the adjoint
system. To summarize, we have the

Lemma 4.4.4. For all w2 Vy( »); there holdsJqw) = ¥ 1j ,» where ¥; 3 are given by
Equation (4.16).

Proof. Take w 2 V,( »): From the de nition of “ and ¥%; we deduce that for allh 2 V,( »);
we have

hr Jqw); hi = h%\;w;uw;u‘év; W WYy hi:

Now, let us compute explicitly the value of h%l\;w; u;uz; ; 2);hi forany u;uy; ; 2: Easily, one
nds that

Q .
h——(w;u;uz; ; 2);hi=  rhr (2 )
aw 2 E
This shows that Jqw) = 1j , 2 andthen the resultis proved.

We have the following optimality result
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Corollary 4.4.1. We have the equivalence
[w 2 Va( ,)issuchthatdqw )=0 w 2 Mj:

Proof. Let us start with the proof of the direct implication. Suppose that there exists some
w 2 Vy( ) suchthat %W i .= % 1 By taking the sum of the variational formulations of (4.16),
we deduce that

r W rv=0 8v2H}):

This means A-( ¥ ) = 0 and then, thanks to Assumption 4.2.1, ¥ = 0: This implies that
¥ =0 and then by using the second equation of (4.16), thau” = u% on : This shows that

w is a minimizer of J: The reverse implication is a consequence of the fact that itv, 2 M; we
haveJ(w ) =0 and thenu” = uj on : Thisimpliesthat % =0 andthat " =0:

We end this paragraph with the following result that can be useful to prove the convergence of
the classical gradient descent algorithm.

Corollary 4.4.2.  The function J%: V,( 2)! Vy( ») is Lipschitz continuous.

Proof. Starting from (4.9), we deduce thatw 7! u"; w 7! u% are Lipschitz continuous. Inserting
this into (4.16), we obtain the result.

4.4.4 Tikhonov regularization of the problem

Tikhonov regularization, which was originally introduced in [137], is a classical method to regular-
ize a convex optimization problem. Classically, this method is used in the context of regularization
of ill-posed inverse problems (see [76] and the references therein). In this paragraph, we study
the convergence of such regularization when it is applied to our problem. For> 0, we introduce
the functional J :V2( 2)! R dened by

J (W)= J(w)+ krwkiz ,,  8w2Vy( o)

SinceJ is convex and > 0, the functional J is strictly convex and coercive. Therefore the
minimization problem
min  J (w)

w2Va( 2)
has a unigue solution that we denote byw : Our goal is to study the behaviour ofw as tends
to zero. One may expect thatw converge to one of the solutions (4.8). If this is the case and
because the problem (4.8) has an in nite number of solutions, it will be interesting to characterize
the particular solution to which w converges. Our ndings are given in the following

Proposition 4.4.3. The sequencgw ) converges when ! 0 to w; the smallest minimizer of
J:

Proof. From the de nition of w ; we can write that
kr wkize ,y 3 (w) J(wy)=Jd(wy)+ kr wykpz ,) = kr wykpzo ,):

This means that for all 0 < ; there holds kr w ki 2( ,) kr w;k 2 ,): As a result (w ) is
bounded in V,( »): This implies that, up to a sub-sequence,(w ) converges, as tends to 0,
weakly in Vo( 2) to somewg 2 V,( »): For the reader convenience, this sequence is also denoted
by (w ): Now, let us prove that wg is a minimizer of J: To do that, we start by observing that for
all > 0, we have

0 Jw) Jw) Jw)= krwki
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This shows that (J(w )) converges to zero as tends to zero. On the other hand, by using the
result of Lemma 4.4.1, we know that(J (w )) converges toJ (wg). Consequently,J(wp) =0 and
then wg is a minimizer of J.

The next step is to show that the convergence ofw ) to wg occurs in the strong sense and that
Wo = wj: To do so, we observe that

kr w ki 2,y kro wykpz ) =) Iimlsgpkr W kpz ) kroowykpao

W W gin Va( 2) =) ke wokiz( 5 liminfkr wokgz R

This implies that kr wok 2( ,) kr wjk 2 ,). Thanks to the de nition of w;; we deduce that
Wo = Wy
With this in mind and with the help of the previous inequality, we conclude that

Ii!mokr W k|_2( 2) = kr W; k|_2( 2):

SinceVy( ») is a Hilbert space, it follows (see [40, Proposition 111.30]) thatw ! wj in Va( 2):
By noticing that w; is independent of the considered sub-sequence, the result is then proved.

In conclusion, we can say that the Tikhonov regularization allows us to obtain a stabilized version
of the optimization problem (4.8). This will be used in order to introduce a stabilization of the
nite element discretization of the problem (4.8), but in that case the stabilization parameter
must be chosen as a function of the meshsize. This will be detailed in Y4.5.3. Note that the same
idea was employed in [2].

4.5 Numerical discretization of the problem

In this part, we are concerned with the numerical approximation of (4.8) by means of the Finite
Elements Method. To do so, we start by presenting some details and notations about the sequence
of meshes that will be used.

4.5.1 Mesh assumptions

Assumption 4.5.1. Let T be a regular (see [55]) mesh of composed by triangles (resp. tetra-
hedrons) whend = 2 (resp. d = 3). We suppose that

each element ofT belongs eitherto ; orto »:

T does not have any hanging node on: each vertexv of T that belongs to ;is a common
vertex betweenT1; T, 2 T such thatT; 1andT,  »: See Figure 4.2.

Let (Th)h> 0 be a family of meshes of such that T}, satisfy Assumption 4.5.1 for allh > 0. The
subscript , stands for the meshsize. For alk 2 N ; we set

VE():= fu2 H3() jur 2 PX(T) forall T 2 Tho:

Here PX(T) stands for the space of polynomials (ofi variables) of degree at most equal tck: In
the same way, we de ne the spaceS/!‘;h( 1), 1 =1;2, such that

VE ()= fu2 HY( )jur 2 PK(T) forall T2 Thandu=0on @ in g:

Remark 4.5.1. Since for all h > 0 the meshTy is conforming to , the spacev!fh( i) coincides
with fu; ;u2 VE() g,i2f12g.

 This is a consequence of the fact that the norm of a Banch space is weakly lower semicontinuous.
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Figure 4.2: Examples of meshes without (left) and with (right) hanging nodes.

4.5.2 Discretization strategy

For h> Oandw 2 V() ; de ne the functions u}y 2 Vﬁ() and uyy, 2 v'g;h( 2) as the solutions
to the following well-posed problems:

1 ru rve= fvp+t T W or v 8vh 2 VE()
1 2

2 ruzp I Vop = fovon + "1 ruy rvop r'w r Van; 8vap 2 V'§;h( 2):

2 2 2 2
(4.17)
Then introduce the projection operator £ : Va( 2) ! V&, ( 2) such that for all w2 Va( 2),

E(w) is de ned as the unique element of\/'§;h( 2) that satis es the problem

roKw) rovap = rw r vop 8van 2 VEn( 2):
2 2

Note that we have the estimate
ki K(W)kiz( ) Kro wkiz( ) (4.18)
From the de nition of (w); one can easily see that for allw 2 V,( ») we have the identities

k k
uh“(w) = uf and uz;hh(w) = ugp: (4.19)
Now, let us turn our attention to the discretization of the optimization problem (4.8). The natural
way to do that is to replace it by the problem

inf 30 (wp) = 1 ju  ushj?d: (4.20)

thvg;h( 2) 5

One can proceed as in the proof of Lemma 4.4.2 to show that the objective functiomg Vhk! R
(de ned in (4.20)) is convex and continuous. Unfortunately this result is not su cient to justify
that the problem (4.20) is well-posed forh > 0 small enough.

The di culty comes from the fact that, even under Assumption 4.2.1, we do not have the discrete
version of Lemma 4.3.2 since we can not guaranty that the problem

Find up 2 VE() such that Fup rve= fvyp  8vy 2 VK()
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is well-posed even foh small enough. To cope with this di culty, an idea is to use the Tikhonov
regularization approach (see Y4.4.4) but with a regularization parameter that depends oh: This
idea was originally proposed in [86] for the case of elliptic equations and then, was used by Assyr
Abdulle et al. in [2] for the case of problems with sign-changing coe cients. Here, we explain
how to adapt it to our case. The idea is to replace the objective functionJg‘ in (4.20) by the
function 3" : V&, ( 2) ! Rs such that for all wy 2 V&, ( 2), we have

M) = 5 U (ke

, Where (h) is a positive function of h that tends to zero ash goes to0. Since (h) > 0 for
all h> 0; the function J" is strictly convex and coercive. This guarantees that the optimization
problem

min 3" (wp) (4.21)

wh2VE, ( 2)

has a unique solution that we denote byw,.,: All the di culty now is to choose the function  (h)
in order to be able to ensure the convergence dfw,.,) to a solution of (4.8) ash tends to zero.
This is the main goal of the next paragraph.

4.5.3 Convergence of the method

The starting point of our discussion is the following

Lemma 4.5.1. We have the estimate

1 . .
InWin) 5 Uy’ ugpiPd + (hkr wykEy ) (4.22)
wherew; is de ned in (4.11).

Proof. Starting from the fact that ,'ﬁ(wJ) 2 V'§;h( 2) and using that w,, is the unique solution
of the optimization problem (4.21), we conclude thatJn(wy.,)  Jn( n(w;)): On the other hand,
the identity (4.19) allows us to write

1 .
InChw) = 5 jup®  ughi®d + (ke n(wy)kPz )

The Lemma is then proved by recalling the estimate (4.18).

In order to simplify notations, for h> 0and w 2 V,( »); we denote byAn(w) the real number

1
Ah(W)z Eku‘{,\’ U\év;thZ() .

From (4.19), we know that for all w 2 V( 2); we haveAn(w) = JJ( K(w)): The main result of

this paragraph is the following theorem.

Theorem 4.5.1. Assume that the function (h) can be chosen such that the sequencés(h))
and (Ah(wJ): (h)) converge to zero ash tends to zero. Then,

the sequencgw,.;,) converges, ash! 0, in Va( 2) to w;:

The sequences(u:]vk?“) and (u\gﬁ“) converge respectively inH3() and Va( 2) to Ey(us)
and u, where (uq; uy) is the solution of (4.4) and Ey (u1) is the harmonic extension ofu;:
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Proof. The strategy of proof is similar to the one of Proposition 4.4.3. To simplify notations,
we denote byuk" 2 V() and us" 2 V&, ( ») the functions

Wieh

u and ush = ki

kh —  Wkh
= uh

In order to make the proof as clear as possible, we divide it into four steps.

Step 1. weak convergence of (Wk;h);(uk;h) and (u'g’h): Starting from the estimate

kr WienkZ2( 5y In(Wign)= (h)  An(w;)= (h)+ kr wykZ,

and using the fact that Ap(w;)= (h) tends to 0 ash vanishes, we infer that(w,.,) is bounded in
V2( 2): This implies that, up to a sub-sequence,(w,.,) converges weakly to somevg 2 V() :
For the reader convenience, this sub-sequence is still denoted Kyv,.,).

Since the problem (4.17) is elliptic, we know that the sequencdu®™) (resp. (u'g;h)) converges
weakly in H3() (resp. in Va( 2)) to someu 2 H3() (resp. uz 2 Va( »2)). Using the density
of VE() (resp. VE,( 2)) in H3() (respVa( 2)), we infer that u = u™ and u; = u3® (these
functions are de ned in (4.9) by replacing w by wp).

Step 2: Wp is a mnimizer of J . The compactness of the embeddindd™?()  L?() and the
continuity of trace operator, ensures that

k:h k;h Wo Wo
u™", u’; bou Uy

in L2() ash! 0. By noticing that

1 . h
5 U uPd = 30W) (i) (M)ARW)= (h)+ kwykEy )

Wo —

and using that (h); Ap(w;)= (h) ! 0 ash goes to zero, we deduce thau™®  u¥ 0: This
shows that wg is a minimizer of J:

Step 3: strong convergence of  (wy.,) to w;. Thanks to the fact that Ay(w;)= (h)! Oas
h! 0 and by means of the estimate

ke WiepkZa( L In(Wien)= () An(wy)= (h)+ kr wykZ, );

We can write

limsupkr wy.pnkpze ,) kro wykpz ,y:
h! 0

On the other hand, since(wy.,) converges weakly towp ash! 0, we infer that

kr WOkLZ( 2) I|r|p||l8f kr Wi:h k|_2( 2):

This implies that kr wok 2 ,y kr wyk 2 ,): Sincewp is a minimizer of J; we conclude that
Wo = w;: Furthermore, we also deduce that

t|1i!m0kl' Wk;h k|_2( 2) = kr WOkLZ( 2):

As a result, by applying [40, Proposition 111.30], we infer that (w,.,) converges, strongly, in
Va( 2) towp= wj:

Step 4: strong convergence of  (u*") and (u'g;h): The ellipticity of Problem (4.17), combined
with the strong convergence of(w,.,) to w;, imply the convergence of(u®M) in H3() to u"s and
of (US™) in Va( 2) to uy?:

The Lemma is then proved by using thatu"s = Ey (uy) (see Proposition 4.4.1) and by observing
that these limits are independent of the chosen sub-sequences.
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The rest of this paragraph is devoted to explain why it is possible to choose the function (h) in
such a way that (h) and Ap(w;) converge toO ash tends to O: To do so, one needs to study the
behaviour of A,(w;) ash tends to 0: For all s 1; we denote byPH®() the space

PHS():= fu2Hj() suchthatu; , 2 H3( ;) fori=1;2g:
Before studding the behavior of An(wj); let us start with the following

Proposition 4.5.1.  Assume that the solutionu of (4.1) belongs toPH*$() with s> 0. Then
there existss s°> 0 that depends only on the geometry of , and 2 (0; 1] that depends only
on the geometry of such that

ku"s u\r/:'Jng() ChP’kuk and  kuy’ u\gﬂ]kvz( ) ChpokuzkH1+po( RY

PH* PO()

ku"s  up’kizy  ChP™* Kukyupoy  and  kup®  uphkiac ) ChP™* Kugkyu g

with C independent ofh and p®= min( s k):
Proof. Along this proof, C denotes a positive constant whose value can change from line to

line but does not depend onh: Given that u"s = Ey(u;) (see Proposition 4.4.1) and since
us 2 H*S( 1) then, by means of classical regularity results, we can say that there exis@<s® s

such that u™ 2 PH*S() : Given that Uy’ = Uz 2 H( 2) HS°( ) and since the problem
(4.17) is elliptic, we obtain the estimates (see [55])

ku"s  up’ Knz() ChpokukPH1+po() and kuy®  UzphKy,( ) ChpokuzkH1+po( R

By applying the classical Aubin Nitsche Lemma (see [55, Theorem 3.2.4]), we infer that there
exists 0 < 1 such that

ku"s upPkiz)  ChP* Kukyupo, andkuy’  updkizc 5y  ChP* Kugkiuepo

Remark 4.5.2. It is worth to note that the value of s° depends only on the regularity of the
harmonic extension of the functionus: In particular, if 5 is smooth or convex then we have
0— o
s =s:

Now we have all the tools to study the behaviorA,(w;) ash vanishes.

Proposition 4.5.2.  Assume thatu the solution of (4.1) belongs toPH*S() with 0<'s: There
exists0<s® s that depends only on the geometry of , and 2 (0; 1] that depends only on the
geometry of such that ;

An(w;)  Ch¥*
with C independent ofh and p®= min( s k):
Proof. Applying the multiplicative trace inequality (Proposition 4.8.1) and using the estimates
of Proposition 4.5.1 yield the estimates

ku"s  up’kZ,  Ch#* kuk

By observing that

kup?  uppkPay  2(ku"s ugkE, + kup  uppkla )

PH* P0() and ku‘éVJ u\g}‘]kfz() Ch2P™ kuzthpo( Ry

we conclude thatAp(w;) Ch%* :

The previous proposition gives us a simple way to choose the function(h) in order to ensure
that ( (h)) and (An(w;)= (h)) tend both to 0 ash tends to O:

Proposition 4.5.3. Any function (h) of the form (h) = Ch% with C > 0 independent ofh
and 0<q< 2p°+ satis es the conditions of Theorem 4.5.1.
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4.6 Numerical experiments

In this section we turn our attention to the validation of the numerical method that we have
proposed. We limit ourselves to the case of 2D domains. The numerical results that we present
below have been obtained using the libraryFreeFem+#. To solve the optimization problem
(4.21), we used theBFGSunction of FreeFem++

Since the well-posedness of (4.1) depends on the shape of the interfacewe test the performance
of our method in three di erent con gurations. In the rst one, is at, in the second one, is
circular interface and in the last one, has a corner.

4.6.1 Flat interface

In this paragraph, we take
1= f(xy) 2(0;1=2) (0;1)g and > =f(xy)2(1=2;1) (0;1)g

(a at interface and a domain which is symmetric with respect to ). We consider a mesh
sequence of satisfying Assumption 4.5.1 (see Figure 4.3).

Figure 4.3: An example of mesh.

It has been shown in particular with the T-coercivity approach that A- is an isomorphism if and
only if -~ 6 1. Inthe rest of this paragraph we suppose that - 6 1. To test the performance
of our method, we work with the same example considered in [2, 51]. De ne the functioru .
such that

(
(x2+ bx)sin(y) ifx< 1=2 1 "+ 2

u(x;y) = ] . ;  wherea= ———— and b=
a(x 1sin(y) ifl1l=2<x

2(-+1) 2(-+1)

and consider it as an exact solution of (4.1). This is possible becausdiv("r u ) 2 L?() : The

source termf is computed accordingly. Sinceu 2 PH?() and since » is convex, we can take

s= s%=1 in Propositions 4.5.1 and 4.5.2.

Furthermore, given that is convex, we have = 1: As a result, if we use the LagrangeP 1
nite elements, i.e. p=1, a direct application of Proposition 4.5.1 guarantees that by choosing
(h) = Ch9with 0< q < 3, the method is convergent. In our experiment, we take (h) = 0:002h?:

We work with two values of contrasts «= 2and - = 1:001 The behavior of the L? and H}

errors with respect to the exact solution in theses two con gurations are given in Figure 4.4.

We observe that in both situations, the method is of order2 in the L2 norm. We also remark that

the order of convergence in theH3 norm is greater than 1: In the particular case - = 1:001,

we note a super-convergence in thdﬁé norm.

2see https://freefem.org/.
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Remark 4.6.1. The constantC in (h) = Ch% must be adjusted by the user according to the con-
trast - in order to obtain a fast convergence of the method. Clearly this depends d&m w; k 2( ,y:
When the solution is such that its normal derivative jump across the interface is large (his the
case when - approaches 1), one expects thatkr w; ki 2( ,) must be large and thenC must be
chosen small. It is also important to note that that whenh is small enough the choice o€ does
not a ect the convergence of the method.

. . _ _ _ P—
Figure 4.4: Behavior of the relative L? and H(l) errors with respect to the meshsizeh N. Here
N is the total number of nodes of the mesh.

4.6.2 The case of a circular interface

In this paragraph, we consider the case where the domains; and , are such that ;= fx 2
R%jjxj < 1lgand , = fx 2 R?j1 < jxj < 2g: In Proposition 4.8.2, we prove that A is an
isomorphism - 2f 1g[ S with S := f (1 (1=2)*")=(1+(1=2)") j n 2 N g: For this we
shall limit ourselves to the case where - = 2: Given that both 5 and are smooth, we infer
that =1 and s’= s: Again, we are going to work with the LagrangeP1 nite elements (i.e.
p=1). By taking f as the source term associated to the function

(
u.(xy)=

24D ifr< 1 a
r 2 o , with r= x2+y%a= 1=-andb=a 1
afr 2)° ifl<r< 2

and by taking n = 0:002h?: We obtain the results displayed in Figure 4.5. We observe that the
method converges with optimal rate.
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Figure 4.5: A member of the mesh sequence (left). The behavior of the? and H3 errors with
respect to the meshsizeh N where N is the number of nodes of the mesh(right).

4.6.3 The case of an interface with corner

Now, we consider the con guration where the interface has a corner. More precisely, we assume
that = fx 2 R?jjxj < 1and arg(x) 2 (0; =2)gand 1 := fx 2 jarg(x) 2 (0; =4)g (see
Figure 4.6). In such con guration, it can be proved (see [74]) thatA- is an isomorphism if and
onlyif -2 R n[ 3; 1] Furthermore, in contrary to the two previous cases, in this con guration
the solution of (4.1) can be very singular near the origin. Indeed, it was proved in [49, Chapter
2] that the regularity of the solution of (4.1) depends in - and can be very low as - approaches
[ 3; 1] To be more complete, one can show that the optimal regularity of the solution of (4.1)
is PHI*<e( 0)() \ H}() where g is the solution of

- tan(3 = 4):tan( = 4) (423)

that has the smallest positive real part. Note that one can show (see [49, Chapter 3]) that all
the solutions to (4.23) are real-valued. In the particular case where - = 5; one nds that

o 0:458 As mentioned previously this regularity result is optimal. Indeed, one can check that
the function

(sin( )=sin( = 4) 2 (0; =4);

Celn JEL N Ga(( p=sin@ =4 2(=4 )

satis es div("r u ) 2 L?() : Observe that u s, 2PH °" forall 0< : This means thatu , 2
PH32: Now, given that and , are both convex, owing to Proposition 4.5.1, we can say that
by choosing , = Ch% with g < 3 o; the convergence of the method can be guaranteed. The
behaviors of the relative L? error and of the semiH§ one for the case , = h*3 are given in Figure
4.6. The expected rate of convergence is equal top  0:458 for the case of the semHé error
and is equal to2 o 0;916for the case of theL? one. In contrary to the previous two cases, the
rates of convergence of these errors are not optimal but close from the expected ones.
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Figure 4.6: On the left: a member of the mesh sequence. On the right: the behavior of the?
and H} errors with respect to the meshsizen N whereN is the number of nodes of the mesh.

4.7 Concluding remarks

In this chapter, we have presented a new numerical method for approximating the solution of the

scalar transmission problem. We proved that the method converges without any restriction on

the mesh sequence used or on the regularity of the solution. This result has been illustrated by
numerical experiments. We mention some issues/question that can be studied in future work:

It will be interesting to study how the function |, should be chosen in order to accelerate
the convergence of the method.

" How to extend this extend to the case when the density function is critical? Is it possible
to extend this method to the case of Maxwell's equations?
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4.8 Appendix
Proposition 4.8.1.  [39, Theorem 1.6.6] Let be a Lipschitz domain ofRY (d = 2;3). Then the
estimate - o
=, = l
kUkLZ(@) CkUkLZ() kUkHl() 8u2H ()

holds with 0 < C independent ofu:

Proposition 4.8.2. Let 1= fx 2 R?jjxj< 1gand = fx 2 R?j1< jxj < 2g. Assume that
«2f 1g[ S with ( )

1 (1=2)>
=27 5\

S = YT 12 j

Then the operator A« : H3() ! H3() is an isomorphism.

Remark 4.8.1. Note that in accordance with the results concerning the Neumann-Poincaré op-
erator, we observe that 1 is an accumulation point of S .

Proof. [50, Theorem 1.3.3] guarantees thatA- is Fredholm of index O when - & 1. Therefore
it su ces to study its kernel. Let u 2 H(l)() be such thatA-u=0:Thenuy == u; , anduz = u; ,

satisfy 8
3 uy=0 in ;4

U2::O in 2
ur(d; )= uz(l; ) and @ui(l; )= -@u(l; ) 8 2[0;2 ]

Since the problem is invariant with respect to , by Fourier decomposition for u1, u, we have the
representations:

us(r; )= * aarmd"  and ua(r; ) = bIn(r=2) + § b((r=2)"  (r=2) ")e" ;
n2N n2z

where an; by 2 C. Using the transmission conditions, we get

ap= bIn(1=2); 0=1ly -
an = bh((1=2)" (1=2) "); A =b((1=2)"+(1=2) ") »; n2N
0=m(1=2" (1=2) "); 0=m(1=2)"+(1=2) ") - n2N:

Therefore we deduce thatA- is injective when - 2 S .
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5.1 Introduction

The present chapter inaugurates the third part of this thesis, which aims to present a detailed
study of 3D (time harmonic) Maxwell's equations in presence of a negative material. Our goal
is explain how the study of the scalar problems associated to the dielectric permittivity" and
the one associated to the the magnetic permeability can be used to study the 3D Maxwell's
equations. Unlike the study of scalar problems with changing coe cients which has been the
subject of many contributions, the case of the 3D Maxwell equations has been treated in only
two papers [24, 118]. While the work done in [118] deals with the case where the interface be-
tween the positive and negative material is smooth (clas<C?), the results obtained in [24] are
valid in the general case (i.e., when the interface separating the two materials is Lipschitz-regular).

In the present work, we consider the con guration where the interface that separates the positive
and the negative material has a conical point (more details will be given later). Therefore, the
only work that can help us in our study is the one presented in [24]. What we can retain from
this work is the following fact: if the contrasts in " and do not take critical values, the Maxwell

equations are well-posed (in the Fredholm sense) in the classicaP framework. The main tool

used to establish this result was theT-coercivity technique. When one of the functions” or is

critical or when both of them are critical, the study of the Maxwell's problem has not been done
yet.

In this chapter, we will consider the case where the functiori' is critical (i.e. propagating singular-

ities exist for the scalar problem associated with') and where the function does not take critical

values. More precisely, our goal is to explain why, in this con guration, the classical framework
is no longer appropriate to study Maxwell's equations and, more importantly, to explain how
to combine Mellin's analysis in Kondratiev spaces with the T coercivity technique to derive an

appropriate functional framework for Maxwell's equations in such con guration. We emphasize
that due to the non standard singularities we have to deal with, the results we obtain are quite
di erent from the ones existing for classical Maxwell's equations with positive materials in non
smooth domains [15, 60, 16, 66, 62]. The case where both functioisand take critical values

will be studied in the next chapter.

The outline is as follows. In the remaining part of the introduction, we present some general
notation. In Section 5.2, we describe the assumptions made on the dielectric constanty

Then we propose a new functional framework for the problem for the electric eld and show
its well-posedness in Section 5.3. Section 5.4 is dedicated to the analysis of the problem for
the magnetic eld. We emphasize that due to the assumptions made orf', (the contrast in

" is critical but the one in is not), the studies in sections 5.3 and 5.4 are quite di erent. We
give a few words of conclusion in Section 5.5 before presenting technical results needed in the
analysis in two sections of appendix. The main outcomes of this work are Theorem 5.3.1 (well-
posedness for the electric problem) and Theorem 5.4.1 (well-posedness for the magnetic problem).

All the study will take place in some domain of R®. More precisely, is an open, connected
and bounded subset ofR® with a Lipschitz-continuous boundary @ . Once for all, we make the
following assumption:

Assumption 1. The domain is simply connected and@ is connected.

When this assumption is not satis ed, the analysis below must be adapted (see the discussion in
the conclusion). For some! 6 0 (! 2 R), the time-harmonic Maxwell's equations are given by

cul E i H =0 and cul H+i!"m E=J in : (5.1)

E and H above are respectively the electric and magnetic components of the electromagnetic
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eld. The source term J is the current density. We suppose that the medium is surrounded
by a perfect conductor and we impose the boundary conditions

E =0 and H =0 on @ ; (5.2)

where denotes the unit outward normal vector eld to @ . Note that non homogeneous bound-
ary conditions can be considered as well and that the results we obtain below also allow one to
deal with the case of impedance boundary conditions (see Remark 5.3.3). The dielectric permit-
tivity " and the magnetic permeability are real valued functions which belong toL* () , with
L 1211 () (without assumption of sign). Let us introduce some usual spaces in the study
of Maxwell's equations:

L2() = (L *() 3
H() = f' 2HY) j' =0on@g
Hi() = f 2HY)j ‘'dx =0g
H(curl ) := fH 2L?0) jcurl H 2 L%() g
Hy(curl) = fE 2 H(curl )jE =0on@g
and for 2 LY () :
Xt() = fH 2 H(curl )jdiv( H)=0; H =0on@g
Xn() = fE 2Hp(curl )jdiv( E)=0g:

We denote indistinctly by (; ) the classical inner products ofL?() and L?() . Moreover, k k
stands for the corresponding norms. We endow the spacds (curl ), Hy (curl ), X1( ), Xn ()
with the norm

K Kpgoun y = (K K + keurl  k?)172:

Let us recall a well-known property for the particular spacesX (1) and X (1) (cf. [139, 8]).

Proposition 5.1.1.  Under Assumption 1, the embeddings oK (1) in L?() and of Xy (1) in
L2() are compact. And there is a constantC > 0 such that

kuk C keurl uk ; 8u2Xt()[ Xn(D):

Therefore, in Xt (1) and in X (1), keurl  k is a norm which is equivalent tok Ky cur -

5.2 Assumptions for the dielectric constants :

In this document, for a Banach spaceX, X stands for the topological antidual space ofX (the
set of continuous anti-linear forms onX).

In the analysis of the Maxwell's system (7.5)-(7.6), the properties of two scalar operators associ-
ated respectively with " and  play a key role. De ne A~ : H3() ! (H3()) such that

At G = 'rtorTodx; 8% 92 HY() (5.3)
andA :HL() ! (Hi()) suchthat

a4 4= r'orodx; 8 %2 HL():
Assumption 2. We assume that is such thatA Hi () ! (Hi ()) is an isomorphism.

Assumption 2 is satis ed in particular if  has a constant sign (by Lax-Milgram theorem). We
underline however that we allow to change sign (see in particular [68, 27, 20, 24] for examples
of sign-changing such that Assumption 2 is veri ed). The assumption on ", that will be respon-
sible for the presence of (hyper)singularities, requires to consider a more speci ¢ con guration as
explained below.
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5.2.1 Conical tip and scalar (hyper)singularities

We assume that contains an inclusion of a particular material (metal at optical frequency,
metamaterial, ...) located in some domainM such that M (M like metal or metamaterial).
We assume that @ is of classC? except at the origin O where M coincides locally with a
conical tip. More precisely, there are > 0 and some smooth domain$ of the unit sphere
% := fx 2 R3jjxj = 1g such that B(O; ) and

M\ B(O; )= K\ B(O; ) with K:=fr jr> 0, 2$%g:

Here B (O; ) stands for the open ball centered atO and of radius . We assume that" takes the
constant value" < 0 (resp."+ > 0)in M\ B(O; ) (resp. ( nM)\ B(O; )). And we assume
that the contrast - := " =", < 0and $ (which characterizes the geometry of the conical tip)
are such that there exist singularities of the form

s(x) = r 2+

( x=ixj) (5.4)
satisfying div("r s) = 0 in K with 2 R; 6 0. Herer := jxj while is a function which is
smooth in$ and in S>n$". We emphasize that since the interface between the metamaterial and
the exterior material is not smooth, singularities always exist at the conical tip. However, here
we make a particular assumption on the singular exponent which has to be of the form 1=2+ i
with 2 R; 6 0. Such singularities play a particular role for the operator A+ introduced in
(5.3) because they are just outside H'. More precisely, we haves 2 H() butr s2 H() for
all > 0. With them, we can construct a sequence of functionau,, 2 H%() such that

8n 2 N; kupkyiy =1 and n!Iirpl kdiv("r un)k(H%()) + kupk =0:

Then this allows one to prove that the range of A- : Hcl)() ! (H(l)( )) is not closed (see
[28, 20, 30] in 2D). Of course, for any given geometry, such singularities do not exist when > 0

because we know that in this cased- : H3() ! (H3()) is an isomorphism. On the other hand,
when

$ = f(cos cos; sin cos; sin )j ;o =2 < =2+ gforsome 2 (0; )
(5.5)
(the circular conical tip, see Figure 5.1), thanks to Theorem 3.4.6, we know that sucls exists for
w2 (1, I )y(resp. ~2( | ; 1)) when < = 2(resp. > = 2). Herel is the constant
de ned by
= 2F1(172,172, 1 co8( = 2)) oF1(3=2,3=2, 2 sin*( = 2)) _ 56
T SF1(1=2;1=2; 1; sin?( = 2)) 2F1(3=2; 3=2; 2; co( = 2)) ’ (5.6)
where 7F; stands for the Gauss's hypergeometric function. Note that we havd = 1=I
andl 2 (0;1) for 2 (0; =2). Additionally, there holds for example 1 -, 0:218 as well as
lim, -1 =21,lim g1 =0%,lim, | =+1.

For a general smooth domain$ ~ S? and a given contrast -, in order to know if such s exists,
one has to solve the spectral problem
Find ( ; )2 HYS?)nf0og C such that

"rs rs os= ( +1) " Oods; 8 %2 HYSH;
e e

(5.7)

and see if among the eigenvalues some of them are of the form= 1=2+i with 2 R; 60.
Above, r g stands for the surface gradient. With a slight abuse, when' is involved into integrals
over S?, we write " instead of "( ). Note that since " is real-valued, if = 1=2+1i is an
eigenvalue, we have ( +1) = 2 1=4, sothat = 1=2 i is also an eigenvalue for the
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Figure 5.1. Left: the domain  with the inclusion M exhibiting a conical tip. Right: sju
for the circular conical tip with = =6 (the critical interval is then approximately given by
[ 1; 0:1032) and - = 0:36. In this situation, we have 2.

same eigenfunction. And since ( +1) 2 R, we can nd a corresponding eigenfunction which
is real-valued. Let us mention that this problem of existence of singularities of the form (5.4)
is directly related to the problem of existence of essential spectrum for the so-called Neumann-
Poincaré operator [98, 127, 36, 93]. A noteworthy di erence with the 2D case of a corner in the
interface is that several singularities of the form (5.4) with di erent values of j j can exist in 3D
[96] (this depends on" and on $).

For pedagogical purposes, we shall suppose that the functioh is such that the problem (5.7)
has exactly two eigenvalues that belong tdf 2 Cj<e( )= 1=2gnf 1=2g that will be denoted
by = 1=2 i with 2 R,: Furthermore, we are going to suppose that are simple (of
algebraic multiplicity (see Y2.4.5) equal to one) eigenvalues of (5.7). In this case, using the results
of Y2.6.2, one can show that the the operatoA- has exactly two propagating singularities that

have the forms (x) = r ( x5jXj) in which is real-valued eigenfunction of (5.7) associated to
such that k ky1(ey =1 and satisfying o j j°> 60: Exchanging by if necessary, we
can set so that
"j j2ds > O (5.8)
2

Note that the previous condition is equivalent to suppose thats™ is outgoing (with respect to
the Mandelstam radiation principle (see Y2.6.2)). For the circular conical tip introduced in (5.5),
say for < = 2, we nd that the above assumptions are satis ed for contrasts - 2 ( 1Y; | )
with a certain 1Y 2 (1 ;1). For -2 ( 1; 1Y), the number of hypersingularities is larger than
two (counting ).

Remark 5.2.1. In the case where several propagating singularities exist (even with logarithmic
growth near the origin), the analysis below can be adapted. If the reader is interested in the
treatment of this con guration, we refer him to the next chapter.

To x notations, we set
s ()= (nr 2271 ( xsxj) (5.9

In this de nition the smooth cut-o function is equal to one in a neighbourhood o and is
supported in[ ; ]. In particular, we emphasize thats vanish in a neighbourhood of @ .

In order to recover Fredholmn property for the scalar problem involving ", an important idea

is too add one (and only one) of the singularities (5.9) to the functional framework. From a
mathematical point of view, working with the complex conjugation, it is obvious to see that
adding s* or s does not change the results. However physically one framework is more relevant
than the other. More precisely, we will explain in Y5.3.7 with the limiting absorption princi-
ple why selectings™, with  such that (5.8) holds, together with a certain convention for the
time-harmonic dependence, is more natural.
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5.2.2 Kondratiev functional framework

In this paragraph, adapting what is done in [30] for the 2D case, we describe in more details how
to get a Fredholm operator for the scalar operator associated with'. For 2 R andm 2 N, let
us introduce the weighted Sobolev (Kondratiev) spacev™() (see [100]) de ned as the closure
of C& (" nfOg) for the norm

O 1 1:2
X o
k' k\/m() = @ er ] m+ @I kEz() A
jjom
Here CO1 (" nfOg) denotes the space of in nitely di erentiable functions which are supported in
“ nfOg. We also denoteV*() the closure ofCy ( nfOg) for the norm k ky(y . We have the

characterisation
vig)= ' 2vi() j' =0 on@ g:

Note that using Hardy's inequality

tju(n)j?
r2

1
r2dr 4 juYr)j?r@dr; 8u 2 C{[0;1);
0 0

one can show the estimatekr ' k Ckr'k forall* 2 C}( nfOg). This proves that
V§()=H 3() . Nowset > 0. Observe that we have

Vi) HO VRO sothat  (V1()) (H50) vt )

De ne the operators A.  :V! () ! (V! ()) such that
bA. 5t 4= rv o T0dx g8 2Vt ();'%vt(): (5.10)

Working as in [30] for the 2D case of the corner, one can show that there isy > 0 (depending only
on - and$) such that forall 2 (0; o), A+ is Fredholm of index +1 while A. is Fredholm of
index 1. Note thatwe have o =minf< e +1=2j eigenvalue of (5.7) such that<e > 1=2q.
We remind the reader that for a bounded linear operator between two Banach spaceb : X | Y
whose range is closed, its index isde ned asd T :=dimker T dimcoker T, with dimcoker T =
dim (Y =range(T)). On the other hand, application of Kondratiev calculus based in particular on
the residue theorem (see [30, Theorem 5.2], [102, Theorem 5.4.2]) guarantees that i2 V() is

such that AT ' 2 (V1()) (the important point here being that (V1()) (V1 () ), then
there holds the following representation

'=Zcs +te st with ¢ 2 Cand'~2 V! () : (5.11)

Note that s , with s de ned by (5.9), belongs to V() , but not to Hé() , and a fortiori not
to V! () . Then introduce the spaceV°" :=span(s*) V! () , endowed with the norm

K kyou = (jg?+ k~K§s () )'% 8 =cs" + =2V (5.12)

which is a Banach space. Introduce also the operatoA®“ such that for all ' = cs* + ~ 2 v°u
and' °2 ¢ ( nfOg),

AUt G = r r70dx= ¢ div("r s*) %dx+ "r '~ r " Odx:

Note that due to the features of the cut-o function , we havediv("r s*) 2 L?() . And since
div("r s*) = 0 in a neighbourhood of O, we observe that there is a constantC > 0 such that
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jpAt 4 CK kyau k' %y1(y . The density of Cg ( nfOg) in V() then allows us to
extend A% as a continuous operator fromV°" to (V1()) . And we have

At G = ¢ div("rs*) %dx+ "r'~r "0%x; 8 =cst+y%' 22VIi():

Working as in [30] (see Proposition 4.4.) for the 2D case of the corner, one can prove that
AUt - vout 1 (wvl()) is Fredholm of index zero and thatker A% = ker A. . In order to
simplify the analysis below, we shall make the following assumption.

Assumption 3. We assume that" satis es the conditions of Y5.2.1 so that in particular the
range of A» : H3() ! (H3()) is not closed. Moreover we assume that for 2 (0; o), A. is
injective, which guarantees thatA?"! : vt 1 (v1()) is an isomorphism.

The second part of this hypothesis boils down to supposing that there are no non zero regu-
lar solutions of the homogeneous problendiv("r ') =0 in ,"' =0 on @ . Note that due to
the change of sign of*, such solutions may exist in very speci ¢ con gurations, but they form at
most a nite dimensional set [105, 29] which can be included in the analysis.

In what follows, we shall also need to work with the usual Laplace operator in weighted Sobolev
spaces. For 2 R,dene A V() ! (V! ()) such that

A 4= r' orTodx 8 2VY) ;%2 vt ()

(observe that there is no" here). Combining the theory presented in [102] (see also the founding
article [100] as well as the monographs [107, 113]) together with the result of [101, Corollary
2.2.1], we get the following proposition.

Proposition 5.2.1. For all 2 ( 1=2;1=2), the operator A : V() ! (vl ()) is an
isomorphism.

Note in particular that for = 0, this proposition simply says that : H (1,() ! (Hcl,( )) isan
isomorphism. In order to have a result of isomorphism both forA®t and A , we shall often make
the assumption that the weight is such that

0< < min(1=2; o) (5.13)

where ¢ is de ned after (5.10).
To measure electromagnetic elds in weighted Sobolev norms, in the following we shall work in
the spaces

vo()
V()
Note that we have V® ()  L2%() VO() .

v °) °®
(Vi) *

5.3 Analysis of the problem for the electric component

In this section, we consider the problem for the electric eld associated with (7.5)-(7.6). Since the
scalar problem involving " is well-posed in a non standard framework involving the propagating
singularity s* (see (5.12)), we shall add its gradient in the space for the electric eld. Then
we de ne a variational problem in this unsual space, and prove its well-posedness. In Y5.3.5 we
explain why the formulation in the classical framework fails to provide the solution of Maxwell
problem. Finally we justify the choice of the new framework by a limiting absorption principle.
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5.3.1 A well-chosen space for the electric eld

De ne the space of electric elds with the divergence free condition

X(")y:=fu=c st +w;c2C;a2L?) jeurl u2L?() ;div("u)=0in nfOg;
u =0 on@ g:
(5.14)
In this de nition, for u = cr s* + &, the condition div("u) =0 in nfOg means that there holds

n

ur'dx =0; 8 2 C4 ( nfOg); (5.15)
which after integration by parts and by density of COl ( nfOg)in Hé() is equivalent to
c div("rs*)dx + " r'dx =0; 8 2Cd(): (5.16)

Note that we have Xy (")  XR™(") and that dim (X" (")=Xn (")) = 1 (see Lemma 5.6.4 in
Appendix). For u = cr s* + & with c2 Cand & 2 L?() , we set

Kuky our vy = (jcj? + ketk? + keurl uk?)¥=2:

Endowed with this norm, X {"(") is a Banach space.

Lemma 5.3.1. Pick some satisfying (5.13). Under Assumptions 1 and 3, for anyu = cr s™ +
t 2 X("), we havew 2 V® () and there is a constantC > 0 independent ofu such that

joj + kerkyo C kcurl uk : (5.17)
As a consequence, the nornk ky o (- is equivalent to the normkeurl k in X QU and X (")
endowed with the inner product(curl ;curl ) is a Hilbert space.

Proof. Let u = cr s* + t be an element ofX"("). The eld w is in L?() and therefore
decomposes as

g=r" + curl (5.18)
with ' 2 Hé() and 2 Xt(1) (item iv) of Proposition 5.6.1). Moreover, sinceu =0on@
and since boths®™ and' vanish on @ , we know that curl =0 on @ . Then noting that

= curl &= curl u2 L?() , we deduce from Proposition 5.6.2 thatcurl 2 V° () with
the estimate
keurl  kyo 0O C keurl uk : (5.19)

Using (5.15), the condition div("u) =0 in nfOg implies
"r(cs"+"') r'%x= "curl ' %x; 8 %2 vt ()

which means exactly that A.(cs* + ') = div("curl ) 2 (V! ()) . Since additionally
div("curl ) 2 (Vi()) , from (5.11) we know that there are some complex constants
and some'~2 V! () such that

cs"+' =c s +c st + %

This implies ¢ =0, ¢ = ¢ (because’ 2 H3() ) and so' = *~ is an element ofV! () . This
shows thatcs" +' 2 Vo' and that A% (cs"+' )= div("curl ):SinceA%' : vou 1 (vi())
is an isomorphism, we have the estimate

jog+ K kyr () C kdiv(" curl )k Ckeurl  kyo (y: (5.20)

vt(O)

Finally gathering (5.18) (5.20), we obtain that &2 V° () and that the estimate (5.17) is valid.
Noting that kek Ckukyo (y , this implies that the norms k kaIut ¢y and keurl  k are

equivalent in X 3" (").



Chapter 5. Maxwell's equations with hypersingularities at a conical plasmonic tip:
the case of one critical coe cient 130

Thanks to the previous lemma and by density ofCo1 ( nfOg) in V() , the condition (5.16) for
u=crst+u2 X" is equivalent to

c div("rs")dx + "o r'dx =0; 8 2 Vi) (5.21)
where all the terms are well-de ned as soon as satis es (5.13).

5.3.2 De nition of the problem for the electric eld

Our objective is to de ne the problem for the electric eld as a variational formulation set in
X QU ("). For some > 0, let J be an element ofV® () suchthatdivd =0 in . Consider the
problem

Find u 2 X" (") such that

leurlu curl vdx !2  "u vdx= il J vdx: 8v 2 X 2Ut("); (5.22)

where the term
"u vdx (5.23)

has to be carefully de ned. The di culty comes from the fact that X ™ (") is not a subspace of

L2() so that this quantity cannot be considered as a classical integral.
Let u = cur s* + & 2 XU("). First, for v2 VO () with > 0, itis natural to set

"u wvdx:= "u wdx: (5.24)

To complete the de nition, we have to give a sense to (5.23) wherv = r s*. Proceeding as for
the derivation of (5.21), we start from the identity

"ur'dx = ¢ div("rst)dx + "o r dx; 8 2Cg ( nfOg):

By density of C} ( nfOg) in V() , this leads to set

ur'dx := ¢ div("rst)ydx + g r dx; 8 2Vi(): (5.25)
With this de nition, condition (5.21) can be written as
"u r'dx =0; 8 2 V() :
In particular, since s* 2 V() , forall u 2 X" (") we have
"u rstdx=0 and so "o rstdx=oc¢, div("r s*)st dx: (5.26)
Finally for all u = c,r s* + e andv = ¢,r s* + v in X"("), using (5.24) and (5.26), we nd

n +

"u vdx = "u vdx= ¢ rs* wvdx+ o wdx

But since v 2 X" ("), we deduce from the second identity of (5.26) that
"rs* wdx=1c, div("r s*)s" dx: (5.27)

Summing up, we get

"u vdx = gy div("r st)sTdx+ "o wdx; 8u;v 2 XM ("): (5.28)
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Remark 5.3.1. Even if we use an integral symbol to keep the usual aspects of formulas and
facilitate the reading, it is important to consider this new quantity as a sesquilinear form

(u;v) 7! "u vdx

on X (") X{"("). In particular, we point out that this sesquilinear form is not hermitian on
XM X (™). Indeed, we have

"v mdx= g wdx+ qC div("r s*)st dx
so that
"u vdx "v Tdx =2icyCy=m div("r st)s* dx : (5.29)
But Lemma 5.3.3 and assumption(5.8) show that
=m div("r s*)s* dx 60:

In the sequel, we denote byay (; ) (resp. "n()) the sesquilinear form (resp. the antilinear form)
appearing in the left-hand side (resp. right-hand side) of (5.22).

5.3.3 Equivalent formulation

Before proving well-posedness ixX ("), we have to make sure that a solution of (5.22) satis es
the initial problem (7.5) (7.6). Proceeding as in the case of positive coe cients, this leads us to
introduce the following space

H " (curl ) :=span(r s*) Hy(curl )  X"(")
(without the divergence free condition) and to consider the problem

Find u 2 HY"(curl ) such that

an(u;v)= "n(v); 8v2 H&Ut(curl )i (5.30)

where the de nition of
"u vdx

has to be extended to the spacéd {" (curl ). Working exactly as in the beginning of the proof of
Lemma 5.3.1, one can show that anyu 2 H"(curl ) admits the decomposition

u=cyrs +r'y+curl ; (5.31)

with ¢, 2 C,"' y 2 HY() and 2 X+1(1), suchthatcurl ,2V® () ,for satisfying (5.13).
Then, forall u = ¢yr st +r ' y+curl ,andv=crs" +r',+cul ,inHYMcur), a
natural extension of the previous de nitions leads to set

"u vdx = "(rty+curl Q) (rv+curl )dx

+ ¢ 'rst ocurl ,+g"curl |, rstdx (5.32)

cu G div("r s*)st + ¢, div("r st) v+ ' udiv("r s*t)dx:
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Note that (5.32) is indeed an extension of (5.28). To show it, rst observe that foru = ¢,r s* +
rig+curl ,,v=ocrs" +r'y+cul inXJ"("), the proof of Lemma 5.3.1 guarantees
that ' y,' v 2 V1 () with satisfying (5.13). This allows us to integrate by parts in the last
two terms of (5.32) to get

"u vdx = "(rty+curl Q) (rv+curl )dx

+ ¢ 'rst (rVv+cul D+o(rg+curl ) rstdx  (5.33)
cT  div("r s*)st dx:

Using (5.26), (5.27), the second line above can be written as

n +

c"rst (rVv+curl D)+T"(r'y+ecurl ) rstdx

(5.34)
= ¢, div("r s*)st dx+ quty  div("r s*)st dx:

Inserting (5.34) in (5.33) yields exactly (5.28).

Lemma 5.3.2. Under Assumptions 1 and 3, the eldu is a solution of (5.22) if and only if it
solves the problem (5.30). As a consequence,tifsatis es (5.22), then (E;H ) :=(u;(i! ) curl u)
is a solution of (7.5)-(7.6).

Proof. If u 2 HQ"(curl ) satis es (5.30), then taking v = r * with * 2 C§ ( nfOg) in (5.30),
and using that divJ =0 in , we get (5.15), which implies thatu 2 X " ("). This shows that u
solves (5.22).

Now assume thatu 2 X"(")  HR™(curl ) is a solution of (5.22). Letv be an element of
HR™ (curl ). As in (5.31), we have the decomposition

v=ogrs +r'y+curl (5.35)

with ¢, 2 C,' v 2 H3() and , 2 X1(1) suchthatcurl 2 V° () forall satisfying (5.13).
By Assumption 3, there is 2 V°'' such that

A% = div("curl ) 2 (VI() (5.36)
The function decomposesas = s* + ~with 2 V! () . Finally, set
¢=curl , r =vr (ogs+'y+ )

The function ¢ is in X 3" ("), it satis es curl ¢ = curl v and from (5.26), we deduce that
"u ¢dx= "u vdx
Using also thatd 2 V° () for some > 0and is such thatdivd =0 in , so that
J ¢dx= J vdx;
this shows that ay (u;Vv) = an(u;¥) = "N (%) = "N (V) and proves that u is a solution of (5.30).

Now if u satis es (5.22), and so (5.30), sincer s* 2 L¥() :=L *() 3, we haveu 2 L%() .
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Therefore there holdscurl u 2 DY) ® whereDY) denotes the set of distributions on . And
actually one can verify that curl u 2 L?() becausecurl r s* = 0 in . Thus we can set
(E;H) = (u;@@ ) Yeurlu) 2 LY() L?%) . Clearly we havecurl E =il H in . By
taking v2 C () * H"(curl ) in (5.30) and by observing that in this case

"u vdx=  "u vdx;
we obtaincurl H +i!" E = J in DY) 3. Moreover, becausé& 2 H " (curl ), we haveE =0
on @ . Finally, using the relation curl E =i! H in ,for' 2 Cd (" nM), we nd
hH ;' ig = H rwdx =(i') Y curl E r*dx =0:
From the density of traces of elements ofCy (" nM) into H*?(@) , we inferthat H =0 on

@ .

In the following, we shall work with the formulation (5.22) set in X" ("). The reason being
that, as usual in the analysis of Maxwell's equations, the divergence free condition will yield a
compactness property allowing us to deal with the term involving the frequency! .

5.3.4 Main analysis for the electric eld

De ne the continuous operators AQ™ : X" (") I (XQ™(") and K" : XU I (X"
such that for all u; v 2 X*("),

PARM U ; Vi = Leurl u curl vdx; KM u;vi = u vdx:

With this notation, we have (A" + K™)u;vi = ay (u;Vv).

Proposition 5.3.1.  Under Assumptions 1 3, the operator AR™ : X (") ! (X™(") is an
isomorphism.

Proof. Let us construct a continuous operatorT : X 3" (") I X {U(") such that for all u; v 2
xR0,

Yeurl u curl (Tv)dx= curl u curl vdx:

To proceed, we adapt the method presented in [24]. Assume thav 2 X™(") is given. We
construct Tv in three steps.

1) Sincecurl v 2 L?2() and A : Hi() ! (Hi()) is an isomorphism, there is a unique
2 HL () such that

ror %x= curl v r Odx; 8 92 Hi() :

Thenthe eld (curl v r )2 L?() isdivergence freein andsatises (curlvr ) =0
on @ .
2) From item ii) of Proposition 5.6.1, we infer that there is 2 Xy (1) such that

(curl v. r )= curl

Thanks to Lemma 5.6.2, we deduce that 2 V® () forall 2 (0;1=2) and a fortiori for
satisfying (5.13).
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3) Suppose now that satis es (5.13). Then we know from the previous step thatdiv(" ) 2
(V()) . On the other hand, by Assumption 3, A%t : Vot 1 (v1()) is an isomorphism.

Consequently we can introduce’ 2 VO such that A% = div(" ).

Finally, we set Tv = r '. Clearly Tv is an element of X 3" ("). Moreover, for all u, v
in X ("), we have

Yeurl u curl Tvdx Iecurl u curl — dx

curl u curl vdx curl u r dx

curl u curl vdx:

From Lemma 5.3.1 and the Lax-Milgram theorem, we deduce thafT A" : X3 (") ! (X ™("))
is an isomorphism. And by symmetry, permuting the roles ofu and v, it is obvious that T A" =
A" T, which allows us to conclude thatA™ : X" (") ! (XR™(")) is an isomorphism.

Proposition 5.3.2.  Under Assumptions 1 and 3, if (uy = cyr st + ) is a sequence which
is bounded inX ("), then we can extract a subsequence such thét,) and (t,) converge re-
spectively in C and in V? () for satisfying (5.13). As a consequence, the operatoK Qi

XM T (X™(M) is compact.

Proof. Let (up) be a bounded sequence of elements X" ("). From the proof of Lemma 5.3.1,
we know that for n 2 N, we have

—_ + 1
Up==¢Cyr s +r ' p+curl (5.37)

where the sequencegcy), (' n), ( ) and (curl ) are bounded respectively inC, vt (),

X1(1) and V® () . Observing that curl u, = curlcurl ,, = o is bounded inL2() , we
deduce from Proposition 5.6.3 that there exists a subsequence such théturl ) converges in
V% () . Moreover, by (5.20), we have

jcn Cmjt K n " mkyt 0O Ckceurl ( , m) Ky o O

which implies that (c,) and (' ) converge respectively inC and in V! () . From (5.37), we see
that this is enough to conclude about the rst part of the proposition.
Finally, observing that

kK’c\JIUtuk(x ’?‘ul @) C (kU’kvo O + JCuJ),

we deduce thatKQ™ : X" (") 1 (XQ"(")) is a compact operator.
We can now state the main theorem of the analysis of the problem for the electric eld.

Theorem 5.3.1. Under Assumptions 1 3, for all | 2 R the operator A" 1 2KQUt - X QU(") !
(X)) is Fredholm of index zero.

Proof. Since K™ : XR(") ! (XR™(") is compact (Proposition 5.3.2) and A" : X (") !
(X Q")) is an isomorphism (Proposition 5.3.1),A%" 1 2KQ™" - XU (") ! (XQ™(")) is Fred-
holm of index zero.

The previous theorem guarantees that the problem (5.22) is well-posed if and only if uniqueness
holds, that is if and only if the only solution for J =0 isu = 0. Since uniqueness holds for =0,
one can prove with the analytic Fredholm theorem that (5.22) is well-posed except for at most a
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countable set of values off with no accumulation points (note that Theorem 5.3.1 remains true
for! 2 C).

Note that in practice " is itself a function of ! . For instance, if the inclusion M is metallic, it

is commonly admitted that the Drude's law gives a good model for". But taking into account

the dependence of' with respect to ! when studying uniqueness of problem (5.22) leads to a
non-linear eigenvalue problem, where the functional spac¥ " (") itself depends on! . This study

is beyond the scope of the present paper (see [90] for such questions in the case of the 2D scalar
problem).

Nonetheless, there is a result that we can prove concerning the cases of non-uniqueness for problem
(5.22).

Proposition 5.3.3. If u = cr s* + & 2 XJ"(") is a solution of (5.22) for J =0, thenc =0
andu 2 Xn(").

Proof. When! = 0, the result is a direct consequence of Theorem 5.3.1 (because zero is the
only solution of (5.22) for J = 0). From now on, we assume that! 2 Rnf0g. Suppose that
u=ocrs"+u2 X" is such that

leurl u curl vdx '2 "u vdx=0; 8v 2 XU (™):

Taking the imaginary part of the previous identity for v = u, we get

On the other hand, by (5.28), we have
"u odx= "jajldx+ jg?  div("r s*)s* dx;

so that

jg%=m div("r s*)s* dx =0:
The result of the proposition is then a consequence of Lemma 5.3.3 where it is proved that
=m div("r s*)s" dx = "i j2ds;
2
and of the assumption (5.8).

Remark 5.3.2. As a consequence, from Lemma 5.3.1, we infer that elements of the kernel of
At 12K are in VO () forall satisfying (5.13).

Remark 5.3.3. Using the result of Theorem 5.3.1, we could have studied a problem similar to
(7.5) (7.6) with an impedance boundary condition replacing the perfect conductor condition. In
this case, using the unique continuation principle, we would have been able to prove uniqueness
of the solution, and so well-posedness of the problem, for dll> 0. Theorem 5.3.1 can also be
employed to consider the scattering of an incident wave by a bounded inclusion (with the same
features asM) in freespace. In the latter situation, working as in [17, Lemma 2.1 and Proposition
2.1], in particular using the Rellich lemma, one could also establish existence and uniqueness of
the solution (in a framework like X 3"(")) for all ! > 0.
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5.3.5 Problem in the classical framework

In the previous paragraph, we have shown that the Maxwell's problem (5.22) for the electric eld
set in the non standard spaceX 3" ("), and so in H{"(curl ) according to Lemma 5.3.2, is well-
posed. In order to understand what would fail with a naive approach, here we wish to analyse
the properties of the problem for the electric eld set in the classical spaceX y (") (which does
not contain r s*). Since this space is a closed subspace ¥R ("), it inherits the main properties
of the problem in X 3" (") proved in the previous section. More precisely, we deduce from Lemma
5.3.1 and Proposition 5.3.2 the following result.

Proposition 5.3.4.  Under Assumptions 1 and 3, the embedding of y (") in L?() is compact,
and keurl  k is a norm in Xy (") which is equivalent to the normk Ky cur y-

Note that we recover classical properties similar to what is known for positive', or more generally
[24] for" such that the operator A- : H§() ! (H3()) de ned by (5.3) is an isomorphism (which
allows for sign-changing"). But we want to underline the fact that under Assumption 3, these
classical results could not be proved by using classical arguments. They require the introduction
of the bigger spaceX 3" ("), with the singular function r s*.

Let us now consider the problem

Find u 2 Xy (") such that

(5.38)

leurl u curl vdx '2  "u vdx=i! J vdx; 8v 2 Xn("):

An important remark is that one cannot prove that problem (5.38) is equivalent to a similar
problem set in Hy (curl ) (the analogue of Lemma 5.3.2). Again, the di culty comes from the
fact that A- is not an isomorphism, and trouble would appear when solving (5.36). Therefore, a
solution of (5.38) is not in general a distributional solution of the equation

curl eculu  12u=1iJ:

To go further in the analysis of (5.38), we recall that X y (") is a subspace of codimension one of
X"y (Lemma 5.6.4 in Appendix). Let vy be an element ofX §"(") which does not belong to
X n (). Then we denote by the continuous linear form on X 3" (") such that:

8v2 X" v o(V)vo2 Xn(M): (5.39)
Let us now de ne the operatorsAyn : Xn (") ! (Xn (") and Ky : Xn (") ! (Xn (") by
Mnu;vi = Leurl u curl vdx; HKyu;vi = "u vdx;
Proposition 5.3.5. Under Assumptions 1 3, the operator Ay : Xn(") ! (Xn (")) is Fredholm

of index zero.

Proof. Letu 2 Xy ("). By Proposition 5.3.1, for the operator T introduced in the corresponding
proof, one has:
kukg (= keurl uk? = PAR"u; Tui:

Then, using (5.39), we get:
KUk, (y = PANU;TU  “o(Tu)voi + hAR™u; " o(Tu)Voi;

which implies that
ku kx N (M) C kAN u k(x N (M) + j‘O(TU)j

The result of the proposition then follows from a classical adaptation of Peetre's lemma (see for
example [144, Theorem 12.12]) together with the fact thatAy is bounded and hermitian.
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Combining the two previous propositions, we obtain the

Theorem 5.3.2.  Under Assumptions 13, for all ! 2 R, the operator Ay ! 2Ky : Xn (") !
(Xn (") is Fredholm of index zero.

But as mentioned above, even if uniqueness holds and if Problem (5.38) is well-posed, it does not
provide a solution of Maxwell's equations. Note that the phenomenon observed in this paragraph
is very similar to what happens for Maxwell's equations with positive coe cients in presence of
singularities when one looks at a formulation set inH() 2 (see e.g. [61, 88, 64]).

5.3.6 Expression of the singular coe cient

Under Assumptions 1 3, Theorem 5.3.1 guarantees that for all 2 R the operator A3 1 2K -
XM T (XM (M) is Fredholm of index zero. Assuming that it is injective, the problem (5.22)
admits a unique solutionu = c,r s* + &. The goal of this paragraph is to derive a formula allow-
ing one to computec, without knowing u. Such kind of results are classical for scalar operators
(see e.g. [85], [102, Theorem 6.4.4], [71, 72, 10, 89, 145, 121]). They are used in particular for
numerical purposes. But curiously they do not seem to exist for Maxwell's equations in 3D, not
even for classical situations with positive materials in non smooth domains. We emphasize that
the analysis we develop can be adapted to the latter case.

In order to establish the desired expression, fo 2 R, we rst introduce the eld wy 2 X" (")
such that

leurl v curl wydx 12 "v wydx= v rs*dx 8v 2 XQU("):  (5.40)

Note that Problem (5.40) is well-posed whenA%" 1 2K9 is an isomorphism. Indeed, using
(5.29), one can check that it involves the operator(AR™ ! 2K{™) , that is the adjoint of AR
I 2KQUt, Moreoverv 7! "w r s* dx is a linear form over X 3"t (").

Theorem 5.3.3. Assume that! 2 R, Assumptions 1 3 are valid and AQ" 1 2KQ" : X QU (") !
(XQU(") is injective. Then the solution u = ¢,r s* + & of the electric problem (5.22) is such
that

c =i J wydx div("r s*)s* dx: (5.41)
Here wy is the function which solves (5.40).

Remark 5.3.4. Note that in practice wy can be computed once for all because it does not depend
on J. Then the value ofc, can be determined very simply via Formula (5.41).

Proof. By de nition of u, we have

lcurlu cull wydx '?2 "u wydx=il J wydx
On the other hand, from (5.40), there holds
leurl u curl wydx '? "u wydx= "w r st dx

From these two relations as well as (5.26), we get
il J wndx= "o rstdx=c, div("r sT)s" dx:

But Lemma 5.3.3 below guarantees that=m  div("r s*)s* dx 6 0. Therefore we nd the
desired formula.
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Lemma 5.3.3. With the notations of (5.4), we have

=m div("r s*)s" dx = "i j2ds:
S

Proof. Set = nB(O; ). Noticing that div("r s*) vanishes in a neighbourhood of the
origin, we can write

div("r s*)s* dx div("r s*)s" dx

1
-5
o

= lim "ir s*j?dx @S s
o @go; ) Q@r

Taking the imaginary part and observing that

. @% 1

~gstds= Z 4 "i j2ds;
@go; ) @r 2 g !

the result follows.

5.3.7 Limiting absorption principle

In Y5.3.4, we have proved well-posedness of the problem for the electric eld in the spaded™ (").
But up to now, we have not explained why we select this framework. In particular, as mentioned
in Y5.2.1, well-posedness also holds il{l‘(") whereXil{l‘(“) is de ned as X (") with s* replaced
by s (see (5.9) for the de nitions of s ). In general, the solution in Xi,{}(") di ers from the
one in X ™("). Therefore one can build in nitely many solutions of Maxwell's problem as linear
interpolations of these two solutions. Then the question is: which solution is physically relevant?
Classically, the answer can be obtained thanks to the limiting absorption principle. The idea is
the following. In practice, the dielectric permittivity takes complex values, the imaginary part
being related to the dissipative phenomena in the materials. Set

n = ||+i

where" is de ned as previously (see (5.2)) and > 0 (the sign of depends on the convention for
the time-harmonic dependence (ine " here)). Due to the imaginary part of " which is uniformly
positive, one recovers some coercivity properties which allow one to prove well-posedness of the
corresponding problem for the electric eld in the classical framework. The physically relevant
solution for the problem with the real-valued " then should be the limit of the sequence of solutions
for the problems involving " when tends to zero. The goal of the present paragraph is to explain
how to show that this limit is the solution of the problem set in X 3" (").

Limiting absorption principle for the scalar case

Our proof relies on a similar result for the 3D scalar problem which is the analogue of what has
been done in 2D in [24, Theorem 4.3]. Consider the problem

Find ' 2 HJ() suchthat div("r"' )=f; (5.42)

wheref 2 (H%()) . Since > 0, by the Lax-Milgram lemma, this problem is well-posed for all
f 2 (H3()) and in particular for all f 2 (V1()) , > 0. Our objective is to prove that (* )
converges when tends to zero to the unique solution of the problem

Find ' 2 Vo such that A" = f: (5.43)
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We expect a convergence in a spacé() with 0< < . We rst need a decomposition of
' as a sum of a singular part and a regular part. Since problem (5.42) is strongly elliptic, one
can directly apply the theory presented in [102]. In particular, to characterize the singular part,
one is led to consider the spectral problem

Find ( ; )2 HYS)nf0og C such that

rs rs ds= ( +1) " ~ds; 8 2HYS): (5.44)
S

n

&

By assumption (see Section 5.2), := 1=2 i (where is xed in (5.8)) are eigenvalues of
(5.7) of algebraic multiplicity equal to one. Using Rouché theorem, one can show that for > 0
small enough, there are exactly two eigenvalues of (5.44) such that we havej j C,
whereC is independent of . Moreover  are of algebraic multiplicity equal to one. By observing
that  is an eigenvalue of (5.7) if and only 1is an eigenvalue of (5.7), we deduce that for
small enough, there exists one Iglgd only one eigenvalue of (5.7), that we denote by 2 C, such
that <e 2 ( 1=2; 1=2+ | ). Let s be the corresponding singular function de ned by

s(;" )=r (x=xj);

where is the eigenfunction associated with  such that ( ;) w2y = 1. Here s the
function introduced in Y5.2.1 and we will prove in Lemma 5.3.6 that we can indeed impose the
condition ( ;) wi(ey =1 for small enough. Observe thats satises div(" r s ) =0 in K. As
in (5.9) for s , we set

s()= (Nr 7 (x=jx)); (5.45)
where 2 C is the number such that = 1=2+i . By applying [102, Theorem 5.4.1], we
get the following result.

Lemma 5.3.4. Let0< < gandf 2 (VY()) . The solution' of (5.42) decomposes as

' '=cs +*~ (5.46)
wherec 2 Cand'~ 2 V! () .
l1when ! 0OF T=m
>.
R ! 0 05 0:965
E 0:001| 0:498 0:965
> <e
152 0:.01 0:487 0:965
; 0:05 | 0:436 0:963
@<XX
1< 0:1 0:374 0:958
when ! 0O
Figure 5.2: Behaviour of the eigenvalue close to the line<e = 1=2 as the dissipation tends
to zero. Here the values have been obtained solving the problem (5.44) with a Finite Element
Method. We work in the conical tip de ned via (5.5) with =2 =3and - = 1.9. In this case,
using (5.6) we nd | 2:585s0 that the critical interval is approximately given by [ 2:585; 1].

Let us rst study the limit of the singular function.

+

Lemma 5.3.5. Forall > 0, when tends to zero, the functions converges inV!() tos
(see the de nitions in (5.8) and (5.9)).
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Proof. The rst step of the proof consists in showing that the limit of ( ), which we denote by
O'is andnot . Let ~ O be such that the function introduced in (5.9) satises =1 in
the ball B(O; ~). From integration by parts, we get

0= div(" r s)s dx = "gr sjldx+( 1=2+i )~ FM "j  jds:
B(0;~) B(0;~) &
Thus we must have
=m ( 1=2+i )~ &m "j j%ds > O (5.47)
L
Taking the limit ! 0" in (5.47) and using Lemma 5.3.6 below which guarantees tha{ )

converges to in HY(S?), we obtain the relation

O " j2ds> O (5.48)

2
According to the de nition (5.8) of , this ensures that °= and shows that( ) converges to
(and not to 1, see an illustration with Figure 5.2). From the de nitions (5.9), (5.45) of s,

s , using again that () converges to in H(S?), we infer that s converges tos* (and not to
s )in V() .

Lemma 5.3.6. Let ( ) be a sequence of eigenfunctions associated with the eigenvalue For
small enough, we can impose the conditiof ;) w1y =1. Then is uniquely de ned and

when tends to zero,( ) converges inH(S?) to the  introduced in ¥5.2.1.

Proof. Let (T ) be a sequence of eigenfunctions associated with the eigenvalue such that
k™ kyiszy = 1. We can extract a subsequence, that we also denote b~ ), which converges

weakly in H(S?) and strongly in L?(S?) to some ~ 2 HY(S?). For z 2 C, with the Riesz
representation theorem, de ne the symbolL (z) : HY(S?) ! H(S?) such that

L @ ; Y%= "rs rs %s zz+1) " “Oos; 8 ; %2HYS):
2 2

First taking the limit ! 0" in(L () ; 9uyszy =0, we get
(L% Yuyey=0; 8 22 HY(SY:

This shows that either = 0 or ~ is an eigenfunction of (5.7) associated with . On the other
hand, using someT-coercivity approach on the sphere (mimic the proof [19, Theorem 6.4]), one
can prove that L °( 1=2+it) : HY(S?) | HY(S?) is an isomorphism fort > 0 large enough. Let
us decomposd. ( ) as

L ( )=LO% 1=2+it)+ R +K

whereR , K :HYS?) ! HY(S?) are the operators such that for all , °2 H(S?),

R 5 sy = i rs rs s ( +1) “Oogs
2 S

( ( +1) (+1) " Ods
S

(K 5 ey = ((+1) ( 1=2+it)*+1=2+it)) " ~Ods:
2

Note that the norm of R , as a linear operator ofH'(S?), tends to zero when ! 0" and that
K is compact. Therefore, using the relationsL ( )~ =L % )™=0 to get

LO 1=2+it)(" J= R~ K 7J;
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we deduce that(~ ) converges strongly to~ in H1(S?). This implies k~ky1(sz) =1 and proves
that ~ is an eigenfunction of (5.7) associated with . Since by assumption is a simple eigenvalue,
~is proportional to . Thus for small enough, we havg~™ ;) pi(s2) 0. Then (), with =

~ =7 ;) nie), is a sequence of eigenfunctions associated with such that ( ;) yys) = 1.
Now from the convergence of( ) to ¢ with jgj=1 and ( ;) w1 =1, we infer that ()
converges to when tends to zero. Finally, one observes that such a construction is possible
for any subsequence of ™ ).

Then proceeding exactly as in the proof of [30, Theorem 4.3], one can establish the following
result.

Lemma 5.3.7. Let0O< < gandf 2 (V!()) . If Assumption 3 holds, then(' =cs +*~)
converges to' = c¢s" + ~ in V() as tends to zero. Moreover,(c ;'~ ) converges to(c;'~) in
C V! () . Inthis statement,* (resp. ') is the solution of (5.42) (resp. (5.43)).

Note that the results of Lemma 5.3.7 still hold if we replacef by a family of source terms
(f )2 (Vi()) that converges tof in (V1()) when tends to zero.

Limiting absorption principle for the electric problem
The problem
Find u 2 Xn(" ) suchthat cul  curlu 12" u =il J; (5.49)

with Xy (" )= fE 2 Hy(curl )jdiv(" E) =0g, is well-posed for all! 2 R and all > 0. This
result is classical when takes positive values while it can be shown by using [24] when changes
sign. We want to study the convergence ofu when goes to zero. Let( ,) be a sequence of
positive numbers such thatlims +1 » =0. To simplify, we denote the quantities with an index
n instead of , (for example we write "" instead of " ).

Lemma 5.3.8. Suppose that(u") is a sequence of elements ok \ ("") such that (curl u") is
bounded inL?() . Then, under Assumption 3, for all  satisfying (5.13), for all n 2 N, u"
admits the decompositionu” = c"r s" + &" with ¢" 2 C and &" 2 V° () . Moreover, there
exists a subsequence such th&t") converges to some in C while (¢") converges to somet in
VO () . Finally, the eld u := cr s* + & belongs toX 3" (").

Proof. Forall n 2 N, we haveu™ 2 Xy (") L?() . Therefore, there exist' " 2 H3() and
"2 X1(1), satisfying curl " =0on@ suchthatu” =r"'"+ curl ". Moreover, we
have the estimate
k "k =kcurlu"k C:
As a consequence, Proposition 5.6.2 guarantees thécurl ") is a bounded sequence of ° () ,

and Proposition 5.6.3 ensures that there exists a subsequence such théturl ") converges in
VO () . Now from the fact that div(""u™) =0, we obtain

div(""r ' ")y = div(""curl ") 2 (Vi())
By Lemmas 5.3.4 and 5.3.7, this implies that the function' " decomposes as" = ¢"s" + ~" with

c"2 Cand~" 2 V! () . Moreover, (c") converges tocin C while (~") converges to~in V! () .

Summing up, we have thatu” = c¢"r s" + &" wherea" = r =" + curl " converges tou in
V% () . In particular, this implies that u" converges tou = cr s* + & in V°() forall > 0. It
remains to prove that u 2 X "("), which amounts to showing that u satis es (5.26). To proceed,

we take the limitas n! +1 in the identity

¢ div(""r s")'dx + ""a" r'dx =0
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which holds for all ' 2 V() becauseu™ 2 Xy ("").

Theorem 5.3.4. Let! 2 R. Suppose that Assumptions 1, 2 and 3 hold, and that = 0 is the
only function of X (") satisfying

cul  ‘curlu !2?'u=0: (5.50)

Then the sequence of solutiongu = cr s + o ) of (5.49) converges, as tends to O, to the
unique solutionu = cr s* + & 2 X"(") of (5.22) in the following sense:(c ) converges toc in
C, (& ) converges tow in V° () and (curl u ) converges tocurl u in L?() .

Proof. Let ( ) be a sequence of positive numbers such thdim,, +1 n =0. Denote byu" the
unique function of X  ("") such that

curl  lcurl u" 12y" =1 J;: (5.51)

Note that we set again"" instead of" . The proof is in two steps. First, we establish the desired
property by assuming that (kcurl u"k ) is bounded. Then we show that this hypothesis is indeed
satis ed.

First step. Assume that there is a constantC > 0 such that for all n 2 N

kcurl u"k  C: (5.52)

By lemma 5.3.8, we can extract a subsequence frofu” = c"r s" + ") such that (c") converges
to cin C, (&") converges tot in V? () , with u = 4+ o s 2 X3"("). Besides, since for all

n2 N, curl u™2 L?() , there existh" 2 H} () andw" 2 Xy (1), such that
eurl u" =r h" + curl w": (5.53)

Observing that (w") is bounded in Xy (1), from Lemma 5.6.2, we deduce that it admits a
subsequence which converges i ® () . Multiplying (5.51) taken for two indices n and m by

(w" wmM), and integrating by parts, we obtain
jeurl w"  curl wMjZdx =12 ("™u"™ "M™MygM)(w" wm)dx:

This implies that (curl w") converges inL2() . Then, from (5.53), we deduce that
div( r h")y=div( curl w") in

By Assumption 2, the operator A : Hi() ! (Hi()) is an isomorphism. Therefore(r h")
converges inL?() . From (5.53), this shows that (curl u") converges tocurl u in L?() . Finally,
we know that u" satis es

Ieurl u™ curl vdx '2 "'y vdx=il J vdx

forall v 2 VO () . Taking the limit, we get that u satis es

leurl u curl vdx !?2

"u vdx =i J vdx (5.54)
forall v2 VY () . Since in addition, u satis es (5.26), (5.54) also holds forv = r s* and we
get that u is the unique solutionu of (5.22).

Second step. Now we prove that the assumption (5.52) is satis ed. Suppose by contradiction
that there exists a subsequence ofu") such that

kcurl u"k ! +1
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and consider the sequencév") with for all n 2 N, v" := u"=kcurl u"k . We have

v 2 Xn("™) and curl  leurl v 12" =it J=keurl u"k : (5.55)

Following the rst step of the proof, we nd that we can extract a subsequence from(v") which
converges, in the sense given in the theorem, to the unique solution of the homogeneous problem
(5.22) with J = 0. But by Proposition 5.3.3, this solution also solves (5.50). As a consequence,
it is equal to zero. In particular, it implies that (curl v") converges to zero inL2() , which is
impossible since by construction, for alln 2 N, we havekcurl vk =1.

5.4 Analysis of the problem for the magnetic component

In this section, we turn our attention to the analysis of the Maxwell's problem for the magnetic
component. Importantly, in the whole section, we suppose that satis es (5.13), thatis 0< <
min(1=2; ). Contrary to the analysis for the electric component, we de ne functional spaces
which depend on :

Z%( ):= fu2L?() jeurl u2span(rs*) V% () ;div( uy=0in ; u =0o0n@g
and for 2L (),
Z; ():=fu2L?) jeulu2Vv® () ;div(u)=0in and u =00n@ g

Note that we have Z; () Z%'( ) Z;( ). The conditonsdiv( u)=0in and u =0
on @ for the elements of these spaces boil down to impose

ur'dx =0; 8 2Hi() :

Remark 5.4.1. Observe that the elements oZ$"'( ) are in L2() but have a singular curl. On
the other hand, the elements oK " (") are singular but have a curl inL2() . This is consistent
with the fact that for the situations we are considering in this work, the electric eld is singular
while the magnetic eld is not.

The analysis of the problem for the magnetic component leads to considering the formulation

Find u 2 Z$"'( ) such that

.1 (5.56)

curl u curl vdx 12 uv= "1 curl v 8v22Z.();

whereJ 2 V© () . Again, the rst integral in the left-hand side of (5.56) is not a classical
integral. Similarly to de nition (5.26), we set

rs* curl vdx:=0; 8v2Z:():
As a consequence, fou 2 Z$"( ) such that curl u = ¢, "r s* + | (we shall use this notation

throughout the section) andv 2 Z( ), there holds

eurlu curl vax= " 1, curl vdx: (5.57)

Note that for u, v in Z9( ) such that curl u = ¢,"r s* + ,,curl v=oc¢,"r s* + ,, we have

Yourl u curl vdx "l (st + ) dx

= w1, Tydx o div( ) st dx (5.58)

= "l vdx+ gy div("r sT)stdx:
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We denote byar(; ) (resp. 1()) the sesquilinear form (resp. the antilinear form) appearing in
the left-hand side (resp. right-hand side) of (5.56).

Remark 5.4.2. Note that in (5.56), the solution and the test functions do not belong to the same
space. This is dierent from the formulation (5.22) for the electric eld but seems necessary in
the analysis below to obtain a well-posed problem (in particular to prove Proposition 5.4.1). Note
also that even if the functional framework depends on, the solution will not if J is regular
enough (see the explanations in Remark 5.4.4).

5.4.1 Equivalent formulation

De ne the spaces

H (curl ) fu2L?) jeul u2Vv®) g
H%(curl ) := fu 2 L?() jecurl u2span('r s*) V° () g

Lemma 5.4.1. Under Assumptions 1 2, the eld u is a solution of (5.56) if and only if it solves
the problem
Find u 2 H°(curl ) such that

ar(u;v)= "1(v); 8v2H (curl): (5-59)

As a consequence, ifu satis es (5.56), then (E;H ) := (i(!" ) *(curl u J);u) is a solution of
(7.5)-(7.6).

Proof. If u satises (5.59), then taking v = r ' with ' 2 Hﬁ() in (5.59), we get that
u 2 Z%( ). This proves that u solves (5.56).

Assume now thatu is a solution of (5.56). Letv be an elementofH (curl ). Introduce' 2 H#()
the function such that

r' or'%xs= v r'%x, 8 %Hi():

The eld ¢ := v r ' belongs toZ;( ). Moreover, there holdscurl ¢ = curl v and since for
u 2 zZ( ), we have

ur'dx =0; 8 2Hi();
we deduce thatat(u;v) = ar(u;¢) = "1(¢) = “1(v).

Now if u satis es (5.56), and so (5.59), one notes that the paifE :H ) := (i(!" ) (curl u J);u)
belongs toL()  L2() . Clearly we havecurl H +i!" E = J in . Bytakingv 2 Cl () 3
H (curl ) in (5.59) and by observing that in this case

lcurl u curl vdx= " curl u curl vdx;

we obtaincurl E =it  H in DY) 3. The boundary conditions (7.6) can then be deduced in a
classical way.

5.4.2 Normsin Z; () and Z3()
We endow the spaceZ( ) with the norm
kuk, ):(kukz + keurl uk?,,, )¥;

. vo()

so that it is a Banach space.
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Lemma 5.4.2. Under Assumptions 1 2, there is a constantC > 0 such that for allu 2 Z( ),
we have
kuk  Ckeurl ukyoy :

As a consequence, the nornk k., ( is equivalent to the normkeurl  kyo¢y in Z;( ).
T

)

Remark 5.4.3. The result of Lemma 5.4.2 holds for all such thatO < 1=2 and not only
for 0< < min(1=2; o).

Proof. Let u be an element ofZ;( ). Sinceu belongs to L2() , according to the item v) of

Proposition 5.6.1, there are' 2 Hi () and 2 Xn(2) such that
u=r"'+curl : (5.60)

Lemma 5.6.2 guarantees that 2 V° () with the estimate

k kyo () Ckcurl Kk : (5.61)
Multiplying the equation curlcurl =curl uin by and integrating by parts, we get
keurl  k* Kk curl ukyo(y k kyo (y : (5.62)

Gathering (5.61) and (5.62) leads to

kcurl Kk C keurl ukyo(y : (5.63)

On the other hand, using that
ur'%x=0; 8 °%HL(Q)
and that A :Hi() ! (H:()) is an isomorphism, we deduce thatkr ' k Ckeurl Kk .

Using this estimate and (5.63) in the decomposition (5.60), we nally obtain the desired result.

If u2 z%( ), we havecurl u = ¢,"rs" + , with ¢y 2 Cand 2 V% () . We endow the
spaceZ9U( ) with the norm

Kukzau () = (kuk® + jeuj? + k ukGo () )7
so that it is a Banach space.
Lemma 5.4.3. Under Assumptions 1 3, there is C > 0 such that for all u 2 Z"'( ), we have

kuk +jcij Ck ukyo (y: (5.64)
As a consequence, the nornku kzgm( y is equivalent to the normk ykyo () for u 2 ZU( ).

Proof. Let u be an element ofZ9"'( ). SinceZ$( ) Z;( ), Lemma 5.4.2 provides the
estimate

On the other hand, taking the divergence ofcurl u = ¢, "r s* + , we obtain ¢, div("r s*) =
div 4. Using the fact that A%t : voU I (v1()) is an isomorphism, we get

jeu  Ckdiv ukyiy  Ckukyo ()

Using this inequality in (5.65) leads to (5.64).



Chapter 5. Maxwell's equations with hypersingularities at a conical plasmonic tip:
the case of one critical coe cient 146

5.4.3 Main analysis for the magnetic eld

De ne the continuous operators A : Z®( )1 (Z;( ) and K¢ :z9( )! (Z+()) such
that for all u 2 Z9( ),v22z.(),

PAMu;vi= " lcurl u curl vdx; KM vi = u vdx: (5.66)

With this notation, we have HA I 2K y;vi = ar(u;v).

Proposition 5.4.1.  Under Assumptions 13, the operator A" : Z9( ) ! (Z;()) is an
isomorphism.

Proof. We have

PAtu;vi= " 1 curl vdx; 8u22zZM( );8v2Z:():

Let us construct a continuous operatorT : Z;( ) ! Z9( ) such that
PA“ Tu;vi = r2 curl u curl vdx; 8u;v2Zi(): (5.67)

Let u be an element ofZ;( ). Then the eld r2 "curl u belongs toV? () . Since A9 :
vout 1 (vi()) is an isomorphism, there is a unique = s ¥ + %~ 2 VO sych that A% =
div(r? "curl u). Observing that w := r? curl u r ' 2 V%() is such thatdivw =0 in

according to the result of Proposition 5.6.4, we know that there is a unique 2 Z, (1) such that
cul ="(@(?culur ")

At this stage, we emphasize that in generar ' 2 V°() nL?() . This is the reason why we are
obliged to establish Proposition 5.6.4. Since isin L?() ,whenA :Hi() ! (Hi()) isan
isomorphism, there is a unique 2 H% () such that

rr Odx= r Odx; 8 92 HL() :

Finally, we set Tu = r . It can be easily checked that this de nes a continuous operator
T:Z:()! Z%"( ). Moreover we have

curl Tu = rst+ 1, with 1y =" (r2 cul u r ')

As a consequence, indeed we have identity (5.67). From Lemma 5.4.2, we deduce thag“' T :
Z-()! (Z;()) is anisomorphism, and so thatA$"" is onto. It remains to show that A" is
injective.

If u2 z$( ) is in the kernel of A", we have PAQ*'u;vi = 0 for all v 2 Z( ). In partic-
ular from (5.58), we can write

PAMu;ui = " Y yjldx+ jouj?  div("r st)st dx =0:

Taking the imaginary part of the above identity, we obtain ¢, = 0 (see the details in the proof
of Proposition 5.4.3). We deduce thatu belongs toZ ( ) and from (5.58), we infer that
hA"'u; Tui = hASY Tu;ui. This gives

0= r?jcurl uj?dx=0

and shows thatu = 0.
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Proposition 5.4.2. Under Assumptions 1 3, the embedding of the spac@( ) in L2() is
compact. As a consequence, the operatd¢9"* : Z9"'( ) ! (Z;( )) dened in (5.66) is compact.

Proof. Let (u,) be a sequence of elements &$"'( ) which is bounded. For alln 2 N, we
have curl u, = ¢, "r s* + u,- BY de nition of the norm of Z3"'( ), the sequence(cy,) is
bounded in C. Let w be an element ofZ$"( ) such that ¢, = 1 (if such w did not exist,
then we would have Z"'( ) = Z; () Xt( ) and the proof would be even simpler). The
sequence(u, Cy,W) is bounded in Xt ( ). Since this space is compactly embedded ih2()
when A : Hi() ! (Hi()) is an isomorphism (see [24, Theorem 5.3]), we infer we can
extract from (u, cy,w) a subsequence which converges ih?() . Since clearly we can also
extract a subsequence ofc,,) which converges inC, this shows that we can extract from (un)
a subsequence which converges in?() . This shows that the embedding ofz3"( ) in L2() is
compact.

Now observing that for all u 2 Z%*( ), we have

t .
kKuk, () Ckuk ;

we deduce thatk$" : z9( ) ! (Z;( )) is a compact operator.

We can now state the main theorem of the analysis of the problem for the magnetic eld.

Theorem 5.4.1. Under Assumptions 1 3, for all | 2 R the operator At 1 2Kt : ZOUt( )|
(Z+()) is Fredholm of index zero.

Proof. Since K" : z3M( ) ! (Z;()) is compact (Proposition 5.4.2) and A" : Z4( ) !
(Z+( ) is an isomorphism (Proposition 5.4.1), A%t 1 2Kt : zQ" 1 (Z,( )) is Fredholm of
index zero.

Finally we establish a result similar to Proposition 5.3.3 by using the formulation for the magnetic
eld.

Proposition 5.4.3.  Under Assumptions 1 and 3, ifu 2 Z%"'( ) is a solution of (5.56) for J =0,
thenu2Z; () Xs()forall satisfying (5.13).

Proof. Assume thatu 2 Z9"'( ) satis es

n

lcurlu curlvdx 2 u v=0; 8v2Z():

Taking the imaginary part of this identity for v = u, since! is real, we get

=m Yeurl u curl tdx =0:
If curl u=cy"rs*+ ywithc, 2Cand ,2V? (), according to (5.58), this can be written
as

jcuj?=m div("r s*)s* dx =0:

Then one concludes as in the proof of Proposition 5.3.3 that, = 0, so that curl u 2 V% () .
Therefore we have' lcurl u 2 Xy (") XU ("). From Lemma 5.3.1, we deduce that ‘curl u 2
VO () forall satisfying (5.13). This shows thatu 2 Z; () forall satisfying (5.13).

Remark 5.4.4. Assume thatd 2 V? () for all satisfying (5.13). Assume also that zero is
the only solution of (5.56) with J =0 for a certain ¢ satisfying (5.13). Then Theorem 5.4.1 and
Proposition 5.4.3 guarantee that (5.56) is well-posed for all satisfying (5.13). Moreover Propo-
sition 5.4.3 allows one to show that all the solutions of (5.56) for satisfying (5.13) coincide.
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Remark 5.4.5. From Lemmas 5.3.2 and 5.4.1, we infer that ifu solves the electric problem
(5.22), then (i ) curl u is a solution of the magnetic problem (5.56). Conversely, i solves
(5.56), then i(!" ) (curl u J) is a solution of (5.22). Therefore, under Assumptions 1 3, for
all 1 2 R, the operator AQ™ 1 2KQU - XU (") 1 (XQ™(")) is an isomorphism if and only if
AUt 1 2KQUE ZU ()1 (Z( ) is an isomorphism.

5.4.4 Analysis in the classical framework

In the previous paragraph, we proved that the formulation (5.56) for the magnetic eld with a
solution in Z$“( ) and test functions in Z;( ) is well-posed. Here, we study the properties of the
naive problem for the magnetic eld set in the classical spaceX 1( ). More precisely, we consider
the problem

Find u 2 X1( ) such that

.1 (5.68)

culu curlvdx !'?2 u v= "1 curlwv; 8v2Xt():

Working as in the proof of Lemma 5.4.1, one shows that under Assumptions 1, 2, the eldi is a
solution of (5.68) if and only if it solves the problem

Find u 2 H(curl ) such that

n 1 ! 2 (5-69)

curl u curl vdx

uv= "1 curlvwv; 8v 2 H(curl ):

De ne the continuous operatorsAt : Xt( )! (Xt()) andKy:Xt( )! (Xt()) such that
forallu2 X+(),v2Xt(),

hPATu;vi = Leurl u curl vdx; HKtu;vi = u vadx:
As for Ay and Ky, we emphasize that these are the classical operators which appear in the
analysis of the magnetic eld, for example when" and are positive in

Proposition 5.4.4.  Under Assumptions 1 3, for all | 2 C the operator At ! 2Kt : X1( ) !
(Xt( ) is not Fredholm.

Proof. From [24, Theorem 5.3 and Corollary 5.4], we know that under the Assumptions 1, 2, the
embedding ofX +( ) in L?() is compact. This allows us to prove thatKt : X1( )! (X+1()) is
a compact operator. Therefore, it su ces to show that At : X1( )! (Xt( )) is not Fredholm.
Let us work by contradiction assuming that At is Fredholm. Since this operator is self-adjoint
(it is symmetric and bounded), necessarily it is of index zero.

? If At is injective, then it is an isomorphism. Let us show that in this case,A- : Hé() !
(H3()) is an isomorphism (which is not the case by assumption). To proceed, we construct a
continuous operator T: H3() ! H3() such that

A5 T4=  "r' r(T9dx=r' r"0dx  8; %2Hj): (5.70)

When At is an isomorphism, for any' °2 H%() , there is a unique 2 X1( ) such that

w1 curl  Odx; 8 92 X1():

1 0

" lourl  curl Odx = r

Using item iii ) of Proposition 5.6.1, one can show that there is a uniqud™ °2 H3() such that

r9%=" "% curl ):
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This de nes our operator T: H3() ! H3() and one can verify that it is continuous. Moreover,
integrating by parts, we indeed get (5.70) which guarantees, according to the Lax-Milgram theo-
rem, that A- : H3() ! H3() is an isomorphism.

where 1;:::; N 2 Xt( ) are linearly independent functions such that(curl j;curl ) = j
(the Kronecker symbol). Introduce the space

Xr():=~Ffu2Xt()j(curl u;curl ) =0;i=1;:::Ng
as well as the operatorAt : X1( )! X1( ) such that

hAru;vi = Yeurl u curl vdx; 8u;v 2 Xt():

Then At is an isomorphism. Let us construct a new operatorT : H(l,() ! Hé() to have
something looking like (5.70). For a given' °2 H3() , introduce 2 X+t( ) the function such
that

X
" leurl  curl C%dx= (" O icurl i) curl %x; 8 %2Xx+1(); (5.71)
i=1
where fori = 1;:::;N, we have set ; = 10 curl dx. Observing that (5.71) is also
valid for %= ;,i=1:::::N, we infer that there holds
1 0 1, +0 X! -0 0
" “curl curl “dx= (" “r' icurl §) curl “dx; 8 "2 Xt1():

i=1

Using again item iii ) of Proposition 5.6.1, we deduce that there is a uniqueT’ © 2 H(l)() such
that
X

r(r9%="1r"9% curl ) curl
i=1

This de nes the new continuous operatorT: H3() ! H3() . Then one nds

- _ X _
A T9=  "r' r(TYdx= r' r "0dx = "r' curl dx; 85 %2 HY() :
i=1

This shows that T is a left parametrix for the self adjoint operator A-. Therefore, A+ : H3() !
H(l)() is Fredholm of index zero. Note that then, one can verify thatdimker A« = dimker Ar.

that

roi=" tourl |

(existence and uniqueness of; is again a consequence of itemi ) of Proposition 5.6.1). But by
assumption, A- is not a Fredholm operator. This ends the proof by contradiction.

Remark 5.4.6. In the article [24], it is proved that if A« : Hé() ! H(l)() is an isomorphism
(resp. a Fredholm operator of index zero), thenAt : X1(1) ! (Xt(1)) is anisomorphism (resp.
a Fredholm operator of index zero). Here we have established the converse statement.

Remark 5.4.7. We emphasize that the problems (5.38) for the electric eld and (5.68) for the
magnetic in the usual spaceX \ (") and X t( ) have di erent properties. Problem (5.38) is well-
posed but is not equivalent to the corresponding problem il N (curl ), so that its solution in
general is not a distributional solution of Maxwell's equations. On the contrary, problem (5.68)
is equivalent to problem (5.69) inH (curl ) but it is not well-posed.
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5.4.5 Expression of the singular coe cient

Under Assumptions 1 3, Theorem 5.4.1 guarantees that for all 2 R the operator AQt 1 2K Ut

Z( ) (Z+( )) is Fredholm of index zero. Assuming that it is injective, the problem (5.56)
admits a unique solutionu with curl u = ¢, "r s* + . Asin Y5.3.6, the goal of this paragraph
is to derive a formula for the coe cient ¢, which does not require to knowu.

For! 2 R, introduce the eld wt 2 Z;( ) such that

n 1

v cul wrdx '2 v wrdx= v I stdx; 8v 2 Z9U( ): (5.72)

Note that wt is well-de ned because(A$" 12Ky :z.( )! (Z"'( )) is an isomorphism.

Theorem 5.4.2. Assume that! 2 R, Assumptions 1 3 are valid and A"t 1 2K9Ut : Zzut( )1
(Z+()) isinjective. Let u denote the solution of the magnetic problem (5.56). Then the coe -
cient ¢, in the decompositioncurl u = ¢, "r s* + |, is given by the formula

cw =i " 13 curl wtdx div("r s*)s* dx: (5.73)

Here w is the function which solves (5.72).
Proof. By de nition of u, we have

n 1 |2

u curl Wt dx u wrtdx=1 " 13 curl wydx:

On the other hand, from (5.72), we can write

n 1 |2 — —

4 curl Wt dx u wrdx= u I stdx:

From these two relations, using (5.58), we deduce that
it "1 curl wydx = u rstdx=c div("r s")s* dx:

This gives (5.73).

5.5 Conclusion

In this work, we studied the Maxwell equations in presence of hypersingularities for the scalar
problem involving ". We considered both the problem for the electric eld and for the magnetic
eld. Quite naturally, in order to obtain a framework where well-posedness holds, it is necessary
to modify the spaces in di erent ways. More precisely, we changed the condition on the eld
itself for the electric problem and on the curl of the eld for the magnetic problem. A noteworthy
di erence in the analysis of the two problems is that for the electric eld, the searched solution
and the test function in the corresponding sesquilinear form belong to the same space, whereas
for the magnetic eld we have not been able to do so. We do not know what are the numerical
consequences of this di erence.

Of course, we could have assumed that the scalar problem involving is well-posed inH(l)() and
that hypersingularities exist for the problem in . This would have been similar mathematically.
Physically, however, this situation seems to be a bit less relevant because it is harder to obtain
negative without dissipation. More precisely, materials having an" with a negative real part
can be found easily in nature (metals for certain ranges of frequencies) and additionally they
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can be very weakly dissipative (small imaginary part of"). On the other hand, only certain
arti cially designed metamaterials, made of small resonators, behave macroscopically, after an
homogenization process, as homogeneous materials with ahaving a negative real part. But for
the moment, dissipation for these metamaterials still remains very important.

We assumed that the domain is simply connected and that @ is connected. When these
assumptions are not met, it is necessary to adapt the analysis (see Y8.2 of [24] for the study in
the case where the scalar problems are well-posed in the usull' framework). This has to be
done. Moreover, for the conical tip, at least numerically, one nds that several singularities can
exist (actually this number can be as high as we wish for a contrast close enough tol, see the
calculations in [96]). In this case, the analysis should follow the same lines but this has to be
written.

On the other hand, in this work, we focused our attention on a situation where the interface
between the positive and the negative material has a conical tip. It would be interesting to study
a setting where there is a wedge instead. In this case, roughly speaking, one should deal with
a continuum of singularities. We have to mention that the analysis of the scalar problems for a
wedge of negative material in the non standard framework has not been done. Finally, considering
a conical tip with both critical " and is a direction that we are investigating.

5.6 Appendix

5.6.1 Vector potentials, part 1

Proposition 5.6.1. Under Assumption 1, the following assertions hold.

i) According to [8, Theorem 3.12], if u 2 L?() satises divu = 0 in , then there exists a
uniqgue 2 Xt(1) such thatu = curl

i) According to [8, Theorem 3.17]), if u 2 L?() satises divu =0 in andu =0 on
@ , then there exists a unique 2 Xy (1) such thatu = curl

i) If u2L?) satisescurlu=0in andu =0 on @, then there exists (see [110,
Theorem 3.41]) a uniquep 2 H%() such thatu = r p.

iv) Every u 2 L2() can be decomposed as follows ([110, Theorem 3.45])
u=rp+curl ;

with p 2 H(l)() and 2 Xy(1) which are uniquely de ned.

v) Every u 2 L?() can be decomposed as follows ([110, Remark 3.486))
u=rp+curl ;

with p2 HE () and 2 Xy (1) which are uniquely de ned.

Proposition 5.6.2.  Under Assumption 1, if satis es one of the following conditions

i) 2 Xn(1) and 2 L),

i) 2 X7(1), curl =0 on @ and 2L%) ,

then for all < 1=2, we havecurl 2 V? () and there is a constantC > 0 independent of
such that

keurl  kyo () Ck k: (5.74)
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Proof. Itsucesto provetheresultfor 2 (0;1=2). Let 2 Xy (1)[ X1(1). Sincecurlcurl =
, integrating by parts we get

kcurl k® = T dx:
Note that the boundary term vanishes because either =0 or curl =0 on@ . This
furnishes the estimate
kcurl  k Ck k: (5.75)

Now working with cut-o functions, we re ne the estimate at the origin to get (5.74).
Let us consider a smooth cut-o function , compactly supported in , equal to one in a
neighbourhood of O. To prove the proposition, it su ces in addition to (5.75) to prove that

curl ()2 VP () together with the following estimate kcurl ( kyo () Ck k.
First of all, since curl ()2 L?() anddiv( )= 2 L%() ,we knowthat ;2 H3()
fori =1;2;3 and we have
X3
keurl ( )k + kdiv( k2 = kr ( )K?:

i=1
From the previous identity, (5.75) and Proposition 7.2.1, we deduce

@ I 1=
k K2+  kr( K Ck k: (5.76)
i=1

Note that, (5.76) is also valid if we replace by any other smooth function with compact support

in . Now setting f; = ( i) fori=1;2;3, we have
fi = i +2r r i + i . (577)
By writing that r r;=dv( ;r ) i and replacing by @ in (5.76) forj =1;2;3,

we deduce that fori = 1;2;3, f; belongs toL?() and satis es
kf ik Ck k:

Note that since 2 (0;1=2), we haveVl() V° ; L% andsolL?() (V()) . Now
starting from the fact that ~ ; 2 H}() in addionto ( ;)= f; 2 L%() (Vi()) ., by
applying Proposition 6.2.1, we deduce that ; 2 V! () with the estimate

kK ikys 0 Ckfik(vl(» Ckfik :
As a consequencecurl ()2 V°? () and
x3 X3
keurl (- )kyo C k iku 0 kfik Ck k;
i=1 i=1

which concludes the proof.

Proposition 5.6.3.  Under Assumption 1, the following assertions hold:

i) if ( n) is a bounded sequence of elements ¥fy (1) such that( ) is bounded inL?() ,
then one can extract a subsequence such th@url ) converges invV? () forall 2 (0;1=2);
i) if ( n) is a bounded sequence of elements &fr (1) such thatcurl | =0 on@ and
such that( ) is bounded inL?() , then one can extract a subsequence such théturl )
converges inv? () forall 2 (0;1=2).
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Proof. Let us establish the rst assertion, the proof of the second one being similar. Le( )
be a bounded sequence of elements Bfy (1) such that () is bounded inL?() . Observing
that curlcurl , = n, we deduce that(curl ) is a bounded sequence oK r(1). Since
the spacesX y (1) and X 1(1) are compactly embedded inL2() (see Proposition 7.2.1), one can
extract a subsequence such that both ) and (curl ) converge inL?() .
Then, working as in the proof of Proposition 5.6.2, we can show that for a smooth cut-o function
compactly supported in  and equal to one in a neighbourhood o0, the sequence( ) is
bounded inV2():= (v 2()) 3forall > 1=2. To obtain this result, we use in particular the fact
thatif O R®is a smooth bounded domain such thaD 2 O, then :V 2(0)\ V! ;(O)! V°(0)
is an isomorphism for all 2 (1=2;3=2) (see [107, Y1.6.2]). Finally, to conclude to the result of the
proposition, we use the factV ?(0) is compactly embedded inV 1(O) asoonas 1< ©9([102,
Lemma 6.2.1]). This allows us to prove that for all < 1=2, the subsequencd ) converges in
vl (), sothat (curl ) convergesinv® () .

The next two lemmas are results of additional regularity for the elements of classical Maxwell's
spaces that are direct consequences of Propositions 5.6.2 and 5.6.3.

Lemma 5.6.1. Under Assumption 1, for all 2 (0;1=2), X1(1) is compactly embedded in
V® () . In particular, there is a constant C > 0 such that

kukyo () C keurl uk ; 8u 2 X1(1): (5.78)

Proof. Let u be an element ofX +(1). From the item ii ) of Proposition 5.6.1, we know that there
exists 2 Xy (1) such thatu = curl . Using that = curl u 2 L2() , from Proposition
5.6.2, we get thatu 2 V° () together with the estimate

keurl  kyo (y  Ckeurl uk :

This gives (5.78). Now suppose that(u,) is a bounded sequence of elements of1(1). Then
there exists a bounded sequencé ,) of elements of X (1) such that u, = curl . Since
(curl up = .) is bounded inL?() , the rst item of Proposition 5.6.3 implies that there is
a subsequence such thafu,) converges inv° () .

Lemma 5.6.2. Under Assumption 1, for all 2 (0;1=2), Xn(1) is compactly embedded in
V® () . In particular, there is a constant C > 0 such that

kuky o 0 C keurl uk ; 8u 2 Xn(1):

Proof. The proof is similar to the one of Lemma 5.6.1.

5.6.2 \Vector potentials, part 2

First we establish an intermediate lemma which can be seen as a result of well-posedness for
Maxwell's equations in weighted spaces with* = =1 in . De ne the continuous operator
Br:Z;(1)! (Zy (1)) suchthatforall 2 Z; (1), 02 Z: (1),

Br ; 9= curl curl Ydx:

Lemma 5.6.3. Under Assumption 1, for O < 1=2, the operator Bt : Z; (1) ! (Z; (1)) is
an isomorphism.

Proof. Let be an element ofZ,(1). According to Proposition 6.2.1, there is a unique' 2
Vvl () such that

r' r 0%x= r?curl r7O0dx; 8 %2 vi() :
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Then denote T 2 Z; (1) the function such that

curl (T )=r2curl r

Observe that T is well-de ned according to the item i) of Proposition 5.6.1. This de nes a
continuous operator T : Z;(1) ! Z; (1). We have

Br ;T i= curl curl (T )dx=kr curl k? = keurl k\z/o() :

Adapting the proof of Lemma 5.4.2, one can show thakcurl k() is a norm which is equivalent

to the natural norm of Z;(1). Therefore, from the Lax-Milgram theorem, we infer that T Bt is

an isomorphism which shows thatBr is injective and that its image is closed in(Z; (1)) . And
from that, we deduce that Bt is onto if and only if its adjoint is injective. The adjoint of By is
the operator By : Z; (1) ! (Z4(1)) suchthatforall 2 Z; (1), 02 Z:(1),

B ; 9= curl curl %dx: (5.79)

If Bf =0, then taking 0= 2 Z; (1) Z+(1)in (5.79), we obtain kcurl k =0. Since
Z; (1) Xt(1) andkcurl k is anormin X1(1) (Proposition 7.2.1), we deduce that =0.
This shows that By is injective and that Bt is an isomorphism.

Now we use the above lemma to prove the following result which is essential in the analysis of
the Problem (5.56) for the magnetic eld. This is somehow an extension of the result of itemi)
of Proposition 5.6.1 for singular elds which are not in L2() .

Proposition 5.6.4. Under Assumption 1, for all O < 1=2,if u2 v°() satises divu=0
in , then there exists a unique 2 Z;(1) such thatu = curl

Proof. Letu 2 VY() be such thatdivu =0 in . According to Lemma 5.6.3, we know that
there is a unique 2 Z;(1) such that

cul curl %x= u curl Odx; 8 %2z, (1):

Then we have
(u curl ) cul O%dx=0: 8 %2z, (1): (5.80)

Sinceu is divergence free in , we also have
(u curl ) r pPdx =0; 8p’2 vt () : (5.81)

Now if v is an element ofV® () L?() , from item iv) of Proposition 5.6.1, we know that
there holds the decomposition

v=rp’+curl @ (5.82)
for somep°2 H3() and some 02 X 1(1). Taking the divergence in (5.82), we get
p’=div v 2 (V()) (5.83)

From Proposition 6.2.1, since0 < 1=2, we know that (5.83) admits a solution in V! ()
H3() . Using uniqueness of the solution of (5.83) inH3() , we obtain that p°2 V! () . This
implies that curl  °=v r p°2Vv® () andso °2 Z; (1). From (5.80) and (5.81), we infer
that

(u curl ) vdx=0; 8v2VvP ():

This shows thatu = curl . Finally,if ,, ,aretwo elementsofZ;(1)suchthatu = curl ;=
curl ,,then » belongs toX 1 (1) and satis es curl ( 4 »)=0 in . From Proposition
7.2.1, we deduce that ; = .
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5.6.3 Dimension of X{§"(")=Xy (")
Lemma 5.6.4. Under Assumptions 1 3, we havedim (X 3" (")=Xn (")) = 1.

Proof. If uy = cir s™ + 1, Us = Cor S™ + o are two elements ofX ,C\’,“t("), then couy; ciup 2
X n ("), which shows that dim (X" (")=Xn (")) 1.

Now let us prove that dim (X" (")=Xn (")) 1. Introduce s 2 V°" the function such that
A%'s = div("r s ). Note that since div("r s ) vanishes in a neighbourhood of the origin, it
belongs to(V1()) forall 2 R. Then set

S=s +s (5.84)

Observe thats 2 V() forall > 0and that div("r s)=0 in nfOg(sis a non zero element
of ker A. for all > 0). Let & 2 (C4 ( nfOg))3 be a eld such that "w r 5dx 6 0. The
existence of such as can be established thanks to the density of(Ct ( nfOg))® in L?() ,
considering for example an approximation oflgr s 2 L?() where 15 is the indicator function

of a ball included in M. Introduce = cs" + ~2 Vo with c2 C, ~2 V! () , the function
such that A% = div("a). This is equivalent to have
c div("r s") O%dx+ "r “r " O0%x= “w r ' Odx; 8 %2 vi() :
Clearly r t=cr s*+(r = u)isan element ofX 3" ("). Moreover taking ' 9= s above, we
get
¢ div("r s")sdx= "o r sdx60:

This shows that ¢ 6 0 and guarantees thatdim (X 3" (")=Xn (")) L.
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6.1 Introduction

In the previous chapter, we studied time harmonic Maxwell's problems in the presence of a conical
tip of a negative material. More precisely, we studied the case where the functioh is critical (i.e.
the scalar problem associated td' is ill-posed in Hé() because of the existence of propagating
singularities) and where the function is not critical (i.e. the scalar problem associated to

is well-posed in H# () ). We have proved that the classical functional frameworks for the study
of Maxwell's problems are no longer appropriate. More importantly, we have explained how
to construct new functional frameworks in which the electric and magnetic problems are again
well-posed. These functional frameworks have been constructed by making use of the weighted
Sobolev spaces and cleverly taking into account the existence of propagating singularities of the
scalar problem associated td': The justi cation of the adequacy with the physical reality (of the
solutions obtained in these new functional frameworks) has been achieved thanks to the limiting
absorption principle.

In this chapter, we are interested in studying the case where both functions' and are criti-
cal. From what has been done, in the previous chapter, we expect that, in this con guration,
the classical frameworks are not suitable for the study of Maxwell problems either (this will be
con rmed in Y6.3). Our goal is then to explain how to construct adapted functional frameworks
(that are coherent with the limiting absorption principle) that take into account both propagating
singularities generated by the scalar problems associated to and : As with the other chapters
in this thesis, we will try to make this chapter self-contained (so it can be read independently of
the previous one).

The plan of our work is the following. In Y6.2, we start by recalling some results, which we
will need, concerning scalar problems with critical coe cients. Then, in Y6.3, we prove that the
classical approach to study electrical and magnetic problems is no longer valid. The construction
of new adapted functional frameworks for the electric problem and the magnetic problem and the
study of their well-posedness in these new functional frameworks are, respectively, the object of
Y6.4 and Y6.5. The last section is devoted to give a few words of conclusion.

6.2 Setting of the problem and study of the scalar problems with
critical coe cients

The geometry considered is the same as in the previous chapter. Let be an open, simply
connected and bounded subset oR® with Lipschitz-continuous boundary @ . To simplify the
analysis below, we shall suppose tha@® is connected. When this hypothesis is not satis ed all
our results can be adapted by working as in [22, ¥8.2]. In; we de ne the piecewise constant
functions " and such that

(

._ "">0in oM _ T>0 in nM
" <0 inM <0 in M
in which M is a subdomain of satisfying M : We suppose that@ is of classC? except at

the origin O = (0; 0; 0) where M coincides, locally, with the the coneK such that
- Cy = Biivie - X . - 3. X :
M\K—K\B(O,)-fx2R,1x1<,m2Ag,K—fx2R,j7j2Ag,

in which B(O; ) is the open ball of R® of center O and of radius su ciently small and A is a
smooth sub-domain of the unit sphere ofR® (see Figure 6. 1) The contrasts associated t8 and

n _nt+

are, respectively, dened by «-:=" =" and = =
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Figure 6.1: An example of the geometry considered in whictM is represented in red and nM is
in green.

In the distributional sense, the time harmonic Maxwell's problem writes: Find E and H such
that
cul E i H =0 and cul H+i!"m E=J in : (6.1)

E and H are complex vector elds and denote, respectively, the electric and the magnetic eld,
I 2 R is the frequency. The vector eld J stands for the current density injected in the
and is such that div(J) = 0: In this chapter we will also suppose that is surrounded by a
perfect conductor. This leads us to complete the previous system of equations with the boundary
conditions:

E =0 and H =0 on @ ; (6.2)

in which  denotes the unit outward normal vector to @ . In the classic con guration, when "
and have constant sign, to study the time harmonic Maxwell's system one has to introduce the
spaces

L2() = (L *() °

H(curl ) := fH 2L?() jcurl H 2 L%() g

Hnx(curl ) = fE 2 H(curl )jE =0on@g
Xt() = fH 2 H(curl)jdiv( H)=0; H =0on@g;for 2L()
Xn() = fE 2H(curl )jdiv( E)=0; E =0on@g;for 2L ():

We endow, the spaceL?() with its natural norm k kLz() and the others spaces with the norm
K Kpiur ) = (k K2, +keurl  kEz(, )2

On can check that, endowed with their natural norms all these spaces are of Hilbert type. For
the particular case =1, it is well-known (see [139, 8]) that in X 1(1) (resp. X (1)) the semi-

norm kcurl k,_z() is a norm and it is equivalent to k Ky ey ). Furthermore, the embedding

of X1(1) (resp. Xn (1)) in L?() is known to be compact. It is also, well-understood thanks to
results of [22], that the study of the Maxwell's system in the classicalL?-framework (see Y6.3) is
directly related to the study of the properties of the scalar operatorsA- : Hé() ! (Hcl,()) and

A :Hi() ! (Hi()) thatare de ned as follows:

pA-5 9= "rorTOodx; 8% 92 Hi()
and
A ' G = r'ortodx; 8y %2Hi():
Above the spaceH; () = fu 2 HY) j(u;1)2q@ = 0g: It is not dicult to see that the
properties of A and A are, respectively, related to the well-posedeness of the problems:
Find ug 2 H3() s.t. Find un 2 H3 () st
div("r ug) = f 2 (H30) div( T un)= g2 (H} () (6:3)

Uug=0 on @ @u, =0 on @ :
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In particular, it was proved in [22] that when the function " and are such thatA- and A are of
Fredholm type then the Maxwell's system is well-posed in the classical? framework (see Y6.3).
In Chapter 2, we have proved that the operatorA- (resp. A ) is a Fredholm operator if and only
if “2R nl-(resp. 2R nl ), wherel- (resp. | ) is a closed subset oR called the critical
interval. As mentioned in the introduction, along this chapter we shall work under the following

Assumption 6.2.1. We suppose that the function” and are such that - 2 |I-nf 1g; 2
I nf 1g:

By de nition of |+ and | ; we can say that under the previous assumption the operatordA-
and A are not of Fredholm type. Thanks to the results of Chapter 2, we know that, in our
con guration, the Assumption 6.2.1 is equivalent to say that propagating singularities exist for
both A~ and A : In Y6.2.2, we shall recall, brie y, how construct adapted alternative functional
frameworks in which the scalar problems associated té\- and A are again well-posed.

To prepare the ground, we will start by recalling the de nition of weighted Sobolev (Kondratiev)
spaces and some useful results concerning the Laplace operator (with homogeneous Dirichlet and
Neumann boundary conditions) in these spaces.

6.2.1 The Laplace operator in weighted Sobolev (Kondratiev) spaces

The weighted Sobolev spaces

For 2 Randm 2 N, we introduce the weighted Sobolev (Kondratiev) space (see [100, 107, 102])
associated to the punctured domain nfOg: V™() de ned as the closure ofD( nfOg) for the
norm

0 1=
' - @ X Jim+ @' k2, A
jim
in which r = jxj. Here D(' nfOg) denotes the space of in nitely di erentiable functions which
are supported in  nfOg. Forall m2 N and 2 R we have the inclusion
ANO AU O (6.4)

We also denote byV!() the closure of D( n fOg) for the norm k kyiy - We have the
characterization

vi(y= f' 2Vvi() j' =0on@g:

It is obvious that Vé() H() . Moreover, since is bounded, applying the results of [102,
Theorem 7.1.1] yields thatH'() =V §() andH}()= V3() : For > 0, one has the inclusions

Vi (O HO VRO and then V() (Ha()) vt )
Since for all0<  we haveV® ()  L2() ; one deduces, thanks to (6.4), that
L2() VPO (HB()
To obtain the previous inclusions, we have used the fact thatvV°()) =Vv©° () . Forall 2R;

we de ne the spaceV'() = fu2 V() j(u;1)2@ =0g: Again, by using [102, Theorem 7.1.1]
we nd Hi ()= V3() :
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The Laplace operator in weighted Sobolev spaces

In this paragraph, we will recall some results concerning the Laplace operator acting between
weighted Sobolev spaces in the punctured domain nfOg. These results will be very useful
throughout this chapter, their proofs can be found in [102, 101, 107] and in the references therein.
We will start with the homogeneous Dirichlet condition. For 2 R, we de ne the operator
Ap Vi) ' (VP () such that

Ayt 9= rtor oy 8 2VY) %2V ()
Proposition 6.2.1. For all 2 ( 1=2;1=2), the operator A : V() ! (V! ()) is an

isomorphism.

Let 0<r o and denote by B(O;ro) the open ball of R® of center O and of radius ro: We have the
following regularity result

Proposition 6.2.2.  [107, Y1.6.2] Forall 2 (%; g) the operator :V 2(B(O;ro)\ V1 ;(B(O;ro)) !

VO(B(O:rp)) is an isomorphism. Since for all 2 (%;1) we haveVO(B(O;rg))  (H3(B(O;ro))) ,
the space of solutiond/2(B(O;ro))\ V1 ;(B(O;ro)) can be replaced by ?2(B(O;ro))\ H3(B(O;ro)).

Now, we turn our attention to the case of the homogeneous Neumann boundary condition. For
this, we introduce the operator Ay : VX() ! (V! ()) such that

Myt 4= ' or Todx; forall* 2 V() ;' %2Vt () :
Proposition 6.2.3. For all 2 ( 1=2;1=2), the operator A, : V() ! (V! ()) s an
isomorphism.

Note that when = 0; we obtain the classical well-known result : H () ! (H:()) isan
isomorphism.

6.2.2 The scalar problems with critical coe cients

Here, we recall some results, that we have proved in Chapter 2, concerning the construction of
new functional frameworks for the scalar problems when the functions' and are such that
Assumption 6.2.1 holds. To start, we dene, for all 2 R, the operators A. : V! () !

(V! ()) such that
bA. %' 9= "r' r TOdx; forall* 2V () ;' %2Vt (): (6.5)
In the same way, for all 2 R we introduce the operatorsA :V* () ! (V! ()) such that

A 4 G = r' r " Odx forall ;' %2 Vvt () : (6.6)

Observe that, thanks to the fact that V3() = H 3() and Vi() = H 1() ; we, then, have
A?=A.and A°=A :

Lemma 6.2.1. Under Assumption 6.2.1 there existsO < p (resp. 0 < ) such that the
operator A. (resp. A ) is of Fredholm type for all 2 (0; p) (resp. 2 (0; n)).
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To simplify the analysis below, we shall make the

Assumption 6.2.2. We suppose that" (resp. ) is such that there exists 2 (0; p) (resp.
2 (0; n)) suchthatA. (resp. A ) is injective.

Using the results of Proposition 2.6.3, we obtain the

Lemma 6.2.2. Assume that Assumptions 6.2.1-6.2.2 hold. Then for all 2 [0; p) (resp.
2 [0; N)) the operator A.  (resp. A ) is injective.

Another useful result is the following

Lemma 6.2.3. Assume that Assumptions 6.2.1-6.2.2 hold. 1fu 2 H3() (resp. u2 Hi () )is
such thatdiv("r u) 2 (V1()) (resp. div("r u) 2 (V}()) )with 2 (0; p) (resp. 2 (0; n))
thenu2 V! () (resp. u2 V! () ).

We denote by S and S , respectively, the spaces of propagating singularities generated by the
operators A~ and A : Recall that these spaces have nite dimensions as soon as 6 1 and
6 1. To be more precise, the spac& is de ned as follows:

S =spanfrl 7! (r)r 1=2+i X ;Iog(r)p' k pi 2 R;(" p)p=0;:x is a Jordan chain ofL -g
=0 M
" (6.7)
where L - is the Mellin symbol of A« and 2 D() is a xed cuto function that depends only
in r = jXj and that is equal to 1 near the origin. To de ne the spaceS , simply replace" by
Interestingly, we have explained in Chapter 2 thatS:; S L2() in addition to that we proved
that for all s 2 S (resp. s 2 S) we havediv("r s) 2 L?() (resp. div( r s) 2 L2() ). This

allows us to de ne for =";; the quadratic formq :S S | C such that
g (u;v) = div( r v)u div( r u)v forall uyv2 S :
Observe thatforallu2 S (with =", ) we have

g (u;u)=2i=m( div( r wu):

We also have the

Lemma 6.2.4. Assume that Assumptions 6.2.1-6.2.2 hold. The spaceS: and S have even
dimensions denoted, respectively, byl = 2N+ and T = 2N (N-;N 2 N ). There exists
(S )j=1;::N. (resp. (s, )j=1;:sn ) @ basis of S (resp. S)) such that for =" we have

..........

all the conditions of Lemma 6.2.4. From a mathematical point of view, the choice of these bases
is not important: any choice of bases will lead us to construct functional frameworks in which the
scalar problems are again well posed. However, there is a particular choice of these bases which is
consistent with the limiting absorption principle. We will come back to the choice of these bases
in Y6.4.7.

..........

Easily, one can show that we have the following
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Lemma 6.2.5. Assume that Assumptions 6.2.1-6.2.2 hold. Ifs 2 S' (resp. s 2 S") satis es
a(s;s)=0 (resp. q (s;s)=0) then s=0:

Next, we de ne for all 0 < the spaces
ver = vt () s verg= V() ST

For all 0< ; we de ne the operator A" : VoU'() I (V1()) suchthatforallu= 4+ s 2
vout()y (with &2 V! () ands’ 2 S')andv2 V() we have

PMMuvii=  "rurv div("r sh)v:

In the same way, we introduce the operatorA®“ : voU'() 1 (v%()) such that for all u =
t+ st 2 VOU'() (with &2 V! () ands' 2 S")andv2 V() we know

PACUy; Vi := rerv div( r s")v:

According to the results of Y, we can prove the following

Lemma 6.2.6. Assume that Assumptions 6.2.1-6.2.2 hold. Then for all 2 (0; p) (resp.
2 (0; n)) the operator A (resp. A°“!) is an isomorphism.

Since in our work we are going to use at the same time the results concerning the Laplace operator
with Dirichlet or Neumann boundary conditions as well as those associated with the operators\..
and A ; we are going to assume once and for all that, when the hypotheses 6.2.1-6.2.2 are satis ed,
the constants p and y aresuchthat N; p < 1=2. Moreover, we denote by ¢ :=min( p; N):

6.3 Necessity of a new functional framework for the Maxwell's
system

After eliminating H and then E in the problem (6.1), one concludes that the electric eldE and
the magnetic eld H satisfy the problems

cul cul E '2"E=1iJ in curl " fcurl H '?2 H=curl" Y in

E =0 on@:| H =0;" Ycul H J) =0 on@: (6.8)

In the classical con guration, when " and have constant signs, the formulation associated to
the electric eld E is set in the spaceH \ (curl ) and the one associated the magnetic eldH is
set in the spaceH (curl ): More precisely, whend 2 L?() : the problem associated to the electric
eld writes

Find u 2 Hy (curl ) such that

12 (6.9)

Yeurl u curl v u v=il J v forallv2Hy():

Since the embedding ofHy () in L?() is not compact (see [8]), the analysis of the previous
problem cannot be treated by classical arguments. For this reason, we prefer to work with the
following formulation which is posed in the spaceXn (") Hn()

Find u 2 Xy (") such that

12w (6.10)

Yeurl u curl v u v=il J v foralv2Xy("):

It was proved in [22] that the previous two formulations are equivalent as soon as the operatora.-
and A are isomorphisms. Furthermore, in this situation one can show that (6.10) is well-posed
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except for a discrete set of frequencies where it admits a nite dimensional kernel. Whefi and

are critical, there is no guarantee neither on the equivalence between the formulations (6.9)
and (6.10) nor on their well-posedeness. To proceed, we introduce the operatofsy : X (") !
(Xn(") and Ky i XnN("M) ! (Xn(") suchthat forall u;v 2 Xy ("); we have

PANU; VI = Leurl u curl v; KKyu;vi = u Vv

The following lemma can be seen as an extension of the results of [54].
Lemma 6.3.1. Assume that Assumptions 6.2.1-6.2.2 hold. Then the operatoKy is compact.

Proof. Let 2 (0; p). According to Proposition 6.7.3, we know that the spaceXy (") is
compactly embedded in the spac&/® ()= (v © ()) 3. We nish the proof by remarking that
there exists a positive constantC such that for all u 2 XN (")

kKN u k(X N ("; )) C kUkLz() C kukVO () . (611)

As a result, even when" is critical, we then have the equivalence between the Fredholmness of
the problem (6.10) and the Fredholmness of the operatoAy : We also have the

Proposition 6.3.1. Under Assumptions 6.2.1-6.2.2 the mapu 7! kcurl UkLz() is a norm in
Xn (") that is equivalent to thek Kk cur ) ONe.

Proof. By the classical open map theorem, its su ces to show thatu 7! kcurl uk, 2¢, isanorm
in Xn("): If u2 Xn(") such that curl u = 0; then by using item iii ) Proposition 6.7.1 we infer
that there exists a unique' 2 H3() suchthatu = r ": Given that div("u) =div( "r ' )=0 and
owing to Lemma 6.2.2, we obtain the wanted result.

The main result of this section is given by the following

Theorem 6.3.1. Assume that Assumptions 6.2.1-6.2.2 hold and assume thdtand are such
that « 2 I-nf 1lgand 2| nf 1g. Then either the operator Ay is not of Fredholm type or
the problems(6.9) and (6.10) are not equivalent.

Remark 6.3.1. In the case where the operatoAy is of Fredholm type, the absence of equivalence
between the formulations(6.9) and (6.10) means that the solution obtained by solving6.10) does
not satisfy the equation satis ed by the electric eld in the distributional sense (i.e., the rst part
of (6.8)).

Proof. We will proceed by contradiction. Suppose thatAy is a Fredholm operator and that the
problems (6.9) and (6.10) are equivalent, then we will show thatA is of a Fredholm operator
which is false by assumption.

The symmetric operator Ay is then of Fredholm type; its index must therefore be equal toO.
Without loss of generality, we can suppose thatAy is not injective. Otherwise, the following
proof can be easily adapted. Since the kernel oAy is of nite dimension, say N 2 N , we can
nd N linearly independent elements of X y (") that will be denoted by 1;:::; N such that
Ker(An) =span( 1;:::; n): To proceed, with the help of Proposition 6.3.1, we introduce the
closed space

An(")=fu2 Xn(")j(curl useurl i) 2y =0;i=1;:::Ng

as well as the operatorAy : Xn (") ! Xn (") such that

Ay uU; Vi = Leurl u curl vdx; forall u;v 2 Xn("):
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?
Consequently, we obtain the decompositionX \ (") = Xn (") span( 1;:::; n): Moreover, the
operator Ay is an isomorphism. Now, consider an element 2 H# () . SinceAy is an isomor-
phism, we dene . 2 Xy (") the unique element of X\ (") satisfying

teurl . curl Odx = S icurl ) curl  Odx; 8 92 xn(") (6.12)
i=1
in which ; = Iy curl 7 dx. We emphasis that in (6.12) the test function °belongs to
X~ ("). However, thanks to the de nition of ; and ;, one can check that (6.12) is also valid for
all %2 span( 1;:::; ). Indeed, since for alli 2 f1;:::;Ng we have ; 2 Ker(An) we infer
that
curl . curl ;dx=0:
On the other hand, thanks to the de nition of | for k=1;:::;N; we also have
l(r ' weurl ) curl jdx=0foralli=1;:::;N:
k=1

As a result, by linearity, we nd

eurl . curl Odx = (R icurl ;) curl  Odx; 8 92 Xn("): (6.13)
i=1

But, since by assumption the problems (6.9) and (6.10) are equivalent, the equation (6.13) is,
then, valid for all °2 Hy () and then, by density of (D()) in Hn() , we obtain

curl (- (r icul ; curl .)=0 in
i=1

From item v) of Proposition (6.7.1), we infer that there is a uniqueT °2 Hi () such that

rr)=s ('0 curl ; curl .):
i=1

As a result, we have de ned an operatorT: H} () ! (Hi()) : One can easily prove thatT is
continuous. Furthermore, since for all' 2 Hi () ;u2 Xn(")wehave curlu r ' 9=0; we

deduce that for all ;' %2 H} ()

X
M T4= r' r(T9dx= r' r "Odx icurl ; r " Odx: (6.14)
i=1

Consequently, the operatorT represents a left parametrix for the self adjoint operatorA . As a
result (see [109, Lemma 2.23]) the operatoA :Hi() ! (Hi()) is a Fredholm operator of
index 0 which is not true by assumption ( is critical).

In the classical setting, the equivalent variational formulation to the magnetic problem writes:

Find u 2 H (curl ) such that
| 2 (6.15)

Yeurl u curl v u v= " 13 curl v forall v2H(curl):



165 6.4. The analysis the electric problem

The results of [22] allow us to show that when is such that A is an isomorphism then the
previous formulation is equivalent to the following one

Find u 2 X1( ) such that

12y v= "1 culv forallv2Xs(): (6.16)

leurl u curl v

If in addition to that the function " is such that A- is an isomorphism, it can be shown that
(6.16) is well-posed except for a discrete set of frequencies at which it has a nite dimensional
kernel. As in the previous paragraph, we introduce the operatorsAr; Ky : Xt( ) ! (X1( )
such that for all u;v 2 X1 ( ); we have

PATu;vi = Leurl u curl v; Ktu;vi = uv:

By working as in the case of the electric problem, one shows the

Theorem 6.3.2. Assume that Assumptions 6.2.1-6.2.2 hold and assume thdtand are such
that -2 1.-nf 1gand 21 nf 1g. Then the following assertions hold:

u 7tkeurl uk 2y isanormin X1( ) and is equivalent tok Ky cur ):

Kt is compact.

A~

Either the operator Mt is not of Fredholm type or the problems(6.15) and (6.16) are not
equivalent.

6.4 The analysis the electric problem

Previously, we have shown that when" and are critical, the classical framework X (") is no
longer the appropriate space to solve the electric problem. In this section, we explain how to
construct a new functional framework in which the problem

cul cun E 'Z'E=1i1J in

E =0 on @ : (6.17)

is again well-posed. For this, we introduce for all 2 R the spaces

Vo) =(v °0) %
Hy(curl ):=fu2r st VO () jeulu2vVv?);u =0o0n@g;
HYY (curl ):=fu2r St VO () jeulu2 rs" VP ();u  =0on@g:

Observe that the spaceH  (curl ) depends on" and that the spaceH&”t; (curl ) depends on"
and : Abover S andr S" stand for the spaces

r S =spanfr si;j =1;::5;N-g;r S" =spanfr s% ;j =1;::;;N g

Before getting into details, let us de ne the norms that we are going to use in the spaces S’
andr S":For ="; and 1rs+;1+ + NrsJ';N 2r S" we de ne

X . X
k i S kr s = (
j=1 j=1

i

On can check that for all0< ; we have the inclusions

HY'Y (curl )  Hy(curl) VO() : (6.18)
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It is time to present the norms that we are going to use in these three spaces. We start with the
case of the space/ () . Forall u =(ujg;up;uz) 2 Vy() ; we denote by

x 2 1=2
kuk :=(- lkuikvo() )

For the case of the spaceH \ (curl ); we proceed as follows. For alu = &+ r st 2 H(curl )
(with &2 V® () ands' 2 S') we de ne

kuky, (curl ) :=(kt|'k\2/0 ot kr st kr2 o + keurl Uk\z/o() )12

Forall u = e+ rst 2 HY" (curl ) (with & 2 VO () ands' 2 S') such that curl u =
st rs (with e2Vv® () ands" 2 S ) we introduce

kuk = (kerkd +kr sTK2 o + ko KG +kr 5K )P

He' (eurl ) - VO () Vo ()

Giventhat is Lipschitz-continuous, endowed with theirs associated norms all the previous spaces
are Hilbert spaces. In addition to that, one can show that when is positive, the embeddings
(6.18) are continuous.

To simplify the presentation of our results, we shall adopt the following notations: for allu 2
H\ (curl ); we will write u = & + r sy with & 2 VO () andsy+ 2 Sh;forv 2 H " (curl ) we
will use the notation curl v=,+ r s, with 2 VO () ands,. 2 S":

6.4.1 De nition of the electric problem

In Y, we will explain that the appropriate functional framework to set the electric problem is the
spaceHﬁl“t' (curl ) (some conditions on that will be speci ed later). For this reason we are
going to study the problem

cul 1, !2u=iJ in nfOg

u =0 on @ : (6.19)

Find u 2 HY'" (curl ) such that

The reason why we considered the problem in nfOg and not in  is to be able to study the
problem in weighted Sobolev spaces (and we will then be able to consider very singular elds
near the origin). Our goal is to write a well-posed variational formulation which is equivalent
to the problem (6.19). To obtain such a variational formulation, we must choose, with care, the
space of the test functions. To proceed, let us assume, for the moment, that the current density
J belongs to the spacev® () (in the Theorem 6.4.6, we will explain how to work with more
general current densities) and let us introduce the problem

Find u 2 HY" (curl ) such that

1 (6.20)

goculv 12 "y v=il J v forallv2Hy(curl):

in which for all u 2 HY™ (curl ) and v 2 H (curl ) we have

B r Sy div("r sy)Sy

It will be useful to observe that for all u 2 Hy™ (curl ) and v 2 H (curl ) we have

U Vs dvCT SIS V(T sun)SE S gsurise)t (6.21)
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Proposition 6.4.1. Assume that 2 [0;1=2): Then, the problems(6.19) and (6.20) are equiva-
lent.

Proof. SinceD( nfOg)® H n () ; any solution to (6.20) is a solution to (6.19). Now, let us
show the reverse statement. Starting from the fact that for all 2 [0; 1=2) the spaceD ( nfOg)>
is dense in the spaceV = fu 2 Hy(curl )jsy» = 0g (see Y6.7.4)), we conclude that i1 is a
solution to (6.19) then it satis es

1 |2 "

. curl v u v=i J viforallv2V:

To end the proof, it remains to show that forall v 2r S; we have
'uv= J wv

To do so, letv 2 S and denote byv = r v2r S': Giventhat r S V() forall 0< ; there
exists a sequencd’ p)n2n Of elements ofD( nfOg) such that' , ! vin V() asn! +1:
This impliesthat r ' !t vin V() : Moreover, sinceV?() L2() forall < 1;we can say
that for all 2 [0;1=2) we have' , ! vin L?() asn! +1 : Multiplying (6.19) by r ' , and
integrating by parts yield

n 1 —

o r n dIV("r Su;" n = J r n:

By letting n tend to 1 ; we deduce that

urvs J rv:

This leads to the wanted result.

6.4.2 Equivalent formulation for the electric eld

Given thatforall * 2 V! () wehaveu =r' 2 HY" (curl ); we infer that the operator associ-
ated to the sesquilinear form(u;v) 7! "u V is not compact. As in the classical con guration,

one way to deal with this absence of compactness is to impose the constraidiv(” ) = 0 on the
spacesH  (curl ), H,?,““ (curl ). This leads us to introduce the spaces

Y ()= fu2 Hy(curl )jdiv("u)=0g; Y ("):= fu2 HY" (curl )jdiv("u)=0g:

Note that the spaceY 4™ (") depends also on: In the sequel, we endow the spac¥ (") and

Y 3 (") respectively with the norms of the spacesH  (curl ) and H™ (curl ):
Remark 6.4.1. Letu = o+ r sy~ 2 Hy() . At rst sight the constraint div("u) must be
understood as follows:

urT= g r div("r sy=)"= " r =0 forall' 2 D( nfOg):

Given that for all s,» 2 S the function div("r s,.) belongs toL?() and is compactly supported
in "= nfrl j; (r)=1g nfOg (recall that the function is a xed cuto function that
depends only inr = jxj and that is equal to1l near the origin, see (6.7)). With this in mind
one can show that we have the estimate: there exisis< C (independent of' ) such that for all
" 2 D( nfOg) we have

ji=j "ur“j CK kvl():
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The density of D( nfOg) in V() implies that we have the equivalence
div("u) =0 ( "u rv=0 forallv2 V() : (6.22)

By replacing the spaceH 3" (curl ) by Y ' (") and the spaceH , (curl ) by Y (") in (6.20),
one obtains the following problem

Find u 2 Y3 (") such that

1 | 2 (6.23)

4 curl v "u v=1 J v forallv2Y,("):

Without any di culty (using (6.22)), one can see that for all u 2 Y3 (") andv 2 Y (") we
have

" n "

u vs= u v= o v div("r sy)S:

Note that to obtain the previous result, we have used the fact that for allv 2 Y ("); we have
div("v) = div("r sy»):

Theorem 6.4.1. Assume that! 6 0.
Every solution of (6.20) is a solution of (6.23).

" Let 2 (0; p). Under Assumptions 6.2.1-6.2.2, if E is a solution (6.23), then it solves
(6.20). Moreover fE;(i! ) lcurl Egis a solution of (6.1).

Proof. To prove the rst part of the statement, one needs to justify that every solution u of
(6.20) satis es the equation div("u) = 0. For that, it suces to take v = r ' in (6.20) with
' 2 D( nfOg) and then use the fact that div(J) =0 in nfOg.
The proof of the second part is little bit more involved. To prove it, let u be a solution of (6.23).
SinceY ™" (") HY™ () ; it suces to show that the variational formulation (6.23) is also
valid for all v 2 H\ () . Forthis,let v=vw+r s, 2 H () with v?2 v® () and Sy 2 S,
By means of itemiv) of Proposition 6.7.1, the function v admits the decompositionw =r ', +
curl , with "y 2 H3() (suchthatr' 2 V° () )and , 2 Xt(1).) By remarking that
curl v = curlcurl , we infer curl , 2 X (1) and then by Proposition 6.7.2 we deduce that
curl , belongs toV? () forall 2 [0;1=2). Observing that div("curl )2 (Vi()) for all

2 (0; p) allows us to de ne the function wy 2 V°U'() as the unique solution of the well-posed
problem

div("r wy) =div( " (curl , + 1 sy»)) 2 (VI()) (6.24)

Now, we introduce ¢ such that¢ =v r ', + r wy,. By observing that div("¢) =0 in nfOg,
we deduce that¢ 2 Y\ ("). As a result, one can take® as a test function in (6.23). But, on the
other hand, we have

1 T = 1
§ u curl v= a curl ¢

"u v= "u 0+ "ur(wy )= u ¢

Hence, u satis es (6.20) which ends the proof of the rst part of second item. The rest of the
proof can be done as in Lemma 5.3.2.
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6.4.3 Equivalent normsin Y (") and Y (")

The goal of this section is to introduce, under some condition on , new "simpler" equivalent norms
for the spacesY (") and Y,C\’,“t’ ("). Let us start with the case of the spaceY  ("). Following
the same lines of the proof of Proposition 6.5.2, one obtains the

Proposition 6.4.2. Let 2 (0; p) and assume that Assumptions 6.2.1-6.2.2 are satis ed. Then
there exists a positive constantC such that

Kerkyo () + kr syrk. o Ckeurl ukyo forall u2Y,("): (6.25)

Consequently, the normsk k,, ™) and keurl  kyo(y are equivalentinY ().
N
Now, we turn our attention to the case of the spaceY J"("). We have the

Proposition 6.4.3.  Suppose that Assumptions 6.2.1-6.2.2 hold and let 2 (0; ). Then, there
exists 0 < C such that

ketkyo () + krsurk, g Ck ykyo ( forallu2 YU () withcurl u= +r sy
6.26
out; ( )

Consequentlyu 7tk kyo () isanormin Y ™ (") that is equivalent tok k,, (curl )
N

Proof. Since forall0< , we have the inclusionY 5™ (") Y (") and, by means of Proposition
6.4.2, it su ces to show that, forall 2 (0; o) (0; p), we have the following estimate

keurl ukyo,  Ck ykyo (y  forallu2 Y™ (*):

By de nition of the space Y 3" ("); we know that for all u 2 Y3 (") we havecurl u =
4t I sy: : Hence, we have the estimate

kCUF| Ukvo() C(kl’ Su; kvo() + k UkVO() ) C(kr Su; kS+ + k ukvO () ) (627)

with C independent ofu: Now, given that for all u 2 Y 3" (") we havediv(curl u) =0 we then
obtain that
div( r sy; )=div :

Using the fact that u =0 on @ we deduce thatcurl u =0 on @ and then we conclude
that |, =0 on @ : With this in mind, we can say that div , 2 (V1()) : Consequently, we

can write that for all v2 V() we have
hA%s,. ;vi = div( r sy V= I
Given that A° is an isomorphism for all 2 (0; o), we infer that we have the estimate
kSu; kS+ k leVO ()

with C independent ofu: Inserting this into (6.27) yields the wanted result.

6.4.4 Analysis of the principal part

In this section, we shall study well-posedeness of the problem (6.23) whén= 0. For this reason,
we introduce the continuous operatorAy : Y o™ (") 7! (Y (")) such that for all u 2 Y 5% (")
andv 2 Y (") we have

v = 1 -
PAGU; Vi = u curl v:
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Before getting into details, observe that for allu;v 2 Y 3" (") we have

hA U;Vi = L, o+ div(rsg )s

Note that to obtain the previous relation, we have used the fact that for all u 2 Y,C\’l“t; (") we
have
div( ,)= div( rs. ):

Theorem 6.4.2. Assume that Assumptions 6.2.1-6.2.2 hold. Let 2 (0; o). Then, there exists
a continuous operator T: Y (") ! Y (") such that

My Tu;vi:= re curl u curl v forall u;v2Y,("):

As a consequence, the operatoAn  T: Y (") ! (Y (") is anisomorphism.

Proof. The construction of the operator T will be done in three steps. Let us consider some
u22Yy(™.

First step: Since 2 (0; o) (0; n), the operator A is an isomorphism. As a result, one
can introduce' , = ~,+ s, 2 VOU'() (with '~ 2 vl () and s, 2 S) as the unique solution of

div( r ' ) =div( r 2 curl u) 2 (VX)) in
(r'u+r?curlu) =0 on@ :

Since A°" is an isomorphism, the function'  satis es the following estimate

K~ukyr () +kr sk ¢ Ckr? curl ukyo (, = Ckeurl ukyo(y : (6.28)

Second step: We de ne the function F, = (r 'y + r? curl u) 2 V°() . Easily, one can see
that F satis es (
div(Fy)=0 in
Fu =0 on @ :

Since < 1=2, one can use Proposition 6.7.1 to deduce that there exists a unique, 2 Z,(1)
(see (6.42) for the de nition of |, 2 Z,;(1)) such that

cul ,=Fy= (r'y+r?

curl u):
Furthermore, by means of Proposition 6.7.2, since o < 1=2, the function , belongs to the space
vo ().

Third step:  Since by assumption 2 (0; o) (0; p), the operator A% is an isomorphism.
This allows us to de ne wy = wy + s, 2 VOU'() (with wy, 2 V1 () ands, 2 S') as the unique
solution of the problem

div("r wy) =div( " ) 2 (V) in
wy =0 on@:

We setT(u)= , r wy,. One can check thatT(u) belongs to the spaceY 3" ("). In addition

to that we have (

2

T(uy = (r'=u+r° curl u)

St(u); = Su-
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