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Synthèse(en français)

Le sujet principal de cette thèse est l’étude de la propagation des ondes électromagnétiques,
en régime harmonique, dans un milieu hétérogène (en 3D) composé d’un diélectrique et d’un
matériau négatif (c’est-à-dire avec une permittivité diélectrique négative ε et/ou une perméabil-
ité magnétique négative µ) qui sont séparés par une interface avec une pointe conique.

En raison du changement de signe de la permittivité ε et/ou la perméabilité µ, les équations de
Maxwell peuvent être mal posées dans les cadres classiques (basés sur l’espace L2). Classiquement,
il est connu que l’étude des équations de Maxwell nécessite l’étude de deux problèmes scalaires
qui sont associés à ε et µ. Dans la littérature, le seul travail qui traite de ce lien entre ces prob-
lèmes, dans le cas où ε et/ou µ change(nt) de signe(s) est présenté dans . Il a été démontré que
lorsque les deux problèmes scalaires associés, impliquant respectivement ε et µ, sont bien posés
dans l’espace H1, les équations de Maxwell sont également bien posées dans les espaces classiques.
La contribution principale présentée dans cette thèse est de proposer une nouvelle théorie pour
l’étude des équations de Maxwell lorsque l’un des /les problème(s) scalaire(s) n’est/ne sont pas
bien posé(s) dans l’espace H1. La thèse est composée de quatre parties.

Dans la première partie (Chapitre 2,3), en combinant la méthode de la T-coercivité et l’analyse
de Mellin dans les espaces de Sobolev à poids (i.e. la théorie de Kondratièv) nous présentons
une étude détaillée de ces problèmes scalaires. En particulier, nous prouvons que pour chacun
d’entre eux, le caractère bien posé dans H1 est perdu si et seulement si le contraste associé ap-
partient à un ensemble critique appelé intervalle critique. Ces intervalles critiques correspondent
aux ensembles de contrastes négatifs pour lesquels des singularités propagatives, aussi appelées
ondes de trou noir, apparaissent à l’extrémité de la pointe. Ces singularités se comportent comme
r−1/2+iη (η ∈ R) au voisinage de la pointe (avec r est la distance à la pointe). Elles peuvent être
interprétées comme des ondes qui se propagent vers/depuis la pointe conique. Contrairement
au cas 2D d’une interface avec coin, pour une pointe 3D, plusieurs ondes de trou noir peuvent
exister. Des expressions explicites de ces intervalles critiques sont obtenues pour le cas particulier
des pointes coniques circulaires. Pour les contrastes critiques, en utilisant le principe de radiation
de Mandelstam, nous construisons une infinité des cadres fonctionnels dans lesquels le caractère
bien posé des problèmes scalaires est restauré. Pour choisir, parmi ces cadres fonctionnels, le
cadre qui est physiquement pertinent nous avons utilisé le principe d’absorption limite.
Au passage, dans la deuxième partie de ce travail (Chapitre 4), nous présentons une nouvelle
méthode numérique pour approcher les solutions des problèmes scalaires dans le cas des con-
trastes non-critiques. Cette nouvelle méthode est basée sur une reformulation des problèmes
scalaires en problèmes de contrôle optimal. Contrairement aux techniques existantes, la con-
vergence cette approche, ne nécessite pas d’hypothèses supplémentaires ni sur le maillage au
voisinage de l’interface ni sur la régularité de la solution.

La troisième partie de la thèse (Chapitre 8) concerne l’étude des équations de Maxwell avec un
ou deux coefficients critiques. En utilisant de nouveaux résultats de potentiels vecteurs dans
des espaces de Sobolev à poids et de nouveaux résultats de régularité, nous expliquons comment
construire de nouveaux cadres fonctionnels dans lesquels les problèmes électrique et magnétique
sont à nouveau bien posés. Ces cadres sont directement liés à ceux obtenus pour les deux prob-
lèmes scalaires associés. En outre, nous avons prouvé que si nous utilisons le cadre qui respecte
le principe d’absorption limite pour les problèmes scalaires, alors les cadres fournis, par notre
approche, pour les problèmes électrique et magnétique sont également cohérents avec le principe
d’absorption limite.

Enfin, dans la dernière partie de ce travail (Chapitre 8), nous sommes intéressés à l’étude des
processus d’homogénéisation des équations de Maxwell (en régime harmonique) et les problèmes



scalaires associés dans un domaine 3D qui contient une distribution périodique d’inclusions dans
un matériau négatif. En utilisant l’approche de T-coercivité et un nouveau résultat de compac-
ité uniforme, nous obtenons des conditions sur les contrastes (associés aux problèmes scalaires
dans les cellules) qui assurent que le processus d’homogénéisation est possible pour les problèmes
scalaires et vectoriels (Maxwell). D’une manière non intuitive, nous montrons que les matri-
ces homogénéisées associées aux problèmes de limites sont soit définies positives, soit définies
négatives.
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Chapter 1

Introduction

For the past two decades, the scientific community has been particularly interested in the analysis
of Maxwell’s equations in unusual situations involving real valued dielectric permittivity ε and
magnetic permeability µ whose sign changes on the domain of interest. The main motivation for
the study of these problems comes from spectacular progress made in the field of plasmonics and
from a more prospective point of view, from the development of the so-called metamaterials.

Plasmonics is the branch of physics that consists in studying the propagation of electromagnetic
waves, or more precisely, of the collective oscillations of electrons, on the surface of a metal at
optical frequencies. These waves are called plasmonic waves or plasmonic resonances. They are
exploited in many interesting realizations such as the Lygurcus cup (see Figure 1.1). This cup
looks green when illuminated from outside but appears red when illuminated from inside. The
explanation of this change of color lies in the fact that it is composed by an alloy of gold and silver
nanoparticles. In particular, when one illuminates the cup from inside, the red color results from
the strong enhancement of the scattered field associated to some particular wavelengths due to
the excitation of plasmonic resonances. Recently these waves have been used in new applications
concerning the design of biosensors, cancer therapies, the production of efficient photovoltaic cells
and many others (see [106]). From a mathematical point of view, the existence of these waves is
mainly due to the fact that at optical frequencies, some metals like silver or gold have a dielectric
permittivity ε with a small imaginary part and a negative real part (see [45, Chapter 1] for a
more rigorous explanation). Neglecting the imaginary part, for these ranges of frequencies, we
are led to consider a real-valued ε which is negative in the metal and positive in the air around
the metal. This gives us a first simple configuration in which the dielectric permittivity has a
change of sign.

Metamaterials are artificial materials with physical properties that can not be found in nature.
Usually they are made of a periodic assembly of a large number of resonant micro-structures
(see Figure 1.1). For these materials, all the game consists in choosing cleverly the structure as
well as the resonators so that the effective medium, after an homogenization process, presents
interesting properties. These materials have been intensively studied in the past two decades due
to their potential very exciting applications such as, among others, sub-wavelength imaging and
focusing, cloaking, sensing or data storage (see [135]). Let us mention that concrete realizations
of these materials are still in progress. Mathematically it was proved (see [132]) that it is possible
to design materials modelled by some effective ε and µ that have, in some range of frequencies,
negative real values and small imaginary parts.

We emphasize that all the interesting phenomena related to these negative materials (i.e. metals at
optical frequencies or negative metamaterials for well-chosen ranges of frequencies) arise only when
these materials are associated with classical (positive) ones and importantly when dissipation is
very small. Therefore we will focus our attention on the propagation of electromagnetic waves

9
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inside media where ε and µ are real valued and where one or the two constants change(s) sign
in the physical domain. Note that this is also the most interesting case for the mathematical
analysis.

Figure 1.1: On the left: the Lygurcus cup [9]. On the right: an example of metamaterial (NASA
Glenn Research/Wikimedia Commons).

In what follows, we will be particularly interested in the study of the time harmonic Maxwell’s
equations in a bounded domain1 Ω of R3 made of an inclusion of negative material Ω2 surrounded
by some positive material Ω1. We denote by Σ the interface between the two regions so that finally
we have Ω2 ⊂ Ω, Ω = Ω1 ∪ Ω2 ∪ Σ and Σ = ∂Ω1 ∩ ∂Ω2 (see Figure 1.2 for an illustration).
We assume that ∂Ω (the boundary of Ω) is Lipschitz-continuous and connected. Moreover we
denote by n the unit normal vector to ∂Ω oriented to the exterior of Ω. To set the ideas, in this
introduction we focus our attention on the problem satisfied by the electric field E when Ω is
surrounded by a perfect conductor. This problem writes

curlµ−1curlE − ω2εE = iωJ in Ω and E × n = 0 on ∂Ω. (1.1)

Above ω ∈ R is the frequency, J is the injected current density which is assumed to satisfy
div(J) = 0 in Ω while ε (resp. µ) is a piecewise constant function such that ε = ε1 ∈ R∗

+ (resp.
µ = µ1 ∈ R∗

+) in Ω1 and ε = ε2 ∈ R∗
− (resp. µ = µ2 ∈ R∗

−) in Ω2. Because of the change of sign
of the functions ε and µ, the study of Problem (1.1) can not be made as in the classical case.
In order to identify the difficulties raised by the sign-changing ε, µ, let us start by recalling in a
brief way how one shows the well-posedness of (1.1) in the standard situation when ε2 and µ2
are positive.

The classical configuration. It is well-known that when ε and µ are positive, Problem (1.1)
is not elliptic (see [63]). This makes the study of its well-posedness a little bit different from the
analysis of strongly elliptic problems. The choice of the functional framework in which we can
set Problem (1.1) is not unique [63]. The most natural setting is the one which reflects the fact
that the electromagnetic energy contained in Ω is finite. This boils down to impose that both E
and curlE belong to the space L2(Ω) := (L2(Ω))3. This leads us to work in

HN (curl ,Ω) := {u ∈ L2(Ω) | curlu ∈ L2(Ω) and u× n in Ω}.

Endowed with its natural norm

∥u∥HN (curl ,Ω) = (∥u∥2
L2(Ω) + ∥curlu∥2

L2(Ω))1/2,

HN (curl ,Ω) is a Hilbert space. Furthermore, it can be shown that (D(Ω))3, the space of infinitely
differentiable functions with compact support in Ω, is dense in HN (curl ,Ω) (see [81]). With this

1i.e. an open connected subset.
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Figure 1.2: An example of considered geometry where the green (resp. red) part is occupied by
Ω1(resp. Ω2).

in mind, one can show that when J belongs to L2(Ω), Problem (1.1) set in HN (curl ,Ω) is
equivalent to the following variational formulation

Find u ∈ HN (curl ,Ω) such thatˆ
Ω
µ−1curlu · curlv − ω2

ˆ
Ω
εu · v = iω

ˆ
Ω
J · v, ∀v ∈ HN (curl ,Ω). (1.2)

By observing that for all φ ∈ H1
0(Ω) the vector field ∇φ belongs to the space HN (curl ,Ω) and

that ∥∇φ∥HN (curl ,Ω) = ∥∇φ∥L2(Ω), one can prove that the embedding of HN (curl ,Ω) into L2(Ω)
is not compact (see the end of this introduction). Moreover, for the same reason (the fact that
∇H1

0(Ω) ⊂ HN (curl ,Ω)), what seems the “principal” part of (1.2) is not coercive. All this to
say that one can not apply the “coercive +compact” theory to prove the well-posedness of (1.2).
One way to solve this difficulty is to exploit the fact that div(J) = 0 in Ω, which, according to
(1.1), gives div(εE) = 0 in Ω for all ω ̸= 0. Imposing this constraint leads us to work in the space

XN (ε,Ω) := {u ∈ HN (curl ,Ω) | div(εu) = 0} .

Then we introduce the problem

Find u ∈ XN (ε,Ω) such thatˆ
Ω
µ−1curlu · curlv − ω2

ˆ
Ω
εu · v = iω

ˆ
Ω
J · v, ∀v ∈ XN (ε,Ω). (1.3)

It has been proved in [65] that when ε is positive, the embedding of XN (ε,Ω) into L2(Ω) is
compact. Furthermore, using that µ is positive, one can prove that the principal part of (1.3)
is coercive. As a result Problem (1.3) is well posed in the Fredholm sense for all ω ∈ R and in
the Hadamard sense except for a discrete subset of frequencies of R. To complete the analysis
and to prove in particular that a solution to (1.3) yields a solution to (1.1), we need to show
the equivalence between formulations (1.3) and (1.2). It is obvious that any solution of problem
(1.2) is a solution of (1.3). Let us establish the converse statement. For all v ∈ HN (curl ,Ω),
introduce φv ∈ H1

0(Ω) the unique function which solves the problem

Find φv ∈ H1
0(Ω) such that div(ε∇φv) = div(εv). (1.4)

Then we can write v = ∇φv + ṽ with φv ∈ H1
0(Ω) and ṽ ∈ XN (ε,Ω). Taking ṽ as a test function

in (1.3) and using the fact that for all u ∈ XN (ε,Ω) we have
ˆ

Ω
µ−1curlu · curl ṽ =

ˆ
µ−1curlu · curlv,

ˆ
Ω
εu · ṽ =

ˆ
Ω
εu · v and

ˆ
Ω
J · ṽ =

ˆ
Ω
J · ṽ,
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we deduce that any function satisfying (1.3) solves (1.2). This ensures that Problem (1.2) is
well-posed in the Fredhlom sense for all ω ∈ R∗ and in the Hadamard sense except for a discrete
subset of frequencies of R∗. Now, let us go back to the case of sign-changing coefficients.

The case of sign-changing coefficients. In the reminder above, the positivity of ε was
used twice, first to show that the embedding of XN (ε,Ω) into L2(Ω) is compact and second to
prove the equivalence between (1.3) and (1.2). In addition to that, the positivity of µ was the key
argument to show the coercivity of the principal part of the formulation (1.3). When ε and/or µ
change/changes sign, these arguments must be reconsidered.
However, if we focus our attention on the proof of equivalence between formulations (1.2) and
(1.3), we notice that what is needed is not the positivity of ε but rather that the problem (1.4)
is well-posed in the Hadamard sense. Indeed it was proved in [22] that when the problems

Find u ∈ H1
0(Ω) such that − div(ε∇u) = f ∈ (H1

0(Ω))∗, (1.5)

Find u ∈ H1
#(Ω)2 such that − div(µ∇u) = g ∈ (H1

#(Ω))∗, (1.6)

are well-posed (for all f ∈ (H1
0(Ω))∗ and g ∈ (H1

#(Ω))∗) in the Hadamard sense, then Problem
(1.3) (resp. (1.2)) is well-posed in the Fredholm sense for all ω ∈ R (resp. ω ∈ R∗) and in the
Hadamard sense for all ω ∈ R\Λ (resp. ω ∈ R∗\Λ) where Λ is a discrete subset of R (resp. R∗).
Naturally, this brings us to the following question:

Under which condition(s) on ε (resp. on µ) the problem (1.5) (resp. (1.6)) is well-posed
(in the Fredholm sense) for all f ∈ (H1

0(Ω))∗ (resp. g ∈ (H1
#(Ω))∗)?

The previous question was the subject of several contributions in the literature [147, 49, 45] (es-
pecially in 2D configurations). Let us summarize, in a brief way, the principle conclusions of these
works.

State of the art about the scalar problems. Interestingly, in the literature, two main
approaches have been proposed.

• The first one is based on a reformulation of the problem into an integral equation [92, 92,
32, 67] posed on the interface Σ. Then desired conditions concerning ε or µ to ensure the
well-posedeness of the problems can be expressed in terms of the spectrum of the so-called
Neumann-Poincaré operator (this will be detailed in §2.2).

• The second one is variational [147, 49]. It is based on a reformulation of the classical inf-sup
theory called the T-coercivity approach. For example for Problem (1.5), it consists in finding
an operator T : H1

0(Ω) → H1
0(Ω) such that the sesquilinear form (u, v) 7→

´
Ω ε∇u · ∇(Tv)

becomes coercive on H1
0(Ω) × H1

0(Ω).

When the interface Σ is smooth (of class C 1,γ with γ ∈ (0, 1]), the two approaches lead to the
same conclusion: Problem (1.5) (resp. (1.6)) is well-posed in the Fredholm sense as soon as
the contrast κε := ε2/ε1 (resp. κµ := µ2/µ1) is such that κε ̸= −1 (resp. κµ ̸= −1). We will
show later in Chapter 2 that this is also the case for the general case of interfaces of class C 1.
It is worth to note that in some particular situations, for example for symmetric domains (i.e
Ω1 is the symmetric of Ω2 with respect to Σ) in 2D/ 3D, one can show [49] that for κε = −1
(resp. κµ = −1), Problem (1.5) (resp. (1.6)) has a kernel of infinite dimension. For more details
concerning the study of the particular case κε = −1 (resp. κµ = −1), see [117].
As soon as the interface Σ has geometric singularities (corners, conical points, edges, . . . ), the
situation is totally different. As we shall see in Chapter 2 of this thesis, one can show that for

2H1
#(Ω) := {u ∈ H1(Ω) |

ˆ
∂Ω

u = 0}.
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the general case of Lipschitz-interfaces, the Fredholmness of (1.5) (resp. (1.6)) can be lost when
the contrast κε (resp. κµ) belongs to some set IεΣ (resp. IµΣ) known as the critical interval. The
expression of IεΣ (resp. IµΣ) is not known in general.

For 2D polygonal interfaces, IεΣ and IµΣ have been obtained explicitly. They are intervals whose
bounds are functions of the sharpest opening angle of Σ [49, 25].
The approach based on the use of the Neumann-Poincaré operator leads to the same result. This
was done in [125]. Let us mention that the expression of the critical interval can be deduced from
the results of the Phd work of Carleman [44] dating from 1916!
In 3D, the situation is much more complicated, even in the simple case of an interface with a
circular conical tip. Actually, for this particular configuration, the T-coercivity approach allows us
to get an estimation of the bounds of the critical interval [49], but there is no guarantee about the
optimality of theses bounds. The approach relying on the use of the Neumann-Poincaré operator
was considered in [104], but it seems that there is no clear result about the exact expression
of the critical interval in this configuration. One of the objectives of this thesis is to find a
characterization of the critical intervals IεΣ and IµΣ in the case when Σ has a smooth conical tip
(see Figure 1.2). Furthermore, we will show how to combine the T-coercivity approach and the
approach based on the Neumann-Poincaré in order to obtain an explicit expression of the critical
interval.
By applying the results of [22], we can then conclude about the well-posedness of the Maxwell’s
problem when κε and κµ do not belong respectively to IεΣ and IµΣ. In Chapter 7, we will explain
how to use these results in order to study the homogenization of the scalar problems and the
time-harmonic Maxwell’s equations in a composite medium with periodically distributed small
inclusions of a negative material.
When one of the contrasts κµ or κε is critical, i.e. when κε ∈ IεΣ or κµ ∈ IµΣ, the well-posedness of
the Maxwell’s problem in the classical frameworks HN (curl ,Ω) and XN (ε,Ω) is not guaranteed.
This leads us to the following questions:

What happens to the Maxwell’s problem (1.1) when ε and/or µ are/is critical? Is it
well-posed in the classical framework? If yes, how to prove this? If the answer is no,
what would be the appropriate framework (from the physical point of view) in which
we can set the problem?

The answer to these questions is the main motivation of this thesis. To address them, one first
needs to study what happens to the scalar problems (1.5) and (1.6) when ε or µ becomes critical.
To set ideas, let us focus our attention on the problem (1.5). In the literature, to the best of
our knowledge, the only existing work in this direction is [25]. In this article, the authors have
considered the particular case where the interface Σ has a right corner. They showed, by adapting
the Kondratiev theory [100], that the lost of Fredholmness for (1.5) is due to the appearance of
two strongly oscillating function s± (called propagating singularities or black-hole singularities)
that behave like r±iη (η ∈ R∗

+) near the corner where r is the distance to the corner vertex. One
can check that these functions do not belong to the space H1(Ω).

In order to restore well-posedness of (1.5) when κε ∈ IεΣ, the authors of [25] used the anal-
ogy with the propagation of waves in waveguides (in this analogy the corner plays the role of
infinity) to propose a new functional framework, that replaces H1(Ω), in which the scalar prob-
lem (1.5) becomes well-posed. This functional framework is obtained by adding one of these
two propagating singularities (the outgoing one) to a well-chosen weighted space (composed by
more regular functions). The selection of the outgoing behavior is done thanks to the limiting
absorption principle: the physical solution of the problem must be the limit (in some space to
define) as δ → 0+ of uδ where uδ is the unique solution of −div((σ+ iδ)∇uδ) = f . The extension
of this approach to the case of 3D interfaces with a conical point is one of the main results of this



Chapter 1. Introduction 14

thesis. This will be the subject of Chapters 2-3.

Now, let us go back to the study of the Maxwell’s problem. If, for example, the dielectric
permittivity ε is such that κε ∈ IΣ, the proof of equivalence between (1.2) and (1.3) can not be
done because the scalar problem (1.4) is ill-posed. This suggests that the classical L2 setting is
not adapted to the study of the Maxwell’s problem in this configuration. As a result one needs
to propose a new functional framework in order to restore Fredholmness. Intuitively, to ensure
that this new functional framework leads to the physical solution of the problem, it must con-
tain the gradient of the outgoing singularity(ies) (we shall see later that in 3D several outgoing
singularities can exist). This leads us to study the Maxwell’s problem in a non-L2 framework.
From a mathematical point of view, this will prevent us from using many of the classical tools for
the analysis of Maxwell’s equations, such as results of existence of vector potentials, Helmholtz
decomposition, compact embedding, ... For this reason, a new theory has to be constructed.
This new theory can be seen as an adaptation of Kondratiev approach [100] to Maxwell’s equa-
tions. It is worth to note that our technique is conceptually different from the one used in [65]
(for the classical configuration) where the Kondratiev theory is used to characterize the singular
behaviour of the classical solutions. Our results in this direction will be presented in Chapters 5-6.

Once the theory will be developed, we will consider the question of the approximation of these
problems by finite elements methods. Unfortunately, our contributions to this question concern
only the scalar case. Because of the change of sign of ε (resp. µ), the convergence of the numerical
approximation to the exact solution as one refines the mesh in general is not clear. This leads us
to the following questions:

How to design convergent FEM-based numerical method to approximate the solutions
of scalar problems when they are well-posed?

In the literature, several convergent approaches have been proposed for the non-critical case.
Some of the strategies are based on the use of so-called T-conforming meshes (see [49, 45]). Un-
fortunately, the construction of such meshes seems to be not easy (see[45]), especially when the
interface has corners or in 3D. For general meshes (that respect the interface), other techniques
have been designed. Some of them suffer from the fact that their convergence can not be guaran-
teed for all contrasts for which the (continuous) problem is well-posed. This the case in particular
of the method developed in [147, 51, 119]. In 2017, a new method based on the use of an optimal
control reformulation has been proposed in [1]. It is proved to be convergent on general meshes as
soon as the exact solution belongs to the space PHs(Ω) := {u |u|Ω1 ∈ Hs(Ω1) and u|Ω2 ∈ Hs(Ω2)}
with s < 3/2. Unfortunately, this regularity condition is not always satisfied, especially when Σ
has corners in 2D or conical points in 3D. In Chapter 4, we will present a new strategy which
relies on the use of a different optimal control reformulation and which converges without any
restriction neither on the mesh (the interface simply needs to coincide with edges of the mesh)
nor on the regularity of the exact solution.
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Now, it is time to summarize the outline of our work. This thesis will be divided into four parts.

Part 1: Study of the scalar problems with sign-changing coefficients. It contains
two chapters (Chapter 2 and Chapter 3) and is devoted to the analysis of the scalar problems
when the interface Σ has a conical point. In particular, we will give a characterization of the
critical intervals IµΣ and IµΣ and, more importantly, we will explain how to use the Mandelstam
radiation principle and the limiting absorption principle in order to derive a new (physical) func-
tional framework in which Fredholmness is restored.

Part 2: Numerical approximation of the scalar problems with sign-changing coef-
ficients. This part is made of Chapter 4 in which we will present a new numerical method
to approximate the solution of the 2D/3D scalar transmission problems. It is based on a finite
elements approximation and we will show that it converges without any restrictive condition on
the mesh near the interface.
Part 3: Time harmonic Maxwell’s equations with sing-changing coefficients. Here we
turn our attention to the study of Maxwell’s equations in a situation where the interface has a
conical point and where the contrasts take critical values. In Chapter 5, we study the configu-
ration when just one of the electromagnetic parameters is critical. In Chapter 6, we propose an
analysis when both parameters ε and µ are critical.

Part 4: Homogenization of Maxwell’s equations and related scalar problems with
sign-changing coefficients. In this part, we consider the question of the homogenization of
the scalar problems and of the time-harmonic Maxwell’s equations in a composite material with
periodically distributed small inclusions of a negative medium. We explain why the homogeniza-
tion process is possible as soon as the contrast associated to the cell problem is small or large
enough. Our results will be presented in Chapter 7.

As promised above, we finish this introduction by proving that the embedding of HN (curl ,Ω) into
L2(Ω) is not compact. Let (φi)i∈N be an orthonormal sequence of H1

0(Ω). The sequence of vector
fields (∇φi)i∈N is then orthonormal in HN (curl ,Ω). If the embedding HN (curl ,Ω) ⊂ L2(Ω) was
compact, then one could find a sub-sequence, that will be indexed by i, of (∇φi)i∈N that converges
in L2(Ω) to some u ∈ L2(Ω). From the fact that ∥∇φi−∇φj∥HN (curl ,Ω) = ∥∇φi−∇φj∥L2(Ω) =

√
2

for i ̸= j , we conclude that this not possible.



Chapter 2

Study of the scalar transmission
problem in presence of a conical tip
of negative material

2.1 Introduction

In this chapter, we investigate the scalar transmission problem between two domains1 of R3 filled
with materials modelled by physical coefficients of different signs. We assume that Ω1 (resp. Ω2)
corresponds to the positive (resp. negative) material and more specifically, we consider situations
where the interface Σ separating the two regions is smooth (of class C 1) everywhere except near
some point O, where it has a conical tip. We set Ω := Ω1 ∪ Ω2 ∪ Σ and to simplify a little bit
the analysis below, we suppose that Ω is connected with a Lipschitz-continuous boundary ∂Ω.
In addition to that, we make the assumption that Ω2 ⊂ Ω. This simply means that the domain
Ω1 surrounds Ω2 and ensures that Σ ∩ ∂Ω = ∅. Without loss of generality, we suppose that
O = (0, 0, 0). A full description of the conical singularity at O can be done via the description of
the domain Ω2 near O. For this purpose, let us describe the intersection between Ω2 and B(O, ρ)
the open ball of R3 of center O and of radius ρ sufficiently small. We consider the following
configuration:

Ω2 ∩B(O, ρ) = {x ∈ R3, |x| < ρ, x/|x| ∈ A } (2.1)

where A is a smooth (of class C 2) sub-domain of S2 the unit sphere of R3. To simplify notations,
we shall assume that ρ = 1 in (2.1) (in particular this means that B(O, 1) ⊂ Ω). A more precise
description of A will be given below. An example of geometry for which all these assumptions
are satisfied is given in Figure 2.1. Note that the class of conical tips described by (2.1) contains
the particular case of circular (rotationally symmetric) conical tips obtained by revolution of a
half-line around a fixed axis, say the z axis, in R3. Even though the primary goal of this chapter
is to treat the class of general conical tips of the form (2.1), a particular interest will be devoted
to the case of circular ones because, in such case, explicit calculus can be done.
In the sequel, we denote by K the cone K := {x ∈ R3, |x| < ρ, x/|x| ∈ A }. In order to make
the presentation of our results as clear as possible, we limit ourselves to the case where ∂A can
be parameterized by a function g ∈ C 2

per([0, 2π]). In other words, we assume that

A = {(r, θ, φ) | r = 1 and θ < g(φ)} and ∂K = {(r, θ, φ) | r ∈ R+ and θ = g(φ)}.

Here (r, θ, φ) ∈ (0; +∞) × (0;π) × (0; 2π) are the classical spherical coordinates such that for
x ∈ R3, we have x = (r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ)) with θ ∈ (0;π) and φ ∈ (0; 2π). In
Figure 2.2, we display two examples of geometries that fit into the class of the domains described

1Here domain means an open connected subset of R3.
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Figure 2.1: An example in which the red part (Ω2) is filled with a negative material and the green
one (Ω1) is filled with a positive one.

Figure 2.2: Shape of the domain ∂K for a circular conical tip (left) and for a more general conical
tip (right).

previously. It is important to note that all the results that we are going to present below can be
easily extended to the two following situations:

• ∂A is of class C 2 but cannot be parameterized by a single function g ∈ C 2
per([0, 2π]).

• ∂A is of class C 1 and piecewise C 2.

To complete the description of our transmission problem, we need to introduce a physical pa-
rameter σ ∈ L∞(Ω) such that σ|Ω1 = σ1 ∈ R∗

+ := (0; +∞) and σ|Ω2 = σ2 ∈ R∗
− := (−∞; 0). We

denote by κσ := σ2/σ1 ∈ (−∞; 0) the contrast associated with σ. Now the transmission problem
that we want to study writes:

Find u ∈ H1
0(Ω) such that − div(σ∇u) = f ∈ (H1

0(Ω))∗. (2.2)

The properties of the above problem depend on the features of the bounded operator Aσ :
H1

0(Ω) → (H1
0(Ω))∗ defined with the Riesz representation theorem such that

⟨Aσu, v⟩ =
ˆ

Ω
σ∇u · ∇v, u, v ∈ H1

0(Ω).

Since σ changes sign, Problem (2.2) is not elliptic and its well-posedness (for an arbitrary
f ∈ (H1

0(Ω))∗) is not guaranteed even in the Fredholm sense (i.e the operator Aσ may not be of
Fredholm type2). By dividing Aσ by σ1, one observes that the Fredholmness of Aσ depends only

2An operator B : X → Y is said to be of Fredholm type if ker(B) and coker (B) are of finite dimensions and its
range is closed. The index of B is defined by index(B) := dim(Ker (B)) − dim(coker (B)).
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on the contrast κσ. To be coherent with the vocabulary used in the literature [50, 25], the set
of contrasts κσ for which the operator Aσ is not of Fredholm type is called the critical interval
and is denoted by IΣ. However, it is important to note that even though IΣ is called the critical
interval, there is no result that allows us to say that IΣ is indeed an interval of the form [a; b]
(⊂ R−). In particular, IΣ could be an union of disjoint intervals. All we can say is that IΣ is
a closed subset of R− (see Proposition 2.2.1). More information about IΣ are given in the next
section.

In the 2D configuration, the study of the scalar transmission problem between a positive and a
negative material with an interface having a corner has been clarified in [25]. It was shown that
the critical interval is an interval of R− whose bounds are given explicitly as functions of the
opening angle of the corner. Furthermore, when the contrast belongs to the critical interval, the
loss of the Fredholmness of the operator is caused by the appearance of two strongly oscillating
functions s± (also known as propagating singularities or black hole singularities) that do not
belong to the space H1 near the corner (these functions behave like riη with η ∈ R∗ and r is the
distance to the corner vertex). Using these functions s±, one can construct a Weyl sequence for
the operator Aσ and show that the range of Aσ is not closed. In order to restore Fredholmness
of the problem, the authors of [25] propose a new functional framework that takes into account
theses singular functions. They prove that by adding the space spanned by one of these two sin-
gular functions to a well-chosen weighted space, one obtains a functional framework in which the
problem is again well-posed. Since the physical solution must be outgoing, they used the limiting
absorption principle in order to choose the outgoing singular function (the one that propagates
energy toward the corner).

The main goal of this chapter is to extend the results and the techniques used in [25] to the 3D
configuration where the interface has a smooth conical tip. More precisely, we want to understand
what are the propagating singularities in 3D and how to use them in order to characterize the
critical interval IΣ. More importantly, we shall explain how to make use of some of them in order
to define a new functional framework in which the scalar problem is again well-posed and that
is coherent with the classical physical principles: the Mandelstam radiation condition [112, 103]
and the limiting absorption principle.

This chapter is organized as follows. In Section 2.2, we present some results concerning the
critical interval IΣ. In the process we underline the relation between IΣ and the spectrum of the
so-called Neumann-Poincaré operator. In order to study Problem (2.2), we will use localization
techniques. This will lead us to consider two different localized versions of the problem. The
first one is related to what happens far from the origin. We call this problem the far problem
and we study it in Section 2.3. The second one is related to the analysis of the well-posedness of
the problem near the origin. We call it the near problem and its study is the subject of Section
2.5. The main results concerning the features of Problem (2.2) are summarized in Section 2.6.
In particular, in §2.6.2, we explain how to use the Mandelstam radiation principle in order to
construct an infinite number of functional frameworks in which Fredholmness of the problem is
recovered when the function σ is critical. The selection of the relevant physical framework will
be done via the limiting absorption principle in §2.6.3. The last section is devoted to present
some conclusions, some possible extensions, the remaining open questions and to give a few words
concerning the numerical approximation of the solution.

2.2 General properties of the critical interval

As mentioned above, the critical interval is defined as the set of contrasts κσ such that the
operator Aσ is not of Fredholm type. Along this chapter, when κσ belongs to IΣ, we shall say
that σ is critical. The main objective of this section is to present some general results concerning
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the set IΣ. It will be useful to introduce the operator I ′ : H1
0(Ω) → (H1

0(Ω))∗ such that

⟨I ′u, v⟩ =
ˆ

Ω
uv.

Proposition 2.2.1. The set IΣ is a closed bounded subset of (−∞; 0).

Proof. First, let us explain why IΣ is closed. By dividing Aσ by σ1, one can suppose that σ1 = 1
and σ2 = κσ. Furthermore, from the compactness of the embedding H1

0(Ω) ⊂ L2(Ω), we obtain
the equivalence: κσ ∈ (−∞; 0]\IΣ if and only if Aσ + iI ′ is an isomorphism. The continuity of
κσ 7→ Aσ+ iI ′ implies that (−∞; 0]\IΣ is open. Thus IΣ is a closed subset of (−∞; 0]. The second
step is to show that IΣ is bounded. For this, we are going to use the T-coercivity approach.
To do so, we first start by defining the spaces V1(Ω), V#

2 (Ω2), such that

V1(Ω1) := {u ∈ H1(Ω1) |u = 0 on ∂Ω1\Σ}, V#
2 (Ω2) := {u ∈ H1(Ω2) |

ˆ
Σ
u = 0},

H1/2
# (Σ) := {u ∈ H1/2(Σ) |

ˆ
Σ
u = 0}.

Next we introduce the operators R2→1 : H1/2(Σ) → V1(Ω1) and R1→2 : H1/2
# (Σ) → V#

2 (Ω2) that
are defined as follows: for all φ ∈ H1/2(Σ) and φ′ ∈ H1/2

# (Σ) we have

R2→1(φ) ∈ V1(Ω1) s.t. ∆R2→1(φ) = 0 in Ω1
R2→1(φ) = φ on Σ , R1→2(φ′) ∈ V#

2 (Ω2) s.t. ∆R1→2(φ′) = 0 in Ω2
R1→2(φ′) = φ′ on Σ.

Without any difficultly, one shows that there exists 0 < C such that for all φ ∈ H1/2(Σ) and all
φ′ ∈ H1/2

# (Σ) we have

∥∇R1→2(φ)∥L2(Ω1) ≤ C∥φ∥H1/2(Σ) and ∥∇R2→1(φ′)∥L2(Ω2) ≤ C∥φ′∥H1/2(Σ). (2.3)

To obtain the previous estimate, we have used the fact that in V1(Ω) (resp. V#
2 (Ω2)) the appli-

cation u 7→ ∥∇u∥L2(Ω1) (resp. u 7→ ∥∇u∥L2(Ω2)) is a norm that is equivalent to the classical one.
For all u ∈ H1

0(Ω), we denote by u1 and by u2 its restriction to Ω1 and Ω2 respectively. We define
the operators T1 : H1

0(Ω) → H1
0(Ω) and T2 : H1

0(Ω) → H1
0(Ω) such that for all u ∈ H1

0(Ω), we have

T1(u) = u1 in Ω1
−u2 + 2R1→2(u|Σ −MΣ(u)) + 2MΣ(u) on Ω2,

T2(u) = −u1 + 2R2→1(u|Σ −MΣ(u)) in Ω1
u2 − 2MΣ(u) on Ω2

in which MΣ(u) is defined by
MΣ(u) = 1

|Σ|

ˆ
Σ
u ds.

One can easily check that T1 and T2 are continuous and bijective (we have Ti◦Ti = Id for i = 1, 2).
Thanks to Estimate (2.3) and to the continuity of the trace operator (because Σ is Lipschitz), we
conclude that the numbers

∥|R1→2∥| = sup
u∈H1

0(Ω),u ̸=0

∥∇R1→2(u|Σ −MΣ(u))∥L2(Ω2)
∥∇u1∥L2(Ω1)

∥|R2→1∥| = sup
u∈H1

0(Ω),u ̸=0

∥∇R2→1(u|Σ −MΣ(u))∥L2(Ω1)
∥∇u2∥L2(Ω2)
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are positive and finite. By applying the results of [50, Theorem 1.1.1] or by working as in [42],
we conclude that Aσ is an isomorphism if

1/|κσ| > ∥|R1→2∥|2 or |κσ| > ∥|R2→1∥|2.

The result is then proved. ■

Remark 2.2.1. The previous result holds if one replaces Σ by any Lipschitz interface. The proof
is also based on the use of the harmonic extension operators. To the best of our knowledge when
the interface Σ is not Lipschitz, the question whether IΣ is bounded or not is still open. In 2D,
there are configurations where the critical interval is equal to R− (see [32] for more details). We
conjecture that when the interface Σ is not Lipschitz, we have IΣ = (−∞; 0). For an example of
non-Lipschitz interface, think to the surface of two touching conical tips.

Remark 2.2.2. In 2D with corners, the critical interval is known explicitly (see [25]). In 3D
however the situation is much more complicated. In Section 2.6.1, we shall give an explicit
expression of IΣ for the case of circular conical tips.

The remaining part of this section is devoted to clarify the link that exists between the set IΣ
and the essential spectrum of the so-called Neumann-Poincaré operator. Recently, the study of
the spectral properties of this operator was the subject of many contributions such as those of
M. Putinar et al. [97], those of H. Ammari et al. [7] for the case of smooth interfaces, those of
E. Bonnetier et al. for the case of interfaces with corners [32] and those of K. M. Perfekt et al.
[92] for the case of 2D curved interfaces as well as 3D interfaces with conical tips . Our goal is to
explain how the spectrum of the Neumann-Poincaré operator is related to IΣ.

2.2.1 Relation between the critical interval and the spectrum of the Neumann-
Poincaré operator

Most of results of this paragraph are inspired by the ones developed in [35]. The starting point
is to define the operator TΩ2 : H1

0(Ω) → H1
0(Ω) such that for all u ∈ H1

0(Ω) we have
ˆ

Ω
∇(TΩ2(u)) · ∇v =

ˆ
Ω2

∇u · ∇v, ∀v ∈ H1
0(Ω).

The existence and continuity of the operator TΩ2 are consequences of the Riesz representation
theorem. In the literature, TΩ2 is called the Poincaré variational operator (see [35]). Since TΩ2

is symmetric, it is then a self-adjoint positive operator. In the sequel, we denote by σ(TΩ2) the
spectrum of TΩ2 and by σess(TΩ2) its essential spectrum which is defined as the set of λ ∈ R for
which the operator TΩ2 − λI is not of Fredholm type (here I stands for the identity operator of
H1

0(Ω)). To proceed, let us denote by Ãσ : H1
0(Ω) → H1

0(Ω) the operator that is defined by
ˆ

Ω
∇(Ãσ(u)) · ∇v =

ˆ
Ω
σ∇u · ∇v = ⟨Aσu, v⟩, ∀u, v ∈ H1

0(Ω).

Clearly we have an equivalence between the Fredholmness of Aσ and Ãσ. Furthermore, one can
write

Ãσ = σ1I + (σ2 − σ1)TΩ2 = (σ2 − σ1)(TΩ2 − 1
1 − κσ

I).

This leads us to the following

Lemma 2.2.1. We have κσ ∈ IΣ if and only if
[
κσ < 0 and 1/(1 − κσ) ∈ σess(TΩ2)

]
.

Without particular difficulty one can prove the following statement.

Proposition 2.2.2. The operator TΩ2 satisfies the following properties:
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1. σ(TΩ2) ⊂ [0; 1] and 0, 1 ∈ σess(TΩ2).

2. 0, 1 are eigenvalues of infinite geometric multiplicity of TΩ2. More precisely, the spaces
ker(TΩ2) and ker(TΩ2 − I) are given by

ker(TΩ2) = {u ∈ H1
0(Ω) |u|Ω2 = constant} and ker(TΩ2 − I) = {u ∈ H1

0(Ω) |u|Ω1 = 0}.

3. We have the decomposition

H1
0(Ω) = ker(TΩ2)

⊥
⊕ ker(TΩ2 − I)

⊥
⊕ N (2.4)

where N is given by

N := {u ∈ H1
0(Ω) | ∆u = 0 in Ω1 ∪ Ω2 and ⟨∂n(u|Ω2), 1⟩H−1/2(Σ),H1/2(Σ) = 0}. (2.5)

Since in our study the contrast κσ belongs to (−∞; 0), the real number 1/(1 − κσ) can not be
equal neither to 0 nor to 1. This means that we have the the equivalence: κσ ∈ IΣ if and only if
1/(1 − κσ) ∈ σess(TΩ2)\{0, 1}. Now, let us introduce the space

S := {u ∈ H1
0(Ω) | ∆u = 0 in Ω1 ∪ Ω2}.

Starting from the decomposition (2.4), we can easily show that we have the decomposition

S = span(u0)
⊥
⊕ N.

where the function u0 ∈ H1
0(Ω) is the harmonic extension of the function 1|Ω2 to the whole domain

Ω (obviously, one has u0 ∈ Ker (TΩ2)). This implies that S is a closed sub-space of H1
0(Ω) and

that it is an invariant sub-space for the operator TΩ2 . As a consequence, TΩ2 induces a linear
operator from S to S that will be denoted by T S

Ω2 . Without any difficultly one can show that 0 is a
simple eigenvalue of T S

Ω2 and that σess(T S
Ω2) = σess(TΩ2)\{1, 0}. Thus, we obtain the equivalence

κσ ∈ IΣ if and only if 1/(κσ − 1) belongs to σess(T S
Ω2).

The goal of the next paragraph is to explain how the spectrum of T S
Ω2 is related to the spectrum

of the Neumann-Poincaré operator.

Definition of the Neumann-Poincaré operator

Let G3 : R3 × R3 → C be the Green function of the Laplace operator in the free space R3.
Classically, this function is given by

G3(x, y) = 1
4π|x− y|

for all x ̸= y ∈ R3

and satisfies the equation ∆yG3(x, ·) = δx (where δx is the Dirac distribution at x). We also
need to introduce P the Laplace kernel that is a correction of the function G3 in order to take
into account the homogeneous Dirichlet boundary condition. The function P is defined in Ω × Ω
by the relation P (x, y) = G3(x, y) + Cx(y) where Cx is the solution of the problem ∆yCx =
0 in Ω and Cx(y) = −G(x, y) on ∂Ω. This means that the function P satisfies ∆yP (x, ·) = δx
and P (x, ·) = 0 on ∂Ω. We introduce the single layer potential SΣ : H1/2(Σ) → H1

0(Ω) associated
with Σ such that for all φ ∈ H1/2(Σ), we set

SΣ(φ)(x) =
ˆ

Σ
P (x, y)φ(y)dσ(y) for almost all x ∈ Ω.
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By observing that for all x ∈ Ω1 ∪ Ω2 the function P (x, ·)|Σ ∈ H1/2(Σ), we deduce that the
operator SΣ can be extended to an operator SΣ : H−1/2(Σ) → H1

0(Ω). Classically (see [32]), one
can prove that for all φ ∈ H−1/2(Σ) the function SΣ(φ) belongs to the space S, i.e. SΣ(φ) is
harmonic in Ω1 ∪ Ω2. Conversely, it is a classical result that any function u of the space S admits
the representation

u = SΣ([∂nu|Σ]) (2.6)
in which [∂nu|Σ] = ∂nu1|Σ − ∂nu2|Σ where n is the outward unit normal vector to ∂Ω2, u1 =
u|Ω1 and u2 = u|Ω2 . This means that SΣ realizes a bijection (and then it is an isomorphism)
between H−1/2(Σ) and S. The normal derivative of SΣ(φ) is generally discontinuous across Σ.
This discontinuity can be described by the Plemelj jump relations:

∂nSΣ(φ)1 = φ/2 +Knp
Σ (φ) and ∂nSΣ(φ)2 = −φ/2 +Knp

Σ (φ) (2.7)
where again n is the unit normal vector to ∂Ω2 oriented to the exterior of Ω2, the functions
SΣ(φ)1 and SΣ(φ)2 are, respectively, the restriction of SΣ(φ) to Ω1 and to Ω2. The Neumann-
Poincaré operator is denoted by Knp

Σ : H−1/2(Σ) → H−1/2(Σ) and is defined as the extension of
the operator K̃np

Σ : L2(Σ) → L2(Σ) such that

K̃np
Σ (φ)(x) =

ˆ
Σ
∂nyP (x, y)φ(y)dσ(y) for almost all x ∈ Σ

in which ny stands for the unit outward normal vector to Ω2 at y ∈ Σ. The operator Knp
Σ is not

self-adjoint because it is not symmetric with respect to the classical inner product of H−1/2(Σ). To
circumvent this difficulty, we introduce the sesquilinear form ⟨·, ·⟩SΣ : H−1/2(Σ) × H−1/2(Σ) → C
such that

⟨φ,ψ⟩SΣ =: −⟨φ, SΣψ⟩H−1/2(Σ),H1/2(Σ), ∀φ,ψ ∈ H−1/2(Σ).
Thanks to an integration by parts and by using the jump relations (2.7), one can show that

⟨φ,ψ⟩SΣ =
ˆ

Ω
∇SΣ(φ) · ∇SΣ(ψ). (2.8)

As a result, we infer that ⟨·, ·⟩SΣ is an inner product in H−1/2(Σ). We denote by ∥ · ∥SΣ the norm
associated to this inner product. It is equivalent to the classical one ∥ · ∥H−1/2(Σ) (see [35]). As
a result, (H−1/2(Σ), ∥ · ∥SΣ) is a Hilbert space. Note that one can easily see that we have the
identity

∥φ∥SΣ = ∥SΣ(φ)∥H1
0(Ω), φ ∈ H−1/2(Σ).

By endowing the space H−1/2(Σ) with this inner product ⟨·, ·⟩SΣ , one can show that KΣ
np becomes

self-adjoint. Furthermore, we also have the following
Lemma 2.2.2. Let λ ∈ R and define λ′ = 1/2 − λ. Then for all φ ∈ H−1/2(Σ) the function
u = SΣ(φ) ∈ S satisfies

∥T S
Ω2u− λu∥H1

0(Ω) = ∥Knp
Σ φ− λ′φ∥SΣ .

Proof. We denote by u1 = u|Ω1 and u2 = u|Ω2 . The first step is to compute explicitly the quantityˆ
Ω

∇(T S
Ω2u− λu) · ∇SΣ(ψ)

for an arbitrary ψ ∈ H−1/2(Σ). Thanks to an integration by parts and by using the fact that
u, T S

Ω2u ∈ S, we obtainˆ
Ω

∇(T S
Ω2u− λu) · ∇SΣ(ψ) = −λ

ˆ
Ω1

∇u · ∇SΣ(ψ) + (1 − λ)
ˆ

Ω2

∇u · ∇SΣ(ψ)

= ⟨(λ∂nu1 + (1 − λ)∂nu2), SΣ(ψ)⟩H−1/2(Σ),H1/2(Σ)

By using (2.7)-(2.8) = ⟨λ(Knp
Σ φn + φn/2) + (1 − λ)(Knp

Σ φn − φn/2), ψ⟩SΣ

= ⟨Knp
Σ φn − λ′φn, ψ⟩SΣ .
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Since for all ψ ∈ H−1/2(Σ) we have ∥SΣ(ψ)∥H1
0(Ω) = ∥ψ∥SΣ , one deduces that we have

´
Ω ∇(T S

Ω2
u− λu) · ∇SΣ(ψ)

∥SΣ(ψ)∥H1
0(Ω)

= ⟨Knp
Σ φ− λ′φ,ψ⟩SΣ

∥ψ∥SΣ

, ∀ψ ∈ H−1/2(Σ)\{0}.

By taking the supremum over all ψ ∈ H−1/2(Σ)\{0}, and by recalling that SΣ : H−1/2(Σ) → S is
an isomorphism (and also the fact that (S, ∥ · ∥H1

0(Ω)) is a Hilbert space), we obtain the wanted
result:

∥T S
Ω2u− λu∥H1

0(Ω) = ∥Knp
Σ φ− λ′φ∥SΣ .

■

Final result

Now, we have all the tools to show the

Theorem 2.2.1. The essential spectra of T S
Ω2 : S → S and Knp

Σ : H−1/2(Σ) → H−1/2(Σ) are
linked by the relation

σess(T S
Ω2) = 1/2 − σess(Knp

Σ ).

Proof. Since both operators are self-adjoint (the space H−1/2(Σ) is endowed with ⟨·, ·⟩SΣ), we
can use the characterization of the essential spectrum by means of singular Weyl sequences. The
fact that λ ∈ σess(T S

Σ) implies that there exists a sequence (un)n∈N of elements of S such that

∥un∥H1
0(Ω) = 1 for all n ∈ N,

un ⇀ 0 weaklly in S,
T S

Ω2un − λun → 0 strongly in S.

Since SΣ : (H−1/2(Σ), ∥ · ∥SΣ) → (S, ∥ · ∥H1
0(Ω)) is an isomorphism, we introduce (φn)n∈N the

sequence of elements of H−1/2(Σ) such that SΣ(φn) = un for all n ∈ N. Easily, one can see that
∥φn∥H−1/2(Σ) = 1 for all n ∈ N. Moreover, since for all ψ ∈ H−1/2(Σ), we have

⟨φn, ψ⟩SΣ =
ˆ

Ω
∇un · ∇SΣ(ψ)

and since SΣ(ψ) ∈ S, we infer that (φ)n∈N converges weakly to zero in H−1/2(Σ). According to
Lemma 2.4, we know that for λ′ = λ− 1/2 and all n ∈ N, we have

∥T S
Ω2un − λun∥H1

0(Ω) = ∥Knp
Σ φn − λ′φn∥SΣ .

This shows that Knp
Σ φn−λ′φn converges to zero as n tends to +∞. Consequently, λ′ ∈ σess(Knp

Σ ).
The converse statement can be proved in the same way. ■

As a consequence of the previous theorem, we obtain

Theorem 2.2.2. There holds κσ ∈ IΣ if and only if κσ + 1
2(κσ − 1) ∈ σess(Knp

Σ ). And we have

σess(Knp
Σ ) = { κσ + 1

2(κσ − 1) , κσ ∈ IΣ}, IΣ = {a+ 1/2
a− 1/2 , a ∈ σess(Knp

Σ )}.

Proof. We already know that κσ ∈ IΣ if and only if 1/(1 − κσ) ∈ σess(TSΩ2). According to the
previous theorem, we can say that κσ ∈ IΣ if and only if 1/2 − 1/(1 −κσ) = (κσ + 1)/2(κσ − 1) ∈
σess(Knp

Σ ). The second part of the proof is a simple consequence of the fact that the function
x 7→ (x+ 1)/(2(x− 1)) is bijective from R∗

− to (−1/2; 1/2) and that it inverse coincides with the
function x 7→ (x+ 1/2)/(x− 1/2). ■
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The previous theorem tells us how the critical interval is related to the essential spectrum of the
Neumann-Poincaré operator. When the interface Σ is smooth (of class C 1,α with 0 < α < 1),
one can prove that KΣ

np is a Hilbert-Schmidt operator and, then, it is compact. Consequently,
its spectrum is composed by a sequence of real eigenvalues that has zero as only possible point
of accumulation. For a general interface of class C 1, KΣ

np is not necessarily a Hilbert-Schmidt
operator. As a result, its compactness is not guaranteed. In Section 2.3, we are going to show
that when Σ is of class C 1 the critical interval reduces to {−1}. This implies, using the previous
theorem, that σess(KΣ

np) = {0}. With this in mind, we can show the

Lemma 2.2.3. When the interface Σ is of class C 1, we have σess(Knp
Σ ) = {0} and Knp

Σ :
H−1/2(Σ) → H−1/2(Σ) is compact.

Proof. The fact that σess(Knp
Σ ) = {0} is a consequence of the fact that when Σ is of class C 1

then IΣ = {−1} (see §2.3). It remains to explain why Knp
Σ is compact. From the fact that Knp

Σ
is self-adjoint, we deduce that σdisc(Knp

Σ ) (the discrete spectrum of Knp
Σ ) is either composed by a

finite number of real eigenvalues or by a sequence (λn)n∈N of real eigenvalues that tends to zero
as n goes to +∞. In both cases, we define the space

F := ( ⊕
λ∈σdisc(Knp

Σ )
E(λ))⊥

in which E(λ) stands for the eigenspace associated to λ ∈ σdisc(Knp
Σ ) (note that by definition of

the discrete spectrum, E(λ) is finite dimensional). The space F is then a closed subspace of the
Hilbert space (H−1/2, ∥ · ∥SΣ). This implies that (F, ∥ · ∥SΣ) is also a Hilbert space. Furthermore,
without any difficulty one shows that F is stable by Knp

Σ and that Knp
Σ : F → F is self-adjoint

with a spectrum that is reduced to {0}. Consequently, the spectral radius of Knp
Σ : F → F is

equal to 0 and then Knp
Σ vanishes in F. Using this result, we are going to show that Knp

Σ is the
limit of finite rank operators and then it is a compact operator. The proof in the case when
σdisc(Knp

Σ ) is finite is obvious. It remains to study the case when σdisc(Knp
Σ ) = {λn;n ∈ N} where

(λ)n is a sequence of real number that converges to zero as n tends to ∞. Denote by Fn the
space Fn := F ⊕n

i=1 E(λi). Clearly, for all n ∈ N the space Fn is stable by Knp
Σ . Moreover, the

restriction of Knp
Σ to Fn has a finite range. Let Pn : H−1/2(Σ) → Fn be the orthogonal projector

of H−1/2(Σ) into Fn (with respect to ⟨·, ·⟩SΣ) and define the finite rank operator Kn := Knp
Σ ◦Pn.

One can easily see that
|⟨(Knp

Σ −Kn)u, u⟩SΣ | ≤ max
n<n

(|λi|)∥u∥2
SΣ .

By letting n tend to +∞ and using the fact that (λn) tends to 0 as n tends to infinity, we can
say that Knp

Σ is the limit of (Kn)n∈N and then it is compact. ■

In the literature, the compactness of KΣ
np for C 1 interfaces (in 2D) is established in [78]3 by using

technical tools related to the study of integral operator. The proof of the above lemma can be
see as an alternative (more simple) to the one presented in [78].
Let us finish this section by mentioning that by using the same localization techniques as in the
works of K.M. Perfeket et al [92, 104], one can show the following statement

Lemma 2.2.4. Assume that the interface Σ is as in (2.1). Then we have σess(Knp
Σ ) = σess(Knp

∂K ).
Recall that K = {x ∈ R3, |x| < ρ, x/|x| ∈ A }.

2.3 Study of the far problem

This section aims at studying the well-posedness of the far problem. Let us detail this a bit.
For τ small enough (e.g. for τ < 1/2) we define Ωτ = Ω\B(O, τ). Our goal is to study the

3The author would like to thank Charles Dapogny for suggesting this reference.



25 2.3. Study of the far problem

well-posedness (in the Fredholm sense) of the problem

Find u ∈ H1
0(Ωτ ) such that − div(σ∇u) = f (2.9)

for an arbitrary f ∈ (H1
0(Ωτ ))∗. We set Ωτ

1 := Ω1 ∩ Ωτ , Ωτ
2 := Ω2 ∩ Ωτ . The interface between Ωτ

1
and Ωτ

2 is denoted by Στ . It is smooth and meets the boundary of Ωτ orthogonally at ∂B(O, τ).
As previously, the analysis of the well-posedness (in the Fredholm sense) of (2.9) is equivalent to
study the Fredholmness of the operator F τσ : H1

0(Ωτ ) → (H1
0(Ωτ ))∗ such that

⟨F τσu, v⟩ :=
ˆ

Ωτ
σ∇u · ∇vdx, ∀u, v ∈ H1

0(Ωτ ).

The main result of this section is given by the following

Theorem 2.3.1. Assume that τ ≤ 1/2. If κσ ̸= −1, then the operator F τσ is a Fredholm operator
of index 0. In particular, we have the estimate

∥u∥H1
0(Ωτ ) ≤ C(∥F τσu∥(H1

0(Ωτ ))∗ + ∥u∥L2(Ωτ )), ∀u ∈ H1
0(Ωτ )

with C independent of u.

To prove the previous theorem, we will use localization techniques. For this, we need to study two
different versions of the problem. The first one is related to the problem near any point x ∈ Στ ,
the second one is related to the problem near some point x ∈ Στ ∩ ∂B(O, τ). A complete proof
of the previous theorem will be given in §2.3.3.

2.3.1 Preliminaries

Let g : [0; 1]2 → R be a bounded function of class C 1 and let 0 < L. We define ΩL ⊂ R3 as
ΩL = ΩL

1 ∪ ΩL
2 ∪ ΣL where ΩL

1 , ΩL
2 and ΣL are defined as follows:

ΩL
1 := {(x, y, z) ∈ R3 such that (x, y) ∈ (0; 1)2 and g(x, y) − L < z < g(x, y)},

ΩL
2 := {(x, y, z) ∈ R3 such that (x, y) ∈ (0; 1)2 and g(x, y) < z < g(x, y) + L},

ΣL := {(x, y, z) ∈ R3 such that (x, y) ∈ (0; 1)2 and z = g(x, y)}.

We consider the operator ALσ : H1
0(ΩL) → (H1

0(ΩL))∗ such that for all u, v ∈ H1
0(ΩL) we have

⟨ALσu, v⟩ :=
ˆ

ΩL
σ∇u · ∇v dxdydz

in which the function σ is such that σ|ΩL1
= σ1 and σ|ΩL2

= σ2, where 0 < σ1 and σ2 < 0. Our goal
is to find an explicit condition on κσ := σ2/σ1 in order to ensure that Aσ is an isomorphism. For
this purpose, we are going to use the T -coercivity method.

Lemma 2.3.1. Assume that σ is such that max(|κσ|, 1/|κσ|) > (1 + 2∥∇g∥L∞(Σ) + 4∥∇g∥2
L∞(Σ)).

Then the operator ALσ is an isomorphism.

Proof. The proof is a generalization of the one given in [50, Theorem 1.2.10] for the 2D case.
For all u ∈ H1

0(Ω), we define the functions u1 and u2 such that u1 = u|ΩL1
∈ H1(ΩL

1 ) and
u2 = u|ΩL2

∈ H1(ΩL
2 ). We introduce the operators T1, T2 : H1

0(ΩL) → H1
0(ΩL) such that

T1(u) =
{
u1 in ΩL

1
−u2 + 2R1(u1) in ΩL

2
and T2(u) =

{
−u1 + 2R2(u2) in ΩL

1
u2 in ΩL

2
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where R1 and R2 are the linear operators defined as follows

R1(u1)(x, y, z) = u1(x, y, 2g(x, y) − z) for (x, y, z) ∈ ΩL
2

R2(u2)(x, y, z) = u2(x, y, 2g(x, y) − z) for (x, y, z) ∈ ΩL
1 .

One can check that for all u ∈ H1
0(ΩL), we have R1(u1)|ΣL = R2(u2)|ΣL = u|ΣL . Moreover, one

can also see that R1(u1)|∂ΩL∩∂ΩL1
= 0 and R2(u2)|∂ΩL∩∂ΩL2

= 0. This leads us to conclude that for
all u ∈ H1

0(Ω), the functions T1(u) and T2(u) belong also to H1
0(ΩL). As a result T1 (resp. T2)

defines a linear operators from H1
0(ΩL) into itself. We define

∥|R1∥| = sup
u∈H1

0(ΩL),u ̸=0

∥∇R1(u1)∥L2(ΩL2 )

∥∇u1∥L2(ΩL1 )
and ∥|R2∥| = sup

u∈H1
0(ΩL),u̸=0

∥∇R2(u2)∥L2(ΩL1 )

∥∇u2∥L2(ΩL2 )
.

Now, by applying [50, Theorem 1.1.1], one can say that if

1/|κσ| > ∥|R1∥|2 or |κσ| > ∥|R2∥|2,

then ALσ is an isomorphism. Therefore, we need to find upper bounds of ∥|R1∥| and ∥|R2∥|. Let
us start with ∥|R1∥|. First, observe that for all u ∈ H1

0(ΩL)\{0} we have
ˆ

ΩL2
|∇R1(u1)|2(x̂, ŷ, ẑ) dx̂dŷdẑ =

ˆ
ΩL2

(∂x̂(R1(u1)))2 + (∂ŷ(R1(u1)))2 + (∂ẑ(R1(u1)))2 dx̂dŷdẑ.

By performing the change of variables (x, y, z) = J(x̂, ŷ, ẑ) (this is possible since J is of class C 1

and J ◦ J = I) and by observing that
∂x̂R1(u1)(x̂, ŷ, ẑ) = ∂xu1(x, y, z) + 2∂xg(x, y) ∂zu1(x, y, z)
∂ŷR1(u1)(x̂, ŷ, ẑ) = ∂xu1(x, y, z) + 2∂yg(x, y) ∂zu1(x, y, z),
∂x̂R1(u1)(x̂, ŷ, ẑ) = −∂zu1(x, y, z),

we obtain the estimateˆ
ΩL2

|∇R1(u1)|2(x̂, ŷ, ẑ) dx̂dŷdẑ =
ˆ

ΩL1
(∂xu1(x, y, z) + 2∂xg(x, y) ∂zu1(x, y, z))2dxdydz

+
ˆ

ΩL1
(∂yu1(x, y, z) + 2∂yg(x, y) ∂zu1(x, y, z))2dxdydz

+
ˆ

ΩL1
( ∂zu1(x, y, z))2dxdydz

≤ A ∥∇u1∥2
L2(ΩL1 )

with A = (1 + 2∥∇g∥L∞(ΣL) + 4∥∇g∥2
L∞(ΣL)). This means that ∥|R1∥|2 ≤ (1 + 2∥∇g∥L∞(ΣL) +

4∥∇g∥2
L∞(ΣL)). Working in a similar way (by exchanging the role of ΩL

1 and ΩL
2 ), we find that

∥|R2∥|2 ≤ (1 + 2∥∇g∥L∞(ΣL) + 4∥∇g∥2
L∞(ΣL)). The lemma is then proved. ■

Proposition 2.3.1. Assume that g ∈ C 1([0; 1]2) is such that the function g1 : (x, y, z) 7→ z −
g(x, y) satisfies ∂ng1 = 0 (here n is the outward normal vector to ΩL) on ∂ΩL ∩ ΣL. Then ALσ is
a Fredholm operator of index zero for all κσ ̸= −1.

The assumption ∂ng1 = 0 on ∂ΩL ∩ ΣL is equivalent to say that the normal vector to ΣL (which
coincides with ∇g1) is tangential to ∂ΩL in ∂ΩL∩ΣL. This means that ΣL meets ∂ΩL orthogonally.

Proof. The proof is inspired by the proof of the a priori estimate obtained in [50, §1.3.4 ] and
will be based on the use of localization techniques. Near each x ∈ ΣL, we denote by (sx, tx, wx)
a system of local coordinates of origin x (in such way that the plane wx = 0 is tangent to ΣL at
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x). The existence of such system of coordinates is due to the fact that g is of class C 1. Near, any
x ∈ ΣL the interface ΣL can be seen as the graph of a function (sx, tx) 7→ g̃x(sx, tx). Furthermore,
for all x ∈ ΣL, we can find three positive numbers ax, bx and δx < L such that the domain

Ωx(ax, bx, δx) := {(sx, tx, wx) | s ∈ (−ax; ax), tx ∈ (−bx; bx), wx ∈ (−δx+g̃x(sx, tx); δx+g̃x(sx, tx))}

is a subset of ΩL.With this in mind, we can define the domains Ωx1 and Ωx2 such that Ωx1 (ax, bx, δx) :=
ΩL

1 ∩ Ωx(ax, bx, δx) and Ωx2 (ax, bx, δx) := ΩL
2 ∩ Ωx(ax, bx, δx). Regarding the definition of ΩL

1 and
ΩL

2 , one deduces that the domains Ωx1 and Ωx2 admit the representation

Ωx2 (ax, bx, δx) := {(sx, tx, wx) | sx ∈ (−ax; ax), tx ∈ (−bx; bx), wx ∈ (g̃x(sx, tx); δx + g̃x(sx, tx))}
Ωx1 (ax, bx, δx) := {(sx, tx, wx) | sx ∈ (−ax; −ax), tx ∈ (−bx; bx), wx ∈ (−δx + g̃x(sx, tx); g̃x(sx, tx))}.

When x ∈ ΣL∩∂ΩL, thanks to the assumption made on the function g, we can find a new system
of coordinates (sx, tx, wx) that is obtained by rotating the initial system of coordinates (in which
the plane wx = 0 is tangential to ΣL at x) and three positive numbers ax, bx and δx < L such
that the domain

Ωx(ax, bx, δx) := {(sx, tx, wx) | sx ∈ (0; ax), tx ∈ (0; bx) and wx ∈ (−δx+g̃x(sx, tx); δx+g̃x(sx, tx))}

is a subset of ΩL in which (sx, tx) 7→ g̃x is a function whose graph coincides with ΣL near x. We
define the domains Ωx1 and Ωx2 as in the case of x ∈ ΣL. To simplify notations, we shall denote
by ∇̃ the gradient operator with respect to (sx, tx, wx). Since (sx, tx, wx) is obtained by rotating
the original system of coordinates, it follows that for all x ∈ Σ and all u, v ∈ H1(Ωx), we haveˆ

Ωx(ax,bx,δx)
σ∇u · ∇v dxdydz =

ˆ
Ω̃x

σ∇̃u · ∇̃v dsxdtxdwx

where Ω̃x = (−ax; ax) × (−bx; bx) × (−δx; δx) when x ∈ ΣL and Ω̃x = (0; ax) × (0; bx) × (−δx; δx)
when x ∈ ΣL ∩ ∂ΩL. Given that for all x ∈ ΣL, the plane wx = 0 is tangential to ΣL at x, we
then have ∇̃g̃x(0, 0) = 0 and since the function g̃x is of class C 1, we can say, using the fact that
κσ ̸= −1, that for all x ∈ ΣL, we can find a∗

x, b
∗
x small enough so that

max(|κσ|, 1/|κσ|) > (1 + 2∥∇̃g̃x∥L∞(Σx) + 4∥∇̃g̃x∥2
L∞(Σx))

where Σx := Ωx1 (a∗
x, b

∗
x, δx)∩Ωx2 (a∗

x, b
∗
x, δx). As a consequence, by applying the results of the previ-

ous lemma, we infer that for all x ∈ ΣL the operatorAxσ : H1
0(Ωx(a∗

x, b
∗
x, δ

∗
x)) → (H1

0(Ωx(a∗
x, b

∗
x, δ

∗
x)))∗

that is defined by

⟨Axσu, v⟩ :=
ˆ

Ωx(a∗
x,b

∗
x,δx)

σ∇̃u · ∇̃v dsxdtxdwx, ∀u, v ∈ H1
0(Ωx(a∗

x, b
∗
x, δ

∗
x))

is an isomorphism. For all x ∈ ΣL, we define χx ∈ D(ΩL, [0; 1]) that is equal to 1 in Ωx(a∗
x/2, b∗

x/2, δx/2)
and that vanishes in ΩL\Ωx(3a∗

x/4, 3b∗
x/4, 3δx/4).

By noticing that
⋃
x∈Σ

Ωx(a∗
x/2, b∗

x/2, δx/2) covers ΣL and since the latter is compact, one deduces

that there exist x1, . . . ,xn ∈ ΣL with n ∈ N such that

ΣL ⊂ Ωn := ∪
x∈{x1,...,xn}

Ωx(a∗
x/2, b∗

x/2, δx/2).

To simplify, for all x ∈ {x1, . . . ,xn} the domain Ωx(a∗
x, b

∗
x, δx) will be denoted by Ωx. To proceed,

denote by Ω0 the domain Ω0 := Ω\Ωn and let χ0 ∈ D(ΩL, [0; 1]) such that χ0
|Ω0 = 1 and that

vanishes near Σ. Starting from the fact that for all x ∈ Ω, we have 1 ≤ χ0(x) +
n∑
i=1

χxi(x), we

deduce that for all u ∈ H1
0(ΩL)\{0}, we have the estimate

∥u∥H1
0(ΩL) ≤ ∥χ0u∥H1

0(supp(χ0)) +
n∑
i=1

∥χxiu∥H1
0(Ωxi ). (2.10)
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For all x = x1, . . . ,xn, we define the operator Tx : H1
0(Ωx) → H1

0(Ωx) as in the proof of the
previous lemma. We also need to define the operator T 0 : H1

0(supp(χ0)) → H1
0(supp(χ0)) such

that for all v ∈ H1
0(supp(χ0)), we have

T 0(v) = v in Ω1 ∩ supp(χ0)
−v in Ω2 ∩ supp(χ0).

The local ellipticity of the problem far from Σ and the continuity of T 0 : L2(supp(χ0)) →
L2(supp(χ0)) combined with the relation (2.10) lead us to the estimate

∥χ0u∥2
H1

0(supp(χ0)) ≤ C|⟨σ∇(χ0u),∇T 0(χ0u)⟩|

≤ C|⟨div(σ∇u), χ0T 0(χ0u)⟩| + C|⟨σ∇u · ∇χ0, T 0(χ0u)⟩|

+C|(σu∇χ0,∇T 0(χ0u))L2(supp(χ0))|

≤ C(∥ALσu∥(H1
0(ΩL))∗ + ∥u∥L2(ΩL))∥u∥H1

0(ΩL).

Above and in the rest of the proof, C denotes a constant whose value may change from line to
line but that is independent of u. By replacing the operator T 0 by Tx and supp(χ0) by Ωx in the
above calculi, we conclude that for all x = x1, . . . ,xn, we have the estimate

∥χxu∥2
H1

0(Ωx) ≤ C(∥ALσu∥(H1
0(ΩL))∗ + ∥u∥L2(ΩL))∥u∥H1

0(ΩL).

With the help of (2.10), we infer that we have

∥u∥H1
0(ΩL) ≤ C(∥ALσu∥(H1

0(ΩL))∗ + ∥u∥L2(ΩL)).

By using that the embedding of H1
0(ΩL) into L2(ΩL) is compact and that ALσ is symmetric we

deduce, by applying Proposition 2.8.2, that ALσ is a Fredholm operator of index zero. ■

2.3.2 Study of the problem in the vicinity the boundary

In this paragraph, we turn our attention to the study of the scalar problem near ∂B(0, τ). To
do that, we start by defining the domain ωτ = Ωτ ∩ B(O, 2τ) = B(O, 2τ)\B(O, τ) and then we
introduce the operator Cτσ : H1

0(ωτ ) → (H1
0(ωτ ))∗ that is defined by the relation

⟨Cτσu, v⟩ :=
ˆ
ωτ
σ∇u · ∇v dx, u, v ∈ H1

0(ωτ )

where σ = σ1 in ωτ1 := Ω1 ∩ ωτ and σ = σ2 in ωτ2 := Ω2 ∩ ωτ . Since by assumption we have
τ < 1/2, the interface Σ meets the boundary of ωτ orthogonally at ∂B(0, τ) and at ∂B(0, 2τ).
Furthermore, one can easily see that thanks to the assumptions made on Σ near the origin (see
the introduction of this chapter), we have

ωτ1 = {(r, θ, φ) | r ∈ (τ ; 2τ), g(φ) < θ, φ ∈ [0, 2π]}
ωτ2 = {(r, θ, φ) | r ∈ (τ ; 2τ), θ < g(φ), φ ∈ [0, 2π]}

where g : [0, 2π] → [0, π] is a periodic function of C 2(see the introduction of this chapter).

Proposition 2.3.2. Assume that κσ ̸= −1. Then the operator Cτσ is a Fredholm operator of index
zero. In particular, we have the estimate

∥u∥H1
0(ωτ ) ≤ C(∥Cτσu∥(H1

0(ωτ ))∗ + ∥u∥L2(ωτ ))

where C is a constant that does not depend in u.
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Proof. By working in spherical coordinates, one can easily see that for all u, v ∈ H1
0(ωτ ) we have

⟨Cτσu, v⟩ =
ˆ

Ωτ
σ∇u · ∇v dx =

ˆ 2τ

τ

ˆ
S2
σ(ω)((r∂ru)(r∂rv) + ∇Su · ∇Sv) drdω.

Above ∇S stands for the surface gradient operator on S2. By performing the Euler change
of variables (r, ω) 7→ (t, ω) = (log(r), ω), we transform the domain ωτ into the domain ω̃τ :=
(a; b) × S2 where the constants a and b are given by a = log(τ) and b = log(2τ). Furthermore, by
using the classical angular coordinates (θ, φ) ∈ (0;π) × (0; 2π) to parameterize the sphere S2, the
domain ω̃τ can be also defined as follows:

ω̃τ := {(t, θ, φ) | t ∈ (a; b), θ ∈ (0;π) and φ ∈ (0; 2π)}.

To proceed, we define the domains ω̃τ1 and ω̃τ2 , respectively, as the images of the domains ωτ1 and
ωτ2 by the Euler change of variable. We also denote by Σ̃τ := ω̃τ1 ∩ ω̃τ2 .
For all u ∈ H1

0(ωτ ), we denote by ũ the function that is defined in ω̃τ by the relation ũ(t, ω) =
u(et, ω) for almost all (t, ω) ∈ ω̃τ . By observing that ∂tũ(t, ω) = ∂ru(r, ω)∂tr = r∂ru(r, ω), we
deduce that the Euler change of variables induces an isomorphism between the spaces H1

0(ωτ )
and the space

W1
0(ω̃τ ) = {(t, ω) 7→ ũ(t, ω) |

ˆ
ω̃τ

et((∂tũ)2 + |∇S ũ|2) dtdω < +∞ and ũ = 0 on ∂ω̃τ}.

Given that the function (t, ω) 7→ et is bounded in ω̃τ , we infer that the space W1
0(ω̃τ ) coincides

with H1
0((a; b) × S2). With this in mind, we can say that the Fredholmness of the operator Cτσ is

equivalent to the Fredholmness of the operator C̃τσ : H1
0((a; b) × S2) → (H1

0((a; b) × S2))∗ that is
defined as follows:

⟨C̃τσ ũ, ṽ⟩ =
ˆ b

a

ˆ
A

etσ(ω)(∂tũ∂tṽ + ∇S ũ · ∇S ṽ)dtdω, u, v ∈ W1
0(ω̃τ ).

By observing that the function σ depends only in θ and not in the other two variables t and φ,
and by noticing that Σ̃τ meets ∂ω̃τ orthogonally, one can adapt4 the proofs of the Lemma 2.3.1
and the Proposition 2.3.1 in order to deduce that C̃τσ is a Fredholm operator of index zero as soon
as κσ ̸= −1. This leads us to the wanted result. ■

2.3.3 Final proof

Here, we shall present a proof of the Theorem 2.3.1.

Proof. The idea is to use localization techniques as in the proof of Proposition 2.3.1. We start
by defining the domains Aτ = Ωτ ∩ B(O, 2τ) and Bτ = Ωτ\B(O, 3τ/2). For i = 1 = 1, 2, we
also define the domains Aτi = Aτ ∩ Ωi and Bτ

i = Bτ ∩ Ωi. Next, we introduce the interfaces
Στ
A = Aτ1 ∩Aτ2 and Στ

B = Bτ
1 ∩Bτ

2 . It is worth to note that Στ
B ∩∂Ωτ = ∅ and that Στ ⊂ Στ

A∪Στ
B.

Given that ΣB ⊂ Ωτ is of class C 1 and by working as in the proof of the previous proposition (this
is possible since κσ ̸= −1), one can show, that for all x ∈ Στ

B we can find Ωx ⊂ Ω a neighborhood
of x such that the operator Axσ : H1

0(Ωx) → (H1
0(Ωx))∗ that is defined by

⟨Axσu, v⟩ :=
ˆ

Ωx

σ∇u · ∇v, ∀u, v ∈ H1
0(Ωx)

4The proof is based on the use of local reflections with respect to Σ̃τ and local rotation of the system of
coordinates but this time the difficulty comes from the fact that we are working in spherical coordinates. Details
about these techniques can be found in §3.6.1.
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is an isomorphism (T-coercive). Denote by ΩΣτB the open set

ΩΣτB :=
⋃

x∈ΣτB

Ωx.

By observing that ΩΣτB covers the compact set Bτ
0 := ΩΣτB ∩Bτ , we can then find x1, . . . ,xn ∈ Στ

B

(with n ∈ N) such that

Στ
B ⊂ Bτ

0 ⊂
n⋃
i=1

Ωxi .

By applying the partition of unity theorem, we can find n smooth functions χ1, . . . , χn ∈ D(Ωτ )
such that

• x 7→ χi(x) ∈ [0; 1] for all all i = 1, . . . , n and for all x ∈ Ω,

• χi is compactly supported in Ωxi ,

•
n∑
i=1

χi = 1 in Bτ
0 .

The next step, is to introduce χ0 ∈ D(Ωτ , [0; 1]) that depends only in r = |x| and that is equal to 1
for |x| < 3/2τ and that vanishes for 7τ/4 < |x|. This means that χ0 is supported in Aτ . We finish
the series of notations by introducing χ̃ ∈ D(Ωτ , [0; 1]) that is equal to 1 in Ωτ\(B(O, 3τ/2)∪Bτ

0 )
and that vanishes near Στ . Observe that we have

1 ≤ χ̃(x) + χ0(x) +
n∑
i=1

χi(x), x ∈ Ωτ .

As a result, there exists 0 < C such that

∥u∥H1
0(Ωτ ) ≤ C(∥χ̃u∥H1

0(supp(χ̃)) + ∥χ0u∥H1
0(Aτ ) +

n∑
i=1

∥χiu∥H1
0(Ωxi )) ∀u ∈ H1

0(Ωτ ).

Before getting into details, along the rest of this proof, we denote by C a positive constant whose
value may change from line to line but that is independent of u. Given that the function χ̃ vanishes
near Στ and by means of the T-coercivity approach (see the proof of Proposition 2.3.1), we obtain
the estimate

∥χ̃u∥2
H1

0(supp(χ̃) ≤ C(∥div(σ∇u∥H1
0(Ωτ )∗ + ∥u∥L2(Ωτ ))∥u∥H1

0(Ωτ ).

In the same way, given that the operators Axiσ are T-coercive and working as in the proof of
Proposition 2.3.1 we arrive to the estimate

∥χiu∥2
H1

0(Ωx
i ) ≤ C(∥div(σ∇u)∥H1

0(Ωτ )∗ + ∥u∥L2(Ωτ ))∥u∥H1
0(Ωτ ) for i = 1, . . . , n.

The next step is to deal with the term ∥χ0u∥H1
0(Aτ ). Unfortunately, this time, we can not use

T-coercivity approach. However, starting from the result of Proposition 2.3.2, we conclude that
we have the estimate

∥χ0u∥H1
0(Aτ ) ≤ C(∥div(σ∇(χ0u))∥H1

0(Aτ )∗ + ∥χ0u∥L2(Aτ )).

Given that the function χ0 is independent of r = |x|, one can easily prove that for all v ∈ H1
0(Aτ ),

there holds div(σv∇χ0) ∈ L2(Aτ ). Moreover, we have the estimate

∥div(σv∇χ)∥L2(Aτ ) ≤ C∥v∥H1
0(Aτ )

where C that does not depend in v. Combining this with the identity

(σ∇(χ0u),∇v)L2(Aτ ) = −(div(σ∇u), χ0v)L2(Aτ ) + (u,div(σv∇χ0))L2(Aτ ) + (σu∇χ0,∇v)L2(Aτ )
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for all u, v ∈ H1
0(Aτ ), we get

∥div(σ∇(χ0u)∥H1
0(Aτ )∗ ≤ C(∥div(σ∇u)∥H1

0(Ωτ )∗ + ∥u∥L2(Ωτ )).

This leads us to
∥χ0u∥H1

0(Aτ ) ≤ C(∥div(σ∇u)∥H1
0(Ωτ )∗ + ∥u∥L2(Ωτ )).

By combining all these estimates, we obtain

∥u∥H1
0(Ωτ ) ≤ C(∥F τσu∥H1

0(Ωτ )∗ + ∥u∥L2(Ωτ ))

where C is independent of u ∈ H1
0(Ωτ ). Since the operator F τσ is symmetric and since the

embedding of H1
0(Ωτ ) into L2(Ωτ ) is compact, Proposition 2.8.2 guarantees that F τσ is a Fredholm

operator of index zero. ■

2.4 Study of the problem in the whole space

In the previous section, we studied the behavior of Problem (2.2) far from the origin. We proved
that it is well-posed as soon as κσ ̸= −1. Here, we want to get a closer look on the situation near
the origin. Naturally, this leads us to study the well-posedeness of the problem

Find u ∈ H1
loc(R3) such that − div(σ∇u) = f.

Here the function σ is defined as follows: σ = σ2 in K and σ = σ1 in R3\K . The classical way
to study the well-posedness of the previous problem is to use the Fourier transform but since the
function σ does not have a constant behavior at infinity, this approach cannot be used. To cope
with this difficulty, and because the σ function is independent of r = |x|, we will use the so-called
Mellin transformation. The use of this transformation will allow us to study the well-posedness of
the problem in weighted Sobolev (Kondratiev) spaces [100, 101]. The analysis conducted in this
section will be of great importance since it will allow, on the one hand to determine a “simple”
condition ensuring the well-posedness (in the Fredholm sense) of (2.2) and on the other hand it
will help us constructing an alternative functional framework in which the scalar problem is again
well-posed when the original problem is ill-posed in the usual setting.

2.4.1 Weighted Sobolev (Kondratiev) spaces

For β ∈ R and m ∈ N, we introduce the (homogeneous)5 weighted Sobolev (Kondratiev) space
(see [100]) associated to the punctured domain R3 \ {O} denoted by Vm

β (R3) and defined as the
closure of D(R3 \ {O}) for the norm

∥φ∥Vm
β

(R3) :=

 ∑
|α|≤m

∥r|α|−m+β∂αxφ∥2
L2(R3)

1/2

.

Here r = |x| and D(R3 \ {O}) denotes the space of infinitely differentiable functions which are
compactly supported in R3 \ {O}. Clearly we have V0

0(R3) = L2(R3). Moreover, one observes
that for all m ∈ N∗ and β ∈ R, we have the inclusion Vm

β (R3) ⊂ Vm−1
β−1 (R3). It is worth to

note that for a given m ∈ N and β1, β2 ∈ R such that β1 < β2, we have Vm
β1(R3) ̸⊂ Vm

β2(R3)
and Vm

β2(R3) ̸⊂ Vm
β1(R3). It is also interesting to mention that thanks to the classical Hardy

inequalities, one can show (see [101, Theorem 7.1.1]) that V1
0(R3) = H1(R3).6

5For the case of nonhomogeneous ones see [101, Chapter 7].
6Note that this is wrong in 2D.
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2.4.2 The Mellin transform

The Mellin transform is one of the classical integral transformations which is a useful tool to study
the properties of partial differential equations. Compared to other classical transformations such
as Fourier or Laplace transform, the Mellin transformation has the particularity to be adapted to
the study linear PDE in weighted Sobolev spaces and more generally to the study of linear PDE
near point singularities. Formally, by using this transformation, the study of the well-posedness
of a linear PDE near a singular point and the study of the asymptotic expansion of its solution
(when it is well-defined) near these points, reduces to the analysis of the spectral properties of
its Mellin transform (also known as the Mellin symbol). The goal of this paragraph is to recall
some of the basic properties of this transformation that will be used in the next sections.
Let r 7→ f(r) be a smooth function that is compactly supported in R∗

+. The Mellin transform of
f , denoted by f̂(λ), is the function defined for all λ ∈ C by the formula:

f̂(λ) =
ˆ ∞

0
r−λ−1f(r)dr.

Note that since f has a compact support in (0; ∞), one can show that λ 7→ f̂(λ) is analytic.
When f does not have compact support in (0; ∞), f̂(λ) is no longer defined for all λ ∈ C. As
we shall see later, the set of λ ∈ C for which f̂(λ) exists depends on the regularity of f in
weighted Sobolev spaces. To simplify notations, for all γ ∈ R, we denote by ℓγ the vertical line
ℓγ := {λ ∈ C | ℜe(λ) = γ}.

Lemma 2.4.1. [102, Theorem 6.1.3] The Mellin transformation satisfies the following properties.

• For all u ∈ D(R∗
+), we have (̂r∂ru)(λ) = λû(λ) for all λ ∈ C.

• For all u, v ∈ D(R∗
+), we have the Parseval equality

ˆ ∞

0
r2β−1u(r)v(r)dr = 1

2iπ

ˆ
ℓ−β

û(λ)v̂(λ)dλ.

As a result the Mellin transformation can be continuously extended as an isomorphism
between the weighted space V0

β−1/2(R+) := {u such that rβ−1/2u ∈ L2(R+)} and the space
L2(ℓ−β).

• If u ∈ V0
β1−1/2(R+) ∩ V0

β2−1/2(R+) with β1 < β2, then λ 7→ û(λ) is well-defined and holo-
morphic in the strip ℜe(λ) ∈ (−β2; −β1).

• The inverse Mellin transformation of û(λ) ∈ L2(ℓ−β) is given by

u(r) = 1
2iπ

ˆ
ℓ−β

rλû(λ)dλ ∈ V0
β−1/2(R+).

Now, for u ∈ D(R3\{O}), we denote by (λ, ω) 7→ û(λ, ω) the partial Mellin transform of u (with
respect to r = |x|) such that for all λ ∈ C and ω ∈ S2

û(λ, ω) =
ˆ +∞

0
r−λ−1u(rω)dr.

Using the properties above, one can easily see that for all u ∈ D(R3\{O}) and all v ∈ L2(S2) we
have

⟨û(λ, ω), v(ω)⟩L2(S2) =
ˆ
S2
û(λ, ω)v(ω)dω =

ˆ +∞

0

ˆ
S2
r−λ−1u(rω)v(ω)drdω =

ˆ
R3
r−λ−3uvdx

= ⟨u, r−λ−3v⟩L2(R3).
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The previous identity will be used to define the Mellin transform of elements of the space (V1
β(R))∗.

In the rest of this paragraph, we focus our attention on the study of the action of the (partial)
Mellin transform on the weighted Sobolev spaces V0

β(R3) ,V1
β(R3) and (V1

β(R3))∗ for an arbitrary
β ∈ R. Let us start with the case of the space V0

β(R3). This is the subject of the next

Lemma 2.4.2. A function x 7→ u(rω) belongs to the space V0
β(R3) if and only if (λ, ω) 7→

û(λ, ω) (its partial Mellin transform with respect to r) belongs to the space L2(ℓ−β+1/2,L2(S2)).
Additionally, the norm

∥u∥ = ( 1
2iπ

ˆ
ℓ−β+1/2

∥û(λ, ω)∥2
L2(S2) dλ)1/2

is equivalent to ∥ · ∥V0
β

(R3).

Proof. By definition of V0
β(R3), we can say that u ∈ V0

β(R3) if and only if r 7→ u(rω) ∈ V0
β+1(R+)

for almost all ω ∈ S2 and ω 7→ u(rω) ∈ L2(S2) for almost all r ∈ R+. Then The result follows by
applying the second item of the previous lemma. ■

With the same idea as in the previous proof, we obtain the

Lemma 2.4.3. A function rω 7→ u(rω) belongs to the space V1
β(R3) if and only if the functions

λ 7→ û(λ, ω) and λ 7→ λû(λ, ω) belong respectively to L2(ℓ−β−1/2,H1(S2)) and L2(ℓ−β−1/2,L2(S2)).
Furthermore, the norm

∥u∥ = ( 1
2iπ

ˆ
ℓ−β−1/2

∥û(λ, ω)∥2
H1(S2) + |λ|2∥û(λ, ω)∥2

L2(S2) dλ)1/2

is equivalent to ∥ · ∥V1
β

(R3).

For all λ ∈ C, we introduce the norm ∥ · ∥H1(S2,|λ|) such that

∥u∥H1(S2,|λ|) =: (∥u∥2
H1(S)2 + |λ|2∥u∥2

L2(S)2)1/2 for all u ∈ H1(S2).

Clearly, for a fixed λ ∈ C, it is equivalent to the classical H1(S2) norm. But when |λ| tends to +∞
this is no-longer the case. In (H1(S2))∗, we introduce the norm ∥ · ∥(H1(S2,|λ))∗ which is defined as
follows

∥f∥(H1(S2,|λ|))∗ = sup
u∈H1(S2)\{0}

|⟨f, u⟩|
∥u∥H1(S2,|λ|)

for all f ∈ (H1(S2))∗.

The last part of this section is dedicated to the study of the Mellin transform of elements of
the space (V1

β(R3))∗ with β ∈ R. For simplicity, we limit ourselves to the case of distributions
with compact support in R3\{O}. Consider rω 7→ f(rw) ∈ (V1

β(R3))∗ with compact support in
R3\{O}. Its Mellin transform f̂(λ, ·) belongs to (H1(S2))∗ and is defined by the relation

⟨f̂(λ, ·), v⟩H1(S2)∗,H1(S2) = ⟨f(r, ω), r−λ−3v(ω)⟩(V1
β

(R3))∗,V1
β

(R3) for all v ∈ H1(S2). (2.11)

Clearly, the last duality product is well-defined because f has a compact support in R3\{O}. This
means that f̂(λ, ·) is well-defined for all λ ∈ C.

Lemma 2.4.4. Let f(r, w) ∈ (V1
β(R3))∗ with compact support in R3\{O}. Define g(r, w) =

r2f(r, ω). We have the equality

∥f∥V1
β

(R3)∗ = 1
2iπ

ˆ
ℓβ−1/2

∥ĝ(λ, ω)∥(H1(S2,|λ|))∗ dλ.
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Proof. The proof closely follows the one of Lemma 5.3 of [25] (that deals with the 2D case).
Given that V1

β(R3) is a Hilbert space, there exists a unique F ∈ V1
β(R3) such that

⟨f, v⟩(V1
β

(R3))∗,V1
β

(R3) =
ˆ
R3

|x|2(β−1)F v + |x|2β∇F · ∇v dx for all v ∈ V1
β(R3).

Furthermore, we have ∥f∥V1
β

(R3)∗ = ∥F∥V1
β

(R3). Since f has a compact support R3\{O} , it
follows that g is also compactly supported in R3\{O}. This implies that ĝ(λ, ·) is well-defined for
all λ ∈ C. Moreover, one can easily check that for all λ ∈ C, we have

⟨ĝ(λ, ω), h(ω)⟩H1(S2)∗,H1(S2) = ⟨f, r−λ−1h(ω)⟩(V1
β

(R3))∗,V1
β

(R3) for all h ∈ H1(S2).

In particular for all λγ = β − 1/2 + iγ with γ ∈ R, there holds

⟨f, r−λγ−1h(ω)⟩(V1
β

(R3))∗,V1
β

(R3) =
ˆ
S2

ˆ ∞

0
r2β−λγ−1F (r, ω)h(ω)drdω

+
ˆ
S2

ˆ ∞

0
r2β−λγ−1∇SF (r, ω) · ∇Sh(ω)drdω

−(λγ + 1)
ˆ
S2

ˆ ∞

0
r2β−λγ∂rFh(ω)drdω.

On the other hand, since F ∈ V1
β(R3), the function λ 7→ F̂ (λ, ω) is well-defined for all λ ∈ ℓ−β−1/2.

As a result, we obtain

⟨f, r−λγ−1h(ω)⟩(V1
β

(R3))∗,V1
β

(R3) = ⟨F̂ (−β − 1/2 + iγ), h(w)⟩H1(S2)

−(λγ + 1)(λγ − 2β)(F̂ (−β − 1/2 + iγ), h(w))L2(S2)

= ⟨F̂ (−β − 1/2 + iγ), h(w)⟩H1(S2)

+|λγ |2(F̂ (−β − 1/2 + iγ), h(w))L2(S2).

Above, we have used the fact that (λγ + 1)(2β − λγ) = |λγ |2 = | − β − 1/2 + iγ|2. Consequently,
one obtains that for all γ ∈ R, we have

∥ĝ(β − 1/2 + iγ, ·)∥H1(S2)∗ = ∥F̂ (−β − 1/2 + iγ, ·)∥H1(S2,|−β−1/2+iγ|)∗ .

By integrating the previous estimate with respect to γ ∈ R and by using the fact that ∥f∥V1
β

(R3)∗ =
∥F∥V1

β
(R3), we obtain the wanted result. ■

2.4.3 Definition of the problem

Before defining the problem that we want to study, let us start by observing that for all u ∈ V1
β(R3)

with β ∈ R and all φ ∈ D(R3\{O}) we have

−
ˆ
R3

div(σ∇u)φdx =
ˆ
R3
σ∇u · ∇φdx.

Thanks to the Cauchy-Schwarz inequality, we obtain the estimate

|
ˆ
R3

div(σ∇u)φ| ≤ C∥u∥V1
β

(R3)∥φ∥V1
−β(R3)

with C independent of u and of φ. This means that for all u ∈ V1
β(R3), we have div(σ∇u) ∈

(V1
−β(R))∗. The main goal of this paragraph is to study the well-posedness of the problem

Find u ∈ V1
β(R3) such that − div(σ∇u) = f ∈ (V1

−β(R3))∗. (2.12)
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Clearly, the well-posedness (in the Fredholm sense) of the previous problem is equivalent to study
the Fredholmness of the operator Wβ

σ : V1
β(R3) → (V1

−β(R3))∗ such that

⟨Wβ
σu, v⟩ =

ˆ
R3
σ∇u · ∇v ∀(u, v) ∈ V1

β(R3) × V1
−β(R3).

Even in the classical configuration, i.e. when the function σ has a constant sign, the study of the
Fredholmness of the operator Wβ

σ is not an easy problem. The main difficulty comes from the
fact that we are dealing with a non-symmetric problem (except when β = 0) that is set in an
unbounded domain. The classical tool to deal with such difficulty is to use the Mellin transform.
The goal of the next paragraph is to investigate how this idea can be extended to the study of
the Fredholmness of the operator Wβ

σ when the sign of σ is not constant.

2.4.4 Mellin symbol of the problem

As mentioned above, to study the properties of the operator Wβ
σ , we are going to use the Mellin

transform. For this, we need to define the so-called Mellin symbol of the problem. For all λ ∈ C,
introduce the operator Lσ(λ) : H1(S2) → (H1(S2))∗ such that

⟨Lσ(λ)Φ,Φ′⟩ =:
ˆ
S2
σ∇SΦ · ∇SΦ′dω − λ(λ+ 1)

ˆ
S2
σΦΦ′dω ∀Φ,Φ′ ∈ H1(S2).

The link between the operators Wβ
σ and Lσ(λ) is clarified in the next

Lemma 2.4.5. Let u ∈ D(R3\{O}). Then for all λ ∈ C, we have

r̂2Wβ
σu(λ, ·) = Lσ(λ)û(λ, ·).

Proof. It is not difficult to check that the transformation u 7→ r2u is continuous from W1
β(R3) to

W1
β−2(R3). This implies that for all u ∈ D(R3\{O}) we have r2Wβ

σ(u) ∈ W1
−β−2(R3)∗. Further-

more, one can see that r2Wβ
σ(u) is compactly supported in R3\{O}. As a result, for all v ∈ H1(S2)

we have

⟨r̂2Wβ
σu(λ, ·), v⟩H1(S2)∗,H1(S2) = ⟨Wβ

σu, r
−λ−1v⟩(V1

−β(R3))∗,V1
β

(R3) =
ˆ
R3
σ(ω)∇u · ∇r−λ−1v dx.

On the other hand, there holds

⟨Wβ
σu, r

−λ−1v⟩(V1
−β(R3))∗,V1

β
(R3) =

ˆ
S2
σ(ω)(

ˆ +∞

0
r−λ−1∇Su(rω) · ∇Sv(ω)dr)dω

−(λ+ 1)
ˆ
S2
σ(ω)(

ˆ +∞

0
r−λ−1(r∂ru(rω))v(ω)dr)dω

=
ˆ
S2
σ(ω)(∇S û(λ, ω) · ∇Sv(ω) − λ(λ+ 1)û(λ, ω)v(ω))dω.

Consequently, by using (2.11), we infer that for all λ ∈ C and v ∈ H1(S2) we have

⟨r̂2Wβ
σu(λ, ·), v⟩H1(S2)∗,H1(S2) = ⟨Lσ(λ)û(λ, ·), v(·)⟩H1(S2)∗,H1(S2)

This means that r̂2Wβ
σu(λ, ·) = Lσ(λ)û(λ, ·). The lemma is then proved. ■
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2.4.5 Solvability of the problem

In this paragraph, we come back to the study of the Fredholmness of the operators Wβ
σ with

β ∈ R. By combining the results of Lemma 2.4.5 and Lemma 2.4.4, we can say that the features
of the operator Wβ

σ is directly related to the behavior of Lσ(λ) along the energy line ℓ−β−1/2.

Intuitively, one expects that if Lσ(λ) is invertible along the line ℓ−β−1/2 the operator Wβ
σ must

also be invertible. To prepare the ground, let us recall some classical definitions and notations,
that we brow from [101], concerning the spectral properties of Lσ.
Spectrum of Lσ: a complex number λ is said to be a non-regular point of Lσ if and only if
Lσ(λ) is not invertible. Otherwise we say that λ is regular. The set of non-regular points is
called the spectrum of Lσ and is denoted by Λ(Lσ). Clearly, the set Λ(Lσ) is closed in C.
Eigenvalues and eigenfunctions: a complex number λ0 ∈ Λ(Lσ) is said to be an eigenvalue
of Lσ if and only if Lσ(λ0) is not injective. All the elements of Ker (Lσ(λ0))\{0} are called
eigenfunctions of Lσ associated to λ0. The number ιg(λ0) := dim(ker(λ0)) ∈ N∗ ∪ {∞} is known
as the geometric multiplicity of λ0.
Jordan chain: Let (λ, φ0) be a pair of eigenvalue and eigenfunction. If there is some ordered
family φ1, ..., φn (with n ∈ N∗ ∪ {∞}) such that the system of equations

dLσ

dλ
(λ0)φ+ Lσ(λ0)φ1 = 0

1
2
d2 Lσ

dλ2 (λ0)φk−2 + dLσ

dλ
(λ0)φk−1 + Lσ(λ0)φk = 0, k = 2, . . . , n

is satisfied, we say that φ0, . . . , φn is a Jordan chain of Lσ associated to λ0 of length n+ 1. The
functions φ1, . . . , φn are called generalized eigenfunctions associated to λ. The maximal length of
the Jordan chain associated to (λ, φ0) is called the rank of φ0 and is denoted by rank(φ0).
Index, partial/algebraic multiplicity: Let λ be an eigenvalue of Lσ and let (φj)j=1,...,ιg(λ)
be a basis of Ker (Lσ(λ)). For each j = 1, . . . , ιg(λ) we denote by (φj,k)k=0,...,rank(φj)−1 (with
φj,0 = φj) a Jordan chain associated to (λ, φj). The numbers κj = rank(φj) are called the partial
multiplicities of λ. The largest one is called the index of λ and is denoted by ι(λ). The sum of
these partial multiplicities is called the algebraic multiplicity of λ and is denoted by ιa(λ).
The set {φj,k}j=1,...,ιg(λ),k=0,...,κj(λ)−1, is called a canonical system of Jordan chains associated to
λ.

Remark 2.4.1. Note that in the definition of Jordan chains, the generalized eigenfunctions are
not necessarily linearly independent. In particular, some of them may be zero.

Since the symbol Lσ is associated with a second order PDE, we have the following

Lemma 2.4.6. Let (λ0, φ0) ∈ C×H1(S2)\{0} be a eigenpair of Lσ. If there is no φ1 ∈ H1(S2)\{0}
such that

dLσ

dλ
(λ0)φ+ Lσ(λ0)φ1 = 0. (2.13)

then, the rank(φ0) = 1.

Proof. In the particular case when λ0 = −1/2, one can see that (2.13) holds when φ1 = φ0.
The result is then proved for this particular case. Now, let us suppose that λ0 ̸= −1/2 and
assume that 2 ≤ rank(φ0). As a consequence, by using the assumption made on φ0, we deduce
that (2λ0 + 1)σφ0 = 0. Therefore, we have φ0 = 0 which condradtics the fact that φ0 is an
eigenfunction of Lσ(λ0). ■

Because of the change of sign of σ, the study of the spectral properties of the family of operators
(Lσ(λ))λ∈C does not fit into the general theory presented in [101]. A detailed study of the spectral
properties of (Lσ(λ))λ∈C is given in the next chapter. By adapting the results of §3.2.3, one can
prove (see Theorem 3.2.1) the
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Proposition 2.4.1. Assume that κσ ̸= −1. The spectrum of Lσ is composed by isolated eigen-
values with finite algebraic multiplicities. Furthermore, there exist two positive constants r0 and
γ0 such that

Dr0
γ0 := {z ∈ C such that r0 < |z − 1/2| and |ℜe(z + 1/2)| < γ0|ℑm(z + 1/2)|} ⊂ C\Λ(Lσ).

Besides, for all β ∈ R such that ℓ−β−1/2 ∩ Λ(Lσ) = ∅, there exists 0 < Cβ such that

∥u∥H1(S2,|λ|) ≤ Cβ∥Lσ(λ)u∥H1(S2,|λ|)∗ u ∈ H1(S2, |λ|).

Remark 2.4.2. It is worth to mention that the discreteness of Λ(Lσ) combined with the fact that
Dr0
γ0 ⊂ C\Λ(Lσ) allow us to say that for all β1, β2 ∈ R such that β1 < β2, the set Λ(Lσ) ∩ {λ ∈

C | ℜe(λ) ∈ (β1, β2)} is finite.

Now, we have all the tools to prove the following

Theorem 2.4.1. Assume that κσ ̸= −1. If β ∈ R is such that ℓ−β−1/2 ∩ Λ(Lσ) = ∅, then Wβ
σ is

an isomorphism. Moreover, we have the estimate

∥u∥V1
β

(R3) ≤ Cβ∥Wβu∥(V1
−β(R3))∗ , u ∈ V1

β(R3)

where Cβ is a constant that depends only in β.

Proof. Let u ∈ D(R3\{O}). According to Lemma 2.4.5 we know that for all λ ∈ C we have

r̂2Wβ
σu(λ, ·) = Lσ(λ)û(λ, ·).

Since by assumption the operator Lσ(λ) is invertible for all λ ∈ ℓ−β−1/2, by using the results of
Proposition 2.4.1, we deduce that there is some constant 0 < Cβ that depends only on β such
that

∥û(λ, ·)∥H1(S2,|λ|) ≤ Cβ∥r̂2Wβ
σu(λ, ·)∥H1(S2,|λ|), λ ∈ ℓ−β−1/2.

By integrating the previous estimate with respect to λ along the line ℓ−β−1/2 and by using the
result of Proposition 2.4.4, we arrive to the estimate

∥u∥V1
β

(R3) ≤ Cβ∥Wβu∥(V1
−β(R3))∗ , u ∈ D(R3\{O}).

The density of D(R3\{O}) in V1
β(R3) allows us to deduce the estimate

∥u∥V1
β

(R3) ≤ Cβ∥Wβ
σu∥(V1

−β(R3))∗ , u ∈ V1
β(R3).

This shows that the operator Wβ
σ is injective and that its range is closed. By observing that for

all β ∈ R we have Lσ(−β − 1/2) = Lσ(β − 1/2) we infer that the operator W−β
σ is also injective

and its range is closed. By noticing that (Wβ
σ)∗ = W−β

σ we then deduce that Wβ
σ is bijective.

Finally, the open map theorem allows us to say that Wβ
σ is an isomorphism. ■

The proof of the previous theorem combined with the expression of the inverse Mellin transform
leads us to the

Corollary 2.4.1. Assume that κσ ̸= −1 and that ℓ−β−1/2 is free of eigenvalues of Lσ then the
solution of (2.12) can be expressed in the following way

u(rω) = 1
2iπ

ˆ
ℓ−β−1/2

rλLσ(λ)−1(r̂2f(λ, ω))dλ. (2.14)
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2.4.6 Asymptotic of the solution

One of the most important results of the Kondratiev theory for linear strongly elliptic PDE [100]
is the fact that it allows us to derive an asymptotic expansion of the solution at infinity and near
the origin. Interestingly, these results can be extended to a more general class of PDE. All we
need is to have a precise information about the Mellin symbol generated by the problem under
study. Before explaining how to obtain this expansion for the solutions of (2.12), we need to
define the so-called singularities of the problem.

Definition 2.4.1. Let χ ∈ D(R3) be a cut-off function that depends only on r = |x| and that is
equal to 1 near the origin. We say that s is a singularity of (2.12) if and only if it has the form

s(rω) = χ(r)rλ
n∑
s=0

1
s! log(r)sφn−s(ω)

where (φs)s=0,...,n is a Jordan chain of Lσ corresponding to λ.

Now, we explain how these singularities are related to Problem (2.12).

Lemma 2.4.7. We have the equivalence: (φs)s=0,...,n is a Jordan chain of Lσ corresponding to
λ if and only if the functions

sk(rω) = rλ
k∑
s=0

1
s! log(r)sφk−s(ω)

satisfy div(σ∇sk) = 0 for k = 1, . . . , n.

Proof. The proof of this result is given in [101, Theorem 1.1.5]. We limit ourselves to the proof
of the result for s0. Starting from the identity

div(σ∇(rλφ0(ω))) = rλ−2(divS(σ∇Sφ0) + λ(λ+ 1)σφ0) in R3\{O},

we infer that

div(σ∇(rλφ0(ω))) = 0 in R3\{O} ⇐⇒ divS(σ∇Sφ0) + λ(λ+ 1)σφ0 = 0 in S2.

The result follows from the identity

⟨divS(σ∇Sφ0) + λ(λ+ 1)σφ0, φ
′⟩ = ⟨Lσ(λ)φ0, φ

′⟩, φ′ ∈ H1(S2).

■

From the previous lemma, we deduce that all the singularities of Problem (2.2) satisfy the equation
div(σ∇S ·) = 0 near the origin.

Asymptotic of the solution

Now, we explain how one can find an asymptotic expansion of the solution to (2.12). The starting
point is to apply the Residue theorem to the formula (2.14) and to take profit from the fact (thanks
to Proposition 2.4.1) that if κσ ̸= −1, then near any λ0 ∈ Λ(Lσ) the operator L (λ)−1 has the
representation

Lσ(λ)−1 =
ι(λ0)∑
j=1

1
(λ− λ0)jAj +

+∞∑
j=0

(λ− λ0)jBj .

Here all the Aj are finite-dimensional operators, the Bj are continuous operators and this result
is proved in [101, Theorem 1.1.2 ]. By adapting the proof of [102, Theorem 6.1.5 ], we can prove
the



39 2.5. Application: study of the problem in the unit ball

Proposition 2.4.2. Assume that κσ ̸= −1. Let β1 < β2 ∈ R such that the lines ℓ−β1−1/2 and
ℓ−β2−1/2 are free of eigenvalues of Lσ. Denote by λ1, . . . , λN (with N ∈ N∗) the set of eigenvalues
of Lσ that are located in the strip −β2 − 1/2 < ℜe(λ) < −β2 − 1/2. For each j = 1, . . . , N we
denote by

{φjk,s}k=1,...,ιg(λi),s=0,...,κk(λj)−1

a canonical system of Jordan chains associated to λj . The number κj(λi) stands for the j−th
partial multiplicity of λi. Let f0 ∈ (V1

−β1(R3))∗ ∩ (V1
−β2(R3))∗ and denote by u1 ∈ V1

β1(R3) (resp.
u2 ∈ V1

β2(R3)) the solution of (2.12) with f = f0. The function u1 −u2 admits the decomposition

u1(x) − u2(x) =
N∑
j=1

ιg(λj)∑
k=1

κk(λj)−1∑
s=0

cj,k,s r
λj

1
s! log(r)sφij,k−s(ω) for almost all x ∈ R3

in which all the cj,k,s are complex numbers.

Remark 2.4.3. Clearly, the coefficients cj,k,s depend on the choice of the canonical system of
Jordan chains associated to each (λj)j=1,...,N . An explicit formula for the coefficient ci,j,k can be
be found in [101]. The idea is based on the use of a well-chosen canonical system of Jordan
chains of Lσ that are associated to (−λj − 1)j=1,...,N (see [108, §5.4.1]) for which the so-called
biorthogonality condition (see [101, Theorem 5.1.1]) is satisfied.

2.5 Application: study of the problem in the unit ball

The results of this section are not essential to understand those of the next one. Therefore,
this section can be skipped in a first reading. In this paragraph, we are going to study the
Fredholmness of the problem

Find u ∈ H1
0(B(O, 1)) such that − div(σ∇u) = f ∈ (H1

0(B(O, 1)))∗ (2.15)

where σ = σ2 in B(O, 1) ∩ K and σ = σ1 in B(O, 1)\K . In order to simplify notations, we shall
denote by B the open unit ball of R3. Moreover, we denote by B1,B2 the domains B2 := B∩K and
B1 := B\B2. For all m ∈ N and β ∈ R, we define the space V̊m

β (R3) as the closure of D(B \ {O})
for the norm

∥φ∥V̊m
β

(B) =

 ∑
|α|≤m

∥r|α|−m+β∂αxφ∥2
L2(B)

1/2

.

Note that for all m ∈ N∗ and β ∈ R we have Vm
β (B) ⊂ Vm−1

β−1 (B). Besides, one can see that for all
m ∈ N and β1, β2 ∈ R such that β1 < β2 we have the embedding Vm

β1(B) ⊂ Vm
β2(B). In addition

to that, by using the [101, Theorem 7.1.1] we can prove that H1
0(B) = V1

0(B). We also have the
following

Lemma 2.5.1. Let Φ ∈ H1(S2) then the function x → rλΦ(ω) (where (r, ω) are the classical
spherical coordinates) belongs toe the space V1

β(B) if and only if −1/2 − β/2 < ℜe(λ)

Proof. Easily one can show that x → rλΦ(ω) ∈ V1
β(B) if and only if x → rλΦ(ω) ∈ V0

β−1(B).
This means that x → rλΦ(ω) ∈ V1

β(B) if and only if −1 < 2(ℜe(λ) + β − 1) + 2. This ends the
proof. ■

Instead of studding the well-posedeness of the (2.15) we are going to study the solvability of the
family of problems:

Find u ∈ V̊1
β(B) such that − div(σ∇u) = f ∈ (V̊1

−β(B))∗.
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Note that when β = 0, the previous problem is nothing else than the problem (2.15). Without any
difficultly, one can check that the study of the Fredholmness of the previous problem is equivalent
to the study of the Fredholness of the operator Lβσ : V̊1

β(B) → (V̊1
−β(B))∗ such that

⟨Lβσu, v⟩ :=
ˆ

B
σ∇u · ∇v for all (u, v) ∈ V̊1

β(B) × V̊1
−β(B).

Theorem 2.5.1. Assume that κσ ̸= −1. If β ∈ R is such that Λ(Lσ) ∩ ℓ−β−1/2 = ∅ then the
operator Lβσ is a Fredholm operator.

Proof. Let χ ∈ D(R3, [0; 1]) that depends only on r = |x| such that χ(x) = 1 for all |x| ∈ [0; 1/2]
and χ(x) = 0 for all |x| ∈ [3/4,+∞). To simplify notations, we introduce D := {x ∈ R3 | |x| ∈
[1/2, 1)}. By observing that the function 1−χ is supported in D, we obtain the following estimate

∥u∥V̊1
β

(B) ≤ C(∥χu∥V̊1
β

(B) + ∥(1 − χ)u∥H1
0(D)), u ∈ V1

β(B(0, 1))

in which C is independent of u. Now by extending the function χu by 0 in R3\B we can say that
χu is then an element of the space V1

β(R3). The assumptions made on κσ and β allow us to use
the results of Proposition 2.4.1. In particular, we have the estimate

∥χu∥V̊1
β

(B) ≤ C∥χu∥V1
β

(R3) ≤ C∥div(σ∇χu)∥(V1
−β(R3))∗

with C independent of u. Using the fact that the function χ depends only on r = |x|, we can
say that for all u ∈ V1

β(B) the function div(σu∇χ) belongs to L2(B) which is supported in D.
Furthermore, we have the estimate

∥div(σu∇χ)∥V1
−β(R3) ≤ C∥u∥L2(D)

in which C is independent of u. By Combining this result with the identity: for all v ∈ V1
−β(R3)

we have

⟨div(σ∇χu), v⟩ = −(σ∇u,∇χv)L2(R3) − (u,div(σv∇χ))L2(R3) + (div(σu∇χ), v)L2(R3) (2.16)

we obtain the estimate

∥div(σ∇χu)∥(V1
−β(R3))∗ ≤ C(∥Lβσ(u)∥(V̊1

−β(B))∗ + ∥u∥L2(D)).

By adapting the results of §2.3, we also have the estimate

∥(1 − χ)u∥H1
0(D) ≤ C(∥div(σ∇(1 − χ)u)∥(H1

0(D))∗ + ∥u∥L2(D)).

Using the same idea as in (2.16), we get the estimate

∥(1 − χ)u∥H1
0(D) ≤ C(∥Lβσ(u)∥(V̊1

−β(B))∗ + ∥u∥L2(B1)).

As a consequence, we obtain the following estimate

∥u∥V̊1
β

(B) ≤ C(∥Lβ(u)∥(V̊1
β

(B(O,1))∗ + ∥u∥L2(B1)), u ∈ V̊1
β(B(O, 1)). (2.17)

By observing that the map u → u|D from V̊1
β(B) to L2(D) is compact and by using the results of

Proposition 2.8.1, we deduce that Lβσ has a closed range and that its kernel is finite dimensional.
Using the fact that Lσ(−β − 1/2) = Lσ(β − 1/2), we infer that L−β

σ has also a closed range and
a finite dimensional kernel. By noticing that L−β

σ = (Lβσ)∗, we conclude that coker (Lβσ) is finite
dimensional, this implies that Lβσ is of Fredholm type. ■
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Proposition 2.5.1. Assume that κσ ̸= −1. Let 0 < β such that Λ(Lσ) ∩ ℓ−β−1/2 = ∅ then L−β
σ

is injective and Lβσ is surjective.

Proof. According to the previous proposition the operators L±β
σ are of Fredholm type. Since Lβσ

is the adjoint of L−β
σ it suffices to show that L−β

σ is injective. For this, let us suppose that there
exists some u ∈ V̊1

−β(B(O, 1)) such that div(σ∇u) = 0. The goal is then to prove that u = 0. For
this we are going to use the Kelvin transform and the fact that in our case the operators W±β

σ

are isomorphism. We define the function ũ such that

ũ(r, ω) =
{
u(r, w) if r < 1
−u(1/r, w)/r if 1 < r.

Denote by Bc = R3\B(O, 1). According to Lemma 2.8.3, we can say that ũ|Bc ∈ V1
β(Bc). Since ũ

is continuous across the unit sphere S2 and since V1
−β(B(O, 1)) ⊂ V1

β(B(O, 1)) we conclude that
ũ ∈ V1

β(R3). To proceed, we denote by B−1
1 (resp. B−1

2 ) the image of B1(resp. B2) by the map
(r, ω) → (1/r, ω). Note that we have B1 ∪ B−1

1 = K and B2 ∪ B−1
2 = R3\K . The next step is to

extend the function σ to R3 as follows

σ =
{
σ1 in R3\K

σ2 K .

To end the proof, we are going to show that the function ũ satisfies the equation div(σ∇ũ) = 0 in
R3\{O}. Since ũ ∈ V1

β(R3) this will implies that Wβ
σ(ũ) = 0 and then by applying Theorem 2.4.1

we will be able to deduce that ũ = 0 and thus u = 0. Starting from the fact that the function u
is harmonic in B1 and B2 and by using Lemma 2.8.1 we deduce that ũ is harmonic in B−1

1 ∪ B−1
2 .

It remains to prove σ∂nũ is continuous across the unit sphere and across the interface between
B−1

1 and B−1
2 . For the case of the unit sphere, the continuity of σ∂nũ follows from the fact that

σ is continuous. It remains to explain why σ∂nũ is continuous across B1 ∩ B2. This comes from
the fact that σ∂nũ is continuous across B−1

1 ∩ B−1
2 and from the fact that the Kelvin transform

acts only in the radial direction. The Lemma is then proved. ■

In the particular case β = 0, the results of the previous proposition can be refined.

Theorem 2.5.2. Assume that κσ ̸= −1. We have the assertions

• if Λ(Lσ) ∩ ℓ−1/2 = ∅ then L0
σ is an isomorphism.

• If Λ(Lσ) ∩ ℓ−1/2 ̸= ∅ then the operator L0
σ is not of Fredholm type.

Proof. The proof of first statement is easy. Since Lβσ = L−β
σ , the previous proposition allows

us to say that L0
σ is bijective. Since L0

σ is continuous the result is then a direct consequence
of the open map theorem. The proof of the second statement follows the lines of the proof of
Proposition 2.6.1. ■

The previous theorem gives us a simple way to characterize the set of contrast κσ for which the
near problem (2.15) is ill-posed in the Fredholm sense. Since the existence of eigenvalue on the
energy line ℓ−1/2 is equivalent to say that the problem (2.12) has singularities that coincide near
the origin with

sη,k(rω) = r−1/2+iη
k∑
s=0

log(r)s/s!φk−s(ω)

where η ∈ R and (φ0, . . . , φs−1) is a Jordan chain associated to −1/2 + iη. The previous theorem
tell us us that that the existence of such singularities is the main cause of the absence of Fred-
holmness of the problem (2.15). In accordance with the vocabulary used in the 2D configuration
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Figure 2.3: Examples of propagating singularities (imaginary parts).

[25, 50], these singularities will be called propagating (or black hole) singularities. A more
visual description of the behavior of these singularities is given in Figure 2.3.
From a physical point of view these singularities can be interpreted as waves that propagate toward
or outward the conical tip, see the next section for more details. From a mathematical point of
view the existence of these singularities implies that the space H1

0(B) is no long the appropriate
framework in which one has to set the problem. Instead, one has introduce a wider framework
that contains these singular functions (or some of them) in order to restore Fredholmness. Since
for all 0 < β the functions sη,s belongs to the space V̊1

β(B), a natural choice is to work in the
space V̊1

β(B). Unfortunately the next proposition shows that this is not possible.

Proposition 2.5.2. Assume that κ ̸= −1 and Λ(Lσ) ∩ ℓ−1/2 ̸= ∅ then for all 0 < β the operator
Lβσ (resp. L−β

σ ) is not injective (resp. not surjective).

Proof. Since the L−β
σ ) is the adjoint of Lβσ it suffices to prove that Lβσ is not injective. For this we

shall distinguish two situations: the fist one when we can find η ∈ R∗ such that λη := −1/2+ iη ∈
Λ(Lσ), the second one is when Λ(Lσ) ∩ ℓ−1/2 = {−1/2}.
The first case: We suppose that there exists η ∈ R∗ such that λη = −1/2+ iη ∈ Λ(Lσ). Denote
by φη a real valued an eigenfunction of Lσ associated to λη (this is possible because Lσ(λ) is
symmetric when ℜe(λ) = −1/2). Since (λη, φη) is a pair of eigenvalue and eigenfunction of Lσ.

We then introduce the function Φη(rω) = rληφη(ω) − rληφη(ω). Clearly, the function Φη belongs
to V̊1

β(B)\{0} and satisfies div(σ∇Φη) = 0. This ends the proof for this case.
The second case: Here, we suppose that Λ(Lσ)∩ℓ−1/2 = {−1/2}.Denote by φ0 an eigenfunction
of Lσ associated to −1/2. Without any difficulty we can check that (φ0, φ0) is a Jordan chain
associated −1/2. This means that the functions Φ0(rω) := r−1/2φ0(ω) and Φ1(rω) := r−1/2(1 +
log(r))φ0(ω) satisfy the equation div(σ∇Φi) = 0 for i = 0, 1. This implies that the function
x 7→ log(r)ϕ(ω) ∈ V̊1

β(B)\{0} belongs to the kernel of Lβ. The result is then proved. ■

What we learn from the proof of the previous proposition is the fact that in order to construct a
new functional framework in which the problem is again well-posed one need to incorporate some
of the propagating singularities and not all of them. Using the waveguides terminology, one has
to work with just the outgoing ones in order to construct a functional framework that leads to
physical solution of the problem. This will be clarified in the next section.
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2.6 Study of the initial problem

In this section, we return our attention to the analysis of the initial problem (2.2). The goal
is to explain how to combine the analysis of the far problem and the near one in order to get
a clear information about the well-posedness of (2.2). This section is divided into three parts.
In the first one, we explain how to use the existence of propagating singularities of the problem
(see Definition 2.6.1) in order to characterize the critical interval IΣ. After that, by making use
of the Mandelstam principle [112, 103] we explain how to construct several (an infinite number)
of functional frameworks in which the Fredholmness of the problem is recovered for contrasts
inside the critical interval. The last part is devoted to explain how to use the limiting absorption
principle in order to select, among these mathematical frameworks the one that leads to the
physical solution of the problem.

2.6.1 Characterization of the critical interval

Let us start by defining the propagating singularities of the problem (2.2). Once for all, in all this
section, we denote by χ a cutoff function that is equal to 1 near the origin and that is supported
in B(O, 1). It is important to mention that all the results obtained below are independent of the
choice of the function χ.

Definition 2.6.1. Assume that the function σ is such that κσ ̸= −1 and ℓ−1/2 ∩ Λ(Lσ) ̸= ∅. Let
λη = −1/2 + iη ∈ Λ(Lσ) with η ∈ R. We say that a function s is a propagating singularity of the
problem (2.2)(or equivalently of Aσ) if and only if it has the form

s(rω) = χ(r)r−1/2+iη
k∑
s=0

log(r)s
s! φk−s(ω)

where k ∈ N is such that (φ0, . . . , φk) is a Jordan chain of Lσ associated to λη.

It is worthy to note that any propagating singularity of the problem (2.2) belongs to L2(Ω)\H1(Ω)
and satisfies the equation div(σ∇.) = 0 near the origin (see Lemma 2.4.7). Furthermore, it will
be interesting to mention that any propagating singularity s is such that div(σ∇s) is compactly
supported in Ω and belongs to the space L2(Ω) (this a consequence, in particular, of the fact that
the cutoff function χ depends only in r = |x| while σ|B(O,1) does not depend on it).

Proposition 2.6.1. Assume that the function σ is such that Aσ has a propagating singularity.
Then Aσ is not of Fredholm type.

Proof. We proceed by contradiction. Let us suppose that the operator Aσ is of Fredholm type.
Given that the embedding H1

0(Ω) ⊂ L2(Ω) is compact, one can then use the Theorem 2.8.1 to
deduce that there exists 0 < C such that

∥u∥H1
0(Ω) ≤ C(∥Aσu∥(H1

0(Ω))∗ + ∥u∥L2(Ω)) for all u ∈ H1
0(Ω).

Our goal is then to contradict this estimate. To do so, we shall explain how to construct a
sequence (un)n∈N of elements of H1

0(Ω) such that

lim
n→+∞

∥un∥H1
0(Ω) = +∞ and ∥Aσun∥(H1

0(Ω))∗ + ∥un∥L2(Ω) remains bounded as n → ∞.

Since by assumption we know that Aσ has a least one propagating singularity, we can say that
there exists η ∈ R and Φ ∈ H1(S2)\{0} such that the function s(rω) = r−1/2+iηΦ(ω) satisfies the
equation div(σ∇s) = 0 in R3 (see Lemma 2.4.7). For all n ∈ N, we denote by sn, un the functions
sn(rω) := r1/ns(rω) and un(rω) := χ(r)r1/ns(rω) (recall that χ is supported in B(0, 1) and equal
to 1 near the origin). Without any difficulty, one can see that we have lim

n→+∞
∥un∥H1

0(Ω) = +∞.
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To end the proof it remains to study the behavior of ∥Aσun∥(H1
0(Ω))∗ + ∥un∥L2(Ω) as n → +∞. By

observing that s belongs to L2 near the origin and by using the dominated convergence theorem,
we infer that ∥un∥L2(Ω) converges as n tends to +∞ to ∥χs∥L2(Ω). As a consequence, we just need
to study the behavior of ∥Aσun∥(H1

0(Ω))∗ as n → +∞. Given that D(Ω\{O}) is dense in H1
0(Ω)

(see [101, Theorem 7.1.1]), we deduce that

∥Aσ(un)∥H1
0(Ω)∗ = sup

v∈D(Ω\{O})\{0}

(σ∇un,∇v)L2(Ω)
∥v∥H1

0(Ω)
.

Interestingly, it can be shown (following the results of [101, Theorem 7.1.1]) that we have the
estimate

∥r−1v∥L2(Ω) ≤ C∥v∥H1
0(Ω) (2.18)

with C that does not depend in v. In the other hand, one can check that for all v ∈ D(Ω\{O})
we have

(σ∇un,∇v)L2(Ω) = (σsn∇χ,∇v)L2(Ω) + (sn, div(σv∇χ))L2(Ω) − (div(σ∇sn), χv)L2(supp(χ)).

Note that above, we have used the fact that div(σ∇sn) ∈ L2(Ω) and also the fact that for all
function v ∈ H1

0(Ω) we have div(σv∇χ) ∈ L2(Ω) which is true because χ depends only on r and
then its normal derivative vanishes at Σ. The next step is to observe that we have the following
estimate

|(σsn∇χ,∇v)L2(Ω) + (sn, div(σv∇χ))L2(Ω)| ≤ C∥sn∥L2(Ω)∥v∥H1
0(Ω)

in which C is independent of v ∈ H1
0(Ω) and of n ∈ N. As a result, to finish the proof it remains

to study the term (div(σ∇sn), χv)L2(supp(χ)). By observing that

(div(σ∇sn), χv)L2(supp(χ)) = (rdiv(σ∇sn), r−1χv)L2(supp(χ))

and by means of (2.18) For this, we are going to show that ∥rdiv(σ∇sn)∥L2(supp(χ)) tends to 0 as
n tends to ∞. A direct calculus (using the relation div(σ∇s) = 0 in B(O, 1)) yields

r div(σ∇sn) = σ r1/n−3/2+iη(2(−1/2 + iη) + 1 − 1/n)Φ(θ, φ)/n in B(O, 1).

Introduce some 0 < r0 < 1 such that supp(χ) ⊂ {x ∈ R3 | |x| < r0}. By remarking that (2(−1/2+
iη) + 1 − 1/n)Φ(θ, φ) is uniformly bounded in L2(S2) with respect to n and by means of the
identity ˆ r0

0
|r1/n−3/2+iη/n|2r2dr = 1

n2

ˆ r0

0
r2/n−1dr = 1

2n(r0)2/n ≤ C/n

with C independent of n, we obtain the wanted result. ■

This leads us to the

Theorem 2.6.1. Assume that κσ ̸= −1. Then the following statements are equivalent:

1. The operator Aσ is a Fredholm operator of index zero.

2. The function σ is such that Aσ does not have any propagating singularity.

Proof. Regarding what we have proved in the previous proposition, it is enough to show the direct
implication (’2’ implies ’1 ’). Since by assumption Aσ does not have any propagating singularity
and κσ ̸= −1, we infer, thanks to Theorem 2.4.1, that the operator W0

σ : V1
0(R3) → (V1

0(R3))∗ is
an isomorphism. Given that V1

0(R3) = H1(R3) (see §2.4.1), we then obtain the estimate

∥u∥H1
0(R3) ≤ C1∥div(σ∇u)∥H1(R3)∗ for all u ∈ V1

0(R3) = H1(R3)
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with C independent of u. Now, take χ0 ∈ D(R+, [0; 1]) a cutoff function that is supported in [0; 1]
and equal to 1 near 0. Thanks to the previous estimate we get

∥χ0(r)u∥H1
0(Ω) ≤ C∥div(σ∇(χ0(r)u)∥H1

0(R3)∗ for all u ∈ H1
0(Ω).

Using the fact that χ0 depends only on r and working as in the proof of Theorem 2.5.1, we arrive
to the estimate

∥χ0(r)u∥H1
0(Ω) ≤ C(∥div(σ∇u)∥(H1

0(Ω))∗ + ∥u∥L2(Ω)) for all u ∈ H1
0(Ω)

with C that does not depend on u. On the other hand, by working as in the proof of Proposition
2.3.1, we deduce that there exists 0 < C such that for all u ∈ H1

0(Ω), we have

∥(1 − χ(r))u∥2
H1

0(Ω) ≤ C(∥div(σ∇u)∥(H1
0(Ω))∗ + ∥u∥L2(Ω))∥u∥H1

0(Ω) for all u ∈ H1
0(Ω).

By combining the last two estimates, we conclude that there is 0 < C we have

∥u∥H1
0(Ω) ≤ C(∥div(σ∇u)∥(H1

0(Ω))∗ + ∥u∥L2(Ω)) for all u ∈ H1
0(Ω).

This is enough to deduce, thanks to Proposition 2.8.2, that Aσ is a Fredholm operator of index
zero. ■

Remark 2.6.1. In the next section, we will show that when propagating singularities exist (and
κσ ̸= −1) the kernel of Aσ is finite dimensional. Since Aσ is symmetric, the dimension of
coker (Aσ) is then finite. As a consequence, we then deduce that when κσ ∈ IΣ\{−1}, the absence
of Fredholmness of Aσ is caused by the fact that its range is not closed in (H1

0(Ω))∗.

As a consequence of the previous theorem, we conclude that the set IΣ\{−1} coincides with the
set of contrasts κσ for which Aσ has at least one propagating singularity. In other words, IΣ\{−1}
is equal to the set of contrast κσ for which the the symbol Lσ has at least one eigenvalue in the
energy line ℜe(λ) = −1/2. With this in mind and by using the results of §3.4.2 we arrive to the
following

Theorem 2.6.2. In the case of circular conical tips g(θ) = α ∈ (0, π/2], the critical interval IΣ
(that will be also denoted by Iα) is given by

IΣ = Iα = [−1,−2F1(1/2, 1/2, 1, cos2(α/2)) 2F1(3/2, 3/2, 2, sin2(α/2))
2F1(1/2, 1/2, 1, sin2(α/2)) 2F1(3/2, 3/2, 2, cos2(α/2)) ]

in which 2F1 stands for the Gauss hypergeometric function (see Appendix §3.6.2).

When α = π/2 (the locally symmetric case), one can easily see that IΣ = {−1} (this is coherent
with the results of [50, Theorem 1.2.1]). For the case α ∈ (π/2;π) the expression of IΣ is given by
IΣ = 1/Iπ−α. Compared to the 2D case, the result of the previous theorem is a little bit surprising
because IΣ is from one side of the value κσ = −1. For the case of a general smooth conical tip,
IΣ cannot be calculated by hand and numerical tools must be developed to do so.

2.6.2 On the use of the Mandelstam principle to recover Fredholmness of the
problem

Along this section, we suppose that the function σ is such that κσ ∈ IΣ\{−1}. This means that the
operator Aσ is not of Fredholm type. Our goal is to explain how to use the Mandelstam principle
in order to construct a functional framework in which the scalar problem is again well-posed in
the Fredholm sense. Before getting into details let us start with some preliminary results.
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Preliminaries

We start by defining the weighted Sobolev spaces that are associated to the domain Ω\{O}. For
all β ∈ R, we define the spaces V0

β(Ω) and V̊1
β(Ω) such that

V0
β(Ω) = {u | rβu ∈ L2(Ω)} and V̊1

β(Ω) = {u | rβ−1u ∈ L2(Ω) and rβ∇u ∈ L2(Ω)}.

Classically (see [102]), the space D(Ω\{O}) is dense in V0
β(Ω) and V̊1

β(Ω) for all β ∈ R. From their
definitions, one see that V̊1

β(Ω) ⊂ V0
β−1(Ω) for all β ∈ R. It will be also interesting to mention

that for all u ∈ V̊1
β(Ω) we have u|ω ∈ H1(ω) for all open subset ω ⊂ Ω\{O}. When β = 0, we have

V0
0(Ω) = L2(Ω) and V̊1

0(Ω) = H1
0(Ω) (see [101, Theorem 7.1.1]). Now, we introduce for all β ∈ R,

the operator such that Aβ
σ : V̊1

β(Ω) → (V̊1
−β(Ω))∗ such that

⟨Aβσu, v⟩ =:
ˆ

Ω
σ∇u · ∇v for all u ∈ V̊1

β(Ω) and v ∈ V̊1
−β(Ω).

By means of localization techniques (using radial cutoff functions) and using the results of The-
orem 2.3.1 and Theorem 2.4.1, one obtains the

Proposition 2.6.2. Assume that κσ ̸= −1, then for all β ∈ R such that ℓ−β+1/2 ∩ Λ(Lσ) = ∅
the operator A±β

σ is of Fredholm type.

To proceed, we denote by Nt the number of eigenvalues of Lσ that are located on the energy
line ℓ−1/2 and denote by λ1, . . . , λNt the elements of the set Λ−1/2 := ℓ−1/2 ∩ Λ(Lσ). For each
j = 1, . . . , Nt we denote by {φjk,s}k=1,...,ιg(λj),s=0,...,κk(λj)−1 a canonical system of Jordan chains
associated to λj . Each λj (j = 1, . . . , Nt) generates ιa(λj) propagating singularities that are
defined as follows: for all j = 1, . . . , Nt, k = 1, . . . , ιg(λj), s = 0, . . . , κk(λj) − 1, we have

sj,k,s = χ(r)rλj
s∑

p=0

log(r)p
p! φjk,s−p(ω) (2.19)

As consequence, we have defined Tσ propagating singularities with

Tσ =
∑

λ∈Λ−1/2

ιa(λ).

As by assumption the function σ is such that κσ ̸= −1, the set Λ(Lσ) is discrete without any
finite accumulation point (see Proposition 2.4.1). Besides, since C\Λ(Lσ) ⊂ Dγ0

r0 (see Proposition
2.4.1), we can define the positive number

β0 := min{1/2 + ℜe(λ) |λ ∈ Λ(Lσ) and − 1/2 < ℜe(λ)}.

Since the set Λ(Lσ) is symmetric with respect to (−1/2, 0) we can say that

{λ ∈ C | ℜe(λ) ∈ (−β0 − 1/2;β0 − 1/2)} ∩ Λ(Lσ) = Λ−1/2.

By adapting the results of [102, Chapter 6 ], we obtain the next

Proposition 2.6.3. Assume that κσ ̸= −1 and let β ∈ (0;β0). Then we have the following
assertions:

1. If there exists u ∈ V̊1
β(Ω) such that div(σ∇u) ∈ (V̊1

β(Ω))∗ ⊂ (V̊1
−β(Ω))∗ then u decomposes

as

u = ũ+
Nt∑
j=1

ιg(λj)∑
k=1

κk(λj)−1∑
s=0

cj,k,ssj,k,s with ũ ∈ V̊1
−β(Ω) and cj,k,s ∈ C

in which the functions si,j,k are defined in (2.19).
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2. index(Aβ
σ) − index(A−β

σ ) = Tσ.

3. ker(A±β
σ ) is independent of β ∈ (0;β0).

Remark 2.6.2. Since H1
0(Ω) ⊂ V̊1

β(Ω) for all β ∈ (0;β0), the Proposition 2.6.2 allows us to say
that for κσ ̸= −1 the kernel of Aσ is finite dimensional. Furthermore, thanks to the previous
proposition we obtain the following property: if u ∈ H1

0(Ω) is such that div(σ∇u) ∈ (V̊1
β(Ω))∗ for

some β ∈ (0;β0) then u ∈ V̊1
−β(Ω).

As a consequence of the previous proposition we obtain the

Lemma 2.6.1. Assume that κσ ̸= −1. The number Tσ is even. Furthermore, for all β ∈ (0;β0)
we have

−index(A−β) = index(Aβ) = Tσ/2.

Proof. Since Aβ
σ is the adjoint of Aβ

σ, we obtain index(Aβ) = −index(A−β). Combining this with
the fact that index(Aβ) − index(A−β) = Tσ we get Tσ = 2 index(Aβ). ■

We also have the

Lemma 2.6.2. Let λ0 ∈ ℓ−1/2 ∩ Λ(Lσ) then λ0 ∈ ℓ−1/2 ∩ Λ(Lσ). Furthermore if (φ0, . . . , φs) is
a Jordan chain of Lσ associated to λ then (φ0, . . . , φs) is a Jordan chain of Lσ associated to λ0.
Furthermore, if −1/2 ∈ Λ(Lσ) then ιa(−1/2) is even.

Proof. By remarking that for all q ∈ N and all φ, v ∈ H1(S2) we have

⟨dLσ

dλq
(λ0)φ, v⟩ = ⟨dLσ

dλq
(λ0)φ, v⟩

we obtain the first part of the statement. The second part follows from the fact that Tσ is
even. ■

From a physical point of view, the fact that the number of propagating singularities is even can be
explained by the fact that we have two kind of propagating singularities: those which propagate
toward the conical tip and those which propagate outward conical tip. For each λj , j = 1, . . . , Nt,
we define the space of propagating singularities of singular exponent λj that is defined by

S(λj) := span{sj,k,s, k = 1, . . . , ιg(λj), s = 0, . . . , κk(λj) − 1}

in which sj,k,s are defined in (2.19). Next, we denote by S the space of propagating singularities
of the operator Aσ :

S := ⊕
λ∈Λ−1/2

S(λ) = span{sj,k,, j = 1, . . . , Nt, k = 1, . . . , ιg(λj), s = 0, . . . , κk(λj) − 1}

again si,j,k are defined in (2.19). Clearly Tσ = dim(S). To simplify notations, we denote by
Nσ = Tσ/2 ∈ N and we enumerate the singularities sj,k,s in the following way s1, . . . , s2Nσ . This
means that S = span{sj | j = 1, . . . , 2Nσ}. In the next paragraph, we are going to explain how
to use the so-called Mandelstam energy radiation principle [112, 103] in order to decompose the
space S into the sum of two sub-spaces S+ (a space of outgoing propagating singularities) and S−

(a space of incoming propagating singularities). The reason why we have chosen to work with
Mandelstam principle (i.e the direction of propagation of a propagating singularity is determined
by the sign of its energy flux near the origin) instead of the classical Sommerfeld radiation
principle (i.e. the direction of propagation of a propagating singularity that is associated to
λη = −1/2 + iη ∈ Λ(Lσ) with η ∈ R is determined by the sign of η) is the fact that Mandelstam
principle allows us to incorporate the case when propagating singularities have a logarithmic
growth near the origin (see [114, §5.3] for more details).
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The classification of propagating singularities by the Mandelstam principle

The Mandelstam principle relates the direction of propagation of a propagating singularity s ∈ S

to the sign of the imaginary part of its energy flux

Q(s) := lim
ε→0

ˆ
|x|=ε

σ(s∂rs − s∂rs)dω.

Let us explain why the function Q(s) is well-defined for all s ∈ S. To do so, we start by observing
that for all s ∈ S the functions div(σ∇s),div(σ∇s) belong to L2(Ω) and are compactly supported
in Ω\{O}. This implies that div(σ∇s)s−div(σ∇s)s ∈ L1(Ω). Applying the dominated convergence
theorem and integrating by parts we can write that
ˆ

Ω
div(σ∇s)s − div(σ∇s)s = lim

ε→0

ˆ
Ω\B(O,ε)

div(σ∇s)s − div(σ∇s)s = lim
ε→0

ˆ
|x|=ε

σ(s∂rs − s∂rs)ds.

This shows that Q(s) is well-defined for all s ∈ S. Furthermore, one can see that Q(s) is purely
imaginary for all s ∈ S. Observe that the value of Q(s) is independent of the choice of the cutoff
function χ in (2.19). Now, we present the definition of outgoing and incoming (with respect to
the Mandelstam principle) propagating singularities.

Definition 2.6.2. A propagating singularity s ∈ S\{0} is said to be incoming (resp. outgoing) if
0 < ℑm(Q(s))(resp. ℑm(Q(s)) < 0). If Q(s) = 0, we say that s is unclassified.

In the following, we will prove that one can find a basis of the space S that contains Nσ outgoing
propagating singularities and Nσ incoming ones. For this we start by introducing q : S × S → C
the symplectic, i.e. sesquilinear and anti-Hermitian, form associated to the quadratic form Q.
For all u, v ∈ S, we set

q(u, v) =
ˆ

Ω
div(σ∇v)u−

ˆ
Ω

div(σ∇u)v.

It will be interesting to note that, by means of the dominated convergence theorem, we have

q(u, v) = lim
ε→0

ˆ
|x|=ε

σ(∂ru v − u∂rv)ds for all u, v ∈ S.

Observe that for all s ∈ S we have Q(s) = q(s, s). It will be also interesting to mention that for
all s ∈ S we have

q(s, s) = −q(s, s).

Let us recall the definition of a non-degenerate symplectic form.

Definition 2.6.3. Let h : S×S → C be a symplectic form. We say that h is non-degenerate if the
matrix (h(sj , sk))j,k=1,...,2Nσ is nonsingular or equivalently if the following statement is satisfied:

x ∈ S such that h(x, y) = 0 for all y ∈ S =⇒ x = 0.

Proposition 2.6.4. The symplectic form q is non-degenerate.

Before starting the proof of the previous proposition, let us, first, prove the

Lemma 2.6.3. We have the following assertions:

1. Let λ, λ′ ∈ Λ−1/2 such that λ ̸= λ′ then for all (u, v) ∈ S(λ) × S(λ′) we have q(u, v) = 0.

2. Let λ ∈ Λ−1/2. For all u ∈ S(λ)\{0} there exists u′ ∈ S(λ) such that q(u, u′) = 1.
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Proof. For each j = 1, . . . , Nt we denote by {φjk,s}k=1,...,ιg(λj),s=0,...,κk(λj)−1 a canonical system of
Jordan chains associated to λj ∈ Λ−1/2 and we define the functions sj,k,s as in (2.19). As explained
in [70, §3] or [108, §5.4.1], for each j = 1, . . . , Nt, we can find {ψjk,s}k=1,...,ιg(λj),s=0,...,κk(λj)−1 a
canonical system of Jordan chains of Lσ (this is because the operator div(σ∇·) is formally self-
adjoint) associated to −λj − 1 = λj (because λj ∈ ℓ−1/2) such that the functions

s′
j,k,s := −rλj

s∑
p=0

log(r)p
p! ψjk,s−p(ω), k = 1, . . . , ιg(λj), s = 0, . . . , κk(λj) − 1,

satisfy the relations

−
ˆ
R3

div(σ∇sj,k,s)s′
j′,k′,s′ = δj,j′δk,k′δs,κk(λj′ )−s′−1 (2.20)

where δ·,· stands for the Kronecker symbol. Given that the functions div(σ∇sj,k,s) are supported
in B(O, 1) and since div(σ∇s′

j,k,s) = 0 in R3 (see Lemma 2.4.7), we obtain

δj,j′δk,k′δs,κk(λj′ )−s′−1 = −
ˆ

Ω
div(σ∇sj,k,s)s′

j′,k′,s′

= −
ˆ

Ω
div(σ∇sj,k,s)s′

j′,k′,s′ +
ˆ

Ω
div(σ∇s′

j′,k′,s′)sj,k,s

= lim
ε→0

ˆ
|x|=ε

σ(s′
j′,k′,s′∂rsj,k,s − sj,k,s∂rs

′
k′,s′) = q(sj,k,s, χ(r)s′

j′,k′,s′).

The first item is then proved by observing that the functions (χ(r)s′
j,k,s)j,k,s form a basis of S(λj).

The second item is direct consequence of the previous biorthonormality relation. ■

Remark 2.6.3. Another interesting way to prove the previous result is to take profit of the fact
that the operator div(σ∇·) is formally self adjoint and to use the results of [114, Chapter 5].

Now, we can give a proof to the Proposition 2.6.4.

Proof of Proposition 2.6.4. Assume that there exists u ∈ S\{0} such that q(u, v) = 0 for all v ∈ S.
Since S = ⊕λ∈Λ−1/2S(λ), the function u decomposes as u = u1 + · · · + uNt where ui ∈ S(λi) for
i = 1, . . . , Nt. Since u ̸= 0, there exists i∗ ∈ {1, . . . , Nt} such that ui∗ ̸= 0. According to the
previous lemma, we can find u′

i∗ ∈ S(λi∗) such that q(ui∗ , u′
i∗) = 1 and q(uj , u′

i∗) = 0 for all
j ̸= i∗. This means that q(u, u′

i∗) = 1, which leads to a contradiction. ■

The fact that q is non-degenerate implies that its rank is equal to 2Nσ. Now, we can show the
Theorem 2.6.3 (The Mandelstam principle). There exists s±

1 , . . . , s
±
Nσ

a basis of the space S

such that

q(s±
j , s

±
k ) = ±iδj,k, q(s∓

j , s
±
k ) = 0 and s+

j = s−
j for all j, k = 1, . . . , Nσ (2.21)

where δj,k is the Kronecker symbol.

Proof. The starting point is to observe that the sesquilinear form (u, v) 7→ −iq(u, v) is hermitian.
Since q is non-degenerate ,−iq is also non-degenerate. By applying the Sylvester’s law of inertia,
we deduce that there exists (K+,K−) ∈ N∗ (K+,K−) ∈ N∗ (the pair (K+,K−) is called the
signature of −iq) such that K+ +K− = 2Nσ and a basis (s±

1 , . . . , s
±
K±) for the space S such that

−iq(s±
j , s

±
k ) = ±δj,k and q(s∓

j , s
±
k ) = 0 for all j = 1, . . . ,K+, k = 1, . . . ,K−.

Furthermore, the numbers K+ and K− are defined as follows:

K± = max{dim(A subspace of S such that ± 0 ≤ −iq(x, x) for all x ∈ A))}

Since the space S is stable by complex conjugation and −iq(s, s) = iq(s, s) for all s ∈ S, we deduce
that K+ = K− = Nσ and then the theorem is proved. ■



Chapter 2. Study of the scalar transmission problem in presence of a conical tip
of negative material 50

Remark 2.6.4. It is important to mention that the basis (s±
j )j=1,...,Nσ is not unique in the

previous theorem. Indeed, one can easily see that for all a, b ∈ R such that a2 − b2 = 1 the set of
functions (w±

j )j=1,...,Nσ that are defined by the relation

w+
j = as+

j + bs−
j and w−

j = bs+
j + as−

j

form a basis of the space S. Moreover, they satisfy the same orthogonality relations as (s±
j )j=1,...,Nσ .

Definition of the problem and its well-posedness

In this paragraph, we denote by (s±
j )j=1,...,Nσ a basis of the space S such that (2.21) is satisfied. We

define the space S+ (resp. S−) the space of outgoing (resp. incoming) propagating singularities
such that

S± = span{s±
j , j = 1, . . . , Nσ}.

Thanks to the previous theorem we can write that S = S+ ⊕ S− : any propagating singularity is
the sum of an outgoing and and an incoming one. Note that since (s±

j )j=1,...,Nσ satisfies (2.21), we
obtain S+ = S−. Following the Mandelstam principle (the physical solution must be outgoing),
we define for all β ∈ (0;β0), the space Vout

β (Ω) := V̊1
−β(Ω) ⊕ S+. Endowed with the norm

∥ũ+
Nσ∑
j=1

cjs
+
j ∥ = (∥ũ∥2

V̊1
−β(Ω) +

Nσ∑
j=1

|cj |2)1/2 for all ũ ∈ V̊1
−β(Ω) and cj ∈ C,

the space Vout
β (Ω) is a Hilbert space. Then, we introduce the operator Aout

β : Vout
β (Ω) → (V̊1

β(Ω))∗

such that for all u = ũ+ s+ with (ũ, s+) ∈ V̊1
−β(Ω) × S+ and v ∈ V̊1

β(Ω) we have

⟨Aout
β u, v⟩ :=

ˆ
Ω
σ∇ũ · ∇v −

ˆ
Ω

div(σ∇s+)v.

Note that ⟨Aout
β u, v⟩ is well-defined for all u ∈ V̊out

β (Ω) and v ∈ V̊1
β(Ω) because the function

div(σ∇s+) belongs to L2(Ω) and is compactly supported in Ω\{O}. Before getting into details,
let us explain why Aout

β is continuous for all β ∈ (0;β0). This is a consequence of the following

Lemma 2.6.4. There exists a positive constant C such that

|
ˆ

Ω
div(σ∇s)v| ≤ C(

Nσ∑
j=1

|cj |)∥v∥V̊1
β

(Ω) for all s =
Nσ∑
j=1

cj s
+
j ∈ S and v ∈ V̊1

β(Ω).

Proof. It suffices to prove the result with s = s+
j for all j = 1, . . . , Nσ. For this we start by

recalling that for all j = 1, . . . , Nσ the function s+
j has the form s+

j = χ(r)s̃+
j where div(σ∇s̃+

j ) = 0
in B(O, 1) (we remind the reader that the function χ is also supported in B(O, 1)). With this in
mind, we can write that for all φ ∈ D(Ω\{O}) we have

ˆ
Ω

div(σ∇s+
i )φ = −

ˆ
Ω
σ∇(χs̃+

i ) · ∇φ = −
ˆ

Ω
σχ∇s̃+

i · ∇φ−
ˆ

Ω
σs̃+

i ∇χ · ∇φ

=
ˆ

Ω
σφ∇s̃+

i · ∇χ−
ˆ

Ω
σs̃+

i ∇χ · ∇φ.

As χ = 1 near the origin, the support of ∇χ is then detached from the origin. This leads us to
the estimate

|
ˆ

Ω
div(σ∇s+

i )φ| ≤ C∥φ∥V̊1
β

(Ω)

with 0 < C independent of φ. The wanted result follows from the density of D(Ω\{O}) into the
space V̊1

β(Ω). ■
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Remark 2.6.5. By observing that for all v ∈ D(Ω\{O}) we have ⟨Aout
β u, v⟩ = −⟨div(σ∇u), v⟩

and by using the continuity of Aout
β , we can that we have the equivalence

u ∈ V̊out
β (Ω) such that div(σ∇u) = 0 if and only if Aoutu = 0.

To proceed, we define the sesquilinear form qout : V̊out
β (Ω) × V̊out

β (Ω) → C such that for all
u, v ∈ V̊out

β (Ω), we have

qout(u, v) = ⟨Aout
β u, v⟩ − ⟨u,Aout

β v⟩ = ⟨Aout
β u, v⟩ − ⟨Aout

β v, u⟩.

It will be interesting to note that the value of q(u, v) for u, v ∈ V̊out
β (Ω) depends only in the

singular part of u and v. Indeed, for all u = ũ + su, v = ṽ + sv ∈ V̊out
β (Ω), with ũ, ṽ ∈ V̊1

−β(Ω)
and su, sv ∈ S+, we have

qout(u, v) =
ˆ

Ω
σ∇ũ · ∇ṽ +

ˆ
Ω
σ∇ũ · ∇sv −

ˆ
Ω

div(σ∇su)ṽ −
ˆ

Ω
div(σ∇su)sv

−
ˆ

Ω
σ∇ũ · ∇ṽ −

ˆ
Ω
σ∇ṽ · ∇su +

ˆ
Ω

div(σ∇sv)ũ+
ˆ

Ω
div(σ∇sv)su

=
ˆ

Ω
div(σ∇sv)su −

ˆ
Ω

div(σ∇su)sv = qout(su, sv) = q(su, sv).

(2.22)

Remark 2.6.6. For all 0 < β, we define the space V̊in+out
β := V̊1

−β(Ω) ⊕ S. We also introduce the
operator Ain+out : V̊in+out

β → (V̊1
β(Ω))∗ such that for all u = ũ+ su ∈ V̊in+out

β (with ũ ∈ V̊1
−β(Ω))

and su ∈ S) and v ∈ V̊1
β(Ω) we have

⟨Ain+outu, v⟩ :=
ˆ

Ω
σ∇ũ · ∇v −

ˆ
Ω

div(σ∇s)v.

Observe that for all u ∈ V̊out(Ω) we have Ain+outu = Aoutu. Working as in the case of the operator
Aout
β , we can show that Ain+out is continuous. We also define the sesquilinear form qin+out :→ C

such that for all u, v ∈ V̊in+out
β we set

qin+out(u, v) = ⟨Ain−out
β u, v⟩ − ⟨u,Ain−out

β v⟩ = ⟨Ain−out
β u, v⟩ − ⟨Ain−out

β v, u⟩.

By arguing as in the case of the sesquilinear form qout, we can show that for all u, v ∈ V̊1
−β(Ω)

and su, sv ∈ S we have
qin+out(u+ su, v + sv) = q(su, sv). (2.23)

To simplify a little bit the analysis below, we will make the

Assumption 2.6.1. Assume that κσ ̸= −1 and that there exists β∗ ∈ (0;β0) such that A−β∗
σ is

injective.

Using the last item of Proposition 2.6.3, we obtain the

Lemma 2.6.5. Assume that Assumption 2.6.1 holds then for all β ∈ (0;β0) the operator A−β
σ is

injective. In particular, we have the estimate: there exists 0 < Cβ such that

∥u∥V̊1
−β(Ω) ≤ Cβ∥A−β

σ ∥(V̊1
β

(Ω))∗ , u ∈ V̊1
−β(Ω)

Using the terminology of the waveguides theory, the previous assumption is equivalent to say that
we suppose that trapped modes do not exist. When it is not satisfied, a modified version of our
results can be obtained (see Remark 2.6.7). The remaining part of this paragraph is devoted to
prove that under Assumption 2.6.1, the operator Aout

β is an isomorphism for all β ∈ (0;β0). The
injectivity of Aout

β is the subject of the next
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Proposition 2.6.5. Assume that Assumption 2.6.1 holds. Then for all β ∈ (0;β0) the operator
Aout
β is injective.

Proof. Let u = ũ + s+ ∈ Vout
β (Ω) with (ũ, s+) ∈ V̊1

−β(Ω) × S+ such that Aout
β u = 0. Since by

assumption A−β
σ is injective it suffices to show that s+ = 0. Given that σ is real valued, it follows

that div(σ∇u) = 0. This leads us to write that qout(u, u) = 0. Using (2.22), we deduce that
q(s+, s+) = 0. The definition of the space S+ suggests that we can decompose the function s+ as
follows

s+ =
Nσ∑
j=1

c+
j s

+
j .

By observing that q(s+, s+) = i(
Nσ∑
j=1

|c+
j |2), we infer that s+ = 0. The result is then proved. ■

Now, we turn our attention to the study of the surjectivity of Aout
β (Ω). Before that, we will prove

the following useful result.

Proposition 2.6.6. Assume that Assumption 2.6.1 holds and let β ∈ (0;β0). Then for all j =
1, . . . , Nσ there exists a unique pair of functions (s±

j , ũ
±
j ) ∈ S± × V̊1

−β(Ω) such that

d±
j = s±

j + s∓
j − ũ±

j ∈ ker(Aβ
σ).

Classically, for all j = 1, . . . , Nσ, the function d±
j defined above is known as the dual singularity

associated to s±
j .

Proof. The proof follows the lines of the proof of [114, Proposition 5.3.3]. The fact that A−β
σ

is injective implies that Aβ
σ is surjective and that Nσ = index(Aβ

σ) = dim(Ker (Aβ
σ)). Denote by

u1, . . . , uNσ a basis of Ker (Aβ
σ). Thanks to Proposition 2.6.3, for each j = 1, . . . , Nσ the function

uj decomposes as

uj =
Nσ∑
k=1

cj,ks
+
k +

Nσ∑
k=1

dj,ks
−
k + ũj

where ũj ∈ V̊1
−β(Ω) and all the cj,k, dj,k ∈ C. Denote by C,D ∈ MNσ(C) the matrices

C = (cj,k)j,k=1,...,Nσ and D = (dj,k)j,k=1,...,Nσ .

To end the proof we are going to show the matrices C and D are nonsingular (with this in mind
one can then find linear combinations of the functions uj that lead to the wanted results). We
start with the case of the matrix C. Suppose that C is not injective. Then there exists a function
u ∈ Ker (Aβ

σ)\{0} that decomposes as

u =
Nσ∑
j=0

γjs
−
j + ũ with ũ ∈ V̊1

−β(Ω) and γj ∈ C.

By working as in the proof of Proposition 2.6.5, we infer that u = 0. This leads to a contradiction.
Thus the matrix C is nonsingular. With the same arguments, we show that D is nonsingular. ■

Now, we can prove the surjectivity of Aout
β .

Proposition 2.6.7. Assume that Assumption 2.6.1 holds. For all β ∈ (0;β0) the operator Aout
β

is surjective.
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Proof. Since Aβ
σ is the adjoint of A−β

σ and the latter is assumed to be injective, we infer that
Aβ
σ is surjective. Take f ∈ (V̊1

β(Ω))∗. Since 0 < β, we have the embedding V̊1
−β(Ω) ⊂ V̊1

β(Ω)
and then, by duality, infer that (V̊1

β(Ω))∗ ⊂ (V̊1
−β(Ω))∗ . This allows us to say that there exists

u ∈ V̊1
β(Ω) such that Aβ

σu
β = f. Since f ∈ (V̊1

β(Ω)) we know, thanks to Proposition 2.6.3, that
the function uβ decomposes as

uβ = u−β +
Nσ∑
j=1

c+
j s

+
j + c−

j s
−
j

with u−β ∈ V̊1
−β(Ω) and all the c±

j ∈ C. Thanks to Proposition 2.6.3 we know that there exist
uβ1 , . . . , u

β
Nσ

∈ Ker (Aβ
σ) such that for all j = 1, . . . , Nσ we have

uβj = u−β
j + s−

j +
Nσ∑
k=1

γks
+
k with u−β

j ∈ V̊1
−β(Ω) and γk ∈ C.

By observing that the function u = uβ −
Nσ∑
j=1

c−
j u

β
j belongs to the space V̊out

β (Ω) and satisfies the

equation Aout
β u = f, we obtain the wanted the result. ■

Since the operator Aout
β is continuous for all β ∈ (0;β0), the open map theorem, combined with

the results of the previous propositions, leads us to the
Theorem 2.6.4. Assume that Assumption 2.6.1 holds. Then for all β ∈ (0;β0) the operator Aout

β

is an isomorphism. Moreover, there exists a constant 0 < C such that for all u = ũ+ c1s
+
1 + · · ·+

cNσs
+
Nσ

with ũ ∈ V̊1
−β(Ω) and all cj ∈ C we have the estimate

∥ũ∥V̊1
−β(Ω) +

Nσ∑
j=1

|cj | ≤ Cβ∥Aout
β (u)∥(V̊1

β
(Ω))∗ .

For all β ∈ (0;β0), the expression of the singular coefficients of the solution (i.e. the coefficients
in front of the singularities s+

j in the decomposition of the solution u) to the well-posed problem:

Find u ∈ V̊out
β (Ω) such that Aout

β u = f ∈ (V̊1
β(Ω))∗ (2.24)

can be determined thanks to the following

Lemma 2.6.6. Let 0 < β and let u = ũ +
Nσ∑
j=1

c+
j s

+
j ∈ V̊out

β (Ω) (with ũ ∈ V̊1
−β(Ω)). Then for all

j = 1, . . . , Nσ, we have
c+
j = ⟨Aoutu, d+

j ⟩/i

where the function d+
j are defined in Proposition 2.6.6.

Proof. For all j = 1, . . . , Nσ, the function d+
j belongs to the space V̊in+out

β (Ω) (see Remark 2.6.6).
Furthermore since div(σ∇d+

j ) = 0 in Ω and thanks to the continuity of Ain+out (see Remark 2.6.6)
we can say that ⟨Ain+outd+

j , u⟩ = 0. On the other hand, since u ∈ V̊out
β (Ω) ⊂ V̊in+out

β (Ω) we have
⟨Aoutu, d+

j ⟩ = ⟨Ain+outu, d+
j ⟩. As a result we can write

⟨Aoutu, d+
j ⟩ = ⟨Ain+outu, d+

j ⟩ − ⟨Ain+outd+
j , u⟩ = qin+out(u, d+

j ).

Given that the function d+
j decomposes as d+

j = s+
j + s− + ũj with s− ∈ S− and ũj ∈ V̊1

−β(Ω) we
deduce (thanks to (2.23)) that

⟨Aoutu, d+
j ⟩ = q(

Nσ∑
k=1

c+
k s

+
k , s

+
j + s−) = ic+

j .

■
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This leads us to the following

Corollary 2.6.1. Assume that Assumption 2.6.1 holds and let β ∈ (0; min(β0, 1)). Then for all
f ∈ L2(Ω) the problem (2.24) is well-posed. Moreover, its solution decomposes as u = ũ+ c+

1 s
+
1 +

· · · + c+
Nσ

s+
Nσ

with ũ ∈ V̊1
−β(Ω) where the coefficients (c+

j )j=1,...,Nσ are given by

cj = 1
i

ˆ
Ω
f d+

j .

Proof. It suffices to mention that for all β ∈ (0; 1) we have have the embedding L2(Ω) ⊂ (V̊1
β(Ω))∗

and then to apply Theorem 2.6.4 and Lemma 2.6.6. ■

We finish this paragraph with some remarks.

Remark 2.6.7.

• It is worth to note that since (V̊1
β(Ω))∗ ⊂ (H1

0(Ω))∗ for all 0 < β, the framework that we
have proposed above does not allow us to define a solution to (2.2) for all given source term
f ∈ (H1

0(Ω))∗.

• In the case when the Assumption 2.6.1 is not satisfied, i.e. when the operator A−β
σ is not

injective, the operator Aout
β is no longer isomorphism. However, one can show that for

β ∈ (0;β0) the operator Aout
β is Fredholm of index zero. Let us explain, briefly, how to show

this result. Starting from Proposition 2.15, using the results of §2.3 we can show that for all
β ∈ (0;β0) the operator Aout

β has closed range and a finite dimensional kernel. Furthermore,
by working as in the proof of Proposition 2.6.5 we can easily prove that for all β ∈ (0;β0),
we have ker(Aout

β ) = ker(A−β
σ ). The last step is to show that Aout

β is of index zero. To do
that, one can follow the lines of the proof of [25, Prposition 4.4].

2.6.3 Selection of the physical solution by means of the limiting absorption
principle

In the previous section, we have explained how it is possible, even in the case of propagating
singularities with logarithmic growth near the origin, to define a radiation condition that allows
us to construct a functional framework in which the scalar problem is well-posed in the Fredholm
sense. However, as explained in Remark 2.6.4, it is possible to construct an infinite number of
functional frameworks that are coherent with the Mandelstam radiation principle and in which
the problem is also well-posed. This means that almost all the functional frameworks that can be
constructed using the Mandelstam radiation principle do not lead to the physical solution of the
problem. Obviously, the main difficulty is to define a space of outgoing propagating singularities
that has a physical meaning. To do that, we are going to use the limiting absorption principle.
The idea is to say that the physical solution of the problem 2.2 must be defined as the limit when
δ → 0+ (in some space to be defined) of the (uδ)δ where uδ solves the well-posed problem

Find uδ ∈ H1
0(Ω) such that − div((σ + iδ)∇uδ) = f ∈ (H1

0(Ω))∗. (2.25)

The well-posedness of the previous problem for all δ ∈ (0; +∞) is guaranteed by the Lax-Milgram
lemma. Introduce the operator Aσ+iδ : H1

0(Ω) → (H1
0(Ω))∗ such that

⟨Aσ+iδu, v⟩ :=
ˆ

Ω
(σ + iδ)∇u · ∇v for all u, v ∈ H1

0(Ω).

The case of non-critical coefficients is treated in the following

Lemma 2.6.7. Assume that the function σ is such that κσ ̸∈ IΣ and suppose that the source
term f is such that the problem (2.2) is well-posed in the Hadamard sense. Then the sequence
(uδ)δ converges as δ → 0+, in H1

0(Ω) to u the solution of (2.2).
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Proof. By definition of IΣ, we know that since κσ ̸∈ IΣ, the operator Aσ is a Fredholm operator
of index 0. Furthermore, since by assumption the problem (2.2) has a unique solution, we infer
that Aσ is injective and thus it is an isomorphism. As a result, we have the estimate

∥u∥H1
0(Ω) ≤ C∥div(σ∇u)∥(H1

0(Ω))∗ , u ∈ H1
0(Ω)

in which C is a constant that does not depend on u. Combining this with the obvious estimate

∥div(σ∇u)∥(H1
0(Ω))∗ ≤ ∥div((σ + iδ)∇u)∥(H1

0(Ω))∗ + |δ|∥u∥H1
0(Ω) for all u ∈ H1

0(Ω)

we arrive to
∥u∥H1

0(Ω) ≤ C∥div((σ + iδ)∇u)∥(H1
0(Ω))∗ + C|δ|∥u∥H1

0(Ω).

By taking δ such that 0 < δ < δ0 := 1/2C, we obtain the following estimate

∥u∥H1
0(Ω) ≤ 2C∥div((σ + iδ)∇u)∥(H1

0(Ω))∗ , u ∈ H1
0(Ω).

Applying the previous estimate to the function u−uδ where u and uδ are respectively the solutions
to (2.2) and (2.25), we conclude that for all δ ∈ (0; δ0) we have

∥u− uδ∥H1
0(Ω) ≤ 2C|δ|∥div(∇u)∥(H1

0(Ω))∗ .

The lemma is then proved. ■

Now, we turn our attention to the study of the case where the function σ is such that κσ ∈
IΣ\{−1}.

Definition of the space of physical outgoing propagating singularities

The starting point is to introduce the Mellin symbol of the problem (2.25). For all δ ∈ R∗
+ and all

λ ∈ C we introduce the operator Lσ+iδ(λ) : H1(S2) → (H1(S2))∗ such that for all Φ,Φ′ ∈ H1(S2)
we have

⟨Lσ+iδ(λ)Φ,Φ′⟩ =:
ˆ
S2

(σ + iδ)∇SΦ · ∇SΦ′dω − λ(λ+ 1)
ˆ
S2

(σ + iδ)ΦΦ′dω.

We denote by Λ(Lσ+iδ) the spectrum of the family of operators (Lσ+iδ(λ))λ∈C. In 3.3, we will
present a study of the spectral properties of Lσ+iδ. In particular, we will prove the following

Lemma 2.6.8. Assume that the function σ is such that κσ ∈ IΣ\{−1} and let β ∈ (0;β0). Then
there exists 0 < δβ such that for all 0 < δ < δβ the operator Lσ+iδ has Nt eigenvalues in the strip
{λ ∈ C | − β < 1/2 + ℜe(λ) < β} of total algebraic multiplicity (i.e. the sum of all the algebraic
multiplicity of these eigenvalues) equal to 2Nσ. Furthermore, we have

lim
δ→0+

Λ(Lσ+δ) ∩ {λ ∈ C | − β < 1/2 + ℜe(λ) < β} = Λ(Lσ) ∩ ℓ−1/2 = Λ−1/2. (2.26)

In the rest of this section, we are going to work under the following

Assumption 2.6.2. We suppose that the function σ is such that κσ ∈ IΣ\{−1} and such that

• All the eigenvalues of Lσ that are located on the energy line ℜe(λ) = −1/2 are semi-simple7.
We denote them by λ1, . . . , λNt .

• There exists 0 < δ0 and 0 < r0 such for all 0 < δ < δ0 and all j = 1, . . . , Nt, we have
B(λj , r0) ∩ Λ(Lσ+iδ) = {λj,δ}.

• All the λj,δ (j = 1, . . . , Nt) are semi-simple.
7We say that an eigenvalue of Lσ is semi-simple if ιa(λ) = ιg(λ).
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Remark 2.6.8. Clearly, when all the eigenvalues of Lσ that are located on ℜe(λ) = −1/2 are
simple8 the previous assumption is satisfied thanks to Theorem 3.3.1.

Lemma 2.6.9. Assume that Assumption 2.6.2 holds. Then Nt is even. Moreover, for all β ∈
(0;β0) there exists 0 < δβ such that for all δ ∈ (0; δβ), we have

• the strip {λ ∈ C | 1/2+ℜe(λ) ∈ (0;β)} contains Nt/2 eigenvalues of Lσ+iδ of total algebraic
geometric equal to Nσ.

• For all j = 1, . . . , Nt we have ιg(λjδ) = ιg(λj).

Proof. We start by proving that, under Assumption 2.6.2, −1/2 /∈ Λ(Lσ). For this it suffices
to see that if φ ∈ Ker (Lσ(−1/2))\{0} then (φ,φ) is a Jordan chain of Lσ associated to −1/2.
This means that −1/2 can not be a semi-simple eigenvalue of Lσ. Given that the spectrum of
Lσ is symmetric with respect to (−1/2, 0), we infer that Nt is even. This implies that the strip
{λ ∈ C | 1/2 + ℜe(λ) ∈ (0;β)} contains Nt/2 eigenvalue(s) of Lσ.
According to Proposition 3.3.1, we know that Λ(Lσ+iδ) ∩ ℓ−1/2 = ∅ for all 0 < δ. As a result,by
using the fact that Λ(Lσ+iδ) is also symmetric with respect to (−1/2, 0) and by means of (2.26),
we deduce that, under Assumption 2.6.2, there exists 0 < δβ such that for all δ ∈ (0; δβ) the strip
{λ ∈ C | 1/2 + ℜe(λ) ∈ (0;β)} contains Nt/2 eigenvalue(s) of Lσ+iδ. Now, let us explain why
ιg(λjδ) coincides with ιg(λj). This is a consequence of Proposition 3.3.3 in which we prove that
the sum of all the algebraic multiplicities of the eigenvalues of Lσ+iδ that are near λj must be
equal to the algebraic multiplicity of λj . ■

Now, let us assume that Assumption 2.6.2 holds. For all β ∈ (0;β0) and all 0 < δ sufficiently
small, we denote by (λ+

j,δ)j=1,...,Nt/2 the set of eigenvalues of Lσ+iδ that are located in the strip
{λ ∈ C | 1/2 + ℜe(λ) ∈ (0;β)}. For each j = 1, . . . , Nt/2, we denote by (φjk,δ)k=1,...,ιg(λ+

j,δ
) an

orthonormal (with respect to the inner product of H1(S2)) basis of Ker Lσ+iδ(λ+
j,δ). Next, we

introduce the functions

s+
j,k,δ(rω) = χ(r)rλ

+
j,δφjk,δ(ω), j = 1, . . . , Nt/2, k = 1, . . . , ιg(λj,δ).

Then, we define the space S+
δ = span{s+

j,k,δ, j = 1, . . . , Nt/2, k = 1, . . . , ιg(λj,δ)}. It is obvious that
if Assumption 2.6.2 is valid, then for all 0 < δ small enough the space S+

δ is of dimension Nσ. For
this reason, we can introduce (s+

j,δ)j=1,...,Nσ a basis of the space S+
δ := span{s+

j,δ, j = 1, . . . , Nσ}. It
will be interesting to note that for all j = 1, . . . , Nt/2 and all k = 1, . . . , ιg(λ+

j,δ) the function s+
j,k,δ

belongs to the space H1
0(Ω). Moreover, one can easily see that the functions div((σ + iδ)∇sj,k,δ)

vanishes near the origin and then they belong to the space L2(Ω) ∩ (V̊1
β(Ω))∗ for all β ∈ R. The

behavior of these functions as δ → 0+ is the subject of the next

Lemma 2.6.10. Assume that Assumption 2.6.2 is valid and let β ∈ (0;β0). Then for j =
1, . . . , Nt/2 and k = 1, . . . , ιg(λ+

j,δ), the sequence of functions (s+
j,k,δ)δ converges, up to a sub-

sequence, as δ → 0+, in V̊1
β(Ω) to the function

s+
j,k,0(rω) = χ(r)rλ

+
j φjk(ω)

where Λ−1/2 ∋ λ+
j = lim

δ→0+
λ+
j,δ is such that ιg(λ+

j ) = ιg(λ+
j,δ) and φjk ∈ ker(Lσ(λ+

j )). Furthermore,
we have

span{φjk, k = 1, . . . , ιg(λ+
j )} = ker(Lσ(λ+

j )).

In addition to that the sequence of functions div((σ+ iδ)∇s+
j,k,δ) converges, up to a sub-sequence,

as δ → 0+ in (V̊1
β(Ω))∗ to div(σ∇s+

j,k,0).
8i.e. if ιa(λ) = ιg(λ) = 1.
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Proof. The fact that (λ+
j,δ)δ converges to some λ+

j ∈ ℓ−1/2 ∩ Λ(Lσ) is guaranteed by Lemma
2.6.8. The fact that ιg(λ+

j ) = ιg(λ+
j,δ) follows form the application of Lemma 2.6.9. The conver-

gence,up to a sub-sequence, of (φjk,δ)δ as δ → 0+ in H1(S2) to an element of φjk ∈ ker(Lσ(λ+
j )) is

guaranteed by Proposition 3.3.4. Thanks to the fact that (φjk,δ)k=1,...,ι(λ+
j,δ

) are orthogonal allows

to say that (φjk)k=1,...,ι(λ+
j ) are linearly independent. This means that (φjk)k=1,...,ι(λ+

j ) is a basis of
ker(Lσ(λ+

j )).
The convergence of (s+

j,k,δ)δ to s+
j,k,0 in V̊1

β(Ω) follows from the application of the dominated
convergence theorem. By observing that for all v ∈ V̊1

β(Ω) we have

|
ˆ

Ω
(div((σ+ iδ)∇s+

j,k,δ) − div(σ∇s+
j,k,0))v| = |

ˆ
Ω\{r |χ(r)=1}

(div((σ+ iδ)∇s+
j,k,δ) − div(σ∇s+

j,k,0))v|

We infer that we have the estimate

∥div((σ + iδ)∇s+
j,k,δ) − div(σ∇s+

j,k,0)∥(V̊1
β

(Ω))∗ ≤ C∥div((σ + iδ)∇s+
j,k,δ) − div(σ∇s+

j,k,0)∥L2(Ω)

with C independent of δ. The result follows, again, form application of dominated convergence
theorem. ■

In the sequel, when Assumption 2.6.2 is satisfied, we denote by Λ+
−1/2 := {λ+

j , j = 1, . . . , Nt/2}.
Furthermore, we define the space S+

0 := span{s+
j,k,0, j = 1, . . . , Nσ, }. Thanks to the result of the

previous lemma, we can say that dim(S+
0 ) = Nσ. To simplify notations, for all λ ∈ Λ−1/2, we

denote by S(λ) the space

S(λ) = χ(r)rλ ker(Lσ(λ)) = {s(rω) = χ(r)rλφ(ω) with φ ∈ Ker (Lσ(λ))}.

Without any difficulty, one can see that S+
0 = ⊕

λ∈Λ+
−1/2

S(λ). In the remaining part of this paragraph,

we are going to explain how to find a simple characterization of the space S+
0 (or equivalently the

set Λ+
−1/2). The starting point is the next

Lemma 2.6.11. Assume that Assumption 2.6.2 is valid then the space S+
0 is of dimension Nσ.

Furthermore, we have
0 ≤ ℑmq(u, u) for all u ∈ S+

0 .

Proof. The fact that the dimension of S+
0 is equal to Nσ follows form its definition and thanks

to the previous lemma. Furthermore, we know that for all u ∈ S+
0 there exists a sequence (uδ)δ

of elements of S+
δ such that (uδ)δ and (div((σ + iδ)∇uδ))δ converges, as δ → 0+, respectively in

V̊1
β(Ω) and in (V̊1

β(Ω))∗ to u and div(σ∇u). As a result, we deduce that

lim
δ→0+

ˆ
Ω

div((σ + iδ)∇uδ)uδ − div((σ + iδ)∇uδ)uδ = q(u, u).

Since S+
δ ⊂ H1

0(Ω), one obtains (thanks to an integration by parts) that q(u, u) = lim
δ→0+

2iδ
ˆ

Ω
|∇uδ|2.

This ends the proof. ■

Thanks to the previous lemma, we can then introduce (s+
j,0)j=1,...,Nσ a basis of the space S+

0 :
S+

0 = span{s+
j,0, j = 1, . . . , Nσ}. The second key result to find a characterization of the space S+

0
is the following

Proposition 2.6.8. Assume that Assumption 2.6.2 holds, then for all λ ∈ Λ(Lσ) ∩ ℓ−1/2 we
have two possible situations: either 0 ≤ ℑm(q(u, u)) for all u ∈ S(λ) or ℑm(q(u, u)) ≤ 0 for all
u ∈ S(λ).
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Proof. By combining the two previous lemmas, we deduce that for all λ ∈ Λ+
−1/2, we have

0 ≤ ℑm(q(u, u)), u ∈ S(λ).

This shows the result for all λ ∈ Λ+
−1/2. Given that Λ(Lσ) is symmetric with respect to (−1/2, 0)

and since −λ − 1 = λ for all λ ∈ Λ−1/2, we infer that Λ−1/2 = Λ+
−1/2 ∪ Λ+

−1/2. According to
Lemma 2.6.2 we know that Ker (Lσ(λ)) = Ker (Lσ(λ)). Given that q(u, u) = −q(u, u), for all
u ∈ S. Consequently, for all λ ∈ Λ+

−1/2 we have ℑm(q(u, u)) ≤ 0 for all u ∈ S(λ). The lemma is
then proved. ■

Without any difficulty, one can check that for all λ = −1/2 + iη ∈ Λ−1/2(i.e.η ∈ R) and φ ∈
Ker Lσ(λ), the function s(rω) := χ(r)rλφ(ω) ∈ S(λ) satisfies the relation:

q(s, s) = 2iη
ˆ
S2
σ|φ|2dω. (2.27)

With this in mind, we can show the following result that gives us a very simple characterization
of set Λ+

−1/2 and the space S+
0 .

Proposition 2.6.9. Assume that Assumption 2.6.2 holds. Let λ = −1/2 + iη ∈ ℓ−1/2 ∩ Λ(Lσ)
and let φ be an arbitrary eigenfunction of Lσ associated to λ. Then, we have the equivalence

λ ∈ Λ+
−1/2 if an only if 0 < η

ˆ
S2
σ|φ|2.

Proof. We already know thanks to Lemma 2.6.11 we have 0 ≤ −iq(u, u) for all u ∈ S+
0 . This

means that −iq is positive hermitian form on S+
0 × S+

0 . By making use of the Cauchy-Schwarz
(applied to −iq) and using the fact that q is non-degenerate, we infer that 0 < −iq(u, u) for all u ∈
S+

0 \{0}. This proves the direct implication. The reverse implication follows form the Proposition
2.6.8 and the relation (2.27). ■

Lemma 2.6.12. There exists (s+
j )j=1,...,Nσ a basis of S+

0 such that

q(s+
j , s

+
k ) = iδj,k, for all j, k = 1, . . . , Nσ.

Proof. We denote by q0 the symplectic form that is the restriction of the symplectic form q
to the space S+

0 . Thanks to Lemma 2.6.11, we know that −iq0 is hermitian and positive, i.e.
0 ≤ −iq0(u, u) for all u ∈ S+

0 . Given that

S+
0 = ⊕

λ∈Λ+
−1/2

S(λ).

and thanks to the second item of Lemma 2.6.3, we deduce that q0 is non-degenerate. The wanted
result follows then form the application of Sylvester’s law of inertia. ■

For all β ∈ (0;β0) we introduce the space a V̊out
0,β := V̊1

−β(Ω) ⊕ S+
0 and the operator Aout

0,β : V̊out
0,β →

(V̊1
β(Ω))∗ such that for all u = ũ+ s+ with ũ ∈ V̊1

−β(Ω) and s+ ∈ S+
0 we have

⟨Aout
0,βu, v⟩ :=

ˆ
Ω
σ∇ũ · ∇v −

ˆ
Ω

div(σ∇s+)v , v ∈ V̊1
β(Ω).

Using the results of the previous section and with the help of Lemma 2.6.12, we obtain the

Proposition 2.6.10. Assume that the Assumptions 2.6.1-2.6.2 are satisfied. Then the operator
Aout

0,β is an isomorphism.
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Final proof of the limiting absorption principle

The main result of this section is given by the following

Theorem 2.6.5. Assume that Assumptions 2.6.1-2.6.2 hold and let f ∈ (V̊1
β(Ω))∗ with β ∈

(0;β0). Then the sequence (uδ)δ (uδ is the solution of (2.25)) converges in V̊1
β(Ω) to u ∈ V̊out

0,β (Ω) =
V̊1

−β(Ω) ⊕ S+
0 the unique solution to the well-posed problem Aout

0,βu = f.

The proof of the previous theorem is based on a succession of lemmas. The first one is the

Lemma 2.6.13. Assume that Assumption 2.6.2 holds and that f ∈ (V̊1
β(Ω))∗ then there exists

δβ such that for all 0 < δ < δβ the function uδ (the solution to (2.25)) decomposes as

uδ =
Nσ∑
j=1

cjδs
+
δ,j + ũδ (2.28)

where ũδ ∈ V̊1
−β(Ω) and cjδ ∈ C.

Proof. Thanks to Lemma 2.6.9, we know that there exists δβ such that for all δ ∈ (0; δβ), we have
{λ ∈ C | ℜe(λ) ∈ (−1/2,−1/2 + β)} ∩ Λ(Lσ+iδ) = {λ+

j,δ, j = 1, . . . , Nt/2}. Since by Assumption
the eigenvalues λ+

j,δ are semi-simple for δ ∈ (0; δ0) (δ0 is defined in the statement of Assumption
2.6.2), the result follows then by replacing δβ by min(δβ, δ0) and by adapting the classical results
of [102, Chapter 6 ]. ■

Lemma 2.6.14. Assume that Assumption 2.6.1 holds. Then for all β ∈ (0;β0) there exists 0 < δβ
such that for all δ ∈ (0; δβ), we have the estimate

∥u∥V̊1
−β(Ω) ≤ Cβ∥div((σ + iδ)∇u)∥(V̊1

β
(Ω))∗ for all u ∈ V̊1

−β(Ω)

in which the constant Cβ is independent of u and of δ.

Proof. Thanks to the Assumption 2.6.1, we know that for all β ∈ (0;β0) we have the estimate
(see Lemma 2.6.5 )

∥u∥V̊1
−β(Ω) ≤ Cβ∥div(σ∇u)∥(V̊1

β
(Ω))∗ for all u ∈ V̊1

−β(Ω)

where 0 < Cβ does not depend on u. By combining the estimate

∥div(∇u)∥(V̊1
β

(Ω))∗ ≤ C ′
β∥u∥V̊1

−β(Ω) for all u ∈ V̊1
−β(Ω)

(in which C ′
β is independent of u) with the fact that for all δ ∈ R and all u ∈ V̊1

−β(Ω) we have
div(σ∇u) = div((σ + iδ)∇u) − iδdiv(∇u), we obtain the estimate

∥u∥V̊1
−β(Ω) ≤ Cβ∥div((σ + iδ)∇u)∥(V̊1

β
(Ω))∗ + C ′

β|δ|∥u∥V̊1
−β(Ω) for all u ∈ V̊1

−β(Ω).

Taking δ small enough (e.g. |δ| < (2C ′
β)−1), we get the estimate

∥ũδ∥V̊1
−β(Ω) ≤ 2Cβ∥div((σ + iδ)∇u)∥(V̊1

β
(Ω))∗

which ends the proof. ■

Lemma 2.6.15. Assume that Assumption 2.6.1 holds and let β ∈ (0;β0). Let (uδ)δ be a sequence
of elements of V̊1

−β(Ω) such that (fδ := div((σ + iδ)∇uδ))δ converges, as δ → 0+, in (V̊1
β(Ω))∗

then (uδ)δ converges in V̊1
−β(Ω) as δ → 0+.
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Proof. Thanks to the previous lemma, we infer that (uδ)δ is bounded in V̊1
−β(Ω). In order to

prove our claim we are going to show that (uδ)δ is a Cauchy sequence. Let δ, δ′ ∈ R∗
+. Starting

from the identity

fδ − fδ′ = div((σ + iδ)∇(uδ − uδ′)) + i(δ − δ′)div∇uδ′

and by using the estimate ∥div(∇u)∥(V̊1
β

(Ω))∗ ≤ C∥u∥V̊1
−β(Ω) for all u ∈ V̊1

−β(Ω) (with C indepen-
dent of u) we obtain (thanks to Lemma 2.6.14) the estimate

∥uδ − uδ′∥V̊1
−β(Ω) ≤ C(∥fδ − fδ′∥(V̊1

β
(Ω))∗ + |δ − δ′|)

with C that does not depend on δ. Since by assumption (fδ)δ converges in (V̊1
β(Ω))∗ its then a

Cauchy sequence and then the result is proved. ■

As a consequence, we can now show the following result.

Lemma 2.6.16. Assume that Assumptions 2.6.1-2.6.2 hold and let β ∈ (0;β0). Then the se-
quences (cδj)δ in (2.28) are bounded as δ tends to 0.

Proof. For all δ small enough, we denote by Rδ = max
j

|cjδ|. To prove our claim it suffices to
show that (Rδ)δ is bounded as δ vanishes. If this not the case, one can say that there exists a
sub-sequence of (Rδ)δ, that will be indexed by δ for the reader convenience, such that |Rδ| → +∞
as δ → 0. To simplify notations, we introduce for all j = 1, . . . , Nσ the sequences (ĉjδ := cjδ/Rδ)δ.
Note that from the definition of Rδ, we infer that

max
j

|ĉjδ| = 1. (2.29)

This implies that (ĉ1
δ , . . . , ĉ

Nσ
δ )δ is bounded in CNσ . As a result, we deduce that up to a sub-

sequence, still indexed by δ, the sequence (c̃1
δ , . . . , c̃

Nσ
δ )δ converges to some (ĉ1, . . . , ĉNσ) in CNσ .

Note that thanks to (2.29), we deduce max
j

|ĉj | = 1. By observing that ĉδ1s+
δ,1 + · · · + ĉδNσs

+
δ,Nσ

converges, as δ → 0+ to ĉ1s
+
0,1 + · · · + ĉδNσs

+
0,Nσ , by using the fact that −div((σ + iδ)∇uδ/Rδ) =

f/Rδ → 0 in (V̊1
β(Ω))∗ and the result of Lemma 2.6.5, we deduce that (div((σ + iδ)∇ũδ/Rδ))δ

converges in (V̊1
β(Ω))∗ as δ → 0+.

Since ũδ/Rδ ∈ V̊1
−β(Ω) for all δ ∈ (0; δβ) and by applying Lemma 2.6.15 we conclude that

ũδ/Rδ converges in V̊1
−β(Ω), as δ → 0, to some ũ0 ∈ V̊1

−β(Ω). Consequently, the function u =
ũ0 + ĉ1s+

0,1 + · · · + ĉNσs+
0,Nσ ∈ V̊1

−β(Ω) ⊕ S+
0 and satisfies the equation

div(σ∇u) = 0 in (V̊1
β(Ω))∗.

Applying the Proposition 2.6.10, we find that ĉj = 0 for all j = 1, . . . , Nσ which contradicts the
fact that max

j
|ĉj | = 1. The Lemma is then proved. ■

Proof of Theorem 2.6.5. We know that for 0 < δ small enough, the function uδ decomposes as

uδ = ũδ +
Nσ∑
j=

cjδs
+
δ,j with cjδ ∈ C and ũδ ∈ V̊1

−β(Ω).

The previous lemma ensures that (c1
δ , . . . , c

Nσ
δ ) is bounded in CNσ . This means that up to a

sub-sequence (that will be indexed by δ), (c1
δ , . . . , c

Nσ
δ ) converges as δ → 0 in CNσ to some

(c1, . . . , cNσ) ∈ CNσ . Starting from the fact that

div((σ + iδ)∇ũδ) = −f − div((σ + iδ)∇(
Nσ∑
j=1

cjδs
+
δ,j))
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and by using Lemma 2.6.10 and Lemma 2.6.15, we deduce that (uδ)δ converges in V̊1
β(Ω) to some

u ∈ V̊out
0,β (Ω) = V̊1

−β(Ω) ⊕ S+
0 that satisfies the equation

−div(σ∇u) = f in (V̊1
β(Ω))∗.

Thanks to Proposition 2.6.10, we know that the latter problem has a unique solution. This implies
that (uδ)δ converges in V̊1

β(Ω), as δ → 0, to the unique solution of Aout
0,βu = f. Since this limit is

independent of the chosen sub-sequence, we obtain the wanted result. ■

On the relaxation of Assumption 2.6.2

The results obtained in the previous section are also valid of one replaces Assumption 2.6.2 by
the following
Assumption 2.6.3. We suppose that the function σ is such that κσ ∈ IΣ\{−1} and such that

• All the eigenvalues of Lσ that are located on the energy line ℜe(λ) = −1/2 are semi-simple9.
We denote them by λ1, . . . , λNt .

• There exists 0 < δ0 and 0 < r0 such for all 0 < δ < δ0 and all j = 1, . . . , Nt, the set
B(λj , r0) ∩ Λ(Lσ+iδ) is either a subset of {λ ∈ C | − 1/2 < ℜe(λ)} or a subset {λ ∈
C | ℜe(λ) < −1/2}. We use the notation B(λj , r0) ∩ Λ(Lσ+iδ) = {λj,k,δ, k = 1, . . . , Nj} with
Nj ∈ N.

• All the λj,k,δ (j = 1, . . . , Nt, k = 1, . . . , Nj) are semi-simple.
The only point that needs to be clarified is the proof of the fact that, under the previous assump-
tion, the dimension of the space S+

0 is equal to Nt/2. To do this, we have to modify a little the
proof of Proposition 2.6.10. Instead of performing a Gram-Schmidt process on S+

δ with respect
to their angular component in H1(S2) (which was the case in the proof of Proposition 2.6.10),
one must perform a Gram-Schmidt process on S+

δ with respect to V̊1
β(Ω) with 0 < β (which is a

Hilbert space).
Unfortunately, we are not able to find a weaker assumption under which we can explain how to
choose, among the functional frameworks constructed by Mandelstam’s radiation principle, the
one that is consistent with the limiting absorption principle.
The difficulty comes from the fact that, in general, any assumption made on the nature of the
eigenvalues of Lσ which belong to ℓ−1/2 does not imply, a priori, any information on the nature
of the eigenvalue of Lσ+iδ which are near Λ(Lσ) ∩ ℓ−1/2. Note that this difficulty occurs even in
the case of finite dimensional problems. To be convinced of this, consider for all 0 < δ the matrix

Aδ :=
(

1 + δ δ
0 1 + δ

)
.

We can clearly see that Aδ tends as δ → 0+ to the identity matrix I2. Moreover, the spectrum of
Aδ is equal to {1 + δ} which converges as expected to {1} which is the spectrum of I2. However,
when we come to the question of the convergence of the eigenfunctions, the situation is totally
different: while 1 is a semi-simple eigenvalue of I2, for all 0 < δ the matrix Aδ has an generalized
eigenfunction associated to 1 + δ.

Application to the case of circular conical tips

In §3.4.1 we shall prove that, when κσ ̸= −1, the set Λ(Lσ) can be characterized by means of
dispersion relations. Moreover, we will explain that Λ−1/2 coincides with

{−1/2 ± iτ s.t. ∃m ∈ N s.t. am(τ) = κσ}

where am : R+ → R are continuous functions. The curves of the functions am for m = 0, . . . , 3
are displayed in Figure 2.4.

9We say that an eigenvalue of Lσ is semi-simple if ιa(λ) = ιg(λ).



Chapter 2. Study of the scalar transmission problem in presence of a conical tip
of negative material 62

0 1 2 3 4 5 6 7 8 9 10
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.218

τ

 

 

m = 0
m = 1
m = 2
m = 3

Figure 2.4: Curves of the functions τ 7→ am(τ) for m = 0, 1, 2, 3 and α = π/4.

Clearly the curves of the functions seems to be disjoint. However, we did not succeed in proving
this observation. In §3.4.3, we will show that except for the particular values of λ = −1 + iτ∗

where a′
m(τ∗) = 0 for some m ∈ N, the assumption 2.6.2 is valid. Furthermore we are going

to show that for these particular values of λ, propagating singularities with logarithmic growth
exist.

On the existence of inverse modes and the numerical approximation of the problem
In this paragraph, we will discuss in very brief way the question of the numerical approximation
of the scalar problem. Clearly, one has to distinguish two situations: the case κσ /∈ IΣ and the
case κσ ∈ IΣ\{−1}. In the first case the approximation of the solution can be done thanks to
the numerical method that we are going to present in Chapter 4. In the case κσ ∈ IΣ\{−1},
propagating singularities exist. To the best of our knowledge the only existing method to deal
with the problem in 2D has been proposed in [45] and is based on the use of PMLs near the origin.
The adaption of this method to the 3D configuration is not done yet. This adaptation does not
seem to be an easy task because of the possible existence of inverse modes in the expression of the
physical solution of the problem (i.e the solution obtained by the limiting absorption principle
contains propagating singularities which are associated with singular exponents with opposite
signs). This is exactly the case illustrated by Figure 2.5: we observe that in this situation
Assumption 2.6.2 is valid and that the space of the physical propagating singularities contains
propagating singularities with singular exponents that have opposite sign.
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Figure 2.5: The spectrum of Lσ+iδ for δ = 0, δ = 0.005 for the case of a circular conical tip
(α = π/4) and κσ = −0.8.



63 2.7. Concluding remarks and open questions

2.7 Concluding remarks and open questions

In this chapter, we presented a detailed study of the scalar problem (2.2). In particular, we
explained how to characterize the critical interval IΣ by means of the existence of propagating
singularities. When κσ ∈ IΣ\{−1}, a general approach based on the use of Mandelstam’s radiation
principle has been proposed in order to construct functional frameworks in which Fredholmness of
the problem is recovered (even in the presence of propagating singularities with logarithmic growth
near the origin which has not been treated in [25]). The selection of the physical framework has
been done, under Assumption 2.6.2 (or Assumption 2.6.3), by means of the limiting absorption
principle. It seems (thanks to numerical calculations) that Assumption 2.6.2 is satisfied for the
case of circular conical tips, except for a discrete set of contrasts for which there are propagating
singularities with logarithmic growth near the origin. Of course, all the results we obtained above
hold if we replace the homogeneous Dirichlet boundary conditions by any other elliptic boundary
condition. In addition to that, we expect that our results remain true when the conical tip touches
the domain boundary (see Figure 2.6). Let us conclude this chapter by mentioning two of the
most important questions that can be studied in future works:

1. How to select the physical framework when Assumption 2.6.3 is not satisfied? In the
literature, is seems that the most important reference, which can help us to deal with this
question, is the book [138].

2. How to adapt the use of PMLs near the origin in order to construct a numerical approxi-
mation of the solution to the scalar problem with propagating singularities? How to deal
with the possible existence of inverse modes ? An interesting work that can help us in this
direction is done in [13].

Figure 2.6: An example of a geometry where the conical tip touches the boundary of the domain.

2.8 Appendix

2.8.1 The Kelvin transform

The Kevin transform is a classical geometrical mapping that permits us to transform problems
set in unbounded domains into other ones set in bounded domains and vice versa. As we shall see
below (Lemma 2.8.1), the Kelvin transform preserves harmonic functions. This property makes
it very adapted to the study of “Laplacian-based” problems. It is also interesting to note that
the Kelvin transform can be used for numerical purposes as an alternative approach to solve
scattering problems (see [69, 111] and the references therein). Along this paragraph, we denote
by B the unit ball of R3. The Kelvin transform of a function u defined in B\{O} is the function
ũ defined in Bc := R3\B by the relation:

ũ(rω) = u(ω/r)/r
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in which (r, ω) are the classical spherical coordinates. The first interesting property is the fact
that the Kelvin transformation of a harmonic function is also harmonic.

Lemma 2.8.1. Let u ∈ C 2(B\{O}) be such that ∆u = 0. Then we have ∆ũ = 0 in Bc.

Proof. A direct calculus yields ∆ũ(rω) = 1
r5 ∆u(ω/r) for all rω ∈ Bc. ■

Now, we turn our attention to the study of the action of the Kelvin transform on weighted Sobolev
spaces. We limit ourselves to the spaces V0

β(B) and V1
β(B) for arbitrary β ∈ R. The case of the

spaces V0
β(B) is the subject of the following

Lemma 2.8.2. If u ∈ V0
β(B) then ũ ∈ V0

−β−2(Bc).

Proof. By definition of V0
β(B), we have

ˆ 1

0

ˆ
S2
r2βu2(rω)r2 drdω < ∞. By performing the change

of variables r 7→ 1/r, we get
ˆ ∞

1

ˆ
S2
r−2βu2(ω/r)r−4 drdω =

ˆ ∞

1

ˆ
S2
r−2β−4ũ2(rω)r2 drdω < ∞.

As a result r−β−2ũ belongs to L2(Bc) and then the lemma is proved. ■

The case of the spaces V1
β(B) is treated in the following

Lemma 2.8.3. If u ∈ V1
β(B) then ũ ∈ V1

−β(Bc).

Proof. Since u ∈ V1
β(B), we deduce that u ∈ V0

β−1(B) and then by using the result of the
previous lemma we can say that ũ ∈ V0

−β−1(Bc). To make things as clear as possible, instead of
working with the variable r for the function ũ, we use the variable t = 1/r. With this in mind,
we have the relation tũ(tω) = u(rω) for all r ∈ (0; 1). To end the proof, we need to show that
tω 7→ ∂tũ(tω) and tω 7→ |∇S ũ(tω)/t| belong to V0

−β(Bc). It is important to note that using the
variable t instated of r, the space V0

−β(Bc) is defined as follows

V0
−β(Bc) = {f : Bc → C such that

ˆ ∞

1

ˆ
S2
t−2βf(tω)2t2dt dω < ∞}.

For the case of the function tω → |∇S ũ(t, ·)/t|, this follows from the equality (that is obtained
thanks to the change of variable r 7→ 1/r)

ˆ 1

0

ˆ
S2
r2β|∇Su(rω)/r|2r2 drdω =

ˆ ∞

1

ˆ
S2
t−2β|∇S ũ(tω)/t|2t2 dtdω.

The case of the function ∂tũ is a little bit more involved. The starting point is to observe that
we have

tũ(tω) = u(rω) =⇒ ∂ru(rω) = −t2ũ(tω) − t3∂tũ(tω).

Thus we can write that t3∂tũ(tω) = ∂ru(rω)+u(rω)/r.Using the fact that rω 7→ ∂ru(rω)+u(rω)/r
belongs to the space V0

β(B), we then deduce that

ˆ ∞

1

ˆ
S2
t−2β(∂tũ(t, ω))2t2dt dω =

ˆ 1

0

ˆ
S2
r2β(∂ru(rω) + u(rω)/r)2r2dr dω < ∞.

This ends the proof. ■
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2.8.2 The Peetre’s Lemma

In this paragraph, we present some variants of the classical Peetre’s lemma. These results are a
very powerful tools that allow us to prove that a given operator is of Fredholm type. The classical
Peetre’s lemma is given by the following

Theorem 2.8.1. [101, Lemma 3.4.1] Let (X, ∥ · ∥X), (Y, ∥ · ∥Y ) and (Z, ∥ · ∥Z) be three Banach
spaces such that X is compactly embedded in Z. Let A : X → Y be a continuous linear operator.
Then the following assertions are equivalent

1. A has a closed range and its kernel is finite dimensional.

2. The estimate
∥u∥X ≤ C(∥A(u)∥Y + ∥u∥Z), u ∈ X

holds with C independent of u.

In some configurations, we may need to use the following alternative version of the Peetre’s
Lemma.

Proposition 2.8.1. [124] Let (X, ∥ · ∥X), (Y, ∥ · ∥Y ) and (Z, ∥ · ∥Z) be three Banach spaces and
let K : X → Z be a compact operator. If there exists 0 < C such that we have the estimate

∥u∥X ≤ C(∥A(u)∥Y + ∥K(u)∥Z), u ∈ X

then A has a closed range and its kernel is finite dimensional.

For any Banach space X, we denote by X∗ its topological anti-dual. An operator A : X → X∗ is
said to be symmetric if and only if ⟨Au, v⟩ = ⟨Av, u⟩ for all u, v ∈ X. A direct application of the
Theorem 2.8.1 yields

Proposition 2.8.2. Let (X, ∥ ·∥X) and (Z, ∥ ·∥Z) be two Banach spaces such that X is compactly
embedded in Z. Let A : X → X∗ be a continuous linear symmetric operator. Then the following
assertions are equivalent

1. A is a Fredholm operator of index zero.

2. The estimate
∥u∥X ≤ C(∥A(u)∥X∗ + ∥u∥Z), u ∈ X

holds with C independent of u.
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3.1 Introduction

This chapter is devoted to the study of the "spectral" properties of the Mellin symbol generated
by the scalar problem (2.2) that we have studied in the previous chapter. More precisely, we
are interested in the study of spectral properties of the family of operators (Lσ(λ))λ∈C that is
defined as follows: for all λ ∈ C, we introduce Lσ(λ) : H1(S2) → (H1(S2))∗ such that for all
ψ,ψ′ ∈ H1(S2) we have

⟨Lσ(λ)ψ,ψ′⟩ :=
ˆ
S2
σ∇Sψ · ∇Sψ′dω − λ(λ+ 1)

ˆ
S2
σψψ′dω.

66
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Above dω = sin(θ)dθdφ where (θ, φ) ∈ [0, π] × [0, 2π] are the classical (angular) spherical co-
ordinates. Recall that σ is a piecewise constant function such that σ = σ1 ∈ R∗

+ in S1 and
σ = σ2 ∈ R∗

− in which S1 and S2 are two subdomains of S2 that are defined as follows:

S1 = {(θ, φ) ∈ [0, π]×[0, 2π] such that g(φ) < θ} and S2 = {(θ, φ) ∈ [0, π]×[0, 2π] such that θ < g(φ)}

where g : [0, 2π] → [0, π] is a periodic function of class C 2 (see Figure 3.1). As in the previous
chapter, we denote κσ := σ2/σ1. Observe that the particular case where g coincides with a
constant function corresponds to the case of circular conical tips.

Figure 3.1: An example of the geometry considered: the red (resp. green ) part is filled with a
negative (resp. positive) material.

Classically, we say that λ ∈ C is a regular point of Lσ if and only if the operator Lσ(λ) is
invertible otherwise we say that λ is an eigenvalue of Lσ. The set of eigenvalues of Lσ is called
the spectrum of Lσ and is denoted by Λ(Lσ). As we have seen in §2.4, having an accurate
information about the location of the spectrum Λ(Lσ) in the complex plane is important for the
study of the well-posedness of the problems:

Find u ∈ W1
β(R3) such that − div(σ∇u) = f ∈ (W1

−β(R3))∗

for β ∈ R. More precisely, the formula (2.14) tells us that the solvability of the previous problem
is directly related to the invertibility of Lσ(λ) along the energy line ℜe(λ) = −β − 1/2 and
on the behavior of Lσ

−1(λ) on this line. In addition to that, we have also seen that to obtain
an asymptotic expansion of its solution, near the origin, on needs to have a precise information
about the associated eigenfunctions/generalized eigenfunctions and the algebraic multiplicities of
its eigenvalues (see §2.4.4 for the definition of these objects).
Because of the sign-change in the density function σ, the study of the spectral properties of Lσ

does not fit into the general theory presented in [101] that concerns the study of the spectral
properties of the Mellin symbols generated by strongly elliptic operators. Our goal is to show
that, even in our situation, some of the well-known results of the classical theory of Fredholm op-
erator pencils can be recovered. Note that, to the best of our knowledge, the results that we shall
present below are new. In some way, these results can be seen as an extension of the ones pre-
sented in [25] for the case of two dimensional transmission problem with sign-changing coefficients.

The results of this chapter are organized as follows. In §3.2, we address the question of the
discreteness of the spectrum of Lσ and the behavior of its resolvent (i.e. λ 7→ Lσ(λ)−1) for large
values of |λ|. Next, in §3.3, we turn our attention to the study of the behavior of the spectrum
and the associated eigenvectors when one replaces σ by σ + iδ where δ is a small parameter. In
the last section (§3.4), thanks to some explicit computations, we explain how the general results,
obtained in the previous two sections, can be made more precise in the particular case of circular
conical tips.
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3.2 Fredholmness of the symbol and discreteness of the spectrum

In the classical configuration (when σ has a constant sign), one can prove (for instance see the
proof of [101, Lemma 3.6.3]), by means of the analytic Fredholm theorem (see [101, Corollary
1.1.1]), that the spectrum of Lσ(λ) is discrete and consists of isolated eigenvalues with finite
algebraic multiplicities. In our configuration, because of the sign-change in σ, the operator Lσ(λ)
is not necessarily of Fredholm type. This means that Λ(Lσ) may contain some eigenvalues of
infinite algebraic multiplicity or even worse than that, Λ(Lσ) can be not discrete (or possibly
equal to the complex plane).

3.2.1 Fredholmness of the symbol

As in the classical configuration the first step is to endow the space H1(S2) with the norm
∥u∥2

H1(S2,|λ|) such that for all u ∈ H1(S2) we have

∥u∥2
H1(S2,|λ|) = ∥u∥2

H1(S2) + |λ|2∥u∥2
L2(S2).

Obviously, one can say that for all λ ∈ C, the norm ∥u∥H1(S2,|λ|) is equivalent to the classical
one (which, by the way, coincides with ∥u∥H1(S2,1)). However, when |λ| goes to +∞ these two
norms have two different behaviours. Note that the introduction of this norm is motivated by the
expression of the inverse Mellin transform (2.4.3). We also endow the space (H1(S2), |λ|))∗ with
the norm ∥ · ∥(H1(S2,|λ|))∗ such that for all f ∈ (H1(S2, |λ|))∗ we set

∥f∥(H1(S2,|λ|))∗ = sup
v∈H1(S2)\{0}

|⟨f, v⟩|
∥v∥H1(S2,|λ|)

.

As mentioned above, because of the sign-change in σ, the Fredholmness of Lσ(λ) may be lost. In
this paragraph, we shall explain how to use the T−coercivity approach in order to prove, under
some condition on the contrast κσ, the Fredholmness of Lσ(λ). We have the

Lemma 3.2.1. Assume that κσ ̸= −1, then there exists t0 ∈ R+ such that for all t ∈ R such that
t0 < |t| the operator Lσ(−1/2 + it) is an isomorphism. More precisely, there exists 0 < C such
that for all t0 < |t| and λ = −1/2 + it we have the estimate

∥u∥H1(S2,|λ|) ≤ C∥Lσ(λ)(u)∥H1(S2,|λ|)∗ for all u ∈ H1(S2).

Remark 3.2.1. The proof of the previous result is a little bit technical. For pedagogical purposes,
we will limit ourselves here to the study of the particular case of a circular conical tip (i.e.
θ = g(φ) = α) and the study of the general case (g ∈ C 2[0; 2π]) will be left as an appendix (see
Appendix 3.6.1).

Proof in the particular case g(φ) = α ∈ (0;π). The main idea is to use the T−coercivity ap-
proach. By dividing Lσ by σ1 we come back to the study of the particular case where σ = 1 in S1
and σ = κσ in S2. To prove our claim, one has just to study the case −1 < κσ < 0, the other case
(when κσ < −1) can be studied in the same way by exchanging the roles of S1 and S2. For this
reason, we are going to suppose that κσ > −1. Then, we define the operator T : H1(S2) → H1(S2)
such that

T (u)(θ, φ) = u1(θ, φ) in S1
−u2(θ, φ) + 2χ(θ)u1(2α− θ, φ) in S2

where the functions u1 and u2 are such that u1 = u|S1 and u2 = u|S2 and in which χ : [0, π] → [0, 1]
is a cutoff function that is equal to one for θ ∈ (α − γ;α + γ) and vanishes for θ ∈ (0;α − 2γ) ∪
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(α + 2γ;π). The parameter γ must be chosen such that 2γ < min(α, π − α). We also need to
define the positive numbers Mγ , Lγ and Nγ such that

Mγ = sup
θ∈[α−2γ;α+2γ]

sin(2α− θ)
sin(θ) , Lγ = sup

θ∈[α−2γ;α+2γ]

sin(θ)
sin(2α− θ) and Nγ = sup

θ∈[α−2γ;α+2γ]
χ′(θ).

It will be useful to note that, at least for γ small enough, the functions γ 7→ Mγ and γ 7→ Lγ are
continuous. Since M0 = L0 = 1 one deduces that there exists some γ∗ small enough such that
for all γ ∈ (0; γ∗) one has max(Mγ , Lγ) < 1/|κσ| (this is true because we have supposed that
−1 < κσ < 0). Now, let us come back to the study of the operator T. First of all, by observing
that for all u ∈ H1(S), the function T(u) is continuous across the interface {θ = α}, we infer that
T(u) ∈ H1(S). This means that the operator T is well-defined. Since for all u ∈ H1(S) we have
T ◦ T(u) = u, we deduce that T is a bijective operator. The continuity of T follows from the
following estimates: for all u ∈ H1(S2) we have

ˆ
S2

|T(u)|2 dω ≤
ˆ
S1

|u1|2 dω + 2
ˆ
S2

|u2|2 dω + 8
ˆ
S2

|χ(θ)u1(2α− θ, φ)|2dω

≤ 2
ˆ
S2

|u|2 dω + 8Mγ

ˆ
S1

|u1|2 dω ≤ (2 + 8Mγ)
ˆ
S2

|u|2dω

ˆ
S2

|∇ST(u)|2 dω ≤ 2
ˆ
S2

|∇Su|2 dω + 8
ˆ
S2

|∇S(χ(θ)u1(2α− θ, φ))|2dω

≤ 2
ˆ
S2

|∇Su|2 dω + 8
ˆ
S2

|χ(θ)∂φu1(2α− θ, φ)
sin(θ) |2dω

+8
ˆ
S2

|∂θ(χ(θ)u1(2α− θ, φ))|2dω

≤ 2
ˆ
S2

|∇Su|2 dω + 8Lη
ˆ
S1

|∇Su1|2 dω + 8NγMγ

ˆ
S1

|u1|2dω

+8Mγ

ˆ
S1

|∇Su1|2 dω.

The next step is to compute ⟨L (−1/2+it)u,T(u)⟩ for an arbitrary u ∈ H1(S) and an arbitrary t ∈
R. To simplify notations, we shall denote by ũ1 the function (θ, φ) 7→ ũ1(θ, φ) = χ(θ)u1(2α−θ, φ)
and by γt the real positive number ρt = 1/4 + t2. For all t ∈ R and all u ∈ H1(S2), we have

⟨L (−1/2 + it)u,T(u)⟩ =
ˆ
S2
σ∇Su · ∇ST(u)dω + ρt

ˆ
S2
σuT(u)dω

= (|σ|∇Su,∇Su)S2 + ρt(|σ|u, u)S2 + 2κσ(∇u2,∇(ũ1))S2 + 2κσρt(u2, ũ1)S2 .

Now, by means of the Young’s inequality and the definition of Mγ one finds for all 0 < a that

2|(u2, ũ1)S2 | = |
ˆ
S2

u2(θ, φ)χ(θ)u1(2α− θ, φ)dω| ≤ a|(u2, u2)S2 | + a−1Mγ |(u1, u1)S1 |.

For the term (∇Su2,∇S ũ1)S2 , we decompose it into the sum of (χ(θ)∇Su2,∇S(u1(2α− θ, φ)))S2

and of (∇Su2, u1(2α− θ, φ)∇Sχ(θ))S2 . Applying the Young’s inequality, one obtains that for all
0 < b, c

2|(χ(θ)∇Su1,∇S ũ1)S2 | = 2|
ˆ
S2

χ(θ)(−∂θu2(θ, φ)∂θu1(2α− θ, φ)dω + ∂φu2(θ, φ)
sin(θ)

∂φu1(2α− θ, φ)
sin(θ) dω|

≤ b(∇Su2,∇Su2)S2 + max(Mγ ,Łγ)
b

(∇Su1,∇Su1)S1

2|(∇Su2, u1(2α− θ, φ)∇Sχ(θ))S2 | = |
ˆ
S2

(∂θu2(θ, φ)∂θχ(θ)u1(2α− θ, φ)dω|

≤ c(∇Su2,∇Su2)S2 + NγMγ

c
(u1, u1)S1 .
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With these estimates, one concludes that for all t ∈ R and u ∈ H1(S2) we have for all 0 < a, b, c

|⟨L (−1/2 + it)u,T(u)⟩| ≥ (1 − |κσ| max(Mγ ,Łγ)
b

)(∇Su1,∇Su1)S1 + |κσ|(1 − b− c)(∇Su2,∇Su2)S2

+(ρt(1 − |κσ|Mγ

a
) − |κσ|NγMγ

c
)(u1, u1)S1 + (ρt|κσ|(1 − a))(u2, u2)S2 .

Given that for all γ ∈ [0, γ∗), we have max(Mγ , Lγ) < 1/|κσ|, we then deduce that for all
γ ∈ (0; γ∗), one can find a, b ∈ (0; 1) such that

0 < 1 − |κσ| max(Mγ ,Łγ)
b

and 0 < 1 − |κσ|Mγ

a
.

By taking c ∈ (0; 1−b) and t large enough so that 0 < (ρt(1− |κσ|Mγ

a
)− |κσ|NγMγ

c
), one deduces

that there exists some 0 < t0 such that for all t ∈ R satisfying t0 < |t|, we have the estimate

C0∥u∥2
H1(S2,|λ|) ≤ |⟨L (−1/2 + it)u,T(u)⟩| (3.1)

with C0 independent of t. Note that to obtain the previous estimate, we have used the fact that
for all λ = −1/2 + it with t ∈ R we have |λ|2 = ρt. Since T : H1(S) → H1(S) is continuous
(here H1(S) is endowed with its natural norm), the operator T : H1(S, |λ|) → H1(S) is continuous
and uniformly bounded. This, simply, means that for all λ ∈ C and all u ∈ H1(S2) we have the
estimate,

∥T(u)∥H1(S2) ≤ C∥u∥H1(S2,|λ|) for all u ∈ H1(S2)
with C independent of λ and of u. Inserting this into (3.1), one deduces there is some 0 < C
independent of u ∈ H1(S2) and λ = −1/2 + it (with t0 < |t|) such that

∥u∥H1(S2,|λ|) ≤ C∥Lσ(λ)(u)∥H1(S2,|λ|)∗ .

This furnishes the wanted estimate and shows that for all λ = −1/2 + it (with t0 < |t|) the
operator Lσ(λ) is injective and its range is closed. By observing that for all t ∈ R the operator
Lσ(−1/2+it) is self-adjoint (because it is bounded and symmetric), we deduce that Lσ(−1/2+it)
is an isomorphism for all t ∈ R satisfying t0 < |t|. ■

3.2.2 Discreteness of the spectrum

Given that the embedding of H1(S2) into L2(S2) is compact (see [91, Proposition 2.4]), one can
easily see that for all λ, λ′ ∈ C the operator Lσ(λ) − Lσ(λ′) is compact. Taking λ′ = −1/2 + it0
with t0 as in Lemma 3.2.1, we can say that if κσ ̸= −1 the operator Lσ(λ) is a Fredholm operator
(of index zero) for all λ ∈ C. Furthermore, by applying the analytic Fredholm theorem (see [101,
Corollary 1.1.1]), one obtains the following

Lemma 3.2.2. Assume that κσ ̸= −1. The spectrum of Lσ is composed by isolated eigenvalues
with finite algebraic multiplicities. Furthermore, Lσ(λ)−1 is analytic in C\Λ(Lσ).

3.2.3 Localization of the spectrum and boundedness of the resolvent

In this paragraph, we intend to explain how to obtain a more precise information about the
location of the spectrum of Lσ in the complex plane. In addition to that, we are going to address
the question of the behaviour of ∥|L −1

σ (λ)∥| when |λ| is large (this result is important to show
that the solution constructed by means of the inverse Mellin transform is uniformly bounded
with respect to the source term). Before getting into details, one can easily see that Λ(Lσ) is
symmetric with respect to the point (−1/2, 0) (i.e. if λ ∈ Λ(Lσ) then −λ− 1 also belongs to it).
Furthermore, since σ is real-valued one can also observe that Λ(Lσ) is symmetric with respect
to the lines ℑm(λ) = 0 (i.e. if λ ∈ Λ(Lσ) then λ ∈ Λ(Lσ)).



71 3.2. Fredholmness of the symbol and discreteness of the spectrum

Theorem 3.2.1. Assume that κσ ̸= −1. Then all the eigenvalues of Lσ(λ), with the possible
exception of finitely many, are located outside of some double sector centered at (−1/2, 0) (i.e.
{z ∈ C | ℜe(z + 1/2)| ≤ δ|ℑm(z + 1/2)|} with 0 < δ) of the complex plane (see Figure 3.2). More
precisely, there exist 0 < γ0, r0 such that

Dr0
γ0 := {z ∈ C such that r0 < |z + 1/2| and |ℜe(z + 1/2)| < γ0|ℑm(z + 1/2)|} ⊂ C\Λ(Lσ).

Furthermore, there exists some positive constant C independent of λ ∈ Dr0
γ0 such that

∥u∥H1(S2,|λ|) ≤ C∥Lσ(λ)u∥H1(S2,|λ|)∗ for all u ∈ H1(S2).

Proof. Let us start with the case λ = −1/2 + it with t ∈ R. We have shown in Lemma 3.2.1
that there is some 0 < t0 such that for all |t| < t0 we have the estimate

C0∥u∥H1(S2,|λ|) ≤ ∥Lσ(λ)(u)∥H1(S2,|λ|)∗ (3.2)

with C0 independent of t. In the rest of the proof we are going to suppose that 1/2 < t0. Now,
for all θ ∈ [−π/2;π/2] and all t ∈ R such that t0 < |t| we denote by λtθ the complex number
λtθ = −1/2 + iteiθ. One can easily check that for all u, v ∈ H1(S2) we have

⟨(Lσ(λtθ) − Lσ(λt0))u, v⟩ = (λtθ(λtθ + 1) − λt0(λt0 + 1))
ˆ
S2
σuvdω = t2(1 − e2iθ)

ˆ
S2
σuvdω.

Given that the function x 7→ x/(x− 1/2) is decreasing in [t0,+∞), we deduce that for all t0 < |t|
and θ ∈ [−π/2, π/2] we have

|t|
|λtθ|

≤ |t|
|t| − 1/2 ≤ t0

t0 − 1/2 .

As a result, for all t0 < |t| and all θ ∈ [−π/2, π/2] we obtain the estimate

∥Lσ(λtθ) − Lσ(λt0)∥(H1(S2,|λθ|))∗ ≤ C1|1 − e2iθ|

with C1 independent of t and of θ. Starting from the fact that the operator satisfies the estimate
(3.2), one obtains the following estimate: for all u ∈ H1(S2) we have

(C0 −C1|1−e2iθ|)∥u∥H1(S2,|λt
θ
|) = (C0 −2C1| sin(θ)|)∥u∥H1(S2,|λt

θ
|) ≤ ∥Lσ(λtθ)(u)∥H1(S2,|λt

θ
|)∗ . (3.3)

Given that θ 7→ sin(θ) is continuous, we infer that there exists θ∗ ∈ (0;π/2) such that for all
θ ∈ (−θ∗; θ∗), we have 0 < C0 − C1|1 − e2iθ|. Consequently, we deduce that for all θ ∈ (−θ∗; θ∗)
and all t0 < |t| we have λtθ /∈ Λ(Lσ). Since |t| = |λtθ + 1/2| and θ = arg(λtθ + 1/2) − π/2 we infer
that the region

{z ∈ C such that t0 < |z + 1/2| and |ℜe(z + 1/2)| ≤ tan(θ∗)|ℑm(z + 1/2)|}

is free of eigenvalues of Lσ. To end the proof, it remains to see that inside the ball B =: {z ∈
C such that |z+1/2| < t0} there is a finite number of eigenvalues of Lσ. This a direct consequence
of the fact that Λ(Lσ) consists of isolated eigenvalues. The theorem is then proved by taking
r0 = t0, γ0 = tan(θ∗) and C = 2/C0. ■

Remark 3.2.2. One of the consequences of the previous theorem is the fact that, when κσ ̸= −1,
for all β1 < β2 the strip ℜe(λ) ∈ (β1, β2) contains a finite number of eigenvalues of Lσ.

It is worth to note that in the statement of the previous theorem, the parameters γ0 and r0
depend on the contrast κσ. Let β ∈ R, we define ℓβ =: {λ ∈ C such that ℜe(λ) = β}. Using the
same idea as in the proof of the previous theorem, one shows the
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Corollary 3.2.1. Assume that κσ ̸= −1. Let β ∈ R such that ℓβ ∩ Λ(Lσ) = ∅ then there exists
some constant Cβ (independent of λ) such that the estimate

∥u∥H1(S2,|λ|) ≤ Cβ∥Lσ(λ)u∥(H1(S2,|λ|))∗

holds for all u ∈ H1(S2) and all λ ∈ ℓβ.

Proof. The Theorem 3.2.1, shows that when λ ∈ ℓβ ∩ (Dr0
γ0) (see the statement of Theorem 3.2.1

for definition of Dr0
γ0), the estimate

∥u∥H1(S2,λ) ≤ C∥Lσ(λ)u∥H1(S2,λ)∗ for all u ∈ H1(S2)

holds with some C independent of λ. By combining the fact that Dr0
γ0 ⊂ C\Λ(Lσ), the fact that

Λ(Lσ) is composed by isolated points and by using the assumption ℓβ ∩ Λ(Lσ) = ∅, one can say
that for η small enough the strip Cη =: {λ ∈ C; ℜe(λ) ∈ [β − η, β + η]} is free of eigenvalues
of Lσ. The wanted estimate follows, then, by combining the fact that L −1

σ (λ) is analytic in Cη
and the compactness of Cη ∩ (C\Dr0

γ0). ■
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Figure 3.2: A possible distribution of the spectrum of Lσ (the red points) for κσ ̸= −1. The green
points are associated to propagating singularities (see Definition 2.6.1).

The previous corollary tells us that when Lσ(λ) is invertible along the energy line λ ∈ ℓβ,
then, seen as an operator from (H1(S2, |λ|))∗ to (H1(S2, |λ|)), the operator Lσ(λ)−1 is uniformly
bounded with respect to λ ∈ ℓβ. However, when it is considered as an operator from (H1(S2))∗

to H1(S2), the result of previous corollary implies that the norm of Lσ(λ)−1 does not grow faster
that |λ|2 (when λ ∈ ℓβ).
Now, let us consider two real constants β1 < β2 such that ℓβ1 ∩ Λ(Lσ) = ℓβ2 ∩ Λ(Lσ) = ∅. For
all r ∈ R∗

+, we introduce the closed set

D(r, β1, β2) := {λ ∈ C |β1 ≤ ℜe(λ) ≤ β2}\( ∪
λ∈Λ(Lσ)

B(λ, r)). (3.4)
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Corollary 3.2.2. Suppose that κσ ̸= −1 and let β1 < β2 ∈ R such that ℓβ1 ∩ Λ(Lσ) = ℓβ2 ∩
Λ(Lσ) = ∅. Then, for all 0 < r there exists 0 < C such that

∥u∥H1(S2,|λ|) ≤ C∥Lσ(λ)u∥(H1(S2,|λ|))∗ for all λ ∈ D(r, β1, β2) and for all u ∈ H1(S2).

Proof. Thanks to Theorem 3.2.1, we obtain the wanted estimate for all λ ∈ D(r, β1, β2) ∩ Dr0
γ0 .

To obtain the wanted estimate for λ ∈ D(r, β1, β2) ∩ (C\Dr0
γ0) is enough to see that the latter is

a compact subset of C\Λ(Lσ). ■

3.2.4 Algebraic multiplicities of eigenvalues in the energy line ℜe(λ) = −1/2

In this paragraph, we are going to prove some useful results concerning the algebraic multiplicities
of eigenvalues of Lσ that are located in the energy line ℓ−1/2. The starting point of our discussion
is the following:

Proposition 3.2.1. Assume that κσ ̸= −1. Let λ0 ∈ ℓ−1/2 ∩ Λ(Lσ). Let (φ1, . . . , φιg(λ0)) be a
basis of Ker (Lσ(λ0)). Then, we have the equivalence

ιg(λ) < ιa(λ) iff ∃k ∈ {1, . . . , ιg(λ0)} s.t. (2λ0 + 1)
ˆ
S2
σφkφj = 0 for j = 1, . . . , ιg(λ0)

where we refer to §2.4.4 for the definitions.

Proof. Since κσ ̸= −1, we know that Lσ(λ0) is a Fredholm operator of index 0. The fact that
λ0 ∈ ℓ−1/2 implies that Lσ(λ0) is self-adjoint. By definition of ιg(λ0) and ιa(λ0), we know that
ιg(λ0) < ιa(λ0) if and only of there exists k ∈ {1, . . . , ιg(λ0)} for which the function φk has at
least a generalized eigenfunction. This is equivalent to say that the problem

Find u ∈ H1(S2) such that Lσ(λ0)u = −dLσ

dλ
(λ0)φk

has a solution. By the Fredholm alternative, we know that the previous equation has a solution
if and only if

⟨dLσ

dλ
(λ0)φk, φj⟩ = 0 for j = 1, . . . , ιg(λ0).

The result is then proved by observing that ⟨dLσ

dλ
(λ0)φk, φj⟩ = (2λ0 + 1)

ˆ
S2
σφkφj . ■

A direct consequence of the previous proposition is the following

Lemma 3.2.3. Assume that κσ ̸= −1. Let λ ∈ ℓ−1/2 ∩ Λ(Lσ) such that ιg(λ) = 1. Let φ ∈
Ker (Lσ(λ))\{0}. Then

ιa(λ) = 1 if and only if (2λ+ 1)
ˆ
S2
σ|φ|2 ̸= 0.

We also obtain the following

Lemma 3.2.4. Assume that κσ ̸= −1. Let λ ∈ ℓ−1/2 ∩ Λ(Lσ) such that ιg(λ) = 2. Let φ ∈
Ker (Lσ(λ)) such that (φ,φ) is a basis of Ker (Lσ(λ)). Then

(2λ+ 1)
ˆ
S2
σ|φ|2 ̸= 0 =⇒ ιa(λ) = 2.



Chapter 3. The study of the Mellin symbol of the problem 74

3.3 Stability of Λ(Lσ) with respect to perturbations of σ

In the present section, we will be concerned with the study of the spectrum of the operator
Lσ+iδ(λ), where δ is a real parameter. Our main goal, is to study the convergence of Λ(Lσ+iδ)
and the associated eigenfunctions when δ tends to 0. Note that the study of such convergence is
essential when one wants to define the physical solution of the original scalar problem by means
of the limiting absorption principle (see §2.6.3). Since for all λ ∈ C the operator Lσ+iδ(λ) can be
seen as a small perturbation (of course when δ is small) of the operator Lσ(λ), one may expect
that when δ goes to 0 the set Λ(Lσ+iδ) will converge to Λ(Lσ) (here the convergence must be
understood with respect to the Hausdorff distance (see Definition 3.3.1)).

3.3.1 Properties of the spectrum of the perturbed problem

Before getting into details, let us start by proving that for all 0 ̸= δ, the set Λ(Lσ) is discrete.
This the object of the following

Proposition 3.3.1. Let 0 < δ. The spectrum of Lσ+iδ is discrete and composed by isolated
eigenvalues. Furthermore, we have ℓ−1/2 ∩ Λ(Lσ+iδ) = ∅.

Proof. By observing that for all t ∈ R, δ ∈ R∗ and all u ∈ H1(S2), we have

|ℑm(⟨Lσ+iδ(−1/2 + it)u, u⟩)| = |δ|∥u∥2
H1(S2,1/4+t2),

we deduce that for all t ∈ R and δ ∈ R∗ the operator L ∗
σ+iδ(−1/2 + it) is injective and that its

range is closed. By observing that L ∗
σ+iδ(−1/2 + it) = Lσ−iδ(−1/2 + it), we deduce that for all

δ ∈ R∗ and t ∈ R the operator L ∗
σ+iδ(−1/2 + it) is an isomorphism. The rest of the proof is a

direct application of the analytic Fredholm theorem. ■

Note that in the previous proposition, there is no assumption about the value of the contrast κσ.
We have the analogue of Theorem 3.2.1.

Lemma 3.3.1. Assume that κσ ̸= −1. There exist two positive constants r0, γ0 independent of δ
and 0 < δ0 such that for all δ satisfying |δ| < δ0 we have

Dr0
γ0 := {z ∈ C such that r0 < |z − 1/2| and |ℜe(z + 1/2)| < γ0|ℑm(z + 1/2)|} ⊂ C\Λ(Lσ+iδ).

Moreover, there is some 0 < C independent of δ such that the estimate

∥u∥H1(S2,|λ|) ≤ C∥Lσ+iδ(λ)u∥H1(S2,|λ|)∗ for all u ∈ H1(S2)

holds for all δ such that |δ| < δ0 and all λ ∈ Dγ0
r0 .

Proof. From the results of Theorem 3.2.1, we already know that there exist two positive constants
r0, γ0 such that Dr0

γ0 ⊂ C\Λ(Lσ). Furthermore, we know that when λ ∈ Dr0
γ0 , the operator

Lσ(λ)−1 : ((H1(S2))∗, |λ|) → (H1(S2), |λ|) is uniformly bounded with respect to λ. As a result, to
prove our claim, we need to find a uniform estimate of ∥|Lσ(λ)−Lσ+iδ(λ)∥|(H1(S2,|λ|)→(H1(S2,|λ|))∗)
for λ ∈ Dr0

γ0 . To do so, we start form the fact that for all u ∈ H1(S2), δ ∈ R∗ and λ ∈ Dr0
γ0 we have

∥Lσ(λ)u− Lσ+iδ(λ)u∥(H1(S2,|λ|))∗ ≤ |δ|(∥u∥H1(S2) + |λ(λ+ 1)| ∥u∥L2(S2)).

Next, given that 0 /∈ Dr0
γ0 , we infer that there exists 0 < ρ such that ρ < |λ| for all Dr0

γ0 . As a
result, we conclude that there exists a constant 0 < C0 independent of λ such that

|λ(λ+ 1)| ≤ C0|λ|2 for all λ ∈ Dr0
γ0 .

As a consequence, we deduce that for all λ ∈ Dr0
γ0 we have

∥|Lσ(λ) − Lσ+iδ(λ)∥|(H1(S2,|λ|)→(H1(S2,|λ|))∗) ≤ C|δ|

where C is independent of λ ∈ Dr0
γ0 and of δ ∈ R∗. This leads to the wanted result. ■
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3.3.2 Convergence of the spectrum

In this paragraph, we are going to address the question of the convergence of Λ(Lσ+iδ). Before
getting into the details, for all β1 < β2 we denote by B(β1, β2) the strip

B(β1, β2) := {λ ∈ C |β1 < ℜe(λ) < β2}.

The main result of this part is given by the

Theorem 3.3.1. Assume that κσ ̸= −1 and let β1 < β2 ∈ R such that ℓβ1∩Λ(Lσ) = ℓβ2∩Λ(Lσ) =
∅. We have lim

δ→0
(Λ(Lσ+iδ) ∩B(β1, β2)) = Λ(Lσ) ∩B(β1, β2).

In the statement of the previous result, the convergence must be understood in the sense of
convergence with respect to the Hausdorff distance. To be more precise, we adopt the following

Definition 3.3.1. Let E be a closed subset of the complex plane. Let (Eδ)δ∈R be a family of
closed subsets of the complex plane. We say that (Eδ)δ∈R converges to E (or briefly lim

δ→0
Eδ = E)

if and only if
lim
δ→0

max( sup
x∈Eδ

inf
y∈E

|x− y|, sup
x∈E

inf
y∈Eδ

|x− y|) = 0.

The proof of the Theorem, will be done thanks to the two following propositions. By working as
in the proof of Lemma 3.3.1 and by using the results of Corollary 3.2.2, one can easily prove the

Proposition 3.3.2. Suppose that κσ ̸= −1 and let β1, β2 ∈ R satisfying β1 < β2 and such that
ℓβ1 ∩Λ(Lσ) = ℓβ2 ∩Λ(Lσ) = ∅. Then for all 0 < r, there exists 0 < δr such that for all δ satisfying
|δ| < δr, we have Λ(Lσ+iδ) ∩D(r, β1, β2) = ∅ (see (3.4)). Moreover, for all δ satisfying |δ| < δr,
we have the estimate

∥|Lσ+iδ(λ)−1|∥((H1(S2,|λ|))∗→H1(S2,|λ|)) ≤ Cr for all λ ∈ D(r, β1, β2)

in which Cr is a constant that does not depend on λ.

Note that the previous result does not apply when β1 = −∞ or when β2 = +∞. This is due to
the possible existence of accumulation points at infinity.

Remark 3.3.1. It is important to mention that near an eigenvalue of Lσ one can, eventually,
find several eigenvalues of Lσ+iδ for δ small enough. This will be indeed illustrated in the next
paragraph.

The second result that we need, is given by

Proposition 3.3.3. Assume that κσ ̸= −1. Let λ0 ∈ Λ(Lσ) and denote by ιa(λ0) its algebraic
multiplicity. Let 0 < r such that Λ(Lσ) ∩ B(λ0, r) = {λ0}. There exists 0 < δ0 such that for all
δ satisfying |δ| < δ0, we have

Λ(Lσ+iδ) ∩B(λ0, r) ̸= ∅ and κ(Lσ+iδ, B(λ0, r)) = ιa(λ0)

where κ(Lσ+iδ, B(λ0, r)) is the sum of the algebraic multiplicities of the eigenvalues of Lσ+iδ
that are located in B(λ0, r).

The previous result is a direct consequence of [101, Corollary 1.1.2]. Let us just mention the
idea of the proof. Its is based on three important points. The first one is that λ 7→ Lσ(λ) and
λ 7→ Lσ+iδ(λ) are two meromorphic functions. The second one is the fact that ιa(λ0) can be
expressed as follows [101, Theorem 1.1.3]:

ιa(λ0) = 1
2iπ

ˆ
∂B(λ0,r)

dLσ(λ)
dλ

L −1
σ (λ)dλ.

The last one is the generalization of Rouché’s theorem [101, Theorem 1.1.4 ]. Now, we have all
the tools to prove the Theorem 3.3.1.
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Proof of Theorem 3.3.1. The Proposition 3.3.3 tells us that every λ ∈ Λ(Lσ) ∩ B(β1, β2) is a
limit, when δ tends to 0, of eigenvalues of Λ(Lσ+iδ). By means of Proposition 3.3.2, we ensure
that lim

δ→0
(Λ(Lσ+iδ ∩B(β1, β2)) is a subset of Λ(Lσ)∩B(β1, β2)). Since the set Λ(Lσ)∩B(β1, β2))

is finite, we obtain the wanted result. ■

We have the following

Corollary 3.3.1. Assume that κσ ̸= −1 and let λ ∈ Λ(Lσ). If λ is simple then there exists
0 < r0, δ0 such that for all 0 < |δ| < δ0, the ball B(λ, r0) contains one eigenvalue of Lσ+iδ.

Proof. The result follows from the fact that the sum of the algebraic multiplicities of the eigen-
values of Lσ+iδ that are near λ is equal to 1. ■

3.3.3 Numerical illustration

To illustrate the results obtained above concerning the convergence of the spectrum of Lσ+iδ
to the one of Lσ, we shall use the numerical approximation of the spectrum of Lσ+iδ and Lσ,
by the FEM. Instead of approximating the problem directly in S2, we shall start by write a an
equivalent formulation of the problem that will be posed in B = (0; 2π)× (0;π) (this will allow us
to avoid the discretization of the unit sphere which is not an easy task in general). To do so, we
use the classical angular spherical coordinates (φ, θ) ∈ B to parameterize S2. With this in mind,
we can say that when κσ ̸= −1, λ ∈ Λ(Lσ) if and only if there exists u ∈ H1

#(B) such that for
all v ∈ H1

#(B) we have
ˆ
B

( σ(θ)
sin(θ)∂φu ∂φv + σ(θ) sin(θ)∂θu ∂θv) dθ dφ = λh(λh + 1)

ˆ
B
σ(θ) sin(θ)uv dθ dφ

in which

H1
#(B) := {(φ, θ) 7→ u(φ, θ) |

√
sin(θ)u,

√
sin(θ)∂θu, ∂φu/

√
sin(θ) ∈ L2(B) and u(0, θ) = u(2π, θ)}.

Naturally, this leads us to the following discrete problem: Find (uh, λh) ∈ Vh,#(B))\{0}×C such
that for all vh ∈ Vh,#(B)

ˆ
B

( σ(y)
sin(y)∂xuh ∂xvh + σ(y) sin(y)∂yuh ∂yvh)dx dy = λh(λh + 1)

ˆ
B
σ(y) sin(y)uhvhdx dy

where the space Vk
h,#(B) := {u ∈ Pk(B) | such that u(0, y) = u(2π, y)}, where Pk(B) stands for

the space of polynomials (of 2 variables) of degree at most equal to k. In order to take into account
the periodicity condition with respect to x, the mesh of B must be, then, periodic with respect
to x. Moreover, because of the sign-change in σ and following the results of [46], we need to use a
mesh that is periodic in the x direction and that is symmetric near the interface Σ := {y = π/4}
(we say that the mesh is T-conforming). See Figure 3.3, for an example of T-conforming mesh
that is periodic in the x direction. In our work, we used the library Freefem++ for the construction
of the matrices associated to the discrete formulation and we used the eig function of MATLAB
in order to approximate the eigenvalues. To approximate the eigenvalues of Lσ+iδ, we used the
same strategy as in the case of Lσ (one, simply, needs to replace σ by σ + iδ in the formulation
above).
To proceed, we will work with two different values of the contrast κσ : κσ = −0.7807,−0.8. For
these particular choices of κσ, we can guaranty that Λ(Lσ) ∩ ℓ−1/2 ̸= ∅. For this reason, we
shall focus our attention on the behavior of the eigenvalues of Lσ+iδ that are near Λ(Lσ) ∩ ℓ−1/2
as δ → 0. The numerical results for the case κ = −0.8 are displayed in Figure 3.4 and those
associated with the case κσ = −0.7907 are presented in Figure 3.5.
What we can learn from these results are the following facts:
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x

y

y = π/4

Figure 3.3: An example of a periodic T-conforming mesh.
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Figure 3.4: Behavior of Λ(Lσ+iδ) for κσ = −0.8.
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Figure 3.5: Behavior of Λ(Lσ+iδ) for the case κσ = −0.7807.

• In both cases, we observe that the convergence of Λ(Lσ+iδ) to Λ(Lσ) occurs.

• It seems that in the case κσ = −0.7807, the assumption 2.6.2 is not valid. Indeed, we observe
that there exists an eigenvalue λ ∈ Λ(Lσ) ∩ ℓ−1/2 which corresponds to the coalescence of
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two eigenvalues of Lσ+iδ, one of which comes from the left (i.e. that ℜe(λ) < −1/2) and
the other from the right (i.e. −1/2 < ℜe(λ)).

• We also observe that the rate of convergence depends on the nature of the eigenvalue: we no-
tice that for the eigenvalue which is the limit of two coalescent eigenvalues, the convergence
is slower than for the case of the other eigenvalues that belong to ℓ−1/2.

Remark 3.3.2. For the case of general smooth conical point (g ∈ C 2([0; 2π])), the same numer-
ical approach can be used but this time the construction of T-conforming mesh seems to be a little
bit complicated (see [45, §2.B]). We will leave this question for a future work.

3.3.4 Convergence of the eigenfunctions

Up to now, we have proved that when κσ ̸= −1, the spectrum Λ(Lσ+iδ) converges, when δ tends
to 0, to Λ(Lσ). Unfortunately, this result alone is not sufficient to derive the theory we need to
define the physical solution of the scalar problem by means of the limiting absorption principle
(see §2.6.3). To complete it, one has to study the behaviour of the associated eigenfunctions and
the generalized eigenfunctions of Lσ+iδ as δ → 0.
As we have seen in the previous subsection that, when κσ ̸= −1, for any λ ∈ Λ(Lσ) and 0 < δ
small enough Lσ+iδ has one or several eigenvalues near λ. The only information that we can
guarantee about the nature of these eigenvalues is that the sum of their algebraic multiplicities
is equal to the algebraic multiplicity of λ. This means that even if λ is a semisimple eigenvalue
of Lσ there is no grantee about the fact that all the eigenvalues of Lσ+iδ are semisimple. To be
convinced, let us consider the following example that comes form the finite dimensional setting.
For all δ ∈ R∗, we define the matrix

Aδ =
(

1 + δ δ
0 1 + δ

)

Clearly, Aδ is a small analytic perturbation of the identity matrix I2. The spectrum of Aδ coincides
with {1 + δ} which converges when δ → 0, as excepted, to {1} which is equal to the spectrum of
I2. We can also see that the algebraic multiplicity of 1 + δ (as an eigenvalue of Aδ) is equal to
2. While 1 is a semisimple eigenvalue of I2, 1 + δ is geometrically simple (there is a Jordan chain
of length 2 composed of an eigenfunction and a generalized eigenfunction). This example shows
that, in general, we are not able to guarantee that the eigenvalues of the perturbed problem and
those of the unperturbed problem have the same nature. This explains, in a way, why we have
made the Assumption 2.6.2 when we used the limiting absorption principle to define a physical
solution to the scalar problem. The main result of this section is given by

Proposition 3.3.4. Assume that κσ ̸= −1. Let λ ∈ Λ(Lσ) and let (λδ)δ be a sequence1 of
elements of Λ(Lσ+iδ) that converges to λ when δ tends to 0. Consider a sequence (φδ)δ of elements
of ker(Lσ+iδ(λδ)) such that ∥φδ∥H1(S2) = 1 for δ small enough. Then, (φδ)δ converges (up to a
sub-sequence), in H1(S2), to some φ0 ∈ H1(S2) that belongs to ker(Lσ(λ)).

Proof. Since (φδ)δ is bounded in H1(S2), one can extract a sub-sequence from it that converges
(when δ goes to 0) weakly in H1(S2) and strongly in L2(S2) to some φ0 ∈ H1(S2). To simplify,
this sub-sequence is still denoted by (φδ)δ.
Since (λδ) converges to λ, as δ → 0, one deduces that φ0 belongs to ker(Lσ(λ)). It remains, then,
to explain why the convergence of (φδ)δ to φ0 occurs in the strong sense. For this, we start by

1Here and in what follows, a sequence indexed with a non integer parameter refers to an indexed family of
elements.
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observing that since Lσ+iδ(λδ)φδ = 0, we have for all t ∈ R,

⟨Lσ(t)φδ, φ′⟩ = −iδ
ˆ
S2

∇Sφδ∇Sφ′ + iδλδ(λδ + 1)
ˆ
S2
φδφ′

+(t2 + 1/4 + λδ(λδ + 1))
ˆ
S2
σφδφ′.

As (φδ)δ is bounded in H1(S2) and converges in L2(S2) to φ0, the previous identity shows that
(Lσ(t)φδ)δ converges, as δ → 0, in ((H1(S2))∗. Owing to Lemma 3.1, we know that for t large
enough, the operator Lσ(t) becomes isomorphism. This implies that (φδ)δ converges, as δ → 0,
strongly in H1(S2) to some φ1 ∈ H1(S2). By uniqueness of the limit in L2(S2), we deduce that
φ0 = φ1. ■

3.4 The particular case of circular conical tips

In the previous paragraphs, the main spectral properties of the family (Lσ(λ))λ∈C have been
investigated in the case of a general smooth conical tip g ∈ C 2

per([0; 2π]). The main goal of this
paragraph is to study the particular case of circular conical points, in other words, when the
function g coincides with a constant α ∈ (0;π). In this particular case, some of the results that
we have established before can be improved. In addition to that some new results can be obtained.

The main idea is to take advantage from the fact that circular conical tips are rotationally
symmetric. With this in mind, any function of the space H1(S2) can be decomposed, by means
of the Fourier decomposition, into a sum of separated variable functions. This will help us
in getting a deeper information about the spectrum. More precisely, the spectrum of Lσ can
be characterized by means of a dispersion relation. Furthermore, since the eigenfunctions are
also known explicitly, some results concerning the existence of generalized eigenvectors for the
particular case of eigenvalues that are on the line ℜe(λ) = −1/2 can be obtained. This will help
us studying the validity of Assumption 2.6.2 in this particular configuration.

3.4.1 Dispersion relation

The goal of this part is to determine a dispersion relation that allows us to characterize the
spectrum Lσ when the contrast κσ ̸= −1. By this, we mean finding a function f : C → C such
that λ ∈ Λ(Lσ) ⇐⇒ f(λ) = 0. According to Lemma 3.2.2, we already know that when κσ ̸= −1
the spectrum of Lσ is composed by discrete eigenvalues. Consequently, it suffices to find the
set of λ ∈ C for which the equation Lσ(λ)u = 0 has a non trivial solution in H1(S2). As in this
particular geometry, the function σ is independent of the variable φ ∈ [0, 2π], we then obtain the
equivalence: λ ∈ Λ(Lσ) if and only if

∃u ∈ H1(S2)\{0} s.t. − 1
sin(θ)∂θ(σ(θ) sin(θ)∂θu) − σ(θ)

sin(θ)2∂
2
φu = λ(λ+ 1)σ(θ)u (3.5)

in which the last equation is written in the distributional sense. The key idea (which is also used
in [92, 104]) is to use the fact that every function u ∈ H1(S2) can be decomposed as

u(θ, φ) =
∑
m∈Z

um(θ)eimφ where um(θ) = 1
2π

ˆ 2π

0
u(θ, φ)e−imφdφ for all m ∈ Z.

Note that the previous decomposition in nothing but the classical Fourier decomposition with
respect to φ ∈ [0, 2π]. It is interesting to observe that, in the decomposition above, since u ∈
H1(S2) one can show that for all m ∈ Z, the function um(θ) is such that

√
sin(θ)um, um/

√
sin(θ)



Chapter 3. The study of the Mellin symbol of the problem 80

and
√

sin(θ) dθum belong to L2(0;π). Now, if u ∈ H1(S2) is a solution of (3.5), one deduces that
for all m ∈ Z the function um is such that

− 1
sin(θ)

d

dθ
(σ(θ) sin(θ) d

dθ
)um + σ(θ)

sin(θ)2m
2um = λ(λ+ 1)σ(θ)um for all m ∈ Z.

To proceed, let us denote, respectively, by u1m, u2m the restriction of um to (0;α) and to (α;π).
With this in mind, we arrive to the conclusion that for all m ∈ Z the function um satisfies
following transmission problem:

− 1
sin(θ)

d

dθ
(sin(θ)du1m

dθ
) + 1

sin(θ)2m
2u1m = λ(λ+ 1)u1m in (0;α)

− 1
sin(θ)

du2m
dθ

(sin(θ)du2m
dθ

) − 1
sin(θ)2m

2u2m = λ(λ+ 1)u2m in (α;π)

u1m(α) = u2m(α), sin(α)du1m
dθ

(α) = κσ sin(α)du2m
dθ

(α).

At this stage, and in order to write simpler equations that we can solve by means of classical
special functions, we need to perform the change of variable θ → γ = cos(θ). After this change
of variable, the new function, which is still denoted by um(γ), is a solution to the following
transmission problem: For all ∈ Z we have

d

dγ
((1 − γ2) d

dγ
u1m(γ)) + λ(λ+ 1)u1m(γ) − m2

(γ2 − 1)u1m(γ) = 0 in (cos(α); 1]
d

dγ
((1 − γ2) d

dγ
u2m(γ)) + λ(λ+ 1)u2m(γ) − m2

(γ2 − 1)u2m(γ) = 0 in [−1; cos(α))

u1m(cos(α)) = u2m(cos(α)), sin(α)2 d

dγ
u1m(cos(α)) = κσ sin(α)2 d

dγ
u2m(cos(α)).

(3.6)
Starting from the fact that the function (θ, φ) 7→ um(θ)e−imφ ∈ H1(S2) and using the change of
variable θ → γ, one can show that the functions γ 7→ um(γ), um(γ)/

√
1 − γ2,

√
1 − γ2dγum(γ) be-

long to the space L2(−1; 1). This implies, in particular thanks to the fact that γ 7→ um(γ)/
√

1 − γ2 ∈
L2(−1; 1), that um(γ) → 0 as γ → ±1. As a result, we are only interested in the solutions to (3.6)
that vanish near γ = ±1.
The equation (3.6) tells us that in each of intervals (cos(α); 1] and [−1; cos(α)) the function um(γ)
is a solution to the associated Legendre equation in which λ ∈ C plays the role of the degree and
m ∈ Z is the order.
The literature about the associated Legendre’s equations is very rich especially when λ ∈ N,
in that case the solutions are the associated Legendre polynomials (for instance see [3]). In
addition to that, the approximation of these functions is available in almost all scientific computing
software.
On the other hand, when λ ∈ C\Z, many results are also available (see [3]) but when it comes to
the approximation of the associated Legendre functions, almost all open source software do not
provide it.
In order to make this chapter self-contained, we shall present, in §3.6.2, a brief overview about the
basic properties of these functions. Furthermore, we will explain how to write a C++ program
that can be used to approximate these functions for the general case λ ∈ C and m ∈ Z.
To, proceed, for all m ∈ N and λ ∈ C\J−m,−1K ∪ J0,m − 1K2, we denote by Pmλ (x) (with
x ∈ (−1; 1)) the associated Legendre function of first kind of order m and of degree λ and by
(Pmλ )′(x) its derivative with respect to x. Besides, for all m ∈ N, and λ ∈ C\J−m,−1K∪J0,m−1K,
we introduce the functions fm(λ, κσ) such that

fm(λ, κσ) = κσ Pmλ (− cos(α))(Pmλ )′(cos(α)) + Pmλ (cos(α))(Pmλ )′(− cos(α)).
2For all a, b ∈ Z, we denote by Ja, bK := [a, b] ∩ Z.
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Proposition 3.4.1. Assume that κσ ̸= −1. We have the equivalence
λ ∈ Λ(Lσ) ⇐⇒ ∃m ∈ N such that λ ∈ C\J−m,−1K ∪ J0,m− 1K and fm(λ, κσ) = 0. (3.7)

Proof. Thanks to the modal decomposition (3.6), one can say that the problem Lσ(λ)u = 0 has
a non trivial solution in H1(S2) if and only there exists at least one m ∈ Z for which the equation
(3.6) has a non zero solution. Given that the function um must vanish at γ = ±1, and by using
the results of §3.6.2, we infer that this is possible if and only if λ ∈ C\J−|m|,−1K ∪ J0, |m| − 1K.
In that case, we have

um(γ) =
{
APmλ (γ) in (cos(α); 1]
B Pmλ (−γ) in [−1; cos(α)).

The continuity and the transmission conditions satisfied by um at γ = cos(α) lead us to the
following system of equations:{

APmλ (cos(α)) = B Pmλ (− cos(α))
A sin2(α)(Pmλ )′(cos(α)) = −κσ sin2(α)(Pmλ )′(− cos(α)).

The previous linear system of equations has a non trivial solution if and only if
κσPmλ (cos(α))(Pmλ )′(− cos(α)) = −Pmλ (− cos(α))(Pmλ )′(cos(α)).

Given that the functions Pmλ and P−m
λ are collinear (see (3.16)), we obtain the wanted result. ■

The proof of the previous proposition allows us to find the expression of the eigenfunctions
associated to λ ∈ Λ(Lσ). Indeed, if we denote by

A(λ) := {m ∈ N | ∃λ ∈ C\J−m,−1K ∪ J0,m− 1K and fm(λ, κσ) = 0}, (3.8)
we can easily prove that

Ker(Lσ(λ)) = span{um, u−m |m ∈ A(λ)}, (3.9)
where the functions u±m are defined as follows

u±m
1 (θ, φ) =

{
Pmλ (− cos(α)) Pmλ (cos(θ))e±imφ if θ ∈ (0;α)
Pmλ (cos(α)) Pmλ (− cos(θ))e±imφ if θ ∈ (α;π).

3.4.2 Expression of the critical interval

In this paragraph, we shall explain how to find an explicit expression of the critical interval IΣ in
the particular case of circular conical tips. Recall that for a general interface Σ, IΣ is defined as
the set of contrasts κσ for which the problem (2.2) is ill-posed in the Fredholm sense. In Theorem
2.6.1, we have proved that for the case of an interface with smooth conical tip, the critical interval
IΣ can be defined as the set of contrasts for which the problem (2.2) has propagating singularities
(see Definition 2.6.1) or equivalently the set of κσ for which Λ(Lσ) ∩ ℓ−1/2 ̸= ∅.
To simplify notations, we shall denote by Iα the critical interval in the case of an interface that
has a circular conical tip of opening angle α (i.e. g(φ) = α).
As we have seen in §2.2, the determination of Iα is directly related to the determination of the
essential spectrum of the Neumann-Poincaré operator on the infinite cone

Wα := {x = r(sin(α) cos(φ), sin(α) sin(φ), cos(α)); r ∈ R+, φ ∈ (0; 2π)}.
This latter question was investigated in details in [92, 104]. But it seems that the results obtained
there are not sufficient to obtain a simple expression of the critical interval.
During an exchange with Karl-Mikael Perfekt, he told us that the missing argument is to show
that when α ∈ (0;π/2) (resp. α ∈ (π/2;π)), the spectrum of the Neumann-Poincaré operator
is positive (resp. negative). In this paragraph, we are going to explain how to combine the
results of [92, 104] and the T-coercivity approach in order to obtain an explicit expression of
Iα and by the way, we also answer the question about the sign of the essential spectrum of the
Neumann-Poincaré operator that was left unanswered in [92, 104].
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Expression of the critical interval

According to Proposition 3.4.1, one can say that λ = −1/2 + it (with t ∈ R) belongs to Λ(L ) if
and only if there exists some m ∈ N such that

κσPm−1/2+it(− cos(α))(Pm−1/2+it)′(cos(α)) + Pm−1/2+it(cos(α))(Pm−1/2+it)′(− cos(α)) = 0.

In the literature, the functions Pm−1/2+it (with m ∈ N and t ∈ R) are known as the conical
functions or the Mehler functions of the first kind. They play an important role in the area of
mathematical physics (see [87, 80, 122, 123] for more details). The study of these functions was
the subject of the book [146]. Some basic properties of these functions are, briefly, recalled in
§3.6.2. Let us introduce, for all m ∈ N, the function am : R → R such that

am(t) =
Pm−1/2+it(cos(α))(Pm−1/2+it)′(− cos(α))
Pm−1/2+it(− cos(α))(Pm−1/2+it)′(cos(α)) for all t ∈ R.

As it is proved in §3.6.2, for all m ∈ Z and all t ∈ R the function Pm−1/2+it as well as its derivative
are real valued. The functions am are then real valued. Given that these functions are continuous,
we then denote, for all m ∈ N, by Im the interval

Im = {−am(t) : 0 ≤ t ≤ +∞}.

Given that Iα coincides with the set of contrasts κσ for which Λ(Lσ) ∩ ℓ−1/2 ̸= ∅, we then obtain,
thanks to Proposition 3.4.1, the following

Proposition 3.4.2 (First definition of the critical interval). Assume that α ∈ (0;π). We have

Iα = ∪
m∈N

Im.

Observe that when α = π/2, the intervals Im are, all, reduced to the singleton {−1}. In Figure
3.6, we represent the functions τ → −am(τ) for m = 0, 1, 2, 3 and τ ∈ R+ (the approximation of
the conical functions is achieved by using hypergeometric function of Matlab and by using the
results of §3.6.2).
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Figure 3.6: The graphs of the functions τ 7→ am(τ) for the cases α = π/3 (left) and α = π/4(right).

What we can take away from this figure is the fact that, when τ tends to +∞ all the functions
−am tend to a fixed valued independent of m. Moreover, we also observe that the range of the
functions −am is contained in the one of −a0. These observations, will be confirmed theoretically,
in the next two Propositions.
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Remark 3.4.1. One can also observe that the curves of the functions τ 7→ −am(τ) are all
disjoint. Unfortunately we do not succeed in proving this observation. Note that this is equivalent
to say that when κσ ∈ Iα\{−1} then for all λ ∈ ℓ−1/2, we have dim(ker(Lσ(λ))) ≤ 2. More
precisely, this is equivalent to say that for all λ = −1/2 + it ∈ ℓ−1/2 we have

dim(ker(Lσ(λ))) =
{

1 if κσ = −a0(|t|)
2 if ∃m ∈ N∗ such that κσ = −am(|t|).

In particular, when α = π/4 and κσ = −0.8, one can see from Figure 3.6 that there exist 3
eigenvalues of Lσ that belong to ℓ+−1/2 := ℓ−1/2 ∩ {λ ∈ C | 0 < ℑm(λ)}. These eigenvalues are
approximately equal to λ1 = −1/2 + 1.6i, λ2 = −1/2 + 3.6i and λ3 = −1/2 + 4.7i. While λ3 is
geometrically simple, λ1 and λ2 have geometric multiplicity equal to 2. The corresponding eigen-
functions for λ1, λ2 and λ3 are known explicitly. In Figures 3.7-3.8, we display an eigenfunction
associated to λ3 and another one associated to λ1.

Figure 3.7: An eigenfunction associated to λ3. Figure 3.8: An eigenfunction associated to λ1.

To proceed, we have the

Proposition 3.4.3. Let α ∈ (0;π). Then for all m ∈ N, we have lim
t→+∞

am(t) = 1.

It is worth mentioning that this result has been already proved in a very brief way in [122]. Again,
in order to make our work self-contained, we will propose a more detailed proof.

Proof. The idea is to use an asymptotic expansions of Pm−1/2+it(cos(θ)) when t tends to +∞ for
a given θ ∈ (0;π) and a fixed m ∈ N. According to [146], one has for all θ ∈ (0;π) and m ∈ N the
expansion

Pm−1/2+it(cos(θ)) = tm−1/2etθ√
2π sin(θ)

(1 − m2 − 1/4
2t cot(θ) +O(1/t2)).

Using the recurrence relation (see §3.6.2)

(Pm−1/2+it)′(cos(θ)) = m cos(θ)
sin(θ)2 Pm−1/2+it(cos(θ)) − 1

sin(θ)Pm+1
−1/2+it(cos(θ)),

we infer that

(Pm−1/2+it)′(cos(θ))/Pm−1/2+it(cos(θ)) = m cos(θ)
sin(θ)2 − t

sin(θ) +O(1) ∼
t→+∞

− t

sin(θ) .
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Exchanging θ with π − θ, we find that

(Pm−1/2+it)′(− cos(θ))
Pm−1/2+it(− cos(θ)) ∼

t→+∞
− t

sin(θ) .

The lemma is then proved by taking θ = α in the previous two equivalences and then considering
their quotient. ■

The last proposition tells us that for all α ∈ (0;π), the particular value κσ = −1 belongs to the
critical interval Iα. Indeed, we have shown that −1 is an accumulation point of Iα but since the
latter is a closed subset of R−, it follows that −1 ∈ Iα. In the rest of this paragraph, we are going
to present two key results that will allow us to obtain an explicit expression of Iα. The first result
is given in the following

Proposition 3.4.4. Assume that α ∈ (0;π/2). The critical interval Iα is a subset of [−1; 0].

Proof. It was proved in [50, Theorem 1.6.5], by means of the T-coercivity approach, that when
the contrast κσ does not belong to [−1,−1 − cos(α)

1 + cos(α) ] the problem 2.15 is well-posed. This implies

that Iα ⊂ [−1,−1 − cos(α)
1 + cos(α) ] ⊂ [−1, 0]. ■

The second result that we need in order to obtain an explicit expression of Iα is more involved to
be proved. In fact, as we shall see, it is an adaptation of some of the results obtained by Johan
Helsing and Karl-Mikael Perfekt (see [92]) in the context of the study of the essential spectrum
of the Neumann-Poincaré operator in the case of rotationally symmetric conical points.

Proposition 3.4.5. Assume that α ∈ (0;π/2). Then for all m ∈ N and all t ∈ R, we have

|am(t)| ≤ |a0(0)|.

Proof. Since the function x → (x−1)/(x+1) is increasing in (−1; 0), and thanks to Proposition
3.4.4, it suffices to show that

(am(t) − 1)/(am(t) + 1) ≤ (a0(0) − 1)/(a0(0) + 1).

On the other hand using the same notations of [92], we can write that

(am(t) − 1)/(am(t) + 1) = 1
2π

ˆ +∞

0

ˆ 2π

0
s1/2+ite−imφK(s)dsdφ

in which K(s) is a real valued positive function that is associated to the modal kernel of the
Neumann-Poincaré operator (i.e. associated to the space of functions that have the form u(θ, φ) =
um(θ)e−imφ ∈ H1(S2)) on the infinite cone Wα = {r(sin(α) cos(φ), sin(α) sin(φ), cos(α)); r ∈
R+, φ ∈ (0; 2π)} (see [92, 104] for more details). It is important to note that the positivity of the
function K(s) is a consequence of the convexity of the interior of the cone Wα. As a result one
can easily see that

0 ≤ am(t) − 1
am(t) + 1 ≤ | 1

2π

ˆ +∞

0

ˆ π

0
s1/2+ite−imφK(s)dsdφ|

≤ 1
2π

ˆ +∞

0

ˆ π

0
s1/2K(s)dsdφ = a0(0) − 1

a0(0) + 1 .

which ends the proof. ■

We now have all the needed tools to state the final expression of the critical interval.
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Proposition 3.4.6. [Final expression of the critical interval]Let α ∈ (0;π/2), we have Iα = I0 =
[−1,−a0(0)]. The value of a0(0) is given by

a0(0) = 2F(1/2, 1/2, 1, cos2(α/2)) 2F1(3/2, 3/2, 2, sin2(α/2))
2F1(1/2, 1/2, 1, sin2(α/2)) 2F1(3/2, 3/2, 2, cos2(α/2))

in which 2F1 stands for the Gauss hypergeometric function (see §3.6.2).

Proof. The proposition 3.4.4 tells us that for all m ∈ N, the interval Im is a connected subset of
[−1, 0]. Thanks to Proposition 3.4.3, we can say that for all m ∈ N the interval Im has the form
[−1,−γm] with γm ∈ [0, 1]. This implies that Iα has the form Iα = [−1,−γ] where the value of
γ is given by γ = sup

m∈N
γm. To finish the proof, one has to use the Proposition 3.4.5, to deduce

γ = γ0 = a0(0). Thanks to the results of §3.6.2, in particular the relation (3.19), we find that

a0(0) =
P0

−1/2(cos(α))(P0
−1/2)′(− cos(α))

P0
−1/2(− cos(α))(P0

−1/2)′(cos(α)) = 2F(1/2, 1/2, 1, cos2(α/2)) 2F1(3/2, 3/2, 2, sin2(α/2))
2F1(1/2, 1/2, 1, sin2(α/2)) 2F1(3/2, 3/2, 2, cos2(α/2)) .

■

Remark 3.4.2. When the opening angle α belongs to (π/2;π), the critical interval can be de-
termined by exchanging the roles of Ω1 and Ω2. More precisely, one has Iα = 1/Iπ−α. When
α = π/2, one has Iπ/2 = {−1}.

Using the results of §2.2, in particular Lemma 2.2.4, we obtain the

Lemma 3.4.1. Let α ∈ (0;π/2) and denote by Wα the cone

Wα = {r(sin(α) cos(φ), sin(α) sin(φ), cos(α)); r ∈ R+, φ ∈ (0; 2π)}

. Then the essential spectrum of Neumann-Poincaré operator σess(KWα ,H1/2(Wα)) is positive
and given by

σess(KWα ,H1/2(Wα)) = [0, a0(0) − 1
2(a0(0) + 1)].

The previous results require some comments.

1. Unlike the 2D configuration, for a given contrast κσ ∈ Iα\{−1}, more than two propagating
singularities can exist. In fact, as can be seen in Figure 3.6 and as justified by Proposition
3.4.3, when the contrast κσ approaches −1, the number of propagation singularities that
appear tends to infinity.

2. It can be proved that the critical interval widens as the opening angle α ∈ (0, π/2) gets
smaller. This can be observed from Figure 3.9. In particular, we show that Iα tends to
[−1, 0] as α → 0.

3. As mentioned above, the critical interval is located on one side of the −1. value. This is a
bit surprising compared to the 2D case. The reader may wonder if this is the case for all
smooth conical tips. To the best of our knowledge, this question remains open.
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Figure 3.9: The behaviour of −a0(0) as a function of α ∈ (0;π/2).

3.4.3 On the validity of Assumption 2.6.2 for circular conical tips

We are interested here in the question of the validity of Assumption 2.6.2 in the case of circular
conical tips. Recall that the Assumption 2.6.2 is valid if and only if:

1. All the elements of Λ(Lσ) ∩ ℓ−1/2 are semi-simple.

2. Near any element of Λ(Lσ) ∩ ℓ−1/2, there exits a unique eigenvalue of Lσ+iδ for δ small
enough.

Validity of the first condition

Proposition 3.4.7. Assume that κσ ∈ Iα\{−1} and let λ0 = −1/2+it0 ∈ Λ(Lσ)∩ℓ−1/2. Suppose
that there exists a unique m0 ∈ N such that am0(|t0|) = −κσ. Then, we have the equivalence

λ0 is a semi-simple eigenvalue of Lσ iff ∃φ ∈ Ker (Lσ(λ0)) s.t. t0
ˆ
S2
σ|φ|2 ̸= 0.

Proof. As explained in Remark 3.4.1, we know, under the assumption made on λ0, that ιg(λ0) ≤
2. If ιg(λ0) = 1, the wanted result is a direct application of Lemma 3.2.3. So, let us suppose
that ιg(λ0) = 2 (this implies that m0 ∈ N∗). Thanks to the assumption made on λ0 we in-
fer that A(λ0) = {±m0} (the definition of A(λ0) is given in (3.8)). Moreover, we also know
that ker(Lσ(λ)) = span(um0

1 , um0
2 ) where um0

1 , um0
2 have the form um0

1 (θ, φ) = f(θ)eim0φ, um0
2 =

f(θ))e−im0φ in which f is a real valued function. By observing that
ˆ
S2
σum0

1 um0
2 dω = 0 and

ˆ
S2
σ|um0

1 |2dω =
ˆ
S2
σ|um0

2 |2dω =
ˆ
S2
σ|f |2dω, (3.10)

we infer that for all α, β ∈ C the function φ = αum0
1 + βum0

2 satisfies
ˆ
S2
σ|φ|2dω = (|α|2 + |β|2)

ˆ
S2
σ|f |2dω.

This means that ∃φ ∈ Ker (Lσ(λ0)) s.t. t0
ˆ
S2
σ|φ|2 ̸= 0 ⇐⇒ t0

ˆ
S2
σ|f |2dω ̸= 0. By using Propo-

sition 3.2.1 and owing to (3.10), we obtain the wanted result. ■

As mentioned before, the figure 3.6 shows that the hypothesis of the previous proposition is valid,
but unfortunately we are not able to prove it theoretically. Moreover, the previous result gives
us, then, a very simple way to check if a λ ∈ Λ(Lσ) ∩ ℓ−1/2 is a semi-simple or not. Now, let us
explain how to use the previous proposition in order to find the set J of contrasts κσ for which
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there exists λ ∈ ℓ−1/2 ∩ Λ(Lσ) which is not semi-simple. Given that Iα =
⋃
m∈N

Im, it is enough

to find for each m ∈ N the Jm := J ∩ Im. Since the interval Im corresponds to the range of the
function am and given that for all 0 < t the function

umt (θ, φ) =
{

Pm−1/2+it(− cos(α)) Pm−1/2+it(cos(θ))eimφ if θ ∈ (0;α)
Pm−1/2+it(cos(α)) Pm−1/2+it(− cos(θ))eimφ if θ ∈ (α;π).

(3.11)

belongs to Ker (Lσt(−1/2 + it)) where σt(θ) = 1 for θ < α and σt(θ) = −am(t) for α < θ < π,
we can then write that

Jm = {−am(t) | t ∈ R+, t

ˆ
S2
σt|umt |2dω = 0} = {−am(0)} ∪ {−am(t) | t ∈ R∗

+,

ˆ
S2
σt|umt |2dω = 0}.

For all m ∈ N, we define the function bm : R+ → R such that bm(t) = sign(
ˆ
S2
σt|umt |2dω) for

all t ∈ R+, where the function sign : R → {−1, 0, 1} is such that sign(±x) = ±1 if 0 < ±x and
sign(0) = 0. In Figure 3.10, we display the curves of the functions am, bm for m = 0, . . . , 3 for
α = π/4.
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Figure 3.10: Curves of am (in red) and bm (in blue) for m = 0 (top left), m = 1 (top right),
m = 2 (bottom left) and m = 3 (bottom right).

The approximation of the integral in the expression of the functions bm has been done using the
integral function of MATLAB. What we can take from these results is the following fact: it seems
that for all m ∈ N, the set Jm corresponds to the set {−am(0)} ∪ {−am(t) | 0 < t and a′

m(t) = 0}.
We also notice that for the case m = 0, generalized eigenfunction exits only when κσ = −a0(0)
(which corresponds to one of bounds of I0). For the case m ∈ N the situation seems to be different:
it seems that for all 1 < m eigenvalues (that belong to ℓ−1/2) with generalized eigenfunctions
exist for two particular values of κσ. The first one is when κσ coincides with the opposite of the
minimum of am, this value corresponds to one of the bounds on Im (the other bound is −1). The
second one corresponds to the case κ = −am(0) ∈ I̊m.
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Given that the function am is in fact a function of t2, we infer that for all m ∈ N we have
a′
m(0) = 0. Thus, can then formulate the following conjecture:

Jm = {−am(t) | 0 ≤ t and a′
m(t) = 0} for all m ∈ N.

Unfortunately, we are not able to prove the previous equality (which seems to be true). However,
we succeed in proving the following

Proposition 3.4.8. Assume that κσ ∈ Iα\{−1} and let λ0 = −1/2 + it0 ∈ Λ(Lσ) ∩ ℓ−1/2 such
that there exists a unique m0 ∈ N such that am0(|t0|) = −κσ. Then, we have the implications:

a′
m0(t0) = 0 =⇒ λ0 has generalized eigenfunctions =⇒ ιg(λ0) < ιa(λ0).

Proof. We know that for all 0 ≤ t the function

umt (θ, φ) =
{

Pm−1/2+it(− cos(α)) Pm−1/2+it(cos(θ))eimφ if θ ∈ (0;α)
Pm−1/2+it(cos(α)) Pm−1/2+it(− cos(θ))eimφ if θ ∈ (α;π).

(3.12)

belongs to Ker (Lσt(−1/2+ it)) where σt(θ) = 1 for θ ∈ (0;α) and σt(θ) = −am0(t) for θ ∈ (α;π).
This means that for all v ∈ H1(S2) we haveˆ

S2
σ(t)∇Su

m
t · ∇Svdω + (t2 + 1/4)

ˆ
S2
σ(t)umt vdω = 0

Taking the derivative with respect to t of the previous relation at t0, using the fact that the

derivative of σt at t0 vanishes and since dutm
dt

|t=t0 ∈ H1(S2) (see Remark 3.6.5), we infer that

(ut0m, i
dutm
dt

|t=t0) is Jordan chain of Lσ associated to λ0. ■

The previous proposition shows therefore that for all m ∈ N we have

{−am(t) | 0 ≤ t and a′
m(t) = 0} ⊂ Jm.

Validity of the second condition

Proposition 3.4.9. Assume that κσ ∈ Iα\{−1} and let λ0 = −1/2+it0 ∈ Λ(Lσ)∩ℓ−1/2 such that
there exists a unique m0 ∈ N such that am0(|t0|) = −κσ. Suppose that λ0 is semi-simple. Then,
there exist 0 < r0, δ0 such that for all 0 < |δ| < δ0, the ball B(λ0, r0) contains one eigenvalue of
Lσ+iδ that is semi-simple.

Proof. In the case where λ0 is a simple eigenvalue of Lσ, the result follows from Corollary 3.3.1.
It remains, then (thanks to the assumption made on λ), to study the case when ιa(λ) = ιg(λ) = 2
(in this case we necessarily have m0 ∈ N∗). Let κσ+iδ = (σ2 + iδ)/(σ1 + iδ). Using the Fourier
decomposition and working exactly as in the beginning of §3.4.1, one obtains the same dispersion
relation as in (3.7) where κσ is replaced by κσ+iδ. Given the fact that λ 7→ Pmλ is an analytic
function, one deduces that λ 7→ fm(λ, κσ+iδ) is analytic near λ0 (see Remarque 3.6.3 ). Given
that fm0(λ0, κσ) = 0 and by using the Rouché’s theorem, we can say that there exists 0 < r0, δ0
such that λ 7→ fm0(λ0, κσ) has a solution λδ that belongs to B(λ0, r) for all 0 < |δ| < δ0. Since
the associated eigenfunctions to λδ have the form (θ, φ) 7→ f(θ)e±im0 , they are then independent
and thus ιg(λδ) = 2 for all 0 < |δ| < δ0. Given that ιa(λ0) must be greater or equal to ιa(λδ), we
obtain that ιa(λδ) = 2. This ends the proof. ■

Final conclusion

Thanks to the results proved in the previous two paragraphs and thanks to the numerical results
presented above, we can say that for the case of circular conical tips, Assumption 2.6.2 seems to
be true expect for a discrete set of contrasts for which the energy line ℓ−1/2 contains eigenvalues
of Lσ with generalized eigenvectors.
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3.5 Concluding remarks

In this chapter, we presented a detailed study of the Mellin symbol generated by the scalar problem
(2.2). We proved that all the classical results that we need to apply the Kondratiev theory are
valid. Moreover, we studied the effect of the introduction of a small dissipation on the spectrum
and on the behavior of the eigenfunctions of the perturbed problem. In the particular case of
circular conical tips, the spectrum of Lσ has been characterized by means of a dispersion relation.
Furthermore, in this particular configuration, we investigated the validity of Assumption 2.6.2.
We will conclude this chapter by mentioning that the most important question left unanswered in
this work is about the validity of the Assumptions 2.6.2-2.6.3 in the case of general smooth conical
tip. For this, one needs to have a better understanding of the behavior of the spectrum of Lσ+iδ
and the associated eigenfunctions/ generalized eigenfunctions as δ → 0. Again an interesting
reference that can hep us dealing with this question is the book [138].
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3.6 Appendix

3.6.1 The T-coercivity approach for the anisotropic scalar problem

The main goal of this section is to present a detailed proof of the Lemma 3.1 when the function
g belongs to the space C 2

per[0, 2π] (an example of such configuration is given in Figure 3.11).

Figure 3.11: The red (resp. green) part is filled with a negative (resp. positive) materiel.

As in the case of circular conical tip (g(φ) = α ∈ (0;π)), the proof will be based on the use of
the T-coercivity method, but this time we need to combine it with some localization techniques.
This will make the proof a little bit technical. In order to make its presentation as simple as
possible, we are going to start with the study of a related problem that will help us simplifying
the final proof which will be presented in §3.6.1.

A simplified version of the problem

For all 0 < L, we define the domains ΩL
1 ,ΩL

2 ⊂ R2 such that

ΩL
1 = {(x, y) |x ∈ (0; 2π) and − L < y < 0} and ΩL

2 = {(x, y) |x ∈ (0; 2π) and 0 < y < L}.

Denote by Σ = {(x, y) | y = 0}, the interface between ΩL
1 and ΩL

2 and by ΩL the union of ΩL
1 ,ΩL

2
and Σ. We introduce continuous real valued matrix (resp. scalar) function A : ΩL → M2,2(R)
(resp. µ : ΩL → R). We suppose that A(x, y) (resp. µ(x, y)) is symmetric and positive definite
(resp. positive) for all (x, y) ∈ ΩL. This allows us to endow the spaces L2(ΩL) and H1(ΩL) with
the norms:

∥u∥L2(ΩL) := (
ˆ

ΩL
|u|2µdxdy)1/2 and ∥u∥H1(ΩL) := (

ˆ
ΩL

A∇u · ∇uµdxdy +
ˆ

ΩL
|u|2µdxdy)1/2.

Clearly, endowed with theses norms the spaces L2(ΩL) and H1(ΩL) are of Hilbert type. We finish
this series of notations by introducing a piecewise constant density function σ that is equal to
0 < σ1 in ΩL

1 and is equal to σ2 < 0 in ΩL
2 . The contrast κσ is defined by κσ = σ2/σ1. Now,

we have all the tools to define the linear operator Aσ
t : H1(ΩL) → (H1(ΩL))∗ that is defined as

follows: for all u, v ∈ H1(ΩL) we set

⟨Aσ
t u, v⟩ :=

ˆ
ΩL
σA(x, y)∇u · ∇v µ(x, y)dxdy + t2

ˆ
ΩL
σuv µ(x, y)dxdy.

Because of the sing-change in σ, the operator Aσ
t may be not of Fredholm type. On the other

hand, because of the fact that the matrix valued function A does not coincide with the identity
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matrix, the theory presented in [50] can not be used. Our goal is then to find some conditions
on the contrast κσ, on the function A and on µ under of which Aσ

t is an isomorphism for |t| large
enough. For the case of the functions A and µ, we need to make the following

Assumption 3.6.1. The exists 0 < η0 < L such that the function A−1 and 1/µ are continuous
in Ωη0 .

The main result of this paragraph is given by the following

Theorem 3.6.1. Let 0 < L. Assume that the function A and µ are such that Assumption 3.6.1
is satisfied with 0 < η0 < L. Then for all κσ ̸= −1, there exists 0 < t0 such that for all t0 < |t|
the operator Aσ

t : H1(ΩL) → (H1(ΩL))∗ is an isomorphism. Moreover, we have the estimate

(∥u∥2
H1(ΩL) + t2∥u∥2

L2(ΩL))
1/2 ≤ C∥Aσt (u)∥H1(ΩL)∗ for all u ∈ H1(ΩL)

with C independent of u and t.

The proof of the previous theorem will be done thanks to a succession of two lemmas. Before
getting into details, let us start by recalling some useful results about the classical Euclidean
norm. For all R ∈ M2,2(R), the Euclidean norm of R will be denoted by ρ(R) and is defined by
ϱ(R) =

√
λmax(R tR), in which λmax(R tR) refers to the largest eigenvalue of the matrix R tR.

Note that when R is positive and symmetric, one has ϱ(R) = λmax(R). Furthermore, we have
the following interesting property: for all non-singular symmetric matrices R1, R2 ∈ M2,2(R), we
have the identity

ϱ(R1R2) = ϱ(R2R1). (3.13)

This is true because the matrices R1R
2
2 R1 and R2R

2
1R2 are similar. The first result that we need

is the following

Lemma 3.6.1. Let 0 < η and let u1 ∈ H1(Ωη
1). We define the function u2(x, y) =: u1(x,−y) ∈

H1(Ωη
2). The following estimate

ˆ
Ωη2

A(x, y)∇u2 · ∇u2 µ(x, y)dxdy ≤ Cη
ˆ

Ωη1
A(x, y)∇u1 · ∇u1 µ(x, y)dxdy

holds with Cη = sup
Ωη1

ϱ(A(x,−y)A−1(x, y)µ(x,−y)
µ(x, y) ).

Proof. The first step is to perform the change of variable (x, y) → (x,−y). This transformation
maps Ωη

2 and Ωη
1. Furthermore, one can easily check that the jacobian matrix of this transforma-

tion coincides with the identity matrix. This leads us to write that

I0 :=
ˆ

Ωη2
A(x, y)∇u2 · ∇u2 µ(x, y)dxdy =

ˆ
Ωη1

A(x,−y)∇u1 · ∇u1 µ(x,−y)dxdy

As a result we have

I0 =
ˆ

Ωη1

√
A−1(x, y)A(x,−y)

√
A−1(x, y)

√
A(x, y)∇u1 ·

√
A(x, y)∇u1 µ(x,−y)dxdy

≤ sup
Ωη1

ϱ(
√
A−1(x, y)A(x,−y)

√
A−1µ(x,−y)

µ(x, y)

ˆ
Ωη1

A(x, y)∇u1 · ∇u1 µ(x, y) dxdy

(by means of (3.13)) = sup
Ωη1

ϱ(A(x,−y)A−1(x, y)µ(x,−y)
µ(x, y) )

ˆ
Ωη1

A(x, y)∇u1 · ∇u1 µ(x, y) dxdy.

Note that, above the matrix
√
A(x, y) is defined as the unique positive definite matrix R(x, y) ∈

M2,2(R) satisfying the equation R2(x, y) = A(x, y). ■
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In order to study the behaviour of Cη when η tends to 0, we are going to use the following

Lemma 3.6.2. Let 0 < η0 and let f be a continuous function in Ωη0 then the function F (η) =:
sup
x∈Ωη

f(x) is non-decreasing continuous in [0; η0].

Proof. The fact that F is non-decreasing is obvious. Let η ∈ [0; η0] and (ηn)n∈N be a sequence
of [0; η0] that converges, as n tends to +∞ to η. We will show that F (ηn)n∈N converges to F (η).
To simplify notations, let us denote by Ωn the domain Ωηn . The starting point is to observe that
dH(Ωn,Ωη) the Hausdorff distance between Ωηn and Ωη tends to 0 as n tends to ∞. Since the
function f is continuous in Ωη0 it is then uniformly continuous. This means that for all 0 < ε
there is 0 < δε such that for all x1, x2 ∈ Ωη0 satisfying ∥x1 −x2∥ < δε we have |f(x1)−f(x2)| < ε.
Now take, some x ∈ Ωη and 0 < ε. Since dH(Ωηn ,Ωη) tends to 0 as n tends to ∞, there exists
nε0 ∈ N large enough such that for all nε0 < n the domain Ωn contains an element yn such that
∥x− yn∥ < δε. This implies that for all n0 < n, we have

f(x) ≤ f(yn) + ε =⇒ f(x) ≤ F (ηn) + ε for all nε0 < n.

By letting ε tend to 0 and nε0 to ∞, we deduce that f(x) ≤ lim inf
n→∞

F (ηn) for all x ∈ Ωη. Thus we
obtain the inequality F (η) ≤ lim inf

n→∞
F (ηn). By exchanging the roles of Ωη and Ωn in the previous

reasoning, we get lim sup
n→∞

F (ηn) ≤ F (η). The lemma is then proved. ■

Since, under Assumption 3.6.1, the function (x, y) → ρ(A(x, y)A−1(x,−y)µ(x,−y)/µ(x, y) is
continuous in Ωη for η small enough, the previous Lemma allows us to deduce that Cη tends to 1
when η tends to 0. At this stage, we have all the needed tools to present a clear proof of Theorem
3.6.1.

Proof of Theorem 3.6.1. Let χ be a cutoff function defined in R such that χ(r) = 1 for |r| ≤ 1/2
and χ(r) = 0 for 1 ≤ |r|. For all η ∈ R, we introduce the function χη such that χη(r) = χ(r/η).
Note that for all η ∈ R∗ the function χη is supported in [−|η|, |η|]. From now on, we are going to
assume that 0 < η < L/4, other assumptions on η will be made later. As mentioned previously,
the main idea is to use the T-coercivity method. For this, let us start by introducing the map
T : H1(ΩL) → H1(ΩL) such that for all u ∈ H1(ΩL), we set

T(u)(x, y) = u1(x, y) in ΩL
1

−u2(x, y) + 2χη(y)u1(x,−y) in ΩL
2 .

One, can easily check that for all u ∈ H1(ΩL), the function T(u) belongs also to the space H1(ΩL).
Moreover, we can also check that T(T(u)) = u for all u ∈ H1(ΩL) and then T is bijective. Using
the result of Lemma 3.6.1, one can prove that T(u) is continuous and satisfies the estimate

∥T(u)∥H1(ΩL) ≤ Cη1 ∥u∥H1(ΩL) for all u ∈ H1(ΩL)

with Cη1 independent of u ∈ H1(ΩL). Now, let us fix some u ∈ H1(ΩL)\{0}, and let us compute
⟨Aσ

t u, T (u)⟩. Before getting into that, let us denote by ũ1 ∈ H1(ΩL
1 ) and by χ̃η the functions

defined by ũ1(x, y) = u1(x,−y) and χ̃η(x, y) = χη(−y) for all (x, y) ∈ ΩL
2 . Using these notations,

one finds that

⟨Aσ
t u,T(u)⟩ =

ˆ
ΩL

|σ|A(x, y)|∇u · ∇uµ(x, y)dxdy + t2
ˆ

ΩL
|σ|u|2µ(x, y)dxdy

+2σ2

ˆ
ΩL2

A(x, y)∇u2 · ∇(ũ1χ̃η)µ(x, y)dxdy + 2σ2 t
2
ˆ

ΩL2
u2χ̃η ũµ(x, y)dxdy.
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The next step is to find some upper bounds of the magnitudes of the third and of the last terms
in the previous identity. For that we are going to use the Young’s inequality. For the case of the
fourth term, one finds that for all 0 < a we have

|2
ˆ

ΩL2
u2 χ̃η ũµ(x, y)dxdy| ≤ a

ˆ
ΩL2

|u2|2µ(x, y)dxdy + sη1a
−1

ˆ
ΩL1

|u1|2µ(x, y)dxdy

in which sη1 = sup
(x,y)∈Ωη

µ(x,−y)
µ(x, y) . The third term can be decomposed as

ˆ
ΩL2

A∇u2 · ∇(χηũ)µdxdy =
ˆ

ΩL2
A∇u2 · ∇(χη) ũµdxdy +

ˆ
ΩL2
χηA∇u2 · ∇ũµdxdy

The Young’s inequality tells us that for all 0 < b we have

|2
ˆ

ΩL2
A∇u2 · ∇(χη) ũµdxdy| ≤ b

ˆ
ΩL2

A∇u2 · ∇u2µdxdy + sη2b
−1

ˆ
ΩL1

|u1|2µdxdy

where sη2 = sη1 sup
(x,y)∈Ωη

|A∇χη · ∇χη|. Furthermore, one obtains that for all 0 < c,

|2
ˆ

Ω2

χηA∇u2 · ∇ũ µdxdy| ≤ c

ˆ
Ω2

A∇u2 · ∇u2µdxdy + sη3c
−1

ˆ
Ω1

A∇u1 · ∇u1µdxdy

in which sη3 = Cη where Cη is given in the statement of Lemma 3.6.1. Inserting all theses estimates
in the expression of ⟨Aσ

t u,T(u)⟩, we get

|⟨Aσ
t u,T(u)⟩| ≥ |σ1|

(
(1 − |κσ|sη3c

−1)
ˆ

Ω1

A∇u1 · ∇u1µdxdy + |κσ|(1 − b− c)
ˆ

Ω2

A∇u2 · ∇u2µdxdy

+(t2(1 − sη1|κσ|a−1) − |κσ|sη2b
−1)

ˆ
Ω1

|u1|2µdxdy + |κσ|t2(1 − a)
ˆ

Ω2

|u2|2µdxdy
)
.

According to Lemma 3.6.2, we know that, at least for η small enough, under Assumption 3.6.1
the functions η → sη1, s

η
2, s

η
3 are non-decreasing continuous in Ωη. In the other hand, one can easily

check that s0
3 = s0

1 = 1. This means that if the contrast κσ is such that 1 < |κσ|, there there
exists some 0 < η∗ such that

max(1/sη3, 1/s
η
1) < |κσ| for all η ∈ (0; η∗).

By taking η = η∗/2, a, c ∈ (0; 1) such that the coefficients (1 − |κσ|sη3c
−1) and (1 − sη1|κσ|a−1)

become positive and then by taking b ∈ (0; 1 − c) and t large enough we deduce that there exists
some 0 < t0 such that for all t0 < |t| we have the estimate

∥u∥2
H1(ΩL) + t2∥u∥2

L2(ΩL) ≤ C⟨Aσ
t u,T(u)⟩ for all u ∈ H1(ΩL)

with C independent of u. By recalling the continuity of T, we deduce the wanted result for all
κσ satisfying 1 < |κσ|. The case |κσ| < 1 can be treated, similarly, by exchanging the roles of ΩL

1
and ΩL

2 .
■

Remark 3.6.1.

• Using the the fact that the embedding of H1(ΩL) into L2(ΩL) is compact, one deduces that
when Assumption 3.6.1 is satisfied and when κσ ̸= −1 the operator Aσ0 is a Fredholm operator
of index 0.
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• Since the proof of the Theorem 3.6.1 is based on the use of local reflection with respect to the
interface Σ, one can easily see that if we replace the domain ΩL by ΩL1 ∪ ΩL2 with L1 ̸= Ł2
then its the statement remains true.

• In the particular case when the domain ΩL coincides with the domain (0; 2π)×(0;π) and the
interface Σ is defined by the equation y = α ∈ (0;π) and when the matrix function A and

the scalar function µ are defined by A(x, y) =
(

1/ sin(y) 0
0 1

)
and µ(x, y) = sin(y) (in this

case the Assumption 3.6.1 is valid thanks to the smoothness of the functions (x, y) 7→ sin(y)
and (x, y) 7→ 1/ sin(y) near α ∈ (0;π)) we obtain a proof of Lemma 3.2.1 in the particular
case of circular conical tips (here φ is replaced by x and the variable θ is replaced by y).

Proof of Lemma 3.2.1

Here, we go back to the proof of Lemma 3.2.1 when the function g belongs to the space C 2([0, 2π]).
The starting point is to observe that when we use the classical spherical coordinates (θ, φ) ∈
(0;π) × (0; 2π) to parameterize the unit sphere S2, the expression of ⟨Lσ(λ)u, v⟩ writes

⟨Lσ(λ)u, v⟩ =
ˆ 2π

0

ˆ π

0
σ(φ, θ)A(φ, θ)∇u·∇v µ(φ, θ)dφdθ+λ(λ+1)

ˆ 2π

0

ˆ π

0
σ(φ, θ)uv µ(φ, θ)dφdθ

in which A(φ, θ) =
(

1/ sin(θ)
0 1

)
, µ(φ, θ) = sin(θ),∇ =

(
∂φ
∂θ

)
and σ(φ, θ) =

{
0 < σ1 if θ < g(φ)
σ2 < 0 if g(φ) < θ

.

Using these notations, the norms ∥ · ∥H1(S2) and ∥ · ∥L2(S2) are given by

∥u∥L2(S2) = (
ˆ 2π

0

ˆ π

0
|u(φ, θ)|2µ(θ)dφdθ)1/2,

and
∥u∥H1(S2) = (∥u∥2

L2(S2) +
ˆ 2π

0

ˆ π

0
A(φ, θ)∇u · ∇uµ(φ, θ)dφdθ)1/2.

To simplify notations, we shall denote by Ω1 = {(φ, θ) ∈ (0; 2π)×(0;π) | θ < g(φ)}, Ω2 = {(φ, θ) ∈
(0; 2π) × (0;π) | g(φ) < θ} and by Σ = {(φ, θ) | θ = g(φ)}. For the reader convenience, we will
denote by Ω the union of Ω1, Ω2 and Σ. It is worthy to note that in the topological sense Ω
coincides with S2. Before presenting the final proof, let us recall the definition of the so-called
ε−neighborhood to a curve.

Definition 3.6.1. Let O be a curve in R2 that can be parameterized by a function f : [a, b] → R2

of class C 1. For all 0 < ε, we define Oε = {x ∈ R2 such that d(x,O) < ε}. We say that Oε is an
ε−neighborhood if the following conditions are satisfied:

1. each x ∈ Oε possesses a unique closest point πε(x) in O.

2. the map πε : Oε → O is onto.

In this case, Oε = {(s, t) | (s, t) ∈ [a, b] × (−ε, ε)} in which (s, t) are the curvilinear coordinates
associated to O.

Unfortunately for the case of C 1 curves, the existence of such tubular neighborhood is not guar-
anteed (a counterexample can be constructed by taking the inner parallel curve of the ellipse
(that is not a circle) which passes through the foci3). For the case of C 2 curves, a proof of the
existence of tubular neighborhood can be found in [57, Theorem 3.1.1].

3Details can be found here.

https://mathoverflow.net/questions/401885/tubular-neighborhood-of-a-one-dimensional-c1-curve


95 3.6. Appendix

Final proof of Lemma 3.2.1. Given that the function g is periodic and of class C 2, this means
that there exists a least φ∗ ∈ (0; 2π) such that g′(φ∗) = 0. Without loos of generality, we can
suppose that φ∗ = 0 (or equivalently φ∗ = 2π). Moreover, since g is of class C2, one can find
an L−tubular neighborhood to Σ with some 0 < L. This neighborhood will be denoted by OL.
Using the fact that g′(0) = g′(2π), we infer that OL can be chosen such that OL ⊂ Ω. We denote
respectively by ΩL

1 and by ΩL
2 the domains Ω1 ∩ OL and Ω2 ∩ OL. As in the proof of Theorem

3.6.1, for all 0 < η < L/4 we introduce a smooth cut-off function χη that is supported in [−η, η]
and equal to 1 in [−η/2, η/2]. Now, for all 0 < η < L we introduce the map Tη : H1(Ω) → H1(Ω)
such that for all u ∈ H1(Ω)

Tη(u)(φ, θ) = u1(φ, θ) in Ω1
−u2(φ, θ) + 2Rη(u1)(φ, θ) in Ω2,

where Rη(u1) is defined by Rη(u)(s, t) = χη(t)u1(s,−t) for all (s, t) ∈ ΩL
2 , here (s, t) are the

curvilinear coordinates that are associated to Σ and that are well-defined in ΩL
1 (thanks to its

definition) and Rη(u)(x, y) = 0 for all (x, y) ∈ Ω2\ΩL
2 . One can easily see that the map Tη is

well-defined (this is true because of the continuity of Tη(u) at Σ). Moreover, one can easily check
that for all u ∈ H1(Ω) we have Tη ◦Tη(u) = u and this shows the bijectivity of Tη. The continuity
of Tη can be shown in the same way as in the proof of Theorem 3.6.1. To proceed, take some
t ∈ R and observe that for all u ∈ H1(Ω) we have

⟨Lσ(−1/2 + it)u,Tη(u)⟩ =
ˆ

Ω\ΩL
|σ|A∇u · ∇uµdφdθ + (1/4 + t2)

ˆ
Ω\ΩL

|σ||u|2µdφdθ

+
ˆ

ΩL
σA∇u · ∇Tη(u)µdxdy + (1/4 + t2)

ˆ
ΩL
σuTη(u)µdφdθ.

This means that to prove our claim, we just need to study the behaviour of the second part of
the previous sum (the one in which all the integrals are taken over ΩL). Clearly this fits into
the general problem studied in the previous paragraph, but it is worthy to note that since the
operator Rη is written in local coordinates the Theorem 3.6.1 can not be used directly. To be
able to apply it, we need to write all the integrals over ΩL in local coordinates (s, t). If we denote
by J(s, t) the jacobian matrix of the change of variables that allows to pass form (φ, θ) to (s, t)
in ΩL and by |J(s, t)| its jacobian (this transformation is well-defined thanks to the definition of
ΩL), one can write that for all u ∈ H1(ΩL), we have

ˆ
ΩL
σA∇u · ∇Tη(u)µdφdθ =

ˆ
Ω̂L
σJtAJ∇u · ∇Tη(u)µ|J|dsdt

ˆ
ΩL
σuTη(u)µdxdy =

ˆ
Ω̂L
σuTη(u)µ|J|dsdt

where Ω̂L = {(t, s) ∈ (0; 2π) × (−L;L)}. Since g is of class C 2 the matrix valued function
(s, t) 7→ Jt(s, t)A(s, t)J(s, t) as well as the scalar function (s, t) 7→ µ(s, t)|J(s, t)| are continuous in
Ω̂η for all 0 < η < L. Given that in local coordinates Σ is given by the equation t = 0, a direct
application of Theorem 3.6.1, leads us to say that for all κσ ̸= −1 there exists 0 < t0 that depends
only on κσ and η such that for all t0 < |t| and all u ∈ H1(ΩL) we have the estimate

C(
ˆ

ΩL
A∇u · ∇u)µdxdy + (1/4 + t2)

ˆ
ΩL

|u|2µdxdy) ≤
ˆ

ΩL
σA∇u · ∇Tη(u)µdxdy

+(1/4 + t2)
ˆ

ΩL
σuTη(u)µdxdy.

with 0 < C independent of u. Inserting this in the expression of ⟨Lσ(−1/2 + it)u,Tη(u)⟩, we
arrive to the estimate

C(
ˆ

Ω
A∇u · ∇u)µdxdy + (1/4 + t2)

ˆ
Ω

|u|2µdxdy) ≤ |⟨Lσ(−1/2 + it)u,Tη(u)⟩|
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for all u ∈ H1(Ω) and t0 < |t| with C independent of u. The rest of the proof is the same as in
the case of a circular conical tip. ■

Remark 3.6.2. Clearly the result of Lemma 3.2.1 can be, easily, extended to the following cases:

• When the function g belongs to the space C 1
per([0; 2π]) ∩ PC 2([0; 2π]).4

• When the interface Σ is connected curve of class C 2 (i.e. can be locally parameterized by
C 2 functions).

• More generally, the result holds if Σ is connected curve of class C 1 that has ε−tubular
neighborhood.

3.6.2 Associated Legendre functions

The goal of this section is to recall some of the basic properties of the associated Legendre
functions. Let m ∈ Z and λ ∈ C, the associated Legendre equation of order m and of degree
λ ∈ C writes: Find a function u ̸= 0 such that

d

dx
((1 − x2)du

dx
) + λ(λ+ 1)u− m2

1 − x2u = 0 for all x ∈ (−1; 1). (3.14)

To be more precise, we are interested in the solutions of (3.14) that are bounded near the point
x = 1. As all second order differential equations, the space of solutions of associated Legendre
equation is a vector space of dimension two. At x = ±1 the equation (3.14) degenerates and its
solution may be singular near these points. In general, except in particular situations that will
be specified later, the space of solutions of (3.14) is generated by a pair of linearly independent
functions denoted by Pmλ and Qm

λ and known respectively as the associated Legendre functions
of first (resp. second ) kind. It is important to note that, in the literature, theses functions are
also called Ferrers functions of first ad second kind (see [3]). While the functions Pmλ are known
to have a regular behaviour near the points ±1, the functions Qm

λ are singular near these points
(see the discussion below for more details).
Since the equation (3.14) is unchanged when we exchange m by −m or λ by −λ− 1 one expects
the functions P±m

λ and P±m
−λ−1 (resp. Q±m

λ and Q±m
−λ−1 ) are linearly dependent. In order to

make the presentation of properties of the associated Legendre function as clear as possible, we
shall distinguish two situations: the first one is when λ belongs to Z and the second one is when
λ ∈ C\Z.

The case λ ∈ Z

Before getting into details, for all a, b ∈ Z, we denote by Ja, bK = [a, b] ∩ Z. Clearly, if b < a we
have Ja, bK = ∅. The starting point is the following

Lemma 3.6.3 (Appendix A of [95]). Assume that m ∈ Z.

• If λ ∈ J−|m|,−1K ∪ J0, |m| − 1K, then any solution of (3.14) is unbounded near x = 1.

• When λ ∈ Z\J−|m|,−1K ∪ J0, |m| − 1K the function Pmλ and Qm
λ are well-defined.

• For all m ∈ N and λ ∈ Z\J−m,−1K ∪ J0,m − 1K. Then, we have the relations: Pmλ =
Pm−λ−1,Qm

λ = Qm
−λ−1 and

P−m
λ = (λ−m)!

(λ+m)!P
m
λ ,Q−m

λ = (λ−m)!
(λ+m)!Q

m
λ .

4PC 2([0; 2π]) is the space of piecewise C 2 functions.



97 3.6. Appendix

As a result, we just need to explain how to define the functions Pmλ and Qm
λ for m ∈ N and λ ∈ N

such that m ≤ λ. Let us start by treating the case m = 0. In this particular case the equation
(3.14) is know as the Legendre equation. The functions P0

λ and Q0
λ for λ ∈ N are defined as

follows: for all x ∈ (−1; 1) we have

P0
λ(x) = 1

2λλ!
dλ

dxλ
{(1 − x2)λ},Q0

λ(x) = 1
2λλ!

dλ

dxλ
{(1 − x2)λ log(1 + x

1 − x
)} − 1

2 log(1 + x

1 − x
)P0

λ(x).

When m ∈ N∗ and λ ∈ N\J0,m − 1K, the functions Pmλ and Qm
λ can be defined thanks to the

relations: for x ∈ (−1; 1) we have

Pmλ (x) = (−1)m(1 − x2)m/2 d
m

dxm
P0
λ(x) and Qm

λ (x) = (−1)m(1 − x2)m/2 d
m

dxm
Q0
λ(x).

More explicit formulas to calculate the functions Pmλ and Qm
λ will be given in next paragraph.

The case λ ∈ C\Z

In such configuration, the functions Pmλ and Qm
λ are well-defined for all m ∈ Z. Let us start with

the case of the second kind ones. As mentioned above, the function Qm
λ is singular near x = 1.

This can be seen from the following expansions and identities (see [3]):

Qm
λ (x) ∼

x=1

1
2(−1)m(m− 1)!

( 2
1 − x

)m/2
, Q−m

λ (x) = (−1)mΓ(λ−m+ 1)
Γ(λ+m+ 1)Qm

λ (x) for all m ∈ N\{0}

Q0
λ = − log(1 − x)/2 + bλ +O(x− 1) for all λ ∈ C\Z−, .

Above Γ(z) is the analytic continuation of the classical Euler gamma function which is defined
for z ∈ C\Z (see [3]) and bλ is a constant that depends, only, on λ. For this reason,we shall then
limit ourselves, in the rest of this appendix, to the presentation of the main properties of the
function Pmλ . Classically these functions are defined by using the so-called Gauss hypergeometric
function 2F1. For given complex numbers a, b, c, we define the Gauss hypergeometric function 2F1
such that

2F1(a, b, c, z) =
+∞∑
n=0

(a)n(b)n
(c)n

zn

n! for all z ∈ C such that |z| < 1

where for all complex number y, the Pochhammer symbol (y)n is defined by (y)n =: y(y +
1)(y + 2) . . . (y + n − 1) for n ∈ N∗ and (y)0 = 1. One can also write for all y ∈ C\Z− that
(y)n = Γ(y + n)/Γ(y). It can be shown that, except for this case c ∈ Z− (in the case (c)n = 0 for
n large), the function z 7→ 2F1(a, b, c, z) is well-defined for all z ∈ C satisfying |z| < 1.
For m ∈ N and λ ∈ C\Z the function Pmλ (x) is defined by the following expression:

Pmλ (x) = (λ+ 1)m(−λ)m
2mm! (1 − x2)

m
2 2F1(−λ+m,λ+m+ 1,m+ 1, 1 − x

2 )5. (3.15)

With this in mind, one can immediately see that for all λ ∈ C\Z we have Pmλ = Pm−λ−1. In order
to define the function Pmλ (x) for m ∈ Z−, one has to use the relation

P−m
λ = (−1)mΓ(λ−m+ 1)

Γ(λ+m+ 1)Pmλ = Pmλ
(λ+ 1)m(−λ)m

for all m ∈ N. (3.16)

Remark 3.6.3. Given that for all m ∈ N the map (a, b) 7→ 2F1(a, b,m) is analytic with respect to
a, b ∈ C (see [75, §15.2]) we then deduce that for all m ∈ Z and x ∈ [−1, 1] the map λ 7→ Pmλ (x)
is analytic in C\Z.

5In many references the term (λ+1)m(−λ)m is written differently: (λ+1)m(−λ)m = (−1)mΓ(λ+m+1)/Γ(λ−
m + 1).
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Remark 3.6.4. It is important to note that the relations (3.15)-(3.16) are also valid for the case
λ ∈ Z provided that λ /∈ J−|m|,−1K ∪ J0, |m| − 1K. This explains the presence of the normalization
factor (λ+ 1)m(−λ)m/2mm! in the expression of the function Pmλ .

Let us finish this paragraph with this useful relation that allows us to compute the derivative of
the function Pmλ (x) with respect to x:

d
dxPmλ (x) = mx

1 − x2 Pmλ (x) − 1√
1 − x2

Pm+1
λ (x)

provided that all the functions Pmλ and Pm+1
λ are well-defined. Other useful relations are also

available (see [3, 95]).

Approximations of the first kind associated Legendre functions

Starting from the relations (3.15)-(3.16), one can write a simple code that approximates the func-
tion Pmλ with λ ∈ C and m ∈ Z provided that λ /∈ J−m,−1K ∪ J0,m− 1K. The easiest way to do
that, is to use MATLAB, in which the Gauss hypergeometric function with complex arguments
is already defined. However, for practical purposes (visualization, finite elements approximations,
...), it would be useful to write a C++ program that computes an approximation of these func-
tions. In this case, one has to implement an approximation of the Gauss hypergeometric function
2F1 which is not available in C++. An implementation of the algorithm that approximates the
functions Pmλ for m ∈ Z and λ ∈ C\J−|m|,−1K ∪ J0, |m| − 1K, is as follows:

1 Complex P( Number m, Complex lam , Complex x ){
2 % Compute _2F1(-lam+abs(m),lam+abs(m)+1, abs(m)+1)
3 Complex res1 =1.; if(abs(m) >0){for (int i = 0; i < abs(m); ++i){res=res *(- lam+i)*(

lam +1+i);}}
4 Real tol =1.0e -9; Complex a=-lam+abs(m),b=lam+abs(m)+1,c=abs(m)+1, term=a*b*x/c,

value =1.+ term;
5 Number n=1;
6 while (abs(term)>tol){ a=a+1, b=b+1, c=c+1, n=n+1; term= (term*a*b*x)/(c*n);value

+= term ;} value=value*pow (1-x*x,m/2);if(m <0) res1 =1/ res1; return value ;}

Note that the previous code was implemented using the C++ library Xlife++.

The case of conical (or Mehler) functions

Conical functions are a particular class of the associated Legendre functions. More precisely, they
correspond to the particular case when the degree λ has the form λ = −1/2 + it with t ∈ R. For
the same reasons as above, we shall restrict ourselves to the case of first kind ones. Since for all
t ∈ R we have −1/2 + it ∈ C\Z, it follows that the functions x 7→ Pm−1/2+it(x) are well-defined for
all t ∈ R. Moreover, one can easily check that for all t ∈ R the function x 7→ Pm−1/2+it(x) admits
the representation (see [146])

Pm−1/2+it(x) =

m∏
k=1

(t2 + (2k − 1)2/4)

2mm! 2F1(1/2 +m+ it, 1/2 +m− it,m+ 1, 1 − x

2 ). (3.17)

This implies that these functions are real-valued and positive for all x ∈ [−1; 1]. In addition to
that, it can be seen that for all t ∈ R, we have

Pm−1/2+it = Pm−1/2−it. (3.18)

Using the results of the previous paragraph, one can say that for all m ∈ Z and t ∈ R we have
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d
dxPm−1/2+it (x) = mx

1 − x2 Pm−1/2+it (x) − 1√
1 − x2

Pm+1
−1/2+it (x) for all x ∈ [−1; 1].

This implies in particular that

d
dxP0

−1/2+it (x) = − 1√
1 − x2

P1
−1/2+it (x) for all x ∈ [−1; 1]. (3.19)

Remark 3.6.5. Taking the derviative of the relation (3.17) with respect to t, one can see that

the function x 7→
dPm−1/2+it

dt (x) is analytic.
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4.1 Introduction

In the present chapter, we study the numerical approximation of the scalar problem with sign-
changing coefficients. To fix ideas, consider Ω a domain (an open connected subset) of Rd,
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d ∈ {2, 3}, formed by the union of two disjoint subdomains Ω1, Ω2 that are separated by an
interface Σ (see Figure 4.1 for an example). We assume that ∂Ω, ∂Ω1, ∂Ω2 and Σ are Lipschitz
regular.

Ω2

Ω1

Σ

α

Figure 4.1: Example of geometry.

We also introduce a piecewise constant function ε such that ε = ε1 > 0 in Ω1 and ε = ε2 < 0 in
Ω2. The contrast κε is defined by κε := ε2/ε1 < 0. For a given source term f ∈ L2(Ω), we consider
the problem

Find u ∈ H1
0(Ω) such that − div(ε∇u) = f ∈ L2(Ω). (4.1)

The equivalent variational formulation to (4.1) writes

Find u ∈ H1
0(Ω) such that

ˆ
Ω
ε∇u · ∇v =

ˆ
Ω
fv, ∀v ∈ H1

0(Ω). (4.2)

Because of the change of sign of ε, the well-posedness of this problem does not fit into the classical
theory of elliptic PDEs and it can be ill-posed. On the other hand, one can show that for large
or small contrasts, Problem 4.2 is T-coercive, i.e. there exists an operator T : H1

0(Ω) → H1
0(Ω)

such that (u, v) 7→
´

Ω ε∇u · ∇(T(v)) is coercive, and then it is well-posed. For the case of
polygonal interfaces, the construction of such operator T is based on the use of local geometrical
transformations (such as reflections, rotations, ...) near the interface.
The implementation of a general conforming finite element methods to discretize (4.2) leads us
to consider the problem

Find uh ∈ Vh(Ω) such that
ˆ

Ω
ε∇uh · ∇vh =

ˆ
Ω
fvh, ∀vh ∈ Vh, (4.3)

where Vh(Ω) is a well-chosen subspace H1
0(Ω). Even in the case where (4.2) is T-coercive, one

can not guaranty that Problem (4.3) is also T-coercive. Indeed, it may happen that for some
vh ∈ Vh(Ω), there holds T(vh) /∈ Vh(Ω). To overcome this difficulty, an interesting idea is to
try to construct meshes such that the approximation spaces Vh(Ω) are stable by operators T for
which Problem (4.2) is T-coercive. This type of meshes are called T-conforming meshes. Such
an approach has been investigated in [147, 49, 45]. It works quite well but presents two main
drawbacks:

• The construction of well-suited meshes for curved interfaces, interfaces with corners or 3D
interfaces is not an easy task [45].

• Sometimes the operator T for which the problem is T-coercive is constructed by abstract
tools and therefore is not explicit. In these situations, one cannot find adapted meshes.

Two first alternatives have been proposed. The first one, presented in [51], consists in adding
some dissipation to the problem (considering ε + iδ instead of ε in (4.2) where δ depends on
the meshsize). The second one is developed in [119] and is based on the use of mesh refinement
techniques. The essential limitation of these two approaches is that, for interfaces with general
shapes, the convergence can not be assured for all contrasts for which Problem (4.2) is well-posed.



Chapter 4. An optimal control-based numerical method for scalar transmission
problems with sign-changing coefficients 102

A new technique relying on the use of an optimal control reformulation has been introduced in
[1]. It is proved to be convergent for general meshes (that respect the interface) as soon as the
exact solution of (4.1) belongs to the space PHs(Ω) := {u |u|Ω1 ∈ Hs(Ω1) and u|Ω2 ∈ Hs(Ω2)}
with s > 3/2. Unfortunately, this regularity condition is not always satisfied, especially when Σ
has corners in 2D or conical points in 3D.

In this chapter, we present a new strategy which relies on the use of a different optimal control
reformulation and which converges without any restriction neither on the mesh (the interface
simply needs to coincide with edges of the mesh) nor on the regularity of the exact solution. This
method is inspired by the smooth extension method that was used (without proof of convergence)
in [73] to approximate the solution of some classical scalar transmission problems.

The chapter is organized as follows. In Section 4.2, we start by giving a detailed description
of the problem. Then we explain how to derive an equivalent optimal control reformulation.
Section 4.4 is dedicated to the study of some basic properties of the optimization problem and
its regularization. The proposed numerical method and the proof of its convergence are given in
Section 4.5. Our results are illustrated by some numerical experiments in Section 4.6. Finally we
give a few words of conclusion and discuss some possible extensions.

4.2 Main assumption on ε and reformulation of the problem

Introduce the bounded operator Aε : H1
0(Ω) → (H1

0(Ω))∗ such that

⟨Aεu, v⟩ =
ˆ

Ω
ε∇u · ∇v, ∀u, v ∈ H1

0(Ω).

Obviously if Aε is an isomorphism then Problem (4.1) is well-posed in the Hadamard sense. In
this chapter, we shall work under the following

Assumption 4.2.1. Assume that ε is such that Aε is an isomorphism and that the source term
f in (4.1) belongs to L2(Ω).

As we have seen in the first chapter of this thesis, the previous assumption is satisfied when the
contrast κε does not belong to the critical interval that will be denoted by IΣ. The expression of
this interval in general is not known analytically, except for particular geometries like symmetric
domains, simple 2D interface with corners, simple 3D interfaces with circular conical tips..., but
can be approximated numerically.

Remark 4.2.1. In Problem (4.1), we consider homogeneous Dirichlet boundary conditions. Let
us mention that the results below extend quite straightforwardly to other situations, for example
with Neumann or Robin-Fourier boundary conditions which can be homogeneous or not.

To introduce the method, we start by writing an equivalent version of (4.1) in which the unknown
u ∈ H1

0(Ω) is splitted into two partial unknowns defined in Ω1 and Ω2. To do so, we observe
that since f ∈ L2(Ω), the solution u of (4.1) is such that the vector field ε∇u belongs to the
space H(div,Ω) = {u ∈ (L2(Ω))d such that div(u) ∈ L2(Ω)}. Consequently, the pair of functions
(u|Ω1 , u|Ω2) satisfies the problem

Find (u1, u2) ∈ V1(Ω1) × V2(Ω2) such that
−ε1∆u1 = f1 =: f|Ω1

−ε2∆u2 = f2 =: f|Ω2

∂nu1 = κε∂nu2 and u1 = u2 on Σ
(4.4)

in which n stands for the unit normal vector to Σ oriented to the exterior of Ω1 and

V1(Ω1) := {u ∈ H1(Ω1), u = 0 on ∂Ω1\Σ}, V2(Ω2) := {u ∈ H1(Ω2), u = 0 on ∂Ω2\Σ}.
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On the other hand, one can check that if (u1, u2) is a solution of (4.4), then the function u
defined by u|Ωj = ui for j = 1, 2 solves (4.1). The equations satisfied by u1 and u2 are elliptic
but they are coupled by the transmission conditions on Σ. As a consequence, we cannot solve
them independently. The purpose of the next paragraph is to explain how to proceed to write
an alternative formulation (an optimization-based one), which can be solved via an iterative
procedure such that at each step one has to solve a set of elliptic problems.

4.3 The smooth extension method for the scalar transmission
problem

The smooth extension method was proposed in [79] and can be considered as a special case of the
fictitious domain methods (see [11]). It has been adapted to study the classical scalar transmission
problem, i.e. with constant sign coefficients, in [73]. In this section, we explain how to apply it
to our problem. In order to make the presentation as simple as possible, we start with a formal
presentation of the technique, and then we will make things more rigorous.

4.3.1 Formal presentation of the smooth extension method

The idea behind the smooth extension method is the following: instead of looking for (u1, u2) ∈
V1(Ω) × V2(Ω2) solution of (4.4), we search for a pair of functions (ũ, u2) ∈ H1

0(Ω) × V2(Ω) such
that (ũ|Ω1 , u2) is the solution of (4.4). The function ũ is then a particular continuous extension
of u1 to the whole domain Ω. The difficulty is to find a good way to define the function ũ. In
particular, we have to describe the equation satisfied by ũ in Ω2. Formally, the idea of the smooth
extension method is to extend the equation satisfied by u1 to the whole domain Ω. More precisely,
the idea is to suppose that the function ũ satisfies the problem

−ε1∆ũ = f11Ω1 + ℓ1Ω2

in which ℓ is a function to determine so that (ũ|Ω1 , u2) solves (4.4). If one finds a way to compute
such a ℓ, since the problem that relates ℓ to ũ is elliptic, the function ũ can be be approximated
by the classical FEM. After that, the function u2 can be then approximated by solving the
problem satisfied by u2 in Ω2 completed by ũ|Σ (resp. κ−1

ε ∂nũ|Σ) as a Dirichlet (resp. Neumann)
boundary condition on Σ which is also elliptic. Note that at first sight, neither the existence nor
the construction of such ℓ are clear. This will be done thanks to an optimal control reformulation
of (4.4). This is the main goal of the next paragraph in which we also reformulate the idea
presented above in a more rigorous way.

4.3.2 An optimal control reformulation of the problem

For ℓ ∈ (V2(Ω2))∗, introduce uℓ the uniquely defined function satisfying the problem

Find uℓ ∈ H1
0(Ω) such that ε1

ˆ
Ω

∇uℓ · ∇v =
ˆ

Ω1

f1v + ℓ(v|Ω2), ∀v ∈ H1
0(Ω).

Clearly the function uℓ1 =: uℓ|Ω1
∈ V1(Ω1) is such that −ε1∆uℓ1 = f1 in Ω1. This is the equation

satisfied by u1 in (4.4). Using this and an integration by parts, for all v2 ∈ V2(Ω2), we obtain

⟨ε1∂nu
ℓ, v2⟩ = −ε1

ˆ
Ω2

∇uℓ · ∇v2 + ℓ(v2).

Now, assume that one finds ℓ∗ ∈ (V2(Ω2))∗ for which uℓ∗1 coincides with u1 (the solution of (4.4))
in Ω1. Then the function u2 can be deduced either by using uℓ∗1 |Σ or κ−1

ε ∂nu
ℓ∗
1 |Σ as a Dirichlet or

as Neumann trace of u2 on Σ. More precisely, if one uses κ−1
ε ∂nu

ℓ∗
1 |Σ as a Neumann boundary data



Chapter 4. An optimal control-based numerical method for scalar transmission
problems with sign-changing coefficients 104

for u2 on Σ, the problem satisfied by u2 writes: Find u2 ∈ V2(Ω2) such that for all v2 ∈ V2(Ω2),
we have

ε2

ˆ
Ω2

∇u2 · ∇v2 =
ˆ

Ω2

f2v2 − ⟨ε1∂nu
ℓ∗ , v2⟩ =

ˆ
Ω2

f2v2 − ℓ∗(v2) + ε1

ˆ
Ω2

∇uℓ∗ · ∇v2.

Obviously, the previous problem is well-posed. This leads us to define for all ℓ ∈ (V2(Ω2))∗ the
(well-posed) problem: Find (uℓ, uℓ2) ∈ H1

0(Ω) × V2(Ω2) such that

ε1

ˆ
Ω

∇uℓ · ∇v =
ˆ

Ω1

f1v + ℓ(v|Ω2) ∀v ∈ H1
0(Ω)

ε2

ˆ
Ω2

∇uℓ2 · ∇v2 =
ˆ

Ω2

f2v2 − ℓ(v2) + ε1

ˆ
Ω2

∇uℓ · ∇v2 ∀v2 ∈ V2(Ω2).
(4.5)

Using the optimal control terminology, the previous equation plays the role of the state equation
in which ℓ is the control function and ℓ∗ (that we are looking for) is the optimal control. In order
to write an optimal control reformulation of our problem, it remains to find an adapted objective
(or cost) function. To do so, the starting point is the following

Proposition 4.3.1. For ℓ ∈ (V2(Ω2))∗, the functions uℓ1 and uℓ2 are such that

−ε1∆uℓ1 = f1 in Ω1

−ε2∆uℓ2 = f2 in Ω2

∂nu
ℓ
1 = κε ∂nu

ℓ
2 on Σ.

Proof. Take φ1 ∈ C ∞
0 (Ω1) and extend it by 0 to the whole Ω to obtain the function φ ∈ C ∞

0 (Ω).
Take v = φ in the problem satisfied by uℓ. One finds that −ε1∆uℓ1 = f1 in Ω1. Next, take some
φ2 ∈ C ∞

0 (Ω2), extend it by 0 in Ω1 and denote by φ the new function. By taking v = φ in the
problem satisfied by uℓ and v2 = φ2 in the problem satisfied by uℓ2 one finds that

ε1

ˆ
Ω2

∇uℓ · ∇φ2 = ℓ(φ2) and ε2

ˆ
Ω2

∇uℓ2 · ∇φ2 =
ˆ

Ω2

f2φ2 − ℓ(φ2) + ε1

ˆ
Ω2

∇uℓ · ∇φ2.

By considering the sum of the two formulations, we conclude that −ε2∆uℓ2 = f2 in Ω2. To end
the proof, it remains to show that ∂nuℓ = κε∂nu

ℓ
2. To do so, taking v2 = v|Ω2 for an arbitrary

v ∈ H1
0(Ω) in (4.5), integrating by parts in both formulations and then, using the equations

satisfied by uℓ1 and uℓ2, we infer that

−⟨ε1∂nu
ℓ
1, v⟩ = −⟨ε2∂nu

ℓ
2, v⟩, v ∈ H1

0(Ω).

This gives ε1∂nu
ℓ
1 = ε2∂nu

ℓ
2 on Σ and ends the proof. ■

Thus the introduction of an auxiliary control function ℓ ∈ (V2(Ω2))∗ allows us to construct pseudo-
solutions of the equation (4.4) for which the condition on the normal derivatives is automatically
satisfied. However we do not have in general continuity of the field at the interface. Taking this
into account, we get the

Lemma 4.3.1. If there exists ℓ∗ ∈ (V2(Ω2))∗ such that the solution of (4.5) satisfies uℓ∗|Σ = uℓ
∗

2 |Σ,
then (uℓ∗1 , u

ℓ∗
2 ) solves (4.4).

The existence of such ℓ∗ is the subject of the following

Lemma 4.3.2. There exists ℓ∗ ∈ (V2(Ω2))∗ such that the solution of (4.5) satisfies uℓ∗|Σ = uℓ
∗

2 |Σ.
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Proof. We proceed by construction, i.e. we find ℓ∗ ∈ (V2(Ω2))∗ for which the condition uℓ
∗

|Σ =
uℓ

∗
2 |Σ is satisfied. Since by assumption Problem (4.1) is uniquely solvable, the functions u1 and
u2 are well-defined. The function u2 can be seen as a continuous extension of u1 to the domain
Ω2. Moreover, one can check that u the solution of (4.1) satisfies the problem

ε1

ˆ
Ω

∇u · ∇v =
ˆ

Ω1

f1v + ε1

ˆ
Ω2

∇u2 · ∇v − ε1⟨∂nu1, v⟩ ∀v ∈ H1
0(Ω)

ε2

ˆ
Ω2

∇u2 · ∇v2 =
ˆ

Ω2

f2 v2 + ε1⟨∂nu1, v2⟩ ∀v ∈ V2(Ω2).

Now, by observing that the linear form ℓ∗ defined by

ℓ∗(v2) = ε1

ˆ
Ω2

∇u2 · ∇v2 − ε1⟨∂nu1, v2⟩ ∀v2 ∈ V2(Ω)

is continuous, we obtain the desired result. ■

Remark 4.3.1. As pointed out in [73] for the classical transmission problem, the optimal function
ℓ∗ (for which uℓ∗|Σ = uℓ

∗
2 |Σ) is not unique. Indeed, if one denotes by E(u1) ∈ H1

0(Ω) any continuous
extension of the function u1 to Ω2, one can show that (E(u1), u2) satisfies the problem

ε1

ˆ
Ω

∇E(u1) · ∇v =
ˆ

Ω1

f1v + ε1

ˆ
Ω2

∇E(u1) · ∇v − ε1⟨∂nE(u1), v⟩ ∀v ∈ H1
0(Ω)

ε2

ˆ
Ω2

∇u2 · ∇v2 =
ˆ

Ω2

f2 v2 + ε1⟨∂nE(u1), v2⟩ ∀v ∈ V2(Ω2).

The linear form ℓ∗ ∈ (V2(Ω2))∗ defined by

ℓ∗(v2) = ε1

ˆ
Ω2

∇E(u1) · ∇v2 − ε1⟨∂nu1, v2⟩ ∀v2 ∈ V2(Ω2) (4.6)

can be then considered as another optimal function. This implies that the set of optimal functions
ℓ∗ ∈ (V2(Ω2))∗ is infinite. More precisely, we observe that the set of optimal functions ℓ∗ is in
bijection with the set of continuous extensions of u1 ∈ V1(Ω1) to a function of H1

0(Ω).

Now, we have all the tools to write an equivalent optimal control formulation to (4.4). To do
that, it suffices to observe that since uℓ1|Σ, u

ℓ
2|Σ ∈ H1/2(Σ) ⊂ L2(Σ) and by means of Lemma 4.3.1

we can say that ℓ∗ is an optimal control if and only if ∥uℓ∗1 − uℓ
∗

2 ∥2
L2(Σ) = 0. This allows us to say

that ℓ∗ is an optimal control if and only if it solves the problem

Find ℓ∗ ∈ (V2(Ω2))∗ solution of


min

ℓ∈(V2(Ω2))∗

1
2

ˆ
Σ

|uℓ1 − uℓ2|2dσ

where (uℓ, uℓ2) is the solution of (4.5).
(4.7)

Regarding what we have proved previously, it follows the

Corollary 4.3.1. Problem (4.7) has an infinite number of solutions.

Since V2(Ω2) is a Hilbert space, the Riesz representation theorem guarantees that for any element
ℓ ∈ (V2(Ω2))∗, there is a unique wℓ ∈ V2(Ω2) such that

ℓ(v) =
ˆ

Ω2

∇wℓ · ∇v ∀v ∈ V2(Ω2).

Then the optimal control problem (4.7) can be reformulated in the following way

Find w∗ ∈ V2(Ω2) solution of min
w∈V2(Ω2)

J(w) with J(w) = 1
2

ˆ
Σ

|uw1 − uw2 |2dσ, (4.8)
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where (uw, uw2 ) ∈ H1
0(Ω) × V2(Ω2) is the solution of the problem (the state equation)

ε1

ˆ
Ω

∇uw · ∇v =
ˆ

Ω1

f1v +
ˆ

Ω2

∇w · ∇v ∀v ∈ H1
0(Ω),

ε2

ˆ
Ω2

∇uw2 · ∇v2 =
ˆ

Ω2

f2v2 + ε1

ˆ
Ω2

∇uw · ∇v2 −
ˆ

Ω2

∇w · ∇v2 ∀v2 ∈ V2(Ω2).
(4.9)

The objective of this section is then achieved. The next step is to propose a discretization of
the problem based on FEM and to study its convergence. Before that, we have to prepare the
ground and present some basic properties of the above problem which will help us to prove the
convergence of the proposed discretization method.

As we have seen previously, the minimization problem (4.8) has an infinite number of solutions.
Therefore, a regularization method may be necessary in order to propose a convergent discretiza-
tion. For that, we will work in §4.4.4 with the classical Tikhonov regularization of Problem (4.8).
This will guide our intuition in the construction of a convergent numerical method.

4.4 Basic properties of the optimization problem and its regu-
larization

In this section, we focus our attention on the properties of the cost function J. In addition, we
compute in §4.4.3 an explicit expression for the derivative of J with respect to w. In the process,
we give useful properties of the set of minimizers of J.

4.4.1 Properties of the objective function

The fact that we have used the L2(Σ) norm instead of the H1/2(Σ) norm in the definition of J
allows us to get the following compactness result.

Lemma 4.4.1. Let (wn) be a sequence of elements of V2(Ω2) that converges weakly to w0 ∈
V2(Ω2). Then, (J(wn)) converges to J(w0).

Proof. For all n ∈ N, denote by (un, un2 ) ∈ H1
0(Ω) × V2(Ω) the solution of (4.9) with w = wn.

From the ellipticity of the problems involved in (4.9), it follows that (un) (resp. (un2 )) converges
weakly in H1

0(Ω) (resp. V2(Ω2)) to some u ∈ H1(Ω) (resp. u2 ∈ V2(Ω2)) such that (u, u2) is the
solution of (4.9) with w = w0.
The continuity of the trace operator from H1(Ω) to H1/2(Σ) implies that un|Σ − un2 |Σ converges
weakly to u|Σ − u2|Σ in H1/2(Σ). Given that the embedding of H1/2(Σ) into L2(Σ) is compact,
un|Σ −un2 |Σ converges strongly to u|Σ −u2|Σ in L2(Σ). Thus (J(wn)) converges to J(w0). The result
is proved. ■

A direct consequence of the previous Lemma is the following

Lemma 4.4.2. The function J is continuous and convex on V2(Ω2).

Proof. While the continuity is a direct consequence of the previous lemma, the convexity follows
from the fact that J : V2(Ω2) → R is the composition of the affine map j1 : V2(Ω2) → L2(Σ) and
of the convex map j2 : L2(Σ) → R such that for all w ∈ V2(Ω2), g ∈ L2(Σ)

j1(w) = (uw − uw2 )|Σ where (uw, uw2 ) ∈ H1
0(Ω) × V2(Ω2) is the solution of (4.9)

j2(g) = 1
2

ˆ
Σ

|g|2dσ.
(4.10)

■
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4.4.2 The set of minimizers of the function J

As explained above, the set of minimizers of the functional J , denoted by MJ , is infinite. More
precisely, one can check the equivalence

w∗ ∈ MJ if and only if J(w∗) = 0.

This allows us to prove the

Lemma 4.4.3. MJ is a closed and convex subset of V2(Ω).

Proof. Clearly MJ coincides with the set of zeros of J . Since J : V2(Ω2) → R is continuous,
we infer that MJ is closed. The convexity of MJ is a direct consequence of the positivity and
convexity of J. ■

As a direct result of the previous lemma, we can say that the following minimization problem:

min
w∈MJ

∥∇w∥2
L2(Ω2) (4.11)

has a unique solution (this is a consequence of the strict convexity of ∥∇ · ∥2
L2(Ω2) and of the fact

that MJ is a closed subset of V2(Ω2)). In the following, we shall denote by w∗
J the solution of

(4.11), i.e. the smallest minimizer of the function J. By definition, we know that for all w ∈ MJ ,
the function uw ∈ H1

0(Ω) is a continuous extension of the u1 (the restriction of the solution of
(4.1) to Ω1). In particular, this means that for all w1, w2 ∈ MJ we have uw1

|Ω1
= uw2

|Ω1
. Our next

goal is to find a simple characterization of uw∗
J .

On the smallest minimizer of J

We already know that for any w ∈ V2(Ω2), the function uw satisfies

ε1

ˆ
Ω

∇uw · ∇v =
ˆ

Ω1

fv +
ˆ

Ω2

∇w · ∇v ∀v ∈ H1
0(Ω).

This means that that for all w1, w2 ∈ V2(Ω2) we have

ε1

ˆ
Ω

∇(uw1 − uw2) · ∇v =
ˆ

Ω2

∇(w1 − w2) · ∇v ∀v ∈ H1
0(Ω).

Using the fact that for all w1, w2 ∈ MJ , we have uw1
|Ω1

= uw2
|Ω1

we then obtain

ε1

ˆ
Ω2

∇(uw1
2 − uw2

2 ) · ∇v2 =
ˆ

Ω2

∇(w1 − w2) · ∇v2 ∀v2 ∈ V2(Ω), (4.12)

in which for j = 1, 2, we set uwj := uw|Ωj . Note that, for all w1, w2 ∈ MJ the function uw1
2 − uw2

2
belongs to H1

0(Ω2). To proceed, we denote by EH(u1) ∈ H1
0(Ω) the continuous harmonic extension

of u1. In particular, the function EH(u1)|Ω2 satisfies

∆EH(u1)|Ω2 = 0 in Ω2 and EH(u1) = u1 on Σ.

To this particular extension of u1, we can introduce a unique wH ∈ MJ such that EH(u1) = uwH

(see Remark 4.3.1). More precisely, the functions wH can be defined as the unique solution of
the well-posed problem: Find wH ∈ V2(Ω2) such that

ˆ
Ω2

∇wH · ∇v2 = ε1

ˆ
Ω2

∇EH(u1) · ∇v2 − ε1⟨∂nu1, v2⟩ ∀v2 ∈ V2(Ω2).
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In particular, we have ˆ
Ω2

∇wH · ∇v2 = 0 ∀v2 ∈ H1
0(Ω2). (4.13)

By taking v2 = wH , w1 = wh and w2 = w∗
J ∈ MJ in (4.12) and by making use of (4.13) we obtain

ˆ
Ω2

∇(wH − w∗
J) · wH = 0.

This shows, by means of the Cauchy-Schwarz lemma, that ∥∇wH∥L2(Ω2) ≤ ∥∇w∗
J∥L2(Ω2) and

then, thanks to the definition of w∗
J , we infer that w∗

J = wH . This leads us to state the following

Proposition 4.4.1. The function w∗
J coincides with wH and uw∗

J = EH(u1).

4.4.3 Gradient of the function J

As indicated in the introduction of this chapter, the main objective of this work is to propose a
new numerical method for approximating the solution of (4.1). This method will be based on the
numerical approximation of the solution of the optimization problem (4.8). In this section, we
will explain how to obtain an explicit expression of J ′(w) the gradient of J at some w ∈ V2(Ω).
The starting point is to explain why the function J is differentiable. Again, this is the con-
sequence of the fact that J can be written as a composition of the two differentiable maps j1
(which is differentiable because it is an affine map) and j2 (which is differentiable thanks to the
differentiability of the square of the L2(Σ) norm) that are defined in (4.10). Since the function J
is scalar valued, its differential at any w ∈ V2(Ω2) is then a continuous linear form ℓw on V2(Ω2).
By means of the Riesz representation theorem, ℓw can be represented by a unique element of
V2(Ω2), this element will be denoted by J ′(w) and is defined as follows:

For all h ∈ V2(Ω2), we have
ˆ

Ω2

∇J ′(w) · ∇h = lim
t→0

J(w + th) − J(w)
t

= ℓw(h).

Given the fact that J = j2 ◦ j1, the natural idea to compute J ′(w), for all w ∈ V2(Ω2), is to use
the chain rule formula. For this, we need to start by computing the derivative of w → uw and of
w → uw2 (where (uw, uw2 ) is the solution of (4.9)) with respect to w ∈ V2(Ω2). The differential of
these maps will be denoted by

duw

dw
∈ L(V2(Ω2),H1

0(Ω)) and duw2
dw

∈ L(V2(Ω2),V2(Ω)).

Without any difficulty, one can check that for any h ∈ V2(Ω2) we have

duw

dw
(h) = ũh and duw2

dw
(h) = ũh2

where (ũh, ũh2) ∈ H1
0(Ω) × V2(Ω2) is the unique solution of the well-posed system of equations:

ε1

ˆ
Ω

∇ũh · ∇v =
ˆ

Ω2

∇h · ∇v ∀v ∈ H1
0(Ω),

ε2

ˆ
Ω2

∇ũh2 · ∇v2 = ε1

ˆ
Ω2

∇ũh · ∇v2 −
ˆ

Ω2

∇h · ∇v2 ∀v2 ∈ V2(Ω2).
(4.14)

Note that since w → uw and w → uw2 are affine maps, for all w, h ∈ V2(Ω2) we have the relation

uw+h = uw + duw

dw
(h) = uw + ũh and uw+h

2 = u2
w + duw2

dw
= u2

w + ũh2 .

Using these notations, and the fact that J is the composition of j1 and j2, we obtain the following
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Proposition 4.4.2. For all w, h ∈ V2(Ω2), we have
ˆ

Ω2

∇J ′(w) · ∇h =
ˆ

Σ
(ũh − ũh2)(uw − uw2 )dσ.

where (uw, uw2 ) and (ũh, ũh2) are the solutions to (4.9) and (4.14) respectively.

Proof. Let t ∈ R be a damping parameter. Thanks to direct calculus, for all w, h ∈ V2(Ω2) one
finds that

J(w + th) = 1/2
ˆ

Σ
|uw+th − uw+th

2 |2 dσ = 1/2
ˆ

Σ
|uw − uw2 + t(ũh − ũh2)|2 dσ.

As a result, we obtain

J(w + th) = J(w) + t

ˆ
Σ

(ũh − ũh2)(uw − uw2 )dσ + o(t).

The lemma is then proved. ■

The expression J ′(w) that we have obtained above, is not explicit. A more elegant way to get a
simpler expression of J ′(w) was proposed in [73]. The idea is based on the use of more general
theory called the adjoint approach that was introduced in [47], and that allows us to compute
the gradient of objective functions that depends in non-explicit way of the main variable of the
problem, but via the solution of PDE (the state equations) in which the main variable plays the
role of a parameter. Here, we are going to explain how to apply this method to our case. The
idea is to introduce a Lagrangian function L : V2(Ω2) × H1

0(Ω) × V2(Ω2) × H1
0(Ω) × V2(Ω2) → R

such that
L (w, u, u2, λ, λ2) = 1

2

ˆ
Σ

|u− u2|2 dσ + a1(w, u, λ) + a2(w, u, u2, λ2)

in which a1(w, u1, λ) and a2(w, u2, λ2) are given by

a1(w, u, λ) = ε1

ˆ
Ω

∇u · ∇λ−
ˆ

Ω1

fλ−
ˆ

Ω2

∇w · ∇λ

a2(w, u, u2, λ2) = ε2

ˆ
Ω2

∇u2 · ∇λ2 −
ˆ

Ω2

f2λ2 − ε1

ˆ
Ω2

∇u · ∇λ2 +
ˆ

Ω2

∇w · ∇λ2.

The functions λ ∈ H1
0(Ω), λ2 ∈ V2(Ω2) are called the adjoint variables associated to u, u2 re-

spectively. It will be useful to observe that when (u, u2) coincides with (uw, uw2 ) (the solution of
(4.9)), we have

L (w, uw, uw2 , λ, λ2) = J(w) ∀λ ∈ H1
0(Ω), λ2 ∈ V2(Ω2). (4.15)

Clearly, the function L is differentiable with respect to all its variables. In what follows, for all
(w, u, u2, λ, λ2) ∈ V2(Ω2) × H1

0(Ω) × V2(Ω2) × H1
0(Ω)) × V2(Ω2), the partial derivative of L with

respect to the variable w, u, u2, λ, λ2 are denoted, respectively, by

∂L

∂w
,
∂L

∂u
,
∂L

∂u2
,
∂L

∂λ
and ∂L

∂λ2
.

They belong, respectively, to the spaces (V2(Ω2))∗,(H1
0(Ω))∗,(V2(Ω2))∗, (H1

0(Ω))∗ and (V2(Ω2))∗.
As a result, for a fixed λ ∈ H1

0(Ω) and λ2 ∈ V2(Ω2), by taking the derivative of the relation (4.15)
with respect to w, we can say, by applying the chain rule formula, that for all h ∈ V2(Ω2) we
have,

⟨J ′(w), h⟩ = ⟨∂L

∂w
(w, uw, uw2 , λ, λ2), h⟩ + ⟨∂L

∂u
(w, uw, uw2 , λ, λ2), du

w

dw
(h)⟩

+⟨∂L

∂u2
(w, uw, uw2 , λ, λ2), du

w
2

dw
(h)⟩
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or equivalently,

⟨J ′(w), h⟩ = ⟨∂L

∂w
(w, uw, uw2 , λ, λ2), h⟩ + ⟨∂L

∂u
(w, uw, uw2 , λ, λ2), ũh⟩ + ⟨∂L

∂u2
(w, uw, uw2 , λ, λ2), ũh2⟩

where (ũh, ũh2) is defined by (4.14).

Now, suppose that we find (λw, λw2 ) for which the equations

∂L

∂u
(w, uw, uw2 , λw1 , λw2 ) = 0 and ∂L

∂u2
(w, uw, uw2 , λw1 , λw2 ) = 0

are satisfied for all w ∈ V2(Ω2), this will implies that

J ′(w) = ∂L

∂w
(w, uw, uw2 , λw1 , λw2 ) ∀w ∈ V2(Ω2).

To investigate the existence of such functions, we need to write down, for an arbitrary (λ, λ2) ∈
H1

0(Ω) × V2(Ω2), the expression of

∂L

∂u
(w, uw, uw2 , λ, λ2) and ∂L

∂u2
(w, uw, uw2 , λ, λ2).

By a direct calculus, we find, for all w, λ2 ∈ V2(Ω2), λ ∈ H1
0(Ω),

⟨∂L

∂u
(w, uw, uw2 , λ, λ2), v⟩ = ε1

ˆ
Ω

∇λw · ∇v − ε1

ˆ
Ω2

∇λw2 · ∇v +
ˆ

Σ
(uw − uw2 )v ∀v ∈ H1

0(Ω)

⟨∂L

∂u2
(w, uw, uw2 , λ, λ2), v2⟩ = ε2

ˆ
Ω2

∇λw2 · ∇v2 −
ˆ

Σ
(uw − uw2 )v2 ∀v ∈ V2(Ω2).

As a consequence, the functions λw and λw2 that we are looking for, must satisfy the following
system of equations:

ε1

ˆ
Ω

∇λw · ∇v = ε1

ˆ
Ω2

∇λw2 · ∇v −
ˆ

Σ
(uw − uw2 )v ∀v ∈ H1

0(Ω)

ε2

ˆ
Ω2

∇λw2 · ∇v2 =
ˆ

Σ
(uw − uw2 )v2 ∀v2 ∈ V2(Ω2).

(4.16)

Clearly the previous system of equations is well-posed. Therefore the function λw, λw2 are well-
defined. Note that, in the literature (see [73, 47]), the previous equations are known as the adjoint
system. To summarize, we have the

Lemma 4.4.4. For all w ∈ V2(Ω2), there holds J ′(w) = λw2 − λw1 |Ω2
, where λw, λw2 are given by

Equation (4.16).

Proof. Take w ∈ V2(Ω2). From the definition of λw and λw2 , we deduce that for all h ∈ V2(Ω2),
we have

⟨∇J ′(w), h⟩ = ⟨∂L

∂w
(w, uw, uw2 , λw1 , λw2 ), h⟩.

Now, let us compute explicitly the value of ⟨∂L

∂w
(w, u, u2, λ, λ2), h⟩ for any u, u2, λ, λ2. Easily, one

finds that
⟨∂L

∂w
(w, u, u2, λ, λ2), h⟩ =

ˆ
Ω2

∇h · ∇(λ2 − λ|Ω2).

This shows that J ′(w) = λw1 |Ω2
− λw2 and then the result is proved. ■

We have the following optimality result
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Corollary 4.4.1. We have the equivalence

[w∗ ∈ V2(Ω2) is such that J ′(w∗) = 0
]

⇐⇒ w∗ ∈ MJ .

Proof. Let us start with the proof of the direct implication. Suppose that there exists some
w∗ ∈ V2(Ω2) such that λw∗

|Ω2 = λw
∗

2 . By taking the sum of the variational formulations of (4.16),
we deduce that ˆ

Ω
ε∇λw∗ · ∇v = 0 ∀v ∈ H1

0(Ω).

This means Aε(λw
∗) = 0 and then, thanks to Assumption 4.2.1, λw∗ = 0. This implies that

λw
∗

2 = 0 and then by using the second equation of (4.16), that uw∗ = uw
∗

2 on Σ. This shows that
w∗ is a minimizer of J. The reverse implication is a consequence of the fact that if w∗

2 ∈ MJ we
have J(w∗) = 0 and then uw

∗ = uw
∗

2 on Σ. This implies that λw∗
2 = 0 and that λw∗ = 0. ■

We end this paragraph with the following result that can be useful to prove the convergence of
the classical gradient descent algorithm.

Corollary 4.4.2. The function J ′ : V2(Ω2) → V2(Ω2) is Lipschitz continuous.

Proof. Starting from (4.9), we deduce that w 7→ uw, w 7→ uw2 are Lipschitz continuous. Inserting
this into (4.16), we obtain the result. ■

4.4.4 Tikhonov regularization of the problem

Tikhonov regularization, which was originally introduced in [137], is a classical method to regular-
ize a convex optimization problem. Classically, this method is used in the context of regularization
of ill-posed inverse problems (see [76] and the references therein). In this paragraph, we study
the convergence of such regularization when it is applied to our problem. For δ > 0, we introduce
the functional Jδ : V2(Ω2) → R defined by

Jδ(w) = J(w) + δ∥∇w∥2
L2(Ω2) ∀w ∈ V2(Ω2).

Since J is convex and δ > 0, the functional Jδ is strictly convex and coercive. Therefore the
minimization problem

min
w∈V2(Ω2)

Jδ(w)

has a unique solution that we denote by w∗
δ . Our goal is to study the behaviour of w∗

δ as δ tends
to zero. One may expect that w∗

δ converge to one of the solutions (4.8). If this is the case and
because the problem (4.8) has an infinite number of solutions, it will be interesting to characterize
the particular solution to which w∗

δ converges. Our findings are given in the following

Proposition 4.4.3. The sequence (w∗
δ ) converges when δ → 0 to w∗

J the smallest minimizer of
J.

Proof. From the definition of w∗
δ , we can write that

δ∥∇w∗
δ∥L2(Ω2) ≤ Jδ(w∗

δ ) ≤ Jδ(w∗
J) = J(w∗

J) + δ∥∇w∗
J∥L2(Ω2) = δ∥∇w∗

J∥L2(Ω2).

This means that for all 0 < δ, there holds ∥∇w∗
δ∥L2(Ω2) ≤ ∥∇w∗

J∥L2(Ω2). As a result (w∗
δ ) is

bounded in V2(Ω2). This implies that, up to a sub-sequence, (w∗
δ ) converges, as δ tends to 0,

weakly in V2(Ω2) to some w0 ∈ V2(Ω2). For the reader convenience, this sequence is also denoted
by (wδ). Now, let us prove that w0 is a minimizer of J. To do that, we start by observing that for
all δ > 0, we have

0 ≤ J(w∗
δ ) ≤ Jδ(w∗

δ ) ≤ Jδ(w∗
J) = δ∥∇w∗

J∥2
L2(Ω2).
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This shows that (J(w∗
δ )) converges to zero as δ tends to zero. On the other hand, by using the

result of Lemma 4.4.1, we know that (J(w∗
δ )) converges to J(w0). Consequently, J(w0) = 0 and

then w0 is a minimizer of J .
The next step is to show that the convergence of (w∗

δ ) to w0 occurs in the strong sense and that
w0 = w∗

J . To do so, we observe that

∥∇w∗
δ∥L2(Ω2) ≤ ∥∇w∗

J∥L2(Ω2) =⇒ lim sup
δ→0

∥∇w∗
δ∥L2(Ω2) ≤ ∥∇w∗

J∥L2(Ω2)

w∗
δ ⇀ w0 in V2(Ω2) =⇒ ∥∇w0∥L2(Ω2) ≤ lim inf

δ→0
∥∇w∗

δ∥L2(Ω2)
1.

This implies that ∥∇w0∥L2(Ω2) ≤ ∥∇w∗
J∥L2(Ω2). Thanks to the definition of w∗

J , we deduce that
w0 = w∗

J .
With this in mind and with the help of the previous inequality, we conclude that

lim
δ→0

∥∇w∗
δ∥L2(Ω2) = ∥∇w∗

J∥L2(Ω2).

Since V2(Ω2) is a Hilbert space, it follows (see [40, Proposition III.30]) that wδ → w∗
J in V2(Ω2).

By noticing that w∗
J is independent of the considered sub-sequence, the result is then proved. ■

In conclusion, we can say that the Tikhonov regularization allows us to obtain a stabilized version
of the optimization problem (4.8). This will be used in order to introduce a stabilization of the
finite element discretization of the problem (4.8), but in that case the stabilization parameter δ
must be chosen as a function of the meshsize. This will be detailed in §4.5.3. Note that the same
idea was employed in [2].

4.5 Numerical discretization of the problem

In this part, we are concerned with the numerical approximation of (4.8) by means of the Finite
Elements Method. To do so, we start by presenting some details and notations about the sequence
of meshes that will be used.

4.5.1 Mesh assumptions

Assumption 4.5.1. Let T be a regular (see [55]) mesh of Ω composed by triangles (resp. tetra-
hedrons) when d = 2 (resp. d = 3). We suppose that

• each element of T belongs either to Ω1 or to Ω2.

• T does not have any hanging node on Σ: each vertex v of T that belongs to Σ, is a common
vertex between T1, T2 ∈ T such that T1 ⊂ Ω1 and T2 ⊂ Ω2. See Figure 4.2.

Let (Th)h>0 be a family of meshes of Ω such that Th satisfy Assumption 4.5.1 for all h > 0. The
subscript h stands for the meshsize. For all k ∈ N∗, we set

Vk
h(Ω) := {u ∈ H1

0(Ω) |u|T ∈ Pk(T ) for all T ∈ Th}.

Here Pk(T ) stands for the space of polynomials (of d variables) of degree at most equal to k. In
the same way, we define the spaces Vk

i,h(Ω1), i = 1, 2, such that

Vk
i,h(Ωi) := {u ∈ H1(Ωi) |u|T ∈ Pk(T ) for all T ∈ Th and u = 0 on ∂Ωi\Σ}.

Remark 4.5.1. Since for all h > 0 the mesh Th is conforming to Σ, the space Vk
i,h(Ωi) coincides

with {u|Ωi , u ∈ Vk
h(Ω)}, i ∈ {1, 2}.

1This is a consequence of the fact that the norm of a Banch space is weakly lower semicontinuous.
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Figure 4.2: Examples of meshes without (left) and with (right) hanging nodes.

4.5.2 Discretization strategy

For h > 0 and w ∈ V2(Ω), define the functions uwh ∈ Vk
h(Ω) and uw2,h ∈ Vk

2,h(Ω2) as the solutions
to the following well-posed problems:

ε1

ˆ
Ω

∇uwh · ∇vh =
ˆ

Ω1

fvh +
ˆ

Ω2

∇w · ∇vh , ∀vh ∈ Vk
h(Ω)

ε2

ˆ
Ω2

∇uw2,h · ∇v2,h =
ˆ

Ω2

f2v2,h + ε1

ˆ
Ω2

∇uw1 · ∇v2,h −
ˆ

Ω2

∇w · ∇v2,h, ∀v2,h ∈ Vk
2,h(Ω2).

(4.17)
Then introduce the projection operator πkh : V2(Ω2) → Vk

2,h(Ω2) such that for all w ∈ V2(Ω2),
πkh(w) is defined as the unique element of Vk

2,h(Ω2) that satisfies the problem
ˆ

Ω2

∇πkh(w) · ∇v2,h =
ˆ

Ω2

∇w · ∇v2,h ∀v2,h ∈ Vk
2,h(Ω2).

Note that we have the estimate

∥∇πkh(w)∥L2(Ω2) ≤ ∥∇w∥L2(Ω2). (4.18)

From the definition of πh(w), one can easily see that for all w ∈ V2(Ω2) we have the identities

u
πkh(w)
h = uwh and u

πkh(w)
2,h = uw2,h. (4.19)

Now, let us turn our attention to the discretization of the optimization problem (4.8). The natural
way to do that is to replace it by the problem

inf
wh∈Vk2,h(Ω2)

Jh0 (wh) := 1
2

ˆ
Σ

|uwh − uwh2 |2 dσ. (4.20)

One can proceed as in the proof of Lemma 4.4.2 to show that the objective function Jh0 : Vh,k → R
(defined in (4.20)) is convex and continuous. Unfortunately this result is not sufficient to justify
that the problem (4.20) is well-posed for h > 0 small enough.
The difficulty comes from the fact that, even under Assumption 4.2.1, we do not have the discrete
version of Lemma 4.3.2 since we can not guaranty that the problem

Find uh ∈ Vk
h(Ω) such that

ˆ
Ω
σ∇uh · ∇vh =

ˆ
Ω
fvh ∀vh ∈ Vk

h(Ω)
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is well-posed even for h small enough. To cope with this difficulty, an idea is to use the Tikhonov
regularization approach (see §4.4.4) but with a regularization parameter that depends on h. This
idea was originally proposed in [86] for the case of elliptic equations and then, was used by Assyr
Abdulle et al. in [2] for the case of problems with sign-changing coefficients. Here, we explain
how to adapt it to our case. The idea is to replace the objective function Jh0 in (4.20) by the
function Jh : Vk

2,h(Ω2) → R+ such that for all wh ∈ Vk
2,h(Ω2), we have

Jh(wh) := 1
2

ˆ
Σ

|uwh − uwh2 |2 dσ + λ(h)∥∇wh∥2
L2(Ω2)

, where λ(h) is a positive function of h that tends to zero as h goes to 0. Since λ(h) > 0 for
all h > 0, the function Jh is strictly convex and coercive. This guarantees that the optimization
problem

min
wh∈Vk2,h(Ω2)

Jh(wh) (4.21)

has a unique solution that we denote by w∗
k,h. All the difficulty now is to choose the function λ(h)

in order to be able to ensure the convergence of (w∗
k,h) to a solution of (4.8) as h tends to zero.

This is the main goal of the next paragraph.

4.5.3 Convergence of the method

The starting point of our discussion is the following

Lemma 4.5.1. We have the estimate

Jh(w∗
k,h) ≤ 1

2

ˆ
Σ

|uw
∗
J

h − u
w∗
J

2,h|2 dσ + λ(h)∥∇w∗
J∥2

L2(Ω2) (4.22)

where w∗
J is defined in (4.11).

Proof. Starting from the fact that πkh(w∗
J) ∈ Vk

2,h(Ω2) and using that w∗
k,h is the unique solution

of the optimization problem (4.21), we conclude that Jh(w∗
k,h) ≤ Jh(πh(w∗

J)). On the other hand,
the identity (4.19) allows us to write

Jh(πkh(w∗
J)) = 1

2

ˆ
Σ

|uw
∗
J

h − u
w∗
J

2,h|2 dσ + λ(h)∥∇πh(w∗
J)∥2

L2(Ω2).

The Lemma is then proved by recalling the estimate (4.18). ■

In order to simplify notations, for h > 0 and w ∈ V2(Ω2), we denote by Ah(w) the real number

Ah(w) = 1
2∥uwh − uw2,h∥2

L2(Σ).

From (4.19), we know that for all w ∈ V2(Ω2), we have Ah(w) = Jh0 (πkh(w)). The main result of
this paragraph is the following theorem.

Theorem 4.5.1. Assume that the function λ(h) can be chosen such that the sequences (λ(h))
and (Ah(w∗

J)/λ(h)) converge to zero as h tends to zero. Then,

• the sequence (w∗
k,h) converges, as h → 0, in V2(Ω2) to w∗

J .

• The sequences (u
w∗
k,h

h ) and (u
w∗
k,h

2,h ) converge respectively in H1
0(Ω) and V2(Ω2) to EH(u1)

and u2 where (u1, u2) is the solution of (4.4) and EH(u1) is the harmonic extension of u1.
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Proof. The strategy of proof is similar to the one of Proposition 4.4.3. To simplify notations,
we denote by uk,h ∈ Vk

h(Ω) and uk,h2 ∈ Vk
2,h(Ω2) the functions

uk,h = u
w∗
k,h

h and uk,h2 = u
w∗
k,h

2,h .

In order to make the proof as clear as possible, we divide it into four steps.
Step 1: weak convergence of (w∗

k,h), (uk,h) and (uk,h2 ). Starting from the estimate

∥∇w∗
k,h∥2

L2(Ω2) ≤ Jh(w∗
k,h)/λ(h) ≤ Ah(w∗

J)/λ(h) + ∥∇w∗
J∥2

L2(Ω2)

and using the fact that Ah(w∗
J)/λ(h) tends to 0 as h vanishes, we infer that (w∗

k,h) is bounded in
V2(Ω2). This implies that, up to a sub-sequence, (w∗

k,h) converges weakly to some w0 ∈ V2(Ω).
For the reader convenience, this sub-sequence is still denoted by (w∗

k,h).
Since the problem (4.17) is elliptic, we know that the sequence (uk,h) (resp. (uk,h2 )) converges
weakly in H1

0(Ω) (resp. in V2(Ω2)) to some u ∈ H1
0(Ω) (resp. u2 ∈ V2(Ω2)). Using the density

of Vk
h(Ω) (resp. Vk

2,h(Ω2)) in H1
0(Ω) (resp.V2(Ω2)), we infer that u = uw0 and u2 = uw0

2 (these
functions are defined in (4.9) by replacing w by w0).
Step 2: w0 is a mnimizer of J . The compactness of the embedding H1/2(Σ) ⊂ L2(Γ) and the
continuity of trace operator, ensures that

uk,h|Σ − uk,h2 |Σ → uw0 − uw0
2

in L2(Σ) as h → 0. By noticing that

1
2

ˆ
Σ

|uk,h − uk,h2 |2 dσ = Jh0 (w∗
k,h) ≤ Jh(w∗

k,h) ≤ λ(h)(Ah(w∗
J)/λ(h) + ∥w∗

J∥2
L2(Ω2))

and using that λ(h),Ah(w∗
J)/λ(h) → 0 as h goes to zero, we deduce that uw0 − uw0

2 = 0. This
shows that w0 is a minimizer of J.
Step 3: strong convergence of (w∗

k,h) to w∗
J . Thanks to the fact that Ah(w∗

J)/λ(h) → 0 as
h → 0 and by means of the estimate

∥∇w∗
k,h∥2

L2(Ω2) ≤ Jh(w∗
k,h)/λ(h) ≤ Ah(w∗

J)/λ(h) + ∥∇w∗
J∥2

L2(Ω2),

We can write
lim sup
h→0

∥∇w∗
k,h∥L2(Ω2) ≤ ∥∇w∗

J∥L2(Ω2).

On the other hand, since (w∗
k,h) converges weakly to w0 as h → 0, we infer that

∥∇w0∥L2(Ω2) ≤ lim inf
h→0

∥∇w∗
k,h∥L2(Ω2).

This implies that ∥∇w0∥L2(Ω2) ≤ ∥∇w∗
J∥L2(Ω2). Since w0 is a minimizer of J, we conclude that

w0 = w∗
J . Furthermore, we also deduce that

lim
h→0

∥∇w∗
k,h∥L2(Ω2) = ∥∇w0∥L2(Ω2).

As a result, by applying [40, Proposition III.30], we infer that (w∗
k,h) converges, strongly, in

V2(Ω2) to w0 = w∗
J .

Step 4: strong convergence of (uk,h) and (uk,h2 ). The ellipticity of Problem (4.17), combined
with the strong convergence of (w∗

k,h) to w∗
J , imply the convergence of (uk,h) in H1

0(Ω) to uw∗
J and

of (uk,h2 ) in V2(Ω2) to uw
∗
J

2 .
The Lemma is then proved by using that uw∗

J = EH(u1) (see Proposition 4.4.1) and by observing
that these limits are independent of the chosen sub-sequences.

■
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The rest of this paragraph is devoted to explain why it is possible to choose the function λ(h) in
such a way that λ(h) and Ah(w∗

J) converge to 0 as h tends to 0. To do so, one needs to study the
behaviour of Ah(w∗

J) as h tends to 0. For all s ≥ 1, we denote by PHs(Ω) the space

PHs(Ω) := {u ∈ H1
0(Ω) such that u|Ωi ∈ Hs(Ωi) for i = 1, 2}.

Before studding the behavior of Ah(w∗
J), let us start with the following

Proposition 4.5.1. Assume that the solution u of (4.1) belongs to PH1+s(Ω) with s > 0. Then
there exists s ≥ s′ > 0 that depends only on the geometry of Ω2 and σ ∈ (0, 1] that depends only
on the geometry of Ω such that

∥uw∗
J − u

w∗
J

h ∥H1
0(Ω) ≤ Chp

′∥u∥PH1+p′ (Ω) and ∥uw
∗
J

2 − u
w∗
J

2,h∥V2(Ω2) ≤ Chp
′∥u2∥H1+p′ (Ω2),

∥uw∗
J − u

w∗
J

h ∥L2(Ω) ≤ Chp
′+σ∥u∥H1+p′ (Ω) and ∥uw

∗
J

2 − u
w∗
J

2,h∥L2(Ω2) ≤ Chp
′+σ∥u2∥H1+p′ (Ω2)

with C independent of h and p′ = min(s′, k).
Proof. Along this proof, C denotes a positive constant whose value can change from line to
line but does not depend on h. Given that uw∗

J = EH(u1) (see Proposition 4.4.1) and since
u1 ∈ H1+s(Ω1) then, by means of classical regularity results, we can say that there exists 0 < s′ ≤ s

such that uw∗
J ∈ PH1+s′(Ω). Given that uw

∗
J

2 = u2 ∈ Hs(Ω2) ⊂ Hs′(Ω2) and since the problem
(4.17) is elliptic, we obtain the estimates (see [55])

∥uw∗
J − u

w∗
J

h ∥H1
0(Ω) ≤ Chp

′∥u∥PH1+p′ (Ω) and ∥uw
∗
J

2 − u
w∗
J

2,h∥V2(Ω2) ≤ Chp
′∥u2∥H1+p′ (Ω2).

By applying the classical Aubin–Nitsche Lemma (see [55, Theorem 3.2.4]), we infer that there
exists 0 < σ ≤ 1 such that

∥uw∗
J − u

w∗
J

h ∥L2(Ω) ≤ Chp
′+σ∥u∥H1+p′ (Ω) and ∥uw

∗
J

2 − u
w∗
J

2,h∥L2(Ω2) ≤ Chp
′+σ∥u2∥H1+p′ (Ω2).

■

Remark 4.5.2. It is worth to note that the value of s′ depends only on the regularity of the
harmonic extension of the function u1. In particular, if Ω2 is smooth or convex then we have
s′ = s.

Now we have all the tools to study the behavior Ah(w∗
J) as h vanishes.

Proposition 4.5.2. Assume that u the solution of (4.1) belongs to PH1+s(Ω) with 0 < s. There
exists 0 < s′ ≤ s that depends only on the geometry of Ω2 and σ ∈ (0, 1] that depends only on the
geometry of Ω such that

Ah(w∗
J) ≤ Ch2p′+σ

with C independent of h and p′ = min(s′, k).
Proof. Applying the multiplicative trace inequality (Proposition 4.8.1) and using the estimates
of Proposition 4.5.1 yield the estimates

∥uw∗
J − u

w∗
J

h ∥2
L2(Σ) ≤ Ch2p′+σ∥u∥PH1+p′ (Ω) and ∥uw

∗
J

2 − u
w∗
J

2,h∥2
L2(Σ) ≤ Ch2p′+σ∥u2∥H1+p′ (Ω2).

By observing that

∥uw
∗
J

h − u
w∗
J

2,h∥2
L2(Σ) ≤ 2(∥uw∗

J − u
w∗
J

h ∥2
L2(Σ) + ∥uw

∗
J

2 − u
w∗
J

2,h∥2
L2(Σ)),

we conclude that Ah(w∗
J) ≤ Ch2p′+σ. ■

The previous proposition gives us a simple way to choose the function λ(h) in order to ensure
that (λ(h)) and (Ah(w∗

J)/λ(h)) tend both to 0 as h tends to 0.
Proposition 4.5.3. Any function λ(h) of the form λ(h) = Chq with C > 0 independent of h
and 0 < q < 2p′ + σ satisfies the conditions of Theorem 4.5.1.
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4.6 Numerical experiments

In this section we turn our attention to the validation of the numerical method that we have
proposed. We limit ourselves to the case of 2D domains. The numerical results that we present
below have been obtained using the library FreeFem++2. To solve the optimization problem
(4.21), we used the BFGS function of FreeFem++.
Since the well-posedness of (4.1) depends on the shape of the interface Σ, we test the performance
of our method in three different configurations. In the first one, Σ is flat, in the second one, Σ is
circular interface and in the last one, Σ has a corner.

4.6.1 Flat interface

In this paragraph, we take

Ω1 = {(x, y) ∈ (0; 1/2) × (0; 1)} and Ω2 = {(x, y) ∈ (1/2; 1) × (0; 1)}

(a flat interface and a domain which is symmetric with respect to Σ). We consider a mesh
sequence of Ω satisfying Assumption 4.5.1 (see Figure 4.3).

Figure 4.3: An example of mesh.

It has been shown in particular with the T-coercivity approach that Aε is an isomorphism if and
only if κε ̸= −1. In the rest of this paragraph we suppose that κε ̸= −1. To test the performance
of our method, we work with the same example considered in [2, 51]. Define the function uκε
such that

uκ(x, y) =
{

(x2 + bx) sin(πy) if x < 1/2
a(x− 1) sin(πy) if 1/2 < x

, where a = 1
2(κε + 1) and b = − κε + 2

2(κε + 1) .

and consider it as an exact solution of (4.1). This is possible because div(ε∇uκ) ∈ L2(Ω). The
source term f is computed accordingly. Since uκ ∈ PH2(Ω) and since Ω2 is convex, we can take
s = s′ = 1 in Propositions 4.5.1 and 4.5.2.
Furthermore, given that Ω is convex, we have σ = 1. As a result, if we use the Lagrange P1
finite elements, i.e. p = 1, a direct application of Proposition 4.5.1 guarantees that by choosing
λ(h) = Chq with 0 < q < 3, the method is convergent. In our experiment, we take λ(h) = 0.002h2.
We work with two values of contrasts κε = −2 and κε = −1.001. The behavior of the L2 and H1

0
errors with respect to the exact solution in theses two configurations are given in Figure 4.4.
We observe that in both situations, the method is of order 2 in the L2 norm. We also remark that
the order of convergence in the H1

0 norm is greater than 1. In the particular case κε = −1.001,
we note a super-convergence in the H1

0 norm.

2See https://freefem.org/.

https://freefem.org/
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Remark 4.6.1. The constant C in λ(h) = Chq must be adjusted by the user according to the con-
trast κε in order to obtain a fast convergence of the method. Clearly this depends on ∥∇w∗

j∥L2(Ω2).
When the solution is such that its normal derivative jump across the interface is large (his the
case when κε approaches −1), one expects that ∥∇w∗

j∥L2(Ω2) must be large and then C must be
chosen small. It is also important to note that that when h is small enough the choice of C does
not affect the convergence of the method.
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Figure 4.4: Behavior of the relative L2 and H1
0 errors with respect to the meshsize h ∼

√
N . Here

N is the total number of nodes of the mesh.

4.6.2 The case of a circular interface

In this paragraph, we consider the case where the domains Ω1 and Ω2 are such that Ω1 = {x ∈
R2 | |x| < 1} and Ω2 = {x ∈ R2 | 1 < |x| < 2}. In Proposition 4.8.2, we prove that Aε is an
isomorphism κε /∈ {−1} ∪ S with S := {−(1 − (1/2)2n)/(1 + (1/2)2n) | n ∈ N∗}. For this we
shall limit ourselves to the case where κε = −2. Given that both Ω2 and Ω are smooth, we infer
that σ = 1 and s′ = s. Again, we are going to work with the Lagrange P1 finite elements (i.e.
p = 1). By taking f as the source term associated to the function

uκε(x, y) =
{
r2 + b if r < 1
a(r − 2)2 if 1 < r < 2.

, with r =
√
x2 + y2, a = −1/κε and b = a− 1

and by taking λh = 0.002h2. We obtain the results displayed in Figure 4.5. We observe that the
method converges with optimal rate.
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Figure 4.5: A member of the mesh sequence (left). The behavior of the L2 and H1
0 errors with

respect to the meshsize h ∼
√
N where N is the number of nodes of the mesh(right).

4.6.3 The case of an interface with corner

Now, we consider the configuration where the interface Σ has a corner. More precisely, we assume
that Ω := {x ∈ R2 ||x| < 1 and arg(x) ∈ (0;π/2)} and Ω1 := {x ∈ Ω | arg(x) ∈ (0;π/4)} (see
Figure 4.6). In such configuration, it can be proved (see [74]) that Aε is an isomorphism if and
only if κε ∈ R∗

−\[−3,−1]. Furthermore, in contrary to the two previous cases, in this configuration
the solution of (4.1) can be very singular near the origin. Indeed, it was proved in [49, Chapter
2] that the regularity of the solution of (4.1) depends in κε and can be very low as κε approaches
[−3,−1]. To be more complete, one can show that the optimal regularity of the solution of (4.1)
is PH1+ℜe(λ0)(Ω) ∩ H1

0(Ω) where λ0 is the solution of

κε = − tan(3λπ/4)/ tan(λπ/4) (4.23)

that has the smallest positive real part. Note that one can show (see [49, Chapter 3]) that all
the solutions to (4.23) are real-valued. In the particular case where κε = −5, one finds that
λ0 ≈ 0.458. As mentioned previously this regularity result is optimal. Indeed, one can check that
the function

uλ0(r, θ) := (1 − r)rλ0

{
sin(λθ)/ sin(λπ/4) θ ∈ (0;π/4),
sin(λ(π − θ))/ sin(3λπ/4) θ ∈ (π/4;π)

satisfies div(ε∇uλ) ∈ L2(Ω). Observe that uλ0 /∈ PHλ0+γ for all 0 < γ. This means that uλ0 /∈
PH3/2. Now, given that Ω and Ω2 are both convex, owing to Proposition 4.5.1, we can say that
by choosing λh = Chq with q < 3λ0, the convergence of the method can be guaranteed. The
behaviors of the relative L2 error and of the semi-H1

0 one for the case λh = h1.3 are given in Figure
4.6. The expected rate of convergence is equal to λ0 ≈ 0.458 for the case of the semi-H1

0 error
and is equal to 2λ0 ≈ 0, 916 for the case of the L2 one. In contrary to the previous two cases, the
rates of convergence of these errors are not optimal but close from the expected ones.
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Figure 4.6: On the left: a member of the mesh sequence. On the right: the behavior of the L2

and H1
0 errors with respect to the meshsize h ∼

√
N where N is the number of nodes of the mesh.

4.7 Concluding remarks

In this chapter, we have presented a new numerical method for approximating the solution of the
scalar transmission problem. We proved that the method converges without any restriction on
the mesh sequence used or on the regularity of the solution. This result has been illustrated by
numerical experiments. We mention some issues/question that can be studied in future work:

• It will be interesting to study how the function λh should be chosen in order to accelerate
the convergence of the method.

• How to extend this extend to the case when the density function is critical? Is it possible
to extend this method to the case of Maxwell’s equations?
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4.8 Appendix

Proposition 4.8.1. [39, Theorem 1.6.6] Let Ω be a Lipschitz domain of Rd (d = 2, 3). Then the
estimate

∥u∥L2(∂Ω) ≤ C∥u∥1/2
L2(Ω)∥u∥1/2

H1(Ω) ∀u ∈ H1(Ω)

holds with 0 < C independent of u.

Proposition 4.8.2. Let Ω1 = {x ∈ R2 | |x| < 1} and Ω2 = {x ∈ R2 | 1 < |x| < 2}. Assume that
κε /∈ {−1} ∪ S with

S :=
{

−
1 − (1/2)2n

1 + (1/2)2n | n ∈ N∗
}
.

Then the operator Aε : H1
0(Ω) → H1

0(Ω) is an isomorphism.

Remark 4.8.1. Note that in accordance with the results concerning the Neumann-Poincaré op-
erator, we observe that −1 is an accumulation point of S .

Proof. [50, Theorem 1.3.3] guarantees that Aε is Fredholm of index 0 when κε ̸= −1. Therefore
it suffices to study its kernel. Let u ∈ H1

0(Ω) be such that Aεu = 0. Then u1 := u|Ω1 and u2 = u|Ω2
satisfy 

∆u1 = 0 in Ω1

∆u2 = 0 in Ω2

u1(1, θ) = u2(1, θ) and ∂ru1(1, θ) = κε∂u2(1, θ) ∀θ ∈ [0; 2π].

Since the problem is invariant with respect to θ, by Fourier decomposition for u1, u2 we have the
representations:

u1(r, θ) =
∑
n∈N

anr
nei nθ and u2(r, θ) = b0 ln(r/2) +

∑
n∈Z∗

bn((r/2)n − (r/2)−n) ei nθ,

where an, bn ∈ C. Using the transmission conditions, we get

a0 = b0 ln(1/2), 0 = b0κε

an = bn((1/2)n − (1/2)−n), an = bn((1/2)n + (1/2)−n)κε, n ∈ N∗

0 = bn((1/2)n − (1/2)−n), 0 = bn((1/2)n + (1/2)−n)κε, −n ∈ N∗.

Therefore we deduce that Aε is injective when κε /∈ S . ■
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123 5.1. Introduction

5.1 Introduction

The present chapter inaugurates the third part of this thesis, which aims to present a detailed
study of 3D (time harmonic) Maxwell’s equations in presence of a negative material. Our goal
is explain how the study of the scalar problems associated to the dielectric permittivity ε and
the one associated to the the magnetic permeability µ can be used to study the 3D Maxwell’s
equations. Unlike the study of scalar problems with changing coefficients which has been the
subject of many contributions, the case of the 3D Maxwell equations has been treated in only
two papers [24, 118]. While the work done in [118] deals with the case where the interface be-
tween the positive and negative material is smooth (class C 1), the results obtained in [24] are
valid in the general case (i.e., when the interface separating the two materials is Lipschitz-regular).

In the present work, we consider the configuration where the interface that separates the positive
and the negative material has a conical point (more details will be given later). Therefore, the
only work that can help us in our study is the one presented in [24]. What we can retain from
this work is the following fact: if the contrasts in ε and µ do not take critical values, the Maxwell
equations are well-posed (in the Fredholm sense) in the classical L2−framework. The main tool
used to establish this result was the T-coercivity technique. When one of the functions ε or µ is
critical or when both of them are critical, the study of the Maxwell’s problem has not been done
yet.
In this chapter, we will consider the case where the function ε is critical (i.e. propagating singular-
ities exist for the scalar problem associated with ε) and where the function µ does not take critical
values. More precisely, our goal is to explain why, in this configuration, the classical framework
is no longer appropriate to study Maxwell’s equations and, more importantly, to explain how
to combine Mellin’s analysis in Kondratiev spaces with the T coercivity technique to derive an
appropriate functional framework for Maxwell’s equations in such configuration. We emphasize
that due to the non standard singularities we have to deal with, the results we obtain are quite
different from the ones existing for classical Maxwell’s equations with positive materials in non
smooth domains [15, 60, 16, 66, 62]. The case where both functions ε and µ take critical values
will be studied in the next chapter.

The outline is as follows. In the remaining part of the introduction, we present some general
notation. In Section 5.2, we describe the assumptions made on the dielectric constants ε, µ.
Then we propose a new functional framework for the problem for the electric field and show
its well-posedness in Section 5.3. Section 5.4 is dedicated to the analysis of the problem for
the magnetic field. We emphasize that due to the assumptions made on ε, µ (the contrast in
ε is critical but the one in µ is not), the studies in sections 5.3 and 5.4 are quite different. We
give a few words of conclusion in Section 5.5 before presenting technical results needed in the
analysis in two sections of appendix. The main outcomes of this work are Theorem 5.3.1 (well-
posedness for the electric problem) and Theorem 5.4.1 (well-posedness for the magnetic problem).

All the study will take place in some domain Ω of R3. More precisely, Ω is an open, connected
and bounded subset of R3 with a Lipschitz-continuous boundary ∂Ω. Once for all, we make the
following assumption:

Assumption 1. The domain Ω is simply connected and ∂Ω is connected.

When this assumption is not satisfied, the analysis below must be adapted (see the discussion in
the conclusion). For some ω ̸= 0 (ω ∈ R), the time-harmonic Maxwell’s equations are given by

curlE − iω µH = 0 and curlH + iω εE = J in Ω. (5.1)

E and H above are respectively the electric and magnetic components of the electromagnetic
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field. The source term J is the current density. We suppose that the medium Ω is surrounded
by a perfect conductor and we impose the boundary conditions

E × ν = 0 and µH · ν = 0 on ∂Ω, (5.2)

where ν denotes the unit outward normal vector field to ∂Ω. Note that non homogeneous bound-
ary conditions can be considered as well and that the results we obtain below also allow one to
deal with the case of impedance boundary conditions (see Remark 5.3.3). The dielectric permit-
tivity ε and the magnetic permeability µ are real valued functions which belong to L∞(Ω), with
ε−1, µ−1 ∈ L∞(Ω) (without assumption of sign). Let us introduce some usual spaces in the study
of Maxwell’s equations:

L2(Ω) := (L2(Ω))3

H1
0(Ω) := {φ ∈ H1(Ω) |φ = 0 on ∂Ω}

H1
#(Ω) := {φ ∈ H1(Ω) |

ˆ
Ω
φdx = 0}

H(curl ) := {H ∈ L2(Ω) | curlH ∈ L2(Ω)}
HN (curl ) := {E ∈ H(curl ) |E × ν = 0 on ∂Ω}

and for ξ ∈ L∞(Ω):
XT (ξ) := {H ∈ H(curl ) | div(ξH) = 0, ξH · ν = 0 on ∂Ω}
XN (ξ) := {E ∈ HN (curl ) | div(ξE) = 0} .

We denote indistinctly by (·, ·)Ω the classical inner products of L2(Ω) and L2(Ω). Moreover, ∥ ·∥Ω
stands for the corresponding norms. We endow the spaces H(curl ), HN (curl ), XT (ξ), XN (ξ)
with the norm

∥ · ∥H(curl ) := (∥ · ∥2
Ω + ∥curl · ∥2

Ω)1/2.

Let us recall a well-known property for the particular spaces XT (1) and XN (1) (cf. [139, 8]).
Proposition 5.1.1. Under Assumption 1, the embeddings of XT (1) in L2(Ω) and of XN (1) in
L2(Ω) are compact. And there is a constant C > 0 such that

∥u∥Ω ≤ C ∥curlu∥Ω, ∀u ∈ XT (1) ∪ XN (1).

Therefore, in XT (1) and in XN (1), ∥curl · ∥Ω is a norm which is equivalent to ∥ · ∥H(curl ).

5.2 Assumptions for the dielectric constants ε, µ

In this document, for a Banach space X, X∗ stands for the topological antidual space of X (the
set of continuous anti-linear forms on X).
In the analysis of the Maxwell’s system (7.5)-(7.6), the properties of two scalar operators associ-
ated respectively with ε and µ play a key role. Define Aε : H1

0(Ω) → (H1
0(Ω))∗ such that

⟨Aεφ,φ′⟩ =
ˆ

Ω
ε∇φ · ∇φ′ dx, ∀φ,φ′ ∈ H1

0(Ω) (5.3)

and Aµ : H1
#(Ω) → (H1

#(Ω))∗ such that

⟨Aµφ,φ′⟩ =
ˆ

Ω
µ∇φ · ∇φ′ dx, ∀φ,φ′ ∈ H1

#(Ω).

Assumption 2. We assume that µ is such that Aµ : H1
#(Ω) → (H1

#(Ω))∗ is an isomorphism.

Assumption 2 is satisfied in particular if µ has a constant sign (by Lax-Milgram theorem). We
underline however that we allow µ to change sign (see in particular [68, 27, 20, 24] for examples
of sign-changing µ such that Assumption 2 is verified). The assumption on ε, that will be respon-
sible for the presence of (hyper)singularities, requires to consider a more specific configuration as
explained below.
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5.2.1 Conical tip and scalar (hyper)singularities

We assume that Ω contains an inclusion of a particular material (metal at optical frequency,
metamaterial, ...) located in some domain M such that M ⊂ Ω (M like metal or metamaterial).
We assume that ∂M is of class C 2 except at the origin O where M coincides locally with a
conical tip. More precisely, there are ρ > 0 and some smooth domain ϖ of the unit sphere
S2 := {x ∈ R3 | |x| = 1} such that B(O, ρ) ⊂ Ω and

M ∩B(O, ρ) = K ∩B(O, ρ) with K := {r θ | r > 0, θ ∈ ϖ}.

Here B(O, ρ) stands for the open ball centered at O and of radius ρ. We assume that ε takes the
constant value ε− < 0 (resp. ε+ > 0) in M ∩B(O, ρ) (resp. (Ω \ M) ∩B(O, ρ)). And we assume
that the contrast κε := ε−/ε+ < 0 and ϖ (which characterizes the geometry of the conical tip)
are such that there exist singularities of the form

s(x) = r−1/2+iηΦ(x/|x|) (5.4)

satisfying div(ε∇s) = 0 in K with η ∈ R, η ̸= 0. Here r := |x| while Φ is a function which is
smooth in ϖ and in S2 \ϖ. We emphasize that since the interface between the metamaterial and
the exterior material is not smooth, singularities always exist at the conical tip. However, here
we make a particular assumption on the singular exponent which has to be of the form −1/2 + iη
with η ∈ R, η ̸= 0. Such singularities play a particular role for the operator Aε introduced in
(5.3) because they are “just” outside H1. More precisely, we have s /∈ H1(Ω) but rγs ∈ H1(Ω) for
all γ > 0. With them, we can construct a sequence of functions un ∈ H1

0(Ω) such that

∀n ∈ N, ∥un∥H1(Ω) = 1 and lim
n→+∞

∥div(ε∇un)∥(H1
0(Ω))∗ + ∥un∥Ω = 0.

Then this allows one to prove that the range of Aε : H1
0(Ω) → (H1

0(Ω))∗ is not closed (see
[28, 20, 30] in 2D). Of course, for any given geometry, such singularities do not exist when κε > 0
because we know that in this case Aε : H1

0(Ω) → (H1
0(Ω))∗ is an isomorphism. On the other hand,

when

ϖ = {(cos θ cosϕ, sin θ cosϕ, sinϕ) | − π ≤ θ ≤ π, −π/2 ≤ ϕ < −π/2 + α} for some α ∈ (0;π)
(5.5)

(the circular conical tip, see Figure 5.1), thanks to Theorem 3.4.6, we know that such s exists for
κε ∈ (−1; −Iα) (resp. κε ∈ (−Iα; −1)) when α < π/2 (resp. α > π/2). Here Iα is the constant
defined by

Iα := 2F1(1/2, 1/2, 1, cos2(α/2)) 2F1(3/2, 3/2, 2, sin2(α/2))
2F1(1/2, 1/2, 1, sin2(α/2)) 2F1(3/2, 3/2, 2, cos2(α/2)) > 0, (5.6)

where 2F1 stands for the Gauss’s hypergeometric function. Note that we have Iα = 1/Iπ−α
and Iα ∈ (0; 1) for α ∈ (0;π/2). Additionally, there holds for example Iπ/4 ≈ 0.218 as well as
limα→π/2 Iα = 1, limα→0+ Iα = 0+, limα→π− Iα = +∞.

For a general smooth domain ϖ ⊂ S2 and a given contrast κε, in order to know if such s exists,
one has to solve the spectral problem

Find (Φ, λ) ∈ H1(S2) \ {0} × C such thatˆ
S2
ε∇SΦ · ∇SΦ′ ds = λ(λ+ 1)

ˆ
S2
εΦ Φ′ ds, ∀Φ′ ∈ H1(S2), (5.7)

and see if among the eigenvalues some of them are of the form λ = −1/2 + iη with η ∈ R, η ̸= 0.
Above, ∇S stands for the surface gradient. With a slight abuse, when ε is involved into integrals
over S2, we write ε instead of ε(ρ ·). Note that since ε is real-valued, if λ = −1/2 + iη is an
eigenvalue, we have λ(λ + 1) = −η2 − 1/4, so that λ = −1/2 − iη is also an eigenvalue for the
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Figure 5.1: Left: the domain Ω with the inclusion M exhibiting a conical tip. Right: s|M
for the circular conical tip with α = π/6 (the critical interval is then approximately given by
[−1; −0.1032]) and κε = −0.36. In this situation, we have η ≈ 2.

same eigenfunction. And since λ(λ + 1) ∈ R, we can find a corresponding eigenfunction which
is real-valued. Let us mention that this problem of existence of singularities of the form (5.4)
is directly related to the problem of existence of essential spectrum for the so-called Neumann-
Poincaré operator [98, 127, 36, 93]. A noteworthy difference with the 2D case of a corner in the
interface is that several singularities of the form (5.4) with different values of |η| can exist in 3D
[96] (this depends on ε and on ϖ).
For pedagogical purposes, we shall suppose that the function ε is such that the problem (5.7)
has exactly two eigenvalues that belong to {λ ∈ C | ℜe(λ) = −1/2}\{−1/2} that will be denoted
by λ±

η := −1/2 ± iη with η ∈ R∗
+. Furthermore, we are going to suppose that λ±

η are simple (of
algebraic multiplicity (see §2.4.5) equal to one) eigenvalues of (5.7). In this case, using the results
of §2.6.2, one can show that the the operator Aε has exactly two propagating singularities that
have the form s±(x) = rλ

±
η Φ(x/|x|) in which Φ is real-valued eigenfunction of (5.7) associated to

λη such that ∥Φ∥H1(S2) = 1 and satisfying η
ˆ
S2
σ|Φ|2 ̸= 0. Exchanging η by −η if necessary, we

can set η so that

η

ˆ
S2
ε|Φ|2ds > 0. (5.8)

Note that the previous condition is equivalent to suppose that s+ is outgoing (with respect to
the Mandelstam radiation principle (see §2.6.2)). For the circular conical tip introduced in (5.5),
say for α < π/2, we find that the above assumptions are satisfied for contrasts κε ∈ (−I†

α; −Iα)
with a certain I†

α ∈ (Iα; 1). For κε ∈ (−1; −I†
α), the number of hypersingularities is larger than

two (counting ±).

Remark 5.2.1. In the case where several propagating singularities exist (even with logarithmic
growth near the origin), the analysis below can be adapted. If the reader is interested in the
treatment of this configuration, we refer him to the next chapter.

To fix notations, we set
s±(x) = χ(r)r−1/2±iηΦ(x/|x|) (5.9)

In this definition the smooth cut-off function χ is equal to one in a neighbourhood of 0 and is
supported in [−ρ; ρ]. In particular, we emphasize that s± vanish in a neighbourhood of ∂Ω.

In order to recover Fredholmn property for the scalar problem involving ε, an important idea
is too add one (and only one) of the singularities (5.9) to the functional framework. From a
mathematical point of view, working with the complex conjugation, it is obvious to see that
adding s+ or s− does not change the results. However physically one framework is more relevant
than the other. More precisely, we will explain in §5.3.7 with the limiting absorption princi-
ple why selecting s+, with η such that (5.8) holds, together with a certain convention for the
time-harmonic dependence, is more natural.
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5.2.2 Kondratiev functional framework

In this paragraph, adapting what is done in [30] for the 2D case, we describe in more details how
to get a Fredholm operator for the scalar operator associated with ε. For β ∈ R and m ∈ N, let
us introduce the weighted Sobolev (Kondratiev) space Vm

β (Ω) (see [100]) defined as the closure
of C ∞

0 (Ω \ {O}) for the norm

∥φ∥Vm
β

(Ω) =

 ∑
|α|≤m

∥r|α|−m+β∂αxφ∥2
L2(Ω)

1/2

.

Here C ∞
0 (Ω \ {O}) denotes the space of infinitely differentiable functions which are supported in

Ω \ {O}. We also denote V̊1
β(Ω) the closure of C ∞

0 (Ω \ {O}) for the norm ∥ · ∥V1
β

(Ω). We have the
characterisation

V̊1
β(Ω) = {φ ∈ V1

β(Ω) |φ = 0 on ∂Ω}.

Note that using Hardy’s inequality
ˆ 1

0

|u(r)|2
r2 r2dr ≤ 4

ˆ 1

0
|u′(r)|2 r2dr, ∀u ∈ C 1

0 [0; 1),

one can show the estimate ∥r−1φ∥Ω ≤ C ∥∇φ∥Ω for all φ ∈ C ∞
0 (Ω \ {O}). This proves that

V̊1
0(Ω) = H1

0(Ω). Now set β > 0. Observe that we have

V̊1
−β(Ω) ⊂ H1

0(Ω) ⊂ V̊1
β(Ω) so that (V̊1

β(Ω))∗ ⊂ (H1
0(Ω))∗ ⊂ (V̊1

−β(Ω))∗.

Define the operators A±β
ε : V̊1

±β(Ω) → (V̊1
∓β(Ω))∗ such that

⟨A±β
ε φ,φ′⟩ =

ˆ
Ω
ε∇φ · ∇φ′ dx, ∀φ ∈ V̊1

±β(Ω), φ′ ∈ V̊1
∓β(Ω). (5.10)

Working as in [30] for the 2D case of the corner, one can show that there is β0 > 0 (depending only
on κε and ϖ) such that for all β ∈ (0;β0), Aβε is Fredholm of index +1 while A−β

ε is Fredholm of
index −1. Note that we have β0 = min{ℜe λ+1/2 |λ eigenvalue of (5.7) such that ℜe λ > −1/2}.
We remind the reader that for a bounded linear operator between two Banach spaces T : X → Y
whose range is closed, its index is defined as indT := dim ker T−dim coker T , with dim coker T =
dim (Y/range(T )). On the other hand, application of Kondratiev calculus based in particular on
the residue theorem (see [30, Theorem 5.2], [102, Theorem 5.4.2]) guarantees that if φ ∈ V̊1

β(Ω) is
such that A+β

ε φ ∈ (V̊1
β(Ω))∗ (the important point here being that (V̊1

β(Ω))∗ ⊂ (V̊1
−β(Ω))∗), then

there holds the following representation

φ = c− s
− + c+ s

+ + φ̃ with c± ∈ C and φ̃ ∈ V̊1
−β(Ω). (5.11)

Note that s±, with s± defined by (5.9), belongs to V̊1
β(Ω), but not to H1

0(Ω), and a fortiori not
to V̊1

−β(Ω). Then introduce the space V̊out := span(s+) ⊕ V̊1
−β(Ω), endowed with the norm

∥φ∥Vout = (|c|2 + ∥φ̃∥2
V1

−β(Ω)))
1/2, ∀φ = c s+ + φ̃ ∈ V̊out, (5.12)

which is a Banach space. Introduce also the operator Aout
ε such that for all φ = c s+ + φ̃ ∈ V̊out

and φ′ ∈ C ∞
0 (Ω \ {O}),

⟨Aout
ε φ,φ′⟩ =

ˆ
Ω
ε∇φ · ∇φ′ dx = −c

ˆ
Ω

div(ε∇s+)φ′ dx+
ˆ

Ω
ε∇φ̃ · ∇φ′ dx.

Note that due to the features of the cut-off function χ, we have div(ε∇s+) ∈ L2(Ω). And since
div(ε∇s+) = 0 in a neighbourhood of O, we observe that there is a constant C > 0 such that
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|⟨Aout
ε φ,φ′⟩| ≤ C ∥φ∥Vout ∥φ′∥V1

β
(Ω). The density of C ∞

0 (Ω \ {O}) in V̊1
β(Ω) then allows us to

extend Aout
ε as a continuous operator from V̊out to (V̊1

β(Ω))∗. And we have

⟨Aout
ε φ,φ′⟩ = −c

ˆ
Ω

div(ε∇s+)φ′ dx+
ˆ

Ω
ε∇φ̃ · ∇φ′ dx, ∀φ = c s+ + φ̃, φ′ ∈ V̊1

β(Ω).

Working as in [30] (see Proposition 4.4.) for the 2D case of the corner, one can prove that
Aout
ε : V̊out → (V̊1

β(Ω))∗ is Fredholm of index zero and that ker Aout
ε = ker A−β

ε . In order to
simplify the analysis below, we shall make the following assumption.

Assumption 3. We assume that ε satisfies the conditions of §5.2.1 so that in particular the
range of Aε : H1

0(Ω) → (H1
0(Ω))∗ is not closed. Moreover we assume that for β ∈ (0;β0), A−β

ε is
injective, which guarantees that Aout

ε : V̊out → (V̊1
β(Ω))∗ is an isomorphism.

The second part of this hypothesis boils down to supposing that there are no non zero regu-
lar solutions of the homogeneous problem div(ε∇φ) = 0 in Ω, φ = 0 on ∂Ω. Note that due to
the change of sign of ε, such solutions may exist in very specific configurations, but they form at
most a finite dimensional set [105, 29] which can be included in the analysis.

In what follows, we shall also need to work with the usual Laplace operator in weighted Sobolev
spaces. For γ ∈ R, define Aγ : V̊1

γ(Ω) → (V̊1
−γ(Ω))∗ such that

⟨Aγφ,φ′⟩ =
ˆ

Ω
∇φ · ∇φ′ dx, ∀φ ∈ V̊1

γ(Ω), φ′ ∈ V̊1
−γ(Ω)

(observe that there is no ε here). Combining the theory presented in [102] (see also the founding
article [100] as well as the monographs [107, 113]) together with the result of [101, Corollary
2.2.1], we get the following proposition.

Proposition 5.2.1. For all γ ∈ (−1/2; 1/2), the operator Aγ : V̊1
γ(Ω) → (V̊1

−γ(Ω))∗ is an
isomorphism.

Note in particular that for γ = 0, this proposition simply says that ∆ : H1
0(Ω) → (H1

0(Ω))∗ is an
isomorphism. In order to have a result of isomorphism both for Aout

ε and Aβ, we shall often make
the assumption that the weight β is such that

0 < β < min(1/2, β0) (5.13)

where β0 is defined after (5.10).
To measure electromagnetic fields in weighted Sobolev norms, in the following we shall work in
the spaces

V0
β(Ω) := (V0

β(Ω))3

V̊1
β(Ω) := (V̊1

β(Ω))3.

Note that we have V0
−β(Ω) ⊂ L2(Ω) ⊂ V0

β(Ω).

5.3 Analysis of the problem for the electric component

In this section, we consider the problem for the electric field associated with (7.5)-(7.6). Since the
scalar problem involving ε is well-posed in a non standard framework involving the propagating
singularity s+ (see (5.12)), we shall add its gradient in the space for the electric field. Then
we define a variational problem in this unsual space, and prove its well-posedness. In §5.3.5 we
explain why the formulation in the classical framework fails to provide the solution of Maxwell
problem. Finally we justify the choice of the new framework by a limiting absorption principle.
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5.3.1 A well-chosen space for the electric field

Define the space of electric fields with the divergence free condition
Xout
N (ε) := {u = c∇s+ + ũ, c ∈ C, ũ ∈ L2(Ω) | curlu ∈ L2(Ω), div(εu) = 0 in Ω \ {O},

u× ν = 0 on ∂Ω}.
(5.14)

In this definition, for u = c∇s+ + ũ, the condition div(εu) = 0 in Ω\{O} means that there holdsˆ
Ω
εu · ∇φdx = 0, ∀φ ∈ C ∞

0 (Ω \ {O}), (5.15)

which after integration by parts and by density of C ∞
0 (Ω \ {O}) in H1

0(Ω) is equivalent to

− c

ˆ
Ω

div(ε∇s+)φdx+
ˆ

Ω
εũ · ∇φdx = 0, ∀φ ∈ C ∞

0 (Ω). (5.16)

Note that we have XN (ε) ⊂ Xout
N (ε) and that dim (Xout

N (ε)/XN (ε)) = 1 (see Lemma 5.6.4 in
Appendix). For u = c∇s+ + ũ with c ∈ C and ũ ∈ L2(Ω), we set

∥u∥Xout
N (ε) = (|c|2 + ∥ũ∥2

Ω + ∥curlu∥2
Ω)1/2 .

Endowed with this norm, Xout
N (ε) is a Banach space.

Lemma 5.3.1. Pick some β satisfying (5.13). Under Assumptions 1 and 3, for any u = c∇s+ +
ũ ∈ Xout

N (ε), we have ũ ∈ V0
−β(Ω) and there is a constant C > 0 independent of u such that

|c| + ∥ũ∥V0
−β(Ω) ≤ C ∥curlu∥Ω. (5.17)

As a consequence, the norm ∥·∥Xout
N (ε) is equivalent to the norm ∥curl ·∥Ω in Xout

N (ε) and Xout
N (ε)

endowed with the inner product (curl ·, curl ·)Ω is a Hilbert space.
Proof. Let u = c∇s+ + ũ be an element of Xout

N (ε). The field ũ is in L2(Ω) and therefore
decomposes as

ũ = ∇φ+ curlψ (5.18)
with φ ∈ H1

0(Ω) and ψ ∈ XT (1) (item iv) of Proposition 5.6.1). Moreover, since u× ν = 0 on ∂Ω
and since both s+ and φ vanish on ∂Ω, we know that curlψ × ν = 0 on ∂Ω. Then noting that
−∆ψ = curl ũ = curlu ∈ L2(Ω), we deduce from Proposition 5.6.2 that curlψ ∈ V0

−β(Ω) with
the estimate

∥curlψ∥V0
−β(Ω) ≤ C ∥curlu∥Ω. (5.19)

Using (5.15), the condition div(εu) = 0 in Ω \ {O} impliesˆ
Ω
ε∇(c s+ + φ) · ∇φ′ dx = −

ˆ
Ω
εcurlψ · ∇φ′ dx, ∀φ′ ∈ V̊1

−β(Ω),

which means exactly that Aβε (c s+ + φ) = −div(ε curlψ) ∈ (V̊1
−β(Ω))∗. Since additionally

−div(ε curlψ) ∈ (V̊1
β(Ω))∗, from (5.11) we know that there are some complex constants c±

and some φ̃ ∈ V̊1
−β(Ω) such that

c s+ + φ = c− s
− + c+ s

+ + φ̃.

This implies c− = 0, c+ = c (because φ ∈ H1
0(Ω)) and so φ = φ̃ is an element of V̊1

−β(Ω). This
shows that c s++φ ∈ V̊out and thatAout

ε (c s++φ) = −div(ε curlψ). SinceAout
ε : V̊out → (V̊1

β(Ω))∗

is an isomorphism, we have the estimate

|c| + ∥φ∥V1
−β(Ω) ≤ C ∥div(ε curlψ)∥(V̊1

β
(Ω))∗ ≤ C ∥curlψ∥V0

−β(Ω). (5.20)

Finally gathering (5.18)–(5.20), we obtain that ũ ∈ V0
−β(Ω) and that the estimate (5.17) is valid.

Noting that ∥ũ∥Ω ≤ C ∥ũ∥V0
−β(Ω), this implies that the norms ∥ · ∥Xout

N (ε) and ∥curl · ∥Ω are
equivalent in Xout

N (ε). ■
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Thanks to the previous lemma and by density of C ∞
0 (Ω \ {O}) in V̊1

β(Ω), the condition (5.16) for
u = c∇s+ + ũ ∈ Xout

N (ε) is equivalent to

− c

ˆ
Ω

div(ε∇s+)φdx+
ˆ

Ω
εũ · ∇φdx = 0, ∀φ ∈ V̊1

β(Ω) (5.21)

where all the terms are well-defined as soon as β satisfies (5.13).

5.3.2 Definition of the problem for the electric field

Our objective is to define the problem for the electric field as a variational formulation set in
Xout
N (ε). For some γ > 0, let J be an element of V0

−γ(Ω) such that divJ = 0 in Ω. Consider the
problem

Find u ∈ Xout
N (ε) such thatˆ

Ω
µ−1curlu · curlv dx− ω2

 
Ω
εu · v dx = iω

ˆ
Ω
J · v dx, ∀v ∈ Xout

N (ε), (5.22)

where the term  
Ω
εu · v dx (5.23)

has to be carefully defined. The difficulty comes from the fact that Xout
N (ε) is not a subspace of

L2(Ω) so that this quantity cannot be considered as a classical integral.
Let u = cu∇s+ + ũ ∈ Xout

N (ε). First, for ṽ ∈ V0
−β(Ω) with β > 0, it is natural to set

 
Ω
εu · ṽ dx :=

ˆ
Ω
εu · ṽ dx. (5.24)

To complete the definition, we have to give a sense to (5.23) when v = ∇s+. Proceeding as for
the derivation of (5.21), we start from the identityˆ

Ω
εu · ∇φdx = −cu

ˆ
Ω

div(ε∇s+)φdx+
ˆ

Ω
εũ · ∇φdx, ∀φ ∈ C ∞

0 (Ω \ {O}).

By density of C ∞
0 (Ω \ {O}) in V̊1

β(Ω), this leads to set
 

Ω
εu · ∇φdx := −cu

ˆ
Ω

div(ε∇s+)φdx+
ˆ

Ω
εũ · ∇φdx, ∀φ ∈ V̊1

β(Ω). (5.25)

With this definition, condition (5.21) can be written as 
Ω
εu · ∇φdx = 0, ∀φ ∈ V̊1

β(Ω).

In particular, since s+ ∈ V̊1
β(Ω), for all u ∈ Xout

N (ε) we have
 

Ω
εu · ∇s+ dx = 0 and so

ˆ
Ω
εũ · ∇s+ dx = cu

ˆ
Ω

div(ε∇s+)s+ dx. (5.26)

Finally for all u = cu∇s+ + ũ and v = cv∇s+ + ṽ in Xout
N (ε), using (5.24) and (5.26), we find 

Ω
εu · v dx =

ˆ
Ω
εu · ṽ dx = cu

ˆ
Ω
ε∇s+ · ṽ dx+

ˆ
Ω
εũ · ṽ dx.

But since v ∈ Xout
N (ε), we deduce from the second identity of (5.26) thatˆ

Ω
ε∇s+ · ṽ dx = cv

ˆ
Ω

div(ε∇s+)s+ dx. (5.27)

Summing up, we get 
Ω
εu · v dx = cucv

ˆ
Ω

div(ε∇s+)s+ dx+
ˆ

Ω
εũ · ṽ dx, ∀u,v ∈ Xout

N (ε). (5.28)
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Remark 5.3.1. Even if we use an integral symbol to keep the usual aspects of formulas and
facilitate the reading, it is important to consider this new quantity as a sesquilinear form

(u,v) 7→
 

Ω
εu · v dx

on Xout
N (ε) × Xout

N (ε). In particular, we point out that this sesquilinear form is not hermitian on
Xout
N (ε) × Xout

N (ε). Indeed, we have
 

Ω
εv · u dx =

ˆ
Ω
εũ · ṽ dx+ cucv

ˆ
Ω

div(ε∇s+)s+ dx

so that  
Ω
εu · v dx−

 
Ω
εv · u dx = 2icucv ℑm

(ˆ
Ω

div(ε∇s+) s+ dx

)
. (5.29)

But Lemma 5.3.3 and assumption (5.8) show that

ℑm
( ˆ

Ω
div(ε∇s+) s+ dx

)
̸= 0.

In the sequel, we denote by aN (·, ·) (resp. ℓN (·)) the sesquilinear form (resp. the antilinear form)
appearing in the left-hand side (resp. right-hand side) of (5.22).

5.3.3 Equivalent formulation

Before proving well-posedness in Xout
N (ε), we have to make sure that a solution of (5.22) satisfies

the initial problem (7.5)–(7.6). Proceeding as in the case of positive coefficients, this leads us to
introduce the following space

Hout
N (curl ) := span(∇s+) ⊕ HN (curl ) ⊃ Xout

N (ε)

(without the divergence free condition) and to consider the problem

Find u ∈ Hout
N (curl ) such that

aN (u,v) = ℓN (v), ∀v ∈ Hout
N (curl ),

(5.30)

where the definition of  
Ω
εu · v dx

has to be extended to the space Hout
N (curl ). Working exactly as in the beginning of the proof of

Lemma 5.3.1, one can show that any u ∈ Hout
N (curl ) admits the decomposition

u = cu∇s+ + ∇φu + curlψu, (5.31)

with cu ∈ C, φu ∈ H1
0(Ω) and ψu ∈ XT (1), such that curlψu ∈ V0

−β(Ω), for β satisfying (5.13).
Then, for all u = cu∇s+ + ∇φu + curlψu and v = cv∇s+ + ∇φv + curlψv in Hout

N (curl ), a
natural extension of the previous definitions leads to set

 
Ω
εu · v dx :=

ˆ
Ω
ε (∇φu + curlψu) · (∇φv + curlψv) dx

+
ˆ

Ω
cu ε∇s+ · curlψv + cv ε curlψu · ∇s+ dx

−
ˆ

Ω
cucv div(ε∇s+)s+ + cu div(ε∇s+)φv + cv φudiv(ε∇s+) dx.

(5.32)
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Note that (5.32) is indeed an extension of (5.28). To show it, first observe that for u = cu∇s+ +
∇φu + curlψu, v = cv∇s+ + ∇φv + curlψv in Xout

N (ε), the proof of Lemma 5.3.1 guarantees
that φu, φv ∈ V̊1

−β(Ω) with β satisfying (5.13). This allows us to integrate by parts in the last
two terms of (5.32) to get

 
Ω
εu · v dx :=

ˆ
Ω
ε (∇φu + curlψu) · (∇φv + curlψv) dx

+
ˆ

Ω
cu ε∇s+ · (∇φv + curlψv) + cv ε (∇φu + curlψu) · ∇s+ dx

−cucv
ˆ

Ω
div(ε∇s+)s+ dx.

(5.33)

Using (5.26), (5.27), the second line above can be written as
ˆ

Ω
cu ε∇s+ · (∇φv + curlψv) + cv ε (∇φu + curlψu) · ∇s+ dx

= cucv

ˆ
Ω

div(ε∇s+)s+ dx+ cucv

ˆ
Ω

div(ε∇s+)s+ dx.

(5.34)

Inserting (5.34) in (5.33) yields exactly (5.28).

Lemma 5.3.2. Under Assumptions 1 and 3, the field u is a solution of (5.22) if and only if it
solves the problem (5.30). As a consequence, if u satisfies (5.22), then (E,H) := (u, (iωµ)−1curlu)
is a solution of (7.5)-(7.6).

Proof. If u ∈ Hout
N (curl ) satisfies (5.30), then taking v = ∇φ with φ ∈ C ∞

0 (Ω \ {O}) in (5.30),
and using that divJ = 0 in Ω, we get (5.15), which implies that u ∈ Xout

N (ε). This shows that u
solves (5.22).

Now assume that u ∈ Xout
N (ε) ⊂ Hout

N (curl ) is a solution of (5.22). Let v be an element of
Hout
N (curl ). As in (5.31), we have the decomposition

v = cv∇s+ + ∇φv + curlψv, (5.35)

with cv ∈ C, φv ∈ H1
0(Ω) and ψv ∈ XT (1) such that curlψv ∈ V0

−β(Ω) for all β satisfying (5.13).
By Assumption 3, there is ζ ∈ V̊out such that

Aout
ε ζ = −div(ε curlψv) ∈ (V̊1

β(Ω))∗. (5.36)

The function ζ decomposes as ζ = αs+ + ζ̃ with ζ̃ ∈ V̊1
−β(Ω). Finally, set

v̂ = curlψv − ∇ζ = v − ∇(cvs+ + φv + ζ).

The function v̂ is in Xout
N (ε), it satisfies curl v̂ = curlv and from (5.26), we deduce that

 
Ω
εu · v̂ dx =

 
Ω
εu · v dx.

Using also that J ∈ V0
−γ(Ω) for some γ > 0 and is such that divJ = 0 in Ω, so that

ˆ
Ω
J · v̂ dx =

ˆ
Ω
J · v dx,

this shows that aN (u,v) = aN (u, v̂) = ℓN (v̂) = ℓN (v) and proves that u is a solution of (5.30).

Now if u satisfies (5.22), and so (5.30), since ∇s+ ∈ L1(Ω) := L1(Ω)3, we have u ∈ L1(Ω).
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Therefore there holds curlu ∈ D ′(Ω)3 where D ′(Ω) denotes the set of distributions on Ω. And
actually one can verify that curlu ∈ L2(Ω) because curl ∇s+ = 0 in Ω. Thus we can set
(E,H) := (u, (iωµ)−1curlu) ∈ L1(Ω) × L2(Ω). Clearly we have curlE = iω µH in Ω. By
taking v ∈ C ∞

0 (Ω)3 ⊂ Hout
N (curl ) in (5.30) and by observing that in this case

 
Ω
εu · v dx =

ˆ
Ω
εu · v dx,

we obtain curlH+iω εE = J in D ′(Ω)3. Moreover, because E ∈ Hout
N (curl ), we have E×ν = 0

on ∂Ω. Finally, using the relation curlE = iω µH in Ω, for φ ∈ C ∞
0 (Ω \ M), we find

⟨µH · ν, φ⟩∂Ω =
ˆ

Ω
µH · ∇φdx = (iω)−1

ˆ
Ω

curlE · ∇φdx = 0.

From the density of traces of elements of C ∞
0 (Ω \M) into H1/2(∂Ω), we infer that µH · ν = 0 on

∂Ω. ■

In the following, we shall work with the formulation (5.22) set in Xout
N (ε). The reason being

that, as usual in the analysis of Maxwell’s equations, the divergence free condition will yield a
compactness property allowing us to deal with the term involving the frequency ω.

5.3.4 Main analysis for the electric field

Define the continuous operators Aout
N : Xout

N (ε) → (Xout
N (ε))∗ and Kout

N : Xout
N (ε) → (Xout

N (ε))∗

such that for all u, v ∈ Xout
N (ε),

⟨Aout
N u,v⟩ =

ˆ
Ω
µ−1curlu · curlv dx, ⟨Kout

N u,v⟩ =
 

Ω
εu · v dx.

With this notation, we have ⟨(Aout
N + Kout

N )u,v⟩ = aN (u,v).

Proposition 5.3.1. Under Assumptions 1–3, the operator Aout
N : Xout

N (ε) → (Xout
N (ε))∗ is an

isomorphism.

Proof. Let us construct a continuous operator T : Xout
N (ε) → Xout

N (ε) such that for all u, v ∈
Xout
N (ε), ˆ

Ω
µ−1curlu · curl (Tv) dx =

ˆ
Ω

curlu · curlv dx.

To proceed, we adapt the method presented in [24]. Assume that v ∈ Xout
N (ε) is given. We

construct Tv in three steps.

1) Since curlv ∈ L2(Ω) and Aµ : H1
#(Ω) → (H1

#(Ω))∗ is an isomorphism, there is a unique
ζ ∈ H1

#(Ω) such that
ˆ

Ω
µ∇ζ · ∇ζ ′ dx =

ˆ
Ω
µ curlv · ∇ζ ′ dx, ∀ζ ′ ∈ H1

#(Ω).

Then the field µ(curlv− ∇ζ) ∈ L2(Ω) is divergence free in Ω and satisfies µ(curlv− ∇ζ) · ν = 0
on ∂Ω.

2) From item ii) of Proposition 5.6.1, we infer that there is ψ ∈ XN (1) such that

µ(curlv − ∇ζ) = curlψ.

Thanks to Lemma 5.6.2, we deduce that ψ ∈ V0
−β(Ω) for all β ∈ (0; 1/2) and a fortiori for β

satisfying (5.13).
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3) Suppose now that β satisfies (5.13). Then we know from the previous step that div(εψ) ∈
(V̊1

β(Ω))∗. On the other hand, by Assumption 3, Aout
ε : V̊out → (V̊1

β(Ω))∗ is an isomorphism.
Consequently we can introduce φ ∈ V̊out such that Aout

ε φ = −div(εψ).

Finally, we set Tv = ψ − ∇φ. Clearly Tv is an element of Xout
N (ε). Moreover, for all u, v

in Xout
N (ε), we have

ˆ
Ω
µ−1curlu · curlTv dx =

ˆ
Ω
µ−1curlu · curlψ dx

=
ˆ

Ω
curlu · curlv dx−

ˆ
Ω

curlu · ∇ζ dx

=
ˆ

Ω
curlu · curlv dx.

From Lemma 5.3.1 and the Lax-Milgram theorem, we deduce that T∗Aout
N : Xout

N (ε) → (Xout
N (ε))∗

is an isomorphism. And by symmetry, permuting the roles of u and v, it is obvious that T∗Aout
N =

Aout
N T, which allows us to conclude that Aout

N : Xout
N (ε) → (Xout

N (ε))∗ is an isomorphism. ■

Proposition 5.3.2. Under Assumptions 1 and 3, if (un = cn∇s+ + ũn) is a sequence which
is bounded in Xout

N (ε), then we can extract a subsequence such that (cn) and (ũn) converge re-
spectively in C and in V0

−β(Ω) for β satisfying (5.13). As a consequence, the operator Kout
N :

Xout
N (ε) → (Xout

N (ε))∗ is compact.

Proof. Let (un) be a bounded sequence of elements of Xout
N (ε). From the proof of Lemma 5.3.1,

we know that for n ∈ N, we have

un = cn∇s+ + ∇φn + curlψn (5.37)

where the sequences (cn), (φn), (ψn) and (curlψn) are bounded respectively in C, V̊1
−β(Ω),

XT (1) and V0
−β(Ω). Observing that curlun = curl curlψn = −∆ψn is bounded in L2(Ω), we

deduce from Proposition 5.6.3 that there exists a subsequence such that (curlψn) converges in
V0

−β(Ω). Moreover, by (5.20), we have

|cn − cm| + ∥φn − φm∥V1
−β(Ω) ≤ C∥curl (ψn −ψm)∥V0

−β(Ω),

which implies that (cn) and (φn) converge respectively in C and in V̊1
−β(Ω). From (5.37), we see

that this is enough to conclude about the first part of the proposition.
Finally, observing that

∥Kout
N u∥(Xout

N (ε))∗ ≤ C (∥ũ∥V0
−β(Ω) + |cu|),

we deduce that Kout
N : Xout

N (ε) → (Xout
N (ε))∗ is a compact operator. ■

We can now state the main theorem of the analysis of the problem for the electric field.

Theorem 5.3.1. Under Assumptions 1–3, for all ω ∈ R the operator Aout
N − ω2Kout

N : Xout
N (ε) →

(Xout
N (ε))∗ is Fredholm of index zero.

Proof. Since Kout
N : Xout

N (ε) → (Xout
N (ε))∗ is compact (Proposition 5.3.2) and Aout

N : Xout
N (ε) →

(Xout
N (ε))∗ is an isomorphism (Proposition 5.3.1), Aout

N − ω2Kout
N : Xout

N (ε) → (Xout
N (ε))∗ is Fred-

holm of index zero. ■

The previous theorem guarantees that the problem (5.22) is well-posed if and only if uniqueness
holds, that is if and only if the only solution for J = 0 is u = 0. Since uniqueness holds for ω = 0,
one can prove with the analytic Fredholm theorem that (5.22) is well-posed except for at most a
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countable set of values of ω with no accumulation points (note that Theorem 5.3.1 remains true
for ω ∈ C).
Note that in practice ε is itself a function of ω. For instance, if the inclusion M is metallic, it
is commonly admitted that the Drude’s law gives a good model for ε. But taking into account
the dependence of ε with respect to ω when studying uniqueness of problem (5.22) leads to a
non-linear eigenvalue problem, where the functional space Xout

N (ε) itself depends on ω. This study
is beyond the scope of the present paper (see [90] for such questions in the case of the 2D scalar
problem).
Nonetheless, there is a result that we can prove concerning the cases of non-uniqueness for problem
(5.22).

Proposition 5.3.3. If u = c∇s+ + ũ ∈ Xout
N (ε) is a solution of (5.22) for J = 0, then c = 0

and u ∈ XN (ε).

Proof. When ω = 0, the result is a direct consequence of Theorem 5.3.1 (because zero is the
only solution of (5.22) for J = 0). From now on, we assume that ω ∈ R \ {0}. Suppose that
u = c∇s+ + ũ ∈ Xout

N (ε) is such that
ˆ

Ω
µ−1curlu · curlv dx− ω2

 
Ω
εu · v dx = 0, ∀v ∈ Xout

N (ε).

Taking the imaginary part of the previous identity for v = u, we get

ℑm
(  

Ω
εu · u dx

)
= 0.

On the other hand, by (5.28), we have
 

Ω
εu · u dx =

ˆ
Ω
ε|ũ|2 dx+ |c|2

ˆ
Ω

div(ε∇s+) s+ dx,

so that

|c|2ℑm
( ˆ

Ω
div(ε∇s+) s+ dx

)
= 0.

The result of the proposition is then a consequence of Lemma 5.3.3 where it is proved that

ℑm
( ˆ

Ω
div(ε∇s+) s+ dx

)
= η

ˆ
S2
ε|Φ|2ds,

and of the assumption (5.8). ■

Remark 5.3.2. As a consequence, from Lemma 5.3.1, we infer that elements of the kernel of
Aout
N − ω2Kout

N are in V0
−β(Ω) for all β satisfying (5.13).

Remark 5.3.3. Using the result of Theorem 5.3.1, we could have studied a problem similar to
(7.5)–(7.6) with an impedance boundary condition replacing the perfect conductor condition. In
this case, using the unique continuation principle, we would have been able to prove uniqueness
of the solution, and so well-posedness of the problem, for all ω > 0. Theorem 5.3.1 can also be
employed to consider the scattering of an incident wave by a bounded inclusion (with the same
features as M) in freespace. In the latter situation, working as in [17, Lemma 2.1 and Proposition
2.1], in particular using the Rellich lemma, one could also establish existence and uniqueness of
the solution (in a framework like Xout

N (ε)) for all ω > 0.
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5.3.5 Problem in the classical framework

In the previous paragraph, we have shown that the Maxwell’s problem (5.22) for the electric field
set in the non standard space Xout

N (ε), and so in Hout
N (curl ) according to Lemma 5.3.2, is well-

posed. In order to understand what would fail with a naive approach, here we wish to analyse
the properties of the problem for the electric field set in the classical space XN (ε) (which does
not contain ∇s+). Since this space is a closed subspace of Xout

N (ε), it inherits the main properties
of the problem in Xout

N (ε) proved in the previous section. More precisely, we deduce from Lemma
5.3.1 and Proposition 5.3.2 the following result.

Proposition 5.3.4. Under Assumptions 1 and 3, the embedding of XN (ε) in L2(Ω) is compact,
and ∥curl · ∥Ω is a norm in XN (ε) which is equivalent to the norm ∥ · ∥H(curl ).

Note that we recover classical properties similar to what is known for positive ε, or more generally
[24] for ε such that the operator Aε : H1

0(Ω) → (H1
0(Ω))∗ defined by (5.3) is an isomorphism (which

allows for sign-changing ε). But we want to underline the fact that under Assumption 3, these
classical results could not be proved by using classical arguments. They require the introduction
of the bigger space Xout

N (ε), with the singular function ∇s+.
Let us now consider the problem

Find u ∈ XN (ε) such thatˆ
Ω
µ−1curlu · curlv dx− ω2

ˆ
Ω
εu · v dx = iω

ˆ
Ω
J · v dx, ∀v ∈ XN (ε). (5.38)

An important remark is that one cannot prove that problem (5.38) is equivalent to a similar
problem set in HN (curl ) (the analogue of Lemma 5.3.2). Again, the difficulty comes from the
fact that Aε is not an isomorphism, and trouble would appear when solving (5.36). Therefore, a
solution of (5.38) is not in general a distributional solution of the equation

curl
(
µ−1curlu

)
− ω2εu = iωJ .

To go further in the analysis of (5.38), we recall that XN (ε) is a subspace of codimension one of
Xout
N (ε) (Lemma 5.6.4 in Appendix). Let v0 be an element of Xout

N (ε) which does not belong to
XN (ε). Then we denote by ℓ0 the continuous linear form on Xout

N (ε) such that:

∀v ∈ Xout
N (ε) v − ℓ0(v)v0 ∈ XN (ε). (5.39)

Let us now define the operators AN : XN (ε) → (XN (ε))∗ and KN : XN (ε) → (XN (ε))∗ by

⟨ANu,v⟩ =
ˆ

Ω
µ−1curlu · curlv dx, ⟨KNu,v⟩ =

ˆ
Ω
εu · v dx.

Proposition 5.3.5. Under Assumptions 1–3, the operator AN : XN (ε) → (XN (ε))∗ is Fredholm
of index zero.

Proof. Let u ∈ XN (ε). By Proposition 5.3.1, for the operator T introduced in the corresponding
proof, one has:

∥u∥2
XN (ε) = ∥curlu∥2

Ω = ⟨Aout
N u,Tu⟩.

Then, using (5.39), we get:

∥u∥2
XN (ε) = ⟨ANu,Tu− ℓ0(Tu)v0⟩ + ⟨Aout

N u, ℓ0(Tu)v0⟩,

which implies that
∥u∥XN (ε) ≤ C

(
∥ANu∥(XN (ε))∗ + |ℓ0(Tu)|

)
.

The result of the proposition then follows from a classical adaptation of Peetre’s lemma (see for
example [144, Theorem 12.12]) together with the fact that AN is bounded and hermitian. ■
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Combining the two previous propositions, we obtain the

Theorem 5.3.2. Under Assumptions 1–3, for all ω ∈ R, the operator AN − ω2KN : XN (ε) →
(XN (ε))∗ is Fredholm of index zero.

But as mentioned above, even if uniqueness holds and if Problem (5.38) is well-posed, it does not
provide a solution of Maxwell’s equations. Note that the phenomenon observed in this paragraph
is very similar to what happens for Maxwell’s equations with positive coefficients in presence of
singularities when one looks at a formulation set in H1(Ω)3 (see e.g. [61, 88, 64]).

5.3.6 Expression of the singular coefficient

Under Assumptions 1–3, Theorem 5.3.1 guarantees that for all ω ∈ R the operator Aout
N −ω2Kout

N :
Xout
N (ε) → (Xout

N (ε))∗ is Fredholm of index zero. Assuming that it is injective, the problem (5.22)
admits a unique solution u = cu∇s+ + ũ. The goal of this paragraph is to derive a formula allow-
ing one to compute cu without knowing u. Such kind of results are classical for scalar operators
(see e.g. [85], [102, Theorem 6.4.4], [71, 72, 10, 89, 145, 121]). They are used in particular for
numerical purposes. But curiously they do not seem to exist for Maxwell’s equations in 3D, not
even for classical situations with positive materials in non smooth domains. We emphasize that
the analysis we develop can be adapted to the latter case.

In order to establish the desired expression, for ω ∈ R, we first introduce the field wN ∈ Xout
N (ε)

such thatˆ
Ω
µ−1curlv · curlwN dx− ω2

 
Ω
εv ·wN dx =

ˆ
Ω
εṽ · ∇s+ dx, ∀v ∈ Xout

N (ε). (5.40)

Note that Problem (5.40) is well-posed when Aout
N − ω2Kout

N is an isomorphism. Indeed, using
(5.29), one can check that it involves the operator (Aout

N −ω2Kout
N )∗, that is the adjoint of Aout

N −
ω2Kout

N . Moreover v 7→
´

Ω εṽ · ∇s+ dx is a linear form over Xout
N (ε).

Theorem 5.3.3. Assume that ω ∈ R, Assumptions 1–3 are valid and Aout
N −ω2Kout

N : Xout
N (ε) →

(Xout
N (ε))∗ is injective. Then the solution u = cu∇s+ + ũ of the electric problem (5.22) is such

that
cu = iω

ˆ
Ω
J ·wN dx

/ ˆ
Ω

div(ε∇s+) s+ dx. (5.41)

Here wN is the function which solves (5.40).

Remark 5.3.4. Note that in practice wN can be computed once for all because it does not depend
on J . Then the value of cu can be determined very simply via Formula (5.41).

Proof. By definition of u, we have
ˆ

Ω
µ−1curlu · curlwN dx− ω2

 
Ω
εu ·wN dx = iω

ˆ
Ω
J ·wN dx.

On the other hand, from (5.40), there holds
ˆ

Ω
µ−1curlu · curlwN dx− ω2

 
Ω
εu ·wN dx =

ˆ
Ω
εũ · ∇s+ dx.

From these two relations as well as (5.26), we get

iω

ˆ
Ω
J ·wN dx =

ˆ
Ω
εũ · ∇s+ dx = cu

ˆ
Ω

div(ε∇s+) s+ dx.

But Lemma 5.3.3 below guarantees that ℑm
´

Ω div(ε∇s+) s+ dx ̸= 0. Therefore we find the
desired formula. ■
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Lemma 5.3.3. With the notations of (5.4), we have

ℑm
( ˆ

Ω
div(ε∇s+) s+ dx

)
= η

ˆ
S2
ε|Φ|2ds.

Proof. Set Ωτ := Ω \ B(O, τ). Noticing that div(ε∇s+) vanishes in a neighbourhood of the
origin, we can write

ˆ
Ω

div(ε∇s+) s+ dx = lim
τ→0

ˆ
Ωτ

div(ε∇s+) s+ dx

= lim
τ→0

(
−
ˆ

Ωτ
ε|∇s+|2dx−

ˆ
∂B(O,τ)

ε
∂s+

∂r
s+ds

)
.

Taking the imaginary part and observing that
ˆ
∂B(O,τ)

ε
∂s+

∂r
s+ds = −

(1
2 + iη

)ˆ
S2
ε|Φ|2ds,

the result follows. ■

5.3.7 Limiting absorption principle

In §5.3.4, we have proved well-posedness of the problem for the electric field in the space Xout
N (ε).

But up to now, we have not explained why we select this framework. In particular, as mentioned
in §5.2.1, well-posedness also holds in Xin

N (ε) where Xin
N (ε) is defined as Xout

N (ε) with s+ replaced
by s− (see (5.9) for the definitions of s±). In general, the solution in Xin

N (ε) differs from the
one in Xout

N (ε). Therefore one can build infinitely many solutions of Maxwell’s problem as linear
interpolations of these two solutions. Then the question is: which solution is physically relevant?
Classically, the answer can be obtained thanks to the limiting absorption principle. The idea is
the following. In practice, the dielectric permittivity takes complex values, the imaginary part
being related to the dissipative phenomena in the materials. Set

εδ := ε+ iδ

where ε is defined as previously (see (5.2)) and δ > 0 (the sign of δ depends on the convention for
the time-harmonic dependence (in e−iωt here)). Due to the imaginary part of εδ which is uniformly
positive, one recovers some coercivity properties which allow one to prove well-posedness of the
corresponding problem for the electric field in the classical framework. The physically relevant
solution for the problem with the real-valued ε then should be the limit of the sequence of solutions
for the problems involving εδ when δ tends to zero. The goal of the present paragraph is to explain
how to show that this limit is the solution of the problem set in Xout

N (ε).

Limiting absorption principle for the scalar case

Our proof relies on a similar result for the 3D scalar problem which is the analogue of what has
been done in 2D in [24, Theorem 4.3]. Consider the problem

Find φδ ∈ H1
0(Ω) such that − div(εδ∇φδ) = f, (5.42)

where f ∈ (H1
0(Ω))∗. Since δ > 0, by the Lax-Milgram lemma, this problem is well-posed for all

f ∈ (H1
0(Ω))∗ and in particular for all f ∈ (V̊1

β(Ω))∗, β > 0. Our objective is to prove that (φδ)
converges when δ tends to zero to the unique solution of the problem

Find φ ∈ V̊out such that Aout
ε φ = f. (5.43)
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We expect a convergence in a space V̊1
β(Ω) with 0 < β < β0. We first need a decomposition of

φδ as a sum of a singular part and a regular part. Since problem (5.42) is strongly elliptic, one
can directly apply the theory presented in [102]. In particular, to characterize the singular part,
one is led to consider the spectral problem

Find (Φδ, λδ) ∈ H1(S2) \ {0} × C such thatˆ
S2
εδ∇SΦδ · ∇SΨ ds = λδ(λδ + 1)

ˆ
S2
εδΦδ Ψ ds, ∀Ψ ∈ H1(S2). (5.44)

By assumption (see Section 5.2), λ± := −1/2 ± iη (where η is fixed in (5.8)) are eigenvalues of
(5.7) of algebraic multiplicity equal to one. Using Rouché theorem, one can show that for δ > 0
small enough, there are exactly two eigenvalues λδ± of (5.44) such that we have |λ± − λδ±| ≤ C δ,
where C is independent of δ. Moreover λδ± are of algebraic multiplicity equal to one. By observing
that λδ is an eigenvalue of (5.7) if and only −λδ − 1 is an eigenvalue of (5.7), we deduce that for
δ small enough, there exists one and only one eigenvalue of (5.7), that we denote by λδ ∈ C, such
that ℜe λδ ∈ (−1/2; −1/2 + β0 −

√
δ). Let sδ be the corresponding singular function defined by

sδ(r, θ, φ) = rλ
δ Φδ(x/|x|),

where Φδ is the eigenfunction associated with λδ such that (Φδ,Φ)H1(S2) = 1. Here Φ is the
function introduced in §5.2.1 and we will prove in Lemma 5.3.6 that we can indeed impose the
condition (Φδ,Φ)H1(S2) = 1 for δ small enough. Observe that sδ satisfies div(εδ∇sδ) = 0 in K. As
in (5.9) for s±, we set

sδ(x) = χ(r) r−1/2+iηδ Φδ(x/|x|), (5.45)
where ηδ ∈ C is the number such that λδ = −1/2 + iηδ. By applying [102, Theorem 5.4.1], we
get the following result.

Lemma 5.3.4. Let 0 < β < β0 and f ∈ (V̊1
β(Ω))∗. The solution φδ of (5.42) decomposes as

φδ = cδsδ + φ̃δ (5.46)

where cδ ∈ C and φ̃δ ∈ V̊1
−β(Ω).

−λ− 1

λ

ℜe λ

ℑmλ

−1/2

−λδ − 1 when δ → 0+

λδ when δ → 0+

δ λδ

0 −0.5 − 0.965i

0.001 −0.498 − 0.965i

0.01 −0.487 − 0.965i

0.05 −0.436 − 0.963i

0.1 −0.374 − 0.958i

Figure 5.2: Behaviour of the eigenvalue λδ close to the line ℜe λ = −1/2 as the dissipation δ tends
to zero. Here the values have been obtained solving the problem (5.44) with a Finite Element
Method. We work in the conical tip defined via (5.5) with α = 2π/3 and κε = −1.9. In this case,
using (5.6) we find Iα ≈ 2.585 so that the critical interval is approximately given by [−2.585; −1].

Let us first study the limit of the singular function.

Lemma 5.3.5. For all β > 0, when δ tends to zero, the function sδ converges in V̊1
β(Ω) to s+

(see the definitions in (5.8) and (5.9)).
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Proof. The first step of the proof consists in showing that the limit of (ηδ), which we denote by
η0, is η and not −η. Let ρ̃ > 0 be such that the function χ introduced in (5.9) satisfies χ = 1 in
the ball B(O, ρ̃). From integration by parts, we get

0 =
ˆ
B(O,ρ̃)

div(εδ∇sδ)sδ dx = −
ˆ
B(O,ρ̃)

εδ|∇sδ|2 dx+ (−1/2 + iηδ)ρ̃−2ℑmηδ
ˆ
S2
εδ|Φδ|2ds.

Thus we must have
ℑm

(
(−1/2 + iηδ)ρ̃−2ℑmηδ

ˆ
S2
εδ|Φδ|2ds

)
> 0. (5.47)

Taking the limit δ → 0+ in (5.47) and using Lemma 5.3.6 below which guarantees that (Φδ)
converges to Φ in H1(S2), we obtain the relation

η0
ˆ
S2
ε|Φ|2 ds > 0. (5.48)

According to the definition (5.8) of η, this ensures that η0 = η and shows that (λδ) converges to
λ (and not to −λ− 1, see an illustration with Figure 5.2). From the definitions (5.9), (5.45) of s,
sδ, using again that (Φδ) converges to Φ in H1(S2), we infer that sδ converges to s+ (and not to
s−) in V̊1

β(Ω). ■

Lemma 5.3.6. Let (Φδ) be a sequence of eigenfunctions associated with the eigenvalue λδ. For
δ small enough, we can impose the condition (Φδ,Φ)H1(S2) = 1. Then Φδ is uniquely defined and
when δ tends to zero, (Φδ) converges in H1(S2) to the Φ introduced in §5.2.1.

Proof. Let (Φ̃δ) be a sequence of eigenfunctions associated with the eigenvalue λδ such that
∥Φ̃δ∥H1(S2) = 1. We can extract a subsequence, that we also denote by (Φ̃δ), which converges
weakly in H1(S2) and strongly in L2(S2) to some Φ̃ ∈ H1(S2). For z ∈ C, with the Riesz
representation theorem, define the symbol L δ(z) : H1(S2) → H1(S2) such that

(L δ(z)Ψ,Ψ′)H1(S2) =
ˆ
S2
εδ∇SΨ · ∇SΨ′ ds− z(z + 1)

ˆ
S2
εδΨ Ψ′ ds, ∀Ψ, Ψ′ ∈ H1(S2).

First taking the limit δ → 0+ in (L δ(λδ)Φδ,Ψ′)H1(S2) = 0, we get

(L 0(λ)Φ̃,Ψ′)H1(S2) = 0, ∀Ψ′ ∈ H1(S2).

This shows that either Φ̃ ≡ 0 or Φ̃ is an eigenfunction of (5.7) associated with λ. On the other
hand, using some T-coercivity approach on the sphere (mimic the proof [19, Theorem 6.4]), one
can prove that L 0(−1/2 + it) : H1(S2) → H1(S2) is an isomorphism for t > 0 large enough. Let
us decompose L δ(λδ) as

L δ(λδ) = L 0(−1/2 + it) + Rδ + K

where Rδ, K : H1(S2) → H1(S2) are the operators such that for all Ψ, Ψ′ ∈ H1(S2),

(RδΨ,Ψ′)H1(S2) = iδ
( ˆ

S2
∇SΨ · ∇SΨ′ ds− λδ(λδ + 1)

ˆ
S2

Ψ Ψ′ ds
)

−(λδ(λδ + 1) − λ(λ+ 1))
ˆ
S2
εΨ Ψ′ ds

(K Ψ,Ψ′)H1(S2) = −(λ(λ+ 1) − (−1/2 + it)(+1/2 + it))
ˆ
S2
εΨ Ψ′ ds.

Note that the norm of Rδ, as a linear operator of H1(S2), tends to zero when δ → 0+ and that
K is compact. Therefore, using the relations L δ(λδ)Φ̃δ = L 0(λ)Φ̃ = 0 to get

L 0(−1/2 + it)(Φ̃δ − Φ̃) = −RδΦ̃δ − K (Φ̃δ − Φ̃),
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we deduce that (Φ̃δ) converges strongly to Φ̃ in H1(S2). This implies ∥Φ̃∥H1(S2) = 1 and proves
that Φ̃ is an eigenfunction of (5.7) associated with λ. Since by assumption λ is a simple eigenvalue,
Φ̃ is proportional to Φ. Thus for δ small enough, we have (Φ̃δ,Φ)H1(S2) ̸= 0. Then (Φδ), with Φδ =
Φ̃δ/(Φ̃δ,Φ)H1(S2), is a sequence of eigenfunctions associated with λδ such that (Φδ,Φ)H1(S2) = 1.
Now from the convergence of (Φδ) to cΦ with |c| = 1 and (Φδ,Φ)H1(S2) = 1, we infer that (Φδ)
converges to Φ when δ tends to zero. Finally, one observes that such a construction is possible
for any subsequence of (Φ̃δ). ■

Then proceeding exactly as in the proof of [30, Theorem 4.3], one can establish the following
result.

Lemma 5.3.7. Let 0 < β < β0 and f ∈ (V̊1
β(Ω))∗. If Assumption 3 holds, then (φδ = cδ sδ + φ̃δ)

converges to φ = c s+ + φ̃ in V̊1
β(Ω) as δ tends to zero. Moreover, (cδ, φ̃δ) converges to (c, φ̃) in

C × V̊1
−β(Ω). In this statement, φδ (resp. φ) is the solution of (5.42) (resp. (5.43)).

Note that the results of Lemma 5.3.7 still hold if we replace f by a family of source terms
(f δ) ∈ (V̊1

β(Ω))∗ that converges to f in (V̊1
β(Ω))∗ when δ tends to zero.

Limiting absorption principle for the electric problem

The problem

Find uδ ∈ XN (εδ) such that curlµ−1curluδ − ω2εδuδ = iωJ , (5.49)

with XN (εδ) = {E ∈ HN (curl ) | div(εδE) = 0}, is well-posed for all ω ∈ R and all δ > 0. This
result is classical when µ takes positive values while it can be shown by using [24] when µ changes
sign. We want to study the convergence of uδ when δ goes to zero. Let (δn) be a sequence of
positive numbers such that limn→+∞ δn = 0. To simplify, we denote the quantities with an index
n instead of δn (for example we write εn instead of εδn).

Lemma 5.3.8. Suppose that (un) is a sequence of elements of XN (εn) such that (curlun) is
bounded in L2(Ω). Then, under Assumption 3, for all β satisfying (5.13), for all n ∈ N, un
admits the decomposition un = cn∇sn + ũn with cn ∈ C and ũn ∈ V0

−β(Ω). Moreover, there
exists a subsequence such that (cn) converges to some c in C while (ũn) converges to some ũ in
V0

−β(Ω). Finally, the field u := c∇s+ + ũ belongs to Xout
N (ε).

Proof. For all n ∈ N, we have un ∈ XN (εδ) ⊂ L2(Ω). Therefore, there exist φn ∈ H1
0(Ω) and

ψn ∈ XT (1), satisfying curlψn × ν = 0 on ∂Ω such that un = ∇φn + curlψn. Moreover, we
have the estimate

∥∆ψn∥Ω = ∥curlun∥Ω ≤ C.

As a consequence, Proposition 5.6.2 guarantees that (curlψn) is a bounded sequence of V0
−β(Ω),

and Proposition 5.6.3 ensures that there exists a subsequence such that (curlψn) converges in
V0

−β(Ω). Now from the fact that div(εnun) = 0, we obtain

div(εn∇φn) = −div(εncurlψn) ∈ (V̊1
β(Ω))∗.

By Lemmas 5.3.4 and 5.3.7, this implies that the function φn decomposes as φn = cnsn+ φ̃n with
cn ∈ C and φ̃n ∈ V̊1

−β(Ω). Moreover, (cn) converges to c in C while (φ̃n) converges to φ̃ in V1
−β(Ω).

Summing up, we have that un = cn∇sn + ũn where ũn = ∇φ̃n + curlψn converges to ũ in
V0

−β(Ω). In particular, this implies that un converges to u = c∇s+ + ũ in V0
γ(Ω) for all γ > 0. It

remains to prove that u ∈ Xout
N (ε), which amounts to showing that u satisfies (5.26). To proceed,

we take the limit as n → +∞ in the identity

−cn
ˆ

Ω
div(εn∇sn)φdx+

ˆ
Ω
εnũn · ∇φdx = 0
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which holds for all φ ∈ V̊1
β(Ω) because un ∈ XN (εn). ■

Theorem 5.3.4. Let ω ∈ R. Suppose that Assumptions 1, 2 and 3 hold, and that u = 0 is the
only function of XN (ε) satisfying

curlµ−1curlu− ω2εu = 0. (5.50)

Then the sequence of solutions (uδ = cδ∇sδ + ũδ) of (5.49) converges, as δ tends to 0, to the
unique solution u = c∇s+ + ũ ∈ Xout

N (ε) of (5.22) in the following sense: (cδ) converges to c in
C, (ũδ) converges to ũ in V0

−β(Ω) and (curluδ) converges to curlu in L2(Ω).

Proof. Let (δn) be a sequence of positive numbers such that limn→+∞ δn = 0. Denote by un the
unique function of XN (εn) such that

curlµ−1curlun − ω2εnun = iωJ . (5.51)

Note that we set again εn instead of εδn . The proof is in two steps. First, we establish the desired
property by assuming that (∥curlun∥Ω) is bounded. Then we show that this hypothesis is indeed
satisfied.
First step. Assume that there is a constant C > 0 such that for all n ∈ N

∥curlun∥Ω ≤ C. (5.52)

By lemma 5.3.8, we can extract a subsequence from (un = cn∇sn + ũn) such that (cn) converges
to c in C, (ũn) converges to ũ in V0

−β(Ω), with u = ũ + c∇s+ ∈ Xout
N (ε). Besides, since for all

n ∈ N, curlun ∈ L2(Ω), there exist hn ∈ H1
#(Ω) and wn ∈ XN (1), such that

µ−1curlun = ∇hn + curlwn. (5.53)

Observing that (wn) is bounded in XN (1), from Lemma 5.6.2, we deduce that it admits a
subsequence which converges in V0

−β(Ω). Multiplying (5.51) taken for two indices n and m by
(wn −wm), and integrating by parts, we obtain

ˆ
Ω

|curlwn − curlwm|2 dx = ω2
ˆ

Ω
(εnun − εmum) (wn −wm) dx.

This implies that (curlwn) converges in L2(Ω). Then, from (5.53), we deduce that

div (µ∇hn) = −div (µ curlwn) in Ω.

By Assumption 2, the operator Aµ : H1
#(Ω) → (H1

#(Ω))∗ is an isomorphism. Therefore (∇hn)
converges in L2(Ω). From (5.53), this shows that (curlun) converges to curlu in L2(Ω). Finally,
we know that un satisfiesˆ

Ω
µ−1curlun · curlv dx− ω2

ˆ
Ω
εnun · v dx = iω

ˆ
Ω
J · v dx

for all v ∈ V0
−β(Ω). Taking the limit, we get that u satisfies

ˆ
Ω
µ−1curlu · curlv dx− ω2

 
Ω
εu · v dx = iω

ˆ
Ω
J · v dx (5.54)

for all v ∈ V0
−β(Ω). Since in addition, u satisfies (5.26), (5.54) also holds for v = ∇s+ and we

get that u is the unique solution u of (5.22).
Second step. Now we prove that the assumption (5.52) is satisfied. Suppose by contradiction
that there exists a subsequence of (un) such that

∥curlun∥Ω → +∞
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and consider the sequence (vn) with for all n ∈ N, vn := un/∥curlun∥Ω. We have

vn ∈ XN (εn) and curlµ−1curlvn − ω2εnvn = iωJ/∥curlun∥Ω. (5.55)

Following the first step of the proof, we find that we can extract a subsequence from (vn) which
converges, in the sense given in the theorem, to the unique solution of the homogeneous problem
(5.22) with J = 0. But by Proposition 5.3.3, this solution also solves (5.50). As a consequence,
it is equal to zero. In particular, it implies that (curlvn) converges to zero in L2(Ω), which is
impossible since by construction, for all n ∈ N, we have ∥curlvn∥Ω = 1. ■

5.4 Analysis of the problem for the magnetic component

In this section, we turn our attention to the analysis of the Maxwell’s problem for the magnetic
component. Importantly, in the whole section, we suppose that β satisfies (5.13), that is 0 < β <
min(1/2, β0). Contrary to the analysis for the electric component, we define functional spaces
which depend on β:

Zout
T (µ) := {u ∈ L2(Ω) | curlu ∈ span(ε∇s+) ⊕ V0

−β(Ω), div(µu) = 0 in Ω, µu · ν = 0 on ∂Ω}

and for ξ ∈ L∞(Ω),

Z±β
T (ξ) := {u ∈ L2(Ω) | curlu ∈ V0

±β(Ω), div (ξu) = 0 in Ω and ξu · ν = 0 on ∂Ω}.

Note that we have Z−β
T (µ) ⊂ Zout

T (µ) ⊂ ZβT (µ). The conditions div(µu) = 0 in Ω and µu · ν = 0
on ∂Ω for the elements of these spaces boil down to imposeˆ

Ω
µu · ∇φdx = 0, ∀φ ∈ H1

#(Ω).

Remark 5.4.1. Observe that the elements of Zout
T (µ) are in L2(Ω) but have a singular curl. On

the other hand, the elements of Xout
N (ε) are singular but have a curl in L2(Ω). This is consistent

with the fact that for the situations we are considering in this work, the electric field is singular
while the magnetic field is not.

The analysis of the problem for the magnetic component leads to considering the formulation

Find u ∈ Zout
T (µ) such that 

Ω
ε−1curlu · curlv dx− ω2

ˆ
Ω
µu · v =

ˆ
Ω
ε−1J · curlv, ∀v ∈ ZβT (µ), (5.56)

where J ∈ V0
−β(Ω). Again, the first integral in the left-hand side of (5.56) is not a classical

integral. Similarly to definition (5.26), we set 
Ω

∇s+ · curlv dx := 0, ∀v ∈ ZβT (µ).

As a consequence, for u ∈ Zout
T (µ) such that curlu = cu ε∇s+ + ζu (we shall use this notation

throughout the section) and v ∈ ZβT (µ), there holds 
Ω
ε−1curlu · curlv dx =

ˆ
Ω
ε−1ζu · curlv dx. (5.57)

Note that for u, v in Zout
T (µ) such that curlu = cu ε∇s+ + ζu, curlv = cv ε∇s+ + ζv, we have 

Ω
ε−1curlu · curlv dx =

ˆ
Ω
ε−1ζu · (cv ε∇s+ + ζv) dx

=
ˆ

Ω
ε−1ζu · ζv dx− cv

ˆ
Ω

div(ζu) s+ dx

=
ˆ

Ω
ε−1ζu · ζv dx+ cucv

ˆ
Ω

div(ε∇s+) s+ dx.

(5.58)
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We denote by aT (·, ·) (resp. ℓT (·)) the sesquilinear form (resp. the antilinear form) appearing in
the left-hand side (resp. right-hand side) of (5.56).

Remark 5.4.2. Note that in (5.56), the solution and the test functions do not belong to the same
space. This is different from the formulation (5.22) for the electric field but seems necessary in
the analysis below to obtain a well-posed problem (in particular to prove Proposition 5.4.1). Note
also that even if the functional framework depends on β, the solution will not if J is regular
enough (see the explanations in Remark 5.4.4).

5.4.1 Equivalent formulation

Define the spaces

Hβ(curl ) := {u ∈ L2(Ω) | curlu ∈ V0
β(Ω)}

Hout(curl ) := {u ∈ L2(Ω) | curlu ∈ span(ε∇s+) ⊕ V0
−β(Ω)}.

Lemma 5.4.1. Under Assumptions 1–2, the field u is a solution of (5.56) if and only if it solves
the problem

Find u ∈ Hout(curl ) such that
aT (u,v) = ℓT (v), ∀v ∈ Hβ(curl ).

(5.59)

As a consequence, if u satisfies (5.56), then (E,H) := (i(ωε)−1(curlu− J),u) is a solution of
(7.5)-(7.6).

Proof. If u satisfies (5.59), then taking v = ∇φ with φ ∈ H1
#(Ω) in (5.59), we get that

u ∈ Zout
T (µ). This proves that u solves (5.56).

Assume now that u is a solution of (5.56). Let v be an element of Hβ(curl ). Introduce φ ∈ H1
#(Ω)

the function such thatˆ
Ω
µ∇φ · ∇φ′ dx =

ˆ
Ω
µv · ∇φ′ dx, ∀φ′ ∈ H1

#(Ω).

The field v̂ := v − ∇φ belongs to ZβT (µ). Moreover, there holds curl v̂ = curlv and since for
u ∈ Zout

T (µ), we have ˆ
Ω
µu · ∇φdx = 0, ∀φ ∈ H1

#(Ω),

we deduce that aT (u,v) = aT (u, v̂) = ℓT (v̂) = ℓT (v).

Now if u satisfies (5.56), and so (5.59), one notes that the pair (E,H) := (i(ωε)−1(curlu−J),u)
belongs to L1(Ω) × L2(Ω). Clearly we have curlH + iω εE = J in Ω. By taking v ∈ C ∞

0 (Ω)3 ⊂
Hβ(curl ) in (5.59) and by observing that in this case

 
Ω
ε−1curlu · curlv dx =

ˆ
Ω
ε−1curlu · curlv dx,

we obtain curlE = iω µH in D ′(Ω)3. The boundary conditions (7.6) can then be deduced in a
classical way. ■

5.4.2 Norms in Z±β
T (µ) and Zout

T (µ)

We endow the space ZβT (µ) with the norm

∥u∥ZβT (µ) = (∥u∥2
Ω + ∥curlu∥2

V0
β(Ω))

1/2,

so that it is a Banach space.
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Lemma 5.4.2. Under Assumptions 1–2, there is a constant C > 0 such that for all u ∈ ZβT (µ),
we have

∥u∥Ω ≤ C ∥curlu∥V0
β(Ω).

As a consequence, the norm ∥ · ∥ZβT (µ) is equivalent to the norm ∥curl · ∥V0
β(Ω) in ZβT (µ).

Remark 5.4.3. The result of Lemma 5.4.2 holds for all β such that 0 ≤ β < 1/2 and not only
for 0 < β < min(1/2, β0).

Proof. Let u be an element of ZβT (µ). Since u belongs to L2(Ω), according to the item v) of
Proposition 5.6.1, there are φ ∈ H1

#(Ω) and ψ ∈ XN (1) such that

u = ∇φ+ curlψ. (5.60)

Lemma 5.6.2 guarantees that ψ ∈ V0
−β(Ω) with the estimate

∥ψ∥V0
−β(Ω) ≤ C ∥curlψ∥Ω. (5.61)

Multiplying the equation curl curlψ = curlu in Ω by ψ and integrating by parts, we get

∥curlψ∥2
Ω ≤ ∥curlu∥V0

β(Ω)∥ψ∥V0
−β(Ω). (5.62)

Gathering (5.61) and (5.62) leads to

∥curlψ∥Ω ≤ C ∥curlu∥V0
β(Ω). (5.63)

On the other hand, using that
ˆ

Ω
µu · ∇φ′ dx = 0, ∀φ′ ∈ H1

#(Ω)

and that Aµ : H1
#(Ω) → (H1

#(Ω))∗ is an isomorphism, we deduce that ∥∇φ∥Ω ≤ C ∥curlψ∥Ω.
Using this estimate and (5.63) in the decomposition (5.60), we finally obtain the desired result. ■

If u ∈ Zout
T (µ), we have curlu = cu ε∇s+ + ζu with cu ∈ C and ζu ∈ V0

−β(Ω). We endow the
space Zout

T (µ) with the norm

∥u∥Zout
T (µ) = (∥u∥2

Ω + |cu|2 + ∥ζu∥2
V0

−β(Ω))
1/2,

so that it is a Banach space.

Lemma 5.4.3. Under Assumptions 1–3, there is C > 0 such that for all u ∈ Zout
T (µ), we have

∥u∥Ω + |cu| ≤ C ∥ζu∥V0
−β(Ω). (5.64)

As a consequence, the norm ∥u∥Zout
T (µ) is equivalent to the norm ∥ζu∥V0

−β(Ω) for u ∈ Zout
T (µ).

Proof. Let u be an element of Zout
T (µ). Since Zout

T (µ) ⊂ ZβT (µ), Lemma 5.4.2 provides the
estimate

∥u∥Ω ≤ C ∥curlu∥V0
β(Ω) ≤ C (|cu| + ∥ζu∥V0

−β(Ω)). (5.65)

On the other hand, taking the divergence of curlu = cu ε∇s+ + ζu, we obtain cu div(ε∇s+) =
−div ζu. Using the fact that Aout

ε : V̊out → (V̊1
β(Ω))∗ is an isomorphism, we get

|cu| ≤ C ∥div ζu∥(V̊1
β

(Ω))∗ ≤ C ∥ζu∥V0
−β(Ω).

Using this inequality in (5.65) leads to (5.64). ■
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5.4.3 Main analysis for the magnetic field

Define the continuous operators Aout
T : Zout

T (µ) → (ZβT (µ))∗ and Kout
T : Zout

T (µ) → (ZβT (µ))∗ such
that for all u ∈ Zout

T (µ), v ∈ ZβT (µ),

⟨Aout
T u,v⟩ =

 
Ω
ε−1curlu · curlv dx, ⟨Kout

T u,v⟩ =
ˆ

Ω
µu · v dx. (5.66)

With this notation, we have ⟨(Aout
T − ω2Kout

T )u,v⟩ = aT (u,v).

Proposition 5.4.1. Under Assumptions 1–3, the operator Aout
T : Zout

T (µ) → (ZβT (µ))∗ is an
isomorphism.

Proof. We have

⟨Aout
T u,v⟩ =

ˆ
Ω
ε−1ζu · curlv dx, ∀u ∈ Zout

T (µ), ∀v ∈ ZβT (µ).

Let us construct a continuous operator T : ZβT (µ) → Zout
T (µ) such that

⟨Aout
T Tu,v⟩ =

ˆ
Ω
r2βcurlu · curlv dx, ∀u, v ∈ ZβT (µ). (5.67)

Let u be an element of ZβT (µ). Then the field r2βε curlu belongs to V0
−β(Ω). Since Aout

ε :
V̊out → (V̊1

β(Ω))∗ is an isomorphism, there is a unique φ = α s+ + φ̃ ∈ V̊out such that Aout
ε φ =

−div(r2βε curlu). Observing that w := r2βcurlu − ∇φ ∈ V0
β(Ω) is such that divw = 0 in Ω,

according to the result of Proposition 5.6.4, we know that there is a unique ψ ∈ ZβT (1) such that

curlψ = ε (r2βcurlu− ∇φ).

At this stage, we emphasize that in general ∇φ ∈ V0
β(Ω) \ L2(Ω). This is the reason why we are

obliged to establish Proposition 5.6.4. Since ψ is in L2(Ω), when Aµ : H1
#(Ω) → (H1

#(Ω))∗ is an
isomorphism, there is a unique ϕ ∈ H1

#(Ω) such that
ˆ

Ω
µ∇ϕ · ∇ϕ′ dx =

ˆ
Ω
µψ · ∇ϕ′ dx, ∀ϕ′ ∈ H1

#(Ω).

Finally, we set Tu = ψ − ∇ϕ. It can be easily checked that this defines a continuous operator
T : ZβT (µ) → Zout

T (µ). Moreover we have

curlTu = α ε∇s+ + ζTu with ζTu = ε (r2βcurlu− ∇φ̃).

As a consequence, indeed we have identity (5.67). From Lemma 5.4.2, we deduce that Aout
T T :

ZβT (µ) → (ZβT (µ))∗ is an isomorphism, and so that Aout
T is onto. It remains to show that Aout

T is
injective.

If u ∈ Zout
T (µ) is in the kernel of Aout

T , we have ⟨Aout
T u,v⟩ = 0 for all v ∈ ZβT (µ). In partic-

ular from (5.58), we can write

⟨Aout
T u,u⟩ =

ˆ
Ω
ε−1|ζu|2 dx+ |cu|2

ˆ
Ω

div(ε∇s+)s+ dx = 0.

Taking the imaginary part of the above identity, we obtain cu = 0 (see the details in the proof
of Proposition 5.4.3). We deduce that u belongs to Z−β

T (µ) and from (5.58), we infer that
⟨Aout

T u,Tu⟩ = ⟨Aout
T Tu,u⟩. This gives

0 =
ˆ

Ω
r2β|curlu|2 dx = 0

and shows that u = 0. ■
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Proposition 5.4.2. Under Assumptions 1–3, the embedding of the space Zout
T (µ) in L2(Ω) is

compact. As a consequence, the operator Kout
T : Zout

T (µ) → (ZβT (µ))∗ defined in (5.66) is compact.

Proof. Let (un) be a sequence of elements of Zout
T (µ) which is bounded. For all n ∈ N, we

have curlun = cunε∇s+ + ζun . By definition of the norm of Zout
T (µ), the sequence (cun) is

bounded in C. Let w be an element of Zout
T (µ) such that cw = 1 (if such w did not exist,

then we would have Zout
T (µ) = Z−β

T (µ) ⊂ XT (µ) and the proof would be even simpler). The
sequence (un − cunw) is bounded in XT (µ). Since this space is compactly embedded in L2(Ω)
when Aµ : H1

#(Ω) → (H1
#(Ω))∗ is an isomorphism (see [24, Theorem 5.3]), we infer we can

extract from (un − cunw) a subsequence which converges in L2(Ω). Since clearly we can also
extract a subsequence of (cun) which converges in C, this shows that we can extract from (un)
a subsequence which converges in L2(Ω). This shows that the embedding of Zout

T (µ) in L2(Ω) is
compact.
Now observing that for all u ∈ Zout

T (µ), we have

∥Kout
T u∥(ZβT (µ))∗ ≤ C ∥u∥Ω,

we deduce that Kout
T : Zout

T (µ) → (ZβT (µ))∗ is a compact operator. ■

We can now state the main theorem of the analysis of the problem for the magnetic field.

Theorem 5.4.1. Under Assumptions 1–3, for all ω ∈ R the operator Aout
T − ω2Kout

T : Zout
T (µ) →

(ZβT (µ))∗ is Fredholm of index zero.

Proof. Since Kout
T : Zout

T (µ) → (ZβT (µ))∗ is compact (Proposition 5.4.2) and Aout
T : Zout

T (µ) →
(ZβT (µ))∗ is an isomorphism (Proposition 5.4.1), Aout

T − ω2Kout
T : Zout

N → (ZβT (µ))∗ is Fredholm of
index zero. ■

Finally we establish a result similar to Proposition 5.3.3 by using the formulation for the magnetic
field.

Proposition 5.4.3. Under Assumptions 1 and 3, if u ∈ Zout
T (µ) is a solution of (5.56) for J = 0,

then u ∈ Z−γ
T (µ) ⊂ XT (µ) for all γ satisfying (5.13).

Proof. Assume that u ∈ Zout
T (µ) satisfies

 
Ω
ε−1curlu · curlv dx− ω2

ˆ
Ω
µu · v = 0, ∀v ∈ ZβT (µ).

Taking the imaginary part of this identity for v = u, since ω is real, we get

ℑm
( 

Ω
ε−1curlu · curlu dx

)
= 0.

If curlu = cu ε∇s+ + ζu with cu ∈ C and ζu ∈ V0
−β(Ω), according to (5.58), this can be written

as
|cu|2ℑm

(ˆ
Ω

div(ε∇s+) s+ dx

)
= 0.

Then one concludes as in the proof of Proposition 5.3.3 that cu = 0, so that curlu ∈ V0
−β(Ω).

Therefore we have ε−1curlu ∈ XN (ε) ⊂ Xout
N (ε). From Lemma 5.3.1, we deduce that ε−1curlu ∈

V0
−γ(Ω) for all γ satisfying (5.13). This shows that u ∈ Z−γ

T (µ) for all γ satisfying (5.13). ■

Remark 5.4.4. Assume that J ∈ V0
−γ(Ω) for all γ satisfying (5.13). Assume also that zero is

the only solution of (5.56) with J = 0 for a certain β0 satisfying (5.13). Then Theorem 5.4.1 and
Proposition 5.4.3 guarantee that (5.56) is well-posed for all γ satisfying (5.13). Moreover Propo-
sition 5.4.3 allows one to show that all the solutions of (5.56) for γ satisfying (5.13) coincide.
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Remark 5.4.5. From Lemmas 5.3.2 and 5.4.1, we infer that if u solves the electric problem
(5.22), then (iωµ)−1curlu is a solution of the magnetic problem (5.56). Conversely, if u solves
(5.56), then i(ωε)−1(curlu− J) is a solution of (5.22). Therefore, under Assumptions 1–3, for
all ω ∈ R, the operator Aout

N − ω2Kout
N : Xout

N (ε) → (Xout
N (ε))∗ is an isomorphism if and only if

Aout
T − ω2Kout

T : Zout
T (µ) → (ZβT (µ))∗ is an isomorphism.

5.4.4 Analysis in the classical framework

In the previous paragraph, we proved that the formulation (5.56) for the magnetic field with a
solution in Zout

T (µ) and test functions in ZβT (µ) is well-posed. Here, we study the properties of the
naive problem for the magnetic field set in the classical space XT (µ). More precisely, we consider
the problem

Find u ∈ XT (µ) such thatˆ
Ω
ε−1curlu · curlv dx− ω2

ˆ
Ω
µu · v =

ˆ
Ω
ε−1J · curlv, ∀v ∈ XT (µ). (5.68)

Working as in the proof of Lemma 5.4.1, one shows that under Assumptions 1, 2, the field u is a
solution of (5.68) if and only if it solves the problem

Find u ∈ H(curl ) such thatˆ
Ω
ε−1curlu · curlv dx− ω2

ˆ
Ω
µu · v =

ˆ
Ω
ε−1J · curlv, ∀v ∈ H(curl ). (5.69)

Define the continuous operators AT : XT (µ) → (XT (µ))∗ and KT : XT (µ) → (XT (µ))∗ such that
for all u ∈ XT (µ), v ∈ XT (µ),

⟨ATu,v⟩ =
ˆ

Ω
ε−1curlu · curlv dx, ⟨KTu,v⟩ =

ˆ
Ω
µu · v dx.

As for AN and KN , we emphasize that these are the classical operators which appear in the
analysis of the magnetic field, for example when ε and µ are positive in Ω.

Proposition 5.4.4. Under Assumptions 1–3, for all ω ∈ C the operator AT − ω2KT : XT (µ) →
(XT (µ))∗ is not Fredholm.

Proof. From [24, Theorem 5.3 and Corollary 5.4], we know that under the Assumptions 1, 2, the
embedding of XT (µ) in L2(Ω) is compact. This allows us to prove that KT : XT (µ) → (XT (µ))∗ is
a compact operator. Therefore, it suffices to show that AT : XT (µ) → (XT (µ))∗ is not Fredholm.
Let us work by contradiction assuming that AT is Fredholm. Since this operator is self-adjoint
(it is symmetric and bounded), necessarily it is of index zero.

⋆ If AT is injective, then it is an isomorphism. Let us show that in this case, Aε : H1
0(Ω) →

(H1
0(Ω))∗ is an isomorphism (which is not the case by assumption). To proceed, we construct a

continuous operator T : H1
0(Ω) → H1

0(Ω) such that

⟨Aεφ, Tφ′⟩ =
ˆ

Ω
ε∇φ · ∇(Tφ′) dx =

ˆ
Ω

∇φ · ∇φ′ dx, ∀φ,φ′ ∈ H1
0(Ω). (5.70)

When AT is an isomorphism, for any φ′ ∈ H1
0(Ω), there is a unique ψ ∈ XT (µ) such that

ˆ
Ω
ε−1curlψ · curlψ′ dx =

ˆ
Ω
ε−1∇φ′ · curlψ′ dx, ∀ψ′ ∈ XT (µ).

Using item iii) of Proposition 5.6.1, one can show that there is a unique Tφ′ ∈ H1
0(Ω) such that

∇(Tφ′) = ε−1(∇φ′ − curlψ).
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This defines our operator T : H1
0(Ω) → H1

0(Ω) and one can verify that it is continuous. Moreover,
integrating by parts, we indeed get (5.70) which guarantees, according to the Lax-Milgram theo-
rem, that Aε : H1

0(Ω) → H1
0(Ω) is an isomorphism.

⋆ If AT is not injective, it has a kernel of finite dimensionN ≥ 1 which coincides with span(λ1, . . . ,λN ),
where λ1, . . . ,λN ∈ XT (µ) are linearly independent functions such that (curlλi, curlλj)Ω = δij
(the Kronecker symbol). Introduce the space

X̃T (µ) := {u ∈ XT (µ) | (curlu, curlλi)Ω = 0, i = 1, . . . N}.

as well as the operator ÃT : X̃T (µ) → X̃T (µ) such that

⟨ÃTu,v⟩ =
ˆ

Ω
ε−1curlu · curlv dx, ∀u,v ∈ X̃T (µ).

Then ÃT is an isomorphism. Let us construct a new operator T : H1
0(Ω) → H1

0(Ω) to have
something looking like (5.70). For a given φ′ ∈ H1

0(Ω), introduce ψ ∈ X̃T (µ) the function such
that
ˆ

Ω
ε−1curlψ · curlψ′ dx =

ˆ
Ω

(ε−1∇φ′ −
N∑
i=1

αicurlλi) · curlψ′ dx, ∀ψ′ ∈ X̃T (µ), (5.71)

where for i = 1, . . . , N , we have set αi :=
´

Ω ε
−1∇φ′ · curlλi dx. Observing that (5.71) is also

valid for ψ′ = λi, i = 1, . . . , N , we infer that there holds
ˆ

Ω
ε−1curlψ · curlψ′ dx =

ˆ
Ω

(ε−1∇φ′ −
N∑
i=1

αicurlλi) · curlψ′ dx, ∀ψ′ ∈ XT (µ).

Using again item iii) of Proposition 5.6.1, we deduce that there is a unique Tφ′ ∈ H1
0(Ω) such

that

∇(Tφ′) = ε−1(∇φ′ − curlψ) −
N∑
i=1

αicurlλi.

This defines the new continuous operator T : H1
0(Ω) → H1

0(Ω). Then one finds

⟨Aεφ, Tφ′⟩ =
ˆ

Ω
ε∇φ · ∇(Tφ′) dx =

ˆ
Ω

∇φ · ∇φ′ dx−
N∑
i=1

αi

ˆ
Ω
ε∇φ · curlλi dx, ∀φ,φ′ ∈ H1

0(Ω).

This shows that T is a left parametrix for the self adjoint operator Aε. Therefore, Aε : H1
0(Ω) →

H1
0(Ω) is Fredholm of index zero. Note that then, one can verify that dim ker Aε = dim ker AT .

And more precisely, we have ker Aε = span(γ1, . . . , γN ) where γi ∈ H1
0(Ω) is the function such

that
∇γi = ε−1curlλi

(existence and uniqueness of γi is again a consequence of item iii) of Proposition 5.6.1). But by
assumption, Aε is not a Fredholm operator. This ends the proof by contradiction. ■

Remark 5.4.6. In the article [24], it is proved that if Aε : H1
0(Ω) → H1

0(Ω) is an isomorphism
(resp. a Fredholm operator of index zero), then AT : XT (1) → (XT (1))∗ is an isomorphism (resp.
a Fredholm operator of index zero). Here we have established the converse statement.

Remark 5.4.7. We emphasize that the problems (5.38) for the electric field and (5.68) for the
magnetic in the usual spaces XN (ε) and XT (µ) have different properties. Problem (5.38) is well-
posed but is not equivalent to the corresponding problem in HN (curl ), so that its solution in
general is not a distributional solution of Maxwell’s equations. On the contrary, problem (5.68)
is equivalent to problem (5.69) in H(curl ) but it is not well-posed.
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5.4.5 Expression of the singular coefficient

Under Assumptions 1–3, Theorem 5.4.1 guarantees that for all ω ∈ R the operator Aout
T −ω2Kout

T :
Zout
T (µ) → (ZβT (µ))∗ is Fredholm of index zero. Assuming that it is injective, the problem (5.56)

admits a unique solution u with curlu = cu ε∇s+ + ζu. As in §5.3.6, the goal of this paragraph
is to derive a formula for the coefficient cu which does not require to know u.

For ω ∈ R, introduce the field wT ∈ ZβT (µ) such that
ˆ

Ω
ε−1ζv · curlwT dx− ω2

ˆ
Ω
µv ·wT dx =

ˆ
Ω
ζv · ∇s+ dx, ∀v ∈ Zout

T (µ). (5.72)

Note that wT is well-defined because (Aout
T − ω2Kout

T )∗ : ZβT (µ) → (Zout
T (µ))∗ is an isomorphism.

Theorem 5.4.2. Assume that ω ∈ R, Assumptions 1–3 are valid and Aout
T − ω2Kout

T : Zout
T (µ) →

(ZβT (µ))∗ is injective. Let u denote the solution of the magnetic problem (5.56). Then the coeffi-
cient cu in the decomposition curlu = cu ε∇s+ + ζu is given by the formula

cu = iω

ˆ
Ω
ε−1J · curlwT dx

/ ˆ
Ω

div(ε∇s+) s+ dx. (5.73)

Here wT is the function which solves (5.72).

Proof. By definition of u, we have
ˆ

Ω
ε−1ζu · curlwT dx− ω2

ˆ
Ω
µu ·wT dx = iω

ˆ
Ω
ε−1J · curlwT dx.

On the other hand, from (5.72), we can write
ˆ

Ω
ε−1ζu · curlwT dx− ω2

ˆ
Ω
µu ·wT dx =

ˆ
Ω
ζu · ∇s+ dx.

From these two relations, using (5.58), we deduce that

iω

ˆ
Ω
ε−1J · curlwT dx =

ˆ
Ω
ζu · ∇s+ dx = cu

ˆ
Ω

div(ε∇s+) s+ dx.

This gives (5.73). ■

5.5 Conclusion

In this work, we studied the Maxwell equations in presence of hypersingularities for the scalar
problem involving ε. We considered both the problem for the electric field and for the magnetic
field. Quite naturally, in order to obtain a framework where well-posedness holds, it is necessary
to modify the spaces in different ways. More precisely, we changed the condition on the field
itself for the electric problem and on the curl of the field for the magnetic problem. A noteworthy
difference in the analysis of the two problems is that for the electric field, the searched solution
and the test function in the corresponding sesquilinear form belong to the same space, whereas
for the magnetic field we have not been able to do so. We do not know what are the numerical
consequences of this difference.
Of course, we could have assumed that the scalar problem involving ε is well-posed in H1

0(Ω) and
that hypersingularities exist for the problem in µ. This would have been similar mathematically.
Physically, however, this situation seems to be a bit less relevant because it is harder to obtain
negative µ without dissipation. More precisely, materials having an ε with a negative real part
can be found easily in nature (metals for certain ranges of frequencies) and additionally they
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can be very weakly dissipative (small imaginary part of ε). On the other hand, only certain
artificially designed metamaterials, made of small resonators, behave macroscopically, after an
homogenization process, as homogeneous materials with a µ having a negative real part. But for
the moment, dissipation for these metamaterials still remains very important.
We assumed that the domain Ω is simply connected and that ∂Ω is connected. When these
assumptions are not met, it is necessary to adapt the analysis (see §8.2 of [24] for the study in
the case where the scalar problems are well-posed in the usual H1 framework). This has to be
done. Moreover, for the conical tip, at least numerically, one finds that several singularities can
exist (actually this number can be as high as we wish for a contrast close enough to −1, see the
calculations in [96]). In this case, the analysis should follow the same lines but this has to be
written.
On the other hand, in this work, we focused our attention on a situation where the interface
between the positive and the negative material has a conical tip. It would be interesting to study
a setting where there is a wedge instead. In this case, roughly speaking, one should deal with
a continuum of singularities. We have to mention that the analysis of the scalar problems for a
wedge of negative material in the non standard framework has not been done. Finally, considering
a conical tip with both critical ε and µ is a direction that we are investigating.

5.6 Appendix

5.6.1 Vector potentials, part 1

Proposition 5.6.1. Under Assumption 1, the following assertions hold.

i) According to [8, Theorem 3.12], if u ∈ L2(Ω) satisfies divu = 0 in Ω, then there exists a
unique ψ ∈ XT (1) such that u = curlψ.

ii) According to [8, Theorem 3.17]), if u ∈ L2(Ω) satisfies divu = 0 in Ω and u · ν = 0 on
∂Ω, then there exists a unique ψ ∈ XN (1) such that u = curlψ.

iii) If u ∈ L2(Ω) satisfies curlu = 0 in Ω and u × ν = 0 on ∂Ω, then there exists (see [110,
Theorem 3.41]) a unique p ∈ H1

0(Ω) such that u = ∇p.

iv) Every u ∈ L2(Ω) can be decomposed as follows ([110, Theorem 3.45])

u = ∇p+ curlψ,

with p ∈ H1
0(Ω) and ψ ∈ XT (1) which are uniquely defined.

v) Every u ∈ L2(Ω) can be decomposed as follows ([110, Remark 3.46])

u = ∇p+ curlψ,

with p ∈ H1
#(Ω) and ψ ∈ XN (1) which are uniquely defined.

Proposition 5.6.2. Under Assumption 1, if ψ satisfies one of the following conditions
i) ψ ∈ XN (1) and ∆ψ ∈ L2(Ω),
ii) ψ ∈ XT (1), curlψ × ν = 0 on ∂Ω and ∆ψ ∈ L2(Ω),
then for all β < 1/2, we have curlψ ∈ V0

−β(Ω) and there is a constant C > 0 independent of ψ
such that

∥curlψ∥V0
−β(Ω) ≤ C ∥∆ψ∥Ω. (5.74)



Chapter 5. Maxwell’s equations with hypersingularities at a conical plasmonic tip:
the case of one critical coefficient 152

Proof. It suffices to prove the result for β ∈ (0; 1/2). Letψ ∈ XN (1)∪XT (1). Since curl curlψ =
−∆ψ, integrating by parts we get

∥curlψ∥2
Ω = −

ˆ
Ω

∆ψ ·ψ dx.

Note that the boundary term vanishes because either ψ × ν = 0 or curlψ × ν = 0 on ∂Ω. This
furnishes the estimate

∥curlψ∥Ω ≤ C ∥∆ψ∥Ω. (5.75)

Now working with cut-off functions, we refine the estimate at the origin to get (5.74).
Let us consider a smooth cut-off function χ, compactly supported in Ω, equal to one in a
neighbourhood of O. To prove the proposition, it suffices in addition to (5.75) to prove that
curl (χψ) ∈ V0

−β(Ω) together with the following estimate ∥curl (χψ)∥V0
−β(Ω) ≤ C ∥∆ψ∥Ω.

First of all, since curl (χψ) ∈ L2(Ω) and div(χψ) = ∇χ ·ψ ∈ L2(Ω), we know that χψi ∈ H1
0(Ω)

for i = 1, 2, 3 and we have

∥curl (χψ)∥2
Ω + ∥div(χψ)∥2

Ω =
3∑
i=1

∥∇(χψi)∥2
Ω.

From the previous identity, (5.75) and Proposition 7.2.1, we deduce
(

∥ψ∥2
Ω +

3∑
i=1

∥∇(χψi)∥2
Ω

)1/2

≤ C ∥∆ψ∥Ω. (5.76)

Note that, (5.76) is also valid if we replace χ by any other smooth function with compact support
in Ω. Now setting fi = ∆(χψi) for i = 1, 2, 3, we have

fi = χ∆ψi + 2 ∇χ · ∇ψi +ψi∆χ. (5.77)

By writing that ∇χ · ∇ψi = div(ψi∇χ) −ψi∆χ and replacing χ by ∂jχ in (5.76) for j = 1, 2, 3,
we deduce that for i = 1, 2, 3, fi belongs to L2(Ω) and satisfies

∥fi∥Ω ≤ C∥∆ψ∥Ω.

Note that since β ∈ (0; 1/2), we have V̊1
β(Ω) ⊂ V0

β−1 ⊂ L2(Ω) and so L2(Ω) ⊂ (V̊1
β(Ω))∗. Now

starting from the fact that χψi ∈ H1
0(Ω) in addition to ∆(χψi) = fi ∈ L2(Ω) ⊂ (V̊1

β(Ω))∗, by
applying Proposition 6.2.1, we deduce that χψi ∈ V̊1

−β(Ω) with the estimate

∥χψi∥V̊1
−β(Ω) ≤ C ∥fi∥(V̊1

β
(Ω))∗ ≤ C ∥fi∥Ω.

As a consequence, curl (χψ) ∈ V0
−β(Ω) and

∥curl (χψ)∥V0
−β(Ω) ≤ C

3∑
i=1

∥χψi∥V̊1
−β(Ω) ≤

3∑
i=1

∥fi∥Ω ≤ C∥∆ψ∥Ω,

which concludes the proof. ■

Proposition 5.6.3. Under Assumption 1, the following assertions hold:
i) if (ψn) is a bounded sequence of elements of XN (1) such that (∆ψn) is bounded in L2(Ω),
then one can extract a subsequence such that (curlψn) converges in V0

−β(Ω) for all β ∈ (0; 1/2);
ii) if (ψn) is a bounded sequence of elements of XT (1) such that curlψn × ν = 0 on ∂Ω and
such that (∆ψn) is bounded in L2(Ω), then one can extract a subsequence such that (curlψn)
converges in V0

−β(Ω) for all β ∈ (0; 1/2).
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Proof. Let us establish the first assertion, the proof of the second one being similar. Let (ψn)
be a bounded sequence of elements of XN (1) such that (∆ψn) is bounded in L2(Ω). Observing
that curl curlψn = −∆ψn, we deduce that (curlψn) is a bounded sequence of XT (1). Since
the spaces XN (1) and XT (1) are compactly embedded in L2(Ω) (see Proposition 7.2.1), one can
extract a subsequence such that both (ψn) and (curlψn) converge in L2(Ω).
Then, working as in the proof of Proposition 5.6.2, we can show that for a smooth cut-off function
χ compactly supported in Ω and equal to one in a neighbourhood of O, the sequence (χψn) is
bounded in V2

γ(Ω) := (V2
γ(Ω))3 for all γ > 1/2. To obtain this result, we use in particular the fact

that if O ⊂ R3 is a smooth bounded domain such that O ∈ O, then ∆ : V2
γ(O)∩V̊1

γ−1(O) → V0
γ(O)

is an isomorphism for all γ ∈ (1/2; 3/2) (see [107, §1.6.2]). Finally, to conclude to the result of the
proposition, we use the fact V2

γ(O) is compactly embedded in V1
γ′(O) a soon as γ− 1 < γ′ ([102,

Lemma 6.2.1]). This allows us to prove that for all β < 1/2, the subsequence (χψn) converges in
V1

−β(Ω), so that (curlψn) converges in V0
−β(Ω). ■

The next two lemmas are results of additional regularity for the elements of classical Maxwell’s
spaces that are direct consequences of Propositions 5.6.2 and 5.6.3.

Lemma 5.6.1. Under Assumption 1, for all β ∈ (0; 1/2), XT (1) is compactly embedded in
V0

−β(Ω). In particular, there is a constant C > 0 such that

∥u∥V0
−β(Ω) ≤ C ∥curlu∥Ω, ∀u ∈ XT (1). (5.78)

Proof. Let u be an element of XT (1). From the item ii) of Proposition 5.6.1, we know that there
exists ψ ∈ XN (1) such that u = curlψ. Using that −∆ψ = curlu ∈ L2(Ω), from Proposition
5.6.2, we get that u ∈ V0

−β(Ω) together with the estimate

∥curlψ∥V0
−β(Ω) ≤ C ∥curlu∥Ω.

This gives (5.78). Now suppose that (un) is a bounded sequence of elements of XT (1). Then
there exists a bounded sequence (ψn) of elements of XN (1) such that un = curlψn. Since
(curlun = −∆ψn) is bounded in L2(Ω), the first item of Proposition 5.6.3 implies that there is
a subsequence such that (un) converges in V0

−β(Ω). ■

Lemma 5.6.2. Under Assumption 1, for all β ∈ (0; 1/2), XN (1) is compactly embedded in
V0

−β(Ω). In particular, there is a constant C > 0 such that

∥u∥V0
−β(Ω) ≤ C ∥curlu∥Ω, ∀u ∈ XN (1).

Proof. The proof is similar to the one of Lemma 5.6.1. ■

5.6.2 Vector potentials, part 2

First we establish an intermediate lemma which can be seen as a result of well-posedness for
Maxwell’s equations in weighted spaces with ε = µ = 1 in Ω. Define the continuous operator
BT : ZβT (1) → (Z−β

T (1))∗ such that for all ψ ∈ ZβT (1), ψ′ ∈ Z−β
T (1),

⟨BTψ,ψ′⟩ =
ˆ

Ω
curlψ · curlψ′ dx.

Lemma 5.6.3. Under Assumption 1, for 0 ≤ β < 1/2, the operator BT : ZβT (1) → (Z−β
T (1))∗ is

an isomorphism.

Proof. Let ψ be an element of ZβT (1). According to Proposition 6.2.1, there is a unique φ ∈
V̊1

−β(Ω) such that
ˆ

Ω
∇φ · ∇φ′ dx =

ˆ
Ω
r2βcurlψ · ∇φ′ dx, ∀φ′ ∈ V̊1

β(Ω).
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Then denote Tψ ∈ Z−β
T (1) the function such that

curl (Tψ) = r2βcurlψ − ∇φ.

Observe that Tψ is well-defined according to the item i) of Proposition 5.6.1. This defines a
continuous operator T : ZβT (1) → Z−β

T (1). We have

⟨BTψ,Tψ⟩ =
ˆ

Ω
curlψ · curl (Tψ) dx = ∥rβcurlψ∥2

Ω = ∥curlψ∥2
V0
β(Ω).

Adapting the proof of Lemma 5.4.2, one can show that ∥curl ·∥V0
β(Ω) is a norm which is equivalent

to the natural norm of ZβT (1). Therefore, from the Lax-Milgram theorem, we infer that T∗BT is
an isomorphism which shows that BT is injective and that its image is closed in (Z−β

T (1))∗. And
from that, we deduce that BT is onto if and only if its adjoint is injective. The adjoint of BT is
the operator B∗

T : Z−β
T (1) → (ZβT (1))∗ such that for all ψ ∈ Z−β

T (1), ψ′ ∈ ZβT (1),

⟨B∗
Tψ,ψ

′⟩ =
ˆ

Ω
curlψ · curlψ′ dx. (5.79)

If B∗
Tψ = 0, then taking ψ′ = ψ ∈ Z−β

T (1) ⊂ ZβT (1) in (5.79), we obtain ∥curlψ∥Ω = 0. Since
Z−β
T (1) ⊂ XT (1) and ∥curl · ∥Ω is a norm in XT (1) (Proposition 7.2.1), we deduce that ψ = 0.

This shows that B∗
T is injective and that BT is an isomorphism. ■

Now we use the above lemma to prove the following result which is essential in the analysis of
the Problem (5.56) for the magnetic field. This is somehow an extension of the result of item i)
of Proposition 5.6.1 for singular fields which are not in L2(Ω).
Proposition 5.6.4. Under Assumption 1, for all 0 ≤ β < 1/2, if u ∈ V0

β(Ω) satisfies divu = 0
in Ω, then there exists a unique ψ ∈ ZβT (1) such that u = curlψ.
Proof. Let u ∈ V0

β(Ω) be such that divu = 0 in Ω. According to Lemma 5.6.3, we know that
there is a unique ψ ∈ ZβT (1) such thatˆ

Ω
curlψ · curlψ′ dx =

ˆ
Ω
u · curlψ′ dx, ∀ψ′ ∈ Z−β

T (1).

Then we have ˆ
Ω

(u− curlψ) · curlψ′ dx = 0, ∀ψ′ ∈ Z−β
T (1). (5.80)

Since u is divergence free in Ω, we also haveˆ
Ω

(u− curlψ) · ∇p′ dx = 0, ∀p′ ∈ V̊1
−β(Ω). (5.81)

Now if v is an element of V0
−β(Ω) ⊂ L2(Ω), from item iv) of Proposition 5.6.1, we know that

there holds the decomposition
v = ∇p′ + curlψ′, (5.82)

for some p′ ∈ H1
0(Ω) and some ψ′ ∈ XT (1). Taking the divergence in (5.82), we get

∆p′ = div v ∈ (V̊1
β(Ω))∗. (5.83)

From Proposition 6.2.1, since 0 ≤ β < 1/2, we know that (5.83) admits a solution in V̊1
−β(Ω) ⊂

H1
0(Ω). Using uniqueness of the solution of (5.83) in H1

0(Ω), we obtain that p′ ∈ V̊1
−β(Ω). This

implies that curlψ′ = v − ∇p′ ∈ V0
−β(Ω) and so ψ′ ∈ Z−β

T (1). From (5.80) and (5.81), we infer
that ˆ

Ω
(u− curlψ) · v dx = 0, ∀v ∈ V0

−β(Ω).

This shows that u = curlψ. Finally, if ψ1, ψ2 are two elements of ZβT (1) such that u = curlψ1 =
curlψ2, then ψ1 −ψ2 belongs to XT (1) and satisfies curl (ψ1 −ψ2) = 0 in Ω. From Proposition
7.2.1, we deduce that ψ1 = ψ2. ■
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5.6.3 Dimension of Xout
N (ε)/XN(ε)

Lemma 5.6.4. Under Assumptions 1–3, we have dim (Xout
N (ε)/XN (ε)) = 1.

Proof. If u1 = c1∇s+ + ũ1, u2 = c2∇s+ + ũ2 are two elements of Xout
N (ε), then c2u1 − c1u2 ∈

XN (ε), which shows that dim (Xout
N (ε)/XN (ε)) ≤ 1.

Now let us prove that dim (Xout
N (ε)/XN (ε)) ≥ 1. Introduce s̃ ∈ V̊out the function such that

Aout
ε s̃ = div(ε∇s−). Note that since div(ε∇s−) vanishes in a neighbourhood of the origin, it

belongs to (V̊1
γ(Ω))∗ for all γ ∈ R. Then set

s = s− + s̃. (5.84)

Observe that s ∈ V̊1
γ(Ω) for all γ > 0 and that div(ε∇s) = 0 in Ω \ {O} (s is a non zero element

of ker Aγε for all γ > 0). Let ũ ∈ (C ∞
0 (Ω \ {O}))3 be a field such that

´
Ω εũ · ∇s dx ̸= 0. The

existence of such a ũ can be established thanks to the density of (C ∞
0 (Ω \ {O}))3 in L2(Ω),

considering for example an approximation of 1B∇s ∈ L2(Ω) where 1B is the indicator function
of a ball included in M. Introduce ζ = c s+ + ζ̃ ∈ V̊out, with c ∈ C, ζ̃ ∈ V̊1

−β(Ω), the function
such that Aout

ε ζ = −div(εũ). This is equivalent to have

−c
ˆ

Ω
div(ε∇s+)φ′ dx+

ˆ
Ω
ε∇ζ̃ · ∇φ′ dx =

ˆ
Ω
εũ · ∇φ′ dx, ∀φ′ ∈ V̊1

β(Ω).

Clearly ∇ζ − ũ = c∇s+ + (∇ζ̃ − ũ) is an element of Xout
N (ε). Moreover taking φ′ = s above, we

get
−c

ˆ
Ω

div(ε∇s+)s dx =
ˆ

Ω
εũ · ∇s dx ̸= 0.

This shows that c ̸= 0 and guarantees that dim (Xout
N (ε)/XN (ε)) ≥ 1. ■
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157 6.1. Introduction

6.1 Introduction

In the previous chapter, we studied time harmonic Maxwell’s problems in the presence of a conical
tip of a negative material. More precisely, we studied the case where the function ε is critical (i.e.
the scalar problem associated to ε is ill-posed in H1

0(Ω) because of the existence of propagating
singularities) and where the function µ is not critical (i.e. the scalar problem associated to µ
is well-posed in H1

#(Ω)). We have proved that the classical functional frameworks for the study
of Maxwell’s problems are no longer appropriate. More importantly, we have explained how
to construct new functional frameworks in which the electric and magnetic problems are again
well-posed. These functional frameworks have been constructed by making use of the weighted
Sobolev spaces and cleverly taking into account the existence of propagating singularities of the
scalar problem associated to ε. The justification of the adequacy with the physical reality (of the
solutions obtained in these new functional frameworks) has been achieved thanks to the limiting
absorption principle.

In this chapter, we are interested in studying the case where both functions ε and µ are criti-
cal. From what has been done, in the previous chapter, we expect that, in this configuration,
the classical frameworks are not suitable for the study of Maxwell problems either (this will be
confirmed in §6.3). Our goal is then to explain how to construct adapted functional frameworks
(that are coherent with the limiting absorption principle) that take into account both propagating
singularities generated by the scalar problems associated to ε and µ. As with the other chapters
in this thesis, we will try to make this chapter self-contained (so it can be read independently of
the previous one).

The plan of our work is the following. In §6.2, we start by recalling some results, which we
will need, concerning scalar problems with critical coefficients. Then, in §6.3, we prove that the
classical approach to study electrical and magnetic problems is no longer valid. The construction
of new adapted functional frameworks for the electric problem and the magnetic problem and the
study of their well-posedness in these new functional frameworks are, respectively, the object of
§6.4 and §6.5. The last section is devoted to give a few words of conclusion.

6.2 Setting of the problem and study of the scalar problems with
critical coefficients

The geometry considered is the same as in the previous chapter. Let Ω be an open, simply
connected and bounded subset of R3 with Lipschitz-continuous boundary ∂Ω. To simplify the
analysis below, we shall suppose that ∂Ω is connected. When this hypothesis is not satisfied all
our results can be adapted by working as in [22, §8.2]. In Ω, we define the piecewise constant
functions ε and µ such that

ε =
{
ε+ > 0 in Ω\M
ε− < 0 in M

, µ =
{
µ+ > 0 in Ω\M
µ− < 0 in M

in which M is a subdomain of Ω satisfying M ⊂ Ω. We suppose that ∂M is of class C 2 except at
the origin O = (0, 0, 0) where M coincides, locally, with the the cone K such that

M ∩ K = K ∩B(O, ρ) = {x ∈ R3, |x| < ρ,
x

|x|
∈ A }; K = {x ∈ R3,

x

|x|
∈ A },

in which B(O, ρ) is the open ball of R3 of center O and of radius ρ sufficiently small and A is a
smooth sub-domain of the unit sphere of R3 (see Figure 6.1). The contrasts associated to ε and
µ are, respectively, defined by κε := ε−/ε+ and κµ := µ−/µ+.
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Figure 6.1: An example of the geometry considered in which M is represented in red and Ω\M is
in green.

In the distributional sense, the time harmonic Maxwell’s problem writes: Find E and H such
that

curlE − iω µH = 0 and curlH + iω εE = J in Ω. (6.1)
E and H are complex vector fields and denote, respectively, the electric and the magnetic field,
ω ∈ R is the frequency. The vector field J stands for the current density injected in the Ω
and is such that div(J) = 0. In this chapter we will also suppose that Ω is surrounded by a
perfect conductor. This leads us to complete the previous system of equations with the boundary
conditions:

E × ν = 0 and µH · ν = 0 on ∂Ω, (6.2)
in which ν denotes the unit outward normal vector to ∂Ω. In the classic configuration, when ε
and µ have constant sign, to study the time harmonic Maxwell’s system one has to introduce the
spaces

L2(Ω) := (L2(Ω))3

H(curl ) := {H ∈ L2(Ω) | curlH ∈ L2(Ω)}
HN (curl ) := {E ∈ H(curl ) |E × ν = 0 on ∂Ω}

XT (ξ) := {H ∈ H(curl ) | div(ξH) = 0, ξH · ν = 0 on ∂Ω} , for ξ ∈ L∞(Ω)
XN (ξ) := {E ∈ H(curl ) | div(ξE) = 0, E × ν = 0 on ∂Ω} , for ξ ∈ L∞(Ω).

We endow, the space L2(Ω) with its natural norm ∥ · ∥L2(Ω) and the others spaces with the norm

∥ · ∥H(curl ) = (∥ · ∥2
L2(Ω) + ∥curl · ∥2

L2(Ω))
1/2.

On can check that, endowed with their natural norms all these spaces are of Hilbert type. For
the particular case ξ = 1, it is well-known (see [139, 8]) that in XT (1) (resp. XN (1)) the semi-
norm ∥curl · ∥L2(Ω) is a norm and it is equivalent to ∥ · ∥H(curl ). Furthermore, the embedding
of XT (1) (resp. XN (1)) in L2(Ω) is known to be compact. It is also, well-understood thanks to
results of [22], that the study of the Maxwell’s system in the classical L2-framework (see §6.3) is
directly related to the study of the properties of the scalar operators Aε : H1

0(Ω) → (H1
0(Ω))∗ and

Aµ : H1
#(Ω) → (H1

#(Ω))∗ that are defined as follows:

⟨Aεφ,φ′⟩ =
ˆ

Ω
ε∇φ · ∇φ′ dx, ∀φ,φ′ ∈ H1

0(Ω)

and
⟨Aµφ,φ′⟩ =

ˆ
Ω
µ∇φ · ∇φ′ dx, ∀φ,φ′ ∈ H1

#(Ω).

Above the space H1
#(Ω) := {u ∈ H1(Ω) | (u, 1)L2(∂Ω) = 0}. It is not difficult to see that the

properties of Aε and Aµ are, respectively, related to the well-posedeness of the problems:

Find ud ∈ H1
0(Ω) s.t.

−div(ε∇ud) = f ∈ (H1
0(Ω))∗

ud = 0 on ∂Ω

Find un ∈ H1
#(Ω) s.t.

−div(µ∇un) = g ∈ (H1
#(Ω))∗

∂νun = 0 on ∂Ω.
(6.3)
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coefficients

In particular, it was proved in [22] that when the function ε and µ are such that Aε and Aµ are of
Fredholm type then the Maxwell’s system is well-posed in the classical L2−framework (see §6.3).
In Chapter 2, we have proved that the operator Aε (resp. Aµ) is a Fredholm operator if and only
if κε ∈ R∗

−\Iε (resp. κµ ∈ R∗
−\Iµ), where Iε (resp. Iµ) is a closed subset of R∗

− called the critical
interval. As mentioned in the introduction, along this chapter we shall work under the following

Assumption 6.2.1. We suppose that the function ε and µ are such that κε ∈ Iε\{−1}, κµ ∈
Iµ\{−1}.

By definition of Iε and Iµ, we can say that under the previous assumption the operators Aε

and Aµ are not of Fredholm type. Thanks to the results of Chapter 2, we know that, in our
configuration, the Assumption 6.2.1 is equivalent to say that propagating singularities exist for
both Aε and Aµ. In §6.2.2, we shall recall, briefly, how construct adapted alternative functional
frameworks in which the scalar problems associated to Aε and Aµ are again well-posed.
To prepare the ground, we will start by recalling the definition of weighted Sobolev (Kondratiev)
spaces and some useful results concerning the Laplace operator (with homogeneous Dirichlet and
Neumann boundary conditions) in these spaces.

6.2.1 The Laplace operator in weighted Sobolev (Kondratiev) spaces

The weighted Sobolev spaces

For β ∈ R and m ∈ N, we introduce the weighted Sobolev (Kondratiev) space (see [100, 107, 102])
associated to the punctured domain Ω \ {O}: Vm

β (Ω) defined as the closure of D(Ω \ {O}) for the
norm

∥φ∥Vm
β

(Ω) =

 ∑
|α|≤m

∥r|α|−m+β∂αxφ∥2
L2(Ω)

1/2

in which r = |x|. Here D(Ω \ {O}) denotes the space of infinitely differentiable functions which
are supported in Ω \ {O}. For all m ∈ N∗ and β ∈ R we have the inclusion

Vm
β (Ω) ⊂ Vm−1

β−1 (Ω). (6.4)

We also denote by V̊1
β(Ω) the closure of D(Ω \ {O}) for the norm ∥ · ∥V1

β
(Ω). We have the

characterization
V̊1
β(Ω) = {φ ∈ V1

β(Ω) |φ = 0 on ∂Ω}.

It is obvious that V1
0(Ω) ⊂ H1(Ω). Moreover, since Ω is bounded, applying the results of [102,

Theorem 7.1.1] yields that H1(Ω) = V1
0(Ω) and H1

0(Ω) = V̊1
0(Ω). For β > 0, one has the inclusions

V̊1
−β(Ω) ⊂ H1

0(Ω) ⊂ V̊1
β(Ω) and then (V̊1

β(Ω))∗ ⊂ (H1
0(Ω))∗ ⊂ (V̊1

−β(Ω))∗.

Since for all 0 < β we have V0
−β(Ω) ⊂ L2(Ω), one deduces, thanks to (6.4), that

L2(Ω) ⊂ V0
β(Ω) ⊂ (H1

0(Ω))∗.

To obtain the previous inclusions, we have used the fact that (V0
β(Ω))∗ = V0

−β(Ω). For all β ∈ R,
we define the space V1

β(Ω) := {u ∈ V1
β(Ω)|(u, 1)L2(∂Ω) = 0}. Again, by using [102, Theorem 7.1.1]

we find H1
#(Ω) = V1

0(Ω).
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The Laplace operator in weighted Sobolev spaces

In this paragraph, we will recall some results concerning the Laplace operator acting between
weighted Sobolev spaces in the punctured domain Ω\{O}. These results will be very useful
throughout this chapter, their proofs can be found in [102, 101, 107] and in the references therein.
We will start with the homogeneous Dirichlet condition. For γ ∈ R, we define the operator
Aγ
D : V̊1

γ(Ω) → (V̊1
−γ(Ω))∗ such that

⟨Aγφ,φ′⟩ =
ˆ

Ω
∇φ · ∇φ′ dx, ∀φ ∈ V̊1

γ(Ω), φ′ ∈ V̊1
−γ(Ω).

Proposition 6.2.1. For all γ ∈ (−1/2, 1/2), the operator Aγ
D : V̊1

γ(Ω) → (V̊1
−γ(Ω))∗ is an

isomorphism.

Let 0 < r0 and denote by B(O, r0) the open ball of R3 of center O and of radius r0. We have the
following regularity result

Proposition 6.2.2. [107, §1.6.2] For all γ ∈ (1
2 ,

3
2) the operator ∆ : V2

γ(B(O, r0))∩V̊1
γ−1(B(O, r0)) →

V0
γ(B(O, r0)) is an isomorphism. Since for all γ ∈ (1

2 , 1) we have V0
γ(B(O, r0)) ⊂ (H1

0(B(O, r0)))∗,

the space of solutions V2
γ(B(O, r0))∩V̊1

γ−1(B(O, r0)) can be replaced by V2
γ(B(O, r0))∩H1

0(B(O, r0)).

Now, we turn our attention to the case of the homogeneous Neumann boundary condition. For
this, we introduce the operator Aγ

N : V1
γ(Ω) → (V1

−γ(Ω))∗ such that

⟨Aγ
Nφ,φ

′⟩ =
ˆ

Ω
∇φ · ∇φ′ dx, for all φ ∈ V1

γ(Ω), φ′ ∈ V1
−γ(Ω).

Proposition 6.2.3. For all γ ∈ (−1/2, 1/2), the operator Aγ
N : V1

γ(Ω) → (V1
−γ(Ω))∗ is an

isomorphism.

Note that when γ = 0, we obtain the classical well-known result ∆ : H1
#(Ω) → (H1

#(Ω))∗ is an
isomorphism.

6.2.2 The scalar problems with critical coefficients

Here, we recall some results, that we have proved in Chapter 2, concerning the construction of
new functional frameworks for the scalar problems when the functions ε and µ are such that
Assumption 6.2.1 holds. To start, we define, for all β ∈ R, the operators A±β

ε : V̊1
±β(Ω) →

(V̊1
∓β(Ω))∗ such that

⟨A±β
ε φ,φ′⟩ =

ˆ
Ω
ε∇φ · ∇φ′ dx, for all φ ∈ V̊1

±β(Ω), φ′ ∈ V̊1
∓β(Ω). (6.5)

In the same way, for all β ∈ R we introduce the operators A±β
µ : V1

±β(Ω) → (V1
∓β(Ω))∗ such that

⟨A±β
µ φ,φ′⟩ =

ˆ
Ω
µ∇φ · ∇φ′ dx for all φ,φ′ ∈ V1

∓β(Ω). (6.6)

Observe that, thanks to the fact that V̊1
0(Ω) = H1

0(Ω) and V1
0(Ω) = H1

#(Ω), we, then, have
A0
ε = Aε and A0

µ = Aµ.

Lemma 6.2.1. Under Assumption 6.2.1 there exists 0 < βD (resp. 0 < βN ) such that the
operator A±β

ε (resp. A±β
µ ) is of Fredholm type for all β ∈ (0;βD) (resp. β ∈ (0;βN )).
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coefficients

To simplify the analysis below, we shall make the

Assumption 6.2.2. We suppose that ε (resp. µ) is such that there exists β∗ ∈ (0;βD) (resp.
β∗ ∈ (0;βN )) such that A−β∗

ε (resp. A−β∗
µ ) is injective.

Using the results of Proposition 2.6.3, we obtain the

Lemma 6.2.2. Assume that Assumptions 6.2.1-6.2.2 hold. Then for all β ∈ [0;βD) (resp.
β ∈ [0;βN )) the operator A−β

ε (resp. A−β
µ ) is injective.

Another useful result is the following

Lemma 6.2.3. Assume that Assumptions 6.2.1-6.2.2 hold. If u ∈ H1
0(Ω) (resp. u ∈ H1

#(Ω)) is
such that div(ε∇u) ∈ (V̊1

β(Ω))∗ (resp. div(ε∇u) ∈ (V1
β(Ω))∗) with β ∈ (0;βD) (resp. β ∈ (0;βN ))

then u ∈ V̊1
−β(Ω) (resp. u ∈ V1

−β(Ω)).

We denote by Sε and Sµ, respectively, the spaces of propagating singularities generated by the
operators Aε and Aµ. Recall that these spaces have finite dimensions as soon as κε ̸= −1 and
κµ ̸= −1. To be more precise, the space Sε is defined as follows:

Sε = span{rω 7→ χ(r)r−1/2+iη
k∑
p=0

1
p! log(r)pφk−p | η ∈ R, (φp)p=0,...,k is a Jordan chain of Lε}

(6.7)
where Lε is the Mellin symbol of Aε and χ ∈ D(Ω) is a fixed cutoff function that depends only
in r = |x| and that is equal to 1 near the origin. To define the space Sµ, simply replace ε by µ.
Interestingly, we have explained in Chapter 2 that Sε, Sµ ⊂ L2(Ω) in addition to that we proved
that for all s ∈ Sε (resp. s ∈ Sµ) we have div(ε∇s) ∈ L2(Ω) (resp. div(µ∇s) ∈ L2(Ω)). This
allows us to define for ψ = ε, µ, the quadratic form qψ : Sψ × Sψ → C such that

qψ(u, v) =
ˆ

Ω
div(ψ∇v)u− div(ψ∇u)v for all u, v ∈ Sψ.

Observe that for all u ∈ Sψ (with ψ = ε, µ) we have

qψ(u, u) = 2iℑm(
ˆ

Ω
div(ψ∇u)u).

We also have the

Lemma 6.2.4. Assume that Assumptions 6.2.1-6.2.2 hold. The spaces Sε and Sµ have even
dimensions denoted, respectively, by Tε = 2Nε and Tµ = 2Nµ (Nε, Nµ ∈ N∗). There exists
(s±
ε,j)j=1,...,Nε (resp. (s±

µ,j)j=1,...,Nµ) a basis of Sε (resp. Sµ) such that for ψ = ε, µ we have

qψ(s±
ψ,j , s

±
ψ,k) = ±iδj,k, qψ(s±

ψ,j , s
∓
ψ,k) = 0 and s+

ψ,j = s−
ψ,j for j, k = 1, . . . , Nψ.

Remark 6.2.1. As explained in §2.6.2, the choice of the bases (s±
ε,j)j=1,...,Nε and (s±

µ,j)j=1,...,Nµ is
not unique. One can find an infinite number of bases (s±

ε,j)j=1,...,Nε and (s±
µ,j)j=1,...,Nµ satisfying

all the conditions of Lemma 6.2.4. From a mathematical point of view, the choice of these bases
is not important: any choice of bases will lead us to construct functional frameworks in which the
scalar problems are again well posed. However, there is a particular choice of these bases which is
consistent with the limiting absorption principle. We will come back to the choice of these bases
in §6.4.7.

From now on, we fix (s±
ε,j)j=1,...,Nε (resp. (s±

µ,j)j=1,...,Nµ) a basis of Sε (resp. Sµ) satisfying the
orthogonality relations in Lemma 6.2.4. Moreover, we define the spaces

S+
ε := span{s+

ε;j , j = 1, . . . , Nε}, S+
µ := span{s+

µ;j , j = 1, . . . , Nµ}.

Easily, one can show that we have the following
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Lemma 6.2.5. Assume that Assumptions 6.2.1-6.2.2 hold. If s ∈ S+
ε (resp. s ∈ S+

µ ) satisfies
qε(s, s) = 0 (resp. qµ(s, s) = 0) then s = 0.

Next, we define for all 0 < β the spaces

V̊out
β (Ω) = V̊1

−β(Ω) ⊕ S+
ε , Vout

β (Ω) = V1
−β(Ω) ⊕ S+

µ .

For all 0 < β, we define the operator Aout
ε : V̊out

β (Ω) → (V̊1
β(Ω))∗ such that for all u = ũ + s+

ε ∈
V̊out
β (Ω) (with ũ ∈ V̊1

−β(Ω) and s+
ε ∈ S+

ε ) and v ∈ V̊1
β(Ω) we have

⟨Aout
ε u, v⟩ :=

ˆ
Ω
ε∇ũ · ∇v −

ˆ
Ω

div(ε∇s+
ε )v.

In the same way, we introduce the operator Aout
µ : Vout

β (Ω) → (V1
β(Ω))∗ such that for all u =

ũ+ s+
µ ∈ Vout

β (Ω) (with ũ ∈ V1
−β(Ω) and s+

µ ∈ S+
µ ) and v ∈ V1

β(Ω) we know

⟨Aout
µ u, v⟩ :=

ˆ
Ω
µ∇ũ · ∇v −

ˆ
Ω

div(µ∇s+
µ )v.

According to the results of §, we can prove the following

Lemma 6.2.6. Assume that Assumptions 6.2.1-6.2.2 hold. Then for all β ∈ (0;βD) (resp.
β ∈ (0;βN )) the operator Aout

ε (resp. Aout
µ ) is an isomorphism.

Since in our work we are going to use at the same time the results concerning the Laplace operator
with Dirichlet or Neumann boundary conditions as well as those associated with the operators Aβ

ε

and Aβ
µ, we are going to assume once and for all that, when the hypotheses 6.2.1-6.2.2 are satisfied,

the constants βD and βN are such that βN , βD < 1/2. Moreover, we denote by β0 := min(βD, βN ).

6.3 Necessity of a new functional framework for the Maxwell’s
system

After eliminating H and then E in the problem (6.1), one concludes that the electric field E and
the magnetic field H satisfy the problems

curlµ−1curlE − ω2εE = iωJ in Ω
E × ν = 0 on ∂Ω,

curl ε−1curlH − ω2µH = curl ε−1J in Ω
µH · ν = 0, ε−1(curlH − J) × ν = 0 on ∂Ω. (6.8)

In the classical configuration, when ε and µ have constant signs, the formulation associated to
the electric field E is set in the space HN (curl ) and the one associated the magnetic field H is
set in the space H(curl ). More precisely, when J ∈ L2(Ω), the problem associated to the electric
field writes

Find u ∈ HN (curl ) such thatˆ
Ω
µ−1curlu · curlv − ω2

ˆ
Ω
εu · v = iω

ˆ
Ω
J · v for all v ∈ HN (Ω). (6.9)

Since the embedding of HN (Ω) in L2(Ω) is not compact (see [8]), the analysis of the previous
problem cannot be treated by classical arguments. For this reason, we prefer to work with the
following formulation which is posed in the space XN (ε) ⊂ HN (Ω)

Find u ∈ XN (ε) such thatˆ
Ω
µ−1curlu · curlv − ω2

ˆ
Ω
εu · v = iω

ˆ
Ω
J · v for all v ∈ XN (ε). (6.10)

It was proved in [22] that the previous two formulations are equivalent as soon as the operators Aε

and Aµ are isomorphisms. Furthermore, in this situation one can show that (6.10) is well-posed
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except for a discrete set of frequencies where it admits a finite dimensional kernel. When ε and
µ are critical, there is no guarantee neither on the equivalence between the formulations (6.9)
and (6.10) nor on their well-posedeness. To proceed, we introduce the operators AN : XN (ε) →
(XN (ε))∗ and KN : XN (ε) → (XN (ε))∗ such that for all u,v ∈ XN (ε), we have

⟨ANu,v⟩ :=
ˆ

Ω
µ−1curlu · curlv, ⟨KNu,v⟩ :=

ˆ
Ω
εu · v.

The following lemma can be seen as an extension of the results of [54].

Lemma 6.3.1. Assume that Assumptions 6.2.1-6.2.2 hold. Then the operator KN is compact.

Proof. Let β ∈ (0;βD). According to Proposition 6.7.3, we know that the space XN (ε) is
compactly embedded in the space V0

−β(Ω) = (V0
−β(Ω))3. We finish the proof by remarking that

there exists a positive constant C such that for all u ∈ XN (ε)

∥KNu∥(XN (ε,Ω))∗ ≤ C ∥u∥L2(Ω) ≤ C ∥u∥V0
−β(Ω). (6.11)

■

As a result, even when ε is critical, we then have the equivalence between the Fredholmness of
the problem (6.10) and the Fredholmness of the operator AN . We also have the

Proposition 6.3.1. Under Assumptions 6.2.1-6.2.2 the map u 7→ ∥curlu∥L2(Ω) is a norm in
XN (ε) that is equivalent to the ∥ · ∥H(curl ) one.

Proof. By the classical open map theorem, its suffices to show that u 7→ ∥curlu∥L2(Ω) is a norm
in XN (ε). If u ∈ XN (ε) such that curlu = 0, then by using item iii) Proposition 6.7.1 we infer
that there exists a unique φ ∈ H1

0(Ω) such that u = ∇φ. Given that div(εu) = div(ε∇φ) = 0 and
owing to Lemma 6.2.2, we obtain the wanted result. ■

The main result of this section is given by the following

Theorem 6.3.1. Assume that Assumptions 6.2.1-6.2.2 hold and assume that ε and µ are such
that κε ∈ Iε\{−1} and κµ ∈ Iµ\{−1}. Then either the operator AN is not of Fredholm type or
the problems (6.9) and (6.10) are not equivalent.

Remark 6.3.1. In the case where the operator AN is of Fredholm type, the absence of equivalence
between the formulations (6.9) and (6.10) means that the solution obtained by solving (6.10) does
not satisfy the equation satisfied by the electric field in the distributional sense (i.e., the first part
of (6.8)).

Proof. We will proceed by contradiction. Suppose that AN is a Fredholm operator and that the
problems (6.9) and (6.10) are equivalent, then we will show that Aµ is of a Fredholm operator
which is false by assumption.
The symmetric operator AN is then of Fredholm type; its index must therefore be equal to 0.
Without loss of generality, we can suppose that AN is not injective. Otherwise, the following
proof can be easily adapted. Since the kernel of AN is of finite dimension, say N ∈ N∗, we can
find N linearly independent elements of XN (ε) that will be denoted by λ1, . . . ,λN such that
Ker (AN ) = span(λ1, . . . ,λN ). To proceed, with the help of Proposition 6.3.1, we introduce the
closed space

X̃N (ε) := {u ∈ XN (ε) | (curlu, curlλi)L2(Ω) = 0, i = 1, . . . N}

as well as the operator ÃN : X̃N (ε) → X̃N (ε) such that

⟨ÃNu,v⟩ =
ˆ

Ω
µ−1curlu · curlv dx, for all u,v ∈ X̃N (ε).
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Consequently, we obtain the decomposition XN (ε) = X̃N (ε)
⊥
⊕ span(λ1, . . . ,λN ). Moreover, the

operator ÃN is an isomorphism. Now, consider an element φ ∈ H1
#(Ω). Since ÃN is an isomor-

phism, we define ψφ ∈ X̃N (ε) the unique element of X̃N (ε) satisfying

ˆ
Ω
µ−1curlψφ · curlψ′ dx =

ˆ
Ω
µ−1(∇φ−

N∑
i=1

βicurlλi) · curlψ′ dx, ∀ψ′ ∈ X̃N (ε) (6.12)

in which βi =
ˆ

Ω
µ−1∇φ · curlλi dx. We emphasis that in (6.12) the test function ψ′ belongs to

X̃N (ε). However, thanks to the definition of λi and βi, one can check that (6.12) is also valid for
all ψ′ ∈ span(λ1, . . . ,λN ). Indeed, since for all i ∈ {1, . . . , N} we have λi ∈ Ker (AN ) we infer
that ˆ

Ω
µ−1curlψφ · curlλi dx = 0.

On the other hand, thanks to the definition of βk for k = 1, . . . , N, we also have
ˆ

Ω
µ−1(∇φ−

N∑
k=1

βkcurlλk) · curlλi dx = 0 for all i = 1, . . . , N.

As a result, by linearity, we find
ˆ

Ω
µ−1curlψφ · curlψ′ dx =

ˆ
Ω
µ−1(∇φ′ −

N∑
i=1

βicurlλi) · curlψ′ dx, ∀ψ′ ∈ XN (ε). (6.13)

But, since by assumption the problems (6.9) and (6.10) are equivalent, the equation (6.13) is,
then, valid for all ψ′ ∈ HN (Ω) and then, by density of (D(Ω))3 in HN (Ω), we obtain

curl (µ−1(∇φ−
N∑
i=1

βicurlλi − curlψφ)) = 0 in Ω.

From item v) of Proposition (6.7.1), we infer that there is a unique Tφ′ ∈ H1
#(Ω) such that

∇(Tφ) = µ−1(∇φ′ −
N∑
i=1

βicurlλi − curlψφ).

As a result, we have defined an operator T : H1
#(Ω) → (H1

#(Ω))∗. One can easily prove that T is

continuous. Furthermore, since for all φ ∈ H1
#(Ω),u ∈ XN (ε) we have

ˆ
Ω

curlu · ∇φ′ = 0, we

deduce that for all φ,φ′ ∈ H1
#(Ω)

⟨Aµφ, Tφ′⟩ =
ˆ

Ω
µ∇φ · ∇(Tφ′) dx =

ˆ
Ω

∇φ · ∇φ′ dx−
N∑
i=1

ˆ
Ω
βicurlλi · ∇φ′ dx. (6.14)

Consequently, the operator T represents a left parametrix for the self adjoint operator Aµ. As a
result (see [109, Lemma 2.23]) the operator Aµ : H1

#(Ω) → (H1
#(Ω))∗ is a Fredholm operator of

index 0 which is not true by assumption (µ is critical). ■

In the classical setting, the equivalent variational formulation to the magnetic problem writes:

Find u ∈ H(curl ) such thatˆ
Ω
µ−1curlu · curlv − ω2

ˆ
Ω
µu · v =

ˆ
Ω
ε−1J · curlv for all v ∈ H(curl ). (6.15)
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The results of [22] allow us to show that when µ is such that Aµ is an isomorphism then the
previous formulation is equivalent to the following one

Find u ∈ XT (µ) such thatˆ
Ω
µ−1curlu · curlv − ω2

ˆ
Ω
µu · v =

ˆ
Ω
ε−1J · curlv for all v ∈ XT (µ). (6.16)

If in addition to that the function ε is such that Aε is an isomorphism, it can be shown that
(6.16) is well-posed except for a discrete set of frequencies at which it has a finite dimensional
kernel. As in the previous paragraph, we introduce the operators AT , KT : XT (µ) → (XT (µ))∗

such that for all u,v ∈ XT (µ), we have

⟨ATu,v⟩ :=
ˆ

Ω
µ−1curlu · curlv, ⟨KTu,v⟩ :=

ˆ
Ω
εuv.

By working as in the case of the electric problem, one shows the

Theorem 6.3.2. Assume that Assumptions 6.2.1-6.2.2 hold and assume that ε and µ are such
that κε ∈ Iε\{−1} and κµ ∈ Iµ\{−1}. Then the following assertions hold:

• u 7→ ∥curlu∥L2(Ω) is a norm in XT (µ) and is equivalent to ∥ · ∥H(curl ).

• KT is compact.

• Either the operator MT is not of Fredholm type or the problems (6.15) and (6.16) are not
equivalent.

6.4 The analysis the electric problem

Previously, we have shown that when ε and µ are critical, the classical framework XN (ε) is no
longer the appropriate space to solve the electric problem. In this section, we explain how to
construct a new functional framework in which the problem

curlµ−1curlE − ω2εE = iωJ in Ω
E × ν = 0 on ∂Ω. (6.17)

is again well-posed. For this, we introduce for all β ∈ R the spaces

V0
β(Ω) := (V0

β(Ω))3,

Hβ
N (curl ) := {u ∈ ∇S+

ε ⊕ V0
−β(Ω) | curlu ∈ V0

β(Ω), u× ν = 0 on ∂Ω},
Hout,β
N (curl ) := {u ∈ ∇S+

ε ⊕ V0
−β(Ω) | curlu ∈ µ∇S+

µ ⊕ V0
−β(Ω), u× ν = 0 on ∂Ω}.

Observe that the space Hβ
N (curl ) depends on ε and that the space Hout,β

N (curl ) depends on ε
and µ. Above ∇S+

ε and ∇S+
µ stand for the spaces

∇S+
ε = span{∇s+

ε,j , j = 1, . . . , Nε},∇S+
µ = span{∇s+

µ,j , j = 1, . . . , Nµ}.

Before getting into details, let us define the norms that we are going to use in the spaces ∇S+
ε

and ∇S+
µ . For ψ = ε, µ and α1∇s+

ψ,1 + · · · + αNψ∇s+
ψ,Nψ

∈ ∇S+
ψ we define

∥
Nε∑
j=1

αjs
+
ε,j∥∇S+

ψ
= (

Nε∑
j=1

|αj |2)1/2.

On can check that for all 0 < β, we have the inclusions

Hout,β
N (curl ) ⊂ Hβ

N (curl ) ⊂ V0
β(Ω). (6.18)
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It is time to present the norms that we are going to use in these three spaces. We start with the
case of the space Vβ

0 (Ω). For all u = (u1, u2, u3) ∈ Vβ
0 (Ω), we denote by

∥u∥Vβ
0 (Ω) := (

3∑
i=1

∥ui∥2
Vβ0 (Ω)2)1/2.

For the case of the space Hβ
N (curl ), we proceed as follows. For all u = ũ + ∇s+

ε ∈ Hβ
N (curl )

(with ũ ∈ V0
−β(Ω) and s+

ε ∈ S+
ε ) we define

∥u∥Hβ(curl ) := (∥ũ∥2
V0

−β(Ω) + ∥∇s+
ε ∥2

∇S+
ε

+ ∥curlu∥2
V0
β(Ω))

1/2.

For all u = ũ + ∇s+
ε ∈ Hout,β

N (curl ) (with ũ ∈ V0
−β(Ω) and s+

ε ∈ S+
ε ) such that curlu =

ψu + µ∇sµ (with ũ ∈ V0
−β(Ω) and s+

µ ∈ S+
µ ) we introduce

∥u∥Hout,β
N (curl ) := (∥ũ∥2

V0
−β(Ω) + ∥∇s+

ε ∥2
∇S+

ε
+ ∥ψu∥2

V0
−β(Ω) + ∥∇s+

µ ∥2
∇S+

µ
)1/2.

Given that Ω is Lipschitz-continuous, endowed with theirs associated norms all the previous spaces
are Hilbert spaces. In addition to that, one can show that when β is positive, the embeddings
(6.18) are continuous.
To simplify the presentation of our results, we shall adopt the following notations: for all u ∈
Hβ
N (curl ), we will write u = ũ+ ∇su,ε with ũ ∈ V0

−β(Ω) and su,ε ∈ S+
ε , for v ∈ Hout

N (curl ) we
will use the notation curlv = ψv + µ∇sv,µ with ψv ∈ V0

−β(Ω) and sv,µ ∈ S+
µ .

6.4.1 Definition of the electric problem

In §, we will explain that the appropriate functional framework to set the electric problem is the
space Hout,β

N (curl ) (some conditions on β that will be specified later). For this reason we are
going to study the problem

Find u ∈ Hout,β
N (curl ) such that curlµ−1ψu − ω2εu = iωJ in Ω\{O}

u× ν = 0 on ∂Ω. (6.19)

The reason why we considered the problem in Ω\{O} and not in Ω is to be able to study the
problem in weighted Sobolev spaces (and we will then be able to consider very singular fields
near the origin). Our goal is to write a well-posed variational formulation which is equivalent
to the problem (6.19). To obtain such a variational formulation, we must choose, with care, the
space of the test functions. To proceed, let us assume, for the moment, that the current density
J belongs to the space V0

−β(Ω) (in the Theorem 6.4.6, we will explain how to work with more
general current densities) and let us introduce the problem

Find u ∈ Hout,β
N (curl ) such thatˆ

Ω
µ−1ψu · curlv − ω2

 
Ω
εu · v = iω

ˆ
Ω
J · v for all v ∈ Hβ

N (curl ). (6.20)

in which for all u ∈ Hout,β
N (curl ) and v ∈ Hβ

N (curl ) we have
 

Ω
εu · v :=

ˆ
Ω
εũ · ṽ +

ˆ
Ω
ε∇su,ε · ṽ +

ˆ
Ω
εũ · ∇sv,ε −

ˆ
Ω

div(ε∇su,ε)sv,ε.

It will be useful to observe that for all u ∈ Hout,β
N (curl ) and v ∈ Hβ

N (curl ) we have
 

Ω
εu · v −

 
Ω
εu · v =

ˆ
Ω

div(ε∇su,ε)sv,ε −
ˆ

Ω
div(ε∇su,ε)sv,ε = qε(su,ε, sv,ε). (6.21)
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Proposition 6.4.1. Assume that β ∈ [0; 1/2). Then, the problems (6.19) and (6.20) are equiva-
lent.

Proof. Since D(Ω\{O})3 ⊂ Hβ
N (Ω), any solution to (6.20) is a solution to (6.19). Now, let us

show the reverse statement. Starting from the fact that for all β ∈ [0; 1/2) the space D(Ω\{O})3

is dense in the space V = {u ∈ HN (curl ) |su,ε = 0} (see §6.7.4)), we conclude that if u is a
solution to (6.19) then it satisfies

ˆ
Ω
µ−1ψu · curlv − ω2

ˆ
Ω
εu · v = iω

ˆ
Ω
J · v for all v ∈ V.

To end the proof, it remains to show that for all v ∈ ∇Sε, we have 
Ω
εu · v =

ˆ
Ω
J · v.

To do so, let v ∈ S+
ε and denote by v = ∇v ∈ ∇S+

ε . Given that ∇Sε ⊂ V̊1
β(Ω) for all 0 < β, there

exists a sequence (φn)n∈N of elements of D(Ω\{O}) such that φn → v in V̊1
β(Ω) as n → +∞.

This implies that ∇φn → ∇v in V0
β(Ω). Moreover, since V̊1

β(Ω) ⊂ L2(Ω) for all β < 1, we can say
that for all β ∈ [0; 1/2) we have φn → v in L2(Ω) as n → +∞. Multiplying (6.19) by ∇φn and
integrating by parts yieldˆ

Ω
εũ · ∇φn −

ˆ
Ω

div(ε∇su,ε)φn =
ˆ

Ω
J · ∇φn.

By letting n tend to ∞, we deduce that 
Ω
εu · ∇v =

ˆ
Ω
J · ∇v.

This leads to the wanted result. ■

6.4.2 Equivalent formulation for the electric field

Given that for all φ ∈ V̊1
−β(Ω) we have u = ∇φ ∈ Hout,β

N (curl ), we infer that the operator associ-

ated to the sesquilinear form (u,v) 7→
 

Ω
εu · v is not compact. As in the classical configuration,

one way to deal with this absence of compactness is to impose the constraint div(ε·) = 0 on the
spaces Hβ

N (curl ), Hout,β
N (curl ). This leads us to introduce the spaces

Yβ
N (ε) := {u ∈ Hβ

N (curl ) | div(εu) = 0}, Yout,β
N (ε) := {u ∈ Hout,β

N (curl ) | div(εu) = 0}.

Note that the space Yout,β
N (ε) depends also on µ. In the sequel, we endow the space Yβ

N (ε) and
Yout,β
N (ε) respectively with the norms of the spaces Hβ

N (curl ) and Hout,β
N (curl ).

Remark 6.4.1. Let u = ũ + ∇su,ε ∈ Hβ
N (Ω). At first sight the constraint div(εu) must be

understood as follows:ˆ
Ω
εu · ∇φ =

ˆ
Ω
εũ · ∇φ−

ˆ
Ω

div(ε∇su,ε)φ =
 

Ω
εũ · ∇φ = 0 for all φ ∈ D(Ω\{O}).

Given that for all su,ε ∈ Sε the function div(ε∇su,ε) belongs to L2(Ω) and is compactly supported
in Ω̂ = Ω\{rω |, χ(r) = 1} ⊂ Ω\{O} (recall that the function χ is a fixed cutoff function that
depends only in r = |x| and that is equal to 1 near the origin, see (6.7)). With this in mind
one can show that we have the estimate: there exists 0 < C (independent of φ) such that for all
φ ∈ D(Ω\{O}) we have

|
ˆ

Ω
εu · ∇φ| = |

 
Ω
εu · ∇φ| ≤ C∥φ∥V̊1

β
(Ω).
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The density of D(Ω\{O}) in V̊1
β(Ω) implies that we have the equivalence

div(εu) = 0 ⇐⇒
 

Ω
εu · ∇v = 0 for all v ∈ V̊1

β(Ω). (6.22)

By replacing the space Hout,β
N (curl ) by Yout,β

N (ε) and the space Hβ
N (curl ) by Yβ

N (ε) in (6.20),
one obtains the following problem

Find u ∈ Yout,β
N (ε) such thatˆ

Ω
µ−1ψu · curlv − ω2

 
Ω
εu · v = iω

ˆ
Ω
J · v for all v ∈ Yβ

N (ε). (6.23)

Without any difficulty (using (6.22)), one can see that for all u ∈ Yout,β
N (ε) and v ∈ Yβ

N (ε) we
have  

Ω
εu · v =

 
Ω
εu · ṽ =

ˆ
Ω
εũ · ṽ −

ˆ
Ω

div(ε∇su,ε)sv,ε.

Note that to obtain the previous result, we have used the fact that for all v ∈ Yβ
N (ε), we have

div(εv) = −div(ε∇sv,ε).

Theorem 6.4.1. Assume that ω ̸= 0.

• Every solution of (6.20) is a solution of (6.23).

• Let β ∈ (0;βD). Under Assumptions 6.2.1-6.2.2, if E is a solution (6.23), then it solves
(6.20). Moreover {E, (iωµ)−1curlE} is a solution of (6.1).

Proof. To prove the first part of the statement, one needs to justify that every solution u of
(6.20) satisfies the equation div(εu) = 0. For that, it suffices to take v = ∇φ in (6.20) with
φ ∈ D(Ω\{O}) and then use the fact that div(J) = 0 in Ω\{O}.
The proof of the second part is little bit more involved. To prove it, let u be a solution of (6.23).
Since Yout,β

N (ε) ⊂ Hout,β
N (Ω), it suffices to show that the variational formulation (6.23) is also

valid for all v ∈ Hβ
N (Ω). For this, let v = ṽ + ∇sv,ε ∈ Hβ

N (Ω) with ṽ ∈ V0
−β(Ω) and sv,ε ∈ S+

ε .
By means of item iv) of Proposition 6.7.1, the function ṽ admits the decomposition ṽ = ∇φv +
curl ζv with φv ∈ H1

0(Ω) (such that ∇φ ∈ V0
−β(Ω)) and ζv ∈ XT (1).) By remarking that

curlv = curl curl ζv, we infer curl ζv ∈ XN (1) and then by Proposition 6.7.2 we deduce that
curl ζv belongs to V0

−β(Ω) for all β ∈ [0; 1/2). Observing that div(ε curl ζv) ∈ (V̊1
β(Ω))∗ for all

β ∈ (0;βD) allows us to define the function wv ∈ V̊out
β (Ω) as the unique solution of the well-posed

problem
div(ε∇wv) = div(ε (curl ζv + ∇sv,ε)) ∈ (V̊1

β(Ω))∗. (6.24)

Now, we introduce v̂ such that v̂ = v − ∇φv + ∇wv. By observing that div(εv̂) = 0 in Ω\{O},
we deduce that v̂ ∈ Yβ

N (ε). As a result, one can take v̂ as a test function in (6.23). But, on the
other hand, we have

ˆ
Ω
µ−1ψu · curlv =

ˆ
Ω
µ−1ψu · curl ¯̂v

 
Ω
εu · v =

 
Ω
εu · ¯̂v +

 
Ω
εu · ∇(wv − φv) =

 
Ω
εu · ¯̂v

ˆ
Ω
J · v =

ˆ
Ω
J · v̂.

Hence, u satisfies (6.20) which ends the proof of the first part of second item. The rest of the
proof can be done as in Lemma 5.3.2. ■
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6.4.3 Equivalent norms in Yβ
N(ε) and Yout,β

N (ε)
The goal of this section is to introduce, under some condition on β, new "simpler" equivalent norms
for the spaces Yβ

N (ε) and Yout,β
N (ε). Let us start with the case of the space Yβ

N (ε). Following
the same lines of the proof of Proposition 6.5.2, one obtains the

Proposition 6.4.2. Let β ∈ (0;βD) and assume that Assumptions 6.2.1-6.2.2 are satisfied. Then
there exists a positive constant C such that

∥ũ∥V0
−β(Ω) + ∥∇su,ε∥∇S+

ε
≤ C∥curlu∥V0

β(Ω) for all u ∈ Yβ
N (ε). (6.25)

Consequently, the norms ∥ · ∥Yβ
N (ε) and ∥curl · ∥V0

β(Ω) are equivalent in Yβ
N (ε).

Now, we turn our attention to the case of the space Yout
N (ε). We have the

Proposition 6.4.3. Suppose that Assumptions 6.2.1-6.2.2 hold and let β ∈ (0;β0). Then, there
exists 0 < C such that

∥ũ∥V0
−β(Ω) + ∥∇su,ε∥∇S+

ε
≤ C ∥ψu∥V0

−β(Ω) for all u ∈ Yout,β
N (ε) with curlu = ψu + ∇su,µ.

(6.26)
Consequently u 7→ ∥ψu∥V0

−β(Ω) is a norm in Yout,β
N (ε) that is equivalent to ∥ · ∥Hβ

N (curl )

Proof. Since for all 0 < β, we have the inclusion Yout,β
N (ε) ⊂ Yβ

N (ε) and, by means of Proposition
6.4.2, it suffices to show that, for all β ∈ (0;β0) ⊂ (0;βD), we have the following estimate

∥curlu∥V0
β(Ω) ≤ C∥ψu∥V0

−β(Ω) for all u ∈ Yout,β
N (ε).

By definition of the space Yout,β
N (ε), we know that for all u ∈ Yout,β

N (ε) we have curlu =
ψu + ∇su,µ. Hence, we have the estimate

∥curlu∥V0
β(Ω) ≤ C(∥∇su,µ∥V0

β(Ω) + ∥ψu∥V0
β(Ω)) ≤ C(∥∇su,µ∥S+

µ
+ ∥ψu∥V0

−β(Ω)) (6.27)

with C independent of u. Now, given that for all u ∈ Yout,β
N (ε) we have div(curlu) = 0 we then

obtain that
−div(µ∇su,µ) = divψu.

Using the fact that u× ν = 0 on ∂Ω we deduce that curlu · ν = 0 on ∂Ω and then we conclude
that ψu · ν = 0 on ∂Ω. With this in mind, we can say that divψu ∈ (V1

β(Ω))∗. Consequently, we
can write that for all v ∈ V1

β(Ω) we have

⟨Aout
µ su,µ, v⟩ = −

ˆ
Ω

div(µ∇su,µ)v =
ˆ

Ω
ψu · ∇v.

Given that Aout
µ is an isomorphism for all β ∈ (0;β0), we infer that we have the estimate

∥su,µ∥S+
µ

≤ ∥ψu∥V0
−β(Ω)

with C independent of u. Inserting this into (6.27) yields the wanted result. ■

6.4.4 Analysis of the principal part

In this section, we shall study well-posedeness of the problem (6.23) when ω = 0. For this reason,
we introduce the continuous operator AβN : Yout,β

N (ε) 7→ (Yβ
N (ε))∗ such that for all u ∈ Yout,β

N (ε)
and v ∈ Yβ

N (ε) we have
⟨AβNu,v⟩ =

ˆ
Ω
µ−1ψu · curlv.
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Before getting into details, observe that for all u,v ∈ Yout,β
N (ε) we have

⟨AβNu,v⟩ =
ˆ

Ω
µ−1ψu · ψv +

ˆ
Ω

div(µ∇su,µ)sv,µ.

Note that to obtain the previous relation, we have used the fact that for all u ∈ Yout,β
N (ε) we

have
div(ψu) = −div(µ∇sµ,µ).

Theorem 6.4.2. Assume that Assumptions 6.2.1-6.2.2 hold. Let β ∈ (0;β0). Then, there exists
a continuous operator T : Yβ

N (ε) → Yout,β
N (ε) such that

⟨AβN ◦ Tu,v⟩ :=
ˆ

Ω
r2βcurlu · curlv for all u,v ∈ Yβ

N (ε).

As a consequence, the operator AN ◦ T : Yβ
N (ε) → (Yβ

N (ε))∗ is an isomorphism.

Proof. The construction of the operator T will be done in three steps. Let us consider some
u ∈ Yβ

N (ε).
First step: Since β ∈ (0;β0) ⊂ (0;βN ), the operator Aout

µ is an isomorphism. As a result, one
can introduce φu = φ̃u+ sµu ∈ Vout

β (Ω) (with φ̃u ∈ V1
−β(Ω) and s+

u ∈ Sµ) as the unique solution of

−div(µ∇φu) = div(µ r2βcurlu) ∈ (V1
β(Ω))∗ in Ω

(∇φu + r2βcurlu) · ν = 0 on ∂Ω.

Since Aout
µ is an isomorphism, the function φu satisfies the following estimate

∥φ̃u∥V1
−β(Ω) + ∥∇sµu∥∇S+

µ
≤ C ∥r2βcurlu∥V0

−β(Ω) = C∥curlu∥V0
β(Ω). (6.28)

Second step: We define the function F u = µ(∇φu + r2βcurlu) ∈ V0
β(Ω). Easily, one can see

that F satisfies {
div(F u) = 0 in Ω
F u · ν = 0 on ∂Ω.

Since β < 1/2, one can use Proposition 6.7.1 to deduce that there exists a unique ψu ∈ ZβN (1)
(see (6.42) for the definition of ψu ∈ ZβN (1)) such that

curlψu = F u = µ(∇φu + r2βcurlu).

Furthermore, by means of Proposition 6.7.2, since β0 < 1/2, the function ψu belongs to the space
V0

−β(Ω).

Third step: Since by assumption β ∈ (0;β0) ⊂ (0;βD), the operator Aout
ε is an isomorphism.

This allows us to define wu = w̃u + sεu ∈ V̊out
β (Ω) (with w̃u ∈ V̊1

−β(Ω) and sεu ∈ S+
ε ) as the unique

solution of the problem

div(ε∇wu) = div(εψu) ∈ (V̊1
β(Ω))∗ in Ω

wu = 0 on ∂Ω.

We set T(u) = ψu − ∇wu. One can check that T(u) belongs to the space Yout,β
N (ε). In addition

to that we have {
ψT(u) = µ(∇φ̃u + r2βcurlu)
sT(u),µ = sεu.
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Using (6.28), we obtain the estimate

∥ψT(u)∥V0
−β(Ω) ≤ C∥curlu∥V0

β(Ω).

This shows, in particular, that the operator T : Yβ
N (ε) → Yout,β

N (ε) is continuous. Furthermore,
we have

⟨AβN ◦ Tu,v⟩ =
ˆ

Ω
µ−1ψTu · curlv =

ˆ
Ω
r2βcurlu · curlv for all v ∈ Yβ

N (ε).

Consequently, we have
⟨AβN ◦ Tu,u⟩ = ∥curlu∥2

V0
β(Ω).

Using the Lax-Milgram lemma, we deduce that AβN ◦ T is an isomorphism and we finish the
proof. ■

Given that AβN ◦ T is an isomorphism, we deduce that the operator AβN is onto. As a result, to
show that AβN is an isomorphism it suffices to prove that it is injective. This is the subject of the
following

Theorem 6.4.3. Assume that Assumptions 6.2.1-6.2.2 hold. Then for all β ∈ (0;β0) the operator
AN is an isomorphism.

Proof. It is enough to prove that AβN is injective. Let u be an element of Yout,β
N (ε) such that

⟨AβNu,v⟩ = 0 for all v ∈ Yβ
N (ε). In particular, u satisfies

ˆ
Ω
µ−1ψu · ψv +

ˆ
Ω

div(ε∇su,µ)sv,µ = 0 for all v ∈ Yout,β
N (ε). (6.29)

By taking v = u in the previous equation, we obtain

0 =
ˆ

Ω
µ−1ψu · curlv =

ˆ
Ω
µ−1|ψu|2 −

ˆ
Ω

div(ε∇su,µ)su,µ.

Taking the imaginary part in the previous relation yields, ℑm(−
ˆ

Ω
div(ε∇su,µ)su,µ) = 0. As a

result, we deduce that qε(su,µ, su,µ) = 0. Given that su,µ ∈ S+
µ and by using Lemma 6.2.5, we

infer that su,µ = 0. As a result, we then have

⟨AβNv,u⟩ = 0 for all v ∈ Yout,β
N (ε).

The wanted result is then proved by taking v = T(u) (in the previous relation) where T is the
operator defined in Theorem 6.4.2. ■

6.4.5 Compactness result

In the classical theory of Maxwell’s equation, imposing the constraint div(ε ·) = 0 leads to a
compactness result. Here, we shall show that this result remains true even in our configuration.
Let us introduce the operator Kβ

N : Yout,β
N (ε) → (Yβ

N (ε))∗ such that for all u ∈ Yout,β
N (ε) and for

all v ∈ Yβ
N (ε) we have

⟨Kβ
Nu,v⟩ >=

 
Ω
εu · v =

ˆ
Ω
εu · ṽ =

ˆ
Ω
εũ · ṽ +

ˆ
Ω

div(εsv,ε)su,ε.

Without any difficulty, one can see that we have the estimate

∥Kβ
Nu∥(Yβ

N (ε))∗ ≤ C(∥ũ∥V0
−β

+ ∥su,ε∥S+
ε

), for all u ∈ Yout,β
N (ε, µ). (6.30)

with 0 < C independent of u.
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Theorem 6.4.4. For all β ∈ (0;βD) and under Assumptions6.2.1-6.2.2, the operator Kβ
N is

compact.

Proof. Let (un)n∈N be a bounded sequence of elements of Yout
N (ε). By definition of Yout

N (ε)
one can introduce, for all n ∈ N, ũn ∈ V0

−β(Ω) and sn ∈ S+
ε such that un = ũn + sn. The

sequences (sn)n∈N and (ũn)n∈N are bounded respectively in S+
ε and V0

−β(Ω). Since S+
ε is finite

dimensional, one can extract a sub-sequence form (sn)n∈N that converges in S+
ε . For simplicity,

this sub-sequence will be denoted by (sn)n∈N.
To prove our claim, thanks to (6.30), it is enough to show that up to a sub-sequence (un)n∈N
converges in V0

−β(Ω). Since V0
−β ⊂ L2(Ω), we start by writing the Helmholtz decomposition (see

Proposition 6.7.1) of ũn: ũn = ∇φn + curlψn in which ψn ∈ XT (1) and φn ∈ H1
0(Ω). Since

∇φn × ν = 0 on ∂Ω and curl curlψn = curlun ∈ V0
β(Ω), we infer that curlψn ∈ ZβN (1) (see

(6.42)). Since by assumption β ∈ (0;βD) ⊂ [0; 1/2) one deduces, using Proposition 6.7.5, that
(curlψn)n∈N converges, up to a sub-sequence still denoted (curlψn)n∈N, in V0

−β(Ω). In the
other hand, we know that div(εun) = 0. This implies that

− div(ε∇φn) = div(ε∇sn) + div(ε curlψn) ∈ (V̊1
β(Ω))∗ for all β ∈ (0;βD). (6.31)

According to Lemma 6.2.3, we infer that φn ∈ V̊1
−β(Ω) for all n ∈ N. Furthermore, by remarking

that the right hand side of (6.31) converges in (V̊1
−β(Ω))∗ and by using the fact that the operator

Aout
ε is an isomorphism for all β ∈ (0;βD), we deduce that (φn)n∈N converges V̊1

−β(Ω) and then
we arrive to the wanted result: (ũn)n∈N converges, up to a sub-sequence, in V0

−β(Ω). ■

6.4.6 Main results about the electric problem

For all ω ∈ R and all β ∈ R, we define the operator A β
N (ω) := AβN − ω2Kβ

N . For all u ∈ Yout,β
N (ε)

and all v ∈ Yβ
N (ε) we have

⟨A β
N (ω)u,v⟩ =

ˆ
Ω
µ−1ψu · curlv − ω2

ˆ
Ω
εũ · ṽ − ω2

ˆ
Ω

div(εsv,ε)su,ε.

In particular for all u,v ∈ Yout,β
N (ε) we have

⟨A β
N (ω)u,v⟩ =

ˆ
Ω
µ−1ψu · ψv +

ˆ
Ω

div(µ∇su,ε)sv,µ − ω2
ˆ

Ω
εũ · ṽ − ω2

ˆ
Ω

div(εsv,ε)su,ε.

All this to say that for all u,v ∈ Yout,β
N (ε) we have

⟨A β
N (ω)u,v⟩ − ⟨A β

N (ω)v,u⟩ = −qµ(su,µ, sv,µ) − ω2qε(su,ε, sv,ε)

By combing Theorems 6.4.3-6.4.4 with the analytical Fredholm theorem, we obtain the

Theorem 6.4.5. Assume that Assumptions 6.2.1-6.2.2 hold. For all β ∈ (0;β0) the operator
A β
N (ω) is a Fredholm operator of index zero for all ω ∈ R. Furthermore, there exists SβN discrete

subset of R such that A β
N (ω) is an isomorphism for ω ∈ R\SβN .

Proposition 6.4.4. Assume that Assumptions 6.2.1-6.2.2 hold and let ω ∈ R∗. Then, if u ∈
Ker (A γ

N (ω)) for some γ ∈ (0;β0). Then

• su,ε = su,µ = 0.

• u ∈ Ker (A β
N (ω)) for all β ∈ (0;β0).
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Proof. Starting from A γ
N (ω)u = 0, we deduce that ⟨A γ

N (ω)u,u⟩ − ⟨A γ
N (ω)v,u⟩ = 0. Hence, we

obtain that
qε(su,ε, su,ε) = −ω2qµ(su,µ, su,µ).

Given that su,ε ∈ S+
ε and su,µ ∈ S+

µ , we infer that qε(su,ε, su,ε) = qµ(su,µ, su,µ) = 0. The Lemma
6.2.5 allows us to say that su,ε = su,µ = 0. As a result the vector field u belongs then to the space
XN (ε) and satisfies the equation curlµ−1curlu = ω2εu. This shows that µ−1curlu ∈ XT (µ).
Thanks to Propositions 6.7.3-6.7.4 and since β0 < 1/2, we infer that u, curlu ∈ V0

−β(Ω) for all
β ∈ (0;β0). Thus u ∈ Ker (Ker (A β

N (ω))) for all β ∈ (0;β0). ■

Because for all β ∈ (0;β0) the set SβN in Theorem 6.4.5 corresponds to the set of ω ∈ R for which
the operator A γ

N (ω) is not injective, we then have the

Proposition 6.4.5. Assume that Assumptions 6.2.1-6.2.2 hold. Then the set SβN in Theorem
6.4.5 is independent of β ∈ (0;β0). We denote it by SN .

The two previous propositions allow us to deduce that the functional framework that we have
proposed is independent of β. Indeed, we have the following

Lemma 6.4.1. Suppose that Assumptions 6.2.1-6.2.2 are valid and let ω ∈ R\SN . Let 0 < β1 <

β2 < β0. For all ℓ ∈ (Yβ1
N (ε))∗ ∩ (Yβ2

N (ε))∗ then the solutions to the problems:

Find uβ ∈ Yout,β
N (ε) such that A β

N (ω)uβ = ℓ

with β = β1 and β = β2 coincide.

Proof. Since β1 < β2 we have Yout,β2
N (ε) ⊂ Yout,β1

N (ε). Therefore uβ1 − uβ2 ∈ Ker (A β1(ω)).
Given that ω ∈ R\SN , we get uβ1 = uβ2 . ■

Now, we state the main result of this section.

Theorem 6.4.6. Assume that Assumptions 6.2.1-6.2.2 hold. Suppose that there exists 0 < γ
such that J ∈ V0

−γ(Ω). Then

• for all ω ∈ R\SN the problem (6.20)(or equivalently (6.23)) is well-posed in the Hadamard
sense for all β ∈ (0;β0).

• The solution to (6.20)(or equivalently to (6.23)) is independent of β ∈ (0;β0).

• When ω ∈ SN the problems (6.20)- (6.23) are well-posed in the Fredholm sense. Moreover,
they have a finite dimensional kernel that is independent of β ∈ (0;β0).
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6.4.7 The limiting absorption principle for the electric problem

As pointed out in Remark 6.2.1, one can find an infinite number of spaces S+
ε and S+

µ that are
spanned by bases for which all the conditions of Lemma 6.2.4 are satisfied. This implies that,
we can construct an infinite number of functional frameworks in which the electric problem is
well-posed. The goal of this paragraph is to explain explain how to chose among these functional
frameworks the one that is coherent with the limiting absorption principle. For this, we start
by defining for all 0 < δ the functions εδ := ε + iδ and µδ := µ + iδ. We introduce the operator
Aεδ : H1

0(Ω) → (H1
0(Ω))∗ and Aµδ : H1

#(Ω) → (H1
#(Ω))∗ that are, respectively, defined by replacing

ε and µ in the definition of Aε and Aµ by εδ and µδ. One can easily check that Aεδ and Aµδ

are isomorphisms for all 0 < δ. From the results obtained in §2.6.2, we know that we have the
following

Proposition 6.4.6. Assume that the functions ε and µ are such that Assumptions 2.6.3-6.2.1-
6.2.2 are satisfied when replacing the function σ by ε (resp. µ) and let β ∈ (0;βD) (resp. β ∈
(0;βN )).
Let (fδ)δ (resp. (gδ)δ) be a sequence of elements of (V̊1

β(Ω))∗ (resp. (V1
β(Ω))∗) and define uεδ

(resp. uµδ) as the unique solution to Aεδuεδ = fδ (resp. Aµδuµδ = gδ).
There exists 0 < δ0 such that for all δ ∈ (0; δ0) there exist Nε (resp. Nµ) linearly independent
functions denoted by (s+

εδ,j
)j=1,...,Nε (resp. (s+

µδ,j
)j=1,...,Nµ) that belong to H1

0(Ω) (resp. H1
#(Ω))

such that

• the function uεδ (resp. uµδ) decomposes as

uεδ = ũεδ +
Nε∑
j=1

cj,δs
+
εδ,j

(resp. uµδ = ũµδ +
Nµ∑
j=1

c′
j,δs

+
µδ,j

)

in which ũεδ ∈ V̊1
−β(Ω)(resp. ũµδ ∈ V1

−β(Ω)) and all the cj,δ (resp. c′
j,δ ) are complex

numbers. For all δ ∈ (0; δ0), denote by

S+
εδ

:= span(s+
εδ,j

, j = 1, . . . , Nε)(resp. S+
µδ

:= span(s+
µδ,j

, j = 1, . . . , Nµ)). (6.32)

• For each j = 1, . . . , Nε (resp. j = 1, . . . , Nµ) the function s+
εδ,j

(resp. s+
µδ,j

)converges as δ →
0 in V̊1

β(Ω) (resp. V1
β(Ω)) to ŝ+

ε,j ∈ Sε (resp. ŝ+
µ,j ∈ Sµ) moreover {ŝ+

ε,j , ŝ
+
ε,j , j = 1, . . . , Nε}

(resp. {ŝ+
µ,j , ŝ

+
µ,j , j = 1, . . . , Nµ}) is a basis of Sε (resp. Sµ) satisfying the conditions of

Lemma 6.2.4. Denote by

Ŝ+
ε := span(ŝ+

ε,j , j = 1, . . . , Nε)(resp. Ŝ+
µ := span(ŝ+

µ,j , j = 1, . . . , Nµ)). (6.33)

• If the sequence (fδ)δ (resp. (gδ)δ) converges, as δ → 0, in (V̊1
β(Ω))∗ (resp. ) to f (resp. g)

then the sequences (uεδ)δ ( resp. (uµδ)δ) converges, as δ → 0, in V̊1
β(Ω) (resp. V1

β(Ω)) to
the unique solution of Âout

ε u = f (resp. Âout
µ u = g ) where the operator Âout

ε (resp. Âout
µ )

is defined in the case Aout
ε (resp. Aout

µ ) but by replacing S+
ε by Ŝ+

ε (resp. Ŝ+
µ )

By classical arguments, we know that 0 < δ and all ω ∈ R, the problem

Find uδ ∈ XN (εδ) such that curl (µδ)−1curluδ − ω2εδu
δ = J (6.34)

is well posed for all J ∈ L2(Ω) satisfying div(J) = 0. Our goal is to study the behavior of (uδ)
as δ → 0.
By following the same steps of the proof of Lemma 5.3.8 and by using the results of Proposition
6.7.5, we can prove that we have
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Lemma 6.4.2. Assume that Assumptions 2.6.3-6.2.1-6.2.2 hold. Let β ∈ (0;βD) (resp. β ∈
(0;βD)) and let (δn)n∈N be a sequence of positive numbers that converges to 0 as n → +∞.
Denote εn = ε + iδn (resp. µn = µ + iδn) for all n ∈ N. Suppose that (un) is a sequence of
elements of XN (εn)(resp. XT (µn)) such that (curlun) is bounded in V0

β(Ω). Then, (un) for all
n ∈ N, un admits the decomposition un = ∇sn + ũn with sn ∈ S+

εn (resp. sn ∈ S+
µn) (see (6.32))

and ũn ∈ V0
−β(Ω). Moreover, there exists a sub-sequence of (un) that converges in V0

β(Ω) to an
element of V0

−β(Ω) ⊕ ∇Ŝ+
ε (resp. V0

−β(Ω) ⊕ ∇Ŝ+
µ ) (see (6.33)).

For all β ∈ R, we introduce the space Wβ
N (Ω) := {u ∈ V0

β(Ω) | curlu ∈ V0
β(Ω)}. Endowed with

the norm
∥u∥W0

β(Ω) = (∥u∥2
W0

β(Ω) + ∥curlu∥2
W0

β(Ω))
1/2 for all u ∈ W0

β(Ω),

the space W0
β(Ω) is a Hilbert space. By replacing the spaces S+

ε and S+
µ , respectively, by Ŝ+

ε

and Ŝ+
µ in the definition of of Hout,β

N (Ω) and Yout,β
N (Ω) we then define the spaces Ĥout,β

N (Ω) and
Ŷout,β
N (Ω). The main result of this paragraph is given by the following

Theorem 6.4.7. Assume that Assumptions 2.6.3-6.2.1-6.2.2 are satisfied and suppose that ω ∈
R\SN and β ∈ (0;β0). Suppose that J ∈ V0

−β(Ω). Then, the sequence (uδ)δ converges, as δ → 0+,

in W0
β(Ω) to u ∈ Ĥout,β

N (Ω) that is the unique solution of (6.19) (in which Hout,β
N (Ω) is replaced

by Ĥout,β
N (Ω)).

Proof. The proof closely follows the proof of Theorem 5.3.4. Let (δn)n∈N be a sequence of
positive numbers that converges to 0 as n → +∞. Denote εn = ε+ iδn, µn = µ+ iδn for all n ∈ N.
Denote, for all n ∈ N by (un) the solution to (6.34) with δ = δn. The proof will be done in two
steps. First, we establish the desired result by assuming that (∥curlun∥V0

β(Ω)) is bounded. Then
we show that this hypothesis is indeed satisfied.
First step : Let us suppose that (curlun) is bounded in V0

β(Ω). Thus, thanks to the previous
lemma, we know that up to a sequence, still indexed by n, that (un) converges in V0

β(Ω) to an
element of V0

−β(Ω) ⊕ ∇Ŝ+
ε . This also means that (un) is bounded in V0

β(Ω). Next, by observing
that for all n ∈ N the vector field vn := µ−1

n curlun satisfies curlvn = ω2εnun + J , we conclude
that vn ∈ XT (µn) and that (curlvn) is bounded in V0

β(Ω). Then, by applying the previous
lemma, we deduce that (curlun) converges in V0

β(Ω) to an element of V0
−β(Ω) ⊕ µ−1∇Ŝ+

µ .

Consequently, (u)n converges in Wβ
N (Ω) to some u ∈ Ŷout,β

N (Ω) that satisfies curlµ−1curlu −
ω2εu = J . Given that ω ∈ R\SN , the previous problem has a unique solution which independent
of the chosen sub-sequence, we then obtain the wanted result.
Second step: Assume that there exists a sequence (un) of solutions of (6.34) (associated to a
some sequence (δn) that tends to 0) such that ∥curlun∥V0

β(Ω) → +∞. By considering the sequence
un/∥curlun∥V0

β(Ω) and using the result proved in the first step, we obtain a contradiction.
■

6.5 The analysis of the magnetic problem

This section will be dedicated to the study of the Maxwell’s problem associated to the magnetic
component. In section §6.3 , we have explained why the problem set in the classical space XT (µ)
can not be well-posed. As a result, and as in the case of the electric component, we have to
introduce a new functional framework in which the problem is well-posed in the Fredholm sense.
After eliminating E in (6.1), we infer that the field H is a solution of the problem

curl ε−1curlH − ω2µH = curl ε−1J in Ω
µH · ν = 0 on ∂Ω
ε−1(curlH − J) × ν = 0 on ∂Ω.

(6.35)
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One can easily show that if H is a solution of (6.35), then the pair {i(ω ε)−1(curl H − J),H}
is a solution of (6.1). Let us introduce, for all β ∈ R, the spaces

Hβ(curl ) := {u ∈ V0
−β(Ω) ⊕ S+

µ |curlu ∈ V0
β(Ω)}

Hout,β(curl ) := {u ∈ V0
−β(Ω) ⊕ S+

µ |curlu ∈ ε∇S+
ε ⊕ V0

−β(Ω)}.
We will use the same notation as in the case of the electric field:{

u = ũ+ ∇su,µ for all u ∈ Hβ(Ω)
curlv = ψv + ε∇su,ε for all v ∈ Hout,β(Ω).

(6.36)

We endow the spaces Hβ(Ω) and Hout,β(Ω) with the norms∥u∥Hβ(Ω) = (∥ũ∥2
V0

−β(Ω) + ∥su,µ ∥2
∇S+

µ
+ ∥curlu∥2

V0
β(Ω))

1/2 for all u ∈ Hβ(Ω)
∥v∥Hout,β(Ω) = (∥ṽ∥2

V0
−β(Ω) + ∥su,µ ∥2

∇S+
µ

+ ∥su,ε ∥2
∇S+

ε
+ ∥ψv∥2

V0
−β(Ω))

1/2 for all v ∈ Hout(curl ).
(6.37)

6.5.1 Definition of the magnetic problem

Regarding what we have done for the case of the electric problem and using the fact that the
magnetic field H and the electric field E are linked by (6.1), we infer that the magnetic problem
must be set in the space Hout,β(Ω) (some conditions on β will be fixed later). Consequently, the
problem (6.35) simplifies to become

Find u ∈ Hout,β(curl ) such that
curl ε−1ψu − ω2µu = curl ε−1J in Ω\{O}
µu · ν = 0 on ∂Ω
ε−1(curlu− J) × ν = 0 on ∂Ω.

(6.38)

If the vector J belongs to the space V0
−β(Ω), we introduce the variational formulation

Find u ∈ Hout,β(curl ) such thatˆ
Ω
ε−1ψu · curlv − ω2

 
Ω
µu · v =

ˆ
Ω
ε−1 J · curlv for all v ∈ Hβ(Ω) (6.39)

in which the term
 

Ω
µu · v is defined by

 
Ω
µu · v :=

ˆ
Ω
µũ · ṽ +

ˆ
Ω
µ∇su,µ · ṽ +

ˆ
Ω
µũ · ∇sv,µ −

ˆ
Ω

div(ε∇su,µ)sv,µ.

By working as in the proof of Proposition 6.4.1, we obtain the

Proposition 6.5.1. If β ∈ [0; 1/2) the problems (6.38) and (6.39) are equivalent.

6.5.2 Equivalent formulation for the magnetic filed

The next step is to impose explicitly the constraint div(µ ·) = 0 in the spaces Hβ(curl ) and
Hout,β(curl ),which leads us to define the spaces

Yβ
T (µ) := {u ∈ Hβ(curl ) | div(µu) = 0, µu · ν = 0 on ∂Ω}

Yout,β
T (µ) := {u ∈ Hout,β

N (curl ) | div(µu) = 0, µu · ν = 0 on ∂Ω}.

Obviously, one has the inclusion Yout,β
T (µ) ⊂ Yβ

T (µ) for all 0 < β. Proceeding as in Remark 6.4.1,
we show that for all u ∈ Yβ

T (µ) the constraint div(µu) = 0 can also be expressed as follows:

u ∈ Yβ
T (µ) such that div(µu) = 0 ⇐⇒

 
Ω
µu · ∇v = 0 for all v ∈ Vout

β (Ω).
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We introduce the following variational formulation

Find u ∈ Yout,β
T (µ) such thatˆ

Ω
ε−1ψu · curlv − ω2

 
Ω
µu · v = iω

ˆ
Ω
ε−1J · curlv for all v ∈ Yβ

T (µ). (6.40)

Note that for all u ∈ Yout,β
T (µ) and all v ∈ Yβ

T (µ), we have 
Ω
εu · v =

 
Ω
εu · ṽ =

ˆ
Ω
εũ · ṽ −

ˆ
Ω

div(ε∇su,µ)sv,µ.

As in the case of the electric problem, we have the

Theorem 6.5.1. Assume that ω ̸= 0.

• Every solution of (6.39) is a solution of (6.40).

• Let β ∈ (0;βN ). Under Assumptions 6.2.1-6.2.2 if H is a solution (6.40), then it solves
(6.39). Moreover {i(ω ε)−1(curl H − J),H} is a solution of (6.1).

6.5.3 Equivalent norms in Yβ
T (µ) and Yout,β

T (µ)
Proposition 6.5.2. Let β ∈ (0;βN ) and assume that Assumptions 6.2.1-6.2.2 are satisfied Then
there exists a positive constant C such that

∥ũ∥V0
−β(Ω) + ∥∇su,µ∥S+

µ
≤ C∥curlu∥V0

β(Ω) for all u ∈ Yβ
T (µ). (6.41)

Consequently, the norms ∥ · ∥Yβ
T (ε) and ∥curl · ∥V0

β(Ω) are equivalent in Yβ
T (µ).

Proof. Let u ∈ Yβ
T (µ). By definition of Yβ

T (µ), the function u admits the decomposition
u = ũ + ∇su,µ where ũ ∈ V0

−β(Ω) and su,µ ∈ S+
µ . Observing that ∇su,µ satisfies the condition

µ∇su,µ ·ν = 0 on ∂Ω, leads us to deduce that µũ ·ν = 0 on ∂Ω. By mean of item v) of Proposition
6.7.1, one can decompose ũ as ũ = ∇φ+curlψ such that φ ∈ H1

#(Ω) and ψ ∈ XN (1). Remarking
that curl (curlψ) = curlu ∈ V0

β(Ω) and that curlψ · ν = 0 on ∂Ω yields curlψ ∈ ZβT (1) where

ZβN (1) = {u ∈ L2(Ω) | curlu ∈ V0
β(Ω), divu = 0, u · ν = 0 on ∂Ω}. (6.42)

Since β ∈ [0; 1/2) and according to Proposition 6.7.5, we obtain curlψ ∈ V0
−β(Ω) with the

estimate
∥curlψ∥V0

−β
≤ C∥curlu∥V0

β
. (6.43)

Given that div(µu) = 0, we obtain

− div(µ∇φ) = div(µ∇su,µ) + div(µ curlψ) ∈ (V1
β(Ω))∗ for all β ∈ [0; 1

2). (6.44)

By Lemma 6.2.3, we get φ ∈ V1
−β(Ω) for all β ∈ (0;βN ) with the estimate

∥∇φ∥V0
−β(Ω) + ∥su,µ∥S+

µ
≤ C∥curlψ∥V0

−β(Ω) (6.45)

By gathering (6.43) and (6.45), we obtain the wanted result. ■

Working as in the proof of Proposition 6.4.3, we show the following result.

Proposition 6.5.3. Suppose that Assumptions 6.2.1-6.2.2 hold. Then, for all β ∈ (0;β0) there
exists a constant C such that

∥ũ∥V0
−β(Ω) + ∥∇su,µ∥∇S+

µ
≤ C ∥ψu∥V0

−β(Ω) for all u ∈ Yout
T (µ, ε). (6.46)

Consequently u 7→ ∥ψu∥V0
−β(Ω) is a norm in Yout,β

T (µ) that is equivalent to ∥ · ∥Hβ(curl ).
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6.5.4 Main results about the magnetic problem

For all β ∈ R, we introduce the operators AβT ,K
β
T : Yout,β

T (µ) 7→ (Yβ
T (µ))∗ such that u ∈ Yout,β

T (µ)
and v ∈ Yβ

T (µ) we have

⟨AβTu,v⟩ =
ˆ

Ω
µ−1ψu · curlv and ⟨Kβ

Tu,v⟩ =
 

Ω
µu · v =

ˆ
Ω
µu · ṽ.

By exchanging the roles of ε and µ in study of the electric problem, one can obtain the following.

Theorem 6.5.2. Assume that Assumptions 6.2.1-6.2.2 hold. For all β ∈ (0;β0) the operator AβT
is an isomorphism and Kβ

T is compact.

Now, define for all β ∈ R the operator A β
T (ω) := AβT − ω2Kβ

T . One can easily see that if the
operator A β

T (ω) is an isomorphism with β ∈ (0;β0), then the problem (6.39)-(6.39) is well-posed.
By using the Fredholm analytic theorem and by working as in the proofs of Proposition 6.4.4 and
Lemma 6.4.1, we can prove the following

Theorem 6.5.3. Assume that Assumptions 6.2.1-6.2.2. Then, for all β ∈ (0;β0) we have

• A β
N (ω) is a Fredholm operator of index 0 for all ω ∈ R.

• There exists ST that is independent of β ∈ (0;β0) a discrete subset of R such that A β
T (ω)

is an isomorphism for all ω ∈ R\ST .

• If u ∈ Ker (A β
T (ω)) with ω ∈ R and β ∈ (0;β0) then su,µ = su,ε = 0.

• For all ω ∈ R the space Ker (A β
T (ω)) is independent of β ∈ (0;β0).

• Assume that ω ∈ R\ST . Let 0 < β1 < β2 < β0 and let ℓ ∈ (Yβ1
T (ε))∗ ∩ (Yβ2

T (ε))∗ then the
solutions to the problems

A β
T (ω) = ℓ

with β = β1 and β = β2 coincide.

This allows us to state the main theorem of this section

Theorem 6.5.4. Assume that Assumptions 6.2.1-6.2.2 hold. Suppose that there exists 0 < γ < β0
such that J ∈ V0

−γ(Ω). Then

• for all ω ∈ R\ST the problem (6.39)(or equivalently (6.40)) is well-posed in the Hadamard
sense for all β ∈ (0;β0).

• The solution to (6.39)(or equivalently to (6.40)) is independent of β ∈ (0;β0).

• When ω ∈ ST the problems (6.39)- (6.40) are well-posed in the Fredholm sense. Moreover,
they have a finite dimensional kernel that is independent of β ∈ (0;β0).

Remark 6.5.1. Without any difficulty, one can check that the results of §6.4.7 hold, if one
consider the magnetic problem instead of the electric one.

6.6 Concluding remarks

In this chapter, we have considered the case of the time harmonic Maxwell equation when the
functions ε and µ are both critical. We have presented a general theory, which allows to construct
from any functional framework for the scalar problem that respects Mandelstam’s radiation prin-
ciple, a functional framework in which Maxwell’s problem is again well-posed. Moreover, we have
established that if one uses the frameworks that respects the limiting absorption principle for
scalar problems, then those provided by our theory for electric and magnetic problems are also
coherent with the limiting absorption principle.
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6.7 Appendix

6.7.1 Classical Helmholtz decompositions

Proposition 6.7.1. If Ω is simply connected and its boundary is connected, the following asser-
tions hold.

i) According to [8, Theorem 3.12], if u ∈ L2(Ω) satisfies divu = 0 in Ω, then there exists a
unique ψ ∈ XT (1) such that u = curlψ.

ii) According to [8, Theorem 3.17]), if u ∈ L2(Ω) satisfies divu = 0 in Ω and u · ν = 0 on
∂Ω, then there exists a unique ψ ∈ XN (1) such that u = curlψ.

iii) If u ∈ L2(Ω) satisfies curlu = 0 in Ω and u × ν = 0 on ∂Ω, then there exists (see [110,
Thereom 3.41]) a unique p ∈ H1

0(Ω) such that u = ∇p.

iv) Every u ∈ L2(Ω) can be decomposed as follows ([110, Thereom 3.45]) u = ∇p + curlψ,
with p ∈ H1

0(Ω) and ψ ∈ XT (1) which are uniquely defined.

v) Every u ∈ L2(Ω) can be decomposed as follows ([110, Remark 3.46]) u = ∇p + curlψ,
with p ∈ H1

#(Ω) and ψ ∈ XN (1) which are uniquely defined.

6.7.2 Weighted regularity of vector potentials

The classical case

We recall the following result, that we have proved in the annex of the previous chapter, concerning
the weighted regularity of the spaces XT (1) and XN (1).

Proposition 6.7.2. For all β ∈ [0; 1/2), the spaces XT (1) and XN (1) are compactly embedded
in V0

−β(Ω). In particular, there exists a constant C such that

∥u∥V0
−β(Ω) ≤ C∥curlu∥0, for all u ∈ XT (1) ∪ XN (1). (6.47)

Note that similar weighted regularity results can also be found in [41].

The case of critical contrasts

Here, we are concerned with the weighted regularity of the spaces XN (ε) and XT (µ) when ε and
µ are critical.

Proposition 6.7.3. Assume that Assumption 6.2.1-6.2.2 hold. Then for all β ∈ (0;βD) the space
XN (ε) is compactly embedded in V0

−β(Ω). We have the estimate

∥u∥V0
−β(Ω) ≤ C∥curlu∥0 for all u ∈ XN (ε). (6.48)

where C is independent of u.

Proof. Let u ∈ XN (ε). By mean of item iv) of Proposition 5.6.1, we can introduce φ ∈ H1
0(Ω)

and ψ ∈ XT (1) such that
u = ∇φ+ curlψ.

By observing that curlψ belongs to XN (1) and given that βD ≤ 1/2, we infer by applying
Proposition 6.7.2 that curlψ ∈ V0

−β(Ω), for all β ∈ (0;βD). Furthermore, we have the estimate

∥curlψ∥V0
−β(Ω) ≤ C∥curl curlψ∥0 = C∥curlu∥0. (6.49)
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By observing that div(ε∇φ) = −div(ε curlψ) ∈ (V̊1
β(Ω))∗ for all β ∈ (0;βD), one deduces, by

means of Lemma 6.2.3, that φ ∈ V̊1
−β(Ω) with the estimate

∥∇φ∥V0
−β(Ω) ≤ C∥curlψ∥V0

−β(Ω) ≤ C∥curlu∥0. (6.50)

By combing (6.49) and (6.50), we obtain the wanted estimate. Now, let us prove the compactness
result. Take (un)n∈N a bounded sequence of XN (ε). We introduce (φn)n∈N and (ψn)n∈N two
sequences of H1

0(Ω) and XT (1), respectively, such that un = ∇φn + curlψn for all n ∈ N.
Thanks to Proposition 6.7.2, we infer that up to a sub-sequence, still indexed by n, the sequence
(curlψn)n∈N converges in V0

−β(Ω) for all β ∈ (0;βD). The estimate (6.50) implies that (∇φn)n∈N
converges in V0

−β(Ω). This ends the proof. ■

Using the same arguments, one proves the

Proposition 6.7.4. Under Assumption 6.2.1-6.2.2 the space XT (µ) is compactly embedded in
V0

−β(Ω) for all β ∈ (0;βN ). In particular, there is some constant C such that

∥u∥V0
−β(Ω) ≤ C∥curlu∥0 ∀u ∈ XT (µ). (6.51)

6.7.3 Vector potentials in weighted Sobolev spaces

For all β ∈ R, we introduce the spaces

ZβT (1) := {u ∈ L2(Ω) | curlu ∈ V0
β(Ω), divu = 0, u · ν = 0 on ∂Ω}

ZβN (1) := {u ∈ L2(Ω) | curlu ∈ V0
β(Ω), divu = 0, u× ν = 0 on ∂Ω}.

We endow ZβT (1) and ZβN (1) with the norm ∥ · ∥Zβ := (∥ · ∥2
0 + ∥curl · ∥2

V0
β(Ω))

1/2. The importance
of these spaces is motivated by the next result that we have proved in the annex of the previous
chapter.

Lemma 6.7.1. Let β ∈ [0; 1/2). The following assertions hold.

• If u ∈ V0
β(Ω) such that divu = 0 then there exists a unique ψ ∈ ZβT (1) such that u =

curlψ.

• If, in addition, u satisfies u · ν = 0 on ∂Ω, then there exists a unique ψ ∈ ZβN (1) such that
u = curlψ.

We have the analogue of Proposition 6.7.2.

Proposition 6.7.5. For all β ∈ [0; 1/2) we have

ZβT (1) = {u ∈ V0
−β(Ω) | curlu ∈ V0

β(Ω), divu = 0, u · ν = 0 on ∂Ω}
ZβN (1) = {u ∈ V0

−β(Ω) | curlu ∈ V0
β(Ω), divu = 0, u× ν = 0 on ∂Ω}.

Furthermore, ZβT (1) and ZβN (1) are compactly embedded in V0
−β(Ω) for all β ∈ [0; 1/2). In

particular, there is some constant C > 0 such that

∥u∥V0
−β

≤ C∥curlu∥V0
β(Ω) for all u ∈ ZβT (1) ∪ ZβN (1). (6.52)
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Proof. We will prove the result for the space ZβN (1). The case of the space ZβT (1) can be treated
similarly. Let u ∈ ZβN (1). Owing to Proposition 6.7.1, we can introduce ψ ∈ XT (1) such that
u = curlψ. The Proposition 6.7.2, allows us say that ψ ∈ V0

−β(Ω) for all β ∈ [0; 1/2). Observe
that by applying the curl operator, we infer that curl curlψ = curlu. Furthermore, thanks to
an integration by parts, one can easily see that

ˆ
Ω

|curlψ|2 =
ˆ

Ω
curluψ. (6.53)

By means of the estimate (6.47), we obtain

∥u∥0 = ∥curlψ∥0 ≤ C∥curlu∥V0
β

(Ω). (6.54)

As a consequence, to prove the wanted estimate and the regularity result, we need to refine the
previous one near the origin. For this, let ζ be a smooth cutoff function that is equal to one near
the origin with support contained in B(O, r0) (r0 sufficiently small so that B(O, r0) ⊂ Ω). By
classical results, we know that for all for i = 1, 2, 3, the component ζψi belongs to H1

0(B(O, r0)).
Given that curl curlψ = ∆ψ = curlu. One can show that ∆(ζψ) ∈ V0

β(B(O, r0)). Moreover,
we have the estimate

∥∆(ζψ)∥V0
β(B(O,r0) ≤ C∥curlu∥V0

β(Ω).

Since by assumption β ∈ [0, 1/2), we deduce that V0
β(Ω) ⊂ V0

γ(Ω) ⊂ V0
1−β(Ω) for all γ ∈ (1/2; 1−

β]. This means that the function ∆(ζψi) belongs, then, to V0
γ(B(O, a)) for all γ ∈ (1/2; 1 − β] ⊂

(1/2, 1) for all i ∈ {1, 2, 3}. By applying Proposition 6.2.2, we infer that ζψi ∈ V2
γ(B(O, r0)) for

all γ ∈ (1/2; 1 − β] with the estimate

∥ζψi∥V2
γ(B(O,r0)) ≤ C∥∆(ζψ)∥V0

γ(B(O,r0) ≤ C∥∆(ζψ)∥V0
β(B(O,r0) ≤ C∥curlu∥V0

β(Ω). (6.55)

Consequently, by observing that ζcurlψ = ζu ∈ V1
γ(Ω) ⊂ V0

γ−1(Ω) for all γ ∈ (1/2; 1 − β] and
by taking γ = 1 − β, we deduce that u ∈ V0

−β(Ω). Moreover, we have the estimate

∥ζu∥V0
−β(B(O,r0)) = ∥ζcurlψ∥V0

−β(B(O,r0)) ≤ C∥∆(ζψ)∥V0
1−β(Dζ) ≤ C∥curlu∥V0

β(Ω).

Combining this with the estimate (6.54), we find

∥u∥V0
−β(Ω) ≤ C∥curlu∥V0

β(Ω). (6.56)

As a result it remains to prove the compactness of the embedding ZβN (1) ⊂ V0
−β(Ω). For this,

let (un)n∈N be a bounded sequence of ZβN (1). For all n ∈ N we introduce ψn ∈ XT (1) such
that un = curlψn. Obviously, we can see that (ψn)n∈N is then bounded in XT (1). According to
Proposition 6.7.2, we know, that up to a sub-sequence, still indexed by n, (ψn)n∈N converges in
V0

−β(Ω). By observing that, for all β ∈ [0; 1/2) and all m,n ∈ N we have
ˆ

Ω
|curlψn−curlψm|2 =

ˆ
Ω

curl (un−um)(ψn−ψm) ≤ ∥curl (un−um)∥V0
β(Ω)∥ψn−ψm∥V0

−β(Ω)

we deduce that (curlψn)n∈N converges in L2(Ω). Hence, up to a sub-sequence, (un)n∈N converges
in L2(Ω). This implies that the embedding of ZN (1) ⊂ L2(Ω) is compact. To end the proof, it
suffices to prove that (ζun|B(0,r0))n∈N converges, up to a sub-sequence, in V0

−β(B(0, r0)). This
consequence of the fact that ζun ∈ V1

γ−1(Ω) for all γ ∈ (1/2, 1 − β] and the compactness of
V1
γ(B(O, r0)) ⊂ V0

−β(B(O, r0)) for all γ ∈ (1/2; 1 − β) (see [102, Lemma 6.21]). ■

Remark 6.7.1. The proof of the previous proposition tells us that when β ∈ [0; 1/2) then for all
u ∈ ZβT (1) ∪ ZβN (1) we have is u ∈

⋂
γ∈(−1/2;−β]

V1
γ(Ω) near the origin.
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6.7.4 Density results

Let C be a sub-domain of Ω (i.e. C ⊂ Ω), we denote by HN (curl , C) the space

HN (curl , C) := {u ∈ L2(C) | curlu ∈ L2(C);u× ν = 0 on ∂Ω}.

Moreover, for all β ∈ R, we introduce the spaces

Kβ
D(C) := {u ∈ V0

−β(C) | curlu ∈ V0
β(C);u×ν = 0 on ∂Ω},V1

N,β(C) = {u ∈ V1
β(C)3 |u×ν = 0 on ∂Ω}.

Proposition 6.7.6. Assume that β ∈ [0; 1/2). Then, the space D(Ω\{O}) is dense in Kβ
N (Ω).

Proof. Let 0 < r0 such that B(O, r0) ⊂ Ω. Let χ ∈ D(Ω) be a cutoff function that depends only
on r = |x| that is supported B(O, r0) and that is equal to 1 near the origin. For all u ∈ Kβ

N (Ω),
one can see that (1 − χ)u ∈ HN (curl ,Ω\B(O, r0)). Given that the space (D(Ω\B(O, r0)))3 is
dense in HN (curl ,Ω\B(O, r0)) is is enough to explain how to approximate χu by functions of
(D(B(O, r0)\{O}))3 in Kβ

D(B(O, r0)). For this, we are going to show that for all β ∈ [0; 1/2), we
have the decomposition

Kβ
D(B(O, r0)) = ∇V̊1

−β(B(O, r0)) ⊕ V1
N,−β(B(O, r0)). (6.57)

Obviously, one has ∇V̊1
−β(B(O, r0)) ⊕ V̊1

β(B(O, r0)) ⊂ Kβ
D(B(O, r0)). The reverse inclusion is

obtained as follows. Take any u ∈ Kβ
D(B(O, r0)). Since 0 < β, we then have the inclusion

Kβ
D(B(O, r0)) ⊂ L2(B(O, r0)). So, the function u decomposes as u = ∇φ + curlψ with φ ∈

H1
0(B(O, r0)) and ψ ∈ XN (1,B(O, r0)). The vector field curlψ belongs, then to the space ZβN (1)

(see §6.7.3). Thus, thanks to Remark 6.7.1, we deduce that curlψ belongs to (V1
−β)3 near the

origin and since B(O, r0) is smooth, we infer that curlψ belongs to the space (H1)3 far from the
origin. As a consequence we then obtain that curlψ ∈ V1

N,−β(B(O, r0)). Since ∆φ = div(u) ∈
(V̊1

β(Ω))∗, Lemma 6.2.2 implies that φ ∈ V̊1
−β(Ω). We then deduce that (6.57) holds. Given that

the space (D(B(O, r0)\{O}))3 (resp. D(B(O, r0)\{O}) ) is dense in dense in V1
N,−β(B(O, r0))

(resp. V̊1
−β(B(O, r0))) and since the embeddings

V1
N,−β(B(O, r0)),∇V̊1

−β(B(O, r0)) ⊂ Kβ
D(B(O, r0))

are continuous, we obtain the wanted result. ■
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7.1 Introduction

The goal of this chapter is to study the homogenization process for time harmonic Maxwell’s
equations in the presence of δ−periodically distributed inclusions of negative material embedded
into a dielectric material (see Figure 7.1 for a typical configuration). The main objective is to
clarify if the homogenization process is doable in this context and if so, to determine whether
the corresponding homogenized material behaves like a positive or negative material as δ tends
to zero. For scalar problems, the first homogenization results have been obtained in [43] using
the T -coercivity approach of [27]. More precisely, it is proved therein that for negative contrasts

183
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close to 0 (the contrast being defined here as the ratio between the interior and exterior values,
see (7.1)), the scalar problem with Dirichlet boundary conditions can be homogenized. In other
words, it is proved that under this assumption on the contrast, the solution of the problem in the
composite material is well-defined for δ small enough (this is not obvious due to the loss of co-
ercivity due to the sign-changing coefficient) and that it two-scale converges (see Definition 7.5.1
below) to the solution of a well-posed problem set in a homogeneous material. These results have
been extended in [31], through the analysis of the spectrum of the Neumann-Poincaré operator.
In particular, the authors show that the homogenization process is possible provided the contrast
between the two media (defined using the same convention as above) belongs to (−∞; −1/α) or
(−α; 0), α > 0 (see Remark 7.3.1 below). The proof of this result is based on an elegant continuity
argument (see [31, Corollary 5.1]). However, it does not provide a precise value for α.

The chapter is organized as follows. Section 7.2 provides the mathematical setting of the problem
and necessary notation. Before studying Maxwell’s system, we collect in Section 7.3 some useful
results concerning two associated scalar problems, a Dirichlet and a Neumann one. In particular,
we prove the uniform invertibility of these operators as δ tends to zero, for small or large values
of the contrast, i.e. for contrasts in (−∞; −1/m) ∪ (−1/M ; 0), with 0 < m < M (see subsections
7.3.1 to 7.3.3). A variational characterization of the bounds m and M is also obtained (see (7.45)).
Next, inspired by [31], we discuss in §7.3.4 the connection with the Neumann-Poincaré operator
and the optimality of the obtained conditions. In Section 7.4, we study the cell problems ap-
pearing in the homogenization of Maxwell’s equations. We prove that they are well-posed under
the same assumptions as the scalar problems investigated in Section 7.3. This allows us to define
homogenized tensors and we show that they are positive definite under the same assumption on
the contrasts, that is for contrasts in (−∞; −1/m) ∪ (−1/M ; 0). This is also an improvement of
the results obtained in [43] and [31]. In Section 7.5, we finally tackle the homogenization process
for Maxwell’s equations with sign-changing coefficients. Combining results from [136] and [58]
obtained for classical (positive) electromagnetic materials, we first derive in §7.5.1 a homogeniza-
tion result under a uniform energy estimate condition. At this stage, the sign-changing of the
physical parameters does not play any role. Related to this part of the work, let us mention the
seminal book [14] as well as [141, 12] for the study of the time-dependent Maxwell equations. For
the time harmonic case, we refer to [14, 143, 131, 77, 48, 38, 142, 6, 136, 94]. Then, in §7.5.2,
we establish the needed uniform energy estimates for Maxwell’s equations. This is done by using
the results obtained for the scalar problems as well as the T-coercivity approach presented in [23]
and a uniform compactness property. The final homogenization result for Maxwell’s system with
sign-changing coefficients is stated in Theorem 7.5.1. For the reader’s convenience, the list of
functional spaces used throughout the paper is collected in the Appendix.

7.2 Setting of the problem

Let Ω be an open, connected and bounded subset of R3 with a Lipschitz-continuous boundary
∂Ω. Once and for all, we make the following assumption:

Assumption. The domain Ω is simply connected and ∂Ω is connected.

When this assumption is not satisfied, the analysis below must be adapted (see some preliminary
ideas in [23, §8.2]). We consider a situation where Ω is filled with a composite electromagnetic
material constituted of periodically distributed inhomogeneous cells of small size δ > 0. More
precisely, let Y = (0; 1)3 denote the reference cell and assume that Y contains two materials:

• a metamaterial with negative dielectric permittivity εi < 0 and magnetic permeability
µi < 0 located inside a connected domain Yi ⊂ Y with Lipschitz boundary ∂Yi such that
Yi ⊂ Y ;
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Figure 7.1: Example of a periodic material and the corresponding reference cell Y .

• a dielectric material with positive dielectric permittivity εe > 0 and magnetic permeability
µe > 0 filling the region Ye := Y \ Yi.

We emphasize that the assumption Yi ⊂ Y is important. When the inclusion Yi meets the
boundary of the cell ∂Y , phenomena different from the ones described below can appear. We
refer the reader to [31, Appendix A] for more details concerning the scalar problem in this case.
To simplify the presentation, we assume that εi, εe, µi and µe are constant. However, we could
also consider physical parameters which are elements of L∞(Ω,R3×3), the variational techniques
we use below would work in a similar way. In our analysis, the following dielectric and magnetic
contrasts

κε := εi
εe
< 0, κµ := µi

µe
< 0 (7.1)

will play a key role. Let us stress that the four constants εe, εi, µe, µi are fixed once for all in
the article. And when we make assumptions on the contrasts in the statements below (see in
particular the final Theorem 7.5.1), they must be understood as “Assume that εe, εi, µe, µi are
such that κε, κµ...”. We define on the reference cell the two real-valued functions ε, µ ∈ L∞(Y )
such that

ε(y) = εe 1Ye(y) + εi 1Yi(y), µ(y) = µe 1Ye(y) + µi 1Yi(y), (7.2)

where for a set S, 1S(·) stands for the indicator function of S. For any δ > 0 and any integer
vector k ∈ Z3, we define the shifted and scaled sets Y δ

ik, Y δ
ek, Y δ

k such that

Y δ
ik := {x ∈ R3 | (x− k)/δ ∈ Yi}
Y δ
ek := {x ∈ R3 | (x− k)/δ ∈ Ye}
Y δ
k := {x ∈ R3 | (x− k)/δ ∈ Y }.

(7.3)

We denote by Kδ the set of k ∈ Z3 such that Y δ
k ⊂ Ω. We assume that the metamaterial fills the

region
Ωδ
i :=

⋃
k∈Kδ

Y δ
ik,

while the complementary set in Ω
Ωδ
e = Ω \ Ωδ

i

is occupied by the dielectric. We denote by Ωδ the interior of
⋃
k∈Kδ

Y δ
k and we set Uδ := Ω \ Ωδ.

We define the macroscopic dielectric permittivity εδ and the magnetic permeability µδ on Ω such
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that
εδ(x) = εe 1Ωδe(x) + εi 1Ωδi

(x), µδ(x) = µe 1Ωδe(x) + µi 1Ωδi
(x). (7.4)

For a given frequency ω ̸= 0 (ω ∈ R), we study time harmonic Maxwell’s equations

curlEδ − iω µδHδ = 0 and curlHδ + iω εδEδ = J in Ω. (7.5)

Above Eδ and Hδ are respectively the electric and magnetic components of the electromagnetic
field. The source term J is the current density. We suppose that the medium Ω is surrounded
by a perfect conductor and we impose the boundary conditions

Eδ × n = 0 and µδHδ · n = 0 on ∂Ω, (7.6)

where n denotes the unit outward normal vector field to ∂Ω. For an introduction to the mathe-
matical setting of Maxwell’s equations, we refer the reader to the classical monographs by Monk
[110] or Nédélec [115]). We introduce some functional spaces classically used in the study of
Maxwell’s equations, namely

L2(Ω) := (L2(Ω))3

H(curl; Ω) := {H ∈ L2(Ω) | curlH ∈ L2(Ω)}
HN (curl; Ω) := {E ∈ H(curl; Ω) | E × n = 0 on ∂Ω}

VT (ξ) := {H ∈ H(curl; Ω) | div(ξH) = 0, ξH · n = 0 on ∂Ω}, for ξ ∈ L∞(Ω)
VN (ξ) := {E ∈ H(curl; Ω) | div(ξE) = 0, E × n = 0 on ∂Ω}, for ξ ∈ L∞(Ω).

For an open set O ⊂ R3, the inner products in L2(O) and L2(O) are denoted indistinctly by (·, ·)O
and the corresponding norm by ∥ · ∥O. To simplify, in L2(Ω) and L2(Ω), we just denote (·, ·) and
∥ · ∥. The space H(curl; Ω) and its subspaces HN (curl; Ω), VN (ξ), VT (ξ) are endowed with the
inner product

(·, ·)curl := (·, ·) + (curl ·, curl ·),
and the corresponding norm is denoted ∥ · ∥curl . We have the classical Green’s formula for the
curl operator (see for instance [110, Theorem 3.1]):

(u, curlv) − (curlu,v) = 0, ∀u ∈ HN (curl; Ω), v ∈ H(curl; Ω).

Let us recall a well-known property for the particular spaces VT (1) and VN (1) (cf. [139, 8]).

Proposition 7.2.1. The embeddings of VT (1) in L2(Ω) and of VN (1) in L2(Ω) are compact.
Moreover, there is a constant C > 0 such that

∥u∥ ⩽ C ∥curlu∥, ∀u ∈ VT (1) ∪ VN (1).

Therefore, in VT (1) and in VN (1), ∥curl · ∥Ω is a norm which is equivalent to ∥ · ∥curl .

Classically, one proves that if (Eδ,Hδ) satisfies (7.5)-(7.6), then Eδ and Hδ are respectively
solutions of the problems

Find Eδ ∈ H(curl; Ω) such that:
curl ((µδ)−1curlEδ) − ω2εδEδ = iωJ in Ω
Eδ × n = 0 on ∂Ω,

(7.7)

Find Hδ ∈ H(curl; Ω) such that:
curl ((εδ)−1curlHδ) − ω2µδHδ = curl ((εδ)−1J) in Ω
µδHδ · n = 0 on ∂Ω
(εδ)−1(curlH − J) × n = 0 on ∂Ω .

(7.8)

We emphasize that in (7.7), (7.8), the boundary conditions are the usual ones one should impose
to be able to prove well-posedness of the systems. In the following, we will focus our attention on
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the problem (7.7) for the electric field. The analysis for the magnetic field is quite similar. The
variational formulation of (7.7) writes

(Pδ)
Find Eδ ∈ HN (curl; Ω) such that for all E′ ∈ HN (curl; Ω):
((µδ)−1curlEδ, curlE′) − ω2(εδEδ,E′) = iω (J ,E′).

(7.9)

Before studying the behaviour of some solutions of (Pδ) as δ tends to zero, we must clarify the
properties of this problem for a fixed δ > 0. With the Riesz representation theorem, define the
linear and continuous operator A δ

N (ω) : HN (curl; Ω) → HN (curl; Ω) such that for all ω ∈ C,

(A δ
N (ω)E,E′)curl = ((µδ)−1curlE, curlE′) − ω2(εδE,E′), ∀E,E′ ∈ HN (curl; Ω). (7.10)

The features of A δ
N (ω) are strongly related to the ones of two scalar operators that we define

now. Set
H1

0(Ω) := {φ ∈ H1(Ω) |φ = 0 on ∂Ω}

H1
#(Ω) :=

{
φ ∈ H1(Ω) |

ˆ
Ω
φ dx = 0

}
.

In H1
0(Ω) and in H1

#(Ω) (since Ω is connected), ∥∇ · ∥ is a norm which is equivalent to the usual
norm of H1(Ω). We define the two linear and continuous operators Aδε : H1

0(Ω) → H1
0(Ω) and

Bδ
µ : H1

#(Ω) → H1
#(Ω) such that

(∇(Aδεφ),∇φ′) = (εδ∇φ,∇φ′), ∀φ,φ′ ∈ H1
0(Ω)

(∇(Bδ
µφ),∇φ′) = (µδ∇φ,∇φ′), ∀φ,φ′ ∈ H1

#(Ω).

With these notations, Theorem 6.1 of [23] writes as follows.

Theorem 7.2.1. Assume that the scalar operators Aδε : H1
0(Ω) → H1

0(Ω) and Bδ
µ : H1

#(Ω) →
H1

#(Ω) are isomorphisms. Then A δ
N (ω) : HN (curl; Ω) → HN (curl; Ω) is an isomorphism for all

ω ∈ C \ S where S is a discrete set with no accumulation point.

Note that in this statement, the set S depends on the contrasts κε, κµ but also on the geometry
and hence on δ. In the next section, we give conditions ensuring that Aδε and Bδ

µ are isomorphisms.

7.3 Uniform invertibility of the two scalar problems

We shall say that the operators Aδε : H1
0(Ω) → H1

0(Ω) and Bδ
µ : H1

#(Ω) → H1
#(Ω) are uniformly

invertible as δ tends to zero if there is δ0 > 0 such that Aδε, Bδ
µ are invertible for all δ ∈ (0; δ0]

together with the estimate
∥(Aδε)−1∥ + ∥(Bδ

µ)−1∥ ⩽ C,

where C > 0 is a constant which is independent of δ ∈ (0; δ0]. In this section, our goal is to find
criteria on κε, κµ guaranteeing the uniform invertibility of Aδε, Bδ

µ. The uniform invertibility of
Aδε has been considered in the articles [43, 31]. Below we combine the approaches presented in
these two articles and we adapt the analysis in order to obtain a criterion ensuring the uniform
invertibility of Bδ

µ.

Remark 7.3.1. The result of uniform invertibility of [31, Theorem 5.2] is based on the result of
Theorem 4.3 of the same article. However, its domain of validity is not completely satisfactory
because the constant m defined in Theorem 4.3 is in fact equal to zero. This has been corrected
by the authors and a new proof can be found in the erratum [37].

7.3.1 First δ-dependent criteria

In a pedagogical aim, we first derive some criteria ensuring the invertibility of Aδε, Bδ
µ that are

valid only for fixed δ, and hence which are not uniform.
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Criterion of invertibility for the operator Aδε

In order to get a criterion on the contrast κε ensuring that Aδε : H1
0(Ω) → H1

0(Ω) is an isomorphism,
we start by presenting a well-chosen decomposition of the space H1

0(Ω) which has been introduced
in [31]. We recall that H1

0(Ω) is endowed with the inner product (∇·,∇·).

Lemma 7.3.1. We have the decomposition H1
0(Ω) = Hδ

D

⊥
⊕ H1

0(Ωδ
e ∪ Ωδ

i ) where Hδ
D := {φ ∈

H1
0(Ω) | ∆φ = 0 in Ωδ

e ∪ Ωδ
i }.

Remark 7.3.2. The index D in the notation Hδ
D stands for Dirichlet and refers to the homo-

geneous Dirichlet boundary condition imposed on ∂Ω to the elements of Hδ
D. We emphasize that

the functions of H1
0(Ωδ

e ∪ Ωδ
i ) vanish on ∂Ωδ

i .

Proof. Let φ be a given element of H1
0(Ω). Introduce φ̃ ∈ H1

0(Ωδ
e ∪ Ωδ

i ) the function such that
∆φ̃ = ∆φ in Ωδ

e ∪ Ωδ
i . Then we have φ = (φ − φ̃) + φ̃ and clearly φ − φ̃ ∈ Hδ

D. Now if φ1 and
φ2 are elements of Hδ

D and H1
0(Ωδ

e ∪ Ωδ
i ), a direct integration by parts gives

(∇φ1,∇φ2) =
ˆ

Ωδe∪Ωδi
∆φ1φ2 dx+

ˆ
∂Ωδi

∂φ1i
∂ni

φ2 dσ +
ˆ
∂Ωδi

∂φ1e
∂ne

φ2 dσ = 0.

Here and below, ne = −ni stands for the unit normal vector to ∂Ωδ
i pointing to Ωδ

i . Moreover for
x ∈ ∂Ωδ

i , ∂nφi(x) = lim
t→0+

∇φ(x − tni) · n(x) and ∂nφe(x) = lim
t→0+

∇φ(x − tne) · n(x). This gives
the desired result. ■

In what follows, some particular elements of Hδ
D will play a key role. For k ∈ Kδ, define the

function φkD ∈ Hδ
D such that

φkD =
1 in Y δ

ik

0 in Y δ
ik′ for k′ ̸= k.

(7.11)

Then set
Ĥδ
D := {φ ∈ Hδ

D | (∇φ,∇φkD) = 0, ∀k ∈ Kδ} (7.12)

so that we have, as in [31, Proposition 3.2],

H1
0(Ω) = Ĥδ

D

⊥
⊕ spank∈Kδ{φkD}

⊥
⊕ H1

0(Ωδ
e ∪ Ωδ

i ). (7.13)

Finally, we define the constants

mδ
D := inf

φ∈Ĥδ
D\{0}

∥∇φ∥2
Ωδi

∥∇φ∥2
Ωδe

, M δ
D := sup

φ∈Ĥδ
D\{0}

∥∇φ∥2
Ωδi

∥∇φ∥2
Ωδe

. (7.14)

Before proceeding, let us discuss a few features of the constants mδ
D, M δ

D. First, observe that the
functions φkD satisfy

∥∇φkD∥2
Ωδi

= 0 and ∥∇φkD∥2
Ωδe

̸= 0.

As a consequence, the infimum of (7.14) considered over Hδ
D \ {0} is zero. On the other hand,

the next lemma guarantees that the supremum of (7.14) considered over Hδ
D \ {0} coincides with

M δ
D.

Lemma 7.3.2. The constant M δ
D defined in (7.14) satisfies

M δ
D = sup

φ∈Hδ
D\{0}

∥∇φ∥2
Ωδi

∥∇φ∥2
Ωδe

. (7.15)
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Proof. Since Ĥδ
D ⊂ Hδ

D, clearly we have

M δ
D ⩽ sup

φ∈Hδ
D\{0}

∥∇φ∥2
Ωδi

∥∇φ∥2
Ωδe

. (7.16)

Now we establish the other inequality. If φ ∈ Hδ
D \ {0}, we have the decomposition φ = φ̂ + Φ

with φ̂ ∈ Ĥδ
D and Φ ∈ spank∈Kδ{φkD}. Since Φ is constant in each of the Y δ

ik, k ∈ Kδ, there
holds

∥∇φ∥2
Ωδi

= ∥∇φ̂∥2
Ωδi
. (7.17)

As a consequence, if φ̂ ≡ 0, then 0 = ∥∇φ∥2
Ωδi
/∥∇φ∥2

Ωδe
⩽ M δ

D. If φ̂ ̸≡ 0, from (7.17) and the
identity ∥∇φ∥2

Ω = ∥∇φ̂∥2
Ω + ∥∇Φ∥2

Ω (see (7.12)), we deduce that

∥∇φ∥2
Ωδe

= ∥∇φ̂∥2
Ωδe

+ ∥∇Φ∥2
Ωδe

⩾ ∥∇φ̂∥2
Ωδe
.

This implies

M δ
D ⩾

∥∇φ̂∥2
Ωδi

∥∇φ̂∥2
Ωδe

⩾
∥∇φ∥2

Ωδi
∥∇φ∥2

Ωδe

. (7.18)

Taking the supremum over all φ ∈ Hδ
D \ {0} in (7.18), we deduce that (7.16) is also true with

“⩽” replaced by “⩾”. This shows (7.15). ■

Finally, we prove the following additional result.

Lemma 7.3.3. The constants mδ
D, M δ

D satisfy 0 < mδ
D ⩽M δ

D < +∞.

Proof. By definition of mδ
D, M δ

D, clearly we have mδ
D ≤ M δ

D. On the other hand, working by
contradiction, thanks to the orthogonality conditions imposed to the elements of Ĥδ

D, one can
show the Poincaré-Wirtinger inequality

∃Cδ > 0 such that ∥φ∥Ωδi
⩽ Cδ∥∇φ∥Ωδi

, ∀φ ∈ Ĥδ
D. (7.19)

For φ ∈ Ĥδ
D, since there holds ∆φ = 0 in Ωδ

i , from (7.19), we obtain the estimate

∥∇φ∥Ωδi
⩽ Cδ∥φ∥H1/2(∂Ωδi ).

Here the constant Cδ may change from one line to another. Then the continuity of the trace from
H1(Ωδ

e) into H1/2(∂Ωδ
i ) yields the existence of a constant Cδ1 > 0 such that

∥∇φ∥Ωδi
⩽ Cδ2∥∇φ∥Ωδe , ∀φ ∈ Ĥδ

D. (7.20)

Similarly, using the continuity of the trace from H1(Ωδ
i ) into H1/2(∂Ωδ

i ), we obtain that there is
Cδ2 > 0 such that

∥∇φ∥Ωδe ⩽ Cδ2∥∇φ∥Ωδi
, ∀φ ∈ Ĥδ

D. (7.21)

Estimates (7.20) and (7.21) allow one to conclude to the result of the lemma. ■

After these considerations, we can now establish the following criterion concerning the invertibility
of Aδε. To proceed, we work with the T-coercivity approach introduced in [27] (see also [52]). We
emphasize however that we work with a different operator T allowing us to obtain a sharper result.

Proposition 7.3.1. Assume that κε ∈ (−∞; −1/mδ
D) ∪ (−1/M δ

D; 0) where mδ
D and M δ

D are
defined in (7.14). Then Aδε : H1

0(Ω) → H1
0(Ω) is an isomorphism.
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Proof. Define the operator T+
D : H1

0(Ω) → H1
0(Ω) such that for φ = φ̂h + Φh + φ̃ with φ̂h ∈ Ĥδ

D,
Φh ∈ spank∈Kδ{φkD} and φ̃ ∈ H1

0(Ωδ
e ∪ Ωδ

i ), there holds

T+
Dφ = φ̂h + Φh + φ̃ in Ωδ

e

φ̂h + Φh − φ̃ in Ωδ
i .

(7.22)

Note that since φ̃ = 0 on ∂Ωδ
i , the operator T+

D is indeed valued in H1
0(Ω). Moreover we have

T+
D ◦ T+

D = Id which shows that T+
D is an isomorphism of H1

0(Ω). For all φ ∈ H1
0(Ω), we find

(∇(Aδε(T+
Dφ)),∇φ)

= εe(∇(φ̂h + Φh + φ̃),∇(φ̂h + Φh + φ̃))Ωδe + εi(∇(φ̂h − φ̃),∇(φ̂h + φ̃))Ωδi
.

(7.23)

Integrating by parts and using that φ̃ = 0 on ∂Ωδ
e ∪ ∂Ωδ

i , we get

(∇φ̂h,∇φ̃)Ωδe = (∇Φh,∇φ̃)Ωδe = (∇φ̂h,∇φ̃)Ωδi
= 0. (7.24)

Besides, using again that Φh is constant in each of the Y δ
ik, from the orthogonal decomposition

(7.13), we infer that
(∇φ̂h,∇Φh)Ωδe = (∇φ̂h,∇Φh) = 0. (7.25)

Inserting (7.24), (7.25) in (7.23), we obtain

(∇(Aδε(T+
Dφ)),∇φ) = (ε∇φ̂h,∇φ̂h) + (εe∇Φh,∇Φh)Ωδe + (|ε|∇φ̃,∇φ̃). (7.26)

For the first term of the right hand side of (7.26), we can write

(ε∇φ̂h,∇φ̂h) = εe∥∇φ̂h∥2
Ωδe

− |εi| ∥∇φ̂h∥2
Ωδi

⩾ (εe − |εi|M δ
D)∥∇φ̂h∥2

Ωδe

⩾
1
2 (εe − |εi|M δ

D)(∥∇φ̂h∥2
Ωδe

+ (M δ
D)−1∥∇φ̂h∥2

Ωδi
).

(7.27)

Using this estimate in (7.26), we deduce that when εe > |εi|M δ
D ⇔ κε = εi/εe > −1/M δ

D,
the bilinear form (∇(Aδε(T+

D·)),∇·) is coercive in H1
0(Ω) (note that Lemma 7.3.3 guarantees that

M δ
D < +∞). With the Lax-Milgram theorem, we infer that when κε > −1/M δ

D, the operator
Aδε ◦ T+

D is an isomorphism of H1
0(Ω) and so is Aδε.

To address the case κε < −1/mδ
D, let us work with the operator T−

D : H1
0(Ω) → H1

0(Ω) such
that

T−
Dφ = −φ̂h + Φh + φ̃ in Ωδ

e

−φ̂h + Φh − φ̃ in Ωδ
i .

(7.28)

We also have T−
D ◦ T−

D = Id which guarantees that T−
D is an isomorphism of H1

0(Ω). For all
φ ∈ H1

0(Ω), we find

(∇(Aδε(T−
Dφ)),∇φ) = −(ε∇φ̂h,∇φ̂h) + (εe∇Φh,∇Φh)Ωδe + (|ε|∇φ̃,∇φ̃). (7.29)

This time, we can write

−(ε∇φ̂h,∇φ̂h) = −εe∥∇φ̂h∥2
Ωδe

+ |εi| ∥∇φ̂h∥2
Ωδi

⩾ (−εe + |εi|mδ
D)∥∇φ̂h∥2

Ωδe
⩾

1
2 (−εe + |εi|mδ

D)(∥∇φ̂h∥2
Ωδe

+ (M δ
D)−1∥∇φ̂h∥2

Ωδi
).

(7.30)

As a consequence, we see from (7.29) that when |εi|mδ
D > εe ⇔ κε = εi/εe < −1/mδ

D, the bilinear
form (∇(Aδε(T−

D·)),∇·) is coercive in H1
0(Ω) (here we also use the result of Lemma 7.3.3 ensuring

that 0 < mδ
D ≤ M δ

D < +∞). We can conclude as above that when κε < −1/mδ
D, the operator

Aδε is an isomorphism of H1
0(Ω). ■



191 7.3. Uniform invertibility of the two scalar problems

Criterion of invertibility for the operator Bδ
µ

Now we show similar results for the operator Bδ
µ : H1

#(Ω) → H1
#(Ω). First, define the space

H1
⋄(Ω) :=

{
φ ∈ H1(Ω) |

ˆ
∂Ωδi

φ dσ = 0
}
.

Lemma 7.3.4. We have the decomposition H1
⋄(Ω) = Hδ

N

⊥
⊕ H1

0, ∂Ωδi
(Ω) where Hδ

N := {φ ∈
H1

⋄(Ω) | ∆φ = 0 in Ωδ
e ∪ Ωδ

i , ∂nφ = 0 on ∂Ω} and H1
0, ∂Ωδi

(Ω) := {φ ∈ H1(Ω) |φ = 0 on ∂Ωδ
i } ⊂

H1
⋄(Ω).

Remark 7.3.3. This time, the index N in the notation Hδ
N stands for Neumann and refers to

the homogeneous Neumann boundary condition imposed on ∂Ω to the elements of Hδ
N .

Proof. For φ given in H1
⋄(Ω), introduce φ̃ ∈ H1

0, ∂Ωδi
(Ω) the function such that

(∇φ̃,∇φ′) = (∇φ,∇φ′), ∀φ′ ∈ H1
0, ∂Ωδi

(Ω).

Note that since the Poincaré inequality holds in the space H1
0,∂Ωδi

(Ω), the Lax-Milgram theorem
indeed guarantees that this variational problem admits a unique solution. Then we have φ =
(φ − φ̃) + φ̃ and one can check that φ − φ̃ belongs to Hδ

N . Finally if φ1 and φ2 are elements of
Hδ
N and H1

0, ∂Ωδi
(Ω), a direct integration by parts gives (∇φ1,∇φ2) = 0. ■

In what follows, some particular elements of Hδ
N will play a key role. Let k0 be an arbitrary given

element of Kδ and for k ∈ Kδ \ {k0}, define the function φkN ∈ Hδ
N such that

φkN =
1 in Y δ

ik

−1 in Y δ
ik0

0 in Y δ
ik′ for k′ ∈ Kδ \ {k0, k}.

Then set
Ĥδ
N := {φ ∈ Hδ

N | (∇φ,∇φkN ) = 0, ∀k ∈ Kδ \ {k0}}

so that we have
H1

⋄(Ω) = Ĥδ
N

⊥
⊕ spank∈Kδ\{k0}{φkN}

⊥
⊕ H1

0, ∂Ωδi
(Ω).

We emphasize that the choice of k0 above does not affect this decomposition. We simply consider
one particular basis for the space spank∈Kδ\{k0}{φkN}. Finally, we define the constants

mδ
N := inf

φ∈Ĥδ
N\{0}

∥∇φ∥2
Ωδi

∥∇φ∥2
Ωδe

, M δ
N := sup

φ∈Ĥδ
N\{0}

∥∇φ∥2
Ωδi

∥∇φ∥2
Ωδe

. (7.31)

Working as in the proof of Lemma 7.3.3, in particular establishing by contradiction the Poincaré-
Wirtinger inequality

∃Cδ > 0 such that ∥φ∥Ωδi
⩽ Cδ∥∇φ∥Ωδi

, ∀φ ∈ Ĥδ
N ,

one can show that there holds 0 < mδ
N ⩽M δ

N < +∞. As in (7.14), the functions φkN satisfy

∥∇φkN∥2
Ωδi

= 0 and ∥∇φkN∥2
Ωδe

̸= 0

so that the infimum of (7.31) considered over Hδ
N \ {0} is zero. Working exactly as in the proof

of Lemma 7.3.2, we get the following result.
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Lemma 7.3.5. The constant M δ
N defined in (7.31) satisfies

M δ
N = sup

φ∈Hδ
N\{0}

∥∇φ∥2
Ωδi

∥∇φ∥2
Ωδe

. (7.32)

Now, we give our criterion of invertibility for the operator Bδ
µ.

Proposition 7.3.2. Assume that κµ ∈ (−∞; −1/mδ
N ) ∪ (−1/M δ

N ; 0) where mδ
N and M δ

N are
defined in (7.31). Then Bδ

µ : H1
#(Ω) → H1

#(Ω) is an isomorphism.

Proof. Introduce the mappings ℓ⋄ : H1
#(Ω) → H1

⋄(Ω) and ℓ# : H1
⋄(Ω) → H1

#(Ω) such that

ℓ⋄(φ) = φ−
1

|∂Ωδ
i |

ˆ
∂Ωδi

φ dσ, ℓ#(φ) = φ−
1

|Ω|

ˆ
Ω
φ dx.

Here and in what follows, for an open set O ⊂ R3, we denote by |O| =
ˆ
O

1 dx and |∂O| =
ˆ
∂O

1 dσ.

Then define the operators T̃±
N : H1

⋄(Ω) → H1
⋄(Ω) such that for φ = φ̂h + Φh + φ̃ with φ̂h ∈ Ĥδ

N ,
Φh ∈ spank∈Kδ\{k0}{φkN} and φ̃ ∈ H1

0, ∂Ωδi
(Ω), there holds

T̃±
Nφ = ±φ̂h + Φh + φ̃ in Ωδ

e

±φ̂h + Φh − φ̃ in Ωδ
i .

(7.33)

Finally, we define the operators
T±
N := ℓ# ◦ T̃±

N ◦ ℓ⋄.

For ψ ∈ H1
#(Ω), we set φ := ℓ⋄(ψ) ∈ H1

⋄(Ω) and we use the notation φ = φ̂h + Φh + φ̃ with
φ̂h ∈ Ĥδ

N , Φh ∈ spank∈Kδ\{k0}{φkN} and φ̃ ∈ H1
0, ∂Ωδi

(Ω). Observing that ∇φ = ∇ψ (φ and ψ

differ from each other by an additive constant) and working as in (7.26), we find

(∇(Bδ
µ(T±

Nψ)),∇ψ) = ±(µ∇φ̂h,∇φ̂h) + (µe∇Φh,∇Φh)Ωδe + (|µ|∇φ̃,∇φ̃). (7.34)

For the first term of the right hand side of (7.34), we can write

(µ∇φ̂h,∇φ̂h) = µe∥∇φ̂h∥2
Ωδe

− |µi| ∥∇φ̂h∥2
Ωδi

⩾ (µe − |µi|M δ
N )∥∇φ̂h∥2

Ωδe

⩾
1
2 (µe − |µi|M δ

N )(∥∇φ̂h∥2
Ωδe

+ (M δ
N )−1∥∇φ̂h∥2

Ωδi
)

and

−(µ∇φ̂h,∇φ̂h) = −µe∥∇φ̂h∥2
Ωδe

+ |µi| ∥∇φ̂h∥2
Ωδi

⩾ (−µe + |µi|mδ
N )∥∇φ̂h∥2

Ωδe
⩾

1
2 (−µe + |µi|mδ

N )(∥∇φ̂h∥2
Ωδe

+ (M δ
N )−1∥∇φ̂h∥2

Ωδi
).

(7.35)

Using again that ∇φ = ∇ψ, we deduce from the first estimate of (7.34) that when µe > |µi|M δ
N ⇔

κµ = µi/µe > −1/M δ
N , the bilinear form (∇(Bδ

µ(T+
N ·)),∇·) is coercive in H1

#(Ω). With the Lax-
Milgram theorem, we infer that when κµ > −1/M δ

N , the operator Bδ
µ ◦ T+

N is an isomorphism of
H1

#(Ω). Since Bδ
µ is selfadjoint (because it is bounded and symmetric), this implies that Bδ

µ is an
isomorphism. Working similarly with T−

N , from (7.35) one finds that when |µi|mδ
N > µe ⇔ κµ =

µi/µe < −1/mδ
N , the operator Bδ

µ is an isomorphism. Note that with additional few lines, one
can check that we have T±

N ◦ T±
N = Id. ■
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7.3.2 Comparison between the criteria of invertibility

In this section, we compare the constants involved in the criteria ensuring the invertibility of the
operators Aδε (Dirichlet) and Bδ

µ (Neumann).

Proposition 7.3.3. For all δ > 0, the constants mδ
D, M δ

D defined in (7.14) and the constants
mδ
N , M δ

N defined in (7.31) satisfy

mδ
D ⩽ mδ

N and M δ
D ⩽M δ

N . (7.36)

Proof. We start by proving the second inequality of (7.36). Let φ be an element of Ĥδ
D \ {0}.

Define the function ζ ∈ Hδ
N such that ζ = φ − c on ∂Ωδ

i where c = |∂Ωδ
i |−1

ˆ
∂Ωδi

φdσ. In other

words, ζ is the function such that ∆ζ = 0 in Ωδ
e ∪ Ωδ

i , ζ = φ− c on ∂Ωδ
i and ∂nζ = 0 on ∂Ω. Note

that necessarily, there holds ζ ̸≡ 0. Then we have ζ = φ− c in Ωδ
i and so

∥∇ζ∥Ωδi
= ∥∇φ∥Ωδi

. (7.37)

On the other hand, integrating by parts, we find

(∇ζ,∇(ζ − φ))Ωδe

= (∇ζ,∇(ζ − (φ− c)))Ωδe =
ˆ
∂Ω

∂ζ

∂n
(ζ − (φ− c)) dσ +

ˆ
∂Ωδi

∂ζe
∂ne

(ζ − (φ− c)) dσ = 0.

We deduce that
∥∇ζ∥2

Ωδe
⩽ ∥∇φ∥2

Ωδe
. (7.38)

Gathering (7.37), (7.38) and using Lemma 7.3.5, we infer that

∥∇φ∥2
Ωδi

∥∇φ∥2
Ωδe

⩽
∥∇ζ∥2

Ωδi
∥∇ζ∥2

Ωδe

⩽M δ
N . (7.39)

Taking the supremum over all φ ∈ Ĥδ
D \ {0} in (7.39), we obtain that M δ

D ⩽M δ
N .

Now we show the first inequality of (7.36). Let φ be an element of Ĥδ
N \ {0}. Define the

function ζ ∈ Hδ
D such that ζ = φ on ∂Ωδ

i . In particular, we have ∆ζ = 0 in Ωδ
e ∪ Ωδ

i and ζ = 0 on
∂Ω. Then decompose ζ as ζ = ζ̂ + Z with ζ̂ ∈ Ĥδ

D and Z ∈ spank∈Kδ{φkD}. Since Z is constant
in each of the Y δ

ik, k ∈ Kδ, we have

∥∇ζ̂∥Ωδi
= ∥∇φ∥Ωδi

. (7.40)

On the other hand, integrating by parts, we find

(∇φ,∇(ζ̂ − φ))Ωδe =
ˆ
∂Ω

∂φ

∂n
(ζ̂ − φ) dσ +

ˆ
∂Ωδi

∂φe
∂ne

(ζ̂ − φ) dσ = −
ˆ
∂Ωδi

∂φe
∂ne

Z dσ. (7.41)

Since the function φ is in Ĥδ
N , for all k ∈ Kδ \ {k0}, we have (∇φ,∇φkN ) = 0. Integrating by

parts, this implies ˆ
∂Y δ

ik

∂φe
∂ne

dσ =
ˆ
∂Y δ

ik0

∂φe
∂ne

dσ.

But we also have
ˆ
∂Ωδi

∂neφe dσ = 0. As a consequence, we must have, for all k ∈ Kδ,

ˆ
∂Y δ

ik

∂φe
∂ne

dσ = 0.
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Since Z is constant on each of the ∂Y δ
ik, we deduce that the terms of the equalities of (7.41) are

equal to zero. Hence, there holds
∥∇φ∥2

Ωδe
⩽ ∥∇ζ̂∥2

Ωδe
. (7.42)

Gathering (7.40) and (7.42) leads to

mδ
D ⩽

∥∇ζ̂∥2
Ωδi

∥∇ζ̂∥2
Ωδe

⩽
∥∇φ∥2

Ωδi
∥∇φ∥2

Ωδe

. (7.43)

Taking the infimum over all φ ∈ Ĥδ
N \ {0} in (7.43), we obtain that mδ

D ⩽ mδ
N . ■

7.3.3 Uniform criterion of invertibility

The bounds on the contrasts κε, κµ that we obtained in Propositions 7.3.1, 7.3.2 which ensure
the invertibility of the scalar operators Aδε and Bδ

µ, depend on δ. In this paragraph, we wish to
get bounds which are uniform with respect to δ.

Introduce the Hilbert spaces of functions defined in the reference cell Y

H0 := {φ ∈ H1
0(Y ) | ∆φ = 0 in Ye ∪ Yi}

H⋄ := {φ ∈ H1
⋄(Y ) | ∆φ = 0 in Ye ∪ Yi}

where H1
⋄(Y ) := {φ ∈ H1(Y ) |

ˆ
∂Yi

φdσ = 0}. Define the function φD ∈ H0 such that φD = 1 in

Yi and set
Ĥ0 := {φ ∈ H0 | (∇φ,∇φD) = 0}
Ĥ⋄ := {φ ∈ H⋄ | ∂nφ = 0 on ∂Y }.

(7.44)

Then we introduce the constants

m := inf
φ∈Ĥ0\{0}

∥∇φ∥2
Yi

∥∇φ∥2
Ye

, M := sup
φ∈Ĥ⋄\{0}

∥∇φ∥2
Yi

∥∇φ∥2
Ye

. (7.45)

We emphasize that m and M are independent of δ.

Lemma 7.3.6. The constant M defined in (7.45) satisfies

M = sup
φ∈H⋄\{0}

∥∇φ∥2
Yi

∥∇φ∥2
Ye

(7.46)

(here the sup is considered over H⋄ \ {0} and not Ĥ⋄ \ {0}).

Proof. Since there holds Ĥ⋄ ⊂ H⋄, it suffices to show that

sup
φ∈H⋄\{0}

∥∇φ∥2
Yi

∥∇φ∥2
Ye

⩽M. (7.47)

Let φ be a non zero element of H⋄. We have the decomposition φ = φ̂+ (φ− φ̂) where φ̂ ∈ Ĥ⋄ is
the function such that φ̂ = φ in Yi, ∆φ̂ = 0 in Ye, φ̂ = φ on ∂Yi and ∂nφ̂ = 0 on ∂Y . Observing
that ∥∇φ∥2

Yi = ∥∇φ̂∥2
Yi and that

∥∇φ∥2
Ye = ∥∇φ̂∥2

Ye + ∥∇(φ− φ̂)∥2
Ye ⩾ ∥∇φ̂∥2

Ye ,

we can write
∥∇φ∥2

Yi = ∥∇φ̂∥2
Yi ⩽M ∥∇φ̂∥2

Ye ⩽M ∥∇φ∥2
Ye .

Taking the supremum over all φ ∈ H⋄ \ {0} leads to (7.47). ■
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Lemma 7.3.7. For all δ > 0, we have the relations

m ⩽ mδ
D ⩽ mδ

N and M δ
D ⩽M δ

N ⩽M, (7.48)

where mδ
D, M δ

D are defined in (7.14), mδ
N , M δ

N are defined in (7.31) and m, M are defined in
(7.45).

Proof. From Proposition 7.3.3, we know that we have mδ
D ⩽ mδ

N and M δ
D ⩽M δ

N . Now we show
that we have M δ

N ⩽ M . Let φ be a non zero element of Ĥδ
N . For all k ∈ Kδ, we define the

function φδk ∈ H1(Y ) such that φδk(y) = φ(δ(k+ y)) for y ∈ Y and we set ck := |∂Y |−1
ˆ
∂Y
φδk dσ.

Since φδk − ck ∈ H⋄, using Lemma 7.3.6, we can write

∥∇φ∥2
Y δ
ik

= δ∥∇φδk∥2
Yi = δ∥∇(φδk − ck)∥2

Yi

≤ δM ∥∇(φδk − ck)∥2
Ye ⩽ δM ∥∇φδk∥2

Ye ⩽M ∥∇φ∥2
Y δ
ek
.

Summing these estimates over all k ∈ Kδ, we get (recall that Uδ = Ω \ Ωδ)

∥∇φ∥2
Ωδi

⩽M ∥∇φ∥2
Ωδe\Uδ

⩽M ∥∇φ∥2
Ωδe
. (7.49)

Taking the supremum in (7.49) over all φ ∈ Ĥδ
N , we deduce that M δ

N ⩽M .

To establish (7.48), it remains to show that m ⩽ mδ
D. For φ given in Ĥδ

D, introduce the function
v ∈ H1

0(Ω) such that for all k ∈ Kδ,

v = φ in Y δ
ik

∆v = 0 in Y δ
ek

v = 0 on ∂Y δ
ek.

We also impose v = 0 in Uδ = Ω \ Ωδ. For all k ∈ Kδ, define the function ϕkD ∈ H1
0(Ω) such that

ϕkD = 1 in Y δ
ik

∆ϕkD = 0 in Y δ
ek

ϕkD = 0 in Ω \ Y δ
k .

Then set
ṽ := v −

∑
k∈Kδ

akϕ
k
D with ak := (∇v,∇ϕkD)/∥∇ϕkD∥2.

Integrating by parts, we find

(∇φ,∇(φ− ṽ))Ωδe =
ˆ
∂Ω

∂φ

∂n
(φ− ṽ) dσ +

ˆ
∂Ωδi

∂φe
∂ne

(φ− ṽ) dσ =
∑
k∈Kδ

ak

ˆ
∂Y δ

ik

∂φe
∂ne

ϕkD dσ. (7.50)

Since the function φ is in Ĥδ
D, for all k ∈ Kδ, we have (∇φ,∇φkD) = 0. Integrating by parts, this

implies ˆ
∂Y δ

ik

∂φe
∂ne

dσ = 0.

Using that ϕkD is constant on the ∂Y δ
ik′ , we deduce from (7.50) that (∇φ,∇(φ− ṽ))Ωδe = 0. Hence,

we have
∥∇φ∥2

Ωδe
⩽ ∥∇ṽ∥2

Ωδe
=
∑
k∈Kδ

∥∇ṽ∥2
Y δ
ek
. (7.51)
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For k ∈ Kδ, define the function ṽδk ∈ H1(Y ) such that ṽδk(y) = ṽ(δ(k + y)) for y ∈ Y . Observe
that we have ṽδk ∈ Ĥ0 so that we can write

∥∇ṽ∥2
Y δ
ek

= δ∥∇ṽδk∥2
Ye ≤ δ m−1 ∥∇ṽδk∥2

Yi ⩽ δ m−1 ∥∇φδk∥2
Yi ⩽ m−1 ∥∇φ∥2

Y δ
ik
. (7.52)

As a consequence, inserting (7.52) in (7.51), we obtain

∥∇φ∥2
Ωδe

⩽ m−1 ∥∇φ∥2
Ωδi
. (7.53)

Taking the infimum in (7.53) over all φ ∈ Ĥδ
D, we deduce that m ⩽ mδ

D. ■

Finally, we deduce a criterion of uniform invertibility for the operators Aδε and Bδ
µ.

Theorem 7.3.1. Let m, M be the constants defined in (7.45).
When κε ∈ (−∞; −1/m) ∪ (−1/M ; 0), Aδε : H1

0(Ω) → H1
0(Ω) is uniformly invertible as δ → 0.

When κµ ∈ (−∞; −1/m) ∪ (−1/M ; 0), Bδ
µ : H1

#(Ω) → H1
#(Ω) is uniformly invertible as δ → 0.

Proof. Let us show the result for Aδε, the proof is completely similar for Bδ
µ. From the decom-

position of the space H1
0(Ω) in (7.13), one observes that the operators T±

D = (T±
D)−1 defined in

(7.22) and (7.28) are uniformly continuous. From the estimate (7.27) (resp. (7.30)) together with
the result of Lemma 7.3.7, one infers that as δ → 0, (∇(Aδε(T+

D·)),∇·) (resp. (∇(Aδε(T−
D·)),∇·))

is uniformly coercive in H1
0(Ω) when κε > −1/M (resp. when κε < −1/m). Since Aδε is also

uniformly continuous, this is enough to guarantee that Aδε is uniformly invertible as δ tends to
zero. ■

7.3.4 Optimality of the criterion and connection to the Neumann-Poincaré
operator

Let us discuss the criterion we have obtained above. We focus our attention on the analysis
for the operator Aδε, similar comments can be made for the operator Bδ

µ. We assume in this
paragraph that ∂Yi, and so ∂Ωδ

i , is of class C2. Note that this assumption is important to ensure
that the spectrum of Problem (7.55) below is discrete. It has been proved in [21] that in this
case, Aδε is Fredholm of index zero when κε ̸= −1. Therefore when κε ̸= −1, the operator
Aδε is an isomorphism if and only if it is injective. As it has been observed in different works
(see in particular [31]), and as we recall below, the question of the injectivity of Aδε is directly
linked to the spectrum of the so-called Neumann-Poincaré operator. The latter has been widely
studied when Ω is the whole space Rd. For this problem, among the references, let us cite
[128, 4, 129, 130, 99, 84, 83, 126, 33, 34, 82]. Below, we use a symmetrization argument similar
to the one used in [99]. We work with Dirichlet-to-Neumann maps following the approach of [82].

Spectrum of the Neumann-Poincaré operator

Set Σδ := ∂Ωδ
i and introduce the two Dirichlet-to-Neumann operators Λe : H1/2(Σδ) → H−1/2(Σδ),

Λi : H1/2(Σδ) → H−1/2(Σδ) such that for all φ ∈ H1/2(Σδ), we have Λeφ = ∂neue, Λiφ = ∂niui
where ue, ui solve respectively the problems

∆ue = 0 in Ωδ
e

ue = 0 on ∂Ω
ue = φ on Σδ

∆ui = 0 in Ωδ
i

ui = φ on Σδ. (7.54)

Define also the lifting operator R : H1/2(Σδ) → H1
0(Ω) such that Rφ = ue in Ωδ

e, Rφ = ui in Ωδ
i ,

where ue, ui are the solutions to (7.54).

If u belongs to kerAδε \ {0}, then φ := u|Σδ ∈ H1/2(Σδ) \ {0} satisfies Λeφ = −κεΛiφ. By a
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straightforward computation, we find that the pair (α,φ), with α := (κε + 1)/(κε − 1) ∈ (−1; 1),
is a solution to the generalized eigenvalue problem

Find (α,φ) ∈ R × (H1/2(Σδ) \ {0}) such that:
Λ−φ = αΛ+φ

(7.55)

with Λ± := Λe ± Λi. Reciprocally, assume that (α,φ) is a solution to (7.55) with α ∈ (−1; 1).
Then, Rφ ∈ H1

0(Ω) is an element of kerAδε \ {0} for κε = (α+ 1)/(α− 1) ∈ (−∞; 0). This shows
that it is sufficient to determine the eigenvalues of problem (7.55) to study the injectivity of Aδε.
Note that the spectrum of (7.55) coincides with the spectrum of the so called Neumann-Poincaré
operator studied for example in [99].

Theorem 7.3.2. The spectrum of the generalized eigenvalue problem (7.55) is discrete and co-
incides with two sequences of real numbers

−1 < α−
1 ⩽ α−

2 ⩽ · · · ⩽ 0 and 1 = α+
1 = · · · = α+

card(Kδ) > α+
card(Kδ)+1 ⩾ · · · ⩾ 0

such that lim
n→+∞

α±
n = 0. Here card(Kδ) is the cardinal of the set Kδ defined after (7.3).

Proof. First, we show that Λ+ : H1/2(Σδ) → H−1/2(Σδ) is an isomorphism. Consider some
ψ ∈ H−1/2(Σδ). If φ ∈ H1/2(Σδ) verifies Λ+φ = ψ, then Rφ is a solution to

Find u ∈ H1
0(Ω) such that

(∇u,∇v) = ⟨ψ, v⟩Σδ , ∀v ∈ H1
0(Ω).

(7.56)

Reciprocally, assume that u is a solution to (7.56). Then the function φ := u|Σδ satisfies
Λ+φ = ψ. According to the Lax-Milgram theorem, Problem (7.56) admits a unique solution
for all ψ ∈ H−1/2(Σδ). We infer that Λ+ : H1/2(Σδ) → H−1/2(Σδ) is indeed an isomorphism.

Now, remarking that Λe, Λi have the same principal symbol and using standard arguments
of pseudo-differential operators theory (work as in the proof of [83, Theorem 1]), we can show
that Λ− = Λe − Λi : H1/2(Σδ) → H−1/2(Σδ) is compact. We emphasize that the assumption of
smoothness of Σδ here is important.

Using the Riesz representation theorem, define the operator K : H1/2(Σδ) → H1/2(Σδ) such
that

(Kφ,φ′)Σδ = ⟨Λ−φ,φ
′⟩Σδ for all φ,φ′ ∈ H1/2(Σδ). (7.57)

Here, we use the notation (·, ·)Σδ := ⟨Λ+·, ·⟩Σδ . Note that according to the features of Λ+, the
latter form is an inner product in H1/2(Σδ) equivalent to the usual one. Remark that (α,φ) is
an eigenpair for (7.55) if and only if we have Kφ = αφ. But due to the properties of Λ−, K is a
selfadjoint and compact operator. Therefore, the spectrum of (7.55) coincides with a sequence of
eigenvalues which accumulate at zero. We can use the min-max principle (see [140, Chapter 3])
to characterize these eigenvalues. We have

α+
1 = sup

φ∈H1/2(Σδ)\{0}

⟨Λ−φ,φ⟩Σδ

⟨Λ+φ,φ⟩Σδ
. (7.58)

By the min-max principle, we know that this sup is attained for some φ+
1 . By induction, for

k ⩾ 2, we define

α+
k = sup

φ ∈ H1/2(Σδ) \ {0},
φ ⊥ {φ+

1 , . . . , φ
+
k−1}

⟨Λ−φ,φ⟩Σδ

⟨Λ+φ,φ⟩Σδ
. (7.59)
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Here, if φ, φ′ are two elements of H1/2(Σδ), we write φ ⊥ φ′ when (φ,φ′)Σδ = ⟨Λ+φ,φ
′⟩Σδ =

(∇(Rφ),∇(Rφ′)) = 0. Similarly, we define

α−
1 = inf

φ∈H1/2(Σδ)\{0}

⟨Λ−φ,φ⟩Σδ

⟨Λ+φ,φ⟩Σδ
, (7.60)

and, by induction, for k ⩾ 2,

α−
k = inf

φ ∈ H1/2(Σδ) \ {0},
φ ⊥ {φ−

1 , . . . , φ
−
k−1}

⟨Λ−φ,φ⟩Σδ

⟨Λ+φ,φ⟩Σδ
. (7.61)

Observing that for all φ ∈ H1/2(Σδ) \ {0} we have

⟨Λ−φ,φ⟩Σδ

⟨Λ+φ,φ⟩Σδ
= 1 − a

1 + a
, with a = ⟨Λiφ,φ⟩Σδ/⟨Λeφ,φ⟩Σδ ≥ 0,

we deduce that there holds α±
k ∈ [−1; 1] for all k ∈ N∗ := {1, 2, . . . }. Taking φ = φkD|Σδ with φkD

defined in (7.11), we find a = 0 and so ⟨Λ−φ,φ⟩Σδ/⟨Λ+φ,φ⟩Σδ = 1. This allows one to prove that
α+

1 = · · · = α+
card(Kδ) = 1. Now, if α+

card(Kδ)+1 = 1, then there is φ ∈ H1/2(Σδ) \ {0} such that
⟨Λiφ,φ⟩Σδ = 0 and Rφ ∈ Ĥδ

D \ {0}. This is impossible and therefore there holds α+
card(Kδ)+1 < 1.

Similarly, if α−
1 = −1, then there exists φ ∈ H1/2(Σδ) \ {0} such that ⟨Λeφ,φ⟩Σδ = 0. This can

not happen, which implies that α−
1 > −1. ■

Optimality of the invertibility conditions

From the discussion preceding the statement of Theorem 7.3.2, we deduce the following result.

Theorem 7.3.3. For κε ∈ (−∞; 0) \ {−1}, the operator Aδε : H1
0(Ω) → H1

0(Ω) is an isomorphism
if and only if

κε /∈
{
α−
k + 1
α−
k − 1

, k ⩾ 1
}

∪
{
α+
k + 1
α+
k − 1

, k ⩾ card(Kδ) + 1
}
,

where the α±
k are defined in (7.59)–(7.61).

Observing that the map α 7→ (α + 1)/(α − 1) is decreasing on (−1; 1), we deduce in particular
from Theorem 7.3.3 that Aδε is an isomorphism for

κε ∈
(

− ∞;
α+

card(Kδ)+1 + 1
α+

card(Kδ)+1 − 1

)
∪
(
α−

1 + 1
α−

1 − 1
; 0
)
. (7.62)

But one can verify that we have

α+
card(Kδ)+1 + 1
α+

card(Kδ)+1 − 1
= −1/mδ

D and
α−

1 + 1
α−

1 − 1
= −1/M δ

D

where mδ
D, M δ

D are the constants defined in (7.14). As a consequence, the invertibility condition
for Aδε obtained in Proposition 7.3.1 is the same as (7.62). This shows that the result of Proposition
7.3.1 is optimal in a certain sense. This is the first remark of this section.
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Comparison with existing literature

In previous articles (see in particular [27] and [43]), authors have worked with the operator
T : H1

0(Ω) → H1
0(Ω) such that

Tφ = φ in Ωδ
e

−φ+ 2Pφ in Ωδ
i

(7.63)

where, setting H1
0,∂Ω(Ωδ

e) := {φ|Ωδe , φ ∈ H1
0(Ω)}, P : H1

0,∂Ω(Ωδ
e) → H1(Ωδ

i ) denotes the harmonic
extension operator, i.e. the operator such that Pφ solves the problem

∆(Pφ) = 0 in Ωδ
i

Pφ = φ on ∂Ωδ
i .

(7.64)

We have T ◦ T = Id which shows that T is an isomorphism of H1
0(Ω). On the other hand, for all

φ ∈ H1
0(Ω), we find

(∇(Aδε(Tφ)),∇φ) = εe∥∇φ∥2
Ωδe

+ |εi|∥∇φ∥2
Ωδi

+ 2εi(∇(Pφ),∇φ)Ωδi
. (7.65)

Set

M̃ δ
D := sup

φ∈H1
0,∂Ω(Ωδe)\{0}

∥∇(Pφ)∥2
Ωδi

∥∇φ∥2
Ωδe

. (7.66)

Using Young’s inequality, from (7.65) we infer that for all τ > 0, there holds

|(∇(Aδε(Tφ)),∇φ)| ⩾ (εe − τ−1|εi|M̃ δ
D)∥∇φ∥2

Ωδe
+ |εi|(1 − τ)∥∇φ∥2

Ωδi
. (7.67)

As a consequence, we deduce that when εe > |εi|M̃ δ
D ⇔ κε = εi/εe > −1/M̃ δ

D, the operator Aδε
is an isomorphism of H1

0(Ω). Let us compare this operator T introduced in (7.63) with the T+
D

defined in (7.22). Clearly in Ωδ
e, we have Tφ = T+

Dφ. In Ωδ
i , for φ = φ̂h + Φh + φ̃ with φ̂h ∈ Ĥδ

D,
Φh ∈ spank∈Kδ{φkD} and φ̃ ∈ H1

0(Ωδ
e ∪ Ωδ

i ), we have

T+
Dφ = φ̂h + Φh − φ̃.

But one observes that

Pφ = P (φ̂h + Φh + φ̃) = P (φ̂h + Φh) = φ̂h + Φh.

Therefore, we have −φ + 2Pφ = φ̂h + Φh − φ̃ = T+
Dφ in Ωδ

i which shows that the operator T
defined in (7.63) coincides with T+

D. Moreover, using Lemma 7.3.2, it is an exercise to prove that
M̃ δ
D is equal to the constant M δ

D defined in (7.14). Therefore, the simple operator T in (7.63) is
already very efficient. This is the second remark of this section.

T-coercivity operator in the general case

Finally, we explain how to construct an operator of T-coercivity for contrasts κε as in the statement
of Theorem 7.3.3, in particular for contrasts in (−1/mδ

D; −1/M δ
D) \ {−1}, this case being not

covered by Proposition 7.3.1. First, we reindex the eigenvalues {α−
n }n≥1, {α+

n }n⩾card(Kδ)+1 and
denote them {αn}n≥1. Let (φn) be a family of eigenfunctions of the operator K introduced in
(7.57) associated with the eigenvalues αn. We choose them so that the functions Rφn, n ⩾ 1,
form an orthonormal basis of Ĥδ

D. Now we define the operator TD : H1
0(Ω) → H1

0(Ω) such that
for φ = φ̂h + Φh + φ̃ with φ̂h =

∑
n∈N∗

γnRφn ∈ Ĥδ
D, Φh ∈ spank∈Kδ{φkD} and φ̃ ∈ H1

0(Ωδ
e ∪ Ωδ

i ),

there holds

TDφ =

∑
n∈N∗

tnγnRφn + Φh + φ̃ in Ωδ
e∑

n∈N∗
tnγnRφn + Φh − φ̃ in Ωδ

i .
(7.68)



Chapter 7. Homogenization of Maxwell’s equations and related scalar problems
with sign-changing coefficients 200

Here we take tn = 1 for n such that κε > κn := (αn + 1)/(αn − 1) and tn = −1 otherwise.
The operator TD is valued in H1

0(Ω) and we have TD ◦ TD = Id which guarantees that TD is an
isomorphism of H1

0(Ω).

Proposition 7.3.4. Assume that κε ̸= −1 is such that for all n ∈ N∗, we have κε ̸= κn with

κn =
αn + 1
αn − 1. (7.69)

Let TD : H1
0(Ω) → H1

0(Ω) denote the isomorphism defined in (7.68). Then (∇(Aδε(TD·)),∇·) is
coercive in H1

0(Ω). As a consequence, Aδε : H1
0(Ω) → H1

0(Ω) is an isomorphism.

Proof. For all φ ∈ H1
0(Ω), we find

(ε∇φ,∇(TDφ)) =
∑
n∈N∗

tn |γn|2(ε∇(Rφn),∇(Rφn)) + (εe∇Φh,∇Φh)Ωδe + (|ε|∇φ̃,∇φ̃). (7.70)

But by the definition of the κn, we have, for all n ∈ N∗,

(∇(Rφn),∇(Rφn))Ωδe = −κn(∇(Rφn),∇(Rφn))Ωδi
.

This allows us to write∑
n∈N∗

tn |γn|2(ε∇(Rφn),∇(Rφn)) = εe
∑
n∈N∗

tn |γn|2(κε − κn)(∇(Rφn),∇(Rφn))Ωδi

= εe
∑
n∈N∗

|γn|2|κε − κn|(∇(Rφn),∇(Rφn))Ωδi
.

(7.71)

Observing that we have ∥∇(Rφn)∥2
Ωδi

⩾ inf
m∈N∗

|κm|−1∥∇(Rφn)∥2
Ωδe

(note that the sequence (|κm|)
is bounded), from (7.71) we obtain∑

n∈N∗
tn |γn|2(ε∇(Rφn),∇(Rφn)) ⩾ C inf

n∈N∗
|κε − κn|

∑
n∈N∗

|γn|2∥∇(Rφn)∥2. (7.72)

Using (7.72) into (7.70), we get (ε∇φ,∇(TDφ)) ⩾ C inf
n∈N∗

|κε − κn| ∥∇φ∥2 for all φ ∈ H1
0(Ω). ■

Remark 7.3.4. In the following, we will not work with the operator TD defined in (7.68) to
investigate what happens for contrasts in (−1/m; −1/M) \ {−1}. The reason is that the value of
the κn defined in (7.69) depends on δ and the operator TD is useful to prove a result of uniform
invertibility of Aδε only if we know that there is a segment of (−1/m; −1/M) \ {−1} of non empty
interior which is uniformly free of the κn as δ tends to zero. It is an open question to find
conditions on the geometry such that this occurs.

7.4 Analysis of the cell problem and properties of the homoge-
nized tensors

In this section, we study a scalar problem set in the reference cell (supplemented with periodic
boundary conditions) and the associated homogenized tensor. These quantities, which appear in
the homogenization of Maxwell’s equations considered in Section 7.5, are the same as the ones in
[43] and [31], so that the results below complement and improve those obtained therein.
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7.4.1 Cell problem

Denote by C ∞
per(Y ) the subset of functions of C ∞(Y ) satisfying periodic boundary conditions on

∂Y . Let H1
per(Y ) be the closure of C ∞

per(Y ) for the norm of H1(Y ). Then set

H1
per,⋄(Y ) := {φ ∈ H1

per(Y ) |
ˆ
∂Yi

φdσ = 0}.

We endow this space with the inner product (∇·,∇·)Y . For η equal to ε or µ as defined in (7.2),
the problem we are interested in writes

Find φ ∈ H1
per,⋄(Y ) such that:

(η∇φ,∇φ′)Y = ℓ(φ′), ∀φ′ ∈ H1
per,⋄(Y ),

(7.73)

where ℓ is a continuous linear functional on H1
per,⋄(Y ). In order to study this problem, we introduce

the closed subspace of H1
per,⋄(Y )

H1
per, 0, ∂Yi(Y ) := {φ ∈ H1

per,⋄(Y ) |φ = 0 on ∂Yi}.

Then we define the space Ĥ♭ such that

H1
per,⋄(Y ) = Ĥ♭

⊥
⊕ H1

per, 0, ∂Yi(Y ). (7.74)

We will not look for an exact characterization of Ĥ♭. Let us simply remark that if φ ∈ Ĥ♭, then
for all ζ ∈ C ∞

0 (Ye ∪ Yi) ⊂ H1
per, 0, ∂Yi(Y ), we have 0 = (∇φ,∇ζ)Y . This implies that the elements

of Ĥ♭ are harmonic in Ye ∪ Yi. Then we introduce the constants

m♭ := inf
φ∈Ĥ♭\{0}

∥∇φ∥2
Yi

∥∇φ∥2
Ye

, M♭ := sup
φ∈Ĥ♭\{0}

∥∇φ∥2
Yi

∥∇φ∥2
Ye

. (7.75)

Theorem 7.4.1. Assume that κε (resp. κµ) ∈ (−∞; −1/m)∪(−1/M ; 0) where m, M are defined
in (7.45). Then the problem (7.73) with η = ε (resp. η = µ) admits a unique solution which
depends continuously on ℓ.

Proof. To set ideas, we take η = ε, the proof is the same for η = µ. With the Riesz representation
theorem, define the operator Dε : H1

per,⋄(Y ) → H1
per,⋄(Y ) such that

(∇(Dεφ),∇φ′)Y = (ε∇φ,∇φ′)Y , ∀φ,φ′ ∈ H1
per,⋄(Y ). (7.76)

Let us show that Dε is an isomorphism when κε = εi/εe ∈ (−∞; −1/m) ∪ (−1/M ; 0). For
φ ∈ H1

per,⋄(Y ), consider the decomposition φ = φh + φ̃ with φh ∈ Ĥ♭ and φ̃ ∈ H1
per, 0, ∂Yi(Y ).

With this decomposition, we define the operators T±
♭ such that

T±
♭ φ = ±φh + φ̃ in Ye

±φh − φ̃ in Yi.

Working as in the proof of Proposition 7.3.1 with the operators T± replaced by T±
♭ , one establishes

that Dε is an isomorphism when κε ∈ (−∞; −1/m♭) ∪ (−1/M♭; 0). To obtain the desired result,
it remains to show that m ⩽ m♭ and M♭ ⩽ M . Since Ĥ♭ ⊂ H⋄, from Lemma 7.3.6, we clearly
have M♭ ⩽ M . Now let φ be an element of Ĥ♭ \ {0}. Denote ζ ∈ H0 the function such that
ζ = φ on ∂Yi. The function ζ decomposes as ζ = ζ̂ + αφD with ζ̂ ∈ Ĥ0 and α ∈ R (φD is
defined before (7.44)). Note that ζ̂ ̸≡ 0 otherwise we would have α = 0 (because φD = 1 on
∂Yi and

ˆ
∂Yi

ζ dσ = 0) and so ζ ≡ 0. Observing that φ − ζ̂ − α is in H1
per, 0, ∂Yi(Y ), due to the

decomposition (7.74), we can write

(∇φ,∇(φ− ζ̂))Y = (∇φ,∇(φ− ζ̂ − α))Y = 0. (7.77)
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But on the other hand, since we have ∇φ = ∇ζ̂ = ∇ζ in Yi, so that in particular there holds

∥∇φ∥2
Yi = ∥∇ζ̂∥2

Yi , (7.78)

we infer from (7.77) that
(∇φ,∇(φ− ζ̂))Ye = 0. (7.79)

This implies
∥∇φ∥2

Ye ⩽ ∥∇ζ̂∥2
Ye . (7.80)

Gathering (7.78) and (7.80), we deduce that

m ⩽
∥∇ζ̂∥2

Yi

∥∇ζ̂∥2
Ye

⩽
∥∇φ∥2

Yi

∥∇φ∥2
Ye

. (7.81)

Taking the infimum over all φ ∈ Ĥ♭ \ {0} in (7.81), we obtain that m ⩽ m♭. ■

7.4.2 Homogenized tensors

Assume that the contrasts κε and κµ are located in (−∞; −1/m) ∪ (−1/M ; 0). For η = ε or µ
and j = 1, 2, 3, we define the function χηj ∈ H1

per,⋄(Y ) such that

(η∇χηj ,∇ξ)Y = (η∇yj ,∇ξ)Y , ∀ξ ∈ H1
per,⋄(Y ). (7.82)

Note that the right hand side of (7.82) simply writes

(η∇yj ,∇ξ)Y =
ˆ
Y
η
∂ξ

∂yj
dy

and that Theorem 7.4.1 ensures that the functions χηj are well-defined. It is also worth noticing
that by setting χη := (χη1, χ

η
2, χ

η
3)T, we have for all λ ∈ R3:

(η∇(λ · χη),∇ξ)Y = (η∇(λ · y),∇ξ)Y =
ˆ
Y
ηλ · ∇ξ dy, ∀ξ ∈ H1

per,⋄(Y ). (7.83)

Denoting by ∇χη the jacobian matrix of χη:

∇χη =
(
∂χηj
∂yk

)
1⩽j,k⩽3

,

the homogenized tensor associated with η is classically defined as the 3 × 3 symmetric matrix
H (η) = (Hjk(η))1⩽j,k≤3 given by (see, for instance, identity (6.35) in [59])

H (η) =
1

|Y |

ˆ
Y
η(y)

[
Id − (∇χη)T

]
dy, (7.84)

or equivalently (see (6.37) in [59]):

Hjk(η) =
1

|Y |

ˆ
Y
η∇(yj − χηj ) · ∇(yk − χηk) dy. (7.85)

Proposition 7.4.1. Assume that κε (resp. κµ) ∈ (−∞; −1/m) ∪ (−1/M ; 0) where m, M are
defined in (7.45). Then the matrix H (ε) (resp. H (µ)) is positive definite.
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Proof. The proofs for H (ε) and H (µ) are the same and to set ideas, we choose to work with
ε. According to formula (6.44) in [59], for all ξ = (ξ1, ξ2, ξ3)⊤ ∈ R3, we have

H (ε) ξ · ξ =
ˆ
Y
ε|∇φξ|2 dy

where the function φξ is defined by

φξ(y) =
3∑
j=1

ξj(yj − χεj(y)).

Note that if φξ is constant in Y , then evaluating φξ on ∂Y and using the fact that the functions
χεj satisfy periodic boundary conditions, we find that ξ = 0 and so φξ ≡ 0. Now, we assume that
ξ ̸= 0. Subtracting the mean value of the test functions on ∂Yi, we see from (7.82) that χεj satisfy
the slightly more general variational equality (the variational space is not the same as in (7.82))

(ε∇χεj ,∇φ′)Y = (ε∇yj ,∇φ′)Y , ∀φ′ ∈ H1
per(Y ).

Taking φ′ ∈ C ∞
0 (Y ), this implies that we have

div(ε∇φξ) = 0 in Y. (7.86)

i) Introduce the function φ̂ξ such that

φ̂ξ = φξ −
1

|∂Yi|

ˆ
∂Yi

φξ dσ ∈ H1
⋄(Y ).

From (7.86), we deduce that φ̂ξ is harmonic in Ye ∪ Yi. Therefore, we have φ̂ξ ∈ H⋄ and from
Lemma 7.3.6, we can write

∥∇φξ∥2
Yi = ∥∇φ̂ξ∥2

Yi ⩽M ∥∇φ̂ξ∥2
Ye = M ∥∇φξ∥2

Ye .

This allows us to write

H (ε) ξ · ξ = εe∥∇φξ∥2
Ye − |εi| ∥∇φξ∥2

Yi ⩾ (εe − |εi|M)∥∇φξ∥2
Ye .

Hence, for εe > |εi|M ⇔ κε = εi/εe > −1/M , the matrix H (ε) is definite-positive. Note that
we have ∇φξ ̸= 0 in Ye otherwise we would have ∇φξ = 0 in Y (because φξ ∈ H1(Y ) is harmonic
in Ye) which is impossible when ξ ̸= 0 (see the discussion above).

ii) Now, we consider the case κε ∈ (−∞; −1/m). The proof is a bit less straightforward and
we divide it into two steps. Define the quadratic form qε(·) : R3 → R such that

qε(ξ) = H (ε) ξ · ξ.

Step 1. First, we prove the following result.

Lemma 7.4.1. Assume that κε ∈ (−∞; −1/m). Then the form qε is definite ( qε(ξ) = 0 ⇒ ξ =
0).

Proof. A bit more generally (this will serve in the proof of Lemma 7.4.2 below), assume that
ξ ∈ R3 \ {0} is such that

qε(ξ) ⩽ 0 ⇔
ˆ
Y
ε|∇φξ|2 dy ⩽ 0.
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Then from identity (7.86), we infer that we must have
ˆ
∂Y
εe
∂φξ

∂n
φξ dσ ⩽ 0. (7.87)

Now, introduce ζ ∈ H0 the function such that ζ = φξ on ∂Yi. The function ζ decomposes
as ζ = ζ̂ + αφD with ζ̂ ∈ Ĥ0 and α ∈ R (φD is defined before (7.44)). Observe that we
have ζ̂ ̸≡ 0. Indeed, otherwise φξ would be constant in Yi. And then (7.86) together with the
unique continuation principle would imply that φξ be constant in Ye (because we would have that
∆φξ = 0 in Ye, φξ = cste on ∂Yi and ∂neφξe = 0 on ∂Yi) and so in Y . According to the discussion
above, this is impossible when ξ ̸= 0. Observing that φξ − (ζ̂ + α) = 0 on ∂Yi, integrating by
parts, we can write

(∇φξ,∇(φξ − ζ̂))Ye = (∇φξ,∇(φξ − (ζ̂ + α)))Ye =
ˆ
∂Y

∂φξ

∂n
φξ dσ −

ˆ
∂Y

∂φξ

∂n
α dσ

=
ˆ
∂Y

∂φξ

∂n
φξ dσ ⩽ 0.

(7.88)

The last equality above has been obtained using (7.87) and identity (7.86) multiplied by α. From
(7.88) and the Cauchy-Schwarz inequality, we infer that

∥∇φξ∥2
Ye ⩽ ∥∇ζ̂∥2

Ye .

Since on the other hand there holds ∇φξ = ∇ζ̂ in Yi so that ∥∇φξ∥2
Yi = ∥∇ζ̂∥2

Yi , we deduce that

m ⩽
∥∇ζ̂∥2

Yi

∥∇ζ̂∥2
Ye

⩽
∥∇φξ∥2

Yi

∥∇φξ∥2
Ye

. (7.89)

But then, when κε = εi/εe < −m−1 ⇔ εe < |εi|m, we can write

qε(ξ) = H (ε) ξ · ξ =
ˆ
Y
ε∇|φξ|2 dy = εe∥∇φξ∥2

Ye − |εi| ∥∇φξ∥2
Yi ⩽ (εe − |εi|m)∥∇φξ∥2

Ye < 0.

In particular we obtain a contradiction if ξ ̸= 0 is such that qε(ξ) = 0. This proves that qε is
definite. ■

From classical results concerning quadratic forms, we deduce from Lemma 7.4.1 that for each
κε ∈ (−∞; −1/m), qε(·) is either positive definite or negative definite.

Step 2. Now consider some ξ ∈ R3 \ {0}. Corollary 5.6 of [31] or Lemma 7.4.2 below guarantee
that qε(ξ) is positive for κϵ tending to −∞. Using the fact that κε 7→ qε(ξ) is continuous and
that qε(·) is always definite for κε ∈ (−∞; −1/m), we infer that qε(·) is positive definite for all
κε ∈ (−∞; −1/m). This achieves the proof of Proposition 7.4.1. ■

Below, for the sake of completeness, we present an alternative proof to Corollary 5.6 of [31] which
is a bit more direct.

Lemma 7.4.2. For any given ξ ∈ R3 \ {0}, we have qε(ξ) > 0 for κϵ tending to −∞.

Proof. Impose that κε ∈ (−∞; −1/m) and for ξ ∈ R3 \ {0}, assume that we have qε(ξ) < 0.
Define the function

φ̌ξ = φξ −
1

|∂Y |

ˆ
∂Y
φξ dσ.
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From (7.86), we can write

|εi| ∥∇φξ∥2
Yi = |εi| ∥∇φ̌ξ∥2

Yi = εe∥∇φ̌ξ∥2
Ye −

ˆ
∂Y
εe
∂φ̌ξ

∂n
φ̌ξ dσ

⩽ C εe ∥∇φ̌ξ∥2
Ye = C εe ∥∇φξ∥2

Ye .

(7.90)

The last inequality in (7.90) is a consequence of the continuity of the mappings φ 7→ φ|∂Y and
φ 7→ ∂nφ|∂Y from {φ ∈ H1(Ye) | ∆φ = 0 in Ye} to H1/2(∂Y ) and H−1/2(∂Y ) respectively. Note
that since the mean of φ̌ξ over ∂Y is null, a classical Poincaré type inequality allows one to prove
that the H1 norm of φ̌ξ in Ye is controlled by ∥∇φ̌ξ∥Ye . From (7.90), we get

∥∇φξ∥2
Yi

∥∇φξ∥2
Ye

⩽
C

|κε|
(7.91)

where C > 0 is independent of κε. Taking the limit κε → −∞ in (7.91), we obtain a contradiction
with (7.89) (here we use that qε(ξ) < 0) because m > 0 is independent of κε. Therefore we must
have qε(ξ) > 0 for contrasts tending to −∞. ■

7.4.3 Numerical illustrations

Proposition 7.4.1 guarantees that if κε, κµ ∈ (−∞; −1/m) ∪ (−1/M ; 0), the matrices H (ε),
H (µ) are positive definite. This may seem a bit surprising and when one looks at the definition
in (7.85), this is far from being obvious. The goal of this paragraph is to present some numerics
to illustrate this property. To set ideas we compute H (ε) and to simplify we work in 2D. In this
case, H (ε) is a 2 × 2 symmetric matrix. We do not expect particular differences between 2D
and 3D settings. Numerically, we approximate the solutions of the problems (7.82) using a P2
finite element method. To proceed, we use the library FreeFem++1 to compute the matrix H (ε)
using formula (7.85). The mesh size is chosen equal to 0.02. Admittedly the numerical analysis of
problems (7.82) is not standard because of the sign-changing ε. However in general, at least for
contrasts κε “not too close” to −1 when ∂Yi is smooth, we obtain a reasonable numerical solution.
We refer the reader to [120, 53, 18] for more details concerning these aspects. In Figures 7.2 and
7.3 below, we display the two real eigenvalues of H (ε) with respect to the contrast κε ∈ (−10; 0)
(we take εi = −1 and εe varies) for two different geometries of Yi. For the numerics of Figure
7.2, the inclusion Yi is an ellipse while for Figure 7.3, it is a rectangle. We emphasize that in
the latter case, problem (7.82) is not well-posed in the Fredholm sense for κε ∈ (−3,−1/3) (see
[26, 17]). As a consequence, for this range of contrasts, our numerical solutions have no sense.
But for both settings, we observe that for contrasts large enough or small enough, the matrix
H (ε) is positive definite as expected. Interestingly, at least in the case of the ellipse where we
know that the numerical solution is meaningful except for κε ̸= −1, we also note that H (ε) is
not positive definite for all contrasts. We emphasize however that we do not investigate these
regimes in our analysis below.

1FreeFem++, http://www.freefem.org/ff++/.

http://www.freefem.org/ff++/
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Figure 7.2: Representation of the two eigenvalues of H (ε) with respect to κε varying in (−10; −1)
(left) and (−1; 0) (right). Here the inclusion Yi coincides with the interior of the ellipse {(x =
0.5 + 0.4 cos θ, y = 0.5 + 0.2 cos θ), θ ∈ [0; 2π)}.
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Figure 7.3: Representation of the two eigenvalues of H (ε) with respect to κε varying in (−10; −1)
(left) and (−1; 0) (right). Here the inclusion Yi coincides with the rectangle (0.1; 0.9) × (0.3; 0.7).

7.5 Homogenization of Maxwell’s equations

We come back to Maxwell’s problem (Pδ) for the electric field (see (7.9)). We define the bilinear
form aδω(·, ·) associated with (7.9) such that

aδω(E,E′) = ((µδ)−1curlE, curlE′) − ω2(εδE,E′), ∀E,E′ ∈ HN (curl; Ω).

Let m, M be the constants defined in (7.45). When κε, κµ ∈ (−∞; −1/m) ∪ (−1/M ; 0), the
matrices H (ε) and H (µ) are well-defined according to Theorem 7.4.1. Moreover, according to
Proposition 7.4.1, these matrices are positive definite. Hence, we can introduce the homogenized
problem

(Peff) Find Eeff ∈ HN (curl; Ω) such that
curl (H (µ)−1curlEeff) − ω2H (ε)Eeff = iωJ

(7.92)

whose variational formulation writes

Find Eeff ∈ HN (curl; Ω) such that for all E′ ∈ HN (curl; Ω)
aeff
ω (Eeff ,E′) = iω (J ,E′).

(7.93)

Here aeff
ω (·, ·) is the bilinear form defined on the space HN (curl; Ω) such that

aeff
ω (E,E′) = (H (µ)−1curlE, curlE′) − ω2(H (ε)E,E′).
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It is worth noticing that the above homogenized problem (which has exactly the same form as
the one obtained for classical (positive) Maxwell’s equations) involves the homogenized tensors
of the scalar problems studied in the previous sections. This fact will be used in a crucial way in
the sequel to prove our homogenization result for Maxwell’s system. Classically, one can easily
prove that (Peff) admits a unique solution for all

ω2 ∈ C \ Λeff (7.94)

where Λeff is a discrete subset of [0; +∞).

The proof of a homogenization result for Maxwell’s equations without sign-changing coefficients
is by now quite classical (see for instance [14, 143, 136, 58]). It may be achieved by using, for
instance, a notion of convergence specific to the periodic homogenization, namely the two-scale
convergence, which was introduced by G. Nguetseng in [116] and further developed by G. Allaire
[5]. Using this notion, a typical proof for such a homogenization result relies on three main ingre-
dients. First, a uniform energy estimate is obtained for the sequence of solutions of (Pδ). Next,
one shows that this uniformly bounded sequence has a (two-scale) limit that solves a two-scale
limit problem. Finally, this limit problem is decoupled, yielding the homogenized problem which
is proved to be well-posed. Due to the sign-changing coefficients and the presence of the non sign-
definite L2 term involving ω2, proving the first ingredient is far from being obvious. In particular,
the strategy proposed for instance in [58] does not apply anymore (as the spectral decomposition
available in the strongly elliptic case fails). Instead, we proceed as follows. First, we prove a
homogenization result for solutions of (Pδ) under a uniform energy estimate condition. Using
this result, we prove by contradiction the needed uniform energy estimate for the solutions (Pδ).
This leads to the main result of the paper (Theorem 7.5.1), namely the homogenization result for
sign-changing Maxwell’s equations.

7.5.1 Homogenization result under uniform energy estimate condition

Let J be a given field of L2(Ω). The aim of this section is to obtain a homogenization result for
a sequence of functions (Eδ) solving (Pδ) and satisfying the uniform energy estimate

∃C > 0, ∀δ ∈ (0; 1], ∥Eδ∥2 + ∥curlEδ∥2 ⩽ C ∥J∥2. (7.95)

As it was already observed in [43] in the analysis of the homogenization process for the Dirichlet
scalar operator Aδε, the presence of sign-changing coefficients does not affect the two-scale con-
vergence result. However, for the sake of completeness, we give here a proof of this convergence
result following [14, 143, 136] and in particular [58]. We start by recalling the definition of the
two-scale convergence (see [5]). Here we set CCC ∞

per(Y ) := (C ∞
per(Y ))3.

Definition 7.5.1. A sequence (Eδ) in L2(Ω) two-scale converges to E0 ∈ L2(Ω × Y ) if we have

lim
δ→0

(Eδ,v(·, ·/δ) ) =
ˆ

Ω
(E0(x, ·),v(x, ·))Y dx

for all v ∈ C ∞
0 (Ω;CCC ∞

per(Y )). Then we denote Eδ 2s−→ E0.

The notion of two-scale convergence is interesting due to the following compactness result (see
for instance [136, Proposition 2.5]). It was first obtained by N. Wellander in [141] and then by
V. Tiep Chu and V.H. Hoang in [136]. Here, Hper(curl ;Y ) denotes the closure of CCC ∞

per(Y ) for
the norm (∥ · ∥2

Y + ∥curl · ∥2
Y )1/2.

Proposition 7.5.1. Let (Eδ) be a bounded sequence in H(curl; Ω). Then, there exist a sub-
sequence, still denoted (Eδ), and functions Eeff ∈ H(curl; Ω), Θ ∈ L2(Ω; H1

per(Y )), E1 ∈
L2(Ω; Hper(curl, Y )) such that the following two-scale convergence results hold as δ → 0:

Eδ 2s−→ Eeff + ∇yΘ, curlEδ 2s−→ curlEeff + curlyE1.
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Moreover, we also have the following weak convergence results in L2(Ω):

Eδ ⇀ Eeff in L2(Ω), curlEδ ⇀ curlEeff in L2(Ω).

We are now in position to prove the main result of this section, namely the convergence of a
sequence of solutions of problem (Pδ) satisfying the energy estimate (7.95) to a solution of
(Peff) when δ → 0.

Proposition 7.5.2. Assume that κε, κµ ∈ (−∞; −1/m) ∪ (−1/M ; 0) where m, M are defined in
(7.45). Let (Eδ) be a sequence of solutions of (Pδ) satisfying the uniform estimate (7.95). Then
as δ → 0, we have

Eδ ⇀ Eeff and curlEδ ⇀ curlEeff in L2(Ω)

where Eeff solves the homogenized problem (Peff).

Proof. We take in (Pδ) (see (7.9)) a test function of the form

E′(x) = φ(x) + δφ1
(
x,
x

δ

)
+ δ∇

(
ψ

(
x,
x

δ

))
,

with φ ∈ CCC ∞
0 (Ω),φ1 ∈ CCC ∞

0 (Ω;CCC ∞
per(Y )), ψ ∈ C ∞

0 (Ω; C ∞
per(Y )). By taking the limit as δ → 0

thanks to Proposition 7.5.1, we get as in [136, Proposition 2.5] the following two-scale limit
problem:

ˆ

Ω×Y

(µ(y))−1
(
curlEeff(x) + curlyE1(x, y)

)
·
(
curlφ(x) + curly φ1(x, y)

)
dx dy

− ω2
ˆ

Ω×Y

ε(y)
(
Eeff(x) + ∇yΘ(x, y)

)
· (φ(x) + ∇yψ(x, y)) dx dy

= iω

ˆ

Ω

J ·φ dx+ iω

ˆ

Ω×Y

J(x) · ∇yψ(x, y) dx dy. (7.96)

Since ψ(x, ·) is Y−periodic, the second integral of the right hand side vanishes and hence, setting

R(x, y) := (µ(y))−1
(
curlEeff(x) + curlyE1(x, y)

)
(7.97)

and
S(x, y) := ε(y)

(
Eeff + ∇yΘ

)
, (7.98)

relation (7.96) reads
ˆ

Ω×Y

R(x, y) ·
(
curlφ(x) + curly φ1(x, y)

)
dx dy

− ω2
ˆ

Ω×Y

S(x, y) · (φ(x) + ∇yψ(x, y)) dx dy = iω

ˆ

Ω

J ·φ dx. (7.99)

In order to prove that Eeff solves the homogenized problem (Peff), it suffices to show that the
two terms of the left hand side in the above equation can also be written as follows:
ˆ

Ω×Y
R(x, y) ·

(
curlφ(x) + curly φ1(x, y)

)
dx dy =

ˆ
Ω

(H (µ))−1curlEeff · curlφ dx (7.100)

ˆ
Ω×Y

S(x, y) · (φ(x) + ∇yψ(x, y)) dx dy =
ˆ

Ω
H (ε)Eeff ·φ dx. (7.101)



209 7.5. Homogenization of Maxwell’s equations

Indeed, once these two last relations proved, the conclusion follows immediately since problem
(7.99) writes then

ˆ

Ω

(H (µ))−1curlEeff · curlφdx− ω2
ˆ

Ω

H (ε)Eeff ·φ dx = iω

ˆ
Ω
J ·φ dx,

which is exactly the weak formulation of the homogenized problem (Peff).
Step 1: proof of relation (7.100). Taking in (7.99) test functions φ = 0 and ψ = 0, we obtain that

ˆ

Ω×Y

R(x, y) · curly φ1(x, y) dx dy = 0, ∀φ1 ∈ CCC ∞
0 (Ω;CCC ∞

per(Y )). (7.102)

The above relation implies the existence of a function ρ ∈ L2(Ω; H1
per,⋄(Y )) such that (see for

instance the proof of Proposition 1.14 of [5], and more precisely the discussion following relation
(1.19) therein)

R(x, y) = ∇yρ(x, y) +
ˆ
Y
R(x, ŷ) dŷ. (7.103)

Now, we follow the ideas of [14] and [58]. From the definition (7.97) of R and direct calculation,
one has for ξ ∈ H1

per(Y ):
ˆ
Y
µ(y)R(x, y) · ∇ξ(y) dy =

ˆ
Y

(curlEeff(x) + curlyE1(x, y)) · ∇ξ(y) dy = 0. (7.104)

Combining (7.103) and (7.104) we get that
ˆ
Y
µ(y)∇yρ(x, y) · ∇ξ(y) dy =

ˆ
Y
µ(y)λ · ∇ξ(y) dy,

where we have set λ = −
ˆ
Y
R(x, y) dy ∈ R3 (here, x is fixed and can be considered as a

parameter). Comparing with (7.83), we immediately obtain that ρ = λ · χµ =
3∑
j=1

λj · χµj ,

where χµ = (χµ1 , χ
µ
2 , χ

µ
3 )T solve the cell problems (7.82) with η = µ. Consequently, we have

∇yρ =
3∑
j=1

λj · ∇χµj = (∇χµ)Tλ, and hence

R(x, y) = ∇yρ(x, y) +
ˆ
Y
R(x, ŷ) dŷ =

[
Id − (∇χµ)T

] ˆ
Y
R(x, ŷ) dŷ,

Using the above formula and expression (7.84) of H (µ), we get that
ˆ

Y

µ(y)R(x, y) dy = H (µ)
ˆ
Y
R(x, y) dy.

But on the other hand, we also have from definition (7.97) of R(x, y) that
ˆ
Y
µ(y)R(x, y) dy =

ˆ
Y

(curlEeff(x) + curlyE1(x, y)) dy = curlEeff(x).

Since H (µ) is positive definite for κµ ∈ (−∞; −1/m) ∪ (−1/M ; 0), we obtain by combining the
last two relations, that ˆ

Y
R(x, y) dy = (H (µ))−1curlEeff(x),
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which also reads (due to the definition of R)
ˆ

Y

(µ(y))−1(curlEeff(x) + curlyE1(x, y)) dy = (H (µ))−1curlEeff(x).

The claimed relation (7.100) simply follows by multiplying the above equation by curlφ, inte-
grating over Ω and adding (7.102).
Step 2: proof of relation (7.101). Taking φ = φ1 = 0 in (7.99), we obtain that (since ω ̸= 0):

ˆ
Ω×Y

S(x, y) · ∇yψ(x, y) dx dy = 0. (7.105)

Since ψ is arbitrary in C ∞
0 (Ω; C ∞

per(Y )), this implies in particular that for almost every x ∈ Ω
and for all ξ ∈ C ∞

per(Y ):
ˆ
Y
S(x, y) · ∇ξ(y) dy =

ˆ
Y
ε(y)(∇yΘ(x, y) +Eeff(x)) · ∇ξ(y) dx dy = 0. (7.106)

Hence ˆ
Y
ε(y)∇yΘ(x, y) · ∇ξ(y) dy =

ˆ
Y
ε(y)λ′ · ∇ξ(y) dy,

where we have set λ′ = −Eeff(x) ∈ R3 (for a fixed value of x). Comparing the above relation with
(7.83) for η = ε, we get that Θ(x, y) = λ′ · χε and hence ∇yΘ = (∇χε)Tλ′ = −(∇χε)TEeff(x).
Using expression (7.84) of the homogenized matrix, we obtain that for every φ ∈ CCC ∞

0 (Ω):
ˆ

Ω×Y
S(x, y) ·φ(x) dx dy =

ˆ
Ω×Y

ε(y)
(
Eeff(x) + ∇yΘ(x, y)

)
·φ(x) dx dy

=
ˆ

Ω

H (ε)Eeff ·φdx. (7.107)

Relation (7.101) follows immediately by adding (7.105) and (7.107). ■

7.5.2 Proof of the uniform energy estimate

This section is devoted to the proof of the uniform estimate (7.95) for solutions of (Pδ). More
precisely, we have the following proposition.

Proposition 7.5.3. Assume that κε, κµ ∈ (−∞; −1/m) ∪ (−1/M ; 0) where m, M are defined
in (7.45). Assume that ω2 ∈ C \ Λeff where Λeff appears in (7.94). Then, there exists δ0 > 0
such that for all δ ∈ (0; δ0], problem (Pδ) admits a unique solution Eδ. Moreover we have the
estimate

∥Eδ∥ + ∥curlEδ∥ ⩽ C ∥J∥ (7.108)

where C > 0 is independent of δ ∈ (0; δ0].

Proof. When κε, κµ ∈ (−∞; −1/m) ∪ (−1/M ; 0), according to Theorem 7.3.1, we know that
Aδε : H1

0(Ω) → H1
0(Ω) and Bδ

µ : H1
#(Ω) → H1

#(Ω) are isomorphisms. From the Theorem 6.1 of [23],
we infer that A δ

N (ω) : HN (curl; Ω) → HN (curl; Ω) is an isomorphism if it is injective. Therefore,
we have to prove that A δ

N (ω) is injective for δ small enough. To proceed we work by contradiction.
Slightly more generally, for a given J ∈ L2(Ω), assume that there is a sequence of values of δ
denoted (δk)k∈N, with δk → 0, such that if we set εk := εδk , µk := µδk , Ek := Eδk ∈ HN (curl; Ω),
we have

akω(Ek,E
′) := ((µk)−1curlEk, curlE′) − ω2 (εkEk,E

′) = iω
(
J ,E′) , ∀E′ ∈ HN (curl; Ω),
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as well as
∥Ek∥2 + ∥curlEk∥2 > k.

Then set Ẽk := Ek/(∥Ek∥2 + ∥curlEk∥2) and J̃k := J/(∥Ek∥2 + ∥curlEk∥2). We have

akω(Ẽk,E
′) = iω(J̃k,E′), ∀E′ ∈ HN (curl; Ω) (7.109)

and
∥Ẽk∥2 + ∥curl Ẽk∥2 = 1, lim

k→+∞
∥J̃k∥ = 0.

Since (Ẽk) is bounded in HN (curl; Ω), we can extract a subsequence, still denoted (Ẽk), such
that (Ẽk) converges weakly in HN (curl; Ω) to some E0 ∈ HN (curl; Ω). Thanks to Proposition
7.5.2, we can pass to the limit in (7.109) to get

aeff
ω (E0,E

′) = 0, ∀E′ ∈ HN (curl; Ω). (7.110)

Since ω2 ∈ C \ Λeff , this implies that E0 = 0. In order to obtain a contradiction, it remains
to show that (Ẽk) strongly converges to zero in HN (curl; Ω). To proceed, we have to establish
some sort of compactness result using the fact that when ω ̸= 0, we have div(εkẼk) = 0 in Ω
which implies that Ẽk ∈ VN (εk). For each k ≥ 1, from Theorem 5.1 of [23], we know that
when κε ∈ (−∞; −1/m) ∪ (−1/M ; 0), VN (εk) is compactly embedded in L2(Ω). But here we
need some uniform result with respect to k. To proceed, we will take in (7.109) a well-chosen test
function. Let us mention that a similar difficulty appears in the justification of the approximation
of Maxwell’s equations with finite elements methods, the mesh size h replacing the parameter δ
(see [110, §7.3.2] and the references therein). First, introduce the unique function ψk ∈ H1

#(Ω)
such that (

µk∇ψk,∇ψ′) = (µk curl Ẽk,∇ψ′), ∀ψ′ ∈ H1
#(Ω).

When κµ ∈ (−∞; −1/m) ∪ (−1/M ; 0), from Theorem 7.3.1, we know that ψk is well-defined.
Moreover, we have ∥∇ψk∥ ⩽ C ∥curl Ẽk∥ ⩽ C where C > 0 is independent of δ (note that (µk) is
a bounded sequence of functions of L∞(Ω) and we have ∥µk∥L∞(Ω) = max(µe, |µi|) for all k ∈ N).
Then µk (curl Ẽk − ∇ψk) is divergence free in Ω and satisfies µk(curl Ẽk − ∇ψk) · n = 0 on ∂Ω.
From [8, Theorem 3.17], we know that there exists a unique PkẼk ∈ VN (1) such that

curl (PkẼk) = µk(curl Ẽk − ∇ψk). (7.111)

Since in VN (1), ∥curl · ∥Ω is a norm which is equivalent to ∥ · ∥curl (Proposition 7.2.1), we infer
that (Pk) is a sequence of operators which are uniformly bounded from HN (curl; Ω) to VN (1).
Testing in (7.109) with E′ = PkẼk, using (7.111) and integrating by parts, we get

iω(J̃k,PkẼk) + ω2(εkẼk,PkẼk) = ((µk)−1curl Ẽk, curl (PkẼk))
= (curl Ẽk, curl Ẽk − ∇ψk) = ∥curl Ẽk∥2.

(7.112)

Using that Pk : HN (curl; Ω) → VN (1) are uniformly bounded, (Ẽk) converges weakly to zero
in HN (curl; Ω) and VN (1) is compactly embedded in L2(Ω) (Proposition 7.2.1), we deduce that
we can extract a subsequence, still denoted (Ẽk), such that (PkẼk) converges strongly to zero in
L2(Ω). Then from (7.112), we deduce that the sequence (curl Ẽk) converges strongly to zero in
L2(Ω). Using the result of Proposition 7.5.4 below which guarantees that ∥Ẽk∥ ⩽ C ∥curl Ẽk∥
with some C > 0 which is independent of k, we deduce that (Ẽk) converges to zero in HN (curl; Ω).
This contradicts the initial assumption. As a consequence, taking first J = 0 above, we deduce
that (Pδ) is injective and so uniquely solvable for δ small enough. Then for a given non zero
J ∈ L2(Ω), the above lines imply the uniform estimate (7.108). ■

Proposition 7.5.4. Assume that κε ∈ (−∞; −1/m) ∪ (−1/M ; 0) where m, M are defined in
(7.45). Then there is a constant C > 0 independent of δ such that

∥E∥ ⩽ C ∥curlE∥, ∀E ∈ VN (εδ). (7.113)
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Proof. If E ∈ VN (εδ), according to [8, Theorem 3.12], we know that there is a unique u ∈ VT (1)
such that E = (εδ)−1curlu. Then integrating by parts, we find

((εδ)−1curlu, curlu′) = (curlE,u′), ∀u′ ∈ VT (1). (7.114)

Introduce the function φ ∈ H1
0(Ω) such that

(εδ∇φ,∇φ′) = (εδcurlu,∇φ′), ∀φ′ ∈ H1
0(Ω).

Since κε ∈ (−∞; −1/m) ∪ (−1/M ; 0), from Theorem 7.3.1, we know that φ is well-defined.
Moreover, we have ∥∇φ∥ ⩽ C ∥curlu∥ where C > 0 is independent of δ (note that ∥εδ∥L∞(Ω) =
max(εe, |εi|) for all δ > 0). Then εδ(curlu − ∇φ) is divergence free in Ω and again from [8,
Theorem 3.12], we know that there is a unique Tu ∈ VT (1) such that curl (Tu) = εδ(curlu−∇φ).
Since in VT (1), ∥curl · ∥Ω is a norm which is equivalent to ∥ · ∥curl (Proposition 7.2.1), we infer
that T : VT (1) → VT (1) is a uniformly bounded operator. Choosing u′ = Tu in (7.114) and
integrating by parts, we obtain

(curlE, Tu) = ((εδ)−1curlu, curl (Tu)) = ∥curlu∥2 − (curlu,∇φ) = ∥curlu∥2.

Using the Cauchy-Schwarz inequality, this gives ∥curlu∥ ⩽ C ∥curlE∥ where C > 0 is indepen-
dent of δ. This yields the desired estimate (7.113). ■

7.5.3 Final result

Gathering Propositions 7.5.2 and 7.5.3, we can state the final result of this article.

Theorem 7.5.1. Assume that κε, κµ ∈ (−∞; −1/m) ∪ (−1/M ; 0) where m, M are defined in
(7.45). Assume that ω ∈ C\Λeff where Λeff appears in (7.94). Then, there exists δ0 > 0 such that
for δ ∈ (0, δ0], the solution Eδ of problem (Pδ), which is well-defined according to Proposition
7.5.3, satisfies

Eδ ⇀ Eeff and curlEδ ⇀ curlEeff weakly in L2(Ω)

where Eeff is the unique solution of problem (Peff) given by (7.92).

Let us conclude this paper with two comments. Firstly, in this work, we only prove weak conver-
gence results. Strong convergence results (using correctors) for Maxwell’s equations with positive
materials have been obtained in [133, 134]. It would be interesting to understand if we can adapt
the approach proposed in these two articles to our setting. Secondly, the obtained bounds for the
contrasts (involving m and M) to ensure the homogenization process are probably not optimal.
Improving them would require a sharp analysis of the asymptotic behavior of the critical contrasts
given by (7.69) as δ tends to zero (see Remark 7.3.4). Is it possible that the two scalar problems
with Dirichlet and Neumann boundary conditions be uniformly well-posed as δ tends to zero,
even when some cell problems have a non zero kernel or when the homogenized tensors are not
positive definite? This has still to be clarified.
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7.6 Appendix. Table of notation for the functional spaces

For the reader’s convenience, we list below the main functional spaces used throughout the paper:

CCC ∞
0 (Ω) := (C ∞

0 (Ω))3

CCC ∞
per(Y ) := (C ∞

per(Y ))3

H1
0(Ω) := {φ ∈ H1(Ω) |φ = 0 on ∂Ω}

H1
#(Ω) :=

{
φ ∈ H1(Ω) |

ˆ
Ω
φdx = 0

}
Hδ
D := {φ ∈ H1

0(Ω) | ∆φ = 0 in Ωδ
e ∪ Ωδ

i }
Ĥδ
D := {φ ∈ Hδ

D | (∇φ,∇φkD) = 0, ∀k ∈ Kδ}

H1
⋄(Ω) :=

{
φ ∈ H1(Ω) |

ˆ
∂Ωδi

φ dσ = 0
}

Hδ
N := {φ ∈ H1

⋄(Ω) | ∆φ = 0 in Ωδ
e ∪ Ωδ

i , ∂nφ = 0 on ∂Ω}
Ĥδ
N := {φ ∈ Hδ

N | (∇φ,∇φkN ) = 0, ∀k ∈ Kδ \ {k0}}
H1

0, ∂Ωδi
(Ω) := {φ ∈ H1(Ω) |φ = 0 on ∂Ωδ

i }
H1

0,∂Ω(Ωδ
e) := {φ|Ωδe , φ ∈ H1

0(Ω)}

H1
⋄(Y ) := {φ ∈ H1(Y ) |

ˆ
∂Yi

φdσ = 0}

H0 := {φ ∈ H1
0(Y ) | ∆φ = 0 in Ye ∪ Yi}

H⋄ := {φ ∈ H1
⋄(Y ) | ∆φ = 0 in Ye ∪ Yi}

Ĥ0 := {φ ∈ H0 | (∇φ,∇φD) = 0}
Ĥ⋄ := {φ ∈ H⋄ | ∂nφ = 0 on ∂Y }

H1
per(Y ) := Closure of C ∞

per(Y ) for the norm of H1(Y )

H1
per,⋄(Y ) := {φ ∈ H1

per(Y ) |
ˆ
∂Yi

φdσ = 0}

H1
per, 0, ∂Yi(Y ) := {φ ∈ H1

per,⋄(Y ) |φ = 0 on ∂Yi}
Ĥ♭ := Orthogonal complement of H1

per, 0, ∂Yi(Y ) in H1
per,⋄(Y )

H(curl; Ω) := {H ∈ L2(Ω) | curlH ∈ L2(Ω)}
HN (curl; Ω) := {E ∈ H(curl; Ω) | E × n = 0 on ∂Ω}

Hper(curl ;Y ) := Closure of CCC ∞
per(Y ) for the norm (∥ · ∥2

Y + ∥curl · ∥2
Y )1/2

L2(Ω) := (L2(Ω))3

VT (ξ) := {H ∈ H(curl; Ω) | div(ξH) = 0, ξH · n = 0 on ∂Ω}
VN (ξ) := {E ∈ H(curl; Ω) | div(ξE) = 0, E × n = 0 on ∂Ω}.



Chapter 8

Conclusions and future directions

Let us conclude this work by summarizing the contribution that has been presented in this thesis
and by mentioning some future directions that we think are interesting to investigate.

Conclusions

In the first part, we studied the scalar transmission problem between some positive and nega-
tive materials separated by an interface with a smooth conical tip. We showed that it can be
studied by combining the T-coercivity approach with the Mellin analysis in weighted Sobolev
spaces. We proved that the critical interval can be characterized as the set of contrasts for which
propagating singularities exist. Contrary to the 2D case of interfaces with corners, the number
of propagating singularities for this problem can be greater than 2 (in the particular case of the
circular conical tip, this number tends to +∞ when the contrast approaches −1). In the process,
we highlighted an interesting link between the critical interval and the essential spectrum of the
so-called Neumann-Poincaré operator. For contrasts inside the critical interval, the Mandelstam
radiation principle has been used to construct (an infinite number of) functional frameworks in
which well-posedness is restored. These frameworks are constructed by taking the sum of well-
chosen weighted Sobolev spaces and particular spaces of propagating singularities (the idea is
to include only the ones which have a positive energy flux). Under some assumptions on the
contrast, whose validity has been investigated in details for the case of the circular conical tip,
then we explained how to apply the limiting absorption principle to select among these functional
frameworks that are coherent with the Mandelstam radiation principle, the one that corresponds
to the physical reality.

The second part of this work has been devoted to present a new numerical strategy to approxi-
mate the solutions of the 2D/3D scalar problems with sign-changing coefficients in the classical
H1 framework. The approach is based on an optimal control reformulation of the problem and
is proved to be convergent without any additional assumption on the mesh near the interface as
soon as the problem under study is well-posed in the classical Sobolev spaces.

Then in the third part, we considered the time harmonic Maxwell’s equations with one or two
critical coefficients. We explained why the classical functional framework is no longer suitable
for the study of this problem. By combining new results of vector potentials in weighted Sobolev
spaces, new regularity/compactness results concerning classical vector potential spaces, the Mellin
analysis and the T-coercivity approach, we explained how to construct new functional frameworks
for the electric and magnetic problems. These frameworks are themselves directly related to the
ones obtained for the two associated scalar problems. We established that if one uses the setting
that respects the limiting absorption principle for the scalar problems, then those provided by
our theory for the electric and magnetic problems are also coherent with the limiting absorption
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principle. Thus the important message is that the study of the Maxwell’s equations can be re-
duced to the study of two corresponding scalar problems.

Finally, in the last part of this work, we turned our attention to the study of the homogenization
process for time-harmonic Maxwell equations and related scalar problems in a 3D domain that
contains a periodic distribution of inclusions made of negative material. Due to the sign-change
of the electromagnetic parameters, the derivation of uniform energy estimates, which are needed
to ensure that the homogenization process is possible, is not straightforward even in the case of
the scalar problems. Using the T-coercivity approach, we obtained conditions on the contrasts
associated to the electromagnetic parameters under which we have been able to perform the
homogenization process for the scalar problems. Interestingly, we showed that the homogenized
matrices associated with the limit scalar problems are either positive definite or negative defi-
nite. By combining this with a new uniform compactness result for Maxwell’s spaces established
thanks to the T-coercivity approach, we proved that the homogenization process applicable for
the vectorial problem under the same assumptions as for the scalar equations.

Future directions

In addition to the open questions and possible extensions that we have presented at the end of
each chapter, let us mention here some more general questions that can be seen as a natural
continuation of the work done in this thesis.

• Numerical approximation of Maxwell’s equations with sign-changing coefficients.
One of the most challenging questions that has not been addressed in these pages concerns
the numerical approximation of the solution of Maxwell’s equations with sign-changing co-
efficients.
For non critical contrasts, while several convergent methods have been proposed for the
scalar problem, in particular the one developed in the last chapter, the only existing work
concerning Maxwell’s equations is [56]. The problem considered in [56]. corresponds to
the particular case where ε is positive and µ has a sign-change without being critical. The
technique developed there can not be generalized to the situation where both ε and µ are
sign-changing. To overcome these limitations, an interesting idea would be to try to extend
the method proposed in Chapter 4 to the case of Maxwell’s equations.
When one of the electromagnetic parameters is critical, the only existing approach to ap-
proximate the solution of the scalar problem in the new framework is to use Perfectly
Matched Layers (PMLs) near the origin (see [45]). The proof of convergence is a work in
progress. The adaptation of this method to study Maxwell’s equations is also a challenging
question. Since the framework we proposed for the problem in this configuration suggests
that the solution should be decomposed as the sum of a regular part and a singular part
that belongs to a finite dimensional space, one might think that it is enough to enrich the
classical Nedelec space with the ad hoc propagating singularities to obtain a convergent
method. Unfortunately, this is not so simple because some terms in the new formulation
are hard to compute (numerically).

• Extension of our results to other singular geometries. The results obtained in
this work are not valid for situations involving interfaces with other types of geometric
singularities such as 3D edges or 2D cusps. The determination of the critical interval in
these configurations remains an open question. In this direction, natural questions arise.
How to determine the critical interval for the scalar problems? How to identify, for critical
contrasts, adapted functional frameworks to recover well-posedness for the scalar problems?
Then does the theory presented here to construct well-chosen functional frameworks for
Maxwell’s equations starting from those for the scalar problems, still work?
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• Study of Maxwell’s equations in waveguides. In the literature, it seems that the
study of classical (with positive coefficients) Maxwell’s equations in infinite waveguides in
presence of propagating modes is not yet treated. In this direction we can wonder if the
work presented here can help to address this problem, the propagating modes at infinity in
the waveguide playing the same role as the propagating singularities at the tip in our work.

• Spectral analysis of Maxwell’s equations with dispersive materials. A natural
question to complete our work is to determine the configurations for which trapped modes
exist. Let us recall that trapped modes are non trivial solutions of the homogeneous equa-
tions living in the classical framework. Let us also recall (see Chapter 1) that from a
physical point of view, the negative materials that we have studied in this thesis are in fact
dispersive materials, where ε and µ are functions of the frequency ω, becoming negative
in some frequency ranges. Then a relevant question can be to consider ω as a spectral
parameter: for a bounded inclusion of dispersive material embedded in a bounded domain
filled with a classical non-dispersive dielectric, what are the values of ω for which trapped
modes exist? Due to the dispersion, this leads to study a non-linear eigenvalue problem.
Such question has been investigated in the 2D scalar case in [45]. In particular in this work,
in presence of a corner, it has been shown that the critical interval of contrasts gives rise to
an interval of essential spectrum. Our contributions should allow us to extend these results
to the 3D scalar case. But the extension to Maxwell’s equations seems much more challeng-
ing, in particular due to the fact that the spaces of divergence free fields will themselves
depend on the spectral parameter ω. Note that we would be especially interested in trapped
modes corresponding to so-called embedded eigenvalues (in the essential spectrum) leading
to non-uniqueness of the solution for the problems we introduced in Chapters 6 and 5.

The results of this work have been/will be the subject of the following publications:

1. R. Bunoiu, L. Chesnel, K. Ramdani, and M. Rihani. Homogenization of Maxwell’s equa-
tions and related scalar problems with sign-changing coefficients, Annales de la Faculté des
Sciences de Toulouse,2020. Published.

2. A-S. Bonnet-Ben Dhia, L. Chesnel, and M. Rihani. Maxwell’s equations with hypersingu-
larities at a conical plasmonic tip. Accepted in Journal de mathématiques pures et
appliquées.

3. A-S. Bonnet-Ben Dhia, L. Chesnel, and M. Rihani. Maxwell’s equations with hypersingu-
larities at a conical plasmonic tip (part2), In preparation.

4. A-S. Bonnet-Ben Dhia, L. Chesnel, and M. Rihani. Radiation condition for a 3D interface
between a dielectric and a negative material. In preparation.

5. P. Ciarlet Jr, D. Lassounon and M. Rihani. An optimal control-based numerical method
for scalar transmission problems with sign-changing coefficients. In preparation.
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Title: Maxwell’s equations in presence of negative materials.
Key words: Maxwell’s equations, Corner singularities, Black hole waves, Radiation conditions, Mandelstam principle, Lim-
iting absorption principle, Kondratiev theory, Fictitious domain method, Control and optimization, Homogenization.
Abstract: The main subject of this thesis is the study of time-harmonic electromagnetic waves in a heterogeneous medium
composed of a dielectric and a negative material (i.e. with a negative dielectric permittivity ε and/or a negative magnetic
permeability µ) which are separated by an interface with a conical tip. Because of the sign-change in ε and/or µ, the Maxwell’s
equations can be ill-posed in the classical L2−frameworks. On the other hand, we know that when the two associated scalar
problems, involving respectively ε and µ, are well-posed in H1, the Maxwell’s equations are well-posed. By combining the
T-coercivity approach with the Mellin analysis in weighted Sobolev spaces, we present, in the first part of this work, a detailed
study of these scalar problems. We prove that for each of them, the well-posedeness in H1 is lost iff the associated contrast
belong to some critical set called the critical interval. These intervals correspond to the sets of negative contrasts for which
propagating singularities, also known as black hole waves, appear at the tip. Contrary to the case of a 2D corner, for a 3D
tip, several black hole waves can exist. Explicit expressions of these critical intervals are obtained for the particular case of
circular conical tips. For critical contrasts, using the Mandelstam radiation principle, we construct functional frameworks in
which well-posedness of the scalar problems is restored. The physically relevant framework is selected by a limiting absorption
principle. In the process, we present a new numerical strategy for 2D/3D scalar problems in the non-critical case. This
approach, presented in the second part of this work, contrary to existing ones, does not require additional assumptions on
the mesh near the interface. The third part of the thesis concerns Maxwell’s equations with one or two critical coefficients.
By using new results of vector potentials in weighted Sobolev spaces, we explain how to construct new functional frameworks
for the electric and magnetic problems, directly related to the ones obtained for the two associated scalar problems. If one
uses the setting that respects the limiting absorption principle for the scalar problems, then the settings provided for the
electric and magnetic problems are also coherent with the limiting absorption principle. Finally, the last part is devoted to the
homogenization process for time-harmonic Maxwell’s equations and associated scalar problems in a 3D domain that contains
a periodic distribution of inclusions made of negative material. Using the T-coercivity approach, we obtain conditions on the
contrasts such that the homogenization results is possible for both the scalar and the vector problems. Interestingly, we show
that the homogenized matrices associated with the limit problems are either positive definite or negative definite.

Titre : Équations de Maxwell en présence des matériaux négatifs.
Mots clés : Équations de Maxwell, Singularités de coin, Ondes de trou noir, Conditions de radiation, Principe de Mandelstam,
Principe d’absorption limite, Théorie de Kondratiev, Méthode des domaines fictifs, Contrôle et optimisation, Homogénéisation.
Résumé : Le sujet principal de cette thèse est l’étude de la propagation des ondes électromagnétiques, en régime harmonique,
dans un milieu hétérogène composé d’un diélectrique et d’un matériau négatif (c’est-à-dire avec une permittivité diélectrique
négative ε et/ou une perméabilité magnétique négative µ) qui sont séparés par une interface avec une pointe conique. En
raison du changement de signe de ε et/ou µ, les équations de Maxwell peuvent être mal posées dans les cadres classiques (basés
sur l’espace L2). D’autre part, nous savons que lorsque les deux problèmes scalaires associés, impliquant respectivement ε et µ,
sont bien posés dans H1, les équations de Maxwell sont bien posées. En combinant la méthode de la T-coercivité avec l’analyse
de Mellin dans les espaces de Sobolev à poids, nous présentons, dans la première partie de ce travail, une étude détaillée de ces
problèmes scalaires. Nous prouvons que pour chacun d’entre eux, le caractère bien posé dans H1 est perdu si et seulement si
le contraste associé appartient à un ensemble critique appelé intervalle critique. Ces intervalles correspondent aux ensembles
de contrastes négatifs pour lesquels des singularités propagatives, aussi appelées ondes de trou noir, apparaissent à l’extrémité
de la pointe. Contrairement au cas d’un coin 2D, pour une pointe 3D, plusieurs ondes de trou noir peuvent exister. Des
expressions explicites de ces intervalles critiques sont obtenues pour le cas particulier des pointes coniques circulaires. Pour les
contrastes critiques, en utilisant le principe de radiation de Mandelstam, nous construisons des cadres fonctionnels dans lesquels
le caractère bien posé des problèmes scalaires est restauré. Le cadre physiquement pertinent est sélectionné par un principe
d’absorption limite. En outre, nous présentons, dans la deuxième partie de ce travail, une nouvelle méthode numérique pour
les problèmes scalaires dans le cas des contrastes non-critiques. Cette approche, contrairement aux techniques existantes, ne
nécessite pas d’hypothèses supplémentaires sur le maillage au voisinage de l’interface. La troisième partie de la thèse concerne
l’étude des équations de Maxwell avec un ou deux coefficients critiques. En utilisant de nouveaux résultats de potentiels
vecteurs dans des espaces de Sobolev à poids, nous expliquons comment construire de nouveaux cadres fonctionnels pour les
problèmes électrique et magnétique, qui sont directement liés à ceux obtenus pour les deux problèmes scalaires associés. Si
l’on utilise le cadre qui respecte le principe d’absorption limite pour les problèmes scalaires, alors les cadres fournis pour les
problèmes électrique et magnétique sont également cohérents avec le principe d’absorption limite. Enfin, la dernière partie
porte sur des résultats d’homogénéisation des équations de Maxwell harmoniques et des problèmes scalaires associés dans
un domaine 3D qui contient une distribution périodique d’inclusions faites de matériau négatif. En utilisant l’approche de
la T-coercivité, nous obtenons des conditions sur les contrastes telles que le processus d’homogénéisation est possible pour
les problèmes scalaires et vectoriels. De façon peu intuitive, nous montrons que les matrices homogénéisées associées aux
problèmes limites sont soit définies positives, soit définies négatives.
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