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Synthése(en francais)

Le sujet principal de cette these est 1’étude de la propagation des ondes électromagnétiques,
en régime harmonique, dans un milieu hétérogéne (en 3D) composé d'un diélectrique et d’un
matériau négatif (c’est-a-dire avec une permittivité diélectrique négative € et/ou une perméabil-
ité magnétique négative ) qui sont séparés par une interface avec une pointe conique.

En raison du changement de signe de la permittivité € et/ou la perméabilité p, les équations de
Maxwell peuvent étre mal posées dans les cadres classiques (basés sur ’espace L2). Classiquement,
il est connu que ’étude des équations de Maxwell nécessite ’étude de deux problemes scalaires
qui sont associés a € et u. Dans la littérature, le seul travail qui traite de ce lien entre ces prob-
lemes, dans le cas ou ¢ et/ou p change(nt) de signe(s) est présenté dans . Il a été démontré que
lorsque les deux problemes scalaires associés, impliquant respectivement € et p, sont bien posés
dans Pespace H', les équations de Maxwell sont également bien posées dans les espaces classiques.
La contribution principale présentée dans cette theése est de proposer une nouvelle théorie pour
I’étude des équations de Maxwell lorsque I'un des /les probléme(s) scalaire(s) n’est/ne sont pas
bien posé(s) dans l’espace H'. La these est composée de quatre parties.

Dans la premiére partie (Chapitre 2,3), en combinant la méthode de la T-coercivité et I’analyse
de Mellin dans les espaces de Sobolev a poids (i.e. la théorie de Kondratiév) nous présentons
une étude détaillée de ces problémes scalaires. En particulier, nous prouvons que pour chacun
d’entre eux, le caractére bien posé dans H' est perdu si et seulement si le contraste associé ap-
partient a un ensemble critique appelé intervalle critique. Ces intervalles critiques correspondent
aux ensembles de contrastes négatifs pour lesquels des singularités propagatives, aussi appelées
ondes de trou noir, apparaissent a ’extrémité de la pointe. Ces singularités se comportent comme
r~ Y2+ (n € R) au voisinage de la pointe (avec r est la distance a la pointe). Elles peuvent étre
interprétées comme des ondes qui se propagent vers/depuis la pointe conique. Contrairement
au cas 2D d’une interface avec coin, pour une pointe 3D, plusieurs ondes de trou noir peuvent
exister. Des expressions explicites de ces intervalles critiques sont obtenues pour le cas particulier
des pointes coniques circulaires. Pour les contrastes critiques, en utilisant le principe de radiation
de Mandelstam, nous construisons une infinité des cadres fonctionnels dans lesquels le caractere
bien posé des problémes scalaires est restauré. Pour choisir, parmi ces cadres fonctionnels, le
cadre qui est physiquement pertinent nous avons utilisé le principe d’absorption limite.

Au passage, dans la deuxiéme partie de ce travail (Chapitre 4), nous présentons une nouvelle
méthode numérique pour approcher les solutions des problémes scalaires dans le cas des con-
trastes non-critiques. Cette nouvelle méthode est basée sur une reformulation des probléemes
scalaires en problémes de contrble optimal. Contrairement aux techniques existantes, la con-
vergence cette approche, ne nécessite pas d’hypotheses supplémentaires ni sur le maillage au
voisinage de U'interface ni sur la régularité de la solution.

La troisiéme partie de la theése (Chapitre 8) concerne ’étude des équations de Maxwell avec un
ou deux coefficients critiques. En utilisant de nouveaux résultats de potentiels vecteurs dans
des espaces de Sobolev a poids et de nouveaux résultats de régularité, nous expliquons comment
construire de nouveaux cadres fonctionnels dans lesquels les problémes électrique et magnétique
sont a nouveau bien posés. Ces cadres sont directement liés & ceux obtenus pour les deux prob-
lemes scalaires associés. En outre, nous avons prouvé que si nous utilisons le cadre qui respecte
le principe d’absorption limite pour les problémes scalaires, alors les cadres fournis, par notre
approche, pour les problemes électrique et magnétique sont également cohérents avec le principe
d’absorption limite.

Enfin, dans la derniére partie de ce travail (Chapitre 8), nous sommes intéressés a I’étude des
processus d’homogénéisation des équations de Maxwell (en régime harmonique) et les problemes



scalaires associés dans un domaine 3D qui contient une distribution périodique d’inclusions dans
un matériau négatif. En utilisant I’approche de T-coercivité et un nouveau résultat de compac-
ité uniforme, nous obtenons des conditions sur les contrastes (associés aux problémes scalaires
dans les cellules) qui assurent que le processus d’homogénéisation est possible pour les probléemes
scalaires et vectoriels (Maxwell). D’une maniére non intuitive, nous montrons que les matri-
ces homogénéisées associées aux problémes de limites sont soit définies positives, soit définies
négatives.
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Chapter 1

Introduction

For the past two decades, the scientific community has been particularly interested in the analysis
of Maxwell’s equations in unusual situations involving real valued dielectric permittivity ¢ and
magnetic permeability p whose sign changes on the domain of interest. The main motivation for
the study of these problems comes from spectacular progress made in the field of plasmonics and
from a more prospective point of view, from the development of the so-called metamaterials.

Plasmonics is the branch of physics that consists in studying the propagation of electromagnetic
waves, or more precisely, of the collective oscillations of electrons, on the surface of a metal at
optical frequencies. These waves are called plasmonic waves or plasmonic resonances. They are
exploited in many interesting realizations such as the Lygurcus cup (see Figure 1.1). This cup
looks green when illuminated from outside but appears red when illuminated from inside. The
explanation of this change of color lies in the fact that it is composed by an alloy of gold and silver
nanoparticles. In particular, when one illuminates the cup from inside, the red color results from
the strong enhancement of the scattered field associated to some particular wavelengths due to
the excitation of plasmonic resonances. Recently these waves have been used in new applications
concerning the design of biosensors, cancer therapies, the production of efficient photovoltaic cells
and many others (see [106]). From a mathematical point of view, the existence of these waves is
mainly due to the fact that at optical frequencies, some metals like silver or gold have a dielectric
permittivity € with a small imaginary part and a negative real part (see [45, Chapter 1] for a
more rigorous explanation). Neglecting the imaginary part, for these ranges of frequencies, we
are led to consider a real-valued ¢ which is negative in the metal and positive in the air around
the metal. This gives us a first simple configuration in which the dielectric permittivity has a
change of sign.

Metamaterials are artificial materials with physical properties that can not be found in nature.
Usually they are made of a periodic assembly of a large number of resonant micro-structures
(see Figure 1.1). For these materials, all the game consists in choosing cleverly the structure as
well as the resonators so that the effective medium, after an homogenization process, presents
interesting properties. These materials have been intensively studied in the past two decades due
to their potential very exciting applications such as, among others, sub-wavelength imaging and
focusing, cloaking, sensing or data storage (see [135]). Let us mention that concrete realizations
of these materials are still in progress. Mathematically it was proved (see [132]) that it is possible
to design materials modelled by some effective € and p that have, in some range of frequencies,
negative real values and small imaginary parts.

We emphasize that all the interesting phenomena related to these negative materials (i.e. metals at
optical frequencies or negative metamaterials for well-chosen ranges of frequencies) arise only when
these materials are associated with classical (positive) ones and importantly when dissipation is
very small. Therefore we will focus our attention on the propagation of electromagnetic waves



Chapter 1. Introduction 10

inside media where € and p are real valued and where one or the two constants change(s) sign
in the physical domain. Note that this is also the most interesting case for the mathematical
analysis.

Figure 1.1: On the left: the Lygurcus cup [9]. On the right: an example of metamaterial (NASA
Glenn Research/Wikimedia Commons).

In what follows, we will be particularly interested in the study of the time harmonic Maxwell’s
equations in a bounded domain' Q of R* made of an inclusion of negative material Qs surrounded
by some positive material 2;. We denote by X the interface between the two regions so that finally
we have Q3 C Q, Q= UQ UY and ¥ = 921 N 9Ny (see Figure 1.2 for an illustration).

We assume that 02 (the boundary of €2) is Lipschitz-continuous and connected. Moreover we
denote by n the unit normal vector to 0f) oriented to the exterior of €2. To set the ideas, in this
introduction we focus our attention on the problem satisfied by the electric field E when 2 is
surrounded by a perfect conductor. This problem writes

curlpy'curl E —w?*E =iwJ in Q and E xn =0 on 9. (1.1)

Above w € R is the frequency, J is the injected current density which is assumed to satisfy
div(J) = 0 in Q while e (resp. p) is a piecewise constant function such that ¢ = 1 € R’ (resp.
p=p €RY)in Q) and € = g3 € RY (resp. = pp € RY) in Q. Because of the change of sign
of the functions € and p, the study of Problem (1.1) can not be made as in the classical case.
In order to identify the difficulties raised by the sign-changing e, u, let us start by recalling in a
brief way how one shows the well-posedness of (1.1) in the standard situation when €9 and po
are positive.

The classical configuration. It is well-known that when ¢ and p are positive, Problem (1.1)
is not elliptic (see [63]). This makes the study of its well-posedness a little bit different from the
analysis of strongly elliptic problems. The choice of the functional framework in which we can
set Problem (1.1) is not unique [63]. The most natural setting is the one which reflects the fact
that the electromagnetic energy contained in {2 is finite. This boils down to impose that both E
and curl E belong to the space L*(Q2) := (L?(Q))3. This leads us to work in

Hy(curl, ) := {u € L?*(Q) |curlu € L*(Q) and u x n in Q}.
Endowed with its natural norm
1/2

[l ey curt ) = ([ullf20) + [curlu|f )

Hy (curl, Q) is a Hilbert space. Furthermore, it can be shown that (2())3, the space of infinitely
differentiable functions with compact support in €, is dense in Hy (curl, Q) (see [81]). With this

1,
i.e. an open connected subset.
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Figure 1.2: An example of considered geometry where the green (resp. red) part is occupied by
Ql(resp. Qg)

in mind, one can show that when J belongs to L?(Q), Problem (1.1) set in Hy(curl,) is
equivalent to the following variational formulation

Find u € Hy(curl, ) such that

//flcurlu- curlﬁ—wz/ EU- V= iw/ J- v, Vv € Hy(curl, Q). (1.2)
Q Q Q

By observing that for all ¢ € H(Q) the vector field Vi belongs to the space Hy(curl, ) and
that || Vollay (curl,0) = IV@llL2(q), one can prove that the embedding of Hy (curl, Q) into L3(Q)
is not compact (see the end of this introduction). Moreover, for the same reason (the fact that
VH{ () € Hy(curl,Q)), what seems the “principal” part of (1.2) is not coercive. All this to
say that one can not apply the “coercive +compact” theory to prove the well-posedness of (1.2).
One way to solve this difficulty is to exploit the fact that div(J) = 0 in Q, which, according to
(1.1), gives div(e E) = 0 in €2 for all w # 0. Imposing this constraint leads us to work in the space

Xn(g,Q) :={u € Hy(curl, Q) |div(eu) = 0}.
Then we introduce the problem
Find u € Xy(e, ) such that

/u‘lcurlu- curl?—wQ/ eu- U= iw/ J - v, Vo € Xn(e, Q). (1.3)
Q Q Q

It has been proved in [65] that when ¢ is positive, the embedding of Xy(e,Q) into L*(Q) is
compact. Furthermore, using that p is positive, one can prove that the principal part of (1.3)
is coercive. As a result Problem (1.3) is well posed in the Fredholm sense for all w € R and in
the Hadamard sense except for a discrete subset of frequencies of R. To complete the analysis
and to prove in particular that a solution to (1.3) yields a solution to (1.1), we need to show
the equivalence between formulations (1.3) and (1.2). It is obvious that any solution of problem
(1.2) is a solution of (1.3). Let us establish the converse statement. For all v € Hy(curl, ),
introduce ¢, € Hy(Q) the unique function which solves the problem

Find ¢, € H}(Q) such that div(eV,) = div(ev). (1.4)

Then we can write v = Vi, + ¥ with ¢, € H}(Q) and © € X (e, ). Taking @ as a test function
in (1.3) and using the fact that for all u € Xx(g,Q) we have

/u_lcurlu-cuﬂ%:/u‘lcurlu-curlﬁ, /eu-@:/su-ﬁand /J-Ez/J-%,
Q Q Q Q Q
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we deduce that any function satisfying (1.3) solves (1.2). This ensures that Problem (1.2) is
well-posed in the Fredhlom sense for all w € R* and in the Hadamard sense except for a discrete
subset of frequencies of R*. Now, let us go back to the case of sign-changing coefficients.

The case of sign-changing coefficients. In the reminder above, the positivity of ¢ was
used twice, first to show that the embedding of Xy (e, Q) into L*(Q) is compact and second to
prove the equivalence between (1.3) and (1.2). In addition to that, the positivity of ;1 was the key
argument to show the coercivity of the principal part of the formulation (1.3). When € and/or u
change/changes sign, these arguments must be reconsidered.

However, if we focus our attention on the proof of equivalence between formulations (1.2) and
(1.3), we notice that what is needed is not the positivity of € but rather that the problem (1.4)
is well-posed in the Hadamard sense. Indeed it was proved in [22] that when the problems

Find v € H}(Q) such that — div(eVu) = f € (H}(Q))*, (1.5)
Find u € H (2)? such that — div(uVu) = g € (HL(Q))*, (1.6)

are well-posed (for all f € (H}())* and g € (H#(Q))*) in the Hadamard sense, then Problem
(1.3) (resp. (1.2)) is well-posed in the Fredholm sense for all w € R (resp. w € R*) and in the
Hadamard sense for all w € R\A (resp. w € R*\A) where A is a discrete subset of R (resp. R*).
Naturally, this brings us to the following question:

Under which condition(s) on € (resp. on u) the problem (1.5) (resp. (1.6)) is well-posed
(in the Fredholm sense) for all f € (H}(Q))* (resp. g € (H:}#(Q))*)?

The previous question was the subject of several contributions in the literature [147, 49, 45] (es-
pecially in 2D configurations). Let us summarize, in a brief way, the principle conclusions of these
works.

State of the art about the scalar problems. Interestingly, in the literature, two main
approaches have been proposed.

o The first one is based on a reformulation of the problem into an integral equation [92, 92,
32, 67] posed on the interface ¥. Then desired conditions concerning € or p to ensure the
well-posedeness of the problems can be expressed in terms of the spectrum of the so-called
Neumann-Poincaré operator (this will be detailed in §2.2).

o The second one is variational [147, 49]. It is based on a reformulation of the classical inf-sup
theory called the T-coercivity approach. For example for Problem (1.5), it consists in finding
an operator T : H}(Q) — H}(Q) such that the sesquilinear form (u,v) — JoeVu-V(Tv)
becomes coercive on Hj(92) x HY ().

When the interface ¥ is smooth (of class €17 with v € (0,1]), the two approaches lead to the
same conclusion: Problem (1.5) (resp. (1.6)) is well-posed in the Fredholm sense as soon as
the contrast k. := ea/e1 (resp. Kk, = po/p1) is such that k. # —1 (resp. k, # —1). We will
show later in Chapter 2 that this is also the case for the general case of interfaces of class €.
It is worth to note that in some particular situations, for example for symmetric domains (i.e
)y is the symmetric of Qs with respect to X) in 2D/ 3D, one can show [49] that for k. = —1
(resp. Kk, = —1), Problem (1.5) (resp. (1.6)) has a kernel of infinite dimension. For more details
concerning the study of the particular case k. = —1 (resp. k, = —1), see [117].

As soon as the interface X has geometric singularities (corners, conical points, edges, ...), the
situation is totally different. As we shall see in Chapter 2 of this thesis, one can show that for

"HL(Q) == {u € H'(Q) u = 0}.

\
o0
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the general case of Lipschitz-interfaces, the Fredholmness of (1.5) (resp. (1.6)) can be lost when
the contrast k. (resp. k,) belongs to some set I5; (resp. I4) known as the critical interval. The
expression of I5, (resp. I4) is not known in general.

For 2D polygonal interfaces, I5, and I have been obtained explicitly. They are intervals whose
bounds are functions of the sharpest opening angle of ¥ [49, 25].

The approach based on the use of the Neumann-Poincaré operator leads to the same result. This
was done in [125]. Let us mention that the expression of the critical interval can be deduced from
the results of the Phd work of Carleman [44] dating from 1916!

In 3D, the situation is much more complicated, even in the simple case of an interface with a
circular conical tip. Actually, for this particular configuration, the T-coercivity approach allows us
to get an estimation of the bounds of the critical interval [49], but there is no guarantee about the
optimality of theses bounds. The approach relying on the use of the Neumann-Poincaré operator
was considered in [104], but it seems that there is no clear result about the exact expression
of the critical interval in this configuration. One of the objectives of this thesis is to find a
characterization of the critical intervals I5, and I in the case when ¥ has a smooth conical tip
(see Figure 1.2). Furthermore, we will show how to combine the T-coercivity approach and the
approach based on the Neumann-Poincaré in order to obtain an explicit expression of the critical
interval.

By applying the results of [22], we can then conclude about the well-posedness of the Maxwell’s
problem when k. and «, do not belong respectively to I5 and I%. In Chapter 7, we will explain
how to use these results in order to study the homogenization of the scalar problems and the
time-harmonic Maxwell’s equations in a composite medium with periodically distributed small
inclusions of a negative material.

When one of the contrasts k, or k. is critical, i.e. when . € I5, or k, € I4, the well-posedness of
the Maxwell’s problem in the classical frameworks Hy (curl, Q) and Xy (e, ) is not guaranteed.
This leads us to the following questions:

What happens to the Maxwell’s problem (1.1) when ¢ and/or u are/is critical? Is it
well-posed in the classical framework? If yes, how to prove this? If the answer is no,
what would be the appropriate framework (from the physical point of view) in which
we can set the problem?

The answer to these questions is the main motivation of this thesis. To address them, one first
needs to study what happens to the scalar problems (1.5) and (1.6) when € or p becomes critical.
To set ideas, let us focus our attention on the problem (1.5). In the literature, to the best of
our knowledge, the only existing work in this direction is [25]. In this article, the authors have
considered the particular case where the interface 3 has a right corner. They showed, by adapting
the Kondratiev theory [100], that the lost of Fredholmness for (1.5) is due to the appearance of
two strongly oscillating function s* (called propagating singularities or black-hole singularities)
that behave like r= (1) € R ) near the corner where r is the distance to the corner vertex. One
can check that these functions do not belong to the space H(Q).

In order to restore well-posedness of (1.5) when k. € I5, the authors of [25] used the anal-
ogy with the propagation of waves in waveguides (in this analogy the corner plays the role of
infinity) to propose a new functional framework, that replaces H'(Q), in which the scalar prob-
lem (1.5) becomes well-posed. This functional framework is obtained by adding one of these
two propagating singularities (the outgoing one) to a well-chosen weighted space (composed by
more regular functions). The selection of the outgoing behavior is done thanks to the limiting
absorption principle: the physical solution of the problem must be the limit (in some space to
define) as § — 07 of us where us is the unique solution of —div((c +i6)Vus) = f. The extension
of this approach to the case of 3D interfaces with a conical point is one of the main results of this
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thesis. This will be the subject of Chapters 2-3.

Now, let us go back to the study of the Maxwell’s problem. If, for example, the dielectric
permittivity € is such that k. € Iy, the proof of equivalence between (1.2) and (1.3) can not be
done because the scalar problem (1.4) is ill-posed. This suggests that the classical L? setting is
not adapted to the study of the Maxwell’s problem in this configuration. As a result one needs
to propose a new functional framework in order to restore Fredholmness. Intuitively, to ensure
that this new functional framework leads to the physical solution of the problem, it must con-
tain the gradient of the outgoing singularity(ies) (we shall see later that in 3D several outgoing
singularities can exist). This leads us to study the Maxwell’s problem in a non-L? framework.
From a mathematical point of view, this will prevent us from using many of the classical tools for
the analysis of Maxwell’s equations, such as results of existence of vector potentials, Helmholtz
decomposition, compact embedding, ... For this reason, a new theory has to be constructed.
This new theory can be seen as an adaptation of Kondratiev approach [100] to Maxwell’s equa-
tions. It is worth to note that our technique is conceptually different from the one used in [65]
(for the classical configuration) where the Kondratiev theory is used to characterize the singular
behaviour of the classical solutions. Our results in this direction will be presented in Chapters 5-6.

Once the theory will be developed, we will consider the question of the approximation of these
problems by finite elements methods. Unfortunately, our contributions to this question concern
only the scalar case. Because of the change of sign of € (resp. ), the convergence of the numerical
approximation to the exact solution as one refines the mesh in general is not clear. This leads us
to the following questions:

How to design convergent FEM-based numerical method to approximate the solutions
of scalar problems when they are well-posed?

In the literature, several convergent approaches have been proposed for the non-critical case.
Some of the strategies are based on the use of so-called T-conforming meshes (see [49, 45]). Un-
fortunately, the construction of such meshes seems to be not easy (see[45]), especially when the
interface has corners or in 3D. For general meshes (that respect the interface), other techniques
have been designed. Some of them suffer from the fact that their convergence can not be guaran-
teed for all contrasts for which the (continuous) problem is well-posed. This the case in particular
of the method developed in [147, 51, 119]. In 2017, a new method based on the use of an optimal
control reformulation has been proposed in [1]. It is proved to be convergent on general meshes as
soon as the exact solution belongs to the space PH*(Q) := {u |u|q, € H*({1) and g, € H*(22)}
with s < 3/2. Unfortunately, this regularity condition is not always satisfied, especially when 3
has corners in 2D or conical points in 3D. In Chapter 4, we will present a new strategy which
relies on the use of a different optimal control reformulation and which converges without any
restriction neither on the mesh (the interface simply needs to coincide with edges of the mesh)
nor on the regularity of the exact solution.
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Now, it is time to summarize the outline of our work. This thesis will be divided into four parts.

Part 1: Study of the scalar problems with sign-changing coefficients. It contains
two chapters (Chapter 2 and Chapter 3) and is devoted to the analysis of the scalar problems
when the interface ¥ has a conical point. In particular, we will give a characterization of the
critical intervals If and I{ and, more importantly, we will explain how to use the Mandelstam
radiation principle and the limiting absorption principle in order to derive a new (physical) func-
tional framework in which Fredholmness is restored.

Part 2: Numerical approximation of the scalar problems with sign-changing coef-
ficients.  This part is made of Chapter 4 in which we will present a new numerical method
to approximate the solution of the 2D /3D scalar transmission problems. It is based on a finite
elements approximation and we will show that it converges without any restrictive condition on
the mesh near the interface.

Part 3: Time harmonic Maxwell’s equations with sing-changing coefficients. Here we
turn our attention to the study of Maxwell’s equations in a situation where the interface has a
conical point and where the contrasts take critical values. In Chapter 5, we study the configu-
ration when just one of the electromagnetic parameters is critical. In Chapter 6, we propose an
analysis when both parameters € and p are critical.

Part 4: Homogenization of Maxwell’s equations and related scalar problems with
sign-changing coefficients. In this part, we consider the question of the homogenization of
the scalar problems and of the time-harmonic Maxwell’s equations in a composite material with
periodically distributed small inclusions of a negative medium. We explain why the homogeniza-
tion process is possible as soon as the contrast associated to the cell problem is small or large
enough. Our results will be presented in Chapter 7.

As promised above, we finish this introduction by proving that the embedding of Hx (curl, Q) into
L%(Q) is not compact. Let (¢;)ien be an orthonormal sequence of Hj(Q). The sequence of vector
fields (V;)ien is then orthonormal in Hy (curl, Q). If the embedding Hy (curl, Q) C L3(Q) was
compact, then one could find a sub-sequence, that will be indexed by i, of (V¢;);en that converges
in L?(Q) to some u € L?(Q). From the fact that IVei=Voilay eurt o) = [Vei—Vojleq) = V2
for i # j , we conclude that this not possible.



Chapter 2

Study of the scalar transmission
problem in presence of a conical tip
of negative material

2.1 Introduction

In this chapter, we investigate the scalar transmission problem between two domains® of R? filled
with materials modelled by physical coefficients of different signs. We assume that € (resp. 2)
corresponds to the positive (resp. negative) material and more specifically, we consider situations
where the interface ¥ separating the two regions is smooth (of class %1) everywhere except near
some point O, where it has a conical tip. We set () := 7 U Qs U X and to simplify a little bit
the analysis below, we suppose that €2 is connected with a Lipschitz-continuous boundary 0f2.
In addition to that, we make the assumption that Qy C €. This simply means that the domain
Qy surrounds € and ensures that ¥ N 9Q = (). Without loss of generality, we suppose that
O = (0,0,0). A full description of the conical singularity at O can be done via the description of
the domain Q9 near O. For this purpose, let us describe the intersection between Q9 and B(O, p)
the open ball of R of center O and of radius p sufficiently small. We consider the following
configuration:

QN B(O,p) ={z e R3, |z| < p,x/|z| € &7} (2.1)

where &7 is a smooth (of class %2) sub-domain of S? the unit sphere of R®. To simplify notations,
we shall assume that p =1 in (2.1) (in particular this means that B(O,1) C 2). A more precise
description of &/ will be given below. An example of geometry for which all these assumptions
are satisfied is given in Figure 2.1. Note that the class of conical tips described by (2.1) contains
the particular case of circular (rotationally symmetric) conical tips obtained by revolution of a
half-line around a fixed axis, say the z axis, in R®. Even though the primary goal of this chapter
is to treat the class of general conical tips of the form (2.1), a particular interest will be devoted
to the case of circular ones because, in such case, explicit calculus can be done.

In the sequel, we denote by .# the cone # := {z € R3|z| < p,z/|z| € &/}. In order to make
the presentation of our results as clear as possible, we limit ourselves to the case where 0.2/ can

be parameterized by a function g € ‘szer([o, 27]). In other words, we assume that

o ={(r,0,p)|r=1and 0 < g(¢)} and 0 ={(r,0,¢)|r € Ry and 0 = g(p)}.

Here (7,60,¢) € (0;400) x (0;7) x (0;27) are the classical spherical coordinates such that for
z € R?, we have x = (rsin(f) cos(p), rsin(f) sin(y), r cos(f)) with 8 € (0;7) and ¢ € (0;27). In
Figure 2.2, we display two examples of geometries that fit into the class of the domains described

1 . 3
Here domain means an open connected subset of R”.

16
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Figure 2.1: An example in which the red part (€22) is filled with a negative material and the green
one () is filled with a positive one.

L ]

Figure 2.2: Shape of the domain 0% for a circular conical tip (left) and for a more general conical
tip (right).

previously. It is important to note that all the results that we are going to present below can be
easily extended to the two following situations:

o« 04 is of class €2 but cannot be parameterized by a single function g € €2,.([0, 27]).

per
e D4 is of class €' and piecewise €2

To complete the description of our transmission problem, we need to introduce a physical pa-
rameter o € L°°(€2) such that o), = 01 € R}, := (0; +00) and 0/g, = 02 € RL 1= (—~00;0). We
denote by K, 1= 02/01 € (—00;0) the contrast associated with o. Now the transmission problem
that we want to study writes:

Find u € H)(Q) such that — div(eVu) = f € (H}(Q))*. (2.2)
The properties of the above problem depend on the features of the bounded operator A, :
HY(Q) — (HJ())* defined with the Riesz representation theorem such that
(Aju,v) = / oVu - VT, u,v € H(Q).
Q

Since o changes sign, Problem (2.2) is not elliptic and its well-posedness (for an arbitrary
f € (HL(2))*) is not guaranteed even in the Fredholm sense (i.e the operator A, may not be of
Fredholm type2). By dividing A, by o1, one observes that the Fredholmness of A, depends only

% An operator B : X — Y is said to be of Fredholm type if ker(B) and coker (B) are of finite dimensions and its
range is closed. The index of B is defined by index(B) := dim(Ker (B)) — dim(coker (B)).
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on the contrast x,. To be coherent with the vocabulary used in the literature [50, 25], the set
of contrasts k, for which the operator A, is not of Fredholm type is called the critical interval
and is denoted by Ix.. However, it is important to note that even though Iy is called the critical
interval, there is no result that allows us to say that Iy is indeed an interval of the form [a;b]
(C R_). In particular, Iy, could be an union of disjoint intervals. All we can say is that Iy is
a closed subset of R_ (see Proposition 2.2.1). More information about Iy, are given in the next
section.

In the 2D configuration, the study of the scalar transmission problem between a positive and a
negative material with an interface having a corner has been clarified in [25]. It was shown that
the critical interval is an interval of R_ whose bounds are given explicitly as functions of the
opening angle of the corner. Furthermore, when the contrast belongs to the critical interval, the
loss of the Fredholmness of the operator is caused by the appearance of two strongly oscillating
functions s= (also known as propagating singularities or black hole singularities) that do not
belong to the space H' near the corner (these functions behave like r with n € R* and r is the
distance to the corner vertex). Using these functions sT, one can construct a Weyl sequence for
the operator A, and show that the range of A, is not closed. In order to restore Fredholmness
of the problem, the authors of [25] propose a new functional framework that takes into account
theses singular functions. They prove that by adding the space spanned by one of these two sin-
gular functions to a well-chosen weighted space, one obtains a functional framework in which the
problem is again well-posed. Since the physical solution must be outgoing, they used the limiting
absorption principle in order to choose the outgoing singular function (the one that propagates
energy toward the corner).

The main goal of this chapter is to extend the results and the techniques used in [25] to the 3D
configuration where the interface has a smooth conical tip. More precisely, we want to understand
what are the propagating singularities in 3D and how to use them in order to characterize the
critical interval Is. More importantly, we shall explain how to make use of some of them in order
to define a new functional framework in which the scalar problem is again well-posed and that
is coherent with the classical physical principles: the Mandelstam radiation condition [112, 103]
and the limiting absorption principle.

This chapter is organized as follows. In Section 2.2, we present some results concerning the
critical interval Iy;. In the process we underline the relation between Iy, and the spectrum of the
so-called Neumann-Poincaré operator. In order to study Problem (2.2), we will use localization
techniques. This will lead us to consider two different localized versions of the problem. The
first one is related to what happens far from the origin. We call this problem the far problem
and we study it in Section 2.3. The second one is related to the analysis of the well-posedness of
the problem near the origin. We call it the near problem and its study is the subject of Section
2.5. The main results concerning the features of Problem (2.2) are summarized in Section 2.6.
In particular, in §2.6.2, we explain how to use the Mandelstam radiation principle in order to
construct an infinite number of functional frameworks in which Fredholmness of the problem is
recovered when the function ¢ is critical. The selection of the relevant physical framework will
be done via the limiting absorption principle in §2.6.3. The last section is devoted to present
some conclusions, some possible extensions, the remaining open questions and to give a few words
concerning the numerical approximation of the solution.

2.2 General properties of the critical interval

As mentioned above, the critical interval is defined as the set of contrasts x, such that the
operator A, is not of Fredholm type. Along this chapter, when k., belongs to Iy, we shall say
that o is critical. The main objective of this section is to present some general results concerning
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the set Iy It will be useful to introduce the operator I’ : H{ () — (H}(Q))* such that

(I'u,v) :/qu.

Proposition 2.2.1. The set Iy, is a closed bounded subset of (—o0;0).

Proof. First, let us explain why Iy is closed. By dividing A, by o1, one can suppose that o1 = 1
and o9 = Ky. Furthermore, from the compactness of the embedding H)(©2) € L%(2), we obtain
the equivalence: r, € (—00;0]\Ix if and only if A, + i’ is an isomorphism. The continuity of
ko + Ay 4+l implies that (—oo; 0]\ Iy is open. Thus Iy; is a closed subset of (—o0; 0]. The second
step is to show that Iy is bounded. For this, we are going to use the T-coercivity approach.

To do so, we first start by defining the spaces V(2), Vf(Qg), such that

V() := {u € H(Q) |u = 0 on 9Q;\X}, V;’E(Qg) = {u € H'(Qy)| /Eu =0},

HY2(%) = {u € HY2(S |/u—0}

Next we introduce the operators Ro_1 : Hl/z( ) — V1(Q1) and Ry : H;/Q(Z) — Vf(Qg) that
are defined as follows: for all ¢ € HY/2(X) and ¢’ € Hl/Q(E) we have

AR =0 0O
Ry1(p) € Vi(£) s.t. 2*1(@i in {4

eVv§ AR15(¢) =0 inQ
Rosi(p)=¢ on¥’ Ry o(¢") € VI (§22) s.t. ;

R1_>2( = (p on Y.

Without any difficultly, one shows that there exists 0 < C' such that for all ¢ € H/?(X) and all
¢ € H;{Q(E) we have

HVR1—>2(<P)HL2(91) < CHSOHHl/?(Z) and HVR2—>1(<P/)||L2(QQ) < CHSD,”HW(E)- (2.3)

To obtain the previous estimate, we have used the fact that in V1(Q) (resp. V:Q’#E (Q2)) the appli-
cation u = [|[Vullr2(q,) (resp. u > [|[Vullr2(q,)) is @ norm that is equivalent to the classical one.
For all u € H}(Q), we denote by u; and by us its restriction to € and Qs respectively. We define
the operators T : HY () — H{(Q) and Ty : HY(Q) — H{(Q) such that for all u € H} (), we have

T ( ) . Ul in Ql
1= —ug + 2R1H2(U|Z — Mx(u)) + 2Mx(u)  on o,
| Tur+ 2R2H1(U|Z — Mg(u)) in €
Tolw) = ug — 2Myx (u) on )y

in which Mx(u) is defined by

1
Ms(u) = m/zuds.

One can easily check that 77 and T, are continuous and bijective (we have T;0T; = Id for i = 1, 2).
Thanks to Estimate (2.3) and to the continuity of the trace operator (because ¥ is Lipschitz), we
conclude that the numbers

IVRi2(us — Ms(u))l|L2ay,)
[[Riselll = sup
wEHL(9),u0 Vi lr2)
VRQ 1(’U, —Mg(u) 2
Rl = sup 1V Reotlin = M) hota)
wEH(9),u0 [Vuza|lr20.)
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are positive and finite. By applying the results of [50, Theorem 1.1.1] or by working as in [42],
we conclude that A, is an isomorphism if

Vlka| > [[[Ris2ll or [ko| > [[[Ros I
The result is then proved. |

Remark 2.2.1. The previous result holds if one replaces ¥ by any Lipschitz interface. The proof
1s also based on the use of the harmonic extension operators. To the best of our knowledge when
the interface ¥ is not Lipschitz, the question whether Is;, is bounded or not is still open. In 2D,
there are configurations where the critical interval is equal to R_ (see [32] for more details). We
conjecture that when the interface ¥ is not Lipschitz, we have Iy, = (—00;0). For an example of
non-Lipschitz interface, think to the surface of two touching conical tips.

Remark 2.2.2. In 2D with corners, the critical interval is known explicitly (see [25]). In 3D
however the situation is much more complicated. In Section 2.6.1, we shall give an explicit
expression of Is. for the case of circular conical tips.

The remaining part of this section is devoted to clarify the link that exists between the set Iy
and the essential spectrum of the so-called Neumann-Poincaré operator. Recently, the study of
the spectral properties of this operator was the subject of many contributions such as those of
M. Putinar et al. [97], those of H. Ammari et al. [7] for the case of smooth interfaces, those of
E. Bonnetier et al. for the case of interfaces with corners [32] and those of K. M. Perfekt et al.
[92] for the case of 2D curved interfaces as well as 3D interfaces with conical tips . Our goal is to
explain how the spectrum of the Neumann-Poincaré operator is related to Ix.

2.2.1 Relation between the critical interval and the spectrum of the Neumann-
Poincaré operator

Most of results of this paragraph are inspired by the ones developed in [35]. The starting point
is to define the operator Tq, : H}(Q) — H}(Q) such that for all v € H{() we have

/ V(Tq,(u)) - Vo = Vu - V7, Vo € H(Q).
Q Q2

The existence and continuity of the operator T, are consequences of the Riesz representation
theorem. In the literature, T, is called the Poincaré variational operator (see [35]). Since Tq,
is symmetric, it is then a self-adjoint positive operator. In the sequel, we denote by o(Tq,) the
spectrum of T, and by oss(Tq,) its essential spectrum which is defined as the set of A € R for
which the operator Tq, — Al is not of Fredholm type (here I stands for the identity operator of
H}(Q)). To proceed, let us denote by A, : Hy(Q) — H}(Q) the operator that is defined by

/ V(As(u))- VT = / oVu - Vv = (Asu,v), Vu,v € HY(Q).
Q Q

Clearly we have an equivalence between the Fredholmness of A, and A,. Furthermore, one can
write

1
1— ks

140201[4-(0'2—01)1})2 2(02—01)(T92— I).
This leads us to the following
Lemma 2.2.1. We have k, € Iy, if and only if [ke <0 and 1/(1 — ky) € 0ess(Ta,) |-

Without particular difficulty one can prove the following statement.

Proposition 2.2.2. The operator Tq, satisfies the following properties:
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1. 0(Tq,) C [0;1] and 0,1 € 0ess(Tq,).

2. 0,1 are eigenvalues of infinite geometric multiplicity of Tq,. More precisely, the spaces
ker(Tq,) and ker(Tq, — I) are given by

ker(To,) = {u € H{(Q) | uj, = constant} and ker(Ta, —I) = {u € Hy(Q) | uj, = 0}.
3. We have the decomposition

1L 1L
HY(Q) = ker(Tq,) ® ker(Tq, — I) &N (2.4)
where N s given by

Since in our study the contrast x, belongs to (—o0;0), the real number 1/(1 — k,) can not be
equal neither to 0 nor to 1. This means that we have the the equivalence: k, € Iy if and only if
1/(1 — ko) € 0ess(T,)\{0,1}. Now, let us introduce the space

S:={ucH) Q)| Au=0in Q; UQ}.

Starting from the decomposition (2.4), we can easily show that we have the decomposition

1
S = span(ug) @ N.

where the function ug € H}(€2) is the harmonic extension of the function 1o, to the whole domain
Q (obviously, one has ug € Ker (Tq,)). This implies that S is a closed sub-space of H}(€2) and
that it is an invariant sub-space for the operator Tq,. As a consequence, Tq, induces a linear
operator from S to S that will be denoted by TSQ. Without any difficultly one can show that 0 is a
simple eigenvalue of T 5’2 and that oess (7 52) = 0ess(T0,)\{1,0}. Thus, we obtain the equivalence

ke € Iy if and only if 1/(ks — 1) belongs to ess(T5,)-

The goal of the next paragraph is to explain how the spectrum of TSQ is related to the spectrum
of the Neumann-Poincaré operator.

Definition of the Neumann-Poincaré operator

Let G3 : R? x R?> — C be the Green function of the Laplace operator in the free space R3.
Classically, this function is given by

Gs(z,y) = for all z #y € R3

dr|z — y

and satisfies the equation AyG3(x,-) = 6, (where ¢, is the Dirac distribution at x). We also
need to introduce P the Laplace kernel that is a correction of the function GGs in order to take
into account the homogeneous Dirichlet boundary condition. The function P is defined in Q x €
by the relation P(x,y) = G3z(x,y) + Cy(y) where C, is the solution of the problem A,C, =
0in Q and C,(y) = —G(x,y) on 0. This means that the function P satisfies Ay P(z, ) = 0,
and P(z,-) = 0 on 9. We introduce the single layer potential Sy, : HY/2(X) — H}(Q) associated
with X such that for all ¢ € H/2(X), we set

Sy(p)(x) = /EP(x,y)gp(y)da(y) for almost all z € Q.
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By observing that for all z € ; U Qy the function P(x, )5 € H'/2(%), we deduce that the
operator Sy can be extended to an operator Sy : H™Y/2(2) — H{(2). Classically (see [32]), one
can prove that for all ¢ € H™'/2(X) the function Sx(p) belongs to the space S, ie. Sg(yp) is
harmonic in €4 UQs. Conversely, it is a classical result that any function u of the space S admits
the representation

) (2.6)
in which [Opux] = Onuiy — Opuzs; where n is the outward unit normal vector to dQ2, u; =
ujg, and uz = uq,. This means that Sy realizes a bijection (and then it is an isomorphism)
between H™'/2(X) and S. The normal derivative of Sx(p) is generally discontinuous across 2.
This discontinuity can be described by the Plemelj jump relations:

ISP =¢/2+ K& (p)  and  9,8%(p)2 = —¢/2 + K5 () (2.7)

where again n is the unit normal vector to 9€y oriented to the exterior of s, the functions
Ss(p)1 and Sx(p)2 are, respectively, the restriction of Sy(p) to 1 and to Q9. The Neumann-
Poincaré operator is denoted by Ky : H™Y/2(2) — H™Y/2(%) and is defined as the extension of
the operator Ky : LQ(Z) — LA(2) such that

/ On, P(z,y)¢(y)do(y) for almost all x € ¥

in which n, stands for the unit outward normal vector to Qs at y € X. The operator Ky is not
self-adjoint because it is not symmetric with respect to the classical inner product of H Y 2(2). To
circumvent this difficulty, we introduce the sesquilinear form (-, -)g,, : H'2(2) x HV2(2) —» C
such that

(o, ¥)sy =1 — (¢, SE@b)H*l/?(Z),Hl/?(E)? Vo, € Hfl/Q(E)-
Thanks to an integration by parts and by using the jump relations (2.7), one can show that

o = /Q VSs(p) - VB (D). (2.8)

As a result, we infer that (-,-)g, is an inner product in H~*/2(X). We denote by || - ||s,, the norm
associated to this inner product. It is equivalent to the classical one [| - [lg-1/2(5) (see [35]). As

a result, (H_I/z(E), | - |lsy) is a Hilbert space. Note that one can easily see that we have the
identity

lellss = IS5y, @€ H V(D).
By endowing the space H™/2() with this inner product (-, -) S, one can show that KEP becomes
self-adjoint. Furthermore, we also have the following

Lemma 2.2.2. Let A € R and define X' = 1/2 — X. Then for all ¢ € HV/%(X) the function
u = Sx(p) €S satisfies
||TS2u - )‘UHH(l](Q) = |K5"e — Nollsg-

Proof. We denote by u1 = g, and uz = uq,. The first step is to compute explicitly the quantity

/Q (TS, u — M) - VS5 (@)

for an arbitrary v € H™Y 2(¥). Thanks to an integration by parts and by using the fact that
u,ngu € S, we obtain

/QV(TSQU —Au)-VSy() = =X [ Vu-VSy(®)+ (1-X) Vu - VSx (1)

Ql QQ
= ((Adpur + (1 = A)dpuz), SE(¢)>H71/2(2),H1/2(2)
By using (2.7)-(2.8) = (MES on +9n/2) + (1 = N(EKg"pn — ¢n/2),1) 55

= (KgPon — N, ) sy,
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Since for all ¢» € H™Y/2(X) we have ||Sg(w)||Hé(Q) = ||¢|| sy, one deduces that we have

Jo V(TG0 — ) Vou() _ (Kl = Nodlss ) . H™2(2)\{0}.

192 ()20 19ls
By taking the supremum over all ¢ € H™Y/2(X)\{0}, and by recalling that Sy : H"Y/2(%) — S is
an isomorphism (and also the fact that (S, || - HH}) () is a Hilbert space), we obtain the wanted
result:

178, u = Mullgy o) = 1 K5 e — Nellsy

Final result
Now, we have all the tools to show the

Theorem 2.2.1. The essential spectra of Tg, : S — S and Ky : HV*(2) — HVY3(X) are
linked by the relation
UeSS(TS%Q) =1/2 = 0ess(K3).

Proof. Since both operators are self-adjoint (the space H™Y/2(%) is endowed with (-,-)g,,), we
can use the characterization of the essential spectrum by means of singular Weyl sequences. The
fact that \ € oegs (TS ) implies that there exists a sequence (u,)nen of elements of S such that

||UnHH(1J(Q) =1 for all m € N,
Uy — 0 weaklly in S,

Tgsbun — Aup, — 0 strongly in S.

Since Sy : (H™Y2(2), || - lsx) — (S, ]| - ||H(1)(Q)) is an isomorphism, we introduce (p;,)nen the

sequence of elements of H™Y/2(2) such that Sx(pn) = uy, for all n € N. Easily, one can see that
l[onllg-1/2(s) = 1 for all n € N. Moreover, since for all ¢ € H'/2(%), we have

(o )5y = /Q Vu, - VE5(@)

and since Sx (1)) € S, we infer that (p)pen converges weakly to zero in H™'/2(2). According to
Lemma 2.4, we know that for ' = X\ — 1/2 and all n € N, we have

178, — M) = K5 0n = Nonllss -

This shows that K ¢, —\ ¢, converges to zero as n tends to +0c0. Consequently, \' € gegs(Ks).
The converse statement can be proved in the same way. |

As a consequence of the previous theorem, we obtain

1
Theorem 2.2.2. There holds k, € Iy, if and only if 2(’%4_1) € Oess(Ks'). And we have
Ky —
Ko + 1 a+1/2
Uess(Kgp) = {2(;(7 — 1)7 Ko € IE}a Iy = {a — 1/27 a € O'ess(Kgp)}'

Proof. We already know that k, € Iy if and only if 1/(1 — k) € aeSS(TSQ). According to the
previous theorem, we can say that k, € Iy, if and only if 1/2—1/(1 — k) = (ko +1)/2(ks — 1) €
Oess(Ks'). The second part of the proof is a simple consequence of the fact that the function
z+— (r+1)/(2(x — 1)) is bijective from R* to (—1/2;1/2) and that it inverse coincides with the
function z — (z+1/2)/(x — 1/2). |
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The previous theorem tells us how the critical interval is related to the essential spectrum of the
Neumann-Poincaré operator. When the interface © is smooth (of class €1 with 0 < a < 1),
one can prove that KEP is a Hilbert-Schmidt operator and, then, it is compact. Consequently,
its spectrum is composed by a sequence of real eigenvalues that has zero as only possible point
of accumulation. For a general interface of class €7, Kgp is not necessarily a Hilbert-Schmidt
operator. As a result, its compactness is not guaranteed. In Section 2.3, we are going to show
that when ¥ is of class €' the critical interval reduces to {—1}. This implies, using the previous
theorem, that Uess(Kfp) = {0}. With this in mind, we can show the

Lemma 2.2.3. When the interface X is of class €', we have 0ess(Kyf) = {0} and K :
H™/2(2) = HY2(D) is compact.

Proof. The fact that oss(Kyr) = {0} is a consequence of the fact that when X is of class €*
then Iy, = {—1} (see §2.3). It remains to explain why K" is compact. From the fact that Ky
is self-adjoint, we deduce that og;s.(Ks') (the discrete spectrum of K¢') is either composed by a
finite number of real eigenvalues or by a sequence (\,,)nen of real eigenvalues that tends to zero
as n goes to +00. In both cases, we define the space

F=( @ EWN)"
A€o gisc(KSP)

in which E()) stands for the eigenspace associated to A € 0gisc(K5¥) (note that by definition of
the discrete spectrum, F/(\) is finite dimensional). The space F' is then a closed subspace of the
Hilbert space (H™Y/2,|| - ||s,,). This implies that (F, | - ||sy) is also a Hilbert space. Furthermore,
without any difficulty one shows that F is stable by K and that K\ : F — F is self-adjoint
with a spectrum that is reduced to {0}. Consequently, the spectral radius of Ky : F — F is
equal to 0 and then K¢ vanishes in F. Using this result, we are going to show that K is the
limit of finite rank operators and then it is a compact operator. The proof in the case when
odisc(K) is finite is obvious. It remains to study the case when ogisc(Ks') = {An;n € N} where
(M)n is a sequence of real number that converges to zero as n tends to oo. Denote by F,, the
space F,, :== F @, E()\;). Clearly, for all n € N the space F, is stable by K. Moreover, the
restriction of K¢ to F, has a finite range. Let P, : H_I/Q(E) — F, be the orthogonal projector
of H"Y/2(%) into F, (with respect to (-,-)s,.) and define the finite rank operator K, := K& o P,.
One can easily see that
(K — Ko, u)s, | < max(IA])ul,

By letting n tend to 400 and using the fact that (\,) tends to 0 as n tends to infinity, we can
say that K¢ is the limit of (K, )nen and then it is compact. [

In the literature, the compactness of KEP for €' interfaces (in 2D) is established in [78] by using
technical tools related to the study of integral operator. The proof of the above lemma can be
see as an alternative (more simple) to the one presented in [78].

Let us finish this section by mentioning that by using the same localization techniques as in the
works of K.M. Perfeket et al [92, 104], one can show the following statement

Lemma 2.2.4. Assume that the interface X is as in (2.1). Then we have oess(Ky') = 0ess(K3Y ).
Recall that # = {x € R3,|z| < p,z/|z| € &/}

2.3 Study of the far problem

This section aims at studying the well-posedness of the far problem. Let us detail this a bit.

For 7 small enough (e.g. for 7 < 1/2) we define Q™ = Q\B(O, 7). Our goal is to study the

3The author would like to thank Charles Dapogny for suggesting this reference.
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well-posedness (in the Fredholm sense) of the problem
Find u € H}(Q7) such that — div(eVu) = f (2.9)

for an arbitrary f € (H{(Q7))*. We set Q7 := Q1N Q7, QF := QN Q7. The interface between QF
and Q5 is denoted by X7. It is smooth and meets the boundary of Q" orthogonally at 0B(O, 7).
As previously, the analysis of the well-posedness (in the Fredholm sense) of (2.9) is equivalent to
study the Fredholmness of the operator FT : H{(Q7) — (HL(Q7))* such that

(F u,v) = / oVu - Vudz, Vu,v € H)(Q7).

The main result of this section is given by the following

Theorem 2.3.1. Assume that T < 1/2. If kK, # —1, then the operator F is a Fredholm operator
of index 0. In particular, we have the estimate

lullig @y < CUEFullgrary- + lulliz@n), Yu € Hg(Q7)
with C' independent of u.

To prove the previous theorem, we will use localization techniques. For this, we need to study two
different versions of the problem. The first one is related to the problem near any point 2 € X7,
the second one is related to the problem near some point z € 37 N dB(0, 7). A complete proof
of the previous theorem will be given in §2.3.3.

2.3.1 Preliminaries

Let g : [0;1]> — R be a bounded function of class ¢ and let 0 < L. We define QF ¢ R? as
QF = ol ual Ut where QF, QF and ©F are defined as follows:

QF .= {(x,y, z) € R3 such that (z,y) € (0;1)? and g(z,y) — L < z < g(z, )},

QF := {(x,y,2) € R? such that (z,y) € (0;1)* and g(z,y) < z < g(z,y) + L},
»E .= {(x,y,2) € R? such that (z,y) € (0;1)% and z = g(z,)}.

We consider the operator AL : H{(QF) — (HA(QF))* such that for all u,v € H}(QF) we have
(ALy,v) = / oVu - Vo drdydz
QL

in which the function o is such that OloL = 01 and OlQL = 032, where 0 < o1 and o9 < 0. Our goal
is to find an explicit condition on k, := 09/07 in order to ensure that A, is an isomorphism. For
this purpose, we are going to use the T-coercivity method.

Lemma 2.3.1. Assume that o is such that max(|ks|, 1/[ks]) > (1+2(|Vg|lree(x) +4||Vg||%m(2)).

Then the operator Ag s an isomorphism.

Proof. The proof is a generalization of the one given in [50, Theorem 1.2.10] for the 2D case.
For all v € H}(Q), we define the functions u; and ug such that u; = UL € H'(QF) and

up = ugr € H!(QL). We introduce the operators T1, T : H{(QF) — HS(QF) such that

in Qf —uy + 2R in Qf
T (u) = uy in }: i To(u) = uy + 2Ra(uz2) in }:
—ug + 2R (u1) in Q5 U in Q5
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where Ry and Ry are the linear operators defined as follows

Rl(u1)($,y,z) = Ul(xayaQQ(%y) - Z) for (l‘,y,Z) € Q%
RQ(UQ)(I‘,?%Z) = UQ(%?J;QQ(J%?J) - Z) for (.T,y,Z) € Qf

One can check that for all u € HS(QF), we have Ry (u1)jne = R2(u2);sr = wxe. Moreover, one
can also see that R1(u1)jpornar = 0 and Ra(uz) gorngar = 0. This leads us to conclude that for

all u € H}(), the functions T} (u) and Th(u) belong also to H{(QF). As a result T) (resp. Tb)
defines a linear operators from H} (L) into itself. We define

VR (u1)ll12(0z IV Ra(u2)| 120t
lIR| = sup SO and Rl = sup sl

werb@yuzo  [Vuillezqr) werb@iyuzo  Vuzllieor

Now, by applying [50, Theorem 1.1.1], one can say that if
Vlkel > IBAll? or  [wo] > [|[Re]?,

then AL is an isomorphism. Therefore, we need to find upper bounds of |||R; ||| and |||Rz]||. Let
us start with |||Ry|||. First, observe that for all u € H}(Q)\{0} we have

/QL VR (u1) (2,7, 2) d:f;dgjdé:/ (02(R1(w1)))? + (05(R1(w1)))? + (0:(Ra(w1)))? didjdz.

L
2 QQ

By performing the change of variables (z,v,2) = J(Z,4, 2) (this is possible since .J is of class €
and J o J = I) and by observing that

aﬁ:Rl (ul)('f;v ga 2) = 83;’111(%', Y, Z) + 26:Eg($7 y) 62”1(337 Y, Z)
a@]Rl(ul)(i‘vga 2) = axul(xa Y, Z) + 28@/9(1:’ y) BZU1(SU, Y, Z)a

we obtain the estimate

/ VR (w1)|*(2, 9, 2) dédjdz =/ (Opur (z,y, 2) + 20,9(x,y) Dur (,y, 2)) 2dedydz
Qg of

+ /L (ayul (fﬁ, Y, Z) + 28y9(x> y) qul (fﬁ, Y, z))2dxdydz

Q1

—i—/ (O.ui(z,y, 2))*dedydz
ar

<A ||v“1‘|iz(gf)
with A = (1 4 2||Vgl|pee () + 4HVgHiOO(EL)). This means that [||Ry||[* < (1 + 2| VygllLee sy +
4||Vg||ioo(EL)). Working in a similar way (by exchanging the role of QF and QF), we find that
I|Ra||> < (1 + 2|VgllLee ey + 4||Vg||ioo(2L)). The lemma is then proved. [ |

Proposition 2.3.1. Assume that g € €1([0;1]?) is such that the function g* C(x,y,2) o2 —

g(x,y) satisfies O,g* = 0 (here n is the outward normal vector to QL) on QY NIL. Then Ag 18
a Fredholm operator of index zero for all K, # —1.

The assumption d,g' = 0 on INF NTL is equivalent to say that the normal vector to »l (which
coincides with Vg') is tangential to 9QF in 9QFNEL. This means that X meets 9QF orthogonally.

Proof. The proof is inspired by the proof of the a priori estimate obtained in [50, §1.3.4 | and
will be based on the use of localization techniques. Near each & € ¥, we denote by (Szyta, Wy)
a system of local coordinates of origin @ (in such way that the plane w, = 0 is tangent to vl at
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x). The existence of such system of coordinates is due to the fact that g is of class €. Near, any
x € XL the interface X can be seen as the graph of a function (sg, tz) — §%(sg, tz). Furthermore,
for all € =¥, we can find three positive numbers ag, by and d; < L such that the domain

Qm(amvbzm(sm) = {(Sm7tm;wm) ‘ ERS (_amQGm)atm € <_bm;bm)awm € <_6w+g$(3matm)§5w+gw(3m;tm))}

is a subset of QF. With this in mind, we can define the domains QF and QF such that QF (az, be, 6z) =
QlL NQ*(ag, bz, 0z) and QF (ag, by, 0z) = Q% N Q% (ag, by, 0z ). Regarding the definition of QlL and
QF, one deduces that the domains Q% and QF admit the representation

Q%(amabwﬂsm) = {(3m7tm7ww) ‘ Sz € (_am§aw)atm € (_wabw)aw:c € (gac(smvtw);(sw +§$(3m7tm))}
ng(awab:m&w) = {(Sazyta;aww) | Sz € (_aa:§ _aw)atw € (_bw;bm)aww € (_5w +§E(3$7ta¢);gm(sxatw))}-

When z € L NONY, thanks to the assumption made on the function g, we can find a new system
of coordinates (sg, tz, W) that is obtained by rotating the initial system of coordinates (in which
the plane w, = 0 is tangential to XL at x) and three positive numbers ay, b, and 6, < L such
that the domain

Qm(amubwyéw) = {(Swytwaww) ‘ Sz € (0, aw)’t$ S (Ovba}) and wg € (_5w+§m(5w7tm);5m+§m(8watm))}

is a subset of Q% in which (sg,t;) — §® is a function whose graph coincides with X;, near z. We
define the domains QF and QF as in the case of & € L. To simplify notations, we shall denote
by V the gradient operator with respect to (g, tz, Wy). Since (g, tz, Wy ) is obtained by rotating

the original system of coordinates, it follows that for all € ¥ and all u,v € Hl(Qm), we have

/ oVu - Vudzxdydz = / oVu - Vo ds®dt®dw®
0% (az,bz,02) Q

where QF = (—ag;az) X (—bg;bg) X (—0g;0z) when x € »E and Q% = (0;az) x (03b4) X (=023 0z)
when @ € XN O0F. Given that for all & € XL, the plane wy = 0 is tangential to XL at &, we
then have V§*(0,0) = 0 and since the function g* is of class €', we can say, using the fact that

ko # —1, that for all € XL, we can find a},, b} small enough so that
max(|ko |, 1/|ko]) > (14 2| VG ||Loe(mey + 4V |7 oo (s3e))
where X% := QF (al., b}, 02) Q5 (al, by, 02 ). As a consequence, by applying the results of the previ-

X T _~x)

ous lemma, we infer that for all & € XL the operator A% : H}(Q%(a, b, 6%)) — (HY(Q*(ak, bk, 65)))*
that is defined by

(AZu,v) = / oVu - Vo ds®dt*dw®, Vu,v € HY(Q%(ak, bk, 0%))
0= (a3,b3,02)

is an isomorphism. For all & € XL, we define x® € 2(QL, [0; 1]) that is equal to 1 in Q% (a% /2, b’ /2, 62/2)
and that vanishes in Q\Q*(3a} /4, 3b%/4,30,/4).

By noticing that U O%(ak/2,b%/2,0,/2) covers L and since the latter is compact, one deduces
z€X o
that there exist x1,...,x, € XL with n € N such that
L cQ,:= U Q%al/2,b5/2,0./2).

re{x1,...,Tn

To simplify, for all ® € {x1,...,x,} the domain Q% (a,, b}, d;) will be denoted by Q. To proceed,

x) Vx>

denote by Q° the domain Q° := Q\Q, and let x° € 2(QL,[0;1]) such that X‘OQO = 1 and that

n
vanishes near Y. Starting from the fact that for all & € Q, we have 1 < x%(z) + mei (x), we
i=1

deduce that for all u € H}(Q)\{0}, we have the estimate

n
ey < Ix g + 32 1wl (2.10)
1=
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For all * = x1,...,x,, we define the operator T% : H)(Q%) — H}(Q®) as in the proof of the
previous lemma. We also need to define the operator T° : H{(supp(x?)) — Hy(supp(x?)) such
that for all v € H} (supp(x?)), we have

v in Q1 Nsupp(x’)

0() —
() = —v  in Q Nsupp(x?).

The local ellipticity of the problem far from ¥ and the continuity of 7° : L?(supp(x’)) —
L2 (supp(x")) combined with the relation (2.10) lead us to the estimate

Ol iy < CHOV(), VT w)]
< Cl(div(oVu), x°T? (x°w))| + C{oVu - VX°, T°(x"u))|
+C| (UUVXO, VTO (Xou))LQ(supp(XO)) |
< C(IAZull g @ryyr + lullz @) lullnor)-

Above and in the rest of the proof, C' denotes a constant whose value may change from line to
line but that is independent of u. By replacing the operator T° by T% and supp(x°) by Q% in the
above calculi, we conclude that for all ® = x4,...,x,, we have the estimate

I ulliy gy < CUAEUl )y + llla@o) ulmyor.
With the help of (2.10), we infer that we have
HUHH})(QL) < C(||A£U|’(H5(QL))* + HU||L2(QL))-
By using that the embedding of Hj(QF) into L?(QY) is compact and that A% is symmetric we
deduce, by applying Proposition 2.8.2, that Ag is a Fredholm operator of index zero. |
2.3.2 Study of the problem in the vicinity the boundary

In this paragraph, we turn our attention to the study of the scalar problem near 9B(0, 7). To

do that, we start by defining the domain w™ = Q" N B(0,27) = B(O,27)\B(O, 7) and then we
introduce the operator C7 : Hy(w”) — (Hh(w7))* that is defined by the relation

(Cru,v) = / oVu - Vudz, u,v € Hy(w")

where 0 = 01 in w] (= Q1 Nw’ and 0 = o2 in w) = Qs Nw’. Since by assumption we have
T < 1/2, the interface ¥ meets the boundary of w” orthogonally at 0B(0,7) and at 0B(0,27).
Furthermore, one can easily see that thanks to the assumptions made on ¥ near the origin (see
the introduction of this chapter), we have

wi— = {(Tv 0, 90) |r € (7;27—)79(90) <b,p€ [0’ 27T]}
wy ={(r,0,9)[r € (1:27),0 < g(¥), ¥ € [0,2n]}

where g : [0,2n] — [0, 7] is a periodic function of €*(see the introduction of this chapter).

Proposition 2.3.2. Assume that k, # —1. Then the operator C. is a Fredholm operator of index
zero. In particular, we have the estimate

lullwry < CUICTull iy wry)s + lullizr))

where C' is a constant that does not depend in u.
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Proof. By working in spherical coordinates, one can easily see that for all u,v € H[l)(wT) we have
2T
(Clu,v) = / oVu - Viudr = / / o(w)((royu)(ro,v) + Veu - Vgt) drdw.
QT T S2

Above Vg stands for the surface gradient operator on S?. By performing the Euler change
of variables (r,w) — (t,w) = (log(r),w), we transform the domain w” into the domain @™ :=
(a;b) x S* where the constants a and b are given by a = log(7) and b = log(27). Furthermore, by
using the classical angular coordinates (6, ¢) € (0;7) x (0;27) to parameterize the sphere S, the
domain @" can be also defined as follows:

o ={(t,0,¢) |t € (a;b),0 € (0;7) and ¢ € (0;2m)}.

To proceed, we define the domains @] and @3, respectively, as the images of the domains w] and
w5 by the Euler change of variable. We also denote by X7 := & N &j.

For all v € H}(w™), we denote by 4 the function that is defined in @™ by the relation a(t,w) =
u(e!,w) for almost all (t,w) € @". By observing that d,ii(t,w) = Opu(r,w)dr = rdyu(r,w), we
deduce that the Euler change of variables induces an isomorphism between the spaces H(l)(wT)
and the space

Wh(@T) = {(t,w) — a(t,w)] / ' ((91)* + |Vgil|?) dtdw < 400 and @ = 0 on I }.

o‘:)‘r

Given that the function (t,w) — e’ is bounded in &7, we infer that the space W (&™) coincides
with H}((a;b) x §%). With this in mind, we can say that the Fredholmness of the operator C7 is
equivalent to the Fredholmness of the operator C7T : H}((a;b) x S?) — (Hi((a;b) x S?))* that is
defined as follows:

b
(Cyu,v) = / / elo(w)(0yudst + Vi - Vsb)dtdw, — u,v € Wh(&7).
a Jo

By observing that the function ¢ depends only in 6 and not in the other two variables ¢ and ¢,
and by noticing that %7 meets & orthogonally, one can adapt® the proofs of the Lemma 2.3.1
and the Proposition 2.3.1 in order to deduce that C7 is a Fredholm operator of index zero as soon
as kg # —1. This leads us to the wanted result. |

2.3.3 Final proof

Here, we shall present a proof of the Theorem 2.3.1.

Proof. The idea is to use localization techniques as in the proof of Proposition 2.3.1. We start
by defining the domains A™ = Q7 N B(0,27) and BT = Q"\B(0,37/2). For i = 1 = 1,2, we
also define the domains A] = A™ N and B] = B" N ();. Next, we introduce the interfaces

7 = ATN A7 and X5 = B] N BJ. It is worth to note that X5 N0N" = @) and that X7 C ¥, UXTE.

Given that X5 C Q7 is of class €* and by working as in the proof of the previous proposition (this
is possible since , # —1), one can show, that for all € % we can find Q" C Q a neighborhood
of & such that the operator A% : H}(Q%) — (H}(Q®))* that is defined by

(ASu,v) = / oVu - V71, Vu, v € Hy(Q)

“The proof is based on the use of local reflections with respect to 7 and local rotation of the system of
coordinates but this time the difficulty comes from the fact that we are working in spherical coordinates. Details
about these techniques can be found in §3.6.1.
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is an isomorphism (T-coercive). Denote by Q¥ the open set
0= | Q"
meg

By observing that Q¥ covers the compact set Bl := Q¥5NDB7, we can then find 1, ..., , € P
(with n € N) such that

n

SL CcBjc o

i=1
By applying the partition of unity theorem, we can find n smooth functions x1,...,x, € 2(Q7)
such that

o x— xi(x) €[0;1] forall all i = 1,...,n and for all x € Q,

e X is compactly supported in Q%¢,

n
. Z xi = 1in Bj.
i=1
The next step, is to introduce x° € 2(Q7, [0; 1]) that depends only in r = |x| and that is equal to 1
for |z| < 3/27 and that vanishes for 77/4 < |x|. This means that x° is supported in A™. We finish
the series of notations by introducing Y € 2(Q7, [0;1]) that is equal to 1 in Q7\(B(0, 37/2) U Bf)
and that vanishes near 7. Observe that we have

n

1< x(m) + X0(x) + > X' (), xeQ.
i=1

As a result, there exists 0 < C such that
Tl ey < CURU ey + Xl ary + 3 Il o) Va € HYQ).
i=1

Before getting into details, along the rest of this proof, we denote by C a positive constant whose
value may change from line to line but that is independent of u. Given that the function x vanishes
near 37 and by means of the T-coercivity approach (see the proof of Proposition 2.3.1), we obtain
the estimate

12l uppy < CUIAVOVullga ey + lullzn) lulliy o).

In the same way, given that the operators A% are T-coercive and working as in the proof of
Proposition 2.3.1 we arrive to the estimate

Il @) < CUIAY (VW) lgyamye + Iz lullyr fori=1,....n.

The next step is to deal with the term || XOUHH})( 47)- Unfortunately, this time, we can not use
T-coercivity approach. However, starting from the result of Proposition 2.3.2, we conclude that
we have the estimate

Xl ary < CUIdiv(oV (Cu) ez arye + Xz (ar))-

Given that the function x is independent of r = |z|, one can easily prove that for all v € H} (A7),
there holds div(cvVx?) € L%(AT). Moreover, we have the estimate

[div(ovVx)[[Lz(ar) < Cllvllgar
where C that does not depend in v. Combining this with the identity

(oV (x ), V)r2(ary = —(div(eVu), Xov)Lz(AT) + (u,div(avVXD))Lz(Ar) + (cuVx°, V)24
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for all u,v € Hy(A"), we get
1div(eV (") [l3 arye < C(Idiv(oVa) Iy ar)- + lullzary).

This leads us to
X ullgyary < CIdIv(oVU) |y @ry- + l[ullz@r))-

By combining all these estimates, we obtain
lullisary < CUEZulliyary- + lulliz@n)

where C' is independent of u € HS(Q7). Since the operator F is symmetric and since the
embedding of H(Q7) into L?(Q7) is compact, Proposition 2.8.2 guarantees that F is a Fredholm
operator of index zero. [ ]

2.4 Study of the problem in the whole space

In the previous section, we studied the behavior of Problem (2.2) far from the origin. We proved
that it is well-posed as soon as k, # —1. Here, we want to get a closer look on the situation near
the origin. Naturally, this leads us to study the well-posedeness of the problem

Find v € HL _(R?®) such that — div(cVu) = f.

Here the function o is defined as follows: ¢ = g9 in X and ¢ = o7 in RB\Y. The classical way
to study the well-posedness of the previous problem is to use the Fourier transform but since the
function ¢ does not have a constant behavior at infinity, this approach cannot be used. To cope
with this difficulty, and because the ¢ function is independent of r = |z|, we will use the so-called
Mellin transformation. The use of this transformation will allow us to study the well-posedness of
the problem in weighted Sobolev (Kondratiev) spaces [100, 101]. The analysis conducted in this
section will be of great importance since it will allow, on the one hand to determine a “simple”
condition ensuring the well-posedness (in the Fredholm sense) of (2.2) and on the other hand it
will help us constructing an alternative functional framework in which the scalar problem is again
well-posed when the original problem is ill-posed in the usual setting.

2.4.1 Weighted Sobolev (Kondratiev) spaces

For # € R and m € N, we introduce the (homogeneous)® weighted Sobolev (Kondratiev) space
(see [100]) associated to the punctured domain R?\ {O} denoted by Vi (R3) and defined as the

closure of Z(R3\ {O}) for the norm

1/2
lelhvy e = ( > ||ra'-m+ﬁa§go|ig(w)) .

laj<m

Here 7 = |z| and 2(R?\ {O}) denotes the space of infinitely differentiable functions which are
compactly supported in R®\ {O}. Clearly we have VJ(R?) = L*(R*). Moreover, one observes
that for all m € N* and § € R, we have the inclusion VgL(R?’) C VZ“__ll(R?’). It is worth to

note that for a given m € N and B1, 82 € R such that 81 < B2, we have Vi (R3) ¢ Vi, (R3)
and Vi, (R3) ¢ Vi (R3). It is also interesting to mention that thanks to the classical Hardy
inequalities, one can show (see [101, Theorem 7.1.1]) that V§(R3?) = H!(R3).5

®For the case of nonhomogeneous ones see [101, Chapter 7].
®Note that this is wrong in 2D.
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2.4.2 The Mellin transform

The Mellin transform is one of the classical integral transformations which is a useful tool to study
the properties of partial differential equations. Compared to other classical transformations such
as Fourier or Laplace transform, the Mellin transformation has the particularity to be adapted to
the study linear PDE in weighted Sobolev spaces and more generally to the study of linear PDE
near point singularities. Formally, by using this transformation, the study of the well-posedness
of a linear PDE near a singular point and the study of the asymptotic expansion of its solution
(when it is well-defined) near these points, reduces to the analysis of the spectral properties of
its Mellin transform (also known as the Mellin symbol). The goal of this paragraph is to recall
some of the basic properties of this transformation that will be used in the next sections.

Let r — f(r) be a smooth function that is compactly supported in R’ . The Mellin transform of
f, denoted by f()), is the function defined for all A € C by the formula:

f()\) = /000 r_’\_lf(r)dr

Note that since f has a compact support in (0;00), one can show that A — f (\) is analytic.
When f does not have compact support in (0;c0), f (M) is no longer defined for all A € C. As
we shall see later, the set of A € C for which f (M) exists depends on the regularity of f in
weighted Sobolev spaces. To simplify notations, for all v € R, we denote by £, the vertical line
Ly :={A € C|Re(N) =~}

Lemma 2.4.1. [102, Theorem 6.1.3] The Mellin transformation satisfies the following properties.

e Forallu € 2(R"), we have (rd,u)(X) = Ai(\) for all X € C.
o For allu,v € (R} ), we have the Parseval equality

/OO r2 =Ly (r)o(r)dr = L a(A)O(A)dA.
0

um g_ﬁ

As a result the Mellin transformation can be continuously extended as an isomorphism
between the weighted space V%71/2(R+) .= {u such that r®~?u € L2(Ry)} and the space

L2(0_p).

o Ifuce Vg1—1/2(R+) N V%Q—l/Z(R-i-) with B1 < P2, then A — G(\) is well-defined and holo-
morphic in the strip Re(\) € (—B2; —pF1).

o The inverse Mellin transformation of 4(\) € L%(¢_g) is given by

1

u(r) = 5in

Mi(A)dA € Vi p(Ry).
lp

Now, for u € 2(R3\{0}), we denote by (\,w) — @(\,w) the partial Mellin transform of u (with
respect to r = |x|) such that for all A € C and w € S?

+o0
U\, w) :/ A u(rw)dr.
0

Using the properties above, one can easily see that for all u € Z(R*\{0}) and all v € L?(S?) we
have

(00 oD = [ 60w / ” /S ords = [ e

7" >L2(R3)
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The previous identity will be used to define the Mellin transform of elements of the space (V}g (R))*.
In the rest of this paragraph, we focus our attention on the study of the action of the (partial)
Mellin transform on the weighted Sobolev spaces V%(R?’) ,Vé (R?) and (V}g (R3))* for an arbitrary
B € R. Let us start with the case of the space V% (R3). This is the subject of the next

Lemma 2.4.2. A function x — u(rw) belongs to the space Vg(Rg) if and only if (\,w) —
(A, w) (its partial Mellin transform with respect to r) belongs to the space L2(€_5+1/2,L2(82)).
Additionally, the norm

1 .
wm=</ (0 ) 22 g2) dN) /2

27 Je g1

is equivalent to || - va(R3)-

Proof. By definition of V%(Rg), we can say that u € Vg (R3) if and only if r — u(rw) € V%H (R4)
for almost all w € S? and w — u(rw) € L*(S?) for almost all » € R,. Then The result follows by
applying the second item of the previous lemma. |

With the same idea as in the previous proof, we obtain the

Lemma 2.4.3. A function rw +— u(rw) belongs to the space V,};(R3) if and only if the functions
A= U(A w) and X — Ai(\, w) belong respectively to L2(€_5_1/2, HY(S?)) and L2(€_5_1/2, L2(S%)).
Furthermore, the norm

1 R A
wngmé Ja(h, )2 2) + MA@ 2 g2y V)
—B—1/2

is equivalent to || - HV};(R3)-
For all A € C, we introduce the norm || - [|g1(s2 ) such that
ullr ey = (i gy + N ul2g6y2) V2 for all u € HY(S?)

Clearly, for a fixed X € C, it is equivalent to the classical H'(S?) norm. But when || tends to +oo
this is no-longer the case. In (H'(S?))*, we introduce the norm || - [l (111 (s2,2))+ Which is defined as
follows

|(f,w)

||f||(H1(SQ,\)\|))* = sup — = forall f e (Hl(SZ))*
werts2)\(o} llullars2,)0)

The last part of this section is dedicated to the study of the Mellin transform of elements of
the space (Vé(R:S))* with f € R. For simplicity, we limit ourselves to the case of distributions
with compact support in R*\{O}. Consider rw — f(rw) € (Vk(RS))* with compact support in
R3\{0}. Its Mellin transform f(},-) belongs to (H'(S?))* and is defined by the relation

<f()\, ')3U>H1(SQ)*,H1(SQ) = (f(r,w), T‘_)\_3U(w)>(V%(RS))*’V}B(RS) for all v € HI(SQ). (2.11)

Clearly, the last duality product is well-defined because f has a compact support in R?’\{O}. This
means that f(A,-) is well-defined for all A € C.

Lemma 2.4.4. Let f(r,w) € (V%(Rd))* with compact support in R3\{O}. Define g(r,w) =
r2f(r,w). We have the equality

1 A
HfHVé(R?’)* - % /651/2 ”g()\,w)”(H1(S27|>\D)* dA.
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Proof. The proof closely follows the one of Lemma 5.3 of [25] (that deals with the 2D case).
Given that Vé(R?’) is a Hilbert space, there exists a unique F' € Vé (R3) such that

(f,v)(vé(RS))*,V%(Rs) = / 22 VF T+ |2|*VF - Vode forallve V};(R?’).
R3

Furthermore, we have ”f”Vg(R3)* = HFHVE(I[@)' Since f has a compact support R*\{O} , it

follows that g is also compactly supported in R3\{O}. This implies that §(), -) is well-defined for
all A € C. Moreover, one can easily check that for all A € C, we have

(G(A w), h(w)) i (s2)- 11.(s2) = (f,r—A—lh(w»(Vé(Rg))*Né(Rg) for all h € HY(S?).

In particular for all A, = 8 —1/2 4 iy with v € R, there holds

ey ayen = [, [ P eRw)rds
+ / / P2 IV (1, w) - Vsh(w)drdw
s2.Jo o
~(Ay 4+ 1) / / 2=, Fh(w)drdw.
sz Jo

On the other hand, since F' € Vé (R?), the function A — EF(\,w) is well-defined for all A € l_g_1/2-
As a result, we obtain

(o™ T (W) vy @y vy@s) = (F(=8 = 1/2+ i), h(w))mn s2)
—(Ay + Dy = 28)(F(=8 — 1/2 + i), h(w))12(s2)
= (F(=B —1/2+i7), h(w))u1(s2)
HXM P (F (=B = 1/2 + i7), h(w))p2(g2).-

Above, we have used the fact that (A, +1)(28 — \,) = [\, |> = | — B — 1/2 + iv|*. Consequently,
one obtains that for all v € R, we have

19(8 — 1/2 + i, M sey- = I1F(—8 — 1/2+ iy, )i (s2—p—1/21i))--

By integrating the previous estimate with respect to v € R and by using the fact that || f Hvé (R3)x =
\|FHV%3(R3), we obtain the wanted result. [ |

2.4.3 Definition of the problem

Before defining the problem that we want to study, let us start by observing that for all u € V[l; (R3)
with 8 € R and all ¢ € Z2(R?*\{0}) we have

—/ div(eVu)pdr = / oVu - Vod.
R3 R3

Thanks to the Cauchy-Schwarz inequality, we obtain the estimate
[, divtoTuel < Clull el

with C' independent of u and of . This means that for all v € Vé(]RB), we have div(oVu) €
(Vl,ﬁ(R))*. The main goal of this paragraph is to study the well-posedness of the problem

Find u € V5(R?) such that — div(oVu) = f € (VL 4(R?))*. (2.12)
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Clearly, the well-posedness (in the Fredholm sense) of the previous problem is equivalent to study
the Fredholmness of the operator W? : Vé(R:S) — (VL 3 (R?))* such that

(Whu, v) = /Rg oVu-Vo  V(u,v) € V5(R?) x VL 5(R?).

Even in the classical configuration, i.e. when the function ¢ has a constant sign, the study of the
Fredholmness of the operator Wg is not an easy problem. The main difficulty comes from the
fact that we are dealing with a non-symmetric problem (except when 8 = 0) that is set in an
unbounded domain. The classical tool to deal with such difficulty is to use the Mellin transform.
The goal of the next paragraph is to investigate how this idea can be extended to the study of
the Fredholmness of the operator WE when the sign of ¢ is not constant.

2.4.4 Mellin symbol of the problem

As mentioned above, to study the properties of the operator Wg, we are going to use the Mellin
transform. For this, we need to define the so-called Mellin symbol of the problem. For all A € C,
introduce the operator %, (\) : H'(S?) — (H'(S?))* such that

e, = [

oVs® - Vg®dw — A\ + 1)/ c®ddw VP, & c H(S?).
SZ

S2
The link between the operators Wg and %, (\) is clarified in the next

Lemma 2.4.5. Let u € 2(R*\{O}). Then for all A € C, we have

PRWEU(N, ) = £ (i, ).

Proof. It is not difficult to check that the transformation u — r?u is continuous from Wk (R?) to
W};_Q(R‘?). This implies that for all u € 2(R*\{0}) we have r>W¥(u) € W1_3_2(R3)*. Further-
more, one can see that r2W¥(u) is compactly supported in R3\{O}. As a result, for all v € H(S?)
we have

(rPWhu(), )5 U)HL(S2)* HI(S?) = <W£u,T*A*1v>(V£B(R3))*7vé(R3) = / o(w)Vu - Vr A 5 de.

R3

On the other hand, there holds

+o0o

(Weu ) o = [ 0@ 1V sutr) - Vv(wldr)d
+o0

—(A+1) /82 U(u})(/O A (rdpu(rw) )o(w)dr)dw

= /82 o(w)(Vsi(A,w) - Vst(w) = AA+ 1)a(\, w)v(w))dw.

Consequently, by using (2.11), we infer that for all A € C and v € H'(S?) we have

(r2WHu(X, ), v) i g2y a1 (s2) = (Lo(A)i(A, ), 0()) i (g2 1 s2)

—

This means that r2Whu(),-) = Z,(A)a(A, ). The lemma is then proved. |
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2.4.5 Solvability of the problem

In this paragraph, we come back to the study of the Fredholmness of the operators Wg with
B € R. By combining the results of Lemma 2.4.5 and Lemma 2.4.4, we can say that the features
of the operator W? is directly related to the behavior of .Z;(\) along the energy line £_g_ /5.
Intuitively, one expects that if Z;()) is invertible along the line £_g_; o the operator Wg must
also be invertible. To prepare the ground, let us recall some classical definitions and notations,
that we brow from [101], concerning the spectral properties of .%,.

Spectrum of .Z,: a complex number A is said to be a non-regular point of .Z, if and only if
Z,(\) is not invertible. Otherwise we say that A is regular. The set of non-regular points is
called the spectrum of .%, and is denoted by A(.Z,). Clearly, the set A(.Z,) is closed in C.
Eigenvalues and eigenfunctions: a complex number )\ € A(.%,) is said to be an eigenvalue
of £, if and only if .Z,(\o) is not injective. All the elements of Ker (.Z,(Ao))\{0} are called
eigenfunctions of .Z,, associated to A\g. The number ¢4(Ag) := dim(ker(Xg)) € N* U {oo} is known
as the geometric multiplicity of .

Jordan chain: Let (A, ¢g) be a pair of eigenvalue and eigenfunction. If there is some ordered
family ¢1, ..., pn (with n € N* U {oo}) such that the system of equations

d.z,
d)\ (AO)QO =+ 30(/\0)901 = 0

1 d? £,
2 d\2

Go)oir + L2 a)pucr + L opr =0, k=2....m

is satisfied, we say that ¢, ..., ¢, is a Jordan chain of %, associated to Ao of length n + 1. The
functions @1, ..., @, are called generalized eigenfunctions associated to A. The maximal length of
the Jordan chain associated to (), ¢g) is called the rank of g and is denoted by rank(¢y).
Index, partial/algebraic multiplicity: Let A be an eigenvalue of %, and let (¢;);j=1 .., (\)
be a basis of Ker (Z,(\)). For each j = 1,...,14(A) we denote by (¢;k)k=o.,... rank(p;)—1 (With
©j0 = ;) a Jordan chain associated to (A, ¢;). The numbers r; = rank(yp;) are called the partial
multiplicities of X\. The largest one is called the index of A and is denoted by ¢(\). The sum of
these partial multiplicities is called the algebraic multiplicity of A and is denoted by ¢4 ().

The set {@j,k‘}jzl,‘..,bg( A),k=0,....x;(\)—1, is called a canonical system of Jordan chains associated to
A

Remark 2.4.1. Note that in the definition of Jordan chains, the generalized eigenfunctions are
not necessarily linearly independent. In particular, some of them may be zero.

Since the symbol .Z,, is associated with a second order PDE, we have the following

Lemma 2.4.6. Let (Ao, po) € CxHY(S)\{0} be a eigenpair of L. If there is no o1 € HY(S*)\{0}

such that
d %,

dA

(Ao)p + Z5(Xo)p1 = 0. (2.13)
then, the rank(pg) = 1.

Proof. In the particular case when A\g = —1/2, one can see that (2.13) holds when ¢ = .
The result is then proved for this particular case. Now, let us suppose that \g # —1/2 and
assume that 2 < rank(pg). As a consequence, by using the assumption made on ¢g, we deduce
that (2A\9 + 1)opp = 0. Therefore, we have ¢y = 0 which condradtics the fact that ¢g is an
eigenfunction of Z,(\g). [ |

Because of the change of sign of o, the study of the spectral properties of the family of operators
(Z5(N))aec does not fit into the general theory presented in [101]. A detailed study of the spectral
properties of (.Z,(\))xec is given in the next chapter. By adapting the results of §3.2.3, one can
prove (see Theorem 3.2.1) the
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Proposition 2.4.1. Assume that ks # —1. The spectrum of £, is composed by isolated eigen-
values with finite algebraic multiplicities. Furthermore, there exist two positive constants ro and
Yo such that

D = {z € C such that ro < |z —1/2| and |Re(z + 1/2)| < v0|Sm(z + 1/2)[} C C\A(L).
Besides, for all B € R such that {_g_y 5 N A(Z,) =0, there exists 0 < C? such that
lullir 2y < CONZeNullmr gy w € HY(S? ).

Remark 2.4.2. It is worth to mention that the discreteness of A(Z,) combined with the fact that
DX C C\A(Z;) allow us to say that for all B1, B2 € R such that p1 < B2, the set A(Z;) N{\ €
C|Re(X) € (B1,52)} is finite.

Now, we have all the tools to prove the following

Theorem 2.4.1. Assume that ko # —1. If B € R is such that {_g_1,5 N A(L,) = 0, then W5 is
an isomorphism. Moreover, we have the estimate

[ullvy@sy < CB||W5U||(VI_B(R3))*, u € VE(R?)

where C? is a constant that depends only in 5.

Proof. Let u € 2(R*\{0}). According to Lemma 2.4.5 we know that for all A € C we have

r;N?u()\7 ) = ZLr(N)a(A, ).

Since by assumption the operator £ () is invertible for all A € /_g_; 5, by using the results of

Proposition 2.4.1, we deduce that there is some constant 0 < C° that depends only on 8 such
that

a2 ay < COIr2Wouh, lmsz pys A€ gy

By integrating the previous estimate with respect to A along the line £_g_;/5 and by using the
result of Proposition 2.4.4, we arrive to the estimate

||u||V[13(R3) < CﬁHWBUH(V{B(RS))*a u € 2(R*\{0}).
The density of 2(R*\{O}) in V}; (R3) allows us to deduce the estimate
[ullvy@s) < CﬁHWEUH(vl_ﬁ(RB))*a u € VE(R?).

This shows that the operator Wf is injective and that its range is closed. By observing that for
all B € R we have Z,(—f —1/2) = %, (8 — 1/2) we infer that the operator W, # is also injective
and its range is closed. By noticing that (Wg)* = W;'B we then deduce that Wg is bijective.
Finally, the open map theorem allows us to say that Wg is an isomorphism. |

The proof of the previous theorem combined with the expression of the inverse Mellin transform
leads us to the

Corollary 2.4.1. Assume that r, # —1 and that {_g_y 5 is free of eigenvalues of £, then the
solution of (2.12) can be expressed in the following way

u(rw) = i g L (N2 f (A, w))dA. (2.14)
—B—1/2
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2.4.6 Asymptotic of the solution

One of the most important results of the Kondratiev theory for linear strongly elliptic PDE [100]
is the fact that it allows us to derive an asymptotic expansion of the solution at infinity and near
the origin. Interestingly, these results can be extended to a more general class of PDE. All we
need is to have a precise information about the Mellin symbol generated by the problem under
study. Before explaining how to obtain this expansion for the solutions of (2.12), we need to
define the so-called singularities of the problem.

Definition 2.4.1. Let x € 2(R?) be a cut-off function that depends only on r = |z| and that is
equal to 1 near the origin. We say that s is a singularity of (2.12) if and only if it has the form

(1) = x(r)r 3.~ 10g(r) e ()
s=0 "

where (ps)s=0,...n is a Jordan chain of £, corresponding to .
Now, we explain how these singularities are related to Problem (2.12).

Lemma 2.4.7. We have the equivalence: (ps)s=o,...n is a Jordan chain of £, corresponding to
A if and only if the functions

b1
sp(rw) =1 Z 3 log(r)°pr—s(w)
s=0 "

satisfy div(oVsg) =0 fork=1,...,n.

Proof. The proof of this result is given in [101, Theorem 1.1.5]. We limit ourselves to the proof
of the result for sg. Starting from the identity

div(oV (rpo(w))) = 1 ?(divs(cVspo) + A(A + Do) in R\{O},
we infer that
div(eV (' go(w))) = 0 in R*\{0} <= divg(cVspo) + A(A + 1)op = 0 in S2.
The result follows from the identity
(divs(aVspo) + A+ Dowo, @) = (LMo, ¢), ¢ € HY(S?).
|

From the previous lemma, we deduce that all the singularities of Problem (2.2) satisfy the equation
div(cVg-) = 0 near the origin.

Asymptotic of the solution

Now, we explain how one can find an asymptotic expansion of the solution to (2.12). The starting
point is to apply the Residue theorem to the formula (2.14) and to take profit from the fact (thanks
to Proposition 2.4.1) that if k, # —1, then near any \g € A(Z,) the operator .Z(\)~! has the
representation

1 L(/\O) 1 “+o0o )
TN =Y ——— A — \o)’B;.
Zy(N) ;(A_AO)J J+§O(A o)’ B;

Here all the A; are finite-dimensional operators, the B; are continuous operators and this result
is proved in [101, Theorem 1.1.2 |. By adapting the proof of [102, Theorem 6.1.5 |, we can prove
the
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Proposition 2.4.2. Assume that k, # —1. Let 1 < P2 € R such that the lines {_g /5 and
0_pg,_1/2 are free of eigenvalues of Z,;. Denote by A1, ..., Ay (with N € N*) the set of eigenvalues
of £, that are located in the strip —fy — 1/2 < Re(A) < —fB2 — 1/2. For each j = 1,...,N we
denote by

{Wi,s}k:h..@(Ai),s:o,...7nk(Aj)—1
a canonical system of Jordan chains associated to Aj. The number r;(N\;) stands for the j—th
partial multiplicity of N;. Let fo € (Vl_ﬁ1 R3)* N (Vl_/@»2 (R®))* and denote by u; € Vél (R3) (resp.
ug € Vé2 (R3)) the solution of (2.12) with f = fy. The function uy —uy admits the decomposition

N tg(X) sr(Xy)—1 1 A

ur(x) —ug(x) = E E E Cik,s r’\f—' log(r)°¢} j_s(w)  for almost all x € R3
; s! :
j=1 k=1  s=0

in which all the c; s are complex numbers.

Remark 2.4.3. Clearly, the coefficients c; s depend on the choice of the canonical system of
Jordan chains associated to each (\j)j=1,. n. An explicit formula for the coefficient ¢; ;1 can be
be found in [101]. The idea is based on the use of a well-chosen canonical system of Jordan
chains of £, that are associated to (—X\; — 1)j=1,. N (see [108, §5.4.1]) for which the so-called
biorthogonality condition (see [101, Theorem 5.1.1]) is satisfied.

2.5 Application: study of the problem in the unit ball

The results of this section are not essential to understand those of the next one. Therefore,
this section can be skipped in a first reading. In this paragraph, we are going to study the
Fredholmness of the problem

Find u € H}(B(O, 1)) such that — div(cVu) = f € (H}(B(0,1)))* (2.15)

where o = 09 in B(O,1) N % and o = oy in B(O,1)\¢. In order to simplify notations, we shall
denote by B the open unit ball of R3. Moreover, we denote by B, Bo the domains By := BNXK and
B := B\Bs. For all m € N and 3 € R, we define the space VZL(]R?’) as the closure of Z(B\ {O})
for the norm

1/2
Il s) = ( > Hr'a'mwassouiz(m) -

la<m

Note that for all m € N* and 8 € R we have Vi'(B) C Vgl__ll(B). Besides, one can see that for all
m € N and f1, B2 € R such that 81 < B2 we have the embedding Vi (B) C Vi (B). In addition

to that, by using the [101, Theorem 7.1.1] we can prove that H}(B) = V}(B). We also have the
following

Lemma 2.5.1. Let ® € HY(S?) then the function x — m®(w) (where (r,w) are the classical
spherical coordinates) belongs toe the space Vé(B) if and only if —1/2 — /2 < Re(N)

Proof. Easily one can show that = — r\®(w) € V}g(B) if and only if z — '®(w) € V%_l(B).
This means that  — r*®(w) € V4(B) if and only if —1 < 2(Re()) + 8 — 1) + 2. This ends the
proof. |

Instead of studding the well-posedeness of the (2.15) we are going to study the solvability of the
family of problems:

Find u € Vé(B) such that —div(cVu) = f € (VEB(B))*
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Note that when 3 = 0, the previous problem is nothing else than the problem (2.15). Without any
difficultly, one can check that the study of the Fredholmness of the previous problem is equivalent
to the study of the Fredholness of the operator LY : V}g (B) — (V1 3(B))* such that

(LBu,v) := /BaVu - Vo for all (u,v) € V%(B) X VI,B(B)

Theorem 2.5.1. Assume that o, # —1. If B € R is such that A(ZL,) NL_g_1/o = O then the
operator Lg s a Fredholm operator.

Proof. Let y € 2(R?,[0;1]) that depends only on r = |z| such that y(z) = 1 for all |z| € [0;1/2]
and x(z) = 0 for all |z| € [3/4,400). To simplify notations, we introduce D := {z € R?®||z| €
[1/2,1)}. By observing that the function 1—y is supported in D, we obtain the following estimate

Il gy < Cllxuliys gy + 10 = ullgy)s € VA(B(O,1)

in which C' is independent of u. Now by extending the function xu by 0 in R3\B we can say that
Xxu is then an element of the space Vé(R?’). The assumptions made on k, and 3 allow us to use
the results of Proposition 2.4.1. In particular, we have the estimate

Il ) < Cllxllvyes) < ClldiveTxwlr oy

with C independent of u. Using the fact that the function x depends only on r = |z|, we can
say that for all u € Vé(B) the function div(cuVx) belongs to L*(B) which is supported in D.
Furthermore, we have the estimate

[div(euVx)lv ey < Cllullizp)

in which C is independent of u. By Combining this result with the identity: for all v € V1 3 (R3)
we have

(div(eVxu),v) = —(aVu, Vxv)r2ms) — (u,div(cvVX))r2ms) + (div(ouVx), v)r2ms)  (2.16)
we obtain the estimate
V(e Tl gy < COLE@ g1 gy + lllzo))-
By adapting the results of §2.3, we also have the estimate
12 = x)ully oy < CUIdiv(eV (1 = x)u)ll gDy + lullzm))-
Using the same idea as in (2.16), we get the estimate
11 = x)ullgy < COLE@ - + Nz
As a consequence, we obtain the following estimate

lellgn ) < COLP @l o,y + Illasy)s e VHBO,1). (2.17)

By observing that the map u — wp from Vk (B) to L%(D) is compact and by using the results of
Proposition 2.8.1, we deduce that Lg has a closed range and that its kernel is finite dimensional.
Using the fact that .Z,(—8 —1/2) = %, (8 — 1/2), we infer that L;” has also a closed range and
a finite dimensional kernel. By noticing that L;” = (L2)*, we conclude that coker (L?) is finite
dimensional, this implies that Lg is of Fredholm type. |
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Proposition 2.5.1. Assume that rk, # —1. Let 0 < 3 such that A(Z,) N l_g_1/9 = ) then L;B

s injective and ij 18 surjective.

Proof. According to the previous proposition the operators Lfﬁ are of Fredholm type. Since Lg
is the adjoint of L;’B it suffices to show that L;B is injective. For this, let us suppose that there
exists some u € VI_B(B(O, 1)) such that div(cVu) = 0. The goal is then to prove that u = 0. For

this we are going to use the Kelvin transform and the fact that in our case the operators Wfﬂ
are isomorphism. We define the function @ such that

i )_{U(r,w) ifr<1
e = —u(l/ryw)/r if 1<

Denote by B¢ = R*\B(O, 1). According to Lemma 2.8.3, we can say that Uge € VE(BC). Since @
is continuous across the unit sphere S? and since V1 3(B(0,1)) C Vé (B(O,1)) we conclude that
U € Vé(R3). To proceed, we denote by B! (resp. B;!) the image of Blgvsp. Bs) by the map
(r,w) — (1/r,w). Note that we have B; UBT! = % and By UB5 ' = R3\Z. The next step is to
extend the function o to R? as follows

01 in RS\y
o =
oy X .

To end the proof, we are going to show that the function @ satisfies the equation div(eVa) = 0 in
R*\{O}. Since @ € VE(R?’) this will implies that W2 (@) = 0 and then by applying Theorem 2.4.1
we will be able to deduce that & = 0 and thus uw = 0. Starting from the fact that the function u
is harmonic in B; and Bs and by using Lemma 2.8.1 we deduce that @ is harmonic in Bl_1 U Bz_l.
It remains to prove 00, is continuous across the unit sphere and across the interface between
Bl_1 and By L For the case of the unit sphere, the continuity of 09, follows from the fact that
o is continuous. It remains to explain why 00, is continuous across B; N By. This comes from
the fact that 08, is continuous across B' N By ! and from the fact that the Kelvin transform
acts only in the radial direction. The Lemma is then proved. |

In the particular case 8 = 0, the results of the previous proposition can be refined.
Theorem 2.5.2. Assume that k, # —1. We have the assertions

o if MLy) Nl 1) =10 then LY is an isomorphism.

o IfANZLs)N Lo # () then the operator Lg is not of Fredholm type.

Proof. The proof of first statement is easy. Since Lg = L;B , the previous proposition allows
us to say that Lg is bijective. Since Lg is continuous the result is then a direct consequence
of the open map theorem. The proof of the second statement follows the lines of the proof of
Proposition 2.6.1. [

The previous theorem gives us a simple way to characterize the set of contrast s, for which the
near problem (2.15) is ill-posed in the Fredholm sense. Since the existence of eigenvalue on the
energy line £_; /5 is equivalent to say that the problem (2.12) has singularities that coincide near
the origin with

k
Spk(rw) = P /2t Z log(r)*/slpp—s(w)
s=0
where n € R and (o, ..., ps—1) is a Jordan chain associated to —1/2 4+ in. The previous theorem

tell us us that that the existence of such singularities is the main cause of the absence of Fred-
holmness of the problem (2.15). In accordance with the vocabulary used in the 2D configuration
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Figure 2.3: Examples of propagating singularities (imaginary parts).

[25, 50], these singularities will be called propagating (or black hole) singularities. A more
visual description of the behavior of these singularities is given in Figure 2.3.

From a physical point of view these singularities can be interpreted as waves that propagate toward
or outward the conical tip, see the next section for more details. From a mathematical point of
view the existence of these singularities implies that the space H(l)(B) is no long the appropriate
framework in which one has to set the problem. Instead, one has introduce a wider framework
that contains these singular functions (or some of them) in order to restore Fredholmness. Since
for all 0 < 8 the functions s, s belongs to the space V};(B), a natural choice is to work in the

space Vé (B). Unfortunately the next proposition shows that this is not possible.

Proposition 2.5.2. Assume that k # —1 and A(ZL;) NL_1 /5 # 0 then for all 0 < (3 the operator
L2 (resp. L;7) is not injective (resp. not surjective).

Proof. Since the L;B ) is the adjoint of ij it suffices to prove that Lg is not injective. For this we
shall distinguish two situations: the fist one when we can find n € R* such that A\, := —1/2+in €
A(Z;), the second one is when A(Z,) Nl_y /5 = {—1/2}.

The first case: We suppose that there exists € R* such that A\, = —1/2+1in € A(Z,). Denote
by ¢, a real valued an eigenfunction of %, associated to A, (this is possible because .Z,(\) is

symmetric when Re(\) = —1/2). Since (A, ) is a pair of eigenvalue and eigenfunction of .%.

We then introduce the function @, (rw) = r*"¢,(w) — r*p, (w). Clearly, the function ®, belongs
to V};(B)\{O} and satisfies div(cV®,;) = 0. This ends the proof for this case.

The second case: Here, we suppose that A(Z,)Nl_; 5 = {—1/2}. Denote by g an eigenfunction
of %, associated to —1/2. Without any difficulty we can check that (g, ) is a Jordan chain
associated —1/2. This means that the functions ®g(rw) := r~/2pp(w) and &1 (rw) := r~/2(1 +
log(r))po(w) satisfy the equation div(eV®;) = 0 for i = 0,1. This implies that the function
x — log(r)p(w) € Vk(B)\{O} belongs to the kernel of L”. The result is then proved. |

What we learn from the proof of the previous proposition is the fact that in order to construct a
new functional framework in which the problem is again well-posed one need to incorporate some
of the propagating singularities and not all of them. Using the waveguides terminology, one has
to work with just the outgoing ones in order to construct a functional framework that leads to
physical solution of the problem. This will be clarified in the next section.

Im(s)
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2.6 Study of the initial problem

In this section, we return our attention to the analysis of the initial problem (2.2). The goal
is to explain how to combine the analysis of the far problem and the near one in order to get
a clear information about the well-posedness of (2.2). This section is divided into three parts.
In the first one, we explain how to use the existence of propagating singularities of the problem
(see Definition 2.6.1) in order to characterize the critical interval Iy. After that, by making use
of the Mandelstam principle [112, 103] we explain how to construct several (an infinite number)
of functional frameworks in which the Fredholmness of the problem is recovered for contrasts
inside the critical interval. The last part is devoted to explain how to use the limiting absorption
principle in order to select, among these mathematical frameworks the one that leads to the
physical solution of the problem.

2.6.1 Characterization of the critical interval

Let us start by defining the propagating singularities of the problem (2.2). Once for all, in all this
section, we denote by x a cutoff function that is equal to 1 near the origin and that is supported
in B(O,1). It is important to mention that all the results obtained below are independent of the
choice of the function .

Definition 2.6.1. Assume that the function o is such that k, # —1 and £_1 ;o N A(L,) # 0. Let
Ay = —1/2+1in € A(Z,) with n € R. We say that a function s is a propagating singularity of the
problem (2.2) (or equivalently of A, ) if and only if it has the form

(/2 y log ()
s(rw) = x(ryr 2+ S B )
s=0 :

where k € N is such that (o, ..., k) is a Jordan chain of £, associated to .

It is worthy to note that any propagating singularity of the problem (2.2) belongs to L*(Q)\H!(Q)
and satisfies the equation div(cV.) = 0 near the origin (see Lemma 2.4.7). Furthermore, it will
be interesting to mention that any propagating singularity s is such that div(cVs) is compactly
supported in Q and belongs to the space L%() (this a consequence, in particular, of the fact that
the cutoff function x depends only in r = |x| while o/g(0,1) does not depend on it).

Proposition 2.6.1. Assume that the function o is such that A, has a propagating singularity.
Then A, is not of Fredholm type.

Proof. We proceed by contradiction. Let us suppose that the operator A, is of Fredholm type.
Given that the embedding H)(Q2) ¢ L?(Q) is compact, one can then use the Theorem 2.8.1 to
deduce that there exists 0 < C' such that

lulli @) < CUlAul - + lullz()) for all w € H(€).
0 0

Our goal is then to contradict this estimate. To do so, we shall explain how to construct a
sequence (un)nen of elements of H}(Q) such that

nkrfoo l[un 13 (0) = +o0 and || Agun | g1 (@))+ + [[unllL2(o) remains bounded as n — oco.
Since by assumption we know that A, has a least one propagating singularity, we can say that
there exists 7 € R and ® € H'(S?)\{0} such that the function s(rw) = r~/27"®(w) satisfies the
equation div(oVs) = 0 in R? (see Lemma 2.4.7). For all n € N, we denote by s,,, u,, the functions
sn(rw) := r/"s(rw) and u, (rw) := x(r)r'/"s(rw) (recall that y is supported in B(0,1) and equal
to 1 near the origin). Without any difficulty, one can see that we have . ETOO [t [ 1120 = +o00.
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To end the proof it remains to study the behavior of HAounH(Hé(Q))* + lunlliz ) as n — +oo. By
observing that s belongs to L? near the origin and by using the dominated convergence theorem,
we infer that [|un[|12(q) converges as n tends to 400 to || xs|r2(q). As a consequence, we just need
to study the behavior of HAgunH(Hé(Q))* as n — +oo. Given that 2(Q\{O}) is dense in H}(Q)
(see [101, Theorem 7.1.1]), we deduce that

(O'V’U,n, VU)L2 (o)
Ao (un) 130 = sup @,
veg@\oioy vl q)

Interestingly, it can be shown (following the results of [101, Theorem 7.1.1]) that we have the
estimate
lrvllLe0) < Cllvlly o (2.18)

with C' that does not depend in v. In the other hand, one can check that for all v € 2(Q\{O})
we have

(0Vun, Vu)i2(0) = (05, VX, VU)12(0) + (80, div(0vVX))12(0) — (div(0Vsn), X0)12(supp(x)-

Note that above, we have used the fact that div(cVs,) € L*(Q2) and also the fact that for all
function v € H) () we have div(cvVy) € L*(Q) which is true because x depends only on r and
then its normal derivative vanishes at 3. The next step is to observe that we have the following
estimate

(050 VX, VU)12(0) + (80, div(ovVX))12(0)| < ClisallLz@)llvllm o)

in which C is independent of v € H)(Q) and of n € N. As a result, to finish the proof it remains
to study the term (div(o'Vsy), XV)1.2(supp(y))- BY observing that

(div(eVsy,), XU)L2(supp(x)) = (rdiv(aVsy), TﬁlXU)LQ(S“pp(X))

and by means of (2.18) For this, we are going to show that |[rdiv(oVsy)||r2(supp(y)) tends to 0 as
n tends to oo. A direct calculus (using the relation div(cVs) = 0 in B(O, 1)) yields

rdiv(oVsy,) = o r /324 0(2(=1/2 4 in) + 1 — 1/n)®(0, ¢) /n in B(O, 1).

Introduce some 0 < 79 < 1 such that supp(x) C {z € R®||z| < ro}. By remarking that (2(—1/2+
in) + 1 — 1/n)®(0, ¢) is uniformly bounded in L?(S?) with respect to n and by means of the
identity

70 , 1 [7o 1
/ ’rl/n—3/2+m/n’2r2dr _ 2/ ,,,2/n—1d7, _ 7(7,0)2/71 < C/TL
0 n 0 2n

with C independent of n, we obtain the wanted result. |
This leads us to the
Theorem 2.6.1. Assume that k, #= —1. Then the following statements are equivalent:

1. The operator A, is a Fredholm operator of index zero.

2. The function o is such that A, does not have any propagating singularity.

Proof. Regarding what we have proved in the previous proposition, it is enough to show the direct
implication ("2’ implies '1’). Since by assumption A, does not have any propagating singularity
and Kk, # —1, we infer, thanks to Theorem 2.4.1, that the operator W : VA(R3) — (V{(R?))* is
an isomorphism. Given that V{(R?) = H'(R?) (see §2.4.1), we then obtain the estimate

ullyy sy < C1lldiv(oVu)||m gs)- for all u € V5(R?) = H'(R?)
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with C' independent of u. Now, take xo € Z(Ry, [0;1]) a cutoff function that is supported in [0; 1]
and equal to 1 near 0. Thanks to the previous estimate we get

Ixo(r)ulls @)y < Clldiv(oV (xo(r)u) | gs)- for all u € Hy(€).

Using the fact that yo depends only on r and working as in the proof of Theorem 2.5.1, we arrive
to the estimate

Ixo(r)ullay @) < Cldiv(eVu)ll gy + llullz ) for all u e Hy(€2)

with C that does not depend on u. On the other hand, by working as in the proof of Proposition
2.3.1, we deduce that there exists 0 < C such that for all u € H}(€), we have

11 = x(M)ullfy o) < CUIdiv(eVu) | @y- + lulliz@))llulla g for all v e Hy(€).
By combining the last two estimates, we conclude that there is 0 < C we have
lullgy o) < CUIdV (e V)l - + lullieo)) for all u € Hy(€).

This is enough to deduce, thanks to Proposition 2.8.2, that A, is a Fredholm operator of index
Z€ro. |

Remark 2.6.1. In the next section, we will show that when propagating singularities exist (and
ke # —1) the kernel of A, is finite dimensional. Since A, is symmetric, the dimension of
coker (A, ) is then finite. As a consequence, we then deduce that when k, € Is\{—1}, the absence
of Fredholmness of Ay is caused by the fact that its range is not closed in (Hy(Q))*.

As a consequence of the previous theorem, we conclude that the set Ix\{—1} coincides with the
set of contrasts k. for which A, has at least one propagating singularity. In other words, Is\{—1}
is equal to the set of contrast k., for which the the symbol .Z, has at least one eigenvalue in the
energy line Re(\) = —1/2. With this in mind and by using the results of §3.4.2 we arrive to the
following

Theorem 2.6.2. In the case of circular conical tips g(0) = a € (0,7/2], the critical interval Iy,
(that will be also denoted by 1,) is given by

2F1(1/2,1/2,1, cos*(@/2)) 2F1(3/2,3/2, 2, sin*(/2))

Iy =1, =[-1, oF1(1/2,1/2, 1,sin2(a/2)) 2F1(3/2,3/2,2, cos?(a/2))

]

in which oF1 stands for the Gauss hypergeometric function (see Appendiz §3.6.2).

When a = 7/2 (the locally symmetric case), one can easily see that I, = {—1} (this is coherent
with the results of [50, Theorem 1.2.1]). For the case o € (7/2;7) the expression of Iy, is given by
Iy, = 1/I;_,. Compared to the 2D case, the result of the previous theorem is a little bit surprising
because Iy, is from one side of the value k, = —1. For the case of a general smooth conical tip,
Is, cannot be calculated by hand and numerical tools must be developed to do so.

2.6.2 On the use of the Mandelstam principle to recover Fredholmness of the
problem

Along this section, we suppose that the function o is such that k, € Ix\{—1}. This means that the
operator A, is not of Fredholm type. Our goal is to explain how to use the Mandelstam principle
in order to construct a functional framework in which the scalar problem is again well-posed in
the Fredholm sense. Before getting into details let us start with some preliminary results.
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Preliminaries

We start by defining the weighted Sobolev spaces that are associated to the domain Q\{O}. For
all § € R, we define the spaces V%(Q) and Vk(Q) such that

V%(Q) = {u|r’u e L3(Q)} and Vé(Q) = {u|r? 1w e L2(Q) and r’Vu € L2(Q)}.

Classically (see [102]), the space Z(Q\{O}) is dense in V%(Q) and Vé(Q) for all 8 € R. From their
definitions, one see that Vé(Q) C V%_I(Q) for all 8 € R. It will be also interesting to mention
that for all u € Vé(Q) we have v, € H'(w) for all open subset w C Q\{O}. When 8 = 0, we have
VI(Q) = L2(Q) and V{(Q) = HY(Q) (see [101, Theorem 7.1.1]). Now, we introduce for all 5 € R,
the operator such that A” : Vé(Q) — (Vl_ﬁ(Q))* such that

(APu,v) =: /QO’VU -Vv  forall u e V}g(Q) and v € Vl_ﬁ(ﬂ)

By means of localization techniques (using radial cutoff functions) and using the results of The-
orem 2.3.1 and Theorem 2.4.1, one obtains the

Proposition 2.6.2. Assume that ks, # —1, then for all f € R such that £_g 1o N A(ZL;) = 0
the operator Afﬁ is of Fredholm type.

To proceed, we denote by N; the number of eigenvalues of %, that are located on the energy
line /_; /5 and denote by A1,..., Ay, the elements of the set A_; /5 := £_1/5 N A(Z,). For each
j=1,..., Ny we denote by {Soi7s}k:1,...,Lg()\]'),.s:o,...,fik()\j)—l a canonical system of Jordan chains
associated to Aj. Each A\; (j = 1,...,Ny) generates (q(\;) propagating singularities that are
defined as follows: for all j =1,..., N,k =1,...,14();),s =0,...,Kkt(A\;) — 1, we have

N log(r)P
sk = X(r)r ;. : Pr,s—p(@) (2.19)
p=0 )

As consequence, we have defined T, propagating singularities with

T, = Z ta(N).

)\GA,l/Q

As by assumption the function o is such that k, # —1, the set A(.%,) is discrete without any
finite accumulation point (see Proposition 2.4.1). Besides, since C\A(%,) C D} (see Proposition
2.4.1), we can define the positive number

Bo :=min{1/2 + Re(\) | X € A(Z,) and —1/2 < Re(N)}.
Since the set A(.%,) is symmetric with respect to (—1/2,0) we can say that

{AeC[Re(N) € (—Bo—1/2;80 — 1/2)} N ML) = Ay o
By adapting the results of [102, Chapter 6 |, we obtain the next

Proposition 2.6.3. Assume that K, # —1 and let § € (0;5p). Then we have the following
assertions:

1. If there exists u € VE(Q) such that div(cVu) € (VE(Q))* C (VI_B(Q))* then u decomposes
as
¢ tg(Ag) (X)) —1 i
u=1u-+ Z Z Cjk,sSjk,s With U € Vl,B(Q) and cjps € C
j=1 k=1  s=0

in which the functions s; ;1 are defined in (2.19).
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2. index(A?) — index (A ) = T,.
3. ker(AZP) is independent of B € (0; fo).

Remark 2.6.2. Since H)(Q) C Vé(Q) for all 5 € (0; By), the Proposition 2.6.2 allows us to say
that for ks, # —1 the kernel of A, is finite dimensional. Furthermore, thanks to the previous
proposition we obtain the following property: if u € Hy(Q) is such that div(oVu) € (Vé(Q))* for
some (B € (0; By) then u € Vl_ﬁ(Q)

As a consequence of the previous proposition we obtain the

Lemma 2.6.1. Assume that k, # —1. The number T, is even. Furthermore, for all B € (0; Bo)
we have

—index(A™") = index(A®) = T, /2.

Proof. Since A? is the adjoint of A?, we obtain index(A”) = —index(A~?). Combining this with
the fact that index(A?) — index(A~?) = T, we get T, = 2index(A?). [ |

We also have the

Lemma 2.6.2. Let \g € £_1/5 N A(Z) then Ao € 0_y 2N A(ZL). Furthermore if (o, - .., ps) is
a Jordan chain of £, associated to X then (@o, ..., @s) is a Jordan chain of £, associated to \g.
Furthermore, if —1/2 € A(%,) then 1o(—1/2) is even.

Proof. By remarking that for all ¢ € N and all ¢,v € H'(S?) we have

e (o)o ) = (o (o), 0)

we obtain the first part of the statement. The second part follows from the fact that T, is
even. -

From a physical point of view, the fact that the number of propagating singularities is even can be
explained by the fact that we have two kind of propagating singularities: those which propagate
toward the conical tip and those which propagate outward conical tip. For each A\;,7 =1,..., ]V,
we define the space of propagating singularities of singular exponent \; that is defined by

S(Aj) :==span{sjr s, k=1,...,19(Nj),s =0,...,8,(N;) — 1}

in which s;, s are defined in (2.19). Next, we denote by § the space of propagating singularities
of the operator A, :

§:= @ SN =span{sjp,j=1,....N,k=1,...,14(Nj),s=0,...,5c(N;) — 1}
NEA_y s

again s; ;3 are defined in (2.19). Clearly T, = dim(8). To simplify notations, we denote by
Ny =1T5/2 € N and we enumerate the singularities s ; in the following way si,..., 5o, . This
means that 8§ = span{s;|j = 1,...,2N,}. In the next paragraph, we are going to explain how
to use the so-called Mandelstam energy radiation principle [112, 103] in order to decompose the
space 8 into the sum of two sub-spaces 8 (a space of outgoing propagating singularities) and 8~
(a space of incoming propagating singularities). The reason why we have chosen to work with
Mandelstam principle (i.e the direction of propagation of a propagating singularity is determined
by the sign of its energy flux near the origin) instead of the classical Sommerfeld radiation
principle (i.e. the direction of propagation of a propagating singularity that is associated to
Ap = —1/2+1in € A(Z,) with n € R is determined by the sign of n) is the fact that Mandelstam
principle allows us to incorporate the case when propagating singularities have a logarithmic
growth near the origin (see [114, §5.3] for more details).
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The classification of propagating singularities by the Mandelstam principle
The Mandelstam principle relates the direction of propagation of a propagating singularity s € 8

to the sign of the imaginary part of its energy flux

Q(s) := lim 0(50,5 — §0,5)dw.

e—0 |z|=¢

Let us explain why the function Q(s) is well-defined for all s € 8. To do so, we start by observing
that for all s € 8 the functions div(oVs), div(cV5) belong to L*(Q) and are compactly supported
in Q\{O}. This implies that div(cVs)s—div(cV35)s € L' (Q). Applying the dominated convergence
theorem and integrating by parts we can write that

/ div(cVs)s — div(cVs)s = lim div(cVs)s — div(cVs)s = lim 0(80,5 — 50,5)ds.
Q =0 JOo\B(0,e) €20 J|z|=¢

This shows that Q(s) is well-defined for all s € 8. Furthermore, one can see that Q(s) is purely
imaginary for all s € 8. Observe that the value of Q(s) is independent of the choice of the cutoff
function x in (2.19). Now, we present the definition of outgoing and incoming (with respect to
the Mandelstam principle) propagating singularities.

Definition 2.6.2. A propagating singularity s € 8\{0} is said to be incoming (resp. outgoing) if
0 < SIm(Q(s))(resp. ISM(Q(s)) <0). If Q(s) =0, we say that s is unclassified.

In the following, we will prove that one can find a basis of the space 8 that contains N, outgoing
propagating singularities and N, incoming ones. For this we start by introducing ¢: 8 x 8 — C
the symplectic, i.e. sesquilinear and anti-Hermitian, form associated to the quadratic form Q.
For all u,v € §, we set

q(u,v) = /Q div(oVo)u — /Q div(oVu)o.

It will be interesting to note that, by means of the dominated convergence theorem, we have

q(u,v) = lim o(0ruT — u0,v)ds for all u,v € 8.

e—0 |z|=¢

Observe that for all s € 8 we have Q(s) = ¢(s,s). It will be also interesting to mention that for
all s € & we have

q(?, E) = *Q(575)'

Let us recall the definition of a non-degenerate symplectic form.

Definition 2.6.3. Let h: 8 x8 — C be a symplectic form. We say that h is non-degenerate if the
matric (h(sj,sk))j,kzlwmvg is monsingular or equivalently if the following statement is satisfied:

x € 8 such that h(z,y) =0 for ally € § = x = 0.
Proposition 2.6.4. The symplectic form q is non-degenerate.
Before starting the proof of the previous proposition, let us, first, prove the
Lemma 2.6.3. We have the following assertions:
1. Let \, X' € A_y 5 such that X # X' then for all (u,v) € S(A) x S(X) we have q(u,v) = 0.

2. Let X € A_y 5. For all u € S(A\)\{0} there exists u' € S(\) such that q(u,u') = 1.
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Proof. Foreach j =1,..., N; we denote by {9025};6:17._%9()\].)75:07“_7,%(,\].)_1 a canonical system of
Jordan chains associated to A; € A_; /o and we define the functions s; ;. s as in (2.19). As explained
in [70, §3] or [108, §5.4.1], for each j = 1,..., Ny, we can find {Q/)‘Z;7s}k:]-,.n,bg(Aj),sZO,u-,Nk()\j)_l a
canonical system of Jordan chains of ., (this is because the operator div(cV-) is formally self-
adjoint) associated to —\; — 1 = ); (because \; € {_1/2) such that the functions

< log(r)?
k,s—p

5;',k,s : (W), k=1,...,14(Nj),s=0,...,Kk5(N;) — 1,

satisfy the relations

— /R3 diV(Uvsj,k,s)EQ'/’k/’S/ = 5j,j/5k7k,6S,Hk(Ajl)*$/*1 (220)

where 0.. stands for the Kronecker symbol. Given that the functions div(oVs; j s) are supported

in B(O, 1) and since div(cVs), ;) =0 in R? (see Lemma 2.4.7), we obtain

— 3 /
0,370k kO iy (Ay0) /=1 = — /Q div(o Vs, k)8 g o

prg —/ diV(Uv5j7k7S>5g/’k/’s/+/ diV(UVS},}kl’S/)ﬁj,hs
Q Q

= lim 2] (5 11 9 OrS s = SjksOrSl o) = (8,50 X(T)551 o o)
r|=€

The first item is then proved by observing that the functions (x(r)s’ ;. ;)j.k,s form a basis of S(X;).
The second item is direct consequence of the previous biorthonormality relation. |

Remark 2.6.3. Another interesting way to prove the previous result is to take profit of the fact
that the operator div(oV-) is formally self adjoint and to use the results of [114, Chapter 5].

Now, we can give a proof to the Proposition 2.6.4.

Proof of Proposition 2.6.4. Assume that there exists u € 8§\{0} such that ¢(u,v) =0 for allv € 8.
Since § = @®xen_, ,,5(A), the function u decomposes as u = uy + - -+ + uy, where u; € S(A;) for
i =1,...,N;. Since u # 0, there exists i* € {1,..., Ny} such that u; # 0. According to the
previous lemma, we can find uj. € S()\;+) such that g(u;+,uj.) = 1 and g(uj,uj») = 0 for all
j # i*. This means that q(u,u..) = 1, which leads to a contradiction. [

The fact that ¢ is non-degenerate implies that its rank is equal to 2/N,. Now, we can show the

Theorem 2.6.3 (The Mandelstam principle). There exists ﬁli, e ,5]ivd a basis of the space 8

such that
q(sf,s,f) = +idj 1, q(sf,ski) =0 and 5;r = 57 forall j,k=1,...,N, (2.21)
where 0; 1. is the Kronecker symbol.

Proof. The starting point is to observe that the sesquilinear form (u,v) — —ig(u, v) is hermitian.
Since ¢ is non-degenerate , —iq is also non-degenerate. By applying the Sylvester’s law of inertia,
we deduce that there exists (KT, K~) € N* (KT, K~) € N* (the pair (K1, K™) is called the
signature of —iq) such that K™+ K~ = 2N, and a basis (sf, e ,sf(i) for the space 8 such that

—iq(s;,8;) = £0;% and q(sT,s;) =0 forall j=1,.... Kt k=1,... K.
Furthermore, the numbers K and K~ are defined as follows:
K* = max{dim(A subspace of 8 such that +0 < —ig(z,z) for all z € A))}

Since the space 8 is stable by complex conjugation and —iq(s,s) = iq(5,5) for all s € 8, we deduce
that KT = K~ = N, and then the theorem is proved. |
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Remark 2.6.4. It is important to mention that the basis (sj-t)jzljm,Na is not unique in the

previous theorem. Indeed, one can easily see that for all a,b € R such that a®> —b* =1 the set of
functions (mf)j:17_,_,Na that are defined by the relation

+ _ o+ - — et -
[ = as; +bsj and 1o —bsj + as;

form a basis of the space 8. Moreover, they satisfy the same orthogonality relations as (5?)]:17_,_7]\/0.

Definition of the problem and its well-posedness

In this paragraph, we denote by (555) j=1,..,N, a basis of the space 8 such that (2.21) is satisfied. We

define the space 8 (resp. 87) the space of outgoing (resp. incoming) propagating singularities
such that

st = span{sj yj=1,...,Ny}.

Thanks to the previous theorem we can write that 8 = 8+ @ 8~ : any propagating singularity is
the sum of an outgoing and and an incoming one. Note that since (535) j=1,...N, satisfies (2.21), we

obtain 87 = §~. Following the Mandelstam principle (the physical solution must be outgoing),
we define for all 8 € (0; fo), the space V3™ () := VI_B(Q) ® 8'. Endowed with the norm

Ny N,
1z + chﬁju = (HaH%lﬁ(Q) + Z |cj\2)1/2 for all o € Vl,ﬁ(Q) and ¢; € C,
— ! =

the space V3" (Q) is a Hilbert space. Then, we introduce the operator A%Ut L VEHQ) — (Vé(Q))*
such that for all u = @ + s with (&,s") € VEB(Q) x 8T and v € Vé(Q) we have

<A0ut >::/Uvﬂ.vv_/div(av,s+)v.
Q Q

Note that (A%"wu,v) is well-defined for all u € Vg‘“(Q) and v € Vé(Q) because the function
div(eVs™) belongs to L?(Q) and is compactly supported in Q\{O}. Before getting into details,
let us explain why A%ut is continuous for all g € (0; Bp). This is a consequence of the following

Lemma 2.6.4. There exists a positive constant C' such that
Ny i
]/ div(eVs)t| < C Z lc;i]) HUHvl for all s = chsj eSandv e Vé(ﬂ)
j=1 j=1

Proof. It suffices to prove the result with s = 5 for all j = 1,..., N,. For this we start by
recalling that for all j = 1,..., N, the function s;r has the forms X( )5 where d1V(UV5 )=20
in B(O,1) (we remind the reader that the function y is also supported in B(O,1)). With thls in
mind, we can write that for all ¢ € 2(Q\{O}) we have

/div(aVsj)go: —/ oV(xs) Vg = —/ axVéj-Vg@—/aﬁfo-Vgo
) Q Q Q

= / opVs! - Vyx — / 05 Vx - V.
Q Q

As x = 1 near the origin, the support of Vx is then detached from the origin. This leads us to
the estimate

| [ div(oVsi)El < Clllo
Q B

with 0 < C independent of ¢. The wanted result follows from the density of Z2(Q\{O}) into the
space Vé(Q) [ |
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Remark 2.6.5. By observing that for all v € Z2(Q\{0}) we have (A%Utu, v) = —(div(oVu),v)
and by using the continuity of A", we can that we have the equivalence

u € V%ut(Q) such that div(cVu) =0 if and only if A°"*u = 0.

To proceed, we define the sesquilinear form ¢°** : V%“t(Q) X V%ut(Q) — C such that for all
u,v € \O/gut(Q), we have

¢°"(u,v) = (AF"u,v) — (u, AF"v) = (AG"u, v) — (A% v, u).

It will be interesting to note that the value of ¢(u,v) for u,v € V%“t(ﬂ) depends only in the
singular part of u and v. Indeed, for all u = @ + sy, v = 0+ 8, € \c/'%“t(Q), with @, 0 € VI,/B(Q)
and s,, s, € 8T, we have

°"(u,v) = /UV&-V@—I—/ UV&-VSU—/div(UVsu)ﬁ—/div(aVSU)&,
Q Q Q Q

- / oVii - Vo — / oV - Vs, + / div(oVsy)a + / div(eVsy)su  (2.22)
Q Q Q Q

= / div(oV3y)s, — / div(oVs,)55 = ¢°" (54, 50) = q(Su, Sv).
Q Q

Remark 2.6.6. For all 0 < 3, we define the space Vg‘“’m = V9 ,(Q) @ S. We also introduce the

operator AU \O/EH'O‘“ — (VE(Q))* such that for allu =4+ s, € \o/'iﬁn—*'ollt (with @ € VEB(Q))

and s, € 8) and v € Vk(Q) we have

(Ain+outu’ U> = /

oV - Vo — / div(aVs)T.
Q Q

Observe that for allu € VO (Q) we have ATy = A%y, Working as in the case of the operator
A" we can show that A™ O s continuous. We also define the sesquilinear form ¢™ " :— C

such that for all u,v € \O/EHOM we set
in+out _ Ainfout . Ainfout _ Ainfout o Ainfout
q (’LL, ’U) - < B u, U> <U, B /U> - < B u, 1)> < B v, ’LL>

By arguing as in the case of the sesquilinear form ¢°**, we can show that for all u,v € VI_B(Q)
and Sy, Sy, € 8 we have

qin+°m(u + Su, U+ Sy) = q(Su, Sv)- (2.23)

To simplify a little bit the analysis below, we will make the

Assumption 2.6.1. Assume that ks # —1 and that there exists 8* € (0; By) such that A;ﬁ* 18
injective.

Using the last item of Proposition 2.6.3, we obtain the

Lemma 2.6.5. Assume that Assumption 2.6.1 holds then for all B € (0; 3y) the operator A;ﬂ 18
injective. In particular, we have the estimate: there exists 0 < Cg such that

lullyr o) < Cal Az @y w € VEs(Q)

Using the terminology of the waveguides theory, the previous assumption is equivalent to say that
we suppose that trapped modes do not exist. When it is not satisfied, a modified version of our
results can be obtained (see Remark 2.6.7). The remaining part of this paragraph is devoted to
prove that under Assumption 2.6.1, the operator A%ut is an isomorphism for all 5 € (0; 5p). The
injectivity of A%Ut is the subject of the next
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Proposition 2.6.5. Assume that Assumption 2.6.1 holds. Then for all 5 € (0; By) the operator
A%Ut is injective.

Proof. Let u = @+ s* € V3"(Q) with (@,57) € V14(Q) x 8* such that A%"u = 0. Since by
assumption A;’B is injective it suffices to show that sT = 0. Given that o is real valued, it follows
that div(eVa) = 0. This leads us to write that ¢°"*(u,u) = 0. Using (2.22), we deduce that
q(sT,s1) = 0. The definition of the space 8 suggests that we can decompose the function s* as
follows

No
+_ ot
st=3 ctst
j=1

No
By observing that g(s*,s") = Z(Z |c;r|2), we infer that s = 0. The result is then proved. W
j=1

Now, we turn our attention to the study of the surjectivity of A%“t(Q). Before that, we will prove
the following useful result.

Proposition 2.6.6. Assume that Assumption 2.6.1 holds and let 5 € (0;By). Then for all j =

1,..., Ny there exists a unique pair of functions (s;-t, ﬂjc) e 8F x Vl/g(Q) such that

+_ ot F At 8
07 =55 +s] — i € ker(Ay).
Classically, for all j =1,..., N,, the function O?E defined above is known as the dual singularity
associated to 5;-t.

Proof. The proof follows the lines of the proof of [114, Proposition 5.3.3]. The fact that A #
is injective implies that A? is surjective and that N, = index(A?) = dim(Ker (A?)). Denote by
Uy, ...,uy, a basis of Ker (Ag) Thanks to Proposition 2.6.3, for each j = 1,..., N, the function

o

u; decomposes as
Noy No
R s e &
uj = Z CjkSE + Z d; 15, + U
k=1 k=1

where @; € Vl,fB(Q) and all the c;x,d; € C. Denote by C,D € My, (C) the matrices

C = (¢jk)jk=1,..N, and D = (d;j )jk=1,..N,-

To end the proof we are going to show the matrices C and D are nonsingular (with this in mind
one can then find linear combinations of the functions u; that lead to the wanted results). We
start with the case of the matrix C. Suppose that C is not injective. Then there exists a function
u € Ker (A?)\{0} that decomposes as

No
u= Z’yjsj_ + @ with @ € Vl,ﬁ(Q) and ~; € C.
=0

By working as in the proof of Proposition 2.6.5, we infer that « = 0. This leads to a contradiction.
Thus the matrix C is nonsingular. With the same arguments, we show that D is nonsingular. B

Now, we can prove the surjectivity of A%ut.

Proposition 2.6.7. Assume that Assumption 2.6.1 holds. For all B € (0;5y) the operator A%‘Jt
1s surjective.
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Proof. Since A? is the adjoint of A;” and the latter is assumed to be injective, we infer that
AP is surjective. Take f € (VE(Q))* Since 0 < /3, we have the embedding VEB(Q) C Vé(Q)
and then, by duality, infer that (Vk(Q))* C (Vl,ﬁ(Q))* . This allows us to say that there exists
u € V%;(Q) such that A%u® = f. Since f € (Vé(Q)) we know, thanks to Proposition 2.6.3, that
the function u” decomposes as

5—u6—|—205 —i—cs

with ™ e Vl,ﬁ(Q) and all the c € C. Thanks to Proposition 2.6.3 we know that there exist
uf, . ,u?vg € Ker (A?) such that for all j =1,..., N, we have

No
uf uj_ﬁ +5; + Z VkS; with uj_ﬁ € Vl_ﬁ(Q) and v, € C.
k=1

No

By observing that the function u = u” — Z c]_uf belongs to the space V%ut(Q) and satisfies the
j=1

equation A%utu = f, we obtain the wanted the result. |

Since the operator A%ut is continuous for all g € (0; 5p), the open map theorem, combined with
the results of the previous propositions, leads us to the
Theorem 2.6.4. Assume that Assumption 2.6.1 holds. Then for all B € (0; By) the operator A%Ut

s an isomorphism. Moreover, there exists a constant 0 < C such that for all u = TH—clsT +-t
CNJE?\}U with @ € Viﬁ(ﬂ) and all c; € C we have the estimate

No
Il () + > es| < cﬁHA%ut(u)|y(%(m)*.
j=1

For all 5 € (0;fp), the expression of the singular coefficients of the solution (i.e. the coefficients
in front of the singularities 5 in the decomposition of the solution u) to the well-posed problem:

Find u € V3™(Q) such that A3 u = f € (V5(Q))* (2.24)

can be determined thanks to the following

Lemma 2.6.6. Let 0 < 8 and letu_u+zc+5+ evout( ) (with @ GVI_B(Q)) Then for all
7j=1
j=1,..., Ny, we have
+ ut 4\ /s
cj = (A""u,07) /i

where the function D;‘ are defined in Proposition 2.6.6.
Proof. Forall j =1,..., N,, the function D;F belongs to the space \o/'iﬁnJrout (©) (see Remark 2.6.6).
Furthermore since diV(O‘VD;—) = 0 in Q and thanks to the continuity of A™"°" (see Remark 2.6.6)
we can say that (Ain+°“tb;”, u) = 0. On the other hand, since u € VOUt(Q) C \ofiﬁnJrO“t(Q) we have
(A, Dj) = (Alntouty, DJ-“>. As a result we can write

<Aoutu D+> <A1n+outu 0+> <Ain+outo;-’ u> _ qin—&—out(u’ 0;-)

Given that the function Dj decomposes as Dj = sj +s 4+ a; withs™ €8 and u; € VI,B(Q) we
deduce (thanks to (2.23)) that

=

(A%, 0j> =q( cﬁs;,sj +s) = zc;r
1

=
Il
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This leads us to the following

Corollary 2.6.1. Assume that Assumption 2.6.1 holds and let 5 € (0;min(By,1)). Then for all
f € L%(Q) the problem 0(2.24) is well-posed. Moreover, its solution decomposes as u = i+ cj s{ +

cee c}as}t,a with @ € Vl,ﬁ(Q) where the coefficients (Cj)jzl,...,Na are given by

1 -

Proof. Tt suffices to mention that for all 8 € (0; 1) we have have the embedding L?(Q) C (V};(Q))*
and then to apply Theorem 2.6.4 and Lemma 2.6.6. |

We finish this paragraph with some remarks.
Remark 2.6.7.

o It is worth to note that since (V}g(Q))* C (HY(Q)* for all 0 < B, the framework that we
have proposed above does not allow us to define a solution to (2.2) for all given source term

f e (Hy()".

e In the case when the Assumption 2.6.1 is not satisfied, i.e. when the operator A;ﬂ s not
injective, the operator A%ut 18 no longer isomorphism. However, one can show that for
B € (0;8p) the operator A%Ut is Fredholm of index zero. Let us explain, briefly, how to show
this result. Starting from Proposition 2.15, using the results of §2.3 we can show that for all
B € (0;8p) the operator A%Ut has closed range and a finite dimensional kernel. Furthermore,
by working as in the proof of Proposition 2.6.5 we can easily prove that for all 5 € (0; o),
we have ker(AZ") = ker(AS?). The last step is to show that A%Ut is of index zero. To do
that, one can follow the lines of the proof of [25, Prposition 4.4].

2.6.3 Selection of the physical solution by means of the limiting absorption
principle

In the previous section, we have explained how it is possible, even in the case of propagating
singularities with logarithmic growth near the origin, to define a radiation condition that allows
us to construct a functional framework in which the scalar problem is well-posed in the Fredholm
sense. However, as explained in Remark 2.6.4, it is possible to construct an infinite number of
functional frameworks that are coherent with the Mandelstam radiation principle and in which
the problem is also well-posed. This means that almost all the functional frameworks that can be
constructed using the Mandelstam radiation principle do not lead to the physical solution of the
problem. Obviously, the main difficulty is to define a space of outgoing propagating singularities
that has a physical meaning. To do that, we are going to use the limiting absorption principle.
The idea is to say that the physical solution of the problem 2.2 must be defined as the limit when
§ — 0T (in some space to be defined) of the (us)s where u;s solves the well-posed problem

Find u’ € H}(Q) such that — div((c + id)Vu®) = f € (H5(Q))*. (2.25)

The well-posedness of the previous problem for all § € (0; +00) is guaranteed by the Lax-Milgram
lemma. Introduce the operator Ag;s : Hy(Q) — (HH(92))* such that

(Agiisu,v) := /(O‘ +i6)Vu - Vo for all u,v € HY(Q).
Q

The case of non-critical coefficients is treated in the following

Lemma 2.6.7. Assume that the function o is such that ks, & Is, and suppose that the source

term f is such that the problem (2.2) is well-posed in the Hadamard sense. Then the sequence
(us)s converges as 6 — 07, in HY(Q) to u the solution of (2.2).
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Proof. By definition of Iy;, we know that since k., & I5;, the operator A, is a Fredholm operator
of index 0. Furthermore, since by assumption the problem (2.2) has a unique solution, we infer
that A, is injective and thus it is an isomorphism. As a result, we have the estimate

HuHH1 < C||div(eVu)|| (HL(Q u € HY(Q)
in which C' is a constant that does not depend on w. Combining this with the obvious estimate
1div(oVu) | gy < 1div((o +i6) V)| gy + [01l[ullm ) for all u € H(€)

we arrive to

[ullg @) < Clidiv((o + i8)Vu) [ ) + Clolllull q)-
By taking § such that 0 < § < dg := 1/2C, we obtain the followmg estimate

||u||H1 ) < 2C|div((o +i0) Vu) || (HL ()" u € HY ().

Applying the previous estimate to the function u—ug where u and ug are respectively the solutions
0 (2.2) and (2.25), we conclude that for all 6 € (0;Jp) we have

[l — usll2 0y < 2C10][|div(Va)l| g o)~
The lemma is then proved. |

Now, we turn our attention to the study of the case where the function o is such that x, €

Is\{-1}.

Definition of the space of physical outgoing propagating singularities

The starting point is to introduce the Mellin Symbol of the problem (2.25). For all 6 € R’ and all
A € C we introduce the operator %, ;5(\) : H(S?) — (H'(S?))* such that for all ®, &' € H'(S?)
we have

(Lyris(N) B, D) =: / (0 + i6)Vs® - VsPdw — A(A+ 1) / (0 + i6) DT duw.
S2 S2

We denote by A(Z,1is5) the spectrum of the family of operators (-Z,1is(A\))rec. In 3.3, we will
present a study of the spectral properties of .Z, ;5. In particular, we will prove the following

Lemma 2.6.8. Assume that the function o is such that k, € Ix\{—1} and let 5 € (0; 5p). Then
there exists 0 < dg such that for all 0 < 6 < dg the operator £, ;5 has Ny eigenvalues in the strip
{ANeC| -8 <1/24+Re(N) < B} of total algebraic multiplicity (i.e. the sum of all the algebraic
multiplicity of these eigenvalues) equal to 2N,. Furthermore, we have

51_1)1(‘[)1+A($0+5)Q{A€C| —B<1/2+§Re( ) <5} A( )ﬂﬁ 1/2—A,1/2. (226)

In the rest of this section, we are going to work under the following
Assumption 2.6.2. We suppose that the function o is such that k, € Ix\{—1} and such that

o All the eigenvalues of £, that are located on the energy line Re(\) = —1/2 are semi-simple” .
We denote them by A1,...,AN,.

o There exists 0 < &g and 0 < rg such for all 0 < § < &y and all j = 1,..., N¢, we have
B(Aj, m0) N A(Loris) = {Ajs}-

o Allthe Nj5 (7 =1,...,N) are semi-simple.

"We say that an eigenvalue of %, is semi-simple if 1, (\) = 14()).
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Remark 2.6.8. Clearly, when all the eigenvalues of £, that are located on Re(\) = —1/2 are
simple® the previous assumption is satisfied thanks to Theorem 3.3.1.

Lemma 2.6.9. Assume that Assumption 2.6.2 holds. Then N is even. Moreover, for all 5 €
(0; Bo) there exists 0 < 0g such that for all § € (0;63), we have

o the strip {A € C|1/2+Re(N) € (0; )} contains N¢/2 eigenvalues of Lyis of total algebraic
geometric equal to N,.

o Forallj=1,..., Ny we have Lg(/\g) =14(Nj).

Proof. We start by proving that, under Assumption 2.6.2, —1/2 ¢ A(.%,). For this it suffices
to see that if ¢ € Ker (Z,(—1/2))\{0} then (¢, ) is a Jordan chain of ., associated to —1/2.
This means that —1/2 can not be a semi-simple eigenvalue of .Z,. Given that the spectrum of
%, is symmetric with respect to (—1/2,0), we infer that N; is even. This implies that the strip
{AeC|1/2+ Re(N) € (0;5)} contains Ny/2 eigenvalue(s) of Z,.

According to Proposition 3.3.1, we know that A(Z 1) Nl_1/0 = () for all 0 < 4. As a result,by
using the fact that A(.%,1s) is also symmetric with respect to (—1/2,0) and by means of (2.26),
we deduce that, under Assumption 2.6.2, there exists 0 < dg such that for all 6 € (0;05) the strip
{A € C[1/2 + Re(\) € (0;3)} contains Ny/2 eigenvalue(s) of £, ;5. Now, let us explain why
tg(N}) coincides with t4();). This is a consequence of Proposition 3.3.3 in which we prove that
the sum of all the algebraic multiplicities of the eigenvalues of .Z, ;s that are near \; must be
equal to the algebraic multiplicity of A;. |

Now, let us assume that Assumption 2.6.2 holds. For all g € (0;5p) and all 0 < § sufficiently
small, we denote by ()\Ié) j=1,...N;/2 the set of eigenvalues of £ ;5 that are located in the strip

{A € C|1/2 + Re(\) € (0;8)}. For each j = 1,...,N¢/2, we denote by (gpié),r1 Lp(AT,) A1
3 Ly 7,
orthonormal (with respect to the inner product of H'(S?)) basis of Ker XO.H(;()\%). Next, we
introduce the functions
AT g )
5;fk75(rw) = x(r)r J’f‘«pfg’é(w),] =1,...,N¢/2,k=1,...,14()\j5).

Then, we define the space 8; = span{s;fkﬁ,j =1,...,N;/2,k=1,...,14()\js)}. It is obvious that
if Assumption 2.6.2 is valid, then for all 0 < § small enough the space 8?{ is of dimension N,. For
this reason, we can introduce (5}?5)j:1,_“7]\/0 a basis of the space 8§ := span{s;fa,j =1,...,No}. It
will be interesting to note that for all j =1,...,N;/2and allk =1,.. ., Lg(/\j:&) the function 5;3@ 5
belongs to the space Hj(Q). Moreover, one can easily see that the functions div((c + i6)Vs; 1.s)
vanishes near the origin and then they belong to the space L?(Q2) N (Vé(Q))* for all 5 € R. The
behavior of these functions as § — 07 is the subject of the next

Lemma 2.6.10. Assume that Assumption 2.6.2 is valid and let B € (0;80). Then for j =
1,...,N¢/2 and k = 1,...,Lg(>\;_5), the sequence of functions (sjk 5)s converges, up to a sub-

sequence, as 6 — 07, in Vé(Q) to the function

N
5 0(rw) = x(r)r g (w)

where A_y 5 > )\;“ = 61—i>I(1;l+ )\;C(S is such that Lg()\j) = Lg()\jt;) and cpi € ker(fg()\j)). Furthermore,
we have

span{pl, k= 1,...,14(A1)} = ker(Z5 (A1)
In addition to that the sequence of functions div((o —|—i5)V5;tk75) converges, up to a sub-sequence,
as 6 — 07 in (V};(Q))* to div(oVsjth).
e if ta(N) = 1g(N) = 1.




57 2.6. Study of the initial problem

Proof. The fact that ()\;fé)(; converges to some )\j € (12 N A(Z;) is guaranteed by Lemma
2.6.8. The fact that LQ(A;L) = Lg(/\%) follows form the application of Lemma 2.6.9. The conver-
gence,up to a sub-sequence, of (cpf;’(;)(; as 6 — 0" in HY(S?) to an element of <,0{; € ker(fg()\j)) is
guaranteed by Proposition 3.3.4. Thanks to the fact that (go?C 5) B=Lot(AF) are orthogonal allows
to say that <80‘]7€)k=1,...,L()\;-L) are linearly independent. This means that (wi)kZI,...,L(Aj) is a basis of
ker(.iﬂg()\;r)).

The convergence of (5;,675)5 to 5;,670 in VE(Q) follows from the application of the dominated

convergence theorem. By observing that for all v € Vé(Q) we have

| /Q (div((o+i0) Vs, 5) — div(o Vst ))7] = | /Q o @ T, ) — (V)
r|x(r)=

We infer that we have the estimate
|4iv((& +18) V5. 5) — div(o Vsl o)l 1 oy < Clldiv(o +16) Vs, 5) — div(oVsh o)z

with C independent of d. The result follows, again, form application of dominated convergence
theorem. |

In the sequel, when Assumption 2.6.2 is satisfied, we denote by Af1/2 = {)\;“,j =1,...,N;/2}.
Furthermore, we define the space 8 := span{sjk 0-J =1,..., Ny, }. Thanks to the result of the

previous lemma, we can say that dim(8{) = N,. To simplify notations, for all A € Ao, we
denote by S(A) the space

S(\) = X(r)r’\ ker(Z,(N\)) = {s(rw) = X(T)r)‘cp(w) with ¢ € Ker (Z,(N))}.

Without any difficulty, one can see that 8§ = @ S()). In the remaining part of this paragraph,
AeAT)
— /2
we are going to explain how to find a simple characterization of the space Sg (or equivalently the
set Af1/2). The starting point is the next

Lemma 2.6.11. Assume that Assumption 2.6.2 is valid then the space SSF is of dimension N,.
Furthermore, we have
0 < Smq(u,u) for all u € 8.

Proof. The fact that the dimension of Sg is equal to N, follows form its definition and thanks
to the previous lemma. Furthermore, we know that for all v € Sar there exists a sequence (ug)s
of elements of 8§ such that (us)s and (div((o + id)Vus))s converges, as § — 07, respectively in
Vé(Q) and in (Vé(ﬂ))* to u and div(ocVu). As a result, we deduce that

lim [ div((o +i6)Vus)us — div((o + 10)Vus)us = q(u, u).
=0+ Jo

Since 8§ C H{(Q), one obtains (thanks to an integration by parts) that q(u, u) = 5hr(r)1+ 2@'5/ (Vus)?.
- Q
This ends the proof.

Thanks to the previous lemma, we can then introduce (5}0) j=1,..,N, @& basis of the space 8§

+ o -
8y = span{s;y,

is the following

j=1,...,Nys}. The second key result to find a characterization of the space 86r

Proposition 2.6.8. Assume that Assumption 2.6.2 holds, then for all A € A(Z;) NE_y/p we
have two possible situations: either 0 < Im(q(u,w)) for all uw € S(X) or Im(q(u,u)) <0 for all
u € S(A).
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Ty W have

Proof. By combining the two previous lemmas, we deduce that for all A € A
0 < Sm(q(u,u)), u € S(A).

This shows the result for all A € Afl /2

and since —\ —1 = X for all A € A_y/2, we infer that Ay, = Af1/2 U AJ_FI/2. According to
Lemma 2.6.2 we know that Ker (.%,(\)) = Ker (%,()\)). Given that ¢(u,u) = —q(u,u), for all

u € 8. Consequently, for all A € AJ_FI/2 we have Sm(q(u,u)) < 0 for all w € S(N). The lemma is

then proved. |

Given that A(.%,) is symmetric with respect to (—1/2,0)

Without any difficulty, one can check that for all A = —1/2 +in € A_j;5(i.ep € R) and ¢ €
Ker .%,(\), the function s(rw) := x(r)r*p(w) € S(\) satisfies the relation:

q(s,5) = 2in/ ool dw. (2.27)
SQ

With this in mind, we can show the following result that gives us a very simple characterization

of set Afl/Q and the space 87

Proposition 2.6.9. Assume that Assumption 2.6.2 holds. Let A\ = —1/2 +in € {_y ;5 N A(ZL)
and let ¢ be an arbitrary eigenfunction of £, associated to \. Then, we have the equivalence

A€ AJ_FI/2 if an only if 0 < 77/ olel?.
SZ

Proof. We already know thanks to Lemma 2.6.11 we have 0 < —ig(u,u) for all u € 8. This
means that —iq is positive hermitian form on 83 X Sar . By making use of the Cauchy-Schwarz
(applied to —iq) and using the fact that ¢ is non-degenerate, we infer that 0 < —ig(u, u) for all u €
SE]F \{0}. This proves the direct implication. The reverse implication follows form the Proposition
2.6.8 and the relation (2.27). [

Lemma 2.6.12. There exists (sj)j:17.,,7NJ a basis of Sar such that
Q(ﬁj,s;:) =idj, forall j,k=1,..., N,.

Proof. We denote by qg the symplectic form that is the restriction of the symplectic form ¢
to the space Sar . Thanks to Lemma 2.6.11, we know that —iqg is hermitian and positive, i.e.
0 < —igo(u,u) for all u € 8. Given that

§¢= & SO).
AeAfl/Q

and thanks to the second item of Lemma 2.6.3, we deduce that g is non-degenerate. The wanted
result follows then form the application of Sylvester’s law of inertia. |

F?r all 5 € (0; Bp) we introduce the space a Vgug = Vl,ﬁ(Q) @ 8¢ and the operator A§' : Vglg —
(Vk(Q))* such that for all u = @ + s with @ € VEB(Q) and s € 8§ we have

(AGFu, v) == /QUVﬁ VU — /Qdiv(‘fvsﬂv ; v e Vi(9).

Using the results of the previous section and with the help of Lemma 2.6.12, we obtain the

Proposition 2.6.10. Assume that the Assumptions 2.6.1-2.6.2 are satisfied. Then the operator
AS?/@? is an isomorphism.
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Final proof of the limiting absorption principle

The main result of this section is given by the following

Theorem 2.6.5. Assume that Assumptions 2.6.1-2.6.2 hold and let f € (Vé(Q))* with B €
(0; Bo)- Then the sequence (ug)s (us is the solution of (2.25)) converges in Vé(Q) tou € VS“;(Q) =
Vl_ﬂ(Q) ® 8§ the unique solution to the well-posed problem Agflﬁtu =f.

The proof of the previous theorem is based on a succession of lemmas. The first one is the

Lemma 2.6.13. Assume that Assumption 2.6.2 holds and that f € (V};(Q))* then there exists
dg such that for all 0 < & < 0g the function us (the solution to (2.25)) decomposes as

Ny
us =y 35y + s (2.28)
j=1

where s € Vl,ﬁ(Q) and cg eC.

Proof. Thanks to Lemma 2.6.9, we know that there exists dg such that for all 6 € (0;d3), we have
{Ne C|Re(N) € (-1/2,-1/2+ B)} N A(ZLpiis) = {A;:é,j =1,...,N/2}. Since by Assumption
the eigenvalues )‘ja are semi-simple for § € (0;0¢) (dp is defined in the statement of Assumption

2.6.2), the result follows then by replacing d3 by min(dg, dp) and by adapting the classical results
of [102, Chapter 6 |. [ |

Lemma 2.6.14. Assume that Assumption 2.6.1 holds. Then for all B € (0; o) there exists 0 < g
such that for all 6 € (0;03), we have the estimate

lully: ) < Calldiv((o +8)Vu)ll s - for all u e VL5(Q)

in which the constant Cg is independent of u and of 0.

Proof. Thanks to the Assumption 2.6.1, we know that for all 8 € (0; 5y) we have the estimate
(see Lemma 2.6.5 )

. val
HUH\D/I_[;(Q) < Cﬁ”le(O‘V’LL)H(\"/}}(Q))* for all u € V_4(12)
where 0 < Cg does not depend on u. By combining the estimate

v ()l 51, < Colluln (g for all u e V(@)

(in which Cf is independent of u) with the fact that for all § € R and all u € Vl_ﬁ(Q) we have
div(oVu) = div((o + i0)Vu) — iddiv(Vu), we obtain the estimate

HuH{/lﬁ(Q) < Cg||div((c + ié)Vu)H(%(Q))* + C'ﬁ]5|\\u||</£ﬁ(g) for all u € Vl,g(ﬂ)
Taking ¢ small enough (e.g. |0| < (2673)_1), we get the estimate
”ﬁS“vgﬁ(Q) < 2Cg||div((o + i5)VU)H(%(Q))*
which ends the proof. |

Lemma 2.6.15. Assume that Assumption 2.6.1 holds and let 5 € (0; By). Let (ug)s be a sequence
of elements of VEB(Q) such that (fs := div((o + i6)Vus))s converges, as § — 0T, in (V}J)(Q))*
then (ug)s converges in VEB(Q) as 6 — 0.
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Proof. Thanks to the previous lemma, we infer that (ugs)s is bounded in Vl_ﬁ(Q) In order to
prove our claim we are going to show that (us)s is a Cauchy sequence. Let d,8" € R . Starting
from the identity

fs — fsr = div((o +i6)V(us — ug)) +i(6 — §")divVus

and by using the estimate HdiV(Vu)H(%(Q))* < Ollullza L) for all u € VEB(Q) (with C' indepen-
dent of u) we obtain (thanks to Lemma 2.6.14) the estimate

!
||U5 - Ué'H\'ﬂ_ﬁ(Q) < C(Hfé - f&”@?}g(g))* + ‘5 -0 |)

*

with C' that does not depend on 4. Since by assumption (fs)s converges in (Vé(Q)) its then a
Cauchy sequence and then the result is proved. |

As a consequence, we can now show the following result.

Lemma 2.6.16. Assume that Assumptions 2.6.1-2.6.2 hold and let 5 € (0;80). Then the se-
quences (c?»)g in (2.28) are bounded as 0 tends to 0.

Proof. For all § small enough, we denote by Rs = max |c*(7;] To prove our claim it suffices to
J

show that (Rs)s is bounded as ¢ vanishes. If this not the case, one can say that there exists a
sub-sequence of (Rs)s, that will be indexed by ¢ for the reader convenience, such that |Rs| — 400
as 6 — 0. To simplify notations, we introduce for all j = 1,..., N, the sequences (c’ = 5/ Rs)s-
Note that from the definition of Rs, we infer that

max &} = 1. (2.29)

J
This implies that (é%, - .,éév")(; is bounded in C"o. As a result, we deduce that up to a sub-
sequence, still indexed by ¢, the sequence (¢, ..., 6?")5 converges to some (&, ..., éN") in CNVo.

Note that thanks to (2.29), we deduce max |¢;| = 1. By observing that é‘fg(‘{l 4o+ é?vag(‘{NU
converges, as d — 0% to 155, + -+ + é(lsvﬁar,zvaa by using the fact that —div((o + i0)Vu’/Rs) =
f/Rs — 0in (Vé(Q))* and the result of Lemma 2.6.5, we deduce that (div((c + i0)Vis/Rs))s
converges in (Vé(Q))* as 0 — 0%,

Since Us/Rs € Vl_ﬁ(Q) for all 6 € (0;0g) and by applying Lemma 2.6.15 we conclude that
iis/Rs converges in V! 5(€2), as & — 0, to some iy € Vl,ﬁ(Q) Consequently, the function v =
U + élsafl +- cN"sar e Vi 5(€) @ 8§ and satisfies the equation

div(oVu) = 0 in (V(Q))".

Applying the Proposition 2.6.10, we find that & = 0 for all j = 1, ..., N, which contradicts the
fact that max |¢;| = 1. The Lemma is then proved. |
J

Proof of Theorem 2.6.5. We know that for 0 < § small enough, the function us decomposes as
NU . . °
us = Ug + Zngs;{j with ¢ € C and @5 € Vl,ﬁ(Q).
j:

The previous lemma ensures that (cj, ... ,c(]SV") is bounded in C™7. This means that up to a
sub-sequence (that will be indexed by §), (c},... ,cév”) converges as 6 — 0 in CYo to some
(c1,...,cn,) € CNo. Starting from the fact that

No
div((o +10)Vis) = —f — div((o +i0)V Z
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and by using Lemma 2.6.10 and Lemma 2.6.15, we deduce that (us)s converges in Vé(Q) to some
u € Vguﬂt(Q) = Vl_ﬂ(Q) @ 8§ that satisfies the equation

~div(oVu) = f in (V5(Q))".

Thanks to Proposition 2.6.10, we know that the latter problem has a unique solution. This implies
that (ug)s converges in Vé(Q), as 0 — 0, to the unique solution of A§'§u = f. Since this limit is
independent of the chosen sub-sequence, we obtain the wanted result. |

On the relaxation of Assumption 2.6.2

The results obtained in the previous section are also valid of one replaces Assumption 2.6.2 by
the following

Assumption 2.6.3. We suppose that the function o is such that k, € Ix\{—1} and such that

o All the eigenvalues of £, that are located on the energy line Re(\) = —1/2 are semi-simple’.
We denote them by A1,...,AN,.

o There exists 0 < &g and 0 < rg such for all 0 < 6 < dg and all j = 1,..., Ny, the set
B(Aj,m0) N A(ZLyyis) is either a subset of {\ € C| —1/2 < Re(N)} or a subset {\ €
C|Re(N) < —1/2}. We use the notation B(Aj,r0) N A(Lotis) = {\jks, k=1,...,N;} with
Nj e N.

o Allthe Njrs (7 =1,...,Ny,k=1,...,N;) are semi-simple.

The only point that needs to be clarified is the proof of the fact that, under the previous assump-
tion, the dimension of the space Sg is equal to N¢/2. To do this, we have to modify a little the
proof of Proposition 2.6.10. Instead of performing a Gram-Schmidt process on 5} with respect
to their angular component in H'(S?) (which was the case in the proof of Proposition 2.6.10),
one must perform a Gram-Schmidt process on 8; with respect to VE(Q) with 0 < 8 (which is a
Hilbert space).

Unfortunately, we are not able to find a weaker assumption under which we can explain how to
choose, among the functional frameworks constructed by Mandelstam’s radiation principle, the
one that is consistent with the limiting absorption principle.

The difficulty comes from the fact that, in general, any assumption made on the nature of the
eigenvalues of %, which belong to ¢_; 5 does not imply, a priori, any information on the nature
of the eigenvalue of %, ;5 which are near A(Z,) N{¢_, /2 Note that this difficulty occurs even in
the case of finite dimensional problems. To be convinced of this, consider for all 0 < § the matrix

(146 &
A‘*"( 0 1+5>'

We can clearly see that As tends as  — 07 to the identity matrix I. Moreover, the spectrum of
As is equal to {1+ 0} which converges as expected to {1} which is the spectrum of Io. However,
when we come to the question of the convergence of the eigenfunctions, the situation is totally
different: while 1 is a semi-simple eigenvalue of I, for all 0 < § the matrix As has an generalized
eigenfunction associated to 1 + 4.

Application to the case of circular conical tips

In §3.4.1 we shall prove that, when k, # —1, the set A(%,) can be characterized by means of
dispersion relations. Moreover, we will explain that A_; /5 coincides with
{=1/2+ it st. 3m € N s.t. an(7) = ko }

where a,,, : Ry — R are continuous functions. The curves of the functions a,, for m =0,...,3
are displayed in Figure 2.4.

9We say that an eigenvalue of %, is semi-simple if 1, (\) = 14()).
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Figure 2.4: Curves of the functions 7 — a,,(7) for m =0,1,2,3 and o = 7/4.

Clearly the curves of the functions seems to be disjoint. However, we did not succeed in proving
this observation. In §3.4.3, we will show that except for the particular values of A = —1 + i7"
where a,,(7*) = 0 for some m € N, the assumption 2.6.2 is valid. Furthermore we are going
to show that for these particular values of A, propagating singularities with logarithmic growth
exist.

On the existence of inverse modes and the numerical approximation of the problem
In this paragraph, we will discuss in very brief way the question of the numerical approximation
of the scalar problem. Clearly, one has to distinguish two situations: the case k, ¢ Iy, and the
case kK, € Iy\{—1}. In the first case the approximation of the solution can be done thanks to
the numerical method that we are going to present in Chapter 4. In the case k, € Ix\{—1},
propagating singularities exist. To the best of our knowledge the only existing method to deal
with the problem in 2D has been proposed in [45] and is based on the use of PMLSs near the origin.
The adaption of this method to the 3D configuration is not done yet. This adaptation does not
seem to be an easy task because of the possible existence of inverse modes in the expression of the
physical solution of the problem (i.e the solution obtained by the limiting absorption principle
contains propagating singularities which are associated with singular exponents with opposite
signs). This is exactly the case illustrated by Figure 2.5: we observe that in this situation
Assumption 2.6.2 is valid and that the space of the physical propagating singularities contains
propagating singularities with singular exponents that have opposite sign.

a=1/4K=—080=0 a=1/4K=—0.8,3 = 0.005
5 5.
4 ! 4 [
3 L) ° . . i R ° ° L] 3k L) ° - . ¢ . ° . L]
2 ol
, * o o o * o © o ; ® o0 o o . e o o
0 GOOEIND GO 06D 000 © © 000 GHO N ONO NI CED 0 GEOENID CEO® 06D 000 0 O 000 GO BONO NID S
! o © °* o ! . * o o
N ) S - . , % o X .
3r e o * ° * e 4, 3 R ey
4 ¢ a4l .

Figure 2.5: The spectrum of %, ;s for § = 0,5 = 0.005 for the case of a circular conical tip
(o« =7/4) and Kk, = —0.8.
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2.7 Concluding remarks and open questions

In this chapter, we presented a detailed study of the scalar problem (2.2). In particular, we
explained how to characterize the critical interval Iy, by means of the existence of propagating
singularities. When &, € Ix\{—1}, a general approach based on the use of Mandelstam’s radiation
principle has been proposed in order to construct functional frameworks in which Fredholmness of
the problem is recovered (even in the presence of propagating singularities with logarithmic growth
near the origin which has not been treated in [25]). The selection of the physical framework has
been done, under Assumption 2.6.2 (or Assumption 2.6.3), by means of the limiting absorption
principle. It seems (thanks to numerical calculations) that Assumption 2.6.2 is satisfied for the
case of circular conical tips, except for a discrete set of contrasts for which there are propagating
singularities with logarithmic growth near the origin. Of course, all the results we obtained above
hold if we replace the homogeneous Dirichlet boundary conditions by any other elliptic boundary
condition. In addition to that, we expect that our results remain true when the conical tip touches
the domain boundary (see Figure 2.6). Let us conclude this chapter by mentioning two of the
most important questions that can be studied in future works:

1. How to select the physical framework when Assumption 2.6.3 is not satisfied? In the
literature, is seems that the most important reference, which can help us to deal with this
question, is the book [138].

2. How to adapt the use of PMLs near the origin in order to construct a numerical approxi-
mation of the solution to the scalar problem with propagating singularities? How to deal
with the possible existence of inverse modes ? An interesting work that can help us in this
direction is done in [13].

Figure 2.6: An example of a geometry where the conical tip touches the boundary of the domain.

2.8 Appendix

2.8.1 The Kelvin transform

The Kevin transform is a classical geometrical mapping that permits us to transform problems
set in unbounded domains into other ones set in bounded domains and vice versa. As we shall see
below (Lemma 2.8.1), the Kelvin transform preserves harmonic functions. This property makes
it very adapted to the study of “Laplacian-based” problems. It is also interesting to note that
the Kelvin transform can be used for numerical purposes as an alternative approach to solve
scattering problems (see [69, 111] and the references therein). Along this paragraph, we denote
by B the unit ball of R®. The Kelvin transform of a function u defined in B\{O} is the function
@i defined in B¢ := R*\B by the relation:

u(rw) = u(w/r)/r
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in which (r,w) are the classical spherical coordinates. The first interesting property is the fact
that the Kelvin transformation of a harmonic function is also harmonic.

Lemma 2.8.1. Let u € €%(B\{0}) be such that Au = 0. Then we have Ai = 0 in B

Proof. A direct calculus yields At(rw) = —Au(w/r) for all rw € BC. [ |

rd

Now, we turn our attention to the study of the action of the Kelvin transform on weighted Sobolev
spaces. We limit ourselves to the spaces V%(B) and V}g(B) for arbitrary 8 € R. The case of the
spaces V% (B) is the subject of the following

Lemma 2.8.2. If u € V}(B) then @ € V% 5_,(B°).

1
Proof. By definition of Vg (B), we have / / 2842 (rw)r? drdw < oo. By performing the change
S2

of variables r — 1/r, we get

[ et drdo = [ @ drdo < oo,
1 SQ 1 SQ

As a result r~#724 belongs to L2(B) and then the lemma is proved. [
The case of the spaces Vé(B) is treated in the following
Lemma 2.8.3. Ifu € Vé(B) then @ € VI_B(BC).

Proof. Since u € Vé(B)7 we deduce that u € V%,l(B) and then by using the result of the

previous lemma we can say that @ € Vgﬁ,l(Bc). To make things as clear as possible, instead of
working with the variable r for the function @, we use the variable ¢ = 1/r. With this in mind,
we have the relation ta(tw) = u(rw) for all » € (0;1). To end the proof, we need to show that
tw +— Opt(tw) and tw — |Vgu(tw)/t| belong to VgB(Bc). It is important to note that using the
variable t instated of r, the space V° 3(B€) is defined as follows

VY 5(B¢) = {f : B¢ = C such that / / t28 f(tw)?3dt dw < 0o}

For the case of the function tw — |Vgu(t,-)/t|, this follows from the equality (that is obtained
thanks to the change of variable r — 1/r)

1 o'}
/ / 28|V su(rw) /r|*r? drdw :/ / 28|V g (tw) /|24 didw.
0 Js2 1 s2

The case of the function 0@ is a little bit more involved. The starting point is to observe that
we have

ti(tw) = u(rw) =  Ju(rw) = —t2u(tw) — 3o (tw).

Thus we can write that t0;ii(tw) = 0,u(rw)+u(rw)/r. Using the fact that rw — d,u(rw)+u(rw)/r
belongs to the space V% (B), we then deduce that

/ /SQ 2,8 t w))?t2dtdw = / /S2 3 u(rw) + u(rw)/r 2 2dr dw < co.

This ends the proof. |
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2.8.2 The Peetre’s Lemma

In this paragraph, we present some variants of the classical Peetre’s lemma. These results are a
very powerful tools that allow us to prove that a given operator is of Fredholm type. The classical
Peetre’s lemma is given by the following

Theorem 2.8.1. [101, Lemma 3.4.1] Let (X,| - ||x), (Y, |- |ly) and (Z,| - ||z) be three Banach
spaces such that X is compactly embedded in Z. Let A : X — 'Y be a continuous linear operator.
Then the following assertions are equivalent

1. A has a closed range and its kernel is finite dimensional.

2. The estimate
[ullx < C(|AM)ly +lullz), uweX

holds with C' independent of w.

In some configurations, we may need to use the following alternative version of the Peetre’s
Lemma.

Proposition 2.8.1. [12/] Let (X, - ||x), (Y, || - |lv) and (Z,]| - ||z) be three Banach spaces and
let K : X — Z be a compact operator. If there exists 0 < C such that we have the estimate

lullx < CUAMW) ]y + 1K (w)llz), uweX
then A has a closed range and its kernel is finite dimensional.

For any Banach space X, we denote by X™ its topological anti-dual. An operator A : X — X™ is
said to be symmetric if and only if (Au,v) = (Av,u) for all u,v € X. A direct application of the
Theorem 2.8.1 yields

Proposition 2.8.2. Let (X, ||-||x) and (Z,||-||z) be two Banach spaces such that X is compactly
embedded in Z. Let A : X — X be a continuous linear symmetric operator. Then the following
assertions are equivalent

1. A is a Fredholm operator of index zero.

2. The estimate
Jullx < C([A(w)|lx+ +[lullz), uweX

holds with C independent of u.
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3.1 Introduction

This chapter is devoted to the study of the "spectral" properties of the Mellin symbol generated
by the scalar problem (2.2) that we have studied in the previous chapter. More precisely, we
are interested in the study of spectral properties of the family of operators (Z,(\))xec that is
defined as follows: for all A € C, we introduce %, ()\) : HY(S?) — (H'(S?))* such that for all

Y,y € HY(S?) we have

(L (N, ) = /S2 oVsth - Ve'dw — A\ + 1) /S2 oy dw.

66
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Above dw = sin(0)dfde where (0,¢) € [0,7] x [0,27] are the classical (angular) spherical co-
ordinates. Recall that o is a piecewise constant function such that ¢ = o1 € ]R”jr in S7 and
o = 09 € R* in which S; and S5 are two subdomains of S? that are defined as follows:

S1={(0,¢) € [0,7]x[0,27] such that g(¢) < 0} and Ss = {(0, ¢) € [0, 7] x][0, 27] such that § < g(¢)}

where ¢ : [0,27] — [0,7] is a periodic function of class € (see Figure 3.1). As in the previous
chapter, we denote k, := o2/01. Observe that the particular case where g coincides with a
constant function corresponds to the case of circular conical tips.

Figure 3.1: An example of the geometry considered: the red (resp. green ) part is filled with a
negative (resp. positive) material.

Classically, we say that A € C is a regular point of %, if and only if the operator Z,(\) is
invertible otherwise we say that A is an eigenvalue of .%Z,,. The set of eigenvalues of %, is called
the spectrum of %, and is denoted by A(.%,). As we have seen in §2.4, having an accurate
information about the location of the spectrum A(.%,) in the complex plane is important for the
study of the well-posedness of the problems:

Find u € Wj(R?) such that — div(cVu) = f € (WL 5(R?))*

for 8 € R. More precisely, the formula (2.14) tells us that the solvability of the previous problem
is directly related to the invertibility of .Z,()\) along the energy line Re(\) = —f — 1/2 and
on the behavior of .Z,~!()\) on this line. In addition to that, we have also seen that to obtain
an asymptotic expansion of its solution, near the origin, on needs to have a precise information
about the associated eigenfunctions/generalized eigenfunctions and the algebraic multiplicities of
its eigenvalues (see §2.4.4 for the definition of these objects).

Because of the sign-change in the density function o, the study of the spectral properties of .%,;
does not fit into the general theory presented in [101] that concerns the study of the spectral
properties of the Mellin symbols generated by strongly elliptic operators. Our goal is to show
that, even in our situation, some of the well-known results of the classical theory of Fredholm op-
erator pencils can be recovered. Note that, to the best of our knowledge, the results that we shall
present below are new. In some way, these results can be seen as an extension of the ones pre-
sented in [25] for the case of two dimensional transmission problem with sign-changing coefficients.

The results of this chapter are organized as follows. In §3.2) we address the question of the
discreteness of the spectrum of .%, and the behavior of its resolvent (i.e. A — 2, (\)™!) for large
values of |A|. Next, in §3.3, we turn our attention to the study of the behavior of the spectrum
and the associated eigenvectors when one replaces o by o + 70 where § is a small parameter. In
the last section (§3.4), thanks to some explicit computations, we explain how the general results,
obtained in the previous two sections, can be made more precise in the particular case of circular
conical tips.
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3.2 Fredholmness of the symbol and discreteness of the spectrum

In the classical configuration (when o has a constant sign), one can prove (for instance see the
proof of [101, Lemma 3.6.3]), by means of the analytic Fredholm theorem (see [101, Corollary
1.1.1]), that the spectrum of .Z,(\) is discrete and consists of isolated eigenvalues with finite
algebraic multiplicities. In our configuration, because of the sign-change in o, the operator %, (\)
is not necessarily of Fredholm type. This means that A(.Z,) may contain some eigenvalues of
infinite algebraic multiplicity or even worse than that, A(.Z,) can be not discrete (or possibly
equal to the complex plane).

3.2.1 Fredholmness of the symbol

As in the classical configuration the first step is to endow the space H'(S?) with the norm
HUHIZ_II(SQJ)\D such that for all u € H'(S?) we have

[ullfir sz, a) = Nl g2y + AP [ullf2s2) -

Obviously, one can say that for all A € C, the norm ||u|[g1(s2,z) is equivalent to the classical
one (which, by the way, coincides with ||ul|g1(s21)). However, when |A| goes to 400 these two
norms have two different behaviours. Note that the introduction of this norm is motivated by the
expression of the inverse Mellin transform (2.4.3). We also endow the space (H(S?),|A]))* with
the norm || - [|(g1(s2, 1))+ such that for all f € (H'(S%, |\])* we set

)
11l s2 1) = sup M
veH! (82)\{0} vlla1(s2,a))

As mentioned above, because of the sign-change in o, the Fredholmness of .Z,(\) may be lost. In
this paragraph, we shall explain how to use the T—coercivity approach in order to prove, under
some condition on the contrast ., the Fredholmness of .Z,(\). We have the

Lemma 3.2.1. Assume that k, # —1, then there exists to € R such that for allt € R such that
to < [t| the operator £,(—1/2 + it) is an isomorphism. More precisely, there exists 0 < C' such
that for all ty < [t| and A = —1/2 4 it we have the estimate

HUHHI(SZ,P\\) S CHXU()‘XU)HHI(SQ,P\D* fOT‘ all u € Hl(SQ)

Remark 3.2.1. The proof of the previous result is a little bit technical. For pedagogical purposes,
we will limit ourselves here to the study of the particular case of a circular conical tip (i.e.
0 = g(p) = ) and the study of the general case (g € €°[0;2x]) will be left as an appendiz (see
Appendiz 3.6.1).

Proof in the particular case g(p) = o € (0; 7). The main idea is to use the T—coercivity ap-
proach. By dividing .Z,, by o1 we come back to the study of the particular case where o = 1 in 5}
and 0 = K, in S3. To prove our claim, one has just to study the case —1 < ks < 0, the other case
(when k, < —1) can be studied in the same way by exchanging the roles of S; and Ss. For this
reason, we are going to suppose that r, > —1. Then, we define the operator T : H!(S?) — H!(S?)
such that

u1(0, p) in Sy

T ) =| _ (6. ¢) + 2x(0)ur(2a — 6,9) in S5

where the functions u; and ug are such that u; = ulg, and us = ulg, and in which x : [0, 7] — [0, 1]
is a cutoff function that is equal to one for 6 € (o — v;a« + ) and vanishes for 6 € (0; — 2v) U
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(a + 27;m). The parameter v must be chosen such that 2y < min(a, 7 — «). We also need to
define the positive numbers M., L, and N,, such that
M, = sup w, L,= sup ﬂ and Ny = sup X' (0).
0€la—2v;a+27] Sln(9) Ocla—2v;a+27] Sln(2a - ‘9) O€la—2v;a+27]

It will be useful to note that, at least for v small enough, the functions v — M, and v +— L, are
continuous. Since My = Ly = 1 one deduces that there exists some +* small enough such that
for all v € (0;4) one has max(M,,L,) < 1/|ks| (this is true because we have supposed that
—1 < ks < 0). Now, let us come back to the study of the operator T. First of all, by observing
that for all u € H'(S), the function T(u) is continuous across the interface {§ = a}, we infer that
T(u) € H'(S). This means that the operator T is well-defined. Since for all u € H'(S) we have
T o T(u) = u, we deduce that T is a bijective operator. The continuity of T follows from the
following estimates: for all u € H'(S?) we have

IT(u))?dw < lur|dw +2 | |ug?dw +8 [ |x(0)u1(2a — 0, ) Pdw
S2 S1 Sa S2

2/ \u|2dw+8M7/ lu|? dw < (2+8MA,)/ || dw
S2 S1 S2

/\VST (u)]? dw <2/ \Vgu\de—i-S/ IVs(x(0)u1 (20 — 6, 0))|*dw

)0 u1 (200 — 6
<2/ \Vgu\gduH-S/\ leé(;; ’(p)Ide

. 195 (x(0)u1 (20 — 8, )| *dw

<2/ \Vgu\gdw+8Ln/ \V5u1|2dw+8N7Mv/ |y |2dw
S2 S1 S1

+8M, / |V sui|? dw.
S1

The next step is to compute (£ (—1/2+it)u, T(u)) for an arbitrary u € H(S) and an arbitrary t €
R. To simplify notations, we shall denote by @; the function (0, ) — u1(0, ) = x(0)u1(2a—0, )
and by 7; the real positive number p; = 1/4 + 2. For all t € R and all u € H(S?), we have

(ZL(-1/2 + it)u, T(u)) —/ oVsu-VgT(u)dw +,0t/ ouT (u)dw
S2 S2
= (lo|Vsu, Vsu)sz + pi(lofu, u)s2 + 260 (Vug, V(11))s, + 260 pr(u2, 11)s, -
Now, by means of the Young’s inequality and the definition of M., one finds for all 0 < a that
2|(’U,2, ﬂ’l)Sz’ = | S u2(97 @)X(Q)ul (2a -0, cp)dw\ < a’(u% u2)52| + aileKul? ul)sl"
2

For the term (Vsug, Vsty)s,, we decompose it into the sum of (x(0)Vsuz, Vg(u1(2a—0,¢)))s,
and of (Vgug,u1(2a — 6,9)Vsx(0))s,. Applying the Young’s inequality, one obtains that for all
0<b,c

Opua(0, ) Opur (2a — 6, ) |

2|(x(0)Vsu1, Vgiin)s,| =2 . X(0)(—0gu2(8, ) Ogu1 (2ac — 0, )dw + 5in(0) sin(0)
M, ¥
< b(Vguz, Vsug)s, + max(bw(vsm, Vsui)s,
2|(Vsug, u1(2a = 0,0)Vsx(0))s,| = | (301@( ©)0px(O)u1 (2 — 0, )dw|
N, M.
SC(VSU2,VSU2)SQ+ T (uy, up) s, -
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With these estimates, one concludes that for all ¢t € R and u € Hl(SQ) we have for all 0 < a, b, c
_ || max (M, L)
b
B |/{U]M,Y) Ko | Ny M,
a c

(L (-1/2 +it)u, T(u))| > (1

)(Vsur, Vsui)s, + |ko|(1 —b—c)(Vsug, Vsuz)s,

+(pe(1 )(u1,ur)s; + (pilro|(1 = a))(uz, ug)s,.

Given that for all v € [0,7%), we have max(M,,L,) < 1/|ks|, we then deduce that for all
v € (0;4), one can find a,b € (0;1) such that

0<1

L maXb(MV’LV) and 0 < 1—

|“U|M’Y
—

_ || Ny My

M
By taking ¢ € (0;1—b) and ¢ large enough so that 0 < (p;(1— [0 | My
a

)

that there exists some 0 < tg such that for all ¢ € R satisfying tp < |t|, we have the estimate

), one deduces

Collullsge ) < 1(Z(~1/2 + it)yu, T(u) (3.1)

with Cj independent of ¢. Note that to obtain the previous estimate, we have used the fact that
for all A\ = —1/2 + it with t € R we have |A|*> = p;. Since T : H'(S) — H(S) is continuous
(here H(S) is endowed with its natural norm), the operator T : H(S, |A|) — HY(S) is continuous
and uniformly bounded. This, simply, means that for all A € C and all v € Hl(S2) we have the
estimate,

T (w)l[m1(s2) < Cllullf(sz,a)) for all u € H'(S?)

with C independent of A and of w. Inserting this into (3.1), one deduces there is some 0 < C
independent of u € H'(S?) and A = —1/2 + it (with ¢y < |t|) such that

[l sz a) < Cll-Lo (M) ()|l (s2, )+

This furnishes the wanted estimate and shows that for all A = —1/2 + it (with ¢y < |¢|) the
operator .Z;(\) is injective and its range is closed. By observing that for all ¢ € R the operator
Z,(—1/2+1it) is self-adjoint (because it is bounded and symmetric), we deduce that £, (—1/2-+1t)
is an isomorphism for all ¢ € R satisfying ¢ty < |¢|. |

3.2.2 Discreteness of the spectrum

Given that the embedding of H'(S?) into L?(S?) is compact (see [91, Proposition 2.4]), one can
easily see that for all A, \" € C the operator .Z,(\) — %, (\) is compact. Taking \' = —1/2 + it
with o as in Lemma 3.2.1, we can say that if k, # —1 the operator .Z,()\) is a Fredholm operator
(of index zero) for all A € C. Furthermore, by applying the analytic Fredholm theorem (see [101,
Corollary 1.1.1]), one obtains the following

Lemma 3.2.2. Assume that ks # —1. The spectrum of £, is composed by isolated eigenvalues
with, finite algebraic multiplicities. Furthermore, £,(\) ™" is analytic in C\A(%Z,).

3.2.3 Localization of the spectrum and boundedness of the resolvent

In this paragraph, we intend to explain how to obtain a more precise information about the
location of the spectrum of .Z, in the complex plane. In addition to that, we are going to address
the question of the behaviour of |||-Z; 1 (\)||| when |\| is large (this result is important to show
that the solution constructed by means of the inverse Mellin transform is uniformly bounded
with respect to the source term). Before getting into details, one can easily see that A(.%,) is
symmetric with respect to the point (—1/2,0) (i.e. if A € A(%,) then —A — 1 also belongs to it).
Furthermore, since o is real-valued one can also observe that A(.%,) is symmetric with respect

to the lines Sm(A\) = 0 (i.e. if A € A(Z,) then A € A(%,)).
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Theorem 3.2.1. Assume that k, # —1. Then all the eigenvalues of £,(\), with the possible
exception of finitely many, are located outside of some double sector centered at (—1/2,0) (i.e.
{z € C|Re(z+1/2)| < §|Sm(z+1/2)|} with 0 < &) of the complex plane (see Figure 3.2). More
precisely, there exist 0 < 7, rg such that

DX = {z € C such that ro < |z +1/2| and [Re(z + 1/2)| < v0|Sm(z + 1/2)[} € C\A(ZL).

Furthermore, there exists some positive constant C independent of A € ng such that
||U||H1(SQ,|)\|) < C||$g()\)u||H1(827‘)\|)* f01“ all u € HI(SQ).

Proof. Let us start with the case A = —1/2 + it with ¢t € R. We have shown in Lemma 3.2.1
that there is some 0 < ¢y such that for all |¢| < ¢ty we have the estimate

Collullmr s,z < I1<€6 (M) (W) [l 52,7+ (3.2)

with Cp independent of ¢. In the rest of the proof we are going to suppose that 1/2 < 3. Now,
for all 0 € [—m/2;7/2] and all ¢t € R such that ¢y < || we denote by M) the complex number
A, = —1/2 + ite’. One can easily check that for all u,v € H'(S?) we have

(L5 (M) — Zo(No)u, v) = (Ng(Ag + 1) = A(Ag + 1))/

outdw = t3(1 — %) / outdw.
S2

S2
Given that the function x +— z/(xz — 1/2) is decreasing in [ty, +00), we deduce that for all ty < |¢|
and 6 € [—7/2,7/2] we have

L R

NG|~ )t —1/2 T to—1/2

As a result, for all ¢ty < [t| and all § € [—7/2,7/2] we obtain the estimate
1-5(A5) — Lo (A0) 2, gy < C1lL — €]

with C] independent of ¢t and of 8. Starting from the fact that the operator satisfies the estimate
(3.2), one obtains the following estimate: for all u € H*(S?) we have

(Co—Cr|1 =) Jully s ng)) = (Co—2C | sin(@) ) [l g2, x ) < Lo (N6 (W) 111 (g2, 36+ (3-3)

Given that 6 — sin(f) is continuous, we infer that there exists §* € (0;7/2) such that for all
0 € (—0*;0%), we have 0 < Cy — C1]1 — *?|. Consequently, we deduce that for all § € (—*;6")
and all tg < [t| we have A} ¢ A(Z,). Since |t| = |A) + 1/2| and 6 = arg(\) + 1/2) — /2 we infer
that the region

{z € C such that ty < |z + 1/2| and |Re(z + 1/2)| < tan(6%)|Sm(z + 1/2)|}

is free of eigenvalues of .Z,. To end the proof, it remains to see that inside the ball B =: {z €
C such that |z+1/2| < to} there is a finite number of eigenvalues of .%,,. This a direct consequence
of the fact that A(.Z,) consists of isolated eigenvalues. The theorem is then proved by taking
ro = to, Y0 = tan(f*) and C = 2/Cj. [ |

Remark 3.2.2. One of the consequences of the previous theorem is the fact that, when ks, # —1,
for all B < B2 the strip Re(\) € (B1, f2) contains a finite number of eigenvalues of Z,.

It is worth to note that in the statement of the previous theorem, the parameters ~y and rg
depend on the contrast k. Let § € R, we define £g =: {\ € C such that Re(\) = §}. Using the
same idea as in the proof of the previous theorem, one shows the
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Corollary 3.2.1. Assume that K, # —1. Let € R such that £g N A(Z£,) = 0 then there exists
some constant Cg (independent of \) such that the estimate

[ullmsza) < CollZo(MNull g s2, a0+
holds for all u € HY(S?) and all X € (3.

Proof. The Theorem 3.2.1, shows that when A € £5N (D7) (see the statement of Theorem 3.2.1
for definition of D’J), the estimate

HUHHl(S2,)\) < C”Dg/ﬂo()\)UHHl(S{)\)* for all u € Hl(S2)

holds with some C' independent of A. By combining the fact that DX C C\A(%;), the fact that
A(Z,) is composed by isolated points and by using the assumption £g N A(Z,) = (), one can say
that for 7 small enough the strip C,, =: {A € C; Re(\) € [ — 1,8 + 1]} is free of eigenvalues
of .Z,. The wanted estimate follows, then, by combining the fact that £~ L(\) is analytic in Cy
and the compactness of C;; N (C\DZ}). [

Im(A) =0

~

Re(\) = —1/2 *1/9))

Figure 3.2: A possible distribution of the spectrum of .Z, (the red points) for k, # —1. The green
points are associated to propagating singularities (see Definition 2.6.1).

The previous corollary tells us that when .Z,()) is invertible along the energy line A\ € /g,
then, seen as an operator from (H(S?, |\]))* to (H'(S%,|\|)), the operator .%,(A\)™! is uniformly
bounded with respect to A € £g. However, when it is considered as an operator from (H'(S?))*
to H!(S?), the result of previous corollary implies that the norm of %, (\) ™! does not grow faster
that [A|* (when X\ € £3).

Now, let us consider two real constants 81 < f2 such that £g N A(Z,) = £z, N A(Z,) = 0. For
all » € R, we introduce the closed set

D(r,B1.B2) = (A € Iy < Re(N) < AN(,_Y,, BOW)). (3.4)
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Corollary 3.2.2. Suppose that k, # —1 and let f1 < 2 € R such that lg, N A(Z,) = Lz, N
A(%,) = 0. Then, for all 0 < r there exists 0 < C such that

HUHHI(SQ,MD < C||$O'()‘)u||(H1(SQ,\)\|))* for all A € D(’I“, Bl,,ﬁQ) and for all u € Hl(S2)

Proof. Thanks to Theorem 3.2.1, we obtain the wanted estimate for all A € D(r, 81, 52) N D29.
To obtain the wanted estimate for A € D(r, 81, B2) N (C\DJ?) is enough to see that the latter is
a compact subset of C\A(.%,). [

3.2.4 Algebraic multiplicities of eigenvalues in the energy line Re(\) = —1/2

In this paragraph, we are going to prove some useful results concerning the algebraic multiplicities
of eigenvalues of %, that are located in the energy line £_; /5. The starting point of our discussion
is the following:

Proposition 3.2.1. Assume that i, # —1. Let Ao € £_1/5 N A(Z5). Let (1,5 00,(00)) be @
basis of Ker (£,(X\o)). Then, we have the equivalence

L) < taN) I T € {1 1)} st (220 4+ 1) /S kB =0 forj =1, .., 15(\)

where we refer to §2.4.4 for the definitions.

Proof. Since k, # —1, we know that .Z,(\g) is a Fredholm operator of index 0. The fact that
Ao € £_y o implies that £ (\o) is self-adjoint. By definition of 14()\o) and ¢4(Ao), we know that
tg(Ao) < ta(Ao) if and only of there exists k € {1,...,14(Ao)} for which the function ¢ has at
least a generalized eigenfunction. This is equivalent to say that the problem

7

Find v € HY(S?) such that %, (\o)u = N

—Z(No)px

has a solution. By the Fredholm alternative, we know that the previous equation has a solution
if and only if
a5

A%,
The result is then proved by observing that <W(/\0)90k7 i) = (2Ao + 1)/ TPLP;- [
S2

A direct consequence of the previous proposition is the following

Lemma 3.2.3. Assume that k, # —1. Let X\ € {_y)5 N A(ZL,) such that 1y(N) = 1. Let ¢ €
Ker (Z;(A))\{0}. Then

ta(A) =1 if and only if (2A + 1) /S2 alel? # 0.

We also obtain the following

Lemma 3.2.4. Assume that r, # —1. Let X\ € £_1/5 N A(Z;) such that 1g(N\) = 2. Let ¢ €
Ker (Z;(X\)) such that (¢, %) is a basis of Ker (£())). Then

(2A+ 1) /SQGMJF#O () = 2.
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3.3 Stability of A(.Z,) with respect to perturbations of o

In the present section, we will be concerned with the study of the spectrum of the operator
Zy1is(N\), where § is a real parameter. Our main goal, is to study the convergence of A(Z,s)
and the associated eigenfunctions when § tends to 0. Note that the study of such convergence is
essential when one wants to define the physical solution of the original scalar problem by means
of the limiting absorption principle (see §2.6.3). Since for all A € C the operator %, ;5(\) can be
seen as a small perturbation (of course when ¢ is small) of the operator £, (\), one may expect
that when ¢ goes to 0 the set A(Z,4;5) will converge to A(.%,) (here the convergence must be
understood with respect to the Hausdorff distance (see Definition 3.3.1)).

3.3.1 Properties of the spectrum of the perturbed problem

Before getting into details, let us start by proving that for all 0 # ¢, the set A(.Z,) is discrete.
This the object of the following

Proposition 3.3.1. Let 0 < 6. The spectrum of £,y5 is discrete and composed by isolated
eigenvalues. Furthermore, we have £_y ;5 N A(ZLy1i5) = 0.

Proof. By observing that for all t € R, § € R* and all u € H'(S?), we have
ISM(Lotis(—1/2 + it)u,u))| = |5’HUH%{1(S2,1/4+t2)7

we deduce that for all £ € R and 0 € R* the operator .2, ;5(—1/2 + it) is injective and that its
range is closed. By observing that £ ;;(—1/2 +it) = £, _i5(—1/2 + it), we deduce that for all

*

0 € R* and ¢t € R the operator £, ;s(—1/2 + it) is an isomorphism. The rest of the proof is a
direct application of the analytic Fredholm theorem. |

Note that in the previous proposition, there is no assumption about the value of the contrast x.
We have the analogue of Theorem 3.2.1.

Lemma 3.3.1. Assume that K, # —1. There exist two positive constants ro, Yo independent of &
and 0 < &g such that for all & satisfying |6 < do we have

D7 = {z € C such that ro < |z —1/2| and [Re(z + 1/2)| < v0|Im(z + 1/2)[} C C\A(ZLo1i6)-
Moreover, there is some 0 < C independent of § such that the estimate
[l sz, < Clloris(Nullu s a+ for all w € H'(S?)
holds for all 6 such that || < do and all X € D}0.

Proof. From the results of Theorem 3.2.1, we already know that there exist two positive constants

70,70 such that DI C C\A(Z,). Furthermore, we know that when A\ € D0, the operator

Zy(N) 7 (HY(S?)*, |A]) — (HY(S?), |A]) is uniformly bounded with respect to A. As a result, to
prove our claim, we need to find a uniform estimate of |||-Z; () — Lo1i6 (M) || (111 (52,101 — (1 (2,)A]))*)
for A € D2Y. To do so, we start form the fact that for all u € HY(S?),5 € R* and \ € D20 we have

1L (MNu — Lo ris(Null s, a)ys < 101wl s2) + A + D [Jullizs2))-

Next, given that 0 ¢ D3, we infer that there exists 0 < p such that p < |A|] for all DI%. As a
result, we conclude that there exists a constant 0 < Cy independent of A such that

IA(A+1)| < Co|A* for all A € D0
As a consequence, we deduce that for all A € nyg we have
1125 (A) = Lois M)l a1 s2, ) — g2, a))7) < Cl9]
where C' is independent of \ € nyg and of 6 € R*. This leads to the wanted result. |
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3.3.2 Convergence of the spectrum

In this paragraph, we are going to address the question of the convergence of A(Z,;s5). Before
getting into the details, for all 51 < f2 we denote by B(f1, 52) the strip

B(p1,52) :={ A € C| 1 < Re(A) < Ba}.
The main result of this part is given by the

Theorem 3.3.1. Assume that ks # —1 and let 51 < o € R such that £g, NA(Ly) = £g,NA(Zy) =
0. We have }E%(A(zo-i-ié) N B(B1, B2)) = AMZ5) N B(B1, B2).

In the statement of the previous result, the convergence must be understood in the sense of
convergence with respect to the Hausdorff distance. To be more precise, we adopt the following

Definition 3.3.1. Let E be a closed subset of the complex plane. Let (E‘S)(SE]R be a family of
closed subsets of the complex plane. We say that (E5)5€R converges to E (or briefly %ir%E‘s =F)
—
if and only if
lim max(sup inf |x — y|,sup inf |x — = 0.
lim (mé’a inflz -yl xegymI yl)

The proof of the Theorem, will be done thanks to the two following propositions. By working as
in the proof of Lemma 3.3.1 and by using the results of Corollary 3.2.2, one can easily prove the

Proposition 3.3.2. Suppose that K, # —1 and let 51,52 € R satisfying f1 < B2 and such that
U, NA(L) = L, NA(ZL,) = 0. Then for all 0 < r, there exists 0 < 0, such that for all & satisfying
18] < 8y, we have A(Lyyis) N D(r, b1, B2) =0 (see (3.4)). Moreover, for all § satisfying |0] < 0y,
we have the estimate

11ZLois (N) ™ (2,0 2,y < Cr for all X € D(r, By, Ba)
in which C, is a constant that does not depend on .

Note that the previous result does not apply when 51 = —oco or when 85 = +oo. This is due to
the possible existence of accumulation points at infinity.

Remark 3.3.1. [t is important to mention that near an eigenvalue of £, one can, eventually,
find several eigenvalues of L5 for & small enough. This will be indeed illustrated in the next
paragraph.

The second result that we need, is given by

Proposition 3.3.3. Assume that ks # —1. Let \g € A(%,) and denote by 1q(No) its algebraic
multiplicity. Let 0 < r such that A(Zy) N B(Xo,7) = {Xo}. There exists 0 < &y such that for all
0 satisfying 0| < do, we have

A(ZLyiis) N B(Ao, ) # 0 and »(ZLyiis, B(Ao, 7)) = ta(Mo)

where 3(ZLy1i5, B(Mo, 7)) is the sum of the algebraic multiplicities of the eigenvalues of Lyyis
that are located in B(\o,T).

The previous result is a direct consequence of [101, Corollary 1.1.2]. Let us just mention the
idea of the proof. Its is based on three important points. The first one is that A\ — %,()\) and
A — Ziis(A) are two meromorphic functions. The second one is the fact that ¢,(Ag) can be
expressed as follows [101, Theorem 1.1.3]:

1 4L 0N
o) =g [ TR

The last one is the generalization of Rouché’s theorem [101, Theorem 1.1.4 |. Now, we have all
the tools to prove the Theorem 3.3.1.
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Proof of Theorem 3.3.1. The Proposition 3.3.3 tells us that every A € A(%,) N B(B1,52) is a

limit, when ¢ tends to 0, of eigenvalues of A(.Z,;s). By means of Proposition 3.3.2, we ensure

that %irr(l)(A(.ng(gﬂB(Bl, B2)) is a subset of A(.Z,) N B(P1,B2)). Since the set A(Z,) N B(pS1, B2))
%

is finite, we obtain the wanted result. |
We have the following

Corollary 3.3.1. Assume that k, # —1 and let X € AN(Z,). If X is simple then there exists
0 < ro, 09 such that for all 0 < |0| < do, the ball B(\, o) contains one eigenvalue of Lyyis.

Proof. The result follows from the fact that the sum of the algebraic multiplicities of the eigen-
values of .Z, ;5 that are near A is equal to 1. |

3.3.3 Numerical illustration

To illustrate the results obtained above concerning the convergence of the spectrum of %, ;s
to the one of .Z,, we shall use the numerical approximation of the spectrum of %, ;5 and .%;,
by the FEM. Instead of approximating the problem directly in S?, we shall start by write a an
equivalent formulation of the problem that will be posed in B = (0; 27) x (0; ) (this will allow us
to avoid the discretization of the unit sphere which is not an easy task in general). To do so, we
use the classical angular spherical coordinates (¢, ) € B to parameterize S%. With this in mind,
we can say that when k, # —1, A € A(Z,) if and only if there exists u € H%&(B) such that for
all v € H%&(B) we have

/ (ﬂﬁwu 0,0 + 0(0) sin(0)Jgu 0pv) df dp = Ap(Ap, + 1) / o(0) sin(f)uv db dp
B sm(@) B

in which
HY(B) = {(2,60) = u(i2,0) | \/sin(0)u, \/sin(6)dpu, pu/y/sin(6) € L3(B) and u(0,6) = u(2r,6)}.

Naturally, this leads us to the following discrete problem: Find (up, Ap) € Vp, 4(B))\{0} x C such
that for all v, € Vi, 4(B)

/ (29 5, 8,57 + o () sin(y)Byun 0,50 dz dy = An (s + 1) / o (y) sin(y)upTrdz dy
B Sln(y) B

where the space th#(B) .= {u € P¥(B)| such that u(0,y) = u(2m,y)}, where P¥(B) stands for
the space of polynomials (of 2 variables) of degree at most equal to k. In order to take into account
the periodicity condition with respect to x, the mesh of B must be, then, periodic with respect
to x. Moreover, because of the sign-change in o and following the results of [46], we need to use a
mesh that is periodic in the x direction and that is symmetric near the interface 3 := {y = 7 /4}
(we say that the mesh is T-conforming). See Figure 3.3, for an example of T-conforming mesh
that is periodic in the x direction. In our work, we used the library Freefem++ for the construction
of the matrices associated to the discrete formulation and we used the eig function of MATLAB
in order to approximate the eigenvalues. To approximate the eigenvalues of %, ;5, we used the
same strategy as in the case of .Z, (one, simply, needs to replace o by o + ¢d in the formulation
above).

To proceed, we will work with two different values of the contrast k., : kK, = —0.7807, —0.8. For
these particular choices of k., we can guaranty that A(Z,) NLl_y/y # (). For this reason, we
shall focus our attention on the behavior of the eigenvalues of .%, ;5 that are near A(%,)N{_; /2
as 6 — 0. The numerical results for the case k = —0.8 are displayed in Figure 3.4 and those
associated with the case k, = —0.7907 are presented in Figure 3.5.

What we can learn from these results are the following facts:
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Figure 3.3: An example of a periodic T-conforming mesh.
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Figure 3.4: Behavior of A(%,s) for K, = —0.8.
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Figure 3.5: Behavior of A(.%,1;s) for the case k, = —0.7807.

o In both cases, we observe that the convergence of A(Z,;s5) to A(Z,) occurs.

o It seems that in the case k, = —0.7807, the assumption 2.6.2 is not valid. Indeed, we observe
that there exists an eigenvalue A\ € A(Z,) N ¢_; /o which corresponds to the coalescence of
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two eigenvalues of %5, one of which comes from the left (i.e. that e(\) < —1/2) and
the other from the right (i.e. —1/2 < Re(\)).

¢ We also observe that the rate of convergence depends on the nature of the eigenvalue: we no-
tice that for the eigenvalue which is the limit of two coalescent eigenvalues, the convergence
is slower than for the case of the other eigenvalues that belong to £_; 5.

Remark 3.3.2. For the case of general smooth conical point (g € €*([0;2x])), the same numer-
ical approach can be used but this time the construction of T-conforming mesh seems to be a little
bit complicated (see [45, §2.B]). We will leave this question for a future work.

3.3.4 Convergence of the eigenfunctions

Up to now, we have proved that when k, # —1, the spectrum A(.%,,;s) converges, when ¢ tends
to 0, to A(Z,). Unfortunately, this result alone is not sufficient to derive the theory we need to
define the physical solution of the scalar problem by means of the limiting absorption principle
(see §2.6.3). To complete it, one has to study the behaviour of the associated eigenfunctions and
the generalized eigenfunctions of .Z, ;5 as § — 0.

As we have seen in the previous subsection that, when k, # —1, for any A € A((%,) and 0 < ¢
small enough .Z, ;s has one or several eigenvalues near A. The only information that we can
guarantee about the nature of these eigenvalues is that the sum of their algebraic multiplicities
is equal to the algebraic multiplicity of A. This means that even if A is a semisimple eigenvalue
of .Z, there is no grantee about the fact that all the eigenvalues of .Z, ;s are semisimple. To be
convinced, let us consider the following example that comes form the finite dimensional setting.
For all 6 € R*, we define the matrix

s 146 6
A= ( 0 1+ 5)

Clearly, As is a small analytic perturbation of the identity matrix I5. The spectrum of As coincides
with {14 0} which converges when § — 0, as excepted, to {1} which is equal to the spectrum of
I;. We can also see that the algebraic multiplicity of 1 4+ § (as an eigenvalue of As) is equal to
2. While 1 is a semisimple eigenvalue of I, 1+ § is geometrically simple (there is a Jordan chain
of length 2 composed of an eigenfunction and a generalized eigenfunction). This example shows
that, in general, we are not able to guarantee that the eigenvalues of the perturbed problem and
those of the unperturbed problem have the same nature. This explains, in a way, why we have
made the Assumption 2.6.2 when we used the limiting absorption principle to define a physical
solution to the scalar problem. The main result of this section is given by

Proposition 3.3.4. Assume that k, # —1. Let A € A(%,) and let (\s)s be a sequence’ of
elements of A(Ly+is) that converges to X\ when § tends to 0. Consider a sequence (ps)s of elements
of ker(Zs1is(As)) such that |[ps|mi(s2y = 1 for 6 small enough. Then, (¢s5)s converges (up to a
sub-sequence), in H'(S?), to some @y € H'(S?) that belongs to ker(Z,(\)).

Proof. Since (¢5)s is bounded in HI(S2), one can extract a sub-sequence from it that converges
(when & goes to 0) weakly in H'(S?) and strongly in L?(S?) to some ¢y € H'(S?). To simplify,
this sub-sequence is still denoted by (¢s)s.

Since (As) converges to A, as 0 — 0, one deduces that g belongs to ker(.Z,(\)). It remains, then,
to explain why the convergence of (¢s5)s to o occurs in the strong sense. For this, we start by

'"Here and in what follows, a sequence indexed with a non integer parameter refers to an indexed family of
elements.
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observing that since %, 1;5(\s)ps = 0, we have for all t € R,
(ZLo(t)ps, ') = —id /2 VspsVsy' +i6As(As + 1) /2 w5’
S S

+(t2 4+ 1/4+ Xs(\s + 1)) / opsp.
S2

As (ps)s is bounded in H!(S?) and converges in L%(S?) to g, the previous identity shows that
(%, (t)ps)s converges, as & — 0, in ((H'(S?))*. Owing to Lemma 3.1, we know that for ¢ large
enough, the operator .Z,(t) becomes isomorphism. This implies that (¢s)s converges, as § — 0,
strongly in H'(S?) to some ¢; € H'(S?). By uniqueness of the limit in L?(S?), we deduce that

©o = P1- n

3.4 The particular case of circular conical tips

In the previous paragraphs, the main spectral properties of the family (.Z,(\))aec have been
investigated in the case of a general smooth conical tip g € CKPQGT([O; 27]). The main goal of this
paragraph is to study the particular case of circular conical points, in other words, when the
function g coincides with a constant o € (0; 7). In this particular case, some of the results that

we have established before can be improved. In addition to that some new results can be obtained.

The main idea is to take advantage from the fact that circular conical tips are rotationally
symmetric. With this in mind, any function of the space H'(S?) can be decomposed, by means
of the Fourier decomposition, into a sum of separated variable functions. This will help us
in getting a deeper information about the spectrum. More precisely, the spectrum of £, can
be characterized by means of a dispersion relation. Furthermore, since the eigenfunctions are
also known explicitly, some results concerning the existence of generalized eigenvectors for the
particular case of eigenvalues that are on the line Re(\) = —1/2 can be obtained. This will help
us studying the validity of Assumption 2.6.2 in this particular configuration.

3.4.1 Dispersion relation

The goal of this part is to determine a dispersion relation that allows us to characterize the
spectrum %, when the contrast k, # —1. By this, we mean finding a function f : C — C such
that A € A(Z,) <= f(A) = 0. According to Lemma 3.2.2, we already know that when k, # —1
the spectrum of %, is composed by discrete eigenvalues. Consequently, it suffices to find the
set of A € C for which the equation .2, (\)u = 0 has a non trivial solution in H'(S?). As in this
particular geometry, the function o is independent of the variable ¢ € [0, 27], we then obtain the
equivalence: A € A(.Z,) if and only if

- m1(m89<”(9) sin(@)9pu) — -2 520 Z A\ + D)o (0)u (3.5)

sin(0)? %
in which the last equation is written in the distributional sense. The key idea (which is also used
in [92, 104]) is to use the fact that every function u € H'(S?) can be decomposed as

Ju € H'(S?)\{0} s.t.

1
27

u(0,¢) = Z U (0)e™? where u,,(0)

2m
/ u(, p)e”"?dy for all m € Z.
meZ 0

Note that the previous decomposition in nothing but the classical Fourier decomposition with
respect to ¢ € [0,27]. It is interesting to observe that, in the decomposition above, since u €

H'(S?) one can show that for all m € Z, the function u,,(6) is such that /sin(@) wy,, tm,/+/sin(8)
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and \/sin(0) dgu,, belong to L?(0; 7). Now, if v € H'(S?) is a solution of (3.5), one deduces that
for all m € Z the function u,, is such that

_sinl(G) d%lg(a(@) sin(ﬁ)i)um + S;TH((QH))Qm2um =AMA+1)o(0)uy,, forall m e Z.

do

To proceed, let us denote, respectively, by w1, w2y, the restriction of wu,, to (0;«) and to («; ).
With this in mind, we arrive to the conclusion that for all m € 7Z the function wu,, satisfies
following transmission problem:

1 d . dulm 1 9 B ' ‘
“sm@yao ™0 g ) T smgpe™ v = AT D n (050)
1 duZm dUQm 1 9 .
sin(f) db (sin(0) a0 ) Sin(e)Qm ugm = AA + Dugy,  in (o)
(@) = tz(), sin(a) 207 (@) = iy sin(a) L2m (a)
utm(a) = uzm (@), sin(e)— = (a) = ko sin(a)—7=(a).

At this stage, and in order to write simpler equations that we can solve by means of classical
special functions, we need to perform the change of variable § — v = cos(f). After this change
of variable, the new function, which is still denoted by wu,,(7), is a solution to the following
transmission problem: For all € Z we have

d d m? .

ng((l - 72)(?111711(7)) + A + Duam(y) — wulm(v) =0 in (cos(a); 1]
%((1 - ’Yz)aum(’m + A+ Dugm(v) — mwm(’ﬂ =0 in [—1; cos(a))
Um(cos(a)) = ugpm (cos(a)), Sin(O&)Q%ulm(COS(OJ)) = Rg sin(a)zauQm(cos(a)).

| (3.6)
Starting from the fact that the function (6,¢) — upy(8)e” ™% € H'(S?) and using the change of

variable § — 7, one can show that the functions v — w,(y), um('y)/\/l — 92, \/1 — Y2dyum(7y) be-

long to the space L?(—1; 1). This implies, in particular thanks to the fact that v — uy,(y)/y/1 — 42 €

L2(—1;1), that u,,(y) — 0 as v — +1. As a result, we are only interested in the solutions to (3.6)
that vanish near v = £1.

The equation (3.6) tells us that in each of intervals (cos(a); 1] and [—1; cos(«)) the function wuy, ()
is a solution to the associated Legendre equation in which A € C plays the role of the degree and
m € 7 is the order.

The literature about the associated Legendre’s equations is very rich especially when A € N,
in that case the solutions are the associated Legendre polynomials (for instance see [3]). In
addition to that, the approximation of these functions is available in almost all scientific computing
software.

On the other hand, when A € C\Z, many results are also available (see [3]) but when it comes to
the approximation of the associated Legendre functions, almost all open source software do not
provide it.

In order to make this chapter self-contained, we shall present, in §3.6.2, a brief overview about the
basic properties of these functions. Furthermore, we will explain how to write a C++ program
that can be used to approximate these functions for the general case A € C and m € Z.

To, proceed, for all m € N and A € C\[-m,—1] U [0,m — 1], we denote by PY(z) (with
x € (—1;1)) the associated Legendre function of first kind of order m and of degree A and by
(PY)/(z) its derivative with respect to z. Besides, for all m € N, and A\ € C\[—m, —1]U[0, m—1],
we introduce the functions f™(\, k) such that

f™ (X o) = kg PX (= cos(a)) (PY)' (cos()) + PY'(cos(a)) (PY)'(— cos(a)).
*For all a,b € Z, we denote by [a,b] := [a,b] N Z.
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Proposition 3.4.1. Assume that ko, # —1. We have the equivalence
A € A(ZL,) <= Im € N such that A € C\[-m,—1] U [0,m — 1] and f™ (N, ks) =0.  (3.7)

Proof. Thanks to the modal decomposition (3.6), one can say that the problem .Z,(\)u = 0 has
a non trivial solution in H'(S?) if and only there exists at least one m € Z for which the equation
(3.6) has a non zero solution. Given that the function u,, must vanish at v = 1, and by using
the results of §3.6.2, we infer that this is possible if and only if A € C\[—|m|, —1] U [0, |m| — 1].
In that case, we have

APY(y)  in (cos(a); 1]

BPY'(—y) in[—1;cos(a)).
The continuity and the transmission conditions satisfied by u,, at v = cos(«) lead us to the
following system of equations:

APV (cos(a)) = BPY(—cos(a))
A sin?(a)(PF) (cos(a)) = —k, sin?(a) (PT) (= cos(a)).
The previous linear system of equations has a non trivial solution if and only if
ko PY' (cos(a))(PY')'(— cos(a)) = —PY' (= cos(a))(PY')'(cos(ar)).
Given that the functions PY' and P,™ are collinear (see (3.16)), we obtain the wanted result. W

The proof of the previous proposition allows us to find the expression of the eigenfunctions
associated to A\ € A(.%,). Indeed, if we denote by

AA) :={m e N|3IX € C\[-m,—1] U [0,m — 1] and f™(A, ks) = 0}, (3.8)
we can easily prove that
Ker(%,(\)) = span{u™,u™ " |m € A(N\)}, (3.9)

+m are defined as follows

where the functions u

i [ s oo
1 7 PT(COS(O‘)) Pf\n(* COS(O))e:l:Zm‘F7 ifg e (Oé; 71')'

3.4.2 Expression of the critical interval

In this paragraph, we shall explain how to find an explicit expression of the critical interval Iy, in
the particular case of circular conical tips. Recall that for a general interface 3, Iy, is defined as
the set of contrasts k., for which the problem (2.2) is ill-posed in the Fredholm sense. In Theorem
2.6.1, we have proved that for the case of an interface with smooth conical tip, the critical interval
I5, can be defined as the set of contrasts for which the problem (2.2) has propagating singularities
(see Definition 2.6.1) or equivalently the set of ko for which A(Z,) Ne_1 /5 # 0.

To simplify notations, we shall denote by I, the critical interval in the case of an interface that
has a circular conical tip of opening angle « (i.e. g(¢) = «).

As we have seen in §2.2, the determination of I, is directly related to the determination of the
essential spectrum of the Neumann-Poincaré operator on the infinite cone

Wy, = {x = r(sin(a) cos(p), sin(a) sin(p), cos(a));r € Ry, ¢ € (0;27)}.

This latter question was investigated in details in [92, 104]. But it seems that the results obtained
there are not sufficient to obtain a simple expression of the critical interval.

During an exchange with Karl-Mikael Perfekt, he told us that the missing argument is to show
that when a € (0;7/2) (resp. a € (7/2;7)), the spectrum of the Neumann-Poincaré operator
is positive (resp. negative). In this paragraph, we are going to explain how to combine the
results of [92, 104] and the T-coercivity approach in order to obtain an explicit expression of
I, and by the way, we also answer the question about the sign of the essential spectrum of the
Neumann-Poincaré operator that was left unanswered in [92, 104].
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Expression of the critical interval

According to Proposition 3.4.1, one can say that A = —1/2 4 it (with ¢ € R) belongs to A(.Z) if
and only if there exists some m € N such that

’ioPT1/2+it(_ Cos(a))(PT1/2+it)/(COS(04)) + PT1/2+it(COS(04))(PT1/2+it)l(_ cos(ar)) = 0.

In the literature, the functions P™; J24it (with m € N and ¢t € R) are known as the conical
functions or the Mehler functions of the first kind. They play an important role in the area of
mathematical physics (see [87, 80, 122, 123] for more details). The study of these functions was
the subject of the book [146]. Some basic properties of these functions are, briefly, recalled in
§3.6.2. Let us introduce, for all m € N, the function a,, : R — R such that

P7_n1/2+it(COS(Oé))(PT1/2+it)/(— cos())
PT1/2+it(_ cos(a)) (PT1/2+it)/(COS(a))

am(t) = for all t € R.

As it is proved in §3.6.2, for all m € Z and all ¢ € R the function P™; 2+t as well as its derivative
are real valued. The functions a,, are then real valued. Given that these functions are continuous,
we then denote, for all m € N, by I,,, the interval

Iy, = {—am(t) : 0 <t < +o0}.

Given that I, coincides with the set of contrasts , for which A(Z,)N{_y /5 # (), we then obtain,
thanks to Proposition 3.4.1, the following

Proposition 3.4.2 (First definition of the critical interval). Assume that a € (0;7). We have

I,= U I,.
@ mENm

Observe that when a = 7/2, the intervals I,,, are, all, reduced to the singleton {—1}. In Figure
3.6, we represent the functions 7 — —ay,(7) for m = 0,1,2,3 and 7 € R4 (the approximation of
the conical functions is achieved by using hypergeometric function of Matlab and by using the
results of §3.6.2).

Sol
Sol

Figure 3.6: The graphs of the functions 7 — a, () for the cases @ = 7/3 (left) and ov = 7 /4(right).

What we can take away from this figure is the fact that, when 7 tends to 400 all the functions
—am, tend to a fixed valued independent of m. Moreover, we also observe that the range of the
functions —a,, is contained in the one of —ag. These observations, will be confirmed theoretically,
in the next two Propositions.
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Remark 3.4.1. One can also observe that the curves of the functions T +— —an(7) are all
disjoint. Unfortunately we do not succeed in proving this observation. Note that this is equivalent
to say that when ks € Io\{—1} then for all X € £_y/5, we have dim(ker(Z,()))) < 2. More
precisely, this is equivalent to say that for all A = —1/2 4 it € l_y/3 we have

dim(ker(Z,(\))) = {1 i o = —ao(lt)
2 if 3m € N* such that k; = —am/(|t]).

In particular, when a = w/4 and Kk, = —0.8, one can see from Figure 3.6 that there exist 3
eigenvalues of £, that belong to €f1/2 = Ll_12N{X € C|0 < Im(N)}. These eigenvalues are
approzimately equal to A\ = —1/2 + 1.6i, Ao = —1/2+ 3.60 and \3 = —1/2+ 4.7i. While A3 is
geometrically simple, A1 and Ay have geometric multiplicity equal to 2. The corresponding eigen-
functions for A1, Ao and A3 are known explicitly. In Figures 3.7-3.8, we display an eigenfunction
associated to A3 and another one associated to \1.

|_part_§
real_part_$ fedl_part_:
72605 02 04 06 08 1.0e+00 108400 05 0 0.5 10e+00

Figure 3.7: An eigenfunction associated to A3. Figure 3.8: An eigenfunction associated to \;.

To proceed, we have the

Proposition 3.4.3. Let a € (0;m). Then for all m € N, we have . liin am(t) = 1.
—+00

It is worth mentioning that this result has been already proved in a very brief way in [122]. Again,
in order to make our work self-contained, we will propose a more detailed proof.

Proof. The idea is to use an asymptotic expansions of P™, /5, ;,(cos(f#)) when t tends to +oo for

a given 0 € (0;7) and a fixed m € N. According to [146], one has for all § € (0;7) and m € N the

expansion

tm—l/QetG m2 — 1/4
2rsin(d) 2t

P™ o ir(cos(0)) = cot(6) + O(1/82)).

Using the recurrence relation (see §3.6.2)

(PT1/2+it)I(COS(0)) = mPT1/2+it(COS(9)) - Sml(@)PTfr/lHit(COS(e))7

we infer that

mcos() ¢ oot
@2 sm@ oY e Tam)

(PTl/Q—l—z‘t)/(Cos(e))/PTl/Q—i-it(COS(Q)) =
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Exchanging 6 with = — 6, we find that

(Pr_n1/2+it)/(_ cos(0)) t

P (—cos(0)) ttoe sin(0)”

The lemma is then proved by taking 8 = « in the previous two equivalences and then considering
their quotient. [

The last proposition tells us that for all & € (0; ), the particular value k, = —1 belongs to the
critical interval I,,. Indeed, we have shown that —1 is an accumulation point of I, but since the
latter is a closed subset of R_, it follows that —1 € I,,. In the rest of this paragraph, we are going
to present two key results that will allow us to obtain an explicit expression of I,. The first result
is given in the following

Proposition 3.4.4. Assume that o € (0;7/2). The critical interval I, is a subset of [—1;0].

Proof. It was proved in [50, Theorem 1.6.5], by means of the T-coercivity approach, that when

1
the contrast x, does not belong to [—1, — 1+COSE;] the problem 2.15 is well-posed. This implies
coS
1 — cos(a)
that I, -1, ——= —1,0]. |
0o © [~ ) € [-L0)

The second result that we need in order to obtain an explicit expression of I, is more involved to
be proved. In fact, as we shall see, it is an adaptation of some of the results obtained by Johan
Helsing and Karl-Mikael Perfekt (see [92]) in the context of the study of the essential spectrum
of the Neumann-Poincaré operator in the case of rotationally symmetric conical points.

Proposition 3.4.5. Assume that o € (0;7/2). Then for allm € N and all t € R, we have
|am ()] < |ao(0)].

Proof. Since the function + — (z —1)/(x+1) is increasing in (—1;0), and thanks to Proposition
3.4.4, it suffices to show that

(am(t) = 1)/(am(t) + 1) < (ao(0) = 1)/(ao(0) + 1).

On the other hand using the same notations of [92], we can write that

(am(t) = )/ (am(t) +1) = 5- /O /0 S/t [ (5) dsdg

in which K(s) is a real valued positive function that is associated to the modal kernel of the
Neumann-Poincaré operator (i.e. associated to the space of functions that have the form u(6, ¢) =
U (0)e™ ™ € H(S?)) on the infinite cone W, = {r(sin(c) cos(),sin(a)sin(p), cos(a));r €
R4, € (0;2m)} (see [92, 104] for more details). It is important to note that the positivity of the
function K(s) is a consequence of the convexity of the interior of the cone W,. As a result one
can easily see that

0 < am(t) -1 < / / 1/2+zt zm(pK( )de(p‘
+oo

T an(t)+1 o) -1
1/2 K( _
= 2r / (s)dsdg ao(0) +1°
which ends the proof. [ |

We now have all the needed tools to state the final expression of the critical interval.
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Proposition 3.4.6. [Final expression of the critical interval/Let o € (0;7/2), we have I, = Iy =
[—1, —ao(0)]. The value of ap(0) is given by

00(0) = oF(1/2,1/2,1,cos?(a/2)) 2F1(3/2,3/2,2,sin%(a/2))
O OF1(1/2,1/2, 1, sin2(0/2)) 2F1(3/2, 3/2, 2, cos?(a/2))

in which oF1 stands for the Gauss hypergeometric function (see §3.6.2).

Proof. The proposition 3.4.4 tells us that for all m € N, the interval I,,, is a connected subset of
[—1,0]. Thanks to Proposition 3.4.3, we can say that for all m € N the interval I,,, has the form

[—1, —vm] with 7, € [0,1]. This implies that I, has the form I, = [—1, —7] where the value of
v is given by v = sup~,,. To finish the proof, one has to use the Proposition 3.4.5, to deduce
meN

v =0 = ao(0). Thanks to the results of §3.6.2, in particular the relation (3.19), we find that

20(0) = PO, p(cos(a))(PL, ) (—cos(e))  ,F(1/2,1/2,1,cos2(a/2)) 2F1(3/2,3/2, 2, sin%(a/2))
O PQI/Q(—cos(a))(P91/2)'(cos(a)) - oF1(1/2,1/2,1,sin%(a/2)) 2F1(3/2,3/2, 2, cos?(a/2))

Remark 3.4.2. When the opening angle « belongs to (w/2;m), the critical interval can be de-
termined by exchanging the roles of Q1 and Qa. More precisely, one has I, = 1/Iz_,. When
a=m7/2, one has L5 = {—1}.

Using the results of §2.2, in particular Lemma 2.2.4, we obtain the

Lemma 3.4.1. Let a € (0;7/2) and denote by W, the cone
W = {r(sin(a) cos(p), sin(a) sin(p), cos(a)); r € Ry, ¢ € (0;2m)}

Then, the essential spectrum of Neumann-Poincaré operator oess(Kw,, HY/2(Wy)) is positive
and given by
ao(0) —1

ess(Kw, HY? (W) = 0, 005

The previous results require some comments.

1. Unlike the 2D configuration, for a given contrast x, € I,\{—1}, more than two propagating
singularities can exist. In fact, as can be seen in Figure 3.6 and as justified by Proposition
3.4.3, when the contrast x, approaches —1, the number of propagation singularities that
appear tends to infinity.

2. It can be proved that the critical interval widens as the opening angle o € (0,7/2) gets
smaller. This can be observed from Figure 3.9. In particular, we show that I, tends to
[—1,0] as o — 0.

3. As mentioned above, the critical interval is located on one side of the —1. value. This is a
bit surprising compared to the 2D case. The reader may wonder if this is the case for all
smooth conical tips. To the best of our knowledge, this question remains open.
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Figure 3.9: The behaviour of —ag(0) as a function of a € (0;7/2).

3.4.3 On the validity of Assumption 2.6.2 for circular conical tips

We are interested here in the question of the validity of Assumption 2.6.2 in the case of circular
conical tips. Recall that the Assumption 2.6.2 is valid if and only if:

L. All the elements of A(Z,) N{_;/, are semi-simple.
2. Near any element of A(Z;) N {_y/o, there exits a unique eigenvalue of %5 for ¢ small
enough.
Validity of the first condition
Proposition 3.4.7. Assume that ks € I,\{—1} and let \o = —1/2+ity € A(ZL5)Nl_1 /2. Suppose
that there exists a unique mo € N such that am,(|to]) = —ko. Then, we have the equivalence

Ao is a semi-simple eigenvalue of Z, iff I € Ker (Z,(No)) s.t. to/ alel* # 0.
S2

Proof. As explained in Remark 3.4.1, we know, under the assumption made on Xg, that ¢4(Ag) <
2. If 14(Ao) = 1, the wanted result is a direct application of Lemma 3.2.3. So, let us suppose
that ¢4(Xo) = 2 (this implies that mo € N*). Thanks to the assumption made on Ay we in-
fer that A(Xg) = {£mo} (the definition of A()\g) is given in (3.8)). Moreover, we also know
that ker(.Z,(\)) = span(u]™,u5™) where u™, u5™ have the form u]"(6,¢) = f(0)e' ™% uh =
£(8))e~"™0% in which f is a real valued function. By observing that

/Jugnougmdw:Oand / 0|u71n0|2dw:/ U|U§n0|2dw:/ ol f|*dw, (3.10)
§2 s2 S2 s?

we infer that for all o, 8 € C the function ¢ = au)"™ + fuy™ satisfies
[ olePdo = (af +18P) [ olffde
S2 S2

This means that Jp € Ker (Z,(\g)) s.t. to/ ol #0 <= to/ o|f|?dw # 0. By using Propo-
s? 52
sition 3.2.1 and owing to (3.10), we obtain the wanted result. |

As mentioned before, the figure 3.6 shows that the hypothesis of the previous proposition is valid,
but unfortunately we are not able to prove it theoretically. Moreover, the previous result gives
us, then, a very simple way to check if a A € A(Z,) N{_; /5 is a semi-simple or not. Now, let us
explain how to use the previous proposition in order to find the set J of contrasts x, for which
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there exists A € £_; /5 N A(Z,) which is not semi-simple. Given that I, = U I, it is enough

meN
to find for each m € N the J,,, := J N I,,,. Since the interval I, corresponds to the range of the

function a,, and given that for all 0 < ¢ the function

PT1/2+it(— cos(a)) PT1/2+it(COS(9))eim@ if 0 € (0;)

m m im ) (3.11)
P—1/2+it(COS(04)) P—1/2+it(_ cos(0))e™? i 0 € (a;m).

ui" (0, ¢) = {

belongs to Ker (%, (—1/2 + it)) where 04(0) = 1 for § < a and 04(0) = —a,,(t) for a < § < m,
we can then write that

I =L@t € Byt [ ot =0} = (an(O)} U {-am(®) [t € B, [ o P =0),
S2 s2

For all m € N, we define the function b,, : Ry — R such that b,,(t) = sign(/ o|u|?dw) for
S2

all t € Ry, where the function sign : R — {—1,0,1} is such that sign(+z) = £1 if 0 < £z and
sign(0) = 0. In Figure 3.10, we display the curves of the functions a,, by, for m = 0,...,3 for
a=m/4
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Figure 3.10: Curves of a,, (in red) and b, (in blue) for m = 0 (top left), m = 1 (top right),
m = 2 (bottom left) and m = 3 (bottom right).

The approximation of the integral in the expression of the functions b,, has been done using the
integral function of MATLAB. What we can take from these results is the following fact: it seems
that for all m € N, the set .J,,, corresponds to the set {—am,(0)} U{—a,,(t)|0 < t and a,,(t) = 0}.
We also notice that for the case m = 0, generalized eigenfunction exits only when s, = —ag(0)
(which corresponds to one of bounds of I). For the case m € N the situation seems to be different:
it seems that for all 1 < m eigenvalues (that belong to ¢_;/5) with generalized eigenfunctions
exist for two particular values of k.. The first one is when x, coincides with the opposite of the
minimum of a,,, this value corresponds to one of the bounds on I,,, (the other bound is —1). The
second one corresponds to the case k = —a,(0) € Im
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Given that the function a,, is in fact a function of ¢2, we infer that for all m € N we have

a,,(0) = 0. Thus, can then formulate the following conjecture:

Jm = {—an(t)|0 <t and a,(t) = 0} for all m € N.

Unfortunately, we are not able to prove the previous equality (which seems to be true). However,
we succeed in proving the following

Proposition 3.4.8. Assume that rk, € I,\{—1} and let \o = —1/2 + ity € A(ZL;) NL_y 9 such
that there exists a unique mo € N such that am,(|to|) = —ks. Then, we have the implications:

U, (t0) =0 = Xg has generalized eigenfunctions = 14(Ao) < ta(Xo)-
Proof. We know that for all 0 < ¢ the function

PT1/2+it(_ cos(a)) PT1/2+it(COS(9))eim@ if § € (0;)

m m im . (3.12)
P o ir(cos(a)) Py jo iy (—cos(0))e™if 6 € (a; ).

ui" (0, ¢) = {
belongs to Ker (%, (—1/2+1it)) where o,() = 1 for 6 € (0; ) and 04(0) = —am, (t) for 6 € (a; ).
This means that for all v € H'(S?) we have

/ ()T sul” - Vgtdw + (£ + 1/4) / o () uTdew = 0
S2 S2

Taking the derivative with respect to ¢ of the previous relation at tg, using the fact that the
t

d
derivative of o, at to vanishes and since %\t:to € HY(S?) (see Remark 3.6.5), we infer that

dut
(ulo id—gn]t:to) is Jordan chain of ., associated to )g. |
The previous proposition shows therefore that for all m € N we have

{—am(®#)|0 < tand a,(t) =0} C Jp.

Validity of the second condition

Proposition 3.4.9. Assume that ky € Io\{—1} and let \g = —1/2+itg € A(L;)Nl_y 5 such that
there exists a unique mo € N such that am,(|to|) = —kKe. Suppose that \g is semi-simple. Then,
there exist 0 < ro,dp such that for all 0 < |0] < &g, the ball B(\g,ro) contains one eigenvalue of
Zs1is that is semi-simple.

Proof. In the case where ) is a simple eigenvalue of .Z,, the result follows from Corollary 3.3.1.
It remains, then (thanks to the assumption made on \), to study the case when ¢4(A\) = t4(\) =2
(in this case we necessarily have mg € N*). Let kg5 = (02 +0)/(01 + id). Using the Fourier
decomposition and working exactly as in the beginning of §3.4.1, one obtains the same dispersion
relation as in (3.7) where k, is replaced by k,4i5. Given the fact that A — PY' is an analytic
function, one deduces that A — f"(\, Ky145) is analytic near \g (see Remarque 3.6.3 ). Given
that f™°(\g, ko) = 0 and by using the Rouché’s theorem, we can say that there exists 0 < 7, dg
such that A — f™°(\g, k) has a solution As that belongs to B(Ag,7) for all 0 < || < dg. Since
the associated eigenfunctions to As have the form (0, ) — f (H)eﬂmo, they are then independent
and thus ¢4(As) = 2 for all 0 < [6| < dg. Given that ¢4(Ag) must be greater or equal to t4(As), we
obtain that ¢4(\s) = 2. This ends the proof. |

Final conclusion

Thanks to the results proved in the previous two paragraphs and thanks to the numerical results
presented above, we can say that for the case of circular conical tips, Assumption 2.6.2 seems to
be true expect for a discrete set of contrasts for which the energy line £_; /5 contains eigenvalues
of £, with generalized eigenvectors.
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3.5 Concluding remarks

In this chapter, we presented a detailed study of the Mellin symbol generated by the scalar problem
(2.2). We proved that all the classical results that we need to apply the Kondratiev theory are
valid. Moreover, we studied the effect of the introduction of a small dissipation on the spectrum
and on the behavior of the eigenfunctions of the perturbed problem. In the particular case of
circular conical tips, the spectrum of .%Z, has been characterized by means of a dispersion relation.
Furthermore, in this particular configuration, we investigated the validity of Assumption 2.6.2.
We will conclude this chapter by mentioning that the most important question left unanswered in
this work is about the validity of the Assumptions 2.6.2-2.6.3 in the case of general smooth conical
tip. For this, one needs to have a better understanding of the behavior of the spectrum of .Z, ;s
and the associated eigenfunctions/ generalized eigenfunctions as 6 — 0. Again an interesting
reference that can hep us dealing with this question is the book [138].
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3.6 Appendix

3.6.1 The T-coercivity approach for the anisotropic scalar problem

The main goal of this section is to present a detailed proof of the Lemma 3.1 when the function

g belongs to the space cnger [0, 27] (an example of such configuration is given in Figure 3.11).

Figure 3.11: The red (resp. green) part is filled with a negative (resp. positive) materiel.

As in the case of circular conical tip (g(¢) = o € (0;7)), the proof will be based on the use of
the T-coercivity method, but this time we need to combine it with some localization techniques.
This will make the proof a little bit technical. In order to make its presentation as simple as
possible, we are going to start with the study of a related problem that will help us simplifying
the final proof which will be presented in §3.6.1.

A simplified version of the problem

For all 0 < L, we define the domains QF, QY c R? such that
QF = {(z,y)|z € (0;2r) and — L <y <0} and QF = {(z,y) |z € (0;27) and 0 < y < L}.

Denote by ¥ = {(z,y) |y = 0}, the interface between QF and Q% and by QF the union of QF QF
and ¥. We introduce continuous real valued matrix (resp. scalar) function A : Q% — My o(R)
(resp. p: QF — R). We suppose that A(z,y) (resp. p(z,y)) is symmetric and positive definite
(resp. positive) for all (z,y) € QF. This allows us to endow the spaces L2(QF) and HY(QF) with
the norms:

[ulli2qry == (/ lu|?p dady)/? and 1wl ey = (/ AVu - Vuud:vdy—i—/ || dady) /2.
QL QL QL

Clearly, endowed with theses norms the spaces L2(QF) and H*(QF) are of Hilbert type. We finish
this series of notations by introducing a piecewise constant density function o that is equal to
0 < o7in QlL and is equal to o9 < 0 in Q% The contrast k, is defined by Kk, = o2/01. Now,
we have all the tools to define the linear operator AY : HY(QF) — (H'(QF))* that is defined as
follows: for all u,v € HY(QF) we set

(Afu,v) ::/ oA(z,y)Vu- Vv,u(a;,y)d:cdy—l—tz/ out p(z, y)dzdy.
QL QL

Because of the sing-change in o, the operator A may be not of Fredholm type. On the other
hand, because of the fact that the matrix valued function A does not coincide with the identity
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matrix, the theory presented in [50] can not be used. Our goal is then to find some conditions
on the contrast k., on the function A and on p under of which A7 is an isomorphism for |t| large
enough. For the case of the functions A and p, we need to make the following

Assumption 3.6.1. The exists 0 < 19 < L such that the function A~ and 1/p are continuous
in Qmo,

The main result of this paragraph is given by the following

Theorem 3.6.1. Let 0 < L. Assume that the function A and p are such that Assumption 3.6.1
is satisfied with 0 < ng < L. Then for all k, # —1, there exists 0 < ty such that for all ty < |t|
the operator A7 : HY(QL) — (HY(QY))* is an isomorphism. Moreover, we have the estimate

(lullfis oy + Ellullfzoe)'? < CIIAT (w1 qr)- for all u € H'(2)
with C' independent of u and t.

The proof of the previous theorem will be done thanks to a succession of two lemmas. Before
getting into details, let us start by recalling some useful results about the classical Euclidean
norm. For all R € M 2(R), the Euclidean norm of R will be denoted by p(R) and is defined by

o(R) = \/Amax(R!R), in which Apax(R'R) refers to the largest eigenvalue of the matrix RR.
Note that when R is positive and symmetric, one has o(R) = Amax(R). Furthermore, we have
the following interesting property: for all non-singular symmetric matrices Ry, Ry € My 2(R), we

have the identity
o(R1R2) = o(R2Ry). (3.13)

This is true because the matrices Rle Ry and RQR%RQ are similar. The first result that we need
is the following

Lemma 3.6.1. Let 0 < 1 and let uy € H'(Q]). We define the function ug(x,y) =: ui(z, —y) €
H'(Q)). The following estimate

/ A(z,y)Vug - Vg pu(x, y)dzdy < C"/ A(z,y)Vur - Vg p(z, y)dzdy
Q3

o

holds with C" = sup o(A(z, —y)A™ Nz, y)w)
oY (. y)

Proof. The first step is to perform the change of variable (x,y) — (x, —y). This transformation
maps 7 and Q7. Furthermore, one can easily check that the jacobian matrix of this transforma-
tion coincides with the identity matrix. This leads us to write that

@

Iy := / A(z,y)Vua - Vug p(z, y)dzdy = / Az, —y)Vuy - Vuy p(z, —y)dody
Q7
As a result we have

Iy = v A_l(x7 y)A(l’, _y) v A_l(x7 y)\/[&(gx y)vul : \/K(l‘, y)vul [,L(l‘, —y)d.Idy

of
< sup o VA2, 9) A~y VETAZI [ o)V - Vs ) dady
Q7 w(x,y) Jo
(by means of (3.13)) = sup o(A(x, —y)A_l(aj,y)M(w’_y))/ Az, y)Vuy - Vuy p(z,y) dedy.
a7 (@, y) Qf

Note that, above the matrix \/&(ZE, y) is defined as the unique positive definite matrix R(z,y) €
My »(R) satisfying the equation R*(x,y) = A(x,y). |



Chapter 3. The study of the Mellin symbol of the problem 92

In order to study the behaviour of C" when 7 tends to 0, we are going to use the following

Lemma 3.6.2. Let 0 < 19 and let f be a continuous function in QM then the function F(n) =:

sup f(x) is non-decreasing continuous in [0; n].
e

Proof. The fact that F' is non-decreasing is obvious. Let n € [0;19] and (1, )nen be a sequence
of [0;mp] that converges, as n tends to +00 to n. We will show that F'(n,,)nen converges to F(n).
To simplify notations, let us denote by Q" the domain Q"". The starting point is to observe that
dg (Q7, Q1) the Hausdorff distance between Q7 and Q7 tends to 0 as n tends to oo. Since the
function f is continuous in Q7 it is then uniformly continuous. This means that for all 0 < &
there is 0 < d. such that for all 21,z € Q™ satisfying ||z1 — x2|| < §: we have |f(x1) — f(22)] < e.
Now take, some z € Q" and 0 < . Since dy (2, Q7) tends to 0 as n tends to oo, there exists
ng € N large enough such that for all n§ < n the domain Q" contains an element y,, such that
|x — yn|| < 0. This implies that for all ng < n, we have

f(z) < flyn) + e = f(z) < F(n,) + € for all n§ < n.

By letting € tend to 0 and ng to oo, we deduce that f(z) < lirgian(nn) for all z € Q7. Thus we
n—oo
obtain the inequality F'(n) < lirg inf F'(n,,). By exchanging the roles of 27 and 2" in the previous
n—oo
reasoning, we get limsup F(1,) < F(n). The lemma is then proved. [
n—oo

Since, under Assumption 3.6.1, the function (x,y) — p(A(x,y)A " (z, —y)u(z, —y)/u(x,y) is
continuous in Q7 for  small enough, the previous Lemma allows us to deduce that C” tends to 1
when 7 tends to 0. At this stage, we have all the needed tools to present a clear proof of Theorem
3.6.1.

Proof of Theorem 3.6.1. Let x be a cutoff function defined in R such that x(r) =1 for |r| < 1/2
and x(r) =0 for 1 < |r|. For all n € R, we introduce the function x” such that x"(r) = x(r/n).
Note that for all n € R* the function x" is supported in [—|n], |n|]. From now on, we are going to
assume that 0 < n < L/4, other assumptions on 7 will be made later. As mentioned previously,
the main idea is to use the T-coercivity method. For this, let us start by introducing the map
T : HY(QF) — HY(Q) such that for all u € HY(QF), we set

u1(z,y) in Qf

T(u)(z,y) = —ug(z,y) + 2xX"(y)u1(x, —y) in Q%

One, can easily check that for all u € H!(QF), the function T(u) belongs also to the space H'(QF).
Moreover, we can also check that T(T(u)) = u for all u € H'(QF) and then T is bijective. Using
the result of Lemma 3.6.1, one can prove that T(u) is continuous and satisfies the estimate

||T(u)||H1(QL) S C?HU”Hl(QL) for all u S Hl(QL)
with O] independent of u € H'(QF). Now, let us fix some u € H(Q)\{0}, and let us compute
(AYu,T(u)). Before getting into that, let us denote by @; € H'(Q)) and by X7 the functions

defined by @1 (z,y) = ui(x, —y) and ¥"(z,y) = x"(—y) for all (z,y) € Q. Using these notations,
one finds that

(AT, T(w)) = / o1&z, )|V - Vap(e, y)dady + 2 / olu2u(z, y)dedy
QL QL

+202/ Az, y)Vuz - V(arx") p(z, y)dzdy + 203 t2/ up X ap(w,y)dedy.
ok L

2y
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The next step is to find some upper bounds of the magnitudes of the third and of the last terms
in the previous identity. For that we are going to use the Young’s inequality. For the case of the
fourth term, one finds that for all 0 < a we have

2 / up X1 ap(x, y)daedy| < a / luo|*pu(, y)dady + sfa™! / lur |2 (e, y)dady
Qf Qk Qf

2

in which s/ = sup ule, =y)

. The third term can be decomposed as
(z,y)EQT M(xay)

/ AVuy - V(x"a) pdrdy = / AVuy - V(X") apdzdy + / X"TAVuy - Vauudzdy
L L

o Q3

The Young’s inequality tells us that for all 0 < b we have

|2/ AVugy - V(X") apdzdy| < b/ AVuy - Vugudzdy + sgbl/
9 9

jur | pdady
of

2

where s] = s| sup |AVx" - Vx"|. Furthermore, one obtains that for all 0 < ¢,
(zy)eQn

\2/ X"AVus - Vi pdxdy| < c/ AVug - Vugpdxdy + sgc_l / AVuy - Vugudxdy
Qo Q

2 Q1

in which s = C), where C}, is given in the statement of Lemma 3.6.1. Inserting all theses estimates
in the expression of (Afwu, T(u)), we get

A7u, T@)] = [onl (L nelse™) [

AVuy - Vugudzdy + |ke|(1 — b —¢) / AVus - Vugpdzdy
951

Q2

0 = lrla™) ~ el [ s Pradedy + gl @) [ fuaPdedy).
Qo

1951

According to Lemma 3.6.2, we know that, at least for  small enough, under Assumption 3.6.1
the functions n — s7, s7, s1 are non-decreasing continuous in Q7. In the other hand, one can easily
check that s3 = s = 1. This means that if the contrast s, is such that 1 < |s,|, there there

exists some 0 < n* such that
max(1/s1,1/s]) < |ke| for all n € (0;7%).

By taking n = 1*/2, a,c € (0;1) such that the coefficients (1 — |r,|sic™) and (1 — s]|kgla™")
become positive and then by taking b € (0;1 — ¢) and ¢ large enough we deduce that there exists
some 0 < to such that for all ¢y < |t| we have the estimate

HUHI%Il(QL) + tQHUHiQ(QL) S C<Agu, T(u)) fOI’ all u e HI(QL)

with C independent of w. By recalling the continuity of T, we deduce the wanted result for all
Ko satisfying 1 < |kg|. The case |ks| < 1 can be treated, similarly, by exchanging the roles of QF
and Q.

[

Remark 3.6.1.

o Using the the fact that the embedding of H*(Qr) into L*(Qr) is compact, one deduces that
when Assumption 3.6.1 is satisfied and when ks # —1 the operator Af is a Fredholm operator
of index 0.
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o Since the proof of the Theorem 3.6.1 is based on the use of local reflection with respect to the
interface ¥, one can easily see that if we replace the domain Qp, by Qr, UQ, with L1 # Y
then its the statement remains true.

e In the particular case when the domain QF coincides with the domain (0;2m) x (0;7) and the
interface ¥ is defined by the equation y = « € (0;7) and when the matriz function A and
1/sin(y) 0
0 1
case the Assumption 3.6.1 is valid thanks to the smoothness of the functions (z,y) — sin(y)
and (z,y) — 1/sin(y) near a € (0;7)) we obtain a proof of Lemma 3.2.1 in the particular
case of circular conical tips (here ¢ is replaced by x and the variable 6 is replaced by y).

the scalar function p are defined by A(z,y) = and p(z,y) = sin(y) (in this

Proof of Lemma 3.2.1

Here, we go back to the proof of Lemma 3.2.1 when the function g belongs to the space ([0, 27]).
The starting point is to observe that when we use the classical spherical coordinates (0, ) €
(0;m) x (0;27) to parameterize the unit sphere S?, the expression of (%, (\)u,v) writes

27 T 2 T
(L (N, v) = /0 /0 o (0, 0)A\ (0, 0)Vu- V5 (0, 0)dpdf+ A1) /0 /0 o (0, 0)T (0, 0)dipd

L 1/ sin(6) . 0 0<or if0<glp)

hich A(i, §) = (e, 0) = sin(0), V = (9 ) and o(p, 0) = .
in which A(¢, 0) ( 0 1) p(p,0) = sin(0) (r%) nd (e, 0) {02 <0 ifg(o) <8
Using these notations, the norms || - |1 (s2y and || - [|p2(s2) are given by

21 T
lullaes) = ( /0 /0 (. 0)2u(0)dipdd) /2,

and )
||“|H1(SQ):(HUH%%S?)"‘/O /0A(¢,9)VU'Vw(%9)d¢d9)1/z~

To simplify notations, we shall denote by Q1 = {(¢,0) € (0;27)x (0;7) |0 < g(¢)}, Q2 = {(p,0) €
(0;27) x (0;7) | g(¢) < 0} and by X = {(¢,0) |6 = g(¢)}. For the reader convenience, we will
denote by €2 the union of 21, {9 and 3. It is worthy to note that in the topological sense 2
coincides with S?. Before presenting the final proof, let us recall the definition of the so-called
e—neighborhood to a curve.

Definition 3.6.1. Let O be a curve in R? that can be parameterized by a function f : [a,b] — R?
of class €. For all 0 < ¢, we define O° = {x € R? such that d(x,0) < e}. We say that O° is an
e—mneighborhood if the following conditions are satisfied:

1. each x € OF possesses a unique closest point mz(x) in O.
2. the map 7 : O° — O 1is onto.

In this case, O° = {(s,t)|(s,t) € [a,b] X (—¢,€)} in which (s,t) are the curvilinear coordinates
associated to O.

Unfortunately for the case of €1 curves, the existence of such tubular neighborhood is not guar-
anteed (a counterexample can be constructed by taking the inner parallel curve of the ellipse
(that is not a circle) which passes through the foci®). For the case of €2 curves, a proof of the
existence of tubular neighborhood can be found in [57, Theorem 3.1.1].

3Details can be found here.


https://mathoverflow.net/questions/401885/tubular-neighborhood-of-a-one-dimensional-c1-curve
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Final proof of Lemma 3.2.1. Given that the function g is periodic and of class €2, this means
that there exists a least ¢* € (0;2m) such that ¢’(¢*) = 0. Without loos of generality, we can
suppose that ¢* = 0 (or equivalently ¢* = 27). Moreover, since g is of class C?, one can find
an L—tubular neighborhood to ¥ with some 0 < L. This neighborhood will be denoted by OF.
Using the fact that ¢'(0) = ¢’(27), we infer that O can be chosen such that O c Q. We denote
respectively by QlL and by Qé the domains Q; N O¥ and Qs N OF. As in the proof of Theorem
3.6.1, for all 0 < n < L/4 we introduce a smooth cut-off function x” that is supported in [—n, 7]
and equal to 1 in [-1/2,7/2]. Now, for all 0 < < L we introduce the map T7 : H}(Q) — H(Q)
such that for all u € H(Q)

o U1(90,0) in {4
T(u)(¢,0) = —uz(p,0) + 2R (u1)(p,0) in Qo,

where R"(u;) is defined by R"(u)(s,t) = x"(t)ui(s, —t) for all (s,t) € QF, here (s,t) are the
curvilinear coordinates that are associated to ¥ and that are well-defined in QF (thanks to its
definition) and R"(u)(z,y) = 0 for all (z,y) € Q\Q%. One can easily see that the map T7 is
well-defined (this is true because of the continuity of T"(u) at ¥). Moreover, one can easily check
that for all u € H'(92) we have T o T"(u) = u and this shows the bijectivity of T”. The continuity
of T" can be shown in the same way as in the proof of Theorem 3.6.1. To proceed, take some
t € R and observe that for all u € H*(Q) we have

(Lo (=1/24it)u, T"(u)) = / 0| AV - VT pdedd + (1/4 + %) / |o||u|? udpdf
o\QL o\QL

-l-/ oAV - VT (u) pdrdy + (1/4 + %) / ouT(u) pdedd.
QL QL

This means that to prove our claim, we just need to study the behaviour of the second part of
the previous sum (the one in which all the integrals are taken over o ). Clearly this fits into
the general problem studied in the previous paragraph, but it is worthy to note that since the
operator R" is written in local coordinates the Theorem 3.6.1 can not be used directly. To be
able to apply it, we need to write all the integrals over Q¥ in local coordinates (s,t). If we denote
by J(s,t) the jacobian matrix of the change of variables that allows to pass form (¢, 8) to (s,t)
in QF and by |J(s,t)| its jacobian (this transformation is well-defined thanks to the definition of
QL), one can write that for all u € H'(Qy), we have

/ cAVu - VT (u) pdpd = /
QL

oJ'ATVu - VT () p|J|dsdt
QL

/ auT"(u),ud:L‘dy:/ ouT(u)p|J|dsdt
QL QOL

where QF = {(t,s) € (0;27) x (—L;L)}. Since g is of class €% the matrix valued function
(5,t) — J¥(s,t)A(s,)J(s,t) as well as the scalar function (s,t) — u(s,t)|J(s,t)| are continuous in
On for all 0 < n < L. Given that in local coordinates 3. is given by the equation ¢t = 0, a direct
application of Theorem 3.6.1, leads us to say that for all kK, # —1 there exists 0 < tg that depends

only on ky and 7 such that for all ¢y < |t| and all u € H'(Qr) we have the estimate

C(/ AVu - V) pdxdy + (1/4 + t2)/ |u|?udzdy) < / cAVu - VT (u) pdxdy
QL QL QL
+(1/4+t2)/ ouT(u)pdzdy.
QL

with 0 < C independent of w. Inserting this in the expression of (%,(—1/2 + it)u, T"(u)), we
arrive to the estimate

0(/Q AV - V) pdady + (1/4+t2)/Q uPpdady) < (L5 (=12 + ityu, T ()|
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for all u € H'(Q) and ty < |t| with C independent of u. The rest of the proof is the same as in
the case of a circular conical tip. |

Remark 3.6.2. Clearly the result of Lemma 3.2.1 can be, easily, extended to the following cases:

o When the function g belongs to the space €., ([0;2x]) N PE>([0;2x]).

per

o When the interface X is connected curve of class €* (i.e. can be locally parameterized by
€? functions).

e More generally, the result holds if ¥ is connected curve of class €' that has e—tubular
neighborhood.

3.6.2 Associated Legendre functions

The goal of this section is to recall some of the basic properties of the associated Legendre
functions. Let m € Z and A € C, the associated Legendre equation of order m and of degree
A € C writes: Find a function u # 0 such that

d du m?

@((1 — :Uz)dx) +AA+1u — :

_x2u:0for all x € (—1;1). (3.14)
To be more precise, we are interested in the solutions of (3.14) that are bounded near the point
x = 1. As all second order differential equations, the space of solutions of associated Legendre
equation is a vector space of dimension two. At z = +1 the equation (3.14) degenerates and its
solution may be singular near these points. In general, except in particular situations that will
be specified later, the space of solutions of (3.14) is generated by a pair of linearly independent
functions denoted by Py and QY' and known respectively as the associated Legendre functions
of first (resp. second ) kind. It is important to note that, in the literature, theses functions are
also called Ferrers functions of first ad second kind (see [3]). While the functions PY' are known
to have a regular behaviour near the points £1, the functions QY' are singular near these points
(see the discussion below for more details).

Since the equation (3.14) is unchanged when we exchange m by —m or A by —\ — 1 one expects
the functions Pf\Em and Pj_ET_l (resp. Q)i\m and Qj_“;‘_l ) are linearly dependent. In order to
make the presentation of properties of the associated Legendre function as clear as possible, we
shall distinguish two situations: the first one is when A belongs to Z and the second one is when

A e C\Z.

The case )\ € Z

Before getting into details, for all a,b € Z, we denote by [a,b] = [a,b] N Z. Clearly, if b < a we
have [a, b] = (). The starting point is the following

Lemma 3.6.3 (Appendix A of [95]). Assume that m € Z.
o If X € [—|m|,—1] U0, |m| — 1], then any solution of (3.14) is unbounded near x = 1.
o When X € Z\[—|m|, —1] U [0, |m| — 1] the function PY' and QY are well-defined.

o For allm € N and A € Z\[-m,—1] U [0,m — 1]. Then, we have the relations: Py =
P71, QY = QT and

(A —m)!

(A+m)!

*P%?([0;2n]) is the space of piecewise € functions.

(A—=m)!

P™ = AL
A (A +m)!

P, Q" = QX'
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As a result, we just need to explain how to define the functions PY" and QY' for m € Nand A € N
such that m < A. Let us start by treating the case m = 0. In this particular case the equation
(3.14) is know as the Legendre equation. The functions P§ and QY for A € N are defined as
follows: for all x € (—1;1) we have

1+ 1 14z

o gleeli—,

A
L1 ) log

_ 4 PY(z).
22\ dx JPA(®)

A
L - 22 QQe)

PY(z) = —— L
A7) 22\ dx

When m € N* and A € N\[0,m — 1], the functions P}" and QY can be defined thanks to the
relations: for € (—1;1) we have

am am
PY(z) = (-1)"(1 - JSQ)m/QdOTmP&’(w) and Qf'(z) = (=1)"™(1 — 2*)™*——Q (x).
More explicit formulas to calculate the functions PY" and QY will be given in next paragraph.

The case A\ € C\Z

In such configuration, the functions PY" and QY" are well-defined for all m € Z. Let us start with
the case of the second kind ones. As mentioned above, the function QY' is singular near z = 1.
This can be seen from the following expansions and identities (see [3]):

m/2 o
Q) = 50 (5) e = (UM

QY = —log(l—2)/2+by+O(z—1) forall AeC\Z_,

QY (z) for all m € N\{0}

Above I'(z) is the analytic continuation of the classical Euler gamma function which is defined
for z € C\Z (see [3]) and by is a constant that depends, only, on \. For this reason,we shall then
limit ourselves, in the rest of this appendix, to the presentation of the main properties of the
function PY'. Classically these functions are defined by using the so-called Gauss hypergeometric
function oF;. For given complex numbers a, b, ¢, we define the Gauss hypergeometric function oF
such that

400 n
oF1(a,b, ¢, 2) = Z (azz)(b)"; for all z € C such that |z| <1
n=0 n ’

where for all complex number y, the Pochhammer symbol (y), is defined by (y), =: y(y +
Dy+2)...(y+n—1) for n € N and (y)o = 1. One can also write for all y € C\Z_ that
(y)n =T (y+n)/T'(y). It can be shown that, except for this case ¢ € Z_ (in the case (¢), = 0 for
n large), the function z — 2F1(a,b,c, ) is well-defined for all z € C satisfying |z| < 1.

For m € N and A € C\Z the function PY'(z) is defined by the following expression:

11—z -

A+ Din(=A)m 5 ). (3.15)

m _
PX () = 2mm!

(1—xQ)%QFl(—)\—l—m,)\—l—m—I—l,m—i—l,

With this in mind, one can immediately see that for all A € C\Z we have PY' = P™,_,. In order
to define the function PY'(z) for m € Z_, one has to use the relation

(A —m+1 PY
mI(A—m+1) m _ A for all m € N. (3.16)

P = ) s )~ O D

Remark 3.6.3. Given that for allm € N the map (a,b) — oF1(a,b,m) is analytic with respect to
a,b € C (see [15, §15.2]) we then deduce that for all m € Z and x € [—1,1] the map X — PY'(z)
is analytic in C\Z.

®In many references the term (A+ 1), (—A).m is written differently: (A+1)p (=A)m = (=1)"T(A+m+1)/T(A—
m+1).
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Remark 3.6.4. It is important to note that the relations (3.15)-(3.16) are also valid for the case
X\ € Z provided that X ¢ [—|m|, —1]J U0, |m| —1]. This explains the presence of the normalization
factor (A + 1)m(=N)m/2™m! in the expression of the function PY'.

Let us finish this paragraph with this useful relation that allows us to compute the derivative of
the function PY'(z) with respect to z:

d mx 1

@PT () = ——=PX (z) - ﬁ

T 12 2
provided that all the functions P} and P}"™ are well-defined. Other useful relations are also
available (see [3, 95]).

)

Approximations of the first kind associated Legendre functions

Starting from the relations (3.15)-(3.16), one can write a simple code that approximates the func-
tion PY' with A € C and m € Z provided that A ¢ [—m,—1] U [0, m — 1]. The easiest way to do
that, is to use MATLAB, in which the Gauss hypergeometric function with complex arguments
is already defined. However, for practical purposes (visualization, finite elements approximations,
...), it would be useful to write a C+- program that computes an approximation of these func-
tions. In this case, one has to implement an approximation of the Gauss hypergeometric function
oF1 which is not available in C++4. An implementation of the algorithm that approximates the
functions PY' for m € Z and A € C\[—|m|, —=1] U [0, |m| — 1], is as follows:

Complex P( Number m, Complex lam, Complex x ){

#Compute _2F1(-lam+abs(m),lam+abs(m)+1,abs (m)+1)

Complex resl=1.;if (abs(m)>0){for (int i = 0; i < abs(m); ++i){res=resx*x(-lam+i)*(
lam+1+i);}}

Real tol=1.0e-9;Complex a=-lam+abs(m),b=lam+abs(m)+1,c=abs(m)+1,term=a*xb*x/c,
value=1.+term;

Number n=1;

while (abs(term)>tol){ a=a+l, b=b+1, c=c+1, n=n+1;term= (term*ax*bx*x)/(c*n);value
+= term;} value=value*pow (1-x*x,m/2);if (m<0) resl=1/resl;return value;}

Note that the previous code was implemented using the C++ library Xlife++.

The case of conical (or Mehler) functions

Conical functions are a particular class of the associated Legendre functions. More precisely, they
correspond to the particular case when the degree A\ has the form A = —1/2 + it with ¢ € R. For
the same reasons as above, we shall restrict ourselves to the case of first kind ones. Since for all
t € R we have —1/2+it € C\Z, it follows that the functions x — P™, , () are well-defined for
all ¢ € R. Moreover, one can easily check that for all ¢ € R the function z — P, () admits
the representation (see [146])

m

(t? + (2k — 1)%/4)

P () = 5 oF1(1/2 4+ m+it,1/2 +m — it,m + 1,

1—=x

). (3.17)

This implies that these functions are real-valued and positive for all € [—1;1]. In addition to
that, it can be seen that for all ¢ € R, we have

P jovie = P o (3.18)

Using the results of the previous paragraph, one can say that for all m € Z and t € R we have
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d mx 1
d T1/2+z't () = 1 — 22 PT1/2+z't (z) — 1- 2 PTI/Q—H’t

This implies in particular that

(z) for all z € [-1;1].

d 1
—po ] - =
dp —l/2+it (z) 12

Remark 3.6.5. Taking the derviative of the relation (3.17) with respect to t, one can see that

dpP™ /2+it

dt

Pl gy (2) forall @ € [—1;1], (3.19)

the function x — () is analytic.
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4.1 Introduction

In the present chapter, we study the numerical approximation of the scalar problem with sign-
changing coefficients. To fix ideas, consider 2 a domain (an open connected subset) of RY,

100
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d € {2,3}, formed by the union of two disjoint subdomains €21, s that are separated by an
interface ¥ (see Figure 4.1 for an example). We assume that 0, 0€;, 0§22 and ¥ are Lipschitz
regular.

2
a

Figure 4.1: Example of geometry.

We also introduce a piecewise constant function € such that e =1 > 01in 7 and e = g9 < 0 in
Q. The contrast k. is defined by k. := €3/e1 < 0. For a given source term f € LQ(Q), we consider
the problem

Find u € H}(Q) such that — div(eVu) = f € L*(Q). (4.1)

The equivalent variational formulation to (4.1) writes

Find v € H}(Q) such that /

eVu-Vou = / fo, Yo € HE(Q). (4.2)
Q Q

Because of the change of sign of ¢, the well-posedness of this problem does not fit into the classical
theory of elliptic PDEs and it can be ill-posed. On the other hand, one can show that for large
or small contrasts, Problem 4.2 is T-coercive, i.e. there exists an operator T : Hi(Q2) — H}(Q)
such that (u,v) — [oeVu-V(T(v)) is coercive, and then it is well-posed. For the case of
polygonal interfaces, the construction of such operator T is based on the use of local geometrical
transformations (such as reflections, rotations, ...) near the interface.

The implementation of a general conforming finite element methods to discretize (4.2) leads us
to consider the problem

Find up, € V() such that /

eVuy - Vo, = / fvh, Yoy, € Vy, (4.3)
Q Q

where V5,(Q) is a well-chosen subspace H}(€2). Even in the case where (4.2) is T-coercive, one
can not guaranty that Problem (4.3) is also T-coercive. Indeed, it may happen that for some
vp € Vp(9), there holds T(vy,) ¢ Vi(Q2). To overcome this difficulty, an interesting idea is to
try to construct meshes such that the approximation spaces V(2) are stable by operators T for
which Problem (4.2) is T-coercive. This type of meshes are called T-conforming meshes. Such
an approach has been investigated in [147, 49, 45]. It works quite well but presents two main
drawbacks:

e The construction of well-suited meshes for curved interfaces, interfaces with corners or 3D
interfaces is not an easy task [45].

e Sometimes the operator T for which the problem is T-coercive is constructed by abstract
tools and therefore is not explicit. In these situations, one cannot find adapted meshes.

Two first alternatives have been proposed. The first one, presented in [51], consists in adding
some dissipation to the problem (considering e + id instead of £ in (4.2) where § depends on
the meshsize). The second one is developed in [119] and is based on the use of mesh refinement
techniques. The essential limitation of these two approaches is that, for interfaces with general
shapes, the convergence can not be assured for all contrasts for which Problem (4.2) is well-posed.
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A new technique relying on the use of an optimal control reformulation has been introduced in
[1]. Tt is proved to be convergent for general meshes (that respect the interface) as soon as the
exact solution of (4.1) belongs to the space PH*(2) := {u|ujq, € H*(Q1) and ujq, € H*(22)}
with s > 3/2. Unfortunately, this regularity condition is not always satisfied, especially when 3
has corners in 2D or conical points in 3D.

In this chapter, we present a new strategy which relies on the use of a different optimal control
reformulation and which converges without any restriction neither on the mesh (the interface
simply needs to coincide with edges of the mesh) nor on the regularity of the exact solution. This
method is inspired by the smooth extension method that was used (without proof of convergence)
in [73] to approximate the solution of some classical scalar transmission problems.

The chapter is organized as follows. In Section 4.2, we start by giving a detailed description
of the problem. Then we explain how to derive an equivalent optimal control reformulation.
Section 4.4 is dedicated to the study of some basic properties of the optimization problem and
its regularization. The proposed numerical method and the proof of its convergence are given in
Section 4.5. Our results are illustrated by some numerical experiments in Section 4.6. Finally we
give a few words of conclusion and discuss some possible extensions.

4.2 Main assumption on ¢ and reformulation of the problem
Introduce the bounded operator A, : HY(Q) — (H}(Q))* such that
(Acu,v) = / eVu - Vo, Yu,v € Hy(Q).
Q

Obviously if A. is an isomorphism then Problem (4.1) is well-posed in the Hadamard sense. In
this chapter, we shall work under the following

Assumption 4.2.1. Assume that € is such that Ag is an isomorphism and that the source term
f in (4.1) belongs to L?(1).

As we have seen in the first chapter of this thesis, the previous assumption is satisfied when the
contrast k. does not belong to the critical interval that will be denoted by I5x;. The expression of
this interval in general is not known analytically, except for particular geometries like symmetric
domains, simple 2D interface with corners, simple 3D interfaces with circular conical tips..., but
can be approximated numerically.

Remark 4.2.1. In Problem (4.1), we consider homogeneous Dirichlet boundary conditions. Let
us mention that the results below extend quite straightforwardly to other situations, for example
with Neumann or Robin-Fourier boundary conditions which can be homogeneous or not.

To introduce the method, we start by writing an equivalent version of (4.1) in which the unknown
u € H(l)(Q) is splitted into two partial unknowns defined in €7 and €. To do so, we observe
that since f € L?(Q), the solution u of (4.1) is such that the vector field eVu belongs to the
space H(div, Q) = {u € (L*(Q))¢ such that div(u) € L?(Q)}. Consequently, the pair of functions
(u), > u|q,) satisfies the problem

—e1Auy = f1 = fio,
Find (u1,u2) € Vi(£1) x V2(Q22) such that | —e2Aus = fo =: fq, (4.4)
Opt] = keOpug and up = ug on X

in which n stands for the unit normal vector to X oriented to the exterior of €2; and

Vi(Q) :={u e H(Q), u=0o0n 00\2},  Va(Q):={ucH(Q), u=0on 0Q\X}.
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On the other hand, one can check that if (uj,u2) is a solution of (4.4), then the function u
defined by ujo, = u; for j = 1,2 solves (4.1). The equations satisfied by u; and ug are elliptic
but they are coupled by the transmission conditions on ¥. As a consequence, we cannot solve
them independently. The purpose of the next paragraph is to explain how to proceed to write
an alternative formulation (an optimization-based one), which can be solved via an iterative
procedure such that at each step one has to solve a set of elliptic problems.

4.3 The smooth extension method for the scalar transmission
problem

The smooth extension method was proposed in [79] and can be considered as a special case of the
fictitious domain methods (see [11]). It has been adapted to study the classical scalar transmission
problem, i.e. with constant sign coefficients, in [73]. In this section, we explain how to apply it
to our problem. In order to make the presentation as simple as possible, we start with a formal
presentation of the technique, and then we will make things more rigorous.

4.3.1 Formal presentation of the smooth extension method

The idea behind the smooth extension method is the following: instead of looking for (u1,us) €
V1(9) x V3(Q2) solution of (4.4), we search for a pair of functions (i, us) € Hp(Q) x Vo(Q) such
that (g, ,uz) is the solution of (4.4). The function @ is then a particular continuous extension
of u1 to the whole domain €2. The difficulty is to find a good way to define the function @. In
particular, we have to describe the equation satisfied by @ in Q5. Formally, the idea of the smooth
extension method is to extend the equation satisfied by u; to the whole domain 2. More precisely,
the idea is to suppose that the function @ satisfies the problem

—ElAﬂ = fllﬂl + 5192

in which £ is a function to determine so that (@ q,, u2) solves (4.4). If one finds a way to compute
such a /, since the problem that relates ¢ to @ is elliptic, the function % can be be approximated
by the classical FEM. After that, the function us can be then approximated by solving the
problem satisfied by uz in Q2 completed by 5, (resp. /igl@nﬂm) as a Dirichlet (resp. Neumann)
boundary condition on ¥ which is also elliptic. Note that at first sight, neither the existence nor
the construction of such ¢ are clear. This will be done thanks to an optimal control reformulation
of (4.4). This is the main goal of the next paragraph in which we also reformulate the idea
presented above in a more rigorous way.

4.3.2 An optimal control reformulation of the problem

For £ € (V3(Q))*, introduce u* the uniquely defined function satisfying the problem

Find u‘ € H}(Q) such that & /Q Vu' - Vo = ) fiv +L(v)a,), Vo € Hy(Q).
1

Clearly the function uf =: ufgl € V1(24) is such that —elAuf = f1 in ;. This is the equation
satisfied by wu; in (4.4). Using this and an integration by parts, for all ve € Va(£22), we obtain

(e10,uf v9) = —e1 | Vb - Vg + £(2).
Q2

Now, assume that one finds ¢* € (Vo(€2))* for which u{ coincides with u; (the solution of (4.4))
in Q. Then the function uy can be deduced either by using uf’ I, Or ko toul x; as a Dirichlet or

. . —_ *
as Neumann trace of ugs on ¥. More precisely, if one uses x_ 1(3”1/{ »; as a Neumann boundary data



Chapter 4. An optimal control-based numerical method for scalar transmission
problems with sign-changing coefficients 104

for ug on X, the problem satisfied by ug writes: Find us € Vo(€2) such that for all vy € Va(Qs),
we have

62/ VUQ . VUQ = / fgvg — (518nu€*,v2> = / fQ’UQ — f*(vg) + €1 Vue* . V’Ug.
Q2 Q2 Q2 Q

Obviously, the previous problem is well-posed. This leads us to define for all £ € (V3(€2))* the
(well-posed) problem: Find (uf,ub) € H}(Q) x Va(Qy) such that

51/ Vu' - Vv = fiv + L(v)o,) Yo € H(Q)
{2 = (4.5)
E9 Vug - Vg = fovg — f(vg) + &1 Vué - Vg Yy € VQ(QQ).
Qo Qo Qo

Using the optimal control terminology, the previous equation plays the role of the state equation
in which ¢ is the control function and ¢* (that we are looking for) is the optimal control. In order
to write an optimal control reformulation of our problem, it remains to find an adapted objective
(or cost) function. To do so, the starting point is the following

Proposition 4.3.1. For £ € (Vo(Q))*, the functions ui and uy are such that

—€1Au€ = f1 mn Ql
—EgAug = fQ m QZ

3nu§ = Ke 8nu§ on X.

Proof. Take ¢; € 65°(€1) and extend it by 0 to the whole € to obtain the function ¢ € 65°(2).
Take v = ¢ in the problem satisfied by u’. One finds that —61Au{ = f1 in ;. Next, take some
w2 € 65°(§22), extend it by 0 in ©; and denote by ¢ the new function. By taking v = ¢ in the
problem satisfied by u’ and vs = ¢ in the problem satisfied by ug one finds that

€1 Vuz - Vg = E(QOQ) and &9 Vug Vo = fapa — f(g&g) +e1 Vug -Va.
Qo Qo Qo Qo

By considering the sum of the two formulations, we conclude that —52Au§ = fo in 9. To end
the proof, it remains to show that d,u’ = msﬁnug. To do so, taking vz = v|g, for an arbitrary
v € HY(Q) in (4.5), integrating by parts in both formulations and then, using the equations
satisfied by u{ and ug, we infer that

—(e10nu5,v) = — (220, ub, v), v e Hy Q).
This gives €18nu§ = 628nug on Y and ends the proof. |

Thus the introduction of an auxiliary control function £ € (Va(£22))* allows us to construct pseudo-
solutions of the equation (4.4) for which the condition on the normal derivatives is automatically
satisfied. However we do not have in general continuity of the field at the interface. Taking this
into account, we get the

Lemma 4.3.1. If there exists {* € (Vo(Q22))" such that the solution of (4.5) satisfies ufg = ug*‘z,
then (uf",ub") solves (4.4).

The existence of such £* is the subject of the following

Lemma 4.3.2. There exists {* € (Vo(Q2))" such that the solution of (4.5) satisfies uf; = ug*m.
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Proof. We proceed by construction, i.e. we find £* € (V2(€22))* for which the condition uf; =

ug*m is satisfied. Since by assumption Problem (4.1) is uniquely solvable, the functions u; and
ug are well-defined. The function uy can be seen as a continuous extension of u; to the domain
. Moreover, one can check that u the solution of (4.1) satisfies the problem

81/ Vu- Vv = fiv+er [ Vug-Vo—e1{dpur,v) Vo€ H) Q)
Q 91 Q2

£9 Vug - Vug = f2 vo + €1 <8nu1, U2> You € VQ(QQ).
QQ QQ

Now, by observing that the linear form ¢* defined by
g*(’l)g) =£€1 VUQ . VUQ — €1 (8nu1, ’U2> VUQ € VQ(Q)
Q2
is continuous, we obtain the desired result. |
Remark 4.3.1. As pointed out in [73] for the classical transmission problem, the optimal function

0% (for which u‘% = ug*m) is not unique. Indeed, if one denotes by E(uy) € HY(Q) any continuous
extension of the function uy to Qa, one can show that (E(uq),us) satisfies the problem

51/ VE(up) - Vv = fiv+er VE(u1) - Vo —e1(0pE(u1),v) Vo € Hy(Q)
Q 2 Q2

i) Vug - Vug = f2 V9 + 51<8nE(u1), ’U2> Vv € VQ(QQ).
QQ QQ

The linear form €* € (V2(Q22))" defined by
5*(?}2) =1 VE(uy) - Vug — g1 <8nu1,1)2) Yvg € VQ(QQ) (4.6)
Qo

can be then considered as another optimal function. This implies that the set of optimal functions
* € (Va(Q2))* is infinite. More precisely, we observe that the set of optimal functions £* is in
bijection with the set of continuous extensions of uy € Vi(Q) to a function of H(Q).

Now, we have all the tools to write an equivalent optimal control formulation to (4.4). To do
that, it suffices to observe that since uﬁz, ugm e H/2(2) ¢ L*(L) and by means of Lemma 4.3.1

we can say that £* is an optimal control if and only if ||uf — u§ || () = 0. This allows us to say
that £* is an optimal control if and only if it solves the problem

min / luf — ubPdo
Find ¢* € (Vo(2))* solution of { {€(V2(22))" 2 (4.7)
where (u’,u}) is the solution of (4.5).
Regarding what we have proved previously, it follows the
Corollary 4.3.1. Problem (4.7) has an infinite number of solutions.
Since V2 (€22) is a Hilbert space, the Riesz representation theorem guarantees that for any element

¢ € (Va(Q2))*, there is a unique wy € Va(€2) such that

L(v) = Vwy - Vo Yo € Va(Qo).
Qo

Then the optimal control problem (4.7) can be reformulated in the following way

Find w* € Va(€Q2) solution of min J(w) with J(w / [u¥ — u¥|do, (4.8)
weVa(2)
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where (u®,u¥) € HJ() x Vo(€2s) is the solution of the problem (the state equation)

51/ Vu® - Vv = fiv+ Vw - Vv Vo € Hy(Q),

2 = 2 (4.9)
£9 Vu;” - Vg = fove + €1 Vu¥ - Vg — Vw - Vg Yvg € VQ(QQ).

Qo 0 Qo Qo

The objective of this section is then achieved. The next step is to propose a discretization of
the problem based on FEM and to study its convergence. Before that, we have to prepare the
ground and present some basic properties of the above problem which will help us to prove the
convergence of the proposed discretization method.

As we have seen previously, the minimization problem (4.8) has an infinite number of solutions.
Therefore, a regularization method may be necessary in order to propose a convergent discretiza-
tion. For that, we will work in §4.4.4 with the classical Tikhonov regularization of Problem (4.8).
This will guide our intuition in the construction of a convergent numerical method.

4.4 Basic properties of the optimization problem and its regu-
larization

In this section, we focus our attention on the properties of the cost function J. In addition, we
compute in §4.4.3 an explicit expression for the derivative of J with respect to w. In the process,
we give useful properties of the set of minimizers of J.

4.4.1 Properties of the objective function

The fact that we have used the L?(X) norm instead of the H'/2(X) norm in the definition of J
allows us to get the following compactness result.

Lemma 4.4.1. Let (wy,) be a sequence of elements of Va(Qa) that converges weakly to wg €
Va(Q22). Then, (J(wy)) converges to J(wo).

Proof. For all n € N, denote by (u",u%) € H{(Q) x Vo(Q) the solution of (4.9) with w = w,.
From the ellipticity of the problems involved in (4.9), it follows that (u") (resp. (ujy)) converges
weakly in Hy(Q) (resp. Vo(£22)) to some u € H'(Q) (resp. uz € Vo(§22)) such that (u,us) is the
solution of (4.9) with w = wy.

The continuity of the trace operator from H'(Q) to H/2(X) implies that ufy; — uy|y, converges
weakly to ujy; — ugy in H'/2(%). Given that the embedding of H/?(X) into L?(X) is compact,
ufy; — ug |y, converges strongly to uz —ug)y in L?(¥). Thus (J(w,)) converges to J(wp). The result
is proved. |

A direct consequence of the previous Lemma is the following
Lemma 4.4.2. The function J is continuous and convex on Va(€s).

Proof. While the continuity is a direct consequence of the previous lemma, the convexity follows
from the fact that J : Vo(23) — R is the composition of the affine map ji : Va(Q2) — L*(X) and
of the convex map jo : L2(X) — R such that for all w € Vo(y), g € L3(%)

J1(w) = (u” — uy)|s; where (u",uy) € H () x Va(£22) is the solution of (4.9)

(4.10)
i) = [ oo
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4.4.2 The set of minimizers of the function J

As explained above, the set of minimizers of the functional J, denoted by M, is infinite. More
precisely, one can check the equivalence

w* € My if and only if J(w*) = 0.
This allows us to prove the
Lemma 4.4.3. M is a closed and convex subset of Vo(2).

Proof. Clearly M; coincides with the set of zeros of J. Since J : Va(Q2) — R is continuous,
we infer that M  is closed. The convexity of M is a direct consequence of the positivity and
convexity of J. [ |

As a direct result of the previous lemma, we can say that the following minimization problem:

. 2
wlg}\f}JHVWHL?(QQ) (4.11)

has a unique solution (this is a consequence of the strict convexity of ||V - ||%2(92) and of the fact
that My is a closed subset of V2(€2)). In the following, we shall denote by w7 the solution of
(4.11), i.e. the smallest minimizer of the function J. By definition, we know that for all w € M,
the function u*¥ € H}(Q) is a continuous extension of the u; (the restriction of the solution of
(4.1) to ©1). In particular, this means that for all w;, ws € M; we have urgl = ulugl. Our next

goal is to find a simple characterization of u"7.

On the smallest minimizer of J

We already know that for any w € Va(£22), the function u" satisfies
51/Vuw-V’U:/ fo+ | Vw-Vo  VYveH)(Q).
Q Q1 Q
This means that that for all wy,ws € Va(€Q2) we have

51/ V(u® —u*?) - Vo = V(w; —ws) - Vo Yo € H(l)(Q)
Q Qo

Using the fact that for all wi,ws € M, we have u‘lsu;l = uﬁi we then obtain
€1 V(Uéul — u;UQ) - Vg = V(wl — ’wg) - Vg Yy € VQ(Q), (4.12)
QQ Q2

in which for j = 1,2, we set uj = u‘“{)j. Note that, for all wy,ws € My the function ug*' — ug?

belongs to Hy(€22). To proceed, we denote by Eg(u1) € H{ () the continuous harmonic extension
of u1. In particular, the function Ey(u1)q, satisfies

AEg(u1)g, =0in Q2 and Ex(u1) = uj on X.

To this particular extension of u;, we can introduce a unique wy € My such that Ey(uq) = u"?
(see Remark 4.3.1). More precisely, the functions wy can be defined as the unique solution of
the well-posed problem: Find wy € Va(Q2) such that

Vwyg - Vg = &1 VEH(ul) - Vg — 51<6nu1, 1)2> Yvg € VQ(QQ).
QQ QQ
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In particular, we have

VUJH -Vvy =0 Yy € H[l)(QQ) (4.13)
Q2

By taking vy = wgy, w1 = wy, and wy = w; € My in (4.12) and by making use of (4.13) we obtain

V(wg —wY) - wyg = 0.
Qo

This shows, by means of the Cauchy-Schwarz lemma, that ||[Vwglli2@,) < [[Vw)lli2(q,) and
then, thanks to the definition of w, we infer that w% = wg. This leads us to state the following

Proposition 4.4.1. The function w’ coincides with wg and u*7 = Eg(uy).

4.4.3 Gradient of the function J

As indicated in the introduction of this chapter, the main objective of this work is to propose a
new numerical method for approximating the solution of (4.1). This method will be based on the
numerical approximation of the solution of the optimization problem (4.8). In this section, we
will explain how to obtain an explicit expression of J'(w) the gradient of J at some w € V().
The starting point is to explain why the function J is differentiable. Again, this is the con-
sequence of the fact that J can be written as a composition of the two differentiable maps j;
(which is differentiable because it is an affine map) and js (which is differentiable thanks to the
differentiability of the square of the L?(X) norm) that are defined in (4.10). Since the function .J
is scalar valued, its differential at any w € V3(£2) is then a continuous linear form £, on Va(Qs).
By means of the Riesz representation theorem, £, can be represented by a unique element of
V2(£s), this element will be denoted by J'(w) and is defined as follows:
J(w+th) — J(w)

For all h € V2(£22), we have VJ (w) - Vh = lim = ly(h).
QQ t—0 t

Given the fact that J = j3 o j1, the natural idea to compute J'(w), for all w € V5(£s), is to use
the chain rule formula. For this, we need to start by computing the derivative of w — u" and of
w — uy (where (u%,uy’) is the solution of (4.9)) with respect to w € Va(§22). The differential of
these maps will be denoted by

du"

N £(Va(02), BY(9) and %ﬂ € L(Va(s), Va(Q)).

Without any difficulty, one can check that for any h € V4(£23) we have

du® B du¥ 5
%(h) — @" and Ti(h) =l
where (a", %) € H}(Q) x Vo () is the unique solution of the well-posed system of equations:

51/Vﬂh-Vv:/ Vh- Vv Vo € Hy(Q),
& 2 (4.14)

g [ Viah -Vuy=e, [ V" - Vuy— [ Vh-Vuy Yoy € Vao(Qa).
QQ QQ QQ

Note that since w — v and w — uj are affine maps, for all w, h € Vo(€2) we have the relation

w+h w du® w  ~h w+h 2
T = +%(h):u + 4" and uy ™" = ul, +

w
dus _

T uZ + a’;

Using these notations, and the fact that J is the composition of j; and j2, we obtain the following
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Proposition 4.4.2. For all w,h € V5(Q2), we have

VJ' (w)-Vh = /(ah — i) (u® — u¥)do.
Qo b

where (u”,u¥) and (@",ah) are the solutions to (4.9) and (4.14) respectively.

Proof. Let t € R be a damping parameter. Thanks to direct calculus, for all w,h € Va(€2) one
finds that

J(w + th) = 1/2/2 ju Tt — 0+t 2 do = 1/2/E [u® — ul 4 t(a" — al)|? do.
As a result, we obtain

J(w +th) = J(w) + t/ (@ — @) (u” — u¥)do + o(t).
by
The lemma is then proved. |

The expression J'(w) that we have obtained above, is not explicit. A more elegant way to get a
simpler expression of J'(w) was proposed in [73]. The idea is based on the use of more general
theory called the adjoint approach that was introduced in [47], and that allows us to compute
the gradient of objective functions that depends in non-explicit way of the main variable of the
problem, but via the solution of PDE (the state equations) in which the main variable plays the
role of a parameter. Here, we are going to explain how to apply this method to our case. The
idea is to introduce a Lagrangian function .% : Vo(€s) x Hj(Q) x Va(Qa) x HY(Q) x V2(Q) — R
such that

Z(w,u,uz, A\, A2) = / lu — us|?* do + a1 (w, u, \) + ag(w, u, us, A2

in which a1 (w, u1, ) and as(w, ua, A2) are given by

al(w,u,)\)zel/Vu-V)\—/ fA— Vw - VA

Q 951 Q2

ag(w,u,uQ,)\g) _82/ VUQ‘V)\Q—/ f2>\2—€1 VU‘V)\Q-F VUJ‘V)\Q.
Qo Qo Qo Q2

The functions A\ € H}(Q), A2 € Va() are called the adjoint variables associated to u,us re-
spectively. It will be useful to observe that when (u,u2) coincides with (u",u3’) (the solution of
(4.9)), we have

Llw,u”, u¥ N\ X)) = J(w) YA€ HY(Q), Ao € Va(Qa). (4.15)

Clearly, the function .Z is differentiable with respect to all its variables. In what follows, for all
(w, u, ug, \, A2) € Vao(Qa) x H(Q) x Vo(Qa) x HY(Q)) x Va(Q2), the partial derivative of .Z with
respect to the variable w, u, us, A, A2 are denoted, respectively, by

0% 0% 0% 0% 0L

and

Ow’ Ou’ Ouy’ O\ Mg

They belong, respectively, to the spaces (Vo(€2))*,(HS(2))*,(V2(Q2))*, (H5(Q))* and (V2(Q2))*.
As a result, for a fixed A € H}(Q) and Ay € Vo(Q), by taking the derivative of the relation (4.15)
with respect to w, we can say, by applying the chain rule formula, that for all h € Vy(£2s) we
have,

0. oL .. du®
<‘]/(w)’h> < ow (w u® y U 7)‘ )‘2) h) + <%(w,u 7u27)‘a>‘2)aw(h>>
0L duy

+(5—(w,u”,ug’, A, A2), —=(h))

Oua dw
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or equivalently,

L L L
(0,1 = (0, 8 2, Ao, )+ (o, 0 ), )+ (5 D), )
where (@", @) is defined by (4.14).
Now, suppose that we find (A", A§) for which the equations
%(wfu y U 17)‘2)20 and %(w7u y U 17)‘2):0
are satisfied for all w € Va(€2), this will implies that
0L
J,(w) = %(wvuwaugv 111)7)‘12”) Vw € VQ(QQ)

To investigate the existence of such functions, we need to write down, for an arbitrary (A, Ag) €
HY(Q) x V5(Qy), the expression of

%(wvuwvugv)‘a)ﬂ) and g‘i(W,U’w,Ug},)\,)\g).

By a direct calculus, we find, for all w, Ay € Vo(Q), A € H}(Q),

<a(f;2p(w7uw7u12u7)\a A2)7U> = 51/ VAw . V'U — €1
u Q

07

<8—(w,uw,u§”,)\, A2),v2) = €3 [ VA -Vug — / (u" — uy e Yo € Va(Qo).
U2 Qo Y

VAY - Vo + / (u” —uy v Vo € H(Q)

Qo DN

As a consequence, the functions A and Ay that we are looking for, must satisfy the following
system of equations:

81/ VY- Vv =¢; VY - Vo — / (u" —uy)v Yo € HY(Q)

2 = = (4.16)
€9 VAY - Vug = / (U — uf o Yug € Va(Qs).

Qo %

Clearly the previous system of equations is well-posed. Therefore the function A\, Ay are well-
defined. Note that, in the literature (see [73, 47]), the previous equations are known as the adjoint
system. To summarize, we have the

Lemma 4.4.4. For all w € Vo(Qs), there holds J' (w) = Ny — AY|q,s where XY, Ay are given by
Equation (4.16).

Proof. Take w € V5(€2). From the definition of A* and Ay, we deduce that for all h € Va(Qs),
we have

ag w w w w
<VJ/(w)7h>: <%(w7u 7u27 17)\2 )7h>

.. 0L ‘
Now, let us compute explicitly the value of (w(w, u, ug, A\, A2), h) for any u, ug, A, A2. Easily, one
finds that

0L

(—(w,u, UQ,/\,)\Q),h> = VhV()\Q —A|Q2).

811] Qo

This shows that J'(w) = Al'jq, — Az and then the result is proved. [

We have the following optimality result
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Corollary 4.4.1. We have the equivalence
[w* € V() is such that J'(w*) =0] <= w*e M,.

Proof. Let us start with the proof of the direct implication. Suppose that there exists some
w* € Va(Qy) such that A\ 0, = AY". By taking the sum of the variational formulations of (4.16),
we deduce that

/ eVAY .Vo=0  VYueH)(Q).
Q

This means Ae()\w*) = 0 and then, thanks to Assumption 4.2.1, A" = 0. This implies that
AY" = 0 and then by using the second equation of (4.16), that u* = u¥" on ¥. This shows that
w* is a minimizer of J. The reverse implication is a consequence of the fact that if w3 € M; we
have J(w*) = 0 and then u* = u¥" on X. This implies that AY" = 0 and that A*" = 0. [

We end this paragraph with the following result that can be useful to prove the convergence of
the classical gradient descent algorithm.

Corollary 4.4.2. The function J' : Vo(Q) — Vo(Q2) is Lipschitz continuous.

Proof. Starting from (4.9), we deduce that w — u", w — ugy are Lipschitz continuous. Inserting
this into (4.16), we obtain the result. [ |

4.4.4 Tikhonov regularization of the problem

Tikhonov regularization, which was originally introduced in [137], is a classical method to regular-
ize a convex optimization problem. Classically, this method is used in the context of regularization
of ill-posed inverse problems (see [76] and the references therein). In this paragraph, we study
the convergence of such regularization when it is applied to our problem. For § > 0, we introduce
the functional J° : V5(€s) — R defined by

T (w) = J(w) + 8| Vwlfz, — Yw € Va(Q).

Since J is convex and § > 0, the functional J? is strictly convex and coercive. Therefore the
minimization problem
min  J°(w)
wEVa(2)

has a unique solution that we denote by wj. Our goal is to study the behaviour of wj as ¢ tends
to zero. One may expect that wjs converge to one of the solutions (4.8). If this is the case and
because the problem (4.8) has an infinite number of solutions, it will be interesting to characterize
the particular solution to which wj converges. Our findings are given in the following

Proposition 4.4.3. The sequence (wy) converges when 6 — 0 to w’ the smallest minimizer of
J.

Proof. From the definition of wj, we can write that
OIVwi iz, < J°(wh) < J°(w)) = J(w)) + 8] Vwlliz,) = 61 Vw)llizq,).

This means that for all 0 < 4, there holds ||[Vwj|li2,) < [IVw)lliz(,). As a result (wj) is
bounded in V3(£22). This implies that, up to a sub-sequence, (wj) converges, as d tends to 0,
weakly in Va(€2) to some wg € Va(§22). For the reader convenience, this sequence is also denoted
by (ws). Now, let us prove that wy is a minimizer of J. To do that, we start by observing that for
all § > 0, we have

0 < J(ws) < J°(wy) < I (wh) = 8|V,
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This shows that (J(wjy)) converges to zero as ¢ tends to zero. On the other hand, by using the
result of Lemma 4.4.1, we know that (J(wj)) converges to J(wp). Consequently, J(wp) = 0 and
then wg is a minimizer of .J.

The next step is to show that the convergence of (w5) to wy occurs in the strong sense and that
wp = w7. To do so, we observe that

IVwslia@,) < IVeiliag,) = lmsup[Vugiiaq,) < IVl e,
—

ws — wo in Vy(€22) = [VuwollLa(ay) < lim inf[[ Ve,

This implies that ||Vwo|lr2(0,) < VW] ll12(0,). Thanks to the definition of w, we deduce that
wp = w.
With this in mind and with the help of the previous inequality, we conclude that

lim [[Vwjllez(,) = VWil o,)-

Since V2(Q2) is a Hilbert space, it follows (see [40, Proposition II1.30]) that ws — w7 in Va(02).
By noticing that w7 is independent of the considered sub-sequence, the result is then proved. W

In conclusion, we can say that the Tikhonov regularization allows us to obtain a stabilized version
of the optimization problem (4.8). This will be used in order to introduce a stabilization of the
finite element discretization of the problem (4.8), but in that case the stabilization parameter ¢
must be chosen as a function of the meshsize. This will be detailed in §4.5.3. Note that the same
idea was employed in [2].

4.5 Numerical discretization of the problem

In this part, we are concerned with the numerical approximation of (4.8) by means of the Finite
Elements Method. To do so, we start by presenting some details and notations about the sequence
of meshes that will be used.

4.5.1 Mesh assumptions

Assumption 4.5.1. Let T be a regular (see [55]) mesh of Q composed by triangles (resp. tetra-
hedrons) when d =2 (resp. d = 3). We suppose that

e each element of T belongs either to Q1 or to .

o T does not have any hanging node on %: each vertex v of T that belongs to ¥, is a common
vertex between Ty, Ty € T such that T1 C Q1 and Ty C Q. See Figure 4.2.

Let (T)n>0 be a family of meshes of Q such that T, satisfy Assumption 4.5.1 for all A > 0. The
subscript ,, stands for the meshsize. For all &k € N*, we set

VE(Q) = {u € HY(Q) |y € PH(T) for all T € Ty,}.

Here P¥(T") stands for the space of polynomials (of d variables) of degree at most equal to k. In
the same way, we define the spaces Vﬁh(Ql), 1 =1,2, such that

VEL () == {u € H' (%) |ujp € PH(T) for all T € Tj, and u = 0 on 09;\}.

Remark 4.5.1. Since for all h > 0 the mesh Ty, is conforming to X, the space th(QZ) coincides
with {ujo,,u € VE(Q)}, i € {1,2}.

'This is a consequence of the fact that the norm of a Banch space is weakly lower semicontinuous.
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Figure 4.2: Examples of meshes without (left) and with (right) hanging nodes.

4.5.2 Discretization strategy

For h > 0 and w € V5(Q), define the functions u’ € VF(Q) and uyp, € Vgh(QQ) as the solutions
to the following well-posed problems:

61/ Vuy - Vo, = fon + Vw - Vuy, Yo, € VE(Q)
Q 91 Q
€9 Vugih . VU2’h = f21)27h +é1 Vulf’ . V’Uzh — Vw - szh, V’Ug’h € ngh(Qg).
Qo Qo Qo Q2
(4.17)
Then introduce the projection operator 7% : Vo(Qa) — V]ih(Qz) such that for all w € Va(Qs),
7k (w) is defined as the unique element of V;h(QQ) that satisfies the problem
Vri(w) Ve = [ Vw-Vua, — Vogy € V5, ().
QQ QQ
Note that we have the estimate
IV ()l < IV lliz,). (4.18)

From the definition of 7, (w), one can easily see that for all w € V,(£23) we have the identities

k k
uzh(w) = up and ugi;z(w) = Ujp- (4.19)
Now, let us turn our attention to the discretization of the optimization problem (4.8). The natural
way to do that is to replace it by the problem

1
inf  JMwy, ::/ ur — ¥ 2 do. 4.20
el ) i= 5 ] wn| (4.20)

One can proceed as in the proof of Lemma 4.4.2 to show that the objective function J(]f Vi — R
(defined in (4.20)) is convex and continuous. Unfortunately this result is not sufficient to justify
that the problem (4.20) is well-posed for h > 0 small enough.

The difficulty comes from the fact that, even under Assumption 4.2.1, we do not have the discrete
version of Lemma 4.3.2 since we can not guaranty that the problem

Find uj, € V¥(Q) such that /

oVuy, - Vo, = / fop Yoy, € VE(Q)
Q Q



Chapter 4. An optimal control-based numerical method for scalar transmission
problems with sign-changing coefficients 114

is well-posed even for h small enough. To cope with this difficulty, an idea is to use the Tikhonov
regularization approach (see §4.4.4) but with a regularization parameter that depends on h. This
idea was originally proposed in [86] for the case of elliptic equations and then, was used by Assyr
Abdulle et al. in [2] for the case of problems with sign-changing coefficients. Here, we explain
how to adapt it to our case. The idea is to replace the objective function JéL in (4.20) by the
function J" : V’ih(Qg) — R such that for all wy, € Vg,h(Qg), we have

1 w
T () = 2/2 [ — w2 do -+ AR [Vinl gy,

, where A(h) is a positive function of h that tends to zero as h goes to 0. Since A(h) > 0 for
all h > 0, the function J" is strictly convex and coercive. This guarantees that the optimization
problem
min  J"(wp,) (4.21)
whEV;h(Qg)

has a unique solution that we denote by wy, ;,. All the difficulty now is to choose the function A(h)
in order to be able to ensure the convergence of (wy, ) to a solution of (4.8) as h tends to zero.
This is the main goal of the next paragraph.

4.5.3 Convergence of the method

The starting point of our discussion is the following

Lemma 4.5.1. We have the estimate
* 1 5 5 *
Tulwin) < 5 [l = g} o + A0 IV IR, (122

where w7 is defined in (4.11).
Proof. Starting from the fact that 7 (w%) € Vg}h(Qg) and using that wy, j, is the unique solution

of the optimization problem (4.21), we conclude that Jj(wy, ,) < Ju(ms(w])). On the other hand,
the identity (4.19) allows us to write

% 1 w w? *
Iu(mh(ws)) = 5 [ 1 = 3R do 4 AWV R
The Lemma is then proved by recalling the estimate (4.18). [

In order to simplify notations, for A > 0 and w € Va(22), we denote by Ajp(w) the real number
1 w w |2
Ap(w) = §Huh —uyp iz

From (4.19), we know that for all w € Vo(Qy), we have Ay (w) = J&(7F(w)). The main result of
this paragraph is the following theorem.

Theorem 4.5.1. Assume that the function \(h) can be chosen such that the sequences (A(h))
and (A™(w?)/\(h)) converge to zero as h tends to zero. Then,

o the sequence (wy ) converges, as h — 0, in Va(S2) to wj.

o The sequences (u;fk’h) and (u;U';Lh) converge respectively in Hy(Q) and Va(Qs) to Ep(u;)
and ug where (uy,ug) is the solution of (4.4) and Eg(uy) is the harmonic extension of u;.
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Proof. The strategy of proof is similar to the one of Proposition 4.4.3. To simplify notations,
we denote by u™" € VF(Q) and ug’h € Vgh(ﬂg) the functions

=uy " and ug’h = u;U';Lh
In order to make the proof as clear as possible, we divide it into four steps.
Step 1: weak convergence of (wy, ), (u") and (ugh) Starting from the estimate

vai,hH%%QQ) < In(wg ) /A(R) < Ap(wh)/A(R) + vaﬁn?ﬁ(m)

and using the fact that Aj(w})/A(h) tends to 0 as h vanishes, we infer that (wy, ) is bounded in
V2(€2). This implies that, up to a sub-sequence, (wy, ;) converges weakly to some wo € Va(£2).
For the reader convenience, this sub-sequence is still denoted by (wy, j,)-

Since the problem (4.17) is elliptic, we know that the sequence (u®") (resp. (ugh)) converges
weakly in H}(Q) (resp. in Vo(€)) to some u € H(Q) (resp. uz € Vo(€)). Using the density
of VE(Q) (resp. ngh(Qg)) in H{(Q) (resp.Va(22)), we infer that u = u®® and up = uy° (these
functions are defined in (4.9) by replacing w by wy).

Step 2: wy is a mnimizer of J . The compactness of the embedding H'/?(X) ¢ L*(I') and the
continuity of trace operator, ensures that

k,h k,h wo wo

in L%(X) as h — 0. By noticing that
1 k,h * * * *
3 /2 b —uy " P do = Jg(wi ) < Jn(wi ) < AR (An(w) /AR) + w512 q,)

and using that A\(h), Ap(w?y)/A(h) — 0 as h goes to zero, we deduce that u"® — u35® = 0. This
shows that wq is a minimizer of J.

Step 3: strong convergence of (wy ;) to wj. Thanks to the fact that Ay(wj)/A(h) — 0 as
h — 0 and by means of the estimate

IVwi 2,y < Jnlwin)/Ah) < Ap(wh)/A(R) + Vw1 Ezq,),

We can write
limsup [|[Vwy pll12(0,) < IVW)llL2y,)-
h—0

On the other hand, since (wy, j,) converges weakly to wg as h — 0, we infer that

IVwollz (e, < liminf [V p[lL2(q,)-

This implies that [|[Vwolli2(,) < [[Vw)lli2(q,)- Since wo is a minimizer of J, we conclude that
wop = wY. Furthermore, we also deduce that

Jim [V 1 0 = [ Vwollizcos.

As a result, by applying [40, Proposition II1.30], we infer that (wj ;) converges, strongly, in
VQ(QQ) to wo = wj‘,.

Step 4: strong convergence of (1) and (ugh) The ellipticity of Problem (4.17), combined
with the strong convergence of (wy, ) to wj, imply the convergence of (u®) in HY(Q) to u®7 and
of (ugh) in Vo(Q2) to ug}f’.

The Lemma is then proved by using that u*7 = Ep(uy) (see Proposition 4.4.1) and by observing
that these limits are independent of the chosen sub-sequences.
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The rest of this paragraph is devoted to explain why it is possible to choose the function A\(h) in
such a way that A(h) and Ap(w?) converge to 0 as h tends to 0. To do so, one needs to study the
behaviour of Ay (w?) as h tends to 0. For all s > 1, we denote by PH*(Q2) the space

PH*(Q) := {u € Hy(Q2) such that ujg, € H*() for i = 1,2}.
Before studding the behavior of Aj(w), let us start with the following

Proposition 4.5.1. Assume that the solution u of (4.1) belongs to PH'™*(Q) with s > 0. Then
there exists s > s' > 0 that depends only on the geometry of Qs and o € (0,1] that depends only
on the geometry of 0 such that

* w* / w3 w3 /
|u*r — thHH(l)(Q) < Ch? HUHPH1+p’(Q) and [luy” — uz,ﬁHVz(Qz) < Ch” HUQHH””’(Qz)’

« w* , w* w* ;
[ =y, 7 [[L2(q) < ChP +a||u”H1+P’(Q) and luy” — UQ,}]LHL?(Qz) < Ch” +U||U2||H1+p/(92)
with C' independent of h and p' = min(s', k).

Proof. Along this proof, C' denotes a positive constant whose value can change from line to
line but does not depend on h. Given that u“7 = Epx(u;) (see Proposition 4.4.1) and since
uy € HHS(Ql) then, by means of classical regularity results, we can say that there exists 0 < s’ < s

such that u®7 € PH'**(Q). Given that ug}; = uy € H*(Qy) € H¥(Qy) and since the problem
(4.17) is elliptic, we obtain the estimates (see [55])

* * / * * ’
Hqu - uZ)JHH})(Q) < Ch? HquHl+p/( and ”u;UJ - u;ﬂ’VQ(QQ) <Chn ||u2HH1+P'(QQ)'

Q)

By applying the classical Aubin—Nitsche Lemma (see [55, Theorem 3.2.4]), we infer that there
exists 0 < o < 1 such that

* w* / w* w* /
165 — 0 gy < CW* ullgan iy and 42 — 0] lnaany < CR* uallinsn -
|

Remark 4.5.2. It is worth to note that the value of s' depends only on the regularity of the
harmonic extension of the function uy. In particular, if Qo is smooth or convexr then we have
/

s =s.

Now we have all the tools to study the behavior Ay (w7) as h vanishes.

Proposition 4.5.2. Assume that u the solution of (4.1) belongs to PH*(Q) with 0 < s. There
exists 0 < s’ < s that depends only on the geometry of Qo and o € (0, 1] that depends only on the

geometry of Q0 such that
Ap(wh) < Ch?Pte

with C independent of h and p' = min(s', k).

Proof. Applying the multiplicative trace inequality (Proposition 4.8.1) and using the estimates
of Proposition 4.5.1 yield the estimates

* w? / w’ w /
[u®r — thH%ﬁ(z) < Ch* +UHU’HPH1+PI(Q) and |luy” — “2,‘}2”%2(2) < Ch?* +UHW”Hler’(QZ)'
By observing that
w w? * w w* w
lun” = g hllEa gy < 20107 = w [E2im) + lus” = ugilEas)),
we conclude that Ay (w%) < Ch¥#' 7. [

The previous proposition gives us a simple way to choose the function A(h) in order to ensure
that (A(h)) and (Ap(w7)/A(R)) tend both to 0 as h tends to 0.

Proposition 4.5.3. Any function A(h) of the form \(h) = Ch? with C > 0 independent of h
and 0 < q < 2p’ + o satisfies the conditions of Theorem 4.5.1.
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4.6 Numerical experiments

In this section we turn our attention to the validation of the numerical method that we have
proposed. We limit ourselves to the case of 2D domains. The numerical results that we present
below have been obtained using the library FreeFem++2. To solve the optimization problem
(4.21), we used the BFGS function of FreeFem++.

Since the well-posedness of (4.1) depends on the shape of the interface X, we test the performance
of our method in three different configurations. In the first one, ¥ is flat, in the second one, 3 is

circular interface and in the last one, ¥ has a corner.

4.6.1 Flat interface
In this paragraph, we take
O ={(z,y) € (0;1/2) x (0;1)} and Q= {(z,y) € (1/2;1) x (0;1)}

(a flat interface and a domain which is symmetric with respect to ¥). We consider a mesh
sequence of ) satisfying Assumption 4.5.1 (see Figure 4.3).
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N
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7
Z
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N
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Figure 4.3: An example of mesh.

It has been shown in particular with the T-coercivity approach that A. is an isomorphism if and
only if k. # —1. In the rest of this paragraph we suppose that k. #% —1. To test the performance
of our method, we work with the same example considered in [2, 51]. Define the function wu,_
such that

(2% + bx)sin(my) if z < 1/2

, Wherea:# and b=— Fie + 2
a(x —1)sin(ry) ifl/2<x

(@, y) = { ke + 1) 2k + 1)
and consider it as an exact solution of (4.1). This is possible because div(eVu,) € L3(Q). The
source term f is computed accordingly. Since u, € PH? (©) and since g is convex, we can take
s = s’ =1 in Propositions 4.5.1 and 4.5.2.

Furthermore, given that  is convex, we have o = 1. As a result, if we use the Lagrange P1
finite elements, i.e. p = 1, a direct application of Proposition 4.5.1 guarantees that by choosing
A(h) = Ch? with 0 < ¢ < 3, the method is convergent. In our experiment, we take A(h) = 0.002h2,
We work with two values of contrasts k. = —2 and k. = —1.001. The behavior of the L? and H(l)
errors with respect to the exact solution in theses two configurations are given in Figure 4.4.
We observe that in both situations, the method is of order 2 in the L? norm. We also remark that
the order of convergence in the H(l) norm is greater than 1. In the particular case k. = —1.001,
we note a super-convergence in the H(l) norm.

%See https://freefem.org/.
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Remark 4.6.1. The constant C' in A(h) = Ch? must be adjusted by the user according to the con-
trast k. in order to obtain a fast convergence of the method. Clearly this depends on ||Vwj||12(q,)-
When the solution is such that its normal derivative jump across the interface is large (his the
case when k. approaches —1), one expects that ||Vwjll12(q,) must be large and then C' must be
chosen small. It is also important to note that that when h is small enough the choice of C' does
not affect the convergence of the method.

K= —2, A\ = 0.002h2 k= —1.001, A, = 0.002h2
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Figure 4.4: Behavior of the relative L? and HY errors with respect to the meshsize h ~ V/N. Here
N is the total number of nodes of the mesh.

4.6.2 The case of a circular interface

In this paragraph, we consider the case where the domains ©; and 9 are such that Q; = {z €
R?||z| < 1} and Q9 = {z € R*|1 < |z| < 2}. In Proposition 4.8.2, we prove that A. is an
isomorphism x, ¢ {—1} U.% with . := {—(1 — (1/2)*")/(1 + (1/2)*") | n € N*}. For this we
shall limit ourselves to the case where k. = —2. Given that both {25 and 2 are smooth, we infer
that 0 = 1 and s’ = s. Again, we are going to work with the Lagrange P1 finite elements (i.e.
p = 1). By taking f as the source term associated to the function

2 .
b fr<i
u,ia(:v,y):{r + nr , with r = /22 +y2,a=—-1/kcand b=a — 1

a(r—2)% ifl<r<2.

and by taking A, = 0.002h2. We obtain the results displayed in Figure 4.5. We observe that the
method converges with optimal rate.
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4.6. Numerical experiments
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Figure 4.5: A member of the mesh sequence (left). The behavior of the L? and H} errors with
respect to the meshsize h ~ vV/N where N is the number of nodes of the mesh(right).

4.6.3

The case of an interface with corner

Now, we consider the configuration where the interface 3 has a corner. More precisely, we assume
that Q := {z € R?||z| < 1 and arg(x) € (0;7/2)} and Q; := {2 € Q| arg(x) € (0;7/4)} (see
Figure 4.6). In such configuration, it can be proved (see [74]) that A, is an isomorphism if and
only if k. € R* \[—3, —1]. Furthermore, in contrary to the two previous cases, in this configuration
the solution of (4.1) can be very singular near the origin. Indeed, it was proved in [49, Chapter
2] that the regularity of the solution of (4.1) depends in k. and can be very low as k. approaches
—3, —1]. To be more complete, one can show that the optimal regularity of the solution of (4.1)
is PH'+Re(0)(Q) N HY(Q) where \g is the solution of

ke = —tan(3A\mw/4)/ tan(Aw/4)

(4.23)

that has the smallest positive real part. Note that one can show (see [49, Chapter 3]) that all

the solutions to (4.23) are real-valued. In the particular case where k. =

—5, one finds that

Ao =~ 0.458. As mentioned previously this regularity result is optimal. Indeed, one can check that

the function

Up (1,0) = (1 — 7)o

sin(A\0)/ sin(Ar/4)
sin(A(m — 6))/sin(3\7/4)

0 € (0;m/4),
0 € (n/4;m)

satisfies div(eVuy) € L%(Q). Observe that uy, ¢ PH*'7 for all 0 < . This means that uy, ¢
PH?/2. Now, given that 2 and )y are both convex, owing to Proposition 4.5.1, we can say that
by choosing A\, = Ch? with ¢ < 3)\g, the convergence of the method can be guaranteed. The
behaviors of the relative L? error and of the semi—H(l) one for the case A\, = h'*3 are given in Figure
4.6. The expected rate of convergence is equal to Ay ~ 0.458 for the case of the semi—Hé error
and is equal to 2\ ~ 0,916 for the case of the L2 one. In contrary to the previous two cases, the
rates of convergence of these errors are not optimal but close from the expected ones.
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R = —5, )\h = h1'3
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Figure 4.6: On the left: a member of the mesh sequence. On the right: the behavior of the L?
and H} errors with respect to the meshsize h ~ VN where N is the number of nodes of the mesh.

4.7 Concluding remarks

In this chapter, we have presented a new numerical method for approximating the solution of the
scalar transmission problem. We proved that the method converges without any restriction on
the mesh sequence used or on the regularity of the solution. This result has been illustrated by
numerical experiments. We mention some issues/question that can be studied in future work:

e It will be interesting to study how the function A, should be chosen in order to accelerate
the convergence of the method.

e How to extend this extend to the case when the density function is critical? Is it possible
to extend this method to the case of Maxwell’s equations?
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4.8 Appendix

Proposition 4.8.1. [39, Theorem 1.6.6] Let 2 be a Lipschitz domain of RY (d = 2,3). Then the

estimate . »

holds with 0 < C' independent of u.

Proposition 4.8.2. Let Q) = {z € R?||z| < 1} and Qo = {z € R?|1 < |z| < 2}. Assume that
ke ¢ {—1} U7 with

Then the operator A, : Hy(Q) — H(Q) is an isomorphism.

Remark 4.8.1. Note that in accordance with the results concerning the Neumann-Poincaré op-
erator, we observe that —1 is an accumulation point of ..

Proof. [50, Theorem 1.3.3] guarantees that A, is Fredholm of index 0 when . # —1. Therefore
it suffices to study its kernel. Let v € H3(€) be such that A.u = 0. Then uy := u)q, and uz = uq,

satisfy
Au1 =0 in Ql

A’LLQ =0 in QQ
ui(1,0) =u2(1,0) and Orui(l,0) = k0us(1,0) Vo € [0; 27].

Since the problem is invariant with respect to 8, by Fourier decomposition for uq, uo we have the
representations:

ui(r,0) = Z anr™e™  and  ug(r,0) = by In(r/2) + Z ba((r/2)" = (1/2)"™) ',

neN nezZ*
where ay, b, € C. Using the transmission conditions, we get
ayg = b() 111(1/2), 0= bglig
an =bn((1/2)" = (1/2)7"),  an =0ba((1/2)" +(1/2)")ke,  neN
0="0n((1/2)" = (1/2)7"),  0=0ba((1/2)" +(1/2)")ke,  —nmeN".

Therefore we deduce that A. is injective when k. ¢ .7. [ |
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5.1 Introduction

The present chapter inaugurates the third part of this thesis, which aims to present a detailed
study of 3D (time harmonic) Maxwell’s equations in presence of a negative material. Our goal
is explain how the study of the scalar problems associated to the dielectric permittivity £ and
the one associated to the the magnetic permeability p can be used to study the 3D Maxwell’s
equations. Unlike the study of scalar problems with changing coefficients which has been the
subject of many contributions, the case of the 3D Maxwell equations has been treated in only
two papers [24, 118]. While the work done in [118] deals with the case where the interface be-
tween the positive and negative material is smooth (class €'), the results obtained in [24] are
valid in the general case (i.e., when the interface separating the two materials is Lipschitz-regular).

In the present work, we consider the configuration where the interface that separates the positive
and the negative material has a conical point (more details will be given later). Therefore, the
only work that can help us in our study is the one presented in [24]. What we can retain from
this work is the following fact: if the contrasts in € and p do not take critical values, the Maxwell
equations are well-posed (in the Fredholm sense) in the classical L?—framework. The main tool
used to establish this result was the T-coercivity technique. When one of the functions € or p is
critical or when both of them are critical, the study of the Maxwell’s problem has not been done
yet.

In this chapter, we will consider the case where the function ¢ is critical (i.e. propagating singular-
ities exist for the scalar problem associated with €) and where the function p does not take critical
values. More precisely, our goal is to explain why, in this configuration, the classical framework
is no longer appropriate to study Maxwell’s equations and, more importantly, to explain how
to combine Mellin’s analysis in Kondratiev spaces with the T coercivity technique to derive an
appropriate functional framework for Maxwell’s equations in such configuration. We emphasize
that due to the non standard singularities we have to deal with, the results we obtain are quite
different from the ones existing for classical Maxwell’s equations with positive materials in non
smooth domains [15, 60, 16, 66, 62]. The case where both functions € and p take critical values
will be studied in the next chapter.

The outline is as follows. In the remaining part of the introduction, we present some general
notation. In Section 5.2, we describe the assumptions made on the dielectric constants e, p.
Then we propose a new functional framework for the problem for the electric field and show
its well-posedness in Section 5.3. Section 5.4 is dedicated to the analysis of the problem for
the magnetic field. We emphasize that due to the assumptions made on &, p (the contrast in
¢ is critical but the one in p is not), the studies in sections 5.3 and 5.4 are quite different. We
give a few words of conclusion in Section 5.5 before presenting technical results needed in the
analysis in two sections of appendix. The main outcomes of this work are Theorem 5.3.1 (well-
posedness for the electric problem) and Theorem 5.4.1 (well-posedness for the magnetic problem).

All the study will take place in some domain Q of R®. More precisely,  is an open, connected
and bounded subset of R? with a Lipschitz-continuous boundary 9€2. Once for all, we make the
following assumption:

Assumption 1. The domain § is simply connected and 0 is connected.

When this assumption is not satisfied, the analysis below must be adapted (see the discussion in
the conclusion). For some w # 0 (w € R), the time-harmonic Maxwell’s equations are given by

curlE —iwpu H =0 and curl H +iwe E =J in Q. (5.1)

E and H above are respectively the electric and magnetic components of the electromagnetic
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field. The source term J is the current density. We suppose that the medium €2 is surrounded
by a perfect conductor and we impose the boundary conditions

Exv=0 and uwH -v =0 on 01, (5.2)

where v denotes the unit outward normal vector field to 9€). Note that non homogeneous bound-
ary conditions can be considered as well and that the results we obtain below also allow one to
deal with the case of impedance boundary conditions (see Remark 5.3.3). The dielectric permit-
tivity € and the magnetic permeability p are real valued functions which belong to L°°(2), with
gL, p=t € L*®(Q) (without assumption of sign). Let us introduce some usual spaces in the study
of Maxwell’s equations:

L2(Q) = (LX)’
Hy(©) = {veH(Q)]|p=0o0n00}
HA@) = (pel'(@)] [ pdr=0)
H(curl) := {H cL?(Q)|curl H € L*(Q)}
Hy(curl) := {E € H(curl)|E xv =0 on 00}

and for £ € L™(Q):
Xr() = {H eH(curl)|div(éH)=0,£{H -v =0 on 0}
Xn(€) := {E € Hy(curl)|div(¢E) =0}.
We denote indistinctly by (-, -)q the classical inner products of L2(Q) and L?(Q). Moreover, | - ||o

stands for the corresponding norms. We endow the spaces H(curl ), Hy(curl), X7 (§), Xn(§)
with the norm

I lexenety == (11 - [+ leur] - ||E)"2.
Let us recall a well-known property for the particular spaces X7 (1) and Xy (1) (cf. [139, 8]).

Proposition 5.1.1. Under Assumption 1, the embeddings of X7(1) in L%(Q) and of Xn(1) in
L%(Q) are compact. And there is a constant C > 0 such that

lullo < C||curlu||q, Vu € Xp(1) UXy(1).

Therefore, in Xr(1) and in Xn(1), ||curl - |lo is a norm which is equivalent to || - [|g(curl)-

5.2 Assumptions for the dielectric constants ¢, p

In this document, for a Banach space X, X* stands for the topological antidual space of X (the
set of continuous anti-linear forms on X).

In the analysis of the Maxwell’s system (7.5)-(7.6), the properties of two scalar operators associ-
ated respectively with € and u play a key role. Define A, : H{(Q) — (H}(Q))* such that

(Aep, ) = /st Vyldz,  Ve,¢ € Hy(Q) (5.3)
and A, : Hy (Q) — (HL(Q))* such that

(Aup, ') = /QMV<P Vo'de,  Veo,¢ € Hy(Q).
Assumption 2. We assume that p is such that A, : H;L(Q) — (H%(Q))* is an isomorphism.

Assumption 2 is satisfied in particular if x4 has a constant sign (by Lax-Milgram theorem). We
underline however that we allow u to change sign (see in particular [68, 27, 20, 24| for examples
of sign-changing u such that Assumption 2 is verified). The assumption on ¢, that will be respon-
sible for the presence of (hyper)singularities, requires to consider a more specific configuration as
explained below.
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5.2.1 Conical tip and scalar (hyper)singularities

We assume that 0 contains an inclusion of a particular material (metal at optical frequency,
metamaterial, ...) located in some domain M such that M C Q (M like metal or metamaterial).
We assume that M is of class €2 except at the origin O where M coincides locally with a
conical tip. More precisely, there are p > 0 and some smooth domain w of the unit sphere
S?:= {2 € R?||z| = 1} such that B(O, p) C Q and

MNB(O,p) =KXNB(O,p) with KX:={r@|r >0, 0 € w}.

Here B(O, p) stands for the open ball centered at O and of radius p. We assume that ¢ takes the
constant value e < 0 (resp. 4 > 0) in M N B(O, p) (resp. (2\ M) N B(O,p)). And we assume
that the contrast . := e_/e4y < 0 and w (which characterizes the geometry of the conical tip)
are such that there exist singularities of the form

s(z) = r V209 (5 /|2]) (5.4)

satisfying div(eVs) = 0 in K with n € R,n # 0. Here r := |z| while ® is a function which is
smooth in @ and in §?\ %. We emphasize that since the interface between the metamaterial and
the exterior material is not smooth, singularities always exist at the conical tip. However, here
we make a particular assumption on the singular exponent which has to be of the form —1/2+in
with n € R, # 0. Such singularities play a particular role for the operator A. introduced in
(5.3) because they are “just” outside H'. More precisely, we have s ¢ H'(Q) but s € H'(Q) for
all 4 > 0. With them, we can construct a sequence of functions u, € H}(Q) such that

VneN, |lunllm@g) =1 and nll}rfoo ||div(5Vun)||(H(1)(Q))* + ||un||o = 0.

Then this allows one to prove that the range of A. : H{(Q) — (H{(Q))* is not closed (see
[28, 20, 30] in 2D). Of course, for any given geometry, such singularities do not exist when . > 0
because we know that in this case A, : H}(Q) — (H}(€Q))* is an isomorphism. On the other hand,
when

w = {(cos@cos p,sinfcosp,sing)| —m <0 <m, —7w/2<¢<—7/2+ «a} for some a € (0;7)

(5.5)

(the circular conical tip, see Figure 5.1), thanks to Theorem 3.4.6, we know that such s exists for

ke € (—1;—1,) (resp. ke € (—1I4;—1)) when a < 7/2 (resp. a > 7/2). Here I, is the constant
defined by

;o oF1(1/2,1/2,1,cos?(a/2)) 2F1(3/2,3/2,2,sin%(/2))

C 9F1(1/2,1/2,1,sin%(a/2)) 2F1(3/2,3/2, 2, cos?(a/2))

where oF; stands for the Gauss’s hypergeometric function. Note that we have I, = 1/I;_,

and I, € (0;1) for a € (0;7/2). Additionally, there holds for example I/, ~ 0.218 as well as
limg_,r /0 Io = 1, lim,_o+ In = 0%, lim,_, . Iy = +00.

>0, (5.6)

For a general smooth domain w C S? and a given contrast ., in order to know if such s exists,
one has to solve the spectral problem

Find (®,)\) € H'(S?) \ {0} x C such that

/ eV - VB ds — A(A + 1)/ cdT'ds, VO e H'(S?), (5.7)
S2 S2

and see if among the eigenvalues some of them are of the form A = —1/2 + in with n € R,n # 0.
Above, Vg stands for the surface gradient. With a slight abuse, when ¢ is involved into integrals
over S%, we write ¢ instead of e(p-). Note that since ¢ is real-valued, if A = —1/2 + in is an
eigenvalue, we have A(A + 1) = —n? — 1/4, so that A\ = —1/2 — in is also an eigenvalue for the
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Figure 5.1: Left: the domain © with the inclusion M exhibiting a conical tip. Right: sy
for the circular conical tip with w = 7/6 (the critical interval is then approximately given by
[—1; —0.1032]) and k. = —0.36. In this situation, we have n ~ 2.

same eigenfunction. And since A\(A + 1) € R, we can find a corresponding eigenfunction which
is real-valued. Let us mention that this problem of existence of singularities of the form (5.4)
is directly related to the problem of existence of essential spectrum for the so-called Neumann-
Poincaré operator [98, 127, 36, 93]. A noteworthy difference with the 2D case of a corner in the
interface is that several singularities of the form (5.4) with different values of |n| can exist in 3D
[96] (this depends on € and on w).

For pedagogical purposes, we shall suppose that the function ¢ is such that the problem (5.7)
has exactly two eigenvalues that belong to {\ € C|Re(\) = —1/2}\{—1/2} that will be denoted
by )\?7—L = —1/2 +in with n € R’,. Furthermore, we are going to suppose that )\,j; are simple (of
algebraic multiplicity (see §2.4.5) equal to one) eigenvalues of (5.7). In this case, using the results
of §2.6.2, one can show that the the operator A. has exactly two propagating singularities that
have the form s*(z) = AT ®(z/|x|) in which ® is real-valued eigenfunction of (5.7) associated to

Ay such that || @||g1s2) = 1 and satisfying n/ o|®|* # 0. Exchanging 1 by —7 if necessary, we
S2
can set 1 so that

n/SQ £|®|?ds > 0. (5.8)

Note that the previous condition is equivalent to suppose that s is outgoing (with respect to
the Mandelstam radiation principle (see §2.6.2)). For the circular conical tip introduced in (5.5),
say for a < /2, we find that the above assumptions are satisfied for contrasts k. € (—1, l; —1,)
with a certain IJ € (I,;1). For k. € (—1;—I1), the number of hypersingularities is larger than
two (counting +).

Remark 5.2.1. In the case where several propagating singularities exist (even with logarithmic
growth near the origin), the analysis below can be adapted. If the reader is interested in the
treatment of this configuration, we refer him to the next chapter.

To fix notations, we set
5 (x) = x(r)r VD (2 /|2]) (5.9)

In this definition the smooth cut-off function y is equal to one in a neighbourhood of 0 and is
supported in [—p; p]. In particular, we emphasize that s= vanish in a neighbourhood of 9.

In order to recover Fredholmn property for the scalar problem involving e, an important idea
is too add one (and only one) of the singularities (5.9) to the functional framework. From a
mathematical point of view, working with the complex conjugation, it is obvious to see that
adding s or s~ does not change the results. However physically one framework is more relevant
than the other. More precisely, we will explain in §5.3.7 with the limiting absorption princi-
ple why selecting s*, with 7 such that (5.8) holds, together with a certain convention for the
time-harmonic dependence, is more natural.
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5.2.2 Kondratiev functional framework

In this paragraph, adapting what is done in [30] for the 2D case, we describe in more details how
to get a Fredholm operator for the scalar operator associated with €. For 8 € R and m € N, let
us introduce the weighted Sobolev (Kondratiev) space Vjz'(€2) (see [100]) defined as the closure
of 65°(02\ {O}) for the norm

1/2
lellvm@) = ( > |!T'a|_m+63§s0||iz(g)) :

la|<m

Here 65°(Q\ {O}) denotes the space of infinitely differentiable functions which are supported in
Q\ {O}. We also denote V%(Q) the closure of €5°(2\ {O}) for the norm || - ”V}g(Q)' We have the

characterisation

VE(Q) = {p € V4(Q) | ¢ = 0 on 0Q}.
Note that using Hardy’s inequality

Hlu(r)? '
/0 3 r2dr < 4 /0 ' (r) | r2dr, Yu € €1[0;1),

one can show the estimate ||r 'p|lo < C||Vel|lq for all ¢ € €5°(2\ {O}). This proves that

VE(€Q) = HY(Q). Now set 8 > 0. Observe that we have
V5(Q) cHi(Q) c VE(Q)  sothat  (VH(92)* C (Hy(Q)* C (V14(Q)".

Define the operators AX7 : Vliﬁ(Q) — (V#B(Q))* such that

(AP, o) = /Q&?Vso Vglds, Ve e Vi(Q), ¢ € Vig(Q). (5.10)

Working as in [30] for the 2D case of the corner, one can show that there is §y > 0 (depending only
on k. and w) such that for all g € (0; By), A? is Fredholm of index +1 while A;B is Fredholm of
index —1. Note that we have Sy = min{Re A+1/2| X eigenvalue of (5.7) such that Re A > —1/2}.
We remind the reader that for a bounded linear operator between two Banach spaces T : X — Y
whose range is closed, its index is defined as ind T' := dim ker T'—dim coker T', with dim coker T =
dim (Y /range(T")). On the other hand, application of Kondratiev calculus based in particular on
the residue theorem (see [30, Theorem 5.2], [102, Theorem 5.4.2]) guarantees that if ¢ € VE(Q) is

such that APy e (Vé(Q))* (the important point here being that (Vé(Q))* C (VI,B(Q))*), then
there holds the following representation

p=c_s +cpst+¢ with cq E(Cand@E\O/I,B(Q). (5.11)

Note that s*, with s* defined by (5.9), belongs to V};(Q), but not to HY(R2), and a fortiori not
to Vl,ﬁ(Q) Then introduce the space Vo' := span(s*) @ Vl,rg(Q), endowed with the norm

lilvoss = (e + @l @)% Vo =cst+ge Ve, (5.12)

which is a Banach space. Introduce also the operator A" such that for all p = cs™ 4+ @ € yout
and ¢' € €5°(2\ {O0}),

(A%, ') = /QEVQD V' dx = —c/gdiv(eVer)(P/dﬂc + /QEV@ -V da.

Note that due to the features of the cut-off function y, we have div(eVs™) € L*(Q). And since
div(eVsT) = 0 in a neighbourhood of O, we observe that there is a constant C' > 0 such that
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(A, Y < C l]lyou ||90/||v[13(9). The density of ¢5°(2\ {O}) in Vé(Q) then allows us to

extend A" as a continuous operator from V°U to (VE(Q))* And we have

(A, o) = —C/Qdiv(ev.s"r)gp’d:v + /Qeng Vodr, VYo=cst+¢, ¢ € VE(Q)

Working as in [30] (see Proposition 4.4.) for the 2D case of the corner, one can prove that
AUt L yout (Vk(Q))* is Fredholm of index zero and that ker A" = ker AZ". In order to
simplify the analysis below, we shall make the following assumption.

Assumption 3. We assume that € satisfies the conditions of §5.2.1 so that in particular the
range of A : Hy(Q) — (HL(Q))* is not closed. Moreover we assume that for 5 € (0; Bg), AZP is
injective, which guarantees that A2" : Vo' — (VE(Q))* is an isomorphism.

The second part of this hypothesis boils down to supposing that there are no non zero regu-
lar solutions of the homogeneous problem div(eVp) = 0 in Q, ¢ = 0 on 9. Note that due to
the change of sign of €, such solutions may exist in very specific configurations, but they form at
most a finite dimensional set [105, 29] which can be included in the analysis.

In what follows, we shall also need to work with the usual Laplace operator in weighted Sobolev
spaces. For 7 € R, define A7 : Vi(Q) — (VEV(Q))* such that

(A%, ) = /QW Ve dz,  VoeViQ), ¢ eV (Q)

(observe that there is no € here). Combining the theory presented in [102] (see also the founding
article [100] as well as the monographs [107, 113]) together with the result of [101, Corollary
2.2.1], we get the following proposition.

Proposition 5.2.1. For all v € (—1/2;1/2), the operator A7 : Vi(ﬂ) — (Vl_v(Q))* is an
isomorphism.

Note in particular that for v = 0, this proposition simply says that A : H}(Q) — (H{(Q))* is an
isomorphism. In order to have a result of isomorphism both for A" and AP we shall often make
the assumption that the weight 8 is such that

0 < B <min(1/2, 5y) (5.13)

where [y is defined after (5.10).
To measure electromagnetic fields in weighted Sobolev norms, in the following we shall work in
the spaces

<

Q) = (V3(Q)’
) = (VE)?
Note that we have V% 5(Q) C L*(Q) C V().

0
B
o 1
B

(
(

<
)

5.3 Analysis of the problem for the electric component

In this section, we consider the problem for the electric field associated with (7.5)-(7.6). Since the
scalar problem involving ¢ is well-posed in a non standard framework involving the propagating
singularity s* (see (5.12)), we shall add its gradient in the space for the electric field. Then
we define a variational problem in this unsual space, and prove its well-posedness. In §5.3.5 we
explain why the formulation in the classical framework fails to provide the solution of Maxwell
problem. Finally we justify the choice of the new framework by a limiting absorption principle.
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5.3.1 A well-chosen space for the electric field

Define the space of electric fields with the divergence free condition

XW(e) :={u=cVsT +a, ceC, ueL?Q)|curlu € L%(Q), div(eu) = 0 in Q \ {0},
u x v =0 on IN}.
(5.14)
In this definition, for u = ¢Vs™ + @, the condition div(ew) = 0 in Q\ {O} means that there holds

/ cu-Vpds =0, Yo e@RQ\ {0}, (5.15)
Q
which after integration by parts and by density of €5°(Q\ {O}) in H(Q) is equivalent to
- c/ div(eVsT)p dr + / ew - Vodr =0, Vo € 65°(9). (5.16)
Q Q

Note that we have Xy (¢) C X (e) and that dim (X3*(¢)/Xn(¢)) = 1 (see Lemma 5.6.4 in
Appendix). For u = ¢Vs™ + @ with ¢ € C and @ € L*(Q), we set

lullxqu ey = (e + |8, + eurlufg)!/2.

Endowed with this norm, X3 (¢) is a Banach space.

Lemma 5.3.1. Pick some (3 satisfying (5.13). Under Assumptions 1 and 3, for any u = cVs™ +
@ € X3 (g), we have @ € VQB(Q) and there is a constant C > 0 independent of w such that

le| + H'&HV%(Q) < C||curlu|q. (5.17)

As a consequence, the norm || - ||X§)Vut(€) is equivalent to the norm |curl - |lq in X3 (e) and X3 (¢)
endowed with the inner product (curl-, curl-)q is a Hilbert space.

Proof. Let u = ¢Vs™ + @ be an element of X3%(¢). The field @ is in L*(Q) and therefore
decomposes as
u =V + curlyp (5.18)

with ¢ € Hy(Q2) and v € X7 (1) (item 4v) of Proposition 5.6.1). Moreover, since u x v = 0 on 95
and since both st and ¢ vanish on 99, we know that curle x v = 0 on 9. Then noting that
—A = curl@ = curlu € L*(Q), we deduce from Proposition 5.6.2 that curl € VQB(Q) with
the estimate

chrlz,bHVgB(m < C||curlu||q. (5.19)

Using (5.15), the condition div(euw) = 0 in 2\ {O} implies
/QezV(c sT4+p)- Vo' dr = —/Qecurli,b V¢ dx, V' € Vl_B(Q),

which means exactl?f that AP(cst + ¢) = —div(ecurlyp) € (Vl,ﬁ(Q))* Since additionally
—div(ecurl®y) € (Vé(Q))*, from (5.11) we know that there are some complex constants ci
and some @ € Vl_B(Q) such that

cs+—|—g0:c,s_+c+s++<ﬁ.
This implies c_ = 0, cy = ¢ (because ¢ € H}(R2)) and so ¢ = ¢ is an element of Vl,g(Q) This

shows that ¢ st +¢ € V" and that A% (csT+¢) = —div(e curl ). Since A2 : Vout (Vé(ﬂ))*
is an isomorphism, we have the estimate

e+ lglivt o < C lldiv(e curl )] g1 - < C lleurl pllyo (o) (5.20)

Finally gathering (5.18)—(5.20), we obtain that @ € Vgﬁ (©) and that the estimate (5.17) is valid.
Noting that ||@]lq < C'||11HV(15(Q), this implies that the norms | - ||X<])\}1t(€) and ||curl - ||o are

equivalent in X3 (¢). [
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Thanks to the previous lemma and by density of ¢5°(2\ {O}) in Vé(ﬂ), the condition (5.16) for
u=cVsT + @ € X3(e) is equivalent to

- c/ div(eVsT)p dr + / ew-Veodr =0, Vo e Vé(Q) (5.21)
Q Q
where all the terms are well-defined as soon as (3 satisfies (5.13).

5.3.2 Definition of the problem for the electric field

Our objective is to define the problem for the electric field as a variational formulation set in
X (e). For some v > 0, let J be an element of VQW(Q) such that divJ = 0 in 2. Consider the
problem

Find u € X3 () such that

/ pteurlu - curlwde — w2][ cu-vdxr = iw/ J -vdx, Vo € XPM(e),
Q Q Q

(5.22)

where the term

][ cu-vdr (5.23)
Q

has to be carefully defined. The difficulty comes from the fact that X3 (¢) is not a subspace of
L?(Q) so that this quantity cannot be considered as a classical integral.
Let u = ¢, Vs + @ € X (e). First, for ¥ € VgB(Q) with 8 > 0, it is natural to set

][ cu-vdx = / cu-vdx. (5.24)
Q Q

To complete the definition, we have to give a sense to (5.23) when v = Vs™. Proceeding as for
the derivation of (5.21), we start from the identity

/ eu-Vodr = —cu/ div(eVst)pdz + / ew - Vodr, Vo € 65°(2\ {O}).
Q Q Q
By density of ¢5°(2\ {O}) in V};(Q), this leads to set

][ eu - Vopdr = —cu/ div(eVsT)pdx +/ ew - Vipdr, Vo € VE(Q) (5.25)
Q Q Q
With this definition, condition (5.21) can be written as

][5u~Vgpdﬂs:0, che\o/é(ﬁ).
Q
In particular, since st € V/%(Q), for all u € X3 (g) we have
][ ew-Vstdr =0 and so / et - Vst dr = cu/ div(eVsT)st dz. (5.26)
Q Q Q
Finally for all u = ¢, Vs™ + @ and v = ¢, VsT + © in X" (¢), using (5.24) and (5.26), we find
]Zeu-'vdx: / eu-fjdx:cu/ eVsT -17d:c+/ et - U dx.
Q Q Q Q
But since v € X" (¢), we deduce from the second identity of (5.26) that
/ eVst - vdr = cv/ div(eVsT)st da. (5.27)
Q Q
Summing up, we get

][ eu-vdr = cucv/ div(eVst)st dx + / eu - vdz, Yu,v € X3 (¢). (5.28)
Q Q Q
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Remark 5.3.1. Fven if we use an integral symbol to keep the usual aspects of formulas and
facilitate the reading, it is important to consider this new quantity as a sesquilinear form

(u,v) — ][ eu-vdr
Q

on X (e) x XM (). In particular, we point out that this sesquilinear form is not hermitian on
X (e) x X (). Indeed, we have

][EU ‘udr = / 5'&-13da;+cucv/ div(eVsT)st dx
Q Q Q
so that
][ eu-vdr — ][ ev - wdr = 2icyCy ISM (/ div(eVst)sT dm). (5.29)
Q Q Q

But Lemma 5.3.3 and assumption (5.8) show that

Sm (/Qdiv(&“VS"") st dm) # 0.

In the sequel, we denote by an(-,-) (resp. £n(-)) the sesquilinear form (resp. the antilinear form)
appearing in the left-hand side (resp. right-hand side) of (5.22).
5.3.3 Equivalent formulation

Before proving well-posedness in X3*(¢), we have to make sure that a solution of (5.22) satisfies
the initial problem (7.5)—(7.6). Proceeding as in the case of positive coefficients, this leads us to
introduce the following space

H(curl) := span(Vs™) @ Hy(curl) D XM(¢)
(without the divergence free condition) and to consider the problem

Find u € HY*(curl) such that
an(u,v) =ly(v), Yv € HY(curl),

][Eu-'vd:c
Q

has to be extended to the space H3*(curl). Working exactly as in the beginning of the proof of
Lemma 5.3.1, one can show that any u € H3*(curl) admits the decomposition

(5.30)

where the definition of

u=c,Vs' + Vi, + curl,, (5.31)

with ¢, € C, @y, € Hy(Q) and 1p,, € X7 (1), such that curlep,, € VQB(Q), for [ satisfying (5.13).
Then, for all u = ¢, Vs + Vi, + curly, and v = ¢, Vs + Vi, + curlp, in H3(curl), a
natural extension of the previous definitions leads to set

][ eu-vdr = / e (Vipy + curlep,) - (Vi + curlp,) dz
Q Q
+/ cueVsT -curle, + G ecurly, - Vst dr (5.32)
Q

- / culo div(eVsT)sT 4 ¢, div(eVsT) @y + G @udiv(eVsT) du.
Q
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Note that (5.32) is indeed an extension of (5.28). To show it, first observe that for u = ¢, Vst +
Vu + curlp,, v = ¢, Vs + Vo, + curlyp, in X3 (e), the proof of Lemma 5.3.1 guarantees
that @y, @y € Vl_ﬂ(Q) with g satisfying (5.13). This allows us to integrate by parts in the last
two terms of (5.32) to get

f)su ‘vdr = /Qs (Vu + curlep,,) - (Vg + curl,) dx
+ /Q cueVsT - (V@y + curlep,) + Gy e (Vo +curlp,) - Vstdr  (5.33)
—Cqu/Q div(eVsT)st da.
Using (5.26), (5.27), the second line above can be written as

/ cu€VsT - (V@y + curlvp,) + Gy e (Vo + curlap,,) - Vst dx
@ B B (5.34)
= cucv/ div(eVst)sT dx+cucv/ div(eVsT)st da.
Q Q
Inserting (5.34) in (5.33) yields exactly (5.28).

Lemma 5.3.2. Under Assumptions 1 and 3, the field w is a solution of (5.22) if and only if it
solves the problem (5.30). As a consequence, if u satisfies (5.22), then (E, H) := (u, (iwp) *curlu)
is a solution of (7.5)-(7.6).

Proof. If u € HY"(curl) satisfies (5.30), then taking v = Vi with ¢ € €5°(Q2\ {0}) in (5.30),
and using that divJ = 0 in Q, we get (5.15), which implies that u € X% (g). This shows that u
solves (5.22).

Now assume that u € X3(e) € H3(curl) is a solution of (5.22). Let v be an element of
H"(curl). As in (5.31), we have the decomposition

v = ¢, VsT + Vi, + curlp,, (5.35)

with ¢, € C, ¢, € Hy(Q) and 9, € X7 (1) such that curlp, € VO_B(Q) for all 5 satisfying (5.13).
By Assumption 3, there is ¢ € V°" such that

A2 = —div(e curlep,) € (VE(Q))". (5.36)
The function ¢ decomposes as ¢ = as™ + ¢ with ¢ € ve 5(€2). Finally, set
v = curle, — V(=v — V(cysT + py + ).

The function ¥ is in X3 (¢), it satisfies curl & = curlv and from (5.26), we deduce that

j[eu-ﬁdx:][su'vdx.
Q Q

Using also that J € VQW(Q) for some v > 0 and is such that divJ = 0 in €2, so that

/J-'f)da::/J~vd:L‘,
Q Q

this shows that ay(u,v) = ay(u,v) = n(v) = {n(v) and proves that w is a solution of (5.30).

Now if u satisfies (5.22), and so (5.30), since Vs™ € L'(Q) := L'(Q)3, we have u € L'(Q).
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Therefore there holds curlu € 2'(Q)® where 2'(Q) denotes the set of distributions on Q. And
actually one can verify that curlu € L?(Q) because curl Vs™ = 0 in Q. Thus we can set
(E,H) := (u, (iwp) ‘curlu) € L}Y(Q) x L?(Q). Clearly we have curl E = iwp H in Q. By
taking v € €5°(Q)® € HY(curl) in (5.30) and by observing that in this case

][€u~vdx—/5u-'vda;,
Q Q

we obtain curl H +iwe E = J in 2'(Q)>. Moreover, because E € H3(curl ), we have Exv = 0
on 9Q. Finally, using the relation curl E = iw p H in Q, for ¢ € €5°(Q2\ M), we find

(WH - v, 9)gn = / uH -Vpdr = (iw)_l/ curl E-Vgdr = 0.
Q Q

From the density of traces of elements of 45°(€2\ M) into H'/2(8Q), we infer that uH - v = 0 on
o). [ |

In the following, we shall work with the formulation (5.22) set in X3 (¢). The reason being
that, as usual in the analysis of Maxwell’s equations, the divergence free condition will yield a
compactness property allowing us to deal with the term involving the frequency w.

5.3.4 Main analysis for the electric field
Define the continuous operators A" : X3 (e) — (X3 (g))* and K™ : X3 (e) — (X (e))*

such that for all u, v € X3 (¢),

(A u, v) = / u_lcurlu-curlﬁdx, (KW, v) = ][ cu - T d.
“ Q
With this notation, we have (A" + K3 )u, v) = an(u,v).

Proposition 5.3.1. Under Assumptions 1-3, the operator A" : XM (e) — (XX*(e))* is an
isomorphism.

Proof. Let us construct a continuous operator T : X3 (e) — X*(e) such that for all u, v €
X3 (e),

/ pteurlu - curl (Tv) do = / curlwu - curlvdz.
Q Q

To proceed, we adapt the method presented in [24]. Assume that v € X" (e) is given. We
construct Tv in three steps.

1) Since curlv € L*(Q) and A, : H%(Q) — (H%(Q))* is an isomorphism, there is a unique
¢ € HL(Q) such that

/MVC-VC/dx:/NCuﬂU'VC/d% W¢' € Hy (9.
9} Q

Then the field yu(curlv — V() € L%(9) is divergence free in 2 and satisfies p(curlv — V() -v =0
on 0f).

2) From item i) of Proposition 5.6.1, we infer that there is ¢ € Xy (1) such that
p(curlv — V() = curl y.

Thanks to Lemma 5.6.2, we deduce that ¢ € VQB(Q) for all § € (0;1/2) and a fortiori for g
satisfying (5.13).
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3) Suppose now that  satisfies (5.13). Then we know from the previous step that div(ey) €

)

(Vé(Q))* On the other hand, by Assumption 3, A% : Vout (V%(Q))* is an isomorphism.
Consequently we can introduce ¢ € VO such that Ay = —div(er).

Finally, we set Tv = @ — V. Clearly Tv is an element of X' (g). Moreover, for all u, v
in X3 (e), we have

/ulcurlu-curl’]l‘vcm = /ulcurlu-curl'(,bdx
Q Q

= /curlu-curlvdaz—/curlu-VCdaz
Q Q

= /curlu~curl’udm.
Q

From Lemma 5.3.1 and the Lax-Milgram theorem, we deduce that T*AQ'™ : X3 () — (X (e))*
is an isomorphism. And by symmetry, permuting the roles of u and v, it is obvious that T*A" =
AT, which allows us to conclude that A" : X3 (¢) — (X (¢))* is an isomorphism. [

Proposition 5.3.2. Under Assumptions 1 and 3, if (u, = ¢, Vs + 4,) is a sequence which
is bounded in X3 (g), then we can estract a subsequence such that (c,) and (@) converge re-
spectively in C and in Vgﬁ(Q) for B satisfying (5.13). As a consequence, the operator K :
XW(e) — (X (e))* is compact.

Proof. Let (u,) be a bounded sequence of elements of X3'*(¢). From the proof of Lemma 5.3.1,
we know that for n € N, we have

u, = c, Vs + Vi, + curlp, (5.37)

where the sequences (c,), (¢n), (¥,,) and (curle,,) are bounded respectively in C, VI_B(Q),
X7(1) and VY 4(Q). Observing that curlw,, = curlcurl, = —At, is bounded in L*(Q), we
deduce from Proposition 5.6.3 that there exists a subsequence such that (curle,) converges in
VQB(Q). Moreover, by (5.20), we have

en = eml + lon = Pmllva gy < Clleurl (%, — ) lve o

which implies that (c,) and (¢,) converge respectively in C and in V1 5(€2). From (5.37), we see
that this is enough to conclude about the first part of the proposition.
Finally, observing that

KN ] xqut o)+ < C(llallvo o) + leul),
we deduce that KO : X (g) — (X (g))* is a compact operator. [
We can now state the main theorem of the analysis of the problem for the electric field.

Theorem 5.3.1. Under Assumptions 1-3, for all w € R the operator A — w Kt : X () —
(XM (e))* is Fredholm of index zero.

Proof. Since K" : X3 () — (XM (e))* is compact (Proposition 5.3.2) and A" : X3 (g) —
(X%(£))* is an isomorphism (Proposition 5.3.1), AW — W K : X0 (e) — (XQ(e))* is Fred-
holm of index zero. n

The previous theorem guarantees that the problem (5.22) is well-posed if and only if uniqueness
holds, that is if and only if the only solution for J = 0 is w = 0. Since uniqueness holds for w = 0,
one can prove with the analytic Fredholm theorem that (5.22) is well-posed except for at most a
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countable set of values of w with no accumulation points (note that Theorem 5.3.1 remains true
for w € C).

Note that in practice € is itself a function of w. For instance, if the inclusion M is metallic, it
is commonly admitted that the Drude’s law gives a good model for €. But taking into account
the dependence of ¢ with respect to w when studying uniqueness of problem (5.22) leads to a
non-linear eigenvalue problem, where the functional space X3 (¢) itself depends on w. This study
is beyond the scope of the present paper (see [90] for such questions in the case of the 2D scalar
problem).

Nonetheless, there is a result that we can prove concerning the cases of non-uniqueness for problem
(5.22).

Proposition 5.3.3. If u = ¢Vs™ + @ € X3M(¢) is a solution of (5.22) for J =0, then ¢ = 0
and u € Xpy(e).

Proof. When w = 0, the result is a direct consequence of Theorem 5.3.1 (because zero is the
only solution of (5.22) for J = 0). From now on, we assume that w € R\ {0}. Suppose that
u = cVst 4+ @ € XJ(¢) is such that

/Qu1curlu-curl'vdaz—w2]éau-vdw—O, Yo € X0 (e).

Taking the imaginary part of the previous identity for v = u, we get

%m(feu-uda:) =0.
Q

On the other hand, by (5.28), we have

][su-udzx:/5|ﬁ|2d:ﬁ+ c|2/ div(eVst) st du,
Q Q Q

so that
c|>Sm (/ div(eVst) st d:v) =0.
Q

The result of the proposition is then a consequence of Lemma 5.3.3 where it is proved that

Im (/ div(eVst) s dx) :77/ £|®|2ds,
Q S?

and of the assumption (5.8). [

Remark 5.3.2. As a consequence, from Lemma 5.53.1, we infer that elements of the kernel of
AT — WK are in VY 4(Q) for all B satisfying (5.13).

Remark 5.3.3. Using the result of Theorem 5.3.1, we could have studied a problem similar to
(7.5)=(7.6) with an impedance boundary condition replacing the perfect conductor condition. In
this case, using the unique continuation principle, we would have been able to prove uniqueness
of the solution, and so well-posedness of the problem, for all w > 0. Theorem 5.3.1 can also be
employed to consider the scattering of an incident wave by a bounded inclusion (with the same
features as M) in freespace. In the latter situation, working as in [17, Lemma 2.1 and Proposition
2.1/, in particular using the Rellich lemma, one could also establish existence and uniqueness of
the solution (in a framework like X3 (¢)) for all w > 0.
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5.3.5 Problem in the classical framework

In the previous paragraph, we have shown that the Maxwell’s problem (5.22) for the electric field
set in the non standard space X3 (¢), and so in H3*(curl) according to Lemma 5.3.2, is well-
posed. In order to understand what would fail with a naive approach, here we wish to analyse
the properties of the problem for the electric field set in the classical space Xy (¢) (which does
not contain Vs™). Since this space is a closed subspace of X" (¢), it inherits the main properties
of the problem in X" () proved in the previous section. More precisely, we deduce from Lemma,
5.3.1 and Proposition 5.3.2 the following result.

Proposition 5.3.4. Under Assumptions 1 and 3, the embedding of X n(¢) in L2(Q) is compact,
and ||curl - |lq is a norm in Xx(g) which is equivalent to the norm || - |[g(curl)-

Note that we recover classical properties similar to what is known for positive €, or more generally
[24] for e such that the operator A, : H}(Q) — (HL(Q))* defined by (5.3) is an isomorphism (which
allows for sign-changing ¢). But we want to underline the fact that under Assumption 3, these
classical results could not be proved by using classical arguments. They require the introduction
of the bigger space X3 (¢), with the singular function Vs™.

Let us now consider the problem

Find u € Xy (e) such that

/ pteurlu - curl @ dz — w2/ eu-vdr = iw/ J -vdx, Vo € Xy (e). (5.38)
Q Q Q

An important remark is that one cannot prove that problem (5.38) is equivalent to a similar
problem set in Hy(curl) (the analogue of Lemma 5.3.2). Again, the difficulty comes from the
fact that A. is not an isomorphism, and trouble would appear when solving (5.36). Therefore, a
solution of (5.38) is not in general a distributional solution of the equation

1 2

curl (/f curl u) —weu = iwd.

To go further in the analysis of (5.38), we recall that X (¢) is a subspace of codimension one of
X () (Lemma 5.6.4 in Appendix). Let vy be an element of X3 (¢) which does not belong to
Xy (g). Then we denote by £y the continuous linear form on X (¢) such that:

Vo € X3 (e) v — lp(v)vg € Xn(e). (5.39)
Let us now define the operators Ay : Xy (e) = (Xn(g))* and Ky : Xy () = (Xn(€))* by
(Ayu,v) = / pteurlu - curl @ dz, (Kyu,v) = / eu-vdr.
Q Q
Proposition 5.3.5. Under Assumptions 1-3, the operator Ay : Xn(e) = (Xn(€))* is Fredholm

of index zero.

Proof. Let u € Xy(e). By Proposition 5.3.1, for the operator T introduced in the corresponding
proof, one has:
2 2
[ulx () = l[eurlullg = (A, Tu).

Then, using (5.39), we get:
l]l% () = (Ana, Tu — €o(Tu)vo) + (AR u, o(Tu)vo),

which implies that
lulxye) < C (ANl @) + lo(Tw)]).

The result of the proposition then follows from a classical adaptation of Peetre’s lemma (see for
example [144, Theorem 12.12]) together with the fact that Ay is bounded and hermitian. [
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Combining the two previous propositions, we obtain the

Theorem 5.3.2. Under Assumptions 1-3, for all w € R, the operator Ay — w?’Ky : Xy (g) —
(Xn(€))* is Fredholm of index zero.

But as mentioned above, even if uniqueness holds and if Problem (5.38) is well-posed, it does not
provide a solution of Maxwell’s equations. Note that the phenomenon observed in this paragraph
is very similar to what happens for Maxwell’s equations with positive coefficients in presence of
singularities when one looks at a formulation set in H'(Q)? (see e.g. [61, 88, 64]).

5.3.6 Expression of the singular coefficient

Under Assumptions 1-3, Theorem 5.3.1 guarantees that for all w € R the operator A" —wQK?\‘,‘t :
X () — (X (e))* is Fredholm of index zero. Assuming that it is injective, the problem (5.22)
admits a unique solution u = ¢, Vs' + 4. The goal of this paragraph is to derive a formula allow-
ing one to compute ¢, without knowing w. Such kind of results are classical for scalar operators
(see e.g. [85], [102, Theorem 6.4.4], [71, 72, 10, 89, 145, 121]). They are used in particular for
numerical purposes. But curiously they do not seem to exist for Maxwell’s equations in 3D, not
even for classical situations with positive materials in non smooth domains. We emphasize that
the analysis we develop can be adapted to the latter case.

In order to establish the desired expression, for w € R, we first introduce the field wy € X3 (¢)
such that

/ pteurlv - curlwy d — w2][ v -wydr = / ev - Vst du, Vo € X3 (e).  (5.40)
Q Q Q

Note that Problem (5.40) is well-posed when A3 — WK is an isomorphism. Indeed, using
(5.29), one can check that it involves the operator (AP — W?KQ)*, that is the adjoint of A —
WK, Moreover v Jq eV - Vst da is a linear form over X" (¢).

Theorem 5.3.3. Assume that w € R, Assumptions 1-3 are valid and A" — W K : X () —
(XM (e))* is injective. Then the solution uw = ¢, Vst + @ of the electric problem (5.22) is such
that

Cy = iw/ J 'dem// div(eVs™') st d. (5.41)
Q Q
Here wy is the function which solves (5.40).

Remark 5.3.4. Note that in practice wy can be computed once for all because it does not depend
on J. Then the value of ¢, can be determined very simply via Formula (5.41).

Proof. By definition of u, we have

/ /uflcurlu -curlwy dx —w2][ cu-wydr = iw/ J - wydzx.
Q Q Q
On the other hand, from (5.40), there holds
/ /flcurlu -curlwy dx — w2][ eu-wydxr = / et - Vst dx.
Q Q Q

From these two relations as well as (5.26), we get
iw/ J -wydr = / 811-V8+dx:cu/ div(eVs™) sT dx.
Q Q Q

But Lemma 5.3.3 below guarantees that Sm [, div(eVst)sTdr # 0. Therefore we find the
desired formula. [}
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Lemma 5.3.3. With the notations of (5.4), we have

Sm (/ div(eVst) st d:c) :77/ £|®|?ds.
Q S2?

Proof. Set Q, := Q\ B(O,7). Noticing that div(sVsT) vanishes in a neighbourhood of the
origin, we can write

/div(sVer) sTdr = lim div(eVst) st dx
Q

7—0 QT

Os™
= lim <—/ 5|Vs+|2d:n—/ 6Ss+ds>.
=0 Q, oB(0,r) Or

Taking the imaginary part and observing that

+ 1
/ 58is+ds = — < + in) / £|®|?ds,
aB(O,r) Or 2 s?

the result follows. |

5.3.7 Limiting absorption principle

In §5.3.4, we have proved well-posedness of the problem for the electric field in the space X% (¢).
But up to now, we have not explained why we select this framework. In particular, as mentioned
in §5.2.1, well-posedness also holds in X% (¢) where X% (¢) is defined as X3 (¢) with s replaced
by s~ (see (5.9) for the definitions of sT). In general, the solution in X(e) differs from the
one in X3(g). Therefore one can build infinitely many solutions of Maxwell’s problem as linear
interpolations of these two solutions. Then the question is: which solution is physically relevant?
Classically, the answer can be obtained thanks to the limiting absorption principle. The idea is
the following. In practice, the dielectric permittivity takes complex values, the imaginary part
being related to the dissipative phenomena in the materials. Set

e i=c+id

where ¢ is defined as previously (see (5.2)) and ¢ > 0 (the sign of § depends on the convention for
the time-harmonic dependence (in e~ here)). Due to the imaginary part of ¢° which is uniformly
positive, one recovers some coercivity properties which allow one to prove well-posedness of the
corresponding problem for the electric field in the classical framework. The physically relevant
solution for the problem with the real-valued ¢ then should be the limit of the sequence of solutions
for the problems involving £% when § tends to zero. The goal of the present paragraph is to explain
how to show that this limit is the solution of the problem set in X3(¢).

Limiting absorption principle for the scalar case

Our proof relies on a similar result for the 3D scalar problem which is the analogue of what has
been done in 2D in [24, Theorem 4.3]. Consider the problem

Find ¢° € H}(Q) such that — div(e’V¢?) = f, (5.42)
where f € (H}(€))*. Since § > 0, by the Lax-Milgram lemma, this problem is well-posed for all
f € (Hy(Q)* and in particular for all f € (Vé(Q))*, B > 0. Our objective is to prove that (°)

converges when § tends to zero to the unique solution of the problem

Find ¢ € V" such that A%y = f. (5.43)
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We expect a convergence in a space V}g(Q) with 0 < 8 < By. We first need a decomposition of
@5 as a sum of a singular part and a regular part. Since problem (5.42) is strongly elliptic, one
can directly apply the theory presented in [102]. In particular, to characterize the singular part,
one is led to consider the spectral problem

Find (®°,\%) € H(S?) \ {0} x C such that

Vg® - VgWds = N (N + 1)/ EP0Wds, YU e H{(S?). (544)
§2

SQ
By assumption (see Section 5.2), Ay := —1/2 +in (where 7 is fixed in (5.8)) are eigenvalues of
(5.7) of algebraic multiplicity equal to one. Using Rouché theorem, one can show that for § > 0
small enough, there are exactly two eigenvalues X’ of (5.44) such that we have A+ — \%| < C'6,
where C'is independent of §. Moreover )\i are of algebraic multiplicity equal to one. By observing
that X° is an eigenvalue of (5.7) if and only —A\% — 1 is an eigenvalue of (5.7), we deduce that for

0 small enough, there exists one and only one eigenvalue of (5.7), that we denote by M e C, such
that Re X’ € (—1/2; —1/2 + By — V). Let s° be the corresponding singular function defined by

s
s'(r,0,0) = " @ (z/|]),

where @ is the eigenfunction associated with A° such that (<I>5,<I>)H1(Sz) = 1. Here @ is the
function introduced in §5.2.1 and we will prove in Lemma 5.3.6 that we can indeed impose the
condition (@, ®)p1(g2) = 1 for 6 small enough. Observe that s° satisfies div(e°Vs?) = 0 in K. As

in (5.9) for s*, we set
_ ind
(@) = x(r) r VP B0 (2 /|a)), (5.45)
where 7° € C is the number such that A’ = —1/2 + in’. By applying [102, Theorem 5.4.1], we
get the following result.

Lemma 5.3.4. Let 0 < B < By and f € (VE(Q))* The solution ¢° of (5.42) decomposes as

¢ =8 + @ (5.46)
where ¢ € C and @ € Vl,g(Q)
AN Cx
~X\° — 1 when § — 0" Sm A
. 5 2o
0o A 0 | —0.5—0.965
0.001 | —0.498 — 0.965i
: > e A ]
112 0.01 | —0.487 — 0.965i
\ &><><>< 0.05 | —0.436 — 0.963i
< B 0.1 | —0.374 — 0.958i

A\ when § — 0

Figure 5.2: Behaviour of the eigenvalue A close to the line Re A = —1 /2 as the dissipation § tends
to zero. Here the values have been obtained solving the problem (5.44) with a Finite Element
Method. We work in the conical tip defined via (5.5) with a = 27/3 and k. = —1.9. In this case,
using (5.6) we find I, ~ 2.585 so that the critical interval is approximately given by [—2.585; —1].

Let us first study the limit of the singular function.

)

Lemma 5.3.5. For all B > 0, when § tends to zero, the function s° converges in Vé(Q) to st

(see the definitions in (5.8) and (5.9)).
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Proof. The first step of the proof consists in showing that the limit of (775), which we denote by
n°, is n and not —7. Let p > 0 be such that the function y introduced in (5.9) satisfies x =1 in
the ball B(O, p). From integration by parts, we get

0= / div(e°Vs?)sd dax = —/ Vs |2 dx + (-1/2 + iﬁé)ﬁfmmné / e%|®°|2ds.
B(0,p) B(0,p) S2

Thus we must have
Im ((—1/2+in5)ﬁ29m"5/ |90 2ds) > 0. (5.47)
SZ

Taking the limit & — 0% in (5.47) and using Lemma 5.3.6 below which guarantees that (®°)
converges to ® in H'(S?), we obtain the relation

n° /SQ e|®|? ds > 0. (5.48)

According to the definition (5.8) of 7, this ensures that 7° = 7 and shows that (A\%) converges to
A (and not to —A — 1, see an illustration with Figure 5.2). From the definitions (5.9), (5.45) of s,

5%, using again that (®°) converges to ® in H!(S?), we infer that s° converges to s* (and not to

s7) in VE(Q) [

Lemma 5.3.6. Let (@5) be a sequence of eigenfunctions associated with the eigenvalue N For
6 small enough, we can impose the condition (<I>5, ‘I’)Hl(s2) = 1. Then ®° is uniquely defined and

when & tends to zero, (B°) converges in HY(S?) to the ® introduced in §5.2.1.

Proof. Let (@5) be a sequence of eigenfunctions associated with the eigenvalue X° such that
||<I>5||H1(Sz) — 1. We can extract a subsequence, that we also denote by ($?), which converges

weakly in HY(S?) and strongly in L*(S?) to some ® € H'(S?). For z € C, with the Riesz
representation theorem, define the symbol .Z°(z) : H'(S?) — H!(S?) such that

(L2 ()0, V)1 (s2) = / VW - VoWl ds — z(z + 1)/ SUWds, YU, ¥ e H(S?).
S2 S2
First taking the limit § — 07 in (Z°(\°)®°, U (s2) = 0, we get
L2\, ¥ ) g2y =0, V¥ € H'(S?).

This shows that either ® = 0 or ® is an eigenfunction of (5.7) associated with A. On the other
hand, using some T-coercivity approach on the sphere (mimic the proof [19, Theorem 6.4]), one
can prove that £°(—1/2 +it) : H'(S?) — H!(S?) is an isomorphism for ¢ > 0 large enough. Let
us decompose Z°(\%) as

LN = LO(—1)2+it) + R + A

where 2°, # : HY(S?) — H(S?) are the operators such that for all ¥, ¥ € H'(S?),
(200, V)12 = us(/ Vsl - Vel ds — N (\° + 1)/ w@ds)
S2 S?

—(N(N 1) = A\ + 1))/ U W ds
SQ

(AU Y2y = — (AN + 1) — (—1/2—|—it)(—|—1/2+it))/ T ds.
S2
Note that the norm of %, as a linear operator of H1(~S2), tends to zero when d — 0" and that
¢ is compact. Therefore, using the relations .22 (A\%)®° = £%(A\)® = 0 to get

LO(=1/2+it)(P° — @) = —A°D° — 4 (P° — D),
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we deduce that (®°) converges strongly to ® in H'(S?). This implies ||(i)HH1(Sz) = 1 and proves
that ® is an eigenfunction of (5.7) associated with A. Since by assumption A is a simple eigenvalue,
® is proportional to ®. Thus for § small enough, we have (i)‘s, )1 (s2) # 0. Then (%), with & =
0 /(d?, D)1 (s2), is a sequence of eigenfunctions associated with A such that (@, P)pr(gey = 1.
Now from the convergence of (®°) to ¢® with |¢| = 1 and (®°, ®)p1(s2y) = 1, we infer that (®°)
converges to ® when ¢ tends to zero. Finally, one observes that such a construction is possible
for any subsequence of (®%). [

Then proceeding exactly as in the proof of [30, Theorem 4.3], one can establish the following
result.

Lemma 5.3.7. Let 0 < 3 < fy and f € (Vé(Q))* If Assumption 8 holds, then (¢° = ¢ s° + @°)
converges to ¢ = csT 4+ @ in Vé(ﬂ) as & tends to zero. Moreover, (¢°,@°) converges to (¢, @) in
C x Vl_B(Q) In this statement, ©° (resp. @) is the solution of (5.42) (resp. (5.43)).

Note that the results of Lemma 5.3.7 still hold if we replace f by a family of source terms
(f%) € (Vé(Q))* that converges to f in (Vé(Q))* when § tends to zero.

Limiting absorption principle for the electric problem
The problem
Find u® € X (e°) such that curlp teurlu® — w??u’ = iwJ, (5.49)

with Xy (%) = {E € Hy(curl)|div(e’E) = 0}, is well-posed for all w € R and all § > 0. This
result is classical when p takes positive values while it can be shown by using [24] when p changes
sign. We want to study the convergence of u® when § goes to zero. Let (6r) be a sequence of
positive numbers such that lim,,— 4. 6, = 0. To simplify, we denote the quantities with an index
n instead of 8, (for example we write " instead of £7).

Lemma 5.3.8. Suppose that (u") is a sequence of elements of Xy (") such that (curlu™) is
bounded in L*(Q). Then, under Assumption 3, for all 8 satisfying (5.13), for all n € N, u"
admits the decomposition u" = ¢"Vs" + " with ¢ € C and 4" € Vo,ﬁ(Q). Moreover, there
exists a subsequence such that (¢*) converges to some ¢ in C while (a") converges to some @ in
VQB(Q). Finally, the field w := cVs™ + @ belongs to X3 (e).

Proof. For all n € N, we have u” € Xy (e?) € L3(Q). Therefore, there exist ¢" € Hy(Q) and
P € Xp(1), satisfying curlp™ x v = 0 on 02 such that u" = V" + curly™. Moreover, we
have the estimate

[AY™[o = [lcurlu”([q < C.

As a consequence, Proposition 5.6.2 guarantees that (curl+™) is a bounded sequence of VY 5(€2),
and Proposition 5.6.3 ensures that there exists a subsequence such that (curl™) converges in
VQB(Q). Now from the fact that div(e"u"™) = 0, we obtain

div(e"Vy") = —div(e"curl ") € (V5(Q))".

By Lemmas 5.3.4 and 5.3.7, this implies that the function ¢" decomposes as ¢" = ¢"s" + @" with
"€ Candg" € VI_B(Q). Moreover, (") converges to ¢ in C while (¢") converges to ¢ in VI_B(Q).

Summing up, we have that u" = ¢"Vs" 4+ @ where 4" = V@™ + curly™ converges to @ in
Vo_ﬂ(Q). In particular, this implies that u™ converges to u = c¢Vs™ 4@ in Vg(Q) for all v > 0. It
remains to prove that u € X" (), which amounts to showing that u satisfies (5.26). To proceed,
we take the limit as n — 400 in the identity

—c”/ div(e"Vs")pdr + / e"a" - Vodr =0
Q Q
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which holds for all ¢ € VE(Q) because u" € Xy (e"). [

Theorem 5.3.4. Let w € R. Suppose that Assumptions 1, 2 and 3 hold, and that w = 0 is the
only function of Xy (g) satisfying

1

curl ptcurlu — w?eu = 0. (5.50)

Then the sequence of solutions (u‘S = AV + 17,5) of (5.49) converges, as § tends to 0, to the
unique solution u = cVs™ + @ € X (e) of (5.22) in the following sense: (cs) converges to c in
C, (a®) converges to @ in V(lﬁ(Q) and (curlu®) converges to curlwu in L2(0).

Proof. Let (4,) be a sequence of positive numbers such that lim,,_, 4~ §, = 0. Denote by u" the
unique function of Xy (¢") such that

curl p teurlu” — w?e"u" = iwlJ. (5.51)

Note that we set again " instead of % The proof is in two steps. First, we establish the desired
property by assuming that (||curl u”||q) is bounded. Then we show that this hypothesis is indeed
satisfied.

First step. Assume that there is a constant C' > 0 such that for all n € N

|lcurlu"||q < C. (5.52)

By lemma 5.3.8, we can extract a subsequence from (u" = ¢"Vs" + @") such that (¢") converges
to ¢ in C, (@") converges to @ in VQB(Q), with u = @ + cVsT € X (e). Besides, since for all
n € N, curlu” € L%(Q), there exist h" € H:}#(Q) and w" € X (1), such that

pteurlu™ = VA™ + curlw™. (5.53)
Observing that (w") is bounded in Xy (1), from Lemma 5.6.2, we deduce that it admits a
subsequence which converges in VQB(Q). Multiplying (5.51) taken for two indices n and m by

(w™ — w™), and integrating by parts, we obtain
/ lcurl w” — curlw™|? dz = w2/ (e"u" — mu™) (W — w™m) dz.
Q Q

This implies that (curlw™) converges in L?(Q2). Then, from (5.53), we deduce that
div (uVh") = —div (pcurlw™) in Q.

By Assumption 2, the operator A, : H#(Q) — (H%E(Q))* is an isomorphism. Therefore (VA")
converges in L?(2). From (5.53), this shows that (curlu”) converges to curlw in L%(Q). Finally,
we know that u" satisfies

/u1curlu”~curlvdz—w2/snu"-'vdx:iw/J-'vdx
Q Q Q

for all v € VY 5(€2). Taking the limit, we get that u satisfies

/ p " teurlu - curl @ dz — w2][ cu-vdr = iw/ J -vdx (5.54)
Q Q Q

for all v € VQB(Q). Since in addition, u satisfies (5.26), (5.54) also holds for v = Vs and we
get that u is the unique solution u of (5.22).

Second step. Now we prove that the assumption (5.52) is satisfied. Suppose by contradiction
that there exists a subsequence of (u") such that

|curlu||q — 400
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and consider the sequence (v") with for all n € N, v" := u"/||curl u"||q. We have

1 2_n,n

v" € Xy(e") and curly curlv” —w e "v" =iwd/||curlu”|q. (5.55)

Following the first step of the proof, we find that we can extract a subsequence from (v™) which
converges, in the sense given in the theorem, to the unique solution of the homogeneous problem
(5.22) with J = 0. But by Proposition 5.3.3, this solution also solves (5.50). As a consequence,
it is equal to zero. In particular, it implies that (curlv™) converges to zero in L2(Q), which is
impossible since by construction, for all n € N, we have ||curlv”|q = 1. [

5.4 Analysis of the problem for the magnetic component

In this section, we turn our attention to the analysis of the Maxwell’s problem for the magnetic
component. Importantly, in the whole section, we suppose that [ satisfies (5.13), that is 0 < 8 <
min(1/2, 5y). Contrary to the analysis for the electric component, we define functional spaces
which depend on fS:

Z3 (1) == {u € L?(Q) | curlu € span(sVs™) @ VQB(Q), div(pu) =01in Q, pu - v =0 on 9N}
and for £ € L>(Q),
277 (€) == {u e LA(Q) | curlu € V4(Q), div (éu) = 0 in Q and u - v = 0 on 9Q}.

Note that we have Z;ﬂ(,u) C Z(u) C Zg(u). The conditions div(pu) = 0in Q and pu-v =0
on 02 for the elements of these spaces boil down to impose

/Q,u,u~Vg0dm:0, V(pEH#(Q).

Remark 5.4.1. Observe that the elements of Z9 (1) are in L*(Q) but have a singular curl. On
the other hand, the elements of X (¢) are singular but have a curl in L*(Q). This is consistent
with the fact that for the situations we are considering in this work, the electric field is singular
while the magnetic field is not.

The analysis of the problem for the magnetic component leads to considering the formulation

Find u € Z$" (1) such that

][ e tcurlu - curlwdz — w2/ g v = / e 1J - curlw, Vo € Zg(u)7 (5.56)
Q Q Q

where J € VQB(Q). Again, the first integral in the left-hand side of (5.56) is not a classical
integral. Similarly to definition (5.26), we set

][ Vst . curlvdr := 0, Vv € Z?(,u).
Q

As a consequence, for u € Z9"*(p1) such that curlu = ¢, eVs™ + {, (we shall use this notation
throughout the section) and v € Zg(u), there holds

]éalcurlu -curlvdr = /Q€1Cu -curlvdz. (5.57)

Note that for u, v in Z9"*(p) such that curlu = ¢, Vst + {y, curlv = ¢, eVs™ + ¢, we have
]ia_lcurlu -curlvdr = /Qe_lgu (coeVsT + &) da

= /Qelc_,“u Cpdx — cv/Q div(¢y) st dx (5.58)

= /5_1Cu~§'1,dx—|—cucv/div(sVst)stdx.
Q Q
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We denote by ar(-,-) (resp. 7(-)) the sesquilinear form (resp. the antilinear form) appearing in
the left-hand side (resp. right-hand side) of (5.56).

Remark 5.4.2. Note that in (5.56), the solution and the test functions do not belong to the same
space. This is different from the formulation (5.22) for the electric field but seems necessary in
the analysis below to obtain a well-posed problem (in particular to prove Proposition 5.4.1). Note
also that even if the functional framework depends on (3, the solution will not if J is reqular
enough (see the explanations in Remark 5.4.4).

5.4.1 Equivalent formulation
Define the spaces

H(curl) = {u e L*Q)|curlu ¢ V%(Q)}
H"(curl) := {u € L*(Q)| curlu € span(cVs™) @ VQB(Q)}.

Lemma 5.4.1. Under Assumptions 1-2, the field uw is a solution of (5.56) if and only if it solves

the problem
Find uw € H*"(curl) such that

aT(u, v) = ET('U), Yo € Hﬁ(curl ) (5.59)

As a consequence, if w satisfies (5.56), then (E, H) := (i(we)”(curlu — J),u) is a solution of
(7.5)-(7.6).

Proof. If w satisfies (5.59), then taking v = Vp with ¢ € H%(Q) in (5.59), we get that
u € Z§™ (1) This proves that u solves (5.56).

Assume now that u is a solution of (5.56). Let v be an element of H” (curl ). Introduce ¢ € H:}#(Q)
the function such that

/Q,quo V' dr = /QM’U -V dz, Vo' € H#(Q)

The field ¥ := v — Vp belongs to Zg(,u). Moreover, there holds curl® = curlv and since for
u € Z9™ (1), we have

/uu-Vgodx:O, V@EH#(Q),
Q

we deduce that ar(u,v) = ap(u,v) = lp(d) = lp(v).

Now if u satisfies (5.56), and so (5.59), one notes that the pair (E, H) := (i(we) (curlu—J), u)
belongs to L' () x L2(Q). Clearly we have curl H +iwe E = J in Q. By taking v € €5°(Q)% C
H’(curl) in (5.59) and by observing that in this case

][ e leurlu - curlvde = / e lcurlu - curlw dz,
Q Q

we obtain curl E = iw pu H in 2'(Q)%. The boundary conditions (7.6) can then be deduced in a
classical way. |

5.4.2 Norms in Z7’(y) and Z$™ (1)

We endow the space Zg(u) with the norm

lullg . = (lullé + IICHFI’MH%;%(Q))1/2

Y

so that it is a Banach space.
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Lemma 5.4.2. Under Assumptions 1-2, there is a constant C' > 0 such that for all u € Zg(u),
we have
lullo < € fleurl ullya o)

As a consequence, the norm || - || ;5 () equivalent to the norm |curl - HV%(Q) in Zg(u).
T

Remark 5.4.3. The result of Lemma 5.4.2 holds for all § such that 0 < 5 < 1/2 and not only
for 0 < 8 < min(1/2, fp).

Proof. Let u be an element of Zg(u). Since u belongs to L%(Q), according to the item v) of
Proposition 5.6.1, there are ¢ € H#(Q) and ¥ € Xy(1) such that

u = Vp + curl. (5.60)
Lemma 5.6.2 guarantees that 1 € V° 5(€2) with the estimate
[¥llvo @) < Clleurlplq. (5.61)
Multiplying the equation curlcurly = curlw in Q by % and integrating by parts, we get
Jeurl [3 < fleurlullyo o [ llve o) (5.62)
Gathering (5.61) and (5.62) leads to
|lcurly|lq < C ||curluHV%(Q). (5.63)

On the other hand, using that
/Quu -V¢'dr =0, Vo' e H%E(Q)

and that A, : Hy(Q) — (H,(Q))" is an isomorphism, we deduce that [|[Vy|q < C'[|curl9|q.
Using this estimate and (5.63) in the decomposition (5.60), we finally obtain the desired result. W

If w € Z9"(u), we have curlu = ¢, Vs + ¢, with ¢, € C and ¢, € VQB(Q). We endow the
space Z3" (1) with the norm

ey = (el + lewl? + Gulo )%
so that it is a Banach space.

Lemma 5.4.3. Under Assumptions 1-3, there is C > 0 such that for all u € Z$" (1), we have
[ulle +leu] < CliCullve (@) (5.64)
As a consequence, the norm ||u”z%ut('u) is equivalent to the norm ||Cu”v‘iﬁ(ﬂ) for u € Z9" (p).

Proof. Let u be an element of Z9"*(p). Since Z3™ (1) C Zg(u), Lemma 5.4.2 provides the
estimate
[ulle < Clleurlullyo ) < C (jeu] +[[Cullvo (o))- (5.65)

On the other hand, taking the divergence of curlu = ¢, Vst + ¢y, we obtain ¢, div(eVsT) =
—div {y. Using the fact that A%" : Vo — (Vé(Q))* is an isomorphism, we get

‘Cu‘ <C HdiV C“H(VE(Q))* <C ”CuHV(lB(Q)

Using this inequality in (5.65) leads to (5.64). |
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5.4.3 Main analysis for the magnetic field

Define the continuous operators A" : Z3¥ (u) — (Zg(u))* and K9 : Z9"(u) — (Zg(u))* such
that for all u € Z§(u), v € Zg(u),

(A, v) = ][ e teurlu - curlwdz, (K9, v) = / pu - T dx. (5.66)
Q Q
With this notation, we have ((AS™ — W?*K$"u, v) = ar(u,v).

Proposition 5.4.1. Under Assumptions 1-3, the operator A" : Z3"(n) — (Zg(u))* is an
isomorphism.

Proof. We have

(AP u, v) = /Qelcu -curlvdr, Vu € Z9" (), Yo € Zg(u).
Let us construct a continuous operator T : Zg(u) — Z5" () such that

(AP Tu, v) = /Qrwcurlu -curlvdz, Vu, v € Zg(u). (5.67)

Let u be an element of Zg(u). Then the field 72’ curlu belongs to Vgﬁ(Q). Since A" :
vourt (VE(Q))* is an isomorphism, there is a unique ¢ = as™ + @ € VO such that A%y =
—div(r*e curlu). Observing that w := r?’curlu — Vo € V%(Q) is such that divw = 0 in 2,
according to the result of Proposition 5.6.4, we know that there is a unique ¢ € Zg(l) such that

curle = ¢ (r?’curlu — Vo).

At this stage, we emphasize that in general Vp € V%(Q) \ L?(Q). This is the reason why we are
obliged to establish Proposition 5.6.4. Since 4 is in L*(Q), when A, : H#(Q) — (H%&(Q))* is an
isomorphism, there is a unique ¢ € Hiﬁ (Q) such that

/quS-VQS’d:n:/mp-VQS’d:E, Vo' € HY(Q).
Q Q

Finally, we set Tu = ¢ — V¢. It can be easily checked that this defines a continuous operator
T: Zg(u) — Z§™(u). Moreover we have

curl Tu = aeVst + {ry with {1, = € (rwcurlu - V).

As a consequence, indeed we have identity (5.67). From Lemma 5.4.2, we deduce that AT :
Zg(u) — (Zg(u))* is an isomorphism, and so that A" is onto. It remains to show that A" is
injective.

If u € Z(u) is in the kernel of A9™, we have (A9 u,v) = 0 for all v € Z?(u). In partic-
ular from (5.58), we can write

(A, ) = / Gl da + [cu? / div(eVs*)s* do = 0.
Q Q

Taking the imaginary part of the above identity, we obtain ¢,, = 0 (see the details in the proof
of Proposition 5.4.3). We deduce that u belongs to Z;ﬁ(,u) and from (5.58), we infer that
(AP u, Tu) = (A" Tu, w). This gives

0= / r?|curl ul? dz = 0
Q

and shows that u = 0. [ |
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Proposition 5.4.2. Under Assumptions 1-3, the embedding of the space Z3(n) in L2(Q) is
compact. As a consequence, the operator K™ : Z9 (1) — (Zgw(,u))* defined in (5.66) is compact.

Proof. Let (u,) be a sequence of elements of Z9"* (1) which is bounded. For all n € N, we
have curlu, = cy,eVs™ + {, . By definition of the norm of Z3(u), the sequence (cy,,) is
bounded in C. Let w be an element of Z3"(u) such that ¢, = 1 (if such w did not exist,
then we would have Z3" () = Z;B (1) € Xp(p) and the proof would be even simpler). The
sequence (U, — ¢y, w) is bounded in X (u). Since this space is compactly embedded in L*(Q2)
when A, : H%&(Q) — (H:}%(Q))* is an isomorphism (see [24, Theorem 5.3]), we infer we can
extract from (w, — ¢y, w) a subsequence which converges in L(Q). Since clearly we can also
extract a subsequence of (¢, ) which converges in C, this shows that we can extract from (u,)
a subsequence which converges in L%(€). This shows that the embedding of Z% (1) in L%(€) is
compact.

Now observing that for all u € Z9"(u), we have

out
IK7 u”(zg(#))* < Cllullg,

we deduce that K3 : Z9" (u) — (Zg(,u))* is a compact operator. [ |
We can now state the main theorem of the analysis of the problem for the magnetic field.

Theorem 5.4.1. Under Assumptions 1-3, for all w € R the operator AS™ — W KM : Z9 (1) —
(Zg(u))* is Fredholm of index zero.

Proof. Since K™ : Z9"*(u) — (Zg(u))* is compact (Proposition 5.4.2) and AJ™ : Z9"*(u) —
(Zg(u))* is an isomorphism (Proposition 5.4.1), A% — 2K : ZW — (Zg(p))* is Fredholm of
index zero. n

Finally we establish a result similar to Proposition 5.3.3 by using the formulation for the magnetic
field.

Proposition 5.4.3. Under Assumptions 1 and 3, if u € Z3" (1) is a solution of (5.56) for J = 0,
then w € Z7." (1) C X (u) for all v satisfying (5.13).

Proof. Assume that w € Z3"(u) satisfies

][ e leurlu - curlwdzr — wg/ pu -0 =0, Vv € Z?(u)-
Q Q

Taking the imaginary part of this identity for v = w, since w is real, we get
Sm <][ e teurlu - curludx) =0.
Q

If curlu = ¢, eVsT + ¢, with ¢, € C and {,, € VQB(Q), according to (5.58), this can be written
as

|cu|*Sm (/ div(aVsﬂﬁd:c) =0.
Q

Then one concludes as in the proof of Proposition 5.3.3 that ¢, = 0, so that curlu € VQB(Q).

Therefore we have e " 'curlu € Xy (g) € X3 (). From Lemma 5.3.1, we deduce that e *curlu €
VQV(Q) for all vy satisfying (5.13). This shows that w € Z;.”(u) for all v satisfying (5.13). [

Remark 5.4.4. Assume that J € VQV(Q) for all v satisfying (5.13). Assume also that zero is
the only solution of (5.56) with J = 0 for a certain By satisfying (5.13). Then Theorem 5.4.1 and
Proposition 5.4.3 guarantee that (5.56) is well-posed for all v satisfying (5.138). Moreover Propo-
sition 5.4.3 allows one to show that all the solutions of (5.56) for v satisfying (5.13) coincide.
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Remark 5.4.5. From Lemmas 5.3.2 and 5.4.1, we infer that if u solves the electric problem
(5.22), then (iwp) *curlw is a solution of the magnetic problem (5.56). Conversely, if u solves
(5.56), then i(we) ™ (curlu — J) is a solution of (5.22). Therefore, under Assumptions 1-3, for
all w € R, the operator AW — WK+ X (e) — (X(e))* ds an isomorphism if and only if
A — WK Z9M (1) — (Zg(u))* is an isomorphism.

5.4.4 Analysis in the classical framework

In the previous paragraph, we proved that the formulation (5.56) for the magnetic field with a
solution in Z$™* (1) and test functions in Zg(u) is well-posed. Here, we study the properties of the
naive problem for the magnetic field set in the classical space X (). More precisely, we consider
the problem

Find uw € X7 (u) such that

/ e lcurlu - curlwdz — w2/ LU T = / e 1J - curlw, Vo € Xr(p). (5.68)
Q Q Q

Working as in the proof of Lemma 5.4.1, one shows that under Assumptions 1, 2, the field u is a
solution of (5.68) if and only if it solves the problem

Find w € H(curl) such that

/81cur1u'curlvdw—w2/uu-v—/e1J-cur1v, voeHieurl). (0
Q Q Q

Define the continuous operators Ap : Xp(u) = (Xp(p))* and Ky : Xp(p) — (X (p))* such that
for all uw € Xp(u), v € Xp(p),

(Aru,v) = / e lcurlu - curl @ dz, (Kru,v) = / pu - U dx.
Q Q
As for Ay and Ky, we emphasize that these are the classical operators which appear in the
analysis of the magnetic field, for example when ¢ and u are positive in ).

Proposition 5.4.4. Under Assumptions 1-3, for all w € C the operator Ap — w*Kr Xr(p) —
(X7 ()" is not Fredholm.

Proof. From [24, Theorem 5.3 and Corollary 5.4], we know that under the Assumptions 1, 2, the
embedding of X7 (u) in L%(Q) is compact. This allows us to prove that Ky : Xp(p) — (Xp(p))* is
a compact operator. Therefore, it suffices to show that Ar : X7 (u) — (X7 (1))* is not Fredholm.
Let us work by contradiction assuming that A7 is Fredholm. Since this operator is self-adjoint
(it is symmetric and bounded), necessarily it is of index zero.

* If Ap is injective, then it is an isomorphism. Let us show that in this case, A. : Hy(Q) —

(H}(Q2))* is an isomorphism (which is not the case by assumption). To proceed, we construct a
continuous operator T : H}(Q) — H{ () such that

(U 1¢) = [ 94 VTR de = [ VoV da, Vol €BYQ).  (570)
Q Q
When Ar is an isomorphism, for any ¢’ € H}(Q), there is a unique ¥ € Xy (i) such that
/ e teurlyp - curlwd:c = / e vy - curlwdaﬁ, Vap' € X ().
Q Q

Using item iii) of Proposition 5.6.1, one can show that there is a unique Ty’ € H)(2) such that

V(T¢') = e 1 (V¢ — curlp).
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This defines our operator T : H)(Q2) — H}(€2) and one can verify that it is continuous. Moreover,
integrating by parts, we indeed get (5.70) which guarantees, according to the Lax-Milgram theo-
rem, that A, : H}(Q) — HS(Q) is an isomorphism.

* If Ap is not injective, it has a kernel of finite dimension N > 1 which coincides with span(Aq, ..., An),
where A1,...,Any € Xp(u) are linearly independent functions such that (curl A;, curl \j)q = d;;
(the Kronecker symbol). Introduce the space

Xr(u) == {u € Xgp(p) | (curlu, curl A\j)g = 0,i=1,... N}.

as well as the operator Ag : Xp(u) — Xp(p) such that
(Aru,v) = / e leurlu - curl @ d, Vau,v € Xp(u).
Q

Then Ap is an isomorphism. Let us construct a new operator T : HN(I)(Q) — HY(R) to have
something looking like (5.70). For a given ¢’ € H}(Q), introduce 1 € Xp(u) the function such
that

N
/ e tcurley - curleyy doe = / (e7'Vy' — Zaicurl ;) - curle)’ dz, V' € Xp(p), (5.71)
Q Q i=1

where for i = 1,..., N, we have set o; := [, 71V’ - curl \;dz. Observing that (5.71) is also
valid for ¥’ = X\;, i = 1,..., N, we infer that there holds

N
/ e lcurley - curlyy’ do = / (e7'V¢' = > ajeurl \) - curlyy’ da, Vap' € X ().
Q 2 i=1

Using again item iii) of Proposition 5.6.1, we deduce that there is a unique T¢' € H{(Q) such
that

N
V(TSO/) = 5_1(V<,0/ —curly) — Z a;curl \;.
i=1

This defines the new continuous operator T : H}(Q) — HS(€Q). Then one finds
E— — N —
(Acp, TY') = / eV -V(Ty')dx = / Ve Vo' dr — ZO‘Z/ eVy-curl \;dz, Vo,¢ € H(Q).
Q Q = Ja

This shows that T is a left parametrix for the self adjoint operator A.. Therefore, A, : H}(Q) —
H}(Q) is Fredholm of index zero. Note that then, one can verify that dimker A. = dimker Ap.
And more precisely, we have ker A, = span(~,...,yn) where ~; € H(l)(Q) is the function such
that

Vv = e leurl )\

(existence and uniqueness of 7; is again a consequence of item 4ii) of Proposition 5.6.1). But by
assumption, A, is not a Fredholm operator. This ends the proof by contradiction. |

Remark 5.4.6. In the article [24], it is proved that if A. : HY(Q) — HY(Q) is an isomorphism
(resp. a Fredholm operator of index zero), then Ap : Xp(1) — (Xr(1))* is an isomorphism (resp.
a Fredholm operator of index zero). Here we have established the converse statement.

Remark 5.4.7. We emphasize that the problems (5.38) for the electric field and (5.68) for the
magnetic in the usual spaces Xn(e) and Xp(u) have different properties. Problem (5.38) is well-
posed but is not equivalent to the corresponding problem in Hy(curl), so that its solution in
general is not a distributional solution of Mazwell’s equations. On the contrary, problem (5.68)
is equivalent to problem (5.69) in H(curl) but it is not well-posed.
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5.4.5 Expression of the singular coefficient

Under Assumptions 1-3, Theorem 5.4.1 guarantees that for all w € R the operator A" —w? K™
Z5" () — (Zg(u))* is Fredholm of index zero. Assuming that it is injective, the problem (5.56)
admits a unique solution u with curlu = ¢, eVs™ +¢,,. As in §5.3.6, the goal of this paragraph
is to derive a formula for the coefficient ¢,, which does not require to know w.

For w € R, introduce the field wr € Zg(u) such that
/ e ¢, - curlwr dx — w2/ W - wr dr = / Co - Vst du, Yo € Z?p“t(,u). (5.72)
Q Q Q

Note that wr is well-defined because (A3 — W2KI)* Zg(,u) — (Z$™(p))* is an isomorphism.

Theorem 5.4.2. Assume that w € R, Assumptions 1-3 are valid and AJ™ — W*K : Z8M (1) —
(Zg(u))* is injective. Let u denote the solution of the magnetic problem (5.56). Then the coeffi-
cient ¢ in the decomposition curlu = ¢, eVs' + ¢, is given by the formula

Cy = iw/ e g curl’uJTda:// div(eVst) st dx. (5.73)
Q Q

Here wr is the function which solves (5.72).

Proof. By definition of u, we have
/ e ¢y - curlwr dz — wQ/ pu - wr dr = iw/ e 1J - curlwr dz.
Q Q Q

On the other hand, from (5.72), we can write

/s1Cu-curled3:—w2/,uu~wTda::/Cu-Vstd:U.
Q Q Q

From these two relations, using (5.58), we deduce that
iw/ eV J - curlwr dz = / Cu - Vstdx = cu/ div(eVsT) st du.
Q Q Q

This gives (5.73). [ |

5.5 Conclusion

In this work, we studied the Maxwell equations in presence of hypersingularities for the scalar
problem involving €. We considered both the problem for the electric field and for the magnetic
field. Quite naturally, in order to obtain a framework where well-posedness holds, it is necessary
to modify the spaces in different ways. More precisely, we changed the condition on the field
itself for the electric problem and on the curl of the field for the magnetic problem. A noteworthy
difference in the analysis of the two problems is that for the electric field, the searched solution
and the test function in the corresponding sesquilinear form belong to the same space, whereas
for the magnetic field we have not been able to do so. We do not know what are the numerical
consequences of this difference.

Of course, we could have assumed that the scalar problem involving € is well-posed in Hé (©) and
that hypersingularities exist for the problem in u. This would have been similar mathematically.
Physically, however, this situation seems to be a bit less relevant because it is harder to obtain
negative p without dissipation. More precisely, materials having an € with a negative real part
can be found easily in nature (metals for certain ranges of frequencies) and additionally they
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can be very weakly dissipative (small imaginary part of €). On the other hand, only certain
artificially designed metamaterials, made of small resonators, behave macroscopically, after an
homogenization process, as homogeneous materials with a p having a negative real part. But for
the moment, dissipation for these metamaterials still remains very important.

We assumed that the domain 2 is simply connected and that 02 is connected. When these
assumptions are not met, it is necessary to adapt the analysis (see §8.2 of [24] for the study in
the case where the scalar problems are well-posed in the usual H! framework). This has to be
done. Moreover, for the conical tip, at least numerically, one finds that several singularities can
exist (actually this number can be as high as we wish for a contrast close enough to —1, see the
calculations in [96]). In this case, the analysis should follow the same lines but this has to be
written.

On the other hand, in this work, we focused our attention on a situation where the interface
between the positive and the negative material has a conical tip. It would be interesting to study
a setting where there is a wedge instead. In this case, roughly speaking, one should deal with
a continuum of singularities. We have to mention that the analysis of the scalar problems for a
wedge of negative material in the non standard framework has not been done. Finally, considering
a conical tip with both critical € and p is a direction that we are investigating.

5.6 Appendix

5.6.1 Vector potentials, part 1

Proposition 5.6.1. Under Assumption 1, the following assertions hold.

i) According to [S, Theorem 3.12], if u € L*(Q) satisfies diva = 0 in Q, then there exists a
unique ¥ € Xp(1) such that u = curla.

ii) According to [S, Theorem 3.17]), if u € L*(Q) satisfies divu = 0 in Q and u-v = 0 on
0N, then there exists a unique 9 € Xy (1) such that u = curl.

i) If w € L?(Q) satisfies curlu = 0 in Q and w x v = 0 on 0K, then there exists (see [110,
Theorem 3.41]) a unique p € Hy(Q) such that uw = Vp.

i) Every u € L?(Q) can be decomposed as follows ([110, Theorem 3.45])
u = Vp+ curly,
with p € HY(Q) and 4 € Xp(1) which are uniquely defined.
v) Every u € L*(Q) can be decomposed as follows ([110, Remark 3.46])
u = Vp + curl,
with p € H%E(Q) and ¥ € Xn(1) which are uniquely defined.
Proposition 5.6.2. Under Assumption 1, if 1 satisfies one of the following conditions
i) ¢ € Xn(1) and Ay € L3(Q),
i) ¥ € Xp(1), curlyp x v =0 on 92 and A € L2(Q),

then for all < 1/2, we have curlty € V(lﬁ(Q) and there is a constant C' > 0 independent of 1
such that

leurl®llyo ) < C|AY]lo. (5.74)
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Proof. It suffices to prove the result for 5 € (0;1/2). Let ¢ € Xn(1)UX7(1). Since curl curly =
— A4, integrating by parts we get

|curlp||3 = —/ A - de.
Q

Note that the boundary term vanishes because either ¥» x v = 0 or curly x v = 0 on 92. This
furnishes the estimate
[eurly|jo < C'[|[Ad]lo. (5.75)

Now working with cut-off functions, we refine the estimate at the origin to get (5.74).

Let us consider a smooth cut-off function y, compactly supported in 2, equal to one in a
neighbourhood of O. To prove the proposition, it suffices in addition to (5.75) to prove that
curl (xv) € Vgﬁ(Q) together with the following estimate ||curl (x¥)|yo L) < C|AY||q.

First of all, since curl () € L%(Q) and div(x®) = Vx -9 € L*(Q), we know that yp; € H}(Q)
for i = 1,2,3 and we have

3
leurl (xe) I + lldiv(x) [ = D IV (xwa) 13-
i=1

From the previous identity, (5.75) and Proposition 7.2.1, we deduce

3 1/2
<H¢H?z+2\v(x¢i)|!?z> < Cllad]a. (5.76)
i=1

Note that, (5.76) is also valid if we replace x by any other smooth function with compact support
in Q. Now setting f; = A(xy;) for i = 1,2,3, we have

fi = xAY,; +2Vx - Vi, +;Ax. (5.77)

By writing that Vi - Vi, = div(¢;Vx) — ¥;Ax and replacing x by 9;x in (5.76) for j =1,2,3,
we deduce that for i = 1,2,3, f; belongs to L?(Q) and satisfies

| filla < Cl|A%|q.

Note that since 8 € (0;1/2), we have V};(Q) C V%,l C L3(Q) and so L*(Q) C (V%(Q))* Now
starting from the fact that yt; € H3(Q) in addition to A(x;) = fi € L%(Q) C (Vé(Q))*, by
applying Proposition 6.2.1, we deduce that x; € ve 5(9) with the estimate

betillen @) < C 1Al < € lfilla

As a consequence, curl () € VQB(Q) and

3 3
Jewrl (o o) < €Y Ixtillin o) < D Ifillo < CllAB o,
=1 i=1

which concludes the proof. |

Proposition 5.6.3. Under Assumption 1, the following assertions hold:

i) if (1) is a bounded sequence of elements of Xy (1) such that (Axpy,) is bounded in L*(S2),
then one can extract a subsequence such that (curlap,) converges in VgB(Q) for all B € (0;1/2);
i1) if (Yn) is a bounded sequence of elements of Xr(1) such that curle, x v = 0 on 02 and
such that (Apy,) is bounded in L*(Q), then one can extract a subsequence such that (curlapy,)
converges in Vgﬁ(Q) for all 5 € (0;1/2).
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Proof. Let us establish the first assertion, the proof of the second one being similar. Let ()
be a bounded sequence of elements of X (1) such that (Aay,) is bounded in L*(£2). Observing
that curlcurly, = —A,, we deduce that (curle,) is a bounded sequence of X7 (1). Since
the spaces X (1) and X7 (1) are compactly embedded in L?*(Q) (see Proposition 7.2.1), one can
extract a subsequence such that both (1),,) and (curlap,) converge in L%(€).

Then, working as in the proof of Proposition 5.6.2, we can show that for a smooth cut-off function
x compactly supported in 2 and equal to one in a neighbourhood of O, the sequence (xty,) is
bounded in V,QY(Q) = (V?Y(Q))?’ for all v > 1/2. To obtain this result, we use in particular the fact
that if & C R? is a smooth bounded domain such that O € &, then A : Vg(ﬁ) ﬁ\o/'i_l(ﬁ) — Vg(ﬁ)
is an isomorphism for all v € (1/2;3/2) (see [107, §1.6.2]). Finally, to conclude to the result of the
proposition, we use the fact V%(ﬁ ) is compactly embedded in Vix( 0) asoon as y—1 <+ ([102,
Lemma 6.2.1]). This allows us to prove that for all § < 1/2, the subsequence (xt) converges in
VI_B(Q), so that (curl)y,) converges in V(lﬁ(Q). [ |

The next two lemmas are results of additional regularity for the elements of classical Maxwell’s
spaces that are direct consequences of Propositions 5.6.2 and 5.6.3.

Lemma 5.6.1. Under Assumption 1, for all B € (0;1/2), Xp(1) is compactly embedded in
VQB(Q). In particular, there is a constant C > 0 such that

HUHVQB(Q) < C||curlulq, Vu € Xp(1). (5.78)

Proof. Let u be an element of X7 (1). From the item i) of Proposition 5.6.1, we know that there
exists 1 € X (1) such that w = curlp. Using that —A = curlu € L?(Q), from Proposition
5.6.2, we get that u € VQIB(Q) together with the estimate

||curl1j)HVgB(Q) < C||curlul|q.

This gives (5.78). Now suppose that (u,) is a bounded sequence of elements of X7 (1). Then
there exists a bounded sequence (v,,) of elements of Xy (1) such that w, = curl,,. Since
(curlu,, = —Awp,) is bounded in L%(Q), the first item of Proposition 5.6.3 implies that there is
a subsequence such that (u,,) converges in V° 5(9). [

Lemma 5.6.2. Under Assumption 1, for all 5 € (0;1/2), Xn(1) is compactly embedded in
VQB(Q). In particular, there is a constant C > 0 such that

HUHVO_ﬁ(m < C||curlul|q, Yu € Xy (1).

Proof. The proof is similar to the one of Lemma 5.6.1. |

5.6.2 Vector potentials, part 2

First we establish an intermediate lemma which can be seen as a result of well-posedness for
Maxwell’s equations in weighted spaces with ¢ = p = 1 in Q. Define the continuous operator
By : Z5(1) — (Z77(1))* such that for all ¢ € Z5.(1), o' € Z;°(1),

(B, y') = / curl - curley’ d.
Q

Lemma 5.6.3. Under Assumption 1, for 0 < 8 < 1/2, the operator By : Zéi(l) — (Z;'B(l))* is
an tsomorphism.

Proof. Let @ be an element of Zg(l). According to Proposition 6.2.1, there is a unique ¢ €
Vl_/B(Q) such that

/Vsto’cM:/rwcur“ﬁ'V@’d% V' € VE(9).
Q Q
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Then denote Ty € Z;B (1) the function such that
curl (Ty) = r¥curly — V.

Observe that T is well-defined according to the item i) of Proposition 5.6.1. This defines a
continuous operator T : Zg(l) — Z}’B(l). We have

(Brap, Typ) = / curl - curl (Tv) dz = ||rPcurl |3 = ||curl@b|]%,%(m.
Q

Adapting the proof of Lemma 5.4.2, one can show that ||curl - ||V% () Is a norm which is equivalent

to the natural norm of Zg(l). Therefore, from the Lax-Milgram theorem, we infer that T*By is

an isomorphism which shows that By is injective and that its image is closed in (Z;E (1))*. And
from that, we deduce that By is onto if and only if its adjoint is injective. The adjoint of By is
the operator B} : Z;B(l) — (Zg(l))* such that for all ¢ € Z;B(l)7 S Zéi(l),

(Biap, ') = / curl - curl )’ dz. (5.79)
Q

If Bjap = 0, then taking ¢’ =1 € Z;’g(l) C Zé,i(l) in (5.79), we obtain ||curl|qo = 0. Since
Z;ﬁ(l) C X7(1) and ||curl - ||o is a norm in X7 (1) (Proposition 7.2.1), we deduce that ¢ = 0.
This shows that B7 is injective and that By is an isomorphism. |

Now we use the above lemma to prove the following result which is essential in the analysis of
the Problem (5.56) for the magnetic field. This is somehow an extension of the result of item )
of Proposition 5.6.1 for singular fields which are not in L2().

Proposition 5.6.4. Under Assumption 1, for all0 < 5 < 1/2, if u € V%(Q) satisfies divu = 0
in ), then there exists a unique ¢ € Zg(l) such that u = curl .

Proof. Let u € V%(Q) be such that dive = 0 in Q. According to Lemma 5.6.3, we know that
there is a unique ¥ € Zg(l) such that

/ curl - curl@dx = / u - curlgdﬂc, vy € Z:Fﬁ(l)-
Q

9
Then we have

/Q(u —curly)-curly/ dz =0, Vo' € Z;°(1). (5.80)
Since u is divergence free in €2, we also have

/Q(u —curly) - Vp/ dz = 0, Vp' € VI_E(Q) (5.81)

Now if v is an element of V 5(€) C L*(), from item iv) of Proposition 5.6.1, we know that
there holds the decomposition

v = Vp + curly/, (5.82)
for some p’ € H}(Q) and some v’ € Xp(1). Taking the divergence in (5.82), we get
Ap' = dive € (V5(Q))". (5.83)

From Proposition 6.2.1, since 0 < 5 < 1/2, we know that (5.83) admits a solution in Vl_ﬁ(Q) C
H}(Q). Using uniqueness of the solution of (5.83) in H{(Q), we obtain that p’ € VI_B(Q) This
implies that curlvy’ = v — Vp' € VQB(Q) and so ¢ € Z}’B(l). From (5.80) and (5.81), we infer
that

/Q(u—curlzp)-vdx—o, VUEVgﬁ(Q).

This shows that u = curl. Finally, if 1, 1, are two elements of Zg(l) such that u = curlvy; =
curly,, then 1, — 1P, belongs to X7 (1) and satisfies curl (¢; —1p5) = 0 in Q. From Proposition
7.2.1, we deduce that ¢, = 1. |
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5.6.3 Dimension of X" (¢)/Xx(¢)
Lemma 5.6.4. Under Assumptions 1-3, we have dim (X (g)/Xn(e)) = 1.

Proof. If u; = ¢;Vs™ + 41, us = coVs™ + @y are two elements of X3 (¢), then couy — crus €
Xy (€), which shows that dim (X3(¢)/Xn(¢)) < 1.

Now let us prove that dim (X3(e)/Xn(e)) > 1. Introduce § € VO the function such that
A5 = div(eVs™). Note that since div(eVs™) vanishes in a neighbourhood of the origin, it
belongs to (V}/(Q))* for all v € R. Then set

§=5 +5. (5.84)

Observe that s € V}Y(Q) for all v > 0 and that div(¢Vs) =0 in Q\ {O} (s is a non zero element
of ker A7 for all v > 0). Let @ € (45°(2\ {O}))® be a field such that [, @ - Vsdz # 0. The
existence of such a @ can be established thanks to the density of (45°(Q\ {0}))? in L?(Q),
considering for example an approximation of 15Vs € L%(Q) where 15 is the indicator function

of a ball included in M. Introduce ¢ = es™ +{ € Vo™, with ¢ € C, € V1 4(Q), the function
such that A2"*¢ = —div(e@). This is equivalent to have

—c/ div(sVs*’)ada: +/ 5V§ Vo' dr = / e - Vi du, Vo' € Vé(Q)
Q Q Q

Clearly V¢ — @ = ¢VsT + (V¢ — @) is an element of X3 (£). Moreover taking ¢’ = s above, we
get

—c/ div(eVst)sdr = / ew - Vsdr # 0.
Q Q

This shows that ¢ # 0 and guarantees that dim (X% (g)/Xn(g)) > 1. [
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157 6.1. Introduction

6.1 Introduction

In the previous chapter, we studied time harmonic Maxwell’s problems in the presence of a conical
tip of a negative material. More precisely, we studied the case where the function ¢ is critical (i.e.
the scalar problem associated to ¢ is ill-posed in Hé(Q) because of the existence of propagating
singularities) and where the function p is not critical (i.e. the scalar problem associated to u
is well-posed in H# (€2)). We have proved that the classical functional frameworks for the study
of Maxwell’s problems are no longer appropriate. More importantly, we have explained how
to construct new functional frameworks in which the electric and magnetic problems are again
well-posed. These functional frameworks have been constructed by making use of the weighted
Sobolev spaces and cleverly taking into account the existence of propagating singularities of the
scalar problem associated to e. The justification of the adequacy with the physical reality (of the
solutions obtained in these new functional frameworks) has been achieved thanks to the limiting
absorption principle.

In this chapter, we are interested in studying the case where both functions € and p are criti-
cal. From what has been done, in the previous chapter, we expect that, in this configuration,
the classical frameworks are not suitable for the study of Maxwell problems either (this will be
confirmed in §6.3). Our goal is then to explain how to construct adapted functional frameworks
(that are coherent with the limiting absorption principle) that take into account both propagating
singularities generated by the scalar problems associated to € and p. As with the other chapters
in this thesis, we will try to make this chapter self-contained (so it can be read independently of
the previous one).

The plan of our work is the following. In §6.2, we start by recalling some results, which we
will need, concerning scalar problems with critical coefficients. Then, in §6.3, we prove that the
classical approach to study electrical and magnetic problems is no longer valid. The construction
of new adapted functional frameworks for the electric problem and the magnetic problem and the
study of their well-posedness in these new functional frameworks are, respectively, the object of
§6.4 and §6.5. The last section is devoted to give a few words of conclusion.

6.2 Setting of the problem and study of the scalar problems with
critical coefficients

The geometry considered is the same as in the previous chapter. Let 2 be an open, simply
connected and bounded subset of R? with Lipschitz-continuous boundary 8. To simplify the
analysis below, we shall suppose that 0f) is connected. When this hypothesis is not satisfied all
our results can be adapted by working as in [22, §8.2]. In 2, we define the piecewise constant
functions € and g such that

o et >0 in O\M _fut>0 in QM
S let<o im M T T pm<0 in M

in which M is a subdomain of Q satisfying M C . We suppose that OM is of class €2 except at
the origin O = (0,0,0) where M coincides, locally, with the the cone % such that
x

e}, # ={zeR® " )

MNK# = NB0,p) ={zecR3 |z| <p, 2]

||

in which B(O, p) is the open ball of R? of center O and of radius p sufficiently small and 7 is a
smooth sub-domain of the unit sphere of R? (see Figure 6.1). The contrasts associated to & and
p are, respectively, defined by e :=¢e~ /et and K, == p~ /p*.
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Figure 6.1: An example of the geometry considered in which M is represented in red and Q\M is
in green.

In the distributional sense, the time harmonic Maxwell’s problem writes: Find E and H such
that
curl E —iwp H =0 and curl H + iwe E = J in Q. (6.1)

E and H are complex vector fields and denote, respectively, the electric and the magnetic field,
w € R is the frequency. The vector field J stands for the current density injected in the (2
and is such that div(J) = 0. In this chapter we will also suppose that € is surrounded by a
perfect conductor. This leads us to complete the previous system of equations with the boundary
conditions:

Exv=0 and pwH -v =0 on 09, (6.2)

in which v denotes the unit outward normal vector to 0f2. In the classic configuration, when e
and p have constant sign, to study the time harmonic Maxwell’s system one has to introduce the
spaces

L) = (130)
H(curl) := {H cL?Q)|curl H € L*(Q)}
Hy(curl) := {FE € H(curl)|E x v =0 on 0}
Xr(&) = {H € H(curl)|div(éH) =0, {H -v =0 on 09}, for £ € L>(Q)
Xn() = {Ee€H(curl)|div((E) =0, E x v =0 on 0Q}, for { € L=(Q).

We endow, the space L?(Q) with its natural norm || - [L2(q2) and the others spaces with the norm

H ' HH(curl) = (” ! H%}(Q) + chrl ' ”?_,Q(Q))l/2

On can check that, endowed with their natural norms all these spaces are of Hilbert type. For
the particular case £ = 1, it is well-known (see [139, 8]) that in Xp(1) (resp. Xxn(1)) the semi-
norm |[[curl - |12 is a norm and it is equivalent to || - [[g(cur1). Furthermore, the embedding

of X7(1) (resp. X (1)) in L?(Q) is known to be compact. It is also, well-understood thanks to
results of [22], that the study of the Maxwell’s system in the classical L2-framework (see §6.3) is
directly related to the study of the properties of the scalar operators A, : H}(Q) — (HL(Q))* and
A, H;E(Q) — (H#(Q))* that are defined as follows:

(A, ) = / Ve Vidr, V¢ € HYQ)
Q
and
(Aup, ') Z/QMVSD-Vso’de, Vo, ¢ € Hy(Q).

Above the space H;#(Q) = {u € H(Q)] (u,1)12(90) = 0}. It is not difficult to see that the
properties of A. and A, are, respectively, related to the well-posedeness of the problems:

Find ug € HY(Q) s.t. Find u, € Hy(Q) s.t.

—div(eVug) = f € (Hp(Q))* —div(uVu,) = g € (HL(Q))* (6.3)
ug = 0 on 0f) Oy,uy, = 0 on 9.
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In particular, it was proved in [22] that when the function € and p are such that A, and A, are of
Fredholm type then the Maxwell’s system is well-posed in the classical L2 —framework (see §6.3).
In Chapter 2, we have proved that the operator A. (resp. A,,) is a Fredholm operator if and only
if ke € R*\I (resp. k, € R*\I,), where I, (resp. I,) is a closed subset of R* called the critical
interval. As mentioned in the introduction, along this chapter we shall work under the following

Assumption 6.2.1. We suppose that the function € and p are such that k. € I.\{—1}, K, €

L\{=1}.

By definition of I. and I,, we can say that under the previous assumption the operators A,
and A, are not of Fredholm type. Thanks to the results of Chapter 2, we know that, in our
configuration, the Assumption 6.2.1 is equivalent to say that propagating singularities exist for
both A; and A,,. In §6.2.2, we shall recall, briefly, how construct adapted alternative functional
frameworks in which the scalar problems associated to A. and A, are again well-posed.

To prepare the ground, we will start by recalling the definition of weighted Sobolev (Kondratiev)
spaces and some useful results concerning the Laplace operator (with homogeneous Dirichlet and
Neumann boundary conditions) in these spaces.

6.2.1 The Laplace operator in weighted Sobolev (Kondratiev) spaces

The weighted Sobolev spaces

For 5 € R and m € N, we introduce the weighted Sobolev (Kondratiev) space (see [100, 107, 102])
associated to the punctured domain Q\ {O}: V3'(Q) defined as the closure of 2(Q\ {O}) for the

norm

1/2
lellvm @) = ( > Hralmwa?@\\i%m)

laj<m

in which r = |z|. Here 2(Q \ {O}) denotes the space of infinitely differentiable functions which
are supported in Q \ {O}. For all m € N* and 8 € R we have the inclusion

VE(Q) € V(D). (6.4)

We also denote by Vé(ﬂ) the closure of Z(Q2\ {O}) for the norm | - HV,la(Q)' We have the

characterization

VL(Q) = {p € V5(2) | = 0 on 99},

It is obvious that V{(Q) ¢ H'(Q). Moreover, since Q is bounded, applying the results of [102,
Theorem 7.1.1] yields that H'(Q) = V{(Q) and H} () = V(). For 8 > 0, one has the inclusions

Vig(Q) cHY(Q) c VE(Q)  andthen  (VE(Q)* C (HE(Q)* C (Vi4(Q))*.
Since for all 0 < 3 we have VQB(Q) C L2(Q), one deduces, thanks to (6.4), that
L*(Q) C V3(Q) C (Hy(Q2))*
To obtain the previous inclusions, we have used the fact that (V%(Q))* =V° 5(82). Forall g € R,

we define the space Vé(ﬂ) ={ue€ Vé(Q)|(u, Drzan) = 0}. Again, by using [102, Theorem 7.1.1]
we find H;#(Q) = V().
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The Laplace operator in weighted Sobolev spaces

In this paragraph, we will recall some results concerning the Laplace operator acting between
weighted Sobolev spaces in the punctured domain Q\{O}. These results will be very useful
throughout this chapter, their proofs can be found in [102, 101, 107] and in the references therein.
We will start with the homogeneous Dirichlet condition. For v € R, we define the operator
A% VE(Q) — (VL,(Q))" such that

(AVp, o) = /QVso Ve dr,  VpeVi(Q), ¢ eV (Q).
Proposition 6.2.1. For all v € (—1/2,1/2), the operator A}, : V}Y(Q) — (VEW(Q))* is an

isomorphism.

Let 0 < rg and denote by B(O, () the open ball of R? of center O and of radius r9. We have the
following regularity result

1 .

Proposition 6.2.2. [107, §1.6.2] For ally € (5, %) the operator A : Vg(B(O, ro))ﬂV#_l(B(O, T0)) —
1

Vg(B(O,ro)) is an isomorphism. Since for all~y € (5, 1) we have Vg(B(O,T’Q)) C (Hy(B(O, 7o),

the space of solutions V,QY(B(O, ro))ﬂ\Q/;_I(B(O, 70)) can be replaced by Vi(B(O, 70))NHE(B(O, 10)).

Now, we turn our attention to the case of the homogeneous Neumann boundary condition. For
this, we introduce the operator A}, : V%(Q) — (\71_7(9))* such that

(Ao, ¢) = / Vo V¢ dz, for all ¢ € V1(Q), ¢’ € VL_(Q).
Q
Proposition 6.2.3. For all v € (—1/2,1/2), the operator A); : V%(Q) — (VI_W(Q))* is an
isomorphism.
Note that when v = 0, we obtain the classical well-known result A : H#(Q) — (H;E(Q))* is an

isomorphism.

6.2.2 The scalar problems with critical coefficients

Here, we recall some results, that we have proved in Chapter 2, concerning the construction of
new functional frameworks for the scalar problems when the functions € and p are such that
Assumption 6.2.1 holds. To start, we define, for all 8 € R, the operators Afﬁ : VliB(Q) —

(VIJFB(Q))* such that
(AZPyp, ) = / eV - V¢ dr, for all p € VLB(Q), o' e V%EB(Q) (6.5)
Q
In the same way, for all 3 € R we introduce the operators Aiﬁ : VliB(Q) — (V}FB(Q))* such that
<Afﬁg0, ¢ = / uVe -V dx for all ¢, ¢’ € ViB(Q). (6.6)
Q

Observe that, thanks to the fact that V(Q) = HA(Q) and Vi(Q) = H#(Q), we, then, have
A% = A, and Ag =A,

Lemma 6.2.1. Under Assumption 6.2.1 there exists 0 < Bp (resp. 0 < [Bn) such that the
operator Agi’g (resp. Aﬁﬁ) is of Fredholm type for all p € (0; Bp) (resp. B € (0; BN)).
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To simplify the analysis below, we shall make the

Assumption 6.2.2. We suppose that € (resp. ) is such that there exists B* € (0; Bp) (resp.
B* € (0; Bn)) such that AZP" (resp. A;B*) is injective.

Using the results of Proposition 2.6.3, we obtain the

Lemma 6.2.2. Assume that Assumptions 6.2.1-6.2.2 hold. Then for all § € [0;8p) (resp.
B €[0;Bn)) the operator AZP (resp. A;ﬂ) is injective.

Another useful result is the following

Lemma 6.2.3. Assume that Assumptions 6.2.1-6.2.2 hold. If u € H)(Q) (resp. u € H#(Q)) is
such that div(eVu) € (V}g(Q))* (resp. div(eVu) € (Vé(Q))*) with B € (0; Bp) (resp. B € (0;5n))
then u € Vl_ﬁ(Q) (resp. u € V! 5(Q)).

We denote by 8. and 8, respectively, the spaces of propagating singularities generated by the
operators A, and A,. Recall that these spaces have finite dimensions as soon as k. # —1 and
kyu # —1. To be more precise, the space 8, is defined as follows:

8e = span{rw — x(r _1/2+”7 Z log Por—p|n € R, (¢p)p=0,...k is a Jordan chain of £}

(6.7)
where %, is the Mellin symbol of A and x € 2() is a fixed cutoff function that depends only
in 7 = |z| and that is equal to 1 near the origin. To define the space §,, simply replace € by p.
Interestingly, we have explained in Chapter 2 that §.,8, C L2(Q) in addition to that we proved
that for all s € 8. (resp. s € 8,) we have div(¢Vs) € L2(Q) (resp. div(uVs) € L?(Q)). This
allows us to define for ¢ = ¢, u, the quadratic form gy : 8y x 8y, — C such that

qp(u,v) = / div(yVu)u — div(y)Vu)o for all u,v € 8y.
Q
Observe that for all u € 8§, (with ¢ = ¢, u) we have

qy(u, u) = 21%771(/Q div(¢Vu)a).

We also have the

Lemma 6.2.4. Assume that Assumptions 6.2.1-6.2.2 hold. The spaces 8. and §, have even
dimensions denoted, respectively, by T, = 2N, and T,, = 2N, (N.,N, € N*). There ezists
(ﬁgi,j)jzl,m,Ns (resp. (52[’]-)]-:1,“.71\7“) a basis of 8. (resp. 8,) such that for 1 = e, u we have

qqp(ﬁj}:’j,ﬁi’k) =+, q¢(5i7j,5ff’k) =0 and 5?5’]» =5, forjk=1,...,Ny.

Remark 6.2.1. As explained in §2.6.2, the choice of the bases (s ;EJ)] 1...N. and (5fj>j:1,---7Nu 18
not unique. One can find an infinite number of bases (ssij)J 1,...N. and (s “j)j 1,..,N, satisfying
all the conditions of Lemma 6.2.4. From a mathematical point of view, the chozce of these bases
is not important: any choice of bases will lead us to construct functional frameworks in which the
scalar problems are again well posed. However, there is a particular choice of these bases which is
consistent with the limiting absorption principle. We will come back to the choice of these bases

in §6.4.7.

77777

From now on, we fix (5§j)j=17.-~,Ns (resp. (s;jf,j)Flw,Nu) a basis of 8. (resp. §,) satisfying the
orthogonality relations in Lemma 6.2.4. Moreover, we define the spaces

8+ :=span{s;,j = N.}, 8} := span{s 1,...,N.}.

pigJ =

Easily, one can show that we have the following
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Lemma 6.2.5. Assume that Assumptions 6.2.1-6.2.2 hold. If s € 87 (resp. s € Sj) satisfies
q-(s,5) =0 (resp. qu(s,s) =0) then s = 0.

Next, we define for all 0 < 8 the spaces
VEEQ) = V(@) e sh, V3iQ) =V es;).

For all 0 < 3, we define the operator A" : V‘é“t(Q) — (VE(Q))* such that for all u = @ + s €
\Of%‘”(Q) (with @ € Vl_/B(Q) and 57 € 87) and v € Vé(Q) we have

(A", v) :Z/QEV’[L'VU—/QdiV(6V52_)U.

In the same way, we introduce the operator Azut : V%ut(ﬂ) — (Vé((l))* such that for all u =
i+s) € V() (with @ € Vl,ﬁ(Q) and 5 € 87) and v € Vé(Q) we know

<AZ“tu, v) = /QMVQ -V — /Qdiv(,uV5:[)v.
According to the results of §, we can prove the following

Lemma 6.2.6. Assume that Assumptions 6.2.1-6.2.2 hold. Then for all § € (0;8p) (resp.
B € (0; Bn)) the operator A" (resp. Azut) is an isomorphism.

Since in our work we are going to use at the same time the results concerning the Laplace operator
with Dirichlet or Neumann boundary conditions as well as those associated with the operators Af
and Ag, we are going to assume once and for all that, when the hypotheses 6.2.1-6.2.2 are satisfied,
the constants Sp and Sy are such that Sy, Bp < 1/2. Moreover, we denote by fy := min(S8p, Sn).

6.3 Necessity of a new functional framework for the Maxwell’s
system

After eliminating H and then E in the problem (6.1), one concludes that the electric field E and
the magnetic field H satisfy the problems

curle ‘curl H — w?uH = curle 'J in Q
pH v =0, (curl H —J)xv =0 on Q.

curlp tcurl E — w?*E = iwJ in Q

Exv=0 on 0, (6.8)

In the classical configuration, when ¢ and p have constant signs, the formulation associated to
the electric field E is set in the space Hy(curl) and the one associated the magnetic field H is
set in the space H(curl). More precisely, when J € L?(Q), the problem associated to the electric
field writes

Find w € Hy(curl) such that

/ pteurlu - curlv—wQ/ EU- TV = iw/ J-7 forallveHy(Q). (6.9)
Q Q Q

Since the embedding of Hy(Q) in L*(Q) is not compact (see [8]), the analysis of the previous
problem cannot be treated by classical arguments. For this reason, we prefer to work with the
following formulation which is posed in the space Xy (e) C Hy(Q)

Find u € Xy (¢) such that

/ peurluy - Curlv—w2/ EU - V= z'w/ J-v forallve Xy(e). (6.10)
Q Q Q

It was proved in [22] that the previous two formulations are equivalent as soon as the operators A,
and A, are isomorphisms. Furthermore, in this situation one can show that (6.10) is well-posed
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except for a discrete set of frequencies where it admits a finite dimensional kernel. When e and
p are critical, there is no guarantee neither on the equivalence between the formulations (6.9)
and (6.10) nor on their well-posedeness. To proceed, we introduce the operators Ay : Xy () —
(Xn(e))" and Ky : Xn(e) — (Xn(g))" such that for all u,v € Xy(e), we have

(Ayu,v) ::/ulcurlu‘curlv, (Knu,v) ::/Eu~'v.
Q Q

The following lemma can be seen as an extension of the results of [54].
Lemma 6.3.1. Assume that Assumptions 6.2.1-6.2.2 hold. Then the operator Ky is compact.

Proof. Let 8 € (0;8p). According to Proposition 6.7.3, we know that the space Xy(¢e) is
compactly embedded in the space V% 5() = (Vo B(Q))g. We finish the proof by remarking that
there exists a positive constant C' such that for all u € Xy(¢)

IKnullxyea) < Cllullizg <C HUHVﬂ_ﬁ(Q)- (6.11)
[ |

As a result, even when ¢ is critical, we then have the equivalence between the Fredholmness of
the problem (6.10) and the Fredholmness of the operator Ay. We also have the

Proposition 6.3.1. Under Assumptions 6.2.1-6.2.2 the map w — |curlul|pzg) is a norm in
Xn(e) that is equivalent to the || - |l g1(cur) one-

Proof. By the classical open map theorem, its suffices to show that u — |[lcurlu||y2(q) is a norm
in Xy(e). If u € Xn(e) such that curlu = 0, then by using item 4ii) Proposition 6.7.1 we infer
that there exists a unique ¢ € H{(Q) such that u = V. Given that div(eu) = div(eVy) = 0 and
owing to Lemma 6.2.2, we obtain the wanted result. |

The main result of this section is given by the following

Theorem 6.3.1. Assume that Assumptions 6.2.1-6.2.2 hold and assume that € and p are such
that ke € I\{—1} and &, € I,\{—1}. Then either the operator Ay is not of Fredholm type or
the problems (6.9) and (6.10) are not equivalent.

Remark 6.3.1. In the case where the operator Ay is of Fredholm type, the absence of equivalence
between the formulations (6.9) and (6.10) means that the solution obtained by solving (6.10) does
not satisfy the equation satisfied by the electric field in the distributional sense (i.e., the first part

of (6.8)).

Proof. We will proceed by contradiction. Suppose that Ay is a Fredholm operator and that the
problems (6.9) and (6.10) are equivalent, then we will show that A, is of a Fredholm operator
which is false by assumption.

The symmetric operator Ay is then of Fredholm type; its index must therefore be equal to 0.
Without loss of generality, we can suppose that Ay is not injective. Otherwise, the following
proof can be easily adapted. Since the kernel of Ay is of finite dimension, say N € N*, we can
find N linearly independent elements of Xy (¢) that will be denoted by Aj,..., Ay such that
Ker (Ayx) = span(Aq,...,Ay). To proceed, with the help of Proposition 6.3.1, we introduce the
closed space

Xn(e) == {u € Xy(e) | (curlu, curl A2 =0,i=1,... N}

as well as the operator Ay : X (g) — Xy(¢) such that

(Ayu,v) = / pteurlwu - curl @ dr, for all u,v € Xy (e).
Q
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- L
Consequently, we obtain the decomposition Xy (e) = Xy (g) @ span(Aq, ..., Ay). Moreover, the
operator Ay is an isomorphism. Now, consider an element ¢ € H;&(Q) Since A is an isomor-
phism, we define %, € X v (¢) the unique element of Xy (¢) satisfying

N

/ pteurl - curley’ dr = / (Ve — Z Bicurl \;) - curly)’ dx, V' € Xn(e) (6.12)

Q Q i=1

in which g; = / 1~V - curl X; dz. We emphasis that in (6.12) the test function " belongs to
Q

X (g). However, thanks to the definition of A; and §;, one can check that (6.12) is also valid for
all 9" € span(Aq,...,Ay). Indeed, since for all i € {1,..., N} we have \; € Ker (Ay) we infer
that

/ pteurl P, curl \; dz = 0.
Q
On the other hand, thanks to the definition of §; for £k =1,..., N, we also have
N —_
/ (Ve — Zﬁkcurl)\k) ccurl\;dr =0foralli=1,..., N.
Q k=1
As a result, by linearity, we find
N
/ peurle, - curl g’ do = / p (Vo' = > Bicurl \y) - curly’ da, Vo' € Xn(e). (6.13)
Q Q i=1

But, since by assumption the problems (6.9) and (6.10) are equivalent, the equation (6.13) is,
then, valid for all ¥’ € Hy(f2) and then, by density of (2(Q))% in Hy(Q), we obtain

N
curl (u~ (Vg — Zﬁicurl Ai —curly,)) =0 in Q.
i=1

From item v) of Proposition (6.7.1), we infer that there is a unique Ty € H# () such that

N
V(Tp) = p~ (V¢ = D _ ficurl \; — curlep,).
=1

As a result, we have defined an operator T : H%E(Q) — (H%E(Q))* One can easily prove that T is
continuous. Furthermore, since for all ¢ € H#(Q),u € Xn(e) we have / curlu - V¢’ =0, we

Q
deduce that for all ¢, ¢’ € H#(Q)

N
(A p, Ty') = /Q[LV(p -V(T¢) dx = /QVgo -V dr — Z /Q Bicurl \; - V' dz. (6.14)
i=1

Consequently, the operator T represents a left parametrix for the self adjoint operator A,. As a
result (see [109, Lemma 2.23]) the operator A, : H;%(Q) — (H%(Q))* is a Fredholm operator of
index 0 which is not true by assumption (yx is critical). [

In the classical setting, the equivalent variational formulation to the magnetic problem writes:

Find w € H(curl) such that

/lflcurlu' Curl’v—w2/ p - UZ/s_lJ- curls for all v € H(curl). (619
Q Q Q
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The results of [22] allow us to show that when p is such that A, is an isomorphism then the
previous formulation is equivalent to the following one

Find u € X7 (u) such that

/ Mflcurlu . Curlﬁ— wz/ pu - v = / EilJ . Curl@ for a]_l vE XT(M) (616)
Q Q Q

If in addition to that the function e is such that A. is an isomorphism, it can be shown that
(6.16) is well-posed except for a discrete set of frequencies at which it has a finite dimensional
kernel. As in the previous paragraph, we introduce the operators Ap, Kp : Xp(pu) — (Xp(p))*
such that for all u,v € X7 (u), we have

(Aru,v) ::/u_lcurlu~curlv, (Kru, v) ::/suv.
Q Q

By working as in the case of the electric problem, one shows the

Theorem 6.3.2. Assume that Assumptions 6.2.1-6.2.2 hold and assume that € and p are such
that k. € I.\{—1} and r, € I,\{—1}. Then the following assertions hold:

o u s |lcurlul[peq) is @ norm in Xp(p) and is equivalent to || - [|m(curt)-
o K7 is compact.

o Either the operator My is not of Fredholm type or the problems (6.15) and (6.16) are not
equivalent.

6.4 The analysis the electric problem

Previously, we have shown that when ¢ and p are critical, the classical framework Xy (¢) is no
longer the appropriate space to solve the electric problem. In this section, we explain how to
construct a new functional framework in which the problem

curlp lcurl E — w?cE = iwJ in Q

Exv=0 on 0f). (6.17)

is again well-posed. For this, we introduce for all 5 € R the spaces

V() = (V3(Q))°,
Hﬁ y(curl) :{ EVS+@V0 5(Q )|curlu€V%(Q),ux1/:()on o0},
HOUtB(curl) :{u€V8+®V0 () |curlu € uV8T & VO 4(Q), u x v = Oon 00}

Observe that the space HS v(curl) depends on € and that the space HY (curl) depends on ¢
and p. Above V87 and VS:{ stand for the spaces

1,..., N

Az

Before getting into details, let us define the norms that we are going to use in the spaces V87
and VS:[. For ¢ = ¢, u and a1V5$1 4ot CEN,/)V5;ZNw € VS:Z we define

Vs = span{sz,] N}, VS, = span{Vs"

)

wird =

N
1D ayss;
j=1

On can check that for all 0 < 5, we have the inclusions

Ne
v = (Ol )2
=1

HY"? (curl) ¢ HY (curl) € V4(Q). (6.18)
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It is time to present the norms that we are going to use in these three spaces. We start with the
case of the space Vg(Q). For all w = (u1,u2,u3) € Vg(ﬂ), we denote by

3
— 12 1/2
HuHVg(Q) T (Zz::l Hulnvg(ﬂ)z) .

For the case of the space H]BV(curl), we proceed as follows. For all u = @ + Vsj € H?V(curl)
(with @ € Vgﬁ(Q) and 57 € 8) we define

Hu”Hﬁ(cuﬂ) = (Hﬁ”%ﬂlﬁ(g) + HV5;_HQVS;+ + ”CHI‘IUH%]%(Q))

1/2.
For all w = @ + Vs € H?\‘,lt’ﬁ(curl) (with w € Vgﬁ(Q) and s7 € 87) such that curlu =
Y, +1Vs, (with @ € VQB(Q) and s € 8 ) we introduce

g ey = (130 @) + 1955 12 + Wbl ) + 1955 12502

Given that € is Lipschitz-continuous, endowed with theirs associated norms all the previous spaces
are Hilbert spaces. In addition to that, one can show that when ( is positive, the embeddings
(6.18) are continuous.

To simplify the presentation of our results, we shall adopt the following notations: for all w €
Hﬁ[(curl), we will write u = @ + Vs, with @ € Vgﬁ(Q) and s, € 87, for v € HY(curl ) we
will use the notation curlv = v, + uVs, , with 9, € Vgﬁ(Q) and s, , € 8:.

6.4.1 Definition of the electric problem

In §, we will explain that the appropriate functional framework to set the electric problem is the
space H‘])\}lt’ﬁ (curl) (some conditions on S that will be specified later). For this reason we are
going to study the problem

curl p 719, — wleu = iwJ in Q\{O}

vr=20 on Of). (6.19)

Find u € H?\}Jt’ﬁ(curl) such that

The reason why we considered the problem in Q\{O} and not in €2 is to be able to study the
problem in weighted Sobolev spaces (and we will then be able to consider very singular fields
near the origin). Our goal is to write a well-posed variational formulation which is equivalent
to the problem (6.19). To obtain such a variational formulation, we must choose, with care, the
space of the test functions. To proceed, let us assume, for the moment, that the current density
J belongs to the space VQB(Q) (in the Theorem 6.4.6, we will explain how to work with more
general current densities) and let us introduce the problem

Find u € H"? (curl) such that

/ 'uil’l,bu - curlv — w2][ cu- T = zw/ J-©T forallve H]BV(CUI'].). (620)
Q Q Q

in which for all u € H(])\?t’ﬂ(curl) and v € Hf\,(curl) we have

][611,' U= / EU- U+ / eVSy . - f)—l—/sﬁ-Vﬁv,e— / div(eVsu,e )8y e
Q Q Q Q Q

It will be useful to observe that for all u € H?\}lt’ﬁ (curl) and v € H]BV (curl) we have

][ U T — ][ eu- V= / div(eVsy)sp e — / div(eVSsyc)8p e = ¢ (Sues Sv,e)- (6.21)
Q Q Q Q
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Proposition 6.4.1. Assume that 5 € [0;1/2). Then, the problems (6.19) and (6.20) are equiva-
lent.

Proof. Since 2(2\{0})® C H?V(Q), any solution to (6.20) is a solution to (6.19). Now, let us
show the reverse statement. Starting from the fact that for all 5 € [0;1/2) the space 2(Q\{0})?
is dense in the space V = {u € Hy(curl) |5, . = 0} (see §6.7.4)), we conclude that if u is a
solution to (6.19) then it satisfies

/N1¢u.curlv_w2/gu-’vziw/J"UfOI‘aH'UEV-
Q Q Q

To end the proof, it remains to show that for all v € VS, we have

][eu'v:/J-'v.
Q Q

To do so, let v € 8 and denote by v = Vv € V8T. Given that VS, C V%}(Q) for all 0 < 3, there
exists a sequence (@, )nen of elements of 2(Q\{O}) such that ¢, — v in Vé(Q) as n — +o0.
This implies that Vi, — Vv in V%(Q). Moreover, since VE(Q) C L2(Q) for all 8 < 1, we can say
that for all 8 € [0;1/2) we have ¢, — v in L*(Q) as n — +oo. Multiplying (6.19) by V¢, and
integrating by parts yield

/ et - Vo, — / div(eVsyc)Pn = / J -V,
0 0 0

By letting n tend to oo, we deduce that

][au-Vv—/J-Vv.
Q Q

This leads to the wanted result. [ |

6.4.2 Equivalent formulation for the electric field

Given that for all ¢ € Vl,ﬁ(Q) we have u = Vp € H?\}lt’ﬁ(curl ), we infer that the operator associ-
ated to the sesquilinear form (u,v) — ][ ew - D is not compact. As in the classical configuration,
Q

one way to deal with this absence of compactness is to impose the constraint div(e-) = 0 on the
spaces Hjﬂv(curl ), H?\}lt’ﬂ (curl). This leads us to introduce the spaces

Y5 (¢) := {u € HY (curl) |div(eu) = 0}, Y¥"P(e) := {u € HY"(curl) | div(e u) = 0}.
Note that the space Y?\}Jt’ﬁ (¢) depends also on . In the sequel, we endow the space Yﬁ,(s) and
Y})\}lt’ﬁ (€) respectively with the norms of the spaces H]ﬁv (curl) and H?\}lt’ﬂ (curl).

Remark 6.4.1. Let u = @ + Vs, € H?\,(Q) At first sight the constraint div(ew) must be
understood as follows:

/ eu-Vp = / etu- Vo — / div(eVsy )P = ][ et-Ve=0 forall o € 2(Q\{0}).
Q Q Q Q

Given that for all 5, € 8. the function div(eVs, ) belongs to L2(Q) and is compactly supported
in Q= A\ {rw|, x(r) = 1} € Q\{O} (recall that the function x is a fived cutoff function that
depends only in v = |x| and that is equal to 1 near the origin, see (6.7)). With this in mind
one can show that we have the estimate: there exists 0 < C' (independent of p) such that for all

v € 2(Q\{0}) we have

|/5u-Vg0| = |][ eu - Vol < Ol q)-
Q Q o
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The density of 2(Q\{O}) in Vé(Q) implies that we have the equivalence
div(eu) = 0 <= ]éau V=0 forallve VE(Q) (6.22)

By replacing the space HY"(curl) by Y’ (¢) and the space HY (curl) by Y% (¢) in (6.20),
one obtains the following problem

Find u € Y?\}lt’ﬁ(e) such that

/Q,u_l't,bu- curlfvw2]{25u- U= iw/QJ' v forallwve Y]%(e). (6:23)

Without any difficulty (using (6.22)), one can see that for all u € Y‘;\?t’ﬂ(g) and v € Yzﬁv(s) we

have
][ cu- TV = ][ EU-V = / EU- vV — / div(eVsy ¢ )8y .
Q Q Q Q

Note that to obtain the previous result, we have used the fact that for all v € Y’]B\,(s), we have
div(ev) = —div(eVsy).

Theorem 6.4.1. Assume that w # 0.
o Every solution of (6.20) is a solution of (6.23).

o Let B € (0;8p). Under Assumptions 6.2.1-6.2.2, if E is a solution (6.23), then it solves
(6.20). Moreover {E, (iwp) *curl E} is a solution of (6.1).

Proof. To prove the first part of the statement, one needs to justify that every solution u of
(6.20) satisfies the equation div(ew) = 0. For that, it suffices to take v = Ve in (6.20) with
v € 2(Q\{0}) and then use the fact that div(J) = 0 in Q\{O}.
The proof of the second part is little bit more involved. To prove it, let u be a solution of (6.23).
Since Y& (e) ¢ HY™(Q), it suffices to show that the variational formulation (6.23) is also
valid for all v € HY (). For this, let v = 9 + Vs, . € HY(Q) with @ € V® 4(Q) and s, € 87.
By means of item iv) of Proposition 6.7.1, the function © admits the decomposition ¥ = Vg, +
curl¢, with ¢, € H}(Q) (such that Vi € VQB(Q)) and ¢, € Xr(1).) By remarking that
curlv = curlcurl ¢, we infer curl(, € Xx(1) and then by Proposition 6.7.2 we deduce that
curl ¢, belongs to VQB(Q) for all g € [0;1/2). Observing that div(e curl(,) € (VE(Q))* for all
B € (0; Bp) allows us to define the function w, € V%“t(Q) as the unique solution of the well-posed
problem

div(e V) = div(e (curl ¢, + Vsy..)) € (V5())". (6.24)

Now, we introduce  such that ¥ = v — Vi, + Vw,. By observing that div(ev) = 0 in Q\{O},
we deduce that v € Y%(E). As a result, one can take ¥ as a test function in (6.23). But, on the
other hand, we have

/,u_lzpu- curlv = / ,u,_11bu -curld
Q Q

][su-v:fsu-§+][5U-V(wv—¢v):][5u-'§
Q Q

Q Q
J-v:/J-fi:.
Q Q

Hence, u satisfies (6.20) which ends the proof of the first part of second item. The rest of the
proof can be done as in Lemma 5.3.2. |
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6.4.3 Equivalent norms in Y% (¢) and Y3 (¢)

The goal of this section is to introduce, under some condition on 5, new "simpler" equivalent norms
for the spaces Y?V(a) and Y?\}lt’ﬂ (€). Let us start with the case of the space Y?V(g). Following
the same lines of the proof of Proposition 6.5.2, one obtains the

Proposition 6.4.2. Let 8 € (0; 5p) and assume that Assumptions 6.2.1-6.2.2 are satisfied. Then
there exists a positive constant C such that

lallvo o) + I Vsucllgss < Clleurlullyo gy for allu Y5 (o). (6.25)

Consequently, the norms || - and ||curl - ”V%(Q) are equivalent in Yfi,(e).

by,
Now, we turn our attention to the case of the space Y3'*(g). We have the

Proposition 6.4.3. Suppose that Assumptions 6.2.1-6.2.2 hold and let 5 € (0;5y). Then, there
exists 0 < C such that

[allvo o) + IVsuellyss < Clitbullve o) for allu e Y37 (e) with curlu = 1, + Vs, ..
(6.26)

. . out,3 . .
Consequently u — Hi/JuHV%(Q) is a norm in Y5 7 (€) that is equivalent to || - ”Hf’v(curl)

Proof. Since for all 0 < 3, we have the inclusion Y?\}lt’ﬂ (e) C Y’]Bv(s) and, by means of Proposition
6.4.2, it suffices to show that, for all 8 € (0; 5y) C (0; Bp), we have the following estimate

leurlullyo ) < Cllitbullve ) forallue Y7 (o).

By definition of the space Y(J)\}lt”g (€), we know that for all u € Y?\}lt’ﬂ (¢) we have curlu =
Y, + Vsy . Hence, we have the estimate

leurlullys o) < COIVsuullve ) + 1Pullvy@) < CUVswullss + Iullve @) (6:27)

with C' independent of w. Now, given that for all u € Y})\}lt’ﬁ (e) we have div(curlu) = 0 we then
obtain that
—div(uVsy,,) = divp,.

Using the fact that u x v = 0 on 02 we deduce that curlu - v = 0 on 92 and then we conclude
that 1, - v = 0 on 092. With this in mind, we can say that div,, € (V};(Q))* Consequently, we

can write that for all v € V};(Q) we have

(Azutsuw v) = —/ div(puVsy,,)v = / Y, - V1.
Q Q
Given that Az‘“ is an isomorphism for all 8 € (0; 5p), we infer that we have the estimate

lounlss < I#ullvo @)

with C' independent of w. Inserting this into (6.27) yields the wanted result. |

6.4.4 Analysis of the principal part

In this section, we shall study well-posedeness of the problem (6.23) when w = 0. For this reason,
we introduce the continuous operator A% : Y?\}It’ﬁ(e) — (Yjﬂv(s))* such that for all u € Y?\}It’ﬁ(e)
and v € Yf\,(&t) we have

(A]B\,u,w = /Q,u_lgbu- curlv.
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Before getting into details, observe that for all u,v € Y(])\}lt’ﬁ (€) we have

W) = [ 5 Bt [ Ao, )5

Note that to obtain the previous relation, we have used the fact that for all u € Y?\}lt’ﬁ (e) we
have

div(ep,) = —div(uVs,,).

Theorem 6.4.2. Assume that Assumptions 6.2.1-6.2.2 hold. Let $ € (0;5y). Then, there exists
a continuous operator T : Y]ﬁv(e) — Y?\}It’ﬁ(s) such that

(A5 o Tu,v) = /Qrwcurlu- curls  for all u,v € Y5 (e).

*

As a consequence, the operator Ay o T : Yﬁ,(e) — (Y’]BV(S)) is an isomorphism.

Proof. The construction of the operator T will be done in three steps. Let us consider some
u € Y]BV(eﬁ:).

First step: Since 5 € (0; 59) C (0; Bn), the operator Azut is an isomorphism. As a result, one
can introduce @, = @, + 5k € V%‘“(Q) (with @, € VI_B(Q) and s; € 8,,) as the unique solution of

—div(uVy) = div(ur?curlu) € (Vé(ﬂ))* in
(Vipu +r2Pcurlu) - v =0 on 9f).

Since Azut is an isomorphism, the function ¢, satisfies the following estimate
1Zullve o) + 1 Vshllysy < C Hr%curluHVo_ﬁ(Q) = Clcurlully q). (6.28)

Second step: We define the function F, = u(Ve, + r*’curl u) € V%(Q). Easily, one can see
that F' satisfies

div(Fy) =0 inQ

F, - v=0 on 0f).

Since 5 < 1/2, one can use Proposition 6.7.1 to deduce that there exists a unique v, € Z]ﬁv(l)
(see (6.42) for the definition of 4, € Zjﬁv(l)) such that

curly, = Fy = 1(Vy +r?fcurlu).

Furthermore, by means of Proposition 6.7.2, since 5y < 1/2, the function #,, belongs to the space
VO, (Q).
-B

Third step: Since by assumption 8 € (0;8y) C (0; 8p), the operator A" is an isomorphism.
This allows us to define wy, = 1wy + 55, € V3™(Q) (with @, € Vl_ﬂ(Q) and s5, € 81) as the unique
solution of the problem

div(eVwy) = div(etp,) € (V5(Q)*  in Q
Wy =0 on 0f).

We set T(u) = 1, — Vw,. One can check that T(u) belongs to the space Y?\}lt’ﬁ(s). In addition

to that we have
{ww — 1(Vgu + ¥ curlu)

_ &€
ET(U) o 5u :
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Using (6.28), we obtain the estimate
[%rwllve @) < Clleurlulygq).

This shows, in particular, that the operator T : Y’]BV () = Y?\}lt’ﬁ (¢) is continuous. Furthermore,
we have

<A’]BV o Tu,v) = /Q:ul’lszu -curlv = /Qrwcurlu- curlv forallve Y]ﬁv(e).

Consequently, we have
2
<A§3V oTu,u) = chrlu”vg(ﬂ).

Using the Lax-Milgram lemma, we deduce that A]ﬁv o T is an isomorphism and we finish the
proof. |

iven a o 1S an 1somor 1s1m, we deduce a e operator 1S onto. S a result, to
Given that A% o T is an i phi deduce that the operator A7 is onto. A It, t

show that A']BV is an isomorphism it suffices to prove that it is injective. This is the subject of the
following

Theorem 6.4.3. Assume that Assumptions 6.2.1-6.2.2 hold. Then for all B € (0; By) the operator
Ay is an isomorphism.

Proof. It is enough to prove that A?\, is injective. Let u be an element of Y?\}lt’ﬁ (¢) such that
(A?\,u, v)=0forallv e Y?V(a). In particular, u satisfies

/ w ey, - b, +/ div(eVsy ,)8p, =0 forallv e Y?\}It’ﬁ(s). (6.29)
Q Q

By taking v = w in the previous equation, we obtain
Q Q Q

Taking the imaginary part in the previous relation yields, Sm(— / div(eVsy )80 ,) = 0. As a
Q

result, we deduce that g (Su,5u,u) = 0. Given that s, , € 8: and by using Lemma 6.2.5, we
infer that s, , = 0. As a result, we then have

<A§3Vv,u) =0 foralve Y(J)\?t’ﬂ(s).
The wanted result is then proved by taking v = T(u) (in the previous relation) where T is the
operator defined in Theorem 6.4.2. |
6.4.5 Compactness result

In the classical theory of Maxwell’s equation, imposing the constraint div(e:) = 0 leads to a
compactness result. Here, we shall show that this result remains true even in our configuration.
Let us introduce the operator K]BV : Y‘J)\}lt’ﬁ(e) — (Yﬁ,(s))* such that for all u € Y?\}It’ﬁ(a) and for

all v € Yzﬁv(e) we have

(Kﬁ,u, v) >= ][ EU -V = / Eu-v = / €ﬁ~6+/ div(eSy.c)Suc-
Q Q Q Q

Without any difficulty, one can see that we have the estimate
~ t,
HK?\,uH(Y?\[(E))* < C(lallyo, + lIsuellss),  for all w e Y Ble, ). (6.30)

with 0 < C independent of u.
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Theorem 6.4.4. For all 5 € (0;8p) and under Assumptions6.2.1-6.2.2, the operator K]BV 18
compact.

Proof. Let (u,)nen be a bounded sequence of elements of Y3*(¢). By definition of Y3 (¢)
one can introduce, for all n € N, @, € VO_B(Q) and s, € Sj such that w, = @, + s,. The
sequences (5, )nen and (@, )nen are bounded respectively in 8 and Vgﬁ(Q). Since 87 is finite
dimensional, one can extract a sub-sequence form (s, ),cn that converges in 8. For simplicity,
this sub-sequence will be denoted by (s,)neN-

To prove our claim, thanks to (6.30), it is enough to show that up to a sub-sequence (wn)nen
converges in Vo,ﬁ(ﬂ). Since V(lﬁ C L%(Q), we start by writing the Helmholtz decomposition (see
Proposition 6.7.1) of 4@,: @, = V¢, + curlp,, in which 9, € X7(1) and ¢, € H}(Q). Since
Vo, x v =20 on 00 and curlcurly,, = curlu, € V%(Q), we infer that curl,, € Z?V(l) (see
(6.42)). Since by assumption § € (0; 8p) C [0;1/2) one deduces, using Proposition 6.7.5, that
(curlep,)nen converges, up to a sub-sequence still denoted (curly,)pen, in VQB(Q). In the
other hand, we know that div(ew,) = 0. This implies that

— div(e Vi) = div(e Vs,,) + div(e curlyp,) € (V5(Q))* for all 8 € (0;8p). (6.31)

According to Lemma 6.2.3, we infer that ¢, € VI_B(Q) for all n € N. Furthermore, by remarking
that the right hand side of (6.31) converges in (V! 5(€2))" and by using the fact that the operator
A" is an isomorphism for all 8 € (0; 8p), we deduce that (¢, )ney converges V2 3(€2) and then
we arrive to the wanted result: (i,),en converges, up to a sub-sequence, in VY 5(Q). [

6.4.6 Main results about the electric problem

For all w € R and all 5 € R, we define the operator %ﬁ(w) = Aﬁ, - wQK]BV. For all u € Y})\}lt’ﬁ(s)
and all v € Yf\,(s) we have

(%ﬁ(w)u,v) = /Q;flv,bm curlv—wQ/

e D — w? / div(e8y 2 )8y e
Q Q

In particular for all u,v € Y‘;\}lt’ﬁ (¢) we have

(%ﬁ(w)u,v) = / e, - 1,bv+/ div(uVsue)so, — w2/ EW- UV — w2/ div(e8y 2 )Su e
Q Q Q

Q

All this to say that for all u,v € Y?\}It’ﬁ(s) we have

<%]€(w)uvv> - <'Q{J€(W)v’u> = _QM(5u,u75v,u) - W2QE(5u,875v,a)
By combing Theorems 6.4.3-6.4.4 with the analytical Fredholm theorem, we obtain the

Theorem 6.4.5. Assume that Assumptions 6.2.1-6.2.2 hold. For all 5 € (0;f) the operator
sz]g(w) is a Fredholm operator of index zero for all w € R. Furthermore, there exists S]BV discrete
subset of R such that %]g(w) is an isomorphism for w € R\Sﬁ,.

Proposition 6.4.4. Assume that Assumptions 6.2.1-6.2.2 hold and let w € R*. Then, if u €
Ker (4 (w)) for some v € (0; By). Then

* Sye =Sy = 0.

o u € Ker (ﬁfﬁ(w)) for all 5 € (0; Bo).
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Proof. Starting from & (w)u = 0, we deduce that () (w)u,u) — () (w)v,u) = 0. Hence, we
obtain that
QE(5u,sa5u,s) = _W2Q;L(5u,,u>5u,,u)-

Given that s, € §F and Suu € S:[, we infer that ¢-(Suc, Sue) = ¢u(Sups Su,pu) = 0. The Lemma
6.2.5 allows us to say that s, = 64, = 0. As a result the vector field u belongs then to the space
Xn(g) and satisfies the equation curl p~teurlw = w?eu. This shows that g tcurlu € Xr(p).
Thanks to Propositions 6.7.3-6.7.4 and since Sy < 1/2, we infer that u,curlu € VgB(Q) for all

B € (0; Bg). Thus u € Ker (Ker (;zfjg(w))) for all 8 € (0; Bo). [ |

Because for all 5 € (0; 5p) the set Sfi, in Theorem 6.4.5 corresponds to the set of w € R for which
the operator &7y} (w) is not injective, we then have the

Proposition 6.4.5. Assume that Assumptions 6.2.1-6.2.2 hold. Then the set Sjﬁv in Theorem
6.4.5 is independent of B € (0; By). We denote it by Sy.

The two previous propositions allow us to deduce that the functional framework that we have
proposed is independent of 3. Indeed, we have the following

Lemma 6.4.1. Suppose that Assumptions 6.2.1-6.2.2 are valid and let w € R\Sy. Let 0 < p; <
B2 < Bo. For all l € (Y?\,1 (e)*n (Y?\,2 (€))* then the solutions to the problems:

Find u® € Y35 (¢) such that o7 (w)u® = ¢
with B = p1 and 8 = B2 coincide.

Proof. Since 51 < 2 we have Y%ltm (e) C Y?\}m’ﬁl (¢). Therefore u’' — u?? € Ker (7”1 (w)).
Given that w € R\Sy, we get u’t = u?2. [ |

Now, we state the main result of this section.

Theorem 6.4.6. Assume that Assumptions 6.2.1-6.2.2 hold. Suppose that there exists 0 < -~y
such that J € VO,,Y(Q). Then

o for all w € R\Sn the problem (6.20)(or equivalently (6.23)) is well-posed in the Hadamard
sense for all B € (0; Bo).

o The solution to (6.20) (or equivalently to (6.23)) is independent of B € (0; Bo).

o When w € Sy the problems (6.20)- (6.23) are well-posed in the Fredholm sense. Moreover,
they have a finite dimensional kernel that is independent of B € (0; 5p).
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6.4.7 The limiting absorption principle for the electric problem

As pointed out in Remark 6.2.1, one can find an infinite number of spaces 8 and 8; that are
spanned by bases for which all the conditions of Lemma 6.2.4 are satisfied. This implies that,
we can construct an infinite number of functional frameworks in which the electric problem is
well-posed. The goal of this paragraph is to explain explain how to chose among these functional
frameworks the one that is coherent with the limiting absorption principle. For this, we start
by defining for all 0 < ¢ the functions €5 := € + 0 and pus := p + 6. We introduce the operator
A, s HY(Q) — (HH(Q)* and A, : H;#(Q) — (H%(Q))* that are, respectively, defined by replacing
e and p in the definition of A, and A, by €5 and ps. One can easily check that A.; and A
are isomorphisms for all 0 < §. From the results obtained in §2.6.2, we know that we have the
following

Proposition 6.4.6. Assume that the functions € and u are such that Assumptions 2.6.53-6.2.1-
6.2.2 are satisfied when replacing the function o by € (resp. p) and let f € (0;5p) (resp. B €
(0; Bn))- .

Let (fs5)s (resp. (gs5)s) be a sequence of elements of (VE(Q))* (resp. (V};(Q))*} and define ug;
(resp. uy,) as the unique solution to A ucy, = fs5 (resp. Apsuus = gs).

There exists 0 < d such that for all 6 € (0;0y) there exist N. (resp. N,) linearly independent
functions denoted by (s 8“)] 1,...N. (resp. (s:“) 1,..,N,) that belong to HY(Q) (resp. H#(Q))
such that

o the function ucg (resp. u,;) decomposes as

N. N
— gt = 55,
Uy = Tley + Y 80 5 (resp. up, = Tys + Y ¢ 587 )
j=1 j=1

in which Gz € \0/1,/3(9)(7’68]7. Uy € V{B(Q)) and all the cjs (resp. c;s5 ) are complex
numbers. For all § € (0;dp), denote by

8;; = span(5;7j,j =1,...,N:)(resp. 8;:5 = span(sz&j,j =1,...,N,). (6.32)

o Foreachj=1,...,N. (resp. j=1,...,N,) the functzons (resp 5#5 g/ )converges asd —

0 in Vé(Q) (resp. \75( )) to 57 JESIE (resp 5 ; € 8u) moreover {553, w,j ., N}

(resp. {ﬁzj,ﬁ;j,j =1,..., u}) is a basis of SE (resp. 8,) satisfying the condmons of
Lemma 6.2.4. Denote by

8§ = span(ﬁzj,j =1,...,N:)(resp. S:[ = span(ﬁ;;j,j =1,...,N,)). (6.33)

o If the sequence (fs)s (resp. (gs)s) converges, as 6 — 0, in (Vé(Q))* (resp. ) to f (resp. g)
then the sequences (ue;)s ( resp. (uug)s) converges, as 6 — 0, in VE(Q) (resp. Vé(Q)) to
the unique solution of Agmu = f (resp. Azmu = g ) where the operator Agm (resp. Azm)
is defined in the case AS™ (resp. AZ‘“ ) but by replacing 8T by 8 (resp. SZ)

By classical arguments, we know that 0 < § and all w € R, the problem
Find us € X (e°) such that curl (us) ‘curlu’ — wesu’ = J (6.34)

is well posed for all J € L%(Q) satisfying div(J) = 0. Our goal is to study the behavior of ()
as 6 — 0.

By following the same steps of the proof of Lemma 5.3.8 and by using the results of Proposition
6.7.5, we can prove that we have



175 6.5. The analysis of the magnetic problem

Lemma 6.4.2. Assume that Assumptions 2.6.3-6.2.1-6.2.2 hold. Let 5 € (0;8p) (resp. B €
(0; 8p)) and let (dp)nen be a sequence of positive numbers that converges to 0 as n — +oo.
Denote e, = € + 10, (resp. pn = p + i) for all n € N. Suppose that (u,) is a sequence of
elements of Xn(en)(resp. X (un)) such that (curlwy,) is bounded in V%(Q). Then, (uy,) for all
n €N, u, admits the decomposition w, = Vs, + @, with s, € 87 (resp. s, € 8! ) (see (6.32))
and @, € Vgﬁ(Q). Moreover, there ezists a sub-sequence of (uy,) that converges in V%(Q) to an
element of VQB(Q) & V8T (resp. VQB(Q) @ ng) (see (6.33)).

For all B8 € R, we introduce the space W?V(Q) ={u e V%(Q) |curlu € V%(Q)} Endowed with
the norm
_ 2 2 1/2 0
el = (sl )+ leurlalyo )72 for all w € W),
the space W%(Q) is a Hilbert space. By replacing the spaces 81 and S:, respectively, by Sj
and S:[ in the definition of of H?\}lt’ﬁ (©) and Y?\}lt’ﬁ (©2) we then define the spaces PAI?\}ltﬁ(Q) and
~ out,3

Yy 7 (2). The main result of this paragraph is given by the following
Theorem 6.4.7. Assume that Assumptions 2.6.3-6.2.1-6.2.2 are satisfied and suppose that w €
R\Sn and B € (0; By). Suppose that J € Vgg(ﬂ). Then, the sequence (us)s converges, as 6 — 07,

in W%(Q) towu € }AI(])\}lt’ﬁ(Q) that is the unique solution of (6.19) (in which H?\}lt’ﬂ(Q) is replaced
~ out,f3

by Hy ™ (2)).

Proof. The proof closely follows the proof of Theorem 5.3.4. Let (d,)nen be a sequence of
positive numbers that converges to 0 as n — +o00. Denote ¢, = e +1id,, iy, = p+1id, for all n € N.
Denote, for all n € N by (u,,) the solution to (6.34) with § = d,,. The proof will be done in two
steps. First, we establish the desired result by assuming that (||curl u"HV%(Q)) is bounded. Then
we show that this hypothesis is indeed satisfied.

First step : Let us suppose that (curlw,) is bounded in V% (©). Thus, thanks to the previous
lemma, we know that up to a sequence, still indexed by n, that (u,) converges in V%(Q) to an
element of V% 5() @ V8. This also means that (u,) is bounded in V%(Q). Next, by observing
that for all n € N the vector field v,, := u;lcurl u,, satisfies curlv,, = w?e,u, + J, we conclude
that v, € X7(p,) and that (curlwv,,) is bounded in V%(Q). Then, by applying the previous

lemma, we deduce that (curlw,) converges in V%(Q) to an element of VQB(Q) @ u—lvé,j.

Consequently, (u), converges in W’]B\,(Q) to some u € Y?\?w(ﬁ) that satisfies curl ™ 'curlu —

w?eu = J. Given that w € R\ Sy, the previous problem has a unique solution which independent
of the chosen sub-sequence, we then obtain the wanted result.

Second step: Assume that there exists a sequence (u,) of solutions of (6.34) (associated to a
some sequence (d,,) that tends to 0) such that ||curl unHV% (@) — +00. By considering the sequence

u,,/||curl un”v% (o) and using the result proved in the first step, we obtain a contradiction.
|

6.5 The analysis of the magnetic problem

This section will be dedicated to the study of the Maxwell’s problem associated to the magnetic
component. In section §6.3 , we have explained why the problem set in the classical space Xp(u)
can not be well-posed. As a result, and as in the case of the electric component, we have to
introduce a new functional framework in which the problem is well-posed in the Fredholm sense.
After eliminating F in (6.1), we infer that the field H is a solution of the problem

curle ‘curl H — w?uH = curle™'J in Q
uH - -v=0 on 0f) (6.35)
e curlH —J)xv =0 on 9.
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One can easily show that if H is a solution of (6.35), then the pair {i(we) !(curl H —.J), H}
is a solution of (6.1). Let us introduce, for all 5 € R, the spaces

H(curl) =  {ue V%4(Q) &8 |curlu € VY(Q)}
HO"O(curl) == {u e V2,(Q) @8} [curlu € eVSH & VO 4(Q)).

We will use the same notation as in the case of the electric field:

u=1u+ Vsy, for all uw € H?(Q) (6.36)
curlv =1, + Vs, for all v € HOA(Q). '
We endow the spaces H?(Q) and H®"?(Q) with the norms
lull gz ) = (||fa|y%,gﬁ(m + ||Su,p ||2VS: + ||cur1u||3,%(m)1/z for all u € HA(Q)
oy = (9130 )+ o s + Bowe s + 850l )2 for all v € H(curl).
(6.37)

6.5.1 Definition of the magnetic problem

Regarding what we have done for the case of the electric problem and using the fact that the
magnetic field H and the electric field E are linked by (6.1), we infer that the magnetic problem
must be set in the space HO"#(Q) (some conditions on 3 will be fixed later). Consequently, the
problem (6.35) simplifies to become

curle ', — w?pu = curle™'J  in Q\{O}
Find u € H°"(curl) such that | pu-v =0 on 09 (6.38)
e Hcurlu —J) x v =0 on 0.

If the vector J belongs to the space V° 5(€2), we introduce the variational formulation

Find u € H*%#(curl) such that

/ 5—1¢u. Curlv—aﬂ][ pu- T = / el J.curls forallve HB(Q) (6.39)
Q o 0

in which the term ][ pu - T is defined by
Q

][ pu - U= / put - v+ / PNV 6y, - O+ / pit - Vg, — / div(eVsy, )50 -
Q 0 0 0 Q

By working as in the proof of Proposition 6.4.1, we obtain the
Proposition 6.5.1. If 8 € [0;1/2) the problems (6.38) and (6.39) are equivalent.

6.5.2 Equivalent formulation for the magnetic filed

The next step is to impose explicitly the constraint div(x-) = 0 in the spaces H” (curl) and
H°""#(curl ),which leads us to define the spaces

Yg(u) = {u € H?(curl) | div(pu) =0, pu-v =0 on Q}
Y(}Ut’ﬁ(u) = {uce H?\}lt’ﬂ(curl) |div(pu) =0, pu-v =0 on 00Q}.

Obviously, one has the inclusion Yf’rm’ﬁ (n) C Yg(u) for all 0 < . Proceeding as in Remark 6.4.1,
we show that for all u € Yg(ﬂ) the constraint div(pxw) = 0 can also be expressed as follows:

w € Y5(u) such that div(pu) =0 <= ]iuu Vo =0 forallve V" (Q).
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We introduce the following variational formulation

Find u € Y%Ut"g () such that

/ el - curlw — w2][ pu - T = iw/ 17 . curlt  forall v € Ygﬂ(u)' (6.40)
Q Q 0

Note that for all u € YOTUt’ﬁ(,u) and all v € ng(,u), we have

][eu~ U= ][ Eu-v = / UV — / div(eVsy, )80 -
Q Q Q Q

As in the case of the electric problem, we have the
Theorem 6.5.1. Assume that w # 0.
o Ewvery solution of (6.39) is a solution of (6.40).

o Let B € (0;8n). Under Assumptions 6.2.1-6.2.2 if H is a solution (6.40), then it solves
(6.39). Moreover {i(we) ' (curl H — J),H} is a solution of (6.1).

6.5.3 Equivalent norms in Y5 (x) and Y5 (1)

Proposition 6.5.2. Let 8 € (0; fn) and assume that Assumptions 6.2.1-6.2.2 are satisfied Then
there exists a positive constant C such that

lallvo @) + I Vsuullss < Clleurlullyo ) for allu e Y5 (). (6.41)
Consequently, the norms || - HY?(&) and ||curl - HV%(Q) are equivalent in Y?(u).

Proof. Let u € Y?(u). By definition of Yg(u), the function w admits the decomposition
u = @+ Vs, where @ € VQB(Q) and sy, € 8:. Observing that Vs, , satisfies the condition
pVsy v = 0on 0Q, leads us to deduce that pw-v = 0 on 052. By mean of item v) of Proposition
6.7.1, one can decompose & as & = Vp+curl such that ¢ € H#(Q) and 9 € Xy(1). Remarking

that curl (curlvy) = curlu € V%(Q) and that curley - v = 0 on 012 yields curlvy € Z7’8~(1) where
Zfi,(l) ={ucL?*Q) | curlu ¢ V%(Q), divu =0, u-v=0 on 00}. (6.42)

Since # € [0;1/2) and according to Proposition 6.7.5, we obtain curly € Vgﬁ(Q) with the
estimate
||curl1,b||vo_ﬂ < C’chrlu”vg. (6.43)

Given that div(pu) = 0, we obtain
1
— div(uVep) = div(pVs,,,) + div(pcurl ) € (V}J)(Q))* for all 3 € [0; 5) (6.44)

By Lemma 6.2.3, we get ¢ € Vl,ﬁ(ﬂ) for all 5 € (0; f) with the estimate
s < Clleurl®fyo (q) (6.45)

IVellve (@) + [I5u.p
By gathering (6.43) and (6.45), we obtain the wanted result. [

Working as in the proof of Proposition 6.4.3, we show the following result.

Proposition 6.5.3. Suppose that Assumptions 6.2.1-6.2.2 hold. Then, for all 3 € (0;By) there
exists a constant C such that

l@llvo ) + IVSuullgss < Cltbullve ) for all we Y3 (u,e). (6.46)

out,3

Consequently u ||1pu||vg5(9) is a norm in Yy " (p) that is equivalent to || - [l g8 cypr)-



Chapter 6. Maxwell’s equations with hypersingularities at a conical plasmonic tip:
the case of two critical coefficients 178

6.5.4 Main results about the magnetic problem

For all 5 € R, we introduce the operators Ag, ng : YOTut’B(,u) > (Y?(u))* such that u € Y%ut’ﬁ(u)
and v € Yé{(u) we have

<A§u,’u> = / p b, - curlg  and <K§u,v> = ][ pu - = / pu - .
Q Q Q
By exchanging the roles of € and p in study of the electric problem, one can obtain the following.

Theorem 6.5.2. Assume that Assumptions 6.2.1-6.2.2 hold. For all B € (0; o) the operator Ag
is an isomorphism and Kg is compact.

Now, define for all § € R the operator 42/7@ (w) := Agw — wQK% One can easily see that if the

operator Jz/ﬁ(w) is an isomorphism with 8 € (0; 3p), then the problem (6.39)-(6.39) is well-posed.
By using the Fredholm analytic theorem and by working as in the proofs of Proposition 6.4.4 and
Lemma 6.4.1, we can prove the following

Theorem 6.5.3. Assume that Assumptions 6.2.1-6.2.2. Then, for all B € (0; 5y) we have
. Jzije(w) s a Fredholm operator of index O for all w € R.

o There exists St that is independent of 5 € (0; 5y) a discrete subset of R such that szfﬁ(w)
is an isomorphism for all w € R\St.

o Ifu e Ker (ﬁﬁﬁ(w)) with w € R and B € (0; By) then sy = Sy = 0.
e For allw € R the space Ker (dﬁ(w)) is independent of 5 € (0; Bo).

o Assume that w € R\St. Let 0 < 51 < B2 < o and let £ € (Y:ﬁp1 (e)*n (Y?2 (€))* then the
solutions to the problems
A (w) =1
with B = 1 and B = B2 coincide.

This allows us to state the main theorem of this section

Theorem 6.5.4. Assume that Assumptions 6.2.1-6.2.2 hold. Suppose that there exists 0 < v < fo
such that J € V(LY(Q). Then

o for all w € R\ST the problem (6.39) (or equivalently (6.40)) is well-posed in the Hadamard
sense for all B € (0; fo).

o The solution to (6.39) (or equivalently to (6.40)) is independent of B € (0; Bo).

o When w € St the problems (6.39)- (6.40) are well-posed in the Fredholm sense. Moreover,
they have a finite dimensional kernel that is independent of B € (0; 5p).

Remark 6.5.1. Without any difficulty, one can check that the results of §6.4.7 hold, if one
consider the magnetic problem instead of the electric one.

6.6 Concluding remarks

In this chapter, we have considered the case of the time harmonic Maxwell equation when the
functions € and p are both critical. We have presented a general theory, which allows to construct
from any functional framework for the scalar problem that respects Mandelstam’s radiation prin-
ciple, a functional framework in which Maxwell’s problem is again well-posed. Moreover, we have
established that if one uses the frameworks that respects the limiting absorption principle for
scalar problems, then those provided by our theory for electric and magnetic problems are also
coherent with the limiting absorption principle.
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6.7 Appendix

6.7.1 Classical Helmholtz decompositions

Proposition 6.7.1. If Q is simply connected and its boundary is connected, the following asser-
tions hold.

i) According to [8, Theorem 3.12], if u € L?(Q) satisfies diva = 0 in Q, then there exists a
unique ¥ € Xp(1) such that u = curl.

ii) According to [S, Theorem 38.17]), if uw € L*(Q) satisfies dive = 0 in Q and w-v = 0 on
0N, then there exists a unique ¢ € Xy (1) such that u = curl.

i) If uw € L2(Q) satisfies curlu = 0 in Q and u x v = 0 on 09, then there exists (see [110,
Thereom 3.41]) a unique p € Hy(Q) such that uw = Vp.

w) Every w € L2(Q) can be decomposed as follows ([110, Thereom 3.45]) uw = Vp + curl,
with p € HY(Q) and 4 € Xp(1) which are uniquely defined.

v) Bvery w € L*(Q) can be decomposed as follows ([110, Remark 3.46]) w = Vp + curlp,
with p € H%E(Q) and ¥ € X (1) which are uniquely defined.
6.7.2 Weighted regularity of vector potentials

The classical case

We recall the following result, that we have proved in the annex of the previous chapter, concerning
the weighted regularity of the spaces X7 (1) and Xy (1).

Proposition 6.7.2. For all B € [0;1/2), the spaces Xr(1) and Xy (1) are compactly embedded
in VO 5(Q). In particular, there exists a constant C' such that

Hqugﬁ(Q) < Clcurlullp, for alluw € Xp(1) UXn(1). (6.47)

Note that similar weighted regularity results can also be found in [41].

The case of critical contrasts

Here, we are concerned with the weighted regularity of the spaces Xy (¢) and X7 (¢) when ¢ and
W are critical.

Proposition 6.7.3. Assume that Assumption 6.2.1-6.2.2 hold. Then for all 5 € (0; Sp) the space
Xn(g) is compactly embedded in VQB(Q). We have the estimate

||U||VO—I3(Q) < C|lcurlullp  for all u € Xy(e). (6.48)

where C' is independent of u.

Proof. Let u € Xy (¢). By mean of item v) of Proposition 5.6.1, we can introduce ¢ € H} ()
and ¥ € Xr(1) such that
u = Vp + curl.

By observing that curl®y belongs to Xy (1) and given that fp < 1/2, we infer by applying
Proposition 6.7.2 that curly € V(lﬁ(Q), for all g € (0; Bp). Furthermore, we have the estimate

||curl1,b|\vgﬁ(m < C|leurlcurld|g = C||curl u|g. (6.49)
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By observing that div(eVy) = —div(e curley) € (V};(Q))* for all 5 € (0;8p), one deduces, by
means of Lemma 6.2.3, that ¢ € Vl_ﬂ(Q) with the estimate

I96llvo @) < Clleurlilyo gy < Clleurlulo (6.50)

By combing (6.49) and (6.50), we obtain the wanted estimate. Now, let us prove the compactness
result. Take (up)neny a bounded sequence of Xy (g). We introduce (¢n)neny and (9,,)nen two
sequences of H}(€) and Xz (1), respectively, such that w, = Vi, + curley,, for all n € N.
Thanks to Proposition 6.7.2, we infer that up to a sub-sequence, still indexed by n, the sequence
(curl,,)nen converges in VQB(Q) for all 8 € (0; 8p). The estimate (6.50) implies that (Vg )nen
converges in VY 5(€2). This ends the proof. [

Using the same arguments, one proves the

Proposition 6.7.4. Under Assumption 6.2.1-6.2.2 the space Xp(u) is compactly embedded in
VQB(Q) for all B € (0; Bn). In particular, there is some constant C' such that

lullve o) < Clleurlulo Vu € Xr(u) (6.51)

6.7.3 Vector potentials in weighted Sobolev spaces

For all g € R, we introduce the spaces

Z5(1) = {ueL*Q)|curlue V{(Q), divu=0, u-v=0 on dQ}
Z?V(l) = {ucL?Q) | curluc V%(Q), divu =0, u xv=0 on 90Q}.

We endow Z5.(1) and Z5 (1) with the norm || -||zs := (|| - |2 + [|curl - H%I%(Q))l/z. The importance
of these spaces is motivated by the next result that we have proved in the annex of the previous
chapter.

Lemma 6.7.1. Let 5 € [0;1/2). The following assertions hold.

o Ifu € V%(Q) such that divu = 0 then there exists a unique ¢ € Zgw(l) such that u =
curl .

o If, in addition, u satisfies u-v =0 on 0S), then there exists a unique ¥ € Zﬁ,(l) such that
u = curl .

We have the analogue of Proposition 6.7.2.

Proposition 6.7.5. For all § € [0;1/2) we have

Zg(l) = {uc VQB(Q) | curlu € V%(Q), divu=0, u-v=0 on 0}
Z?\,(l) = {ue VQB(Q) | curlu € V%(Q), divu=0, uxv=0 on N}

Furthermore, Zg(l) and Z’]Bv(l) are compactly embedded in VQB(Q) for all € [0;1/2). In
particular, there is some constant C > 0 such that

lullyo | < Clleurlullys g, for all u Z5(1)uZh(1). (6.52)
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Proof. We will prove the result for the space Z%(l). The case of the space Zg(l) can be treated
similarly. Let u € Zf\,(l). Owing to Proposition 6.7.1, we can introduce ¥ € Xp(1) such that
u = curl. The Proposition 6.7.2, allows us say that ¢ € Vgﬁ(Q) for all g € [0;1/2). Observe
that by applying the curl operator, we infer that curl curl = curlw. Furthermore, thanks to
an integration by parts, one can easily see that

/ lcurl ¥ | = / curlu . (6.53)
Q Q
By means of the estimate (6.47), we obtain

[ullo = [leurlelo < Cllcurlufyg(q). (6.54)

As a consequence, to prove the wanted estimate and the regularity result, we need to refine the
previous one near the origin. For this, let { be a smooth cutoff function that is equal to one near
the origin with support contained in B(O,rg) (r¢ sufficiently small so that B(O,ry) C Q). By
classical results, we know that for all for i = 1,2,3, the component (; belongs to H}(B(O,r)).
Given that curlcurltyp = A1 = curlu. One can show that A(Cy) € V%(B(O,rg)). Moreover,
we have the estimate

1A v B0y < Clleurluflyg ).

Since by assumption 3 € [0,1/2), we deduce that V%(Q) C Vg(Q) C V?_ﬂ(Q) forally € (1/2;1—
B]. This means that the function A({);) belongs, then, to VS(B(O, a)) forall vy € (1/2;1— 5] C
(1/2,1) for all ¢ € {1,2,3}. By applying Proposition 6.2.2, we infer that (1, € Vi(B(O, r9)) for
all v € (1/2;1 — B] with the estimate

IC¥illv2 (B0 < CIALE) Vo0 < CIALE) vy (B0 < Clleurlulygq).  (6.55)

Consequently, by observing that (curly = (u € V;(Q) C Vg_l(Q) for all v € (1/2;1 — g] and
by taking v = 1 — 3, we deduce that u € Vgﬁ(ﬂ). Moreover, we have the estimate

ICullve (50,0 = ICCurl¥llvo (50,m)) < CIALY) e (po) < Clleurlullyyq).
Combining this with the estimate (6.54), we find

lullvo @) < Clleurlullyoq). (6.56)

As a result it remains to prove the compactness of the embedding Z%(l) C Vgﬁ(Q). For this,
let (wn)neny be a bounded sequence of Z]Bv(l). For all n € N we introduce v,, € Xp(1) such
that u, = curl,,. Obviously, we can see that (1,,)nen is then bounded in X7 (1). According to
Proposition 6.7.2, we know, that up to a sub-sequence, still indexed by n, (1,,)nen converges in
VQB(Q). By observing that, for all 5 € [0;1/2) and all m,n € N we have

[ Jeurtep, —curl v, 2 = | curl (w—wn) @~y < leurl (w—wn)llvg ol én-bnllvo o
Q Q

we deduce that (curlep,,),cn converges in L?(Q). Hence, up to a sub-sequence, (w,, )nen converges
in L%(Q2). This implies that the embedding of Zx (1) C L?(Q) is compact. To end the proof, it
suffices to prove that (Cun|p(ry))nen converges, up to a sub-sequence, in Vgﬂ(B(O,ro)). This
consequence of the fact that Cu, € V}kl(Q) for all v € (1/2,1 — B] and the compactness of
V}Y(B(O,To)) C Vgﬁ(B(O,To)) for all v € (1/2;1 — 53) (see [102, Lemma 6.21]). |

Remark 6.7.1. The proof of the previous proposition tells us that when B € [0;1/2) then for all
u € Z?(l) U Z?V(l) we have is u € ﬂ V%(Q) near the origin.
YE(=1/2;—4]
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6.7.4 Density results
Let C be a sub-domain of Q (i.e. C C Q), we denote by Hy(curl, C) the space

Hy(curl,C) := {u € L*(C) | curlu € L*(C);u x v = 0 on 9Q}.
Moreover, for all g € R, we introduce the spaces
K}(C) == {u € V2 4(0) | curlu € VY(O);uxv = 0 on 902}, Vi 4(C) = {u € V(C)® |uxv = 0 on 9Q}.

Proposition 6.7.6. Assume that 8 € [0;1/2). Then, the space 2(Q\{O}) is dense in K*]BV(Q)

Proof. Let 0 < 1 such that B(O,r9) C Q. Let x € 2(£2) be a cutoff function that depends only

on r = |x| that is supported B(O,r¢) and that is equal to 1 near the origin. For all u € K%(Q),
one can see that (1 — y)u € Hy(curl,Q\B(O,7()). Given that the space (Z(Q\B(0,r)))? is

dense in Hy(curl,Q\B(O,r)) is is enough to explain how to approximate yu by functions of
(2(B(0,r9)\{0}))? in KBD(B(O,’I"())). For this, we are going to show that for all 5 € [0;1/2), we
have the decomposition

K} (B(0,10)) = VVL4(B(0,70)) ® Vi _s(B(0,70)). (6.57)

Obviously, one has V\c/'l_ﬁ(B(O,m)) & V;(B(O,ro)) C K%(B(O,ro)). The reverse inclusion is
obtained as follows. Take any u € K%(B(O,ro)). Since 0 < f, we then have the inclusion
K%(B(O,ro)) c L2(B(0,rp)). So, the function u decomposes as u = Vg + curlyp with ¢ €
H{(B(O,r0)) and ¥ € X (1,B(O,rg)). The vector field curl+ belongs, then to the space Z?\,(l)
(see §6.7.3). Thus, thanks to Remark 6.7.1, we deduce that curl belongs to (Vl_ﬁ)3 near the
origin and since B(O, rg) is smooth, we infer that curlp belongs to the space (H')? far from the
origin. As a consequence we then obtain that curly € V}Vj_ﬁ(B(O, 9)). Since Ap = div(u) €

(Vé(Q))*, Lemma 6.2.2 implies that ¢ € Vl_/B(Q) We then deduce that (6.57) holds. Given that
the space (Z(B(0,r0)\{O}))? (resp. 2(B(O,r)\{0}) ) is dense in dense in V}Vv_ﬁ(B(O,ro))
(resp. \0/1_[3(B(O, r0))) and since the embeddings

Vi _5(B(0, 7)), VVL4(B(O,m9)) € K'(B(O, 7))

are continuous, we obtain the wanted result. |
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7.1 Introduction

The goal of this chapter is to study the homogenization process for time harmonic Maxwell’s
equations in the presence of j—periodically distributed inclusions of negative material embedded
into a dielectric material (see Figure 7.1 for a typical configuration). The main objective is to
clarify if the homogenization process is doable in this context and if so, to determine whether
the corresponding homogenized material behaves like a positive or negative material as d tends
to zero. For scalar problems, the first homogenization results have been obtained in [43] using
the T-coercivity approach of [27]. More precisely, it is proved therein that for negative contrasts

183



Chapter 7. Homogenization of Maxwell’s equations and related scalar problems
with sign-changing coefficients 184

close to 0 (the contrast being defined here as the ratio between the interior and exterior values,
see (7.1)), the scalar problem with Dirichlet boundary conditions can be homogenized. In other
words, it is proved that under this assumption on the contrast, the solution of the problem in the
composite material is well-defined for § small enough (this is not obvious due to the loss of co-
ercivity due to the sign-changing coefficient) and that it two-scale converges (see Definition 7.5.1
below) to the solution of a well-posed problem set in a homogeneous material. These results have
been extended in [31], through the analysis of the spectrum of the Neumann-Poincaré operator.
In particular, the authors show that the homogenization process is possible provided the contrast
between the two media (defined using the same convention as above) belongs to (—oo; —1/a) or
(—;0), @ > 0 (see Remark 7.3.1 below). The proof of this result is based on an elegant continuity
argument (see [31, Corollary 5.1]). However, it does not provide a precise value for a.

The chapter is organized as follows. Section 7.2 provides the mathematical setting of the problem
and necessary notation. Before studying Maxwell’s system, we collect in Section 7.3 some useful
results concerning two associated scalar problems, a Dirichlet and a Neumann one. In particular,
we prove the uniform invertibility of these operators as d tends to zero, for small or large values
of the contrast, i.e. for contrasts in (—oo; —1/m) U (—1/M;0), with 0 < m < M (see subsections
7.3.1t0 7.3.3). A variational characterization of the bounds m and M is also obtained (see (7.45)).
Next, inspired by [31], we discuss in §7.3.4 the connection with the Neumann-Poincaré operator
and the optimality of the obtained conditions. In Section 7.4, we study the cell problems ap-
pearing in the homogenization of Maxwell’s equations. We prove that they are well-posed under
the same assumptions as the scalar problems investigated in Section 7.3. This allows us to define
homogenized tensors and we show that they are positive definite under the same assumption on
the contrasts, that is for contrasts in (—oo; —1/m) U (—1/M;0). This is also an improvement of
the results obtained in [43] and [31]. In Section 7.5, we finally tackle the homogenization process
for Maxwell’s equations with sign-changing coefficients. Combining results from [136] and [58]
obtained for classical (positive) electromagnetic materials, we first derive in §7.5.1 a homogeniza-
tion result under a uniform energy estimate condition. At this stage, the sign-changing of the
physical parameters does not play any role. Related to this part of the work, let us mention the
seminal book [14] as well as [141, 12] for the study of the time-dependent Maxwell equations. For
the time harmonic case, we refer to [14, 143, 131, 77, 48, 38, 142, 6, 136, 94]. Then, in §7.5.2,
we establish the needed uniform energy estimates for Maxwell’s equations. This is done by using
the results obtained for the scalar problems as well as the T-coercivity approach presented in [23]
and a uniform compactness property. The final homogenization result for Maxwell’s system with
sign-changing coeflicients is stated in Theorem 7.5.1. For the reader’s convenience, the list of
functional spaces used throughout the paper is collected in the Appendix.

7.2 Setting of the problem

Let  be an open, connected and bounded subset of R?® with a Lipschitz-continuous boundary
0f2. Once and for all, we make the following assumption:

Assumption. The domain ) is simply connected and 052 is connected.

When this assumption is not satisfied, the analysis below must be adapted (see some preliminary
ideas in [23, §8.2]). We consider a situation where 2 is filled with a composite electromagnetic
material constituted of periodically distributed inhomogeneous cells of small size § > 0. More
precisely, let Y = (0; 1)3 denote the reference cell and assume that Y contains two materials:

e a metamaterial with negative dielectric permittivity ¢; < 0 and magnetic permeability
;i < 0 located inside a connected domain Y; C Y with Lipschitz boundary 9Y; such that
Y, CY;
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Dt

Figure 7.1: Example of a periodic material and the corresponding reference cell Y.

o a dielectric material with positive dielectric permittivity €. > 0 and magnetic permeability
e > 0 filling the region Y, := Y \ Y;.

We emphasize that the assumption Y; C Y is important. When the inclusion Y; meets the
boundary of the cell Y, phenomena different from the ones described below can appear. We
refer the reader to [31, Appendix A] for more details concerning the scalar problem in this case.
To simplify the presentation, we assume that €;, €., p; and p. are constant. However, we could
also consider physical parameters which are elements of L°°(£2, R?’X?’), the variational techniques
we use below would work in a similar way. In our analysis, the following dielectric and magnetic
contrasts

Ke := — <0, Ky = Hi
m
€e He

will play a key role. Let us stress that the four constants e, €;, e, p; are fixed once for all in
the article. And when we make assumptions on the contrasts in the statements below (see in
particular the final Theorem 7.5.1), they must be understood as “Assume that e, €;, e, j1; are
such that k., k,..”. We define on the reference cell the two real-valued functions e, € L*(Y)
such that

<0 (7.1)

e(y) =cely, (y) +eily,(y),  w(y) = pe Iy, (y) + i L1y; (v), (7.2)

where for a set S, 1g(-) stands for the indicator function of S. For any § > 0 and any integer
vector k € Z3, we define the shifted and scaled sets Y33, Y3, ¥ such that

e

i = {weR|(x—k)/se V)

Yo = {zeR|(z-k)/5eY} (7.3)

YY) = {zeR3|(z—Fk)/6eY]}.
We denote by K° the set of k € Z3 such that Yk‘s C 2. We assume that the metamaterial fills the
region

o= U Vi
keK?
while the complementary set in €2 L
Q; =0\ Q]

is occupied by the dielectric. We denote by Q° the interior of U Y_k‘S and we set U° := \W
keK?®
We define the macroscopic dielectric permittivity % and the magnetic permeability u6 on {2 such
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that
(@) = e Los(a) + i lgs (@), 10 (@) = pre Log (o) + pi Lo (2). (7.4)

For a given frequency w # 0 (w € R), we study time harmonic Maxwell’s equations
curl E° —iw i’ H? = 0 and curl H® 4+ iwe®E? = J in Q. (7.5)

Above E? and H? are respectively the electric and magnetic components of the electromagnetic
field. The source term J is the current density. We suppose that the medium §2 is surrounded
by a perfect conductor and we impose the boundary conditions

E°xn=0 and W H® -n =0 on 09, (7.6)

where n denotes the unit outward normal vector field to 9€). For an introduction to the mathe-
matical setting of Maxwell’s equations, we refer the reader to the classical monographs by Monk
[110] or Nédélec [115]). We introduce some functional spaces classically used in the study of
Maxwell’s equations, namely

L2(Q) = (L3Q)°
H(curl; Q) := {H cL*Q)|curl H c L*(Q)}
Hpy(curl;Q?) = {F € H(curl;Q) | E xn =0 on J}
V() = {HeH(curl;Q) | div(§H) =0, {H -n=0o0n 00}, for & € L™(Q)
Vn() = {EcH(curl;Q) |div(¢E) =0, Exn=0o0n0d}, foreL>*(Q).

For an open set O C R3, the inner products in L%(0) and L%(0) are denoted indistinctly by (-, -)e
and the corresponding norm by || - [[o. To simplify, in LQ(Q) and L?(Q), we just denote (-,+) and
| -]l The space H(curl; ) and its subspaces Hy (curl; ), Vi (§), Vr(§) are endowed with the
inner product

(s)eurt := (+,+) + (curl-, curl-),

and the corresponding norm is denoted || - ||cur1- We have the classical Green’s formula for the
curl operator (see for instance [110, Theorem 3.1]):

(u,curlv) — (curlu,v) =0, Vu € Hy(curl; ), v € H(curl; 2).
Let us recall a well-known property for the particular spaces V(1) and V(1) (cf. [139, 8]).

Proposition 7.2.1. The embeddings of V(1) in L%(Q) and of V(1) in L*(Q) are compact.
Moreover, there is a constant C > 0 such that

|lu|| < C|lcurlul|, Vu € V(1) UVy(1).
Therefore, in V(1) and in Vy(1), ||curl - || is a norm which is equivalent to || - ||cur -

Classically, one proves that if (E°, H°) satisfies (7.5)-(7.6), then E° and H? are respectively
solutions of the problems

Find E° € H(curl; Q) such that:
curl (1)) teurl E°) — w?®E° = iwJ inQ (7.7)
E’xn = 0 on 0,

Find H° € H(curl; Q) such that:

curl (%) teurl HY) — WP H® = curl((®)71J) inQ
WH? - n 0 on 02
()Y (curl H — J) x n =0 on 0f).

(7.8)

We emphasize that in (7.7), (7.8), the boundary conditions are the usual ones one should impose
to be able to prove well-posedness of the systems. In the following, we will focus our attention on
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the problem (7.7) for the electric field. The analysis for the magnetic field is quite similar. The
variational formulation of (7.7) writes

Find E° € Hy/(curl; Q) such that for all E' € Hy(curl; Q):

0
(&) (1) teurl B curl E') — w*(°E° E') = iw (J, E'). (7.9)

Before studying the behaviour of some solutions of (@6) as ¢ tends to zero, we must clarify the
properties of this problem for a fixed § > 0. With the Riesz representation theorem, define the
linear and continuous operator @3 (w) : Hy (curl; Q) — Hy (curl; Q) such that for all w € C,

(A (W) E, Eeur1 = (1) ‘curl E, curl E') — W*(°E, E'), VE,E' € Hy(curl;Q). (7.10)

The features of ;zf]f,(w) are strongly related to the ones of two scalar operators that we define
now. Set

H(Q) = {pecHY(Q)]p=0o0n0Q}

H#(Q) = {@EHl(Q)\/Qapdx:O}.

In H}(Q2) and in H;é () (since € is connected), ||V - || is a norm which is equivalent to the usual

norm of H(€). We define the two linear and continuous operators A% : Hy(Q) — H}(Q) and
BY - Hy (Q) — HL(Q) such that

(V(A2),V¢) = (£'Vep, V), ¥, ¢’ € Hy(Q)
(V(BYe),Vy) = (1’Ve,Vy), Vo, ¢ € Hy(Q).
With these notations, Theorem 6.1 of [23] writes as follows.

Theorem 7.2.1. Assume that the scalar operators A2 : HY(Q) — H(Q) and BZ : H#(Q) —
H;E(Q) are isomorphisms. Then oy (w) : Hy (curl; Q) — Hy (curl; Q) is an isomorphism for all
w € C\ & where .7 is a discrete set with no accumulation point.

Note that in this statement, the set . depends on the contrasts «., x, but also on the geometry
and hence on §. In the next section, we give conditions ensuring that Ag and Bi are isomorphisms.

7.3 Uniform invertibility of the two scalar problems

We shall say that the operators A% : H{(Q) — H}(Q) and Bz : H;&(Q) — H;&(Q) are uniformly
invertible as & tends to zero if there is 6y > 0 such that A%, Bi are invertible for all § € (0; do]
together with the estimate
IAD~+ (B < €,

where C' > 0 is a constant which is independent of § € (0;0¢]. In this section, our goal is to find
criteria on ke, k;, guaranteeing the uniform invertibility of Ag, Bz. The uniform invertibility of
Ag has been considered in the articles [43, 31]. Below we combine the approaches presented in
these two articles and we adapt the analysis in order to obtain a criterion ensuring the uniform
invertibility of Bz.

Remark 7.3.1. The result of uniform invertibility of [31, Theorem 5.2] is based on the result of
Theorem 4.8 of the same article. However, its domain of validity is not completely satisfactory

because the constant m defined in Theorem 4.3 is in fact equal to zero. This has been corrected
by the authors and a new proof can be found in the erratum [37].

7.3.1 First /-dependent criteria

In a pedagogical aim, we first derive some criteria ensuring the invertibility of Ag, Bi that are
valid only for fixed §, and hence which are not uniform.
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Criterion of invertibility for the operator Ag

In order to get a criterion on the contrast . ensuring that A° : H}(Q) — HE(€2) is an isomorphism,
we start by presenting a well-chosen decomposition of the space H[l)(Q) which has been introduced
n [31]. We recall that H}(Q) is endowed with the inner product (V-, V).

i
Lemma 7.3.1. We have the decomposition HY(Q) = HS, & HL(QS U QF) where H}, = {¢ €
HE(Q) | Ap =0 in QU QY.

Remark 7.3.2. The index p in the notation iH‘SD stands for Dirichlet and refers to the homo-
geneous Dirichlet boundary condition imposed on OS2 to the elements of 9{6D. We emphasize that
the functions of H5(Q2 U Q2) vanish on 9.

Proof. Let ¢ be a given element of H}(Q). Introduce ¢ € HE(Q2 U Q2) the function such that
A = Ap in Q0 UQY. Then we have ¢ = (¢ — @) + @ and clearly ¢ — @ € H%. Now if ¢; and
@y are elements of K% and HY(Q2 U Q2), a direct integration by parts gives

1 p1e
Ap1po d:z—i—/ 1 V2 da+/ 1 pado =0.
19}

(Vor.Ven) = [

Q3uQ? ons Oni Qi One
Here and below, n, = —n; stands for the unit normal vector to 89? pointing to Q?. Moreover for
z € 8, Oupi(z) = lim Ve(x — tn;) - n(x) and d,p.(x) = lim Ve(z — tne) - n(z). This gives
t—0t+ t—0+
the desired result. [}

In what follows, some particular elements of J{‘ls) will play a key role. For k € K 5, define the
function gplf) € J-C‘SD such that

1 in Yz‘,i
L I , (7.11)
0 inYj fork #k.
Then set .
HY = {p € H | (Vp, V) =0, VEke K°) (7.12)

so that we have, as in [31, Proposition 3.2],

HL(Q) = F9 @ span gpk GHN(QUQ? 7.13
0(2) D D spangcgs{pp} 0(£2 i) (7.13)
Finally, we define the constants

e HVSDH?)é A vaH?ys (7.14)

mp:= In =5 p:i= Sup T——5-- .
pese\ {0} Vel et \ {0} IVeles

Before proceeding, let us discuss a few features of the constants m5D, Mg. First, observe that the

functions ¥, satisfy

IVeblgs =0 and  [[Veh|g; #0.

As a consequence, the infimum of (7.14) considered over H3, \ {0} is zero. On the other hand,
the next lemma guarantees that the supremum of (7.14) considered over H$, \ {0} coincides with
M.

Lemma 7.3.2. The constant M defined in (7.14) satisfies

IVelgs
M%) = sup :

—t (7.15)
peHI\{0} ||V80||?)g
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Proof. Since U:f% C .’H‘SD, clearly we have

IVeli3s
M} < sup .

% (7.16)
peae oy | Vellds

Now we establish the other inequality. If ¢ € HS \ {0}, we have the decomposition ¢ = @ +
with ¢ € ﬂ-C% and ® € spangggs {©%}. Since ® is constant in each of the Yi‘,i, k e K9, there
holds

19612 = 19613 (7.7
As a consequence, if ¢ = 0, then 0 = ||V¢\|?2§/\|ch||%5 < M. If ¢ # 0, from (7.17) and the
identity |[Vo||3 = IVA|E + V|3 (see (7.12)), we deduce that
IVelids = IV@las + IV = IVEl3s:

This implies
G
D = ~ = .
Velg; ~ Vel

(7.18)

Taking the supremum over all ¢ € K%, \ {0} in (7.18), we deduce that (7.16) is also true with
“<” replaced by “>”. This shows (7.15). [

Finally, we prove the following additional result.
Lemma 7.3.3. The constants m‘SD, M,‘:S) satisfy 0 < m‘SD < M,% < 4-o00.

Proof. By definition of m‘sD, Mg, clearly we have m‘SD < M,‘:S). On the other hand, working by
contradiction, thanks to the orthogonality conditions imposed to the elements of .’H%, one can
show the Poincaré-Wirtinger inequality

307 >0 such that |lo|lgs < COVellgs, Ve € HS. (7.19)
For ¢ € H3), since there holds Ap = 0 in ¢, from (7.19), we obtain the estimate
0
IVellos < Cllellz@ar):

Here the constant C° may change from one line to another. Then the continuity of the trace from
H'(Q9) into H/2(802) yields the existence of a constant C{ > 0 such that

IVellgs < C31IVellas, Ve € Hp,. (7.20)

Similarly, using the continuity of the trace from H'(Q?) into HY/2(99), we obtain that there is
€% > 0 such that
IVellas < C3lIVellgs, Vo € Hh. (7.21)

Estimates (7.20) and (7.21) allow one to conclude to the result of the lemma. [

After these considerations, we can now establish the following criterion concerning the invertibility
of A°. To proceed, we work with the T-coercivity approach introduced in [27] (see also [52]). We
emphasize however that we work with a different operator T allowing us to obtain a sharper result.

Proposition 7.3.1. Assume that k. € (—o0; —1/m%) U (—=1/M2;0) where m$, and M are
defined in (7.14). Then A’ : H)(Q) — HY(Q) is an isomorphism.
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Proof. Define the operator T} : HL(Q) — HL(Q) such that for ¢ = @p, + @), + @ with @y, € jde’
D), € spangc s {ph} and ¢ € HH(Q2 U Q?), there holds

|+ @+ inQ

Thy = .22
D¥ o+ P, —¢ in Q? (7 )

Note that since ¢ = 0 on 99, the operator T}, is indeed valued in H{(2). Moreover we have

T}, o TS, = Id which shows that T}, is an isomorphism of Hj(Q2). For all ¢ € H(Q), we find

(V(AATHe)), Vo)

R - R - R _ R - 7.23

= e(V(n+ Pn+ @), V(n + P+ @))as +&i(V(dh — ), V(n + &))s- (723)
Integrating by parts and using that ¢ =0 on 892 U GQ?, we get

(v¢ha v@)ﬂg = (vq)/u v@)ﬂg = (v¢ha v@)Qf =0. (724)

Besides, using again that ®j is constant in each of the Y{,i, from the orthogonal decomposition
(7.13), we infer that
(Vén, V(I)h)Qg = (Vgp, Vo) =0. (7.25)

Inserting (7.24), (7.25) in (7.23), we obtain
(V(AUTH9), Vo) = (eVPn, Vin) + (2eV 1, VOh)og + (] VE, V). (7.26)
For the first term of the right hand side of (7.26), we can write

(eV@n, Von) = ecl|Vanligs — leil [Vnllgs

> (e — lei M) Vnl2s (7.27)
1 _ «
> S ee = leil MD)(IVnlER; + (MD)W nll3s).

Using this estimate in (7.26), we deduce that when e, > |g;|MY & k. = g;/ec > —1/MJ,
the bilinear form (V(Ag(TE-)), V) is coercive in Hy(Q) (note that Lemma 7.3.3 guarantees that
M9 < 400). With the Lax-Milgram theorem, we infer that when s. > —1/M2, the operator
A% 0T}, is an isomorphism of H}(Q) and so is A°.

To address the case k. < —1/m%), let us work with the operator T, « Hy(Q) — Hj(Q) such
that
—on + Py +¢ in Qg

~pn+ Py — @ in 0. (729

Thp =
We also have Tp, o T;, = Id which guarantees that T, is an isomorphism of Hj(2). For all
¢ € HY(Q), we find

(V(AUTH9): Vo) = —(eVen, Vin) + (€. VPh, VO1)as + (I|VE, V). (7.29)
This time, we can write

—(eVen, Vén) = —eel|Venlgs + leil IV enlds
) 2 1 ) 2 dy—1 2 (7.30)
> (e + el mp)IVnlcy > 5 (—ee + el mp)((IVEnllgy + (M) Vnllgs)-

As a consequence, we see from (7.29) that when |g;|m%, > e, < ke = &;/ee < —1/mY,, the bilinear
form (V(A2(Tp-)), V-) is coercive in HY(Q) (here we also use the result of Lemma 7.3.3 ensuring
that 0 < méD < Mp < +00). We can conclude as above that when k. < —1/m5D, the operator
AS is an isomorphism of Hj(Q). [ |
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Criterion of invertibility for the operator Bz

Now we show similar results for the operator Bl‘i : H;%(Q) — H%E(Q) First, define the space

HL(Q) := {(,OEHI(QH cpdazO}.

o028
L

Lemma 7.3.4. We have the decomposition H(Q) = HY @ H(l] 503 () where HY = {p €

HL(Q) | Ap = 0in QUQS, 8,0 = 0 on N} and H(l) a9 () = {p € HY(Q) | = 0 on 09} C

Hl(Q).

Remark 7.3.3. This time, the index y in the motation }C?V stands for Neumann and refers to
the homogeneous Neumann boundary condition imposed on O to the elements of J{fv.

Proof. For ¢ given in H.(Q), introduce ¢ € H(l] 50 (£2) the function such that

(Vo, V') = (Vo V'), V' € Hy pos(0).

Note that since the Poincaré inequality holds in the space Hé 505 (£2), the Lax-Milgram theorem

indeed guarantees that this variational problem admits a unique solution. Then we have ¢ =
(¢ — @) + ¢ and one can check that ¢ — ¢ belongs to 3{‘15\,. Finally if ¢1 and @9 are elements of

HY, and Hé a0 (£2), a direct integration by parts gives (Vi, Vpa) = 0. [

In what follows, some particular elements of Jﬁs\; will play a key role. Let kg be an arbitrary given
element of K° and for k € K°\ {ko}, define the function % € H3 such that

1 inY]

o= -1 inYy,

0 inY) fork e K%\ {ko,k}.

Then set
T = {p € Hy [ (Voo Vi) =0, Vk € K°\ {ko}}
so that we have
1 ry & k&l
Ho(Q) = Hy @ spange o oy {on} @ Hy ps ()

We emphasize that the choice of kg above does not affect this decomposition. We simply consider
one particular basis for the space spanycgs\ {ko}{wlj”v}. Finally, we define the constants

o Vel s IVellgs
my := inf : N = sup :

i —t —_—, (7.31)
eeH\{0} ||V<PH?2§ peF3,\{0} ||VSOH?2§

Working as in the proof of Lemma 7.3.3, in particular establishing by contradiction the Poincaré-
Wirtinger inequality

3C° >0 such that |j¢]lqs < C°Vellgs, Vo € HY,
one can show that there holds 0 < m% < M& < +oc. As in (7.14), the functions % satisfy

IVenllgs =0 and  [[VeRllg; #0

so that the infimum of (7.31) considered over H% \ {0} is zero. Working exactly as in the proof
of Lemma 7.3.2, we get the following result.
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Lemma 7.3.5. The constant MY defined in (7.31) satisfies

IVl
My = sup .

——p. (7.32)
eeH\{0} ||V‘PH?2Q

Now, we give our criterion of invertibility for the operator BZ.

Proposition 7.3.2. Assume that k, € (—o0;—1/m%) U (=1/M%;0) where m, and MY are
defined in (7.31). Then Bg : H#(Q) — H;E(Q) is an isomorphism.

Proof. Introduce the mappings /,, : H;#(Q) — HL(Q) and £y : HL(Q) — H#(Q) such that

1

lo(p) =0 — M -

1
pdo,  lu(p) =¢ - M/deﬂf-

Here and in what follows, for an open set O C R?, we denote by |0] = / 1dz and |00] = / 1do.

0 a0
Then define the operators T]iv : HL(Q) — HL(Q) such that for ¢ = @ + @), + @ with ¢, € H,
o), € spankeKa\{ko}{cp’fV} and ¢ € H(l) a0 (£2), there holds

e+ ®h+e in QO

~t
T = .
N® +op + P — @ in Qf (7 33)

Finally, we define the operators
T]j\[, =Ly oTﬁ ols.

For ¢ € H#(Q), we set ¢ 1= l,(¢)) € HL(Q) and we use the notation ¢ = @, + @), + @ with
o € HYy, ®y € spankeKa\{kO}{goﬂcv} and ¢ € H(l) 505 (2). Observing that Vo = V¢ (¢ and ¢
differ from each other by an additive constant) and working as in (7.26), we find

(V(BL(Tx)), V) = £(uVén, Véu) + (1eVOn, VO, )5 + (|ulVE, V). (7.34)

For the first term of the right hand side of (7.34), we can write

~

pe — 1l M3V @35

(e = il MR)(IV@rllgs + (M) ™M IVnlEs)

(BV@n, Von) = pellVonlids — il IV @nllgs >

>

N

and

~(uV@h, Vn) = —p1el |V @rll s + il HV%H?);S
R o L (7.35)
Z (=pe + il my)IVonllos = 5 (=pe + il my) IV @nllos + (My) ™ 1Vnllgs).

Using again that Vo = V1), we deduce from the first estimate of (7.34) that when e > ;| M3 <
Ko = pi/pe > —1/MY, the bilinear form (V(Bz(TfV-)), V) is coercive in H#(Q) With the Lax-
Milgram theorem, we infer that when s, > —1 /M]‘i,, the operator Bz o T} is an isomorphism of
H;E(Q) Since Bz is selfadjoint (because it is bounded and symmetric), this implies that Bz is an

isomorphism. Working similarly with T}, from (7.35) one finds that when | /$Z|m?v > e & Ky =
pi/pe < —1/m%;, the operator Bi is an isomorphism. Note that with additional few lines, one
can check that we have T]j\E, o TJj\E, =Id. |
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7.3.2 Comparison between the criteria of invertibility

In this section, we compare the constants involved in the criteria ensuring the invertibility of the
operators A (Dirichlet) and Bz (Neumann).

Proposition 7.3.3. For all 6 > 0, the constants m‘SD, Mg defined in (7.14) and the constants
mSy, MY defined in (7.31) satisfy

m9, < my and MY < MY, (7.36)

Proof. We start by proving the second inequality of (7.36). Let ¢ be an element of HJ, \ {0}.

Define the function ¢ € H% such that ( = ¢ — ¢ on 9 where ¢ = ]89?]‘1/ ¢do. In other
008

words, ( is the function such that A =0 in Qg UQ?, (=p—con GQf and 0, = 0 on 0f2. Note
that necessarily, there holds { # 0. Then we have ( = ¢ — ¢ in Qf and so

19¢0as = V¢l (7.3
On the other hand, integrating by parts, we find
(VC, V(= 9)ay
— (V6T (o= Mg = [ FC=(p=aNdo+ [T~ (p-0)dr=0.

Qon ¢ 002 One

We deduce that
IV¢I8s < IVellas: (7.38)

Gathering (7.37), (7.38) and using Lemma 7.3.5, we infer that

IVolds  1IVCII2s
L g LMY (7.39)
IVelds ~ IVCIGs N

Taking the supremum over all ¢ € 3, \ {0} in (7.39), we obtain that M < MY,

Now we show the first inequality of (7.36). Let ¢ be an element of H% \ {0}. Define the
function ¢ € J—C% such that { = ¢ on 89?. In particular, we have A =0 in Qg U fo and ( =0 on
9. Then decompose ¢ as ¢ = ( + Z with € ff{‘sD and Z € spanyggs {©%}. Since Z is constant
in each of the Y35, k € K°, we have

19¢ll0s = [ Veollgy- (7.40)
On the other hand, integrating by parts, we find
A 8()0 A a(pe 2 / 8906
— = —((—¢p)d —p)do = — Z do. 7.41
VeV = [ GrC-paos [ GG g0 == [ SRzan @y

Since the function ¢ is in K%, for all k € K%\ {ko}, we have (Vi, Vi) = 0. Integrating by

parts, this implies
0 0
/ Pe do = / Pe do.
aylz;C 871@ 33/5@0 8ne

But we also have On,pe do = 0. As a consequence, we must have, for all k € K 9

o002
/ Ope do = 0.
oy, One
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Since Z is constant on each of the Y, we deduce that the terms of the equalities of (7.41) are
equal to zero. Hence, there holds
IVelgs < IVCIIGs- (7.42)

Gathering (7.40) and (7.42) leads to

IVClE; _ 179l

§
m), < ——2 < . (7.43)
PICIs IVl
Taking the infimum over all ¢ € H% \ {0} in (7.43), we obtain that mJ, < m%. [

7.3.3 Uniform criterion of invertibility

The bounds on the contrasts s, x, that we obtained in Propositions 7.3.1, 7.3.2 which ensure
the invertibility of the scalar operators Ag and B/‘i, depend on §. In this paragraph, we wish to
get bounds which are uniform with respect to 6.

Introduce the Hilbert spaces of functions defined in the reference cell Y
Ho = {pcH}(Y)|Ap=0inY,UY;}
Ho = {peH.(Y)|Ap=0inY,UY;}
where HL(Y) := {p € H'(Y) | / ¢do = 0}. Define the function pp € Hy such that pp =1 in
9Y;
Y; and set

Ho = {p€Hol(Ve,Vep) =0} (7.44)
He = {peHo|Onp=0o0n0dY}. .
Then we introduce the constants
Vol Voll3
m:= inf %, M := ” (p”rjl . (7.45)
peHo\{0} ”VSDHYE 0eF,\{0} ||V90||Ye
We emphasize that m and M are independent of 6.
Lemma 7.3.6. The constant M defined in (7.45) satisfies
Vo3
M = sup | SOH;/Z (7.46)
p€HL\{0} Hv<)0||Y8
(here the sup is considered over H, \ {0} and not H, \ {0}).
Proof. Since there holds JA{Q C H,, it suffices to show that
Voll3,
Vel (7.47)

sup <
ecto\ (0} IVell3,

Let ¢ be a non zero element of H,. We have the decomposition ¢ = @+ (¢ — @) where ¢ € H, is
the function such that = @ in Y;, A¢ =01in Y, ¢ = ¢ on 3Y; and 0, = 0 on 9Y. Observing
that ||V<,p||§/1 = ||Vg5H§/z and that

IVelly, = IVEllE, + V(e = DT, = Va3,

we can write
IVels; = IVRlS; < M V@I, < M[IVel,.

Taking the supremum over all ¢ € H, \ {0} leads to (7.47). [ ]
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Lemma 7.3.7. For all § > 0, we have the relations
m < my <mdy and MY < MY < M, (7.48)

where m%,, MY, are defined in (7.14), m%, M% are defined in (7.31) and m, M are defined in
(7.45).

Proof. From Proposition 7.3.3, we know that we have m}g < m?v and Mg < M]‘i,. Now we show
that we have M]‘i, < M. Let ¢ be a non zero element of f]-(?v. For all k € K° we define the

function ¢ € H'(Y) such that ¢ (y) = p(6(k+y)) for y € Y and we set ¢ := [0Y ]~} / @) do.
oYy
Since cpi — ¢ € Hs,, using Lemma 7.3.6, we can write
Vel = aIVells = dIvie -},

< SM[V(g] - el}, <OM VIR, < MVl

Summing these estimates over all k € K°, we get (recall that U’ = Q \ Q9)

IVellgs < MIVelgsm < MIVelg:: (7.49)

Qa\us
Taking the supremum in (7.49) over all ¢ € H%, we deduce that Mg < M.

To establish (7.48), it remains to show that m < m$,. For ¢ given in HJ,, introduce the function
v € H}(Q) such that for all k € K°,

vo= ¢ inYj
Av 0 inYS
v = 0 ondYs.

We also impose v = 0 in U° = Q\ Q9. For all k € K?, define the function ¢% € H}(Q) such that

¢p = 1 inYj
A¢h = 0 inY,
o = 0 inQ\YS.

Then set

=v— Y apdh  with ap = (Vo, Vo) /|IVEh 1%
keK?

R

Integrating by parts, we find

a(P ~ 8@6 ~ o 8(,0@ k
Em%(ap v)do + - . (p—0)do = Z a, ; bdo. (7.50)

Ve, V(p —1))qs =

Since the function ¢ is in H3,, for all k € K°, we have (V, Vik) = 0. Integrating by parts, this

implies
/ 0% 4o = 0
oy, One

Using that ¢% is constant on the 9Y3,, we deduce from (7.50) that (Vi, V(¢ — ¥))qs = 0. Hence,
we have

IVellgs < 1Vallgs = > IVals - (7.51)
keK?
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For k € K°, define the function # € H(Y) such that ©(y) = 9(6(k + y)) for y € Y. Observe
that we have @,‘i € Hp so that we can write

IVeli2, = aIVagl3, < omt VoLl < om IVl <m~M Vel (752
As a consequence, inserting (7.52) in (7.51), we obtain

IVelgs <m™t IVl (7.53)

Taking the infimum in (7.53) over all ¢ € K3, we deduce that m < m9,. [ |
Finally, we deduce a criterion of uniform invertibility for the operators Ag and Bz.

Theorem 7.3.1. Let m, M be the constants defined in (7.45).
When k. € (—o0; —1/m) U (—=1/M;0), A% : H(Q) — H{(Q) is uniformly invertible as § — 0.
When k,, € (—o0;—1/m) U (—=1/M;0), Bi : H#(Q) — H;#(Q) is uniformly invertible as § — 0.

Proof. Let us show the result for Ag, the proof is completely similar for Bg. From the decom-
position of the space H}(Q) in (7.13), one observes that the operators T5 = (T3) ' defined in
(7.22) and (7.28) are uniformly continuous. From the estimate (7.27) (resp. (7.30)) together with
the result of Lemma 7.3.7, one infers that as § — 0, (V(Ag(TE-)),V-) (resp. (V(Ag(TB~)),V~))
is uniformly coercive in H}(Q) when x. > —1/M (resp. when k. < —1/m). Since A% is also
uniformly continuous, this is enough to guarantee that Ag is uniformly invertible as § tends to
Z€ro. |

7.3.4 Optimality of the criterion and connection to the Neumann-Poincaré
operator

Let us discuss the criterion we have obtained above. We focus our attention on the analysis
for the operator A‘g, similar comments can be made for the operator B/i' We assume in this
paragraph that 0Y;, and so 89?, is of class C2. Note that this assumption is important to ensure
that the spectrum of Problem (7.55) below is discrete. It has been proved in [21] that in this
case, Ag is Fredholm of index zero when k. # —1. Therefore when k. # —1, the operator
Ag is an isomorphism if and only if it is injective. As it has been observed in different works
(see in particular [31]), and as we recall below, the question of the injectivity of Ag is directly
linked to the spectrum of the so-called Neumann-Poincaré operator. The latter has been widely
studied when € is the whole space R?. For this problem, among the references, let us cite
[128, 4, 129, 130, 99, 84, 83, 126, 33, 34, 82]. Below, we use a symmetrization argument similar
to the one used in [99]. We work with Dirichlet-to-Neumann maps following the approach of [82].

Spectrum of the Neumann-Poincaré operator

Set 229 := Q¢ and introduce the two Dirichlet-to-Neumann operators A, : H/2(£%) — H™1/2(%?),
A; : HY2(29) — H7Y2(2%) such that for all ¢ € HY?(X?), we have Aop = Oy, te, Nip = On,u;
where u., u; solve respectively the problems

Au, = 0 inQ Au; = 0 inQ
ue = 0 on 9N w = ¢ onX. (7.54)
Ue = @ on »°

Define also the lifting operator R : H/2(29) — H}(Q) such that Ry = u, in Q, Rp = u; in QF,
where u,, u; are the solutions to (7.54).

If u belongs to ker A2 \ {0}, then ¢ = u|ys € HY2(X%) \ {0} satisfies Acp = —r-A;jp. By a
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straightforward computation, we find that the pair (o, ¢), with a := (ke + 1) /(ke — 1) € (—1;1),
is a solution to the generalized eigenvalue problem

Find (o, p) € R x (H/2(29)\ {0}) such that:

(7.55)
A_p=alAip

with Ay := A, £ A;. Reciprocally, assume that (o, ) is a solution to (7.55) with a € (—1;1).

Then, Ry € H}(Q) is an element of ker A% \ {0} for k. = (o +1)/(ar — 1) € (—o0; 0). This shows

that it is sufficient to determine the eigenvalues of problem (7.55) to study the injectivity of Ag.

Note that the spectrum of (7.55) coincides with the spectrum of the so called Neumann-Poincaré

operator studied for example in [99].

Theorem 7.3.2. The spectrum of the generalized eigenvalue problem (7.55) is discrete and co-
incides with two sequences of real numbers

—l1<a; <a; <---<0 and  l=aof =--- = >0

+ + e
Oéca,rd(K‘s) > Oécard(K‘s)Jrl >

such that lim «oF = 0. Here card(K°) is the cardinal of the set K° defined after (7.3).

n—-+o0o

Proof. First, we show that A, : HY/?(2%) — H™Y2(2%) is an isomorphism. Consider some
Y e HV2(29). 1f p € HY?(29) verifies A ¢ = 1, then Ry is a solution to

Find u € H}(Q) such that

7.56

(Vu, Vo) = (¢, v)5s , Yo € Hy(9). (7.56)
Reciprocally, assume that u is a solution to (7.56). Then the function ¢ := ulys satisfies
Ay = 1. According to the Lax-Milgram theorem, Problem (7.56) admits a unique solution
for all ) € H/2(2°). We infer that A, : HY/?(2%) — H™'/2(2°) is indeed an isomorphism.

Now, remarking that A., A; have the same principal symbol and using standard arguments
of pseudo-differential operators theory (work as in the proof of [83, Theorem 1]), we can show
that A_ = A, — A; : HY2(2%) — H™Y/2(2%) is compact. We emphasize that the assumption of
smoothness of ¥° here is important.

Using the Riesz representation theorem, define the operator K : H'/ 2(E‘;) — HY 2(25) such
that
(K, ¢)gs = (Ao, ¢)ss forall p,¢" € HY?(5). (7.57)

Here, we use the notation (-, )ss := (A4-,-)ys. Note that according to the features of Ay, the
latter form is an inner product in H/?(X%) equivalent to the usual one. Remark that (v, ¢) is
an eigenpair for (7.55) if and only if we have K¢ = ap. But due to the properties of A_, K is a
selfadjoint and compact operator. Therefore, the spectrum of (7.55) coincides with a sequence of
eigenvalues which accumulate at zero. We can use the min-maz principle (see [140, Chapter 3])
to characterize these eigenvalues. We have

A_
af = sup w (7.58)
peH/2(29)\{0} (A, )5

By the min-max principle, we know that this sup is attained for some @f. By induction, for
k > 2, we define
A_
of = sup w (7.59)
¢ € HY/2(x9)\ {0}, (Ao, 0)ss
e L{of, ... b 1}
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Here, if ¢, ¢’ are two elements of HY/2(X?), we write ¢ L ¢’ when (¢,¢ )ss = (Ao, @'V =
(V(Re), V(R¢')) = 0. Similarly, we define

A
a; = inf w, (7.60)

per!/2(2o\ {0} (Ayp, 0)ss
and, by induction, for k > 2

A_
o = ot (A_p,p)5s
e e H/2(25)\ {0}, (Arw,@)xs
o L{pT, s ep 1t

(7.61)

Observing that for all p € HY/2(2%)\ {0} we have

(A_p, ©)5s _ 1—a
(Arp,@)ss 14a’

with a = (Aip, @)ss /(Aep, ©)ss > 0,

we deduce that there holds off € [~1;1] for all k € N* := {1,2,...}. Taking ¢ = ¢ |ss with ¢
defined in (7.11), we find @ = 0 and so <A,<p ©)ss /(Arp, p)ss = 1. This allows one to prove that

af == a;rd(K(;) = 1. Now, if a (o)1 — 1 then there is ¢ € H'/2(%) \ {0} such that

(A, @)ss = 0 and Ry € HJ,\ {0}. This is impossible and therefore there holds o ard(0) 41 < -

Similarly, if o] = —1, then there exists ¢ € H/2(2%) \ {0} such that (A.p, )5 = 0. This can
not happen, which implies that a; > —1. |

Optimality of the invertibility conditions

From the discussion preceding the statement of Theorem 7.3.2, we deduce the following result.

Theorem 7.3.3. For k. € (—o0;0)\ {—1}, the operator AS : HY(Q) — HY(Q) is an isomorphism

if and only if
+1 p+1
Hagé{ak i k}l}u{zl_‘;_l,k>card(K§)+1},
k

A

where the oiF are defined in (7.59)-(7.61).

Observing that the map « — (a+ 1)/(a — 1) is decreasing on (—1;1), we deduce in particular
from Theorem 7.3.3 that A is an isomorphism for

ot +1 |
Ke € (— 00; frd(K&Hl ) U ( al_ ;O>. (7.62)
acard(K5)+1 -1 ap —1

But one can verify that we have

+
acard([@)—i—l +1
-1

a; +1

L ymp
o] —1

_ [
o =—1/mjp and
card(K9%)+1

where m‘sD, Mg are the constants defined in (7.14). As a consequence, the invertibility condition
for Ag obtained in Proposition 7.3.1 is the same as (7.62). This shows that the result of Proposition
7.3.1 is optimal in a certain sense. This is the first remark of this section.
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Comparison with existing literature

In previous articles (see in particular [27] and [43]), authors have worked with the operator
T : Hy(92) — Hy(Q) such that

(7.63)

A8
Tgach in g

—p+2Pyp in Q?

where, setting HO 00 (2) = {elas, v € H)(Q)Y, P Hém((lg) — HY(Q?) denotes the harmonic
extension operator, i.e. the operator such that Py solves the problem

A(Pp) = 0 inQ (7.64)

Py = ¢ onaQ?.

We have T o T = Id which shows that T is an isomorphism of Hj(€2). On the other hand, for all
¢ € HY(Q), we find

(V(AL(T9)), Vi) = ee|| Vollds + il Vel +22(V(Pp), Vo)gs. (7.65)

Set )
s IV PP
M= sup  —— (7.66)
et o (2)\{0} ||V80||Qa

Using Young’s inequality, from (7.65) we infer that for all 7 > 0, there holds
(V(A2(T9)), Vo)l = (e — 7 Ml MP)|[Vepllds + [l (1 — NIVl (7.67)

As a consequence, we deduce that when e, > |g;| M2 < k. = &;/ec > —1/MJY, the operator A%
is an isomorphism of H}(€2). Let us compare this operator T introduced in (7.63) with the T+
defined in (7.22). Clearly in Q , we have T = Tfp. In QZ, for ¢ = @p + @y + ¢ with ¢y, € U'CD,
Py, € spang s {ph} and ¢ € HO(Qg UQ?), we have

The=¢n+ 0, — ¢
But one observes that
Py = P(on+ @1+ @) = P(on + @) = on + Py

Therefore, we have —p + 2Py = ¢p, + &, — p = ThHy in Q which shows that the operator T
defined in (7.63) coincides with T};. Moreover, using Lemma 7.3.2, it is an exercise to prove that
M3, is equal to the constant M9 deﬁned in (7.14). Therefore, the simple operator T in (7.63) is
already very efficient. This is the second remark of this section.

T-coercivity operator in the general case

Finally, we explain how to construct an operator of T-coercivity for contrasts k. as in the statement
of Theorem 7.3.3, in particular for contrasts in (—1/m%y; —1/M%) \ {—1}, this case being not
covered by Proposition 7.3.1. First, we reindex the eigenvalues {a;, }n>1, {;; Pnscard(ko)+1 and
denote them {ay,}n>1. Let (¢,) be a family of eigenfunctions of the operator K introduced in
(7.57) associated with the eigenvalues «,,. We choose them so that the functions Ry, n > 1,
form an orthonormal basis of H%,. Now we define the operator Tp : H}(Q) — HE(€Q) such that
for o = ¢p + Oy + @ with @, = > 1R € HY, Oy, € spangegs{eh} and ¢ € Hy(Q2 UQY),
neN*

Z tn'ynjz@n + Py + $ in Qg

Tpp =| "EN 7.68
PYTEN by Ron + @ — @ in Q. (7.68)

neN*

there holds
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Here we take ¢, = 1 for n such that k. > ky, := (@, +1)/(ap, — 1) and t, = —1 otherwise.
The operator Tp is valued in Hé(Q) and we have Tp o Tp = Id which guarantees that Tp is an
isomorphism of H}(Q).

Proposition 7.3.4. Assume that k. # —1 is such that for all n € N*, we have k. # kK, with

on+ 1
= . 7.69
i oy — 1 ( )

Let Tp : HY(Q) — HY(Q) denote the isomorphism defined in (7.68). Then (V(A2(Tp-)),V-) is
coercive in HY(Q). As a consequence, AS : HY(Q) — HL(Q) is an isomorphism.

Proof. For all ¢ € H{(Q), we find

eV, V(Tpp) = D tu | ml*(€V(Ren), V(Ren)) + (6eVPh, VL) s + (|| VR, VE).  (7.70)
neN*

But by the definition of the x,, we have, for all n € N*,

(V(SR‘PTL)’V(RSOTL))QQ = _’{n(v(fRS@n)vv(R‘Pn))Qf‘
This allows us to write

Z tn |'Yn’2(5v(3290n>7v(92§0n)) = Ee Z tn "Yn‘Q('“@s - "ﬁn)(v(iRSOn%v(:R‘Pn))Qf

neN* neN*

= & Z |’7n|2|"€5 —/{M(V(Rgpn),V(ngon))Q?.
neN*

(7.71)

Observing that we have ||V(92<pn)||é5 > ig{]* | 7|V (Repn) |15 (note that the sequence (|K,|)
is bounded), from (7.71) we obtain

Y talmlP(eV(Ren), V(Ren)) = C nf [re — fin| Y IV Ren)|1*. (7.72)
neN* neN*

Using (7.72) into (7.70), we get (eVp,V(Tpy)) = C ienl\f]* ke — kn| | V||? for all p € HY(Q). W

Remark 7.3.4. In the following, we will not work with the operator Tp defined in (7.68) to
investigate what happens for contrasts in (—1/m;—1/M)\ {—1}. The reason is that the value of
the Ky, defined in (7.69) depends on § and the operator Tp is useful to prove a result of uniform
invertibility of Ag only if we know that there is a segment of (—1/m; —1/M)\ {—1} of non empty
interior which is uniformly free of the Kk, as § tends to zero. It is an open question to find
conditions on the geometry such that this occurs.

7.4 Analysis of the cell problem and properties of the homoge-
nized tensors

In this section, we study a scalar problem set in the reference cell (supplemented with periodic
boundary conditions) and the associated homogenized tensor. These quantities, which appear in
the homogenization of Maxwell’s equations considered in Section 7.5, are the same as the ones in
[43] and [31], so that the results below complement and improve those obtained therein.
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7.4.1 Cell problem

Denote by €5.(Y) the subset of functions of ¢°°(Y) satisfying periodic boundary conditions on

per

dY. Let H}..(Y) be the closure of €5,(Y) for the norm of H'(Y). Then set

H%)ero( ) _{QDGHper )| / @dUZO}
aY;
We endow this space with the inner product (V-, V-)y. For  equal to € or u as defined in (7.2),

the problem we are interested in writes

Find ¢ € Hpem(Y) such that:
Ve, Ve'ly = U¢), V¢’ € Hyp oY),

where £ is a continuous linear functional on H.

Y)

(7.73)

pero(Y). Inorder to study this problem, we introduce

the closed subspace of Hper of

Hll)er,O,aY( )_{SOEHpero( )|90:00n 8YV%}

Then we define the space Cf{b such that

~ L
I—Ipl)er <>( ) = fH:b D H%)er, 0,0Y; (Y) (774)

We will not look for an exact characterization of f]th. Let us simply remark that if ¢ € ff-fb, then

for all ( € 65°(Y. UY;) C Hpe]r 0,0v,(Y), we have 0 = (Vy, V()y. This implies that the elements

of Utfb are harmonic in Y, UY;. Then we introduce the constants

Vo2
my = inf IVell3, M, = IVelly,

p .
@eF,\{0} HVQOHYe 0ed,\{0} Hvﬂ&

(7.75)

Theorem 7.4.1. Assume that ke (resp. r,) € (—o0; —=1/m)U(—1/M;0) where m, M are defined
in (7.45). Then the problem (7.73) with n = € (resp. n = u) admits a unique solution which
depends continuously on £.

Proof. To set ideas, we take n = ¢, the proof is the same for n = u. With the Riesz representation

theorem, define the operator D, Hper JY)— Hll)er oY) such that
(V(D:0), Ve )y = eV, Ve )y, Y, ¢ € Hye oY) (7.76)
Let us show that D, is an isomorphism when k. = g;/e, € (—o0;—1/m) U (—1 /M 0). For

p el
With this decomposition, we define the operators Tb such that

pero(Y), consider the decomposition ¢ = goh + ¢ with ¢ € f}{b and ¢ € Hpe]r 0,0v;(Y)-

T+ = Ton+¢ inYe
’ tpn—¢ inY;

Working as in the proof of Proposition 7.3.1 with the operators T* replaced by T+, one establishes
that D, is an isomorphism when k. € (—oo; —1/my,) U (—1/M,;0). To obtain the desired result,
it remains to show that m < m;, and M, < M. Since f}ACb C H,, from Lemma 7.3.6, we clearly
have M, < M. Now let ¢ be an element of H, \ {0}. Denote ¢ € Hy the function such that
¢ = ¢ on 0Y;. The function ¢ decomposes as ¢ = C+ app with C € Hypand a € R (pp is
defined before (7.44)). Note that ¢ # 0 otherwise we would have @ = 0 (because pp = 1 on
9Y; and / (do = 0) and so ¢ = 0. Observing that ¢ — (—aisin H%)er,O,BYi (Y), due to the

oY;
decomposition (7.74), we can write

(Ve, V(g —Q))y = (Vo, V(g —C —a))y = 0. (7.77)
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But on the other hand, since we have V¢ = Vf = V( in Y}, so that in particular there holds

IVell3, = VI, (7.78)
we infer from (7.77) that
(Ve, V(e = Q)y. =0. (7.79)
This implies
IVelly, < VI3, (7.80)

Gathering (7.78) and (7.80), we deduce that

IV, Vel
ms —x o S 7
IVClZ  IVelly,

(7.81)

Taking the infimum over all ¢ € H, \ {0} in (7.81), we obtain that m < m,. |

7.4.2 Homogenized tensors

Assume that the contrasts x. and &, are located in (—oo;—1/m) U (—1/M;0). For n =€ or u
and j = 1,2, 3, we define the function X;‘] e H! (Y) such that

per,o

(VX! VEy = (Vy;, VEy,  VEeHL, (V). (7.82)

Note that the right hand side of (7.82) simply writes
9
(1935 Yy = [ ng>d
’ y 0y;

and that Theorem 7.4.1 ensures that the functions X? are well-defined. It is also worth noticing

that by setting x" := (x7, x4, Xg)T, we have for all A € R?:

(VA x"). VE)y = V(A - 1), VE)y = /Y DA-Vedy,  VEeHL, (V). (7.83)

Denoting by V" the jacobian matrix of x":

the homogenized tensor associated with n is classically defined as the 3 x 3 symmetric matrix
€ (n) = (HG1(n))1<j k<3 given by (see, for instance, identity (6.35) in [59])

1
A o) =7 [ o) [1a = (1)) (7.84)
or equivalently (see (6.37) in [59]):

() = qu [ ¥ =) Vo - 3D (7.85)

Proposition 7.4.1. Assume that ke (resp. k,) € (—o0;—1/m) U (=1/M;0) where m, M are
defined in (7.45). Then the matriz 7 (g) (resp. F(u)) is positive definite.
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Proof. The proofs for J#(¢) and ¢ (p) are the same and to set ideas, we choose to work with
e. According to formula (6.44) in [59], for all & = (&1,&2,£3)" € R3, we have

c%”(é‘)&f:/ys\vwg\?dy

where the function ¢ is defined by

3
we(y) =D&y — X))
j=1

Note that if ¢ is constant in Y, then evaluating ¢¢ on Y and using the fact that the functions
X; satisfy periodic boundary conditions, we find that £ = 0 and so ¢¢ = 0. Now, we assume that
§ # 0. Subtracting the mean value of the test functions on 0Y;, we see from (7.82) that x5 satisfy
the slightly more general variational equality (the variational space is not the same as in (7.82))

(eVX5, Ve )y = (eVy;, Ve )y, V¢ e Hp (V).
Taking ¢’ € 65°(Y), this implies that we have
div(eVie) =0 in Y. (7.86)

i) Introduce the function ¢¢ such that

1
e = P — mr do € H(Y).

From (7.86), we deduce that ¢¢ is harmonic in Y, UY;. Therefore, we have ¢¢ € H, and from
Lemma 7.3.6, we can write

IVeelly, = IV@elly, < M [[Veely, = M Vx|,
This allows us to write
H(2) €€ =ce|Veelly, — leil [Veelly, = (ce — lesl M) Veell3, -

Hence, for . > |&;| M < k. = €;/ee > —1/M, the matrix J¢(¢) is definite-positive. Note that
we have V¢ # 0 in Y, otherwise we would have Vg = 0 in Y (because ¢p¢ € Hl(Y) is harmonic
in Y.) which is impossible when £ # 0 (see the discussion above).

i1) Now, we consider the case k. € (—oo;—1/m). The proof is a bit less straightforward and
we divide it into two steps. Define the quadratic form g.(-) : R?® — R such that

q=(§) = H(e) € - &.
Step 1. First, we prove the following result.

Lemma 7.4.1. Assume that k. € (—oo; —1/m). Then the form q. is definite ( q-(§) =0 =& =
0).

Proof. A bit more generally (this will serve in the proof of Lemma 7.4.2 below), assume that
¢ € R*\ {0} is such that

LO<0 o /6Vgp§|2dy<0.
Y
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Then from identity (7.86), we infer that we must have

e
€e — e do < 0. 7.87
/8Y o P5 (7.87)

Now, introduce ¢ € Hp the function such that ¢ = ¢ on 9Y;. The function ¢ decomposes
as ¢ = C+ app with ¢ € Ho and o € R (¢p is defined before (7.44)). Observe that we
have QA' # 0. Indeed, otherwise ¢ would be constant in ¥;. And then (7.86) together with the
unique continuation principle would imply that ¢¢ be constant in Y, (because we would have that
Ape = 0in Y, ¢ = cste on 9Y; and 0y, p¢e = 0 on 0Y;) and so in Y. According to the discussion
above, this is impossible when £ # 0. Observing that ¢ — (f + a) = 0 on 9Y;, integrating by
parts, we can write

. ) ”
(Ve Vige - Oy, = (Vee. Vg~ Cay, = [ par— [ 9%
oy on gy on
(7.88)
oy On

The last equality above has been obtained using (7.87) and identity (7.86) multiplied by «. From
(7.88) and the Cauchy-Schwarz inequality, we infer that

IVeell3, <IIVCI,-

Since on the other hand there holds V¢ = V(¢ in Y; so that ”VSDEH%Q = ||V§A||%/Z, we deduce that

IVEI3, _ IVeel?,

m< ——t g : (7.89)
IVENZ, ~ IVeells,

But then, when k. = ¢;/e. < —m e e, < leilm, we can write

(&) = H(e)§- & = /Y€V905!2dy = el Veells, = leil 1Veel3; < (ee = leilm)[Vell3, <0.

In particular we obtain a contradiction if £ # 0 is such that ¢.(§) = 0. This proves that ¢. is
definite. m

From classical results concerning quadratic forms, we deduce from Lemma 7.4.1 that for each
ke € (—o0;—=1/m), ¢-(+) is either positive definite or negative definite.

Step 2. Now consider some ¢ € R?\ {0}. Corollary 5.6 of [31] or Lemma 7.4.2 below guarantee
that g-(&) is positive for k. tending to —oo. Using the fact that k. — ¢-(§) is continuous and
that ¢.(-) is always definite for k. € (—oo; —1/m), we infer that ¢.(-) is positive definite for all
ke € (—o00; —1/m). This achieves the proof of Proposition 7.4.1. [

Below, for the sake of completeness, we present an alternative proof to Corollary 5.6 of [31] which
is a bit more direct.

Lemma 7.4.2. For any given £ € R3\ {0}, we have ¢-(€§) > 0 for ke tending to —oco

Proof. Impose that k. € (—oo;—1/m) and for € € R?\ {0}, assume that we have ¢.(¢) < 0.
Define the function

1
He = - — do.
e = P¢ |3y|/8Y<P£ o
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From (7.86), we can write

O
1 IIVoell2 = || [IVeel? = vv2—/ S ped
leil IVeelly, = leil IV@elly, el Velly, 8yse o, Pedo (7.90)
< Cec||Vaely, = Cee | Velly,-

The last inequality in (7.90) is a consequence of the continuity of the mappings ¢ — ¢|sy and
¢ — Opploy from {p € H(Y.)|Ap = 0in Y.} to HY/2(9Y) and H~'/2(9Y) respectively. Note
that since the mean of ¢¢ over JY is null, a classical Poincaré type inequality allows one to prove
that the H' norm of ¢ in Y, is controlled by ||V¢|ly,. From (7.90), we get

IVeells, ~ C

TRALIL P (7.91)
IVeelly, ~ kel

where C' > 0 is independent of k.. Taking the limit k. — —oo in (7.91), we obtain a contradiction
with (7.89) (here we use that ¢-(£) < 0) because m > 0 is independent of k.. Therefore we must
have ¢.(§) > 0 for contrasts tending to —oo. [

7.4.3 Numerical illustrations

Proposition 7.4.1 guarantees that if k., x, € (—oo0;—1/m) U (—=1/M;0), the matrices J(¢),
A (u) are positive definite. This may seem a bit surprising and when one looks at the definition
in (7.85), this is far from being obvious. The goal of this paragraph is to present some numerics
to illustrate this property. To set ideas we compute J#(¢) and to simplify we work in 2D. In this
case, J (g) is a 2 X 2 symmetric matrix. We do not expect particular differences between 2D
and 3D settings. Numerically, we approximate the solutions of the problems (7.82) using a P2
finite element method. To proceed, we use the library FreeFem++' to compute the matrix ¢ ()
using formula (7.85). The mesh size is chosen equal to 0.02. Admittedly the numerical analysis of
problems (7.82) is not standard because of the sign-changing e. However in general, at least for
contrasts k. “not too close” to —1 when 0Y; is smooth, we obtain a reasonable numerical solution.
We refer the reader to [120, 53, 18] for more details concerning these aspects. In Figures 7.2 and
7.3 below, we display the two real eigenvalues of 7 (¢) with respect to the contrast x. € (—10;0)
(we take ; = —1 and e, varies) for two different geometries of Y;. For the numerics of Figure
7.2, the inclusion Y; is an ellipse while for Figure 7.3, it is a rectangle. We emphasize that in
the latter case, problem (7.82) is not well-posed in the Fredholm sense for k. € (—3,—1/3) (see
[26, 17]). As a consequence, for this range of contrasts, our numerical solutions have no sense.
But for both settings, we observe that for contrasts large enough or small enough, the matrix
() is positive definite as expected. Interestingly, at least in the case of the ellipse where we
know that the numerical solution is meaningful except for k. # —1, we also note that #(¢) is
not positive definite for all contrasts. We emphasize however that we do not investigate these
regimes in our analysis below.

' FreeFem++, http://www.freefem.org/ff++/.
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Figure 7.2: Representation of the two eigenvalues of ¢ (¢) with respect to k. varying in (—10; —1)
(left) and (—1;0) (right). Here the inclusion Y; coincides with the interior of the ellipse {(x =
0.5+ 0.4cosf,y = 0.5+ 0.2cos @), 6 € [0;27)}.
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Figure 7.3: Representation of the two eigenvalues of 7 (¢) with respect to k. varying in (—10; —1)
(left) and (—1;0) (right). Here the inclusion Y; coincides with the rectangle (0.1;0.9) x (0.3;0.7).

7.5 Homogenization of Maxwell’s equations

We come back to Maxwell’s problem (£2?) for the electric field (see (7.9)). We define the bilinear
form a’ (-,-) associated with (7.9) such that

w
a(E,E") = ((1°) tcurl E,curl E') — w*(°E, E'), VE,E' € Hy(curl; Q).

Let m, M be the constants defined in (7.45). When k., K, € (—o0;—1/m) U (—1/M;0), the
matrices S (¢) and J(u) are well-defined according to Theorem 7.4.1. Moreover, according to
Proposition 7.4.1, these matrices are positive definite. Hence, we can introduce the homogenized
problem

: eff .
o e ey
whose variational formulation writes
Find E°T € Hy(curl; Q) such that for all E' € Hy(curl; Q) (7.93)
(B B =iw(J,E). '

eff
Here a,

(+,-) is the bilinear form defined on the space Hy(curl; Q) such that
" (E,E') = (# () ‘curl E,curl E') — w*(A#(e)E, E').
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It is worth noticing that the above homogenized problem (which has exactly the same form as
the one obtained for classical (positive) Maxwell’s equations) involves the homogenized tensors
of the scalar problems studied in the previous sections. This fact will be used in a crucial way in
the sequel to prove our homogenization result for Maxwell’s system. Classically, one can easily
prove that (%) admits a unique solution for all

w? € C\ At (7.94)

where AT is a discrete subset of [0; +00).

The proof of a homogenization result for Maxwell’s equations without sign-changing coefficients
is by now quite classical (see for instance [14, 143, 136, 58]). It may be achieved by using, for
instance, a notion of convergence specific to the periodic homogenization, namely the two-scale
convergence, which was introduced by G. Nguetseng in [116] and further developed by G. Allaire
[5]. Using this notion, a typical proof for such a homogenization result relies on three main ingre-
dients. First, a uniform energy estimate is obtained for the sequence of solutions of (95). Next,
one shows that this uniformly bounded sequence has a (two-scale) limit that solves a two-scale
limit problem. Finally, this limit problem is decoupled, yielding the homogenized problem which
is proved to be well-posed. Due to the sign-changing coefficients and the presence of the non sign-
definite L? term involving w?, proving the first ingredient is far from being obvious. In particular,
the strategy proposed for instance in [58] does not apply anymore (as the spectral decomposition
available in the strongly elliptic case fails). Instead, we proceed as follows. First, we prove a
homogenization result for solutions of (@5) under a uniform energy estimate condition. Using
this result, we prove by contradiction the needed uniform energy estimate for the solutions (,97’5).
This leads to the main result of the paper (Theorem 7.5.1), namely the homogenization result for
sign-changing Maxwell’s equations.

7.5.1 Homogenization result under uniform energy estimate condition

Let J be a given field of L%(Q). The aim of this section is to obtain a homogenization result for
a sequence of functions (E5) solving (L@‘s) and satisfying the uniform energy estimate

3C >0, V6 € (0;1),  ||E|? +|curl E°|I2 < C || T2 (7.95)

As it was already observed in [43] in the analysis of the homogenization process for the Dirichlet
scalar operator Ag, the presence of sign-changing coefficients does not affect the two-scale con-
vergence result. However, for the sake of completeness, we give here a proof of this convergence
result following [14, 143, 136] and in particular [58]. We start by recalling the definition of the

two-scale convergence (see [5]). Here we set €5o.(Y) := (‘Kgg’r(?)):s.

Definition 7.5.1. A sequence (E°) in L*(Q) two-scale converges to E° € L2(Q x Y) if we have

lim (E?, v(-,-/0)) = / (E°(z,-),v(z,-))y dz
Q

6—0

Jor all v € 65°(€ 5o, (Y)). Then we denote E’ 2 E°.

The notion of two-scale convergence is interesting due to the following compactness result (see
for instance [136, Proposition 2.5]). It was first obtained by N. Wellander in [141] and then by

V. Tiep Chu and V.H. Hoang in [136]. Here, Hper(curl;Y') denotes the closure of €pq,(Y) for
the norm (|| - [} + [|eurl - [[3)"/2.

Proposition 7.5.1. Let (E°) be a bounded sequence in H(curl;Q). Then, there exist a sub-
sequence, still denoted (E°), and functions ET ¢ H(curl;Q), © € LQ(Q;Héer(Y)), E' ¢
L2 (0 H,e:(curl,Y')) such that the following two-scale convergence results hold as 6 — 0:

E° 2 BT v,e, curl E° 2 curl E*" + curl, E'.
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Moreover, we also have the following weak convergence results in LQ(Q) :
E° —~ ET i L2(Q), curl E° — curl E°T  in L2(Q).

We are now in position to prove the main result of this section, namely the convergence of a
sequence of solutions of problem (335) satisfying the energy estimate (7.95) to a solution of
(2°1) when § — 0.

Proposition 7.5.2. Assume that k., k, € (—oo; —1/m)U (—1/M;0) where m, M are defined in
(7.45). Let (E%) be a sequence of solutions of (22°) satisfying the uniform estimate (7.95). Then
as § — 0, we have

E° —~ E°f and curl E° — curl E°f in L?(Q)
where E*Y solves the homogenized problem (2°%).

Proof. We take in (2?) (see (7.9)) a test function of the form

B'@) = o(0) + 36" (2.5 ) 40V (v (.5) ).
with ¢ € €F(Q), 9t € €L (EX,.(Y)), v € €5°(Q; €. (Y)). By taking the limit as § — 0

per per
thanks to Proposition 7.5.1, we get as in [136, Proposition 2.5] the following two-scale limit

problem:

/ ((y)) ™ (curl E(z) + curl, E'(z, y)) . (curlcp(m) + curl, ¢ (=, y)) dz dy
QxY

~ [ =) (BM@) 4 V,000.0) - (60) + Vy0(a0) dody
QxY

= iw/J cpdr +iw / J(z) - Vy(z,y) dedy. (7.96)
Q Qxy

Since 9 (x, ) is Y —periodic, the second integral of the right hand side vanishes and hence, setting
R(z,y) := (u(y)) ™ (curl E°"(z) + curl, E'(z, y)) (7.97)

and
S(z,y) == e(y) (BT +V,0), (7.98)

relation (7.96) reads

/ R(z,y) - (curlcp(a:) + curl, ' (z, y)) dz dy
QxY

W2 / S(a,y) - (p(z) + V(@) da:dy:iw/J-godx. (7.99)
QXY Q

In order to prove that E°T solves the homogenized problem (e@eﬁ), it suffices to show that the
two terms of the left hand side in the above equation can also be written as follows:

/ R(z,y) - (curlcp(a:) + curl, ' (z, y)) dedy = / (A (1) teurl E°T . curlpdz (7.100)
QxYy Q

/ S(x,y) - (p(2) + Vi (z,y)) dxdy:/%(s)EeH'godx. (7.101)
QXY Q
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Indeed, once these two last relations proved, the conclusion follows immediately since problem
(7.99) writes then

/(%(u))_lcurl ET . curl pdz — wz/jf(s)Eeﬁ cpdr = iw/ J - pde,
Q
Q Q

which is exactly the weak formulation of the homogenized problem (2°7).
Step 1: proof of relation (7.100). Taking in (7.99) test functions ¢ = 0 and ¥ = 0, we obtain that

/ R(z,y) - curl, o' (z,y) dzdy = 0, Vil € € (€2, (Y)). (7.102)

per
QxY

The above relation implies the existence of a function p € L*(Q;H. . ,(Y)) such that (see for

per,o
instance the proof of Proposition 1.14 of [5], and more precisely the discussion following relation

(1.19) therein)
R(a.y) = Voplo) + [ R(e.5)d5. (7.103)

Now, we follow the ideas of [14] and [58]. From the definition (7.97) of R and direct calculation,
one has for ¢ € H. (Y):

per
/Y wy)R(z,y) - VE(y)dy = /Y(curl Eeﬁ(m) + curl, El(:n, y)) - VE&(y)dy = 0. (7.104)
Combining (7.103) and (7.104) we get that

1)Vl y) - VE(y) dy = / Hy)A - VE@y) dy,
Y Y

where we have set A = — / R(z,y)dy € R? (here, 2 is fixed and can be considered as a
Y

3
parameter). Comparing with (7.83), we immediately obtain that p = X - x* = Z)\j X5,
j=1
)T

where x* = (x|, x4, x4)" solve the cell problems (7.82) with n = p. Consequently, we have
3

Vyp = Z Aj - VX? = (VX“)TA, and hence

J=1

R(z,y) = Vyp(z,y) +/

[ Ra.)d7 = 0= Vx)"] [ RG.5)a7,

Y

Using the above formula and expression (7.84) of ' (u), we get that

[ R dy = #) [ Ry
J %
But on the other hand, we also have from definition (7.97) of R(x,y) that
/ p(Y)R(z,y)dy = / (curl E°T(z) 4 curl, E'(z,y)) dy = curl E°T(z).
Y Y

Since () is positive definite for £, € (—oo0; —1/m) U (—1/M;0), we obtain by combining the
last two relations, that

/Y R(x,y) dy = (A(1)) " curl B (x),
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which also reads (due to the definition of R)

/ (1()) " (curl B (2) + curl, E'(z,y)) dy = ( (1)) 'curl B (z).
Y

The claimed relation (7.100) simply follows by multiplying the above equation by curl ¢, inte-
grating over Q and adding (7.102).
Step 2: proof of relation (7.101). Taking ¢ = @ = 0 in (7.99), we obtain that (since w # 0):

S(z,y) - Vy(z,y)drdy = 0. (7.105)
QxY

Since ¢ is arbitrary in 65°(%; 6. (Y)), this implies in particular that for almost every x €
and for all § € 65, (Y):

| S Vew s = [ cw)(v,0wy)+ BT@) - V() dedy = 0. (7.106)
Hence
| 9,00 Ve ay = [ N -Vt ay.
where we have set X' = —E°f () € R? (for a fixed value of x). Comparing the above relation with

(7.83) for n = ¢, we get that ©(x,y) = X' - x° and hence V,0 = (Vx*)TN = —(Vx*)TE ().
Using expression (7.84) of the homogenized matrix, we obtain that for every ¢ € €5°(£2):

S(ay) - pla)dody = [ e0) (B(@) + 9,0(0,0)) - ola) dody

QxY QxY

_ / () ET . pda. (7.107)
Q

Relation (7.101) follows immediately by adding (7.105) and (7.107). |

7.5.2 Proof of the uniform energy estimate

This section is devoted to the proof of the uniform estimate (7.95) for solutions of (£°). More
precisely, we have the following proposition.

Proposition 7.5.3. Assume that k., k, € (—oo;—1/m)U (=1/M;0) where m, M are defined
in (7.45). Assume that w? € C\ AT where AT appears in (7.94). Then, there exists 5y > 0
such that for all § € (0;8], problem (P°) admits a unique solution E°. Moreover we have the
estimate

1B + leurl B] < C |17 (7.108)

where C' > 0 is independent of § € (0; dp].

Proof. When &, k, € (—oo;—1/m) U (=1/M;0), according to Theorem 7.3.1, we know that
A% HL(Q) — H(Q) and Bi : H#(Q) — H%(Q) are isomorphisms. From the Theorem 6.1 of [23],
we infer that <7} (w) : Hy(curl; Q) — Hy (curl; Q) is an isomorphism if it is injective. Therefore,
we have to prove that szf]é, (w) is injective for 6 small enough. To proceed we work by contradiction.
Slightly more generally, for a given J € L?(f2), assume that there is a sequence of values of §
denoted (O )ren, with dp — 0, such that if we set g, := %, g 2= u6k, E; := E% ¢ Hy (curl; Q),
we have

a®(Ey, E') := ((ux) ‘curl By, curl E') — w? (e, E, E') = iw (J, E'), VE' € Hy(curl; Q),
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as well as
IEL|? + |[curl By|® > k.

Then set Ej := Ey/(|Ex|]? + ||curl E¢||?) and Jy := J /(| Ex||* + ||curl E¢|?). We have

a*(Ey, E') = iw(Jy, E'),  VE' € Hy(curl;Q) (7.109)
and ~ ~ B
|Ex|” + llcurl E4|* = 1, lim || Jg[| = 0.
k——+o00

Since (E}) is bounded in Hy(curl;Q), we can extract a subsequence, still denoted (E}), such
that (E}) converges weakly in Hy(curl; Q) to some Eg € Hy(curl; Q). Thanks to Proposition
7.5.2, we can pass to the limit in (7.109) to get

¥ (Ey,E')=0, VE'€Hy(curl;Q). (7.110)

Since w? € C \ AT, this implies that Eg = 0. In order to obtain a contradiction, it remains
to show that (E},) strongly converges to zero in Hy(curl; Q). To proceed, we have to establish
some sort of compactness result using the fact that when w # 0, we have div(ezEx) = 0 in Q
which implies that Ej € Vy(e). For each k > 1, from Theorem 5.1 of [23], we know that
when k. € (—o0; —1/m) U (—1/M;0), Vn(ei) is compactly embedded in L*(2). But here we
need some uniform result with respect to k. To proceed, we will take in (7.109) a well-chosen test
function. Let us mention that a similar difficulty appears in the justification of the approximation
of Maxwell’s equations with finite elements methods, the mesh size h replacing the parameter ¢
(see [110, §7.3.2] and the references therein). First, introduce the unique function i € H%é Q)
such that
(1. V1, V') = (1, curl Ey, Vo), Vi)' € Hy ().

When x, € (—oo;—=1/m) U (=1/M;0), from Theorem 7.3.1, we know that 1} is well-defined.
Moreover, we have ||[Vi,|| < C |lcurl Ej|| < C where C' > 0 is independent of § (note that () is
a bounded sequence of functions of L>(Q2) and we have ||ux|1,0 (o) = max(pe, |uq]) for all k € N).
Then i, (curl Ej, — Viy,) is divergence free in Q and satisfies ju,(curl Ej, — Vi) - n = 0 on 0.
From [8, Theorem 3.17], we know that there exists a unique Py E}, € V(1) such that

curl (PLE},) = i (curl E. - Vir). (7.111)

Since in Vy(1), |[curl - ||o is a norm which is equivalent to || - ||cur1 (Proposition 7.2.1), we infer
that (Pg) is a sequence of operators which are uniformly bounded from Hy(curl; Q) to Vi (1).
Testing in (7.109) with E' = P, E}, using (7.111) and integrating by parts, we get

iw(Jp, PrEy) + W (exEr. PeEr) = ((uk) " 'curl By, curl (P Ey))

- - - 7.112
= (curl E,curl E;, — Vi) = |curl B[ ( )

Using that Py : Hy(curl; Q) — V(1) are uniformly bounded, (E}) converges weakly to zero
in Hy(curl; Q) and V(1) is compactly embedded in L?(Q2) (Proposition 7.2.1), we deduce that
we can extract a subsequence, still denoted (E}), such that (P, E}) converges strongly to zero in
L%(Q). Then from (7.112), we deduce that the sequence (curl E}) converges strongly to zero in
L%(Q). Using the result of Proposition 7.5.4 below which guarantees that || Ey|| < C ||curl Ey||
with some C' > 0 which is independent of k, we deduce that (Ek) converges to zero in Hy (curl; Q).
This contradicts the initial assumption. As a consequence, taking first J = 0 above, we deduce
that (£?) is injective and so uniquely solvable for § small enough. Then for a given non zero
J € L(Q), the above lines imply the uniform estimate (7.108). |

Proposition 7.5.4. Assume that k. € (—o0;—1/m) U (—=1/M;0) where m, M are defined in
(7.45). Then there is a constant C > 0 independent of 6 such that

|E|| < C|curlE|,  VE € Vy(e). (7.113)
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Proof. If E € V (&), according to [8, Theorem 3.12], we know that there is a unique u € V(1)
such that E = (55)*1curlu. Then integrating by parts, we find

((¢°)teurlu, curlu) = (curl E, o), Vu' € Vp(1). (7.114)
Introduce the function ¢ € H}(Q) such that
2V, V') = (curlu, V'), Vo' € HY(Q).

Since k. € (—oo;—1/m) U (—=1/M;0), from Theorem 7.3.1, we know that ¢ is well-defined.
Moreover, we have ||[V|| < C |curlu|| where C' > 0 is independent of ¢ (note that ||€5”Loo(ﬂ) =
max (e, [&;]) for all § > 0). Then £’(curlu — V) is divergence free in Q and again from [8,
Theorem 3.12], we know that there is a unique Tu € V(1) such that curl (Tu) = €°(curl u— V).
Since in V(1), ||curl - || is a norm which is equivalent to || - ||cur1 (Proposition 7.2.1), we infer
that T : V(1) — V(1) is a uniformly bounded operator. Choosing ' = Tu in (7.114) and
integrating by parts, we obtain

(curl E, Tu) = ((¢°)'curlu, curl (Tu)) = ||curlu||? — (curlu, Vi) = ||curl u||?.

Using the Cauchy-Schwarz inequality, this gives ||curlu|| < C ||curl E|| where C' > 0 is indepen-
dent of 6. This yields the desired estimate (7.113). [

7.5.3 Final result
Gathering Propositions 7.5.2 and 7.5.3, we can state the final result of this article.

Theorem 7.5.1. Assume that k., K, € (—o0;—1/m) U (=1/M;0) where m, M are defined in
(7.45). Assume that w € C\ AT where AT appears in (7.94). Then, there exists 69 > 0 such that
for § € (0,d0], the solution E% of problem (@6), which is well-defined according to Proposition
7.5.3, satisfies

E° —~ gt and curl E° — curl E*f weakly in L?(Q)

where BT is the unique solution of problem (2°1) given by (7.92).

Let us conclude this paper with two comments. Firstly, in this work, we only prove weak conver-
gence results. Strong convergence results (using correctors) for Maxwell’s equations with positive
materials have been obtained in [133, 134]. It would be interesting to understand if we can adapt
the approach proposed in these two articles to our setting. Secondly, the obtained bounds for the
contrasts (involving m and M) to ensure the homogenization process are probably not optimal.
Improving them would require a sharp analysis of the asymptotic behavior of the critical contrasts
given by (7.69) as ¢ tends to zero (see Remark 7.3.4). Is it possible that the two scalar problems
with Dirichlet and Neumann boundary conditions be uniformly well-posed as § tends to zero,
even when some cell problems have a non zero kernel or when the homogenized tensors are not
positive definite? This has still to be clarified.
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7.6. Appendix. Table of notation for the functional spaces

7.6 Appendix. Table of notation for the functional spaces

For the reader’s convenience, we list below the main functional spaces used throughout the paper:

1
Hper

(Y)

Hpero(Y)

Hlor 0 0y, (Y)
¥,

H(curl; Q)

Hy (curl; Q)
Hper(curl Y)
L*(Q)

Vr(€)
Vn(é)

§

(
(€

;:{goeHl / goda—()}

= {p e HY(N );A¢_oln95u95 Onp = 0 on 9N}

:= Closure of €55.(Y

= (¢:°()°
= (Zo(Y))?
= {p € H'(Q)| ¢ = 0 on 90}

i: {LpeHl \/cpdx—()}

= {p c H{(Q )]Agp—Oan‘SUQ‘S}
= {p e H) (Ve Vb)) =0, Vke K%}

= {p e HY | (Vo, V) =0, Vke K°\ {ko}}

= {p e HY(Q) | =0 on 9Q’}

= {¢las, » € Hy(2)}
{ngHlY\/ wdo =0}
= {p e HY(Y)|Ap=0in Y, UY;}

= {p e Hy(Y)|Ap =0 in Y, UY;}

= {p € Ho|(Ve, Vep) =0}
= {p e H,|0p=00n0Y}
) for the norm of HY(Y)

per

= {p e Hip(¥ |/)¢da—m
= {QDGHpero( )‘(P_OOH BY}

:= Orthogonal complement of Hper 0,0v,(Y) in Hper +(Y)
= {H € L*(Q) | curl H € L*()}

= {E €H(curl;Q) | E xn =0 on 90}

:= Closure of €22, (Y) for the norm (|| - | + [lcurl - |3)'/2

= (LX(Q))°
= {H € H(curl; Q) | div(¢H) =0, €¢H -n =0 on 02}

= {FE € H(curl; Q) | div(¢E) =0, E x n =0 on 09}.



Chapter 8

Conclusions and future directions

Let us conclude this work by summarizing the contribution that has been presented in this thesis
and by mentioning some future directions that we think are interesting to investigate.

Conclusions

In the first part, we studied the scalar transmission problem between some positive and nega-
tive materials separated by an interface with a smooth conical tip. We showed that it can be
studied by combining the T-coercivity approach with the Mellin analysis in weighted Sobolev
spaces. We proved that the critical interval can be characterized as the set of contrasts for which
propagating singularities exist. Contrary to the 2D case of interfaces with corners, the number
of propagating singularities for this problem can be greater than 2 (in the particular case of the
circular conical tip, this number tends to 400 when the contrast approaches —1). In the process,
we highlighted an interesting link between the critical interval and the essential spectrum of the
so-called Neumann-Poincaré operator. For contrasts inside the critical interval, the Mandelstam
radiation principle has been used to construct (an infinite number of) functional frameworks in
which well-posedness is restored. These frameworks are constructed by taking the sum of well-
chosen weighted Sobolev spaces and particular spaces of propagating singularities (the idea is
to include only the ones which have a positive energy flux). Under some assumptions on the
contrast, whose validity has been investigated in details for the case of the circular conical tip,
then we explained how to apply the limiting absorption principle to select among these functional
frameworks that are coherent with the Mandelstam radiation principle, the one that corresponds
to the physical reality.

The second part of this work has been devoted to present a new numerical strategy to approxi-
mate the solutions of the 2D /3D scalar problems with sign-changing coefficients in the classical
H! framework. The approach is based on an optimal control reformulation of the problem and
is proved to be convergent without any additional assumption on the mesh near the interface as
soon as the problem under study is well-posed in the classical Sobolev spaces.

Then in the third part, we considered the time harmonic Maxwell’s equations with one or two
critical coefficients. We explained why the classical functional framework is no longer suitable
for the study of this problem. By combining new results of vector potentials in weighted Sobolev
spaces, new regularity /compactness results concerning classical vector potential spaces, the Mellin
analysis and the T-coercivity approach, we explained how to construct new functional frameworks
for the electric and magnetic problems. These frameworks are themselves directly related to the
ones obtained for the two associated scalar problems. We established that if one uses the setting
that respects the limiting absorption principle for the scalar problems, then those provided by
our theory for the electric and magnetic problems are also coherent with the limiting absorption
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principle. Thus the important message is that the study of the Maxwell’s equations can be re-
duced to the study of two corresponding scalar problems.

Finally, in the last part of this work, we turned our attention to the study of the homogenization
process for time-harmonic Maxwell equations and related scalar problems in a 3D domain that
contains a periodic distribution of inclusions made of negative material. Due to the sign-change
of the electromagnetic parameters, the derivation of uniform energy estimates, which are needed
to ensure that the homogenization process is possible, is not straightforward even in the case of
the scalar problems. Using the T-coercivity approach, we obtained conditions on the contrasts
associated to the electromagnetic parameters under which we have been able to perform the
homogenization process for the scalar problems. Interestingly, we showed that the homogenized
matrices associated with the limit scalar problems are either positive definite or negative defi-
nite. By combining this with a new uniform compactness result for Maxwell’s spaces established
thanks to the T-coercivity approach, we proved that the homogenization process applicable for
the vectorial problem under the same assumptions as for the scalar equations.

Future directions

In addition to the open questions and possible extensions that we have presented at the end of
each chapter, let us mention here some more general questions that can be seen as a natural
continuation of the work done in this thesis.

e Numerical approximation of Maxwell’s equations with sign-changing coefficients.
One of the most challenging questions that has not been addressed in these pages concerns
the numerical approximation of the solution of Maxwell’s equations with sign-changing co-
efficients.

For non critical contrasts, while several convergent methods have been proposed for the
scalar problem, in particular the one developed in the last chapter, the only existing work
concerning Maxwell’s equations is [56]. The problem considered in [56]. corresponds to
the particular case where ¢ is positive and p has a sign-change without being critical. The
technique developed there can not be generalized to the situation where both € and p are
sign-changing. To overcome these limitations, an interesting idea would be to try to extend
the method proposed in Chapter 4 to the case of Maxwell’s equations.

When one of the electromagnetic parameters is critical, the only existing approach to ap-
proximate the solution of the scalar problem in the new framework is to use Perfectly
Matched Layers (PMLs) near the origin (see [45]). The proof of convergence is a work in
progress. The adaptation of this method to study Maxwell’s equations is also a challenging
question. Since the framework we proposed for the problem in this configuration suggests
that the solution should be decomposed as the sum of a regular part and a singular part
that belongs to a finite dimensional space, one might think that it is enough to enrich the
classical Nedelec space with the ad hoc propagating singularities to obtain a convergent
method. Unfortunately, this is not so simple because some terms in the new formulation
are hard to compute (numerically).

o Extension of our results to other singular geometries. The results obtained in
this work are not valid for situations involving interfaces with other types of geometric
singularities such as 3D edges or 2D cusps. The determination of the critical interval in
these configurations remains an open question. In this direction, natural questions arise.
How to determine the critical interval for the scalar problems? How to identify, for critical
contrasts, adapted functional frameworks to recover well-posedness for the scalar problems?
Then does the theory presented here to construct well-chosen functional frameworks for
Maxwell’s equations starting from those for the scalar problems, still work?



Chapter 8. Conclusions and future directions 216

e Study of Maxwell’s equations in waveguides. In the literature, it seems that the
study of classical (with positive coefficients) Maxwell’s equations in infinite waveguides in
presence of propagating modes is not yet treated. In this direction we can wonder if the
work presented here can help to address this problem, the propagating modes at infinity in
the waveguide playing the same role as the propagating singularities at the tip in our work.

e Spectral analysis of Maxwell’s equations with dispersive materials. A natural
question to complete our work is to determine the configurations for which trapped modes
exist. Let us recall that trapped modes are non trivial solutions of the homogeneous equa-
tions living in the classical framework. Let us also recall (see Chapter 1) that from a
physical point of view, the negative materials that we have studied in this thesis are in fact
dispersive materials, where ¢ and p are functions of the frequency w, becoming negative
in some frequency ranges. Then a relevant question can be to consider w as a spectral
parameter: for a bounded inclusion of dispersive material embedded in a bounded domain
filled with a classical non-dispersive dielectric, what are the values of w for which trapped
modes exist? Due to the dispersion, this leads to study a non-linear eigenvalue problem.
Such question has been investigated in the 2D scalar case in [45]. In particular in this work,
in presence of a corner, it has been shown that the critical interval of contrasts gives rise to
an interval of essential spectrum. Our contributions should allow us to extend these results
to the 3D scalar case. But the extension to Maxwell’s equations seems much more challeng-
ing, in particular due to the fact that the spaces of divergence free fields will themselves
depend on the spectral parameter w. Note that we would be especially interested in trapped
modes corresponding to so-called embedded eigenvalues (in the essential spectrum) leading
to non-uniqueness of the solution for the problems we introduced in Chapters 6 and 5.

The results of this work have been/will be the subject of the following publications:

1. R. Bunoiu, L. Chesnel, K. Ramdani, and M. Rihani. Homogenization of Maxwell’s equa-
tions and related scalar problems with sign-changing coefficients, Annales de la Faculté des
Sciences de Toulouse,2020. Published.

2. A-S. Bonnet-Ben Dhia, L. Chesnel, and M. Rihani. Maxwell’s equations with hypersingu-
larities at a conical plasmonic tip. Accepted in Journal de mathématiques pures et
appliquées.

3. A-S. Bonnet-Ben Dhia, L. Chesnel, and M. Rihani. Maxwell’s equations with hypersingu-
larities at a conical plasmonic tip (part2), In preparation.

4. A-S. Bonnet-Ben Dhia, L. Chesnel, and M. Rihani. Radiation condition for a 3D interface
between a dielectric and a negative material. In preparation.

5. P. Ciarlet Jr, D. Lassounon and M. Rihani. An optimal control-based numerical method
for scalar transmission problems with sign-changing coefficients. In preparation.
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equations can be ill-posed in the classical L?—frameworks. On the other hand, we know that when the two associated scalar
problems, involving respectively € and pu, are well-posed in Hl7 the Maxwell’s equations are well-posed. By combining the
T-coercivity approach with the Mellin analysis in weighted Sobolev spaces, we present, in the first part of this work, a detailed
study of these scalar problems. We prove that for each of them, the well-posedeness in H' is lost iff the associated contrast
belong to some critical set called the critical interval. These intervals correspond to the sets of negative contrasts for which
propagating singularities, also known as black hole waves, appear at the tip. Contrary to the case of a 2D corner, for a 3D
tip, several black hole waves can exist. Explicit expressions of these critical intervals are obtained for the particular case of
circular conical tips. For critical contrasts, using the Mandelstam radiation principle, we construct functional frameworks in
which well-posedness of the scalar problems is restored. The physically relevant framework is selected by a limiting absorption
principle. In the process, we present a new numerical strategy for 2D/3D scalar problems in the non-critical case. This
approach, presented in the second part of this work, contrary to existing ones, does not require additional assumptions on
the mesh near the interface. The third part of the thesis concerns Maxwell’s equations with one or two critical coefficients.
By using new results of vector potentials in weighted Sobolev spaces, we explain how to construct new functional frameworks
for the electric and magnetic problems, directly related to the ones obtained for the two associated scalar problems. If one
uses the setting that respects the limiting absorption principle for the scalar problems, then the settings provided for the
electric and magnetic problems are also coherent with the limiting absorption principle. Finally, the last part is devoted to the
homogenization process for time-harmonic Maxwell’s equations and associated scalar problems in a 3D domain that contains
a periodic distribution of inclusions made of negative material. Using the T-coercivity approach, we obtain conditions on the
contrasts such that the homogenization results is possible for both the scalar and the vector problems. Interestingly, we show
that the homogenized matrices associated with the limit problems are either positive definite or negative definite.

Titre : Equations de Maxwell en présence des matériaux négatifs.

Mots clés : Equations de Maxwell, Singularités de coin, Ondes de trou noir, Conditions de radiation, Principe de Mandelstam,
Principe d’absorption limite, Théorie de Kondratiev, Méthode des domaines fictifs, Controle et optimisation, Homogénéisation.
Résumé : Le sujet principal de cette these est ’étude de la propagation des ondes électromagnétiques, en régime harmonique,
dans un milieu hétérogéne composé d’un diélectrique et d’un matériau négatif (c’est-a-dire avec une permittivité diélectrique
négative € et/ou une perméabilité magnétique négative p) qui sont séparés par une interface avec une pointe conique. En
raison du changement de signe de € et/ou p, les équations de Maxwell peuvent étre mal posées dans les cadres classiques (basés
sur l'espace L2), D’autre part, nous savons que lorsque les deux problémes scalaires associés, impliquant respectivement ¢ et p,
sont bien posés dans H', les équations de Maxwell sont bien posées. En combinant la méthode de la T-coercivité avec Panalyse
de Mellin dans les espaces de Sobolev & poids, nous présentons, dans la premiere partie de ce travail, une étude détaillée de ces
problémes scalaires. Nous prouvons que pour chacun d’entre eux, le caractére bien posé dans H' est perdu si et seulement si
le contraste associé appartient a un ensemble critique appelé intervalle critique. Ces intervalles correspondent aux ensembles
de contrastes négatifs pour lesquels des singularités propagatives, aussi appelées ondes de trou noir, apparaissent & I’extrémité
de la pointe. Contrairement au cas d’un coin 2D, pour une pointe 3D, plusieurs ondes de trou noir peuvent exister. Des
expressions explicites de ces intervalles critiques sont obtenues pour le cas particulier des pointes coniques circulaires. Pour les
contrastes critiques, en utilisant le principe de radiation de Mandelstam, nous construisons des cadres fonctionnels dans lesquels
le caractere bien posé des problémes scalaires est restauré. Le cadre physiquement pertinent est sélectionné par un principe
d’absorption limite. En outre, nous présentons, dans la deuxiéme partie de ce travail, une nouvelle méthode numérique pour
les problémes scalaires dans le cas des contrastes non-critiques. Cette approche, contrairement aux techniques existantes, ne
nécessite pas d’hypotheses supplémentaires sur le maillage au voisinage de l'interface. La troisieme partie de la these concerne
I’étude des équations de Maxwell avec un ou deux coefficients critiques. En utilisant de nouveaux résultats de potentiels
vecteurs dans des espaces de Sobolev & poids, nous expliquons comment construire de nouveaux cadres fonctionnels pour les
problémes électrique et magnétique, qui sont directement liés a ceux obtenus pour les deux problémes scalaires associés. Si
I’on utilise le cadre qui respecte le principe d’absorption limite pour les problemes scalaires, alors les cadres fournis pour les
problémes électrique et magnétique sont également cohérents avec le principe d’absorption limite. Enfin, la derniére partie
porte sur des résultats d’homogénéisation des équations de Maxwell harmoniques et des problémes scalaires associés dans
un domaine 3D qui contient une distribution périodique d’inclusions faites de matériau négatif. En utilisant I’approche de
la T-coercivité, nous obtenons des conditions sur les contrastes telles que le processus d’homogénéisation est possible pour
les problémes scalaires et vectoriels. De facon peu intuitive, nous montrons que les matrices homogénéisées associées aux
problémes limites sont soit définies positives, soit définies négatives.

Institut Polytechnique de Paris ;Q'\""’g_
91120 Palaiseau, France 5, o

4, *
‘" bg oP



	Introduction
	 Study of the scalar transmission problem in presence of a conical tip of negative material
	Introduction
	General properties of the critical interval
	Relation between the critical interval and the spectrum of the Neumann-Poincaré operator

	Study of the far problem 
	Preliminaries 
	Study of the problem in the vicinity the boundary 
	Final proof

	Study of the problem in the whole space
	Weighted Sobolev (Kondratiev) spaces 
	The Mellin transform 
	Definition of the problem
	Mellin symbol of the problem
	Solvability of the problem
	Asymptotic of the solution

	Application: study of the problem in the unit ball
	Study of the initial problem
	Characterization of the critical interval
	On the use of the Mandelstam principle to recover Fredholmness of the problem 
	Selection of the physical solution by means of the limiting absorption principle

	Concluding remarks and open questions
	Appendix
	The Kelvin transform
	The Peetre’s Lemma


	The study of the Mellin symbol of the problem
	Introduction
	Fredholmness of the symbol and discreteness of the spectrum 
	Fredholmness of the symbol 
	Discreteness of the spectrum
	Localization of the spectrum and boundedness of the resolvent
	Algebraic multiplicities of eigenvalues in the energy line e()=-1/2

	Stability of (L) with respect to perturbations of  
	Properties of the spectrum of the perturbed problem
	Convergence of the spectrum 
	Numerical illustration
	Convergence of the eigenfunctions

	The particular case of circular conical tips
	Dispersion relation
	Expression of the critical interval
	On the validity of Assumption 2.6.2 for circular conical tips 

	Concluding remarks
	Appendix
	The T-coercivity approach for the anisotropic scalar problem
	Associated Legendre functions


	 An optimal control-based numerical method for scalar transmission problems with sign-changing coefficients 
	Introduction
	Main assumption on  and reformulation of the problem 
	The smooth extension method for the scalar transmission problem
	Formal presentation of the smooth extension method
	An optimal control reformulation of the problem

	Basic properties of the optimization problem and its regularization
	Properties of the objective function
	The set of minimizers of the function J
	Gradient of the function J
	Tikhonov regularization of the problem

	Numerical discretization of the problem 
	Mesh assumptions
	Discretization strategy
	Convergence of the method

	Numerical experiments
	Flat interface
	The case of a circular interface
	 The case of an interface with corner

	Concluding remarks
	Appendix

	Maxwell's equations with hypersingularities at a conical plasmonic tip: the case of one critical coefficient
	Introduction
	Assumptions for the dielectric constants , 
	Conical tip and scalar (hyper)singularities
	Kondratiev functional framework

	Analysis of the problem for the electric component
	A well-chosen space for the electric field
	Definition of the problem for the electric field
	Equivalent formulation
	Main analysis for the electric field
	Problem in the classical framework
	Expression of the singular coefficient
	Limiting absorption principle

	Analysis of the problem for the magnetic component
	Equivalent formulation
	Norms in bold0mu mumu ZZ2005/06/28 ver: 1.3 subfig packageZZZZT() and bold0mu mumu ZZ2005/06/28 ver: 1.3 subfig packageZZZZoutT()
	Main analysis for the magnetic field
	Analysis in the classical framework
	Expression of the singular coefficient

	Conclusion
	Appendix
	Vector potentials, part 1
	Vector potentials, part 2
	Dimension of bold0mu mumu XX2005/06/28 ver: 1.3 subfig packageXXXXoutN()/bold0mu mumu XX2005/06/28 ver: 1.3 subfig packageXXXXN()


	Maxwell's equations with hypersingularities at a conical plasmonic tip: the case of two critical coefficients
	Introduction
	Setting of the problem and study of the scalar problems with critical coefficients
	The Laplace operator in weighted Sobolev (Kondratiev) spaces
	The scalar problems with critical coefficients

	Necessity of a new functional framework for the Maxwell's system
	The analysis the electric problem
	Definition of the electric problem
	Equivalent formulation for the electric field
	Equivalent norms in TEXT 
	Analysis of the principal part 
	Compactness result
	Main results about the electric problem
	The limiting absorption principle for the electric problem 

	The analysis of the magnetic problem
	Definition of the magnetic problem
	Equivalent formulation for the magnetic filed
	Equivalent norms in TEXT 
	Main results about the magnetic problem

	Concluding remarks
	Appendix
	Classical Helmholtz decompositions 
	Weighted regularity of vector potentials 
	Vector potentials in weighted Sobolev spaces 
	Density results 


	 Homogenization of Maxwell's equations and related scalar problems with sign-changing coefficients
	Introduction
	Setting of the problem
	Uniform invertibility of the two scalar problems
	First -dependent criteria
	Comparison between the criteria of invertibility
	Uniform criterion of invertibility
	Optimality of the criterion and connection to the Neumann-Poincaré operator

	Analysis of the cell problem and properties of the homogenized tensors
	Cell problem
	Homogenized tensors
	Numerical illustrations

	Homogenization of Maxwell's equations
	Homogenization result under uniform energy estimate condition
	Proof of the uniform energy estimate
	Final result

	Appendix. Table of notation for the functional spaces

	Conclusions and future directions 

