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Some people want it to happen,
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Abstract

Anthropogenic seismicity has been increased since the last decades due to the intense
human activity for energy production. However, despite the fact that merely injection of
fluids can induce/trigger earthquakes, in this thesis, we show that the strategic interplay
between fluid extractions and injections can control such seismic events and eventually
prevent them. More specifically, a novel mathematical framework of robust earthquake
control is built which in turn is exploited in numerical simulations of strike-slip faults and
gas reservoirs, as well as in new laboratory experiments of decimetric scale.

First, the key parameters which constitute a conventional earthquake mitigation strat-
egy are identified. Surrogate experiments on absorbent porous paper show that without
the precise knowledge of the fault properties, fluid injections risk to nucleate faster a large
seismic event.

In order to tackle such uncertainties, rigorous mathematical tools are developed using
modern control theory. These tools require minimal information of fault’s properties and
frictional characteristics to assure robustness. Numerical simulations on strike-slip faults
verify that earthquake prevention is possible, even in the presence of diffusion processes
and the absence of sufficient measurements both in time and space. Going a step further,
the developed control techniques can also be applied in large gas reservoirs, where the
desired gas production can be achieved assuring acceptable seismicity levels.

Finally, during this thesis, a novel triplet apparatus of decimetric scale has been
designed, constructed and calibrated accordingly. Pressure control can be achieved, in
this machine, in real-time, through a fast response electro-pneumatic pressure regulator.
As a proof of concept, the developed controller is plugged in this apparatus and by using
sand-based 3D-printed specimens (to promote experimental repeatability), we manage,
for the first time, to prevent laboratory earthquakes and drive the system aseismically to

an equilibrium point of lower energy.

Keywords: Controlling earthQuakes (CoQuake); Fault Mechanics; Robust Control; Sur-

rogate Experiments; Double-Direct Shear Apparatus; Induced Seismicity.
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Résumé

La sismicité anthropique a augmenté depuis les dernieres décennies en raison de 'intense
activité humaine pour la production d’énergie. Cependant, malgré le fait que la simple in-
jection de fluides peut induire/déclencher des tremblements de terre, dans cette these, nous
montrons que l'interaction stratégique entre les extractions et les injections de fluides peut
controler de tels événements sismiques et éventuellement les prévenir. Plus précisément,
nous construisons un nouveau cadre mathématique de contrdle robuste des tremblements
de terre, qui est ensuite exploité dans des simulations numériques de failles de glissement
et de réservoirs de gaz, ainsi que dans de nouvelles expériences de laboratoire a 1’échelle
décimétrique.

Tout d’abord, les parameétres clés qui constituent une stratégie conventionnelle d’atté-
nuation des séismes sont identifiés. Des expériences de substitution sur du papier poreux
absorbant montrent que sans la connaissance précise des propriétés de la faille, les injec-
tions de fluide risquent de nucléer plus rapidement un grand événement sismique.

Afin de faire face a de telles incertitudes, des outils mathématiques rigoureux sont
développés en utilisant la théorie moderne du controle. Ces outils nécessitent un mini-
mum d’informations sur les propriétés de la faille et les caractéristiques de frottement
pour assurer la robustesse. Des simulations numériques sur des failles a glissement latéral
vérifient que la prévention des séismes est possible, méme en présence de processus de dif-
fusion et en ’absence de mesures suffisantes dans le temps et I'espace. En allant plus loin,
les techniques de contrdle développées peuvent également étre appliquées dans les grands
réservoirs de gaz, ou la production de gaz souhaitée peut étre atteinte en garantissant des
niveaux de sismicité acceptables.

Enfin, au cours de cette these, un nouvel appareil a triplets d’échelle décimétrique a
été concu, construit et calibré en conséquence. Le controle de la pression peut étre réalisé,
dans cet appareil, en temps réel, grace a un régulateur de pression électro-pneumatique a
réponse rapide. Comme preuve de concept, le régulateur développé est branché dans cet
appareil et en utilisant des spécimens imprimés en 3D a base de sable (pour promouvoir
la répétabilité expérimentale), nous parvenons, pour la premieére fois, a prévenir les
tremblements de terre en laboratoire et a conduire le systeme de maniere asismique vers
un point d’équilibre de plus faible énergie.

Mots clés : Controlling earthQuakes (CoQuake) ; Mécanique des Failles; Controle Ro-
buste ; Expériences de Substitution; Appareil de Cisaillement Double-Direct ; Sismicité

Induite.
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Introduction

Earthquakes are one of the most destructive phenomena of the whole spectrum of natural
disasters. The consequences of an earthquake are often irreversible and financially devas-
tating. Apart from tectonic earthquakes, there are also earthquakes which are triggered
unintentionally by injecting fluids in the earth’s crust (see oil recovery, wastewater dis-
posal, deep geothermal energy, etc.) (Elsworth et al., 2016; Foulger et al., 2018; McGarr
et al., 2002; Rubinstein & Mahani, 2015; Schultz et al., 2020, among others). Indepen-
dently of the origin, an earthquake is a dynamic instability that occurs when the elastic
unloading of the rocks surrounding the fault zone cannot be counterbalanced by fault
friction. The released elastic energy travels up to the surface in form of seismic waves
(Semblat & Pecker, 2009) destroying world’s infrastructure and most importantly causing
several human losses (Jones, 2018). Nevertheless, most of the energy is dissipated due to
friction. Friction determines the nucleation of an earthquake, the evolution of seismic slip
and the magnitude of seismic events (Scholz, 2002). Friction is therefore of paramount
importance for studying earthquake nucleation, its dynamic characteristics and potential

mitigation strategies.

Experimental research aims to capture frictional behavior qualitatively and quanti-
tatively on (relatively) small-scale specimens made of either rock or surrogate materials
with or without gouge, in order to give implications on the large fault-scale characteristics
and the dynamics of earthquake ruptures (Anthony & Marone, 2005; Brune & Anoosheh-
poor, 1998; Burridge & Knopoff, 1967; Caniven et al., 2015; Corbi et al., 2013; Daniels
& Hayman, 2008; J. H. Dieterich, 1979, 1981a; J. H. Dieterich & Kilgore, 1994; Heslot
et al., 1994; Hulbert et al., 2019; Kammer & McLaskey, 2019; Ke et al., 2018; King,
1994; Knuth & Marone, 2007a; Latour et al., 2013; Lockner et al., 1982; Mclaskey & Ya-
mashita, 2017; Nasuno et al., 1998; Niemeijer & Spiers, 2007; Popov et al., 2012; Reber
et al., 2014; Ritter et al., 2016; Rosakis et al., 1999; Rosenau et al., 2009; Rosenau et al.,
2010; Roshankhah et al., 2018; Rubino et al., 2017; Rubinstein et al., 2012; Scholz, 2002;
Schulze, 2003; M. M. Scuderi et al., 2015; Svetlizky, 2019; Varamashvili et al., 2008; Xia
& Rosakis, 2021; Yamashita et al., 2018, among others). In addition, experiments at the
fault-scale have been carried out (see Cappa et al., 2019; Guglielmi et al., 2015; Raleigh

1



Introduction

et al., 1976), however due to the involved risks and costs, they are scarce.

Among these experimental campaigns, there is a plethora of laboratory and field experi-
ments studying the transition from seismic to aseismic slip during fluid injections (Cappa
et al., 2019; Guglielmi et al., 2015; Lockner et al., 1991; Tinti et al., 2016; Tzortzopoulos,
Braun, et al., 2021; Zang et al., 2019, among others). These works stress the immediate
need for fault stabilization and reduction of induced seismicity due to the intense hu-
man activity for energy production in the last decades (McGarr et al., 2002). Traffic-light
systems (Bommer et al., 2015; Hofmann et al., 2019; Kwiatek et al., 2019) and fracture
caging (Frash et al., 2021; Z. Li et al., 2021) are some representative techniques proposed
in the literature for minimizing seismicity:.

A great variety of numerical and theoretical works is also targeted to improving our
current understanding on friction, earthquake nucleation and arrest due to fluid injections
(see S. Barbot et al., 2012; Bhattacharya & Viesca, 2019; Larochelle et al., 2021; Mollon
et al., 2020; Semblat et al., 2021; Tal et al., 2020, and references therein). Another class
of methods is based on the prediction of the evolution of the system and the adjustment
of the fluid pressure to avoid probable future seismic events (Gualandi et al., 2020).

However, the main arising question is that as long as unconstrained fluid injections
increase the tremors in a seismogenic region, what happens when the fluid flux is regulated
in such a way to decline seismicity? The seminal field tests in Rangely, Colorado (Raleigh
et al., 1976), demonstrated exactly this scenario. While underground pore pressure was
increasing due to intense fluid injections, the seismicity was growing as well. On the
contrary, when backflowing was set in the installed wells, the seismicity in the region was
arrested. This study can be considered as the first earthquake control attempt taking
place in a fully monitored region under almost ideal conditions. Unfortunately, though,
real fault systems are sparsely monitored and the exact knowledge of the reservoir and

frictional characteristics is rare.

In this Thesis, we propose a robust earthquake mitigation strategy using fluid injections
allowing the knowledge of only minimal and not even precise information about the fric-
tional and mechanical characteristics of the fault system. This approach is based on the
mathematical theory of control and it is experimentally validated in the laboratory using
a novel double-direct shear apparatus of decimetric scale.

Control theory is a discipline of applied mathematics which deals with the control of
dynamical systems (Ackermann, 1985; Franklin et al., 2018; Franklin et al., 1998; Khalil,

2
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2013, 2015; Lewis et al., 2012; Ogata, 2010; A. I. Vardulakis, 2012). Given a set of tuning
variables (inputs), an algorithm is designed (controller) in such a way that the system
is driven to a desired state assuring, all the time, stability of the closed-loop system
(dynamical system + controller). However, all the systems cannot be controlled. Here,
we show that control theory can be applied to regulate the salient unstable dynamics of
a fault system. We exploit the dependence of friction on pressure (Terzaghi’s principle
of effective stress) and use it as a backdoor (input) for altering the dynamics of the

underlying dynamical system.

The present manuscript is organized as follows. Chapter 1 provides the conditions under
which a seismic slip occurs adopting either slip-weakening (Andrews, 1976; Kanamori &
Brodsky, 2004; Scholz, 2002; Stefanou, 2019; Tzortzopoulos, Braun, et al., 2021, among
others) or rate-and-state friction law (Rice & Ruina, 1983; Ruina, 1983; Scholz, 2002,
among others). Next, the dynamic response of the spring-slider (reduced order) model is
qualitatively presented for building understanding. In Chapter 2, analogue experiments
on absorbent porous paper highlight the key parameters and limitations of earthquake
mitigation strategies inspired by industrial practices using consecutive fluid injections.
Identifying the need for a more robust approach tackling parameter uncertainties and un-
modeled dynamics, such as friction and elasticity (among others), we develop, in Chapter
3, a robust mathematical framework using Control Theory. The proposed control ap-
proach needs minimal and not even precise information about the characteristics of the
fault system. Next, this theory is tested numerically in Chapter 4 considering real isolated
fault configurations including diffusion phenomena and sparse spatial measurements. In
case of imprecise knowledge of the geometry and location of the fault network, a non-
local approach can be combined as well. Finally, in Chapters 5 and 6, we validate that
our control strategy also works in laboratory models of earthquake system using a novel
double-direct shear apparatus. Obtaining adequate scaling laws (Appendix E), we scale
these results to a real strike-slip fault.

Notice that the Appendices of this Thesis should not be considered merely as a supple-
mentary material of the aforementioned Chapters. Instead, completed side tasks, which
couldn’t be integrated in the main body of this work, are present there. Particularly, in Ap-
pendices A and B, we characterize two new surrogate rock-like materials made of kitchen
roll paper and 3D-printing with sand particles, respectively. By adequately crafting the
interface of the latter, we can customize the frictional properties of the sheared interfaces

in the laboratory (Appendix C). Finally, in Appendix F, more advanced continuous-time
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controllers are designed, implemented and compared on the basis of our experimental

setup.

To sum up, the main objectives of this Thesis, that go a step further than the existing

state-of-the-art, are to:

1. Design and perform experiments in the laboratory, capturing the main dynamics of
the earthquake instability and the effect of fluid injections using analogue materials
such as Paper Towel and Sand-based 3D-Printed (S3DP) materials;

2. Design, assemble and calibrate a novel double-direct shear apparatus of decimetric

scale;

3. Develop a mathematical framework based on Control Theory for earthquake pre-
vention using fluid injections and/or extractions incorporating diffusion phenomena

and sparse measurements in space;

4. Perform laboratory experiments to explore the possibility of earthquake control.



CHAPTER ]_

Qualitative behavior of earthquakes

Central in the earthquake phenomenon is friction. In this chapter, we present an overview
of the most widely used frictional models in fault mechanics. It turns out that all of them
share the same property of Lipschitz continuity, which is a key element for applying the
nonlinear control theory presented later in this thesis.

The simplest earthquake model, in the literature, is the single-degree-of-freedom, spring-
slider model. By using this reduced-order model coupled with an adequate constitutive
friction law, we are able to study the response of earthquakes in an average sense and
draw qualitative conclusions. Adopting the slip-weakening and the rate-and-state friction
laws, we (re-)derive the conditions under which frictional instabilities (earthquakes) can
take place. Finally, using the same laws, numerical simulations have also been conducted

highlighting the characteristic dynamic response of the spring-slider system.

1.1 Friction laws

In the frame of fault mechanics, the most common frictional models that can lead to
earthquake-like instabilities are the Slip-Weakening (SW), Slip-Rate Weakening (SRW)
and Rate-and-State Friction (RSF) laws (see Byerlee, 1978; J. H. Dieterich, 1981a;
Kanamori & Brodsky, 2004; Scholz, 2002, among others). More advanced constitutive
models have also been proposed in the literature. These physics-based models can take
into account in an indirect manner various Thermo-Hydro-Chemo-Mechanical phenomena
that arise during frictional sliding (see S. D. Barbot, 2019a; Barras et al., 2019; Bhat-
tacharya & Viesca, 2019; Chester, 1994; Collins-Craft et al., 2020; Gelet et al., 2012;
Kenigsberg et al., 2020; Lachenbruch, 1980; Rattez et al., 2018a; Rattez et al., 2018a;
Rattez & Veveakis, 2020; Rudnicki & Chen, 1988; Stathas, 2021; Vardoulakis, 2000, and
references therein, among others). Nevertheless, despite the rich literature on that topic,
the quantification of the frictional properties of a fault is not a trivial task and it would

always lead to estimations characterized by large uncertainties (cf. Rice, 2006).

bt



Chapter 1 — Qualitative behavior of earthquakes

However, this does not mean that these uncertainties are unbounded. In the following
paragraphs we present the abovementioned popular frictional models and we show that
they are Lipschitz continuous functions. This property is useful for our developments
in Chapters 3-5 and Appendix F, assuring that our control approach is applicable even

without precise knowledge of the exact frictional parameters and their spatial distribution.

1.1.1 Slip-weakening friction

In the slip-weakening friction law, the coefficient of friction, u, evolves from an initial
value pimax (static friction coefficient), to a residual one pies (kinetic friction coefficient)
(see Scholz, 2002, and references therein). This transition is made in a characteristic slip
distance d¥ (Kanamori & Brodsky, 2004). The slip-weakening law is often expressed
through the following exponential decay function, whose parameters can be calibrated

based on experimental data:

)

Hn= ,u(é) = [hres + Aue_dgw’ (1'1)

where 0 > 0 is the slip and Apu = fimax — tres > 0. Exploiting the properties of the

exponential function it is easy to show that there exists 8 > 22 > 0 such that:

sw
g

|1(6) = p(0)] < B13]. (1.2)

1.1.2 Slip-rate weakening friction

Another law that is frequently met in the literature, is the slip-rate weakening friction law,
in which the friction coefficient is expressed in terms of the slip-rate, v > 0, i.e. u = p(v).

An example of such a law is given in Huang and Turcotte (1992) and takes the form:

= p(v) = Fm (1.3)

where v, is a characteristic velocity describing the friction coefficient drop due to slip-rate

weakening. Again, it is straightforward to show that there exists 3 > #m=x > () such that:

() = u(0)] < Blol. (1.4)

6



1.1. Friction laws

1.1.3 Rate-and-state friction

The most popular friction law that is used for applications in fault mechanics is the
rate-and-state friction law (J. H. Dieterich, 1979; Ruina, 1983). According to this model,
friction depends logarithmically on the slip-rate and on a state variable, 6, that reflects
microscopic processes related to contact asperities, healing and creep. The internal state
variable, 0, can be expressed mainly either by the aging law (J. H. Dieterich, 1979) or the
slip law (Ruina, 1983). The former is adopted in this thesis:

,u(v,@):,uo%—alnﬂerlnﬂ, (1.5a)
Vo 90
. vl

where g is a reference value of the coefficient of friction when an element slides with the

d rsf
c
vo

steady-state velocity vy and the state variable is equal to 6y = . The parameters a,
b and d*' are material properties which can be estimated performing velocity stepping
experiments (see Appendix B for more details). Assuming Coulomb’s friction law, the

resulting shear stress is:

(v, 0) :TQ—I—AIDE—}—BIDE, (1.6a)
Vo to
: vl

where 19 = oo, A = ao., B = bo], and o, is the effective normal stress acting on the
sheared interface. Let ¢ = Bln %, then Eq. (1.6) becomes:

T(v,0) = 1o +Alnv1 s (1.7a)
0
. B
w = ﬁ (er_% — U) , (17b)

Despite the success of this empirical constitutive law to represent experimental data,
it does not have a sound thermodynamical basis allowing for a proper balance of energies
through external powers and dissipation (Pipping, 2019). This mathematical drawback can
be alleviated by proper regularization. Pipping (2019) adopted two possible regularizations
that, in the frame of the aging law for the state evolution, can lead to a well defined

boundary value problem with unique solution in space and time. According to this author,
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Chapter 1 — Qualitative behavior of earthquakes

the friction coefficient can be given using any of the two following expressions:

v
_ ~ Asinh 2 1.
T =1T,(v,7) = Asinh 20, (1.8)
or
T=1(v,9) = Aln" (1.9)
vy

where In" z = In (max (1, 7)) and:

T+

Uy =Vpe A . (1.10)
It can be shown that (Pipping, 2019):
v 2
T (v, h2) = Te(0, ¥n)| < Te(0,¢2) — Te(v, ¥1)| < Alln UZ' = |2 — ¢l (1.11)

where we set 11 = ¥(t1), 2 = ¥(t2), with t5 > t;. The state variable, 1, satisfies the

general evolution law:

b+ A@) = f(v), (1.12)
where A\(¢) is a non-decreasing function and f(v) is Lipschitz. In the special case of the
aging law, A(¢y) = —Zvpe™ and f(v) = —Z;v. By integrating Eq. (1.12) with respect

to time and using the non-decreasing property of A\(¢) we obtain ¢, — 1y < [/ f(v)dt.
In the case of the aging law it holds:

B
(Y2 =] < 7510(t2) = o(t)]. (1.13)
Using Egs. (1.11) and (1.13), we can finally show that there exist 3; > L > 0 and
5_2 > A > 0, such that:
T(v, ) = T(0,0)] < Bu[0] + Balv]. (1.14)
By dividing Eq. (1.14) with the effective normal stress o/, we get:
(v, ¥) = 1(0,0)| < B1[8] + fBofvl, (1.15)

where 3 > ﬁ > 0 and 3 > a > 0. It is worth noticing, that this bound is a combination
of the bounds for slip and slip-rate weakening friction found in Sections 1.1.1 and 1.1.2,

respectively.
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1.1.4 Multiphysics couplings and friction

Due to the various complex phenomena that take place in nature, frictional weakening
may depend also on temperature, T', fluid pressure, P, chemical reactions, x, and other
multiphysics phenomena. The evolution of these phenomena may depend directly or in-
directly on the slip, d, the slip-rate, v, and on time. We consider these phenomena as

unmodeled and uncertain dynamics and we assume them to satisfy the following bound:
|M(57U7TaP7Xaat)_,u0‘ §51|5|+5Q‘U| (116)

with 81 > 0, B2 > 0 and pg being a reference friction coefficient. The explicit dependence
of the friction coefficient on time, ¢, represents unmodeled and uncertain physical processes
that can influence friction.

The above inequality signifies that the friction coefficient is a Lipschitz continuous
function in terms of slip and slip-rate. Lipschitz continuity is a reasonable assumption
given the finiteness in energy of any physical process that can influence the evolution of
the friction coefficient. Therefore, the evolution of several multiphysics phenomena could
be roughly estimated in specific situations and conservative bounds for the coefficients (5,

and 5 could be, in principle, estimated.

1.2 Spring-slider reduced order model

The dynamics of earthquakes can be represented, in average/energetical terms, through
the spring-slider analogue system (Kanamori & Brodsky, 2004; Scholz, 2002; Stefanou &
Tzortzopoulos, 2021; Stefanou, 2019; Tzortzopoulos, Braun, et al., 2021; Tzortzopoulos
et al., 2019, among others). As shown in Figure 1.1, this reduced order model can be
described by a mass-spring-damper system. This system consists of a mobilized mass, m,
which slides on top of a frictional surface (equivalent to a fault) by applying a constant
velocity, v, (equivalent to the far-field movement of the tectonic plates), at the extremity
of a Kelvin-Voigt configuration comprising of a spring with stiffness & (equivalent to the
apparent elasticity of the host rock) and a dashpot with damping coefficient 7 (equivalent
to the apparent viscosity of the surrounding rocks). On the frictional interface, the effective
“overburden” normal stress, o/ is applied. The shear stress, T, which is developed during
shearing is governed by Coulomb’s constitutive friction law.

According to Kanamori and Brodsky (2004) and Scholz (2002), during the earthquake

9
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T
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T

Figure 1.1 — Sketch of the spring-slider analogue system.

event, approximately a cuboid of size L,. (practically the fault length) is mobilized. There-
fore, the mass of an isolated fault can be expressed as (Stefanou, 2019; Tzortzopoulos,
Braun, et al., 2021):

m = a;pL? (1.17)

ac?

where p is the density of the surrounding rocks and «; is a constant of the order of unity.
In addition, the apparent elasticity per unit area of the fault can be calculated as (J. H.

Dieterich, 1979, among others):
G

Y
Lac

(1.18)

Z?:Oég

where G is the shear-modulus of the host rock, s is of the order of unity and k = k/L2..

The shear wave velocity of the material can be obtained from the following relation:

G
Vg = ] —. (1.19)
p
The damping coefficient 7, is given by:
n = 2{mwy,, (1.20)

where ( is the damping ratio and:

Ik forg Vg
n f— —_— — 1'21
w m o1 Ly ( )
10




1.2. Spring-slider reduced order model

is the natural frequency of the system. Equivalently, its normalized viscosity is given by:

C, = Ln = 2y/arap L, vs. (1.22)

Applying the force balance equation, the spring-slider system (see Figure 1.1) can be

represented by the following mathematical model:

mo = —pu(t,8,0)0! A+ k(0s(t) — 8) 4+ N(vee — 0), (1.23)

where A = L2, is the effective contact area, o, = vt the displacement of the extremity
of the Kelvin-Voigt configuration, pu(t,d,d) the coefficient of friction (see Section 1.1), §,

4, and & the slip, slip-rate and acceleration of the mobilized block, respectively.

In the following subsections, we will perform Linear Stability Analysis (LSA) in order
to study the stability of the spring-slider analogue model under the presence of either
slip-weakening (see Section 1.2.1) or rate-and-state friction laws (see Section 1.2.2). LSA

is carried out on the dimensionless form of Eq. (1.23), namely:

>

IN A+ ke(doo(t) — d) + 7(gee — d'), (1.24)

by introducing a characteristic time 7', a characteristic length D and a characteristic

pressure P as follows:

t = 1T, (1.25)
§ = dD, (1.26)
ol =6!P, (1.27)
0o = doo D, (1.28)
D
o] o0 ]_2
Voo = oo 7 (1.29)

where , d, G, dw, and ¢ are the dimensionless time, slip, effective normal stress, far-field

displacement and velocity, respectively. The dimensionless coefficients N, k and 7 in Eq.

11
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(1.24) are given from the expressions below:

N APT? PT?
N = = 1.30
mD a1pLa.D’ ( )
~ KT? ay /v T\?
k_n@_alQL)’ (1.31)
. nT Vg
=" = 2\/a( T, (1.32)

When an earthquake occurs, the stored elastic energy in the equivalent spring (see Eq.
(1.18)) is released abruptly resulting in a reduction of the apparent shear stress by Ar.
The motion of the block stops when a new equilibrium point (of lower energy) is reached.

The observed maximum slip obeys the following linear relation (Kanamori & Brodsky,

2004):

AT a3 AT
=q3— = ——1L L.
5max as k’ o G acH ( 33)

where k is given from Eq. (1.18) and as is of the order of unity. The duration of the

instability is:

LaC
gt = o = AT e (1.34)
Wy NGO

where w, is obtained from Eq. (1.21) and a4 depends mainly on the damping ratio, .

In the case, for instance, critical damping is adopted, ay = 2. Notice that both d,,., and
tinst Scale linearly with the fault length, L,.. Combining Egs. (1.33) and (1.34), we can
estimate the maximum slip-rate of the dynamic event as follows (Kanamori & Brodsky,

2004):
§max - Q305 AT

- Vs,
tinst URY. (6187 G

where a5 is a constant which approximately spans from 1 to 2. In this study, we consider

(1.35)

Umax = Q5

as = 2. In real in-situ cases, the average maximum developed slip-rate, v.y, is of the order
of 0.1 m/s (ay = a3 =1, ay = as = 2, At = 3 MPa, G = 30 GPa, and p = 2500 kg/m3),
independently of the fault length. The resulting magnitude of the nucleated earthquake
can be estimated using the expression below (Kanamori & Brodsky, 2004; Scholz, 2002;

Tzortzopoulos, Braun, et al., 2021, among others):
2
M, = 3 log My — 6.07, (1.36)

12



1.2. Spring-slider reduced order model

where:
My = agATL?, (1.37)

should be used in [N.m| and ag ~ 1.

1.2.1 LSA with slip-weakening friction

In this paragraph, we adopt the slip-weakening friction law as introduced in Eq. (1.1).
Notice that the displacement at the tip of the spring, d.., is a function of time. Therefore,
Eq. (1.24) is a non-autonomous nonlinear differential equation. To overpass this problem
and study the stability of the system using the 1% Lyapunov method for stability (Brauer
& Nohel, 2012), a double-scale asymptotic approach is employed (Stefanou, 2019). This
method can be applied due to the fact that the time-scale of the far-field movement (g) is
many orders of magnitude larger than the characteristic time-scale of the instability event
(f). Consequently, by applying the procedure described in Stefanou (2019), the system
that we will study in this Section corresponds to the fast time-scale (zero-order) and can

be expanded in first-order differential equations (¢ = d’) as follows:
¢ = —Nu(d)s; + k(de — d) — 7ig, (1.38a)
d =q, (1.38b)

where here d, is a constant. Consequently, the set of equilibrium points (¢”* = d”* = 0)

at time ¢ = * of Eqgs. (1.38) indicated by the superscript * is described by:

q- =0, (1.39a)

d* = doo — p(d*)5, (1.39b)

W>‘ 2>

In order to find under which conditions the above system is Lyapunov stable, we
perform a Linear Stability Analysis (LSA or 1st Lyapunov method for stability) (Brauer
& Nohel, 2012). The resulting Jacobian matrix calculated at the equilibrium point (¢*, d*)

1S:

IR ST
g | ad ’d:d* w (1.40)
1 0
Let i = 24 - (Ba. (1.1)) _ CZACT/; e~4"/4" where d*¥ = d*¥ D, the corresponding charac-
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teristic equation is:
s*+ s + (k + wio[N) =0, (1.41)

where s is the set of eigenvalues of the Jacobian matrix J. According to Descartes’ rule of
signs, if the nonzero terms of a single-variable polynomial with real coefficients are ordered
by descending variable exponent, then the number of positive roots of the polynomial is
either equal to the number of sign changes between consecutive (nonzero) coefficients, or
is less than it by an even number. In particular, if the number of sign changes is zero or
one, the number of positive roots equals the number of sign changes.

Therefore, as always 7 > 0 (see Eq. (1.32)), if the coefficient of the last term in Eq.
(1.41) is positive, we conclude that the J matrix has either two negative or two complex
conjugate eigenvalues with negative real part (—7/2 < 0). Consequently, the equilibrium
point (¢*, d*) is Lyapunov stable (Brauer & Nohel, 2012).

On the other hand, if the coefficient of the last term in Eq. (1.41) is negative, Eq. (1.41)
has one positive and one negative real roots. In this case, the equilibrium point (¢*, d*) is
Lyapunov unstable (Brauer & Nohel, 2012). Eventually, the instability condition of this

equilibrium point, given slip-weakening friction law is given by the following inequality:

Ap

<k =—pielN = d—e—d*/‘ffw&m. (1.42)
and in dimensional form: A
ko< ks = SEe-0/d gy (1.43)

c dsw

or equivalently:
F<Ror = T i
c s
where 0* = d*D. We can observe that the above inequality is in accordance with the
nominal studies of J. H. Dieterich (1979), Scholz (2002), and Stefanou (2019).

(1.44)

1.2.2 LSA with rate-and-state friction

In this paragraph, we adopt the rate-and-state friction law as introduced in Eq. (1.7). The
internal state variable obeys the aging law derived by J. H. Dieterich (1979). Considering
the system of Eqs. (1.24), we expect the equilibrium point in terms of the slip-rate to
be at zero (¢* = 0), as exactly in the case of the slip-weakening friction in Eq. (1.39).

However, due to the logarithmic nature of the rate-and-state friction law, zero velocity

14



1.2. Spring-slider reduced order model

would correspond to singular values in friction. Therefore, in order to study stability of
the spring-slider reduced order system coupled with rate-and-state friction, we have to
assure nonzero velocities and shift the system accordingly. Let the differential equations

of interest be:

d" = —t(d', )N + k(dos — d) + 71(gos — d'), (1.45a)

.. B )
V== " <@oe_;§ - d/) ; (1.45b)

where:

) =P, (1.46a)
B = BP, (1.46b)
A = d™D, (1.46¢)
UO = 'UO* (146d)

Let us = do — d and ¢ = d’, then Eq. (1.45) becomes:

¢ = —1(q, V)N + kus + (go0 — 0, (1.47a)
Uy = Goo — 4, (1.47b)
. B/ 4

U= e ( ¢ B — q>. (1.47¢)

Consequently, the set of equilibrium points (¢”* = u* = " = 0) at time # = t* of Egs.
(1.47) indicated by the superscript * is described by:

4" = oo, (1.48a)
N

ug = T(q*,w*)? (1.48D)

' =Bl (1.48¢)
Vo

In order to find under which conditions the above system is Lyapunov stable, we
perform a Linear Stability Analysis (LSA or 1st Lyapunov method for stability) (Brauer &
Nohel, 2012). The resulting Jacobian matrix calculated at the equilibrium point (¢*, u*, Z/A}*)

15
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is:

-2k —N
J = —1 0 0 . (1.49)
B O _ 4o

- dACrsf (icrsf
The corresponding characteristic equation is:

A A

_ 3 2[5 es AN 7 . oo ) > N 2o
P(S) =5t ln + dArsf t qoo‘| T lk i Trsf T (A N B) dArsf‘| T dersf N O’ <150)

C C

where s is the set of eigenvalues of the Jacobian matrix J. In general, it’s not trivial
to find the roots of a cubic polynomial symbolically, as the one in Eq. (1.50) (even if a
closed-form solution is available). For finding the instability condition, therefore, we will
follow the procedure described in Rice and Ruina (1983). The difference here, however,
is the fact that not only inertial but also viscous forces are incorporated for the stability

analysis.

To begin with, let & = 0, then Eq. (1.50) becomes:

A A

AN o (s N
s(s2+s[ﬁ+? +]+[ﬁ§rsf+(A—B)Ast=0, (1.51)

At geo d

(¢

[el)

Q(s)

One trivial root is s = 0. The remaining two solutions are the roots of the quadratic
polynomial Q(s). (s) has the same form as the one handled in Eq. (1.41). The second
coefficient is always positive and, therefore, ()(s) has one negative and one positive real

roots if:

A

. . N

i< (B-A) ~ (1.52)
Eventually, if k& = 0, the polynomial P(s) has three distinct real roots (one positive, one
negative and one zero) if the condition of Eq. (1.52) is satisfied. In this case, according
to the 1% Lyapunov stability method (Brauer & Nohel, 2012), the equilibrium point

(¢, uZ, 13*) is unstable.

Now, we will explore the nature of the roots of P(s), while k — oo. To do that, we
calculate the discriminant of P(s), A(P(s)), and we collect the powers of k. The coefficient
of the leading term is -4 and therefore lim A(P(s)) = —oo < 0. In that case, P(s) has

k—o00
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one real (s;) and two complex conjugate roots (sg3), with:

lim s; = —=— <0, 1.53
fooo (1.53)
AN + g
lim Re(syg) = — 0 M= g, (1.54)
k—o00 2QOO

Therefore, we can conclude that the equilibrium point (¢*, u?, @/AJ*) is stable when k — oco.

Assuming continuity, a real root or a complex conjugate pair must pass into the domain
Re(s) > 0 as k reduces from oo to 0 (Rice & Ruina, 1983). The crossing point cannot be
neither the origin nor infinity as none of them satisfy Eq. (1.50). Consequently, a pair of
conjugate imaginary roots crosses the imaginary axis when the normalized stiffness takes
its critical value l%gSf. At the crossing point, P(i—i@) = 0. After some rearrangements, we
get:

Ay 7opsf Qoo 52 [ Qoo AN ~ N IPNUES 7. 1rsf ) A~ N p2 |
(1.55)

C C
This is a system of two equations (real and imaginary part) and two unknowns (l%CrSf and

A

A

f). The imaginary part should be equal to zero:

Im (P(+if)) = 0 = @ or (2 =1 Cf:f + k4 (A= B) Nf (1.56)

Impossible: P(0) :]%chf % #0

Considering now the real part of Eq. (1.55) to be zero and substituting Eq. (1.56) yields:

Ny (B=A)N - g g
Re (P(+if)) = 0= k™ = = 1+ (1)) (1.57)

>0 (Eq. (1.52))

Substituting Eq. (1.57) into Eq. (1.56), the frequency of oscillations (Hopf bifurcation) at

the critical point, B, can be obtained:

> 0. (1.58)
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From the previous derivations, the equilibrium point (¢*, u}, zﬂ*) is Lyapunov unstable

when the following instability condition is satisfied:

/%<l%fsf:(B_A)N_ﬁq°° I S (1.59)
(AN + o ) de*

This limit is an extension of the ones derived in Rice and Ruina (1983) and Ruina (1983)
as, here, elastic, inertial, and viscous forces are included. For clarity, below, we present

the dimensional form of Eq. (1.59):

2

b—a)olA—nv muv
k kI‘Sf — ( n oo 1 o) 1.
o 4z ( " (a0l A+ 0a0) dssf> | 00

or equivalently:

oo Bt — (b—a)o, —2y/a1a(pvsvs " 1 pv2, Lac
© dzst ao] + 2 /a1a(pusvs, At

> . (1.61)

We can observe that the presence of viscosity, 7, in Eq. (1.60), relaxes the instability
criterion favoring stability. In addition, if n = 0, we retrieve the instability condition found
in Rice and Ruina (1983). Furthermore, if we neglect also inertial forces (m = n = 0),
we can find the condition derived in the seminal paper of Ruina (1983) considering only

elastic forces.

1.2.3 Qualitative behavior of isolated earthquake events

Consider an isolated idealized fault with average mechanical and frictional properties
(both for SW and RSF friction) as summarized in Table 1.1. We can quantify the average
response of this fault by employing the spring-slider reduced-order model as introduced
in this Section. The apparent stiffness per unit area of the analogue fault is given by
Eq. (1.18) and it is equal to ¥ = 6 MPa/m. First, let us assume that the frictional
behavior of the fault obeys the slip-weakening friction law (see Sections 1.1.1 and 1.2.1).
The characteristic stiffness per unit area of the frictional interface is equal to k% = 37.5
MPa/m (considering 6* = 0). Therefore, the instability condition in Eq. (1.44) is satisfied
and a seismic event will occur.

In Figure 1.2, we present the response of the spring-slider system during an earthquake.

On the left (Figure 1.2a), we observe that due to the frictional instability, the fault slipped

18



1.2. Spring-slider reduced order model

Table 1.1 — (a) In-situ properties of the isolated fault. (b) Slip-weakening frictional
characteristics (see also Section 1.1.1). (c) Rate-and-state frictional characteristics (see
also Section 1.1.3). The variables with superscript “est” correspond to the estimated
earthquake response considering Eqs. (1.33)-(1.37). At®* in Table 1.1c is given by Eq.
(1.63).

(a)

L G o p ¢ Voo
[km| [GPa] [MPa] [kg/m’] [] [cm/year]
5 30 37.5 2500 1 1

(b)
A M ,Ures d Csvv 5 est t.est v est M ‘:/est

max inst max

O [mm] | fm] ] fm/s] ]
0.1 05 100 [0.63 91 018 5.7

poo v oa b A [ ATt g ws M
H /s F ) [mw] | [MPa) ] [y mys] [

0.55 4-107% 0.01 0.015 10 3.73 063 91 013 5.7

0.63 m in ~ 10 s developing a maximum velocity of 0.11 m/s. Notice that these values
are close to the ones estimated (see Table 1.1b) by using the scaled Eqs. (1.33)-(1.37)
(Kanamori & Brodsky, 2004). On the right (Figure 1.2b), the frictional response in terms
of the accumulated slip is plotted. At point A, the fault is reactivated and the instability
is nucleated. The system follows the black curve until it reaches a new equilibrium point
(point B) of lower energy. During the earthquake event, the spring is unloaded with a rate
—k with respect to slip as indicated with the red dashed line. The shaded area between
the two curves corresponds to the released elastic energy per unit area, Eg. Finally,

the resulting earthquake magnitude can be computed using Eq. (1.36) and is equal to
M, =5.7.

Apart from the radiated energy, Eg, there are also another two major energy forms

which complete the energy budget during an earthquake event (Kanamori & Brodsky,
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unstable equilibrium point:
Umax 2 0.11 m/s (a) fault reactivation (b)
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Figure 1.2 — Response of the fault described in Table 1.1a-b during an earthquake event
(SW friction law). (a) Slip-rate (orange curve) and slip (black curve) in terms of time.
(b) Frictional (black curve) and spring (red dashed line) in terms of slip. The shaded
area corresponds to the released elastic energy per unit area, Eg. (¢) The energy budget
(Kanamori & Brodsky, 2004). The blue filled area indicate the radiated energy per unit
area, Eg as in subfigure (b). The red filled area corresponds to the fracture energy per
unit area, E¢, while the green shaded area to the frictional dissipation per unit area, Ey.

2004; Kanamori & Rivera, 2006). These are illustrated in Figure 1.2c. The red shaded
area corresponds to the fracture energy per unit area, Eg, while the green filled area to
the frictional energy per unit area, Fy. We can observe that most of the stored energy
is dissipated due to friction. Only a small portion is radiated to the environment (blue
shaded area) and travels through waves to the surface. Yet, it is enough to destroy world’s

infrastructure and cause loss of human lives.

Let us now assume that the frictional behavior of the fault is governed by the rate-and-
state friction law (see Subsections 1.1.3 and 1.2.2). The characteristic stiffness per unit
area of the sheared interfaces is equal to k' = 18.75 MPa/m (see Eq. (1.61)). Therefore,
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unstable equilibrium point:

Umax ~ 0.13 m/s (a) fault reactivation (b)
0.15 \ : 0.6 23
—— Slip-Rate | - : Omax =~ 0.59 m — Frictional response
— Slip ! E04 =99 | ----Elasticity
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Figure 1.3 — Response of the fault described in Table 1.1a and ¢ during an earthquake
event (RSF friction law). (a) Slip-rate (orange curve) and slip (black curve) in terms of
time. Inset: Evolution of internal state variable, 6, in terms of time. (b) Frictional (black
curve) and spring (red dashed line) in terms of slip. The shaded area corresponds to the
released elastic energy per unit area, Fg.

the instability condition in Eq. (1.61) is satisfied assuring unstable behavior.

In Figure 1.3, the response of the reduced-order model is illustrated during an isolated
seismic event. We can observe that the system behaves almost identically with the previ-
ous case during the dynamic instability where slip-weakening friction was adopted. Even
the estimated values in Table 1.1c corroborate that. The inset of Figure 1.3a shows the

evolution of the internal state variable, 6 (see Eq. (1.5)), in terms of time.

However, the calculation of the estimated values in Table 1.1c is not as straightforward
as in the slip-weakening scenario (see Table 1.1b). There is no direct way of calculating
ATt According to Cao and Aki (1987), the stress drop of a uniform fault is estimated

by the following equation:
AT = (A — B)In -2t

Umax

(1.62)

Considering that the minimum velocity of the fault is approximately equal to the far-field
movement of the tectonic plates (v, = v ) and substituting Eqgs. (1.19) and (1.33)-(1.35)
into Eq. (1.62), we get:

The above nonlinear algebraic equation can be solved numerically for At®t. Therefore,

T/ a0y VoG

o3y VgATES

AT = (A - B)In ( (1.63)

the response of the dynamic event can be further estimated using Eqs. (1.33)-(1.37) as in
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the slip-weakening case resulting to a maximum slip of d,.c = 0.59 m and a maximum
slip-rate of Vpax = 0.13 m/s (see Table 1.1).

It is worth emphasizing that several other methods can be used apart from the spring-
slider representation in order to simulate the dynamics of a fault. The underlying contin-
uum elastodynamic problem of seismic slip can be discretized with any of the following
procedures: Finite Element Method, Finite Differences, Boundary Element Method, spec-
tral methods, model reduction methods, among others (see S. D. Barbot, 2019b; Boyd,
2000; Erickson et al., 2020; Larochelle et al., 2021). Such a discretization is attempted in
Chapters 3 and 4.
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CHAPTER 2

Paper-Quakes: A paradigm of earthquake

mitigation and anthropogenic seismicity

FEarthquakes nucleate when large amounts of elastic energy, stored in the earth’s crust,
are suddenly released due to abrupt sliding over a fault. Fluid injections can reactivate
existing seismogenic faults and induce/trigger earthquakes by increasing fluid pressure.
In this chapter, we develop an analogous experimental system of simultaneously loaded
and wetted absorbent porous paper to quantify theoretically the process of wetting-induced
earthquakes. This strategy allows us to gradually release the stored energy by provoking
low intensity tremors. We identify the key parameters that control the outcome of the
applied injection strategy, which include the initial stress state, fault segmentation, and
segment-activation rate. Subsequent injections, initiated at high stress levels, can drive the
system faster towards its instability point, nucleating a large earthquake. Starting at low
stress levels, however, they can reduce the magnitude of the natural event by at least one

unat.

2.1 Introduction

It is well recognized today that humans can cause earthquakes (Foulger et al., 2018;
Guglielmi et al., 2015; McGarr et al., 2002; Raleigh et al., 1976). Examples of anthro-
pogenic seismicity involve earthquakes provoked by large artificial water reservoirs such as
dams (Gupta, 2002), mining (T. Li et al., 2007), underground nuclear explosions (Hamil-
ton et al., 1972) or by fluid injections in the earth’s crust (Ellsworth, 2013; Garagash &
Germanovich, 2012; Rubinstein & Mahani, 2015; Schultz et al., 2020). The latter type of
anthropogenic seismicity is of particular interest, due to the numerous ongoing industrial
applications (Hosseini et al., 2018; Rubinstein & Mahani, 2015). These anthropogenic
seismic events could shift the Gutenberg and Richter (1954) power law, which describes

the relationship between the total number of earthquakes and their magnitudes, towards
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smaller events.

This idea is similar to the one traditionally used for reducing the risk of large snow
avalanches. Snow avalanches follow the same frequency-magnitude distributions as natu-
ral earthquakes do (Birkeland & Landry, 2002). Nowadays, it is common practice to avoid
large avalanches by provoking smaller ones. Similarly, large earthquakes could be prob-
ably mitigated by inducing low intensity tremors. This is what is called in this Chapter
earthquake mitigation. This notion was first mentioned by Raleigh et al. (1976), but has
not been explored further since.

Surrogate materials can effectively substitute in-situ rock and gouge materials (Rose-
nau et al., 2017). Some examples of such materials are sandpaper (King, 1975), cardboard
(Heslot et al., 1994), pasta (Knuth & Marone, 2007b), steel (Popov et al., 2012), hydrogel
(Latour et al., 2013) and puffed rice (Einav & Guillard, 2018), among others. Here we use
absorbent porous paper as an analogue fault material to explore earthquake mitigation.
We show that it can be an ideal low-cost surrogate material for reproducing earthquake-
like instabilities in the laboratory. Wetting the absorbent paper allows us not only to
weaken the material but also to induce small instabilities. By deriving adequate scaling
laws (see Appendix A.6), we can simulate fluid injections and study the transition from
seismic (unstable, sudden) to aseismic (stable, creep-like) slip of an ideal fault (Cappa
et al., 2019; Stefanou, 2019).

2.2 Paper-Quakes vs. Earth-Quakes

Consider an isolated planar dip-slip fault, as depicted in Figure 2.1a, with a length of
Lreal = 6.5km dipped at an angle of 60° (see also Appendix A.5). Based on its properties
and assuming a square rupture area (Aml ~ (L;gal)2), this fault leads to an earthquake
of My, =~ 6 (see Appendix A.6). The energy budget is contained in a single sheet of
absorbent paper which, consequently, can represent this fault (see also Appendices A.1-
A.2) if strained as shown in Figure 2.1b. Long range interactions with other faults are not
considered in this Chapter.

The energetic equivalence of the paper analogue with a real fault can be observed in
Figures 2.2a-c. The progressive accumulation of elastic energy in the rocks surrounding the
fault zone is taken into account by a spring attached at the one end of the sheet (Figures
2.2b-c). The apparent stiffness of the spring is chosen to represent the real system. A

constant slow velocity is applied at the extremity of this spring, simulating the slow far-
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(a) (b) Far field tectonic movement

Mechanical spring
(elastic energy storage)

N

__— Displacement
(fault movement)

Fault
movement

Wet stripe

Elastic energy (fluid injection)

storage into

surrounding rock Absorbent porous paper

Fault zone stripes (fault segments)

Fluid injection
Injection well

Figure 2.1 — (a) Simplified dip-slip fault where the fault zone area is divided in five
segments parallel to the slip direction. Five wells allow to inject fluid into each segment
independently. (b) Surrogate laboratory experiment consisting of five parallel stripes of
absorbent paper, held together at their ends by clamps. Far-field movement is applied
through a mechanical spring. The paper stripes can be wetted individually.

field tectonic loading. Finally, paper has a non-negligible softening branch that simulates
the critical slip-weakening distance d" of faults (see Section 1.1.1 and also Scholz, 2002)
(Figure 2.2d).

We can also simulate fluid injections by simply wetting the paper sheet. In a fault
system, the apparent friction drops when fluids under pressure are injected into the fault
zone due to the decrease of the effective normal stress. Similarly, porous paper shows a
noticeable stress drop when it is wetted due to the reduction of its strength (Figures 2.2d
and 2.5a). The ratio of the shear stress drop of real faults to the strength weakening of
porous paper is defined here by the scaling factor a, which is a free parameter in our
model (see also Appendix A.6). Finally, opposite to wetting, healing could be considered
by drying the paper stripes, which could potentially lead to repeatedly growing slip events.
However, this is out of the scope of the present example, which focuses on earthquake

mitigation by fault reactivation.
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Figure 2.2 — (a) Pre-existing fault within an elastic medium of stiffness k, loaded by
a very low velocity, 4. Normal forces F, act on the fault, while frictional forces F
are generated along the interface (Reid, 1910). (b) Spring-slider model (Scholz, 2002),
composed of a rigid block, which is pulled through a spring over a rough surface. (c¢) Paper-
spring model, where a stripe of paper is pulled through an elastic spring. (d) Schematic
force-displacement diagram in which the post-peak properties are modified due to fluid
injection on the fault (wetting in the porous paper case), allowing transition from unstable
to stable slip.

Notice that the fluid diffusion process which takes place during injections in wellbores
can be considered in our analogue model in two ways, by water absorption of porous paper
and by progressive wetting of many isolated stripes (see Figures 2.1b, 2.2¢ and Section
2.4). Assuring that tectonic loading is much slower (see Section 2.5 for more details) than

diffusion, only the latter way is examined in this Chapter.

The configuration shown in Figures 2.1b and 2.2c¢ leads to a sudden release of the elastic
energy upon rupture, in the same way as the energy stored in the rocks surrounding the
fault zone is released during an earthquake. Note that typical failure modes II and/or II1
that take place during seismic slip in faults are represented here by a mode I failure of
the porous paper. These systems are equivalent in terms of energy budget (Nussbaum &
Ruina, 1987), provided that appropriate scaling laws are applied. By using these scaling
laws (see Appendix A.6) and measuring the elastic energy ER" that accompanies paper
failure in the surrogate system, one can estimate the earthquake magnitude M, of the

real system as follows:
2
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Figure 2.3 — (a) Force-paper displacement diagram of a paper sheet experiment, show-
ing paper behavior without a spring (black dashed line) and with a spring attached to
one end (black solid line). The red hatched area, EJ, corresponds to the elastic energy
released during the unloading. (b) Pulse-like velocity (red dotted line) of the dynamic
paper sheet experiment, with corresponding slip (black solid line). The additional axes
scale the respective quantities to the real fault case (cf. Appendix A.6).

In Figure 2.3a, we present the force-displacement evolution of a paper sheet that is
put under tension as described above. In the beginning, the porous paper shows a linear
behavior up to its peak strength. Then, a fracture appears in the paper sheet and the
spring is unloaded abruptly. The energy that is released during the unloading is equal to
EXPT = B9 = 0.201 Nm (red hatched area), corresponding to an equivalent earthquake
of My, = 5.9 according to Eq. (2.1). This dynamic instability can also be observed by the
velocity pulse shown in Figure 2.3b, illustrating the analogy between paper-quakes and
earth-quakes (Kanamori & Brodsky, 2004) (see also Movie S1 in Tzortzopoulos, Braun,
et al., 2021).

2.3 From seismic to aseismic rupture

A seismic rupture, i.e. an earthquake, is a dynamic instability that happens when the
(elastic) unloading of the rocks surrounding the fault zone cannot be counterbalanced by
fault friction. A necessary but not sufficient condition for the occurrence of this instability
is the reactivation of the fault. We say that a fault is reactivated when the shear stress on
the fault area is high enough for frictional slip to take place. However, this slip can be slow

(aseismic) or sudden and abrupt (seismic), depending on the amount of slip weakening
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(Figure 2.2d). In Section 1.2.1, the condition for sudden, unstable slip is re-derived (J. H.
Dieterich, 1979; Kanamori & Brodsky, 2004; Scholz, 2002; Stefanou, 2019):

AF
k< kS =

T Jsw’
dg

(2.2)

where k is the apparent stiffness of the rocks surrounding the fault zone for the real
system, and k% is the critical stiffness. In a real scenario, the drop of shear force is
AF = AralArreal where At™ is the apparent shear stress drop of the fault zone. The
stiffness k is proportional to the effective elastic shear modulus of the surrounding rocks
Gl and inversely proportional to the fault length L ie. k oc G /L (see also
Eq. (1.18)). Moreover, according to Coulomb friction T = po’,, where o', = 0, — py, is the
effective normal stress, o, is the total normal stress, which is a fraction of the overburden
load, depending on the tectonic setting, and p,, is the fluid pressure.

Therefore, fluid injections have a double effect. On the one hand, they can reactivate
a fault by increasing p, reduce its strength and promote frictional slip (Cappa et al.,
2019). On the other hand, they can reduce k5% as they make the post-peak slope less steep
(Lockner et al., 1991; M. Scuderi, Collettini, Viti, et al., 2017) (Figure 2.2d). Consequently,
in an earthquake mitigation attempt, one could adjust fluid pressure in such a way to avoid

sudden, seismic slip and promote stable, creep-like rupture (Stefanou, 2019).

2.4 Earthquake mitigation by fault segmentation and
fluid injections

Controlling the fluid pressure simultaneously, across an entire fault of several kilometers,
seems impossible with current technologies. Yet, we could imagine to divide the potential
rupture area into several zones and inject fluids through a network of well-bores (Figure
2.1a). In this way, the energy stored in the system could be in theory released gradually,
mitigating the maximum earthquake magnitude.

The rupture area of our fault scenario is divided into five segments and so is the paper
sheet, as shown in Figures 2.1a-b. In order to have a better understanding of the behavior
of the segmented paper sheet (Figure 2.1b) under wetting, we tested first a single segment
(Figure 2.4a). In Figure 2.5a, we show the transition from seismic rupture to an aseismic
one by wetting. While the dry sample fails suddenly, liberating energy F ﬁry = 9.2 Nmm

(red hatched area), the wet sample fails progressively with F®* ~ 0, i.e. aseismically (see
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Figure 2.4 — (a) Experimental assembly of a single paper stripe. Two parallel springs

(kP85 — 1,50 N/mm) are connected on top of the specimen to store the elastic energy

during the experiment. (b) Assembly of five paper stripes. Here, three parallel springs are
added with kb "®° = 2.10 N/mm.

also Movie S2 in Tzortzopoulos, Braun, et al., 2021).

Figure 2.5b corroborates the aseismic failure of the single stripe when wet. In partic-
ular, the time-profiles of displacement and velocity are presented and compared for both
dry and wet samples. While the dry sample slips abruptly, the wet sample reaches the
same displacement in an almost constant, slow velocity, which is two orders of magnitude
smaller than the peak velocity of the dry case (see also Movie S2 in Tzortzopoulos, Braun,

et al., 2021). If we apply our scaling laws on the experimental data (see Appendix A.6),
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Figure 2.5 — (a) Force-paper displacement diagram of representative dry and wet ex-
periments, for a single paper stripe. Post-peak slope reduction (kg;y > kggt) and force

drop are observed. In this example, a dynamic instability happens in the dry case

(kbrines ko) releasing energy E%Y (red hatched area). In the wet case no instabil-

springs

ity occurs (kio, © > k3e'). (b) Paper displacement (black) and velocity (red) evolution
with time for dry (solid lines) and wet (dotted lines). The stabilizing effect of wetting is
apparent. The additional axes scale the respective quantities to the real fault case (cf.

Appendix A.6).

the dry single-stripe test gives an earthquake of magnitude M, = 4.5, which is nucleated

in a normal fault with a length of L = 1.3 km.

Focusing on our surrogate experiment, five stripes (see Figure 2.4b) are put in ten-
sion and are wetted subsequently to simulate multiple discrete fluid injections. A certain
amount of fluid is injected each time assuring fast saturation all over the respective fault
segment. Until the completion of the injection strategy, no more fluid is injected on an
already saturated segment. The injection program starts before reaching instability, at a
stress level R = 20% (Figure 2.6a), where R is the ratio of the tensile force at the first
injection over the maximum tensile resistance (leading to the large event). Wetting one
stripe is performed approximately every 1 mm of total displacement (segment-activation
rate = 3 stripes/min). This displacement corresponds to ~ 5cm of average slip over the
real fault zone (see also Appendix A.4 and Movies S1 and S3 in Tzortzopoulos, Braun,
et al., 2021).

Each fluid injection is accompanied by an instantaneous stress drop and stress re-
distribution over the intact, dry porous paper stripes (Cappa et al., 2019; Harris, 1998)

(Figure 2.6a). Due to these stress drops, energy is released abruptly, corresponding to the
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Figure 2.6 — Wetting scenarios starting at (a) R = 20% and (b) R = 60%. Force
(equivalent friction, black solid lines) and velocity (equivalent slip-rate, red dotted lines)
evolve with displacement (equivalent slip). Circled numbers depict the number of wetted
paper stripes (reactivated fault segments). In (a), the maximum earthquake event takes
place at the fifth injection (yellow filled circle) and releases E °. In (b), the sample fails
dynamically at the third injection (yellow filled star) and all remaining elastic energy is
released abruptly (rupture of the entire fault area outside the injection area). (c¢) Force-
paper displacement for scenarios started at different stress levels R. The yellow filled star
indicates that global failure occurs before wetting all the stripes (i.e. rupture outside the
injection region).

triggering of small dynamic events (red hatched areas). Ideally, we would like to minimize
their magnitudes or assure aseismic slip after each injection. The maximum magnitude
among these smaller events characterizes the effectiveness of the earthquake mitigation

strategy.

Figure 2.6a shows the energy release and the developed velocities during this injection

program in our experiment. In the same plot we present also the corresponding magnitudes
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of displacement and velocity that would develop in the real fault system. A sequence of
dynamic events are triggered with magnitudes: M2™1 = 3.9, M 172 = 3.9, M273 = 4.3,
M3 =4.4 and M2 = 4.7. Tt is worth emphasizing that the released energy increases
with subsequent slip and it is maximum after the last injection (Ex ® = 2.94 Nmm), which
is 68 times smaller than the energy of the large natural event. Therefore, we were able
to mitigate the initial natural earthquake event of magnitude My, = 5.9 to five smaller
carthquake events, whose maximum magnitude (yellow filled circle in Figure 2.6a) is
M, = 4.7. In terms of velocities (red dotted line in Figure 2.6a), after each injection, we

observe a distinct pulse corresponding to the released dynamic energy.

The system behaved differently when the injections started at a stress level ratio
R = 60% (Figure 2.6b, see also Movie S4 in Tzortzopoulos, Braun, et al., 2021). In this
case, three dynamic events are triggered with magnitudes: M9t =4.7 M 172 = 4.5 and
M3 =5.5. A large event followed the third injection (yellow filled star in Figure 2.6b),
leading to seismic rupture. Energetically speaking, this event (M2 = 5.5) is equivalent to

the natural earthquake event (M, = 5.9, see also Figures 2.3a-b).

In Figure 2.6¢c, we show the energy release for injections started at different stress
level ratios with the same segment-activation rate as before. In the case of R ~ 100%,
no injection can be carried out, as any tiny perturbation leads directly to an earthquake
nucleation (yellow filled star) of magnitude M2 = 5.9 (Figures 2.3a-b). At R = 40%, all
five injections are accomplished as in R = 20%. These injections result in a series of five
induced earthquakes where their maximum magnitude (yellow filled circle) is M 1> = 4.8.
When R = 80%, though, a dynamic rupture occurs (yellow filled star) after the first
injection leading to an earthquake event of M! = 5.8, similar to the case of R = 60%
(Figure 2.6b).

The experimental observations show clearly that as the stress level at the initiation of
the injection process becomes smaller, so does the magnitude of the subsequent events. In
other words, a sequence of earthquakes could be triggered, showing a maximum magnitude

which is at least one order of magnitude smaller than the natural earthquake.

Notice that our study is in agreement with the findings of the modeling work of van
der Elst et al. (2016). As we can observe in Figure 2.6¢, the natural earthquake event
(curve 5) is the maximum event that can be nucleated in a fault in terms of energy, no
matter how much fluid volume has been injected into the fault and no matter when the
injection commences. Notice that in this setup, the redistribution is quasi-uniform and

may not capture phenomena related to real fault geometries.
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2.5 Insights on the governing parameters of the pro-

posed earthquake mitigation strategy

The proposed analogy between uniaxial tension experiments of absorbent porous paper
and a real fault system is based on energy considerations. Our model is a pertinent example
for building understanding regarding possible mitigation of the earthquake phenomenon
(for a synthesis of the main assumptions and limitations we refer to Appendix A.7).
Intuitively, our approach could help to limit anthropogenic seismicity (Shapiro et al.,
2013) during fluid injections in the earth’s crust, in parallel with the Traffic Light System
(TLS) (Bommer et al., 2006; Edwards et al., 2015) and fracture caging methods (Z. Li
et al., 2021) used in deep geothermal projects.

It is worth emphasizing that, according to our experiments, preceding small seismic
events do not guarantee the avoidance of large ones. Even though the released energy in
induced events is always smaller than the natural event, subsequent injections can drive
the system faster towards its instability point, provoking a large event (Figures 2.6b-c).
These events (R = 60% and 80% in our experiments) would correspond to anthropogenic
seismicity when significant amounts of fluid are injected in the earth’s crust, close to
critically stressed tectonic faults. On the other hand, we showed scenarios of progressive
wetting, where the maximum seismic moment could be reduced by one order of mag-
nitude (Figures 2.6a and c). Therefore, an important aspect, necessary for the possible
mitigation in this scenario, is the relatively low initial stress level (R = 20% and 40% in
our experiments). Therefore, the earthquake mitigation strategy can succeed only if the
injection process starts at relatively low stress levels.

Besides the in-situ stress level, the paper experiments uncovered two additional factors
which govern the magnitude of induced events. These factors are the segment-activation
rate, which expresses the number of segments that are wetted per unit of time, and the
number of segments that our samples are divided into. In order to explore the response
of the fault system under the variation of these two additional factors, we use a multi
spring-slider model (see Appendices A.3-A.4).

The segment-activation rate can be seen as the rate under which we force the system
to release its internal (potential/elastic) energy. According to our experiments and this
model, this rate has to be fast enough to outpace the progressive energy build-up due to
the far-field tectonic displacements. When our segment-activation rate is fast enough, the

system releases its internal energy and the large event is avoided. It seems that this is the
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Figure 2.7 — The maximum magnitude is plotted as a function of the segment-activation
rate, number of fault segments and two different stress levels, based on our fault scenario:
(a) R =20% and (b) R = 60%.

case in many industrial projects that involve injections of large amounts of fluids in the
earth’s crust (Grigoli et al., 2018; Guglielmi et al., 2015; McGarr, 2014).

According to Hosseini et al. (2018), fluid boundary conditions play an important role
in induced seismicity. In our experimental work, fluid boundary conditions are expressed
through segmentation by adjusting plastic (impermeable) barriers between the stripes (see
also Appendix A.4). Each injection leads to only one seismic event resulting in a linear
relation between the number of cumulative events in the fault and the time, presuming
constant segment-activation rate. Eventually, the number of segments, that a fault has
been divided into, depicts the maximum number of stimulated events.

In the absence of impermeable barriers, high number of segments would represent bet-
ter the physical reality, where the distribution of injection pressure does not occur instantly
over a region (paper segment), but follows a diffusion process (Bhattacharya & Viesca,
2019). The diffusion process due to fluid injection in faults is equivalent to the progres-
sive wetting of paper stripes. If we assume, for instance, a high-permeable damage fault
zone with hydraulic diffusivity of the surrounding rocks of the order of 107! to 10! m?/s
(values taken from Lim et al., 2020), the time it takes for each segment (1.3 x 6.5km?) to
be saturated after fluid injection ranges between 10 to 980 days, respectively. In Figure
2.6a, where the experimental results of the proposed injection strategy are presented, the

segment-activation rate is 3 stripes/min, which corresponds to 0.01 segments/month in
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a real case scenario. Therefore, the above evaluated diffusion time is sufficient enough in
order to assure fast saturation of each segment.

Figure 2.7 presents the computed magnitude of the maximum earthquake event that
would occur, as a function of segment-activation rate and number of segments. For in-
stance, under a given rate of one injection per five months and for R = 20%, one obtains
a maximum M, ~ 3.9, when segmenting the fault into 100 parts (point A, Figure 2.7a).
For R = 60%, though, the injection program leads to a large event of M, &~ 5.4, close
to the natural one of My, ~ 5.9 (point B, Figure 2.7b). Doubling the rate from one to
two injections per five months reduces the maximum event to M, = 4.3 (point C, Figure
2.7b).

Despite the numerous uncertainties in the properties of the earth’s crust (Cornet,
2019), our experiments (Figure 2.6¢) and model (Figure 2.7) reveal the strong depen-
dency between the outcome of the injection strategy and the three aforementioned key
parameters (initial stress level, segment-activation rate and segmentation). By adequately
controlling these parameters, we managed to artificially reduce the stored elastic energy in
an analogue tectonic fault. However, in practice these parameters are hard to control and
other strategies based on the mathematical theory of control could provide rigorous alter-
natives (Stefanou & Tzortzopoulos, 2021; Stefanou, 2019). Such a strategy is developed
in the following Chapter 3.
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Robust control theory for earthquake

prevention

In the previous Chapter, we highlighted some key parameters which could eventually lead
to a successful earthquake mitigation strategy. However, in reality, it’s difficult to estimate
these parameters in-situ. Therefore, fluid injections could risk to nucleate faster the fault
system resulting in a large earthquake event. Here, we present a rigorous mathematical
framework which can handle such matched and unmatched uncertainties as well as unmod-
eled dynamics by just solving numerically two decoupled algebraic riccati equations. This
framework is based on modern robust control theory. Finally, in case where insufficient

measurements are provided, an observer design approach is developed.

3.1 Introduction

Control theory deals with the control of dynamical systems. Given a set of tuning pa-
rameters (so-called input to the system), an algorithm is designed in such a way that
the system is driven to a desired state assuring, all the time, stability of the closed-loop
system (dynamical system + controller). A general map of the extent of control theory
and its capabilities is illustrated in Figure 3.1 made by Douglas (2020). The most com-
monly used control theories are: classical control theory, modern control theory, and robust
control theory.

Classical control theory focuses mainly on linear (or linearized) systems where a trans-
fer function representation is possible (Ogata, 2010; A. I. Vardulakis, 2012, among others).
The frequency response of such plants can be studied and adequate controllers can be de-
signed. However, this theory is handy only for Single-Input-Single-Output (SISO) linear
systems. When the number of inputs and outputs increases (Multiple-Inputs-Multiple-
Outputs (MIMO) systems) the extension of the theory exists for linear time-invariant

systems (A. Vardulakis et al., 2021). However, when nonlinearities become dominant the
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Figure 3.1 — The map of control theory made by Douglas (2020).

control design may be easier using modern control theory (Franklin et al., 2018; Lewis et
al., 2012; Ogata, 2010). Modern control theory is based on time-domain analyses. Given
a model of the plant in state-space representation, a controller can be designed in order
to stabilize the system in its equilibrium point or drive it steadily in a new equilibrium

point of lower energy.

The drawback of this theory is that it doesn’t account for errors or uncertainties
between the model and the real plant. In other words, when such a controller is connected
with the actual system, the stability of the closed-loop system is not guaranteed (Ogata,
2010). To avoid this, we have to set up the range of the uncertainties and design the control
system in such a way that the closed-loop system remains stable within this range. This
design is based on the robust control theory (Khalil, 2013, 2015; Ogata, 2010).

In this Chapter, we develop robust full-state negative feedback controllers for a class
of nonlinear systems accounting for both matched and unmatched uncertainties (see Sec-
tions 3.2 and 3.3 and also Khalil, 2013). These controllers can be applied not only in
stabilization problems but also in tracking ones (Khalil, 2015). Our design approach is
based on the backstepping technique (Khalil, 2013) and its novelty relies on the fact that
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3.2. Robust controller for a class of nonlinear systems with matched uncertainties

it accounts for uncertainties also in the input matrix. The controllers can be derived by
solving numerically two decoupled Continuous-time Algebraic Riccati Equations (CARESs)
resulting in control matrices of constant gains which are easy to implement numerically.
Last but not least, it assures robustness and exponential stability without constraints on
the state trajectories (Mattei, 2015). More advanced control designs coupling the back-
stepping technique with sliding modes are proposed in Guenoune et al. (2015), Guenoune
et al. (2017, among others).

The aforementioned control design demands to measure in real-time all the degrees-of-
freedom (dofs) of the plant. However, in reality, the amount and quality of measurements
are not always sufficient. Therefore, there is a need for estimating the dofs of the plant by
designing an observer. Here, a full-order Luenberger-like observer is employed (Phanom-
choeng & Rajamani, 2010; Raghavan & Hedrick, 1994; Rajamani, 1998; Zhu & Han, 2002).
Notice that the presence of this observer doesn’t influence the robustness and stability of

the already designed controller following the Theorem presented in Khalil (2015).

3.2 Robust controller for a class of nonlinear systems

with matched uncertainties

The class of nonlinear systems, that is studied herein, is represented by the following

non-linear system of ordinary differential equations:

¥ = A(t,x)x + B(t,x)u + g(t, x), (3.1a)
y = Coz, (3.1b)

where x € R" is the state vector, u € RP the input vector, and y € R™ the output vector.
g € R" A e R"™ and B € R"P are vector and matrices, respectively, with potential
nonlinear elements. C, € R™*" is the output matrix and ¢t > 0 the (normalized) time.
Note that (.)" = %. We assume that the above system is shifted in such a way that the
origin (x = 0) is an equilibrium, i.e. 2’ = 0.

In the context of this thesis, the vector g(x,t) contains the frictional terms of the sys-
tem. The matrix A(t, z) represents elastic, viscoelastic or inelastic phenomena of the rock
surrounding the fault zone. Its exact components are determined by spatially discretiz-
ing the differential operators that correspond to (visco-)elastic and inertia effects on the

basis of appropriate discretization methods. The matrix B(t,z) contains the influence of
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injected fluid pressure changes (input u) to the dynamics of the system through friction
or through the diffusivity of the surrounding rocks. Both matrices A(t,z) and B(¢, x) can
contain uncertainties and unmodelled dynamics (see for instance Schneider-Muntau et al.,
2021). Therefore, we decompose them into a nominal (known) and perturbed/deviated

(unknown /uncertain) part:

A(t,z) = Ag + AA(t, o), (3.2a)
B(t,z) = By + AB(t, z), (3.2b)

where Ay and By are chosen to be constant matrices, such that the pair (Ao, By) to
be stabilizable (for the definition of stabilizability see Ogata, 2010). AA and AB are
perturbations from the nominal system. This additive decomposition is always possible

for the applications presented in this work.

Inserting Eqs. (3.2) into Eq. (3.1a), we obtain:
' = Apx + Bou + AB(t, x)u + f(t, ), (3.3)

where f(t,z) = AA(t,x)x + g(t,z). Assuming matched uncertainties (Khalil, 2015), the
vector f can be rewritten as f(t,x) = BoBg f(t,x), where By € RP*" is the Moore-
Penrose inverse matrix of By. Matched uncertainties correspond to the uncertainties which
enter the system through the same channel as the control input u. After rearrangement

of some terms, Eq. (3.3) yields:
' = Agz + AB(t,x)u + By (u+ h(t, z)), (3.4)
where h(t,z) = By f(t, ) is assumed to be bounded as follows:
[h(t, 2)|| < |Gl (3.5)

with G € RP*" and ||-|| being the 2-norm. Lipschitz continuity with respect to the states
is a special case of Eq. (3.5). In particular, if we assume that GTG = 21, where I, is

the identity matrix of size n, Eq. (3.5) becomes:
Ih(t,2)* < 2TG G < ||h(t,2)|* < B ||=[* & [|a(t, )| < B, (3.6)
where > 0. Therefore, if friction is Lipschitz (see Chapter 1) and AA bounded, then
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3.2. Robust controller for a class of nonlinear systems with matched uncertainties

Model
Uncertainties
. Plant :c(t)‘ Output x(t)‘
12" = G, z,u) 'y:Inx ]
3 Robust Controller .
u(t) u=—Kx

Figure 3.2 — Block diagram of the closed-loop system for stabilization problems. A
robust full-state negative feedback controller is designed to stabilize the plant, given by
Eq. (3.1), to the origin.

h(t,x) is also Lipschitz.

The dynamics of the above system will be controlled using the mathematical theory
of control and more specifically the Lyapunov Redesign method (Khalil, 2013, 2015).
The target is to update the input, u, which in the applications presented in this thesis
corresponds to the pressure of fluids injected (added) and/or extracted (removed) at the
frictional interface level in order to stabilize it, i.e. to avoid abrupt, seismic slip and
sudden energy release. The term stability is used here in the Lyapunov sense (i.e., the
system remains close to its equilibrium state under small perturbations from it; for a
rigorous mathematical definition of Lyapunov stability we refer to Lyapunov (1966) and
Brauer and Nohel (2012)).

3.2.1 Robust stabilization

We consider a robust full-state negative feedback control system as depicted in Figure 3.2.
The Plant block contains the multivariable system to be controlled, described by Eq. (3.1),
and the Robust Controller block is the linear robust negative feedback controller we need
to design. y(t) is the output of the closed-loop (controlled) system (here all the states of
the system can be measured: y = z) and u(t) the input of the plant. We seek the controller
that can immobilize the system, i.e. tlgglo x = 0. In the frame of the mathematical theory
of control, this process is called asymptotic stabilization.

Let the scalar function V(z) = 270z > 0 for all non-zero z € X C R™ and V(0) = 0.
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Chapter 3 — Robust control theory for earthquake prevention

Under these conditions, © € R™*" is called positive definite, i.e. © = 0, (or negative
definite if 27Oz < 0 Vo € X C R™\0, i.e. © < 0). The following inequalities are true for
the Lyapunov candidate:

A @)41 < V(2) < Anax(©)41, 37
|22 < 2t 35)

where A\pin(©) > 0 and A\pax(©) > 0 are the minimum and maximum eigenvalues of
the positive definite matrix O, respectively. We will design a negative full-state feedback
(C, = I,,) robust controller of the form u = —Kz = —R™!B}Ox, where K € RP*" is the

constant gain matrix and R € RP*P a positive-definite matrix to be defined.

According to Lyapunov’s stability theorem (see Lyapunov’s Second Method, Brauer

& Nohel, 2012), if there exists V(z) > 0 for which d‘;ff) = V'(z) is strictly negative

Vo € X C R"\0, then the origin of the system, = = 0, is asymptotically stable. In addition,

if V'(z) < —aq||z||®, with a; > 0, then the origin of the system, 2 = 0, is exponentially
stable. If X extends over the whole real n-dimensional Euclidean space, then the origin
is globally asymptotically /exponentially stable, respectively. Differentiating V'(z) with

respect to time we obtain:

V' =a2"er + 270’ (3.9a)
BeB4) T (AT 4 @A, — OByR'BTO) 2 — 2TOB,R ' BT Oz —
0 0 0 0 0 0
. ByRT'ABT + (BOR—lABT)T

— 2270 5 Oz + 2270 Byh. (3.9b)

The first term of Eq. (3.9b) is part of a Continuous Algebraic Riccati Equation (CARE,
see also Zhou et al., 1996) of the form:

AjO + 04— OBR'BjO = —-Q (3.10)

that can be solved numerically. ) € R™"™ is chosen to be positive definite. Equation
(3.10) has a unique positive definite solution © > 0 if the pair (Ag, By) is stabilizable, @
is (at least) positive semi-definite (i.e. Q = 0 if 2TQz > 0 Vo € X € R"\0) and R > 0
(Lewis et al., 2012). Moreover, should we design the nominal matrix By such that the

non-Hermitian matrix ByR~'AB" to be always positive semi-definite, the third term of
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3.2. Robust controller for a class of nonlinear systems with matched uncertainties

Eq. (3.9b) is a non-positive number. Setting z = R~'/2BJ Oz, Eq. (3.9) becomes:
V' < —2TQx — 2Tz + 2:TRY?h, (3.11)

where R~! = R~Y2R~1/2. We choose the matrix ) to be positive definite and we build it
in such a way that Eq. (3.11) to be strictly negative for any given pair of (¢, x). Such a
design should contain the uncertainties and non-linearities embedded in vector h (see Eq.
(3.5)). Let:

Q=Qo+ HR1/2H2 GTaG, (3.12)

where @ > 0 is to be specified depending on the application. Substituting Eq. (3.12) to
Eq. (3.11) yields:

V' < — 2" Qor — HR1/2H2 tTGTGx — 272 + 2:TRY?N (3.13a)
LY Qua— R NGl = 121 + 2[RV =) NG (3.13b)
< — " Qo — (|2 G - I41))° (313¢)
>0
< — 2" Qur < —Aain(Q0) [l2]* < 0. (3.134)
>0

where A\pin(Qo) > 0 is the minimum eigenvalue of the positive definite matrix @g. The

above inequality is valid for any x € R™. Therefore, the closed-loop system of Figure

3.2 is globally exponentially stable. Consequently, independently of the initial conditions,
Amin(QO)

tli)m x(t) = 0, with on (o) rate of convergence or higher (Khalil, 2015).

3.2.2 Robust tracking

We consider a robust full-state negative feedback control system as depicted in Figure 3.3.
The Plant block and the Robust Controller are defined exactly as in Section 3.2.1. r(t)
is a desired state of the system, such that tliglo xy = r or, equivalently, tllglo e = 0. To
accomplish that, we augment the plant with a number of single integrators. Here, we
adopt specific forms for r (e.g. constant, non null velocity, polynomial) in order to drive
the system smoothly to a desired stable equilibrium point and dissipate the energy in
a controlled manner. In the frame of the mathematical theory of control, this process is

called tracking. A special case of tracking is the stabilization problem presented in Section
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Model
Uncertainties

. Plant z(t) | Output 93(75)‘
2’ = G(t,x,u,) ly =I,x .
) Robust_Controller| Za(?) Tracking
) ua(t) Ug = —K,Tq xy = Cix
f(t) xt(t)
e(t) +x _
Integrator(s) r(t)

Figure 3.3 — Block diagram of the closed-loop system for tracking problems. A robust
full-state negative feedback controller is designed in such a way that the plant given by
Eq. (3.1) tracks a reference trajectory r(t).

3.2.1, if we set r(t) = 0.

Let r(t) € R? denote the reference input signals that we want to track, with ¢ < p (see
Lewis et al., 2012). For this purpose we apply the method of integral action (Khalil, 2015).
Assuming that the dynamics of the designed controller are well represented by ¢ single
integrators, and that the reference input vector r(t) is a step command with magnitude

ro, the compensator dynamics can be expressed by the following set of equations:

§'=e=Cur—no, (3.14a)
w=E¢, (3.14b)

where ¢ € R? expresses the integral of the error between the actual and the desired state
ro. The multiplication with the matrix C;, € R9*" expresses a linear combination of the
outputs of the system in which we want to apply tracking (Eq. (3.1)) and w € R? is the

controller’s output vector for tracking (see also Figure 3.3).
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3.2. Robust controller for a class of nonlinear systems with matched uncertainties

By augmenting the system of Eqgs. (3.1) with Egs. (3.14), we get:

By applying the transformation Z,(t) = z,(t) — 2%, Ga(t) = ya(t) — Y, Ua(t) = ua(t) — u
Ga(t) = ga(t) — g2, Eqgs. (3.16) become:

(A O, B On
“al 1T [u] + |7 [ro] + 7, (3.152)
Ct Oqu 5 OqXp ~—~ _Iq qul
—_———— ~~ —\— Ugq —_———— —_————
Aq Tq Ba Ra 9a
[ C, O
xal 1 (3.15b)
qun Iq
- —~—
Cq Ta

where O;; denote the zero matrix with ¢ rows and j columns. In compact form the above

equations are written as follows:

r! = Auxy + Baug + RaTo + ga, (3.16a)
Yo = Caxa- (316b)

Considering again full-state feedback (C, = I,,1,), the input vector u, is of the form:

At steady-state Egs. (3.16) yield:

U, = —K,x,. (3.17)
0= A,x; + Byu, + Ryro + g5, (3.18a)
Yo = Cox. (3.18Db)

*
a’

T = AuZa + Balig + Ga, (3.19a)
Ja = Cog. (3.19b)

Using the same transformation, Eq. (3.17) becomes:

fy = —KoZa. (3.20)

The above system of equations is of the form of Egs. (3.1) for which a robust stabilizing

controller was derived in Section 3.2.1. Consequently, if the input respects Eq. (3.20) or,
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equivalently, Eq. (3.17), then tli)rgo e(t) =0 or tliglo 2y = ro and so the constant reference
input signal 7 is tracked robustly. For time varying reference trajectories, r(t), we expect
a steady state error, which can be attenuated either by adding more integrators (i.e. g
double integrators, see also Appendix F) or by increasing the relevant integral action

gains.

3.3 Robust controller for a class of nonlinear systems

with unmatched uncertainties

When the uncertainties of the nominal state-space model are not in the range of the
nominal input matrix as in Section 3.2, then the control design has to tackle the so-
called unmatched uncertainties. The method we will apply here is inspired by Lyapunov
Redesign, Backstepping, and Recursive Lyapunov Redesign techniques (Khalil, 2013, 2015;
Krokavec & Filasova, 2000; Lin, 2000; Lin et al., 1990; Lin & Olbrot, 1996; Lin & Zhang,
1993; Mattei, 2015; Petersen, 1987; Qu, 1992; Qu, 1995; Qu & Dorsey, 1991; Qu, 1993,
among others).

Consider the following two nonlinear subsystems:

¥ = A(t,x)x + B(t,z)v + g(t, ), (3.21a)
v = A,(t,v)v + B.(t,v)u+ g.(t, z,v), (3.21Db)

where x € R", v € RP are the states of the system, g € R”, u € R" is the input vector,
g. ERP, A€ RV B e R™P A, € RP*P and B, € RP*". Let 2} = {x U}T. We assume
that the above system is shifted in such a way that the origin (x, = 0) is an equilibrium,
ie ), =0.

Notice that the system of Egs. (3.21a) should contain matched parameter uncertainties
aligned with v. Again, the A(t,x) and B(¢,x) matrices represent elastic and viscoelastic
phenomena, the geometry of the fault, its exact position and the tectonic setting, while
the nonlinear function g(¢, ) contains the frictional terms of the system as in Section 3.2.

In the context of this thesis, Eq. (3.21b) corresponds to the diffusion equation with
r sources. Consequently, A,(t,z,z) and B,(t,x, z) matrices contain the diffusivity of the
surrounding rocks which could vary in space and its estimation is difficult (Segall & Rice,
1995). Moreover, they include other uncertain variables such as the distance of the fault

from the sources.
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Unlike the works presented in Khalil (2013) and Mattei (2015) (among others), the
control design we present in this Section accounts also for uncertainties in the input
matrix B,. In addition, even if Eq. (3.21b) is not a scalar ordinary differential equation
(p > 1) whose uncertainties are in the range of u (matched unertainties), our approach
could provide a robust controller. Finally, robustness is guaranteed without applying any

constraints in the evolution of the states or the inputs (Mattei, 2015).

Following the backstepping technique (Khalil, 2013), first, we design a controller for Eq.
(3.21a) considering as virtual input vector, the state v — v* = v(z) using V(z) = 270z
as Lyapunov function (see Section 3.2). Performing the change of variables z = v — v* =
v — ¥ (x) and employing a Lyapunov function V,(z), we will show that a robust full-
state negative feedback controller, u(z), can be designed. In the frame of this thesis, the
input vector, u(z), represents the pressure (or the flux) of fluids injected (added) and/or
extracted (removed) at the level of the wells which are installed in a distance from an

isolated fault.

To begin with, a robust virtual (stabilizing or tracking) full-state feedback controller

can be designed using the procedure described in Section 3.2 for Eq. (3.21a), namely:
v* =(z) = —Kr = —~R 'B; Oz, (3.22)

where matrix K is the constant control gains matrix, By the nominal matrix of B(¢,x), R
a design positive definite matrix and © the unique positive definite solution of the CARE
defined in Eq. (3.33). Adopting the following change of variables:

z=v—0v"=v—¢x)=v+ Kz, (3.23a)
v=7z—Kx (3.23b)

and substituting Eq. (3.23b) into Eqs. (3.21) yields:

o =[A(t,z) — B(t,z)K]z + B(t,x)z + g(t, z), (3.24a)
2 =[A,(t,x,2)z+ KB(t,x)] z + B.(t,z, 2)u + g.(t, z, z)+
As(ta,2)
+ [KA(t,z) — (Ay(t,z,2) + KB(t,z)) K|z + Kg(t, x). (3.24b)
A (t,2)
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By rearranging some terms, we get:

¥ =[A(t,z) — B(t,z)K]|x + g(t,z) + B(t,z)z, (3.25a)
2= A,z + AB,(t,z,2)u + Boo[u + B (AA.(t,2,2)z + g.(t, z, 2))]+ (3.25Db)
h-(t,z,z)
+ KBy By (AA(t,x)x + g(t,z)) + K Aoz — A, (t,x,2)Kx, (3.25¢)
h(t)

where we assume that the pseudoinverse matrices By and B, of By and By, respectively,
exist. Moreover, it is assumed that the uncertain matrices A, (¢, x,z) and B,(t,x, z) are

able to be decomposed to a nominal and a perturbed/deviated part as follows:

A (t,x,2) = Ao+ AAL (L z, 2), (3.26)
B.(t,z,z) = B,y + AB,(t, z, 2), (3.27)

where B, is chosen such that the non-Hermitian matrix B,oR;'ABY to be always pos-
itive semi-definite. Note that R, is designed to be a positive-definite matrix. The uncer-

tain/nonlinear functions is assumed to be bounded as indicated below:

Ih(t,2)|| = || B (AA®E 2)z + g(t, 2))|| < 1G],
(.2, 2)| = | B (AAL(E 2, 2)2 + ga(t, 3, 2))| < ||Gal| + |G-z,
IB(t,2)2Il < Bs | Boll lI-l,
IAL(t, 2, 2) Kal| < Ba. || Al | Kz .

where fp and 4, are positive coefficients and G € RP*", G, € R™" and G, € R"™*P.

Let’s now focus on the structure of the second subsystem in Eq. (3.25). We can ob-
serve that the terms that exist in Eq. (3.25b) resemble the ones of Eq. (3.4). Therefore,
if we virtually isolate Eq. (3.25b), a robust full-state negative feedback controller can
be designed following the procedure described in Section 3.2. Eventually, by employing

V.(2) = 270,z as a Lyapunov candidate, the control input u is given by:
u=u(z)=—-K.,z=—-R;'BLO.z, (3.32)

where K, is the constant control gains matrix and ©, is the unique positive-definite
solution of Eq. (3.34).
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Consequently, in order to stabilize the system of Eqs. (3.25), we have to obtain the

unique positive definite solution of the following two uncoupled CAREs:

CARE #1:
(O[gAE) © + © (OésAo) - @BO (OégR_l — QSR_IR_1> Bg@ =
= —asQo — 05 HR1/2H2 GTG — B2 ||Bo|* I, — a2GTG, — a2AT Ay — a2GTG,  (3.33)
CARE #2:

(a9AL)) ©. +©. (a9 A0) — ©. (a9BooR; ' BY, — BooBly — KByBy K" — KK~

2
—B3. 140l 1) ©. = —aQu0 — a9 | Y| GTG. — aZ |0 I, (3.34)

where ag and ag are positive constants, )y and (), are chosen to be positive definite. By
properly tuning the coefficients ag and a9 and the square matrices )y, R, .o, and R,
the two CAREs above can have unique positive-definite solutions (see also Section 3.2):

O for CARE #1 and O, for CARE #2.

More specifically, CARE #1 has a unique positive definite solution if the pair
(agAyg, By) is stabilizable, the matrix agR™' — ad R"'R™! is strictly positive-definite, and
the right-hand-side (rhs) of Eq. (3.33) is a negative semi-definite matrix.

On the other hand, CARE #2 has a unique positive definite solution if the pair
(agA,o, I,) is stabilizable, the matrix inside the parenthesis of the third term of Eq. (3.34)

is strictly positive-definite, and the rhs of Eq. (3.34) is a negative semi-definite matrix.

Therefore, we can design a robust full-state negative feedback controller for the system
in Egs. (3.25). As a Lyapunov candidate, following the backstepping method (Khalil, 2013,
2015), we obtain:

Vi(z,2) = agV(2) + agVa(2) = gz Oz + 92" 0,2 > 0 (3.35)

for all non-zero (z,z) € X C R™™ and V,(0) = 0. Let z} = {:c z}T, the following

inequalities are true for the Lyapunov candidate:

Amin(a8®7 a9@z) ||{Eb||2 S ‘/b(xv Z) S A1112'1)((04867 ag@z) ||:L'b||27 (336)
H(Wba(;m ’ < 2 (@50, 490, ||| (3.37)
b
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where Apin(@s0, 0,) > 0 and Apax(as©,a90,) > 0 are the minimum and maximum

048@ Onxp

eigenvalues of the positive definite matrix , respectively. Calculating the

pxn 9Oz
time derivative of the Lyapunov candidate in Eq. (3.35) and using Eqs. (3.22), (3.28)-

(3.31), (3.32), and (3.33)-(3.34), we get:

V) = 2052701 4 209270, 2 (3.38a)
= 2037 O [(A — BK) + g] + 20377 OBz +
+ 209270, [(A, — B.K.) + g.] + 209270, (K Boh + K Agx — A, Kx) (3.38b)
< —asAmin(Qo) [|2[|* = a9 Amin(Q0) [12]]* —
- (ﬁ% IBol* 2%z + o2 |0 272 — 20z8xT@Bz> —

>0
— (a%xTGEGxx + zT@ZBzoB;FO@ZZ — 209 HB;%@ZZ
>0

- (QSITGTGQZ + 210, KByBf K10,z — 2ang@zKBOh) —

1Gaal|) -

>0
— (a%xTAOTAOx + 210, KKT0,2 — QQQZTGZKAOx) —
>0
- (angKTKw + 64, | ALl 270.0.2 + QanT@ZAZKa:) (3.38¢)
>0
< —Amin(@sQo, 19 Q20) [|z6]|* < 0, (3.38d)

where Apin(asQo, 09@.0) > 0 is the minimum eigenvalue of the positive-definite matrix
QS)\min(QO)In Onxp

Opxn 049)\min(QzO>Ip
imum eigenvalues of the positive-definite matrices Qg and @), respectively. In addition,

. Note that Apin(Qo) > 0 and Apin(Q.0) > 0 are the min-

the under-braced terms in Eq. (3.38c) can be proven to be positive scalars using the

identity rule:
+XTY £+ YT X < X'X + Y'Y & (XT + YT) (X £Y) >0, (3.39)
which is true for any arbitrary matrices X and Y of appropriate dimensions.

Therefore, the system of Eqgs. (3.21) is globally exponentially stable (Khalil, 2015).
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The expression of the input u can be obtained from Eq. (3.32), namely:

Eq.(3.23a)
z =

u(z,v) = —K, K, (v+ Kz), (3.40)

where K and K, are taken from Egqs. (3.22) and (3.32), respectively. The procedure
presented in this Section can be applied either to stabilization or tracking problems as
introduced in Section 3.2. In case of stabilization, independently of the initial conditions,
tlggo x,(t) = 0. In case of tracking, ¢ single integrators can be embedded in either of the
subsystems in Eq. (3.21). In this work, we integrate them along with Eq. (3.21a) and
therefore, tllglo x4(t) = 19, for constant references. For time varying reference trajectories,
r(t), though, we expect a steady state error, which can be attenuated either by adding
more integrators (i.e. ¢ double integrators, see also Appendix F) or by increasing the
relevant integral action gains. Finally, the rate of convergence in both stabilization and

. . >\min (0% 7a z . .
tracking problems is % or higher (Khalil, 2015).

3.4 Full-order observer for a class of nonlinear sys-

tems

The control design presented in Sections 3.2 and 3.3 requires complete knowledge of
the states x and z,, in real-time. In the context of Chapter 4, this would correspond
to know the slip, slip-rate, and effective normal stress for every single element in the
strike-slip fault. However, in reality, this is not feasible because the measurements that
we can obtain are spatially sparse (e.g. GPS measurements regarding the movement of
the surface of the surrounding fault area, INSAR, sensors installed in the earth’s crust
and other indirect measurements based on inversion techniques). Therefore, the challenge
here is to recreate/estimate the states by just acquiring sparse measurements in space.
These estimations can be used as a feedback to the controller designed in Sections 3.2
and 3.3. The block diagram of the resulting closed-loop system is depicted in Figure 3.4.

For this purpose, we adopt a full-order observer, which is able to estimate the states of
the system taking into account parameter uncertainties. Consider the nonlinear differential

equations presented below:

¥ = A(t,x)x + B(t,x)u + g(t, x), (3.41a)
y =Cor, (3.41Db)
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Figure 3.4 — Block diagram of the closed-loop system augmented by the observer. The
estimated states, z, are used as feedback to the robust controller designed in Sections 3.2
and 3.3.

where x € R” is the state vector, u € R? the input vector, and y € R the output vector.
g e R" Aec R and B € R"P are vector and matrices, respectively, with potential
nonlinear elements. C, € R™*" is the output matrix and ¢ > 0 the (normalized) time.
Note that (.) = %. We assume again that the above system is shifted in such a way that
the origin (x = 0) is an equilibrium, i.e. 2’ = 0.

As we mentioned in the beginning of this Section, we account for parameter uncer-

tainties and, therefore, the matrices A(t,z) and B(t,x) can be decomposed as follows:

A(t,z) = Ag + AA(t, o), (3.42a)
B(t,z) = By + AB(t, z), (3.42b)

where Ay and By are chosen to be constant matrices defining the nominal system. AA and

AB are perturbations from the nominal system. This additive decomposition is always
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8.4. Full-order observer for a class of nonlinear systems

possible for the applications presented in this work. Notice that we assume that the pair
(Ao, C,) is observable (for the definition of observability see Ogata, 2010). By substituting
Egs. (3.42) into Eq. (3.41a) yields:

' = Agx + Bou + AA(t,z)x + AB(t, 2)u + g(t, x). (3.43)

The observer dynamics are comprised of a copy of the nominal plant (Eq. (3.43)) plus a

correction term concerning the measurements:

0,2, (3.44b)

Y
where § is an estimate of the nonlinear function g. This design is based on Luenberger-like
observers (Khalil, 2015; Phanomchoeng & Rajamani, 2010; Raghavan & Hedrick, 1994;
Rajamani, 1998; Zhu & Han, 2002). By replacing the outputs y and § with their respective

expressions results:

&' = A2 + Bou + §(t, &) + LC, (z — 2) . (3.45)
————

[

Let € = x — 2. By substituting Eq. (3.43) from Eq. (3.45), we get:

¢ =(Ag— LC,)ée+g(t,x) — §(t, %) + AA(t,x)ée+ (AA — ABK) , (3.46)
g(t,x,2)
where we replaced u = —K 2. The control gain matrix K can be calculated using the

techniques proposed in Sections 3.2 and 3.3. Furthermore, we assume that the function
g(t,z, %) is Lipschitz:
19(¢, 2, 2)|| < Bo lle]l (3.47)

with 3, > 0. The matrix L has to be designed in such a way that the matrix Ay — LC,
is Hurwitz (Ogata, 2010). As far as the pair (Ag, C,) is observable, even “brute force”,
pole-placement techniques can be used to calculate the observer matrix L (Franklin et
al., 2018; Ogata, 2010). Here, for the design of the L matrix, we use the fact that the
controller and the observer are dual systems (Lewis et al., 2012). Therefore, L is given by

the following relation:
LT =R;'Cl P, (3.48)
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where R is a positive-definite matrix to be defined and Pp, is the unique positive-definite
solution of the following CARE:

AP + PLAE — PLC;FRZIC;FPL =—Qr, (349)

where (), is again a positive-definite matrix to be defined. Consequently, the square matrix
Ao — LC, is stable as all its eigenvalues are placed in the left half-plane of the imaginary

axis.

The design of the observer in Eq. (3.44) is successful if the error, é, between the
actual states (x) and the estimated ones (%), converges to zero asymptotically or, even
better, exponentially, i.e. lgn ¢ = 0. Therefore, in order to study the stability of the error

dynamics presented in Eq. (3.46), we employ the following Lyapunov candidate:
V,(€) = eT0,¢, (3.50)
where O, is the positive definite solution of the Lyapunov Equation (LE) defined below:
(Ag — LC)TO, 4+ 0,(Ay — LC,) = —Q., (3.51)

where @), is designed to be a positive-definite matrix. The following inequalities are true

for the Lyapunov candidate:

Amin(Oo)]]€ ||2 < V( ) < Amax(00)| €], (3.52)

< 2 max(00) (€], (3.53)

where A\pin(0,) > 0 and Apax(0,) > 0 are the minimum and maximum eigenvalues of the
positive definite matrix ©,, respectively. Calculating the time derivative of Eq. (3.50), we
get:

V! =

o

Eq.

T [(Ag = LCo)"O, + (Ao — LC,)| &+ 2670, + 2670, (AA — ABK) &
51)

|

~Amin(Qo) |1E]1” + 28, |0, | [|E]|* + 2676, (AA — ABK) z, (3.54)
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8.4. Full-order observer for a class of nonlinear systems

where A\pin(Q,) > 0 is the minimum eigenvalue of the positive-definite matrix Q,. If:

Amin(Qo)
Bo < —qa i (3.55)
2[[6,||
then Eq. (3.54) becomes:
V, < —ano llé]” +2e] €, (AA — ABK)|| 2], (3.56)

where aqq is a positive constant. We want the above inequality to be negative in order to
assure that the error dynamics are at least asymptotically stable. However, at this stage,
we cannot guarantee this. For that, we introduce the notion of Input to State Stability
(ISS) (for more information see Khalil, 2015). We can infer that the above inequality is

negative outside a ball with radius:

20, (AA — ABK)
01010

radius of attraction

) [
lefl = 1211, (3.57)

where 6, is a positive constant between 0 and 1. Outside this region, the system is stable,
however, inside this region, we can conclude nothing about the behavior of the system
(stable or unstable). In the case where the condition of Eq. (3.55) is not satisfied the

respective region of attraction is given by the following relation:

. 2(18,||
lefl =

> oo ooy Rl 184 — ABK] + i), (3.58)

radius of attraction

where 65 is a positive constant between 0 and 1. The regions of attraction defined above
could be extremely large allowing significant instabilities in the black box which is encap-
sulated inside the aforementioned radius. Certainly, there would be better approaches for
observer design, in the literature, which could minimize the region of attraction or even
eliminate it. However, such an observer design is out of the scope of this Thesis. Here,
we want to highlight the capabilities of control theory in the earthquake control problem.
Of course, more advanced tools can be used in order to increase the performance and
account for uncertainties also in the observer design. Therefore, in this Thesis, and specif-
ically in the following Chapter, the observer will be designed without accounting for any

uncertainty allowing the nominal system and the parameters of the specific applications
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to coincide. In this case, we expect an exponential convergence of the estimation error to
the origin.

The question which arises now is if we can use the control design developed in Sections
3.2 and 3.3 using as feedback the estimations of the states, Z, and not the actual states, x
(see also Figure 3.4). In other words, is the closed-loop, plant-observer-controller, system
still exponentially stable? The answer to this crucial question is provided in a Theorem
presented in Khalil (2015). This theorem states that if the origin of the plant with the
full-state negative feedback controller (without observer) is exponentially stable and the
error dynamics of the Luenberger-like observer are also exponentially stable, then the

origin of the plant-observer-controller system is exponentially stable (Khalil, 2015).
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CHAPTER

Robust control of seismic faults

In the previous Chapter, we developed the mathematical framework for the design of robust
controllers in order to drive a class of nonlinear systems to a desired state assuring, all the
time, stability of the closed-loop system. Here, we apply this approach to a strike-slip fault
configuration. First, the example of measuring all the states and actuating the pressure
at every single point is presented. In this example, a rate-and-state and slip-weakening
frictional behavior are examined and compared. Going a step further, we present a more
realistic scenario. In this, diffusion processes are included allowing to model the influence
of distant fluid injections to the fault region. For this scenario, we measure only the
average deformation of the fault at the surface. Despite the presence of uncertainties in
the model parameters as well as of insufficient measurements, we show that using the
control strateqy developed in the previous Chapter, earthquake control is possible. Finally,
we proceed with a non-local scenario, where we control the seismicity in the region of a
reservoir by adjusting the fluzes in the surrounding wells maintaining the desired fluid

production levels.

4.1 Strike-slip fault dynamics

In this Section, we present the dynamics of the isolated strike-slip fault configuration
illustrated in Figure 4.1a. The fault is just beneath the surface and it covers a rectangular
area of L, X L, in the x- and z-directions, respectively. We assume also that the fault is
adequately oriented in the tectonic stress regime for slip to occur. For the discretization of
the fault area, we use a regular mesh with N, elements along x-axis and NV, elements along
z-axis. Therefore, the total number of elements covering the fault area is ny = N, x N..
The size of each element is equal to D, x D, where D, = L—z and D, = ]Lv—i The dynamics

N
of the strike-slip fault can be represented, at first approximation, by the following ordinary
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0 50 100 150 200 230
Fault Element Stress [MPa,]

Figure 4.1 — (a) Sketch of a strike-slip fault configuration discretized in Ny x N, elements.
(b) In-situ pore fluid pressure py,, in-situ normal stress o, and effective normal stress Ty
as a function of depth.

differential equation in matrix form:

Mb = —F, + K(0xo(t) — 0) + H(vso — ), (4.1)

where 6,0,0 € R™ are the vectors that contain respectively the slip, slip-rate, and ac-
celeration of each individual element, F, € R™ is the frictional response, do, € R™ and
Uso € R™ are the far-field slip and slip-rate of the tectonic plates, respectively. Moreover,
M € R™*"f is the mass matrix, K € R™*"f the elasticity matrix, and H € R"/*"f the

viscosity matrix.

For the simulations presented in this Chapter, a dynamic approach has been employed,
adopting a lumped mass matrix in order to represent the mobilized mass during a seismic

event:
m

N, N,

where [,,, is the identity matrix of size ny. As mentioned in Section 1.2 and more

M= In, = pLyD,D.1I,,,, (4.2)

specifically in Eq. (1.17), during an earthquake, we assume that a cuboid of rock mass
m = pL,L,L, is mobilized. p is the density of the surrounding rocks and L, = min(L,, L.).

Other, more accurate, formulations are of course possible (see Erickson et al., 2020, among
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4.1. Strike-slip fault dynamics

others). Following Eq. (1.20), the viscosity matrix is given by:
H = 2(MQ,, (4.3)
where ( is the damping ratio and €2, the natural frequency of the system:
Q,=VMIK. (4.4)

The square root above is defined for matrices. Finally, the frictional response is obtained

by the following expression:
FE, = u(t,0,6) (o] — p) D.D., (4.5)

where p(t, 0, 5) is the coefficient of friction, o/ the effective normal stress, and p any fluid
pressure variations in the fault interface when the controller is activated (see Chapter 3).
The effective normal stress o, = oy varies with depth as shown in Figure 4.1b. Dividing
Eq. (4.1) by the scalar product D, D, and substituting Eqgs. (4.2)-(4.5), we get:

LS = —u(t,6,6) (0! — p) + K (S.0(t) — 6) + H(ve — b), (4.6)
where:
K-—Y K-GK (4.7)
= D,D. = cony

Eq. (4.4) G Vs
Qm = 7Kcon TV L Kc0n7 4.8
pLy Ly Y ( )
H= QCpLan = QCpLywn\/ Lchom (49)

where Ko, is the connectivity matrix obtained using the theory presented in Chinnery
(1963) and Rice (1993). It is worth emphasizing that several methods can be used in or-
der to discretize the differential operator representing the underlying continuum elastody-
namic problem of seismic slip (e.g. Finite Element Method, Finite Differences, Boundary
Element Method, spectral methods, model reduction methods, among others (see S. D.
Barbot, 2019b; Boyd, 2000; Erickson et al., 2020; Larochelle et al., 2021)). In most cases,
the resulting discretized equations will finally take the form of Eq. 3.1 and, consequently,
the control theory presented in Chapter 3 can be applied.
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Introducing a characteristic time 7', a characteristic length D and a characteristic

pressure P, and dividing by the scalar product pL,, the system of Egs. (4.6) becomes:

PT? . GT? A
d" =— t,d,d") (6} — D) + — LyKeon(doo(t) — d) + 2CwnT\/ Ly Kcon(goo — d'),
M) 69+ LK)~ ) 5 26T L Ko — )
HA/—/ A—/_/ ﬁeRannf
NeR LeR™F X" f
(4.10)
with (see also Section 1.2):
t=1T, (4.11)
d =dD, (4.12)
ol = 6P, (4.13)
p=pP, (4.14)
oo = doo D, (4.15)
D
Voo = oo (4.16)

where £, d, 6!, P, ds, and ¢ are the dimensionless time, slip, effective normal stress,
injected fluid pressure change, far-field displacement and velocity, respectively. Hence,

Eq. (4.10) can be rewritten as:

~

d" = —p(t,d,d") (6] — ) N + k(de(t) — d) + 7i(goe — d"), (4.17)

which resembles in structure with Eq. (1.24) of the spring-slider model presented in Section
1.2. In this Chapter, we are focusing on isolated dynamic events. Performing a double-
scale asymptotic analysis (see Stefanou, 2019), we can shift the above system in such a
way that the origin coincides with an (unstable) equilibrium point (see Chapter 1 and

particularly Section 1.2) and study the dynamic response of the fast-time scale:
g =—nG—kd+ Npp— N (u—p*) 6, (4.18a)
d' =g, (4.18b)

where the superscript ~ corresponds to the perturbed from the equilibrium point variables.
In addition, p = pu(t + *,d + d*, G+ ¢*) and p* = p(f*, d*, ¢*). The superscript * denotes
the equilibrium point (§’ = d’ = 0). We can observe that the origin (§ = d = p = 0) is
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4.1. Strike-slip fault dynamics

an (potentially unstable) equilibrium point. In this formulation, zero slip-rate (d’ = 0)
corresponds to zero relative slip-rate with respect to the far-field movement of the tectonic
plates (¢ ). The matrix form of Eq. (4.18) is:

EA T R PR S RS T

where py corresponds to the number of actuators, we employ.

—i =k Nu

INf O’annf O’anpf

In the following two subsections, we present the dynamic response (p(t) = 0) of a
strike-slip fault (see Figure 4.1a) governed by Eq. (4.19) and adopting either rate-and-state
(see Section 1.1.3) or slip-weakening (see Section 1.1.1) friction law. For these academic
examples, the frictional and mechanical properties of the isolated fault are summarized
in Table 4.1.

4.1.1 Rate-and-state friction

The truncated version of the rate-and-state friction law is considered using the aging law
for the evolution of the state (see Section 1.1.3 and particularly Eq. 1.9). The parameters
a, b and d™! are spatially distributed using a log-normal distribution with average a®¢ =
0.010, b®8 = 0.015 and (d)®8 = 10 mm and standard deviation corresponding to 5% of
these average values (see Table 4.1c). These frictional parameters are kept constant over
each element of the discretization during the simulations. This stochastic distribution
of the frictional parameters over the fault area represents heterogeneities that exist in
real faults and show that the proposed control approach is insensitive to this kind of
uncertainties.

The fault area is discretized into N, x N, = 20 x 20 elements. This discretization is
fine enough as the elements have a characteristic size of 0.25 km, which is sufficiently
lower than the minimum nucleation size, hZ;,, = 0.60 km (= ~ 0.4) in order to assure
that each element cannot act independently of one another (Rice, 1993). The nucleation
size over the fault area is illustrated in Figure 4.2a. It is calculated (element-wise) as (see

Rice, 1993):
2 Gd. 1+7r3/(1-v)

h*=— , 4.20

7 (b—a)o] (1+1r3)1/2 (420)

where rgy = g—; and v is Poisson’s ratio. If one considers the average RSF parameters,
then the average nucleation size over the fault surface is equal to A , = 1.68 km, which

avg
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Table 4.1 — (a) In-situ properties of the simulated isolated fault. (b) Slip-weakening fric-
tional characteristics (see also Section 1.1.1). (c¢) Rate-and-state frictional characteristics
(see also Section 1.1.3). The variables with superscript “avg” correspond to spatially dis-
tributed quantities whose average values over the fault area are provided. The variables
with superscript “est” correspond to the estimated earthquake response considering Eqgs.
(1.33)-(1.37). At** in Table 1.1c is calculated by Eq. (1.63).

(a)

L,=L,=1L, G (0)ave p v ¢ Voo
[km] [GPa] [MPa] [kg/m®] [] [] [em/year]
5 30 37.5 2500 0.25 0.8 1

(b)
avg avg sSw avg est est est est
A:u :ures (dc ) 5max tinst Umax M, w

S A Y Y Y S
0.L 05 100 |063 91 013 57

()

po v e b (dpE | AU om e umh ME
0 s [ fom] | [MPa] ] [ /] [

0.55 4-107% 0.01 0.015 10 3.73 063 91 013 5.7

is smaller than the equivalent length of the fault (L, = L, = L, = 5 km). As a result
the system is unstable and a dynamic event is expected. Remark that when h < h*, the
system/element is stable, while when h > h* it is unstable (see Rice, 1993, and also
Section 1.2).

In Figure 4.3a, we present the average response of the strike-slip fault for a single
(isolated) typical dynamic event. The maximum reported velocity (averaged over the
fault surface) is 0.10 m/s corresponding to a maximum slip of 0.6 m. This dynamic event
is associated with a stress drop of approximately 3.6 MPa (Figure 4.3b) resulting in an
earthquake of magnitude My, ~ 5.7. The slip-rate distribution in the fault region when
the maximum average slip-rate occurs (point A in Figure 4.3a) is illustrated in Figure
4.3c. The distribution is not symmetric due to the presence of frictional heterogeneities

(see Figure 4.2a). In addition, the average evolution of the RSF state variable is plotted
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Figure 4.2 — Contour plots illustrating the distribution of nucleation size (activation
length) over the fault area due to statistical heterogeneities for the (a) rate-and-state
(ng = 400 elements), and (b) slip-weakening (ny = 900 elements) friction law. The black
contour line depicts the region in the fault where the nucleation size is equal to h* = 5
km.

in Figure 4.3d. We can observe that the average dynamic response of the strike-slip fault

configuration is close to the one estimated in Table 4.1c.

4.1.2 Slip-weakening friction

The exponential slip-weakening friction law is considered as introduced in Sections 1.1.1
and 1.2.1. The parameters Apu, e and dSV are spatially distributed using a log-normal
28 = (.50 and (d5%)*& = 100 mm and standard

res

distribution with average Ap®¥e = 0.10, u
deviation corresponding to 5% of these average values (see Table 4.1b). These frictional pa-
rameters are kept constant over each element of the discretization during the simulations.
This stochastic distribution of the frictional parameters over the fault area represents
heterogeneities that exist in real faults and show that the proposed control approach is

insensitive to this kind of uncertainties.

The fault area is discretized into N, x N, = 30 x 30 elements. This discretization is
fine enough as the elements have a characteristic size of 0.16 km, which is sufficiently
lower than the minimum nucleation size, hf,,, = 0.40 km (& ~ 0.4) in order to assure
that each element cannot act independently of one another. In this example, we use more
elements than the one in Section 4.1.1 to maintain the ratio hi constant at 0.4 for the
two simulations. The nucleation size over the fault area is illustrated in Figure 4.2b. It is
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Figure 4.3 — Open-loop response of the strike-slip fault for a single dynamic event with
rate-and-state friction (ny = 400 elements). (a) Average slip (black) and slip-rate (orange)
in terms of time. (b) Corresponding average shear stress evolution in terms of slip. (c)
Slip-rate distribution along the strike-slip fault. The snapshot is taken at the maximum
developed average velocity during the earthquake event (point A in subfigure (a)). (d)
Average RSF state variable in function of time.

calculated (element-wise) as (based on Rice, 1993):

2 Gde 1+73/(1—v)

= — 4.21
7 D] (1+ )7 42

h*

If one considers the average SW parameters, then the average nucleation size over the

fault surface is equal to A . = 0.84 km, which is smaller than the equivalent length of the

avg

fault (L, = L, = L, = 5 km). As a result the system is unstable and a dynamic event is

expected.

In Figure 4.4a, we present the average response of the strike-slip fault for a single
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Figure 4.4 — Open-loop response of the strike-slip fault for a single dynamic event with
slip-weakening friction (ny = 900 elements). (a) Average slip (black) and slip-rate (orange)
in terms of time. (b) Corresponding average shear stress evolution in terms of slip. (c)
Slip-rate distribution along the strike-slip fault. The snapshot is taken at the maximum
developed average velocity during the earthquake event (point B in subfigure (a)).

(isolated) typical dynamic event. The maximum reported velocity (averaged over the
fault surface) is 0.12 m/s corresponding to a maximum slip of 0.63 m. This dynamic
event is associated with a stress drop of approximately 3.7 MPa (Figure 4.4b) resulting in
an earthquake of magnitude M, = 5.7. The slip-rate distribution in the fault region when
the maximum average slip-rate occurs (point B in Figure 4.4a) is illustrated in Figure 4.4c.
We can observe that the average dynamic response of the strike-slip fault configuration

is close to the one estimated in Table 4.1b as well as with the one presented in Section

4.1.1.
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4.2 Robust control of seismic faults adjusting di-
rectly the fluid pressure on the fault by moni-

toring the whole state-space

Consider the isolated fault studied in the previous Section (see also Table 4.1). Indepen-
dently of the choice of the friction law (rate-and-state or slip-weakening), when the fault is
sufficiently loaded, an earthquake of magnitude M,, = 5.7 is provoked. In order to prevent
this dynamic instability and alter the dynamics of the open-loop system (fault), we design
a robust full-state feedback controller as presented in Chapter 3. As input variables, we
consider the variation of the pore pressure in the fault interface. As seen in Eq. (4.19) and
using Terzaghi’s principle of effective stress, we can use pore-pressure adjustments as a
backdoor to influence the dynamics of the fault and convert its behavior from seismic to

aseismic.

For this academic example, we assume that we can adjust the pressure of each in-
dividual element directly on the fault level by monitoring the whole state-space, a.k.a
slip and slip-rate of each distinct fault element (see Figure 4.5a). This trivial example
helps us build understanding on how effective this control strategy could be. In addi-
tion, we can compare more efficiently the control strategies applied under rate-and-state
and slip-weakening friction law. However, in reality, it is impossible to separately control
each element on the fault surface and monitor all the degrees of freedom of a fault. For
these reasons, a more elaborate example which considers distant injection wells and sparse

measurements is presented in Section 4.3.

In this Chapter, we apply only tracking control strategies using ny single integrators to
track the slip trajectory of each element (see black curve in Figure 4.5b). In other words,
we build the controller in such a way that the fault system is driven aseismically from its
unstable equilibrium point to a stable one of lower energy (see Section 3.2.2) following the
black curve in Figure 4.5b. For that, we use as a reference slip trajectory for each fault

element the following piece-wise function:

P(t) = dmaxs® (10 = 155 + 65?) | 5 < 0.5, (4.22a)
15 7

t) = —dmaxs — 7dmaxa .0, 4.22b

r(t) S S 16 s> 0.5 ( )

where s = ti, top is the operation time of the controller, and dyay is the desired maximum
op
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4.2. Robust control of seismic faults adjusting directly the fluid pressure on the fault by
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Figure 4.5 — (a) Sketch of a strike-slip fault configuration discretized in Ny x N, elements.
When the control strategy starts, the pore-pressure can be adjusted at each individual
fault element (blue shaded patches) by monitoring the whole fault region (camera + red
shaded projection). (b) Reference slip (black curve) and slip-rate (orange curve) trajecto-
ries for the tracking control strategy (see Section 3.2.2).

slip of each fault element. According to this reference slip trajectory, the expected maxi-
mum imposed slip rate of each element is 1‘75‘1“‘72" obtained half-way through the controller
operation. This slip-rate is designed to be maintained constant afterwards until the end
of the operation (see orange curve in Figure 4.5b).

The exact values of the mechanical and frictional properties of a fault region are
rarely known. Therefore, the control design has to account for parameter uncertainties
and unexpected frictional variations. Knowing the range of each parameter, we can design
a robust controller using the procedure described in Section 3.2. Table 4.2 contains the
ranges of all parameters of interest for the example presented in this Section. Note that
the range of uncertainty connected with each parameter could be as large as required. In
Section 3.2, we mathematically proved that there would always exist a robust controller
if the uncertainties and the nonlinearities are a Lipschitz function (see Eq. (3.6) and Eq.
(4.32)). However, there is an important trade-off to consider here. Large deviations from
the actual values could lead to fast response of the actuator(s). This fast response, though,
might not be technologically feasible. Therefore, constraints on the input signal should be
considered (Lewis et al., 2012) and/or the operation time of the control strategy should
be elongated. However, this investigation is out of the scope of the current Thesis and
further research is needed to assure applicability of the current approach to a real in-situ

case.
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Table 4.2 — Nominal, minimum and maximum values considered for the mechanical and
frictional properties of the fault during the design of the robust continuous-time controller.

Variable Symbol  Unit Min. Value Max. Value Nominal Value
fault activation length L, km 2 10 6
shear modulus G GPa 28 40 34
density of rocks p kg/m3 2400 3000 2700
damping ratio ¢ - 0 1.2 0.6
initial effective normal stress o, MPa - <150 -
minimum friction coefficient Lhmin - > 0.04 - -
RSF parameters a - - < 0.120 -
b - - <0.175 -
drt mm > 0.84 - -
SW parameters |Ap - - <04 -
dasv mim >5 - -

For the design of the robust controller introduced in the previous paragraphs, let’s

start from the dimensionless form of motion equation given by Eq. (4.19):

K —i =k | ]aq N a [N (u—p)s!

{‘{/}— ' {‘{}+ a {p}+{ (=4 “}. (4.23)
d Inf Oannf d O’anpf N~ Oanl

—— ~—— — u
xz/ A(t,z) T B(t,x) g(t,z)

The states of the system (z) are the slip (d) and slip-rate (§) of each distinct element
(n = 2n;), while as input vector (u), we consider at first the pore-pressure changes (p)
at each element (py = ny). Moreover, the system parameters in A, B and g can show
spatio-temporal variations. In addition, &, # and N are given from Eq. (4.10). For the
frictional behavior (u) of the fault, both rate-and-state and slip-weakening friction laws

are adopted.
We can observe that the form of Eq. (4.23) resembles Eq. (3.1) where the control theory

presented in Chapter 3 is based on. Furthermore, the linearized to the origin version of
Eq. (4.23) results in a controllable system (Franklin et al., 2018; Ogata, 2010). Therefore,
a robust controller can be designed for stabilizing the fault system (see Section 3.2.1).
The difference of this example with the Burridge-Knopoff model, presented in Stefanou
and Tzortzopoulos (2021), is the long-range interactions along the points of the fault area.
The elastodynamic equations of motion (see Eq. (4.1)) are discretized using the approach
described in Chinnery (1963) and Rice (1993) (quasi-static limit). This leads to a full

matrix K.,,. Notice that one could also design the controller using a simplified band
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matrix emerging from the 1D or the 2D Generalized Burridge-Knopoff approximations (see
Stefanou & Tzortzopoulos, 2021). In this case, the non-zero, off-diagonal terms would have
to be considered as uncertainties, according to the theoretical developments presented in
Chapter 3. However, in these applications, we consider the full matrix K., corresponding

to the exact strike-slip configuration for the design of the controller.

To derive the tracking robust controller, we augment Eq. (4.23) with ny single inte-

grators (see also Section 3.2.2):

x A O XN T B 2 @ nF XN
L 2npxng n {}5}+ 2nyxny {r(t)}-i— g . (4.24)
f Ct Onfxnf 5 Onfxpf N~ _]nf —— Onf><1
—— —— Uq T
x! Aq(t,xa) Ta Ba(t,za) R, ga(t,xa)
where C; = [On T f} contains the degrees of freedom for tracking the reference

slip trajectory provided in Figure 4.5b, namely the slip of each fault element. If instead
of tracking the trajectory given in Eq. (4.22), we set a constant reference target, for
instance ro = 2 dyax, then Eq. (4.24) takes the form of Eq. (3.16). Following the procedure
described in Sections 3.2.1 and 3.2.2, we can design a robust full state negative feedback
controller where the constant reference input signal ry is tracked robustly. For time varying
reference trajectories, we expect a steady state error, which we practically eliminate here
by increasing the relevant integral action gains by tuning appropriately the elements of
the design positive-definite matrices @y and R (see Section 3.2).

For the control design (Section 3.2), the uncertainties of the A,(¢,z,) and B,(t, z,)

matrices should be taken into consideration. According to Eq. (3.2):

_7/70 _]%0 Oannf _Aﬁ _Al% OanTLf
Aa(t7‘ra) = Inf Onfxnf O’anTZf + Onfxnf O?’Lf)(nf O?’Lanf Y (425)
_O’an’n,f -[TLf O'annf Oan'nf O’an’n,f O'n,fXTLf
Ag AA(t,xa)
(N#)minlanpf NA#
Ba(twra) = Onfxpf + Oanpf ’ (426)
L Oanpf Oanpf
By AB(t,xa)

where 7, ko € R™>*"s are the nominal matrices of system’s viscosity and elasticity, re-

spectively (see column “Nominal Value” in Table 4.2). The nominal matrix B, € R3"*?s
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should be designed with the scalar product of the minimum expected coefficient of friction

times the minimum N parameter (including a safety factor if necessary). I is a ma-

nyXpy
trix of size ny X py with unity elements. The quantities with the prefix A’ correspond to
the uncertainties of the respective variables. Note that A#n, Ak € Rm7*ns and Ap € R,
The pseudoinverse matrix of By is:
+ _ 1
Bf = |Gor Ioyxns Oppxns Opyxny | - (4.27)
Notice that, by definition, By By = I, ;- The nonlinear vector hy(t,7,) € RPf, defined in
Eq. (3.4), becomes:
+
ha(t, zo) = B, (AA(t, x)xa + ga(t, x4)) . (4.28)

We want h,(t,x,) to be a Lipschitz continuous function. Indeed:

+
Iha(t.z0)ll = | By (A 20)3a + galt, )
+
< B[ (IaAG w2l llzall + l9a(t 1)
+ .
< || B, || (1AA] oy 17l + = w71)), (4.29)

where [|AA]|

values (see columns “Min Value” and “Max Value” in Table 4.2) concerning the elasticity
and viscosity (see Eq. (4.10)). Notice that a safety factor can be added in all the bounds

related to uncertainties in order to increase the robustness of the system with the trade-

corresponds to the maximum allowed deviation from the selected nominal

max

off of reducing its performance. The Lipschitz bound, fy, of ||z — p*|| with respect to
the states exists as shown in Section 1.1 for the most widely used friction laws in fault

mechanics. Specifically, for the rate-and-state friction law, 85 = B is given by:

2
. Db
=l < Jm + ()t (4.30
C max
5rsf
where a, and ( ﬁi’f) are the maximum values of the respective RSF parameters and D
(9 max

is the length scaling factor (see Section 4.1). For the slip-weakening friction law, 5y = fqy
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is given by:
o=l < [ S5 (431)
¢ Imax
Bsw
where dAs‘v‘v is the maximum expected slip-weakening rate. These bounds of friction
(3 max

(either RSF or SW) are presented in Table 4.2 for the example studied in this Section.
Therefore, Eq. (4.29), becomes:

+ < A
Ity 2a)]| < HB (IAAll e + B [ N61]| Y ll@all = Bt llzall,  (4.32)
/Bcl
+ .
where o = ||B| ’ (HAAHmaX + 5y HN&A ) is the Lipschitz bound of hg(t,x,).
HN oM can be calculated using again the values provided in Table 4.2 (see also Eq.

(4.10)). Consequently, the robust controller can be calculated by solving numerically the
Continuous-time Algebraic Riccati Equation (CARE) given by Eq. (3.10). There exists
always a positive-definite solution © for this CARE as discussed in Section 3.2. Therefore,

the input signal takes the following form:
Uy = —Ko1, = —R™ ' B Oz, (4.33)

where R € RPf*Pf is chosen to be a positive-definite matrix.

The controller given by Eq. (4.33) can be used for the whole range of parameters
summarized in Table 4.2. To sum up, only the following ranges of the mechanical and
frictional properties of the fault region (including a safety factor) have to be known for

the robust control design presented in this Section:

1. minimum and maximum estimation of the density of the surrounding rocks,
minimum and maximum estimation of the length of the fault,
minimum and maximum estimation of the shear modulus of the rock,

minimum and maximum estimation of the damping ratio,

Grob W

maximum estimation of the effective normal stress on the fault interface (before

the activation of the controller),

6. minimum estimation of the friction coefficient and the characteristic fric-

tional distance (regardless of the adopted friction law),
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7. maximum estimation of the a and b RSF parameters, and

8. maximum estimation of the SW stress drop.

Notice that all the above-mentioned bounds must be strictly positive. As we have already
discussed, these minimum and maximum estimations can be arbitrarily stretched to either
end in order to increase the region of robustness of the designed controller. However, if
we are reckless, we risk to demand fast response from the actuators. Fast pressure rates
might be technologically inapplicable with the current knowledge. The activation of the
controller, in such a situation, might have unexpected consequences or even provoke an
earthquake comparable to the natural one (see Section 4.1 and Chapter 2). Therefore,
further study has to be done for extending the control design presented in Chapter 3
accounting also for input and performance constraints as well as measurement noise.

In the following two subsections, we apply the controller designed here to the fault
configuration described in Section 4.1 adopting either rate-and-state or slip-weakening

friction law, respectively.

4.2.1 Rate-and-state friction law

In order to release the stored elastic energy and drive the fault to a new equilibrium point
of lower energy, we apply the controller designed above (see also Figure 4.5). As shown
in Section 1.1.3, rate-and-state friction is a Lipschitz function and, therefore, it can be
bounded by the states of the system (see Eq. (1.15) and Eq. (4.30)).

For the simulations, we use the characteristics of the fault presented in Section 4.1.1
(see also Table 4.1 and Figure 4.3). The discretization and the spatial distribution of the
frictional properties (see Figure 4.2a) of the fault region remain unchanged. For the design
of the controller, we follow the procedure described above using the minimum, maximum,
and nominal values of the mechanical and RSF properties of the system summarized in
Table 4.2.

For tracking, we set as reference/target trajectory, a low velocity, which, on average
over the fault area, evolves smoothly (see Figure 4.5b) from the far-field tectonic velocity
(cm/yr) to approximately 1.9 mm/s (see Figure 4.6a). In this way, a new equilibrium
point of lower energy is given as a target. Alternatively, the strategy presented in Stefanou
and Tzortzopoulos (2021) could be used for setting the average target slip velocity. The
duration of the control operation is set equal to t,, = 10 min.

In Figure 4.6a-b, we show the average response of the fault after the application of
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Figure 4.6 — Closed-loop response of the strike-slip fault after the application of the con-
troller adopting rate-and-state friction law (n; = 400 elements). (a) Average slip (black
dotted curve) and slip-rate (orange dotted curve) in terms of time. The controller success-
fully achieves the target/reference slip (black dashed line) and slip-rate (orange dashed
line). (b) Evolution of the average applied fluid pressure change (output of the controller).
The blue shaded area corresponds to the envelope of pressures developed over the surface
of the fault.

Comparison of slip-rate distribution along the strike-slip fault between the open-loop, un-
controlled (c) and the closed-loop, controlled (d) system. The open-loop snapshot (c) is
taken at the maximum developed average velocity during the earthquake event (point A
in Figure 4.3a), while the closed-loop one (d) at the maximum developed average velocity
during the applied control strategy (point C in subfigure (a)).

our controller. The evolution of slip and slip-rate, in Figure 4.6a, follows, as expected, the
design /target slip-rate. From this plot, we can conclude that the fault can be driven into its
designed new equilibrium point aseismically. In the example presented here, the maximum
average slip velocity developed was approximately 2 orders of magnitude smaller than the

earthquake event presented in Figure 4.3a.

In Figure 4.6b, we present the evolution of the average over the fault area fluid pressure
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change in function of the operational time (output of the controller vs time). The controller
regulates automatically the fluid pressure in order to achieve the reference/target slow slip.
We chose to activate the controller on the verge of the unstable seismic event, in order to
model the worst case scenario. If the controller was activated before, then the regulated

fluid pressure change would follow a smoother evolution.

We observe that at the beginning of the operation, i.e. from ¢ = 0 to ¢t & 1.5 min, the
controller increases the fluid pressure (positive fluid pressure change) in order to accelerate
sliding from the far-field velocity to the target slip-rate. Then, from ¢ ~ 1.5 — 4 min, the
regulator automatically decreases the pressure (negative fluid pressure change), in order
to stabilize the system and avoid run-off. Next, from ¢ ~ 4 — 6.5 min, the controller
gradually restores the pressure. At t* ~ 6.5 min, the new equilibrium point of lower
energy is reached (point D in Figure 4.6b) because the fluid pressure is fully restored to
zero. Finally, positive fluid pressure changes are observed from ¢ &~ 6.5 to t = 10 min for
guaranteeing the continuation of creep-like, aseismic slip with the target slip-rate. In this
last part of the operation all the elements of the fault have entered in a (dynamically)
stable state of lower energy and the controller could be deactivated. This behavior is
qualitatively similar with the one obtained in Stefanou and Tzortzopoulos (2021) for the

Generalized Burridge-Knopoff model.

In this example, the fluid pressure changes vary between —10 (fluid withdrawal) and
+15 MPa (fluid injection), approximately. Notice that if one thought to stabilize the
system by simply satisfying the stability condition (see Eq. (4.20)) emerging from the
expression of the nucleation length (assuming that the frictional parameters are somehow
known), this would be impossible because any stress drop due to fluid pressure increase,
would cause an earthquake event of higher magnitude due to the decrease of the residual

shear stress.

A comparison between the open-loop, uncontrolled system and the closed-loop, con-
trolled one is given in Figure 4.6¢-d, in terms of slip-rates. Both figures display the spatial
distribution of the slip-rates at times corresponding to the maximum average slip-rate of
each simulation (i.e. at points A and C, see Figure 4.3a and 4.6a, respectively). The maxi-
mum developed slip-rate of the controlled system is ~ 0.0029 m/s (see black contour line,
Figure 4.6d), which is negligible compared to the maximum slip-rate developed during

the simulated earthquake instability (~ 0.2 m/s, see Figure 4.6¢).

It should be mentioned here, that the rate-dependent nature of the friction law in-

fluences the outcome of the controller (fluid pressure) as well as deviates the position of
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Figure 4.7 — (a) Frictional (black curve) and elastic (orange curve) response in terms
of the average slip of the fault. (b) Comparison of the average fluid pressure in terms of
normalized time for three different operation times (¢, = 10,60, 180 min).

the new equilibrium point. We can observe this by focusing on points D and E in Figures
4.6b and a, respectively. We expect the average slip of the fault at these points to be
equal to the resulted average slip of the earthquake event presented in Figure 4.3a, i.e.
d(t*) = 6* = 0.6 m. However, at point E, the average slip is below 0.5 m. Setting the
maximum average slip-rate equal t0 V. = 1.9 mm/s (see Figure 4.6a), the expected
shear stress drop reduces from 3.73 MPa (see Table 4.1¢) to 2.91 MPa (see Eq. (1.62)).
Consequently, this reduced shear stress drop leads to a reduced maximum average slip,
ie. 0* = 0.48 m (point E in Figure 4.6a). The exact time at which the fault has slipped
that much is at ¢* = (32 + %)+ top = 6.57 min (sce Eq. (4.22)).

During the control strategy, the average shear stress drops linearly along with the
elastic stiffness of the fault region (k = L%, on average, see orange dashed line in Figure

4.7a) with respect to the average slip of the fault as it is illustrated in Figure 4.7a.
Notice that the system was controlled in a relatively fast operation time (¢,, = 10 min).
In case an even slower transition is needed, the reference trajectory and/or the operation
time can be adjusted as desired. However, as the friction law is rate dependent, the
response of the closed-loop system varies as described in the previous paragraphs (see also
Figure 4.6a-b). This behavior is depicted in Figure 4.7b, where three different operation
times (top, = 10,60, 180 min) are compared. We can observe that as the operation time
of the control strategy increases, less fluid extraction is needed (negative fluid pressure
change) in order to stabilize the fault (see circle). In addition, the initial peak of the fluid

pressure change (see vertical arrow) decreases. Furthermore, the new equilibrium point is
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Figure 4.8 — Closed-loop response of the strike-slip fault after the application of the
controller adopting slip-weakening friction law (ny = 900 elements). (a) Average slip
(black dotted curve) and slip-rate (orange dotted curve) in terms of time. The controller
successfully achieves the target/reference slip (black dashed line) and slip-rate (orange
dashed line). (b) Evolution of the average applied fluid pressure change (output of the
controller). The blue shaded area corresponds to the envelope of pressures developed over

the surface of the fault.
Comparison of slip-rate distribution along the strike-slip fault between the open-loop,

uncontrolled (c) and the closed-loop, controlled (d) system. The open-loop snapshot (c) is
taken at the maximum developed average velocity during the earthquake event (point B
in Figure 4.4a), while the closed-loop one (d) at the maximum developed average velocity
during the applied control strategy (point F in subfigure (a)).

reached in less slip (see horizontal arrow). Finally, when the constant target slip-rate is
reached (t/t,, = 0.5), the fluid pressure change increases with approximately the same

rate (with respect to the normalized time).
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4.2.2 Slip-weakening friction law

For the simulations with the slip-weakening friction law, we use the characteristics of the
fault presented in Section 4.1.2 (see also Table 4.1 and Figure 4.4). The discretization and
the spatial distribution of the frictional properties (see Figure 4.2b) of the fault region re-
main unchanged. For the design of the controller, we follow the procedure described above
using the minimum, maximum, and nominal values of the mechanical and SW properties
of the system summarized in Table 4.2. For tracking, we set the same reference/target
trajectory as described in Section 4.2.1. The duration of the control operation is set equal
to top = 10 min.

In Figure 4.8a-b, we show the average response of the fault after the application of
our controller. The evolution of slip and slip-rate, in Figure 4.8a, follows, as expected, the
design /target slip-rate. From this plot, we can conclude that the fault can be driven into its
designed new equilibrium point aseismically. In the example presented here, the maximum
average slip velocity developed was approximately 2 orders of magnitude smaller than the
earthquake event presented in Figure 4.4a. Notice that the system was controlled in a
relatively fast operation time (10 min). In case an even slower transition is needed, the
reference trajectory and/or the operation time can be adjusted as desired. Contrary to
what we observed in Section 4.2.1, varying the operational time doesn’t influence the
pore pressure evolution depicted in Figure 4.8b. This is not unexpected as friction is rate
independent, in this case.

In Figure 4.8b, we present the evolution of the average over the fault area fluid pressure
change in function of the operational time (output of the controller vs time). The controller
automatically regulates the fluid pressure in order to achieve the reference/target slow
slip/slip-rate. We chose to activate the controller on the verge of the unstable seismic
event, in order to model the worst case scenario. If the controller was activated before,
then the regulated fluid pressure change would follow a smoother evolution.

We observe that at the beginning of the operation, i.e. from ¢ = 0 to t ~ 4 min, the
regulator automatically decreases the pressure (negative fluid pressure change), in order
to stabilize the system and avoid run-off. Next, from ¢ ~ 4 — 7.5 min, the controller
gradually restores the pressure. At t* ~ 7.5 min, the new equilibrium point of lower
energy is reached (point G in Figure 4.8b) because the fluid pressure is fully restored to
zero. Finally, positive fluid pressure changes are observed from t ~ 7.5 to t = 10 min for
guaranteeing the continuation of creep-like, aseismic slip with the target slip-rate. In this

last part of the operation all the elements of the fault have entered in a (dynamically)
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stable state of lower energy and the controller could be deactivated.

It should be mentioned here that the average slip of the fault is approximately equal
to the resulted average slip of the earthquake event presented in Figure 4.4a, namely
§(t*) = 0* = 0.63 m (see point H in Figure 4.8a). The fault reaches its new equilibrium
at t* = 2t,, = 7.67 min (sec Eq. (4.22) and point G in Figure 4.8b).

A comparison between the open-loop, uncontrolled system and the closed-loop, con-
trolled one is given in Figure 4.8c-d, in terms of slip-rates. Both figures display the spatial
distribution of the slip-rates at times corresponding to the maximum average slip-rate of
each simulation (i.e. at points B and F, see Figure 4.4a and 4.8a, respectively). The max-
imum developed slip-rate of the controlled system is ~ 0.003 m/s (see black contour line,
Figure 4.8d), which is negligible compared to the maximum slip-rate developed during

the simulated earthquake instability (~ 0.2 m/s, see Figure 4.8c).

Comparing the closed-loop response between the rate-and-state and slip-weakening
cases (Figures 4.6 and 4.8), we observe a smoother pore pressure evolution in the slip-
weakening case. In addition, due to the absence of rate-dependencies, with slip-weakening,
the system reaches the predefined equilibrium point calculated based on the rupture event
(see Table 4.1). On the other hand, with rate-and-state friction, we showed that as the
operation time increases, the system is able to reach a stable regime earlier than expected
(see Figure 4.7b). This leads to a more time/money-friendly approach as the target of
reaching a new stable equilibrium point is achieved faster even if the relaxation of the
stored-elastic energy in the fault system is less in this case. Therefore, the slip-weakening
friction law seems to represent the worst case scenario as far as it concerns the unstable
dynamics of the system and, therefore, it is adopted in the next Section 4.3 for the physical
system. Nevertheless, it should be pointed out that a single controller could be designed
covering SW or RSF or any other bounded friction evolution by appropriately choosing

the frictional bounds for the design.

These academic examples show how seismic instabilities can be prevented and how con-
trolled, slow-slip can be induced by fluid pressure adjustment, using the theory developed
in this work. However, in this example the fluid pressure has to be adjusted independently
over the elements of the fault area and diffusion phenomena are not considered. On the
one hand, these phenomena can introduce a delay to the closed-loop system, but, on the
other hand, can allow to cover large fault areas with a limited number of wells for optimal
control. In addition, in this Section, we assumed that we could monitor all the degrees

of freedom of the strike-slip fault. The influence of the diffusion phenomena and sparse
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measurements in space is studied in the following Section.

4.3 Robust control of seismic faults coupled with dif-
fusion processes using distant fluid injections by

monitoring only surface deformation

The example presented in the previous Section revealed that there exists indeed the
possibility of earthquake control using the theory developed in Chapter 3. However, in
contrast to the previous applications, in practice, we cannot adjust the pressure at each
fault element separately. In addition, in reality, we are not able to inspect the whole
fault region in order to acquire sufficient measurements for tracking control. These two
issues are being tackled in this Section. We also account for the delay which might be
introduced in the closed-loop system due to the presence of diffusion phenomena while
fluid injections take over. Moreover, we assume a more realistic scenario where the only
available measurement is the average deformation of the fault at the surface, for instance
through GPS measurements. Note that poroelasticity (Rousseau et al., 2020; Segall & Lu,
2015), or other complex phenomena and unmodeled dynamics, are not considered in this
work, and future investigation is needed in order to check the robustness of the control

strategies proposed in Chapter 3.

Diffusion phenomena are considered by augmenting our system of study with the 1D
diffusion equation with N sources (Segall & Rice, 1995). Each source influences a specific
segment of the area of the fault interface of characteristic size equal to the distance of
the source from the fault (see Figure 4.9). The 1D diffusion equation for this case has the

following form:
p = ci(pso — p), (4.34)

where p € R is the pore pressure at the fault level, p, € RY the pore pressure at the
procedure described in Chapter 1 and Section 4.1, we obtain the scaled and shifted to the

injection point, ¢4 = is the diffusivity, and cpy the hydraulic diffusivity. Following the

origin form of Eq. (4.34):
P’ = —Cap + Capoo, (4.35)
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Borehole

Figure 4.9 — Sketch of a strike-slip fault configuration discretized in Ny x N, elements.
When the control strategy starts, the pore-pressure at each borehole can be adjusted
adequately. Each borehole influences a segment of the fault region which doesn’t intersect
with any neighbor borehole (blue shaded diffusion scheme). Two scenarios are illustrated:
(a) single borehole and (b) four boreholes. The monitoring takes place only on the surface
of the fault (camera + red shaded projection).

where:
Poo = Poo P, (4.36)
é
%:%’ (4.37)

with P and T being the stress and time scaling factors, respectively. If we couple Eq.
(4.35) with Eq. (4.24), we get the full system of interest:

L= Au(t,z4)m, + Balt, xa)ﬁ + Rar + g4(t, z4), (4.38a)
P = —Cap + EaPoos (4.38D)

X

where [ma ﬁ]T forms the state-space of the system and ps, is considered as the (new)
control input of the above system.

Asin Sections 4.1 and 4.2, the A, matrix represents elastic and viscoelastic phenomena,
B, the influence of pressure changes to the dynamics of the system through friction and
g, contains the frictional terms of the system. The term R,r stands for the tracking

procedure. However, the control design is based on a constant reference input r(t) = ro

80



4.8. Robust control of seismic faults coupled with diffusion processes using distant fluid
injections by monitoring only surface deformation

15 dm ax

8 top dnmx
D)
=
e =
& 7!
)
(1)
— (1)

top top

Time 5

Figure 4.10 — Reference slip (black curve) and slip-rate (orange curve) trajectories for
the tracking control strategy (see Section 3.2.2).

and when we shift again the system to its new equilibrium point, this term disappears
(see Sections 4.2 and 3.2.2).

Here, the integral action, which is embedded in Eq. (4.38a), doesn’t contain (neces-
sarily) ns single integrators as in Section 4.2. In Lewis et al. (2012), it is mentioned that
it’s not possible to have more integrators than actuators. Therefore, the number of single
integrators in this Section is equal to N, i.e. the number of boreholes available to control
the dynamic nature of the fault region.

In this Section, the tracking policy is based on driving each sub-region to a desired
state (in average sense) following a smooth sigmoid function. The reference slip and slip-

rate signals are illustrated in Figure 4.10 and given respectively by:

P(t) = dumaxs® (10 — 155 + 657) , (4.39)
dmax
() = 30— % (s — 1), (4.39b)
op

where s = ti, top is the operation time of the controller, and dyay is the desired maximum
op

slip of each segment (see Figure 4.9). The expected maximum slip rate of each sub-region

Q dmax
8 top

The system in Eq. (4.38) has the same form as the one in Eq. (3.21) for designing

is obtained half-way through the controller operation (see Figure 4.10).
a controller which tackles unmatched uncertainties. Furthermore, the linearized to the
origin version of Eq. (4.38) results in a controllable system. Therefore, the control design
procedure described in Section 3.3 can be applied.

The controller design presented in Section 3.3 assumes that the mechanics (see Eq.

(4.38a)) contain only structured (matched) uncertainties. Only in this case, the controller
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is robust to compensate parameter uncertainties in elasticity, viscosity (matrix A, (¢, x,)
in Eq. (4.38a)) and frictional weakening (vector g,(t,z,) in Eq. (4.38a)). In other words,
we don’t explore here the effect of unmodeled dynamics of finer scales emerging from the
mechanical system. Consequently, we subdivide the fault area to as many segments as the
available “control” wells.

For the design, the two Continuous-time Algebraic Riccati Equations (CAREs) given
by Egs. (3.33) and (3.34) have to be solved numerically. Notice that the two CAREs are
uncoupled and each one can be solved separately from one another. In parallel, the four
inequalities given by Eqs. (3.28)-(3.31) have to be satisfied.

Inequality Eq. (3.28) corresponds to the parameter uncertainties and nonlinearities
which are present in Eq. (4.38a) (fault dynamics). The bound of this inequality has already
been provided in Section 4.2 and particularly in Eq. (4.32). Next, Eq. (3.30) asks for an
upper bound of the friction coefficient. Finally, inequalities Eq. (3.29) and Eq. (3.31)
demand the minimum and maximum bounds of diffusivity and friction. The latter two
bounds depend also on the solution of the CARE #1 (see Eq. (3.33)).

Consequently, the resulted control input ps is given by the following expression (see
Eq. (3.40)):

2 2

Poo = =K. (P + Kaza) , (4.40)

where K, is the gain matrix obtained from the solution of the CARE #1 (Eq. (3.33)) and
K, the gain matrix obtained from the solution of the CARE #2 (Eq. (3.34)).

The above robust controller needs to measure the whole state-space in order to provide
the pore pressure increments to the respective boreholes. However, in reality, the acquired
measurements are sparse in space. Therefore, an observer has to be built (see Section
3.4). If the system of study is observable, given the set of available measurements, the
observer can recreate the states of this system allowing the usage of the already designed
controller.

The observer design presented in Section 3.4 and in Khalil (2015) takes into consider-
ation parameter uncertainties in both the state and the input matrices. However, as we
can observe in Egs. (3.57) and (3.58), these uncertainties could dramatically increase the
region of attraction of the estimation error. Therefore, despite the large range of uncertain-
ties considered for the control design (see Section 4.2 and Table 4.2), the observer, finally,
is designed by assuming that we know a priori the mechanical and frictional properties
of the fault area (no uncertainties considered here).

In the literature, there exist numerous methods, where a robust observer is designed
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for nonlinear systems accounting for parameter uncertainties. Such methods could be the
Linear Matrix Inequality (Rajamani et al., 2020), Sliding Modes Observer (Shtessel et al.,
2015), High Gain Observer (Khalil, 2015, 2017), to mention a few. Another alternative
would be to calculate a Reduced Order Model (ROM) of the plant (e.g. Brunton & Kutz,
2019). This would sufficiently reduce the state-space of the model and adequate observer
design could be performed using the above techniques. However, this is out of the scope
of this work. What is addressed in this Thesis, is an example where the simulation and
observer parameters are the same, helping us to illustrate the fact that the proposed
control strategy can be applied, even in the absence of sufficient measurements.

The plant of Eq. (4.38) (without the integrators) can be represented as follows in

~ =

matrix form:
z Ay (t,z,) Bal(t,z, Tg Os, X o(t, g
ol _ [ Adle) Ballra)) frel QFN{m}+g( 4 (4.41)
p OnNxaony —Cq p Ca | —— Onx1

—— —— ~— 0 Ue
2! Ae Te Be ge(t,ze)

e

where in short:
7, = Ace + Bee + ge(t, 1), (4.422a)
Yy = Ooxa (442b)

where y is the measured average surface deformation and C, the output matrix.
The adopted estimator is a Luenberger observer (Franklin et al., 2018; Khalil, 2015).
Practically, it’s a copy of the plant of the system plus a correction term. Therefore, the

observer equation yields to be:

B, = Ace + Beue + ge(t, %) + L(y — 9), (4.43a)
Cote, (4.43D)

where Z. is the estimated vector of the actual states, z., 7 is the estimated surface de-
formation and L is the observer matrix to be chosen properly. Notice that the plant
Eq. (4.42) and the observer Eq. (4.43) have the same form with Eq. (3.41) and Eq.
(3.44), respectively. In addition, the linearized to the origin version of Eq. (4.42) results
in an observable system (Franklin et al., 2018; Ogata, 2010) due to the presence of the
fully-populated elasticity matrix. Therefore, a robust observer can be designed using the
methodology described in Section 3.4. For that, the Lipschitz bound of the nonlinear func-

tion g.(t, z.) — ge(t, Z.) has to be determined. This can be retrieved using the boundness
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of friction derived in Chapter 1 and applied in Section 4.2. Consequently (see also Section
4.2):

lge(t, ze) — ge(t, 20| < By || Ny, (4.44)

lell
max

where e = z, — Z. is the estimation error.

It should be mentioned here that the robust controller obtained from Eq. (4.40) con-
sidering full-state feedback remains robust, even if we replace the actual states with the
estimated ones derived from the observer of Eq. (4.43) (see Section 3.4 and also Khalil,

2015). Therefore, the input pressure at the injection point is given by the relation below:
boo = [~y —K] e (4.45)

For the illustrative examples, presented in the next subsection, we consider as many
boreholes as the elements that the fault area has been divided into. This allows us to design
a robust controller (see Eq. (4.45)) for the same parameter uncertainties with the ones
given in Table 4.2 using the theory introduced in Section 3.3. In Table 4.3, we present the
updated version of the Table by adding the bounds of the nominal and maximum friction
as well as the nominal, minimum and maximum values of the diffusivity, c;. Uncertainties
in diffusivity can be addressed to hydraulic diffusivity, cny, and permeability, kpe, or
even the effective distance of influence of the wells, Ly. For example, considering the
limits of diffusivity provided in Table 4.3, for constant L; = 5 km, the permeability in
the surrounding of the fault area could vary from k;;girn = 107'® m? to kper™ = 1078
m?, assuming CO, as fluid (fluid dynamic viscosity = 6.3 - 1071 MPa.s and mizture
compressibility = 2.3 - 1072 MPa™').

Furthermore, the friction law employed for the following simulations is the slip-
weakening friction law chosen as the worst case scenario (see Section 4.2.2). Finally, the
observer design considers the same parameters between the simulation and the observer
as it is already discussed in the previous paragraphs.

The controller given by Eq. (4.45) can be used for the whole range of parameters
summarized in Table 4.3. To sum up, only the following ranges of the mechanical and
frictional properties of the fault region (including a safety factor) have to be known for

the robust control design presented in this Section:
1. minimum and maximum estimation of the density of the surrounding rocks,
2. minimum and maximum estimation of the length of the fault,

3. minimum and maximum estimation of the shear modulus of the rock,
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Table 4.3 — Nominal, minimum and maximum values considered for the mechanical and
frictional properties of the fault during the design of the robust continuous-time controller.

Variable Symbol  Unit Min. Value Max. Value Nominal Value

fault activation length L, km 2 10 6
shear modulus G GPa 28 40 34
density of rocks p kg/m3 2400 3000 2700
damping ratio ¢ - 0 1.2 0.6

initial effective normal stress o, MPa - <150 -
friction coefficient I - 0.04 100 0.6

diffusivity Cd yr—! 107° 109 1

SW parameters | Ap - - <04 -

asv mim >3 - -

4. minimum and maximum estimation of the damping ratio,

5. maximum estimation of the effective normal stress on the fault interface (before

the activation of the controller),
minimum and maximum estimation of the diffusivity,

minimum and maximum estimation of the friction coefficient,

© N oo

minimum estimation of the SW characteristic frictional distance,

9. maximum estimation of the SW stress drop.

Notice that all the above limits are strictly positive numbers.

4.3.1 Application with a single source

Consider an idealized and isolated strike-slip fault as the one studied in Sections 4.1 and
4.2 (see Table 4.1). We place the single well at a distance Ly = 5 km from the fault’s
center (see Figure 4.9a). This distance is sufficiently large to consider that when the
fluid reaches the fault level, the pressure front is quasi-uniform and it covers all the fault
area (see Figure 4.9a). As we mentioned above, the controller developed in Section 3.3 is
robust when the number of elements of the fault area is equal to the number of available
wells. Therefore, in this specific example, our configuration reduces to the spring-slider
reduced order model (single element). This configuration will help us build understanding
regarding the influence of the hydraulic diffusivity/permeability of the rocks surrounding
the fault region to the developed pressures in the borehole level.

The dynamics of this system can be simulated by Eq. (4.38). The frictional interface

obeys the slip-weakening friction law. Moreover, the frictional properties of the fault are
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identical to the one employed in Sections 4.1.2 and 1.2.3. As shown there, when the fault
is critically stressed, we expect a dynamic instability to occur. The injected fluid is a
high-pressurized CO, resulting in a hydraulic diffusivity of ¢,y = 0.7 m?/s (permeability,
kpar = 10713 m?). Consequently, the diffusivity is equal to ¢; = CLL% ~ 0.9 year 1.

In Figure 4.11a, we present again the (average) response of the strike-slip fault for a
single (isolated) typical dynamic event. The maximum reported velocity (averaged over
the fault surface) is 0.11 m/s corresponding to a maximum slip of 0.63 m. This dynamic
event is associated with a stress drop of approximately 3.8 MPa (Figure 4.11b) resulting

in an earthquake of magnitude M, ~ 5.7.

In order to prevent such an earthquake, we employ the control strategy developed
earlier in this Section and in Chapter 3. The control objective is to release the stored

elastic energy in a slow-aseismic way, assuring stability throughout the whole process.

In this example, we have a Single Input and Single Output (SISO) system. The input
is the pressure adjustment in the well level and the output is the unique measurement we
obtain, i.e. the average deformation of the fault at the surface (see Figure 4.9a). As we
have discussed in this Section, given Eq. (4.38), we can design a robust controller with
the form of Eq. (4.45) which takes into consideration the range of parameter uncertainties

summarized in Table 4.3. In addition, an observer is constructed of the form Eq. (4.43).

As mentioned above, as far as there exists only one actuator (a single borehole), we can
track only one reference signal. This signal is chosen to be the average slip over the fault
region. The slip reference trajectory has the sigmoid shape depicted in Figure 4.10. The
displacement target is set to be equal to the maximum slip of the open-loop system, i.e.
dmax ~ 0.63 m. The borehole is scheduled to operate for about ¢,, = 3 years. Therefore, we
expect a maximum controlled slip-rate of the order of 107® m/s (~ 30 cm/year) during
this period. Notice that due to the far-field movement of the tectonic plates (vy = 1
cm/year), during the control strategy, we expect the fault to slip an extra 3 cm, namely

we expect the maximum slip of the fault to be dp.x &= 0.66 m (see Figure 4.11c¢).

In Figure 4.11c, we show the (average) response of the system after applying our control
strategy. We can infer that the tracking is almost identical to the reference trajectories. In
parallel, in Figure 4.11d, the pore pressure evolution at the fault (blue curve) and borehole
(green) level is plotted. We can clearly observe the inherent delay due to the diffusion
phenomena. Initially, the actuator reduces its pressure (fluid extraction) to stabilize the
fault system for approximately nine months. The effect of this reduction becomes visible

in the fault after a year of the initiation of the controller, i.e. three months of delay. Next,
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Figure 4.11 — Open-loop response of the strike-slip fault for a single dynamic event with
slip-weakening friction (ny = 1 element). (a) Average slip (black) and slip-rate (orange)
in terms of time. (b) Corresponding average shear stress evolution in terms of slip.
Closed-loop response of the strike-slip fault after the application of the controller adopting
slip-weakening friction law (ny = 1 element corresponding to 1 installed well). (c¢) Aver-
age slip (black dotted curve) and slip-rate (orange dotted curve) in terms of time. The
controller successfully achieves the target /reference slip (black dashed line) and slip-rate
(orange dashed line). (d) Evolution of the average applied fluid pressure change in the
fault (blue curve) and the borehole level (green curve).

the actuator increases the pressure (fluid injection) in order to allow the fault to slip as
the tracking trajectory demands. When the system reaches its steady-state, the average

pressure both in the fault and the borehole becomes zero.

The pressure evolution at the borehole level (green curve in Figure 4.11d) strongly
depends on the operation time of the control strategy, top,, and the diffusivity of the
surrounding rocks, ¢;. These dependencies are not surprising and are depicted in Figure
4.12. In particular, in Figure 4.12a, we observe that as the operation time of the control

strategy decreases (t,, = 3 years, 1 year, 4 months) the developed pressures (applied flux)
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Figure 4.12 — (a) Comparison of average fluid pressure in terms of normalized time
for three different operation times (¢,, = 3 years, 1 year, 4 months). (b) Comparison
of average fluid pressure with respect to time for three different values for diffusivity
(cqg = 0.9, 10, 100 years™!). For both graphs the pressure at the fault level is illustrated
with the blue solid line.

close to the level of the well increase significantly. Of course, as t,, decreases, the expected
maximum slip-rate in the fault region increases as well.

In general, t,, is a free parameter and can be chosen according to practical criteria
related to the site and the pumping system. In Figure 4.12b, we show the influence of
the diffusivity, ¢4, on the average pressure evolution of the fault. Specifically, as the dif-
fusivity increases (cq = 0.9, 10, 100 years™!), the pressure at the borehole level tends
to coincide with the one in the fault level. Notice that the average pressure at the fault
level (blue curve) is independent from the operation time and the diffusivity. Variations
in diffusivity could be attributed to changes in the hydraulic diffusivity /permeability of
the rocks surrounding the fault area and/or the effective distance of the well from the
fault. The influence of the latter factor (Ly) and of the number of the wells is explored in

the following subsection.

4.3.2 Application with multiple sources

In the case where multiple wells are considered, the region of influence of each well re-
duces allowing us to place the wells closer to the fault area (see Figure 4.9). This action
practically reduces the diffusivity, ¢4, and, eventually, leads to reduced pressures at the

borehole level (see Figure 4.12b). Even though the distance between the wells and the
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Figure 4.13 — Projection of the wells (blue dots) on the fault interface for three different
scenarios: (a) 4 wells, (b) 25 wells, and (c¢) 100 wells. The blue shaded circles correspond
to the region of influence of each well. The darker areas indicate overlapping regions.

fault is decreased, it remains sufficient to assume a quasi-uniform pressure front at each
region on the fault interface. Here, three different scenarios are examined including each
time 4, 25, or 100 wells. For each application, the projection of the wells on the fault
interface is depicted in Figure 4.13.

The design of the controller takes into account parameter uncertainties as provided
in Table 4.3 and generally discussed in this Chapter. The fault area is divided into that

many elements as the total number of installed wells for each scenario. Moreover, the
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only measurement we acquire is the average deformation of the fault at the surface (see
also Figure 4.9). We remind that this deformation could be obtained by state-of-the-art
technologies (e.g. surveying, GPS, INSAR, etc.). For this purpose, an observer is designed
as well, in order to recreate the states of the system and feed them back to the controller.
The operation time remains the same (¢,, = 3 years) as in the previous examples (see
Section 4.3.1). For these applications, the target of each well is to drive its region of
influence (see Figure 4.13) to a new equilibrium point of lower energy, following a smooth
slip trajectory as the one illustrated in Figure 4.10. Therefore, 4, 25, and 100 reference

trajectories are being tracked during each simulation, respectively.

In Figure 4.14, the first two applications are presented. More specifically, in Figure
4.14a-b, the scenario where 4 wells are installed at a distance of Ly; = 2.5 km from the
fault is depicted. In Figure 4.14c-d, the scenario where 25 wells are installed in a distance
of Ly = 1 km from the fault is illustrated. We can observe that the average response
of the fault system (Figure 4.14a,c) for both scenarios is identical to the one in Figure
4.11c,d (single well). However, even though the average pressure over the fault area is
the same, large deviations from the previous single well example can be observed in the
pressure profiles of each borehole point. These deviations reduce as the distance from the
fault decreases and the pressure evolution at the borehole level tends to approach the one
at the fault level (smaller delay). Notice that the envelopes of the respective pressures
completely overlap in the case of 25 wells (see Figure 4.14d). However, the minimum
pressure at the borehole level remains unchanged at around 8 MPa between all three
applications presented so far (see Figures 4.11d, 4.14b and 4.14d) and can be decreased
by increasing, for instance, the operation time. This minimum pressure peaks corresponds
to an individual or a group of boreholes. In other words, not all the wells have to reach

this pressure level.

Finally, the scenario of 100 installed wells at a distance of Ly = 0.5 km from the fault
is depicted in Figure 4.15. Again the response of the system is identical to the previous
examples. Furthermore, the pressure evolution at the boreholes completely overlaps the

one at the fault level.

It is worth emphasizing that the control strategy presented in the above examples
was performed by just measuring the average slip of the fault at the surface. In order to
reconstruct the state-space of the whole fault region, we built an observer. This observer
uses the available measurement in order to derive estimations for the states of the system.

Notice that the observer is designed in such a way that the error between the actual state
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