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Résumé

L’importance de la dynamique des fluides numérique dans le processus de conception
industrielle a augmenté de façon spectaculaire au cours des deux dernières décennies.
Cette évolution est principalement due aux progrès technologiques qui ont permis
de disposer de clusters plus puissants et moins chers pour effectuer des simulations.
Les CPU multi-cœurs et les GPGPU étant la nouvelle norme pour la construction de
clusters, les plateformes deviennent de plus en plus variées. Cependant, la plupart
des codes CFD ont été conçus pour les anciennes architectures et sont désormais
incapables d’exploiter pleinement les machines les plus modernes. Cette thèse tente
d’aborder certains des problèmes de performance que les codes CFD peuvent ren-
contrer sur les plateformes émergentes.
Les performances du solveur incompressible massivement parallèle YALES2 ont été
analysées, afin d’identifier les points forts et les goulots d’étranglement dans les par-
ties les plus importantes du solveur. Un accent particulier a été mis sur le solveur
linéaire, où la plupart du temps de calcul est passé.
Un modèle de performance extrêmement simpliste a été obtenu pour toutes les par-
ties fondamentales du solveur de Poisson. Afin de résoudre certains des problèmes
mis en évidence par cette analyse, une nouvelle structure de données a été intro-
duite dans le code, ce qui a permis de réduire le temps de calcul et de rendre le
code lui-même plus flexible, en découplant deux concepts fondamentaux tels que les
groupes d’éléments utilisés pour le cache-blocking et la grille de déflation du PCG.
En outre, pour essayer d’exploiter les processeurs modernes à mémoire partagée,
deux modèles hybrides MPI+OpenMP différents ont été mis en œuvre.
Tout d’abord, une tentative a été faite avec un modèle OpenMP fine-grain, basé
sur la parallélisation des boucles. Ce modèle semblait particulièrement adapté à
la majeure partie de la structure de YALES2, mais présentait quelques difficultés
qui le rendaient moins efficace dans certaines autres parties clés du solveur. Mal-
gré les nombreuses tentatives d’optimisation, ce modèle n’a finalement pas permis
d’améliorer les performances de l’implémentation MPI pure.
Ensuite, afin de surmonter les problèmes de l’implémentation fine-grain, un modèle
OpenMP coarse-grain a été introduit. Principalement en raison du fait que les bib-
liothèques MPI sont séquentialisées en interne pour maintenir la thread-safety, cette
mise en œuvre n’a pas non plus été fructueuse. Elle a cependant permis d’introduire
certaines caractéristiques de modernisation du code, telles qu’une thread-safety com-
plète et une API de communication abstraite.
En conclusion, ce travail montre les défis que représente l’adaptation d’un solveur
de CFD incompressible low-Mach tel que YALES2 aux architectures les plus mod-
ernes actuellement disponibles. Malgré la faible efficacité de la plupart des solutions
proposées, plusieurs questions intéressantes ont été soulevées, et de nombreuses per-
spectives d’optimisations futures ont été facilitées grâce au travail de fond sur la
structure du code effectué au cours de cette thèse.





Abstract

The importance of Computational Fluid Dynamics in the industrial design process
has increased dramatically in the last two decades. This is mainly due to the tech-
nological advancements that have brought on more powerful and cheaper clusters to
run simulations on. With multi-core CPUs and GPGPUs being the new standard
for cluster builds, platforms are becoming more and more varied. However, most
CFD codes were designed for the older architectures and are now incapable of fully
exploiting the most modern machines. This thesis tries to address some of the per-
formance issues that CFD codes might encounter or the emerging platforms.
The performances of the massively parallel low-Mach incompressible solver YALES2
have been analysed, in order to identify strong points and bottlenecks in the most
important parts of the solver. Particular focus was put on the linear solver, where
most of the computational time is spent.
An extremely simplistic performance model has been obtained for all fundamental
parts of the Poisson’s solver.
In order to solve some of the issues uncovered by the performance analysis, a new
data structure has been introduced into the code, which has allowed to reduce the
computational time and make the code structure itself more flexible, decoupling two
fundamental concepts such as the groups of elements used for the cache blocking
and the Poisson’s PCG deflation grid.
Furthermore, to try and exploit modern shared memory processors, two different
hybrid MPI+OpenMP models have been implemented.
First, an attempt was made with a fine-grain OpenMP model, based on loop paral-
lelisation. This model seemed particularly adapted for most of the YALES2 struc-
ture, but presented some challenges that rendered it less effective in some other key
parts of the solver. In spite of the many optimisation attempts, in the end this
model did not bring any improvement to the performance of the pure MPI imple-
mentation.
Then, in order to overcome the issues of the fine-grain implementation, a coarse-
grain OpenMP model has been introduced. Mainly due to the fact that MPI libraries
are internally sequentialised to maintain thread-safety, this implementation was also
unfruitful. It has however allowed to introduce some modernising features to the
code, such as a full thread-safety and an abstracted communication API.
In conclusion, this works shows the challenges to adapt a low-Mach incompressible
CFD solver such as YALES2 to the most modern architectures currently available.
Despite the poor effectiveness of most of the solution proposed, several interesting
issues have been raised, and many perspectives on future optimisations have been
made easier thanks to the ground work laid down during this thesis on the code
structure.
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Chapter 1

HPC for CFD

The last two decades have seen an exponential increase in the importance of CFD
(Computational Fluid Dynamics) simulations in the process of industrial design.
This is due to the enormous technological advances that happened in both the soft-
ware and hardware side. On one hand, CFD software and numerical methods have
become more reliable and precise, on the other, the computational power has in-
creased massively, allowing for more complex and refined geometries to be simulated
in reasonable time. In particular, architectures have become massively parallel, i.e.
composed of hundreds of thousands of computational cores communicating with
each other, and nowadays we are entering the so called exascale era [1], which
means that machines are now able to execute a number of operations per second of
the order of 1018 (exaFLOPs). Computational power can not grow indefinitely at
this pace, as computing chips are hitting technological barriers and energy efficiency
is becoming an issue [2]. Processors have evolved taking into consideration all these
aspects, and multicore chips are now the norm in modern HPC (High Performance
Computing) clusters [3, 4], together with GPGPUs (General Purpose Graphic Pro-
cessing Unit) [5, 6]. Consequently, software need to constantly adapt to the evolving
hardware if the full computation capability of such machines is to be exploited.
The objective of this work is to analyse the issues and bottlenecks that prevent a
CFD code to scale efficiently, i.e. to maintain the same level of performance when
running on a large number of cores, and to propose solutions to the overcome such
impediments.
This first chapter gives an overview of CFD simulation and HPC systems, explain-
ing the challenges and limits of CFD software on such platforms, concluding with
a more detailed description of the motivations of this work, and the layout of this
document.

1.1 Navier-Stokes Equations

The motion of newtonian fluids is described by the Navier-Stokes equations. They
are a system of partial-derivative equations, derived from the laws of mass, momen-
tum and energy conservation which link together the density, velocity, pressure and
energy field. Since the number of unknowns is greater than the number of equations,
one supplementary equation is needed in order to find a solution to this system. A
supplementary equation is supplied by the thermodynamic state relation for the
internal energy. This however introduces a new variable, the temperature. Closure
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is finally provided by the equation of state, which creates a relation between the
temperature, the pressure and the density.

1.1.1 Continuity equation

The continuity equation creates a relationship between the density and the velocity
through the mass flow rate across the surface ∂Ω of a fixed (Eulerian) control volume
Ω. The variation of mass inside the control volume is equal to the mass flow that
crosses its boundary, as expressed by Equation 1.1, where ρ is the density of the
fluid, u the velocity vector and n̄ is the outwards-directed unit normal vector to the
surface ∂Ω. ∫

Ω

∂ρ

∂t
dΩ = −

∫
∂Ω

(ρu) · n̄dA . (1.1)

Equation 1.2 is obtained applying the Gauss theorem to the right-hand side of
Equation 1.1 ∫

Ω

(
∂ρ

∂t
+∇ · (ρu)

)
dΩ = 0 . (1.2)

Since Equation 1.2 is valid for any control volume Ω the local form of the continuity
equation can be written as in Equation 1.3.

∂ρ

∂t
+∇ · (ρu) = 0 . (1.3)

1.1.2 Momentum conservation equation

The momentum equation is obtained from the second of Newton’s laws, which states
that the variation of momentum of a body is equal to the sum of the forces acting
on it. For a fluid in a Eulerian control volume Ω those forces are induced by the
gravity field g, the pressure field P and the shear stress tensor τ = µ

(
∇u + (∇u)T

)
of the fluid, with µ being its dynamic viscosity. The momentum of a body can be
expressed as in Equation 1.4.

m =

∫
Ω
ρudΩ . (1.4)

Applying again the Gauss theorem, and considering all the above mentioned effects
on the control volume, Equation 1.5 is obtained.∫

Ω

(
∂ρu

∂t
+∇ · (ρu⊗ u)

)
dΩ =

∫
Ω

(ρg −∇P +∇ · τ) dΩ . (1.5)

Again, Equation 1.5 is valid for any control volume Ω, consequently the local form
can be obtained as in Equation 1.6.

∂ρu

∂t
+∇ · (ρu⊗ u) +∇P = ρg +∇ · τ . (1.6)
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1.1.3 Energy conservation equation

The conservation of energy expressed by Equation 1.7 states that the temporal
variation of the total specific energy eT in the control volume Ω (left-hand side) is
due to the convective fluxes of specific energy through the boundary ∂Ω, the heat
diffusion q and the work of the forces applied to the control volume (right-hand
side).∫

Ω

∂ρeT
∂t

dΩ = −
∫
∂Ω
ρ (eTu)+q·n̄dA−

∫
∂Ω

(Pu)·n̄dA+

∫
∂Ω

(τu)·n̄dA+

∫
Ω
ρg·udΩ .

(1.7)
Once again this is valid for any control volume Ω, which allows to write the differ-
ential form of the energy conservation as in Equation 1.8.

∂ρeT
∂t

+∇ · (u (ρeT + P )) = ∇ · (τu)−∇ · q + ρg · u . (1.8)

As stated above, in order to be able to solve the system, another equation is needed.
Since Equation 1.8 is expressed in terms of specific energy, Equation 1.9 can be used,
where ε is the specific internal energy.

eT = ε+
1

2
u · u . (1.9)

1.1.4 Equation of state

For a calorifically perfect gas, ε can be derived from the thermodynamic state Equa-
tion 1.10:

ε = cvT , (1.10)

which relates the internal energy and the temperature T through the specific heat
at constant volume cv. As the temperature appears, a final equation is necessary for
the complete closure of the system. This is achieved introducing equation of state,
which, for a perfect gas, links density, pressure and temperature via the specific gas
constant r as in Equation 1.11:

P = ρrT . (1.11)

1.2 Incompressible Navier-Stokes equations

Traditionally flows with a Mach number M < 0.3 are considered incompressible,
which means that acoustic effects on the flow are negligible, hence they can be
ignored. If the temperature is also constant, then the density does not vary as well.
This means that only the velocity u and pressure P fields are to be determined. This
can be done using only the continuity and momentum equation, which are further
simplified by the hypothesis of constant density ∂ρ

∂t = 0. Equation 1.3 becomes then
the incompressibility equation 1.12.

∇ · u = 0 . (1.12)
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Equation 1.12 has implications on the momentum equation 1.6. First, the divergence
of the shear stress τ , for a constant dynamic viscosity µ becomes:

∇ · τ = µ
(
∇2u +∇ (∇ · u)

)
= µ∇2u . (1.13)

The term ∇ · (u⊗ u) is also impacted:

∇ · (u⊗ u) = (u · ∇+∇ · u)u = (u · ∇)u . (1.14)

Finally, substituting equations 1.13 and 1.14 into Equation 1.6, simplifying by ρ

and defining the constant cinematic viscosity ν = µ
ρ the incompressible momentum

equation becomes:

∂u

∂t
+ (u · ∇)u +

1

ρ
∇P = g + ν∇2u . (1.15)

1.3 Numerical solution of the Navier-Stokes equations

In spite of their innumerable applications, there is still no proof that a solution
for the Navier-Stokes equations in the 3D space always exist, and whether these
solutions are smooth if they exist. Instead of an analytical solution, a numerical
approximation is then sought in order to study the characteristics of a flow under
specific conditions.
The first step of a numerical simulation is to define the physical space in which the
phenomenon is to be studied. Then, such physical volume is discretised in several
sufficiently small parts, called cells or elements. This process is called meshing, as
the ensemble of interconnected points that form the cells are called mesh. In gen-
eral, the finer the mesh, i.e. the smaller the elements, the more precise the solution
will be. However this comes at a cost in terms of resolution time, as the latter
increases with the number of cells in the mesh. The following step is the definition
of the boundary and initial conditions, i.e. respectively the values of the physical
properties on the boundaries of the domain and at their initial state in the entire
volume. The good definition of these properties is paramount as the same problem
will have a different solution for different boundary and initial conditions.
Another important aspect to take into account for a CFD simulation is that turbu-
lent phenomena span multiple length scales. Different numerical approaches can be
defined in function of how they take into account the different turbulence scales, the
main one being DNS, LES and RANS. Direct numerical simulations (DNS) solve all
turbulent scales, which means that the domain discretisation must be fine enough
to capture the smallest scales of turbulence. This makes the computational cost of
DNS prohibitive, consequently their use is limited to low-Reynolds flows and sim-
ple geometries. The opposite approach, in which the entire turbulence spectrum is
modelled is based on the Reynolds Averaged Navier-Stokes (RANS) paradigm. The
reduced numerical cost of RANS simulations comes at the detriment of the solution
precision, since the only information that can be obtained by such simulation is the
average velocity field and the modelling of the turbulent phenomena is extremely
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complex. An intermediate approach between RANS and DNS is represented by
Large-Eddy Simulations (LES). Based on Kolgomorov’s turbulence cascade theory,
LES aims at improving the precision obtained by RANS simulation while avoiding
the extreme costs of DNS. This is done by defining a threshold length scale above
which the turbulence is resolved and below which it is modelled, consequently tran-
sient high-Reynolds number flow can be simulated with a coarser discretisation with
respect to DNS.
For the LES approach, the separation between resolved and modelled scales is ob-
tained via a filter for the conserved quantities:

φ(x, t) = [G∆ ? φ] (x, t) =

∫
Ω
φ(y, t) G∆(x− y) d3y , (1.16)

where G∆ is the filter kernel of size ∆. The DNS approach can be se as the asymp-
totic case of an LES with a filter of size zero. In other terms, if the mesh is fine
enough, a Large-Eddy Simulation can be equivalent to a DNS.

1.3.1 Projection Method

A modified version of the projection method first proposed by [7] and improved
by [8] and [9] can be used for the time advancement of the incompressible Navier-
Stokes equation. This method, often used in the simulation of incompressible flows,
relies on the Helmoltz-Hodge decomposition theorem, that states that a vector field
smooth enough can be expressed as the sum of an irrotational, a solenoidal and a
harmonic field. For the velocity field u it means that:

u = ui + us + uh , (1.17)

where:

ui is the irrotational component of the velocity field, which verifies ∇×ui = 0. This
is associated to the net flux through the infinitesimal control volume surface.

us is the solenoidal component of the velocity fields, which is such that ∇ ·us = 0.

uh is the harmonic component of the velocity fields, which satisfies ∆uh = 0. This
last component is often omitted from the analysis as it depends solely on the
velocity field boundary conditions and it is null for an infinite or periodic
domain.

ui can be defined as the gradient of a scalar field φ as ui = ∇φ. Applying the
divergence theorem to Equation 1.17 gives:

∇ · u = ∇ · ui = ∇2φ . (1.18)

Equation 1.18 shows that the scalar field φ can be determined solving a Poisson
equation from u in order to compute the irrotational part of the velocity field ui.
This method allows to solve the Navier-Stokes equations in three steps:
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1. Prediction step:
A first estimate of the velocity field un+1 from un can be obtained rewriting
the momentum equation without the pressure gradient, which contributes only
to the irrotational velocity field.

u? − un

∆t
= ν∇2un − (un · ∇)un . (1.19)

In order to have a more precise numerical method the contribution of the
known pressure gradient ∇Pn− 1

2 is added. Since this pressure gradient is not
expected to be much different from the one to be determined, it allows a better
estimation of the velocity u? reducing the errors due to the time step splitting.
Equation 1.19 becomes:

û− un

∆t
= ν∇2un − (un · ∇)un − 1

ρ
∇Pn− 1

2 . (1.20)

u? is then obtained subtracting the pressure gradient contribution:

u? − û

∆t
=

1

ρ
∇Pn− 1

2 . (1.21)

This approach is only useful for multi-step time advancement methods such as
fourth order Runge-Kutta [10] or TFV4A [11] and it is absolutely unnecessary
for explicit Euler methods.

2. Correction step:
The velocity is then corrected with the new pressure gradient as:

un+1 − u?

∆t
= −1

ρ
∇Pn+ 1

2 . (1.22)

In Equation 1.22 the pressure gradient at the time step n + 1
2 is of course

unknown, but applying the divergence operator to this equation, and imposing
the incompressibility constraint ∇ · un+1 = 0 one obtains:

∇2Pn+ 1
2 =

ρ

∆t
∇ · u? , (1.23)

which is a Poisson equation for the pressure P . Finally the velocity field un+1

can be obtained with:

un+1 = u? − ∆t

ρ
∇Pn+ 1

2 . (1.24)

1.3.2 Solution of the Poisson equation for the pressure

In subsection 1.3.1 it was shown how, thanks to the projection method, the solu-
tion of the incompressible Navier-Stokes equations can be split in few steps. This
method produced Equation 1.23, a Poisson equation for pressure. The solution of
this equation is the most important step in the entire procedure, both numerically



1.3. Numerical solution of the Navier-Stokes equations 7

and in terms of computational cost. Equation 1.23 has to be solved for each control
volume of the discretised domain. The pressure field is obtained as the solution of
the resulting system of equations, one for each control volume. This system of equa-
tions can be written in the classical form of Equation 1.25, where A is the matrix
representing the Laplacian operator ∇2, x and b are respectively the vectors of the
unknown values of the pressure P and the known term ρ

∆t∇ · u? of each control
volume.

Ax = b . (1.25)

The efficiency of the method used to find the solution of Equation 1.25 depends
on the property of the matrix A. A is a square matrix whose number of rows and
columns correspond to the number of control volumes in the domains. For massive
CFD simulations, direct method such as the Gauss-elimination can not be used as
the size of A can exceed the billion of elements. A is a definite symmetric positive
matrix, in the considered case of a proper discretisation of the Laplacian operator
and for constant Neumann boundary conditions, however it is non-strictly diagonally
dominant. Finally even if A is sparse, its inverse is not, hence it would require large
amount of memory for its storage. Consequently Krylov methods, such as the
Conjugate Gradient (CG), are then generally preferred to other iterative methods
such as Gauss-Seidel and Jacobi to solve this kind of system for CFD simulations.
Solving Equation 1.25 with A a definite symmetric positive matrix, is equivalent to
minimising a functional f(x) equal to:

f(x) =
1

2
xTAx− xT b with ∇f(x) = Ax− b . (1.26)

Equation 1.25 is obtained when ∇f(x) = 0. This can be rewritten as a minimisation
problem for another functional f ′ as in Equation 1.27:

f ′(x) =
1

2
(x− xf )TA(x− xf ) . (1.27)

where Axf = b. The difference between f and f ′ is a constant equal to xTf b/2.
Solving Equation 1.25 is therefore equivalent to finding the minimum of a multi-
dimensional quadratic function with a considerable number of dimensions. The
functional f ′ can be seen as the squared distance between x and xf for the A-scalar
product. To minimise f ′, N projection steps are required for an orthogonal basis of
N vectors. For each step, x is projected onto the orthogonal basis obtained by the
orthogonalisation of a Krylov subspace:

KN (A, b) = span {b, Ab,A2b, . . . , AN−1b} . (1.28)

The Conjugate Gradient method works as in Algorithm 1, where −αkpk is the
projection of xk onto the current basis vector pk and which is removed from xk and
ε is a convergence threshold for the residual r. This method also guarantees that all
pk vectors are A-orthogonal to each other.
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Algorithm 1: Conjugate Gradient method
r0 = b−Ax0, p0 = r0, k = 0;
ρ0 = rT0 r0;
σ0 = pT0 Ap0;
while not done do

αk = ρk
σk
;

xk+1 = xk + αkpk;
rk+1 = rk − αkApk;
if ‖rk+1‖ < ε then

exit the loop
end
ρk+1 = rTk+1rk+1;
βk =

ρk+1

ρk
;

pk+1 = rk+1 + βkpk;
σk+1 = pTk+1Apk+1;
k = k + 1;

end
The result is xk+1.

The inequality 1.29 relates the A-norm of the error at a step k to the initial A-
distance to the solution and gives an estimation of the convergence of the Conjugate
Gradient method.

‖xf − xk‖A 6 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖xf − x0‖A , (1.29)

where κ(A) is the condition number of the matrix. From a computational point of
view Algorithm 1 requires only a single matrix-vector product and a few scalar prod-
ucts per step, however the number of steps is bounded by the possibly extremely
large number of lines in the A matrix. The CG method relies on a recurrence
which performs the orthogonalisation on the fly in successive steps, which makes
it extremely efficient but also prone to the accumulation of round-off error, which
then can often require the re-initialisation of the method in order to reach conver-
gence. The Conjugate-Gradient method is consequently not directly suited to solve
the large linear system resulting from CFD problems. However the system can be
preconditioned in order to accelerate the algorithm. Preconditioning simply consist
in finding a matrix K for which K−1A has a better condition number than A and
solving the problem K−1Ax = K−1b. In order to have some gain in the solution
time the cost of computation for K−1 must be contained. A standard choice for
the preconditioning matrix is the inverse of the diagonal of A: K = diag(A), also
known as the Jacoby preconditioner [12]. However, the only interest of this pre-
conditioning is the non-dimensionalisation of the system and an improvement on
the round-off errors, as this choice for K does not change the condition number
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of the system. The so-called Preconditioned Conjugate Gradient (PCG) method is
detailed in Algorithm 2.

Algorithm 2: Preconditioned Conjugate Gradient method
r0 = b−Ax0, p0 = r0, k = 0;
w0 = K−1r0;
ρ0 = rT0 w0;
σ0 = pT0 Ap0;
while not done do

αk = ρk
σk
;

xk+1 = xk + αkpk;
rk+1 = rk − αkApk;
if ‖rk+1‖ < ε then

exit the loop
end
wk+1 = K−1rk+1;
ρk+1 = rTk+1wk+1;
βk =

ρk+1

ρk
;

pk+1 = wk+1 + βkpk;
σk+1 = pTk+1Apk+1;
k = k + 1;

end
The result is xk+1.

1.3.3 The DPCG algorithm

As stated above, the main disadvantage of the CG method is the large number of it-
erations that can be necessary to reach convergence. Preconditioning the system can
help reduce the number of iterations, however there is a trade-off between the gain in
terms of number of iteration and the cost of computing the preconditioning matrix
K−1. Another solution, called deflation, is to project the system of Equation 1.25
on a sub-space Sm of Rn. This is done by constructing a matrix W of size n ×m
with m� n such as the columns ofW form the sub-space Sm = span {w1, . . . , wm}.
The residual r must be projected onto the sub-space orthogonal to Sm, which means
that its components along the vectors {wi}mi are removed. If Â = W TAW is the
projection of A onto Sm, then the vector of the projected residuals d is found by
solving Equation 1.30.

Âd = W TAr . (1.30)

If the same projection is applied to a system with a preconditioning matrix K,
Equation 1.31 is obtained.

Âd = W T
(
AK−1 − I

)
r . (1.31)
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In [13] several different techniques of preconditioning and deflation for Conjugate
Gradient methods are compared, and the method of Algorithm 3, here called De-
flated Preconditioned Conjugate Gradient (DPCG), is evaluated as being the most
stable and with superior performance of all the considered alternatives. It is impor-
tant to notice that if A is positive semi-definite then Â has the same characteristics,
consequently all sub-systems like Equation 1.30 and Equation 1.31 can be solved
with a CG or PCG method as well.

Algorithm 3: Deflated Preconditioned Conjugate Gradient method

Â = W TAW ;
Solve Âd−1 = W T b;
x0 = Wd−1;
r0 = b−Ax0;
Solve Âd0 = W T

(
AK−1 − I

)
r0;

w0 = K−1r0 −Wd0;
p0 = w0 ρ0 = rT0 w0;
σ0 = pT0 Ap0;
k = 0;
while not done do

αk = ρk
σk
;

xk+1 = xk + αkpk;
rk+1 = rk − αkApk;
if ‖rk+1‖ < ε then

exit the loop
end
Solve Âdk+1 = W T

(
AK−1 − I

)
rk+1;

wk+1 = K−1rk+1 −Wdk+1;
ρk+1 = rTk+1wk+1;
βk =

ρk+1

ρk
;

pk+1 = wk+1 + βkpk;
σk+1 = pTk+1Apk+1;
k = k + 1;

end
The result is xk+1.

The increased complexity of the deflated algorithm is justified by its advantages
in term of solution cost. Since by definition m � n, an iteration on the much
smaller deflation system of m equations is significantly cheaper than one on the
original system of size n. Performing several iterations to converge the deflation
system in order to reduce the number of iterations on the larger one is consequently
algebraically advantageous, as the total number of operations to be performed is
finally smaller than the one required by the solution of the un-deflated system.
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1.4 HPC challenges for CFD codes

Depending on the mesh size and the precision required, solving a CFD problem can
require a significant amount of computational resources. Although simple bench-
marks can be run on a laptop or a common desktop station, industrial problems
must be computed on dedicated architectures called supercomputers in order to
have reasonable return times. In order to run on High Performance Computing
(HPC) clusters, the CFD computation must be split in several sub-problems, which
are computed in parallel by the different processors on the cluster. This section
aims at giving a summary presentation of the hardware structure of a typical HPC
supercomputer, and to present the main challenges that CFD codes face on an HPC
environment.

1.4.1 HPC hardware structure

There are many vendors who build and configure their own commercial HPC clus-
ters, each with its own characteristics. However, in almost all cases, conceptually a
modern supercomputer can be seen as a network of interconnected computing nodes.
A node is an independent unit including one or more processing unit, memory and a
network connection. This section will give a more detailed description of the struc-
ture of the most common clusters available at the present time, including those used
during this work. The vocabulary used to define the various components of a cluster
can sometimes be quite ambiguous and confusing. The aim of this section is also
to give a clear definition of such components, in order to avoid such ambiguity, at
least in the context of this work.
The most important part of each computing system is the processor, or Central Pro-
cessing Unit (CPU). The design of processors is in continuous evolution, however
the basic principle remains unchanged. The arithmetic and logical operations are
performed by the Arithmetic Logic Unit (ALU), fetching its operand and storing its
results in registers, while the control unit (CU) orchestrate the work of the ALU,
registers and other components, fetching data and instructions from memory. The
ensemble of ALU, registers and CU is also-called a core.
Memory is another fundamental aspect of any computing system. All data and
instructions needed for a code to run must be loaded from the storage disk into
the main memory, hence the bigger the data and the code the larger the memory
requirement. The CPU has then to access data in memory in order to be able to
perform any computation on it. Short memory access time is then primordial for
an efficient execution. However, the faster the memory, the more expensive. A typ-
ical computing node counts several GB of random access memory (RAM), and it
would be prohibitively expensive to build if the RAM main memory would have to
be the fastest one available. To overcome this economical impasse without having
to renounce performance completely, vendors provide their processing unit with a
so-called cache memory. This is much faster than RAM, but it is installed in much
smaller quantities, typically few MB. Cache memory is also organised hierarchically
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in different levels (often 3), each larger but slower moving further away from the
processing unit. Figure 1.1 gives a schematic representation of a typical memory

CPU#1

L2

L3

RAM

CPU#2

L2
L1dL1i L1dL1i

L3

Figure 1.1: Schematic representation
of two mono-core processors and their
memory hierarchy

CPU#1

L2

L3

RAM

CPU#2

L2
L1dL1i L1dL1i

Figure 1.2: Schematic representation
of a 2-cores processor with its memory
hierarchy

hierarchy with 3 levels of cache (L1, L2, L3) and RAM memory, while some orders
of magnitude of access time for each level of memory are given in Table 1.1. In
most modern systems CPUs are provided as an integrated circuit chip, which also
contains its cache memory. An extremely important milestone in the CPU evolu-
tion has been the introduction of multi-core processors, where more than one core is
present on the same integrated circuit. As opposed to the classical mono-core ones
which are completely independent from each other, the cores of these processors
often have their own lowest levels of cache but share the outermost ones, usually
L3. Figure 1.1 and Figure 1.2 give a schematic representation of the two kind of
processors. L1 cache is often separated in L1i and L1d, respectively for instructions
and data. Another term that is often used is socket, which is the set of hardware
components that provide mechanical and electrical connection between the processor
and the motherboard, however with the ever more popular installation of multi-core
processors, it has de-facto become a synonym of processor, i.e. the ensemble of
multiple cores and their cache memory, while processor is often confused with core.
In the remaining of this work, all terms will be used as described above, hence pro-
cessor and socket could be used interchangeably, and the former term should never
be interpreted with the meaning of core.
The different nodes of a cluster are interconnected via a communication network.
There are a few different technologies and standard for the network. Probably
the most known is Ethernet, which is widely used for LAN and home application,
however for HPC the most used are the Infiniband [14] and Intel Omni-Path [15]
standards. Both aim to maximise the throughput, i.e. the rate of successful mes-
sage delivery, while minimising the latency. While a commonly agreed definition of
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Memory L1 L2 L3 RAM Disk

Capacity O(KB) O(100KB) O(MB) O(GB) O(TB)
Latency [cycles] O(1) O(10) O(100) O(500) O(10000)

Table 1.1: Typical order of magnitudes for memory hierarchy capacities and latencies
per core [22, 23].

latency does not exist [16], in general terms it can be seen as the time needed for
data to travel from a source to its destination [17].
With the advent of machine learning and other particularly favourable applications,
clusters have started to include more and more GPU-nodes partitions. Historically,
Graphics Processing Units have been used to speedup image processing and render-
ing software, which naturally offers great parallelism. They are based on a SIMD
(single instruction-multiple data) paradigm, in which the same operation is applied
to large vectors of data. Due to their potential for a wide amount of embarrass-
ingly parallel applications General Purpose GPUs have become more popular and
specific programming languages have been created, such as the NVIDIA propri-
etary CUDA [18] or the open source OpenACC [19] and OpenCL [20]. Another
aspect that makes GPGPUs interesting for parallel computation it that, compared
to CPUs, they are more energy efficient, and in fact most of the Green500 [21], the
500 most powerful efficient clusters in the world, are GPU based.
A compromise between CPUs and GPUs can be found in many-core architectures
such as the Intel Many-Integrated Core (MIC) Xeon-Phi. With respect to standard
processors, these accelerators are composed by a larger amount of cores sharing a
high bandwidth 3D-stacked memory called MCDRAM, which allows the exploita-
tion of shared memory programming techniques. This and the support of SIMD
instructions makes them suitable also for those applications where GPUs generally
perform best. This type of architecture is present on several of the Top500 clusters.
However, Xeon-Phi technology have been discontinued by Intel in 2018.

1.5 Performance limits of CFD codes on modern clusters

The TOP500 [24] is a periodically updated ranking of the most powerful computing
system in the world. Looking at the clusters belonging to this list over the years can
give an idea of the trends of their characteristics. Figure 1.3, shows that there is a
clear reduction of the growth rate of their performance starting from around 2010.
Moore’s law [25] states that the number of transistors in a CPU is bound to double
every two years, and with it the computational power. This law, established in 1965,
hold for several decades, however in the early 2010s physical limits of the materi-
als, heating problems and power consumption impeded the processor frequencies to
continue to rise, hence Moore’s law is no longer valid, at least performance-wise. In
order to continue to improve performances, CPUs manufacturer introduced logical
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and physical multi-core processors. The principle of physical multi-core proces-
sors has been explained in the previous section, while logical multi-core rely on the
principle that multiple threads of instructions can be executed independently on
the same physical core. The introduction of this type of architecture is evident in
Figure 1.4, where it’s shown that the number of physical cores per socket on the
top 500 constantly increases and becomes more varied. The continuous growth in
size of supercomputer have proved somehow hard to be followed by software devel-
opment. The theoretical throughput, measured in Floating Point Operations per
Second (FLOPS) that can be obtained from such cluster has long surpassed the
PFLOPS (Peta-FLOPS) and we are now on the verge of the so-called exascale era.
Unfortunately it is very hard for a computer program to reach these theoretical
values and to exploit the full capability of such clusters. This can be seen it the ever
increasing gap between the LINPACK [26] and HPCG[27] benchmark performances.
The first consists in the resolution of a dense system of linear equations and it is
widely recognised as a performance indicator for a supercomputer, as it can almost
reach the theoretical potential of the machine. The second is a high performance
conjugate gradient, which is more representative of real HPC software, particularly
CFD codes, and whose performance are far from the theoretical peak [28]. This
type of software is based on the computations of operators which consist of simple
sums and multiplications. This means that the computation on a chunk of data is
extremely quick but frequent load-store memory operations are necessary to feed
the ALU with new data to compute. Historically memory performance has always
struggled to keep up with the advancement made by the CPUs, hence the struggle
of CFD codes, which are limited by the memory access time rather than the CPU
FLOPS. This behaviour is explained by the so-called roofline model [29]. The hier-
archical structure of the cache memory can help alleviate this negative effect if the
data structure of the code is able to exploit it.
Another limit might be represented by the parallel efficiency or speedup of the code.
The speedup is defined as the ratio of the execution times of a same task on different
computational resources. If the execution time for a computation on one process is
T1, then the theoretical time for running the same problem divided on n processes
would be Tn = T1/n. In CFD codes, although the computation mesh is split among
different processes, the sub-domains are not independent from each other and data
must be exchanged among the different processes. Communication in particular
and other operations can not be executed entirely in parallel. The real speedup for
the parallelised execution is then Sn = T1/T

′
n < T1/Tn and it depends on the ratio

p between the parallelised and sequential parts of the code according to Amdahl’s
law [30] as in Equation 1.32.

Sn =
1

1− p+ p
n

≤ 1

1− p . (1.32)

Amdahl’s law is based on what is called strong scaling, i.e. using an increasing
number of processes to parallelise a task of fixed size. Gustafson [31] argues that
parallelism should aim at exploiting a larger amount of resources to execute bigger
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Figure 1.3: Performance of the top 500 supercomputers. Figure generated by [24].

tasks. This process of increasing the problem size with the resources used to com-
pute, keeping a constant task size per process, is called weak scaling. Gustafson’s
law defines then the speedup as in Equation 1.33.

Sn = 1− p+ np . (1.33)

Both strong and weak scaling approaches are used in CFD. A certain task might need
to be executed on a larger number of processes in order to reduce the computation
time, on the other hand, the need of ever increasing precision produce larger or
denser domains which require more and more computational resources. The main
sources of loss of parallel efficiency in CFD are to be sought in I/O operations and in
inter-process communication. Reading and writing data to and from disk in parallel
can be challenging, especially on files shared by multiple processes, however these
operations usually do not represent a large portion of the execution time, or at
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Figure 1.4: Evolution of the cores per socket in the Top 500

least are not bound to be executed many times. Conversely, communication among
processes happens constantly during the code execution, moreover its cost increases
with the number of processes participating in the communication. Reducing the
negative effect of the data exchange among processes is then primordial for an
efficient CFD code on the modern HPC architectures.

1.6 HPC communication paradigms

Parallel programming relies on the fact that multiple cores can execute instruction
and work on data at the same time. The hardware components that allow data
exchange and interaction among the various cores have been presented in Subsec-
tion 1.4.1, however the different processes need a set of instruction to be coded in
the program in order to know when to perform such interactions. Several different
paradigms and standards have been created with this scope. The main ones being
MPI, OpenMP and PGAS. The different characteristics of each of these paradigms
are detailed in this section.

1.6.1 MPI: Message Passing Interface

First introduced in 1994, is now the de-facto standard for distributed memory par-
allel programming. Now at its third version of the standard, and with the fourth in
the process of discussion, MPI has different implementations such as MPICH [32],
MVAPICH2 [33], OpenMPI [34], IntelMPI [35] and others.
It achieves parallelism through the SPMD (Single Program Multiple Data) tech-
nique, in which tasks run simultaneously the same program on multiple processors
but on different data. Usually the data input and the different execution of the
program is controlled by the task ID, called rank.
As its name suggest, communication between processes in the MPI paradigm is
based on message exchange through the network.
An MPI program must begin with a call to MPI_Init or MPI_Init_thread for mul-
tithreaded programs. These functions initialise the MPI environment, in particular
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they create the MPI_COMM_WORLD communicator. An MPI communicator is an entity
that encapsulate a group of ordered process identifiers (ranks) and a context that
allows the partitioning of the communication space [36]. Communications can only
be performed inside a communicator. The MPI_COMM_WORLD communicator contains
all the processes who have called MPI_Init(_thread). To be compliant, an MPI
program must end with MPI_Finalize, which ensures that all communications have
terminated and destroys the MPI environment.
MPI communications can be characterised as blocking or non-blocking. Blocking
communications require a synchronisation between the processes involved, while
non-blocking ones simply make a request to start such communication and then a
later verification is issued on that request to ensure that the communication has
terminated.
Communication can also be divided in three categories: two-sided, collective and
one-sided, respectively detailed in 1.6.1.1, 1.6.1.2 and 1.6.1.3.

1.6.1.1 Two-sided point-to-point communications

Two-sided are the most basic form of MPI communications. They involve only two
processes, a sender and a receiver, exchanging a message. In its blocking version,
the sender calls an MPI_Send, which needs the address of the data to be sent, the
rank of the receiver, a tag identifying the communication and the communicator in
which the operation is performed.
On the other hand, the receiver calls MPI_Recv, specifying the address of where the
received data must be stored, the rank of the sender, a tag matching the one from
the sender and the communicator. The receiver waits until the data is received
from the sender. The main downside of this approach is that the processes have
to synchronise and wait one another in order to be able to exchange the message,
as represented in Figures 1.5 and 1.6. To avoid this problem and to allow for
communication/computation overlap, non-blocking send and receive functions have
been introduced.
In the non-blocking two-sided approach, the sender calls MPI_ISend which takes the
same arguments as its blocking version plus a request ID, whose value is returned
by the function and identifies the communication. In the same way, the receiver
can call a MPI_IRecv which also returns a request ID. Both these operations do not
perform the actual transfer, but returns immediately once the information about
the communication is given to the network controller. Most MPI libraries are in
fact implemented on top of the IBVerbs library [37], which provides an interface
between the software and the Infiniband network controllers. Thank to this library,
MPI is able to provide to the network controller enough information (source address,
destination address, etc.) to let it take care of the data transfer through the network
without the need of the CPU to be further involved. The CPU can then be used for
computation while data is transferred. Both processes later verify that the transfer
has been completed calling MPI_Wait, giving the respective request ID, as shown
in Figure 1.8. Blocking and non-blocking send and receive functions can be mixed
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together, to create a non-blocking sender with a blocking receiver or vice-versa, like
in Figure 1.7. In this figures, the dashed lines represent the data transfer. For non-
blocking communication the line is drawn with diagonal and vertical components
to represent respectively the actual data transfer and the delay by the receiver in
checking that the communication actually took place. The additional diagonal arrow
in Figure 1.8 going from the receiver to the sender represents the notification issued
to confirm that the data transfer was completed.
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Figure 1.9: Schematic representation of an MPI_Allreduce (sum) on 4 processes.
The actual implementation in the various MPI libraries might be different [38]

1.6.1.2 Collective communications

MPI collectives are communications that involve all processes in a communicator.
The most important are:

MPI_Allreduce All processes perform a reduction operation (min, max, sum) on
data from all processes, schematised in Figure 1.9.

MPI_Reduce One process performs a reduction operation on data from all processes.

MPI_Bcast One process broadcasts data to all the other processes.

MPI_Gather One process receives data from all the other processes and stores it in
an array according to the sender’s rank.

MPI_Scatter One process sends chunks of data to all the other processes according
to their rank.

MPI_Alltoall All processes send and receive chunks of data from every other pro-
cess according to their rank.

MPI_Barrier Synchronisation point. All processes wait until the last enters the
barrier.

Although MPI_Barrier is the only function that guarantees it, in practice all collec-
tive communications are inherently a synchronisation point, as all processes must
participate to the communication. This could be problematic for some algorithms
which are ill balanced or asynchronous by nature. The MPI-3 specification has
introduced a non-blocking version of all these functions (MPI_IAllreduce, ...) in
order to try and avoid those synchronisation points.
Another disadvantage of collective communications is that they are not scalable, due
to the fact that the more processes participate to a collective communication, the
more time consuming the communication is. In order to improve the performance
on modern processors, MPI libraries have implemented hardware-aware collective
communications which take advantage of the shared memory to perform intra-socket
communication [39].
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1.6.1.3 One-sided communications

As seen in 1.6.1.1, MPI two-sided communications can negatively impact parallel
performances creating some synchronisation points. Furthermore they inherently
imply a memory copy of the message to some internal MPI buffers in order for the
network to get access to it. MPI-2 norm tried to address these problems introducing
one-sided communications. This model takes advantage of remote direct memory
access (RDMA) capabilities of the network in order to transfer data from two differ-
ent regions of memory. One requirement is that these regions must be pinned, which
means that they have to be allocated through a special system call. This guarantees
that these regions of memory are never paged out, i.e. that they are always mapped
into physical memory. This is due to the fact that the network can only access
pinned memory, hence the necessity of a copy in the traditional two-sided method.
A scheme of the two mechanisms is shown in Figure 1.10.
A call to the collective function MPI_Win_create allows all processes to allocate a
region of pinned memory called window that they could share with all the other
processes. A call to MPI_Win_free deallocates the window.
MPI allows three types of operations, namely MPI_Put which transfers data from
the sender’s window to the receiver’s, MPI_Get which retrieves data from a remote
window and stores it in the local one, and MPI_Accumulate which allows for a
reduction operation to be executed on the data of a remote window. All RMA
operations are non blocking and must be executed inside a so-called epoch. The
end of an epoch guarantees that the data transfer has been completed, however a
call to MPI_Win_flush can be used to enforce the completion of an operation in-
side an epoch. MPI foresees two different modes for creating epochs on windows
and are defined according to the role of the target, which can be active or passive.
Active target means that the owner of the window on which the operation is per-
formed opens and closes the epoch. This can be done in two ways: the first is via
a call to MPI_Win_fence which enforces global synchronisation on all processes (the
same way as a barrier) at the beginning and at the end of the epoch, the second
through a Post-Start-Complete-Wait (PSCW) mechanism. With the PSCW mech-
anism the receiver must call MPI_Win_post and MPI_Win_wait to open and close an
epoch on its window, while the sender must call respectively MPI_Win_start and
MPI_Win_complete before and after the RMA operation. PSCW is similar to the
fence mechanism but it involves only the subset of processes participating in the
communication. The required synchronisation between sender and receiver however
makes active target mechanism more similar to the two-sided rather than a true
one-sided communication mechanism. Passive target communications are based on
a lock mechanism. A process wanting to access data on a remote windows posts a
request to acquire a lock on such window with MPI_Win_lock. Locks can be either
shared or exclusive. A shared lock allows multiple processes to perform operations
at the same time on the same window, however particular care must be taken by
the user to guarantee that no concurrent accesses are made on the same memory
location. Exclusive locks on the other hand guarantee that no other process can
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access the window, until the lock is released with MPI_Win_unlock. These mecha-
nisms have been improved by the MPI-3 standard, which have also introduced the
possibility of allocating shared memory windows among processes on the same node.
Data on this windows can be read and written with simple load and store operations,
without the need of specific MPI calls, allowing a programming structure similar to
a multithreaded environment, such as the one detailed in Subsection 1.6.2. In prac-
tice it is quite difficult to improve the performances of a two-sided communication
kernel switching to MPI RMA operations. Window allocation is a global operation,
hence it’s not possible to change the window size dynamically without involving all
processes. Furthermore, even if the standard requires that RMA operations must
complete before the end of an epoch, implementations seem to enforce completion
at the end of the epoch, even if the data transfer is ready before. Finally, passive
target lock mechanism should allow a pure one-sided data transfer, however locks
seem to be implemented in such a way that some kind of acknowledgement must be
given by the remote process, de-facto creating a synchronisation with the local one.
The MPI-4 standard, which is currently under evaluation, proposes some changes
to the current RMA mechanism, in order to overcome all these drawbacks. The
proposed model is based on a notification mechanism in which the sender notifies
the receiver once the data transfer is complete. The receiver waits for the notifi-
cation and if necessary sends back an acknowledgement of reception to the sender.
This mechanism is already used in the GASPI [40] specification, whose approach is
introduced in Subsection 1.6.3.

Copy from 
MPI buffer

Copy to 
MPI buffer

Network communication

Sender local memory Receiver local memory Sender local memory Receiver local memory

Network communication

Figure 1.10: MPI two-sided (left) and one-sided (right) communication mechanisms

1.6.2 OpenMP

A thread is a segment of a process, i.e. a pipeline of instructions that are exe-
cuted within a process. A process can then contain multiple threads, which can
be executed in parallel if they are independent from one another. OpenMP is a
shared memory parallelisation paradigm which enables the creation and manage-
ment of threads using specific pragmas. It is based on a bulk-synchronous fork-
join model in which threads are created when a parallel region is opened with the
OMP PARALLEL pragma and they are destroyed when the parallel region is closed by
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the OMP END PARALLEL pragma. Thread are much more lightweight than processes,
and can be created and destroyed much quicker. Also they require much less mem-
ory. OpenMP is mainly used to parallelise loops with independent iterations. The
OMP PARALLEL DO clause splits the loop in different chunks of iterations, scheduling
them among the threads. Different heuristics can be used for the scheduling:

Static: The loop is divided into equal chunks, one for each thread. The load bal-
ancing among the different threads is based on the chunk size and not on the
actual work inside each chunk.

Dynamic: The loop is divided into chunks of equal size, and they are dynamically
distributed among the threads. The number of chunks is larger than the
number of threads in order to allow for load balancing based on the actual work
in each chunk, however the scheduling could imply an important overhead.

Guided: Similar to dynamic, but with the chunk size progressively decreasing in
order to still have load balancing opportunities but with a reduced scheduling
overhead.

Auto: The compiler automatically chooses between the previous scheduling mech-
anisms.

Runtime: The user specifies at runtime one of the first three mechanisms.

OpenMP has been widely used as its pragma approach allows for an easy and pro-
gressive parallelisation of the code, with minimum intervention. The scaling of the
loop-based parallelisation however is clearly limited by Amdahl’s law as the remain-
ing parts of the code are executed sequentially. However, it still remains the best
suited model for those applications composed of loop kernels representing the largest
part of the code on a small number of cores. OpenMP also allows the possibility
for a task-based worksharing construct. Inside a parallel region, a thread creates a
pool of tasks which are then scheduled to all threads. Finally, another possibility
is to manually take care of the scheduling inside the parallel region. This approach
is much more complex than the first two as it does not allow for progressive paral-
lelisation, and thread safety of the code must be guaranteed for each operation. It
allows however a complete parallelisation of the code, reducing the limitations of the
Amdahl’s law of the previous approaches and gets rid of the scheduling overhead,
which in certain cases might be quite important relatively to the work inside the
loops or tasks.

1.6.3 PGAS

The Partitioned Global Access Space (PGAS) model consists in allocating a global
memory space called segment which is partitioned among the different processes
resources. Each process owns a local portion of the segment and can access the
other parts of the segment with load and store operations without involving the
process which owns the involved portion. Several PGAS programming languages



1.6. HPC communication paradigms 23

are currently available, such as Unified Parallel C (UPC), Co-Array Fortran or X10,
GASPI and its implementation GPI-2 [40].
PGAS programming models exploit one-sided communications and are best suited
on systems with Remote Direct Memory Access (RDMA) capability, which enables
all process to access data on the global partitioned space directly through network
interface controller, without the active involvement of the CPU or the system. One
of the main advantages of the one-sided approach is the reduction in memory du-
plication and data movement, since data is directly written on the correct memory
location without the need of an intermediate buffer as for two-sided communications.
The fact that CPU does not need to get involved in the data transfer also allows for
better computation-communication overlap. Two-sided communication also need a
synchronisation mechanism, while in the one-sided approach requires that the re-
ceiver checks whether the data is ready for consumption when needed. The main
drawback of one-sided PGAS approach is that the sender process needs to know all
its receivers informations. In a two-sided approach it is the receiver responsibility
to allocate the correct buffer for reception while in PGAS the sender must know
the destination address of the data. This can lead to memory duplication as each
process must store its own and all its neighbours information. Another drawback
is that historically most applications have been designed following a two-sided MPI
approach. Switching to a one-sided PGAS communication method could imply deep
changes in the code structure, which might be overwhelming for large applications.
Nonetheless, PGAS implementation are becoming more popular, as their benefit
clearly surpass the drawbacks.

1.6.4 Hybrid OpenMP/MPI

The hardware structure of modern HPC systems have been described in Subsec-
tion 1.4.1. Clusters are constructed using computing nodes interconnected by a
low-latency high-throughput network system. Each node is then composed by one
or more multi-core processors. This can be seen as a hierarchical structure in which
each processor is a shared-memory system, which is connected to the rest of the ar-
chitecture in a distributed-memory manner. Many applications are completely obliv-
ious of the hardware structure and simulate a fully distributed memory environment
placing a MPI process on each core. This approach however does not take advantage
of the shared memory capability of modern processors. In 1.6.1 it was mentioned
that MPI supports threaded application, which means that it can be combined with
multi-threading approaches such as OpenMP. This can be done allowing a process
to run on all cores of shared-memory socket. Multiple threads are spawned inside
each process and assigned one to each core of the processor. The MPI application
must be initialised with MPI_Init_thread, and different levels of thread safety are
provided by the MPI implementations. While MPI_THREAD_SINGLE corresponds to
a non-threaded application, MPI_THREAD_FUNNELED, MPI_THREAD_SERIALIZED and
MPI_THREAD_MULTIPLE all provide the possibility of using threads inside a MPI ap-
plication, but with different restrictions. MPI_THREAD_FUNNELED allows only the
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main thread to perform MPI calls, which might be the case when such calls are
performed outside OpenMP regions. MPI_THREAD_SERIALIZE is less restrictive and
allows every thread to perform MPI calls, but not at the same time. It is respon-
sibility of the programmer to guarantee that the application is compliant. Finally,
MPI_THREAD_MULTIPLE allows concurrent MPI calls by all threads, however few re-
striction still apply.
The interaction between OpenMP and MPI libraries is a complex matter, even if
both standards consider each other aspects and try to take them into account [41].
There are a few MPI implementation that employ a thread-based approach, such
as MPC-MPI [42], however these are not always available on HPC cluster and not
widely used. [43] provides a test suite to evaluate performances of hybrid implemen-
tations, while [44] gives extensive analysis of hybrid OpenMP/MPI communication
characteristics and [45] compares MPI, PGAS and hybrid approaches. These stud-
ies conclude that hybrid methods are far from trivial to implement and do not always
perform better than the distributed-memory approaches, however they become of
interest in systems with increasing amount of shared memory cores, following the
trend of modern HPC clusters.

1.6.5 Alternative communication paradigms

The ever changing structure of compute cluster makes performance portability an
important issue. There exists some alternatives to the more common programming
models presented above, whose objective is indeed to allow the software to have the
same level of performance on different architectures without adapting the code. A
few of the most popular alternative models are cited here. Kokkos [46] provides a
library-approach which allows the programmer to create computation kernels that
performs well on both CPU-based and GPU nodes. StarPU [47] and Legion [48]
try to reach the same objective via a portable task-based paradigm coupled with
efficient task scheduling. In a similar manner HPX [49] offers a portable API for
parallelism based on PGAS and multithreading. Finally, SYCL [50], which is based
on OpenCL, allows to write kernels that can execute both on CPUs and GPUs with
the same API.

1.7 Measuring code performances

A characterisation of the performances of a code is required in order to be able to
improve them. This is not a trivial task due to the fact that they can depend on
many factors, such as processors, memory and network on the hardware side, but
also on compilers, underlying libraries, vectorisation, among others. Performance
assessment is a primordial step as it allows to detect hotspots and regions of the
code that might need improvement, and also can suggest to the user which kernels
are worth working on and those which can be let aside. It is also a widely known
notion that any measurement system causes some perturbation on the measured
event and the detected quantity could be different to the one of the same unob-
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served phenomenon. Consequently a good measurement system should be as less
intrusive as possible in order to give a correct estimation of measurement. As for
many other quantities, there are several tools available to measure the performance
of a code [51, 52, 53].
Profilers can be classified according to how they collect their information, either in
statistical or event based manner. Statistical profilers often rely on sampling, which
consists in probing the program’s call stack at regular intervals, called sampling fre-
quency. Sampling profilers are not very intrusive and do not cause much overhead,
however they can only provide a statistical approximation of the execution. The ac-
curacy of a sampling based profiler can be increased reducing its sampling frequency,
however this would increase its overhead and intrusiveness. Event based profilers
collect information thanks to trigger events. In order to determine such events, the
code is generally pre-instrumented via source level instrumentation adding timers
or specific function calls in the source code, by the compiler or intervening directly
on the executable binary. Event based profiling is generally more intrusive than
sampling, and can cause a significant execution overhead. On the other hand the
information obtained is much more deterministic as they do not rely on a statistical
approach.
Analysis tools can also be subdivided in two other macro-categories, sequential and
parallel, according to the type of code performance they focus on. In the following
a brief description of the most popular tools is given. Some of these tools are com-
plementary to each other, and some have very similar functionalities. Most of the
time they are used in combination with each other, in order to cover every aspect
of the code performance or to compare measurements.

1.7.1 Sequential profilers

Sequential profilers focus on the core performance of the code. Even if each tool has
its specificities, the general principle is to collect some information about the flow
of instruction executed by a single process.

Maqao The two main features offered by Maqao [54] (Modular Assembly Quality
Analyzer and Optimizer) are a static analysis tool (CQA) and a sampling-based
profiler (Lprof). They work directly on the compiled binary, hence there is no need
of re-compilation and they are agnostic of the programming language. CQA is used
to evaluate the quality of the code produced by a compiler, which can include vec-
torisation, loop optimisation, etc. Static analysis means that only the binary file
is analysed, without running the code. On the other hand, Lprof can give runtime
information at both loop and function level. Both tools produce a report contain-
ing hints for the programmer on how to optimise the code. Maqao analysis has
allowed to improve YALES2 performances dramatically in the past [55], suggesting
for example to remove double indirections from the inner loops, hard coding loop
limits when possible to help the compiler with vectorisation, and enforcing memory
alignment and contiguity on array allocations.
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Valgrind Valgrind [56] is a framework containing several tools for code instru-
mentation and debugging. Most of the tools focus on memory performance and
error detection, however there is also a call-graph generator and two thread error
detectors. As memory debugging in large programs can be particularly difficult, the
memory debugger memcheck is probably the most interesting tool of the Valgrind
framework. During the program execution this tool verifies that all memory opera-
tions are correct, allowing to identify incorrect memory usage. Another interesting
tool is callgrind, which produces a graph of the function calls, with some profiling
information such as elapsed time, cache misses, etc. The call-graph can be visualised
and explored using another tool called kcachegrind.

Vtune Vtune [57] provides a various set of analysis such as stack and hardware
event sampling and thread profiling. The collected information can be related to
the corresponding source and assembly code and it is very useful to detect code
hotspots.

PAPI A detailed set of information about performance metrics can be obtained
analysing hardware counters. These are often implemented as set of registers that
keep track of large amount of events related to hardware performance. However, the
implementation of such counters changes among different microprocessors. PAPI [58]
(Performance Application Programming Interface) provides a standardised, hard-
ware independent API that allows to write portable analysis tools based on hardware
counter analysis.

1.7.2 Parallel profilers

The objective of parallel profilers is to highlight the interaction between the different
processes or threads during the execution of an application. In this case sensible
data to collect could be for example load imbalance or communication patterns.

Scalasca Scalasca [59] analyses the execution behaviour of applications on large-
scale systems with many thousands of processors, offering an incremental perfor-
mance analysis procedure. It integrates runtime summaries with in-depth studies of
concurrent behaviour via event tracing, adopting a strategy of successively refined
measurement configurations. It can also identify wait states in applications with
very large numbers of processes and combine them with efficiently summarised local
measurements. Such analysis is useful to identify potential bottlenecks, specifically
those related to synchronisation and communication.

Scorep Score-P [60] is a highly scalable measurement infrastructure for profiling,
event tracing and online analysis of HPC applications. The objective of the Score-P
project is to provide a standardised API which could work with different profiling
tools.
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Extrae+Paraver Extrae [61] is an instrumentation package that capture event
based information during the program execution and produces traces that can be
analysed by the Paraver suite [62]. Entry and exit to the programming model run-
time, hardware counters (PAPI), call stack reference, user functions and events are
all examples of the possible informations collected by Extrae. Application instru-
mentation is obtained either via linker preload, by modification of the executable
binary or by manual source code instrumentation. A sampling mechanism is also
available.

TAU TAU [63] is a portable profiling and tracing tool for the analysis of par-
allel programs. It provides both event based and sampling profiling capabilities.
The source code can be instrumented automatically with the PDT [64] parser and
manually with the instrumentation API. Compiler based instrumentation is also
available. The TAU tool suite comes with several applications for profile and trace
visualisation [41] and scalability analysis.

1.8 Motivation and layout of the current work

HPC architecture are quickly evolving and becoming more and more heterogeneous.
Multi- and many-core processors are the standard in modern clusters and software
struggle to fully exploit the potential of these new supercomputers. Classical com-
munication patterns based on two-sided and collective MPI have possibly reached
the limit of their efficiency [65] and are increasingly becoming the performance pit-
fall in CFD codes. In order to avoid these communication bottlenecks, solutions
that are more hardware-aware have long been studied, in particular the hybrid
OpenMP/MPI model [41]. The aim of this hybrid model is to reduce the memory
footprint and the communication cost of the MPI implementation using a lower
number of processes, without reducing the resources employed in the computation
phases, where processes are substituted by threads. This methodology is partic-
ularly adapted to the multi-core architecture were several threads can run on the
different cores sharing the memory inside a socket, although the added complexity
of mixing the two programming models does not always guarantee a performance
improvement with respect to the pure MPI implementations [44]. However, several
works related to the hybridisation of CFD codes such as [66],[67],[68] and [69] give
some encouraging results and argue that this might be the right approach to improve
code scalability, which motivates the strategies adopted in this work.
Chapter 2 presents the CFD code YALES2 [70], which is the LES solver on which
the entirety of this work is based upon. A detailed description of its data structure
is given, with particular focus on those structures related to the parallel exchange.
Furthermore its implementation of the PCG and DPCG algorithms is analysed,
and a basic performance model of the Poisson solver is given. The benchmarks
and architectures used for these performance assessments are also described. Chap-
ter 3 presents a new graph-like data structure that have been implemented in the



28 Chapter 1. HPC for CFD

code in order to try and overcome the pitfalls exposed by the Poisson solver anal-
ysis. Chapter 4 describes the work done in order to implement a hybrid loop-level
OpenMP/MPI model in the code and the performances obtained with such model.
Chapter 5 exposes the attempt to overcome the limitations of the loop-level OpenMP
approach, implementing a hybrid coarse-grain OpenMP/MPI model and an almost
equivalent MPI-3/MPI model. Finally Chapter 6 summarises the entire work in a
general conclusion and gives several perspectives for future work.



Chapter 2

YALES2 parallel performances

YALES2 [70, 71, 72], the code used for this work, is a massively parallel numerical
toolbox that has been developed since 2009 and currently used in both academia
and industry. It includes many solvers that can address various physical prob-
lems, such as the simulation of incompressible flows, combustion, two-phase flows,
heat transfer, radiative transfer and much more. All the different solvers rely on
a common high-performance numerical library, written in Object-Oriented Fortran.
The core library includes highly-optimised linear solvers, automatic mesh refine-
ment [73] and load balancing, high-order Finite-Volume integration, parallel I/O,
etc. All these libraries are designed for computation on unstructured meshes, which
are better suited to describe complex geometries. The node-centred Finite-Volume
approach on which the numerical methods are based in YALES2 guarantees the
conservation of the transported quantities. A newly implemented 4-th order con-
vection scheme [74] makes YALES2 particularly well suited for LES simulations as
the eddies are not artificially damped when transported over large distances. The
parallelism in YALES2 is managed with a domain decomposition implemented with
the MPI paradigm, in which the mesh is split among many processes. The low-
Mach incompressible Navier-Stokes solver is the most widely used and most of the
numerical methods implemented for this solver are used as a base for the others.
This solver uses the procedure detailed in Section 1.3 to discretise Equation 1.15
on a mesh, providing a linear system in which the unknowns are the pressure at
each node of the mesh, which is then solved with the numerical methods presented
in 1.3.2.
The first objective of this chapter is to present the data structures on top of which
the numerical methods are implemented in YALES2. Particular focus is put on
those structures linked to the parallelism and to the group of elements, which can
be considered the cornerstone of YALES2. Then, the details of the implementation
of the DPCG Algorithm 3 in YALES2 are exposed. The aim is to provide a suf-
ficient insight into the mechanisms of the code to be able to understand the code
behaviour under different circumstances. This chapter provides an assessment of
the parallel performances of the code before the beginning of this work. Several
performance pitfalls are exposed, and a simplistic performance model for the DPCG
algorithm is derived. The chapter is concluded with a summary of what has been
shown, and some useful hints about the strategies to implement to improve the code
performances.
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2.1 Data structure of YALES2

In YALES2, the mesh and its connectivity can be described via 4 principal entities:

• elements, i.e. the cells of the mesh;

• faces of the elements;

• nodes of the mesh;

• pairs connecting two nodes, i.e. the edges of the mesh.

Some Finite-Volume solvers use the elements of the mesh as control volumes, how-
ever YALES2 builds its control volumes around the nodes of the mesh, as in Fig-
ure 2.1. Furthermore, YALES2 is node centred, which means that the physical
quantities are stored at the nodes of the mesh. Each control volumes, also called
dual cell, is bound by facets connecting the centroids of the elements to which the
node belongs to the mid-point of each pair, as in Figure 2.1 in 2D, and to the centre
of each face of which the node is a vertex in 3D. The mesh formed by the control
volumes is called dual mesh [75, 76]. Fluxes between control volumes are computed
on their external facets, each of which is associated to a pair of nodes. Indeed most
of the physical quantities are stored at the nodes of the mesh, while the differential
operators are created and stored on the pairs to facilitate the computation of such
quantities.

Figure 2.1: Control Volume in YALES2: xp is the point around which it is built and
x̄p is its barycentre.

2.1.1 Single Domain Decomposition

In order to be able to perform massively parallel computations, many CFD solvers
adopts a parallelisation strategy called single domain decomposition, or SDD. This
means that, when multiple processes are used to tackle a big problem, the mesh is
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split among those processes, and each one computes only its portion of the entire
domain. However, the sub-problems that each process treats are not independent
and data must be exchanged at the frontier between the processes. Figure 2.2 repre-
sents this domain decomposition, with the region highlighted in dark grey being the
interface between processes where communication is needed. An efficient method
for this data exchange is paramount to obtain strong parallel performances from the
solver. The strategy used in YALES2 will be explained later in 2.1.3.
Beside communication efficiency, another important aspect of parallel performance
is the load balancing between processes. Usually communication comes as a syn-
chronisation point for the different processes, as they have to wait on one another
to exchange data, so it is of the utmost importance that the computation work in-
between communication phases is as homogeneous as possible amongst all processes.
During a simulation, an initially good mesh partitioning can become ill balanced.
This can be the case when a mesh is locally refined or coarsened, or if lagrangian
particles are injected at a particular point in the mesh. Load imbalance can come
also from adaptive numerical schemes (p-refinement), resolution of chemistry in re-
action zones, etc.
One of the main drawbacks of the SSD is that in such case, the entire mesh graph
must be re-constructed and its partitioning completely re-computed. Furthermore,
if the interface between processes changes, the entire communication structure be-
tween such processes has to be built again to take into account such changes.
SSD is also particularly inefficient for memory accesses. Often, especially for dif-
ferential operators, in order to compute the gradient of a quantity on a node, the
values at all its neighbouring nodes are needed as well. In general, even when a
mesh is split among different processes, each process can work on a subdomain of
several hundreds of thousands of nodes. This means that a node’s neighbour can
be stored very far from it in memory, hence memory access patterns can become
quite inconsistent. Accessing data from the RAM is extremely expensive in terms of
processor cycles, consequently guaranteeing that all memory accesses are done into
the processor cache would be extremely beneficial. To deal with this problem there
is a technique called cache blocking, in which data is split in contiguous blocks of
relatively small size that fit in the cache memory of the processor. YALES2 performs
cache blocking through a double domain decomposition (DDD).

2.1.2 Double Domain Decomposition

In YALES2, on top of the single domain decomposition explained above, each pro-
cess splits its own subdomain in several groups of elements (ElGrps), which are small
enough to fit into L3 or even L2 cache. For this technique to be efficient, the com-
putation on each group must be totally independent from the others, consequently
there must be a data exchange between groups. The groups are indeed built simi-
larly as the subdomains in the SDD, which means that the domain of each process
is split in different parts, but in this case such parts still belong to each process on
which they are generated. Again, when computing differential operators, each node



32 Chapter 2. YALES2 parallel performances

Figure 2.2: Single domain decomposi-
tion

Figure 2.3: Double domain decompo-
sition

needs the contribution of all its neighbours, even those on another group if such
node lies on the frontier of the ElGrp. Logically, there is still the need of a parallel
exchange for those nodes that are on the interface between different processes.
A mesh partitioned with DDD is represented in Figure 2.3, where the dark grey area
is the interface between the processes, and the nodes highlighted in lighter grey are
those on the interface between the different groups of elements.
Besides the cache awareness, DDD is also beneficial in those cases where a dynamic
load balancing is needed: instead of re-constructing the entire graph of the elements,
the load balancing can be done on a graph whose vertices are the groups of elements,
and the edges the faces of those elements that belong to different groups. Depending
on the size of ElGrps, this graph can be much coarser, hence faster to build and to
partition. Furthermore, if the communication structure between processes is built
on top of the group of elements, if some ElGrps are migrated between processes or
their interface with a neighbour process changes, only that part of the communica-
tion structure needs to be rebuilt. One drawback could be that the load balancing
has the granularity of the group of elements, but often their size is small enough
that this is not a real problem.
YALES2 uses the groups of elements also as nodes of the deflation grid used to solve
the Poisson’s equation with the DPCG algorithm. With a slight abuse of language
but for the sake of clarity, for the remainder of the manuscript, the grid composed
by the control volumes and the deflation grid are referred to respectively as fine and
coarse grid.

2.1.3 Data exchange

One particularity of YALES2 is that nodes, pairs and faces at the interface between
processes are duplicated, as represented in Figure 2.4c. This means that each process
can compute independently on the entirety of its sub-domain, but the duplicated
nodes only account for the partial contribution coming from the inside of the do-
main. In order to have the complete, correct value, the process must receive from
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its neighbours their partial contribution on those nodes. The exact same principle
applies to the groups of elements as well.
This data exchange between ElGrps and processes is necessary for all those operations
involving the neighbouring nodes such as the computation of gradients, divergence,
etc., but also when computing mask values on the nodes based on the rank number
or the ElGrp colour or other quantities that might have different values on the vari-
ous duplications of the node.
The data structure that takes care of the data exchange between groups is called
internal communicator (IC). The IC is an array whose elements represent unique
nodes forming the interface between the different groups. Each group can access
the position of its interface nodes in the IC, but the vice-versa is not possible.
In order to perform communication between processes, another data structure called
external communicator (EC) is employed. There is an external communicator for
each of the neighbouring process, plus one called self communicator for periodic
boundary conditions. An EC consists of two buffers, one to send (SendEC) and one
to receive (RecvEC) data. These buffers have access to those nodes in the internal
communicators who are also part of the interface with the neighbour process asso-
ciated with the EC.
Boundary conditions are taken into account in a similar way as the groups of ele-
ments through the internal communicator.
The data structure of a process can be synthesised as in Figure 2.5. Algorithm
4 illustrates a typical computation and communication phase in YALES2. All its
different steps will be detailed in the following.

Step 1: initialisation of the internal communicator. The internal commu-
nicator (IC) is an array on which a reduction operation ⊕ is performed for all nodes
on the interface between ElGrps. Its value needs to be set to an initial value, which
depend on ⊕ before such reduction operation can begin. Typical examples are an
initial value of 0 if ⊕ is a sum, 1 for a product, the largest negative value for a max
and the largest positive value for a min operation.
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Algorithm 4: Computation and parallel data update for an operation ⊕
(max, min, sum, . . . )
// Step 1:

Set initialisation value for all IC nodes according to ⊕ ;
// Step 2:

foreach ElGrp do
foreach node do

compute ElGrp[node];
end
// Figure 2.6

foreach interface node do
index = ElGrp[interface node] to IC[node];
IC[index] = IC[index] ⊕ ElGrp[interface node];

end
end
// Step 3: (Figure 2.7)

Compute and update boundary conditions;
// Step 4:

foreach EC do
foreach node do

index = EC[node] to IC[node];
SendEC[node] = IC[index];

end
Send data in SendEC;

end
// Step 5: (Figure 2.8)

foreach EC do
Receive data in RecvEC;
foreach node do

index = EC[node] to IC[node];
IC[index] = IC[index] ⊕ RecvEC[node] ;

end
end
// Step 6: (Figure 2.9)

foreach ElGrp do
foreach interface node do

index = ElGrp[interface node] to IC[node];
ElGrp[interface node] = IC[index];

end
end
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Figure 2.5: Data structure of YALES2

Step 2: computation and update of the internal communicator. As stated
above, computation in YALES2 is performed with a double loop, the first on the
ElGrps, and the second on the necessary entity (nodes, pairs, elements, faces). For
example, to compute a gradient ∇φ of a generic scalar φ on a generic node i, the
values of φ on all the nodes j connected to (neighbours of) i are necessary, and some
metrics values M which depend on each of the pairs i→ j, as in Equation 2.1.

∇φ =
∑
j∈Ni

F (φi, φj ,Mi→j) . (2.1)

Two different situation are possible:

1. Internal node as in Figure 2.4a: all j ∈ Ni can be accessed directly in the
process, or in the group, hence no data update is necessary for the node i.

2. Interface node as in Figure 2.4b: some of the neighbouring nodes belong to
another process (or ElGrp). Only part of the gradient can be computed in the
current group, and likewise for the other group sharing the node. Consequently
a data exchange is necessary between the groups (and processes) to have the
correct and complete value of ∇φi.

Then, the reduction for all nodes on the frontier of the group is performed on the
internal communication. Two indirection arrays allow to easily loop on all such
nodes and find the corresponding IC item on which to compute ⊕, which in the case
of Equation 2.1 is a sum.

Step 3: compute the boundary conditions and finish the update of the
internal communicator. The last contribution needed in order to have the com-
plete value on each node is that of the boundary conditions. Boundary conditions
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Figure 2.6: Step 2: update the internal communicator with values on the frontier of
each ElGrp. Continuous lines indicates nodes that belongs to the external commu-
nicator as well, while dashed ones are for nodes only on the internal communicator.
Only a few are indicated as example.

(BC) are treated separately from the rest of the data in YALES2, but the data
exchange remains the same. Each process has complete awareness of the BC that
intervene on its subdomain, hence these do not need a parallel update. Due to their
separate treatment this step can be moved anywhere after Step 1 and before Step 6.
Nonetheless their contribution has to be taken into account to obtain a correct value
on the IC. As for the data on the ElGrps in Step 2, a computation phase with a dou-
ble loop on each BC and all its nodes is followed by a reduction in the IC. Naturally,
each and every node on the BC needs to contribute to the internal communicator.

Step 4: fill the Send external communicators and send the data to neigh-
bour processes. After the update of the internal communicator, those nodes that
lie on the interface between different processes still have incomplete values. As for
the IC update, two indirection arrays are used to copy the data from the IC to the
Send external communicator (SendEC). The latter is just a buffer used for the MPI
two-sided exchange and does not need to be initialised as the data is simply copied
on it and no other operation is performed on it. Once a SendEC has been filled
with the right values, data is sent to the corresponding process, as schematised in
Figure 2.7.

Step 5: receive the data in the Receive external communicator and up-
date the internal communicator. As each the neighbour processes have per-
formed Step 4, the current process receives the data into the Receive external com-
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Figure 2.7: Step 4: fill the Send external communicator and send the data to each
neighbour.

municator (RecvEC). As for the SendEC, this is a buffer in which data is copied and
does not need initialisation. Once the MPI two-sided exchange has been completed,
the same indirection arrays used to fill the SendEC are used to get data from the
RecvEC and complete the IC update with the same operation ⊕. This mechanism is
represented in Figure 2.8.

Step 6: copy the internal communicator into the data. After all the pre-
vious steps, the IC holds the complete and correct values of ∇φ for all the nodes
on the interface between the groups. This information however needs to be trans-
mitted back to the ElGrps, as the IC is meant only for data exchange and not for
computation. Data is then copied back from the IC to the respective nodes on all
the groups using the same indirection arrays used in Step 2. Again, since data is
copied, hence the previous value is overwritten, there is no need to initialise such
values.

2.1.4 Computation of the matrix-vector multiplication in YALES2

The matrix-vector multiplication b = Ax in YALES2 deserves to be explained in
more detail as it is implemented in a peculiar way. For node-centred data, each
non-zero value Aij represents a connection between the nodes i and j. Rather than
store A in a matrix form, this is stored as a list of coefficients, one for each oriented
pair i→ j. Each pair represents the facet dividing the control volumes i and j.
In this case, the vector b and x represent data stored on the control volumes (nodes),
which is the most common case in the code, but the same principle is applied to
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Figure 2.8: Step 5: receive data on the Recv external communicator and add it in
the internal communicator.
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Figure 2.9: Step 6: Copy back the internal communicator to the ElGrps. Continuous
lines indicates nodes that belongs to the external communicator as well, while dashed
ones are for nodes only on the internal communicator. Only a few are indicated as
example.



2.1. Data structure of YALES2 39

data on the elements (connected by their faces instead of pairs) or on the ElGrps, as
it will be explained in 2.1.5.
As for all other data, A is decomposed in ElGrps, which is to say that each ElGrp
holds and has access only to that portion of A which corresponds to all the pairs
connecting all the nodes of the group. As a consequence, as for all the other examples
listed above, the matrix-vector multiplication gives incomplete values on the frontier
of the different ElGrps and b needs to go through all the steps of Algorithm 4 in order
to be correct.
As it cans be seen in Algorithm 5, the computation is performed via a double loop,
the first on the ElGrps and the second on all its pairs. The second loop requires two
indirection arrays to point to the correct couple of nodes i and j in b and x, while
the value in A is directly determined by the pair.
Furthermore, the matrix A is decomposed into three different matrices: AD, AS and
AA, which hold respectively the diagonal, the symmetrical and anti-symmetrical
contributions in A.
As the pairs are oriented, the contribution of the pair has opposite sign on each
node, consequently the coefficients of the symmetric and antisymmetric matrices
are such that ASij = ASji and A

A
ij = −AAji. The diagonal contribution is taken into

account with an additional loop on the nodes. AD is stored on the nodes since it
influences only the local value and does not depend on neighbouring nodes.
Finally, since the contribution of each pair is added onto b[i] and b[j], the entire
vector b must be initialised with a null value before the computation. Algorithm 5
is written for the general case in which all three AD, AS and AA exists and are not
null. However if one or two of such contributions are absent, a simplified version
can easily be derived.

Algorithm 5: Matrix-vector multiplication in YALES2
foreach ElGrp do

b = 0 // Initalisation of b

foreach pair do
i = pair to node_1[pair];
j = pair to node_2[pair];
cS = ASpair × (x[j]− x[i])// Symmetric contribution

cA = AApair × (x[j] + x[i])// Anti-symmetric contribution

c = cS + cA;
b[i] = b[i] + c;
b[j] = b[j]− c;

end
foreach node do

b[node] = b[node] +AD[node]× x[node]// Diagonal contribution

end
end
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2.1.5 Implementation of the DPCG algorithm in YALES2

The implementation of the DPCG Algorithm 3 in YALES2 is quite straightforward.
The most important aspect to underline is that, as for all other parts of the code,
computation is broken down in loops over the groups of elements and the computa-
tion and communications necessary to perform the matrix-vector multiplications are
done respectively as in Algorithm 5 and Algorithm 4. The convergence, based on
the norm of the residual, is verified via a reduce-broadcast scheme. This is deemed
necessary in order to avoid potential differences in the evaluation of ‖r‖ due to
numerical rounding errors in the MPI_ALLREDUCE collective operation. Performing
the reduction on the master process and broadcasting the convergence condition en-
sures that all process would either exit the loop or continue the computation. Three
other collective operations (MPI_ALLREDUCE) are performed in this algorithm. Two
of them evaluate the dot-products to compute the values of ρ and σ. The last one
is not really necessary for the DPCG per-se but provides an adaptive criterion for
the convergence optimisation of the deflation step [77].
The development and implementation of the deflation in YALES2 have been the
subject of the thesis of Malandain. A detailed description of the implementation
of the deflation algorithm, i.e. the line Solve Âdk+1 = W T

(
AK−1 − I

)
rk+1 of

Algorithm 3, together with the study of different techniques to improve the DPCG
algorithm performances, such has the recycling of previous residual to have a better
estimation of the first solution vector and an adaptive convergence criterion, can be
found in his work [72].
The groups of elements have a primordial role in the implementation of the defla-
tion step of Algorithm 3 in YALES2 solvers. The deflation matrix W is in fact
created from the groups of control volumes derived form the ElGrps. However,
thanks to the code data structure, the matrix W is never explicitly declared: the
left-multiplication of a vector on the fine mesh by W T is computed summing its
components in each group to create the resulting vector; in a similar way, the left-
multiplication of a vector on the coarse mesh by W is performed assigning to each
control volume of a group the corresponding value on the original vector. In practice
this means that the solution of the Poisson’s Equation on the coarse mesh produces
a constant piecewise solution on the fine mesh.
Less trivial is the construction of the operator associated to the matrix Â. As a
logical implication of the fact that the Laplacian operator A on the fine mesh is
based on the pair of control volumes, Â is constructed on pair of groups of control
volumes. The result of ŷ = W TAWx̂ can be of aid to build Â. To multiply x̂ by W
means that values of x̂ are copied in a vector on the fine mesh, in such a way that
the i− th component of such vector will get the value of x̂gi , where gi is the group
to which the i − th control volume belongs. The result of the multiplication by A
is the addition and subtraction of a coefficient aij

(
x̂gi − x̂gj

)
to each of the i and j

components of the result vector for each pair i↔ j of control volumes on the mesh.
A direct consequence is that if two control volumes belong to the same group, the
resulting contribution is null, hence only pair of nodes across the frontier of different
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groups contribute to the operator. The multiplication by W T sums the values on
each group. Consequently each component ŷgi of the ŷ vector can be written as the
sum of the contribution of the neighbouring groups as in Equation 2.2:

ŷgi =
∑
gi↔gj

∑
j∈gj

aij

(x̂gi − x̂gj) . (2.2)

To summarise, the contribution of a pair of groups to the Â operator is the sum of
the contribution to A of those pairs of control volumes that are across the boundary
between groups.
The deflation step itself can be solved with a PCG algorithm. YALES2 indeed adopts
an optimised version of Algorithm 2 to solve the resulting Poisson equation on the
coarse grid. The optimised version, detailed in Algorithm 6, allows to perform only
one point-to-point and one collective communication, for the operations respectively
in green and red. In addition to the two dot-products and the norm of the residual,
another quantity is added to the collective communication. This value is used to
estimate the need to reset the algorithm, and for the sake of clarity has not been
added to the algorithm. In order to avoid the afore-mentioned problems deriving
from the rounding errors in the collective communications, each process evaluates the
convergence locally. If it estimates that ‖rk+1‖ < ε then it sends a 1, otherwise a 0.
The collective communication consists then on a sum of 4 values across all processes.
All processes would exit the loop if the result of the MPI_ALLREDUCE is equal to the
number of processes, otherwise they will continue. This optimisation however could
produce some differences on the value of the residual across the different workers. To
avoid an accumulation of these numerical errors, an exact evaluation of the residual
rk+1 = b−Axk+1 is performed with a certain frequency (every 10 iterations) before
the computation of wk+1. This part as well has been removed form Algorithm 6, as
it was deemed as an unnecessary complication.

2.1.5.1 Node ownership, group connectivity and half-halo communica-
tions

An important concept arising from the node and pair duplication among groups
is the ownership of such entities. As practical as it is to have a node duplicated
multiple times in order to allow this efficient data structure, there must be one of
this multiple copies which is considered to be the original one. Since the group of
elements are the cornerstone of the data structure of YALES2 and all computation
is done inside each group, the indexing of the elements, nodes, etc is never global,
but each group has its own. The groups however have a universal numbering, called
colour, which is incremental across all processes, i.e. process P0 owns the groups
with colour from 0 to G0, process P1 owns those with colour from G0 + 1 to G1 and
so on. YALES2 adopts a convention for which the duplicated entity (node, pair or
face) always belongs to the group with the smallest colour among those who share
such entity. This naturally implies that if a node, for example, is at the interface
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Algorithm 6: Optimised implementation of the PCG method on deflation
grid
K = diag(A);
r0 = b−Ax0, k = 0;
w0 = K−1r0;
p0 = w0;
q0 = Ap0;
ρ0 = rT0 w0;
σ0 = pT0 q0;
α0 = ρ0

σ0
;

while not done do
xk+1 = xk + αkpk;
rk+1 = rk − αkqk;
wk+1 = K−1rk+1;
sk+1 = Awk+1;
ρk+1 = rTk+1wk+1;
δk+1 = sTk+1wk+1;
if ‖rk+1‖ < ε then

exit the loop
end
βk+1 =

ρk+1

ρk
;

pk+1 = wk+1 + βkpk;
qk+1 = sk+1 + βkqk;
σk+1 = δk+1 − β2

k+1σk;
αk+1 =

ρk+1

σk+1
;

k = k + 1;
end
The result is xk+1.
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between processes, it always belong to the smallest process, due to the colouring
convention of the groups. This has particularly important consequences in how the
operators and algorithms are constructed, especially for the deflation.
Subsection 2.1.5 gives a brief description of the implementation of the DPCG algo-
rithm in YALES2. In particular, Equation 2.2 describes the construction of the Â
operator. As the Â operator, the pair of groups themselves are built by finding those
pairs that link nodes belonging to different groups. Such connectivity can be created
by each process locally thanks to the colouring convention described above. In doing
so however, a group is able to detect a connectivity only with groups of lower colour.
For the same principle, a process will find a connectivity only with a neighbour of
lower rank. As a consequence, the process with the highest rank will have a possibly
much larger number of pair of groups than the process with rank 0, as the latter
can only detect those pairs created by its own groups, while the former sees those
with all its neighbour processes as well. Even if the number of groups is perfectly
balanced among processes, the number of pair of groups is not. On this premise, a

Algorithm 7: Half-ghost mechanism implemented in Algorithm 6
. . . ;
wk+1 = K−1rk+1;
Copy w in neighbours ghost; low→high colour;
sk+1 = Awk+1;
Send s contribution to neighbours; high→low colour;
ρk+1 = rTk+1wk+1;
δk+1 = sTk+1wk+1;
if ‖rk+1‖ < ε then
C = 1

else
C = 0

end
ALLREDUCE({ρk+1,δk+1,. . . ,C},SUM);
if C == Nworkers then

exit the loop
end
. . . ;

half-halo system for parallel point to point communication is created. Each process
allocates a halo structure to receive data from the neighbour processes with whom
it has created a connectivity. This means that, for a couple of processes, the halo
structure is allocated only on the process with higher rank, which was able to detect
and build the pair of groups with its neighbour. A schematic representation of this
process is given in Figure 2.10. Using the terminology defined for the optimised
PCG in Algorithm 6, each process can compute w = K−1r on its own groups inde-
pendently. A first communication phase is then needed to fill the halo of the highest
rank processes with the values of w coming from their lower rank neighbours. After
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Figure 2.10: Schematic representation of the construction of the ElGrp data on
different processes from coloured nodes

the application of the operator defined by Equation 2.2, which corresponds to the
computation of s = Aw on both internal and halo groups, the highest rank processes
send the s value on the halo back to the lower rank neighbours, who can add this
contribution directly to the values computed for their internal groups, without the
need of a halo to receive the data. Algorithm 7 is an excerpt of Algorithm 6 that
details this particular communication scheme. A more detailed explanation about
the ghost mechanism is given in Chapter 3 (see e.g. Figure 3.2).

2.2 Performance assessment

Amongst all the algorithms implemented in YALES2 to solve the Poisson’s equation,
the DPCG is the one that gives best performances. However, [72] shows that the time
spent by the processes on communication can be quite important, even more than
15% of the total time, for those cases in which the Poisson solver is preponderant,
like non-reactive flows.
Strong and weak scalability have always been a preferred display of a code parallel
performances. The speedup S is also a good index to compare code performances.
The speedup simply is the ratio between two runtimes ta and tb, normalised or not,
as shown in Equation 2.3. It measures the improvement of the case tb over the
case ta. In addition to the wall-clock times (WCT), another indicator, often used
in the CFD community, is the Reduced Computation Time (RCT). The RCT is
computed as in Equation 2.4, where WCT is the execution time for np processes
computing on a mesh of ncv control volumes for nit iterations, or time steps. The
RCT is a measure of the scalability itself as its supposed to remain constant in
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both weak and strong ideal scalability curves. RCT is widely used as it allows to
compare the performances of different codes. This is due to the intrinsic definition
of the parameter itself, as its normalises the execution time by the number of control
volumes independently of how they are defined.

Sa→b =
ta
tb
. (2.3)

RCT =
WCT × np
ncv × nit

. (2.4)

The objective of this work is the improvement of the parallel performances of the
YALES2 solver, however first of all an assessment of the code performance must
be obtained. This section presents the main benchmarks used for this performance
study, along with the platforms on which these measurements are made. Before
showing the actual performance assessment, an improvement of the initial YALES2
timer system is described. Finally an assessment of the performances of YALES2
at the beginning of this work is presented.

2.2.1 Test cases

In this subsection the two main benchmarks used in this work are presented.

2D and 3D_cylinder

This benchmark case, whose mesh is shown in Figure 2.11, is used to simulate the
flow around a cylinder. The mesh consists of 491′000 tetrahedral elements, and the
boundary conditions on the side walls could be set to be walls with either slip or
no-slip conditions or periodic, to simulate an infinite domain. This small mesh is
particularly useful to perform small studies on a single or few processes. Its 2D
version, which consists of a mesh of 25′000 triangular elements, is used mainly for
visualisation purposes and quick debugging.

Preccinsta

The main benchmark used in this study is named Preccinsta. It consists of the
constant temperature simulation of the PRECCINSTA burner, which stands for
PREdiction and Control of Combustion INSTAbilities for gas turbines. The geome-
try, whose mesh is shown in Figure 2.12, consists of a plenum, a swirler injector and
a rectangular combustion chamber with a conical convergent towards a cylindrical
exit pipe. This burner has been extensively studied both experimentally [78] and
numerically [79, 80], and it has been used as a validation benchmark for combustion
model and numerical methods for Navier-Stokes equations, including with YALES2.
The air is pumped towards the plenum with a flow rate of 734.2g/min. In the ex-
perimental configurations methane is injected by 12 tubes of 1mm diameter with a
total flow rate of 35.9g/min, while for numerical simulations the gases are consid-
ered as perfectly premixed. The mixture goes across the swirler, which is composed
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Figure 2.11: Mesh of the 3D_cylinder
benchmark
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Figure 2.12: PRECCINSTA burner

by 12 slots inclined at 40 degrees before entering the combustion chamber. The
burned gases then exit the chamber through the convergent cone. The simulations
performed in this work consider only non-reactive flows at constant temperature, for
which the incompressibility and constant density approximations are valid. Different
meshes are used, with sizes of 1.7, 14, 110, and 878 million elements,

2.2.2 Platforms

The YALES2 results provided in this work have been obtained on the different
clusters presented in this Subsection.

MYRIA

The MYRIA cluster is operated by the CRIANN (Centre Régional Informatique et
d’Application Numériques de Normandie). It consists of several partition of different
nodes, including GPUs and Intel Xeon Phi KNL accelerators. The partition used
for this work consists of 332 Broadwell Xeon E5-2680 v4 [81] bi-socket nodes (9296
compute cores). Each node comes with 128GB of DDR4-2400MHz memory. The
nodes are connected via a low latency, high bandwidth (100Gb/s) Intel Omni Path
network. Each processor has 14 cores that run at a base frequency of 2.40GHz, with
access to a dedicated 32+32KB L1 and 256KB L2 cache, while they all share a 35MB
L3 cache. The processor comes with 4 memory channels, providing a maximum
bandwidth of 76.8GB/s. The technology supports Intel AVX2 instructions, allowing
each core to perform 2 FMA operations on a 256 bits vector per clock cycle. While
Hyper-Threading and turbo boost are supported, these options were not activated.

IRENE-SKL

IRENE-SKL identifies the Intel Skylake partition of the Juliot-Curie supercom-
puter operated by the CEA (Commissariat à l’Energie Atomique) and hosted by the
TGCC (Très Grand Centre de Calcul). This partition consists of 1656 Skylake-8168
bi-sockets nodes (79,488 compute cores), with 192GB memory each. The underlying
network is a Fat-tree topology 4x EDR (4x 25Gbps) InfiniBand Mellanox, with a
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Figure 2.13: Intel Broadwell Xeon E5-2680 v4 topology

6.86PF peak performance.
In spite of being designed on the same 14nm technology process as the Intel Broad-
well, the Intel Xeon "Skylake" processor provides higher performances due to a
higher core count, a higher memory bandwidth and AVX-512 ISA support. The
Intel Skylake 8168, which is the one deployed on the Joliot-Curie machine, has 24
cores, with a 2.7GHZ base non-AVX Core frequency. They are provided with a
shared 33MB LLC and a 205W nominal TDP, and it can deliver a 2 TFLOP/s DP
Rpeak. It supports advanced RAS features including SMT2, 3 UPI links and 2
AVX512 execution units. This allows each core to execute 2 FMA (Fused Multiply
Add) on 8 DP (Double Precision) per cycle using a 512 bits vector width [82]. Each
node is composed by two 24-cores 8168 Skylake processors, resulting in a 48 cores
node. Although the Skylake processors supports Turbo boost to increase its clock
frequency and Intel Hyper-Threading technology, these have not been activated for
the cases presented here.

IRENE-AMD

IRENE-AMD is another partition of the Juliot-Curie cluster, which contains 2292
AMD EPYC Rome 7H12 bi-sockets node (293,376 compute cores). Each node has
a 256 GB DDR4 memory, and they are are interconnected through a Dragonfly+
topology based on 4x HDR (4x 50Gbps) InfiniBand Mellanox network at switch
level. This partition has a 12.2 PFLOP/s peak performance.
The 7H12 processor [83] can deliver up to 2.66 TFLOP/s DP peak performance
(Rpeak). It has 64 Zen2 cores, with a 2.6GHz Base clock Speed and up to 3.3
GHz when Turbo boost is enabled, with a maximum of 280W TDP. It supports
8 memory channels and up to 2 DIMMs per channel running at 3200 MT/s with
256 MB L3 shared cache and 64 KB (32+32) L1 and 512KB L2 dedicated cache
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Figure 2.14: Intel Skylake Architecture

Figure 2.15: Intel Skylake cache structure
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Cluster MYRIA IRENE-SKL IRENE-AMD

Processor Broadwell E5-2680 v4 Skylake 8168 Epyc Rome 7H12
Cores/Socket 14 24 32
Clock Freq. [GHz] 2.4 2.7 2.6
L1/Core [KB] 32(i)+32(d) 32(i)+32(d) 32(i)+32(d)
L2/Core [KB] 256 1024 512
L3/Core [MB] 2.5 1.375 8
Bandwidth [GB/s] 76.8 250 288

Table 2.1: Characteristics of the processors used for this work.

per core. It supports AVX2 (AVX256) which means that it can perform 2 FMA
operations on a 256 bits vector per clock cycle, reaching 16 FLOPs per core. The
two sockets are connected through xGMI2 links providing up to 288 GB/s Peak
bidirectional bandwidth maintaining 128 lanes PCIe Gen4 I/O and up to 256 GB/s
bidirectional bandwidth for I/O capabilities. Each processor is partitioned into four
logical quadrants, each being a NUMA domain. Each of the two sockets is organised
in 4 logical units, which are also Numa domains, called CCD MCM (Compute Core
Die Micro-Chips Module) as shown in Figure 2.16, each formed by 2 CCX (CPU
Complex). Each CCX contains 4 cores that share the L3 cache memory and all cores
on the same CCD have access to memory through the same memory controller.

Figure 2.16: AMD EPYC Rome CCD and CCX Block Diagram

2.2.3 A new timing structure for YALES2

A brief presentation to several existing profilers and instrumentation tools have
been done in Section 1.7. Although there is no doubt of the utility and versatility of
such tools, it can be difficult to use them on different clusters for portability issues
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or simply because they are not available on a particular infrastructure. Moreover,
in an industrial context, a user might want to monitor the code performances in
"production" cases, where the cost implied by the overhead of the instrumentation
is not acceptable. Furthermore the typical user is probably not familiar with this
particular niche of tools. These and other arguments motivate the choice of having
an integrated performance monitoring system in YALES2.
At the beginning of this work the performance monitoring system was based on a
timer object organised in chained lists. Each chained list corresponded to a level of
the timer, 0 being the highest and 3 the deepest. The level of the timer was arbi-
trarily decided and hard coded for each timer. A schematic example of this data
structure can be found in Figure 2.17. A function called start_timer would be
called, taking as input the timer name and the timer level. The corresponding timer
would then be searched on the chained list corresponding to the timer level. If not
found a new object would be added to the chained list, otherwise a clock measure
would simply be registered on the corresponding object. Another function called
stop_timer with the same arguments would be called to end the measurement of
that timer. It would look for the timer object in the same way and the difference
between the clock measurement previously registered and the current time would
be accumulated to the timer value.
The timer values would then be displayed during execution after a user-specified
period of nit iterations. The user could also select up to which timer level display
the information via the input file.
This system, which looks quite rudimentary, gives a sufficiently detailed perfor-
mance monitoring in most cases. In particular, high level timers show how the
code is performing in the different macro-regions and having a specific timer for
the communication routines allows to quickly compute the global communication to
computation ratio.
During the development of this thesis and from other users experience some flaws
however became evident. All timers measure their inclusive time, but there is no ex-
plicit relation between them, consequently it is not always clear, without looking at
the source code, which timers are nested into each other and which are independent.
Furthermore, and this is especially true for the communication timer, they give a
global measure of the elapsed time but they are completely oblivious to the region of
the code in which the time is being accumulated, making it impossible to even com-
pute basic informations such as computation/communication ratios for the different
macro-regions. Finally, the values that are communicated to the user are only those
of the master process, hence it is more difficult to know the behaviour of the other
processes and load balancing characteristics. All these aspects proved to be a major
problem especially for those timers measuring collective communications. As most
of the sensible regions of the code contains some sort of synchronisation mechanism,
the macro-timers almost always show balanced performance across processes, but
the actual imbalance is shown by the timing of such synchronisation mechanism,
which almost exclusively is a collective communication or a barrier.
Taking into account the experience with different profiling tools and the aforemen-
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Figure 2.17: Schematic representation
of the old YALES2 timers structure
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Figure 2.18: Schematic representation
of the new YALES2 timers structure

tioned defects of the YALES2 timers, a new performance monitoring system was
developed. This new mechanism was still based on timer object accumulating in-
clusive time, however, instead of arbitrarily imposed levels, timers were organised
hierarchically in a tree-like data structure. Every time the start_timer function
is called, it looks for the timer name in the chained list of "children" of the cur-
rent_timer. The current_timer is simply a pointer that identifies the timer in use.
The timer level does not need to be specified as an input to the function; it is auto-
matically determined as the nesting level of the timer itself relatively to first timer
that have been created. The newly started timer then becomes the current_timer.
At a call of stop_timer, the current_timer pointer is given back to the parent of
the one that just ended its measurement. Figure 2.18 gives a schematic example of
this new data structure.
As for the previous system, timing information is displayed every nit iterations. The
user can still specify the level up to which information is to be visualised, however
that now correspond to the timer nesting level. Global information for selected "no-
table" timers is still printed. In order to reduce the timing overhead, if the timer
level is below the one that needs to be printed and it is not notable, its measurement
is not performed.
In order to quicken the research of the correct timer in the chained list, a hash
is generated from the timer name, and hence a hash comparison is performed to
exclude wrong timers. Once a corresponding hash is found, a string comparison is
performed to confirm that timer is actually the correct one. String comparison is
computationally expensive to perform, accounting for more than 50% of the whole
timing routine overhead. In order to reduce such overhead, the hashing algorithm
has been changed to improve the uniqueness of the resulting hash [84]. This allows
to have enough confidence in the hashing system to be able to skip the string com-
parison and save some overhead time. The previous system allowed for a pointer
system to be used to immediately find the correct timer after the first use, skipping
any testing other than the associativity of that pointer. This however was not pos-
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sible to keep implemented as the new call-path based structure means that a timer
exists multiple times in different call paths.
Another improvement consists in the fact that, for each timer, the standard devia-
tion of the measured times across all processes is added to the printed information.
This entails a few global communications to compute the standard deviation, how-
ever this additional cost is not too detrimental to the code global performance as
they are performed only before displaying the data every nit iterations. This infor-
mation allows to quickly spot ill balanced regions.
This new timing structure has also allowed the creation of a rudimentary profiling
mechanism that can be activated at runtime by the user from the input file. Sev-
eral time measurements (iteration time, global time, RCT, ...) and statistics (min,
max, standard deviation, average time) for each timer are stored for each call during
execution and saved in a dedicated file in json [85] format to be later exploited in
Python for example.
One of the flaws of this timing structure is that it does not deal well with recursive
calls. In that case a child would be created for each recursive call, resulting in an
possibly large and memory consuming structure. A possible solution to this problem
could be the application of techniques such as the one proposed by [86]: keeping
track of the context, i.e. the active set of subroutines at the time of the timer call,
allows to create a finite number of such context even for recursive programs. Recur-
sivity however, at the time of this work, in not widely used in YALES2, with very
few exception in routines with such low execution time that their individual timing
is not indicated anyway, due to the relatively high timing overhead compared to the
routine time.

2.2.4 Code characterisation

The peculiar characteristics of the AMD Epyc 7H12 processor allow, through process
placement, to characterise to some extent the dependency of the code to memory
bandwidth, cache size and clock frequency. With a constant number of processes
it is indeed possible, changing their placement to change the memory bandwidth
and the quantity of cache memory available to each process independently. The
following measurement tries to characterise the YALES2 DPCG solver by performing
measurements of the 14M elements Preccinsta benchmark on 32 cores with different
process placements, as shown in Table 2.2. The decision of removing the MPI
contribution to this characterisation is motivated by the fact that it is extremely
dependent on the number of processes, hence the characterisation itself wouldn’t be
useful for another core count. A process placement G/S means that a contiguous
group of G processes is bound over a stride of S cores, and such configuration
is replicated until the total number of requested processes is placed on the node.
Regarding the cases exposed in Table 2.2 this means that for Case C1, the 32
processes are bound to the first 32 cores of the node, leaving the other 32 empty,
as in Figure 2.20. In Case C2, out of the 8 cores of each CCD, only 4 of them are
used to process. As the memory bandwidth is the same for each CCD, using only
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Case Placement Effect Tot. time MPI time Comp. time T
C1 32/64 Standard 103.0 [s] 24.72 [s] 78.28 [s]
C2 4/8 2 x BW 80.20 [s] 20.85 [s] 59.35 [s]
C3 2/4 2 x Cache & BW 69.20 [s] 19.72 [s] 49.48 [s]

Table 2.2: Effect of process placement on cache, bandwidth and execution time.

Shared L3

Shared BW

Figure 2.19: Schematic representation
of the the AMD Epyc node.

Figure 2.20: Schematic representation
of the C1 case. Active cores in red.

Figure 2.21: Schematic representation
of the C2 case. Active cores in red.

Figure 2.22: Schematic representation
of the C3 case. Active cores in red.
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Characteristic Dependency [%]

Bandwidth 48.4
Cache 33.3
Frequency 18.3

Table 2.3: YALES2 code characterisation on the AMD Epyc 7H12 processor.

half of the cores allows to double the memory bandwidth available to each core.
It is important however that these cores belong to the same CCX, as to keep the
available L3 memory constant with respect to Case C1, as depicted in Figure 2.21.
Finally, Case C3 uses the same amount of core per CCD, however processes are
bound to only 2 of the 4 cores of each CCX, meaning that the L3 memory available
to each core has doubled with respect to Case C1 and C2, while keeping the same
bandwidth as C2. This last case is shown in Figure 2.22.
Using these three measures, the dependency of the code to cache memory, memory
bandwidth and processor frequency can be computed as Equations 2.5:

Bandwidth = 2× (TC1 − TC2)

TC1
,

Cache = 2× (TC2 − TC3)

TC2
,

F requency = 1− (Bandwidth+ Cache) .

(2.5)

The expressions in Equations 2.5 can be explained as follows. The difference in
computation time TC1 − TC2 from case C1 to case C2 is supposed to be solely
due to the doubling of the available bandwidth per core, as all other parameters
remained unchanged between the two simulations. The fraction of the computation
time limited by the memory bandwidth can be computed as the ratio of the difference
between the two cases and the original computation time, corrected by a factor equal
to the bandwidth increment (in this case 2). A similar reasoning is applied for the
increase of cache memory between C2 and C3. Finally, it is supposed the the only
remaining factor influencing the execution time is the clock frequency of the CPU.
The results for the YALES2 code are synthesised in Table 2.3. This characterisation
shows that the code performance is highly dependent on memory (∼80%) and much
less on the computational power. This is in line with the expectations as the linear
operators on which the code is based have a particularly low arithmetic intensity.
This might have important consequences as reducing the computational power in
order to increase cache and bandwidth available per process can possibly improve
performance and scalability and even reduce the execution time.

2.2.5 Performance measurements

As a primary step for the present work it is paramount to analyse in detail the
performances of the YALES2 code and more in particular of the Poisson solver.
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Figure 2.23: Preccinsta scalability breakdown on the MYRIA platform

The particular focus of this work on the cost of collective communications and in
the deflation part of the DPCG algorithm can easily be explained by Figure 2.23.
It shows a scalability study for the Preccinsta burner in YALES2 on the MYRIA
platform. Together with the total execution time of the temporal loop, represented
in blue, there is also its breakdown in three main parts. The time spent in the
collective communication of the fine grid solution and on the deflation part of the
DPCG algorithm are represented respectively in green and orange, while the rest of
the temporal loop is shown in red. It is clear than that the loss in performance of the
entire solver is due to the deflation and, in a more marginal extent, to the collective
communication in the PCG algorithm. The rest of the code scales quite well, even
at the most extreme cases, where the domain size per worker is quite small and its
contribution to the total time becomes smaller than the deflation alone.
In order to better understand how to improve the performances of the DPCG al-
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gorithm, several measurements have been performed, varying some of the most in-
fluential parameters for this implementation. Up to a certain extent, this was done
already in [72] for the convergence criterion and the number of recycled solution to
be used for the initial guess of the residual. These two parameters have not been
investigated in this work, since an optimum value has already been found. In order
to simplify the model, the usage of recycled solutions was deactivated. This leads
to sub-optimal performances during the study, however there is no reason to think
that its beneficial effects would somehow disappear after other improvements are
put in place.
Arguably the most influential parameter on the code overall performances is the
size of the group of elements. This is determined by setting the NELEMENTPER-
GROUP parameter in the input file. In the remainder of the manuscript, NELE-
MENTPERGROUP can be shortened as NEPG for the sake of brevity. As seen in
Subsection 2.1.5, YALES2 has the group of elements resulting from the DDD as
the cornerstone of its entire data structure. Furthermore, it uses them in order to
construct the deflation grid. The main advantages of this approach are that there
is no need to create a new coarse grid and the deflation operators can be easily
computed. It entails however much deeper consequences, which will be analysed in
the following.
The measures shown in this subsection were obtained through a strong scalability
study of the 14M elements Preccinsta benchmark on the MYRIA platform. For each
number of processes used, different values of the NELEMENTPERGROUP parameter
were tested.
A few conventions for the terminology adopted in the rest of the analysis are defined
here. The notation nx stands for the quantity (number) of x. A certain entity x
noted without any subscript indicates that it is proper to single worker and it in-
cludes all its duplications, if any. The subscript [g], short for global, indicates the
amount of a certain entity on a single worker, with the duplicated entities counted
only once. The subscript [t], short for total, indicates the amount of a certain entity
on all workers, including all its duplications. Finally, the subscript [gt] indicates the
amount of a certain entity on all workers, but with the duplicated entities counted
only once. The notation [gt] is used also for those quantities that do not have
duplicates such as the elements and the ElGrps.

2.2.5.1 Grid characteristics

The first immediate consequence in varying the size of the group of elements is
the variation in the total number of groups nElGrp[gt]

. Clearly, on a same mesh,
increasing the size of the groups implies a reduction on their number, and vice-versa,
as depicted in Figure 2.24. Such variation is indeed independent of the number of
workers used for the computation, as confirmed by the bottom plot of the figure. The
second implication, is the variation in the number of nodes and pairs on each worker’s
mesh. This is due to the fact that nodes and pairs on the boundary between the
different groups are duplicated. In Figure 2.25, the top graph shows that the ratio
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Figure 2.24: Analysis of the variation of the number of groups with NELEMENT-
PERGROUP on Preccinsta 14M
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Figure 2.26: Analysis of the variation of the total number of nodes and pairs and
size of the internal communicator with NELEMENTPERGROUP on Preccinsta 14M.
The error bars represent the standard deviation across all workers
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between the sum of the nodes of each group nnode[t] and the number of unique nodes
nnode[gt] decreases dramatically when the size of the groups increases, independently
from the number of worker used in the computation. The same behaviour is observed
for the pairs, however, less prominently and with a different ratio. This is confirmed
by the graph on the bottom of the picture, which indeed shows that the ratio between
total amount of pairs and nodes increases slightly with the size of the groups. This
could be a problem as the loops on nodes are vectorised, while loop on pairs are
not. However the difference is so minimal that the effect is actually negligible.
The two central top plots of Figure 2.26 however, show that the reduction in the
total amount of nodes and pairs per process is extremely important, especially for
the lower numbers of workers. In practical terms this directly translates into a
considerable reduction in the required amount of computation that is performed
by the different workers. The graph on the bottom of the same figure shows the
relation between the size of the internal communicator for the nodes and the total
amount of nodes (with duplication) on each worker. The internal communicator is a
fundamental piece in the data structure of YALES2, however the update of the IC is
a supplementary operation which is not necessary for computation. Consequently it
could be argued that the IC update is an overhead, and as such should be reduced.
It is possible to remark that increasing the size of the groups has a beneficial effect
in reducing such overhead, as the ratio between the size of the IC and the total
number of nodes decreases from ≈ 34% to ≈ 20% for nworkers = 28 and from ≈ 40%

to ≈ 32% for nworkers = 448. The gain on the cases with small number of workers is
extremely important considering that nnode decreases much more than for the other
cases as mentioned above.

2.2.5.2 Number of iterations in the DPCG solver

The following and most important consequence is that the performance of the de-
flation phase and that of the rest of the DPGC algorithm are indissolubly linked by
the size of the groups. Changing the groups size, hence their number, has an op-
posite effect on the two parts of the algorithm. Figure 2.27 shows the average time
needed for the convergence of the DPCG algorithm as a function of NELEMENT-
PERGROUP and nworkers, while Figure 2.28 shows the percentage breakdown of this
time in three phases: the time spent on the fine grid, on the deflation and initialising
the DPCG. It is clear that the solver initialisation is negligible and therefore will
not be analysed further. It is interesting to notice how the proportion of time spent
in the deflation increases dramatically with the number of workers, confirming the
poor scalability behaviour exposed in Figure 2.23. The two parts of the algorithm,
namely the iteration on the fine grid and the deflation behave very differently and
consequently a separate analysis is performed for each of them. Figure 2.29 shows
the number of iterations on the fine grid and the ratio of number of iterations on
the coarse grid and those on the fine one varying NELEMENTPERGROUP. These
are computed as a mean value over 200 time-steps of the solver, with the error-bars
indicating the standard deviation among the different time-steps. On the bottom
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nworkers for Preccinsta 14M on MYRIA
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plot, the average total amount of deflation iterations is shown. This is simply com-
puted as the product of the average amount of iterations on the fine grid and the
average number of deflation iterations per fine grid iteration. Figure 2.29 shows that
increasing the size of the groups, hence coarsening the deflation grid, allows for a
faster convergence. However, the precision of such solution decreases, consequently
more iterations are needed on the fine grid to arrive at its final converged state.
It is important to remark that the number of iterations necessary to converge the
DPCG solver are independent from the number of workers. The small differences are
caused by numerical rounding errors mainly in operations related to inter-process
communications. The total amount of deflation iterations remains approximatively
constant, with a slight tendency to increase for bigger group sizes. The only excep-
tion is for 440 workers with a group size of 5′0000 elements. This case, in which each
process has only one ElGrp, hence only one point in the deflation mesh is clearly an
extreme situation, in which the PCG on the deflation seems to need more iterations
to converge.
Experience with the code showed that the the optimal value for NELEMENTPER-
GROUP is between 2’000 and 5’000, and confirmation is found in Figure 2.27. In
order to understand this, a more detailed analysis of the cost of a DPCG iter-
ation is needed. As for the number of iterations, the cost analysis is split into
two separate parts, considering the time spent in the deflation separated from
the rest of the algorithm. As a reminder, this means that the time spent in the
Solve Âdk+1 = W T

(
AK−1 − I

)
rk+1 step of Algorithm 3 is measured separately

and its cost is removed from the rest of the algorithm. That deflation step is solved
with the PCG algorithm 6 on the coarse grid.

2.2.5.3 Fine grid iteration

First it is interesting to look at the analysis of the average time needed to perform an
iteration on the fine grid, excluding the time spent on the deflation step. The same
data is represented in Figure 2.30 as a function of the group size (NELEMENTPERGROUP)
and the number of processes used to perform the computation nworkers. Figure 2.31
shows a percentage breakdown of the total iteration time in various sub-categories:
computation on nodes, computation on pairs, collective communication, P2P com-
munication and the remainder of the algorithm.
The top graph of Figure 2.30 shows how, increasing the size of the groups helps
reducing the total cost of each iteration, particularly for the cases with a lower
number of workers. There is an evident link between this graph and those of Fig-
ure 2.26. The explanation is found looking at the percentage breakdown. It is
clear that the largest contribution to the cost of an iteration is given by the two
computation phases, as these make up for about 80% of the iteration time for all
those cases computed with 28, 56 and 112 processes, and respectively 70% and 60%
for 224 and 448 processes. On the bottom plot of Figure 2.30, scalability curves
are obtained for each value of NELEMENTPERGROUP. While the runtime is higher,
scalability seems to be slightly better for the lower values of the parameter. Another
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Figure 2.29: Analysis of the number of iterations for the convergence of the DPCG
algorithm as a function of the size of the groups for Preccinsta 14M. The measures
were collected over several time steps and the error bars represent the standard
deviation on the iteration numbers across all time steps
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interesting thing to notice is that the cost of point-to-point (P2P) communications
remains quite limited and its percentile contribution does not increase much with
the number of processes. In addition, increasing the size of the groups reduces the
percentage of the time spent on these communications. On the other hand, as it is
to be expected, collective communications become gradually more expensive while
increasing nworkers. This observation is perfectly coherent with what previously
shown in Figure 2.23. The error bars on the percentile breakdown graphs repre-
sent the standard deviation across the workers for each phase. These are useful to
understand the load balancing of each phase. While the computation phases are
almost perfectly balanced for all cases, a higher number of workers corresponds to
an increase in the standard deviation of the communication phases. This means
that the increase of communication cost, especially for collective ones, is only in
part due to a larger number of processes. The increasing imbalance in other parts of
the algorithm also contributes to the loss of efficiency, as they are blocking collective
communications, which implicitly impose a synchronisation point for all processes.

2.2.5.4 Deflation iteration

A similar analysis is displayed in Figure 2.32 and Figure 2.33 for the deflation
iteration. Here however, the computation time is extremely low, above 20% only
for a couple of cases. Collective and point to point communications are the main
contributors to the total iteration cost. Increasing the group size helps to reduce
the cost of the deflation iteration only for those cases with 28 and 56 workers. This
is due to the fact that, since the mesh is the same, in these cases each worker has
a higher number of groups on which to perform computation with respect to the
other. While it is reasonable to assume that the cost of communication depends
mainly on the number of workers, analysing the percentage breakdown shows that
increasing NELEMENTPERGROUP has the effect of reducing mainly the proportion
of time spent on the computation on the pair of groups. The computation on the
groups is much lower due to the fact that it’s fully vectorised, while the computation
on the pair of group needs an indirection operation which prevents vectorisation.
Reducing the number of pairs has then a stronger influence on the computation
time. Together with the percentile breakdown, the standard deviation across the
different processes is also displayed for each group. It is important to remark the
large values of the standard deviation for the two communication phases and the
relatively large one of the edge computation phase. The explanation for these large
discrepancies in time measurement among processes must be searched in the way
the connectivity among groups and processes is created for the deflation grid.
As explained in 2.1.5.1, processes with higher colour build a deflation grid that also
includes halo groups from their neighbours with lower colour. The matrix-vector
multiplication s = Aw is performed according to Equation 2.2, i.e. with a loop on the
pair of groups, including those with the extra halo groups. This means that workers
with higher colour have to compute on a larger number of pairs, which accounts for
relatively high standard deviation in this computation phase. The communication
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Figure 2.32: Deflation iteration time as a function of NELEMENTPERGROUP and
nworkers for Preccinsta 14M on MYRIA
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phases however show a standard deviation that is much more important. This again
is possibly due to the half-halo system. It creates indeed a communication pattern
that highlights possible delays and worsen the communication efficiency. With the
reasonable assumption that processes are fairly synchronised after the computation
of w, workers on the receiving side, must wait for their partners to pack and send
the data. Once they receive the data they have to unpack it and compute s. As
explained above, the amount of computation for these processes is higher than for the
others. Finally they have to pack and send their data back to their neighbours, who
were possibly already waiting due to their lower amount of computation. Another
cause of the communication imbalance is the fact that there is a huge variance in the
number of neighbours that each process has. A process that needs to communicate
with many neighbours will be forcibly delayed with respect to one that has only
a few. Figure 2.34 shows a trace obtained with TAU for a deflation iteration for
the 14M elements Preccinsta benchmark on the MYRIA supercomputer. Although
the time spent in the MPI functions is exaggerated by the instrumentation, it is
clear that the P2P communication pattern and the difference in the number of
neighbours play a key role on the high cost of the whole iteration. It is also possible
to see the imbalance in the computation on the pair of groups between the two
communication phases. Looking at Figure 2.34 it is clear how most of the cost of
the collective communication is a direct consequence of the imbalance generated by
the P2P communication and the computation on the pair of groups. To resume,
this brief performance assessment has shown that:

• The solution of the PCG on the deflation grid and the collective communica-
tions for the solution on the fine grid do not scale at all.

• The rest of the code scales almost perfectly, at least up to 20’000 processes.

• As a consequence of the two previous points, the time spent solving on the
coarse grid becomes preponderant for large numbers of processes.

• The performance of the code are driven by the value of NELEMENTPER-
GROUP, which has an opposite effect on the fine grid and on the deflation.
To have bigger groups means to have less duplicated nodes and pairs, which
reduces the cost of a single iteration on the fine grid, but at the same time it
increases their number. On the other hand, the average number of iterations
on the coarse grid per iteration on the fine one is reduced.

• The cost of the fine grid iteration is for the most part due to computation. The
cost of the collective communications increases with the number of processes.

• The cost of the deflation iteration is mainly due to communication. The large
standard deviation for the communication time across the different processes
indicates that such phases are ill balanced.

• The large communication time in the collective communication is due to the
bad pattern of the point-to-point exchange.
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Figure 2.34: TAU trace of a deflation iteration showing the communication pattern
and computation imbalance
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These points will be thoroughly analysed in the following, with particular focus on
the influence of the value of NELEMENTPERGROUP and nworkers on the perfor-
mance of each step of the algorithm.

2.2.6 Performance model

In this subsection a simplistic performance model is derived from the measurements
exposed in Subsection 2.2.5. The performance model is voluntarily kept simple, as
many variables could intervene in the performance of the solver and it would be
extremely hard to account for everything. Also, the objective of this model is not to
provide an exact prediction of the behaviour of the code, but only a summary indi-
cation of the influence of the most influential parameters on the final performance.
For this reason, the model is almost exclusively composed by linear functions, whose
coefficients are obtained performing a least-square method interpolation over the
measurements presented above.

2.2.6.1 Grid characteristics

Starting from the grid characteristics, the most important parameters are the num-
ber of ElGrps per each worker nElGrp, the total amount of groups nElGrp[gt]

, the
total amount of unique nodes nnodes[gt] and pairs npairs[gt] . All these quantities
depend only on the total amount of elements nelem[gt]

, the parameter NELEMENT-
PERGROUP, shortened NEPG and the number of workers nworkers. The number
of nodes and pairs depend also on the type of elements that constitute the mesh.
YALES2 is able to treat meshes with all kinds of elements: tetrahedra, hexahe-
dra, polyhedra, etc. however all analysed cases, except if specified otherwise, are of
meshes with tetrahedral elements. The two expressions for the number of groups
can be derived directly with the formulations in Equation 2.6. The ceil expression,
i.e. the rounding of the division to the upper integer, gives a more precise estimation
of the number of groups because it follows the two-steps decomposition performed
by the code: first the mesh is divided among the different workers, and then each
of them divides its own portion of mesh in ElGrps. This distinction is important
only in extreme cases where the value of NELEMENTPERGROUP is higher than the
count of elements per worker. In such case, (at least) one group must be created
per worker, consequently the minimum number of groups in a computation is equal
to the number of workers.

nElGrp = ceil

ceil
(nelem[gt]

nworkers

)
NEPG

 ' nelem[gt]

nworkers ×NEPG
,

nElGrp[gt]
= nElGrp × nworkers .

(2.6)

The total number of unique nodes and pairs can be approximated as a linear function
of the number of elements, as in Equation 2.7 and Equation 2.8.

nnode[gt] ' βnode[gt] × nelem[gt]
. (2.7)
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Model α β γ

node[gt] / ' 1/6 /
pair[gt] / ' 6/5 /
node[t] 1 ' 3/200 ' 2/5

pair[t] 1 ' 1/125 ' 2/5

pair/node[t] ' 37/5 ' −2/5 ' 1/5

Table 2.4: Coefficients obtained for the grid model

npair[gt] ' βpair[gt] × nelem[gt]
. (2.8)

The model of the ratio between the total amount of unique and duplicated nodes
and pairs is more complicated. The duplicated nodes and pairs lie on the external
surface of the ElGrps. It appears then intuitive to build a model that adds to the
amount of unique nodes a quantity that is related to the volume to surface ratio of
the groups of elements. This relation is obtained via the γ exponent in Equation 2.9
and Equation 2.10.

nnode[t]
nnode[gt]

' 1 + βnode[t] × n
γnode[t]

ElGrp[gt]
. (2.9)

npair[t]
npair[gt]

' 1 + βpair[t] × n
γpair[t]

ElGrp[gt]
. (2.10)

The surface of the ElGrps is to also representative of the size of the internal com-
municator. The IC size is proper to each worker, so it would be of interest to find
a model for the ration between its size and the number of nodes with duplications
nnode on the partition. Unfortunately it was not possible to find such relation with
simple models. Finally, the ratio between the total number of pairs and the total
number of nodes can be modelled as in Equation 2.11.

npair[t]
nnode[t]

' αpair/node[t]
+ βpair/node[t]

× n

(
γpair/node[t]

)
ElGrp[gt]

. (2.11)

Table 2.4 summarises the values obtained for the coefficients for Equations 2.7, 2.8,
2.9, 2.10 and 2.11, while Figure 2.35 and Figure 2.36 show that such models, in
black, fit quite well with the measurements.

2.2.6.2 Number of iterations in the DPCG solver

In a similar manner, it is interesting to find a model for the number of iterations on
the fine grid niterFine and the ratio between the number of iterations on the coarse
grid and the one on the fine grid niterCoarse/niterFine

. The Poisson’s equation is an
elliptic equation, the convergence of the system must depend on the time needed
to propagate an information throughout the domain. For a discrete 1D system
this means that the number of iterations needed to solve the Poisson’s equation is
proportional to the number of discretisation points. This can be extended in 2D
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Model κ

niterFine 835
niterCoarse 2.9

Table 2.5: Coefficients for the model of the number of iterations

and 3D, where the proportionality is respectively the square root and cubic root of
the number of discretisation points, for a square or cubic domain. The model for
the iteration numbers is consequently sought with Equation 2.12 and Equation 2.13,
where ndim = 3 for this 3D simulation. The coefficients for this model are reported
in Table 2.5. Figure 2.37 shows the good agreement between the model and the
measured data. As a confirmation for the models, on the bottom plot is shown the
model of the total number of deflation iterations, which is obtained multiplying the
two models for the number of iterations. This results in the multiplication of the
two κ coefficients, as shown in Equation 2.14.

niterFine '
κiterF

n

(
1

ndim

)
ElGrp

. (2.12)

niterCoarse

niterFine

' κiterC × n
(

1
ndim

)
ElGrp . (2.13)

niterCoarse = niterFine ×
niterCoarse

niterFine

' κiterF

n

(
1

ndim

)
ElGrp

× κiterC × n
(

1
ndim

)
ElGrp ' κiterF × κiterC .

(2.14)

2.2.6.3 Fine grid iteration

The case of time spent in each iteration is much more complicated. Instead of trying
to find a model for the entire cost of the iteration, it is better to split it in parts, and
look for a sub-model for each part. The iteration on the fine grid has been divided
in 5 sub-parts: the computation on the nodes, the computation on the pair of nodes,
the collective communications, the point-to-point communications and the rest, the
was harder to classify but, as seen above, accounts for a mere 10% of the iteration
and its contribution does not seem to be particularly influenced by the size of the
groups. The update of the internal communicator for the nodes and for the pairs
has been included in the respective computation phases. The cost of each phase and
their respective models are shown in Figure 2.38.
It is logical to think that the cost of a computation phase would be proportional
to the amount of work, i.e. the number of nodes pairs on the partition. The size
of the groups already has and effect on nnode[t] and npair[t] , however it should be
expected to have an additional influence also on the computation time. This is
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nworkers β1node
β2node

β1pair β2pair

28 0.041 8.13 0.0102 4.16
56 0.027 8.14 0.0107 3.93
112 0.022 5.55 0.0098 4.87
224 0.014 4.69 0.0057 6.65
448 0.001 2.36 0.0052 2.25

Table 2.6: Coefficients to model the cost of the computation on nodes and pairs

due to several effects: small groups should benefit from improved memory access
time due to the cache blocking effect, however they are penalised by the node and
pair duplication and the size of the internal communicator. The model used for
the computation phases is then a simple combination of the two contributions as
in Equation 2.15 and Equation 2.16. In this case it was not possible to find a
unique pair of coefficients that would generate a model good enough for all values
of nworkers, hence a different couple of coefficients have been taken for each case.
These values are shown in Table 2.6 for both nodes and pairs. Figure 2.38 shows
that this model is in good agreement with the measurements in all cases.

Tnode [µs] = β1node
× nnode + β2node

× nElGrp . (2.15)

Tpair [µs] = β1pair × npair + β2pair × nElGrp . (2.16)

The performance prediction for the communication phases is a more complex prob-
lem. The postal model Tmsg = λ+ β × nbyte assumes that the time needed to send
a message Tmsg is the sum of a fixed latency λ and the product of the inverse of the
bandwidth β by the size of the message nbyte. A simple performance model for the
MPI communication is proposed by [87, 88], while [89] presents an extensive study
of performance models for different versions of the PCG algorithm. In particular this
paper modifies the postal model to take into account some penalties due to network
congestion and other factors. Such penalisation is based on the specific hardware
counters and seem too fine grained for a simpler and summary model such as the one
that is looked for here. It would be however extremely interesting to try and apply
such models at the YALES2 DPCG implementation to generalise the values of the
coefficients for the models presented here. Figure 2.38 shows that there is no clear
behaviour or dependency for the collective communications. The time spent in such
phase seems to oscillate erratically around a constant value, without a clear depen-
dence on the number of workers. Counter-intuitively as it may seem, it is on average
lower for 448 than 28. This shows that a model based on a log(nworkers) type of
function, which works quite well for a stand-alone MPI_ALLREDUCE for example, it is
of no use here. This confirms that the time spent in the collective communications
depends mostly on factors external to the communication itself. Without a better
indication, a simple linear model as in Equation 2.17 is adopted for the collective
communications. The value for the coefficients are reported in Table 2.7. Figure 2.38
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shows that the model is not always in good agreement with the measured data and
should probably be further improved. The worse case is nworkers = 224, whose cost
is highly overestimated.

TColl [µs] = αColl + βColl × nworkers . (2.17)

In order to model point-to-point communications it can be useful to look at how the
data exchange is actually implemented in YALES2. To some extent this was already
presented in Algorithm 4, however Algorithm 8 shows in better detail the sequence
of operations that are necessary for the parallel update. Although it uses non-
blocking MPI functions, this procedure is quite synchronous, as the MPI_WAITALL
on the receiving messages does not allow the calling process to proceed until all
the incoming messages have been received. Compared to a mechanism with block-
ing calls however, it allows a process to post all its outbound messages, even if a
receiving process is late. In order to model the MPI exchange, a postal model as
the one mentioned above could be a reasonable solution. The algorithm includes
also a copy of the internal communicator back to the data on the ElGrps. The time
spent on this operation is then proportional to the size of the internal communica-
tor. This step has not been included in the computation phase like the update of
the internal communicator itself, as this is inherent to the parallel communication.
The final model used for the performance of the point-to-point communication in
Equation 2.18 sums the contribution of the MPI messages and the copy of the IC
to the data. Since each message has a slightly different size, an average of all sizes
is used. Figure 2.38 shows that this model, on average, agrees quite well with the
measures, except for the case on 224 workers, which is substantially overestimated.
The values of the coefficients, summarised in Table 2.7 indicate however that, if the
model is correct, the influence of the MPI exchange is negligible if compared to the
copy of the internal communicator. This means that the P2P communication does
not depend directly on the amount of data exchanged but rather on the size of the
internal communicator, that in return depends on the groups size. It is worth noting
that the IC includes the amount of data exchanged, as the external communicators
are part of the internal communicator itself. It is then difficult to properly separate
the two contributions.

TP2P [µs] = αP2P +βP2P ×nICnode
+nneighbours× (γ1P2P + γ2P2P × nitem) . (2.18)

For the remainder of the algorithm, since there is no clear pattern to be mimicked,
Equation 2.19 is used to obtain a model based on the number of ElGrps and workers.
The coefficients for such model are reported in Table 2.7. Figure 2.38 shows that,
however simplistic and without a solid motivation, this model fits the measurements.

TOther [µs] = αOther × n
γ1Other
ElGrps + βOther × n

γ2Other
workers . (2.19)

The complete model for the iteration, obtained adding together the contributions of
all the sub-models discussed above, is superimposed to the original measurements
in Figure 2.39. The obtained model fits almost perfectly the measurements. The
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Algorithm 8: Parallel data update in YALES2
for i← 1 to nneighbours do

MPI_IRECV(recv_buffer[i],nitem [i],neighbour [i],. . . ,recv_request[i]);
end
for i← 1 to nneighbours do

Pack: IC → (nitem [i])→ send_buffer[i];
MPI_ISEND(send_buffer[i],nitem [i],neighbour [i],. . . ,send_request[i]);

end
MPI_WAITALL(nneighbours,recv_request,. . . );
for i← 1 to nneighbours do

Unpack: recv_buffer [i]→ (nitem [i])→ IC;
end
MPI_WAITALL(nneighbours,send_request,. . . );
Copy IC to ElGrps

Model α β γ1 γ2

Coll 394.2 -0.58 / /
P2P 2.7E-16 0.061 2.7E-16 7.8E-16
Other 4.67E04 1.337 -1.32 0.958

Table 2.7: Coefficients to model the cost of the computation on nodes and pairs

worse case is nworkers = 224. This is due to the bad modelling of the collective
communication, whose important overestimation is clearly visible in the complete
model. The model tends to overestimate the cost of those cases with a larger value
of NELEMENTPERGROUP.
Although all coefficients used for the various models have been determined a pos-
teriori with a least square method regression on the different measurements, it is
important to underline the fact that all the variables used in the fine grain iteration
model, with the exception of the size of the internal communicator nICnode

, can be
obtained, thanks to the grid size models, from only 3 parameters. These are the
number of elements of the grid nelem[gt]

, the number of processes nworkers and the
input parameter NELEMENTPERGROUP, which are known a priori for each sim-
ulation. The number of neighbours for each process is another parameter that is
not available a priori and that has not been modelled, however it has been shown
to have a negligible influence on its sub-model, consequently it could be removed.
This means that, if a similar model is obtained for the deflation, the runtime of the
DPCG solver could be determined beforehand, with a certain accuracy.
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Model α β

ElGrp 0.446 0.00446
ElGrpPair 0.118 0.00243

Table 2.8: Coefficients obtained for the computation phases on the deflation grid

2.2.6.4 Deflation iteration

The model for the deflation iteration is obtained in a similar manner. The different
phases shown in the breakdown plots of Figure 2.33 are considered separately and
the full model is obtained adding the different sub-models of each phase. The first
phase is the computation on the group of control volumes. This is modelled with
Equation 2.20 as a simple linear function of the number of ElGrps on each worker.
The same principle is applied to the computation on the pairs of groups, as in
Equation 2.21. While the number of groups does not vary much among the different
workers, the same is not true for the number of ElGrp pairs. This was shown to
cause some imbalance on its computation phase. The model is based on an average
value of pairs computed across all workers. The values obtained for the coefficients
are displayed in Table 2.8.

TElGrp [µs] = αElGrp + βElGrp × nElGrp . (2.20)

TElGrpPair [µs] = αElGrpPair + βElGrpPair × nElGrpPair . (2.21)

The trace in Figure 2.34 showed that the time accounted as collective communi-
cation by most processes is actually time spent waiting for other workers that were
late in the previous phases. The model tries to account for this behaviour having
a contribution that is proportional to the difference between the average and the
maximum amount of neighbours of all processes. The number of neighbours on the
deflation grid is not guaranteed to be the same that on the fine grid. In order to
distinguish the two, for the coarse grid the term nGC is used, which stands for the
number of ghost communicators. In Subsection 2.1.5 it was explained how the defla-
tion uses a half-halo system with ghost cells only on one of the workers exchanging
data. The ghost communicators however exist on the two sides, and are used as the
external communicators on the fine grid to pack and unpack the data on buffers for
the MPI operations. Consequently for each worker the number of ghost communi-
cators is equivalent to the number of neighbours on the coarse grid. A contribution
proportional to the number of workers is also added, resulting in Equation 2.22. The
coefficients for this model are displayed in Table 2.9. The number of neighbours on
the deflation grid is not expected to change with the number of groups, as it depends
only on the first grid partitioning among the different workers. What changes is the
amount of data exchanged between the different workers, as less groups means less
boundary data. Consequently, the model of the collective communication remains
constant varying the value of NELEMENTPERGROUP. This happens to overesti-
mate the average cost of the collective communication for nworekrs = 28, however it
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Model β1 β2 β3

D.Coll 0.025 1.109 /
D.Ghost 1.153 0.028 /
D.Other 0.092 0.004 5.02E-4

Table 2.9: Coefficients obtained for the last three phases of the deflation iteration

is still inside the error range.

TD.Coll [µs] = β1D.Coll
× nworkers + β2D.Coll

× (‖nGC‖∞ − nGC) . (2.22)

The mechanism used to exchange data among process in point-to-point communi-
cations is similar to that used for the fine grid. In this case however the buffers
are not packed from and unpacked to the internal communicator but directly on
the data. The model of Equation 2.23 then only takes into account the number of
ghost communicator and their size. The coefficient for such model can be found in
Table 2.9.

TD.Ghost [µs] = nGC × (β1D.Ghost
+ β2D.Ghost

× nitemGC ) . (2.23)

The remainder of the algorithm is the exact evaluation of the residuals which
is performed every 10 iterations. Its cost represents that iteration, which is then
averaged also over the 9 iterations in which it was not performed. This phase consists
on a computation on the pair of groups, a ghost exchange and a computation on
an ElGrps data. The ElGrp computation phase includes multiple dot-products and
other operations on the groups, and it contribution is one order of magnitude lower
than the communication phase. The operation on the ElGrp data is then excluded
and this phase is modelled as the sum of a ghost exchange and an operation on the
pairs of groups. Since its done only once every 10 iterations its coefficients will differ
from those of the other two parts separately, and they are reported in Table 2.9.
From the value of the coefficients it is clear that the contribution of the ElGrp pairs
computation is paltry with respect to the ghost exchange. Since there is no other
significant contribution other than the ghost exchange, β1D.Other

' β1D.Ghost/10 and
β2D.Other

≈ β2D.Ghost/10, as it could be expected.

TD.Other [µs] =nGC × (β1D.Other
+ β2D.Other

× nitemGC ) +

+ β3D.Other
× nElGrpPair .

(2.24)

The resulting model is shown in Figure 2.41. With the exception of nworkers = 28

whose runtime is quite largely overestimated, the model tends to slightly underes-
timate the cost of the deflation iteration for all group sizes and number of workers.
It seems that the model obtained for the deflation iteration is not as good as the
one for the fine grain iteration. It should be noted however that the time scales are
much different (∼ 1E1 [µs] vs ∼ 1E4 [µs]) and although the relative error is larger,
in absolute terms, the errors of the deflation model are much smaller.
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2.2.6.5 Scalability of the model

The same models can be applied to the Preccinsta mesh of 110 Million elements with
fair accuracy. The relations modelling the grid characteristics remains unchanged,
as groups are created the same way. Clearly, the value of nElGrp[gt]

, nnode[gt] and
npair[gt] are different, as they are linked to the nelem[gt]

, but the model still predicts
them correctly, as represented in Figure 2.42 and Figure 2.43. However, Figure 2.44
shows that, using the same coefficients obtained for the 14M grid, the number of it-
erations on both fine and coarse grid are not predicted correctly. This indicates that
such coefficients have a dependency on the grid size. The trends however are still
well predicted, and a re-tuning of the coefficients allows to predict the correct values.
It is important to remark how, as more elements mean a larger system to solve, the
number of iterations on the fine grid increased. However, for each of the fine grid
iterations, the deflation system converged faster, in spite of the larger number of
groups. Figure 2.44 can indeed be misleading, as the number of iterations are rep-
resented as a function of NELEMENTPERGROUP, when they are in fact a function
of nElGrp[gt]

. This representation could be deceptive when this Figure is compared
with Figure 2.37, due to the fact that, for a same value of NELEMENTPERGROUP,
nElGrp[gt]

are different in the two cases. Both models on the two top graphs take
such difference into account, as they are indeed based on nElGrp[gt]

. The bottom
graph however loses such dependency as Equation 2.14 is simply a multiplication
of two constant coefficients. This helps to show how the total number of deflation
iterations is finally higher for the 110M elements mesh. Figure 2.44 shows as well
how with small groups the system can become unstable and its convergence erratic.
For the case with nworkers = 896 and NELEMENTPERGROUP=500 the standard
deviation in the number of fine grid iterations computed across several time steps
is extremely large, which is symptom of such instability. For this reason, such low
values of NEPG are to be avoided. The model can also be applied to the time spent
in the fine grid iteration and its different phases, as shown in Figure 2.45 and Fig-
ure 2.46 respectively. While for both computation phases the coefficients remains
practically unchanged, collective communications are twice as expensive than on
the 14M element mesh, and that is reflected on the αColl coefficient, which doubles
as well. βColl is almost null, which indicates that the dependency on the number
of workers is fortuitous and should probably be removed or exchanged for a factor
that explains the difference between the two meshes. The large standard devia-
tion that characterise this phase suggests that such values could be influenced by
some imbalance, which however does not appear to be as strong in any of the other
phases. Furthermore, in spite of being more expensive than the 14M counterpart, its
contribution is still extremely low when compared to the rest of the algorithm. Con-
cerning the P2P exchange, the value of βP2P is switched with that of γ2P2P , while
the other two coefficients are still extremely small. This would make the exchange
completely dependent on the amount of data exchanged and totally unrelated to
the size of the internal communicator, in contrast of what seen for the 14M case.
As mentioned above, the two are strictly correlated and it’s hard to separate the
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respective contributions. As the 110M benchmark is a weak scalability study of the
14M one, the size of the internal communicator and the amount of data exchanged
by each worker should be almost the same, and this is reflected on the cost of the
P2P exchange, which is extremely similar between the two cases. In spite of the
different coefficients, the two models also produce similar results, which strengthen
the conviction of the joint contribution of internal and external communicators on
the cost of the P2P exchange. In addition, for a same value of nworkers, the size of
the external communicator does not change with NELEMENTPERGROUP, hence the
IC size is necessary to explain the reduction in cost for higher NEPG values. Finally,
it was not possible to obtain a good agreement between model and measurements
on the last phase. Although the contribution of this last phase is about the same
order of magnitude of the P2P communication, which itself is much smaller than the
computation, Figure 2.45 shows that the model fits quite well nonetheless. This is
possibly due to the misestimation of the communication phases with respect to the
measurements. In practical terms, the last phase is composed by smaller computa-
tion and P2P communication phases, which means that all possible gains obtained
for the other phases will influence this one as well. Concerning the deflation it-
eration, it is possible to see from Figure 2.48 that the models for the computation
fit quite well. The coefficients remain the same with respect to the 14M model for
these two phases. Again, as it is a weak scalability study, the number of ElGrp per
worker is supposed to be the same, and the number of ElGrp pairs should not differ
much either. For the collective communication the coefficients had to be changed
to be able to obtain such fit, mainly to balance the higher values of nworkers which
are not reflected linearly in the increment of time. For the P2P ghost exchange, a
good fit is obtained with coefficients with values very close to those of the 14M case,
confirming the correctness of this relation. The same is true for the last phase of the
deflation iteration. Figure 2.47 shows that the model is in fair agreement with the
measured performances, once again with the exception of the lower value of nworkers
which is largely overestimated.

2.2.6.6 Further considerations on the performance model

Figure 2.27 shows the average runtime of a complete DPCG iteration as a function
of NELEMENTPERGROUP and nworkers. It can be seen how, as stated above, the
optimal value for NELEMENTPERGROUP is around 2’000. The proposed models
underline the fact that the number of iterations on the fine grid is inversely propor-
tional to a power of the number of ElGrps, and consequently directly proportional
to their size. On the other hand, the cost of a single iteration on the fine grid is
inversely proportional to NELEMENTPERGROUP, but not enough to compensate
the increase in their number. Concerning the deflation iterations, their total num-
ber remains practically unchanged, and the cost of each iteration is reduced at most
to a third of its maximum value for very large values of NELEMENTPERGROUP.
A relatively small value of NELEMENTPERGROUP such as 2’000 is consequently
the best compromise as it allows a substantial reduction, although not maximal,
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Figure 2.45: Model for the fine grid iteration cost of Preccinsta 110M on MYRIA
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2.2. Performance assessment 95

103 104

2

4
E

lG
rp

co
m

p
.

[µ
s]

103 104
0

10

20

E
lG

rp
p

ai
r

co
m

p
.

[µ
s]

103 104

20

40

60

D
.C

ol
l

co
m

m
.

[µ
s]

103 104
10

20

30

G
h

os
t

co
m

m
.

[µ
s]

103 104

NELEMENTPERGROUP

2.5

5.0

7.5

D
.O

th
er

[µ
s]

nworkers
Model
224

448
896

1792 3584

Figure 2.48: Model for cost of the different phases in the coarse grid iteration for
Preccinsta 110M on MYRIA



96 Chapter 2. YALES2 parallel performances

of the cost of both fine and coarse grid iterations, without a significant increase in
the number of the formers. It has been shown how, for larger grids, the cost of
the single fine grid iteration scales almost perfectly. The number of such iterations
which is necessary to converge the system, however, increases. On the other hand,
the number of deflation iterations necessary to reach convergence for a single fine
grid iteration is reduced, but each iteration costs about twice the amount of time of
one on the smaller mesh for the same value of NELEMENTPERGROUP. This could
possibly shift the best value of NEPG towards larger values for even larger meshes
in order to reduce the number of expensive iterations on the coarse grid.
The model could be useful to devise a strategy to improve the performances of the
DPCG solver. Focusing on the cost of the fine grid iteration first, Equation 2.15
and Equation 2.16 indicate that there is a direct proportionality between the num-
ber of nodes, pairs and ElGrps and the cost of the relative computation phases.
Equation 2.9 and Equation 2.10, together with Figure 2.26, strengthen the pro-
portionality between the number of duplicated nodes and pairs and nElGpr[gt]. As
debated above, a reduction in the number of groups by increasing their size would
comport then a reduction in the cost of the computation phases of the fine grid
iteration. Concerning the communication phases, the values of the coefficients for
Equation 2.17 would suggest that a larger number of workers would be beneficial
to reduce the cost of the collective communication, which is nonsensical, as further
confirmed by the same analysis on the larger grid. The time spent in the collective
communications in the fine grid iteration is then to be considered as a constant
value independent of nworkers but influenced by the grid size. Finally Equation 2.18
indicates that a major contribution to the cost of the point to point communication
is possibly linked to size of the internal communicator, which again is proportional
to the number of ElGrps. Equation 2.19 is less interesting as the model is not based
on the actual numerical implementation of such phase and does not work for the
larger grid.
Concerning the coarse grid iteration, Equation 2.20 and Equation 2.21 are not inter-
esting to analyse as they express the cost as a direct function of the amount of work
to be performed, and not much can be done to modify such relation. Contrarily
to what happens in the fine grid iteration, here the time spent in each collective
communication is comparable and even higher than that spent in both computa-
tion phases in the iteration. This means that reducing the cost of communication
could bring huge gains in term of performance of the entire solver. Equation 2.22
expresses the cost of the collective communication as directly proportional to the
number of workers involved and the difference between the maximum and average
number of ghost communicators. This indicates two possible strategies to optimise
this operation. Firstly, a lower amount of workers involved in the parallel exchange
would reduce the overall cost of the operation. Secondly, a more uniform number
of neighbours would help reduce the synchronisation time between the processes.
Figure 2.49 gives a rough estimation of possible gains in this communication when
removing the imbalance and using half the workers in the exchange. Equation 2.23
is misleading as it gives a good estimation only of the average time spent in the
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ghost exchange. However, Figure 2.40 shows that there is a large standard devia-
tion across the different workers, which is accounted for in Equation 2.22. The more
uniform number of ghost communicator would then indubitably benefit the P2P
exchange as well. Equation 2.24 combines considerations already made for other
equations, hence this phase would benefit from the same improvements as well. As
a meaningful example, Figure 2.49 compares the current (real) time spent in the
deflation collective communication with what the model predicts would be the ideal
communication time without the imbalance and halving of the participating MPI
ranks. This prediction is compared with the real cost of an MPI_Allreduce, which
is the actual minimum cost that this phase could reach. The model clearly overes-
timates the possible gain, due to the fact that it’s based on a too simplistic linear
dependency on nworkers while the real cost seems to follow a logarithmic relation.
Nonetheless this figure shows how removing the imbalance could save up to 70% on
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communication time on this phase, and reducing the number of workers could bring
the gain to over 80% in some cases. To resume, the performance model has allowed
to deduce that:

• The cost of the computation in the fine grid iteration could be decreased by
a reduction in the number of duplicated nodes and pairs, which is achievable
using larger groups of elements;

• The cost of the P2P exchange in the fine grid iteration would also benefit from
larger groups, as this would mean to have a smaller internal communicator;

• Communications are the largest contributors to coarse grid iteration cost;

• Reducing the number of workers participating in the parallel exchange would
help to sensibly reduce the cost of the collective communication;

• A more uniform number of ghost communicator across the different workers
would reduce the synchronisation time for the collective communication, while
reducing the imbalance in the cost of the P2P exchange as well;

• A trade-off value for NELEMENTPERGROUP has to be used as the number of
ElGrps links the performance of the different parts of the solver through the
number of iterations on the fine and coarse grid.

2.3 Conclusion

This chapter introduced the code YALES2 on which the entirety of this work is
based. In particular, its underlying data structures have been presented, with spe-
cial focus on the groups of elements resulting from the double domain decomposition
and the mechanisms used to communicate among different processes in a parallel
computation. The implementation of the DPCG algorithm, and in particular the de-
flation phase have been described. This chapter also introduces the two benchmarks
and the different architectures used to test the performances of the code. Some mea-
surements on one of such benchmarks have been presented to characterise the code
and to establish a first assessment of the code performances. Finally, several models
have been defined for the performance of the Preccinsta benchmark on the Myria
cluster. The grid model allows to determine all useful quantities related to the grid
size from only 3 known parameters, with the exception of the size of the internal
communicator. The DPCG algorithm has been modelled in two distinct parts: the
iteration on the fine and coarse grids. A model has been obtained for each part
as a sum of sub-models for the respective communication and computation phases.
While the iteration time on the fine grid can be predicted with fair exactness, the
deflation has proved to be harder to model with the same precision. In particular,
both communication phases are highly dependent on the number of neighbours and
on the imbalance in this number across processes. These parameters are much more
difficult to model a priori, as they depend on the grid partitioning.
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These models are just a first and rudimental attempt at predicting and studying
the performance of the code. A more detailed analysis of each of the sub-models is
required to provide a better justification for the models themselves and the values of
the coefficients that have been obtained. However, in spite of their roughness, they
have provided a useful insight in the mechanisms of the DPCG algorithm. In partic-
ular, it was shown that the actual MPI exchange has no influence in the cost of the
P2P communication of the fine grid iteration, which in fact depends exclusively on
the size of the internal communicator. Furthermore, the collective communications
seem to have a fairly constant cost, which is independent of the number of work-
ers in the communication. Regarding the deflation, the model showed that ghost
communicator exchanges have a stronger dependence on the number of neighbours
rather then the amount of data that is exchanged. Most importantly, the cost of
the collective communication in the deflation can be approximated quite well by the
difference between the maximum and average number of ghost communicators and
by the number of workers involved in the communication.
Concerning the influence of NELEMENTPERGROUP on the global performance of
the DPCG algorithm, it was shown how the optimal value of this parameter is de-
termined as a compromise on two contrasting effects: the duplication of nodes and
pairs against the number of fine grid iterations. Having bigger groups reduces the
amount of duplicated data, but also coarsens the deflation grid, which in return
provides a less accurate solution, hence more fine grid iterations are needed to reach
convergence. This implies that two aspects of the DPCG algorithm should be im-
proved. First, the number of "nodes" on the the deflation grid (nElGrp[gt]

) should
be independent of the size of the groups of elements on the fine grid. This would
allow another degree of freedom to better tune the convergence of the deflation grid,
giving the possibility to decouple the number of iterations on the two grids from
the duplication of nodes and pairs and the size of the internal communicator. As a
consequence, larger groups could be used on the fine grid to reduce such duplication,
while a less coarse grid can be used to regulate the number of iterations on both
the fine and deflation grid. Second, some work should be done to reduce the cost
of the communications in the deflation iteration. A more uniform number of ghost
communicators would reduce the imbalance in the P2P exchange, which in turn
would decrease the synchronisation time in the collective communication. Finally,
reducing the number of processes involved in the collective exchange would sensibly
reduce the cost of the latter, as clearly shown in Figure 2.49.





Chapter 3

A new data structure for the
deflation

In 2.2.6 some of the limitations of the actual implementation of the DPCG algorithm
in YALES2 were brought to light. In particular it was shown that there is a need
of decoupling the deflation grid from the cache blocking mechanism of the ElGrps,
whereas Figure 2.34 exposed the bad communication patterns due to the current
connectivity construction. Even if the latter could have been easily corrected with
a full-halo communication system for example, the former one calls for a complete
re-organisation of the deflation grid. Consequently a new data structure called graph
has been introduced in YALES2 to face all these negative aspects.
This chapter is organised as follows: first, a description of the new data structure is
given, explaining how this is built on top of the grid; then the performances of the
code with the deflation on the graph and on the ElGrps are compared. Successively,
an analysis similar to the one done in 2.2.5 fot the ElGrps is done for the deflation
on the new structure. As a result of this analysis new limits are exposed, and
improvements are proposed to overcome these new performance barriers.

3.1 The graph data structure

The peculiar needs of the code, for which this new data structure should be quickly
created or destroyed or re-partitioned in case of a change in the underlying mesh,
and the evident similarities between a grid and a graph, where nodes and pairs on
the first can be assimilated to vertices and edges on the second, made this choice
almost obvious. The notation G = (V,E) is used to represent a graph as a set
of interconnected objects called vertices V , whose pairwise connections are given
by the set of edges E. A graph is called directed when its edges have a direction,
otherwise it is undirected. As an example, if the edge E(0,1) = V0 → V1 connecting
the vertices V0 and V1 is different from the edge E(1,0) = V1 → V0 connecting the
vertices V1 and V0 then the graph is directed, otherwise, if E(0,1) = E(1,0) the graph
is undirected. There is an entire branch of mathematics called graph theory that
studies the properties of graphs, however for the scope of this work these basic no-
tions will suffice.
The choice on how to implement this partitioned graph data structure was dictated
mostly by the needs of the deflation algorithm, but also by the fact that YALES2
relies on libraries such as SCOTCH [90] and METIS [91] for graph partitioning.
A direct compatibility with these libraries is consequently primordial for an agile
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Figure 3.1: Example of a simple undirected graph

interfacing.
Given a graph G = (V,E) and a number of partitions p, the main objective of a
graph partitioner is to subdivide the vertices V of G in p parts, as balanced as possi-
ble according to a certain weight given to each vertex. Usually, in order to evaluate
which of the different possible partitions is better, the edge cut is minimised, i.e.
the number of edges E which are "cut" by different partitions. This is more or less
equivalent to a minimisation of the amount of data that has to be exchanged be-
tween partitions. An exhaustive overview of different partitioning methods is given
in [92].

3.1.1 Building the graph

The entire data structure could be represented by two connectivity arrays of length
equal to the number of edges nE . These two arrays represent respectively the first
and the second vertex of each edge composing the graph. This information, plus
its actual number of vertices nV would be sufficient to represent the graph. How-
ever, in order to be able to perform more operations, and to be directly passed to
the partitioning libraries without further manipulations, the connectivity between
vertices through their edges and other information is also added. Each graph has
also a system of buffers called ghost communicators in order to be able to perform
parallel data exchanges. Also, each vertex has been assigned a colour, in the same
way as the groups of elements on the mesh. In YALES2 the graph structure is
implemented as undirected. The edges are present only once and always go from
the vertex with the lowest colour to the one with the highest. For some operators
however, the direction of the edge might be important, especially when transferring
data from the pairs of nodes on the grid to the graph edges to build the deflation
operators. A supporting data mask is created on the grid to indicate whether an
inversion of a pair must be performed during the data transfer to its corresponding
edge.
In order to build a deflation graph from an already partitioned grid, a first graph
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representing the entire partition has to be built. This operation can be quite slow
as the connectivity among all nodes of the partition has to be rebuilt. It is impor-
tant to remark that, while the first partitioning is based on the connectivity of the
elements of the grid, this one is done on the actual control volumes that are used
for the computation. The NELEMENTPERVERTEX (NEPV) parameter, similar to
NELEMENTPERGROUP, can be set to tune the size of each vertex of the final graph.
Although the graph is based on the nodes connectivity, the size of the vertices is
computed from the number of elements, to maintain consistency with the ElGrps.
Since the graph partitioner needs as input a number of parts, it is of no influence
whatsoever the way such number is computed. Once the graph has been partitioned,
the connectivity between the (fine) grid and the graph must be created in order to
be able to build the deflation operators later on and to exchange data between the
two. The ghost vertices and edges are created in the same way as for the deflation
grid based on the ElGrps, i.e. based on the colour of the vertices. However a supple-
mentary step is added in which each process informs its neighbours of all the edges it
has in common with them, this way the ghost structure is now symmetric. This new
ghost structure has a negative impact on the computation time for some processes,
as those who did not have any ghost groups before now have some additional edges
to compute, while there is no improvement for those who already had ghost groups.
Nonetheless it was shown that the advantage of performing less computation was
cancelled out by the waiting time in the following communication phase. Thanks to
this symmetric structure, processes can now fill each other ghosts vertices with the
value of w at the beginning of each deflation iteration and then compute everything
independently from each other, until the collective communication. A scheme of the
new pattern can be found in Figure 3.3.

3.1.2 Graph size model

As for the grid size, a model can be built to determine the graph size as a function
of NELEMENTPERVERTEX, as shown in Figure 3.5. The number of vertices nV ertex
can be estimated the same way as nElGrp, with Equation 3.1:

nV ertex = ceil

ceil
(nelem[gt]

nworkers

)
NEPV

 ' nelem[gt]

nworkers ×NEPV
,

nV ertex[gt]
= nV ertex × nworkers .

(3.1)

As for the ElGrps, this model for number of vertices accounts only for the internal
ones, i.e. does not consider the ghost vertices which are added for the communica-
tion. This is done as only the internal ones contribute to the computation time. The
number of edges nEdge however, has to take into account both internal and ghost
ones, as computation is performed on both kind. In order to model it, a simple
linear relation with nV ertex is sought with Equation 3.2:

nEdge = βEdge/V ertex × nV ertex
βEdge/V ertex = 9 .

(3.2)
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Figure 3.5 shows that, however simplistic, the two models are in good agreement
with the measurements. On the bottom plot of Figure 3.5 it is possible to see
that the ratio nEdge/nV ertex is far from constant. However, there is also a large
standard deviation for that ratio across the different workers, and the model predicts
sufficiently well the average value.

3.2 Deflation performance on the graph data structure

A parametric study has been conducted in order to find the combination of values
of NELEMENTPERGROUP and NELEMENTPERVERTEX that provide the lowest
return time for the DPCG solver. The results of this study are presented under dif-
ferent forms in Figure 3.6 and the best values are tabulated in Table 3.1. In the figure
NELEMENTPERGROUP (NEPCG) is used to indicate the parameter to set the size
of the groups on the fine grid, while NELEMENTPERVERTEX (NEPV) has been used
to indicate the size of the deflation vertices and, with abuse of language, also the El-
Grps when these are used for the deflation as well. The USE_GRAPH_DEFLATION
flag is used to indicate whether the coarse grid of ElGrps was replaced by the graph
or not.
The complete 3D space of measures is shown on the top of Figure 3.6. Here each
point is coloured by the value of the RCT of the corresponding measure. This global
view allows to see, for each value of nworkers, the region of values that provide better
performance. In the plots right below, a dimension is removed taking the minimum
value of RCT for each parameter. This allows to produce a 2D map of the best
values for the two parameters. This picture proves that decoupling the concept of
ElGrp and the deflation grid helps to improve the performance of the DPCG solver.
The maps corresponding to the ElGrp deflation show a minimum value for NELE-
MENTPERGROUP ≈ 2000, in accordance with what was seen in 2.2.5. Conversely,
the contour plots representing the deflation on the graph show that the best results,
which are better than those on the ElGrps, are obtained for much larger values of
NELEMENTPERGROUP, but lower values of NELEMENTPERVERTEX. From these
contour plots it can be appreciated that the sensibility of the performance to the
value of these parameters is not very high, as a wide range of values results in similar
performance, especially for the regions where performance is optimal. The last plot
shows the minimum RCT value obtained for each of the two methods, for all values
of nworkers. These values are reported, together with the couple of parameters that
allowed such result in the Table 3.1. Even if its benefit gradually shrinks for higher
worker counts, the decoupling of the ElGrps from the deflation allowed by the new
data structure always allows better overall performances for the DPCG solver.
Figure 3.7 shows that the model obtained in 2.2.6 for the number of iterations on
the fine grid remains valid also for the graph, without altering the value of the coef-
ficient. This figure is obtained for those cases with NELEMENTPERGROUP=2000,
but other values produce equivalent pictures as the size of the groups could influence
the number of iterations by a few only through round-off errors due to the IC update.
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nworkers NEPG NEPV rct [µs] USE_GRAPH_DEFLATION

28 2000 2000 12.0 False
28 100000 500 5.8 True
56 2000 2000 11.7 False
56 100000 500 7.2 True
112 2000 2000 13.9 False
112 100000 1000 10.3 True
224 2000 2000 16.2 False
224 100000 1000 13.6 True
448 1000 1000 27.4 False
448 50000 1000 24.0 True

Table 3.1: Synthesis of the best results for the parametric study presented in Fig-
ure 3.6.

Equations 2.12 and 2.13 are based on the number of ElGrps and the same principle
remains valid for the number of vertices when the deflation is performed with the
graph data structure. There is however a considerable difference for the number of
deflation iterations. While the model seems to be acceptable for large vertices, the
discrepancy for the small values of NELEMENTPERVERTEX is too great to consider
this model still valid. More importantly, the total number of deflation iterations is
not constant any more, but it is tends to increase with the size of the vertices.
The gain in the runtime can be explained so far by two combined effects: first, using
small vertices allows to converge the system with only few iterations on the fine
grid and a lower number of total deflation iterations; second, using larger groups is
beneficial to the cost of the single fine grid iteration, as shown in Figure 2.39 for
example. This was expected as the primary motivation of introducing this new data
structure for the deflation was indeed to take advantage of such effects to reduce
the DPCG iteration cost.
The other objective of the graph data structure was to improve the parallel per-

formances of the code reducing the communication time in the deflation iteration.
Figure 2.34 showed that the P2P exchange pattern imposed by the half-halo ghost
mechanism had a negative impact on the overall time as it results in high synchro-
nisation latencies in the collective communication. To avoid such pattern, the graph
data structure has been created with a full-halo system that allows the P2P com-
munication to be done at once and not in two steps. In order to understand if this
modification is effective, the deflation iteration on the graph is analysed more in
detail. Figure 3.8 shows that the models obtained for the deflation in 2.2.6 are still
quite valid for the graph. ElGrps and ElGrp pairs have been substituted by vertices
and edges in the respective computational models. Even though the coefficients have
slightly different values, the dependencies of each phase remain the same, in particu-
lar the P2P communication is still fairly independent from the amount of exchanged
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data and the collective communication is still much influenced by the imbalance in
the number of neighbours for the ghost exchange. This gives a first indication that
simply using a full halo system is not enough to improve the performance of the de-
flation phase. A trace of a few deflation iterations with the new full-halo mechanism
is reported in Figure 3.9. This confirms that in spite of the fact that the point-to-
point communication is more compact, those processes with more neighbours are
always late with respect to the rest, resulting in the same synchronisation penalty
on the collective communication. The symmetrical ghost communication fails then
to provide a performance improvement over the asymmetrical structure seen for the
groups of elements, and some further improvements are necessary.

3.3 Performance comparison

Figure 3.10 compares the performance of the DPCG algorithm with the two data
structures for the deflation, for three different sizes of the Preccinsta mesh on the
three architectures presented in 2.2.2. The graph allows better performance overall,
however the improvement is much more remarkable for the lower worker counts,
while for large amount of workers the performance is similar. The ElGrp performance
was obtained for the optimal value of NEPG=2000 for all three meshes, while for the
graph NEPG was always chosen to result in one ElGrp per worker and NEPV=1000
was used for the 14M mesh, and NEPV=2000 for the other two. These proved
to be the values which give the best performance in all cases considered. For the
Irene-SKL architecture on the 14M mesh, the speedup spikes for nworkers = 256 and
nworkers = 512. This behaviour si due to a dramatic worsening in the performances
of the ElGrp based deflation algorithm. Several tests were performed, however the
bad performance seemed repeatable. Nonetheless those two values can be considered
as outliers.
Figure 3.11 gives the comparison between the two methods breaking down the DPCG
solver in its most important phases for IRENE-AMD. Similar figures can be obtained
for the other platforms. The deflation phase is slightly more expensive for the
graph on the 14M mesh: the smaller vertices imply a larger amount of iterations
and consequently a larger time spent in this phase. This increased cost is however
compensated by the reduction in the number of fine grid iterations, which is partially
reflected in the reduction of the cost in the rest of the algorithm. Using only one
ElGrp contributes as well to such gain. For the 110M and 878M meshes however, the
deflation performances are quite similar as they are performed on a similar grid. The
increase in performance is then only due to the reduction of the cost of the rest of the
algorithm, coming from using only one ElGrp. There is also some gain it the collective
communication of the fine grid solution, however this is less important as its cost is at
least one order of magnitude lower than the other phases. As previously underlined,
the performance of the deflation step itself has not been improved by the graph data
structure, in spite of the full-halo data structure. Further improvements are then
necessary to improve the deflation performances, especially its lack of scalability.
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MPI_ISendComputation

MPI_IRecv MPI_Waitall

MPI_Allreduce MPI message

Figure 3.9: TAU trace of a deflation iteration with the graph data structure
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It is clear this part of the algorithm is not expensive per-se, but the cost of its
communications phases that continuously increases for larger workers prevents the
entire code from scaling. In the following, two attempts to reduce the communication
cost in the deflation are presented.

64 256 1024 4096 16384
nworkers

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

S
p

ee
d

u
p

14M

110M

878M

MYRIA

IRENE SKL

IRENE AMD

Figure 3.10: Speedup of the graph based DPCG algorithm with respect to the ElGrp
one.

3.3.1 Deflation on gathered graph

The analysis of the deflation iteration done above, but also in 2.2.5 and 2.2.6,
exposed the fact that communications are the predominant cost in this step of the
DPCG solver, while computation accounts only for a minimal part. The first strat-
egy put in place to improve on the performances of the deflation is to gather the
graph on a reduced number of workers. This way only a subset of the total number
of processes will participate in the collective communication, which should improve
the scalability of the code. This come at a cost of an increased amount of compu-
tation for those processes assigned to the solution of the deflation problem as only
such subset of workers computes and exchange data, while the others wait for the
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Figure 3.11: Breakdown of the performance comparison of the DPCG algorithm
between the graph and the ElGrp based deflation on the IRENE-AMD platform.

computation to be finished and to receive the converged result. In principle this
should not be a issue. The computation accounts only for a small percentage of the
total cost of the deflation iteration, as shown in Figure 2.33, especially for a high
number of workers, to which this particular development is addressed.
In order to build the gathered graph, first a graph of the connectivity of the different
workers is created. This graph is then partitioned to decide the way the gathered
graph is distributed.
The input parameter NVERTEX_PER_DEFL_WORKER, in short nvertex/D.worker
sets the size of each gathered graph. If nvertex/D.worker ≤ nvertex[gt]

/nworkers then no
gathering is necessary and the original graph is used, otherwise the gather ratio Γ is
computed as nvertex[gt]

/
(
nworkers × nvertex/D.worker

)
and from this the new number

of partitions nworkersΓ is obtained as nworkers/Γ.
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Figure 3.12: Scheme a graph gathered on a subset of processes

The gathering of the deflation graph is based on the partitioning of the workers
graph due to the fact that minimising the edge-cut of the latter should imply a
minimisation of the number of ghost communications, which is not true for the for-
mer. It also guarantees that the deflation graph of each worker is gathered by one
worker only and it is not split among several, which reduces the cost of assembling
the data on the gathered graph before the deflation step and to re-distribute it once
the step is complete. Once this partitioning is done, those workers assigned to the
deflation computation build the gathered graph agglomerating all the graphs of the
other workers on the same partition and the ghost communicators on the new gath-
ered graph are created. The workers picked to host the gathered graph are chosen
according to a policy among COMPACT, SCATTER and PADDING. The policy
can be set in the input file via the DEFL_WORKERS_DISTRIBUTION parameter.
COMPACT means that the first nworkersΓ workers are assigned to the deflation,
while SCATTER means that the workers are picked as far away as possible from
each other. PADDING allows the user to chose the distance between the workers
used for computation. Setting DEFL_WORKERS_DISTRIBUTION=PADDING and
DEFL_WORKERS_PADDING=3, for example, means that one each three workers
will be used, until nworkersΓ is reached. A COMPACT distribution should allow for
faster communication as the computing cores are next to each other, while SCAT-
TER gives increased memory bandwidth as the non computing cores close to the
working ones are idle. PADDING allows a better control on the distribution.
Restricting the computation of the deflation algorithm to a subset of workers means
that a dedicated MPI communicator must be created. This allows such workers to
be completely independent from the idle ones. A dedicated MPI communicator is
created as well for the gather-scatter operations of each partition,in order to simplify
their management.
Data is exchanged between the grid and the gathered graph in two step. First the
data on the grid is restricted on the deflation graph by each worker as usual, then
the data is gathered by the workers dedicated to the deflation and copied on the
gathered graph. These workers proceed to solve the deflation system, while the
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rest awaits for the data to be scattered back on their graphs once the algorithm as
converged. Then the data is projected back onto the grid an the DPCG algorithm
continues as usual.
To be effective however, the increased computational cost on the reduced number
of workers which work on the gathered graph must be matched by a reduction in
the communication cost. The performance model for the deflation proposed in 2.2.6
should help to find a law to establish if the gathering of the graph is beneficial to
the performance. Equation 2.20 and Equation 2.21 can be adapted to the graph
deflation, obtaining respectively Equation 3.3 and Equation 3.4:

TV ertex [µs] = αV ertex + βV ertex × nV ertex , (3.3)

TEdge [µs] = αEdge + βEdge × nEdge , (3.4)

where αV ertex = αElGrp, βV ertex = βElGrp, αEdge = αElGrpPair and βEdge =

βElGrpPair. Equation 2.22 and Equation 2.23 can be applied directly, while Equa-
tion 2.24 can be adapted as well simply substituting nElgrpPair with nEdge.
Gathering the graph on a reduced amount of workers nworkersΓ = nworkers/Γ would
increase the amount of vertices and edges on each of the nworkersΓ by the same factor
Γ. There is no way to know beforehand whether the number of ghost communicators
nGC or the difference ‖nGC‖∞−nGC are influenced by the gathering, and if so how,
so they are supposed to remain unvaried for the scope of this analysis. In order for
the gathering of the graph to be effective, the condition expressed in Equation 3.5
has to be verified.

TDΓ
< TD , (3.5)

where TD and TDΓ
are respectively the time of a deflation iteration on the graph and

on the gathered one. Applying the models and the reasoning above, Equation 3.6
is obtained:

αV ertex + βV ertex × Γ× nV ertex+

αEdge + βEdge × Γ× nEdge+
β1D.Coll

× nworkers
Γ

+ β2D.Coll
× (‖nGC‖∞ − nGC) +

nGC × (β1D.Ghost
+ β2D.Ghost

× nitemGC ) +

nGC × (β1D.Other
+ β2D.Other

× nitemGC ) + β3D.Other
× Γ× nEdge

< αV ertex + βV ertex × nV ertex+

αEdge + βEdge × nEdge+
β1D.Coll

× nworkers + β2D.Coll
× (‖nGC‖∞ − nGC) +

nGC × (β1D.Ghost
+ β2D.Ghost

× nitemGC ) +

nGC × (β1D.Other
+ β2D.Other

× nitemGC ) + β3D.Other
× nEdge .

(3.6)
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All the contributions that remain unchanged between the left and right side of the
Equation 3.6 can be eliminated, obtaining Equation 3.7:

βV ertex × Γ× nV ertex + βEdge × Γ× nEdge+
β1D.Coll

× nworkers
Γ

+ β3D.Other
× Γ× nEdge

< βV ertex × nV ertex + βEdge × nEdge + β1D.Coll
× nworkers + β3D.Other

× nEdge .
(3.7)

The parameter Γ can be factorised as in Equation 3.8:

ω × Γ2 − (ω + 1)× Γ + 1 < 0 , (3.8)

where ω is obtained as in Equation 3.9.

ω =
βV ertex × nV ertex + (βEdge + β3D.Other

)× nEdge
β1D.Coll

× nworkers
. (3.9)

The value of Γ can be obtained for:

1 < Γ <
1

ω
,

0 < ω < 1 .
(3.10)

For those cases in which ω > 1 the value of Γ would be bound by Γ < 1, however,
by definition, a necessary condition for the graph to be gathered is Γ > 1. To con-
clude, a value of NVERTEX_PER_DEFL_WORKER (nvertex/D.worker) can simply
be obtained with Equation 3.11:

nvertex/D.worker = Γ× nV ertex ' Γ×
nelem[gt]

nworkers ×NEPV
. (3.11)

It is important to underline the fact that this analysis is based on extremely simple
models and does not take into account the additional operations of reduction and
projection of the graph at the beginning and the end of the algorithm. The analysis
performed above also does not take into consideration the imbalance introduced by
gathering the graph on fewer workers. As explained above, the first step in gathering
the graph consists in creating a first graph of all the workers, and partition that one
in nworkersΓ parts. This is done because the graph partitioner minimises the edge-
cut, which for this graph means to minimise the number of ghost communicators.
This however, has the downside to be extremely coarse grained, as the agglomeration
factor Γ is quite small. Consequently, even though each worker has a weight equal
to its number of vertices, imbalances present in the original graph can be amplified.
This is particularly true for high values of nworkers as these cases have only few
vertices per worker and are more difficult to balance. A possible solution to the
problem could be to add a step of load-balancing to re-equilibrate the graph after
the partitioning or to split directly the complete deflation graph rather than to use
the graph of the workers, measurements showed that this intermediate step does not
guarantee a good balance in the number of ghost communicator. The performance
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Figure 3.13: Performance of the deflation iteration for the gathered graph for Prec-
cinsta on the IRENE-AMD platform.

of the gathered graph are shown in Figure 3.13 for the Preccinsta benchmark on
the IRENE-AMD platform. The three meshes behave quite differently from each
other. First, the gathering of the graph does not have a beneficial effect on the 14M
mesh, on the contrary, the standard one has always better performances. For the
110M mesh there is no difference between all cases considered and their performance
perfectly overlap. This indicates that for this mesh the deflation cost is mainly
due to the ghost exchange and gathering the graph on a subset of workers does
not reduce the number of exchanges and the communication imbalance. Finally,
gathering the graph on the 878M mesh gives a small advantage only for nworkers =

8096 and nworkers = 16384. The two different workers distribution COMPACT
and SCATTER have been compared as well. It is not clear whether one offers
and advantage with respect to the other. However, for this particular platform,
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SCATTER combined with the Γ values chosen, should provide an increased memory
bandwidth and L3 cache available per core, similarly to what was seen in 2.2.4.
The fact that in most cases this theoretical advantage does not translate into a
performance gain confirms that the computation is mostly irrelevant. The gain
obtained with the SCATTER distribution is substantial only for the 878M mesh
and Γ = 4, particularly for nworkers = 16384.
Gathering the graph on a subset of workers did not provide the expected advantages,
in particular it did not bring any benefit for the scalability of the deflation algorithm
for the 14M and 110M meshes. Some improvement was obtained only for the larger
amount of workers on the 878M mesh. This failure is due to the fact that using a
subset of workers does not reduce the imbalance nor the amount of ghost exchanges,
plus it could introduce some further imbalance in the number of vertices and edges
on each deflation worker. Such imbalance then hides the possible benefit that can
be obtained on the collective communication with fewer workers.

3.3.2 Multiple ghost layers

Although decoupling the group of elements and the deflation proved most effective
in improving the performances of the DPCG solver, when the deflation vertex and
the ElGrp size coincides, there is no performance improvement. This means that the
symmetric ghost structure does not actually bring any tangible benefit. The trace
in Figure 3.9 was obtained with the same configuration as the one in Figure 2.34,
except that the deflation is computed with the new data structure. Looking at the
new trace, it is evident that the communication pattern is much more compact, how-
ever there is still an important amount of imbalance between the different processes
when they arrive at the synchronisation point imposed by the collective communi-
cation. The reason for this imbalance now is clearly the disparity in the number of
neighbours. This is hard to correct as it depends directly on the initial mesh par-
titioning. Graph partitioners that minimise the number of neighbours and that are
not oblivious to hardware topology can help to improve parallel performances [93].

Another possible approach would be to skip the ghost exchange completely. This
can be achieved extending the ghost area of each processor beyond the first layer
of vertices. If nlayers layers of ghost vertices are exchanged on the first iteration
of the algorithm, then each worker would be able to compute independently for
the following nlayers iterations without the need of a P2P exchange. At the end of
each iteration the values on the most external layer of ghost vertices would be false,
however all the other inner layers hold true results, consequently the computation
can continue until all ghost layers are consumed and a new update is necessary, as
schematised in Figure 3.4. Increasing the number of ghost layers is not used often
in parallel computation as the first implication of this technique is that the amount
of computation increases quite rapidly adding ghost layers. Nonetheless, it has been
already shown in Figure 2.40 how computation is a minimal part compared to the
cost of communication, and the deflation graph is sufficiently small that the num-
ber of additional ghost cells remains reasonable. Another consequence of avoiding
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Algorithm 9: Multiple data update
for i← 1 to nneighbours do

MPI_IRECV(recv_buffer[i],nitem [i]× ndata,neighbour [i],. . . );
end
for i← 1 to nneighbours do

offset = 0;
foreach data do

Pack: data → (nitem [i])→ send_buffer[i] [offset];
offset = offset+ nitem;

end
MPI_ISEND(send_buffer[i],nitem [i]× ndata,neighbour [i],. . . );

end
received = 0;
while received < nneighbours do

MPI_TESTSOME(nneighbours,recv_request,completed,completed_request)
if completed = 0 then

MPI_WAITSOME(recv_requests,nneighbours,completed,completed_request)
end
received = received+ completed;
foreach completed_request do

offset = 0;
foreach data do

Unpack: recv_buffer [i] [offset]→ (nitem [i])→ data;
offset = offset+ nitem;

end
end

end
MPI_WAITALL(send_request,nneighbours,. . . );
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communications

Figure 3.14: Scheme of a channel configuration to test the validity of the multiple
ghost layer system

communication at each iteration is the increased amount of data that has to be
exchanged when the point-to-point communication takes place. Not only more data
needs to be transferred due to the larger ghost size, but more variables need to be
updated as well. If with one layer only the value of w had to be transferred, now
also p, q and x have to be part of the communication. This is due to the fact that
the algorithm is written in such a way that these variables are self dependent, con-
sequently their value must be correct on each ghost layer except the last on the first
iteration after communication. The communication of multiple data is optimised
as they are packed together directly into the exchange buffer and sent in the same
message. As already discussed, the communication time was rather independent on
the message size. In an attempt to overlap some communication and computation,
the unpacking is performed for each communication as soon as it is received while
waiting for the rest. This mechanism is reported in Algorithm 9.
To confirm that the idea of multiple ghost layers could work, an artificial test case
is used. A 3D channel is split among a different number of processes along the x
direction, and each process then splits its subdomain in several vertices. The test
is configured in order to have only one vertex in the y and z direction, while the
number of vertices along x can vary. This results in a mono-dimensional defla-
tion graph, whose schematic representation is shown in Figure 3.14. The domain is
made periodic in the x direction, consequently each worker has two direct neighbours
plus those deriving from the extended ghost layers. Multiple tests are performed,
changing the number of ghost layers and x-wise vertices. The first results of these
measurements are synthesised in Figures 3.15 and 3.16, which show respectively
the average time spent in each deflation iteration and its breakdown in different
phases. Figure 3.15 shows that, for this benchmark, the best performance is given
by nlayers = 3. In Figure 3.16 it is possible to see how the cost of the P2P ghost com-
munication decreases as expected when increasing the number of layers. However,
the increase in the cost of the computation is more important, and after nlayers = 3

it surpasses the gain in the ghost exchange. It is interesting to remark that skipping
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the ghost exchange has no effect whatsoever in the cost of the collective communi-
cation. This is to be expected as this particular benchmark has been constructed
in such a way that all the relevant quantities such as nvertex, nedge and nghost are
perfectly homogeneous among all workers, hence without imbalance that negatively
affects the collective communication. The seemingly erratic behaviour of the rest of
the algorithm is due to the fact that this operation is performed every 10 iterations
and it contains a ghost exchange. Consequently, such parallel communication inside
the region is actually performed more or less frequently depending on the number
of ghosts layers. Figure 3.17 shows the breakdown of the deflation iteration for dif-
ferent values of nlayers on the Preccinsta 14M mesh. In contrast with what was seen
for the channel benchmark, Figure 3.17 shows that there is no significant reduction
in the communication cost increasing the number of ghost layers, which actually
constantly increases from nlayers = 3 onwards. In spite of the positive results ob-
served on the synthetic benchmark analysed above, increasing the number of ghost
layers to avoid point-to-point communication at each iteration does not improve
the performance of the algorithm for real applications. There are two explanations
for this. First, with respect to the 1D example, in 3 dimensions the quantity of
supplementary vertices and edges for each additional layer is higher, hence the cost
of computation increases more rapidly than what seen in Figure 3.16. Another
explanation can be found in Figure 3.18, where vertices are coloured according to
which ghost layer they belong to for a certain process. The image is taken from the
2D_cylinder benchmark for visualisation purposes, but the same principle applies
in 3D cases as well. It can be seen quite clearly that the more ghost layers are added,
the more processes are involved in the data exchange. Adding more "neighbours"
to the ghost communication cancels out, or even overshadows the benefit of doing
such exchange less often. Furthermore, all processes have an increased number of
ghost communicators, consequently the amount of exchanged messages over the net-
work increases exponentially. This effect has been exaggerated on purpose dividing
a small mesh among many processes, leaving them with only few vertices each so
that the ghost layers would propagate quickly. However this issue appears in most
3D real cases with reasonable vertices sizes due to the highly irregular shapes of the
partitions.

3.3.3 Gathered graph with multiple ghost layers

Other than the rapidly increasing number of neighbours, Figure 3.18 highlights the
fact that with multiple ghost layers, neighbouring processes solve approximatively
the same problem. This means that data is duplicated multiple times, but also that
the same data is sent by a process to multiple neighbours. A possible strategy to
avoid these numerous repeated exchanges might be to exploit the gathered graph
together with the multiple ghost layers. Having bigger deflation graphs on a smaller
subset of workers means that extending the ghost layers would be less likely to imply
an increase in the number of neighbours. The main downside is that with a larger
frontier, the number of supplementary ghost vertices and edges that are included
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Figure 3.18: 2D_cylinder mesh vertices coloured according to their ghost layer with
respect to a process. Interfaces between processes are marked by black lines while
vertices are separated by grey ones

with each additional layer is larger with respect to the standard graph. This means
also that the exchanged messages will be larger but previous analysis have shown
that the cost of the P2P communication depends on the number of messages rather
than their size.
Figure 3.19 compares the performances of the graph with different levels of gathering
and ghost layers. The three meshes behave similarly to what was seen for the
gathered graph in Figure 3.13. For the 14M mesh, there is no clear behaviour: For
the 110M mesh, adding more layers is counter-productive, as performance degrades
equally for all considered cases. Finally, a slight improvement can be seen in the
878M mesh for the case with Γ = 4 and nlayers = 2, with respect to the same
level of gathering and one layer of ghosts. Γ = 4 was seen to provide the best
performance for this mesh and adding one layer of ghosts allows to improve even
further, especially for the lower values of nworkers. In all cases considered, nlayers = 3

gives worse performance than the lower values, indicating that, at least for this
particular benchmark, adding more layers does not work even with the gathered
graph.

3.4 Conclusion

This chapter presented a new data structure implemented to improve the perfor-
mance of the deflation algorithm. This was done following the arguments exposed in
Chapter 2, which showed how the performance of the DPCG algorithm were limited



3.4. Conclusion 127

64 256 1024 4096 16384
nworkers

100

101

102

R
C

T
[µ
s]

14M

110M

878M

N/A

nlayers = 1

nlayers = 2

nlayers = 3

ElGrp

Graph

Graph, Γ = 2

Graph, Γ = 4

Figure 3.19: Performance comparison of gathered graph with different amounts of
ghost layers on IRENE-AMD

by the coupling of the groups of elements with the deflation grid. The graph data
structure presented here provides a different support for the deflation, allowing such
separation. The measurements exposed in 3.2 showed how the additional degree of
freedom allowed a clear improvement in the performance of the DPCG solver. In
particular, it was shown that the double domain decomposition does not bring any
actual advantage in the speedup of the code. L1 blocking, i.e. using a group size that
would fit into L1 cache, could bring a 40% improvement for some key loops in the
code[94], however it was shown that there is a much greater penalisation resulting
from the massive node and pair duplication implied by such small groups. In ad-
dition, smaller ElGrp also means a larger internal communicator, and consequently
an higher overhead for its update. For the global performance, with the current
data structure of YALES2, minimising the data duplication is actually much more
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relevant than improving memory access patterns. Other approaches should be in-
vestigated to take advantage of cache blocking without incurring in the duplicated
data penalisation [95].
Another hotspot of the deflation algorithm identified in Chapter 2 was the sub-
optimal communication pattern due to the half-halo ghost system, which caused an
important imbalance among the different processes and consequently a delay on the
collective communication. The new data structure tried to solve the problem with
a symmetrical full-halo ghost communication, however it was shown how this could
not avoid the imbalance caused by the difference in amount of P2P exchanges. In
order to improve on this point, a system where multiple layers of ghost cells are ex-
changed has been put in place. It was shown how this idea, which partially worked
on a synthetic 1D benchmark, was not effective on real cases as the number of
neighbour quickly increases with more ghost layers. Another technique, consisting
in gathering the deflation graph on a subset of workers in order to reduce the number
of communicating processes was also put in place without much success, with the
exception of few cases. The main problem of this method is that the additional work
required by such subset of processes is not matched by the insufficient improvement
in communication time.
A modified version of Algorithm 6 that uses additional operations and non-blocking
collective communications [96] to try to overlap communication and computation is
also implemented in YALES2. Although not presented here, some comparisons tests
were performed between the two algorithms with the ElGrp based deflation, but no
improvement was obtained by this non-blocking version with respect to the standard
one. Although a more precise analysis is needed, the preliminary tests showed that
the failure in providing better performances was due to the fact that the delay caused
by the ghost exchange is larger than the computational time that the algorithm tries
to cover. Furthermore, as the processes that have more communications to perform
also have more ElGrp pairs to compute on, there is no way for them to catch up in
their delay, consequently there will always exist a synchronisation point, even if the
processes are somehow skewed along algorithm. It would however be interesting to
test such algorithm with the new data structure. In addition, other possible opti-
misations to the DPCG algorithm have been proposed [97, 98, 99], which could also
be added into the YALES2 library. The new graph data structure could provide the
necessary flexibility to take advantage of such implementations.



Chapter 4

Fine grain OpenMP

The two complementary approaches detailed in Chapter 3, multiple ghosts and graph
gathering, implemented to try and deal with the cost of the parallel exchanges in
the deflation iteration failed due to the additional computational cost surpassing the
benefit of a reduced amount of communication. In particular, gathering the graph
on a restricted subset of workers means that those have more work to perform while
the others are idle and not contributing to the computation, which is a waste of
resources, in addition to the cost of the actual gathering and scattering of the data.
The work exposed in this chapter tries to deal with this and other issues introducing
a second level of parallelisation in the code: OpenMP threads.
Examples of scientific codes experimenting with the hybrid MPI+OpenMP pro-
gramming model are ever more common and can be found in a variety of applica-
tions [100, 101, 68, 102], including CFD [66, 103, 104, 69, 105, 106, 107]. This is
justified by the fact that pure MPI codes present some difficulty in scaling to hun-
dreds of thousands of processes and have a high memory footprint [108]. Adding the
extra layer of OpenMP threads allows to reduce the number of MPI ranks, improv-
ing the efficiency of the communication, while dividing the work among the different
threads. Threads are more lightweight than MPI processes, hence they have a lower
impact on the system. Furthermore, this approach is inherently hardware aware, as
threads belonging to the same process must be placed on the same NUMA region,
sharing some level of cache memory (usually L3). Adding an OpenMP layer to
an MPI program could then help improving the overall performance, especially on
thousands of cores [109] and many-cores processors with large shared memory cache
memory [110].
However it is not trivial to exploit such hybrid programming model and obtain bet-
ter performances than the pure MPI code [111], especially when the code structure
does not allow for an additional level of work-sharing or algorithms need adapta-
tion [112, 44]. In most of the examples cited above OpenMP parallelism is exploited
by assigning a portion of the mesh of each process to a thread for computation or by
loop parallelisation. In YALES2 both approaches can be merged as its data struc-
ture makes the code particularly adapted to be parallelised with loop level OpenMP,
as all algorithms consist in loops on the completely independent groups of elements
(ElGrps), which represent a mesh decomposition. This approach, also called fine
grain OpenMP, has the advantage of being easy to implement and the code can
be parallelised progressively, as parallelisation is obtained adding simple pragmas
around the code loops. Before the beginning of this work, most of the loops of the
code were already wrapped by OpenMP pragmas. However, for some parts of the
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code, multithreading parallelisation is not that immediate. This can be caused by
the fact that some regions do not contain loops (I/O) or because the iterations of
the loops are not independent. The main requirement for a loop to be parallelised
with multiple threads is that the work of each thread (i.e. the loop iterations) must
be independent, otherwise data race conditions can occur. This is mainly the case
for the internal communicator update and the deflation algorithm, whose operations
are not performed on independent sets of data. The challenges and techniques used
to try to parallelise these important parts of the code are detailed in Section 4.1 and
Section 4.2 respectively. In Section 4.3 the performances of the hybrid implemen-
tation are compared with those of the full MPI one, while a brief summary of the
chapter is given in Section 4.4. From this chapter onwards the definition of work-
ers employed before also changes to take into account both the MPI ranks and the
OpenMP threads and ease the comparison between the different implementations.
The number of threads spawned by each rank is indicated by nthreads. Consequently
nworkers is equal to nranks (the number of MPI ranks) for the pure MPI version,
while for the hybrid implementation it is nworkers = nranks × nthreads. nranks and
nthreads will be used where there is the need to specify the exact nature of the pa-
rameter, otherwise nworkers is used indistinctly for the two versions when referring
to the total number of either ranks or ranks and thread.

Figure 4.1: Work distribution with OpenMP fine grain model: each thread is in
charge of a subset of ElGrps during computation.

4.1 Parallelisation of the internal communicator update

The multithreading of the rest of the code is based on the fact that loops on ElGrps
operate on completely independent data. As explained in Section 2.1, the indepen-
dence between the groups is obtained via the duplication of the shared nodes, pairs
and faces. In the internal communicator however, each of these duplicated entities
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Figure 4.2: OpenMP fork-join mechanism

is represented by only one cell of the array. Consequently, the update of the IC
implies data concurrency. Two different threads, updating the IC for two groups
sharing a node (or a pair, or a face), will have to read, perform an operation and
write on the same memory location. There is no guarantee however on the order in
which these operations are performed by the different threads since they are indeed
concurrent. As a consequence the result of such parallel operation is undetermined.
Algorithm 10 illustrates the multithreaded IC update. The framed line is the one
with the concurrent operation leading to wrong results.

Algorithm 10: Undetermined multithreaded internal communicator up-
date
OMP PARALLEL DO
foreach ElGrp do

foreach interface node do
index = ElGrp[interface node] to IC[node];
IC[index] = IC[index] ⊕ ElGrp[interface node];

end
end

Several techniques have been put in place to try and efficiently deal with the par-
allel update of the internal communicator, each of which is detailed in the following
subsection.

4.1.1 OpenMP locks

OpenMP foresees the use of atomic operations via the OMP ATOMIC pragma. The
correctness of the result of an atomic operation is guaranteed by the fact that it
is performed in such a way that the memory location is not exposed to multiple
concurrent reading and writing accesses. The atomic pragma can be applied only
to certain specific operations on scalars, consequently it is not adapted to perform
updates on data which is of vector or tensor type as these would require each el-
ement of these 1D and 2D arrays to be treated by an atomic operation, uselessly
increasing the execution time. OpenMP also allows for critical regions, a gener-
alisation of the atomic operation which can be applied to any region of the code
using the OMP CRITICAL pragma. Although critical regions can be named in order
to allow the concurrent execution of multiple independent critical regions, these can
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not be assigned to a specific memory location. Using a critical region would then
be equivalent to perform the update of the IC sequentially.
The extremely poor performance obtained by preliminary tests performed using the
OMP ATOMIC and OMP CRITICAL pragmas indicated that it was not worth using them
to parallelise the IC update.
Finally, concurrent regions can be protected by a locking mechanism. A concurrent
code region is protected by a lock, which can be acquired (set) by only one thread
at a time, and all other threads need to wait for the lock to be released (unset)
before being able to acquire it and execute the "locked" region. OpenMP locks can
be applied and controlled in a much finer way than critical regions and seem to be
particularly adapted for this kind of operations. OpenMP locks are acquired and
released calling specific OpenMP functions.
An auxiliary array, with the same size as the internal communicator has to be
created. Each element of this array corresponds to an OpenMP lock for the cor-
responding element in the IC. To perform the update, a thread has to acquire the
specific lock, update the IC element and release the lock, as in Algorithm 11.

Algorithm 11: Multithreaded IC update with locks
OMP PARALLEL DO
foreach ElGrp do

foreach interface node do
index = ElGrp[interface node] to IC[node];
set_lock(lock_array[index]);
IC[index] = IC[index] ⊕ ElGrp[interface node];
unset_lock(lock_array[index]);

end
end

4.1.2 Colouring

Although locking is supposed to force sequential execution only on those elements
of the internal communicator on which the execution between multiple thread is
actually simultaneous at runtime, acquiring and releasing the lock for each element
of the internal communicator causes a quite important overhead. In order to avoid
data races, the nodes can be "coloured" in such a way that all operations on the
same colour are not concurrent [104, 67]. The number of colours ncolours necessary
for the code to be free of data races is equal to the highest number of duplications
for a node in the domain. In the case of YALES2, this colouring can be done at
node level or at the groups level. Both options have some advantages and negative
aspects. Colouring the nodes means that threads have to go through each group
ncolours times (at most) to update all nodes, as in Algorithm 12 and as schematised
in Figure 4.3 for a simple 2D cartesian mesh. Colouring the groups means that the
entire group has to be put on a different colour if one of its nodes can not belong
to the current one. The procedure is detailed in Algorithm 13 and schematised in
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Figure 4.4 for a 2D structured grid. While most nodes are duplicated only once
or twice (ncolors = 2 or 3), especially in unstructured 3D meshes, some nodes can
cause ncolours ≈ 8. However, above colour 3 or 4, there are only few nodes per
colour and measurement have shown that it is better to treat nodes belonging to
those colours sequentially rather than in a parallel region, as there is not enough
work to match the cost of the scheduler and thread synchronisation. This actually
makes colouring the nodes more performant than colouring the groups. In those
colours treated sequentially, only few nodes have to be updated in the first case,
conversely, in the second case the entire interface of the group needs to be put
in the internal communicator. Keeping the multithreading for more colours does
not help, as often there are only one or two groups for each colour, hence it’s not
possible to obtain more parallelisation. The best performing version is then the
one in Algorithm 12, where the multithreading is removed after the third colour.
Algorithm 12: Multithreaded IC update with coloured nodes
OMP PARALLEL
foreach colour ≤ 3 do

OMP DO
foreach ElGrp do

foreach interface node ∈ colour do
index = ElGrp[interface node] to IC[node];
IC[index] = IC[index] ⊕ ElGrp[interface node];

end
end

end
OMP END PARALLEL
foreach colour > 3 do

foreach ElGrp do
foreach interface node ∈ colour do

index = ElGrp[interface node] to IC[node];
IC[index] = IC[index] ⊕ ElGrp[interface node];

end
end

end
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Figure 4.3: Multithreaded IC update with coloured nodes. Starting from the first
ElGrp, each node on the IC is assigned the first available colour, no matter which
colour have the other nodes on the same ElGrp. The IC cells are depicted to show
the different colours on the nodes that share them.
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Algorithm 13: Multithreaded IC update with coloured ElGrps
OMP PARALLEL
foreach colour do

OMP DO
foreach ElGrp ∈ colour do

foreach interface node do
index = ElGrp[interface node] to IC[node];
IC[index] = IC[index] ⊕ ElGrp[interface node];

end
end

end
OMP END PARALLEL

4.1.3 Gathering

The concurrency in the update of the internal communicator is caused by the fact
that data that is present on multiple groups needs to be written on the same mem-
ory location in the internal communicator. Colouring the different groups or nodes
to avoid data races has some drawbacks, such as the need for thread synchroni-
sation for each colour. However, all array positions in the internal communicator
are independent from each other, and data can be read at the same time with-
out concurrency on multiple groups. When the internal communicator is created,
only the connectivity form the groups to the IC is created. However it is possible
to create the opposite connectivity, in order to be able to get data on the groups
from the internal communicator. This can be fully parallelised in one parallel re-
gion without the need for intermediate synchronisation, as in Algorithm 14. Aside
from the fact that additional connectivity arrays are needed, the main drawback
of this technique comes from the fact that groups are loaded into memory multiple
times. The same happened also when colouring the nodes, but in that case many
nodes of the groups where involved. In this case, a different group is loaded for
each position, increasing the memory traffic. There might also be load balancing
issues between the threads since nodes have different multiplicities and the sched-
uler is based on the IC size. Statistically however it is very likely that high and
low multiplicity nodes are distributed among all threads, and a STATIC schedul-
ing has provided better performances than GUIDED and DYNAMIC during testing.
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Figure 4.4: Multithreaded IC update with coloured ElGrps. All nodes on the IC of
each group are assigned the first available colour. The IC cells are depicted to show
the different colours on the nodes that share them.
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Algorithm 14: Multithreaded IC update with data gather
OMP PARALLEL DO
foreach IC node do

node_multiplicity = multiplicty_array[IC node];
for m← 1 to node_multiplicity do

ElGrp → ElGrp_list[m,IC node];
interface node = index_list[m,IC node];
IC[node] = IC[node] ⊕ ElGrp[interface node];

end
end

4.1.4 Augmented internal communicator

Another technique that was tested consists in updating the IC in two phases, with
the aid of an auxiliary array called augmented internal communicator (AIC). Every
duplication of a node has a dedicated element in the AIC array, which allows each
group to be able to write its own value avoiding racing conditions. Every element
of the IC is then able to access all the relative elements in the AIC and perform
the update, much similar to the gathering technique. Since all the AIC and IC
elements are independent both phases can be parallelised. This procedure is shown
in Algorithm 15. Different choices can be made on how to create the AIC. The

Algorithm 15: Multithreaded IC update with augmented communicator
OMP PARALLEL DO
foreach ElGrp do

foreach interface node do
aug_index = ElGrp[interface node] to AIC[node];
AIC[aug_index] = ElGrp[interface node];

end
end
OMP PARALLEL DO
foreach IC_node do

foreach node duplication do
a

end
ug_index2 = IC_node[node duplication] to AIC[node];
IC[IC_node] ⊕ AIC[aug_index2];

end

two that were tested during the implementation of this technique and were based
on different memory access patterns for the two phases. In the first phase, i.e. the
copy from the ElGrp to the AIC, it would be better if all the nodes belonging to a
group were close to each other in the AIC. There are two main reasons for this. The
first is that memory that would be loaded to perform the copy of a group would be
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Figure 4.5: Multithreaded IC update with gathering method. Each cell in the IC is
assigned to a thread which gathers the data from all ElGrps that have nodes sharing
that cell. Nodes on the ElGrps are coloured according to the thread gathering their
data.

contiguous, hence with faster access time. The second is that every time a thread
writes on a memory page, this gets invalidated, consequently another thread that
already had that page loaded in a low cache level, has to re-load it from the memory
level in which threads share memory, which usually is the L3 cache. This process,
called false sharing, can be particularly bad for performances if this operation is
repeated multiple times [113, 114].
On the other hand, for the second phase, it would be better if all duplication of a
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Figure 4.6: Multithreaded IC update with augmented IC (AIC). Each duplication of
a node on the IC has a cell on the AIC on which a thread can copy the data. Than
each cell on the IC gathers the data from the corresponding cells on the AIC. To
indicate that the two operations on AIC (copy and gather) can be done by different
threads, those cells have been coloured with both the copying threads (same colour
as the node) and the gathering thread (same colour as the corresponding IC cell).

node would be close together, due to the fact that each element of the IC would have
to access a contiguous region of the AIC. Multiple threads reading from the same
memory page in the AIC however do not invalidate it during this phase, because
they would modify it.
Both configurations were tested, and the configuration with the duplications stored
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contiguously in the AIC proved to give better results.

4.1.5 Comparison of different techniques to update the IC with
multiple threads

Figure 4.7 shows a comparison of the performance of each of the techniques ex-
plained in the previous subsections against the sequential update and the pure MPI
implementation. It must be specified that the total size of the internal communi-
cator is not the same in the case of the pure MPI and the hybrid versions. In the
former, the nodes on the interface between the different processes must exist in the
internal communicator of each process, whereas in the latter the interface between
threads is not explicit and they share the same internal communicator, resulting in
a larger global size for the pure MPI implementation. Two different benchmarks
were tested each in two conditions. For the purpose of this test, it is not necessary
to compute outside a socket, as the performance of this operation does not change
on many nodes. In order to have representative results, the mesh of 3D_cylinder
benchmark has been homogeneously refined, resulting in 3.9 million elements, while
a small mesh with only 1.7 million elements has been chosen for the Preccinsta case.
The test have been executed for two different values of NELEMENTPERGROUP,
2000 and another one, different for the two benchmarks, chosen in order to have
only 14 ElGrps, one for each thread.
The bars designated as 14×1 represent the execution of the update on 14 MPI ranks
with one thread. While the sequential bar represents the time spent in the update
for the pure MPI version, comparing the different methods with the original on one
thread allows to establish the additional cost of each technique. As foreseen, for
all tested configurations, the cost of acquiring and releasing a lock for each element
of the internal communicator is too high, making this technique highly inefficient,
while the other three methods perform much better in comparison, with the gather
technique slightly less performing than the colouring or the AIC.
For the multithreaded measurements, i.e. the 2× 7 and the 1× 14 curves, the MPI
data corresponds to a sequential (non-threaded) update of the internal communi-
cator. These bars show that using locks is counterproductive, as it produces worse
performances than a sequential update in almost all shown cases. The other three
techniques are of far greater interest. When the domain is decomposed in such a
way that each thread computes only one group, all three give similar performance,
showing important improvement with respect to the sequential update. In this case
the gather and colouring methods seem to be performing quite well, however the
situation drastically changes once the number of groups is increased. For these
benchmarks the AIC gives performances which are far better than the rest. The
mediocre performance of the gather technique can be explained by the fact that
many groups are loaded in memory and then discarded several times. To explain
the bad performance of the colouring technique two aspects have to be considered.
First, for each colour there is a synchronisation point between all threads, hence
a cause of overhead. Second, these tests were performed on unstructured meshes,
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which means that the shape of the groups of elements is highly irregular, hence
nodes have very uneven multiplicity. For structured codes with cubic groups, nodes
can either be shared among 2 groups (faces of the cubic groups), 4 groups (edge
nodes) or 8 groups (corner nodes), with some exceptions for nodes on the bound-
aries of the domain. Most of the nodes belong to the faces of the groups, which
means that their multiplicity is two and can be divided into two colours, while more
colours can be used to treat edges and corner nodes, or these can even be treated
sequentially as they are only a small fraction of the total. The irregularity of the
shapes of unstructured groups, makes it difficult to pre-determine the amount of
nodes with certain multiplicity. Similarly to the structured case, most of the nodes
are shared between two groups, but there can be edges with nodes in common to
any number of groups. Many colours can then be necessary to treat all nodes in a
fully multithreaded way, but some colours might contain only very few nodes, hence
they are treated sequentially as explained above.
It is important to remark that, while better than the rest, the multithreaded update
with AIC remains still a few times slower than the pure MPI version in all cases.

4.2 Parallelisation of the deflation algorithm

Other than the internal communicator update, the deflation algorithm is another
fundamental part of the code that can not be trivially parallelised by OpenMP
pragmas. While the computation in the rest of the code is implemented with loops
on independent groups of elements, the operations on the deflation are implemented
as array operations. The graph data is allocated as contiguous arrays of which
each element represents either a vertex or an edge, according to the type of data.
Computation on this type data structure is still adapted to be parallelised by the
OpenMP work-sharing constructs. The array operations can be transformed in
loops on the element of the array, thus allowing to use the OMP [PARALLEL] DO
pragmas. Different attempts have been made to try and parallelise Algorithm 6
with multiple threads, however an efficient multithreading was prevented by several
aspects, described in the following.

4.2.1 Operations on the edges

The operations on the deflation Algorithm 6 are not on loop of ElGrps, but directly
on arrays representing data on the groups. For those operations on the ElGrps, or
vertices, which is to say all except s = Aw, this is not a problem as each vertex is
independent and the work can be shared among threads without data races. The
operation on the pairs of groups, or edges, s = Aw is more complex and it can be
implemented in different ways. An implementation with a loop on the edges such
as the one of Algorithm 16 minimises the number of operations, however it pre-
vents vectorisation and it can not be multithreaded as data races could occur. The
write operations performed on the different elements of the s array for each edge
could indeed be concurrent because different edges share a vertex. Algorithm 17
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shows another implementation, which could be parallelised without data races as
the array update is performed on independent locations. This implementation how-
ever requires more operations, as each edge is interrogated twice, once for each
vertex, and there is still an indirection present which prevents vectorisation. In
addition, while only two connectivity arrays were required in Algorithm 16, another
one is needed in Algorithm 17. This is due to the fact that, while an edge can
have two and only two vertices, the number of edges in which a vertex is present
can vary. This additional array, together with the double interrogation of each
edge, increases the memory traffic and could result in a slower computation overall.
Algorithm 16: s = Aw implemented as a loop on the edges
foreach edge do

v1 = vertex1[edge];
v2 = vertex2[edge];
s[v1] = s[v1] +A[edge]× (w[v2]− w[v1]);
s[v2] = s[v2]−A[edge]× (w[v2]− w[v1]);

end

Algorithm 17: s = Aw implemented as a loop on the vertices
foreach vertex do

foreach edge of vertex do
v1 = vertex;
v2 = other vertex[edge, vertex];
s[v1] = s[v1] +A[edge]× (w[v2]− w[v1]);

end
end

4.2.2 Overhead of the parallel region

It is important to point out that the creation of an OpenMP parallel region or a
OMP DO task scheduling comes with an overhead. If the parallel region do not contain
enough work to compensate such cost, the addition of multithreading actually be
detrimental to performance with respect to a sequential execution. [115, 116] provide
a set of benchmarks and measurements for different OpenMP construct overheads.
Similar tests were performed on MYRIA cluster, substituting a general delay func-
tion with an array operation such as a[i] = β× b[i] to better simulate the conditions
of Algorithm 6. The results of such measurements for the OMP PARALLEL DO with
STATIC scheduling are presented in Figure 4.8, for different array sizes and number
of threads. The top image represents the cost of executing an increasing amount of
iterations (i.e. the vectors size) with different number of threads. Below a threshold
value that depends on the number of threads, the sequential execution is faster than
the multithreaded one. In particular, the difference between the curve NO OMP

and 1 thread represents the overhead of creating the parallel region, as the com-
putation is executed on the same amount of resources. The image on the bottom
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represent the overhead, measured as the difference between the real and ideal mul-
tithreaded cost. The ideal cost is computed as the NO OMP value divided by the
number of threads. Such overhead increases with nthreads and is independent of the
vector size up to a certain limit. For vectors larger than 5000 elements the overhead
spikes. For the smaller arrays, all data can be fetched into the L1 cache at once, for
the 5000 and 10000 elements the data still fits into L2, while the larger arrays have
to be fetched from L3. For the sequential case, the computation is slow enough to
allow the prefetcher to pre-load the data in the lower levels of cache, with multiple
threads however data gets recycled faster and the prefetcher can not keep up. This
effect is less important for the higher amount of threads as each thread computes
smaller chunks of the array. Figure 4.8 shows that for operations on arrays that count
less than a few hundred elements it is better to perform the operation sequentially
rather than use an OpenMP parallel region. Ordinarily the incompressible solver of
YALES2 performs best in the range of 100000→ 500000 elements per process. For
a multithreaded case in which that amount of elements is processed by each thread,
this means that with NELEMENTPERVERTEX=1000 there are about 500 vertices
per thread at most, which is just above the threshold to begin to obtain some gain
from an OpenMP parallelisation. In many cases however, the mesh size per process
or per thread is not as big, resulting in a smaller deflation graph. Furthermore,
Algorithm 6 alternates computation and communication phases, imposing several
synchronisation points among threads and sections that are executed sequentially.
All these factors contribute to the parallelisation overhead [117, 118].

4.2.3 Attempt to overlap communication and computation with
OpenMP tasks

OpenMP work-sharing is not limited to the loops. Independent tasks can also be
created and be assigned to each thread to be executed in parallel. The analysis
performed in Chapter 2 showed how the performance of the deflation are affected
negatively by the imbalance in the point-to-point ghost exchange. An attempt has
been made to use OpenMP tasks to cover some of this imbalance overlapping the
parallel exchange with some computation. All those operations that do not involve
ghost vertices can indeed be performed independently from the communication. The
strategy adopted is then to assign a thread to perform the communication task while
the others compute. A synchronisation point has to be introduced to guarantee that
the communication has finished before proceeding to the computation on the ghost
vertices [119, 120]. The resulting implementation is shown in Algorithm 18 and a
schematic representation is given in Figure 4.9. A group of tasks is created with
OMP TASKGROUP because this guarantees that all tasks originated inside such group
have to be terminated before leaving it. The communication task is trivial to create.
The work-sharing ones are created thanks to the OMP TASKLOOP pragma that splits
the loop in NUM_TASKS tasks, which in this case is equal to the number of thread
minus the one assigned to the communication. Only the internal vertices, i.e. those
belonging to the processor are processed in this loop. In addition, only their edges
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Algorithm 18: Computation/communication overlap with OpenMP tasks
OMP TASKGROUP
OMP TASK
Perform ghost exchange;
OMP END TASK
OMP TASKLOOP NUM_TASKS(nthreads-1)
foreach internal vertex do

foreach internal edge of vertex do
v1 = vertex;
v2 = other vertex[edge, vertex];
s[v1] = s[v1] +A[edge]× (w[v2]− w[v1]);

end
end
OMP END TASKLOOP
OMP END TASKGROUP
OMP DO
foreach vertex do

foreach ghost edge of vertex do
v1 = vertex;
v2 = other vertex[edge, vertex];
s[v1] = s[v1] +A[edge]× (w[v2]− w[v1]);

end
end
OMP END DO
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whose second vertex is also internal are computed. Once outside the OMP TASKGROUP,
and consequently both communication and computation on internal vertices has fin-
ished, an OMP DO construct is used to process all vertices, but looping trough only the
edges that were not computed before. Figure 4.10 gives a performance comparison of
the deflation algorithm performed with three different paradigms on IRENE-AMD:
the pure MPI version, already detailed in Chapter 3, the hybrid MPI+OpenMP
fine grain with loop parallelisation and the hybrid MPI+OpenMP with the use of
the task construct as in Algorithm 18 to try and overlap communication with some
computation. It is possible to remark how the task construct does not give better
performance with respect to the other hybrid version. This is due to the fact that
there is not enough work to cover the communication time and also because most
of the vertices have to be recomputed again anyway because they either are on the
ghost layer or they share an edge with the ghost ones. The additional synchro-
nisation point and the task scheduling also increase the overhead which in the end
results in worse performance.
Concerning the comparison between the hybrid version and the pure MPI one it
is possible to remark three distinct behaviours on the different meshes. For the
14M one, the hybrid one performs better for lower amount of workers, while the
MPI one performs better for higher worker counts. This is due to the fact that the
amount of work per thread diminishes increasing the number of workers and the
overhead of the OpenMP construct is less important in such cases. When the work
is insufficient, the overhead due to the OpenMP parallelisation is so high that it
worsen the performance, as it was seen in Subsection 4.2.2. For the 110M mesh
the MPI version performs always better. Coherently to what was seen in Subsec-
tion 3.3.1 and Subsection 3.3.2, this can be explained by the fact that for this mesh
the performance is mainly driven by the ghost exchange and the imbalance in the
number of edges. Parallelising the work does not give any advantage in this case,
on the contrary, performance is worsened by the parallelisation overhead. Finally
the behaviour of the 878M mesh is similar to what was seen for the gathered graph
in Subsection 3.3.1. In this case, for the lower amount of workers the performance
is practically identical, especially for nthreads = 4, and the hybrid versions perform
slightly better for the largest worker count. This is explained by the lower amount
of ranks participating in the collective communication. In this case it was added
also the performance for the graph gathered with Γ = 4. This case and the one
with nthreads = 4 have the same amount of ranks participating in the collective
communication. However the gathered graph performs much better as it does not
suffer from the OpenMP parallelisation overhead, which is especially important for
the case with the highest worker count, where the work per thread is minimal.

4.3 Performance comparison

This section presents a comparison of the performances of the pure MPI version with
the hybrid MPI+OpenMP Fine grain implementation presented in this chapter. For
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the hybrid version, NELEMENTPERGROUP was set to a value in order to obtain
nElGrp = nthreads. This results in groups of the same size between the two versions
with the same value of nworkers. For all infrastructures and test cases the pure MPI
version performs better than the hybrid one. In order to better comprehend this be-
haviour, Figure 4.11 shows the breakdown of the temporal loop for the IRENE-AMD
platform as an example. The other two platforms behave similarly. The deflation
was analysed in Subsection 4.2.3, showing how in most cases the pure MPI version
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performs better than the hybrid implementation mainly due to the overhead of the
parallel regions. The time spent in the Fine Grid Allreduce is generally reduced
in the hybrid version, due to the lower amount of MPI ranks participating in the
communication. This is especially significant for the 878M mesh, were the number
of ranks is higher and the cost of the collective communication is more important.
However the time spent in this phase is at least one order of magnitude lower than
the total time, making this gain quite irrelevant for the total performances. Other
than the deflation, also the behaviour in the rest of the temporal loop penalises the
overall performance of the hybrid version. Is it possible to see how, in all cases,
the hybrid version is slower in this phase as well. Part of the additional cost is
due to the overhead in the update of the internal communicator discussed in Sec-
tion 4.1. This phase is also extremely sensible to the partitioning of the fine grid in
groups of elements. While NELEMENTPERGROUP is set to obtain only one group
per thread, it is possible that the partitioner can not satisfy this requirement and
additional "rogue" undesired ElGrps are created. This has two main consequences:
first the update of the IC gets slightly more expensive, second and most important,
an imbalance in the threads work is created and carried along the entire code. The
parallel regions are created distributing the work statically among the threads (OMP
PARALLEL DO SCHEDULE(STATIC)) as this gives the lowest overhead in the ideal con-
ditions, i.e. one ElGrp per thread. However, if an additional group is created, there
will be a thread processing two groups while all the others only have one. Usually
this happens because the different ElGrps have to be contiguous and the partitioner
is not able to satisfy this requirement with the imposed amount of groups. For the
MPI version this problem is less important as it impacts only the time spent on the
IC update, but this is minimal. For the hybrid version instead, all threads have to
synchronise and would wait for the late one, accumulating additional wasted time
at each parallelised loop. Although a load balancing phase has been added after the
first partitioning to try and avoid this problem, it is not possible to always guarantee
that the number of ElGrps is equal to the number of threads, especially when a small
mesh is partitioned among a lot of processes, resulting in small and often irregular
domains.

4.4 Conclusions on the hybrid MPI/OpenMP fine grain
implementation

This chapter presented the work done to implement an hybrid MPI+OpenMP ver-
sion with loop level parallelisation. The different challenges that were encountered
during this work have been exposed and some solutions were proposed and anal-
ysed. In particular, the parallel update of the internal communicator and the de-
flation algorithm have proved to be particularly hard to parallelise efficiently. In
order to avoid data races in the IC update several techniques have been put in place
and compared, however all of them entail some kind of additional operations that
increases the overhead of such operation. The deflation instead suffers from the
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YALES2 between the pure MPI and the hybrid MPI+OpenMP fine grain versions
on the IRENE-AMD platform

excessive overhead of the different parallel regions that overcomes the advantages
of parallelising the work. An attempt at using tasks to overlap communication and
computation has also been made, but it was unsuccessful. Finally the performance
of the pure MPI version and the hybrid one have been compared, showing how the
problems previously exposed prevented the latter to perform better than the former
in spite of the different optimisation attempts.
This work however has also given some interesting points, especially in the reduc-
tion of the cost of the collective communication and the efficient work-sharing in
the deflation algorithm shown for the 14M mesh and for the 878M mesh where
the hybrid version performs as well as the pure MPI one. Indeed having less ranks
communicating without losing computational capacity is a good strategy, in this
case however penalised by the OpenMP overhead.
It is also important to mention that, while the temporal loop consists mainly of
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loops on the ElGrps, several other parts of the code can not be parallelised as easily.
Examples can be I/O operations or even the initial mesh partitioning and the cre-
ation of the data structures, which in the hybrid version are performed only by the
master thread. This has the effect of massively increasing the time spent in these
phases with respect to the pure MPI version as the mesh size is much larger for the
hybrid version.
Attempting to parallelise also these phases and further optimise the temporal loop
resulted in the hybrid MPI and coarse grain OpenMP implementation presented in
Chapter 5.



Chapter 5

Coarse grain OpenMP and shared
memory MPI

The work presented in Chapter 4 tried to improve the performance with the imple-
mentation of loop-level OpenMP pragmas. Such approach, also called fine-grained
OpenMP, spawns lightweight threads to execute the computational work, allowing
to reduce the MPI ranks which communicate and the memory footprint of the code,
as data is shared among the threads and does not need to be duplicated on the
different ranks. The data structure of YALES2 seemed naturally apt for this type of
implementation as the work is mainly structured as loops on the groups of elements.
However, the update of the internal communicator and the deflation proved to be
hard to parallelise efficiently due to data races or frequent synchronisation points.
Furthermore, excluding what’s consumed by the MPI library itself, the reduction in
data duplication is minimal, as the groups of elements duplicate data themselves,
and only a small portion of the internal and external communicators are actually
saved.
In this chapter the developments made to implement a hybrid MPI and coarse-
grained OpenMP version of YALES2 are exposed. First, the motivations and impli-
cations of this model are presented in Section 5.1, then the implementation of col-
lective and point-to-point communications are described respectively in Section 5.2
and Section 5.3. Finally a conclusion is drawn in Section 5.4.

5.1 The coarse grain model in YALES2

Conversely to what happens for the fine grain model, where threads are spawned
and killed around work-intensive loops, in this version the OpenMP parallel region
is opened once at the beginning of the execution and the threads are kept alive
until the end of the program, eliminating the overhead caused by the creation of
the multiple parallel regions, as schematically represented in Figure 5.1. This comes
with an increased difficulty of implementation, as the threads work and memory
consistency has to be managed by the program at all times. The resulting model is
similar to the MPI one, SPMD (Single Program Multiple Data) where threads work
on independent data, much similarly to MPI ranks [121]. Again, this model does
not take full advantage of the shared memory capabilities of the program, but where
the shared data actually limits the performance of the code this approach might be
give better results than the fine-grained one [122, 123].
To implement this model in YALES2, a choice was made to treat the threads exactly
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as if they were MPI ranks, each with its own grid and the rest of the data structure
and called with the generalist term worker. The resulting mesh decomposition,
similar to the MPI one, is represented in Figure 5.2. As a consequence, little to no
work had to be done in the data structure itself. Particular care however had to be
put to ensure that all data would remain private to each thread and not be shared
when not necessary.

5.1.1 Thread-safety in YALES2

For the multithreaded program to run correctly, the entirety of the code must be
free from race conditions. This includes calls to external libraries and primitive
functions. If an external library is not thread-safe, the calls to its functions must
be done inside OMP CRITICAL regions, or other lock mechanisms to avoid threads
concurrently making such calls.
In fortran, the language in which YALES2 is written, also primitive functions such
as open, close, read, write are not implemented as thread-safe by most compil-
ers. These functions are used extensively throughout the code, consequently it was
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not practical, nor desirable, to put critical regions or locks around such functions.
Another approach was followed, which consisted in creating a thread-safe wrapping
function for each of these primitives. The most notable problems where found in
the I/O primitives such as open and close to which a thread-safe I/O unit number
had to be provided.
In addition to I/O operations, the write primitive is commonly used to convert data
from different numeric types to string in several formats. Specific functions were
written to perform such conversion due to the fact that write uses a non thread-
safe buffer to perform the data conversions. Similar functions where also written to
convert strings to numeral types to avoid the use of read in analogous contexts.
Finally, in fortran, global variables are by default shared amongst threads. Particu-
lar care was taken to ensure that such variables where declared OMP THREADPRIVATE
when they had to be private to each thread, such as counters or pointers to data
structures. However, the fact that global variables are shared can be exploited to
create common data or pointers for threads to work on or exchange information.
This was used extensively for the communication structures exposed in Section 5.2
and Section 5.3.

5.1.2 Communication API and shared memory windows

Another consequence of having the entire code into one OMP PARALLEL region is that
threads need to exchange data both with the other threads on the same MPI rank
and those on other ranks. In order to make the implementation as flexible as pos-
sible, and completely transparent to the user, most MPI functions used in the code
have been wrapped in a dedicated API, as shown in Algorithm 19. This allows to
add new paradigms with minimal modifications to the code and users can switch
between them when compiling or, in some cases, even at runtime.
Implementing the coarse grain model in such a way allowed to add, at the same
time, some MPI3 shared memory features as well. Shared memory windows have
been introduced into the MPI standard, improving the RMA capabilities of MPI
and allowing ranks to access shared regions of memory with simple load and store
instructions [124]. A MPI shared memory window is a region of memory whose
specific allocation allows it to be shared between ranks on the same NUMA node.
The procedure to allocate the shared memory window is not straightforward. First,

Algorithm 19: Example of YALES2 communication API for ISend oper-
ations.
Y2_ISend(∗args);

if MPI only then
MPI_ISend(∗args);

else
// Different behaviour depending on the specific implementation

end
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the MPI_COMM_WORLD communicator has to be split into sub-communicators con-
taining only the ranks in the same NUMA node. This feature is provided by the
MPI_Comm_split_type function, which extends the functionalities of MPI_Comm_split
taking as a input a parameter defining the communicator type. In this case, the
entry parameter MPI_COMM_TYPE_SHARED produces the correct splitting. The addi-
tional entry info provides the user the possibility to ask for specific architecture
informations to restrict the sub-communicator to smaller shared memory zones,
such as sockets or shared cache levels, however there are no standardised info
keys so these are implementation dependent, if provided at all. In order to tune
the size of the shared communicator, a mechanism has been put in place where
MPI_COMM_WORLD is first split into sub-communicators of the desired size via the
MPI_Comm_split function. Then such sub-communicators are passed as an input to
the MPI_Comm_split_type function that produces a communicator with the shared
characteristics but without splitting the input one as all ranks belong to a shared
memory region. This process implies that the user knows a priori the architec-
ture characteristics and provides a correct size for the communicator in the input
file, however this is exactly what is done to provide the number of threads for the
OpenMP implementation, consequently it is not a real issue. The window is then al-
located via a call to the MPI_Win_allocate_shared collective function on the shared
memory communicator. Each rank can provide its own size for the window, and the
memory can be allocated contiguously or in separated locations. The address of the
regions allocated by the different ranks are retrieved via the MPI_Win_shared_query
function. This mechanism is detailed in Algorithm 20. In that example a rank, des-

Algorithm 20: Example of the allocation of a MPI shared window.
Y2_Allocate_shared_window(nelements, . . . , ptr, win);

if master rank then
// Allocate a window that can fit all data

win_size = nelements;
MPI_Win_allocate_shared(win_size, . . . , ptr, win);

else
// Allocate an empty window

win_size = 0;
MPI_Win_allocate_shared(win_size, . . . , ptr, win);
// Get the address of master rank shared window

MPI_Win_shared_query(win,master rank, . . . , ptr);
end

ignated as master, allocates the entire window in a contiguous region, while all the
other ranks allocate empty ones and need to retrieve the address of the master rank
window. Finally, a communicator containing only the master ranks of the shared
memory sub-communicators can be obtained from MPI_COMM_WORLD with a call to
MPI_Comm_split and proper inputs.
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For OpenMP, shared memory regions are much simpler to allocate, as it can be done
with a simple malloc by any thread provided that there is a mechanism to share a
pointer to such region. Other than the memory allocation, the differences between
OpenMP and MPI3 shared memory mechanisms are minimal. It was decided then
to implement them both together in the same API. This means that the two mech-
anisms can not be used together and the selection between the two has to be done
at compile time through specific compilation flags.
Although the data structures did not need particular modifications, considerable ef-
fort had to be put into the parallel exchanges. With the data structures completely
uncoupled, the different threads need to exchange with each other data using the
external communicators but also participate in the collective communications and
all sorts of parallel exchanges in the program. As mentioned above, an API wrap-
ping the calls to MPI has been introduced to facilitate the implementation of the
required communications functions. The work done to implement both collective
and point-to-point communications on shared memory is exposed in the following
sections.

5.2 Collective communications on shared memory

Since all threads behave like MPI processes they also have to participate in the
collective communications. Intel have recently introduced the MPI_THREAD_SPLIT
programming model which allows to bind hardware resources to concurrently com-
municating threads and provide access to MPI objects without locks [125]. However
this is only specific to IntelMPI and not a standard programming model, which
means it is not available in other MPI implementations.
Collective communications have been implemented then as a multi-step communi-
cation: only the thread which is designated as master calls the MPI function, while
the information is propagated to and from the other threads via dedicated thread-
collective communications on shared memory. Figure 5.3 gives a schematic represen-
tation of an Allreduce communication with 2 MPI ranks and 2 threads each. First,
a reduction operation is performed, in which a thread obtains the contribution of
all threads on that rank. Then, the same thread calls the MPI_Allreduce to obtain
the information from the other ranks. Finally the result is propagated through a
Bcast from the master thread to the others. The same operation is detailed in
Algorithm 21.
Although different algorithms [126, 38] and platform-specific optimization exist [127],
Allreduce operations, which are the most critical for YALES2 performances, tend to
scale as a function of log(nworkers) [128]. This means that a reduction in the number
of ranks by a factor equal to the number of threads would mean that the scalability
of the MPI part would become a function of log(nranks) = log(nworkers/nthreads),
which implies that there is a constant gain which is function of log(nthreads). The
additional cost due to the shared memory operations is a constant value which is
function of nthreads. As long as this additional cost is lower than the gain obtained in
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Algorithm 21: Example of YALES2 communication API for Allreduce
sum operations with MPI and coarse grained OpenMP or shared memory
MPI.
Y2_ALLREDUCE(∗args);

if MPI only then
MPI_Allreduce(∗args);

else
SHM_Reduce(master_thread, ∗args);
if thread is master_thread then

MPI_Allreduce(∗args);
end
SHM_Bcast(master_thread, ∗args);

end

the MPI_Allreduce by the reduction of the number of ranks, there is an advantage
using such method. There is then the need of an efficient implementation of the col-
lective operations on shared memory. [123] demonstrates that a global reduction on
shared memory using OMP BARRIER to synchronise the threads performs better than
the MPI one. A first version of the SHM_Reduce implemented with this technique is
shown in Algorithm 22. The first barrier is necessary to guarantee that no thread is

Algorithm 22: Shared memory reduction for a sum operation using bar-
riers.
SHM_Reduce(∗args);

OMP BARRIER
shared_buffer[thread_id] = send_buffer;
OMP BARRIER;
if thread is root then

recv_buffer = sum(shared_buffer[:]);
end

still using the shared buffer. The same buffer is used for all operations (reduction,
broadcast, etc.), but even if there was a dedicated one for each operation, it would
be still necessary in case of two consecutive operations. Threads which are not the
one performing the reduction have no other mean to know whether the root thread
has finished performing the operation and consequently the buffer is free. The sec-
ond barrier is needed to guarantee that all threads have written into the shared
buffer and the root can proceed with the reduction operation. Another fundamental
role of the barrier is to guarantee memory consistency. The OMP BARRIER implicitly
performs a OMP FLUSH on all shared variables, making sure that all threads see the
same values on those memory locations. Each thread has its own private copy of the
shared variables and these need to be flushed out of the private memory to force the
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Figure 5.3: Schematic representation of a 3-phases Allreduce with multiple threads
and processes.

thread to load it again from the shared location and see other threads modifications.

5.2.1 Optimisation of the shared memory collective communica-
tions

Although the presented implementation for shared memory collective exchanges per-
forms quite well, the OMP BARRIER is a bit overzealous, in the sense that it is not
necessary to have all the threads synchronised every time. The first one in partic-
ular could even be removed and substituted by a mechanism with multiple buffers,
switching from one another at each operation. This mechanism has been tried out
but is memory consuming and error prone, due to the fact that the switching mech-
anism requires atomic operations to guarantee that all threads switch to the same
buffer at the same time.
Lighter barriers can be implemented [129, 130], however, as stated above, bar-
riers are too strict and unnecessary. Mutual exclusion on shared memory is a
very old problem [131, 132] and different lock mechanisms have been developed
since [133, 134, 135]. Although it is not in the scope of this work to implement low
level locks, a mutual exclusion mechanism is necessary for the reduction algorithm
to work properly. Such mechanism should provide:

• check if the shared array is available for use;

• inform that each thread has written its data;
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• inform that each thread has read the data;

• guarantee memory consistency.

This was obtained using the atomic primitives atomic_load, atomic_store and
atomic_compare_exchange_strong [136] and 4 flags: SHM_INACTIVE, SHM_ACTIVE,
SHM_DATA_WRITTEN, SHM_DATA_READ. The use of atomic operations is necessary for
the memory consistency. Architectures can have different memory consistency mod-
els and most modern processors have abandoned sequential models for relaxed ones,
which can provide better performances as compilers are allowed to reorder opera-
tions to maximise the throughput [137, 138]. The atomic operations cited above

Algorithm 23: Example of interface to perform atomic operations.
set_atomic_flag(flag_value);

offset = cache_line_size
atomic_store(shm_flag[thread_id× offset])

can however help enforcing sequential coherency where necessary. Sequential con-
sistency means that all memory operations (load and store) are executed in the
order required by the program. Although intuitively logical, this behaviour is not
optimal because load operations are expensive, especially in case of cache misses,
and these can delay the execution of other operations in another independent mem-
ory location whose data is already available. Compilers are then allowed to reorder
such operations, as long as the result of the program is not altered. The expected
behaviour is that load operations always return the latest store value. Within a
thread, the latest store to a location is defined by the program order, however,
when multiple threads write to a same location it is hard to define what the "latest"
write is. Since to communicate between two threads could require more than 10 cy-
cles it is impossible for a thread to know what another one has done in the previous
few cycles. Access order to a memory location by multiple threads is then arbitrary
and depends on which thread execute the operation first, but this is unreliable as
the ordering can change at each program execution. Using atomic operations is then
used to enforce some established order among the different threads. In this case,
a supplementary shared array called shm_flag has been allocated with a number
of elements equal to the number of threads. Each thread then sets or waits for a
specific value on that array with the atomic functions above. To make the imple-
mentation clearer, those directives have been wrapped in a dedicated interface, like
the one in Algorithm 23. A further optimisation to the mechanism has been to offset
the location of the flag for each thread by the size of a cache line, usually 64 bytes.
This way each thread operates on an independent line and false sharing is avoided.
This is especially important for the atomic_load operations when performed in a
loop, as it is the case while waiting for a specific flag value, because a single cache
line would be contended by all threads, thus delaying progression. Algorithm 22
is rewritten using the atomic flags in Algorithm 24, while Algorithm 25 shows the
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Algorithm 24: Shared memory reduction for a sum operation using atomic
flags.
SHM_Reduce(∗args);

// wait for the buffer to be available

wait_atomic_flag(SHM_INACTIVE);
shared_buffer[thread_id] = send_buffer;
// inform that data is ready

set_atomic_flag(SHM_DATA_WRITTEN);
if thread is root then

// wait for data from all threads to be ready

wait_all_atomic_flag(SHM_DATA_WRITTEN);
// perform the reduction on the shared buffer

recv_buffer = sum(shared_buffer[:]);
// set the buffer as available

set_all_atomic_flag(SHM_INACTIVE);
end

Algorithm 25: Shared memory broadcast using atomic flags.
SHM_Bcast(∗args);

// wait for the buffer to be available

wait_atomic_flag(SHM_INACTIVE);
// inform that thread is using buffer

set_atomic_flag(SHM_ACTIVE);
if thread is root then

// wait for all threads to be using the buffer

wait_all_atomic_flag(SHM_ACTIVE);
// broadcast the value on the shared buffer

shared_buffer = send_buffer;
// inform all threads that data is ready

set_all_atomic_flag(SHM_DATA_WRITTEN);
else

// wait for data to be ready

wait_atomic_flag(SHM_DATA_WRITTEN);
recv_buffer = shared_buffer;

end
// inform that data was read, last thread sets the buffer as available

set_check_all_and_set_all_atomic_flag(SHM_DATA_READ,SHM_INACTIVE);
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implementation of the broadcast operation with this new method, which is slightly
more complex.
The same interface has been created for MPI3, so collective communications can be
performed this way also for an hybrid MPI+MPI3 code. The only difference is in
the allocations of the buffers and the shm_flag array, which have to be allocated
through the dedicated MPI functions.
For collective communications on MPI+MPI3 implementations, however, this ap-
proach has far less interest than for MPI+OpenMP, where these communications are
not provided. Nevertheless, it could still be used to enforce synchronisation on op-
erations on shared memory windows without using expensive calls to MPI_Barrier.

5.2.2 Performance of the collective shared memory communica-
tions

In the DPCG algorithm the collective communication which is performed more fre-
quently is the Allreduce operation inside the deflation algorithm. For this reason
particular effort was spent in trying to optimise this operation. Figure 5.4 shows
a comparison of the performances of an Allreduce operation for pure MPI and its
hybrid version. Exactly as it happens in the deflation iteration, this Allreduce is of
type MPI_SUM over an array of 4 double precision values. In order to obtain mean-
ingful values and reduce the overhead of the timing functions, several repetitions of
the Allreduce operation were performed and an average value was obtained. These
measurements were performed with both IntelMPI and OpenMPI. The OpenMPI
curve was obtained with the library default configuration, while for IntelMPI its
topology aware SHM-based Knary algorithm was used as it gives the best perfor-
mances and it is SHM-aware as well.
An estimation of the OpenMP shared memory contribution can be obtained sub-
tracting the MPI one, which can be obtained performing an MPI_Allreduce with the
same process placement as in hybrid mode. Another way of obtaining OMP_SHM
is to perform only the shared memory operations on the same amount of threads
as the hybrid mode, but without the MPI operation. Both methods produce sim-
ilar results and Figure 5.4 shows an average of these estimations. The number
of threads being the same for all measurements, 7 in the depicted case, the value
obtained for OMP_SHM should be constant. In spite of some variability due to
the imprecise estimation methods, the curve obtained is fairly flat, meeting the
theoretical expectations. In Figure 5.4 it is possible to see how the MPI curves
clearly have a cost that can be modelled as a function fMPI (log (nworkers)). Thanks
to the approximatively constant value of the OMP_SHM contribution, the hybrid
curves still have this logarithmic dependency but are shifted towards lower values.
Consequently the cost for the hybrid version could be estimated with a function
fHY B (log (nworkers/nthreads)) +OMP_SHM.
Analysing the different curves it is possible to remark how from nworkers = 28 and
nworkers = 112 onwards the hybrid mode starts to perform better than OpenMPI
and IntelMPI respectively, showing the efficiency of this method.
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Figure 5.4: Comparison of the performances of the Allreduce collective commu-
nication in MPI and with the OpenMP shared memory optimisations on MYRIA.
IntelMPI and OpenMPI measurements were obtained using the respective default
settings. IntelMPI-opt results were obtained using its topology aware SHM-based
Knary algorithm, while the hybrid measurements were performed with 7 OpenMP
threads and MPI default settings.

However, when using its optimised topology aware algorithm, IntelMPI clearly gives
better performances than all other methods. For this curve it is possible to notice
how the first 4 measurements perform extremely well compared to the other meth-
ods. These measurements are all performed inside the same socket, indicating that
IntelMPI itself provides an extremely efficient way to perform reduction on shared
memory when its topology-aware algorithms are activated.
While it is clearly possible for pure MPI implementations to obtain better perfor-
mances than the hybrid one presented here, it is important to remark how, for the
successful implementation of this coarse-grain OpenMP model, it was primordial to
provide a way to perform hybrid collective operations. This section has shown that
not only these hybrid collective exchanges are now possible but their performances
are in line with those of the most common MPI implementations.
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5.3 Two-sided communications for OpenMP threads

When the entire code is multithreaded, threads must be able to perform the nec-
essary point-to-point exchanges to update their own external communicators. All
modern MPI implementation provide a MPI_THREAD_MULTIPLE thread support, con-
sequently threads can enter MPI directives independently. The MPI standard how-
ever is thread oblivious and the most common implementations add locks and crit-
ical regions in the MPI directives to control the contention of shared resources
among threads [139, 140]. This comes with substantial overhead compared to a
pure MPI implementation where MPI_THREAD_SINGLE is sufficient, or even a mul-
tithreaded implementation where only one thread communicates at a given time
(MPI_THREAD_FUNNELED). The issue of resources contention is worsened by the fact
that the MPI standard does not force non-blocking communication to progress out-
side MPI calls. This means that in a communication scheme where a process calls
MPI_IRecv, MPI_ISend and finally MPI_Wait the data exchange will actually be per-
formed during the MPI_Wait even if there is enough time for the communication to
be overlapped by the interleaving computation. This results in load imbalance, as
seen in Chapter 2, but also in additional concurrency as all threads are all in the
same directive trying to complete all the exchanges. To improve on such concur-
rency, [141] proposes to create a shared message queue where all but one threads
post their message request and the last thread is exclusively dedicated to perform
the MPI calls pulling from such queue. This method proved to be effective to ob-
tain a high overlap of computation and communication time, however in YALES2
point-to-point communications are structured in such a way that there is not much
possibility for such overlap. Furthermore, to have a thread dedicated exclusively
to communication would mean to lose a significant amount of computational power
for the most part of the code. Finally, this would not bring any advantage in the
deflation algorithm as there is not enough work to overlap with the communication.
Some propositions have been made in the other sense as well, such as comm-
tasks [142], to have an MPI-aware OpenMP implementation which automatically
takes care of advancing MPI communications through dedicated tasks. These have
yet to be included in the current OpenMP norms, and consequently are not available.

5.3.1 Optimisation of the P2P shared memory communications

A first attempt at avoiding concurrency was made creating packed external com-
municators onto which each thread would put their own contribution for the corre-
sponding destination worker and then only one thread would take care of calling the
MPI directives to perform the exchange while the rest would wait for the communi-
cation to complete and to unpack the received data. This method was not effective
as the packing presented problems analogous to those seen for the IC update in
Chapter 4, it added some more synchronisation points and load imbalance.
Since thread-aware MPI implementation exist, and the MPI standard is moving
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towards being more thread aware with propositions of adding so called MPI end-
points [143, 144], it was finally decided to let each thread perform its own point-
to-point exchanges, with the perspective of this becoming more popular in the near
future and consequently more performing.
At the moment however, standard MPI calls do not provide an immediate way to
appoint a particular thread as the target of an outgoing communication, as only the
receiver’s MPI rank can be specified. In order to do so, the value of the MPI_TAG
of the communication is modified in order to assume a unique value based on the
sending and receiving thread numbers. This introduces some limitations, as for
example it’s not possible to perform communications with both MPI_ANY_SOURCE
and MPI_ANY_TAG generic sender and tag values as at least one of the two must be
known.
Another attempt to reduce concurrency in the MPI directive has been made creat-
ing a dedicated communicator for each couple of threads that need to communicate.
This proved to be ineffective as most of the resource contention happens in the
MPI_Wait directives, and these seem to be agnostic to the communicators as they
are only based on the request number and pending messages from different commu-
nicators are appended to the same queue [145].
Finally, again with the objective of reducing the MPI resources contention a similar
system of message exchange was implemented in YALES2 for the communication
between threads on the same rank. As each thread has independent domains and
behave for all purposes like a MPI rank in the MPI-only version, it has also its own
external communicators. However, as threads on the same rank can access each
other’s memory, it is not necessary to send a message through the network to ex-
change such data, as it can be simply copied from one location to another. Thanks
to the newly introduce API it is easy to chose whether to call the MPI directive
in case of an exchange with a worker of another MPI rank or to go through the
shared memory system in case of an exchange with a thread on the same rank.
For non-blocking communication or posting send and receive requests the choice
is based on the partner (sender/receiver) ID. To complete non-blocking communi-
cations however, the only information available is the request number. Each MPI
implementation has its own system to provide such request number, consequently
the shared memory request assignment must be aware of this and provide different
values. For example some MPI implementations give ordered positive integer num-
bers for the requests, and the OpenMP ones must then be negative. In order to keep
the interface as similar to the MPI one as possible, all directives have similar names
and inputs. For instance OMP_ISend is the corresponding of MPI_ISend, OMP_IRecv
for MPI_IRecv, etc. Similarly to MPI, also for OpenMP threads a system of queues
has been implemented. When a thread calls OMP_ISend, a request object containing
all the necessary informations (source, destination, tag, etc.) and the pointer to
the data to be transferred. Such object is then appended to the send_queue. Simi-
larly, when a call to OMP_IRecv is performed, a request with the same information
and a pointer to the destination buffer is added to the recv_queue. A different
request number, odd or even, is given if the request is on the send or receive queue
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respectively. When a thread calls OMP_Wait the request number allows the thread
to search the correct queue for the request with the desired number. Once this is
found, the other queue is parsed to find a request with matching characteristics. At
the request creation an hash was generated from the communication characteristics
in order to speed up the process and avoid comparing each of the different param-
eters for each request. When a matching hash is found all the characteristics are
checked individually as a sanity check. Once the two matching requests are found
the data is copied between the sending and receiving pointers, and both requests
are declared as completed. Since this treatment can be done from both sending
and receiving thread independently, once a thread finds the request it’s looking for
it acquires a lock in order to prevent other thread from intervening on the same
object. If a thread lands on a request that is locked or has been marked completed
by another one it just skips it and proceeds with its workflow.
An improvement on this system could be to avoid the data copy and exchange only
the pointers. However, in YALES2 the data buffers are usually part of encapsulating
data structures and are allocated with different sizes depending to the needs of the
code, and such sizes are stored in the containing structure. Buffers can then have
a different sizes on different threads, and not exchanging back the pointers once
the communication is completed could result in memory faults. Unfortunately, in
the exchange scheme of Algorithm 8, which is the one employed in YALES2 at the
moment, there is no safe way of exchanging back the pointer, as it is needed after
the first Waitall and the second one has now way of telling if the data has been
consumed already by the corresponding process or not. This means that the only
way of performing the data exchange with the current algorithm is via a data copy.

5.3.2 Performance of the P2P shared memory communications

In this section the performances of the shared memory implementation of P2P com-
munications are compared with those of IntelMPI-17 (IMPI17) and OpenMPI-3.1.3
(OMPI313). In order to understand the overhead due to the multithreaded mode,
the pure MPI implementations have been benchmarked in both MPI_THREAD_SINGLE
(TS) and MPI_THREAD_MULTIPLE (TM) modes. In both cases the compiled library
supported multithreading, and the selection between the two modes was made at
runtime.
In order to reproduce what happens in the core parts of YALES2, the bench-
mark used was an all-to-all exchange, implemented with Y2_Irecv, Y2_Isend and
Y2_Waitall operations, as shown in Algorithm 26. Although technically all re-
quests can be waited for together, the use of two separated Waitall calls mimics
the YALES2 parallel data update (Algorithm 8). The benchmark was run in three
different conditions:

insocket the benchmark was run inside a socket, i.e., all threads are able to com-
municate without recurring to the MPI library;

exsocket the benchmark was run with workers on different sockets, consequently
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threads need to use the MPI library to communicate with threads outside their
own socket;

exnode the benchmark was run with workers on two different nodes. Threads need
to use MPI calls to communicate outside the socket, hence outside the node.

Algorithm 26: All-to-all benchmark algorithm.
// Loop of Irecv

forall other workers do
Y2_Irecv(*args);

end
// Loop of Isend

forall other workers do
Y2_Isend(*args);

end
// Waitall recv requests

Y2_Waitall(*args);
// Waitall send requests

Y2_Waitall(*args);

While for the pure MPI benchmarks at each physical core was assigned an MPI
rank, for the pure OpenMP and hybrid versions the process placement was such
that only one rank was present on each socket, and each core of such socket was
bound to a OpenMP thread. Figure 5.5 shows the performance comparison between
all benchmarks for the entire algorithm. It is possible to remark how for the insocket
conditions the pure OpenMP and hybrid implementations (which in this case are
identical) have performances in line with those of the pure MPI ones. In the ex-
socket and exnode conditions however, the hybrid implementations perform much
worse than the pure MPI ones. It is possible to see how the OpenMP contribution
remains unchanged, as the number of exchanges on shared memory is the same on all
three conditions, but the MPI contribution is two orders of magnitude higher with
respect to the pure MPI implementations. The number of exchanges per thread
using the MPI library goes from 14 on the exsocket condition to 42 (14 × 3) for
the exnode one. The MPI time, however, increases about 5 times between the two.
Also, in both cases is much higher than the pure MPI benchmarks, which have to
communicate with 6 more ranks (those on the same socket). This is due to the fact
that these MPI implementations, although allowing multiple threads to call the MPI
functions at the same time, they have critical regions and lock inside to guarantee
thread-safety. It is obvious how the poor efficiency of such implementations finally
jeopardise all other effort to gain performance using multiple threads.
Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9 give the same performance com-
parison for each of the for steps of the Algorithm 26. It is worth underlining how
the MPI contribution for the hybrid implementation in the exsocket and exnode
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Figure 5.5: Performance comparison of shared memory and pure MPI implemen-
tations on the all-to-all benchmark of Algorithm 26 on the Myria platform. It is
important to remark that the vertical axis has a logarithmic scale

conditions are much worse in Figure 5.6 and Figure 5.7, which correspond respec-
tively to the loop of Y2_Irecv and Y2_Isend calls. This is supposedly due to the
fact that such functions are called in a loop, consequently different threads are con-
tinuously contending the locks, while the unique call to the Y2_Waitall allows a
mere sequential execution of the critical regions. The MPI_Waitall time is however
much higher for the hybrid implementation than for the pure MPI ones. It is also
interesting to remark how, in the insocket benchmark, the shared memory imple-
mentation outperforms the MPI ones for the Isend and Irecv calls, while its much
slower for the Waitall. This is probably due to the fact that for the shared memory
implementation the first two operations only consist in generating a request object
and associating a pointer, while the data exchange is performed in the Waitall.
Furthermore, Isend and Irecv calls are almost lock-free, while Waitall operations
are more delicate and several locks are necessary to guarantee thread-safety.
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Figure 5.6: Performance comparison
of shared memory and pure MPI im-
plementations of the Y2_Irecv loop of
Algorithm 26 on the Myria platform.
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Figure 5.7: Performance comparison
of shared memory and pure MPI im-
plementations of the Y2_Isend loop of
Algorithm 26 on the Myria platform.
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Figure 5.8: Performance comparison
of shared memory and pure MPI im-
plementations of the Y2_Waitall on
the receive requests of Algorithm 26
on the Myria platform.
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Figure 5.9: Performance comparison
of shared memory and pure MPI im-
plementations of the Y2_Waitall on
the send requests of Algorithm 26 on
the Myria platform.
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5.3.3 Attempt at one-sided communications

Multithreaded two-sided communications have proven completely unusable in the
coarse grain model, mainly because of MPI libraries that are internally sequen-
tialised. An attempt was also made to use one-sided MPI communications to see
if these were less impacted by critical regions. The YALES2 algorithms and data
structures do not foresee the use of one-sided communications, consequently this
attempt only tried to mimic the two-sided ones. The Y2_ functions of the communi-
cation API have been extended with an optional entry used to specify the window
for RMA operations in case one-sided operations are to be used. RMA operations
have been experimentally implemented only in the hybrid version for threads that
need to communicate with other ranks, while the pure MPI implementation still
uses the standard two-sided ones.
Due to the way data exchanges are written in YALES2, the receive requests are
always posted before the send ones. For this reason it was decided that in the
Y2_Irecv, the RMA API would only set up a request, as it happens for the shared
memory two-sided communications. On the other hand, the Y2_Isend RMA func-
tion also performs a data exchange via a RMA operation to a shared buffer, as
shown in Algorithm 27. For this data exchange to work, the intermediate buffer
must be allocated via MPI functions as a shared window. In order to be able to
notify the receiving process of the data transfer, the notifications are exchanged with
a similar mechanism on a specific shared window. The Waitall behave differently

Algorithm 27: Isend mimic with RMA operations.
// Create Isend RMA request

isend_req = new_RMA_request(*args);
// Take a lock on the shared window

MPI_Win_Lock(MPI_LOCK_EXCLUSIVE,isend_req->window);
// Copy data on shared buffer

MPI_Put(data,isend_req->window,...);
// Release the lock on the shared window

MPI_Win_Unlock(isend_req->window);
// Notify that data was written

MPI_Win_Lock(MPI_LOCK_EXCLUSIVE,isend_req->notification_window);
MPI_Put(RMA_PUT_FLAG,isend_req->notification_window,...);
MPI_Win_Unlock(isend_req->notification_window);

depending if they are called on a receive or send request. In the first case, once the
corresponding send notification is found, the data is copied from the shared window
to the receive buffer with a simple memcpy and the send request is reset with a call to
MPI_Put, similarly to what is done in the Isend operation, but with a different flag
value. In the second case instead, the calling thread only waits for its notification
to be reset from the receiving thread on the other side.
It is clear that MPI one-sided communications are not intended to be used to re-



5.4. Conclusion 171

produce the behaviour of two-sided ones, however this was a quick attempt to solve
the problem exposed above for multithreaded two-sided communications.
Unfortunately, even though the results are not presented here due to lack of exten-
sive benchmarking, RMA operations seem to have the same problem of the two-sided
ones and are not multithreaded.
This failed attempt has nonetheless allowed to implement in YALES2 some basic
RMA structures and mechanisms which will be useful in the future to fully imple-
ment proper one-sided communications.

5.4 Conclusion

This chapter has presented the attempt at introducing a OpenMP coarse-grain
model into YALES2. This was done to address the issues of the fine-grain model
exposed in Chapter 4, namely the frequent thread synchronisation and the parallel
region overhead.
The main implication of the coarse-grain model is that all threads must communi-
cate, consequently shared memory collective and P2P communication mechanisms
were introduced.
For the shared memory collective communications presented in Section 5.2, it was
possible to obtain performances comparable with, and even better than, some MPI
implementations.
For the P2P communications however, in spite of the efforts made to allow threads
on the same rank to communicate through shared memory, the critical regions and
locks present into the routines of the most common MPI implementations caused
enormous performance pitfalls when threads have to communicate with other ranks
(i.e. using the MPI routines). Such is the negative impact of the internal sequen-
tialisation of MPI routines that the entire code runtime is impacted and it was
impossible to obtain performances even comparable to the pure MPI or the fine
grain model.
A brief attempt to use one-sided communications was made, but these suffer from
the same pitfalls of the two-sided ones, and were not developed further.
In conclusion, the hybrid MPI+OpenMP coarse-grain model allowed to introduce
several improvements to the code, such as the full thread safety, the abstracted com-
munication interface and some basic structures for shared memory and one-sided
MPI operations, however the performance pitfalls in the P2P exchanges prevent it
from being effective. Better performances could possibly be obtained with fully mul-
tithreaded MPI implementations or with deeper modifications in the data structures
of the code.





Chapter 6

Conclusion and perspectives

To summarise what was presented in this work, Chapter 1 gave an overview of nu-
merical methods, parallel communication paradigms and HPC tools used in CFD.
Chapter 2 presented the data structure and some performance measurements of
YALES2, the CFD code used in this work, trying to give some simplistic models for
its performances, underlining its strong points and exposing its issues and bottle-
necks. Chapter 3 introduced a new data structure, which was implemented to try
and address the problems exposed in the previous chapter. Chapter 4 described the
work done for the introduction of an OpenMP fine-grain implementation in order
to divide the work amongst multiple threads and reduce the number of MPI ranks
communicating. Chapter 5 presented the efforts made to implement a OpenMP
coarse-grain model that aimed to address the issues of the fine-grain one.
This last chapter draws some final conclusions on what was presented and tries to
give some perspective for future developments and improvements on this work.

6.1 Conclusion

The performance measurements and relative models obtained in Chapter 2 showed
that most of the code scales perfectly to relatively high numbers of MPI ranks. This
is not true for the deflation algorithm, which scales badly, even at low rank counts.
The deflation, however, is the core part of the Poisson linear solver, which is where
most of the computational time is spent. It was shown that the lack of scalability
is mainly due to the high cost of communication with respect to the computation
in this particular part of the code. Furthermore the communication time is highly
influenced by the imbalance in the computational load but mostly in the number of
point-to-point exchanges.
The graph data structure introduced in Chapter 3 tried to address these issues mod-
ifying the ghost cells structure in order to improve the P2P communication pattern
and balance the computational load on the number of edges. In addition, the pos-
sibility to use multiple ghost layers and to gather the graph on a subset of workers
were introduced, but didn’t give the expected benefits. In particular, the multiple
ghost layers suffered from a rapid increase in amount of P2P communication needed
and computational cost. The gathered graph also suffered from an increase of work
per rank, which in most cases surpassed the benefits in communication time.
To address these issues a OpenMP fine-grain model was introduced in Chapter 4.
The efficient parallelisation of the deflation algorithm proved challenging due to the
need for thread synchronisation and the memory boundedness of the code. In the
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end, either the pure MPI model or the gathered graph were performing better than
the fine-grain implementation.
To overcome the limitation of the fine-grain model, a OpenMP coarse-grain imple-
mentation was introduced, which didn’t give the expected results, mainly due to
fact that MPI implementations have critical regions and locks inside their routines
to allow threads to safely call them concurrently, but with enormous performance
pitfalls.
During this work then, several different attempts were made to improve on the
parallel performances of the YALES2 code, with moderate success. Mainly two
different approaches were followed: modifying the data structures and intervening
on the communications paradigms. The former allowed to obtain a mild improve-
ment on the general performances of the code, while the introduction of the hybrid
MPI+OpenMP models did not give any tangible benefit. This is possibly due to the
fact that the work done on the two approaches was not complementary enough, in
the sense that the data structures where modified in order to extract performance
from the pure MPI communication model, but they were not modified in order to
adapt them to the hybrid paradigms. On the other hand, during the implementa-
tion of the hybrid models, a lot of effort was put into trying to fit these models into
the existing data structure and not into changing the latter to adapt it to the new
communication paradigms.
In spite of the effort, only moderate performance benefits were obtained during this
work, however, many issues of the code were addressed, a general improvement on
the flexibility of the code was obtained, particularly thanks to the graph data struc-
ture and the abstraction of the communication routines into a dedicated interface.
To conclude, it is then extremely difficult to obtain high performances for massively
parallel low-mach CFD solver on non-structured meshes. This is not an issue of
YALES2 only, but it’s common to all this family of codes due to their inherent
characteristics, such as the low arithmetic intensity and the high sensitivity to the
imbalance of communication in the Poisson solver. New techniques, like task based
or asynchronous programming models, or even more advanced solutions like space-
time mesh adaptation [146] should be introduced, providing at the same time more
adapted data structures that allow to exploit such models fully and more naturally.

6.2 Perspectives

In Chapter 3 it was underlined how the performances of the deflation algorithm
itself were not improved by the graph data structure due to the fact that the new
P2P communication pattern was not able, by itself, to reduce the imbalance of that
exchange. It was also shown how such imbalance came from the inequality in the
number of ghost communicator across the different workers. A possible future de-
velopment for the graph data structure could be to introduce a load balancing step
at the moment of its construction in order to better balance the number of ghost
communicators. At the moment the number of ghost communicators is not taken



6.2. Perspectives 175

into account at all during the graph construction. Depending on the partitioner
used, the first domain decomposition is usually done minimising the edgecut, i.e.
the amount of data exchanged between the resulting domains. The graph is then
built as a new decomposition on top of the first one, consequently the number of
parallel exchanges is already determined. Similarly to what happens when the graph
is gathered on a smaller amount of workers, the vertices could be moved across the
workers in order to balance the number of parallel exchanges as well as the number
of nodes and edges.
The work presented in Chapter 4 showed that parallelising with multiple threads
the work inside the deflation algorithm was not an easy task, especially for the con-
tinuous need of thread synchronisation and the fact that the algorithm is memory
bound. Gathering the graph on a smaller amount of workers and having only one
rank computing proved to be equivalent or even better performing but still limited
by the bad communication patterns. The graph data structure also has reorganised
the P2P exchanges in order to be performed all together at the beginning of the
algorithm. Such configuration is ideal for the implementation of one-sided com-
munications. Due to lack of time, one-sided communication were never properly
tested during this work, however, all the mechanisms necessary to use them are in
place. In spite of the bad performances of the P2P exchanges, the work exposed
Chapter 5 showed promising results in the shared memory collective exchanges and
smart use of shared memory windows. Another interesting development would be
to introduce a mechanism to allocate the graph on shared memory windows rather
than local memory, and use RDMA and one-sided communications to perform the
ghost exchanges. This could help reduce dramatically the traffic on the network and
speed-up the communication process. Furthermore, processes sharing a graph on
the same window do not have to create ghost cells as they can directly access the
memory of the neighbour processes, reducing again the number of parallel exchanges
necessary and the memory consumption.
Such allocation mechanism would also be useful for the introduction of new paradigms
alternative to MPI, such as PGAS, coarray-Fortran, etc. The work done on the ab-
straction of the communication routines will ease this process even further, however
the parallel data structures (graph, ghost and external communicators) should be
re-thought with this new exchange mode in mind.
Finally, GPGPUs are more and more present on modern clusters. CFD codes are
particularly hard to adapt in order to efficiently exploit such architectures. There
are different ongoing projects trying to efficiently porting YALES2 on GPU, and
they showed that better performances are obtained when having one ElGrp rather
than many small ones. The graph data structure allows to compute the fine grid
efficiently on GPU and the deflation algorithm back on CPU since it decouples the
concept of ElGrp from the deflation grid. However it should be possible, with mod-
erate effort, to adapt the graph to this new architecture, for example changing the
CSR format in which it is stored for others which are more appropriate for GPU
computation.





Long résumé

Les deux dernières décennies ont vu une augmentation exponentielle de l’importance
des simulations CFD (Computational Fluid Dynamics) dans le processus de concep-
tion industrielle. Cette évolution est due aux énormes progrès technologiques réalisés
tant au niveau des logiciels que du matériel. D’une part, les logiciels CFD et les
méthodes numériques sont devenus plus fiables et plus précis, d’autre part, la puis-
sance de calcul a augmenté massivement, permettant de simuler des géométries plus
complexes et plus raffinées en un temps raisonnable. En particulier, les architec-
tures sont devenues massivement parallèles, c’est-à-dire composées de centaines de
milliers de cœurs de calcul communiquant entre eux, et nous entrons aujourd’hui
dans l’ère dite exascale [1], ce qui signifie que les machines sont désormais capables
d’exécuter un nombre d’opérations par seconde de l’ordre de 1018 (exaFLOPs).
La puissance de calcul ne pourra pas croître indéfiniment à ce rythme, car les puces
informatiques se heurtent à des barrières technologiques et l’efficacité énergétique
devient un enjeu [2]. Les processeurs ont évolué en tenant compte de tous ces as-
pects, et les puces multicœurs sont désormais la norme dans les clusters HPC (High
Performance Computing) modernes [3, 4], ainsi que les GPGPU (General Purpose
Graphic Processing Unit) [5, 6]. Par conséquent, les logiciels doivent constamment
s’adapter à l’évolution du matériel si l’on veut exploiter pleinement les capacités de
calcul de ces machines.
L’objectif de ce travail est d’analyser les problèmes et les goulots d’étranglement
qui empêchent un code CFD de s’adapter efficacement, c’est-à-dire de maintenir le
même niveau de performance lorsqu’il est exécuté sur un grand nombre de cœurs,
et de proposer des solutions pour surmonter ces obstacles.
Les modèles de communication classiques basés sur le communications MPI point-
à-point et collectives ont probablement atteint la limite de leur efficacité [65] et
deviennent de plus en plus le piège des performances dans les codes CFD.
Afin d’éviter ces goulets d’étranglement en matière de communication, des solutions
plus adaptées au matériel ont été étudiées depuis longtemps, en particulier le modèle
hybride OpenMP/MPI [41].
L’objectif de ce modèle hybride est de réduire l’empreinte mémoire et le coût de com-
munication de l’implémentation MPI en utilisant un nombre plus faible de proces-
sus, sans réduire les ressources employées dans les phases de calcul, où les processus
sont remplacés par des threads. Cette méthodologie est particulièrement adaptée
à l’architecture multi-cœur où plusieurs threads peuvent tourner sur les différents
cœurs en partageant la mémoire à l’intérieur d’un socket, bien que la complexité
supplémentaire du mélange des deux modèles de programmation ne garantisse pas
toujours une amélioration des performances par rapport aux implémentations MPI
pures [44].
Toutefois, plusieurs travaux relatifs à l’hybridation des codes CFD, tels que [66],[67],[68]
et [69], donnent des résultats encourageants et soutiennent que cela pourrait être la
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bonne approche pour améliorer la scalabilité du code, ce qui motive les stratégies
adoptées dans ce travail.
YALES2 [70, 71, 72], le code utilisé pour ce travail, est une boîte à outils numérique
massivement parallèle développée depuis 2009 et actuellement utilisée à la fois dans
le milieu universitaire et dans l’industrie. Il comprend de nombreux solveurs qui
peuvent traiter divers problèmes physiques, tels que la simulation d’écoulements in-
compressibles, la combustion, les écoulements diphasiques, le transfert de chaleur,
le transfert radiatif et bien plus encore.
Tous les différents solveurs reposent sur une bibliothèque numérique commune de
haute performance, écrite en Fortran orienté objet. La bibliothèque de base com-
prend des solveurs linéaires hautement optimisés, le raffinement automatique du
maillage [73] et l’équilibrage de la charge, l’intégration des volumes finis d’ordre
élevé, les I/O parallèles, etc. Toutes ces bibliothèques sont conu̧es pour le calcul sur
des maillages non structurés, qui sont mieux adaptés à la description de géométries
complexes. L’approche des volumes finis centrée sur les nœuds, sur laquelle les méth-
odes numériques sont basées dans YALES2, garantit la conservation des quantités
transportées. Un schéma de convection d’ordre 4 nouvellement implémenté [74] rend
YALES2 particulièrement bien adapté aux simulations LES car les tourbillons ne
sont pas artificiellement amortis lorsqu’ils sont transportés sur de grandes distances.
Le parallélisme dans YALES2 est géré par une décomposition de domaine mise en
œuvre avec le paradigme MPI, dans lequel le maillage est réparti entre plusieurs
processus.
Le solveur de Navier-Stokes incompressible à basse fréquence est le plus utilisé et
la plupart des méthodes numériques mises en œuvre pour ce solveur sont utilisées
comme base pour les autres. Ce solveur utilise la procédure détaillée dans la sec-
tion 1.3 pour discrétiser l’équation 1.15 sur un maillage, fournissant un système
linéaire dans lequel les inconnues sont la pression à chaque nœud du maillage, qui
est ensuite résolu avec les méthodes numériques présentées dans la section 1.3.2.
Plusieurs modèles ont été définis pour les performances du benchmark Preccinsta
sur le cluster Myria. Le modèle de grille permet de déterminer toutes les quan-
tités utiles liées à la taille de la grille à partir de seulement 3 paramètres connus, à
l’exception de la taille du communicateur interne. L’algorithme DPCG a été mod-
élisé en deux parties distinctes: l’itération sur les grilles fines et grossières. Un
modèle a été obtenu pour chaque partie comme une somme de sous-modèles pour
les phases de communication et de calcul respectives. Alors que le temps d’itération
sur la grille fine peut être prédit avec une assez grande exactitude, la déflation
s’est avérée plus difficile à modéliser avec la même précision. En particulier, les
deux phases de communication dépendent fortement du nombre de voisins et du
déséquilibre de ce nombre entre les processus. Ces paramètres sont beaucoup plus
difficiles à modéliser a priori, car ils dépendent du partitionnement de la grille. Ces
modèles ne sont qu’une première tentative rudimentaire de prédiction et d’étude des
performances du code. Une analyse plus détaillée de chacun des sous-modèles est
nécessaire pour mieux justifier les modèles eux-mêmes et les valeurs des coefficients
qui ont été obtenus.
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Cependant, malgré leur caractère approximatif, ils ont fourni un aperu̧ utile des
mécanismes de l’algorithme DPCG. En particulier, il a été montré que l’échange
MPI réel n’a aucune influence sur le coût de la communication P2P de l’itération
de la grille fine, qui dépend en fait exclusivement de la taille du communicateur in-
terne.De plus, les communications collectives semblent avoir un coût assez constant,
qui est indépendant du nombre de processus dans la communication.
En ce qui concerne la déflation, le modèle a montré que les échanges de communi-
cateurs fantômes dépendent davantage du nombre de voisins que de la quantité de
données échangées. Plus important encore, le coût de la communication collective
dans la déflation peut être assez bien approximé par la différence entre le nombre
maximum et moyen de communicateurs fantômes et par le nombre de travailleurs
impliqués dans la communication.
En ce qui concerne l’influence de NELEMENTPERGROUP sur la performance globale
de l’algorithme DPCG, on a montré comment la valeur optimale de ce paramètre
est déterminée comme un compromis sur deux effets contrastés: la duplication des
nœuds et des paires par rapport au nombre d’itérations de la grille fine.
Le fait d’avoir des groupes plus grands réduit la quantité de données dupliquées,
mais rend aussi la grille de déflation plus grossière, ce qui fournit en retour une solu-
tion moins précise, d’où la nécessité d’un plus grand nombre d’itérations de la grille
fine pour atteindre la convergence. Cela implique que deux aspects de l’algorithme
DPCG doivent être améliorés.
Premièrement, le nombre de "nœuds" sur la grille de déflation (nElGrp[gt]

) devrait
être indépendant de la taille des groupes d’éléments sur la grille fine. Cela permet-
trait d’avoir un autre degré de liberté pour mieux ajuster la convergence de la grille
de déflation, en donnant la possibilité de découpler le nombre d’itérations sur les
deux grilles de la duplication des nœuds et des paires et de la taille du commu-
nicateur interne. En conséquence, des groupes plus grands pourraient être utilisés
sur la grille fine pour réduire cette duplication, tandis qu’une grille moins grossière
peut être utilisée pour réguler le nombre d’itérations sur la grille fine et la grille de
déflation.
Deuxièmement, un travail doit être fait pour réduire le coût des communications
dans l’itération de déflation. Un nombre plus uniforme de communicateurs fan-
tômes réduirait le déséquilibre dans l’échange P2P, ce qui à son tour diminuerait
le temps de synchronisation dans la communication collective. Enfin, la réduction
du nombre de processus impliqués dans l’échange collectif permettrait de réduire
sensiblement le coût de ce dernier, comme le montre clairement la Figure 2.49.
Dans 2.2.6, certaines des limites de l’implémentation actuelle de l’algorithme DPCG
dans YALES2 ont été mises en lumière. En particulier, il a été démontré qu’il est
nécessaire de découpler la grille de déflation du mécanisme de blocage de cache des
ElGrps, tandis que la figure 2.34 a exposé les mauvais schémas de communication
dus à la construction actuelle de la connectivité.
Même si cette dernière aurait pu être facilement corrigée avec un système de com-
munication full-halo par exemple, la première nécessite une réorganisation complète
de la grille de déflation. Par conséquent, une nouvelle structure de données appelée
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graph a été introduite dans YALES2 pour faire face à tous ces aspects négatifs.
La structure de données de graphe présentée dans le chapitre 3 fournit un support
différent pour la déflation, permettant une telle séparation. Les mesures exposées
dans 3.2 ont montré comment le degré de liberté supplémentaire permettait une
nette amélioration des performances du solveur DPCG.
En particulier, il a été montré que la double décomposition de domaine n’apporte
aucun avantage réel dans l’accélération du code.
Le blocage L1, c’est-à-dire l’utilisation d’une taille de groupe qui tiendrait dans le
cache L1, pourrait apporter une amélioration de 40% pour certaines boucles clés du
code, mais il a été démontré qu’il y a une pénalisation beaucoup plus importante
résultant de la duplication massive de nœuds et de paires impliquée par de si petits
groupes.
En outre, une ElGrp plus petite signifie également un communicateur interne plus
grand, et par conséquent une surcharge plus importante pour sa mise à jour. Pour
la performance globale, avec la structure de données actuelle de YALES2, la min-
imisation de la duplication des données est en fait beaucoup plus pertinente que
l’amélioration des modèles d’accès à la mémoire. D’autres approches devraient être
étudiées pour tirer parti du blocage du cache sans pénaliser les données dupliquées.
Un autre point sensible de l’algorithme de déflation identifié dans le chapitre 2 était
le schéma de communication sous-optimal dû au système de communication ghost
avec un demi-halo, qui provoquait un déséquilibre important entre les différents
processus et par conséquent un retard sur la communication collective. La nouvelle
structure de données a tenté de résoudre le problème avec une communication ghost
symétrique full-halo, mais il a été montré que cela ne pouvait pas éviter le déséquili-
bre causé par la différence de quantité d’échanges P2P.
Afin d’améliorer ce point, un système où plusieurs couches de cellules fantômes sont
échangées a été mis en place. Il a été montré que cette idée, qui a partiellement fonc-
tionné sur un benchmark synthétique 1D, n’était pas efficace sur des cas réels car le
nombre de voisins augmente rapidement avec l’augmentation des couches ghost.
Une autre technique, consistant à rassembler le graphe de déflation sur un sous-
ensemble de processus afin de réduire le nombre de processus communicants a
également été mise en place sans grand succès, à l’exception de quelques cas. Le
principal problème de cette méthode est que le travail supplémentaire requis par ce
sous-ensemble de processus n’est pas compensé par une amélioration suffisante du
temps de communication.
Une version modifiée de l’algorithme 6 qui utilise des opérations supplémentaires
et des communications collectives non bloquantes [96] pour essayer de superposer
communication et calcul est également implémentée dans YALES2. Bien que non
présentés ici, quelques tests de comparaison ont été effectués entre les deux algo-
rithmes avec la déflation basée sur ElGrp, mais aucune amélioration n’a été obtenue
par cette version non bloquante par rapport à la version standard.
Bien qu’une analyse plus précise soit nécessaire, les tests préliminaires ont montré
que l’échec à fournir de meilleures performances était dû au fait que le retard causé
par l’échange de fantômes est plus important que le temps de calcul que l’algorithme
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tente de couvrir. De plus, comme les processus qui ont plus de communications à
effectuer ont également plus de paires ElGrp à calculer, il n’y a aucun moyen pour
eux de rattraper leur retard, par conséquent il existera toujours un point de syn-
chronisation, même si les processus sont d’une certaine manière biaisés le long de
l’algorithme. Il serait cependant intéressant de tester un tel algorithme avec la nou-
velle structure de données.
En outre, d’autres optimisations possibles de l’algorithme DPCG ont été proposées
[97, 98, 99], qui pourraient également être ajoutées à la bibliothèque YALES2. La
nouvelle structure de données de graphe pourrait fournir la flexibilité nécessaire pour
tirer parti de telles implémentations.
Les deux approches complémentaires détaillées dans le chapitre 3, les multiples
couches de comunicateurs ghost et la collecte du graphe sur un sous-ensemble de
processus, mises en œuvre pour tenter de gérer le coût des échanges parallèles dans
l’itération de déflation ont échoué en raison du coût de calcul supplémentaire dépas-
sant le bénéfice d’une quantité réduite de communication. En particulier, la collecte
du graphe sur un sous-ensemble restreint de processus signifie que ceux-ci ont plus
de travail à effectuer pendant que les autres sont inactifs et ne contribuent pas au
calcul, ce qui constitue un gaspillage de ressources, en plus du coût de la collecte et
de la dispersion des données.
La deuxième partie de ce travail a essayé de traiter ce problème et d’autres en intro-
duisant un deuxième niveau de parallélisation dans le code: les threads OpenMP. Les
exemples de codes scientifiques expérimentant le modèle de programmation hybride
MPI+OpenMP sont de plus en plus courants et peuvent être trouvés dans une variété
d’applications [100, 101, 68, 102], y compris la CFD [66, 103, 104, 69, 105, 106, 107].
Ceci est justifié par le fait que les codes MPI purs présentent des difficultés à
passer à l’échelle de centaines de milliers de processus et ont une empreinte mémoire
élevée [108]. L’ajout d’une couche supplémentaire de threads OpenMP permet de
réduire le nombre de rangs MPI et d’améliorer l’efficacité de la communication, tout
en répartissant le travail entre les différents threads.
Les threads sont plus légers que les processus MPI, ils ont donc un impact plus faible
sur le système. En outre, cette approche est intrinsèquement liée au matériel, car
les threads appartenant au même processus doivent être placés sur la même région
NUMA, partageant un certain niveau de mémoire cache (généralement L3).
L’ajout d’une couche OpenMP à un programme MPI pourrait alors contribuer à
améliorer les performances globales, en particulier sur des milliers de cœurs [109] et
des processeurs à plusieurs cœurs avec une grande mémoire cache partagée [110].
Cependant, il n’est pas trivial d’exploiter un tel modèle de programmation hybride et
d’obtenir de meilleures performances que le code MPI pur [111], notamment lorsque
la structure du code ne permet pas un niveau supplémentaire de partage du travail
ou que les algorithmes doivent être adaptés [112, 44].
Dans la plupart des exemples cités ci-dessus, le parallélisme OpenMP est exploité
en assignant une partie de la maille de chaque processus à un thread pour le calcul
ou par parallélisation de boucle. Dans YALES2, les deux approches peuvent être fu-
sionnées car sa structure de données rend le code particulièrement adapté pour être
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parallélisé avec un niveau de boucle OpenMP, puisque tous les algorithmes consis-
tent en des boucles sur les groupes d’éléments complètement indépendants (ElGrps),
qui représentent une décomposition du maillage.
Cette approche, également appelée OpenMP fine grain, a l’avantage d’être facile à
mettre en œuvre et le code peut être parallélisé progressivement, la parallélisation
étant obtenue en ajoutant de simples pragmas autour des boucles du code.
Avant le début de ce travail, la plupart des boucles du code étaient déjà entourées de
pragmas OpenMP. Cependant, pour certaines parties du code, la parallélisation du
multithreading n’est pas si immédiate. Cela peut être causé par le fait que certaines
régions ne contiennent pas de boucles (I/O) ou parce que les itérations des boucles
ne sont pas indépendantes. La principale condition pour qu’une boucle puisse être
parallélisée avec plusieurs threads est que le travail de chaque thread (c’est-à-dire
les itérations de la boucle) doit être indépendant, sinon des race conditions sur les
donnèes peuvent se produire.
C’est principalement le cas pour la mise à jour du communicateur interne et l’algorithme
de déflation, dont les opérations ne sont pas effectuées sur des ensembles indépen-
dants de données. Les défis et les techniques utilisés pour essayer de paralléliser
ces parties importantes du code sont détaillés dans la section 4.1 et la section 4.2
respectivement.
La mise à jour parallèle du communicateur interne et l’algorithme de dégonflement
se sont avérés particulièrement difficiles à paralléliser efficacement. Afin d’éviter
les race conditions sur les données dans la mise à jour du IC, plusieurs techniques
ont été mises en place et comparées, mais toutes impliquent une sorte d’opération
supplémentaire qui augmente la surcharge de cette opération.
La déflation souffre plutôt du surcoût excessif des différentes régions parallèles qui
annule les avantages de la parallélisation du travail. Une tentative d’utiliser des
tâches pour superposer la communication et le calcul a également été faite, mais elle
n’a pas abouti. Enfin, les performances de la version purement MPI et de la version
hybride ont été comparées, montrant comment les problèmes précédemment exposés
ont empêché la seconde de mieux fonctionner que la première, malgré les différentes
tentatives d’optimisation. Cependant, ce travail a également donné quelques points
intéressants, notamment la réduction du coût de la communication collective et le
partage efficace du travail dans l’algorithme de déflation montré pour le maillage de
14M et pour le maillage de 878M où la version hybride est aussi performante que
la version pure MPI.
En effet, le fait d’avoir moins de rangs communiquant sans perdre de capacité de cal-
cul est une bonne stratégie, dans ce cas cependant pénalisée par l’overhead OpenMP.
Il est également important de mentionner que, si la boucle temporelle consiste princi-
palement en des boucles sur les ElGrps, plusieurs autres parties du code ne peuvent
pas être parallélisées aussi facilement. Il peut s’agir par exemple des opérations
d’I/O ou même du partitionnement initial du maillage et de la création des struc-
tures de données, qui, dans la version hybride, sont effectués uniquement par le
thread maître. Cela a pour effet d’augmenter massivement le temps passé dans ces
phases par rapport à la version MPI pure, car la taille du maillage est beaucoup
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plus grande pour la version hybride.
En outre, si l’on exclut ce qui est consommé par la bibliothèque MPI elle-même,
la réduction de la duplication des données est minime, car les groupes d’éléments
dupliquent eux-mêmes des données, et seule une petite partie des communicateurs
internes et externes est réellement èpargnée.
En essayant de paralléliser également ces phases et d’optimiser davantage la boucle
temporelle, on a obtenu l’implémentation hybride MPI et OpenMP à coarse grain
présentée au chapitre 5.
Contrairement à ce qui se passe dans le modèle fine grain, où les threads sont créés
et tués autour de boucles à forte intensité de travail, dans cette version, la région
parallèle OpenMP est ouverte une fois au début de l’exécution et les threads sont
maintenus en vie jusqu’à la fin du programme, éliminant ainsi la surcharge causée
par la création de multiples régions parallèles, comme représenté schématiquement
dans la Figure 5.1.
La principale implication du modèle à coarse grain est que tous les threads doivent
communiquer, c’est pourquoi des mécanismes de communication collective à mé-
moire partagée et P2P ont été introduits.
Pour les communications collectives à mémoire partagée présentées dans la sec-
tion 5.2, il a été possible d’obtenir des performances comparables, voire supérieures,
à certaines implémentations MPI.
Cependant, pour les communications P2P, malgré les efforts déployés pour perme-
ttre aux threads d’un même rang de communiquer via la mémoire partagée, les
régions critiques et les verrous présents dans les routines des implémentations MPI
les plus courantes ont causé d’énormes problèmes de performance lorsque les threads
doivent communiquer avec d’autres rangs (c’est-à-dire en utilisant les routines MPI).
L’impact négatif de la séquentialisation interne des routines MPI est tel que l’ensemble
du temps d’exécution du code est affecté et qu’il a été impossible d’obtenir des per-
formances même comparables à celles du modèle MPI pur ou du modèle à fine grain.
Une brève tentative d’utiliser des communications one-sided a été faite, mais celles-
ci souffrent des mêmes pièges que les communications bilatérales et n’ont pas été
développées davantage.
En conclusion, le modèle hybride MPI+OpenMP coarse grain a permis d’introduire
plusieurs améliorations dans le code, telles que la thread safety totale, l’interface de
communication abstraite et certaines structures de base pour la mémoire partagée
et les opérations MPI one sided, mais les pièges de performance dans les échanges
P2P l’empêchent d’être efficace. De meilleures performances pourraient éventuelle-
ment être obtenues avec des implémentations MPI entièrement multithreadées ou
avec des modifications plus profondes des structures de données du code.
Pour résumer ce qui a été présenté dans ce travail, le chapitre 1 a donné un aperu̧
des méthodes numériques, des paradigmes de communication parallèle et des outils
HPC utilisés en CFD. Le chapitre 2 a présenté la structure des données et quelques
mesures de performance de YALES2, le code CFD utilisé dans ce travail, en essayant
de donner quelques modèles simplistes de ses performances, en soulignant ses points
forts et en exposant ses problèmes et ses goulets d’étranglement.
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Le chapitre 3 présente une nouvelle structure de données, qui a été implémentée pour
essayer de résoudre les problèmes exposés dans le chapitre précédent. Le chapitre 4
décrit le travail effectué pour l’introduction d’une implémentation OpenMP fine
grain afin de diviser le travail entre plusieurs threads et de réduire le nombre de
rangs MPI communiquant.
Le chapitre 5 a présenté les efforts réalisés pour mettre en œuvre un modèle OpenMP
coarse grain visant à résoudre les problèmes du modèle fine grain. Les mesures de
performance et les modèles relatifs obtenus au chapitre 2 ont montré que la plupart
du code s’adapte parfaitement à un nombre relativement élevé de rangs MPI.
Ce n’est pas le cas de l’algorithme de déflation, qui s’échelonne mal, même avec un
faible nombre de rangs. La déflation, cependant, est la partie centrale du solveur
linéaire de Poisson, où la plupart du temps de calcul est passé. Il a été démontré que
le manque de scalabilité est principalement dû au coût élevé de la communication
par rapport au calcul dans cette partie particulière du code. De plus, le temps de
communication est fortement influencé par le déséquilibre de la charge de calcul,
mais surtout par le nombre d’échanges point à point.
La structure de données du graphe introduite dans le chapitre 3 a tenté de résoudre
ces problèmes en modifiant la structure des cellules ghost afin d’améliorer le modèle
de communication P2P et d’équilibrer la charge de calcul sur le nombre d’arêtes.
En outre, la possibilité d’utiliser plusieurs couches ghost et de rassembler le graphe
sur un sous-ensemble de processus a été introduite, mais n’a pas donné les avantages
escomptés. En particulier, les couches ghost multiples ont souffert d’une augmen-
tation rapide de la quantité de communication P2P nécessaire et du coût de calcul.
Le graphe rassemblé a également souffert d’une augmentation du travail par rang,
qui, dans la plupart des cas, dépassait les avantages en termes de temps de commu-
nication.
Pour résoudre ces problèmes, un modèle OpenMP fine grain a été introduit dans
le chapitre 4. La parallélisation efficace de l’algorithme de déflation s’est avérée
difficile en raison du besoin de synchronisation des threads et de la limitation de
la mémoire du code. En fin de compte, le modèle MPI pur ou le graphe rassemblé
étaient plus performants que l’implémentation hybride fine grain.
Pour surmonter les limites du modèle à grain fin, une implémentation OpenMP
coarse grain a été introduite, mais elle n’a pas donné les résultats escomptés, princi-
palement en raison du fait que les implémentations MPI ont des régions critiques et
des verrous à l’intérieur de leurs routines pour permettre aux threads de les appeler
simultanément en toute sécurité, mais avec d’énormes problèmes de performance.
Au cours de ce travail, plusieurs tentatives différentes ont été faites pour améliorer
les performances parallèles du code YALES2, avec un succès modéré. Deux ap-
proches différentes ont été suivies : modifier les structures de données et intervenir
sur les paradigmes de communication.
La première a permis d’obtenir une légère amélioration des performances générales
du code, tandis que l’introduction des modèles hybrides MPI+OpenMP n’a pas ap-
porté d’avantage tangible. Cela est peut-être dû au fait que le travail effectué sur les
deux approches n’était pas assez complémentaire, dans le sens où les structures de
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données ont été modifiées afin d’extraire les performances du modèle de communica-
tion MPI pur, mais elles n’ont pas été modifiées afin de les adapter aux paradigmes
hybrides.
D’autre part, lors de la mise en œuvre des modèles hybrides, beaucoup d’efforts ont
été déployés pour essayer d’intégrer ces modèles dans la structure de données exis-
tante et non pour modifier cette dernière afin de l’adapter aux nouveaux paradigmes
de communication. Malgré ces efforts, seuls des bénéfices modérés en termes de per-
formance ont été obtenus au cours de ce travail, cependant, de nombreux problèmes
du code ont été résolus, une amélioration générale de la flexibilité du code a été
obtenue, en particulier grâce à la structure de données du graphe et à l’abstraction
des routines de communication dans une interface dédiée.
Pour conclure, il est donc extrêmement difficile d’obtenir des performances élevées
pour un solveur CFD massivement parallèle à basse fréquence sur des maillages non
structurés. Ce n’est pas un problème propre à YALES2, mais il est commun à toute
cette famille de codes en raison de leurs caractéristiques inhérentes, telles que la
faible intensité arithmétique et la grande sensibilité au déséquilibre de la communi-
cation dans le solveur de Poisson.
De nouvelles techniques, comme les modèles de programmation asynchrones ou basés
sur les tâches, ou même des solutions plus avancées comme l’adaptation de la maille
spatio-temporelle [146], devraient être introduites, fournissant en même temps des
structures de données plus adaptées qui permettent d’exploiter les capacités de com-
munication du solveur de Poisson.
Dans le chapitre 3, il a été souligné que les performances de l’algorithme de défla-
tion lui-même n’ont pas été améliorées par la structure de données du graphe, car
le nouveau modèle de communication P2P n’était pas capable, à lui seul, de réduire
le déséquilibre de cet échange.
Il a également été démontré que ce déséquilibre provenait de l’inégalité du nombre de
communicateurs fantômes entre les différents travailleurs. Un développement futur
possible pour la structure de données du graphe pourrait être d’introduire une étape
d’équilibrage de la charge au moment de sa construction afin de mieux équilibrer
le nombre de communicateurs ghost. Pour l’instant, le nombre de communicateurs
ghost n’est pas du tout pris en compte lors de la construction du graphe. En fonction
du partitionneur utilisé, la première décomposition du domaine est généralement ef-
fectuée en minimisant l’edgecut, c’est-à-dire la quantité de données échangées entre
les domaines résultants.
Le graphe est ensuite construit comme une nouvelle décomposition par-dessus la
première, par conséquent le nombre d’échanges parallèles est déjà déterminé. De
la même manière que lorsque le graphe est rassemblé sur un plus petit nombre de
travailleurs, les sommets peuvent être déplacés entre les travailleurs afin d’équilibrer
le nombre d’échanges parallèles ainsi que le nombre de nœuds et d’arêtes.
Le travail présenté dans le chapitre 4 a montré que la parallélisation avec plusieurs
threads du travail dans l’algorithme de déflation n’était pas une tâche facile, surtout
en raison du besoin continu de synchronisation des threads et du fait que l’algorithme
est limité par la mémoire. Rassembler le graphe sur un plus petit nombre de tra-
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vailleurs et n’avoir qu’un seul rang de calcul s’est avéré équivalent ou même plus
performant, mais toujours limité par les mauvais schémas de communication.
La structure de données du graphe a également réorganisé les échanges P2P afin
qu’ils soient effectués tous ensemble au début de l’algorithme. Cette configuration
est idéale pour la mise en œuvre de communications one sided. Par manque de
temps, les communications one-sided n’ont pas été testées correctement au cours
de ce travail, cependant, tous les mécanismes nécessaires à leur utilisation sont en
place.
Malgré les mauvaises performances des échanges P2P, le travail exposé au Chapitre 5
a montré des résultats prometteurs dans les échanges collectifs en mémoire partagée
et l’utilisation intelligente des fenêtres de mémoire partagée.
Un autre développement intéressant serait d’introduire un mécanisme pour allouer
le graphe sur des fenêtres de mémoire partagée plutôt que sur la mémoire locale, et
d’utiliser RDMA et les communications one-sided pour effectuer les échanges ghost.
Cela pourrait contribuer à réduire considérablement le trafic sur le réseau et à ac-
célérer le processus de communication.
De plus, les processus partageant un graphe sur la même fenêtre n’ont pas besoin
de créer des cellules ghost car ils peuvent accéder directement à la mémoire des
processus voisins, ce qui réduit encore le nombre d’échanges parallèles nécessaires
et la consommation de mémoire. Un tel mécanisme d’allocation serait également
utile pour l’introduction de nouveaux paradigmes alternatifs à MPI, tels que PGAS,
coarray-Fortran, etc.
Le travail effectué sur l’abstraction des routines de communication facilitera encore
plus ce processus, mais les structures de données parallèles (graphe, communicateurs
ghost et externes) devraient être repensées en tenant compte de ce nouveau mode
d’échange.
Enfin, les GPGPU sont de plus en plus présents sur les clusters modernes. Les codes
CFD sont particulièrement difficiles à adapter afin d’exploiter efficacement ces ar-
chitectures. Différents projets en cours tentent de porter efficacement YALES2 sur
GPU, et ils ont montré que de meilleures performances sont obtenues en ayant une
seule ElGrp plutôt que plusieurs petites. La structure de données du graphe per-
met de calculer efficacement la grille fine sur GPU et l’algorithme de déflation sur
CPU puisqu’elle découple le concept de ElGrp de la grille de déflation. Cependant,
il devrait être possible, avec un effort modéré, d’adapter le graphe à cette nouvelle
architecture, par exemple en changeant le format CSR dans lequel il est stocké pour
d’autres qui sont plus appropriés pour le calcul sur GPU.
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