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Chapter 1

Thesis Introduction and Summary
1.0.1 English Summary

This thesis includes three articles on the subject of competition policy along with an econometric contribution.

Regarding the former, the two first articles focus on the relationship between antitrust enforcement and the

labor market. The first measures levels of labor market concentration in France (2011-2015) through the

Herfindahl–Hirschman Index (HHI) defined over local labor markets. We find a negative relationship between

labor market concentration and both wages and employment. This suggests the existence of oligopsonistic

and monopsonistic labor market power on behalf of employers ; potentially resulting from and influenced by

competition policy. The second article quantifies the importance of antitrust laws in protecting workers’ wages.

We look at a mechanism allocating American baseball players, in a quasi-random way, to a competitive labor

market from a highly monopsonistic market ; the difference resulting from the application of antitrust laws. We

find such laws allow wages to increase by at least 30%. A third article looks at the need for regulatory oversight

in the mobile phone video game industry. Exploiting both quasi-natural variation stemming from the game’s

structure and artificially induced variation from a Randomized Controlled Trial (RCT), we estimate demand for

content on behalf of consumers using a discrete choice model. We use this model to simulate alternative

pricing schemes, including individual level pricing, in order to study the potential for additional profits. We find

limited evidence that higher profits can be obtained through price discrimination. Rather, revenues could be

improved through a lower fixed price ; suggesting the absence of a need for regulatory oversight. Finally, this

thesis includes a methodological contribution. This fourth article discusses the problem of zeros in log-linear

and log-log regressions when the analyst is interested in measuring a semi-elasticity or an elasticity ; as is

commonly done in empirical industrial organization, labor economics, international economics, development

economics, and health economics. We show this issue to be highly relevant by measuring its relevence in the

works of recent publications in the American Economic Review. We not only explain this issue, we also develop

a new approach called « iterated Ordinary Least Squares ». The latter is more flexible in terms of moment

conditions and easier to estimate, in particular in the context of endogenous regressors, than the more classical

solution consisting in Poisson regression. Using a new statistical test based on comparing the empirical pattern

of zeros in the data with the ones implied by moment-based models, we show that our model can sometimes

be favored in comparison to other classical solutions, as shown by revisiting recent publications from the fields

of international trade and development.
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1.0.2 French Summary

Cette thèse propose trois contributions aux questions de politique de concurrence ainsi qu’une nouvelle approche

économétrique. Sur la politique de concurrence, elle inclut deux études portant sur le rôle des politiques

antitrust vis-à-vis du marché du travail. La première évalue les niveaux de concentration industrielle, au sens du

Herfindahl–Hirschman Index (HHI), dans les marchés locaux du travail en France sur la période récente (2011-

2015). A l’aide de données administratives permettant de suivre l’ensemble des flux des travailleurs entre les

entreprises, cet article confirme une relation négative entre la concentration et la masse salariale. Ce travail

révèle donc l’existence de rentes oligopsonistiques et monopsonistiques résultant, en partie, de la politique de

concurrence. Pour étudier ce phénomène, la dernière partie de l’article simule des fusions horizontales entre

les deux plus grandes entreprises de chaque secteur. On identifie ainsi des pertes d’emplois significatives dans

le secteur même, ainsi que des pertes collatérales par le biais des professions subissant une réduction de la

concurrence entre employeurs. Le deuxième article confirme cette relation entre politique de concurrence

et salaires à travers l’étude des mécanismes de promotion salariale au sein des équipes américaines de

baseball. Exploitant la soudaine et aléatoire promotion de certains joueurs pouvant accéder à un marché

du travail pseudo-concurrentiel (à travers l’accès à l’arbitration salariale) à partir d’un marché initialement

monopsonistique, nous montrons que ce changement dans la structure du marché permet d’expliquer une

modification à la hausse des salaires d’au moins 30%. Le reste de l’article argumente que cette augmentation

peut bien s’interpréter comme une perte de salaire par rapport à un marché concurrentiel. D’abord, les salaires

ne changent pas de manière forte lorsque les joueurs rejoignent un marché réellement concurrentiel (free

agents). Ensuite, un modèle théorique clarifie des conditions pour que l’arbitration salariale ne génère pas de

distorsions par rapport à un marché du travail concurrentiel. Ainsi, nous pouvons observer que l’absence de

concurrence peut aussi se régler à travers la création d’institutions arbitrales tierces, suggérant de possibles

nouveaux leviers pour la politique de l’emploi. Une troisième étude pose la question de l’éventuel encadrement

des pratiques de discriminations tarifaires dans le milieu du jeu vidéo sur téléphone mobile. A travers des

variations quasi-naturelles au sein du jeu étudié ainsi que des exclusions résultant d’un essai randomisé

contrôlé (RCT), nous pouvons affirmer que les joueurs sont myopes : ils n’anticipent pas les barrières de

payements futures. A travers cette observation, nous identifions la demande de contenus ainsi que son

hétérogénéité pour les joueurs, par un modèle de demande à choix discrets basé sur la théorie de l’utilité

aléatoire de McFadden. Nous simulons alors différents menus de prix pour étudier leurs capacités à augmenter

les profits de l’entreprise. Nous trouvons que ces pratiques n’augmenteraient que marginalement ses profits

mais que celle-ci pourrait augmenter ses revenus simplement en établissant un prix fixe plus modeste. Cela

suggère l’absence de besoin de régulation et ainsi que de nouvelles façons d’exploiter le contenu des jeux afin

de mieux quantifier les besoins et sensibilités des consommateurs. Enfin, une contribution d’ordre méthodologique

complète cette thèse. Elle soulève la question des bonnes pratiques économétriques lorsque l’analyste est

confronté à des zéros dans le contexte d’une estimation d’élasticité ou semi-élasticité – cette dernière étant un

objectif récurrent en économie industrielle, en économie du travail, en économie internationale, en économie

du développement et en économie de la santé. Nous montrons la pertinence de la question à travers une revue

bibliométrique des publications dans l’American Economic Review où nous trouvons que des chercheurs à la

pointe du domaine peuvent faire appel à des simplifications méthodologiques difficiles à justifier théoriquement.

Nous expliquons alors les diverses solutions existantes et compatibles avec ces données de comptage et
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proposons une nouvelle approche nommée « iterated Ordinary Least Squares ». Cette dernière est plus

flexible en termes de moments et plus facile à estimer (surtout avec des variables endogènes) que la méthode

plus classique de la régression Poisson. De plus, la méthode est utilisable même dans le contexte de variables

de contrôle nombreuses et de haute dimension, grâce à une transformation dite within. Avec l’aide d’un test

statistique basé sur l’équivalence théorique entre la prévalence des zéros dans les données et celle prédite

par ces modèles, nous montrons que notre modèle peut-être préféré par rapport aux méthodes classiques, à

travers l’étude de données issues de publications récentes portant sur le commerce international, par exemple.

Dans ce cas, la méthode Poisson suggère que les accords commerciaux n’ont aucun impact sur les flux

internationaux. Notre méthode montre, au contraire, que ces derniers peuvent largement augmenter les

échanges de biens et services à travers les pays.
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Chapter 2

Wages, Hires, and Labor Market

Concentration

This first chapter is co-written with Ioana Marinescu and Ivan Ouss. It is published in the Journal of Economic

Behavior and Organization, Volume 184, April 2021, p. 506-605.

Abstract: How does employer market power affect workers? We compute the concentration of new hires by

occupation and commuting zone in France using linked employer-employee data. Using instrumental variables,

we find that a 10% increase in labor market concentration decreases hires by 3.2% and their hourly wage by

nearly 0.5%, as hypothesized by monopsony theory. Based on a simple merger simulation, we find that a

merger between the top two employers in the retail industry would be most damaging, with about 30 million

euros in annual loss to the wage bill of new hires, and a 3,000 decrease in annual hires.

2.1 Introduction

How does employer market power affect workers? A burgeoning literature has shown that labor market concentration

has a negative impact on wages (Azar et al., 2017a; Benmelech et al., 2018; Hershbein et al., 2018; Rinz, 2018;

Lipsius, 2018; Abel et al., 2018; Martins, 2018; Qiu and Sojourner, 2019; Bassanini et al., 2020; Schubert

et al., 2020; Dodini et al., 2020). From a policy perspective, this suggests that antitrust and competition

authorities should scrutinize prospective mergers between two companies for their anticompetitive effects

in the labor market (Marinescu and Hovenkamp, 2018; Naidu et al., 2018a; Marinescu and Posner, 2019).

However, doing so requires the assessment of both wage and employment effects of consolidations. While

prior literature has examined the wage effects of labor market concentration, it did not examine employment

effects. Furthermore, the data used was often incomplete in terms of industries and occupations covered.

Therefore, it was not possible to assess the size of the expected economy-wide wage and employment losses

resulting from employer consolidation via mergers.

In contrast, we leverage rich administrative data on firms and workers in France to measure how increases in

labor and product market concentration affect both wages and employment. More specifically, our administrative

data from France includes the date, occupation, and location of all new hires. We link this data to workers’

employment histories and to firm-level data. We define labor market concentration as the Herfindahl-Hirschman
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Index for new hires in an occupation (4-digits), commuting zone, and quarter. We find that the mean labor market

concentration in France is 0.151. Then, we run wage regressions controlling for worker and firm fixed effects,

and for firm size and value added per worker. Using our estimates of the impacts of labor market concentration,

we then simulate the economy-wide effects of a horizontal merger between the two largest (by employment)

firms in each industry.

Our first finding concerns labor market concentration and its wage and employment impacts. In our preferred

wage specification, we control for market (occupation by commuting zone), worker and firm fixed effects, and

instrument labor market concentration with the inverse number of employers in other geographic markets for the

same quarter and occupation, following a similar strategy to Azar et al. (2017a); Rinz (2018); Qiu and Sojourner

(2019). We find that a 10% increase in labor market concentration decreases the wages for new hires by nearly

0.5%. This negative effect was found to be robust across specifications. Furthermore, we find some evidence

that the effects of labor market concentration are less negative in more unionized industries and more severe

when the worker is employed on a part-time basis. In our preferred specification to measure the employment

effects of concentration, we control for occupation by commuting zone fixed effects and instrument labor market

concentration in the same way as before. We find that a 10% increase in labor market concentration lowers

the number of new hires by about 3.2%. That labor market concentration decreases wages and hires is exactly

what economic theory would predict in an oligopsonistic labor market (Manning, 2011; Azar et al., 2019).

Our second finding concerns the impact of product market concentration on wages (Qiu and Sojourner,

2019) and hires. Product market concentration is calculated at the industry by commuting zone level. Since

labor and product market concentrations are positively correlated, we add this variable in all our main regressions

to limit omitted variable bias. For our preferred specification for new hires described above, we find that a

10% increase in product market concentration increases hourly wages by 0.65%, with a larger effect in more

unionized industries. This result is robust across specifications and consistent with rent sharing in unionized

industries. Furthermore, we find that product market concentration decreases hires as predicted by oligopsony

theory such that, in our preferred specification, a 10% increase in product market concentration lowers the

number of new hires by 3.3%.

Our third finding sheds new light on the expected impact of mergers and how antitrust authorities could

anticipate their effects. We simulate the impact of horizontal mergers between the two largest employers in

each industry, thus focusing on the mergers that would increase labor market concentration the most in each

industry. We calculate the changes in labor market concentration that such major mergers would entail. We

then apply our preferred estimate for the impact of labor market concentration to estimate the loss to the number

of new hires and the associated wage bill. We find that the economy-wide impact of the merger varies with initial

labor market concentration: mergers yield the highest number of lost hires in labor markets with low levels of

labor market concentration prior to the merger, which tend to be the markets with the largest number of hires

prior to the merger. Overall, compared to other industries, a merger in retail would be the most damaging: a

merger between the top two employers in the retail industry would yield 30 million euros of yearly lost wages

for new hires, and about 3 000 hires lost annually. When we also take into account the impacts on workers in

other industries that share an occupational labor market with workers in the retail industry (e.g. stock clerks in

the temporary work industry), the damage extends to 40 million euros loss to the annual wage bill along with

3 900 jobs. Effects on workers outside the retail industry are not negligible since they amount to about 30% of

the total effect. After the retail industry, a merger between the top two employers in the building maintenance
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industry would be almost as damaging with annual wage losses of about 16 million euros for new hires, and a

2 200 decrease in yearly hires.

We make three key contributions to the literature. First, we use administrative data to obtain the most

comprehensive dataset to date on the labor market concentration of new hires by occupation. Relying on

hires is more accurate than relying on job postings (Azar et al., 2017a, 2018, 2019; Hershbein et al., 2018)

because not all companies post their jobs online. Data on hires is more accurate for measuring current

competition in the labor market than data on the stock of employment, especially when such a stock is based

on industries (Benmelech et al., 2018; Rinz, 2018; Lipsius, 2018; Abel et al., 2018) rather than occupations.

Another advantage of focusing on new hires is that the wages of new hires are more likely to be impacted

by market conditions than the wages of stayers (Montornès and Sauner Leroy, 2009; Pissarides, 2009). Our

extensive data further allows us to control not only for value added and firm fixed effects (Benmelech et al.,

2018) but also for worker fixed effects1, thereby reducing the scope of omitted variable bias arising from worker

composition effects.

Our data allows us to explore the effect of labor market concentration in the European context of France: we

show that the impact of labor market concentration on wages and employment is negative even when unions

are powerful and labor market regulations are stringent. This adds to the evidence from Portugal (Martins,

2018) and Sweden (Dodini et al., 2020), showing a negative impact of labor market concentration on wages.

Another study using French administrative data (Bassanini et al., 2020) focuses on stayers instead of new hires,

and shows that labor market concentration reduces the wages of stayers.

Our second key contribution is to go beyond the wage effects of labor market concentration that prior

literature has estimated to examine the effects of labor and product market concentration on worker flows. We

find that both labor and product market concentration negatively affect hires, but the effect is more precisely

estimated for labor market concentration. Exits also decrease with labor and product market concentration,

leading to a more sclerotic labor market. Overall, the net effect of labor and product market concentration on

employment is negative.

Our third key contribution is to shed light on how consolidation may affect both wages and employment

by simulating horizontal mergers between the two largest players (by employment) in each industry, adding to

the literature on the effects of mergers on workers (Brown and Medoff, 1987; Shleifer and Summers, 1988;

Gokhale et al., 1995; Conyon et al., 2001; Gugler and Yurtoglu, 2004; Margolis, 2006; Lehto and Böckerman,

2008; Siegel and Simons, 2010; Prager and Schmitt, 2018; Arnold, 2019). Comprehensive data is critical to

measure the full impact of mergers: in particular, we find that 30% of the impact of mergers affects workers

in industries other than the industry where the merger took place. Through this exercise, we provide a simple

method that can be used in practice by competition authorities to assess the likely impact of a merger. In

particular, we find that in France, mergers in retail and in building maintenance would be the most damaging in

terms of lost wages and jobs.

The paper proceeds as follows. First, Section 2.2 defines our measure of labor and product market

concentration, introduces the French matched employer-employee dataset, and describes the statistical relationship

between our main variables of interest. Second, Section 3.3 presents our main econometric evidence with

regards to impact of labor and product market concentration on wages and the number of new hires. Finally,

1Worker fixed effects are identified off of workers who are hired multiple times during our sample frame 2011-2015.
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Section 2.4 presents the counter-factual exercise consisting in simulating the impact of mergers of the top two

employers in each industry on the labor market.

2.2 Measuring Labor and Product Market Concentration

2.2.1 Data

2.2.1.1 Primary Sources

Two main data sources are used in this paper. They form what is commonly referred to as linked employer-

employee data. First, the Déclaration Annuelle de Données Sociales (DADS) provides us with individual

level data on workplace location, wages, hours worked, occupation, industry, gender, and age. For multi-

establishment firms, the data provides establishment identifier and location. This allows us to distinguish

between workers employed in different establishments of the same firm. Maintained by the French National

Institute for Statistical and Economic Studies (INSEE), this administrative dataset covers all French private and

public sector workers. Further description of this data can be found, for example, in Abowd et al. (1999). Whilst

this dataset is not freely accessible, any researcher can request access to it through the Secure Data Access

Centre (CASD).

The subfile DADS Salariés is an exhaustive repeated cross-section of workers that allows us to identify

individual workers and their primary source of income (i.e, the job providing them with the most income during

a given year). When there are no main sources of income, one is created by aggregating the different income

sources. We use this subfile to construct our measures of concentration (see below) and employment flows.

The subfile DADS Panel provides a worker identifier allowing us to control for individual fixed effects in hourly

wage regressions. However, it only records workers born during the month of October. For this reason, it is

not exhaustive (making it unreliable to construct concentration indices) and less relevant to study employment

flows.2

Second, the firm identifier (code SIREN) allows us to link workers to the characteristics of their respective

firms. These characteristics are those provided in standard financial disclosures at the yearly level. These

financial disclosures stem from the database Système unifié de statistique d’entreprises (SUSE; unified system

of firm statistics) collected by INSEE and the French Treasury (Direction Générale des Impôts (DGI)). Its main

dataset is called the Fichier complet unifié de SUSE (FICUS; complete unified file of SUSE). In 2007, it was

replaced with Élaboration des Statistiques Annuelles d’Entreprise (ESANE). From this database, we get our

measure of firm revenues along with our controls for firm size and value added per employee.

2.2.1.2 Secondary Sources

Two secondary datasets are used for the purpose of exploring alternative specifications. First, the survey on

financial links between companies, Enquête sur les liaisons financières entre sociétés (LIFI), is used to identify

the business group to which firms belong and allows us to construct a measure of labor market concentration

at the business group level. This survey describes the ownership and subsidiaries of companies, identified by

2Nonetheless, we provide in Appendix 2.C.7 the baseline regressions on new hires based on the DADS Panel. They are broadly in
line with those estimated on the repeated cross-section.
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the Siren number. The survey reviews all firms satisfying one of the following criteria : (a) owns over 1.2 million

euros of another company’s shares, (b) employs over 500 employees, (c) has a turnover over 60 million euros

per year, (d) was a business group headquarter in the previous year, or (e) was foreign owned in the previous

year (i.e, at least 50% of its shares are owned from a foreign firm). Respondents must identify a subsidiary

if they own over 30,000 euros of its shares. This allows us to identify business groups in a comprehensive

way. We match a firm to its business group using, as above, the code SIREN. When a firm had no business

group, we assigned its firm identification number (code SIREN) as its business group identifier. This dataset

has already been used by Cestone et al. (2017), which can be consulted for further information.

Second, we measure unionization rate at the industry level using the Enquête Réponse (2011). We use this

measure to look at the relationship between market power and unionization. As explained below, we take this

as a proxy for the unions’ bargaining strength. This survey was administered by the French Ministry of Labor to

18 536 individual workers (with at least a 15 months tenure) in firms with at least 11 employees in the private

and semi-private sector (excluding agriculture and the public administrations). It asked workers if they were part

of a union. Respondents could answer (i) “yes”, (ii) “No, and I have never been a member”, and (iii) “No, but I

have been in the past”. We recode answers as a binary variable (yes or no). To recover a unionization rate by

industry, we aggregate this new variable at the 2-digit industry level because there were too few respondents to

measure the unionization rate at the 4-digit level accurately.3 We provide these raw unionization rates in Table

2.M.1 in the Appendix 2.M.1, along with the number of individuals used to calculate these rates.

2.2.2 Sample Selection

Our sample selection procedure is the following. First, we only keep new hires i.e. those who have employment

contract start dates during the quarter of observation.4 Due to wage rigidity and employment protection, there

is evidence (Montornès and Sauner Leroy, 2009; Pissarides, 2009) that wage cuts and workforce adjustments

tend to disproportionately affect new hires.5 Second, we only keep private sector employees. We also exclude

state-sponsored workers, apprentices, and interns. We drop workers below 18 and above 67. Beyond the

public sector, we also drop non-governmental organizations, the art industry, museums, sports clubs, unions,

and home production. Our data covers new employees from 2011 to 2015 included. During these years, the

data collection system did not change, it is both the most recent and complete (in terms of response rate)

version of the data.6 Finally, for the purposes of studying hourly wages, we discard for each year the 5% lowest

hourly wages and the 1% highest wages. This leaves us with valid observations (above the minimum hourly

wage) and excludes outliers.

To measure concentration, we always use the cross-sectional data on new hires (DADS Salariés). For

regressions, we use two different samples depending on the outcome of interest. When we analyze the impact

of concentration on hourly wages, we use the smaller worker panel (DADS Panel), so that we can control for

worker fixed effects. When we turn to the impact of concentration on new hires, we use the cross-sectional

3We drop workers in the Temporary Employment Industry because we cannot distinguish between the Temp. workers who rarely
belong to a union and the permanent employees of the Temp. agencies who have a standard pattern of unionization.

4In the data, workers who start on January 1st may be starting on January 1st or continuing a job from the previous year. Therefore,
we exclude observations whose job spells start on January 1st for each year of observation.

5Our data period, 2011-2015, is a period of growth in France. During such a period, higher labor market concentration could slow
wage growth, even if it does not lead to wage cuts.

6Starting in 2009, the whole population in employment is covered by the dataset, commuting zones were redefined in 2010, and
non-response in 4-digit occupation is low and stable starting in 2010.
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data (DADS Salariés). Consulting Table 2.A.2 in Appendix 2.A, one can observe that our two samples cover

broadly the same number of commuting zones (at least 304), occupations (at least 403), and industries (at least

601). The panel data covers one million individuals. As expected, the more exhaustive repeated cross-section

records nearly three times more firms (around 1 million) than the panel.

2.2.3 Definition of the Herfindahl-Hirschman Index (HHI)

2.2.3.1 Labor Market Herfindahl-Hirschman Index (HHI)

We now define our measures of labor (L) and product (P ) market concentration. Labor Market Concentration

is measured through the Labor Market Herfindahl-Hirschman Index (HHI), as in Azar et al. (2017a). This index

measures concentration through market shares. Let Jo,m,t be the set of firms hiring in occupation o ∈ O

(measured at the 4-digit level) in geographical area m ∈ M (measured at the commuting zone) at time t ∈
T = {Q12011, ..., Q42015} (measured at the quarterly level from 2011 to 2015). The number of workers of

this occupation, time, and commuting zone hired by firm j ∈ Jo,m,t is denoted Nj,o,m,t . The firm’s labor market

share sL
j,o,m,t

is then:

sLj,o,m,t =
Nj,o,m,t

∑

k∈Jo,m,t Nk,o,m,t
(2.2.1)

For example, if at a given time and commuting zone there is a total of 100 cleaners being hired, a firm hiring

10 of these cleaners would have a 10% market share. The labor market Herfindahl-Hirschman Index, HHILo,m,t ,

sums the squares of these market shares:

HHILo,m,t =
∑

k∈Jo,m,t

¦

sLk,o,m,t

©2

(2.2.2)

This index is always between zero (excluded) and one. When it is equal to one, a single firm employs all

new hires. One way to interpret the HHI is through the 2010 horizontal merger guidelines of the American

Department of Justice and Federal Trade Commission. An HHI between 0,15 and 0,25 is indicative of a

moderately concentrated market and above 0.25 of a highly concentrated market.

2.2.3.2 Product Market Herfindahl-Hirschman Index (HHI)

We also construct a Product Market Herfindahl-Hirschman Index (HHI). To do so, we locate firms according to

the commuting zone in which their employees are located. We then use the national sales of these firms to

measure a commuting-zone specific product market share. If the firms at the local level had the same share of

sales (relative to competitors present in the commuting zone) as at the national level and the product market

were local, then this way of calculating would mimic a localized measure of labor market concentration.

More formally, we consider firms with at least one employee in commuting zone m ∈ M, at time t ∈ T
(national sales are recorded at the yearly level), in industry i ∈ I (measured at the 4-digit level). These firms

are collected in a set Vi ,m,t . For any firm j in this set, we observe the national sales (measured in nominal

euros) during that year, denoted by Rj,t . We can then define the product market share as:

sPj,m,t =
Rj,t

∑

k∈Vi ,m,t Rk,t
(2.2.3)
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The product market Herfindahl-Hirschman Index, HHIP
i,m,t

, sums the squares of these market shares:

HHIPi,m,t =
∑

k∈Vi ,m,t

¦

sPk,m,t

©2

(2.2.4)

Despite using national sales of a company instead of the more ideal local sales, we believe this measure to

be adequate for large markets. For example, by virtue of the size of the Parisian market, the sales share of each

firm in Paris is likely to be similar to the national share of sales. In a small local market, one firm – e.g. a locally-

owned supermarket selling regional foods – could be dominant, even though its share of national sales is very

small relative to national supermarket chains that operate in the same commuting zone. Although our product

market HHI under-estimates the degree of competition when local firms serve a large share of the market, we

believe the number of such markets to be few. Moreover, to the degree that this error is systematic, our control

variables will rely on variation across time rather than in levels for identification. Finally, we explore alternatives

to this imperfect measure in Section 2.3.4 below. We show that our baseline estimates, for the impact of

labor market concentration, are not significantly affected by the exclusion of firm level controls (including the

product market HHI), the use of product market concentration defined using national sales (which we call the

global product market HHI) in the industries exposed to international trade, the reliance on commuting-zone by

industry by time dummy variables, or the use of employment-weighted product market concentration.

2.2.4 Descriptive Statistics

Table 2.1 provides descriptive statistics for the estimation sample used to study the relationship between our

measures of concentration and hourly wages.7 The average labor market HHI at the firm level is 0.15 whilst its

median nears 0.06. This difference between the mean and the median reflects the existence of a few markets

with high levels of labor market concentration.

Table 2.1: Summary Statistics : Individual Level Data

count min max p50 mean sd

Gross Hourly Wage 2225026 9 44.0625 11.88235 13.34 4.567

Labor Market Concentration (Firm) 2225026 .0005867 1 .0644531 0.151 0.217

Labor Market Concentration (Business Group) 2225026 .0008135 1 .0752775 0.163 0.220

Product Market Concentration 2225026 .0011498 1 .201532 0.260 0.234

Product Market Concentration (Global) 2225026 .00007 1 .0021053 0.00608 0.0161

Age (in years) 2225026 18 67 28 31.80 11.46

Gender (1 if Male) 2225026 0 1 1 0.564 0.496

Unionization Rate 1476658 0 45.71 10.32 9.862 3.882

Nb. Full-Time Equivalent Employees 2225026 .001 250825 139 16527.5 42083.9

Value Added per Emp. (in nominal euros) 2225026 .0001111 49235.57 33.22288 76.81 273.0

Note: Each observation used to construct this table is a job spell at the individual level (DADS Panel). Their associated level of concentration
is calculated based on the repeated cross-section (DADS Salariés).
Source: DADS, FICUS, and authors’ calculations.
This can be seen more clearly by considering Figure 2.1(a) which depicts the density of the HHI in the

labor market across workers. There appears to be a significant portion of workers who face a single employer

(monopsony). The same can be said based on Figure 2.1(b) for the product market having a single seller

7Table 2.A.3 in Appendix 2.A provides an equivalent table based on the estimation sample used to study new hires. It is based on
data aggregated at the 4-digit occupation by 4-digit industry by quarter level, from the repeated cross-section data provided by the DADS
Salariés subfile.
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(monopoly). Looking at Table 2.A.1 in Appendix 2.A, which provides these same summary statistics for the five

most common occupations, this feature of the distribution in labor and product market concentration appears to

extend to the most common occupations.
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Figure 2.1: Histogram of Labor and Product Market HHI

Note: These figures were constructed using individual level data (DADS Panel). Given that each worker is assigned a level of concentration
(based on the cross-section DADS Salariés), these histograms reflect the distribution of concentration across the new hires.
Source: DADS, FICUS, and authors’ calculations.

Before turning to the econometric evidence, it is important to discuss our measure of labor market concentration

and the way it relates to other measures used across the literature. This paper measures labor market

concentration through employment flows, because this is the most relevant way of capturing job opportunities

for workers looking for a job. Indeed, if a worker was hired, it manifests that a job was available. By contrast,

the total number of workers is not as direct an indication of the number of available jobs. Prior literature has

used employment stocks to measure labor market concentration, albeit by industry rather than occupation

(Benmelech et al., 2018; Rinz, 2018; Lipsius, 2018; Abel et al., 2018). Therefore, it is interesting to examine the

differences between stock and flow measures of labor market concentration by occupation. We present in figure

2.2(a) a binscatter allowing one to convert flow levels of labor market concentration to stock levels. To construct

it, we calculated for each market (occupation by commuting zone) the average HHI and provided its best fit line.

Clearly, there is a near linear relationship between labor market concentration based on flows and on stocks:

the R-squared of the superimposed regression line is equal to 43%.8 The main regression tables for the wage

regressions found in the following section are also provided using the stock level labor market concentration in

Appendix 2.K.9 When the HHI is measured at the industry level (Figure 2.2(b)), there is a similar relationship

between our preferred flow-based measure of labor market concentration and the stock based measure. This

latter measure has been used in prior literature, as it is often more easily available. Although the relationship is

weaker, with an R2 of 20%10, there is nonetheless evidence of a strong correlation between the two measures.

8 i.e: log(Stock HHI) = −1.45 + 0.9101log(Flow HHI)
9The reader is referred to Bassanini et al. (2020) who consider employees who do not change firms (i.e, stayers) for an alternative

population of interest and approach.
10 i.e: log(Industrial Stock HHI) = −1.69 + 0.5322log(Flow HHI).
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Figure 2.2: Binscatter : comparison of different measures of labor market concentration

Note: These figures are binscatters performed at the occupation by commuting zone level. We use the stock of employees in 2014 and 2015
to calculate an HHI by 4-digit occupation and occupation (denoted HHI - Stock ). We also calculate an HHI defined over industries (at the 4-digit
industry by a commuting zone level) which we denote by HHI - Industry-Stock. These new measures of concentration are then averaged across
our usual market definition (an occupation by a commuting zone) and matched with the flow level of labor market concentration. In each case, we
rely on the repeated cross-section DADS Salariés. The sample was limited to 2014 and 2015 for computational convenience.
Source: DADS and authors’ calculations.

While stock and flow based labor market concentration measures are highly correlated across markets,

their levels are quite different. The figures use vertical and horizontal lines to indicate thresholds used by the

US federal antitrust authorities to gauge levels of concentration. By the standard of the Department of Justice /

Federal Trade Commission 2010 horizontal merger guidelines, 0.15 is the threshold between low and medium

concentration while 0.25 is the threshold between medium and high concentration. In Figure 2.2(a) and Figure

2.2(b), we see that stock-based measures of concentration show systematically lower levels of concentration

than flow-based measures, which makes sense as not all firms hire in every given quarter. As a result, the

0.25 threshold for high concentration in the stock measure of labor market concentration corresponds to a

concentration as high as 0.7 in the flow-based measure of labor market concentration! Even the threshold

of 0.15 for medium concentration in the stock-based measure of labor market concentration corresponds to a

flow-based HHI of about 0.4, which is way above the high concentration threshold. This shows that measuring

labor market concentration by stocks severely underestimates the level of concentration among new hires.11 If

only a stock-based measure of concentration is available, thresholds of about 0.05 and 0.15 correspond to the

relevant medium and high concentration thresholds in the flow-based measure. To the extent that new hires

adequately measure available job opportunities for workers, competition authorities should use the flow based

measure, or, if only the stock-based measure is available, realize that it corresponds to much higher levels of

flow-based labor market concentration.

The existence of business groups may lead to under-estimating labor market concentration to the extent that

firms within a group do not compete for workers. However, this turns out not to be a big problem empirically: as

suggested by Figure 2.3 below, the two measures are almost perfectly correlated and estimation results are not

sensitive to measuring labor market concentration at the business group versus the individual firm level. Table

11The concentration among new hires is also relevant for the wages of job stayers because it reflects their potential outside options at
a given point in time (Bassanini et al., 2020).
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2.1 also shows that the levels of concentration measured at the firm level or the group level are very similar,

even if concentration is as expected slightly higher at the group level with a mean of 0.163 instead of 0.151

at the firm level. We nonetheless provide in Appendix 2.B.4 estimates of our baseline specifications using the

business group measure of labor market concentration.
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Figure 2.3: Distribution of the Log(Labor HHI) at the Firm and Business Group Level

Note: This figure was constructed using individual level data (DADS Panel) in 2011-2015. Each worker has both a measure of labor market
concentration at the business group and at the firm level. The concentration levels were calculated using the repeated section (DADS Salariés).
Source: DADS, LIFI, and authors’ calculations.
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2.3 Econometric Assessment of Monopsony

Monopsony Theory (Boal and Ransom, 1997; Manning, 2011; Robinson, 1969) predicts that both employment

and hourly wages should fall as a result of a rise in labor market concentration (Azar et al., 2019). Indeed,

the key intuition for monopsony power is by analogy with monopoly power: profit-maximizing employers with

monopsony power keep both wages and employment below the competitive equilibrium. The presence of

concentration in the product market (monopoly power) reduces output, which should result in fewer workers

employed. On the other hand, the impact of product market concentration on wages is unclear (Qiu and

Sojourner, 2019). In the presence of rent sharing, one would expect greater product market concentration to

increase wages to the extent that profits increase. Table 2.2 summarizes the predicted effects.

Employment Hourly Wage

Product Market HHI - + ?

Labor Market HHI - -

Table 2.2: Expected Effects of Labor and Product Market Concentration

2.3.1 Research Context

2.3.1.1 Descriptive Evidence

Our goal is to assess these predicted effects of labor and product market concentration in the French labor

market. To this end, we consider the correlation across commuting zones between, on the one hand, labor

market concentration, and, on the other hand, hourly wages and the number of new hires. Figure 2.4(a) depicts

the log of the average gross hourly wage against the log labor market HHI by commuting zone. There is a clear

negative relationship between hourly wages and labor market concentration. Figure 2.4(b) shows a strong

negative relationship between market size (in terms of recruitment flows) and labor market concentration. Both

of these observations are consistent with the core predictions of the monopsony model. Of course, the negative

relationship between concentration and hires is somewhat mechanical since fewer hires also typically entails

fewer firms hiring. Our regression analysis will address this issue by using the instruments described below.
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Figure 2.4: Hourly Wage and Number of New Hires Against Labor Market Concentration

Note: Each point represents a commuting zone through its average level of labor market concentration, number of new hires, and
mean hourly wage (2011-2015). These averages were calculated using the worker panel (DADS Panel) but relying on concentration
measured calculated on the repeated cross-section (DADS Salariés).
Source: DADS and authors’ calculations.

Moreover, our task is complicated by the existence of both observed and unobserved confounders. These

confounders motivate the use of regression analysis with fixed effects and control variables, along with the use

of instrumental variables. Indeed, we can observe that concentration varies systematically across the French

territory. Maps 2.5(a) and 2.5(b) display the mean labor market and product market HHI per département

(administrative unit similar to a US county). The product market HHI is calculated on the basis of the identity of

firms that have at least one employee in a worker’s industry in the same geographic market. The labor market

HHI is calculated on the basis of the identity of the firms that hire in the same occupation as the worker and

same commuting zone. Even though sales shares come from national sales, this way of calculating the product

and labor market HHIs will yield relatively high levels of concentration in less populated areas where fewer firms

hire, whether that is within an occupation or within an industry. We see (i) that areas with high product and labor

market concentration overlap, (ii) low population density areas have high concentration market structures, and

(iii) given that low population density areas have low wages, one could be led to believe that the (presumably)

negative impact of labor market concentration on wages dominates the (presumably) positive impact of product

market concentration.
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Figure 2.5: Map of Labor and Product Market HHI

Note: This figure was constructed using individual level data (DADS Panel). Each worker has both a measure of labor market concentration
and product market concentration calculated based on our repeated cross section (DADS Salariés). These measures are aggregated at the
département level.
Source: DADS, FARE, and authors’ calculations.

2.3.1.2 Identification

To test the predictions of Monopsony Theory, we must be able to disentangle the effects of market concentration

from both observable and unobservable confounders. To this end, we estimate two sets of regressions which

include fixed-effects, control variables, and which we identify through instrumental variables. The first set

focuses on the log(Gross Hourly Wage) observed at the individual worker level (and estimated on the longitudinal

DADS Panel). The baseline results are provided in Section 2.3.2 below. The second set is concerned with

employment flows, measured through the log(Number of New Hires) in a given combination of occupation,

industry, and commuting zone, calculated for each time quarter. These latter regressions are performed on the

cross-sectional DADS Salariés and rely on market-level aggregates such as the mean age and gender among

new hires. The baseline results are provided in Section 2.3.3 below.

In each case, we attempt to disentangle observable confounders from evolving market structure effects.

Our linked employer-employee dataset allows us to account for several fixed and time-varying covariates which

could threaten identification. To this end, in our wage regressions, we control for time, occupation, commuting

zone, occupation by commuting zone, firm12, and worker fixed effects. We also include gender (only identified

without individual fixed effects) and age, along with the logarithm of the number of full-time equivalent employees

in the hiring firm and the logarithm of the value-added per full-time equivalent in the hiring firm. The latter two

12Controlling for plant fixed effects does not substantially change the estimates.
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variables are included to control for the potential correlation which may exist between labor and product market

concentration on the one hand, and firm productivity on the other. In our employment regressions, we control

for time, occupation, commuting zone, occupation by commuting zone, and occupation by commuting zone

by industry fixed effects. We construct analogue control variables to those used for hourly wage regressions,

including the share of men among the hires, their mean age, along with the mean log firm size (defined above)

and mean log value-added per employee in the firms to which new hires belong.

Moreover, there are potentially unobserved time-varying market-specific variables that we did not control

for, that are correlated with our measures of concentration, and that affect wages. For example, according to

Search and Matching Theory, wages are determined by labor market tightness (i.e, the ratio of job openings

to job seekers), productivity, and the workers’ unemployment benefits (Rogerson et al., 2005). We control for

proxies of productivity and given that unemployment benefits are determined nationally, we are able to control

for workers’ out-of-work benefits by controlling for time fixed effects. However, we are unable to control for

time-varying changes in labor market tightness at the market level because we do not observe job openings

and job seekers.

To address this issue, we follow the strategy deployed in Azar et al. (2017a); Martins (2018); Qiu and

Sojourner (2019) and instrument our concentration indices with a Hausman instruments. These instruments

measure national shocks, assume them to be uncorrelated to local shocks, and use their variation to identify

exogenous changes in the endogenous variable of interest. This type of instrumental variables strategy is

commonly used in the field of Industrial Organization to address price endogeneity within the product market.

For example, Nevo (2001a) relies on the prices in other geographic markets to instrument for city-level prices

of various products in the ready-to-eat cereal industry.

For the labor market HHI, we consider as instrument the average number of firms in other markets recruiting

a given occupation. Formally, we have for each quarter t ∈ T , commuting zone m ∈ M with cardinality |M|,
and 4-digit occupation o ∈ O:

Instrument Workero,m,t =
1

|M| − 1

∑

v∈M−{m}

− log(
∑

k∈Jo,v ,t

1(Nk,o,v ,t > 0)) (2.3.1)

where Nk,o,v ,t are the number of new hires for firm k .

This provides us with variation in market concentration that is driven by national-level changes in the

occupation, and not by changes in the occupation in that particular local market. For example, if the labor

market tightness for cleaners (the most common occupation) falls in the Paris area, this could both decrease

wages and increase concentration, since fewer firms would likely be recruiting. By instrumenting with the

number of firms hiring cleaners in other areas, we rule out an effect of labor market tightness in Paris on Labor

HHI.

We rely on a similar strategy to instrument the product market HHI. Our instrument is the average number

of firms in other commuting zones hiring within the same industry. This instrument will fluctuate when there are

national shocks to the industry but not when there are local shocks to the industry. More formally, we have for

each quarter t ∈ T , commuting zone m ∈ M and 4-digit industry i ∈ I:

Instrument Firmi ,m,t =
1

|M| − 1

∑

v∈M−{m}

− log(
∑

k∈Vi ,v ,t

1(Nk,i ,v ,t > 0)) (2.3.2)
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where Nk,i ,v ,t are the number of new hires for firm k in industry i .

First-Stage estimates for the hourly-wage are provided in Appendix 2.B.3 whilst those for new hires are

available in Appendix 2.C.4. The instruments appear to be relevant based on their statistical significance and

high F-statistic which is always above 10. This is particularly true at the aggregate level used to study the impact

of concentration on the number of new hires. In this case, the F-statistic is above 100 in all cases but the most

demanding specification (with industry by occupation by commuting zone fixed effects). This observation holds

when we weight (analytically) our regressions by the number of hires and mean number of hires across time

(for a combination of occupation, industry, and commuting zone).

2.3.2 Impact on Hourly Wages

2.3.2.1 Baseline

We first estimate the impact of concentration on hourly wages. To do so, we rely on longitudinal individual level

data provided by the DADS Panel, where each observation is an employment spell. We provide the estimates

using ordinary least squares (OLS) along with those relying on the instrumental variables (IV) described in

Equations 2.3.1 and 2.3.2 above. In our most demanding specification, we estimate for worker e ∈ E, firms by

j ∈ J in industry i ∈ I, occupation o ∈ O, and commuting zone m ∈ M at time quarter t ∈ T :

log(we,j,o,m,t) = αL log(Labor HHIo,m,t) + αP log(Product HHIi ,m,t)

+X ′e,j,tλ+ Ψj + Ωe + ζo,m + Ξt + εe,j,o,m,t

where we,j,o,m,t is the gross hourly wage, αL is the elasticity of the hourly wage with respect to labor market

concentration, αP is the elasticity of the hourly wage with respect to product market concentration, Ψj are

firm fixed effects, Ωe are individual fixed effects. The vector X ′
e,j,t

collects control variables (with associated

parameter vector λ) such log(Nb. Employees) measured in terms of full-time equivalent employees per year

in the hiring firm, and log(Value Added per Employee) measured in terms of annual revenue per full-time

equivalent employee in the hiring firm. In specifications without individual fixed effects, we can also identify the

effect of a male gender dummy and of age (measured in years, as a continuous variable). ζo,m are commuting

zone by occupation fixed effects and Ξt are time fixed effects. εe,j,o,m,t is the error term. We provide standard

errors clustered at the commuting zone level to account for common shocks and their persistence across time

within a labor market.

In practice, we estimate several specifications. This allows us to examine the trade-off between having

a parsimonious model and a more demanding model with fewer potential unmeasured confounders but less

variation to identify parameters of interest. Six specifications are presented with increasingly demanding fixed

effects. The first provides only time and occupation fixed effects. The second adds commuting zone fixed

effects. The third combines the two previous ones by also including occupation by commuting zone fixed

effects. The fourth and fifth append, respectively, firm and worker fixed effects13 to the third specification. The

final column provides both firm and worker fixed effects, as described in Equation 2.3.2.1. Results for the

ordinary least squares estimation are reported in Table 2.3.

13Worker fixed effects are identified through individuals who are new hires several times within the time frame covered by our data.
These workers’ job mobility may be different from that of the general population.
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We find results consistent with monopsony: labor market concentration is negatively associated with the

wage. This is true across specifications and, although the magnitudes are small, all coefficients are statistically

significant at the 1% level. The most negative coefficient is in column (1), which controls for time and occupation

fixed effects: a rise of 10% in labor market concentration lowers hourly wages by 0.13%. This suggests that the

partial correlation of concentration and wages is fairly strong across geographic labor markets: at a given point

in time and for a given occupation, geographic labor markets with higher concentration have lower wages for

new hires. The effect is quantitatively weaker when we rely on across time variation by controlling for occupation

by commuting zone fixed effects (column (3)). The effect that is closest to zero is in column (6), which includes

worker and firm fixed effects along with the occupation by commuting zone fixed effects: an increase by 10%

in labor market concentration lowers hourly wages by 0.02%. The size of the coefficients falls as more rigorous

fixed effects are added. On the product market side, estimated effects are also small. They range from an

elasticity of -0.005% in column (1) to 0.002% in column (4), once firm fixed effects are added. Estimates for

age and gender appear to be in the usual range, providing credence to our analysis. We can also report

positive coefficients associated with the value added per worker and the firm size. Overall, the adjusted R2

stays constant, rising slightly when firm and worker fixed effects are introduced.

Table 2.3: Hourly Wage (OLS) : Baseline

(1) (2) (3) (4) (5) (6)

Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage)

Log(Labor HHI) -0.0132∗∗∗ -0.00782∗∗∗ -0.00304∗∗∗ -0.00244∗∗∗ -0.00216∗ -0.00206∗∗∗

(0.00278) (0.00138) (0.000921) (0.000620) (0.00123) (0.000763)

Log(Product HHI) -0.00460∗∗∗ -0.000793 -0.000604 0.00166 -0.00246 -0.00189∗∗∗

(0.00144) (0.00125) (0.00144) (0.00166) (0.00166) (0.000647)

Age (in years) 0.00339∗∗∗ 0.00336∗∗∗ 0.00327∗∗∗ 0.00274∗∗∗

(0.000414) (0.000409) (0.000470) (0.000484)

Gender 0.0304∗∗∗ 0.0295∗∗∗ 0.0287∗∗∗ 0.0242∗∗∗

(0.00106) (0.00104) (0.00167) (0.00248)

Log(Value Added per Employee) 0.0230∗∗∗ 0.0223∗∗∗ 0.0202∗∗∗ -0.000885 0.0112∗∗∗ 0.000702

(0.00166) (0.00174) (0.00186) (0.000725) (0.000577) (0.000745)

Log(Nb. Employees) 0.00815∗∗∗ 0.00791∗∗∗ 0.00781∗∗∗ 0.0000949 0.00722∗∗∗ 0.00162∗∗

(0.000257) (0.000237) (0.000203) (0.00138) (0.000121) (0.000710)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

R2 0.523 0.527 0.556 0.664 0.741 0.793

Adjusted R2 0.523 0.527 0.548 0.629 0.633 0.677

N. Clusters 304 304 304 304 304 304

F 1133.4 966.3 1193.2 230.7 1111.9 11.69

Observations 2225026 2225026 2212203 2044008 1734623 1563889

Standard errors in parentheses.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log( Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors
are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and
through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There
are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is
the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The
gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends
itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately−0.00216× 0.1× 100 = −0.0216%.

Next, we consider the two stage least squares estimates provided in Table 2.4. The signs of the coefficients
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are in accord with the basic predictions of the monopsony model across specifications and the magnitudes

have increased compared to the OLS estimates. In terms of labor market concentration, at one extreme, one

finds that a 10% increase in the HHI leads to a 0.97% fall in hourly wages (column (1)). At the other extreme,

in column (4), parameter estimates suggest that a 10% increase in labor market concentration lowers hourly

wages by 0.48%. All coefficients are statistically significant at the 1% or 10% levels. In terms of product market

concentration, we find positive and statistically significant coefficients (at the 1% level) in specifications that do

not include firm fixed effects. At most, a 10% increase in the Product HHI would lead to a 0.82% increase in

hourly wages (column 1).14 We consider column (5) as our preferred specification because controlling individual

fixed effects explain more of the wage heterogeneity (see OLS results) and controlling for firm fixed effects

seems to reduce too drastically the amount of variation in the data. We thus find that a 10% increase in

labor market concentration decreases hourly wages by 0.52%, while an equivalent increase in product market

concentration increases hourly wages by 0.65%.

Table 2.4: Hourly Wage (IV) : Baseline

(1) (2) (3) (4) (5) (6)

Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage)

Log(Labor HHI) -0.0970∗∗∗ -0.0850∗∗∗ -0.0674∗∗∗ -0.0478∗∗∗ -0.0518∗∗∗ -0.0199∗∗

(0.0128) (0.0102) (0.00829) (0.00782) (0.00999) (0.00993)

Log(Product HHI) 0.0823∗∗∗ 0.0770∗∗∗ 0.0755∗∗∗ 0.0262 0.0654∗∗ -0.0270

(0.0243) (0.0261) (0.0248) (0.0261) (0.0300) (0.0291)

Age (in years) 0.00336∗∗∗ 0.00335∗∗∗ 0.00328∗∗∗ 0.00274∗∗∗

(0.000355) (0.000391) (0.000457) (0.000486)

Gender 0.0257∗∗∗ 0.0282∗∗∗ 0.0268∗∗∗ 0.0241∗∗∗

(0.00144) (0.00185) (0.00194) (0.00255)

Log(Value Added per Employee) 0.0196∗∗∗ 0.0194∗∗∗ 0.0179∗∗∗ -0.00121∗ 0.00977∗∗∗ 0.000636

(0.00210) (0.00314) (0.00317) (0.000703) (0.00162) (0.000711)

Log(Nb. Employees) 0.00584∗∗∗ 0.00557∗∗∗ 0.00465∗∗∗ -0.000337 0.00511∗∗∗ 0.00112

(0.000258) (0.000253) (0.000264) (0.00156) (0.000199) (0.000761)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

N. Clusters 304 304 304 304 304 304

F 1199.2 1492.9 2015.9 213.8 691.6 9.515

Observations 2225026 2225026 2212203 2044008 1734623 1563889

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel
(2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting
zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and
at the industry level. There are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of
Employees). The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in
the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The
log-log specification lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately−0.0518× 0.1× 100 = −0.518%.

2.3.2.2 Heterogeneity

Overall, these last two tables provide robust evidence that labor market concentration has a negative impact

on hourly wages. We now run two additional sets of regressions which will allow us to explore some of the

underlying heterogeneity and thereby learn more about potential mechanisms through which concentration
14Table 2.B.9 and Table 2.B.10 in Appendix 2.B.5.1 present wage regressions on the more exhaustive repeated cross-section (which

includes more variation across firms and individuals). We recover a positive and statistically significant parameters associated with the
product market HHI, both with and without the use of firm fixed effects.29



affects wages.

First, we document a relationship between unionization and the impact of labor market concentration.15

We interact our measures for labor and product market concentration with the 2-digit industry unionization rate

observed in the Enquête Réponse (2011).16 We provide in Appendix 2.B.1 results for the ordinary least squares

specification in Table 2.B.1 and those using instrumental variable in Table 2.B.2. Focusing on the latter, there

appears to be a positive impact of unionization on hourly wages, as made clear by the coefficient denoted

Unionization Rate which reports positive and statistically significant coefficients across specifications. This

is in line with expectations and the literature on wages and unionization patterns (e.g, Barth et al. (2017)).

The interaction coefficient between labor market concentration and unionization rate is positive across all

specifications. It is statistically significant at the 1% level when market fixed effects are included. Based on

our preferred specification (IV specification, column (5)), the impact of labor market concentration on wages is

positive with a unionization rate above 37.2%. Similarly, we find a positive interaction between product market

concentration and unionization, across all specifications. These results on unionization are consistent with

those of Benmelech et al. (2018) and Qiu and Sojourner (2019). All in all, this suggests that institutional factors

moderate the impact of labor market concentration on wages.

Second, we find that labor market concentration can have very negative effects for workers operating outside

standard full-time contracts. In particular, Table 2.B.3 in Appendix 2.B.2 provides the ordinary least squares

estimates from interacting each variable and control in our baseline regression with a dummy variable equal to

one if the worker is on a part-time contract. This allows us to identify a stronger negative relationship between

labor market concentration and hourly wages for the subpopulation of workers in part-time, temporary, or on-call

work arrangements. We find that the coefficient relating to the interaction between labor market concentration

and part-time employment is negative and statistically significant at the 1% level, once occupation by commuting

zone fixed effects are accounted for. Indeed, the least square estimators suggest that the impact of labor market

concentration on part-time employment is nearly two times larger than in the overall population.17 Table 2.B.4,

which provides the two stage least squares estimates, finds even larger effects. Again, once market fixed

effects are accounted for, there is a negative point estimate associated with the interaction between labor

market concentration and part-time work. This coefficient is statistically significant at the 5% level when both

firm and worker fixed effects are added, in column (6). In this case, we find that the impact of labor market

concentration is −0.0446−0.0136−0.0136 = 4.27 times larger for workers with a part-time contract. Overall, these results

suggest that workers who are less protected by institutions (such as unions) are more likely to be negatively

affected by labor market concentration.

15Unionization rates may be endogenous, by virtue of simultaneity, if the level of hourly wages affects the unionization rates of workers
and, in turn, the unionization rate affects the hourly wage. This consideration is beyond the scope of this paper and is left for future research.

16This measure of unionization may suffer from a potential measurement error by virtue of the relatively small sample size on which the
survey is based.

17For example, taking the estimates from our preferred specification in column (5), we find that the effect for the non-permanent subset
of workers is −0.00174−0.00241−0.00174 = 2.38 times larger than for the general population.
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2.3.3 Impact on New Hires

2.3.3.1 Baseline

We now consider the impact of market structure on the number of new hires. We do so because the existence

of centralized wage bargaining regimes and high minimum wages limit the scope to adapt wages in response

to changes in bargaining power related to labor market concentration. This suggests that firms may express

changes to their bargaining position by changing their number of hires, as suggested by Monopsony Theory.

To this end, we measure employment as a flow : the number of labor contracts signed during a quarter. This

measure is calculated based on our repeated cross-section (DADS Salariés) by aggregating our observations.

We aggregate at the 4-digit occupation by 4-digit industry code by commuting zone and quarter because this

preserves both labor market concentration (at the occupation by commuting zone level) and product market

concentration (industry by commuting zone level) along with their instruments. Summary statistics for the

subsample used for estimation are provided in Table 2.A.3 in Appendix 2.A. We provide the estimates using

ordinary least squares (OLS) along with those relying on the instrumental variables (IV) described in Equations

2.3.1 and 2.3.2.

We denote by Eo,i ,m,t the number of new hires in 4-digit occupation o ∈ O, 4-digit industry i ∈ I in

commuting zone m ∈ M in quarter t ∈ T . In our most demanding specification, we estimate an equation of

the form:

log(Eo,i ,m,t) = βL log(Labor HHIo,m,t) + βP log(Product HHIi ,m,t)

+X ′o,i ,m,tλ+ ζo,i ,m + Ξt + εo,i ,m,t

where βL is the elasticity of the number of new hires with respect to labor market concentration, βP is the

elasticity of the number of new hires with respect to product market concentration, ζo,i ,m are occupation by

industry by commuting zone fixed effects, and λ is a vector of parameters associated with the control variables

measured in X ′
o,i ,m,t

, which include the mean age of the new hires, the share of these new hires which are

men, the mean log(value-added per employee) across new hires, and the average log(firm size) in the firms

recruiting the new hires. Ξt are time fixed effects whilst εo,i ,m,t is the error term. We provide standard errors

clustered at the commuting zone level to account for common shocks and their persistence across time within

a labor market.

Four specifications are presented with increasingly demanding fixed effects. The first provides only time and

occupation fixed effects. The second adds commuting zone fixed effects. The third combines the two previous

ones by also including occupation by commuting zone fixed effects. The final column goes further by including

an occupation by industry by commuting zone fixed effect. Results for the ordinary least squares estimation are

reported in Table 2.5.

31



Table 2.5: New Hires (OLS) : Baseline

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.120∗∗∗ -0.0593∗∗∗ -0.00478 -0.0937∗∗∗

(0.00378) (0.00641) (0.00350) (0.00675)

Log(Product HHI) -0.116∗∗∗ -0.105∗∗∗ -0.110∗∗∗ -0.0429∗∗

(0.0124) (0.0114) (0.0117) (0.0208)

Mean Age (in years) -0.00336∗∗∗ -0.00335∗∗∗ -0.00328∗∗∗ -0.000557∗∗∗

(0.0000701) (0.0000707) (0.0000712) (0.0000586)

Share of Men -0.0499∗∗∗ -0.0527∗∗∗ -0.0506∗∗∗ 0.00218

(0.00615) (0.00640) (0.00577) (0.00146)

Mean Log(Value Added per Employee) 0.0727∗∗∗ 0.0745∗∗∗ 0.0767∗∗∗ -0.00502∗∗∗

(0.00378) (0.00374) (0.00359) (0.00130)

Mean Log(Nb. Employees) 0.0511∗∗∗ 0.0501∗∗∗ 0.0491∗∗∗ 0.0132∗∗∗

(0.00200) (0.00198) (0.00180) (0.00154)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.171 0.174 0.225 0.742

Adjusted R2 0.171 0.174 0.205 0.683

N. Clusters 308 307 305 305

F 2521.9 1289.1 1007.8 225.3

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting
zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over
a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as
described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of
men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean
Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the
number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the
respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends
itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new hires by
approximately−0.00478× 0.1× 100 = −0.0478%.

The results presented are in line with the basic predictions of theory. We find that both labor market and

product market concentration are negatively related with the number of recruited workers. This can be seen

across the four specifications where nearly all relevant coefficients are statistically significant at the 1% level.

However, magnitudes vary greatly across specifications. Column (1) suggests that a 10% increase in labor

market concentration would lead to a 1.2% fall in employment. This effect falls to 0.0478% in column (3) where

occupation by commuting zone fixed effects are included. For the product market, our results suggest that a

10% increase in the product market can lower employment by up to 1.1% (column (1)), or, more conservatively,

by 0.4% (column (4)). We can also report positive coefficients associated with the value added per worker and

the firm size. At the same time, the coefficients related to mean age and the share of men tend to be negative.

Overall, the adjusted R2 stays constant, rising significantly in the final column when occupation by industry by

commuting zone fixed effects are introduced.
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Table 2.6: New Hires (IV) : Baseline

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.432∗∗ -0.312∗∗∗ -0.325∗∗∗ -0.585∗∗∗

(0.207) (0.0820) (0.0824) (0.187)

Log(Product HHI) -0.289∗∗∗ -0.305∗∗∗ -0.329∗∗∗ -3.096∗∗∗

(0.0153) (0.0167) (0.0159) (0.798)

Mean Age (in years) -0.00239∗∗∗ -0.00303∗∗∗ -0.00300∗∗∗ -0.000240

(0.000728) (0.000141) (0.000124) (0.000261)

Share of Men -0.0589∗∗∗ -0.0419∗∗∗ -0.0424∗∗∗ 0.00523

(0.00418) (0.00981) (0.00726) (0.00360)

Mean Log(Value Added per Employee) 0.0817∗∗∗ 0.0599∗∗∗ 0.0620∗∗∗ -0.00117

(0.0182) (0.00468) (0.00461) (0.00384)

Mean Log(Nb. Employees) 0.0653∗∗∗ 0.0668∗∗∗ 0.0691∗∗∗ 0.0290∗∗∗

(0.00296) (0.00316) (0.00381) (0.00481)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 492.7 881.7 699.2 47.89

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here
defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is
defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables:
share of men among the new Employees and the mean age (in years) of the new Employees. There are two firm level control variables: Mean Log(Value Added per
Worker) and Mean Log(Number of Employees). The former is the Mean (across new Employees) of the log of total value added (revenues minus intermediary costs)
over a year divided by the number of full-time equivalent employees. The latter is the mean (across new Employees) of the number of reported full-time equivalent
number of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under
this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor
market concentration lowers new Employees by approximately−0.325× 0.1× 100 = −3.25%.

The impact of labor market concentration on the number of new hires could be biased by the mechanical

effect that when fewer firms recruit, the labor HHI tends to be higher. This is why it is especially important to

use an instrument to check the validity of these results. Using instrumental variables confirms the negative

effect of labor and product market concentration on the number of new hires, as shown in Table 2.6. With

instruments, the impact of labor market concentration appears to be even greater. Indeed, a 10% increase in

labor market concentration leads to a 3.25% fall in new hires (column (3)). Similarly, we find that the impact of

product market concentration has increased. The same column reports a negative and statistically significant

coefficient according to which a 10% increase in product market concentration lowers the number of new hires

by 3.29%. The final column reports a very large estimate for the impact of the product market concentration,

perhaps due to the highly demanding number of included fixed effects. For this reason, we consider column (3)

as our preferred specification because it is a conservative estimate within the class of instrumental variables

estimates and can be said to be robust to occupation by commuting zone fixed effects.

In addition, we provide weighted regressions in Appendix 2.C. We rely on analytic weights based on (i)
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the number of new hires and (ii) the mean number of new hires in that combination of occupation by industry

by commuting zone. We take the latter to be the more accurate measure for it is constant across time. The

instrumental variable estimates are provided in Table 2.C.2 and 2.C.4 respectively. In both cases, the main

coefficients of interest are negative and statistically significant. More surprisingly, the magnitude of the effects

are larger. For example, column (3) of Table 2.C.4 reports that a 10% increase in labor market concentration

lowers the number of new hires by 14.4%. This suggests that the impact on employment flows are particularly

important in large labor markets.

Finally, we rely on Poisson Regression to gauge the impact of excluding small labor markets. That is, for

each combination of occupation by industry by commuting zone, we complete missing observations by setting

the the number of new hires to zero. Unable to take the log of zero, we estimate Equation 2.3.3.1 by taking its

exponential form as in Poisson or pseudo-Poisson regression. Results are provided in Table 2.C.5 in Appendix

2.C.18 In comparison to the ordinary least squares results in the unweighted case presented in Table 2.5, the

estimates are of the same sign but of much greater magnitude. Indeed, according to column (3), we find that a

10% increase in labor market concentration would lead a 4.3% fall in the number of new hires. This suggests

that the impact of concentration is underestimated by virtue of a survival bias.

2.3.3.2 Heterogeneity

This last set of results provide compelling evidence that labor and product market concentration have a negative

impact on the number of new hires. To better understand the implications, we now present two additional sets

of regression which clarify the mechanisms at play in terms of exits and net employment.

First, we estimate our baseline specification using as dependent variable the number of new exits instead

of the number of new hires. We define an exit as a job spell whose termination date falls before the last day

of the quarter. The expected effect of concentration on new exits is unclear. On the one hand, an increase

in labor market concentration could lead to a smaller workforce and therefore more exits. On the other hand,

higher labor market concentration could reduce the separation rate because employees fear having to face a

concentrated labor market. Results are in Appendix 2.C.5. Looking at the unweighted regressions, we observe

that both the ordinary and two stage least squares estimates, presented respectively in Tables 2.C.12 and

2.C.13, provide negative and statistically significant estimates with regards to both labor and product market

concentration. In the latter table, we find for our preferred specification (column (3)) that a 10% rise in labor

market concentration lowers the number of exits by 1.9%. Similar results, though of greater magnitudes,

are found when the observations are weighted by the number of exits or the mean number of exits (for a

given combination of occupation, industry, and commuting zone) across time. This suggests that labor market

concentration lowers employment flows, both in terms of entries and exits.

Second, we determine the net impact of labor market concentration on employment by using as dependent

variable the net number of employees instead of the number of new hires. In this case, Monopsony Theory

predicts more clearly that labor and product market concentration should be negatively related to net employment.

We consider a job spell to be part of net employment if the starting date is within the measured quarter and

the termination date falls after the end of the quarter. Appendix 2.C.6 displays the results. The ordinary

least squares estimates are provided in Table 2.C.19 along with the two stage least squares in Table 2.C.20.

18Unfortunately, it was not computationally feasible to estimate this model using instrumental variables.
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We find a negative and often statistically significant effect of both the labor and product market concentration

on net employment. In our preferred specification relying on instrumental variables, we observe that a 10%

increase in labor market concentration lowers net employment by 0.81%. The weighted regressions provide

more pronounced results with magnitudes more than doubled. For example, the same column in Table 2.C.24,

which relies on weighting each observation by the mean number of employees (for a combination of occupation,

industry, and commuting zone) across time, shows that a 10% increase in labor market concentration lowers net

employment by 2.22%. Therefore, we find results in line with monopsony theory in terms of net employment.

Overall, our analysis shows that wages are lower when labor market concentration increases, while wages

are higher when product market concentration increases. The number of hires decrease with labor market

concentration, while product market concentration often has a negative relationship to new hires.

2.3.4 Robustness, Sensitivity, and Alternative Specifications

2.3.4.1 Robustness

We now present various alternative specifications, which allows us to gauge the robustness of our results to

different modelling choices. We first consider the impact of dropping the log(number of full-time equivalent

employees in the hiring firm) from our specification. Given that the firm size is affected by market structures

and that the latter is likely to be correlated with unobserables (such as labor market tightness), it is probable

that the firm size is also endogenous. We provide our baseline estimates for hourly wages and new hires

in Appendix 2.J. We focus on estimates identified using our instrumental variables. Generally speaking, the

results are very similar. We nonetheless observe that the absence of firm size has lowered the magnitude of

the coefficients associated with labor market concentration for the specification which includes both worker and

firm fixed effects (column (6), Table 2.J.2). In terms of new hires, Table 2.J.4 shows very similar results to our

baseline estimates. Similar observations can be made when we weight our observations, as in Table 2.J.8.

Altogether, this evidence suggests that controlling for firm size is not significantly biasing our estimates.

Second, we examine the robustness of our results with regards to the changes in underlying sample.

Indeed, observations are dropped when there are too few observations in the data to estimate their respective

fixed effects (i.e, they are singletons). This means that, as we increase the number of fixed effects across

our different specifications, the underlying sample can change. To gauge the effect of keeping the underlying

sample fixed, we present in Appendix 2.D the estimates resulting from using the same data as required for

the estimation of the most demanding specification. In the case of hourly wages, Table 2.D.2 provides the

instrumental variable results using solely the data required to estimate column (6) with both worker and firm

fixed effects. The results are broadly similar to those of our baseline. The same can be said for the estimates

provided for new hires in Table 2.D.4 which relies on the sample required to estimate column (4) where we

include both time and occupation by industry by commuting zone fixed effects. The use of weights in Table 2.D.8

does not lead to significant departures from our baseline estimates. We conclude that changes in underlying

samples are not significantly affecting our results.
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2.3.4.2 Sensitivity

We now consider the sensitivity of our estimates of the impact of labor market concentration in relation to

potential measurement error in the product market concentration. As explained above, our measure relies on

national sales instead of the more ideal local sales. Beyond our goal of assessing the presence of monopsony

and monopoly power on the French labor market, this measurement error is problematic because it has the

potential to bias our estimate of the impact of labor market concentration, by virtue of the correlation which

exists between labor and product market concentration. For this reason, we propose two ways to gauge the

importance of this measurement error.

First, we consider the impact of removing product market concentration from our covariates. This replaces

a potential measurement error with an omitted variable. Although not a particularly decisive solution, it allows

us to verify that the presence of product market concentration is not driving our results. The estimation results

are presented in Appendix 2.E. Using instrumental variables to study the hourly wage, the estimates reported

in Table 2.E.2 show negative and statistically significant (at the 1% level) estimates in relation to labor market

concentration. However, the magnitude has now slightly fallen. Similarly, both the unweighted and weighted

regressions on new hires, presented respectively in Tables 2.E.4 and 2.E.8, show comparable estimates to

those of our baseline. For this reason, we conclude that the measurement error in the product market HHI is

not driving the sign of the parameters associated with labor market concentration.

Second, we supply estimates of the impact of labor market concentration which are independent of any

measurement error in the product market concentration index. To do so, we replace the latter with 4-digit

industry by commuting zone by time fixed effects. This absorbs any of the variation measured by the product

market HHI at the cost of a loss of precision induced by the need to estimate many more parameters. Moreover,

the impact of product market concentration can no longer be ascertained. The results from this exercise

are provided in Appendix 2.H. Table 2.H.2 provides the estimates based on instrumental variables when the

dependent variable is the hourly wage. This table reports negative and statistically significant point estimates

for labor market concentration in all specifications but those including worker fixed effects. The magnitudes

appear to have fallen. In terms of the instrumental variable regressions on the number of new hires, the

unweighted case reported in Table 2.H.4 provides estimates which are negative and statistically significant, of

similar magnitude to those in our baseline. In contrast, in the weighted case shown in Table 2.H.8, the statistical

significance of the parameters associated with labor market concentration falls to 5% or 10% levels. This is

despite the coefficients being of similar magnitude to those in the base case. We conclude from this exercise

that our measure of product market concentration has not significantly impacted our parameters measuring the

the impact of labor market concentration on hourly wages and new hires.

2.3.4.3 Alternative Specifications

We conclude this section of the paper by considering two alternative strategies to assess the role of product

market concentration in relation to hourly wages and new hires. First, we focus on tradeable industries. We

assume the product market of those industries to be of a global (G), rather than local, nature. That is, the

level of competition in these product markets can be assumed to be constant across the country. We can

then construct an appropriate measure of concentration for these industries by relying on national sales. More

formally, we consider firms in industry i ∈ I (measured at the 4-digit level) at time t ∈ T (national sales are

36



recorded at the yearly level). These firms are collected in a set Fi ,t . For any firm j in this set, we observe the

national sales during that year, denoted by Rj,t . We can then define the global product market share as:

sGj,t =
Rj,t

∑

k∈Fi ,t Rk,t
(2.3.3)

The global product market Herfindahl-Hirschman Index, HHIG
i,t

, sums the squares of these market shares:

HHIGi,t =
∑

k∈Fi ,t

¦

sGk,t

©2

(2.3.4)

Given the absence of variation at the commuting zone level, it is not possible to instrument this variable using

the instrument described in Equation 2.3.2. We nonetheless provide in Appendix 2.F the results from using this

measure on our full sample but only instrumenting labor market concentration.

This measure of concentration is relevant for industries with goods that can be traded across the country

and internationally. We consider an industry to belong to this tradeable sector if over 5% of its sales are earned

by export. Indeed, the latter provides evidence that the goods and services can effectively be moved and traded

by the French firms. Choosing a relatively low threshold selects a subsample which is not so small such that

our regressions would be necessarily underpowered. Moreover, in comparison to a method using both imports

and exports, this method assures us that the French firms are actively trading their goods across geographic

markets.

Appendix 2.G provides the estimates from running our regressions on the subsample of workers in industries

included in our tradeable sector whilst relying on our global measure of product market concentration. Table

2.G.2 provides the results when using an instrumental variable to identify the effects of labor market concentration

on hourly wages. Although the coefficient associated with our global measure of product market concentration

is positive in nearly all specifications, it is only statistically significant in two cases. In particular, when we

have time and occupation by commuting zone fixed effects in column (4), we observe that a 10% increase

in the global product market HHI raises hourly wages by 0.1%. However, although the estimates for labor

market concentration are almost all negative, none are statistically significant. This suggests that our estimation

strategy provides noisy estimates, as reflected in the 76% drop in sample size in comparison to the sample size

used for our baseline estimates in section 2.3.2.19 Therefore, this exercise does not find conclusive evidence in

favor an effect of the product market concentration on hourly wage.

However, this same exercise applied to the number of new hires provides more conclusive results. Table

2.G.4 displays the unweighted estimates from instrumenting the labor market concentration index in a regression

where the dependent variable is the number of new hires. We find negative and statistically significant point

estimates (at the 1% level) for both the labor and product market concentration. Whilst the magnitude for the

labor market HHI is similar to the one observed in our baseline estimates, the size of the effects for the global

product market HHI is much smaller. In our preferred specification, we find that a 10% increase in the latter

lowers the number of new hires by 0.7%. This effect is more important when the regressions are weighted by

the mean number of new hires for a given combination of industry by occupation by commuting zone. Indeed, as

shown in column (3) of Table 2.G.8, a 10% increase in the global product market HHI lowers the number of new

hires by 2%. Even so, one should note that we could not instrument this alternative measure of concentration

19This number is calculated on the basis of column (1).
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and, given the pattern observed across our set of results (i.e, the increase in magnitudes observed when using

instrumental variables for identification), these estimates can best be construed as forming lower bounds.

Second, we construct an alternative measure of product market concentration weighted by local employment

for all industries.20 This approach uses fully the available data by allowing us to provide greater importance to

the sales of firms with many employees within a given labor market. To do so, we assume that the local turnover

of a firm can be approximated as the national turnover taken in proportion to the local employment share of the

firm. Although this approach also relies on a strong assumption, it does not make the same assumptions and

therefore provides a natural robustness check. More formally, we consider firms with employees in commuting

zonem ∈ M, in year t ∈ T (national sales are recorded at the yearly level), in industry i ∈ I (measured at the

4-digit level). These firms are collected in a set Vi ,m,t . For any firm j in this set, we observe the national sales

during that year, denoted by Rj,t and the total number of employees Nj,m,t hired in that local market. We can

then define the local turnover as as:

Sj,m,t =
Nj,m,t

∑

b∈M Nj,b,t
× Rj,t (2.3.5)

and in turn the market share in terms of local employee (E) adjusted turnover:

sEj,m,t =
Sj,m,t

∑

k∈Vi ,m,t Sk,m,t
(2.3.6)

The employment weighted product market Herfindahl-Hirschman Index, HHIE
i,m,t

, sums the squares of these

market shares:

HHIEi,m,t =
∑

k∈Vi ,m,t

¦

sEk,m,t

©2

(2.3.7)

Estimation results are available in Appendix 2.I. Table 2.I.2 provides the estimates using instrumental variables

to look at the impact of concentration on hourly wages. The effect of labor market concentration is reported

as negative and statistically significant at the 5% or 1% level although the magnitude has slightly fallen in

comparison to our baseline estimates. The estimates for our employee weighted product market concentration

index are positive and statistically significant in all specifications which do not include firm fixed effects. In

particular, in our preferred specification, we find that a 10% increase in the latter would increase hourly wages

by 0.4%. Looking at new hires, Table 2.I.4 provides the results from the unweighted regressions on the number

of new hires identified through the use of instrumental variables. We find similar coefficients to those in our

baseline results in terms of labor market concentration. For the employment weighted product market HHI, we

observe that a 10% increase would imply a 1.3% fall in the number of new hires. Similar observations can be

made when observations are weighted by the mean number of new hires for a given combination of occupation,

industry, and commuting zone, and presented in Table 2.H.8. All in all, this exercise has shown that our results

are robust to alternative ways to calculate and identify the impact of product market concentration.

2.4 Merger Simulation

In this section, we simulate counter-factual horizontal mergers. This exercise allows us to express our point

estimates in a way relevant to a policy maker and, in particular, to a Competition Authority. Indeed, we take

our results to have direct implications for losses in employment and in the wage bill which may result from a

20In unreported results, we also weighted market shares by employment shares before constructing a product market concentration
index. This exercise provided similar results.
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horizontal merger among the largest firms. As a consequence, we attempt to identify the industries in which

workers are most vulnerable to corporate consolidation and provide a rough approximation of the effects of

such mergers on labor markets. These predictions can be tested in future research.

To run these counter-factual horizontal mergers, we assume that the two largest firms in each 2-digit industry

(in terms of full-time equivalent headcount) merge.21 Such mergers would likely raise antitrust concerns

regarding product market competition, and here we shed light on the additional concern that these mergers

should raise by reducing labor market competition. We calculate the post-merger labor market HHI and predict

the effect on the number of new hires and their wage bill. To calculate the former, we use our prior estimate of

the impact of labor market concentration on new hires found in Table 2.6 (column 3). That is, we calculate the

loss in new hires by assuming an elasticity with respect to labor market concentration of −0.325. To calculate

the impact on the new hires’ wage bill, we estimate the same regressions as for new hires, but rely on the wage

bill as a dependent variable. Estimates are provided in Appendix 2.B.5.2 and in Table 2.B.12 for the unweighted

two stage least squares case. In our preferred specification (column (3)), we find that a 10% increase in labor

market concentration lowers the wage bill by 7.31%. We use this estimate for our merger simulations.

To do so, we make several modelling choices. First, we keep firm characteristics fixed. Second, we neglect

the effects for workers who are already in employment. Indeed, the latter are legally protected by European

Law (Transfers of Undertakings, 2001) from being fired as a result of the merger. Also, the effects on wages

are smaller (Bassanini et al., 2020), given that French wages downward rigid. Third, we also keep levels of

product market concentration constant and thus assume no impact on wages from changes in product market

concentration.

We only use the coefficient on labor market HHI for four reasons. First, based on our point estimates,

including the effects of the merger on product market concentration would only amplify the magnitude of our

results in terms of the loss to the number of new hires and to their wage bill. This means that our simulations

can be interpreted as lower bound estimates. Second, the product market HHI is not well measured. Third, the

regressions with just the labor market HHI yield essentially the same coefficient as when we also include the

product market HHI.22 Fourth, from a policy perspective, the potentially positive effects of the product market

HHI on hourly wages occur by an anticompetitive mechanism, so they should not be taken into account as

offsets.

For each combination of 4-digit industry i ∈ I, 4-digit occupation o ∈ O, commuting zone m ∈ M in

quarter t ∈ T , we calculate the loss to the wage bill Biot as:23

Biot = Observed Wage Billiot ×
�

exp(−0.731 log(New HHI/Observed HHI))− 1
�

(2.4.1)

For each simulated industry merger, we recalculate the new level of labor market concentration per labor

market (at the quarter by commuting zone by occupation level). This requires us to make use of our more

exhaustive repeated cross section (DADS Salariés). We then calculate the loss to the number of new hires

Hiot for each market according to the change in labor market concentration. We use the following formula :

21This is in contrast to Jarosch et al. (2019) who simulate mergers by selecting the two largest employers within each of their areas.
We take our approach as more indicative of the situation faced by Antitrust Authorities.

22See Appendix for alternative regression specifications which exclude the product market concentration.
23The formula can be read as writing the new wage bill as the old wage bill times a growth rate. The loss we want is the difference

between the new wage bill and the old wage bill. So the loss is the old wage bill times the growth rate minus one.
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Hiot = Observed Nb. New Hiresiot ×
�

exp(−0.325 log(New HHI/Observed HHI))− 1
�

(2.4.2)

Table 2.L.1 in Appendix 2.L reports descriptive statistics for the simulation. It shows that, after the merger of

the two largest employers in each industry, labor market concentration would increase on average (weighted by

industry employment) by 0.001 percentage points, that is, if a worker is in industry x, a merger between the top

two employers in industry x would modify the average HHI of workers in industry x by 0.001 percentage points

(this includes markets where the merger did not affect HHI because only one or none of the merging employers

was present).
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Figure 2.6: Distribution of labor market concentration variation

Note: Figure 2.6(a) presents the top 10 greatest average percentage point change in level of labor market concentration per employee in a
given industry as a result of the simulated merger in this same industry, over 2015. Figure 2.6(b): the average change in levels of labor market
concentration described above are now averaged across French départements
Source: DADS Salariés and authors’ calculations.

Nonetheless, the distribution of these merger effects on concentration is highly skewed across industries

and geographies. In Figure 2.6(a), we graph the average change in labor market concentration following

the merger, by industry and location. The electricity industry has the highest mean change in labor market

concentration for new hires following a merger of the top two players. TV and radio has the second highest

increase in HHI. Figure 2.6(b) displays the geographical location of the most affected workers. Workers most

vulnerable to concentration increases from mergers appear to be in the rather disadvantaged areas of France,

in the North and South of the country.
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We now turn to the wage bill and employment impact of the simulated mergers. Figure 2.7(a) panel (a)

shows the loss to the wage bill of newly hired workers in the industry that merged (in light red) and across all

industries (in dark red). Mergers in Retail, Building Maintenance, and Computer Programming appear to be

most harmful. In the retail industry, a merger by the top two players would lead to a yearly loss of over 30 million

euros for workers in the industry, and 40 million euros when workers in all industries are taken into account.
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Figure 2.7: Total Wage Bill and Employment Effects

Figure 2.7(a) : Each line represents the sum of annual expected wage bill loss for new hires across France induced by a merger. It is
calculated based on equation 2.4.1. Industry Total Annual Loss is calculated so as to include the loss to workers in the industry that merged (i.e,
the impact on car repairers of a merger in the car repair industry). So, the merger in the retail industry would lead to a 30 million euro annual
income loss to workers in the retail industry. Broad Total Annual Loss is calculated so as to include the loss to all workers in the economy, including
those in the industry that merged. So, the merger in the retail industry would lead to 40 million euros in annual income loss across the economy.
Figure 2.7(b): Each line in light red represents the annual expected new jobs lost for new hires in that industry (i.e, a merger in the Building
Maintenance industry would reduce annual recruitment by 2300 jobs in the Building Maintenance industry). It is calculated based on equation
2.4.2. Each line in dark red represents the annual expected new jobs lost for workers across France induced from a merger in that industry (i.e,
a merger in the Building Maintenance industry would reduce annual recruitment by 3050 jobs across France). It is calculated based on equation
2.4.2.
Source: DADS Salariés and authors’ calculations.

There are also significant employment losses due to increases in labor market concentration from the

horizontal merger of the two top firms in each industry. Figure 2.7(b) panel (b) displays the loss of new hires in

a given industry when there is a merger in that industry (e.g. the loss of jobs in the car repair industry induced

by a merger by the car repair industry leaders) in light red. It also displays the overall loss from a merger in a

given industry on all jobs in the economy (e.g. the loss of jobs induced by a merger in the car repair industry on

all jobs in the French economy) in dark red. Retail and Building Maintenance appear at the top of the list, with

the largest job losses, at almost 4,000 and over 3,000 jobs respectively.

How are workers with different occupations affected by employment losses from mergers? Appendix 2.L

Figures 2.1(a) and 2.1(b) display the job loss across the economy induced by industry mergers according to the
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workers’ occupation. Blue collar jobs (i.e, manual and non-manual workers) are most threatened by a merger

in the Retail and Building Maintenance industry. White collar (i.e, managers) job loss is, as expected, smaller

and mainly associated to a merger in the Computer Programming and Legal industry.

Do these effects correlate with workers in labor markets with high levels of labor market concentration?

To answer this question, we plotted in Figure 2.8(a) the total wage bill loss to workers in the merging industry

against the mean level of labor market concentration of the workers in that industry prior to the merger. Figure

2.8(b) displays the counterpart for industry new hires loss. We let the size of the indicator be proportional to

the number of workers hired in that industry to distinguish size from intensity. These plots reveal that there can

be significant losses for workers operating in areas of low labor market concentration. Industries with workers

in highly concentrated labor markets have few hires to start with and, so, an increase in concentration does not

scale up to large aggregate losses. Indeed, the best fit line is downward sloping, suggesting that losses are

more pronounced in industries with workers from less concentrated labor markets. This can be explained in

light of the log-log regression specification which emphasizes variations in the markets with initially low levels

of labor market concentration.

While our simulation depends on a number of assumptions that may not always hold, our results offer a

cautionary tale for antitrust enforcers. Once we add up effects in all markets, mergers in the industries with the

highest levels of concentration are not necessarily the most damaging for workers’ wages and for employment.24

24Figure 2.L.2 in Appendix 2.L shows these predicted losses relative to the total size of the industry. Despite these employment losses
being small in relative terms, the number of lost hires in absolute terms remains important.
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Figure 2.8: Total Wage and Employment Effects against Labor Market HHI

Figure 2.8(a) is constructed in the following way. Using equation 2.4.1, we calculate the total expected annual wage bill loss to new hires
induced by the horizontal merger between the two largest employers of that industry. We associate to this value (on the x-axis) the log of the mean
level of labor market concentration for new hires in the industry. Finally, the size of the marker for this observation is proportional to the number of
new hires in the industry in 2015. The green lines represent the median and 75th percentile of the log labor market concentration levels.
Figure 2.8(b) is constructed in the same way. Using equation 2.4.2, we calculate the total expected annual hires loss in the industry by simulating
the horizontal merger between the two largest employers of that industry. We associate to this value (on the x-axis) the log of the mean level of
labor market concentration for new hires in the industry. Finally, we size the marker for this observation such that it is proportional to the number
of new hires in the industry across 2015. The green lines represent the median and 75th percentile of the log labor market concentration levels.
Source: DADS Salariés and authors’ calculations.

2.5 Conclusion

What are the labor market effects of labor and product market concentration? We leverage detailed French

administrative data to show that labor market concentration decreases both the number of hires and the wages

of new hires, as hypothesized by Monopsony Theory. Based on our instrumental variable estimates, a 10%

increase in labor market concentration decreases hires by about 3.2% and the wages of new hires by nearly

0.5%, with less negative effects in more unionized industries. A 10% increase in product market concentration

increases wages by 0.6%, with more positive effects in more unionized industries. The impact of product market

concentration on wages is consistent with rent sharing. Product market concentration has a negative impact on

the number of new hires.

Based on our estimate of the impact of labor market concentration on wages and the number of new hires,

we can simulate the labor market impact of horizontal mergers between the two largest employers in each

industry. We find that a horizontal merger has an impact not only on workers in the affected industry, but also

on workers in other industries that share the same occupation: for a merger between the top two employers in

the retail industry, about 30% of the impacts affect workers outside the retail industry. Compared to mergers

in other industries, a merger between the top two employers in the retail industry would be the most damaging

overall, with about 30 million euros annual decrease in the wages of new hires, and about a 3 000 decrease in

annual hires.
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Our comprehensive data allows us to show that employer market power has a substantial effect on labor

market outcomes even in countries like France where union coverage is high and labor market institutions are

protective of workers. Our findings suggest that antitrust and competition authorities should further scrutinize

the effects of competition policy on workers.
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2.A Descriptive Statistics

Table 2.A.1: Summary Statistics : Top 5 Highest Frequency Occupations

count min max p50 mean sd

Transportation and Storage Worker (Unqualified)

Gross Hourly Wage 83659 9 42.26316 11.70889 12.05 1.805

Labor Market Concentration (Business Group) 83659 .014444 1 .1028107 0.153 0.140

Labor Market Concentration (Firm) 83659 .0127772 1 .0894432 0.136 0.133

Product Market Concentration 83659 .0011498 1 .2144284 0.261 0.166

Product Market Concentration (Global) 83659 .00007 .3292432 .0010011 0.00320 0.00843

Age (in years) 83659 18 67 25 28.81 9.879

Gender 83659 0 1 1 0.603 0.489

Unionization Rate 17970 0 29.82 7.93 8.866 4.234

Nb. Full-Time Equivalent Employees 83659 .086 247296 2184 35333.1 51053.8

Value Added per Emp. (in nominal euros) 83659 .0001607 6171.898 27.90058 50.31 142.2

Cook (Beginner, Unqualified)

Gross Hourly Wage 84119 9 41.6 11.15 11.46 1.851

Labor Market Concentration (Business Group) 84119 .0048275 1 .0398234 0.0678 0.0794

Labor Market Concentration (Firm) 84119 .0023827 1 .0214965 0.0464 0.0741

Product Market Concentration 84119 .0011498 1 .1853811 0.249 0.226

Product Market Concentration (Global) 84119 .0001886 .1382048 .0025168 0.00327 0.00422

Age (in years) 84119 18 67 23 27.73 10.25

Gender 84119 0 1 1 0.524 0.499

Unionization Rate 78669 0 23 10.32 10.43 0.978

Nb. Full-Time Equivalent Employees 84119 .125 165257.5 31 5327.0 24714.7

Value Added per Emp. (in nominal euros) 84119 .0080951 4649.973 31.77678 47.42 95.59

Wharehouse Person (Unqualified)

Gross Hourly Wage 99540 9 42.70306 11.70662 12.08 1.720

Labor Market Concentration (Business Group) 99540 .0124863 1 .0953355 0.128 0.112

Labor Market Concentration (Firm) 99540 .0107163 1 .081216 0.112 0.105

Product Market Concentration 99540 .0011498 1 .2141763 0.249 0.144

Product Market Concentration (Global) 99540 .00007 .3913645 .0009887 0.00265 0.00769

Age (in years) 99540 18 67 24 28.15 9.716

Gender 99540 0 1 1 0.764 0.425

Unionization Rate 13800 0 23 5.65 7.613 4.094

Nb. Full-Time Equivalent Employees 99540 .035 247296 344.25 25479.4 48407.3

Value Added per Emp. (in nominal euros) 99540 .0033551 6171.898 29.03798 65.98 182.9

Storekeeper

Gross Hourly Wage 105933 9 43.14286 11.39545 11.67 1.986

Labor Market Concentration (Business Group) 105933 .0191664 1 .0763395 0.108 0.0906

Labor Market Concentration (Firm) 105933 .0143594 1 .0610217 0.0916 0.0891

Product Market Concentration 105933 .0011572 1 .3428953 0.393 0.238

Product Market Concentration (Global) 105933 .00007 .3913645 .001912 0.00248 0.00388

Age (in years) 105933 18 67 23 26.66 9.524

Gender 105933 0 1 0 0.473 0.499

Unionization Rate 77882 0 18.27 7.93 7.986 1.398

Nb. Full-Time Equivalent Employees 105933 .152 165257.5 356 24393.6 44540.4

Value Added per Emp. (in nominal euros) 105933 .0012027 11243.25 36.61514 65.33 216.4

Cleaner

Gross Hourly Wage 144134 9 42.2417 10.95527 11.34 2.226

Labor Market Concentration (Business Group) 144134 .0084093 1 .0496454 0.0777 0.0906

Labor Market Concentration (Firm) 144134 .004739 1 .045307 0.0707 0.0877

Product Market Concentration 144134 .0011498 1 .2358732 0.306 0.235

Product Market Concentration (Global) 144134 .00007 .3374615 .0033092 0.00416 0.00508

Age (in years) 144134 18 67 35 35.91 12.28

Gender 144134 0 1 0 0.342 0.475

Unionization Rate 130713 0 45.71 13.77 13.36 1.873

Nb. Full-Time Equivalent Employees 144134 .179 250825 504 6930.6 19112.0

Value Added per Emp. (in nominal euros) 144134 .0001975 4839.218 20.60366 29.80 74.85
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Table 2.A.2: Distinct Units Across Datasets

Panel Data (DADS Panel) Repeated Cross-Section (DADS Salariés)
Commuting Zones 304 310

4-Digit Occupations 403 413
4-Digit Industries 601 620

Firms 337 254 1 098 708
Individuals 1 005 318

Table 2.A.3: Summary Statistics : Aggregate Level

count min max p50 mean sd

Nb. Hires 3175710 1 7201 1 3.985 26.26

Log(Nb. Hires) 3175710 0 8.881975 0 0.529 0.895

Labor Market Concentration (Business Group) 3175710 .0008135 1 .1428571 0.259 0.287

Labor Market Concentration (Firm) 3175710 .0005867 1 .1358025 0.252 0.287

Product Market Concentration (Local) 3175710 .0011498 1 .2977242 0.388 0.295

Product Market Concentration (Global) 3175710 .00007 1 .0037354 0.0107 0.0231

Mean Age (in years) 3175710 18 67 31 33.47 11.64

Share of Men 3175710 0 1 1 0.603 0.452

Mean Log(Value Added per Employee) 3175710 -33.82034 13.00192 4.086375 4.332 1.151

Mean Log(Nb. Employees) 3175710 -4.600158 12.3627 3.198673 3.664 2.646

Note: Each observation used to construct this table is a job spell at the occupation by industry by commuting zone level (DADS Salariés).
Their associated level of labor concentration is calculated based on the repeated cross-section (DADS Salariés).
Source: DADS, FICUS, and authors’ calculations.
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2.B Hourly Wage

2.B.1 Unionization

Table 2.B.1: Hourly Wage (OLS) : Interaction with Unionization Rate

(1) (2) (3) (4) (5) (6)

Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage)

Log(Labor HHI) -0.0142∗∗∗ -0.0112∗∗∗ -0.00465∗∗∗ 0.00145 -0.00361∗ 0.00249

(0.00185) (0.00178) (0.00140) (0.00137) (0.00218) (0.00305)

Log(Product HHI) -0.00882∗∗∗ -0.00661∗∗∗ -0.00584∗∗∗ 0.00372 -0.00272 0.00196

(0.00127) (0.00104) (0.00117) (0.00244) (0.00185) (0.00267)

Unionization Rate 0.00182∗∗∗ 0.00196∗∗∗ 0.000901∗∗∗ -0.00310∗∗∗ 0.000445 -0.00433∗∗∗

(0.000406) (0.000403) (0.000345) (0.000938) (0.000457) (0.000929)

Log(Labor HHI) x Unionization Rate 0.000455∗∗∗ 0.000451∗∗∗ 0.000155 -0.000452∗∗∗ 0.0000366 -0.000606∗∗

(0.000123) (0.000131) (0.0000960) (0.000129) (0.000165) (0.000262)

Log(Product HHI) x Unionization Rate 0.000329∗∗∗ 0.000409∗∗∗ 0.000369∗∗∗ -0.000135 -0.0000824 -0.000185

(0.000108) (0.000102) (0.000107) (0.000132) (0.000203) (0.000263)

Age (in years) 0.00383∗∗∗ 0.00382∗∗∗ 0.00373∗∗∗ 0.00316∗∗∗

(0.000420) (0.000421) (0.000492) (0.000614)

Gender 0.0333∗∗∗ 0.0323∗∗∗ 0.0313∗∗∗ 0.0273∗∗∗

(0.00137) (0.00145) (0.00198) (0.00292)

Log(Value Added per Employee) 0.0275∗∗∗ 0.0270∗∗∗ 0.0251∗∗∗ -0.00141∗ 0.0132∗∗∗ 0.000547

(0.00116) (0.00127) (0.00134) (0.000753) (0.000528) (0.00113)

Log(Nb. Employees) 0.00835∗∗∗ 0.00791∗∗∗ 0.00760∗∗∗ -0.00573∗∗∗ 0.00621∗∗∗ -0.00100

(0.000297) (0.000325) (0.000303) (0.00139) (0.000517) (0.00185)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

R2 0.577 0.580 0.604 0.720 0.786 0.839

Adjusted R2 0.577 0.579 0.595 0.677 0.679 0.719

N. Clusters 304 304 304 304 304 304

F 639.2 382.9 349.1 130.6 178.0 14.93

Observations 1476655 1476655 1463905 1296152 994474 831496

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard
Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and
through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. These
two measures of concentration are interacted with the unionization rate, as reported by the Enquête Réponse (2011) at the 2-digit industry level; excluding the Temporary Employment Industry. There are two individual level control variables:
gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues
minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The gender fixed-effect cannot be identified
in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the
main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately (−0.00361 + 10× 0.0000366)× 0.1× 100 = −0.03244% for a worker in an industry with a 10%
unionization rate.
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Table 2.B.2: Hourly Wage (IV) : Interaction with Unionization Rate

(1) (2) (3) (4) (5) (6)

Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage)

Log(Labor HHI) -0.0552∗∗ -0.0574∗∗∗ -0.0471∗∗∗ -0.0230∗ -0.0384∗∗∗ -0.0141

(0.0222) (0.0147) (0.0124) (0.0124) (0.0114) (0.0110)

Log(Product HHI) 0.0287 0.0291∗ 0.0271∗∗ -0.0665 0.00856∗ -0.108

(0.0189) (0.0153) (0.0108) (0.0538) (0.00459) (0.0811)

Log(Labor HHI) x Unionization Rate 0.0000654 0.000116 0.000803∗∗∗ 0.000675∗∗∗ 0.00103∗∗∗ 0.000536

(0.000387) (0.000352) (0.000283) (0.000259) (0.000350) (0.000644)

Log(Product HHI) x Unionization Rate 0.00246∗∗∗ 0.00253∗∗∗ 0.00228∗∗∗ 0.00509∗∗ 0.000600 0.00555

(0.000432) (0.000418) (0.000351) (0.00251) (0.000385) (0.00445)

Unionization Rate 0.00319∗∗ 0.00361∗∗∗ 0.00539∗∗∗ 0.0130∗∗ 0.00480∗∗ 0.0160

(0.00128) (0.00120) (0.00159) (0.00539) (0.00185) (0.0115)

Age (in years) 0.00390∗∗∗ 0.00389∗∗∗ 0.00377∗∗∗ 0.00316∗∗∗

(0.000380) (0.000392) (0.000483) (0.000615)

Gender 0.0316∗∗∗ 0.0301∗∗∗ 0.0290∗∗∗ 0.0274∗∗∗

(0.00409) (0.00246) (0.00239) (0.00287)

Log(Value Added per Employee) 0.0267∗∗∗ 0.0252∗∗∗ 0.0239∗∗∗ -0.00148 0.0128∗∗∗ 0.000835

(0.00221) (0.00215) (0.00193) (0.000931) (0.000595) (0.00114)

Log(Nb. Employees) 0.00451∗∗∗ 0.00440∗∗∗ 0.00371∗∗∗ -0.00619∗∗∗ 0.00508∗∗∗ -0.000593

(0.000983) (0.000596) (0.000450) (0.00178) (0.000414) (0.00182)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

N. Clusters 304 304 304 304 304 304

F 478.7 586.7 693.8 206.8 313.1 3.345

Observations 1476655 1476655 1463905 1296152 994474 831496

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel
(2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting
zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at
the industry level. These two measures of concentration are interacted with the unionization rate, as reported by the Enquête Réponse (2011) at the 2-digit industry level; excluding the Temporary Employment Industry. There are two individual
level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total
value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The gender fixed-effect
cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following
interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately (−0.0384+ 10× 0.00103)× 0.1× 100 = −0.281% for a worker in an industry
with a 10% unionization rate.
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2.B.2 Non-permanent employees

Table 2.B.3: Hourly Wage (OLS) : Interaction with Part-Time Employment

(1) (2) (3) (4) (5) (6)

Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage)

Log(Labor HHI) -0.0155∗∗∗ -0.00865∗∗∗ -0.00208∗∗∗ -0.00154∗∗∗ -0.00174 -0.00104

(0.00306) (0.00150) (0.000767) (0.000436) (0.00181) (0.000950)

Log(Product HHI) -0.00422∗∗∗ -0.000163 0.000533 0.000194 -0.00128 -0.00371∗∗∗

(0.00146) (0.00129) (0.00156) (0.00113) (0.00200) (0.00142)

Log(Labor HHI) × Part-Time Employee 0.00625∗∗∗ 0.00243∗∗ -0.00284∗∗ -0.00238∗∗ -0.00241∗∗ -0.00335∗∗∗

(0.000956) (0.000974) (0.00121) (0.00120) (0.00122) (0.000975)

Log(Product HHI) × Part-Time Employee -0.00144∗∗∗ -0.00226∗∗∗ -0.00318∗∗∗ 0.00125 -0.00241∗∗∗ 0.00136

(0.000549) (0.000569) (0.000530) (0.00102) (0.000827) (0.00146)

Age (in years) 0.00408∗∗∗ 0.00404∗∗∗ 0.00391∗∗∗ 0.00329∗∗∗

(0.000464) (0.000457) (0.000539) (0.000559)

Gender 0.0320∗∗∗ 0.0312∗∗∗ 0.0298∗∗∗ 0.0248∗∗∗

(0.000718) (0.000694) (0.00126) (0.00185)

Log(Value Added per Employee) 0.0229∗∗∗ 0.0220∗∗∗ 0.0193∗∗∗ -0.00186∗∗ 0.00952∗∗∗ 0.00145

(0.00164) (0.00171) (0.00189) (0.000800) (0.000456) (0.00154)

Log(Nb. Employees) 0.00836∗∗∗ 0.00802∗∗∗ 0.00788∗∗∗ -0.000458 0.00750∗∗∗ 0.00278∗

(0.000222) (0.000196) (0.000160) (0.00109) (0.000148) (0.00146)

Age (in years) × Part-Time Employee -0.00158∗∗∗ -0.00156∗∗∗ -0.00154∗∗∗ -0.00144∗∗∗

(0.000136) (0.000130) (0.000149) (0.000171)

Gender × Part-Time Employee -0.00527∗∗∗ -0.00525∗∗∗ -0.00496∗∗∗ -0.00258

(0.00158) (0.00154) (0.00142) (0.00182)

Log(Value Added per Employee) × Part-Time Employee 0.0000218 0.000500 0.00151∗∗∗ 0.00239∗∗∗ 0.00236∗∗∗ 0.000139

(0.000710) (0.000699) (0.000575) (0.000851) (0.000707) (0.00172)

Log(Nb. Employees) × Part-Time Employee -0.000578∗∗ -0.000363 -0.000186 0.00202∗ -0.000993∗∗∗ -0.000195

(0.000248) (0.000250) (0.000234) (0.00112) (0.000177) (0.00163)

Quarter × Year × Part-Time FE Yes Yes Yes Yes Yes Yes

4-digit Occupation × Part-Time FE Yes Yes No No No No

Commuting Zone × Part-Time FE No Yes No No No No

Commuting Zone × 4-digit Occupation × Part-Time FE No No Yes Yes Yes Yes

Firm × Part-Time FE No No No Yes No Yes

Worker × Part-Time FE No No No No Yes Yes

R2 0.531 0.535 0.569 0.681 0.773 0.823

Adjusted R2 0.531 0.535 0.557 0.642 0.646 0.690

N. Clusters 304 304 304 304 304 304

F 645.3 577.7 719.0 137.3 484.4 8.090

Observations 2225008 2225008 2201604 1975245 1465483 1259925

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variables regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-
2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an
occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry
level. There are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees).
The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the
year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification
lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately −(0.00166 + 0.00242) × 0.1 × 100 = −0.0408%
for an employee with part-time status.
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Table 2.B.4: Hourly Wage (IV) : Interaction with Part-Time Employment

(1) (2) (3) (4) (5) (6)

Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage)

Log(Labor HHI) -0.153∗∗ -0.108∗∗∗ -0.0882∗∗∗ -0.0622∗∗∗ -0.0675∗∗ -0.0136

(0.0659) (0.0148) (0.0125) (0.00749) (0.0278) (0.0158)

Log(Product HHI) 0.0885∗∗∗ 0.0678∗∗∗ 0.0641∗∗∗ 0.0198 0.0527∗∗∗ -0.0649

(0.0119) (0.0201) (0.0172) (0.0394) (0.0170) (0.0590)

Log(Labor HHI) × Part-Time Employee 0.0335 0.00186 -0.00571 -0.00309 -0.0228 -0.0446∗∗

(0.0534) (0.0119) (0.0110) (0.0126) (0.0259) (0.0177)

Log(Product HHI) × Part-Time Employee 0.0164 0.0312 0.0327 0.00416 0.00951 0.0563

(0.0282) (0.0215) (0.0324) (0.0390) (0.0294) (0.0732)

Age (in years) 0.00382∗∗∗ 0.00397∗∗∗ 0.00387∗∗∗ 0.00328∗∗∗

(0.000234) (0.000453) (0.000531) (0.000561)

Gender 0.0227∗∗∗ 0.0304∗∗∗ 0.0283∗∗∗ 0.0247∗∗∗

(0.00647) (0.00138) (0.00140) (0.00192)

Log(Value Added per Employee) 0.0157∗∗∗ 0.0184∗∗∗ 0.0169∗∗∗ -0.00226∗∗ 0.00818∗∗∗ 0.00145

(0.00210) (0.00314) (0.00317) (0.000966) (0.00120) (0.00116)

Log(Nb. Employees) 0.00708∗∗∗ 0.00636∗∗∗ 0.00551∗∗∗ -0.00108 0.00602∗∗∗ 0.00209∗∗

(0.000441) (0.000310) (0.000355) (0.00164) (0.000250) (0.00102)

Age (in years) × Part-Time Employee -0.00121∗∗∗ -0.00141∗∗∗ -0.00142∗∗∗ -0.00144∗∗∗

(0.000126) (0.000167) (0.000189) (0.000174)

Gender × Part-Time Employee -0.00295 -0.00716∗∗∗ -0.00622∗∗∗ -0.00258

(0.00471) (0.00197) (0.00216) (0.00179)

Log(Value Added per Employee) × Part-Time Employee 0.00502∗∗ 0.00211∗∗∗ 0.00247∗∗∗ 0.00224∗∗ 0.00340∗∗∗ -0.000406

(0.00250) (0.000802) (0.000651) (0.000912) (0.000660) (0.00149)

Log(Nb. Employees) × Part-Time Employee -0.00272∗∗∗ -0.00202∗∗∗ -0.00238∗ 0.00164 -0.00179∗ -0.000815

(0.000666) (0.000766) (0.00125) (0.00107) (0.000911) (0.00160)

Quarter × Year × Part-Time FE Yes Yes Yes Yes Yes Yes

4-digit Occupation × Part-Time FE Yes Yes No No No No

Commuting Zone × Part-Time FE No Yes No No No No

Commuting Zone × 4-digit Occupation × Part-Time FE No No Yes Yes Yes Yes

Firm × Part-Time FE No No No Yes No Yes

Worker × Part-Time FE No No No No Yes Yes

N. Clusters 304 304 304 304 304 304

F 703.8 837.8 1434.3 113.0 353.6 5.853

Observations 2225008 2225008 2201604 1975245 1465483 1259925

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variables regression using the Log(Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015).
Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an
occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry
level. There are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees).
The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the
year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification
lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately−(0.0679 + 0.0198)× 0.1× 100 = −0.877%.
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2.B.3 First Stage Results

Table 2.B.5: Labor Market HHI: First Stage Results

(1) (2) (3) (4) (5) (6)

Log(Labor HHI) Log(Labor HHI) Log(Labor HHI) Log(Labor HHI) Log(Labor HHI) Log(Labor HHI)

Instrument : Worker 0.193∗∗ 0.301∗∗∗ 0.325∗∗∗ 0.306∗∗∗ 0.332∗∗∗ 0.320∗∗∗

(0.0814) (0.0729) (0.0761) (0.0763) (0.0606) (0.0577)

Instrument : Firm 0.0597∗∗∗ 0.00873 -0.00118 -0.00298 0.00182 0.0115

(0.0133) (0.00563) (0.00122) (0.0214) (0.00232) (0.0393)

Age (in years) -0.000472 0.000334∗∗∗ 0.0000815 -0.000158∗∗

(0.00104) (0.000122) (0.0000578) (0.0000639)

Gender -0.126∗∗∗ -0.0109∗∗ -0.00789∗∗∗ -0.00249∗∗

(0.0234) (0.00538) (0.00181) (0.00124)

Log(Value Added per Employee) -0.0589∗∗∗ -0.0137∗∗ 0.000843 -0.00262 0.00185 -0.00207

(0.00836) (0.00636) (0.00352) (0.00314) (0.00323) (0.00425)

Log(Nb. Employees) 0.0147∗∗∗ 0.00841∗∗∗ 0.00557∗∗∗ -0.00984 0.00412∗∗∗ -0.0101

(0.00243) (0.00173) (0.000670) (0.00864) (0.000895) (0.00886)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

R2 0.463 0.829 0.909 0.921 0.936 0.945

Adjusted R2 0.462 0.829 0.907 0.914 0.910 0.915

N. Clusters 304 304 304 304 304 304

F 193.0 34.13 94.36 67.18 105.3 114.5

Observations 2388557 2388557 2375830 2201999 1885103 1706624

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a first-stage linear regression using the Log(Labor HHI) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel
(2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here
defined over a commuting zone, an occupation, and through quarters. The two instruments of relevance are denoted by Instrument: Worker and Instrument: Industry, as described in Section 2.3.2. There are two individual
level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former
is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm
over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this
form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in the number of firms hiring the given occupation is correlated with a
decrease in labor market concentration by approximately−(0.332)× 0.1× 100 = −3.32%.
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Table 2.B.6: Product Market HHI: First Stage Results

(1) (2) (3) (4) (5) (6)

Log(Product HHI) Log(Product HHI) Log(Product HHI) Log(Product HHI) Log(Product HHI) Log(Product HHI)

Instrument : Worker 0.0124 0.0811∗∗∗ 0.0807∗∗∗ 0.0809∗∗∗ 0.100∗∗∗ 0.104∗∗∗

(0.00856) (0.0145) (0.0126) (0.0201) (0.0144) (0.0290)

Instrument : Firm 0.232∗∗∗ 0.197∗∗∗ 0.191∗∗∗ 0.136∗∗∗ 0.185∗∗ 0.148∗∗

(0.0777) (0.0708) (0.0696) (0.0514) (0.0855) (0.0646)

Age (in years) -0.000471 0.000199 -0.000180∗ 0.0000368

(0.000581) (0.000216) (0.000102) (0.0000450)

Gender -0.0675∗∗ 0.00684∗∗ 0.0185∗∗∗ 0.000778

(0.0273) (0.00306) (0.00640) (0.000611)

Log(Value Added per Employee) -0.0273∗ 0.0119∗∗ 0.0205∗∗∗ 0.00618∗∗∗ 0.0163∗∗∗ 0.00471

(0.0142) (0.00606) (0.00665) (0.00211) (0.00477) (0.00304)

Log(Nb. Employees) 0.0317∗∗ 0.0285∗∗ 0.0354∗∗ -0.00816 0.0245∗∗ -0.00559

(0.0138) (0.0114) (0.0144) (0.00715) (0.0105) (0.00742)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

R2 0.273 0.518 0.619 0.934 0.780 0.958

Adjusted R2 0.273 0.518 0.612 0.928 0.690 0.935

N. Clusters 304 304 304 304 304 304

F 10.71 30.77 145.0 18.23 176.6 22.55

Observations 2388557 2388557 2375830 2201999 1885103 1706624

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a first-stage linear regression using the Log(Labor HHI) as a dependent variable. Each observation is a new hire labor contract, as provided in the
DADS Panel (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2.
A labor market is here defined over a commuting zone, an occupation, and through quarters. The two instruments of relevance are denoted by Instrument: Worker and Instrument: Industry, as described in
Section 2.3.2. There are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added
per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is
the number of reported full-time equivalent number of workers in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The
log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (5):
ceteris paribus, a 10% increase in the number of firms hiring in this given industry is correlated with a decrease in the product market concentration by approximately−(0.100)× 0.1× 100 = −1.00%.
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2.B.4 Business Group Labor Market Concentration

Table 2.B.7: Hourly Wage (OLS) : Business Group Labor Market Concentration

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI - Business Group) -0.0141∗∗∗ -0.00870∗∗∗ -0.00294∗∗∗ -0.00233∗∗∗ -0.00257∗ -0.00241∗∗∗

(0.00320) (0.00152) (0.000859) (0.000489) (0.00134) (0.000815)

Log(Product HHI) -0.00533∗∗∗ -0.000820 -0.000619 0.00159 -0.00245 -0.00188∗∗∗

(0.00123) (0.00121) (0.00143) (0.00161) (0.00166) (0.000642)

Age (in years) 0.00339∗∗∗ 0.00336∗∗∗ 0.00327∗∗∗ 0.00274∗∗∗

(0.000417) (0.000410) (0.000470) (0.000484)

Gender 0.0306∗∗∗ 0.0296∗∗∗ 0.0287∗∗∗ 0.0242∗∗∗

(0.00113) (0.00106) (0.00167) (0.00248)

Log(Value Added per Employee) 0.0230∗∗∗ 0.0223∗∗∗ 0.0202∗∗∗ -0.000881 0.0112∗∗∗ 0.000707

(0.00166) (0.00173) (0.00186) (0.000721) (0.000580) (0.000749)

Log(Nb. Employees) 0.00819∗∗∗ 0.00792∗∗∗ 0.00780∗∗∗ 0.0000999 0.00722∗∗∗ 0.00163∗∗

(0.000279) (0.000243) (0.000203) (0.00137) (0.000121) (0.000712)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

R2 0.523 0.527 0.556 0.664 0.741 0.793

Adjusted R2 0.523 0.527 0.548 0.629 0.633 0.677

N. Clusters 304 304 304 304 304 304

F 1061.4 934.5 1189.9 230.2 1105.3 13.00

Observations 2225026 2225026 2212203 2044008 1734623 1563889

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor
HHI - Business Group) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2 but measured at the business group level. This business group is identified using the Enquête sur les liaisons financières entre sociétés (LIFI) dataset. A labor market is here
defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two
individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus intermediary costs) over
a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification
was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration measured at the business group lowers wages by
approximately−0.00257× 0.1× 100 = −0.0257%.
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Table 2.B.8: Hourly Wage (IV) : Business Group Labor Market Concentration

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI - Business Group) -0.102∗∗∗ -0.0934∗∗∗ -0.0750∗∗∗ -0.0543∗∗∗ -0.0564∗∗∗ -0.0219∗

(0.0127) (0.00957) (0.00778) (0.00723) (0.0119) (0.0116)

Log(Local Product HHI) 0.0795∗∗∗ 0.0773∗∗∗ 0.0754∗∗∗ 0.0263 0.0654∗∗ -0.0267

(0.0235) (0.0259) (0.0245) (0.0252) (0.0297) (0.0298)

Age (in years) 0.00338∗∗∗ 0.00336∗∗∗ 0.00328∗∗∗ 0.00273∗∗∗

(0.000377) (0.000399) (0.000459) (0.000486)

Gender 0.0274∗∗∗ 0.0287∗∗∗ 0.0268∗∗∗ 0.0241∗∗∗

(0.00138) (0.00202) (0.00194) (0.00254)

Log(Value Added per Employee) 0.0197∗∗∗ 0.0190∗∗∗ 0.0180∗∗∗ -0.00118∗ 0.00980∗∗∗ 0.000689

(0.00214) (0.00312) (0.00323) (0.000677) (0.00167) (0.000731)

Log(Nb. Employees) 0.00596∗∗∗ 0.00565∗∗∗ 0.00466∗∗∗ -0.000343 0.00511∗∗∗ 0.00117

(0.000258) (0.000250) (0.000268) (0.00159) (0.000199) (0.000756)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

N. Clusters 304 304 304 304 304 304

F 1131.3 1380.1 2004.0 208.5 701.4 9.566

Observations 2225026 2225026 2212203 2044008 1734623 1563889

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the commuting
zone level. Log(Labor HHI - Business Group) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2 but measured at the business group level. This business group is identified using the Enquête sur les liaisons financières entre
sociétés (LIFI) dataset. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is
defined over a commuting zone and at the industry level. There are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number
of Employees). The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The gender
fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the
main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration measured at the business group lowers wages by approximately−0.0543× 0.1× 100 = −0.543%.
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2.B.5 Cross-Section

2.B.5.1 Hourly Wage

Table 2.B.9: Hourly Wage (OLS) : Baseline with Repeated Cross-Section

(1) (2) (3) (4)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0120∗∗∗ -0.00729∗∗∗ -0.00204∗∗∗ -0.00170∗∗∗

(0.00148) (0.000790) (0.000647) (0.000573)

Log(Product HHI) -0.000123 0.00298∗∗∗ 0.00332∗∗∗ -0.000436

(0.000641) (0.000569) (0.000712) (0.000550)

Age (in years) 0.00423∗∗∗ 0.00421∗∗∗ 0.00417∗∗∗ 0.00374∗∗∗

(0.000230) (0.000224) (0.000263) (0.000260)

Gender 0.0292∗∗∗ 0.0283∗∗∗ 0.0282∗∗∗ 0.0242∗∗∗

(0.00109) (0.00106) (0.000428) (0.000751)

Log(Value Added per Employee) 0.0134∗∗∗ 0.0136∗∗∗ 0.0130∗∗∗ 0.00122∗∗∗

(0.00216) (0.00207) (0.00204) (0.000346)

Log(Number of Employees) 0.00981∗∗∗ 0.00937∗∗∗ 0.00901∗∗∗ -0.00350∗∗∗

(0.000219) (0.000193) (0.000170) (0.000802)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone × Occupation FE No No Yes Yes

Firm FE No No No Yes

R2 0.543 0.546 0.569 0.676

Adjusted R2 0.543 0.545 0.566 0.654

N. Clusters 307 307 305 305

F 1577.7 1680.0 1648.2 753.2

Observations 11576378 11576378 11566217 11255149

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the
DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation
2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined
as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two individual level control variables: gender (equal to one if the worker is a man,
zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus
intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The gender
fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The
log-log specification lends itself to the following interpretation of the main coefficient of interest in column (4): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately
−0.00170× 0.1× 100 = −0.0170%.
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Table 2.B.10: Hourly Wage (IV) : Baseline with Repeated Cross-Section

(1) (2) (3) (4)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.202∗∗∗ -0.183∗∗∗ -0.165∗∗∗ -0.119∗∗∗

(0.0675) (0.0520) (0.0508) (0.0326)

Log(Product HHI) 0.116∗∗∗ 0.0803∗∗∗ 0.0685∗∗∗ 0.0420∗

(0.00878) (0.0171) (0.0179) (0.0233)

Age (in years) 0.00452∗∗∗ 0.00443∗∗∗ 0.00431∗∗∗ 0.00380∗∗∗

(0.000277) (0.000301) (0.000307) (0.000285)

Gender 0.0142∗ 0.0251∗∗∗ 0.0248∗∗∗ 0.0237∗∗∗

(0.00853) (0.000578) (0.000482) (0.000738)

Log(Value Added per Employee) 0.0172∗∗∗ 0.0152∗∗∗ 0.0144∗∗∗ 0.000252

(0.00112) (0.000838) (0.000317) (0.000425)

Log(Number of Employees) 0.00603∗∗∗ 0.00822∗∗∗ 0.00694∗∗∗ -0.00474∗∗∗

(0.000549) (0.00144) (0.00128) (0.00119)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone × Occupation FE No No Yes Yes

Firm FE No No No Yes

N. Clusters 307 307 305 305

F 1136.6 1421.3 2525.2 909.9

Observations 11576378 11576378 11566217 11255149

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from instrumental variables using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in
the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation
2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined
as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two individual level control variables: gender (equal to one if the worker is a man,
zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus
intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The gender
fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The
log-log specification lends itself to the following interpretation of the main coefficient of interest in column (4): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately
−0.119× 0.1× 100 = −1.19%.
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2.B.5.2 Wage Bill

Table 2.B.11: Wage Bill (OLS) : Baseline

(1) (2) (3) (4)

Log(Wage Bill) Log(Wage Bill) Log(Wage Bill) Log(Wage Bill)

Log(Labor HHI) -0.199∗∗∗ -0.105∗∗∗ -0.0542∗∗∗ -0.142∗∗∗

(0.00536) (0.00608) (0.00505) (0.00980)

Log(Product HHI) -0.108∗∗∗ -0.0897∗∗∗ -0.0945∗∗∗ -0.0491∗∗

(0.0145) (0.0119) (0.0121) (0.0193)

Mean Age (in years) 0.00144∗∗∗ 0.00146∗∗∗ 0.00173∗∗∗ 0.00420∗∗∗

(0.000356) (0.000337) (0.000372) (0.000412)

Share of Men 0.193∗∗∗ 0.188∗∗∗ 0.185∗∗∗ 0.135∗∗∗

(0.00349) (0.00354) (0.00339) (0.00293)

Mean Log(Value Added per Employee) -0.0710∗∗∗ -0.0686∗∗∗ -0.0619∗∗∗ 0.0324∗∗∗

(0.0103) (0.0104) (0.00985) (0.00303)

Mean Log(Nb. Employees) 0.0924∗∗∗ 0.0908∗∗∗ 0.0889∗∗∗ 0.0610∗∗∗

(0.00383) (0.00374) (0.00360) (0.00380)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.331 0.334 0.370 0.673

Adjusted R2 0.331 0.334 0.354 0.598

N. Clusters 308 307 305 305

F 1511.2 1099.3 1416.4 1037.9

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Wage Bill) as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting
zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over
a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as
described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of
men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean
Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the
number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the
respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends
itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers the wage bill
by approximately−0.0542× 0.1× 100 = −0.542%.
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Table 2.B.12: Wage Bill (IV) : Baseline

(1) (2) (3) (4)

Log(Wage Bill) Log(Wage Bill) Log(Wage Bill) Log(Wage Bill)

Log(Labor HHI) -0.985∗∗∗ -0.740∗∗∗ -0.731∗∗∗ -1.098∗∗∗

(0.335) (0.112) (0.107) (0.142)

Log(Product HHI) -0.117∗∗∗ -0.155∗∗∗ -0.178∗∗∗ 4.198

(0.0319) (0.0364) (0.0342) (5.867)

Mean Age (in years) 0.00314∗∗ 0.00186∗∗∗ 0.00197∗∗∗ 0.00462∗∗∗

(0.00151) (0.000510) (0.000455) (0.000504)

Share of Men 0.160∗∗∗ 0.197∗∗∗ 0.186∗∗∗ 0.133∗∗∗

(0.00701) (0.00765) (0.00396) (0.00482)

Mean Log(Value Added per Employee) -0.0223 -0.0686∗∗∗ -0.0624∗∗∗ 0.0283∗∗∗

(0.0324) (0.00920) (0.00962) (0.00758)

Mean Log(Nb. Employees) 0.0925∗∗∗ 0.0960∗∗∗ 0.0988∗∗∗ 0.0484∗

(0.00531) (0.00525) (0.00638) (0.0291)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 418.7 929.0 984.7 517.4

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from instrumental variable regression using the Log(Wage Bill) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here
defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is
defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables:
share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and
Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided
by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms
if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification
lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers the wage
bill by approximately−0.731× 0.1× 100 = −7.31%.
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2.C New Hires

2.C.1 Weighted by New Hires

Table 2.C.1: New Hires (OLS): Weighted by New Hires

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.487∗∗∗ 0.128∗∗∗ 0.273∗∗∗ 0.0777∗∗∗

(0.0315) (0.0377) (0.0418) (0.0253)

Log(Product HHI) -0.456∗∗∗ -0.289∗∗∗ -0.262∗∗∗ -0.137∗∗

(0.0562) (0.0567) (0.0498) (0.0575)

Mean Age (in years) -0.00661∗∗∗ -0.00917∗∗∗ -0.0107∗∗∗ 0.000343

(0.00117) (0.00116) (0.00115) (0.000273)

Share of Men -0.129∗ -0.230∗∗∗ -0.209∗∗∗ -0.00613

(0.0665) (0.0424) (0.0153) (0.00532)

Mean Log(Value Added per Employee) 0.114∗∗∗ 0.129∗∗∗ 0.134∗∗∗ 0.00457

(0.0180) (0.0139) (0.0128) (0.00710)

Mean Log(Nb. Employees) 0.192∗∗∗ 0.145∗∗∗ 0.126∗∗∗ 0.0448∗∗∗

(0.0170) (0.0151) (0.0129) (0.00868)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.536 0.596 0.688 0.945

Adjusted R2 0.536 0.596 0.679 0.932

N. Clusters 308 307 305 305

F 528.4 186.7 164.5 44.38

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting
zone level. Each observation is weighted by the number of new hires. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as
described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the
Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the
industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm
level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value
added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the
number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the data
presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris
paribus, a 10% increase in labor market concentration increases new hires by approximately 0.273× 0.1× 100 = 2.73%.
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Table 2.C.2: New Hires (IV) : Weighted by New Hires

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -1.787∗ -1.799∗ -2.102∗ -1.165

(1.011) (0.983) (1.200) (1.719)

Log(Product HHI) -0.638 -1.026∗∗∗ -1.243∗∗∗ -11.48

(0.397) (0.105) (0.0455) (10.38)

Mean Age (in years) -0.000764 -0.00108 -0.00374 0.00295

(0.00292) (0.00473) (0.00393) (0.00975)

Share of Men -0.625∗ -0.231∗∗∗ -0.187∗∗∗ -0.0299

(0.372) (0.0423) (0.0279) (0.0341)

Mean Log(Value Added per Employee) 0.128∗∗ 0.0874∗∗ 0.0930∗∗ 0.0738∗∗∗

(0.0519) (0.0339) (0.0383) (0.0262)

Mean Log(Nb. Employees) 0.251∗∗∗ 0.292∗∗∗ 0.305∗∗∗ 0.151∗

(0.0135) (0.0487) (0.0623) (0.0812)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 122.5 128.3 239.8 44.11

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation
is measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at
the commuting zone level. Each observation is weighted by the number of new hires. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor
market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm
of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at
the industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two
firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total
value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the
number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the data
presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris
paribus, a 10% increase in labor market concentration lowers hires by approximately−2.102× 0.1× 100 = 21.02%.
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2.C.2 Weighted by Mean New Hires

Table 2.C.3: New Hires (OLS) : Weight by Mean Market New Hires

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.558∗∗∗ -0.0198 0.0191 -0.0546∗∗

(0.0207) (0.0275) (0.0275) (0.0229)

Log(Product HHI) -0.416∗∗∗ -0.281∗∗∗ -0.265∗∗∗ -0.228∗∗∗

(0.0670) (0.0675) (0.0590) (0.0867)

Mean Age (in years) -0.0105∗∗∗ -0.0113∗∗∗ -0.0119∗∗∗ -0.00314∗∗∗

(0.000752) (0.00106) (0.00133) (0.000340)

Share of Men -0.0526 -0.128∗∗ -0.146∗∗∗ -0.00818

(0.0687) (0.0509) (0.0211) (0.00798)

Mean Log(Value Added per Employee) 0.120∗∗∗ 0.132∗∗∗ 0.138∗∗∗ 0.00899

(0.0147) (0.0132) (0.0130) (0.00557)

Mean Log(Nb. Employees) 0.154∗∗∗ 0.125∗∗∗ 0.109∗∗∗ 0.0349∗∗∗

(0.0167) (0.0157) (0.0137) (0.00560)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.533 0.575 0.660 0.923

Adjusted R2 0.533 0.575 0.651 0.905

N. Clusters 308 307 305 305

F 777.4 176.1 141.6 50.10

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone
level. Each observation is weighted by the mean number of new hires across time for a given combination of industry, occupation, and commuting zone. Log(Labor
HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an
occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation
2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of men among the
new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of
Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of
full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective
employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself
to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration increases new hires by
approximately 0.0191× 0.1× 100 = 0.191%.
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Table 2.C.4: New Hires (IV) : Weighted by Mean Market New Hires

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -4.197 -1.646∗∗ -1.444∗∗ -1.521∗

(5.348) (0.797) (0.598) (0.844)

Log(Product HHI) -0.108 -1.063∗∗∗ -1.199∗∗∗ -5.305∗∗

(1.511) (0.0669) (0.0364) (2.573)

Mean Age (in years) 0.000299 -0.00740∗∗∗ -0.00944∗∗∗ 0.000514

(0.0118) (0.00207) (0.000771) (0.00264)

Share of Men -0.995 -0.0778 -0.0909∗∗∗ -0.0487∗∗∗

(1.445) (0.0691) (0.0176) (0.0106)

Mean Log(Value Added per Employee) 0.234 0.0913∗∗∗ 0.0993∗∗∗ 0.0484∗∗∗

(0.214) (0.0314) (0.0329) (0.0166)

Mean Log(Nb. Employees) 0.186∗∗∗ 0.236∗∗∗ 0.231∗∗∗ 0.0941∗∗∗

(0.0467) (0.0314) (0.0328) (0.0214)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 60.21 216.5 329.1 133.1

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the
commuting zone level. Each observation is weighted by the mean number of new hires across time for a given combination of industry, occupation, and commuting
zone. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as
described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of
men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean
Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the
number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the
respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends
itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new hires by
approximately−1.444× 0.1× 100 = −14.44%.
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2.C.3 Poisson Regression

Table 2.C.5: New Hires (OLS) : Poisson Regression

(1) (2) (3) (4)

Nb. Hires Nb. Hires Nb. Hires Nb. Hires

Log(Labor HHI) -0.544∗∗∗ -0.377∗∗∗ -0.431∗∗∗ -0.486∗∗∗

(0.0221) (0.0216) (0.0223) (0.0788)

Log(Product HHI) -0.370∗∗∗ -0.339∗∗∗ -0.354∗∗∗ -0.446∗∗∗

(0.0313) (0.0278) (0.0284) (0.0213)

Quarter × Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 310 310 310 310

F 998.7 160.6 237.5 356.8

Observations 22016820 22016820 22016820 22016820

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a Poisson Regression Nb. Hires as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Missing values were
replaced with zeros, to provide a balanced panel. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the
logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product
market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. The
exponential specification was used because the data presents a relationship of this form. It lends itself to the following interpretation of the
main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new hires by approximately
−0.431× 0.1× 100 = −4.31%.

63



2.C.4 First Stage

Table 2.C.6: Labor HHI: First-Stage Results (Aggregated Level)

(1) (2) (3) (4)

Log(Labor HHI) Log(Labor HHI) Log(Labor HHI) Log(Labor HHI)

Instrument : Worker 0.266∗∗∗ 0.399∗∗∗ 0.420∗∗∗ 0.402∗∗∗

(0.0930) (0.0490) (0.0473) (0.0605)

Instrument : Firm 0.00463 -0.00745∗∗∗ -0.00289∗∗∗ 0.0215∗∗∗

(0.00342) (0.000961) (0.000400) (0.00430)

Mean Age (in years) 0.00207∗∗∗ 0.000461∗∗ 0.000131∗ 0.000382∗∗∗

(0.000711) (0.000211) (0.0000714) (0.0000933)

Share of Men -0.0420∗∗∗ 0.0110∗∗ -0.00300∗∗∗ 0.00157

(0.0138) (0.00552) (0.000914) (0.00114)

Mean Log(Value Added per Employee) 0.0616∗∗∗ 0.00779∗∗∗ 0.00791∗∗∗ 0.00113

(0.00603) (0.00129) (0.000322) (0.000932)

Mean Log(Nb. Employees) -0.000726 0.000515 0.00484∗∗∗ 0.00674∗∗∗

(0.00214) (0.00131) (0.000294) (0.000611)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.367 0.803 0.893 0.909

Adjusted R2 0.367 0.803 0.890 0.888

N. Clusters 308 307 305 305

F 125.5 488.4 780.5 367.2

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Labor HHI) as a dependent variable, providing “first-stage”
estimates from two-stage instrumental variable regression. Each observation is measured at the Occupation by Industry by Commuting Zone by Quarter level, as
provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman
index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. The two
instruments of relevance are denoted by Instrument: Worker and Instrument: Industry, as described in Section 2.3.2. There are two employee level control variables:
share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker)
and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year
divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers
in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log
specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in the number of firms hiring the
given occupation is correlated with a decrease in labor market concentration by approximately−(0.420)× 0.1× 100 = −4.2%.
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Table 2.C.7: Product HHI : First-Stage Results (Aggregated Level)

(1) (2) (3) (4)

Log(Product HHI) Log(Product HHI) Log(Product HHI) Log(Product HHI)

Instrument : Worker -0.107∗∗∗ -0.0420∗∗∗ -0.0456∗∗∗ 0.00702∗∗∗

(0.0391) (0.0118) (0.0144) (0.00189)

Instrument : Firm 0.183∗∗∗ 0.179∗∗∗ 0.181∗∗∗ 0.0155

(0.0142) (0.0132) (0.0138) (0.00996)

Mean Age (in years) 0.00112∗∗ 0.000331 0.000357 0.0000144

(0.000510) (0.000210) (0.000228) (0.0000397)

Mean Share of Men 0.0196∗ 0.0357∗∗∗ 0.0384∗∗∗ 0.000746

(0.0110) (0.00692) (0.00760) (0.000769)

Mean Log(Value Added per Employee) -0.0724∗∗∗ -0.0947∗∗∗ -0.0927∗∗∗ 0.00112

(0.0100) (0.00642) (0.00647) (0.000828)

Mean Log(Nb. Employees) 0.0727∗∗∗ 0.0728∗∗∗ 0.0736∗∗∗ 0.00430∗∗∗

(0.00609) (0.00519) (0.00549) (0.000320)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.144 0.303 0.350 0.939

Adjusted R2 0.144 0.303 0.333 0.926

N. Clusters 308 307 305 305

F 843.8 898.2 996.9 45.40

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Product HHI) as a dependent variable, providing “first-stage”
estimates from two-stage instrumental variable regression. Each observation is measured at the Occupation by Industry by Commuting Zone by Quarter level, as
provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. The two instruments of relevance are denoted by Instrument:
Worker and Instrument: Industry, as described in Section 2.3.2. There are two employee level control variables: share of men among the new hires and the mean
age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is
the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees.
The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The
log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of
the main coefficient of interest in column (3): ceteris paribus, a 10% increase in the number of firms hiring the given occupation is correlated with an increase in the
product market concentration by approximately−(−0.0456)× 0.1× 100 = 0.456%.
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Table 2.C.8: Labor HHI : First-Stage Results Weighted by Hires (Aggregated Level)

(1) (2) (3) (4)

Log(Labor HHI) Log(Labor HHI) Log(Labor HHI) Log(Labor HHI)

Instrument : Worker 0.339∗∗∗ 0.341∗∗∗ 0.301∗∗∗ 0.284∗∗∗

(0.114) (0.100) (0.0973) (0.0950)

Instrument : Firm 0.0708∗∗∗ 0.00341 -0.00527∗∗∗ 0.0195

(0.0209) (0.00319) (0.00145) (0.0263)

Mean Age (in years) 0.00361∗∗∗ 0.00343∗∗∗ 0.00237∗∗∗ 0.00338∗∗∗

(0.00137) (0.000636) (0.000431) (0.000747)

Share of Men -0.358∗∗∗ -0.0248 -0.0334∗∗∗ -0.0276∗∗∗

(0.101) (0.0196) (0.00288) (0.00338)

Mean Log(Value Added per Employee) 0.00369 -0.00476∗∗ 0.000583 0.0102∗∗∗

(0.00531) (0.00222) (0.000895) (0.00244)

Mean Log(Nb. Employees) 0.0275∗∗∗ 0.0361∗∗∗ 0.0265∗∗∗ 0.0575∗∗∗

(0.00375) (0.00208) (0.00233) (0.00754)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.442 0.825 0.913 0.922

Adjusted R2 0.442 0.825 0.910 0.905

N. Clusters 308 307 305 305

F 370.4 113.5 433.8 183.5

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Labor HHI) as a dependent variable, providing “first-stage”
estimates from two-stage instrumental variable regression. Each observation is measured at the Occupation by Industry by Commuting Zone by Quarter level, as
provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman
index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. The two
instruments of relevance are denoted by Instrument: Worker and Instrument: Industry, as described in Section 2.3.2. Each observation is weighted by the number
of hires. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level
control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value
added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the
number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the
data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column
(3): ceteris paribus, a 10% increase in the number of firms hiring the given occupation is correlated with a decrease in labor market concentration by approximately
−(0.301)× 0.1× 100 = −3.01%.
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Table 2.C.9: Product HHI (OLS) : First-Stage Results Weighted by Hires (Aggregated Level)

(1) (2) (3) (4)

Log(Product HHI) Log(Product HHI) Log(Product HHI) Log(Product HHI)

Instrument : Worker 0.0124 -0.000680 -0.00634 0.0255∗∗∗

(0.0492) (0.0345) (0.0321) (0.00513)

Instrument : Firm 0.237∗∗∗ 0.190∗∗∗ 0.187∗∗∗ 0.0188

(0.0519) (0.0351) (0.0321) (0.0207)

Mean Age (in years) -0.000267 0.000162 -0.0000554 -0.000196∗

(0.000475) (0.00111) (0.00107) (0.000106)

Share of Men -0.156 0.0634∗∗∗ 0.109∗∗∗ 0.000736

(0.116) (0.0145) (0.0119) (0.00216)

Mean Log(Value Added per Employee) -0.0759∗∗∗ -0.0792∗∗∗ -0.0758∗∗∗ 0.00526

(0.0211) (0.0227) (0.0241) (0.00375)

Mean Log(Nb. Employees) 0.0866∗∗∗ 0.0929∗∗∗ 0.109∗∗∗ 0.00351∗∗∗

(0.0152) (0.0153) (0.0207) (0.000633)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.236 0.501 0.596 0.954

Adjusted R2 0.236 0.501 0.585 0.944

N. Clusters 308 307 305 305

F 523.4 826.0 794.9 39.80

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Product HHI) as a dependent variable, providing “first-stage”
estimates from two-stage instrumental variable regression. Each observation is measured at the Occupation by Industry by Commuting Zone by Quarter level, as
provided in the DADS Salariés (2011-2015). Each observation is weighted by the number of hires. Standard Errors are clustered at the commuting zone level. The two
instruments of relevance are denoted by Instrument: Worker and Instrument: Industry, as described in Section 2.3.2. There are two employee level control variables:
share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker)
and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year
divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers
in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log
specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in the number of firms hiring the
given occupation is correlated with an increase in the product market concentration by approximately−(−0.00634)× 0.1× 100 = 0.0634%.
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Table 2.C.10: Labor HHI (OLS) : First-Stage Results Weighted by Mean Hires

(1) (2) (3) (4)

Log(Labor HHI) Log(Labor HHI) Log(Labor HHI) Log(Labor HHI)

Instrument : Worker 0.0404 0.309∗∗∗ 0.352∗∗∗ 0.328∗∗∗

(0.134) (0.0861) (0.0807) (0.0836)

Instrument : Firm 0.0562∗∗∗ -0.000434 -0.00665∗∗∗ 0.0231

(0.0183) (0.00289) (0.000640) (0.0154)

Mean Age (in years) 0.00272∗∗∗ 0.00179∗∗∗ 0.00112∗∗∗ 0.00174∗∗∗

(0.000846) (0.000452) (0.000294) (0.000468)

Share of Men -0.267∗∗∗ 0.00385 -0.0162∗∗∗ -0.0180∗∗∗

(0.0779) (0.0162) (0.00172) (0.00256)

Mean Log(Value Added per Employee) 0.0195∗∗∗ 0.000300 0.00393∗∗∗ 0.00493∗∗

(0.00449) (0.00177) (0.000647) (0.00207)

Mean Log(Nb. Employees) 0.0138∗∗∗ 0.0198∗∗∗ 0.0122∗∗∗ 0.0339∗∗∗

(0.00349) (0.00136) (0.000913) (0.00337)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.416 0.824 0.906 0.911

Adjusted R2 0.416 0.824 0.904 0.890

N. Clusters 308 307 305 305

F 175.8 86.76 654.9 190.2

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Labor HHI) as a dependent variable, providing “first-stage”
estimates from two-stage instrumental variable regression. Each observation is measured at the Occupation by Industry by Commuting Zone by Quarter level, as
provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman
index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. The two
instruments of relevance are denoted by Instrument: Worker and Instrument: Industry, as described in Section 2.3.2. Each observation is weighted by the mean
number of hires across time. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There
are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of
total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires)
of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because
the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column
(3): ceteris paribus, a 10% increase in the number of firms hiring the given occupation is correlated with a decrease in labor market concentration by approximately
−(0.352)× 0.1× 100 = −3.52%.
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Table 2.C.11: Product HHI (OLS) : First-Stage Results Weighted by Mean Hire

(1) (2) (3) (4)

Log(Product HHI) Log(Product HHI) Log(Product HHI) Log(Product HHI)

Instrument : Worker -0.252∗∗∗ -0.0650∗∗∗ -0.0536∗∗∗ 0.0347∗∗∗

(0.0683) (0.0196) (0.0198) (0.00536)

Instrument : Firm 0.222∗∗∗ 0.185∗∗∗ 0.184∗∗∗ 0.0312

(0.0464) (0.0326) (0.0301) (0.0242)

Mean Age (in years) 0.000120 -0.0000550 -0.000188 0.000133

(0.000308) (0.000735) (0.000673) (0.000202)

Share of Men -0.107 0.0604∗∗∗ 0.0889∗∗∗ -0.00303∗∗

(0.0809) (0.00685) (0.0114) (0.00141)

Mean Log(Value Added per Employee) -0.0720∗∗∗ -0.0816∗∗∗ -0.0769∗∗∗ 0.00692∗

(0.0204) (0.0201) (0.0215) (0.00391)

Mean Log(Nb. Employees) 0.0869∗∗∗ 0.0899∗∗∗ 0.101∗∗∗ 0.00270

(0.0149) (0.0140) (0.0179) (0.00168)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.226 0.480 0.568 0.940

Adjusted R2 0.226 0.480 0.557 0.927

N. Clusters 308 307 305 305

F 354.2 345.9 315.1 36.14

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Product HHI) as a dependent variable, providing “first-stage”
estimates from two-stage instrumental variable regression. Each observation is measured at the Occupation by Industry by Commuting Zone by Quarter level, as
provided in the DADS Salariés (2011-2015). Each observation is weighted by the mean number of hires across time. Standard Errors are clustered at the commuting
zone level. The two instruments of relevance are denoted by Instrument: Worker and Instrument: Industry, as described in Section 2.3.2. There are two employee
level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value
Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary
costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent
number of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this
form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in the number
of firms hiring the given occupation is correlated with an increase in the product market concentration by approximately−(−0.0536)× 0.1× 100 = 0.536%.
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2.C.5 Exits

2.C.5.1 Baseline

Table 2.C.12: Exits (OLS) : Baseline

(1) (2) (3) (4)

Log(Nb. Exits) Log(Nb. Exits) Log(Nb. Exits) Log(Nb. Exits)

Log(Labor HHI) -0.102∗∗∗ -0.0807∗∗∗ -0.0224∗∗∗ -0.0701∗∗∗

(0.00243) (0.00472) (0.00292) (0.00350)

Log(Product HHI) -0.107∗∗∗ -0.102∗∗∗ -0.107∗∗∗ -0.0418∗∗

(0.0125) (0.0128) (0.0127) (0.0204)

Mean Age (in years) -0.00359∗∗∗ -0.00366∗∗∗ -0.00379∗∗∗ -0.0000769

(0.000129) (0.000126) (0.000122) (0.000116)

Share of Men -0.0621∗∗∗ -0.0610∗∗∗ -0.0577∗∗∗ -0.00531∗∗

(0.00757) (0.00769) (0.00700) (0.00265)

Mean Log(Value Added per Employee) -0.0211∗∗∗ -0.0232∗∗∗ -0.0277∗∗∗ 0.0180∗∗∗

(0.00309) (0.00316) (0.00275) (0.00167)

Mean Log(Nb. Employees) 0.0780∗∗∗ 0.0782∗∗∗ 0.0786∗∗∗ 0.0279∗∗∗

(0.00354) (0.00354) (0.00338) (0.00150)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.169 0.172 0.217 0.675

Adjusted R2 0.169 0.171 0.197 0.592

N. Clusters 305 304 304 304

F 2095.6 979.9 512.1 302.7

Observations 2271453 2271452 2261341 1889175

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a linear regression using the Log(Nb. Exits) as a dependent variable. Each observation is measured at the Occupation
by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor
HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an
occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation
2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of men among the
new exits and the mean age (in years) of the new quitters. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number
of Employees). The former is the Mean (across new exits) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of
full-time equivalent employees. The latter is the mean (across new exits) of the number of reported full-time equivalent number of workers in the firms if the respective
employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to
the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers exits by approximately
−0.0224× 0.1× 100 = −0.224%.
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Table 2.C.13: Exits (IV) : Baseline

(1) (2) (3) (4)

Log(Nb. Exits) Log(Nb. Exits) Log(Nb. Exits) Log(Nb. Exits)

Log(Labor HHI) -0.216∗∗∗ -0.173∗∗∗ -0.197∗∗∗ 0.00480

(0.0350) (0.0288) (0.0314) (0.283)

Log(Product HHI) -0.292∗∗∗ -0.307∗∗∗ -0.337∗∗∗ -18.59

(0.0183) (0.0132) (0.0134) (14.12)

Mean Age (in years) -0.00253∗∗∗ -0.00270∗∗∗ -0.00276∗∗∗ 0.00175∗∗

(0.000199) (0.000127) (0.000151) (0.000728)

Share of Men -0.0613∗∗∗ -0.0553∗∗∗ -0.0529∗∗∗ 0.0197

(0.0144) (0.00983) (0.00951) (0.0223)

Mean Log(Value Added per Employee) -0.0316∗∗∗ -0.00800∗∗ -0.00846∗∗∗ 0.183

(0.00861) (0.00321) (0.00298) (0.118)

Mean Log(Nb. Employees) 0.0937∗∗∗ 0.0920∗∗∗ 0.0946∗∗∗ 0.125∗

(0.00506) (0.00456) (0.00479) (0.0712)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 305 304 304 304

F 629.9 990.0 959.7 10.07

Observations 2271453 2271452 2261341 1889175

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from instrumental variable regression using the Log(Nb. Exits) as a dependent variable. Each observation is measured at
the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone
level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as
described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of
men among the new exits and the mean age (in years) of the new quitters. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean
Log(Number of Employees). The former is the Mean (across new exits) of the log of total value added (revenues minus intermediary costs) over a year divided by the
number of full-time equivalent employees. The latter is the mean (across new exits) of the number of reported full-time equivalent number of workers in the firms if
the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification
lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers exits by
approximately−0.197× 0.1× 100 = −1.97%.
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2.C.5.2 Weighted by New Hires

Table 2.C.14: Exits (OLS) : Weighted by Market Exits

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.583∗∗∗ -0.209∗∗∗ -0.187∗∗∗ -0.173∗∗∗

(0.0254) (0.0195) (0.0240) (0.0178)

Log(Product HHI) -0.341∗∗∗ -0.240∗∗∗ -0.241∗∗∗ -0.108∗∗

(0.0613) (0.0610) (0.0521) (0.0436)

Mean Age (in years) -0.00130 -0.00411∗∗ -0.00865∗∗∗ 0.00338∗∗∗

(0.00220) (0.00160) (0.000868) (0.000994)

Share of Men -0.182∗∗ -0.276∗∗∗ -0.307∗∗∗ -0.0287∗∗∗

(0.0923) (0.0718) (0.0194) (0.00710)

Mean Log(Value Added per Employee) -0.102∗∗ -0.138∗∗∗ -0.149∗∗∗ 0.0690∗∗∗

(0.0402) (0.0401) (0.0290) (0.00824)

Mean Log(Nb. Employees) 0.203∗∗∗ 0.185∗∗∗ 0.171∗∗∗ 0.0844∗∗∗

(0.0219) (0.0199) (0.0205) (0.00792)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.631 0.655 0.747 0.948

Adjusted R2 0.630 0.654 0.740 0.935

N. Clusters 305 304 304 304

F 571.2 216.3 203.5 121.8

Observations 2271453 2271452 2261341 1889175

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a linear regression using the Log(Nb. Exits) as a dependent variable. Each observation is measured at the Occupation
by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the number of exits. Standard
Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation
2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman
index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are
two employee level control variables: share of men among the new exits and the mean age (in years) of the new quitters. There are two firm level control variables:
Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new exits) of the log of total value added (revenues minus
intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new exits) of the number of reported full-time
equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship
under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in
labor market concentration lowers exits by approximately−0.187× 0.1× 100 = −1.87%.
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Table 2.C.15: Exits (IV) : Weighted by Market Exits

(1) (2) (3) (4)

Log(Nb. Exits) Log(Nb. Exits) Log(Nb. Exits) Log(Nb. Exits)

Log(Labor HHI) -0.690∗∗∗ -0.617∗∗∗ -0.553∗∗∗ -1.396

(0.177) (0.0757) (0.0627) (1.166)

Log(Product HHI) -0.631∗∗∗ -0.718∗∗∗ -0.983∗∗∗ 4.011

(0.0713) (0.0788) (0.0693) (8.778)

Mean Age (in years) 0.00193 0.00209 -0.000344 0.00203

(0.00153) (0.00195) (0.00150) (0.00214)

Share of Men -0.267∗∗∗ -0.243∗∗∗ -0.285∗∗∗ -0.0362∗∗

(0.0637) (0.0810) (0.0303) (0.0142)

Mean Log(Value Added per Employee) -0.0979 -0.0926∗∗ -0.0518 0.0174

(0.0616) (0.0446) (0.0318) (0.134)

Mean Log(Nb. Employees) 0.228∗∗∗ 0.234∗∗∗ 0.248∗∗∗ 0.0650

(0.0234) (0.0303) (0.0400) (0.0625)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 305 304 304 304

F 65.74 65.25 115.3 25.04

Observations 2271453 2271452 2261341 1889175

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from instrumental variable regression using the Log(Nb. Exits) as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the number
of exits. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as
described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the
Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the
industry level. There are two employee level control variables: share of men among the new exits and the mean age (in years) of the new quitters. There are two
firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new exits) of the log of total
value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new exits) of the
number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the data
presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris
paribus, a 10% increase in labor market concentration lowers exits by approximately−0.553× 0.1× 100 = −5.53%.
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2.C.5.3 Weighted by Mean New Hires

Table 2.C.16: Exits (OLS) : Weighted by Mean Market Exits

(1) (2) (3) (4)

Log(Nb. Exits) Log(Nb. Exits) Log(Nb. Exits) Log(Nb. Exits)

Log(Labor HHI) -0.517∗∗∗ -0.148∗∗∗ -0.191∗∗∗ -0.213∗∗∗

(0.0202) (0.0167) (0.0124) (0.0149)

Log(Product HHI) -0.374∗∗∗ -0.270∗∗∗ -0.263∗∗∗ -0.173∗∗

(0.0768) (0.0717) (0.0614) (0.0670)

Mean Age (in years) -0.00687∗∗∗ -0.00821∗∗∗ -0.0111∗∗∗ -0.00168∗∗

(0.00103) (0.000818) (0.000901) (0.000675)

Share of Men -0.0449 -0.100∗∗ -0.135∗∗∗ -0.0105

(0.0658) (0.0486) (0.0122) (0.00890)

Mean Log(Value Added per Employee) -0.133∗∗∗ -0.157∗∗∗ -0.139∗∗∗ 0.0651∗∗∗

(0.0292) (0.0306) (0.0221) (0.00558)

Mean Log(Nb. Employees) 0.158∗∗∗ 0.142∗∗∗ 0.128∗∗∗ 0.0583∗∗∗

(0.0194) (0.0169) (0.0155) (0.00355)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.544 0.572 0.655 0.874

Adjusted R2 0.544 0.572 0.647 0.842

N. Clusters 305 304 304 304

F 643.5 156.8 168.1 196.7

Observations 2271453 2271452 2261341 1889175

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Exits) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone
level. Each observation is weighted by the mean number of new exits across time for a given combination of industry, occupation, and commuting zone. Log(Labor
HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an
occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation
2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of men among the
new exits and the mean age (in years) of the new exits. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of
Employees). The former is the Mean (across new exits) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of
full-time equivalent employees. The latter is the mean (across new exits) of the number of reported full-time equivalent number of workers in the firms if the respective
employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself
to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration decreases new exits by
approximately−0.191× 0.1× 100 = −1.91%.
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Table 2.C.17: Exits (IV) : Weighted by Mean Market Exits

(1) (2) (3) (4)

Log(Nb. Exits) Log(Nb. Exits) Log(Nb. Exits) Log(Nb. Exits)

Log(Labor HHI) -0.465∗∗∗ -0.463∗∗∗ -0.681∗∗∗ -3.165

(0.0957) (0.0736) (0.148) (3.107)

Log(Product HHI) -0.718∗∗∗ -0.710∗∗∗ -0.881∗∗∗ 20.05

(0.0628) (0.0651) (0.0623) (37.22)

Mean Age (in years) -0.00411∗∗∗ -0.00456∗∗∗ -0.00684∗∗∗ -0.00929

(0.000893) (0.000839) (0.000593) (0.00961)

Share of Men -0.0693 -0.0786 -0.120∗∗∗ -0.0649

(0.0624) (0.0567) (0.0189) (0.0976)

Mean Log(Value Added per Employee) -0.114∗∗∗ -0.125∗∗∗ -0.0734∗∗∗ -0.105

(0.0310) (0.0334) (0.0211) (0.329)

Mean Log(Nb. Employees) 0.187∗∗∗ 0.183∗∗∗ 0.185∗∗∗ -0.0168

(0.0248) (0.0249) (0.0306) (0.154)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 305 304 304 304

F 54.58 89.25 134.4 5.815

Observations 2271453 2271452 2261341 1889175

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Exits) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the
commuting zone level. Each observation is weighted by the mean number of new exits across time for a given combination of industry, occupation, and commuting
zone. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as
described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share
of men among the new exits and the mean age (in years) of the new exits. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean
Log(Number of Employees). The former is the Mean (across new exits) of the log of total value added (revenues minus intermediary costs) over a year divided by the
number of full-time equivalent employees. The latter is the mean (across new exits) of the number of reported full-time equivalent number of workers in the firms if the
respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends
itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration decreases new exits
by approximately−1.444× 0.1× 100 = −14.44%.
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2.C.5.4 Poisson Regression

Table 2.C.18: Exits (OLS) : Poisson Regression

(1) (2) (3) (4)

Nb. Exits Nb. Exits Nb. Exits Nb. Exits

Log(Labor HHI) -0.518∗∗∗ -0.484∗∗∗ -0.551∗∗∗ -0.664∗∗∗

(0.00759) (0.0118) (0.0232) (0.0455)

Log(Product HHI) -0.263∗∗∗ -0.259∗∗∗ -0.270∗∗∗ -0.384∗∗∗

(0.0223) (0.0216) (0.0220) (0.0224)

Quarter × Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 305 305 305 305

F 2451.0 836.4 329.2 193.0

Observations 15259580 15259580 15259580 15259580

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a Poisson Regression Nb. Exits as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Missing values were
replaced with zeros, to provide a balanced panel. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the
logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product
market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. The
exponential specification was used because the data presents a relationship of this form. It lends itself to the following interpretation of the
main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new exits by approximately
−0.551× 0.1× 100 = −5.51%.
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2.C.6 Net Employment

2.C.6.1 Baseline

Table 2.C.19: Net Employment (OLS) : Baseline

(1) (2) (3) (4)

Log(Nb. Employees) Log(Nb. Employees) Log(Nb. Employees) Log(Nb. Employees)

Log(Labor HHI) -0.114∗∗∗ -0.106∗∗∗ -0.0118∗∗∗ -0.0274∗∗∗

(0.0120) (0.0151) (0.00130) (0.00500)

Log(Product HHI) -0.159∗∗∗ -0.154∗∗∗ -0.160∗∗∗ -0.0477∗∗

(0.0142) (0.0136) (0.0159) (0.0205)

Mean Age (in years) -0.00322∗∗∗ -0.00327∗∗∗ -0.00318∗∗∗ -0.00272∗∗∗

(0.000325) (0.000338) (0.000219) (0.0000635)

Share of Men -0.119∗∗∗ -0.116∗∗∗ -0.110∗∗∗ -0.000937

(0.00352) (0.00424) (0.00404) (0.00157)

Mean Log(Value Added per Employee) 0.0743∗∗∗ 0.0703∗∗∗ 0.0653∗∗∗ -0.00662∗∗∗

(0.00407) (0.00364) (0.00309) (0.00127)

Mean Log(Nb. Employees) 0.102∗∗∗ 0.101∗∗∗ 0.100∗∗∗ 0.0425∗∗∗

(0.00412) (0.00413) (0.00404) (0.00219)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.122 0.124 0.168 0.881

Adjusted R2 0.121 0.124 0.163 0.863

N. Clusters 306 305 304 304

F 1297.6 1322.1 1434.2 733.5

Observations 11750180 11750179 11743710 11330634

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a linear regression using the Log(Net Number of Employees) as a dependent variable. Each observation is measured at the Occupation by
Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of
the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product
HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the
industry level. There are two employee level control variables: share of men among the employees and the mean age (in years) of the employees. There are two firm level control variables: Mean
Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across employees) of the log of total value added (revenues minus intermediary costs) over a year
divided by the number of full-time equivalent employees. The latter is the mean (across employees) of the number of reported full-time equivalent number of workers in the firms if the respective
employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of
the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers net employment by approximately−0.0118× 0.1× 100 = −0.118%.

77



Table 2.C.20: Net Employment (IV) : Baseline

(1) (2) (3) (4)

Log(Nb. Employees) Log(Nb. Employees) Log(Nb. Employees) Log(Nb. Employees)

Log(Labor HHI) 0.00167 -0.0247∗∗∗ -0.0613∗∗∗ -0.104∗∗∗

(0.0230) (0.00686) (0.00622) (0.00962)

Log(Local Product HHI) -0.308∗∗∗ -0.312∗∗∗ -0.346∗∗∗ -1.276∗∗∗

(0.0216) (0.0233) (0.0313) (0.369)

Mean Age (in years) -0.00304∗∗∗ -0.00298∗∗∗ -0.00271∗∗∗ -0.00264∗∗∗

(0.000339) (0.000303) (0.000135) (0.0000754)

Share of Men -0.110∗∗∗ -0.109∗∗∗ -0.0994∗∗∗ -0.0000168

(0.00395) (0.00500) (0.00588) (0.00182)

Mean Log(Value Added per Employee) 0.1000∗∗∗ 0.0868∗∗∗ 0.0847∗∗∗ 0.00193

(0.0122) (0.00423) (0.00402) (0.00247)

Mean Log(Nb. Employees) 0.119∗∗∗ 0.118∗∗∗ 0.120∗∗∗ 0.0525∗∗∗

(0.00596) (0.00598) (0.00653) (0.00202)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 306 305 304 304

F 1119.8 1283.0 1004.9 473.9

Observations 11750180 11750179 11743710 11330634

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from instrumental variable regression using the Log(Net Number of Employees) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the
logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters.
Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting
zone and at the industry level. There are two employee level control variables: share of men among the employees and the mean age (in years) of the employees. There are two firm level
control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across employees) of the log of total value added (revenues minus
intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across employees) of the number of reported full-time equivalent number of
workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification
lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers net employment by approximately
−0.0613× 0.1× 100 = −0.613%.
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2.C.6.2 Weighted by Employment

Table 2.C.21: Net Employment (OLS) : Weighted by Market Employment

(1) (2) (3) (4)

Log(Nb. Employees) Log(Nb. Employees) Log(Nb. Employees) Log(Nb. Employees)

Log(Labor HHI) -0.450∗∗∗ -0.215∗∗∗ -0.0314∗∗∗ -0.0436∗∗∗

(0.0167) (0.0105) (0.00444) (0.00847)

Log(Product HHI) -0.505∗∗∗ -0.432∗∗∗ -0.420∗∗∗ -0.110∗∗

(0.0832) (0.0882) (0.0808) (0.0449)

Mean Age (in years) -0.0196∗∗∗ -0.0208∗∗∗ -0.0209∗∗∗ -0.00572∗∗∗

(0.00380) (0.00413) (0.00379) (0.000206)

Share of Men -0.376∗∗∗ -0.411∗∗∗ -0.399∗∗∗ -0.0114∗

(0.0890) (0.0774) (0.0514) (0.00601)

Mean Log(Value Added per Employee) 0.0696∗∗∗ 0.0272 0.00242 0.0105

(0.0208) (0.0199) (0.0138) (0.0116)

Mean Log(Nb. Employees) 0.292∗∗∗ 0.275∗∗∗ 0.234∗∗∗ 0.107∗∗∗

(0.0203) (0.0209) (0.0219) (0.00895)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.517 0.533 0.625 0.980

Adjusted R2 0.517 0.533 0.623 0.977

N. Clusters 306 305 304 304

F 1961.8 602.0 535.2 465.6

Observations 11750180 11750179 11743710 11330634

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a linear regression using the Log(Nb. of Employees) as a dependent variable. Each observation is measured at the Occupation
by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the number of employees. Standard Errors
are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor
market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product
market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control
variables: share of men among the new exits and the mean age (in years) of the new quitters. There are two firm level control variables: Mean Log(Value Added per Worker)
and Mean Log(Number of Employees). The former is the Mean (across employees) of the log of total value added (revenues minus intermediary costs) over a year divided
by the number of full-time equivalent employees. The latter is the mean (across employees) of the number of reported full-time equivalent number of workers in the firms if
the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends
itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers net employment by
approximately−0.0314× 0.1× 100 = −0.314%.
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Table 2.C.22: Net Employment (IV): Weighted by Market Employment

(1) (2) (3) (4)

Log(Nb. Employees) Log(Nb. Employees) Log(Nb. Employees) Log(Nb. Employees)

Log(Labor HHI) -0.0755 -0.180∗∗∗ -0.208∗∗∗ -0.223∗∗∗

(0.0619) (0.0595) (0.0604) (0.0796)

Log(Product HHI) -0.983∗∗∗ -0.898∗∗∗ -0.933∗∗∗ -0.748∗∗∗

(0.0283) (0.0515) (0.0591) (0.0778)

Mean Age (in years) -0.0172∗∗∗ -0.0169∗∗∗ -0.0166∗∗∗ -0.00511∗∗∗

(0.00329) (0.00347) (0.00279) (0.000204)

Share of Men -0.317∗∗∗ -0.358∗∗∗ -0.315∗∗∗ -0.00894

(0.0776) (0.0855) (0.0672) (0.00743)

Mean Log(Value Added per Employee) 0.161∗∗∗ 0.0860∗∗∗ 0.0752∗∗∗ 0.0196∗∗

(0.0392) (0.0321) (0.0234) (0.00968)

Mean Log(Nb. Employees) 0.368∗∗∗ 0.347∗∗∗ 0.319∗∗∗ 0.123∗∗∗

(0.0198) (0.0249) (0.0318) (0.0113)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 306 305 304 304

F 922.8 398.4 560.7 348.2

Observations 11750180 11750179 11743710 11330634

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from instrumental variables regression using the Log(Nb. of Employees) as a dependent variable. Each observation is measured at the Occupation by
Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the number of employees. Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting
zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product
market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of men among the new exits and the mean age (in years) of the new
quitters. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across employees) of the log of total value
added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across employees) of the number of reported full-time
equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log
specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers net employment by
approximately−0.208× 0.1× 100 = −2.08%.
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2.C.6.3 Weighted by Mean Employment

Table 2.C.23: Net Employment (OLS) : Weighted by Mean Market Employment

(1) (2) (3) (4)

Log(Nb. Employees) Log(Nb. Employees) Log(Nb. Employees) Log(Nb. Employees)

Log(Labor HHI) -0.451∗∗∗ -0.225∗∗∗ -0.0403∗∗∗ -0.0736∗∗∗

(0.0158) (0.0108) (0.00620) (0.0156)

Log(Product HHI) -0.512∗∗∗ -0.441∗∗∗ -0.431∗∗∗ -0.187∗∗

(0.0877) (0.0919) (0.0852) (0.0748)

Mean Age (in years) -0.0177∗∗∗ -0.0186∗∗∗ -0.0183∗∗∗ -0.00483∗∗∗

(0.00358) (0.00388) (0.00345) (0.000387)

Share of Men -0.374∗∗∗ -0.399∗∗∗ -0.380∗∗∗ -0.0261∗∗

(0.0766) (0.0677) (0.0456) (0.0132)

Mean Log(Value Added per Employee) 0.0798∗∗∗ 0.0374∗∗ 0.0108 0.0167

(0.0189) (0.0185) (0.0135) (0.0174)

Mean Log(Nb. Employees) 0.289∗∗∗ 0.274∗∗∗ 0.235∗∗∗ 0.165∗∗∗

(0.0218) (0.0225) (0.0232) (0.0165)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.498 0.513 0.602 0.964

Adjusted R2 0.498 0.513 0.599 0.959

N. Clusters 306 305 304 304

F 1709.0 595.2 631.4 203.6

Observations 11750180 11750179 11743710 11330634

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a linear regression using the Log(Nb. of Employees) as a dependent variable. Each observation is measured at the Occupation by Industry
by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the mean number of employees across time for a given combination of
industry, occupation, and commuting zone. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as
described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for
the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables:
share of men among the new exits and the mean age (in years) of the new quitters. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of
Employees). The former is the Mean (across employees) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees.
The latter is the mean (across employees) of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was
used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris
paribus, a 10% increase in labor market concentration lowers net employment by approximately−0.0403× 0.1× 100 = −0.403%.
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Table 2.C.24: Net Employment (IV) : Weighted by Mean Market Employment

(1) (2) (3) (4)

Log(Nb. Employees) Log(Nb. Employees) Log(Nb. Employees) Log(Nb. Employees)

Log(Labor HHI) -0.109∗ -0.195∗∗∗ -0.222∗∗∗ -0.313∗∗∗

(0.0562) (0.0458) (0.0475) (0.0856)

Log(Product HHI) -0.996∗∗∗ -0.927∗∗∗ -0.958∗∗∗ -0.668∗∗∗

(0.0350) (0.0629) (0.0703) (0.0781)

Mean Age (in years) -0.0152∗∗∗ -0.0150∗∗∗ -0.0145∗∗∗ -0.00420∗∗∗

(0.00298) (0.00316) (0.00250) (0.000297)

Share of Men -0.321∗∗∗ -0.345∗∗∗ -0.306∗∗∗ -0.0279∗∗

(0.0684) (0.0756) (0.0594) (0.0123)

Mean Log(Value Added per Employee) 0.161∗∗∗ 0.0983∗∗∗ 0.0843∗∗∗ 0.0145

(0.0366) (0.0270) (0.0195) (0.0117)

Mean Log(Nb. Employees) 0.361∗∗∗ 0.344∗∗∗ 0.316∗∗∗ 0.172∗∗∗

(0.0226) (0.0273) (0.0329) (0.0162)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 306 305 304 304

F 802.9 438.6 570.8 113.9

Observations 11750180 11750179 11743710 11330634

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from an instrumental variable regression using the Log(Nb. of Employees) as a dependent variable. Each observation is measured at the Occupation by
Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the mean number of employees across time for a given combination
of industry, occupation, and commuting zone. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market,
as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman
index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control
variables: share of men among the employees and the mean age (in years) of employees. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of
Employees). The former is the Mean (across employees) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees.
The latter is the mean (across employees) of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was
used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris
paribus, a 10% increase in labor market concentration lowers net employment by approximately−0.222× 0.1× 100 = −2.22%.
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2.C.6.4 Poisson Regression

Table 2.C.25: Net Employment (OLS) : Poisson Regression

(1) (2) (3) (4)

Net Employment Net Employment Net Employment Net Employment

Log(Labor HHI) -0.618∗∗∗ -0.731∗∗∗ -0.784∗∗∗ -0.395∗∗∗

(0.0228) (0.0235) (0.0473) (0.0497)

Log(Product HHI) -0.360∗∗∗ -0.377∗∗∗ -0.384∗∗∗ -0.269∗∗∗

(0.0356) (0.0358) (0.0374) (0.00926)

Quarter × Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 306 306 306 306

F 16039.7 7273.1 14531.4 1088.2

Observations 37389080 37389080 37389080 37389080

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a Poisson Regression using Net Employment as a dependent variable. Each observation is measured at the Occupation
by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Missing values were replaced with zeros, to provide a balanced
panel. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described
in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-
Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level.
The exponential specification was used because the data presents a relationship of this form. It lends itself to the following interpretation of the main coefficient of
interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers net employment by approximately−0.784× 0.1× 100 = −7.84%.
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2.C.7 Panel

2.C.7.1 Baseline

Table 2.C.26: New Hires (OLS) : Baseline with Panel Data

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.122∗∗∗ -0.0120∗ 0.0440∗∗∗ 0.00443

(0.00583) (0.00708) (0.00344) (0.00488)

Log(Product HHI) -0.0851∗∗∗ -0.0648∗∗∗ -0.0737∗∗∗ -0.00800∗∗∗

(0.0109) (0.00926) (0.00920) (0.00250)

Mean Age (in years) -0.000753∗∗ -0.000612∗∗ -0.000861∗∗∗ -0.000579∗∗∗

(0.000302) (0.000259) (0.000309) (0.000113)

Share of Men -0.0176∗∗ -0.0237∗∗∗ -0.0191∗∗∗ -0.00544∗∗

(0.00783) (0.00726) (0.00639) (0.00246)

Mean Log(Value Added per Employee) -0.0535∗∗∗ -0.0562∗∗∗ -0.0628∗∗∗ -0.00625∗∗∗

(0.00639) (0.00545) (0.00653) (0.00158)

Mean Log(Nb. Employees) 0.0516∗∗∗ 0.0509∗∗∗ 0.0525∗∗∗ 0.00221

(0.00393) (0.00414) (0.00365) (0.00179)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.163 0.182 0.276 0.728

Adjusted R2 0.162 0.182 0.234 0.674

N. Clusters 304 304 304 304

F 367.3 188.0 269.7 20.01

Observations 746669 746669 733037 624303

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the commuting
zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over
a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as
described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of
men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean
Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the
number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the
respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends
itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration increases new hires
by approximately 0.0440× 0.1× 100 = −0.44%.
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Table 2.C.27: New Hires (IV) : Baseline with Panel Data

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) 0.0664 -0.0252∗ -0.0575∗∗∗ -0.338∗∗∗

(0.0461) (0.0132) (0.0140) (0.120)

Log(Product HHI) -0.158∗∗∗ -0.106∗∗∗ -0.164∗∗∗ -0.0926

(0.0263) (0.0182) (0.0196) (0.0619)

Mean Age (in years) -0.000849∗∗∗ -0.000588∗∗ -0.000845∗∗∗ -0.000591∗∗∗

(0.000260) (0.000269) (0.000325) (0.000126)

Share of Men -0.00362 -0.0227∗∗∗ -0.0170∗∗ -0.00549∗∗

(0.0118) (0.00784) (0.00740) (0.00246)

Mean Log(Value Added per Employee) -0.0334∗∗ -0.0541∗∗∗ -0.0574∗∗∗ -0.00439∗∗

(0.0155) (0.00565) (0.00683) (0.00189)

Mean Log(Nb. Employees) 0.0503∗∗∗ 0.0528∗∗∗ 0.0575∗∗∗ 0.00420∗∗

(0.00301) (0.00452) (0.00443) (0.00187)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 304 304 304 304

F 183.3 131.4 231.5 30.94

Observations 746669 746669 733037 624303

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation
is measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here
defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is
defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables:
share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and
Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided
by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms
if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification
lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration decreases new
hires by approximately−0.0575× 0.1× 100 = −0.575%.
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2.C.7.2 Weighted by New Hires

Table 2.C.28: New Hires (OLS) : Weighted by New Hires

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.440∗∗∗ 0.0782∗∗∗ 0.137∗∗∗ 0.0484∗∗

(0.0439) (0.0277) (0.0139) (0.0204)

Log(Product HHI) -0.364∗∗∗ -0.208∗∗∗ -0.176∗∗∗ -0.0385∗∗∗

(0.0414) (0.0504) (0.0490) (0.00343)

Mean Age (in years) 0.00708∗∗ 0.00554∗∗∗ 0.00106 -0.000975∗∗∗

(0.00280) (0.00190) (0.00158) (0.000193)

Share of Men -0.0121 -0.0966∗∗ -0.0999∗∗∗ -0.0235∗∗∗

(0.0639) (0.0394) (0.0101) (0.00472)

Mean Log(Value Added per Employee) -0.0933∗∗∗ -0.109∗∗∗ -0.127∗∗∗ -0.00153

(0.0145) (0.0138) (0.0109) (0.00515)

Mean Log(Nb. Employees) 0.105∗∗∗ 0.0883∗∗∗ 0.0865∗∗∗ 0.00917

(0.0161) (0.0147) (0.0119) (0.00625)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.541 0.619 0.723 0.937

Adjusted R2 0.541 0.618 0.707 0.925

N. Clusters 304 304 304 304

F 211.1 36.71 119.1 46.37

Observations 746669 746669 733037 624303

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Panel (2011-2015). Each observation is weighted by the number of
new hires. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as
described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the
Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the
industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm
level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value
added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the
number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the data
presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris
paribus, a 10% increase in labor market concentration increases new hires by approximately 0.137× 0.1× 100 = 1.37%.
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Table 2.C.29: Net Hires (IV) : Weighted by Market New Hires

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.116 -0.358 -0.408 -0.668∗

(0.315) (0.276) (0.254) (0.382)

Log(Product HHI) -0.513∗∗∗ -0.357∗∗∗ -0.557∗∗∗ -0.534

(0.101) (0.0385) (0.0737) (0.370)

Mean Age (in years) 0.00749∗∗ 0.00628∗∗∗ 0.00150 -0.000844∗∗∗

(0.00314) (0.00220) (0.00189) (0.000315)

Share of Men 0.0779∗∗ -0.108∗∗∗ -0.0924∗∗∗ -0.0315∗∗∗

(0.0313) (0.0354) (0.0135) (0.00597)

Mean Log(Value Added per Employee) -0.0647∗∗∗ -0.114∗∗∗ -0.103∗∗∗ 0.0238∗

(0.0226) (0.0163) (0.0101) (0.0136)

Mean Log(Nb. Employees) 0.107∗∗∗ 0.103∗∗∗ 0.121∗∗∗ 0.0180∗

(0.0170) (0.0185) (0.0174) (0.00950)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 304 304 304 304

F 100.7 60.23 191.0 89.50

Observations 746669 746669 733037 624303

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation
is measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Panel (2011-2015). Each observation is weighted by the
number of new hires. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor
market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm
of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at
the industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two
firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total
value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the
number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the data
presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris
paribus, a 10% increase in labor market concentration decreases new hires by approximately−0.408× 0.1× 100 = −4.08%.
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2.C.7.3 Weighted by Mean New Hires

Table 2.C.30: New Hires (OLS) : Weighted by Mean Market Hires with Panel Data

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.469∗∗∗ 0.0329 0.0867∗∗∗ 0.0418∗∗

(0.0436) (0.0263) (0.0117) (0.0199)

Log(Product HHI) -0.339∗∗∗ -0.190∗∗∗ -0.153∗∗∗ -0.0303∗∗∗

(0.0469) (0.0526) (0.0471) (0.00439)

Mean Age (in years) 0.00467∗∗ 0.00397∗∗ 0.000300 -0.00130∗∗∗

(0.00223) (0.00157) (0.00121) (0.000316)

Share of Men 0.0190 -0.0519 -0.0707∗∗∗ -0.0281∗∗∗

(0.0535) (0.0336) (0.00848) (0.00720)

Mean Log(Value Added per Employee) -0.106∗∗∗ -0.118∗∗∗ -0.125∗∗∗ 0.00265

(0.0106) (0.0131) (0.00984) (0.00467)

Mean Log(Nb. Employees) 0.0935∗∗∗ 0.0809∗∗∗ 0.0766∗∗∗ 0.00657

(0.0180) (0.0170) (0.0134) (0.00562)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.524 0.594 0.700 0.921

Adjusted R2 0.524 0.594 0.682 0.906

N. Clusters 304 304 304 304

F 200.5 29.04 73.37 12.58

Observations 746669 746669 733037 624303

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a linear regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at the Occupation
by Industry by Commuting Zone by Quarter level, as provided in the DADS Panel (2011-2015). Each observation is weighted by the mean number of new hires across
time for a given combination of industry, occupation, and commuting zone. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm
of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and
through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The
product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of men among the new hires and
the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The
former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent
employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective employees over
the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following
interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration increases new hires by approximately
0.0867× 0.1× 100 = 0.867%.
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Table 2.C.31: New Hires (IV) : Weighted by Mean Market Hires with Panel Data

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) 0.255∗∗ -0.349 -0.350∗∗ -0.834∗

(0.115) (0.212) (0.170) (0.451)

Log(Product HHI) -0.577∗∗∗ -0.315∗∗∗ -0.493∗∗∗ -0.331

(0.0475) (0.0439) (0.0573) (0.331)

Mean Age (in years) 0.00551 0.00426∗∗ 0.000353 -0.00137∗∗∗

(0.00356) (0.00168) (0.00135) (0.000363)

Share of Men 0.192 -0.0541 -0.0608∗∗∗ -0.0343∗∗∗

(0.120) (0.0335) (0.00976) (0.00916)

Mean Log(Value Added per Employee) -0.0441∗∗ -0.122∗∗∗ -0.107∗∗∗ 0.0170∗∗

(0.0203) (0.0153) (0.0111) (0.00830)

Mean Log(Nb. Employees) 0.0920∗∗∗ 0.0916∗∗∗ 0.104∗∗∗ 0.0147∗

(0.0166) (0.0193) (0.0180) (0.00762)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 304 304 304 304

F 87.20 58.74 144.8 21.38

Observations 746669 746669 733037 624303

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Panel (2011-2015). Each observation is weighted by the mean number
of new hires across time for a given combination of industry, occupation, and commuting zone. Standard Errors are clustered at the commuting zone level. Log(Labor
HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an
occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation
2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of men among the
new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of
Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of
full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective
employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself
to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration increases new hires by
approximately−0.350× 0.1× 100 = −3.50%.
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2.C.7.4 Poisson Regression

Table 2.C.32: New Hires (OLS) : Poisson Regression with Panel Data

(1) (2) (3) (4)

Nb. Hires Nb. Hires Nb. Hires Nb. Hires

Log(Labor HHI) -0.495∗∗∗ -0.351∗∗∗ -0.409∗∗∗ -0.509∗∗∗

(0.0188) (0.0244) (0.0174) (0.104)

Log(Product HHI) -0.284∗∗∗ -0.253∗∗∗ -0.261∗∗∗ -0.302∗∗∗

(0.0171) (0.0169) (0.0159) (0.103)

Quarter × Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 304 304 304 304

F 353.4 118.7 1586.0 28.39

Observations 4509900 4509900 4509900 4509900

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a Poisson Regression Nb. Hires as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Panel (2011-2015). Missing values were
replaced with zeros, to provide a balanced panel. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the
logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product
market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. The
exponential specification was used because the data presents a relationship of this form. It lends itself to the following interpretation of the
main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new exits by approximately
−0.409× 0.1× 100 = −4.09%.
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2.D Constant Sample

2.D.1 Hourly Wage

Table 2.D.1: Hourly Wage (OLS) : Constant Sample

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0130∗∗∗ -0.00767∗∗∗ -0.00301∗∗ -0.00215∗∗∗ -0.00224∗ -0.00203∗∗∗

(0.00352) (0.00170) (0.00118) (0.000681) (0.00126) (0.000758)

Log(Product HHI) -0.00697∗∗∗ -0.00262 -0.00248 0.00185 -0.00320 -0.00185∗∗∗

(0.00258) (0.00231) (0.00260) (0.00152) (0.00218) (0.000652)

Age (in years) 0.00289∗∗∗ 0.00286∗∗∗ 0.00276∗∗∗ 0.00233∗∗∗

(0.000391) (0.000386) (0.000440) (0.000435)

Gender 0.0271∗∗∗ 0.0261∗∗∗ 0.0257∗∗∗ 0.0221∗∗∗

(0.00184) (0.00184) (0.00238) (0.00287)

Log(Value Added per Employee) 0.0188∗∗∗ 0.0179∗∗∗ 0.0163∗∗∗ -0.000226 0.0105∗∗∗ 0.000777

(0.00125) (0.00133) (0.00136) (0.000705) (0.000526) (0.000753)

Log(Nb. Employees) 0.00688∗∗∗ 0.00666∗∗∗ 0.00669∗∗∗ 0.000427 0.00661∗∗∗ 0.00161∗∗

(0.000160) (0.000146) (0.000136) (0.00118) (0.000125) (0.000723)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

R2 0.511 0.516 0.549 0.653 0.742 0.793

Adjusted R2 0.511 0.515 0.540 0.619 0.634 0.677

N. Clusters 304 304 304 304 304 304

F 1077.5 844.5 1055.8 103.1 914.6 11.32

Observations 1582456 1582456 1582456 1582456 1582456 1582456

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Gross Hourly Wage) as a dependent variable. The sample is kept constant across specifications, using column (6) as providing a baseline. Each observation is a new hire labor contract,
as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting
zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two
individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus
intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity
with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in
labor market concentration lowers wages by approximately−0.00203× 0.1× 100 = −0.0203%.
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Table 2.D.2: Hourly Wage (IV) : Constant Sample

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0897∗∗∗ -0.0812∗∗∗ -0.0702∗∗∗ -0.0316∗∗∗ -0.0575∗∗∗ -0.0194∗∗

(0.0144) (0.0126) (0.0115) (0.00982) (0.00972) (0.00972)

Log(Product HHI) 0.0790∗∗∗ 0.0770∗∗ 0.0807∗∗ -0.00638 0.0696∗ -0.0273

(0.0290) (0.0299) (0.0320) (0.0283) (0.0363) (0.0285)

Age (in years) 0.00285∗∗∗ 0.00284∗∗∗ 0.00278∗∗∗ 0.00233∗∗∗

(0.000324) (0.000357) (0.000420) (0.000438)

Gender 0.0235∗∗∗ 0.0251∗∗∗ 0.0240∗∗∗ 0.0220∗∗∗

(0.00210) (0.00258) (0.00276) (0.00291)

Log(Value Added per Employee) 0.0162∗∗∗ 0.0154∗∗∗ 0.0143∗∗∗ -0.000376 0.00899∗∗∗ 0.000698

(0.00195) (0.00277) (0.00282) (0.000754) (0.00169) (0.000722)

Log(Nb. Employees) 0.00517∗∗∗ 0.00472∗∗∗ 0.00370∗∗∗ -0.000133 0.00467∗∗∗ 0.00110

(0.000451) (0.000431) (0.000430) (0.00135) (0.000227) (0.000790)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

N. Clusters 304 304 304 304 304 304

F 965.4 1132.0 1500.5 124.8 508.3 9.036

Observations 1582456 1582456 1582456 1582456 1582456 1582456

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from instrument variables using the Log(Gross Hourly Wage) as a dependent variable. The sample is kept constant across specifications, using column (6) as providing a baseline. Each observation is a new hire labor
contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level.
There are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total value added
(revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv)
by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a
10% increase in labor market concentration lowers wages by approximately−0.0575× 0.1× 100 = −0.575%.
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2.D.2 New Hires

2.D.2.1 Baseline

Table 2.D.3: New Hires (OLS) : Baseline with Constant Sample

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.137∗∗∗ -0.0727∗∗∗ -0.0198∗∗∗ -0.0937∗∗∗

(0.00249) (0.00652) (0.00430) (0.00675)

Log(Product HHI) -0.113∗∗∗ -0.102∗∗∗ -0.109∗∗∗ -0.0429∗∗

(0.0129) (0.0124) (0.0130) (0.0208)

Mean Age (in years) -0.00382∗∗∗ -0.00382∗∗∗ -0.00370∗∗∗ -0.000557∗∗∗

(0.0000759) (0.0000742) (0.0000761) (0.0000586)

Share of Men -0.0492∗∗∗ -0.0536∗∗∗ -0.0478∗∗∗ 0.00218

(0.00725) (0.00743) (0.00683) (0.00146)

Mean Log(Value Added per Employee) 0.0722∗∗∗ 0.0746∗∗∗ 0.0788∗∗∗ -0.00502∗∗∗

(0.00420) (0.00417) (0.00398) (0.00130)

Mean Log(Nb. Employees) 0.0507∗∗∗ 0.0499∗∗∗ 0.0490∗∗∗ 0.0132∗∗∗

(0.00234) (0.00237) (0.00220) (0.00154)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.161 0.164 0.224 0.742

Adjusted R2 0.161 0.164 0.202 0.683

N. Clusters 305 305 305 305

F 2652.0 1112.1 932.7 225.3

Observations 2620737 2620737 2620737 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. The sample is kept constant
across specifications, using column (4) as providing a baseline. Each observation is measured at the Occupation by Industry by Commuting Zone by Quarter level, as
provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman
index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product
HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a
commuting zone and at the industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new
hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new
hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean
(across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification
was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of
interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new hires by approximately−0.0198× 0.1× 100 = −0.198%.
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Table 2.D.4: New Hires (IV) : Baseline with Constant Sample

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.546∗∗ -0.388∗∗∗ -0.408∗∗∗ -0.585∗∗∗

(0.268) (0.103) (0.105) (0.187)

Log(Product HHI) -0.323∗∗∗ -0.324∗∗∗ -0.353∗∗∗ -3.096∗∗∗

(0.0295) (0.0194) (0.0158) (0.798)

Mean Age (in years) -0.00316∗∗∗ -0.00358∗∗∗ -0.00350∗∗∗ -0.000240

(0.000606) (0.000179) (0.000160) (0.000261)

Share of Men -0.0744∗∗∗ -0.0430∗∗∗ -0.0401∗∗∗ 0.00523

(0.00724) (0.0121) (0.00886) (0.00360)

Mean Log(Value Added per Employee) 0.0945∗∗∗ 0.0604∗∗∗ 0.0634∗∗∗ -0.00117

(0.0294) (0.00575) (0.00548) (0.00384)

Mean Log(Nb. Employees) 0.0739∗∗∗ 0.0698∗∗∗ 0.0726∗∗∗ 0.0290∗∗∗

(0.00870) (0.00384) (0.00443) (0.00481)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 305 305 305 305

F 299.3 794.4 678.1 47.89

Observations 2620737 2620737 2620737 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. The sample is kept
constant across specifications, using column (4) as providing a baseline. Each observation is measured at the Occupation by Industry by Commuting Zone by Quarter
level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-
Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters.
Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined
over a commuting zone and at the industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the
new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new
hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean
(across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification
was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of
interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new hires by approximately−0.408× 0.1× 100 = −4.08%.
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2.D.2.2 Weighted by New Hires

Table 2.D.5: New Hires (OLS) : Weighted by New Hires with Constant Sample

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.499∗∗∗ 0.124∗∗∗ 0.267∗∗∗ 0.0777∗∗∗

(0.0319) (0.0395) (0.0424) (0.0253)

Log(Product HHI) -0.446∗∗∗ -0.281∗∗∗ -0.254∗∗∗ -0.137∗∗

(0.0573) (0.0594) (0.0524) (0.0575)

Mean Age (in years) -0.00628∗∗∗ -0.00948∗∗∗ -0.0113∗∗∗ 0.000343

(0.00127) (0.00140) (0.00134) (0.000273)

Share of Men -0.117∗ -0.240∗∗∗ -0.209∗∗∗ -0.00613

(0.0700) (0.0436) (0.0168) (0.00532)

Mean Log(Value Added per Employee) 0.103∗∗∗ 0.120∗∗∗ 0.127∗∗∗ 0.00457

(0.0197) (0.0150) (0.0135) (0.00710)

Mean Log(Nb. Employees) 0.186∗∗∗ 0.139∗∗∗ 0.120∗∗∗ 0.0448∗∗∗

(0.0189) (0.0173) (0.0146) (0.00868)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.521 0.584 0.678 0.945

Adjusted R2 0.521 0.584 0.669 0.932

N. Clusters 305 305 305 305

F 376.8 131.6 144.2 44.38

Observations 2620737 2620737 2620737 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. The sample is kept constant across
specifications, using column (4) as providing a baseline. Each observation is weighted by the number of new hires. Each observation is measured at the Occupation by
Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor
HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an
occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation
2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of men among the
new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of
Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of
full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective
employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself
to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration increases new hires by
approximately 0.267× 0.1× 100 = 2.67%.
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Table 2.D.6: New Hires (IV) : Weighted by New Hires with Constant Sample

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -1.977∗ -1.995∗ -2.359∗ -1.165

(1.160) (1.118) (1.378) (1.719)

Log(Product HHI) -0.702∗ -1.098∗∗∗ -1.330∗∗∗ -11.48

(0.395) (0.114) (0.0677) (10.38)

Mean Age (in years) -0.00260 -0.000765 -0.00342 0.00295

(0.00186) (0.00548) (0.00522) (0.00975)

Share of Men -0.820 -0.266∗∗∗ -0.191∗∗∗ -0.0299

(0.549) (0.0387) (0.0357) (0.0341)

Mean Log(Value Added per Employee) 0.136∗ 0.0822∗∗ 0.0879∗∗ 0.0738∗∗∗

(0.0694) (0.0401) (0.0434) (0.0262)

Mean Log(Nb. Employees) 0.274∗∗∗ 0.309∗∗∗ 0.329∗∗∗ 0.151∗

(0.0285) (0.0584) (0.0704) (0.0812)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 305 305 305 305

F 100.3 97.86 191.2 44.11

Observations 2620737 2620737 2620737 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. The sample is kept
constant across specifications, using column (4) as providing a baseline. Each observation is weighted by the number of new hires. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting
zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over
a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as
described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share of
men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean
Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the
number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the
respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends
itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration decreases new hires
by approximately−2.359× 0.1× 100 = 23.59%.

96



2.D.2.3 Weighted by Mean New Hires

Table 2.D.7: New Hires (OLS) : Weighted by New Hires with Constant Sample

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.579∗∗∗ -0.0337 0.0102 -0.0546∗∗

(0.0209) (0.0292) (0.0267) (0.0229)

Log(Product HHI) -0.414∗∗∗ -0.280∗∗∗ -0.265∗∗∗ -0.228∗∗∗

(0.0670) (0.0690) (0.0606) (0.0867)

Mean Age (in years) -0.0114∗∗∗ -0.0124∗∗∗ -0.0130∗∗∗ -0.00314∗∗∗

(0.000850) (0.00124) (0.00145) (0.000340)

Share of Men -0.0544 -0.142∗∗∗ -0.147∗∗∗ -0.00818

(0.0694) (0.0505) (0.0229) (0.00798)

Mean Log(Value Added per Employee) 0.118∗∗∗ 0.131∗∗∗ 0.137∗∗∗ 0.00899

(0.0156) (0.0135) (0.0135) (0.00557)

Mean Log(Nb. Employees) 0.152∗∗∗ 0.123∗∗∗ 0.108∗∗∗ 0.0349∗∗∗

(0.0180) (0.0173) (0.0150) (0.00560)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.526 0.570 0.654 0.923

Adjusted R2 0.526 0.570 0.644 0.905

N. Clusters 305 305 305 305

F 620.0 151.9 132.8 50.10

Observations 2620737 2620737 2620737 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. The sample is kept constant across
specifications, using column (4) as providing a baseline. Each observation is weighted by the mean number of new hires across time for a given combination of
industry, occupation, and commuting zone. Each observation is measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the
DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the
labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the
logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone
and at the industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are
two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of
total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires)
of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because
the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column
(3): ceteris paribus, a 10% increase in labor market concentration increases new hires by approximately 0.0102× 0.1× 100 = 0.102%.
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Table 2.D.8: New Hires (IV) : Weighted by New Hires with Constant Sample

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -4.364 -1.710∗∗ -1.562∗∗ -1.521∗

(5.223) (0.816) (0.654) (0.844)

Log(Product HHI) -0.340 -1.178∗∗∗ -1.307∗∗∗ -5.305∗∗

(1.242) (0.0835) (0.0582) (2.573)

Mean Age (in years) -0.00503 -0.00897∗∗∗ -0.0107∗∗∗ 0.000514

(0.00446) (0.00205) (0.00104) (0.00264)

Share of Men -1.233 -0.0976 -0.0871∗∗∗ -0.0487∗∗∗

(1.714) (0.0653) (0.0187) (0.0106)

Mean Log(Value Added per Employee) 0.262 0.0912∗∗ 0.0992∗∗∗ 0.0484∗∗∗

(0.251) (0.0379) (0.0380) (0.0166)

Mean Log(Nb. Employees) 0.234∗∗∗ 0.252∗∗∗ 0.248∗∗∗ 0.0941∗∗∗

(0.0225) (0.0341) (0.0338) (0.0214)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 305 305 305 305

F 52.80 194.1 317.2 133.1

Observations 2620737 2620737 2620737 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. The sample is kept
constant across specifications, using column (4) as providing a baseline. Each observation is weighted by the mean number of new hires across time for a given
combination of industry, occupation, and commuting zone. Each observation is measured at the Occupation by Industry by Commuting Zone by Quarter level, as
provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman
index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product
HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a
commuting zone and at the industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new
hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new
hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean
(across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification
was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of
interest in column (3): ceteris paribus, a 10% increase in labor market concentration increases new hires by approximately−1.562× 0.1× 100 = 15.62%.
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2.D.2.4 Poisson Regression

Table 2.D.9: New Hires (OLS): Poisson Regression with Constant Sample

(1) (2) (3) (4)

Nb. Hires Nb. Hires Nb. Hires Nb. Hires

Log(Labor HHI) -0.544∗∗∗ -0.377∗∗∗ -0.431∗∗∗ -0.486∗∗∗

(0.0221) (0.0216) (0.0223) (0.0788)

Log(Product HHI) -0.370∗∗∗ -0.339∗∗∗ -0.354∗∗∗ -0.446∗∗∗

(0.0313) (0.0278) (0.0284) (0.0213)

Quarter × Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 310 310 310 310

F 998.7 160.6 237.5 356.8

Observations 22016820 22016820 22016820 22016820

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a Poisson Regression Nb. Hires as a dependent variable. The sample is kept constant
across specifications, using column (4) as providing a baseline. Each observation is measured at the Occupation by Industry by Commuting
Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Missing values were replaced with zeros, to provide a balanced
panel. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index
for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through
quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation
2.2.4. The product market is defined over a commuting zone and at the industry level. The exponential specification was used because the
data presents a relationship of this form. It lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris
paribus, a 10% increase in labor market concentration lowers new exits by approximately−0.409× 0.1× 100 = −4.09%.
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2.E Only Labor Market Concentration

2.E.1 Hourly Wage

Table 2.E.1: Hourly Wage (OLS) : Only Labor Market Concentration

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0156∗∗∗ -0.00797∗∗∗ -0.00311∗∗∗ -0.00227∗∗∗ -0.00247∗∗ -0.00227∗∗∗

(0.00240) (0.00120) (0.000792) (0.000457) (0.00115) (0.000851)

Age (in years) 0.00339∗∗∗ 0.00336∗∗∗ 0.00327∗∗∗ 0.00274∗∗∗

(0.000413) (0.000409) (0.000470) (0.000484)

Gender 0.0304∗∗∗ 0.0295∗∗∗ 0.0287∗∗∗ 0.0242∗∗∗

(0.00109) (0.00105) (0.00169) (0.00248)

Log(Value Added per Employee) 0.0230∗∗∗ 0.0223∗∗∗ 0.0202∗∗∗ -0.000878 0.0112∗∗∗ 0.000699

(0.00170) (0.00177) (0.00191) (0.000722) (0.000616) (0.000748)

Log(Nb. Employees) 0.00799∗∗∗ 0.00788∗∗∗ 0.00778∗∗∗ 0.0000801 0.00714∗∗∗ 0.00164∗∗

(0.000238) (0.000264) (0.000247) (0.00140) (0.000120) (0.000713)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

R2 0.523 0.527 0.556 0.664 0.741 0.793

Adjusted R2 0.523 0.527 0.548 0.629 0.633 0.677

N. Clusters 304 304 304 304 304 304

F 741.1 757.2 923.2 232.0 1404.6 10.81

Observations 2225026 2225026 2212203 2044008 1734623 1563889

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the commuting
zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. There are two individual level control variables:
gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus intermediary costs) over a year
divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The
log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers
wages by approximately−0.00247× 0.1× 100 = −0.0247%.
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Table 2.E.2: Hourly Wage (IV) : Only Labor Market Concentration

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0757∗∗∗ -0.0555∗∗∗ -0.0403∗∗∗ -0.0389∗∗∗ -0.0258∗∗∗ -0.0304∗∗∗

(0.0155) (0.0137) (0.0116) (0.00850) (0.00835) (0.00989)

Age (in years) 0.00334∗∗∗ 0.00338∗∗∗ 0.00327∗∗∗ 0.00274∗∗∗

(0.000358) (0.000403) (0.000470) (0.000486)

Gender 0.0227∗∗∗ 0.0290∗∗∗ 0.0284∗∗∗ 0.0241∗∗∗

(0.00200) (0.00137) (0.00183) (0.00254)

Log(Value Added per Employee) 0.0199∗∗∗ 0.0216∗∗∗ 0.0202∗∗∗ -0.00107 0.0112∗∗∗ 0.000549

(0.00219) (0.00221) (0.00202) (0.000742) (0.000695) (0.000741)

Log(Nb. Employees) 0.00909∗∗∗ 0.00830∗∗∗ 0.00797∗∗∗ -0.000477 0.00723∗∗∗ 0.00122

(0.000301) (0.000177) (0.000192) (0.00158) (0.000125) (0.000758)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

N. Clusters 304 304 304 304 304 304

F 710.0 757.1 980.1 257.2 1345.8 7.926

Observations 2225026 2225026 2212203 2044008 1734623 1563889

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from instrumental variables using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. There are two individual level control
variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus intermediary costs)
over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual
fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market
concentration lowers wages by approximately−0.0258× 0.1× 100 = −0.258%.
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2.E.2 New Hires

2.E.2.1 Baseline

Table 2.E.3: New Hires (OLS) : Baseline with Only Labor Market Concentration

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.158∗∗∗ -0.0612∗∗∗ -0.00373 -0.0945∗∗∗

(0.0132) (0.00681) (0.00396) (0.00658)

Mean Age (in years) -0.00348∗∗∗ -0.00345∗∗∗ -0.00338∗∗∗ -0.000558∗∗∗

(0.0000841) (0.0000880) (0.0000804) (0.0000584)

Share of Men -0.0541∗∗∗ -0.0569∗∗∗ -0.0552∗∗∗ 0.00215

(0.00491) (0.00539) (0.00464) (0.00144)

Mean Log(Value Added per Employee) 0.0821∗∗∗ 0.0833∗∗∗ 0.0855∗∗∗ -0.00506∗∗∗

(0.00381) (0.00372) (0.00348) (0.00127)

Mean Log(Nb. Employees) 0.0413∗∗∗ 0.0413∗∗∗ 0.0398∗∗∗ 0.0130∗∗∗

(0.000879) (0.000843) (0.000802) (0.00147)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.157 0.164 0.215 0.741

Adjusted R2 0.157 0.164 0.194 0.683

N. Clusters 308 307 305 305

F 1863.7 1764.6 1318.9 179.7

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here
defined over a commuting zone, an occupation, and through quarters. There are two employee level control variables: share of men among the new hires and the
mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The
former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent
employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective employees over
the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following
interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new hires by approximately
−0.00373× 0.1× 100 = −0.0373%.
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Table 2.E.4: New Hires (IV) : Baseline with Only Labor Market Concentration

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.330∗∗ -0.290∗∗∗ -0.300∗∗∗ -0.655∗∗∗

(0.128) (0.0695) (0.0672) (0.198)

Mean Age (in years) -0.00311∗∗∗ -0.00333∗∗∗ -0.00331∗∗∗ -0.000264

(0.000329) (0.0000747) (0.0000722) (0.000160)

Share of Men -0.0614∗∗∗ -0.0544∗∗∗ -0.0561∗∗∗ 0.00302∗

(0.00276) (0.00718) (0.00466) (0.00171)

Mean Log(Value Added per Employee) 0.0929∗∗∗ 0.0852∗∗∗ 0.0882∗∗∗ -0.00463∗∗∗

(0.0104) (0.00388) (0.00367) (0.00171)

Mean Log(Nb. Employees) 0.0412∗∗∗ 0.0412∗∗∗ 0.0410∗∗∗ 0.0162∗∗∗

(0.000883) (0.000853) (0.000813) (0.00278)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 1111.1 1435.4 1130.2 100.7

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here
defined over a commuting zone, an occupation, and through quarters. There are two employee level control variables: share of men among the new hires and the mean
age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the
Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The
latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log
specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main
coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new hires by approximately−0.3× 0.1× 100 = −3%.
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2.E.2.2 Weighted by New Hires

Table 2.E.5: New Hires (OLS) : Weighted by New Hires with Only Labor Market Concentration

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.723∗∗∗ 0.0852∗ 0.266∗∗∗ 0.0725∗∗

(0.0925) (0.0508) (0.0449) (0.0296)

Mean Age (in years) -0.00629∗∗∗ -0.00947∗∗∗ -0.0110∗∗∗ 0.000385

(0.00117) (0.00145) (0.00150) (0.000277)

Share of Men -0.140∗ -0.249∗∗∗ -0.236∗∗∗ -0.00639

(0.0826) (0.0436) (0.0116) (0.00507)

Mean Log(Value Added per Employee) 0.134∗∗∗ 0.143∗∗∗ 0.146∗∗∗ 0.00390

(0.0139) (0.0124) (0.0124) (0.00644)

Mean Log(Nb. Employees) 0.153∗∗∗ 0.117∗∗∗ 0.0941∗∗∗ 0.0447∗∗∗

(0.00736) (0.00567) (0.00320) (0.00878)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.494 0.581 0.678 0.944

Adjusted R2 0.494 0.581 0.669 0.932

N. Clusters 308 307 305 305

F 804.9 295.1 210.3 51.57

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the number of
hires. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described
in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. There are two employee level control variables: share
of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean
Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the
number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the
respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends
itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration increases new hires
by approximately 0.266× 0.1× 100 = 2.66%.
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Table 2.E.6: New Hires (IV) : Weighted by New Hires with Only Labor Market Concentration

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -1.892∗∗ -1.907∗∗ -2.227∗ -2.345∗∗

(0.919) (0.938) (1.152) (1.123)

Mean Age (in years) -0.00127 -0.00231 -0.00484∗∗ 0.00913

(0.00289) (0.00341) (0.00229) (0.00559)

Share of Men -0.559∗ -0.297∗∗∗ -0.320∗∗∗ -0.0715∗∗

(0.337) (0.0624) (0.0322) (0.0298)

Mean Log(Value Added per Employee) 0.153∗∗∗ 0.137∗∗∗ 0.147∗∗∗ 0.0246

(0.0210) (0.0161) (0.0143) (0.0152)

Mean Log(Nb. Employees) 0.189∗∗∗ 0.188∗∗∗ 0.158∗∗∗ 0.179∗∗

(0.0353) (0.0384) (0.0347) (0.0872)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 -0.293 -0.674 -0.679 -3.830

Adjusted R2 -0.293 -0.674 -0.679 -3.830

N. Clusters 308 307 305 305

F 92.95 135.3 187.7 6.387

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the
number of hires. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market,
as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. There are two employee level control
variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per
Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over
a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of
workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form.
The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market
concentration decreases new hires by approximately−2.227× 0.1× 100 = −22.27%.
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2.E.2.3 Weighted by Mean New Hires

Table 2.E.7: New Hires (OLS) : Weighted by Mean New Hires with Only Labor Market Concentration

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.764∗∗∗ -0.0562 0.0106 -0.0721∗∗

(0.0835) (0.0421) (0.0371) (0.0348)

Mean Age (in years) -0.0104∗∗∗ -0.0115∗∗∗ -0.0121∗∗∗ -0.00314∗∗∗

(0.000798) (0.00130) (0.00156) (0.000359)

Share of Men -0.0609 -0.145∗∗∗ -0.168∗∗∗ -0.00782

(0.0770) (0.0488) (0.0148) (0.00811)

Mean Log(Value Added per Employee) 0.142∗∗∗ 0.147∗∗∗ 0.151∗∗∗ 0.00748

(0.0133) (0.0128) (0.0135) (0.00499)

Mean Log(Nb. Employees) 0.116∗∗∗ 0.0973∗∗∗ 0.0796∗∗∗ 0.0349∗∗∗

(0.00561) (0.00545) (0.00356) (0.00623)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.498 0.561 0.650 0.922

Adjusted R2 0.498 0.561 0.641 0.904

N. Clusters 308 307 305 305

F 1019.1 273.5 186.5 52.63

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the mean number of
hires across time. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market,
as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. There are two employee level control
variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per
Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over
a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of
workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form.
The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market
concentration increases new hires by approximately 0.0106× 0.1× 100 = 0.106%.
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Table 2.E.8: New Hires (IV) : Weighted by Mean New Hires with Only Labor Market Concentration

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -3.680 -1.508∗∗ -1.353∗∗ -2.185∗∗

(10.97) (0.723) (0.536) (0.874)

Mean Age (in years) -0.00145 -0.00878∗∗∗ -0.0105∗∗∗ 0.000932

(0.0315) (0.00112) (0.000722) (0.00226)

Share of Men -0.844 -0.141∗ -0.190∗∗∗ -0.0449∗∗∗

(3.075) (0.0736) (0.0109) (0.0112)

Mean Log(Value Added per Employee) 0.224 0.149∗∗∗ 0.156∗∗∗ 0.0143∗

(0.308) (0.0140) (0.0129) (0.00814)

Mean Log(Nb. Employees) 0.166 0.125∗∗∗ 0.0948∗∗∗ 0.102∗∗∗

(0.201) (0.0181) (0.00878) (0.0391)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 44.30 205.1 154.8 58.44

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the
mean number of hires across time. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for
the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. There are two employee
level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value
Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary
costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent
number of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under
this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor
market concentration decreases new hires by approximately−1.353× 0.1× 100 = −13.53%.
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2.E.2.4 Poisson Regression

Table 2.E.9: New Hires (OLS) : Poisson Regression with Only Labor Market Concentration

(1) (2) (3) (4)

Nb. Hires Nb. Hires Nb. Hires Nb. Hires

Log(Labor HHI) -0.685∗∗∗ -0.391∗∗∗ -0.460∗∗∗ -0.532∗∗∗

(0.0620) (0.0269) (0.0349) (0.0681)

Quarter × Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 310 310 310 310

F 122.0 211.5 174.0 60.86

Observations 22016820 22016820 22016820 22016820

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a Poisson Regression Nb. Hires as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Missing values were
replaced with zeros, to provide a balanced panel. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the
logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. The exponential specification was used because the data presents a relationship
of this form. It lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in
labor market concentration lowers new hires by approximately−0.460× 0.1× 100 = −4.6%.
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2.F Global Product Market Concentration

2.F.1 Hourly Wages

Table 2.F.1: Hourly Wage (OLS) : Global Product Market HHI

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0156∗∗∗ -0.00792∗∗∗ -0.00300∗∗∗ -0.00240∗∗∗ -0.00205∗∗ -0.00220∗∗∗

(0.00239) (0.00116) (0.000734) (0.000535) (0.000967) (0.000825)

Log(Global Product HHI) -0.000562 -0.00102 -0.00248∗∗ 0.00379∗ -0.00898∗∗∗ -0.00175∗

(0.00127) (0.00127) (0.00101) (0.00203) (0.000474) (0.00103)

Age (in years) 0.00339∗∗∗ 0.00336∗∗∗ 0.00327∗∗∗ 0.00274∗∗∗

(0.000413) (0.000409) (0.000469) (0.000484)

Gender 0.0304∗∗∗ 0.0295∗∗∗ 0.0287∗∗∗ 0.0242∗∗∗

(0.00109) (0.00105) (0.00169) (0.00248)

Log(Value Added per Employee) 0.0230∗∗∗ 0.0224∗∗∗ 0.0204∗∗∗ -0.000880 0.0116∗∗∗ 0.000698

(0.00179) (0.00187) (0.00197) (0.000726) (0.000633) (0.000747)

Log(Nb. Employees) 0.00795∗∗∗ 0.00781∗∗∗ 0.00760∗∗∗ 0.000138 0.00649∗∗∗ 0.00162∗∗

(0.000187) (0.000200) (0.000197) (0.00137) (0.000122) (0.000713)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

R2 0.523 0.527 0.556 0.664 0.742 0.793

Adjusted R2 0.523 0.527 0.548 0.629 0.633 0.677

N. Clusters 304 304 304 304 304 304

F 647.0 695.3 798.2 204.9 1259.6 10.40

Observations 2225026 2225026 2212203 2044008 1734623 1563889

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the commuting
zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Global Product HHI) is the logarithm of the
Herfindalh-Hirschman index for the product market measured at the year by industry level. There are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value
Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers
in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to
the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately−0.00205× 0.1× 100 = −0.0205%.
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Table 2.F.2: Hourly Wages (IV) : Global Product Market HHI

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0757∗∗∗ -0.0555∗∗∗ -0.0404∗∗∗ -0.0413∗∗∗ -0.0252∗∗∗ -0.0315∗∗∗

(0.0154) (0.0136) (0.0117) (0.00724) (0.00758) (0.0116)

Log(Global Product HHI) -0.000400 0.000110 -0.00201∗∗ 0.00941∗∗ -0.00860∗∗∗ 0.00381

(0.00145) (0.00145) (0.000973) (0.00410) (0.000470) (0.00496)

Age (in years) 0.00334∗∗∗ 0.00338∗∗∗ 0.00327∗∗∗ 0.00274∗∗∗

(0.000358) (0.000404) (0.000469) (0.000486)

Gender 0.0227∗∗∗ 0.0290∗∗∗ 0.0284∗∗∗ 0.0241∗∗∗

(0.00199) (0.00136) (0.00183) (0.00254)

Log(Value Added per Employee) 0.0199∗∗∗ 0.0216∗∗∗ 0.0204∗∗∗ -0.00109 0.0116∗∗∗ 0.000544

(0.00229) (0.00233) (0.00208) (0.000764) (0.000698) (0.000740)

Log(Nb. Employees) 0.00906∗∗∗ 0.00831∗∗∗ 0.00783∗∗∗ -0.000366 0.00660∗∗∗ 0.00125∗

(0.000299) (0.000183) (0.000159) (0.00156) (0.000130) (0.000751)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

N. Clusters 304 304 304 304 304 304

F 607.1 658.7 836.2 270.9 1146.6 6.177

Observations 2225026 2225026 2212203 2044008 1734623 1563889

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from instrumental variables using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Global Product HHI) is the logarithm
of the Herfindalh-Hirschman index for the product market measured at the year by industry level. There are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value
Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers
in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to
the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately−0.0252× 0.1× 100 = −0.252%.
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2.F.2 New Hires

2.F.2.1 Baseline

Table 2.F.3: New Hires (OLS) : Baseline Global Product HHI

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.170∗∗∗ -0.0683∗∗∗ -0.00803∗∗ -0.0945∗∗∗

(0.0151) (0.00727) (0.00390) (0.00658)

Log(Global Product HHI) -0.0934∗∗∗ -0.0960∗∗∗ -0.107∗∗∗ -0.0205∗∗∗

(0.00529) (0.00610) (0.00664) (0.00773)

Mean Age (in years) -0.00330∗∗∗ -0.00326∗∗∗ -0.00318∗∗∗ -0.000558∗∗∗

(0.0000771) (0.0000799) (0.0000729) (0.0000584)

Share of Men -0.0523∗∗∗ -0.0550∗∗∗ -0.0530∗∗∗ 0.00217

(0.00462) (0.00514) (0.00426) (0.00145)

Mean Log(Value Added per Employee) 0.0509∗∗∗ 0.0511∗∗∗ 0.0508∗∗∗ -0.00502∗∗∗

(0.00322) (0.00299) (0.00287) (0.00128)

Mean Log(Nb. Employees) 0.0423∗∗∗ 0.0424∗∗∗ 0.0407∗∗∗ 0.0130∗∗∗

(0.000911) (0.000952) (0.000842) (0.00146)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.171 0.178 0.232 0.741

Adjusted R2 0.171 0.178 0.212 0.683

N. Clusters 308 307 305 305

F 1511.9 1417.3 973.0 198.1

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone
level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. Log(Global Product HHI) is the logarithm of the Herfindalh-Hirschman Index for the product market, measured
at the year by industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There
are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of
total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires)
of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because
the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column
(3): ceteris paribus, a 10% increase in labor market concentration decreases new hires by approximately−0.00803× 0.1× 100 = −0.0803%.
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Table 2.F.4: New Hires (IV) : Baseline with Global Product HHI

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.344∗∗ -0.303∗∗∗ -0.316∗∗∗ -0.655∗∗∗

(0.133) (0.0729) (0.0712) (0.197)

Log(Global Product HHI) -0.112∗∗∗ -0.100∗∗∗ -0.109∗∗∗ -0.0116∗∗∗

(0.0228) (0.00756) (0.00691) (0.00213)

Mean Age (in years) -0.00289∗∗∗ -0.00312∗∗∗ -0.00311∗∗∗ -0.000264

(0.000373) (0.0000789) (0.0000701) (0.000160)

Share of Men -0.0592∗∗∗ -0.0524∗∗∗ -0.0539∗∗∗ 0.00303∗

(0.00275) (0.00699) (0.00427) (0.00171)

Mean Log(Value Added per Employee) 0.0556∗∗∗ 0.0517∗∗∗ 0.0530∗∗∗ -0.00460∗∗∗

(0.00483) (0.00298) (0.00299) (0.00171)

Mean Log(Nb. Employees) 0.0423∗∗∗ 0.0423∗∗∗ 0.0420∗∗∗ 0.0162∗∗∗

(0.000993) (0.000871) (0.000971) (0.00278)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 918.0 1144.3 853.9 91.04

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here
defined over a commuting zone, an occupation, and through quarters. Log(Global Product HHI) is the logarithm of the Herfindalh-Hirschman Index for the product
market, measured at the year by industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the
new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new
hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean
(across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification
was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of
interest in column (3): ceteris paribus, a 10% increase in labor market concentration decreases new hires by approximately−0.316× 0.1× 100 = −3.16%.
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2.F.2.2 Weighted by New Hires

Table 2.F.5: New Hires (OLS) : Weighted by New Hires with Global Product HHI

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.727∗∗∗ 0.0867∗ 0.268∗∗∗ 0.0731∗∗

(0.0948) (0.0511) (0.0458) (0.0291)

Log(Global Product HHI) -0.258∗∗∗ -0.275∗∗∗ -0.313∗∗∗ -0.0834∗∗∗

(0.0278) (0.0307) (0.0270) (0.0170)

Mean Age (in years) -0.00553∗∗∗ -0.00872∗∗∗ -0.0102∗∗∗ 0.000372

(0.00128) (0.00128) (0.00118) (0.000276)

Share of Men -0.121 -0.230∗∗∗ -0.211∗∗∗ -0.00604

(0.0786) (0.0391) (0.0105) (0.00521)

Mean Log(Value Added per Employee) 0.0306∗∗ 0.0331∗∗ 0.0238∗ 0.00428

(0.0144) (0.0145) (0.0143) (0.00668)

Mean Log(Nb. Employees) 0.156∗∗∗ 0.120∗∗∗ 0.0968∗∗∗ 0.0443∗∗∗

(0.00741) (0.00573) (0.00316) (0.00875)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.506 0.595 0.694 0.944

Adjusted R2 0.506 0.595 0.686 0.932

N. Clusters 308 307 305 305

F 885.0 262.4 197.9 51.43

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the number of hires.
Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described
in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Global Product HHI) is the logarithm of the
Herfindalh-Hirschman Index for the product market, measured at the year by industry level. There are two employee level control variables: share of men among the
new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of
Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of
full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective
employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself
to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration increases new hires by
approximately 0.268× 0.1× 100 = 2.68%.
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Table 2.F.6: New Hires (IV) : Weighted by New Hires with Global Product HHI

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -1.968∗∗ -1.977∗∗ -2.294∗ -2.346∗∗

(0.985) (0.991) (1.216) (1.131)

Log(Global Product HHI) -0.289∗∗∗ -0.270∗∗∗ -0.308∗∗∗ 0.00649

(0.0675) (0.0308) (0.0275) (0.0969)

Mean Age (in years) -0.000126 -0.00131 -0.00394 0.00913

(0.00345) (0.00388) (0.00280) (0.00563)

Share of Men -0.564 -0.281∗∗∗ -0.297∗∗∗ -0.0715∗∗

(0.369) (0.0582) (0.0380) (0.0303)

Mean Log(Value Added per Employee) 0.0383∗∗ 0.0284 0.0266 0.0246∗

(0.0168) (0.0196) (0.0162) (0.0149)

Mean Log(Nb. Employees) 0.195∗∗∗ 0.193∗∗∗ 0.162∗∗∗ 0.179∗∗

(0.0381) (0.0405) (0.0364) (0.0881)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 79.75 113.2 212.2 31.13

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the
number of hires. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market,
as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Global Product HHI) is the logarithm
of the Herfindalh-Hirschman Index for the product market, measured at the year by industry level. There are two employee level control variables: share of men among
the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number
of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of
full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective
employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself
to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration decreases new hires by
approximately−2.294× 0.1× 100 = 22.94%.
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2.F.2.3 Weighted by Mean New Hires

Table 2.F.7: New Hires (OLS) : Weighted by Mean New Hires with Global Product HHI

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.772∗∗∗ -0.0614 0.00555 -0.0704∗∗

(0.0858) (0.0415) (0.0346) (0.0335)

Log(Global Product HHI) -0.294∗∗∗ -0.302∗∗∗ -0.329∗∗∗ -0.110∗∗∗

(0.0325) (0.0366) (0.0349) (0.0403)

Mean Age (in years) -0.00974∗∗∗ -0.0108∗∗∗ -0.0115∗∗∗ -0.00314∗∗∗

(0.000763) (0.00118) (0.00138) (0.000359)

Share of Men -0.0448 -0.129∗∗∗ -0.147∗∗∗ -0.00747

(0.0739) (0.0454) (0.0126) (0.00836)

Mean Log(Value Added per Employee) 0.0250 0.0270 0.0241 0.00818

(0.0168) (0.0181) (0.0190) (0.00528)

Mean Log(Nb. Employees) 0.119∗∗∗ 0.100∗∗∗ 0.0820∗∗∗ 0.0345∗∗∗

(0.00566) (0.00555) (0.00356) (0.00612)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.514 0.578 0.669 0.922

Adjusted R2 0.514 0.578 0.660 0.904

N. Clusters 308 307 305 305

F 1128.9 226.4 148.7 44.48

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the mean number of
hires across time. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market,
as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Global Product HHI) is the logarithm
of the Herfindalh-Hirschman Index for the product market, measured at the year by industry level. There are two employee level control variables: share of men among
the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number
of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of
full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective
employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself
to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration increases new hires by
approximately 0.00555× 0.1× 100 = 0.0555%.
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Table 2.F.8: New Hires (IV) : Weighted by Mean New Hires with Global Product HHI

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -4.216 -1.579∗∗ -1.424∗∗ -2.190∗∗

(13.25) (0.758) (0.568) (0.886)

Log(Global Product HHI) -0.433 -0.313∗∗∗ -0.334∗∗∗ 0.0463

(0.609) (0.0396) (0.0338) (0.117)

Mean Age (in years) 0.00117 -0.00798∗∗∗ -0.00976∗∗∗ 0.000940

(0.0396) (0.00131) (0.000548) (0.00228)

Share of Men -0.960 -0.124∗ -0.170∗∗∗ -0.0451∗∗∗

(3.694) (0.0712) (0.00982) (0.0117)

Mean Log(Value Added per Employee) 0.0659 0.0246 0.0277 0.0141∗

(0.134) (0.0200) (0.0170) (0.00762)

Mean Log(Nb. Employees) 0.179 0.130∗∗∗ 0.0979∗∗∗ 0.103∗∗

(0.247) (0.0190) (0.00920) (0.0398)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 47.74 165.3 149.3 89.17

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the
mean number of hires across time. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for
the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Global Product
HHI) is the logarithm of the Herfindalh-Hirschman Index for the product market, measured at the year by industry level. There are two employee level control variables:
share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and
Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided
by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms
if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification
lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration decreases new
hires by approximately−1.424× 0.1× 100 = 14.24%.
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2.F.2.4 Poisson Regression

Table 2.F.9: New Hires (OLS) : Poisson Regression with Global Product HHI

(1) (2) (3) (4)

Nb. Hires Nb. Hires Nb. Hires Nb. Hires

Log(Labor HHI) -0.764∗∗∗ -0.408∗∗∗ -0.462∗∗∗ -0.482∗∗∗

(0.0637) (0.0220) (0.0278) (0.0627)

Log(Global Product HHI) -0.457∗∗∗ -0.471∗∗∗ -0.493∗∗∗ -0.842∗∗∗

(0.00857) (0.00940) (0.00859) (0.112)

Quarter × Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 310 310 310 310

F 1551.4 1456.2 1686.1 29.72

Observations 22016820 22016820 22016820 22016820

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a Poisson Regression Nb. Hires as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Missing values were
replaced with zeros, to provide a balanced panel. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the
logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. Log(Global Product HHI) is the logarithm of the Herfindalh-Hirschman Index for the
product market, measured at the year by industry level. The exponential specification was used because the data presents a relationship
of this form. It lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in
labor market concentration lowers new hires by approximately−0.462× 0.1× 100 = −4.62%.
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2.G Tradeable Sector

2.G.1 Hourly Wage

Table 2.G.1: Hourly Wages (OLS) : Tradeable Sector

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0213∗∗∗ -0.00884∗∗∗ -0.00432∗∗ -0.00232∗∗ -0.00250∗∗ -0.00295∗∗

(0.00230) (0.00163) (0.00174) (0.00114) (0.00122) (0.00116)

Log(Global Product HHI) 0.00606∗∗∗ 0.00561∗∗∗ 0.00391∗∗ 0.00883∗∗∗ -0.00299∗ 0.00392∗∗

(0.00203) (0.00208) (0.00167) (0.00185) (0.00171) (0.00188)

Age (in years) 0.00497∗∗∗ 0.00497∗∗∗ 0.00480∗∗∗ 0.00436∗∗∗

(0.000587) (0.000601) (0.000730) (0.000867)

Gender 0.0446∗∗∗ 0.0439∗∗∗ 0.0420∗∗∗ 0.0384∗∗∗

(0.00137) (0.00133) (0.00194) (0.00397)

Log(Value Added per Employee) 0.0248∗∗∗ 0.0232∗∗∗ 0.0215∗∗∗ -0.00246∗∗∗ 0.0104∗∗∗ 0.000424

(0.00177) (0.00144) (0.000972) (0.000884) (0.00111) (0.00272)

Log(Nb. Employees) 0.00888∗∗∗ 0.00834∗∗∗ 0.00757∗∗∗ -0.0105∗∗∗ 0.00661∗∗∗ -0.00131

(0.000673) (0.000543) (0.000478) (0.00129) (0.000883) (0.00356)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

R2 0.609 0.613 0.642 0.729 0.804 0.838

Adjusted R2 0.609 0.613 0.628 0.692 0.708 0.741

N_clust 304 304 303 303 301 301

F 531.6 422.7 620.8 84.18 65.06 2.721

Observations 518225 518225 507071 464662 272000 242700

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015) in an industry considered to be exposed to
international trade. These industries were selected if at least 5% of the industry’s revenue was obtained from exports during our initial year of data (2011). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman
index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in
equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value
Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers
in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to
the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately−0.00250× 0.1× 100 = −0.0250%.
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Table 2.G.2: Hourly Wage (IV) : Tradeable Sector

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.00823 -0.0108 0.00390 -0.0114 -0.0108 -0.0148

(0.0567) (0.0420) (0.0425) (0.0350) (0.0232) (0.0224)

Log(Global Product HHI) 0.00539 0.00565∗∗ 0.00375 0.0102∗∗ -0.00265 0.00695

(0.00488) (0.00274) (0.00245) (0.00418) (0.00257) (0.00556)

Age (in years) 0.00491∗∗∗ 0.00497∗∗∗ 0.00479∗∗∗ 0.00437∗∗∗

(0.000372) (0.000566) (0.000704) (0.000861)

Gender 0.0449∗∗∗ 0.0439∗∗∗ 0.0421∗∗∗ 0.0384∗∗∗

(0.00222) (0.00126) (0.00206) (0.00396)

Log(Value Added per Employee) 0.0259∗∗∗ 0.0232∗∗∗ 0.0215∗∗∗ -0.00254∗∗∗ 0.0104∗∗∗ 0.000244

(0.00361) (0.00117) (0.000987) (0.000964) (0.00108) (0.00290)

Log(Nb. Employees) 0.00859∗∗∗ 0.00838∗∗∗ 0.00747∗∗∗ -0.0107∗∗∗ 0.00669∗∗∗ -0.00166

(0.00197) (0.00120) (0.000944) (0.00133) (0.000747) (0.00391)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

N. Clusters 304 304 303 303 301 301

F 476.6 433.9 590.4 109.4 61.01 1.369

Observations 518225 518225 507071 464662 272000 242700

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from instrumental variables using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015) in an industry considered to be exposed to
international trade. These industries were selected if at least 5% of the industry’s revenue was obtained from exports during our initial year of data (2011). Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman
index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in
equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value
Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers
in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to
the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately−0.0108× 0.1× 100 = −0.108%.
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2.G.2 New Hires

2.G.2.1 Baseline

Table 2.G.3: New Hires (OLS) : Baseline with Tradeable Sector

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.137∗∗∗ -0.0310∗ 0.0320∗∗∗ -0.00669

(0.0290) (0.0160) (0.00791) (0.00996)

Log(Global Product HHI) -0.0531∗∗∗ -0.0565∗∗∗ -0.0689∗∗∗ -0.0241∗∗∗

(0.0119) (0.0134) (0.0161) (0.00809)

Mean Age (in years) -0.00155∗∗∗ -0.00144∗∗∗ -0.00112∗∗∗ -0.000223∗∗

(0.000166) (0.000166) (0.000156) (0.0000931)

Share of Men -0.0542∗∗∗ -0.0520∗∗∗ -0.0488∗∗∗ 0.00580∗∗∗

(0.00411) (0.00582) (0.00471) (0.00182)

Mean Log(Value Added per Employee) -0.0111∗∗ -0.0186∗∗∗ -0.0220∗∗∗ -0.0104∗∗∗

(0.00527) (0.00348) (0.00263) (0.00196)

Mean Log(Nb. Employees) 0.0506∗∗∗ 0.0503∗∗∗ 0.0454∗∗∗ 0.0269∗∗∗

(0.00119) (0.00102) (0.00141) (0.00134)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.139 0.158 0.248 0.645

Adjusted R2 0.138 0.157 0.212 0.545

N. Clusters 304 304 304 304

F 861.1 693.2 343.3 183.4

Observations 1284755 1284755 1270979 988646

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015) in an industry considered to be exposed
to international trade. These industries were selected if at least 5% of the industry’s revenue was obtained from exports during our initial year of data (2011). Standard
Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation
2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman
index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are
two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables:
Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus
intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time
equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship
under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in
labor market concentration increases new hires by approximately 0.0320× 0.1 = −0.320%.
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Table 2.G.4: New Hires (IV) : Baseline with Tradeable Sector

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.341 -0.289∗∗ -0.308∗∗∗ -0.794∗∗

(0.227) (0.115) (0.112) (0.353)

Log(Global Product HHI) -0.0598∗∗ -0.0593∗∗∗ -0.0698∗∗∗ -0.0191∗∗∗

(0.0237) (0.0151) (0.0164) (0.00419)

Mean Age (in years) -0.000749 -0.00124∗∗∗ -0.00102∗∗∗ 0.000126

(0.000921) (0.0000985) (0.000120) (0.000291)

Share of Men -0.0471∗∗∗ -0.0466∗∗∗ -0.0483∗∗∗ 0.0111∗∗∗

(0.0170) (0.00885) (0.00522) (0.00315)

Mean Log(Value Added per Employee) -0.0316 -0.0195∗∗∗ -0.0218∗∗∗ -0.0113∗∗∗

(0.0242) (0.00290) (0.00278) (0.00256)

Mean Log(Nb. Employees) 0.0484∗∗∗ 0.0500∗∗∗ 0.0468∗∗∗ 0.0311∗∗∗

(0.00309) (0.00122) (0.00110) (0.00433)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 304 304 304 304

F 552.5 640.1 511.3 129.0

Observations 1284755 1284755 1270979 988646

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015) in an industry considered to be exposed
to international trade. These industries were selected if at least 5% of the industry’s revenue was obtained from exports during our initial year of data (2011). Standard
Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation
2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman
index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are
two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables:
Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus
intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time
equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship
under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in
labor market concentration increases new hires by approximately 0.308× 0.1× 100 = −3.08%.
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2.G.2.2 Weighted by New Hires

Table 2.G.5: New Hires (OLS) : Weighted by New Hires in Tradeable Sector

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.409∗∗∗ 0.316∗∗∗ 0.404∗∗∗ 0.197∗∗∗

(0.0880) (0.0866) (0.0663) (0.0492)

Mean Log(Product HHI) -0.172∗∗ -0.171∗∗ -0.213∗∗∗ -0.0913∗∗∗

(0.0678) (0.0685) (0.0704) (0.0270)

Mean Age (in years) -0.000596 -0.00147 -0.000726 0.00147∗∗∗

(0.00191) (0.00157) (0.000747) (0.000431)

Share of Men -0.277∗∗∗ -0.261∗∗∗ -0.160∗∗∗ 0.0206∗∗∗

(0.0424) (0.0290) (0.0202) (0.00746)

Mean Log(Value Added per Employee) 0.00232 -0.0657∗∗ -0.0933∗∗∗ -0.0267∗∗∗

(0.0288) (0.0268) (0.0230) (0.00681)

Mean Log(Nb. Employees) 0.206∗∗∗ 0.176∗∗∗ 0.138∗∗∗ 0.0788∗∗∗

(0.0103) (0.00864) (0.00893) (0.0119)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.508 0.616 0.745 0.929

Adjusted R2 0.507 0.616 0.733 0.909

N. Clusters 304 304 304 304

F 471.5 339.1 275.4 138.3

Observations 1284755 1284755 1270979 988646

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015) in an industry considered to be exposed to international
trade. These industries were selected if at least 5% of the industry’s revenue was obtained from exports during our initial year of data (2011). Each observation is
weighted by the number of hires. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for
the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the
logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone
and at the industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are
two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of
total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires)
of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because
the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column
(3): ceteris paribus, a 10% increase in labor market concentration increases new hires by approximately 0.404× 0.1× 100 = 4.04%.
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Table 2.G.6: New Hires (IV) : Weighted by New Hires in Tradeable Sector

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -3.231 -4.280 -5.265 -8.692

(3.773) (6.114) (8.204) (18.70)

Log(Global Product HHI) 0.0214 -0.125∗∗∗ -0.201∗∗∗ 0.332

(0.196) (0.0263) (0.0554) (1.140)

Mean Age (in years) 0.0279 0.0148 0.0134 0.0248

(0.0423) (0.0230) (0.0218) (0.0534)

Share of Men -0.198 -0.198 -0.194∗∗∗ 0.153

(0.191) (0.160) (0.0365) (0.303)

Mean Log(Value Added per Employee) -0.468 -0.137 -0.0983∗∗∗ -0.0883

(0.763) (0.127) (0.0292) (0.122)

Mean Log(Nb. Employees) 0.257∗∗∗ 0.305∗ 0.271 0.485

(0.0881) (0.180) (0.216) (0.978)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 304 304 304 304

F 38.30 38.21 79.28 1.820

Observations 1284755 1284755 1270979 988646

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at
the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015) in an industry considered to be exposed to international
trade. These industries were selected if at least 5% of the industry’s revenue was obtained from exports during our initial year of data (2011). Each observation is
weighted by the number of hires. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for
the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the
logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone
and at the industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are
two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of
total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires)
of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because
the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column
(3): ceteris paribus, a 10% increase in labor market concentration decreases new hires by approximately−5.265× 0.1× 100 = −52.65%.
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2.G.2.3 Weighted by Mean New Hires

Table 2.G.7: New Hires (OLS) : Weighted by Mean New Hires in Tradeable Sector

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.453∗∗∗ 0.132∗ 0.179∗∗∗ 0.134∗∗

(0.0815) (0.0781) (0.0557) (0.0564)

Log(Global Product HHI) -0.175∗∗ -0.177∗∗ -0.212∗∗∗ -0.126∗∗∗

(0.0701) (0.0733) (0.0783) (0.0460)

Mean Age (in years) -0.00446∗∗∗ -0.00397∗∗∗ -0.00299∗∗∗ -0.00280∗∗∗

(0.00147) (0.00146) (0.00105) (0.000550)

Share of Men -0.162∗∗∗ -0.154∗∗∗ -0.110∗∗∗ 0.00658

(0.0366) (0.0290) (0.0205) (0.0147)

Mean Log(Value Added per Employee) -0.0143 -0.0707∗∗∗ -0.0864∗∗∗ -0.0209

(0.0253) (0.0262) (0.0256) (0.0151)

Mean Log(Nb. Employees) 0.144∗∗∗ 0.134∗∗∗ 0.109∗∗∗ 0.0742∗∗∗

(0.00732) (0.00895) (0.00958) (0.0126)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.492 0.571 0.689 0.876

Adjusted R2 0.492 0.571 0.675 0.842

N. Clusters 304 304 304 304

F 473.5 247.9 174.8 51.13

Observations 1284755 1284755 1270979 988646

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015) in an industry considered to be exposed to international
trade. These industries were selected if at least 5% of the industry’s revenue was obtained from exports during our initial year of data (2011). Each observation is
weighted by the mean number of new hires across time for a given combination of industry, occupation, and commuting zone. Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here
defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is
defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables:
share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and
Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided
by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms
if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification
lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration increases new
hires by approximately 0.179× 0.1× 100 = 1.79%.
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Table 2.G.8: New Hires (IV) : Weighted by Mean New Hires in Tradeable Industry

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) 3.062 -3.176 -2.641 -5.048

(3.623) (3.483) (2.215) (5.003)

Log(Global Product HHI)l -0.356∗∗∗ -0.161∗∗∗ -0.203∗∗∗ 0.242

(0.110) (0.0495) (0.0618) (0.527)

Mean Age (in years) -0.0288 0.00111 -0.000301 0.00257

(0.0181) (0.00550) (0.00184) (0.00675)

Share of Men -0.280∗∗∗ -0.0515 -0.0891∗ 0.0905

(0.0833) (0.174) (0.0481) (0.118)

Mean Log(Value Added per Employee) 0.548 -0.104 -0.0800∗∗∗ -0.00906

(0.429) (0.0684) (0.0200) (0.0281)

Mean Log(Nb. Employees) 0.117∗∗∗ 0.172∗∗∗ 0.138∗∗∗ 0.208

(0.0174) (0.0492) (0.0376) (0.178)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 304 304 304 304

F 53.61 88.01 96.09 12.26

Observations 1284755 1284755 1270979 988646

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at
the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015) in an industry considered to be exposed to international
trade. These industries were selected if at least 5% of the industry’s revenue was obtained from exports during our initial year of data (2011). Each observation is
weighted by the mean number of new hires across time for a given combination of industry, occupation, and commuting zone. Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here
defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is
defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables:
share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and
Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided
by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms
if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification
lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration increases new
hires by approximately 2.641× 0.1× 100 = 26.41%.
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2.G.2.4 Poisson Regression

Table 2.G.9: New Hires (OLS) : Poisson Regression in Tradeable Sector

(1) (2) (3) (4)

Nb. Hires Nb. Hires Nb. Hires Nb. Hires

Log(Labor HHI) -0.733∗∗∗ -0.355∗∗∗ -0.349∗∗∗ -0.502∗∗∗

(0.0958) (0.0572) (0.0483) (0.131)

Log(Global Product HHI) -0.323∗∗∗ -0.349∗∗∗ -0.396∗∗∗ -0.831∗∗∗

(0.0596) (0.0663) (0.0649) (0.105)

Quarter × Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 304 304 304 304

F 43.22 19.32 27.60 105.2

Observations 10854560 10854560 10854560 10854560

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a Poisson Regression Nb. Hires as a dependent variable. Each observation is measured at
the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015) in an industry considered
to be exposed to international trade. These industries were selected if at least 5% of the industry’s revenue was obtained from exports
during our initial year of data (2011). Missing values were replaced with zeros, to provide a balanced panel. Standard Errors are clustered
at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in
equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the
logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is
defined over a commuting zone and at the industry level. The exponential specification was used because the data presents a relationship
of this form. It lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in
labor market concentration lowers new exits by approximately−0.349× 0.1× 100 = −3.49%.
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2.H Local Time Varying Industry FE

2.H.1 Hourly Wage

Table 2.H.1: Hourly Wage (OLS) : Local Time Varying Industry FE

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.00865∗∗∗ -0.00865∗∗∗ -0.00274∗∗∗ -0.00118∗∗ -0.000297 -0.000166

(0.00169) (0.00169) (0.000828) (0.000543) (0.000556) (0.000677)

Age (in years) 0.00323∗∗∗ 0.00323∗∗∗ 0.00316∗∗∗ 0.00268∗∗∗

(0.000455) (0.000455) (0.000499) (0.000519)

Gender 0.0280∗∗∗ 0.0280∗∗∗ 0.0271∗∗∗ 0.0239∗∗∗

(0.00169) (0.00169) (0.00205) (0.00273)

Log(Value Added per Employee) 0.0194∗∗∗ 0.0194∗∗∗ 0.0185∗∗∗ -0.000567 0.0111∗∗∗ 0.00123∗∗

(0.00182) (0.00182) (0.00178) (0.00109) (0.000574) (0.000539)

Log(Nb. Employees) 0.00580∗∗∗ 0.00580∗∗∗ 0.00576∗∗∗ -0.00106 0.00469∗∗∗ 0.000545

(0.000150) (0.000150) (0.000129) (0.00181) (0.000143) (0.000805)

Quarter x Year x CZ x Industry FE Yes Yes Yes Yes Yes Yes

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

R2 0.568 0.568 0.588 0.681 0.761 0.806

Adjusted R2 0.551 0.551 0.564 0.636 0.643 0.681

N_clust 304 304 304 304 302 302

F 685.0 685.0 680.2 187.3 786.5 2.147

Observations 2185387 2185387 2172391 2003504 1685952 1516526

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the commuting
zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Each specification of this regression also controls for
time varying local industry effect through the inclusion of dummy variables at the time by industry by commuting zone level. There are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level
control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of reported full-time
equivalent number of workers in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The
log-log specification lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately−0.000297× 0.1× 100 = −0.00297%.
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Table 2.H.2: Hourly Wage (IV) : Local Time Varying Industry FE

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0445∗∗∗ -0.0445∗∗∗ -0.0288∗∗ -0.0225∗ 0.00941 0.0127

(0.0116) (0.0116) (0.0125) (0.0115) (0.0107) (0.0120)

Age (in years) 0.00323∗∗∗ 0.00323∗∗∗ 0.00315∗∗∗ 0.00268∗∗∗

(0.000458) (0.000458) (0.000500) (0.000521)

Gender 0.0280∗∗∗ 0.0280∗∗∗ 0.0270∗∗∗ 0.0238∗∗∗

(0.00178) (0.00178) (0.00212) (0.00277)

Log(Value Added per Employee) 0.0194∗∗∗ 0.0194∗∗∗ 0.0185∗∗∗ -0.000478 0.0111∗∗∗ 0.00116∗∗

(0.00186) (0.00186) (0.00178) (0.00112) (0.000554) (0.000538)

Log(Nb. Employees) 0.00611∗∗∗ 0.00611∗∗∗ 0.00584∗∗∗ -0.000983 0.00467∗∗∗ 0.000486

(0.000157) (0.000157) (0.000133) (0.00185) (0.000156) (0.000832)

Quarter x Year x CZ x Industry FE Yes Yes Yes Yes Yes Yes

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

N. Clusters 304 304 304 304 302 302

F 690.7 690.7 675.8 225.6 710.4 2.038

Observations 2185387 2185387 2172391 2003504 1685952 1516526

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered
at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Each specification of this regression
also controls for time varying local industry effect through the inclusion of dummy variables at the time by industry by commuting zone level. There are two individual level control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There
are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the number of
reported full-time equivalent number of workers in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under
this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration raises wages by approximately 0.00941× 0.1× 100 = 0.0941%.
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2.H.2 New Hires

2.H.2.1 Baseline

Table 2.H.3: New Hires (OLS) : Baseline with Local Time Varying Industry FE

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.0704∗∗∗ -0.0704∗∗∗ 0.000687 -0.0519∗∗∗

(0.00842) (0.00842) (0.00308) (0.00857)

Mean Age (in years) -0.00344∗∗∗ -0.00344∗∗∗ -0.00322∗∗∗ -0.00116∗∗∗

(0.0000693) (0.0000693) (0.0000750) (0.0000545)

Share of Men -0.0346∗∗∗ -0.0346∗∗∗ -0.0280∗∗∗ 0.000171

(0.00647) (0.00647) (0.00535) (0.00233)

Mean Log(Value Added per Employee) 0.0113∗∗∗ 0.0113∗∗∗ 0.00878∗∗∗ -0.00494∗∗∗

(0.00216) (0.00216) (0.00145) (0.000943)

Mean Log(Nb. Employees) 0.0283∗∗∗ 0.0283∗∗∗ 0.0298∗∗∗ 0.00597∗∗∗

(0.00367) (0.00367) (0.00329) (0.00187)

Quarter x Year x CZ x Industry FE Yes Yes Yes Yes

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.350 0.350 0.404 0.812

Adjusted R2 0.207 0.207 0.248 0.707

N. Clusters 306 306 304 304

F 762.6 762.6 640.2 215.8

Observations 2802104 2802104 2787540 2217501

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is
here defined over a commuting zone, an occupation, and through quarters. Each specification of this regression also controls for time varying local industry effect
through the inclusion of dummy variables at the time by industry by commuting zone level. There are two employee level control variables: share of men among the
new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of
Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of
full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective
employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the
following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration raises new hires by approximately
0.000687× 0.1× 100 = 0.00687%.
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Table 2.H.4: New Hires (IV) : Baseline with Local Time Varying Industry FE

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.414∗∗∗ -0.414∗∗∗ -0.418∗∗∗ -0.668∗∗∗

(0.105) (0.105) (0.0993) (0.210)

Mean Age (in years) -0.00327∗∗∗ -0.00327∗∗∗ -0.00315∗∗∗ -0.000992∗∗∗

(0.0000966) (0.0000966) (0.0000857) (0.0000887)

Share of Men -0.0295∗∗∗ -0.0295∗∗∗ -0.0291∗∗∗ -0.000394

(0.00952) (0.00952) (0.00520) (0.00233)

Mean Log(Value Added per Employee) 0.00978∗∗∗ 0.00978∗∗∗ 0.00895∗∗∗ -0.00484∗∗∗

(0.00159) (0.00159) (0.00145) (0.00111)

Mean Log(Nb. Employees) 0.0297∗∗∗ 0.0297∗∗∗ 0.0312∗∗∗ 0.00881∗∗∗

(0.00369) (0.00369) (0.00356) (0.00278)

Quarter x Year x CZ x Industry FE Yes Yes Yes Yes

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 306 306 304 304

F 780.1 780.1 668.4 100.8

Observations 2802104 2802104 2787540 2217501

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation
is measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at
the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market
is here defined over a commuting zone, an occupation, and through quarters. Each specification of this regression also controls for time varying local industry effect
through the inclusion of dummy variables at the time by industry by commuting zone level. There are two employee level control variables: share of men among the
new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of
Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of
full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective
employees over the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the
following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new hires by approximately
−0.418× 0.1× 100 = −4.18%.
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2.H.2.2 Weighted by New Hires

Table 2.H.5: New Hires (OLS) : Weighted by New Hires with Local Time Varying Industry FE

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) 0.0701∗∗∗ 0.0701∗∗∗ 0.209∗∗∗ 0.101∗∗∗

(0.0205) (0.0205) (0.0144) (0.00865)

Mean Age (in years) -0.0106∗∗∗ -0.0106∗∗∗ -0.00874∗∗∗ -0.00262∗∗∗

(0.000877) (0.000877) (0.000605) (0.000128)

Share of Men -0.165∗∗∗ -0.165∗∗∗ -0.0964∗∗∗ -0.0101

(0.0309) (0.0309) (0.0287) (0.0107)

Mean Log(Value Added per Employee) 0.0419∗∗∗ 0.0419∗∗∗ 0.0363∗∗∗ 0.000267

(0.00918) (0.00918) (0.00654) (0.00565)

Mean Log(Nb. Employees) 0.0537∗∗∗ 0.0537∗∗∗ 0.0665∗∗∗ 0.0151

(0.0161) (0.0161) (0.0163) (0.00961)

Quarter x Year x CZ x Industry FE Yes Yes Yes Yes

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.815 0.815 0.850 0.970

Adjusted R2 0.774 0.774 0.811 0.953

N. Clusters 306 306 304 304

F 272.3 272.3 333.7 259.6

Observations 2802104 2802104 2787540 2217501

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting
zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined
over a commuting zone, an occupation, and through quarters. Each observation is weighted by the number of new hires. Each specification of this regression also
controls for time varying local industry effect through the inclusion of dummy variables at the time by industry by commuting zone level. There are two employee level
control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added
per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs)
over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number
of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under this form.
The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market
concentration raises new hires by approximately 0.209× 0.1× 100 = 2.09%.
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Table 2.H.6: New Hires (IV) : Weighted by New Hires with Local Time Varying Industry FE

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -1.822 -1.822 -1.914 -2.323

(1.206) (1.206) (1.284) (1.652)

Mean Age (in years) -0.00982∗∗∗ -0.00982∗∗∗ -0.00862∗∗∗ -0.00166∗

(0.000552) (0.000552) (0.000467) (0.000943)

Share of Men -0.170∗∗∗ -0.170∗∗∗ -0.143∗∗∗ -0.0565∗∗∗

(0.0496) (0.0496) (0.0101) (0.0214)

Mean Log(Value Added per Employee) 0.0504∗∗∗ 0.0504∗∗∗ 0.0511∗∗∗ 0.0263

(0.0125) (0.0125) (0.0160) (0.0229)

Mean Log(Nb. Employees) 0.103∗∗ 0.103∗∗ 0.0978∗∗∗ 0.0763

(0.0500) (0.0500) (0.0372) (0.0556)

Quarter x Year x CZ x Industry FE Yes Yes Yes Yes

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 306 306 304 304

F 216.2 216.2 214.3 21.24

Observations 2802104 2802104 2787540 2217501

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here
defined over a commuting zone, an occupation, and through quarters. Each observation is weighted by the number of new hires. Each specification of this regression
also controls for time varying local industry effect through the inclusion of dummy variables at the time by industry by commuting zone level. There are two employee
level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value
Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary
costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent
number of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under
this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor
market concentration raises new hires by approximately−1.914× 0.1× 100 = −19.14%.
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2.H.2.3 Weighted by Mean New Hires

Table 2.H.7: New Hires (OLS) : Weighted by Mean New Hires with Local Time Varying Industry FE

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.0144 -0.0144 0.0906∗∗∗ 0.0622∗∗∗

(0.0159) (0.0159) (0.0103) (0.0107)

Mean Age (in years) -0.00946∗∗∗ -0.00946∗∗∗ -0.00813∗∗∗ -0.00345∗∗∗

(0.000990) (0.000990) (0.000790) (0.000258)

Share of Men -0.116∗∗∗ -0.116∗∗∗ -0.0767∗∗∗ -0.0114

(0.0293) (0.0293) (0.0247) (0.0105)

Mean Log(Value Added per Employee) 0.0329∗∗∗ 0.0329∗∗∗ 0.0297∗∗∗ 0.00341

(0.00641) (0.00641) (0.00445) (0.00631)

Mean Log(Nb. Employees) 0.0519∗∗∗ 0.0519∗∗∗ 0.0598∗∗∗ 0.0170∗∗

(0.0157) (0.0157) (0.0159) (0.00776)

Quarter x Year x CZ x Industry FE Yes Yes Yes Yes

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.789 0.789 0.826 0.958

Adjusted R2 0.742 0.742 0.780 0.934

N. Clusters 306 306 304 304

F 206.6 206.6 246.2 100.0

Observations 2802104 2802104 2787540 2217501

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting
zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined
over a commuting zone, an occupation, and through quarters. Each observation is weighted by the mean number of new hires. Each specification of this regression
also controls for time varying local industry effect through the inclusion of dummy variables at the time by industry by commuting zone level. There are two employee
level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value
Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus intermediary
costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time equivalent
number of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship under
this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor
market concentration raises new hires by approximately 0.0906× 0.1× 100 = 0.906%.
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Table 2.H.8: New Hires (IV) : Weighted by Mean New Hirew with Local Time Varying Industry FE

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -1.717∗ -1.717∗ -1.461∗∗ -2.040∗

(0.992) (0.992) (0.703) (1.099)

Mean Age (in years) -0.00856∗∗∗ -0.00856∗∗∗ -0.00795∗∗∗ -0.00307∗∗∗

(0.000322) (0.000322) (0.000669) (0.000212)

Share of Men -0.0977∗ -0.0977∗ -0.0954∗∗∗ -0.0395∗∗∗

(0.0567) (0.0567) (0.0193) (0.00741)

Mean Log(Value Added per Employee) 0.0354∗∗∗ 0.0354∗∗∗ 0.0358∗∗∗ 0.0170

(0.00885) (0.00885) (0.00642) (0.0132)

Mean Log(Nb. Employees) 0.0872∗∗ 0.0872∗∗ 0.0761∗∗∗ 0.0542∗

(0.0376) (0.0376) (0.0238) (0.0286)

Quarter x Year x CZ x Industry FE Yes Yes Yes Yes

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 306 306 304 304

F 262.6 262.6 299.2 49.61

Observations 2802104 2802104 2787540 2217501

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation
is measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at
the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is
here defined over a commuting zone, an occupation, and through quarters. Each observation is weighted by the mean number of new hires. Each specification of
this regression also controls for time varying local industry effect through the inclusion of dummy variables at the time by industry by commuting zone level. There
are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables:
Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus
intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time
equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship
under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in
labor market concentration lowers new hires by approximately−1.461× 0.1× 100 = −14.61%.
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2.H.2.4 Poisson Regression

Table 2.H.9: New Hires (OLS) : Poisson Regression with Local Time Varying Industry FE

(1) (2) (3) (4)

Nb. Hires Nb. Hires Nb. Hires Nb. Hires

Log(Labor HHI) -0.429∗∗∗ -0.429∗∗∗ -0.485∗∗∗ -0.550∗∗∗

(0.0159) (0.0159) (0.0108) (0.112)

Quarter x Year x CZ x Industry FE Yes Yes Yes Yes

Quarter × Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 307 307 304 304

F 727.3 727.3 2024.1 24.05

Observations 17734872 17734872 17734749 17732685

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a Poisson Regression Nb. Hires as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Missing values were
replaced with zeros, to provide a balanced panel. Each specification of this regression also controls for time varying local industry effect
through the inclusion of dummy variables at the time by industry by commuting zone level. Standard Errors are clustered at the commuting
zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor
market is here defined over a commuting zone, an occupation, and through quarters. The exponential specification was used because the
data presents a relationship of this form. It lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris
paribus, a 10% increase in labor market concentration lowers new hires by approximately−0.485× 0.1× 100 = −4.85%.
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2.I Employment Weighted Product Market Concentration

2.I.1 Hourly Wage

Table 2.I.1: Hourly Wage (OLS) : Baseline with Employment Weighted Product Market HHI

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0152∗∗∗ -0.00812∗∗∗ -0.00304∗∗∗ -0.00259∗∗∗ -0.00201∗ -0.00226∗∗∗

(0.00230) (0.00122) (0.000793) (0.000602) (0.00108) (0.000818)

Log(Emp. Adj. Local Product HHI) -0.000679 0.000980∗∗ 0.0000835 0.00305∗∗ -0.00319∗∗∗ 0.000178

(0.000564) (0.000432) (0.000388) (0.00120) (0.000601) (0.000640)

Age (in years) 0.00315∗∗∗ 0.00313∗∗∗ 0.00303∗∗∗ 0.00256∗∗∗

(0.000259) (0.000255) (0.000308) (0.000350)

Gender 0.0303∗∗∗ 0.0294∗∗∗ 0.0286∗∗∗ 0.0242∗∗∗

(0.00123) (0.00119) (0.00184) (0.00264)

Log(Value Added per Employee) 0.0227∗∗∗ 0.0219∗∗∗ 0.0199∗∗∗ -0.000779 0.0114∗∗∗ 0.000773

(0.00157) (0.00163) (0.00175) (0.000697) (0.000568) (0.000757)

Log(Nb. Employees) 0.00802∗∗∗ 0.00781∗∗∗ 0.00776∗∗∗ 0.0000928 0.00730∗∗∗ 0.00163∗∗

(0.000229) (0.000233) (0.000223) (0.00139) (0.000120) (0.000726)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

R2 0.521 0.525 0.554 0.663 0.742 0.793

Adjusted R2 0.521 0.525 0.546 0.628 0.633 0.677

N. Clusters 304 304 304 304 304 304

F 640.1 644.3 800.3 193.6 1155.2 9.581

Observations 2225026 2225026 2212203 2044008 1734623 1563889

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the commuting
zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Emp. Adj. Local Product HHI) is the logarithm
of the Herfindalh-Hirschman index for the product market measured at the commuting zone by industry per year, where firms’ revenues where weighted by the number of employees in the commuting zone. There are two individual level control variables: gender (equal to one if
the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number
of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was
used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately
−0.00201× 0.1× 100 = −0.0201%.
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Table 2.I.2: Hourly Wage (IV) : Baseline with Employment Weighted Product Market HHI

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0585∗∗∗ -0.0573∗∗∗ -0.0413∗∗∗ -0.0397∗∗∗ -0.0318∗∗ -0.0262∗∗∗

(0.0154) (0.0110) (0.00971) (0.00823) (0.0129) (0.00707)

Log(Emp. Adj. Local Product HHI) 0.0506∗∗∗ 0.0498∗∗∗ 0.0483∗∗∗ 0.0145 0.0395∗∗∗ -0.0165

(0.00725) (0.00519) (0.00346) (0.0135) (0.00446) (0.0168)

Age (in years) 0.00311∗∗∗ 0.00310∗∗∗ 0.00300∗∗∗ 0.00256∗∗∗

(0.000266) (0.000253) (0.000310) (0.000352)

Gender 0.0294∗∗∗ 0.0292∗∗∗ 0.0284∗∗∗ 0.0241∗∗∗

(0.00270) (0.00132) (0.00165) (0.00269)

Log(Value Added per Employee) 0.0174∗∗∗ 0.0169∗∗∗ 0.0159∗∗∗ -0.00107 0.00867∗∗∗ 0.000694

(0.00328) (0.00275) (0.00237) (0.000705) (0.00121) (0.000745)

Log(Nb. Employees) 0.00539∗∗∗ 0.00537∗∗∗ 0.00496∗∗∗ -0.000543 0.00533∗∗∗ 0.00132∗

(0.000281) (0.000266) (0.000303) (0.00152) (0.000207) (0.000793)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

N. Clusters 304 304 304 304 304 304

F 590.4 722.2 981.0 255.2 881.3 8.170

Observations 2225026 2225026 2212203 2044008 1734623 1563889

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered
at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Emp. Adj. Local Product HHI)
is the logarithm of the Herfindalh-Hirschman index for the product market measured at the commuting zone by industry per year, where firms’ revenues where weighted by the number of employees in the commuting zone. There are two individual level control variables: gender
(equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The former is the log of total value added (revenues minus intermediary costs) over a year divided
by the number of full-time equivalent employees. The latter is the number of reported full-time equivalent number of workers in the firm over the year. The gender fixed-effect cannot be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log
specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages
by approximately−0.0318× 0.1× 100 = −0.318%.
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2.I.2 New Hires

2.I.2.1 Baseline

Table 2.I.3: New Hires (OLS) : Baseline with Employment Weighted Product Market HHI

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.112∗∗∗ -0.0589∗∗∗ -0.00575 -0.0936∗∗∗

(0.00690) (0.00687) (0.00359) (0.00673)

Log(Emp. Adj. Local Product HHI) -0.0683∗∗∗ -0.0631∗∗∗ -0.0661∗∗∗ -0.0291∗∗

(0.00465) (0.00426) (0.00465) (0.0120)

Mean Age (in years) -0.00330∗∗∗ -0.00329∗∗∗ -0.00321∗∗∗ -0.000557∗∗∗

(0.0000690) (0.0000707) (0.0000714) (0.0000586)

Share of Men -0.0517∗∗∗ -0.0535∗∗∗ -0.0516∗∗∗ 0.00213

(0.00582) (0.00633) (0.00563) (0.00145)

Mean Log(Value Added per Employee) 0.0745∗∗∗ 0.0756∗∗∗ 0.0781∗∗∗ -0.00484∗∗∗

(0.00422) (0.00409) (0.00383) (0.00134)

Mean Log(Nb. Employees) 0.0545∗∗∗ 0.0534∗∗∗ 0.0527∗∗∗ 0.0134∗∗∗

(0.00198) (0.00197) (0.00183) (0.00160)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.175 0.178 0.230 0.742

Adjusted R2 0.175 0.178 0.209 0.683

N. Clusters 308 307 305 305

F 1561.6 1367.2 1282.6 221.7

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone
level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. Log(Emp. Adj. Local Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market
measured at the commuting zone by industry per year, where firms’ revenues where weighted by the number of employees in the commuting zone. There are two
employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level control variables: Mean
Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added (revenues minus
intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of reported full-time
equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a linear relationship
under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in
labor market concentration decreases new hires by approximately−0.00575× 0.1× 100 = −0.0575%.
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Table 2.I.4: New Hires (IV) : Baseline with Employment Weighted Product Market HHI

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.413∗∗ -0.307∗∗∗ -0.320∗∗∗ -0.626∗∗∗

(0.189) (0.0791) (0.0793) (0.183)

Log(Emp. Adj. Local Product HHI) -0.118∗∗∗ -0.125∗∗∗ -0.136∗∗∗ -0.804∗∗

(0.00843) (0.0107) (0.0112) (0.329)

Mean Age (in years) -0.00245∗∗∗ -0.00300∗∗∗ -0.00296∗∗∗ -0.000251

(0.000641) (0.000126) (0.000111) (0.000203)

Share of Men -0.0639∗∗∗ -0.0474∗∗∗ -0.0487∗∗∗ 0.00238

(0.00389) (0.00940) (0.00675) (0.00214)

Mean Log(Value Added per Employee) 0.0899∗∗∗ 0.0703∗∗∗ 0.0732∗∗∗ 0.00147

(0.0161) (0.00440) (0.00430) (0.00437)

Mean Log(Nb. Employees) 0.0639∗∗∗ 0.0652∗∗∗ 0.0676∗∗∗ 0.0262∗∗∗

(0.00332) (0.00357) (0.00427) (0.00693)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 -0.086 0.008 0.005 -0.615

Adjusted R2 -0.086 0.008 0.005 -0.615

N. Clusters 308 307 305 305

F 493.8 921.9 699.4 69.47

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation
is measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at
the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market
is here defined over a commuting zone, an occupation, and through quarters. Log(Emp. Adj. Local Product HHI) is the logarithm of the Herfindalh-Hirschman index
for the product market measured at the commuting zone by industry per year, where firms’ revenues where weighted by the number of employees in the commuting
zone. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There are two firm level
control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new hires) of the log of total value added
(revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean (across new hires) of the number of
reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification was used because the data presents a
linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a
10% increase in labor market concentration decreases new hires by approximately−0.320× 0.1× 100 = −3.2%.
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2.I.2.2 Weighted by New Hires

Table 2.I.5: New Hires (OLS) : Weighted by New Hires using Employment Weighted Product Market HHI

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.447∗∗∗ 0.147∗∗∗ 0.273∗∗∗ 0.0791∗∗∗

(0.0510) (0.0418) (0.0423) (0.0248)

Log(Emp. Adj. Local Product HHI) -0.290∗∗∗ -0.204∗∗∗ -0.188∗∗∗ -0.104∗∗∗

(0.0196) (0.0188) (0.0174) (0.0372)

Mean Age (in years) -0.00569∗∗∗ -0.00854∗∗∗ -0.0102∗∗∗ 0.000330

(0.00118) (0.00113) (0.00114) (0.000275)

Share of Men -0.120 -0.219∗∗∗ -0.203∗∗∗ -0.00626

(0.0743) (0.0464) (0.0163) (0.00520)

Mean Log(Value Added per Employee) 0.133∗∗∗ 0.141∗∗∗ 0.146∗∗∗ 0.00530

(0.0208) (0.0164) (0.0149) (0.00701)

Mean Log(Nb. Employees) 0.221∗∗∗ 0.170∗∗∗ 0.149∗∗∗ 0.0465∗∗∗

(0.0190) (0.0163) (0.0138) (0.00936)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.548 0.606 0.695 0.945

Adjusted R2 0.548 0.605 0.687 0.932

N. Clusters 308 307 305 305

F 580.7 234.6 363.3 41.19

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone
level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. Log(Emp. Adj. Local Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market
measured at the commuting zone by industry per year, where firms’ revenues where weighted by the number of employees in the commuting zone. Each observation
is weighted by the number of new hires. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new
hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean (across new
hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter is the mean
(across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log specification
was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of
interest in column (3): ceteris paribus, a 10% increase in labor market concentration decreases new hires by approximately−0.00575× 0.1× 100 = −0.0575%.
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Table 2.I.6: New Hires (IV) : Weighted by New Hires with Employment Weighted Product Market HHI

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -1.769∗ -1.745∗ -2.048∗ -1.824∗∗

(0.960) (0.899) (1.095) (0.764)

Log(Emp. Adj. Local Product HHI) -0.286∗∗ -0.433∗∗∗ -0.526∗∗∗ -2.269∗∗∗

(0.144) (0.0224) (0.0409) (0.576)

Mean Age (in years) -0.0000489 -0.000450 -0.00314 0.00656

(0.00241) (0.00402) (0.00314) (0.00417)

Share of Men -0.594∗ -0.234∗∗∗ -0.223∗∗∗ -0.0584∗∗∗

(0.346) (0.0637) (0.0155) (0.0170)

Mean Log(Value Added per Employee) 0.154∗∗∗ 0.133∗∗∗ 0.147∗∗∗ 0.0518∗∗∗

(0.0326) (0.0248) (0.0287) (0.0197)

Mean Log(Nb. Employees) 0.261∗∗∗ 0.299∗∗∗ 0.308∗∗∗ 0.198∗∗∗

(0.0140) (0.0528) (0.0659) (0.0703)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 103.4 117.7 254.7 9.452

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation
is measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at
the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market
is here defined over a commuting zone, an occupation, and through quarters. Log(Emp. Adj. Local Product HHI) is the logarithm of the Herfindalh-Hirschman index
for the product market measured at the commuting zone by industry per year, where firms’ revenues where weighted by the number of employees in the commuting
zone. Each observation is weighted by the number of new hires. There are two employee level control variables: share of men among the new hires and the
mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The
former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent
employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective employees over
the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following
interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration decreases new hires by approximately
−2.048× 0.1× 100 = −20.48%.
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2.I.2.3 Weighted by Mean New Hires

Table 2.I.7: New Hires (OLS) : Weighted by Mean New Hires with Employment Weighted Product Market HHI

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.522∗∗∗ -0.00579 0.0145 -0.0521∗∗

(0.0379) (0.0305) (0.0283) (0.0224)

Log(Emp. Adj. Local Product HHI) -0.264∗∗∗ -0.195∗∗∗ -0.186∗∗∗ -0.166∗∗∗

(0.0258) (0.0248) (0.0226) (0.0589)

Mean Age (in years) -0.00977∗∗∗ -0.0108∗∗∗ -0.0115∗∗∗ -0.00314∗∗∗

(0.000719) (0.00103) (0.00130) (0.000346)

Share of Men -0.0508 -0.123∗∗ -0.143∗∗∗ -0.00879

(0.0733) (0.0534) (0.0215) (0.00768)

Mean Log(Value Added per Employee) 0.137∗∗∗ 0.143∗∗∗ 0.149∗∗∗ 0.0107∗

(0.0174) (0.0149) (0.0141) (0.00577)

Mean Log(Nb. Employees) 0.179∗∗∗ 0.147∗∗∗ 0.131∗∗∗ 0.0376∗∗∗

(0.0184) (0.0169) (0.0148) (0.00688)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.543 0.584 0.667 0.923

Adjusted R2 0.543 0.583 0.659 0.905

N. Clusters 308 307 305 305

F 705.9 244.2 239.7 45.83

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting zone
level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a
commuting zone, an occupation, and through quarters. Log(Emp. Adj. Local Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market
measured at the commuting zone by industry per year, where firms’ revenues where weighted by the number of employees in the commuting zone. Each observation
is weighted by the mean number of new hires across time. There are two employee level control variables: share of men among the new hires and the mean age (in
years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The former is the Mean
(across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The latter
is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective employees over the year. The log-log
specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main
coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration raises new hires by approximately 0.0145×0.1×100 = 0.145%.
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Table 2.I.8: New Hires (IV) : Weighted by Mean New Hires with Employment Weighted Product Market HHI

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -4.122 -1.581∗∗ -1.396∗∗ -1.851∗∗∗

(6.278) (0.748) (0.552) (0.669)

Log(Emp. Adj. Local Product HHI) -0.0556 -0.444∗∗∗ -0.505∗∗∗ -1.273∗∗∗

(0.756) (0.0224) (0.0409) (0.336)

Mean Age (in years) 0.000207 -0.00680∗∗∗ -0.00885∗∗∗ 0.000613

(0.0128) (0.00169) (0.000488) (0.00205)

Share of Men -0.974 -0.0912 -0.124∗∗∗ -0.0492∗∗∗

(1.699) (0.0832) (0.0244) (0.0112)

Mean Log(Value Added per Employee) 0.237 0.139∗∗∗ 0.152∗∗∗ 0.0384∗∗∗

(0.176) (0.0237) (0.0253) (0.0142)

Mean Log(Nb. Employees) 0.188∗∗∗ 0.241∗∗∗ 0.234∗∗∗ 0.117∗∗∗

(0.0719) (0.0371) (0.0381) (0.0336)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 -4.131 -0.437 -0.279 -2.506

Adjusted R2 -4.132 -0.437 -0.279 -2.506

N. Clusters 308 307 305 305

F 59.26 203.7 370.4 70.05

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here
defined over a commuting zone, an occupation, and through quarters. Log(Emp. Adj. Local Product HHI) is the logarithm of the Herfindalh-Hirschman index for the
product market measured at the commuting zone by industry per year, where firms’ revenues where weighted by the number of employees in the commuting zone.
Each observation is weighted by the mean number of new hires across time. There are two employee level control variables: share of men among the new hires and
the mean age (in years) of the new hires. There are two firm level control variables: Mean Log(Value Added per Worker) and Mean Log(Number of Employees). The
former is the Mean (across new hires) of the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent
employees. The latter is the mean (across new hires) of the number of reported full-time equivalent number of workers in the firms if the respective employees over
the year. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following
interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new hires by approximately
−1.396× 0.1× 100 = −13.96%.
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2.I.2.4 Poisson Regression

Table 2.I.9: New Hires (OLS) : Poisson Regression with Employment Weighted Product Market HHI

(1) (2) (3) (4)

Nb. Hires Nb. Hires Nb. Hires Nb. Hires

Log(Labor HHI) -0.528∗∗∗ -0.379∗∗∗ -0.432∗∗∗ -0.462∗∗∗

(0.0359) (0.0229) (0.0234) (0.0775)

Log(Emp. Adj. Local Product HHI) -0.211∗∗∗ -0.197∗∗∗ -0.207∗∗∗ -0.367∗∗∗

(0.0129) (0.0104) (0.0108) (0.0170)

Quarter × Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 310 310 310 310

F 147.1 179.3 187.4 371.5

Observations 22016820 22016820 22016820 22016820

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the output from a Poisson Regression Nb. Hires as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Missing values were
replaced with zeros, to provide a balanced panel. Log(Emp. Adj. Local Product HHI) is the logarithm of the Herfindalh-Hirschman index
for the product market measured at the commuting zone by industry per year, where firms’ revenues where weighted by the number of
employees in the commuting zone. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the
Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone,
an occupation, and through quarters. The exponential specification was used because the data presents a relationship of this form. It
lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market
concentration lowers new hires by approximately−0.432× 0.1× 100 = −4.32%.
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2.J No Firm Size

2.J.1 Hourly Wage

Table 2.J.1: Hourly Wage (OLS) : Baseline without Controlling for Firm Size

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0136∗∗∗ -0.00683∗∗∗ -0.00196 -0.00247∗∗∗ -0.00162 -0.00204∗∗∗

(0.00333) (0.00184) (0.00147) (0.000619) (0.00168) (0.000763)

Log(Product HHI) -0.00188 0.00235 0.00358∗ 0.00173 0.000437 -0.00186∗∗∗

(0.00201) (0.00180) (0.00197) (0.00168) (0.00197) (0.000650)

Age (in years) 0.00302∗∗∗ 0.00300∗∗∗ 0.00293∗∗∗ 0.00256∗∗∗

(0.000266) (0.000259) (0.000311) (0.000350)

Gender 0.0293∗∗∗ 0.0284∗∗∗ 0.0275∗∗∗ 0.0242∗∗∗

(0.00125) (0.00121) (0.00179) (0.00264)

Log(Value Added per Employee) 0.0175∗∗∗ 0.0171∗∗∗ 0.0153∗∗∗ -0.000867 0.00650∗∗∗ -0.000516

(0.00190) (0.00195) (0.00212) (0.000535) (0.000989) (0.000446)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

R2 0.514 0.518 0.548 0.663 0.738 0.793

Adjusted R2 0.514 0.518 0.540 0.628 0.629 0.677

N. Clusters 304 304 304 304 304 304

F 1337.0 924.1 700.9 207.6 121.7 13.92

Observations 2250464 2250464 2237656 2069051 1753604 1582456

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the
Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two individual level control variables: gender (equal to one if the worker is a man, zero
otherwise) and age (in years). There is a single firm level control variables: Log(Value Added per Worker) : the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The gender fixed-effect cannot be
identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest
in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately−0.00162× 0.1× 100 = −0.0162%.
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Table 2.J.2: Hourly Wage (IV) : Baseline without Controlling for Firm Size

(1) (2) (3) (4) (5) (6)

Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage) Log(Gross Hourly Wage)

Log(Labor HHI) -0.0973∗∗∗ -0.0906∗∗∗ -0.0711∗∗∗ -0.0457∗∗∗ -0.0616∗∗∗ -0.0195∗∗

(0.0136) (0.0126) (0.0109) (0.00976) (0.0101) (0.00971)

Log(Product HHI) 0.103∗∗∗ 0.101∗∗∗ 0.0960∗∗∗ 0.0255 0.0901∗∗ -0.0275

(0.0339) (0.0359) (0.0337) (0.0260) (0.0427) (0.0285)

Age (in years) 0.00305∗∗∗ 0.00304∗∗∗ 0.00299∗∗∗ 0.00256∗∗∗

(0.000222) (0.000240) (0.000293) (0.000352)

Gender 0.0263∗∗∗ 0.0271∗∗∗ 0.0258∗∗∗ 0.0241∗∗∗

(0.00169) (0.00225) (0.00223) (0.00272)

Log(Value Added per Employee) 0.0164∗∗∗ 0.0156∗∗∗ 0.0149∗∗∗ -0.000864 0.00644∗∗∗ -0.000181

(0.00270) (0.00372) (0.00366) (0.000710) (0.00221) (0.000542)

Quarter x Year FE Yes Yes Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No No No

Commuting Zone FE No Yes No No No No

Commuting Zone x Occupation FE No No Yes Yes Yes Yes

Firm FE No No No Yes No Yes

Worker FE No No No No Yes Yes

N. Clusters 304 304 304 304 304 304

F 1135.8 1364.4 1604.9 225.1 232.1 11.34

Observations 2250464 2250464 2237656 2069051 1753604 1582456

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Gross Hourly Wage) as a dependent variable. Each observation is a new hire labor contract, as provided in the DADS Panel (2011-2015). Standard Errors are clustered
at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm
of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two individual level control variables: gender (equal to one if the worker is a man,
zero otherwise) and age (in years). There is a single firm level control variables: Log(Value Added per Worker) : the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The gender fixed-effect cannot
be identified in specification (v) and (iv) by collinearity with individual fixed-effects. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of
interest in column (5): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately−0.0616× 0.1× 100 = −0.616%.
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2.J.2 New Hires

2.J.2.1 Baseline

Table 2.J.3: New Hires (OLS) : Baseline without Controlling for Firm Size

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.129∗∗∗ -0.0601∗∗∗ 0.000737 -0.0931∗∗∗

(0.00477) (0.00718) (0.00341) (0.00677)

Log(Product HHI) -0.0887∗∗∗ -0.0765∗∗∗ -0.0820∗∗∗ -0.0417∗∗

(0.0120) (0.0107) (0.0112) (0.0207)

Mean Age (in years) -0.00416∗∗∗ -0.00409∗∗∗ -0.00398∗∗∗ -0.000651∗∗∗

(0.0000699) (0.0000731) (0.0000671) (0.0000568)

Share of Men -0.0637∗∗∗ -0.0664∗∗∗ -0.0638∗∗∗ 0.00124

(0.00566) (0.00591) (0.00540) (0.00136)

Mean Log(Value Added per Employee) 0.0967∗∗∗ 0.0979∗∗∗ 0.0993∗∗∗ -0.00700∗∗∗

(0.00368) (0.00364) (0.00331) (0.00144)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.154 0.158 0.211 0.741

Adjusted R2 0.154 0.158 0.191 0.683

N. Clusters 308 307 305 305

F 2139.3 1244.0 1042.2 89.36

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured
at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the commuting
zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here defined over
a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as
described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables: share
of men among the new hires and the mean age (in years) of the new hires. There is a single firm level control variables: Mean Log(Value Added per Worker) : the
log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The log-log specification was used
because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in
column (3): ceteris paribus, a 10% increase in labor market concentration raises new hires by approximately 0.000737× 0.1× 100 = 0.00737%.
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Table 2.J.4: New Hires (IV) : Baseline without Controlling for Firm Size

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.445∗∗ -0.335∗∗∗ -0.348∗∗∗ -0.592∗∗∗

(0.202) (0.0842) (0.0840) (0.191)

Log(Product HHI) -0.196∗∗∗ -0.210∗∗∗ -0.233∗∗∗ -3.259∗∗∗

(0.0146) (0.0183) (0.0168) (0.847)

Mean Age (in years) -0.00344∗∗∗ -0.00398∗∗∗ -0.00397∗∗∗ -0.000444∗

(0.000670) (0.000108) (0.0000871) (0.000248)

Share of Men -0.0768∗∗∗ -0.0610∗∗∗ -0.0623∗∗∗ 0.00324

(0.00369) (0.00891) (0.00615) (0.00335)

Log(Value Added per Employee) 0.114∗∗∗ 0.0940∗∗∗ 0.0965∗∗∗ -0.00544

(0.0176) (0.00432) (0.00433) (0.00427)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 700.3 1220.8 1018.4 51.61

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at the
commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation 2.2.2. A labor market is here
defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is
defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two employee level control variables:
share of men among the new hires and the mean age (in years) of the new hires. There is a single firm level control variables: Mean Log(Value Added per Worker) : the
log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The log-log specification was used
because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in
column (3): ceteris paribus, a 10% increase in labor market concentration lowers new hires by approximately−0.348× 0.1× 100 = −3.48%.
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2.J.2.2 Weighted by New Hires

Table 2.J.5: New Hires (OLS) : Weighted by New Hires without Controlling for Firm Size

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.502∗∗∗ 0.170∗∗∗ 0.324∗∗∗ 0.0888∗∗∗

(0.0388) (0.0403) (0.0407) (0.0243)

Log(Product HHI) -0.387∗∗∗ -0.222∗∗∗ -0.191∗∗∗ -0.137∗∗

(0.0541) (0.0532) (0.0451) (0.0580)

Mean Age (in years) -0.0107∗∗∗ -0.0122∗∗∗ -0.0132∗∗∗ 0.0000763

(0.00113) (0.00139) (0.00144) (0.000283)

Share of Men in Firm -0.219∗∗∗ -0.307∗∗∗ -0.282∗∗∗ -0.00954∗∗

(0.0661) (0.0388) (0.0138) (0.00464)

Log(Value Added per Employee) 0.158∗∗∗ 0.164∗∗∗ 0.168∗∗∗ -0.00687

(0.0169) (0.0127) (0.0118) (0.00641)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.505 0.579 0.677 0.944

Adjusted R2 0.505 0.579 0.668 0.932

N. Clusters 308 307 305 305

F 261.9 90.76 164.5 33.93

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at
the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the number of
new hires. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as
described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm of the
Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the
industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There is a single
firm level control variables: Mean Log(Value Added per Worker) : the log of total value added (revenues minus intermediary costs) over a year divided by the number
of full-time equivalent employees. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends
itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration raises new hires by
approximately 0.324× 0.1× 100 = 3.24%.
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Table 2.J.6: New Hires (IV) : Weighted by New Hires without Controlling for Firm Size

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -2.034∗ -2.066∗ -2.395∗ -1.304

(1.038) (1.056) (1.309) (1.769)

Log(Product HHI) -0.212 -0.517∗∗∗ -0.745∗∗∗ -11.41

(0.338) (0.0879) (0.0374) (9.744)

Mean Age (in years) -0.00508∗ -0.00596 -0.00855∗∗∗ 0.00264

(0.00278) (0.00371) (0.00265) (0.00949)

Share of Men -0.757∗∗ -0.403∗∗∗ -0.396∗∗∗ -0.0470

(0.368) (0.0412) (0.0630) (0.0433)

Mean Log(Value Added per Employee) 0.196∗∗∗ 0.168∗∗∗ 0.181∗∗∗ 0.0339

(0.0386) (0.0262) (0.0326) (0.0272)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 54.33 63.98 184.6 48.63

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation
is measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Standard Errors are clustered at
the commuting zone level. Each observation is weighted by the number of new hires. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor
market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm
of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at
the industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There is a single
firm level control variables: Mean Log(Value Added per Worker) : the log of total value added (revenues minus intermediary costs) over a year divided by the number
of full-time equivalent employees. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends
itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new hires by
approximately−2.395× 0.1× 100 = −23.95%.
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2.J.2.3 Weighted by Mean New Hires

Table 2.J.7: New Hires (OLS) : Weighted by Mean New Hires without Controlling for Firm Size

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -0.580∗∗∗ -0.000623 0.0388 -0.0485∗∗

(0.0262) (0.0299) (0.0284) (0.0228)

Log(Product HHI) -0.352∗∗∗ -0.219∗∗∗ -0.202∗∗∗ -0.228∗∗∗

(0.0634) (0.0629) (0.0539) (0.0879)

Mean Age (in years) -0.0136∗∗∗ -0.0136∗∗∗ -0.0139∗∗∗ -0.00341∗∗∗

(0.000885) (0.00134) (0.00161) (0.000381)

Share of Men -0.120∗ -0.189∗∗∗ -0.202∗∗∗ -0.0109

(0.0655) (0.0457) (0.0163) (0.00746)

Mean Log(Value Added per Employee) 0.163∗∗∗ 0.167∗∗∗ 0.172∗∗∗ 0.000766

(0.0146) (0.0124) (0.0122) (0.00596)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

R2 0.511 0.561 0.651 0.922

Adjusted R2 0.511 0.561 0.642 0.905

N. Clusters 308 307 305 305

F 583.7 122.9 136.7 37.95

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a linear regression using the Log(Nb. Hires) as a dependent variable. Each observation is measured at the
Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the mean number of
new hires across time. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor
market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is the logarithm
of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at
the industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There is a single
firm level control variables: Mean Log(Value Added per Worker) : the log of total value added (revenues minus intermediary costs) over a year divided by the number
of full-time equivalent employees. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends
itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration raises new hires by
approximately 0.0388× 0.1× 100 = 0.388%.
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Table 2.J.8: New Hires (IV) : Weighted by Mean New Hires without Controlling for Firm Size

(1) (2) (3) (4)

Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires) Log(Nb. Hires)

Log(Labor HHI) -3.942 -1.734∗∗ -1.544∗∗ -1.590∗

(5.111) (0.823) (0.624) (0.862)

Log(Product HHI) 0.105 -0.655∗∗∗ -0.815∗∗∗ -5.307∗∗

(1.321) (0.0418) (0.0275) (2.492)

Mean Age (in years) -0.00415 -0.0115∗∗∗ -0.0131∗∗∗ -0.0000799

(0.0122) (0.00140) (0.000592) (0.00251)

Share of Men -0.976 -0.195∗∗∗ -0.220∗∗∗ -0.0578∗∗∗

(1.348) (0.0632) (0.0131) (0.0127)

Mean Log(Value Added per Employee) 0.279 0.167∗∗∗ 0.175∗∗∗ 0.0259

(0.185) (0.0263) (0.0280) (0.0174)

Quarter x Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x Occupation FE No No Yes No

CZ x Occ. x Industry FE No No No Yes

N. Clusters 308 307 305 305

F 65.30 184.4 361.0 151.1

Observations 3175710 3175709 3165195 2620737

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variable regression using the Log(Nb. Hires) as a dependent variable. Each observation is
measured at the Occupation by Industry by Commuting Zone by Quarter level, as provided in the DADS Salariés (2011-2015). Each observation is weighted by the
mean number of new hires across time. Standard Errors are clustered at the commuting zone level. Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index
for the labor market, as described in equation 2.2.2. A labor market is here defined over a commuting zone, an occupation, and through quarters. Log(Product HHI) is
the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting
zone and at the industry level. There are two employee level control variables: share of men among the new hires and the mean age (in years) of the new hires. There
is a single firm level control variables: Mean Log(Value Added per Worker) : the log of total value added (revenues minus intermediary costs) over a year divided by the
number of full-time equivalent employees. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification
lends itself to the following interpretation of the main coefficient of interest in column (3): ceteris paribus, a 10% increase in labor market concentration lowers new
hires by approximately−1.544× 0.1× 100 = −15.44%.
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2.K Stock

2.K.1 Occupation Based Labor Market Concentration

Table 2.K.1: Hourly Wage (OLS) : Baseline with the Employment Stock

(1) (2) (3) (4)

Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage)

Log(Labor HHI) -0.0173∗∗∗ -0.00621∗∗∗ -0.00511∗∗∗ -0.00317∗∗∗

(0.0000724) (0.0000956) (0.000270) (0.000238)

Log(Product HHI) -0.0121∗∗∗ -0.000553∗∗∗ -0.00151∗∗∗ -0.00760∗∗∗

(0.0000698) (0.0000799) (0.0000889) (0.000198)

Gender 0.106∗∗∗ 0.105∗∗∗ 0.104∗∗∗ 0.0930∗∗∗

(0.000151) (0.000150) (0.000150) (0.000140)

Age (in years) 0.00692∗∗∗ 0.00692∗∗∗ 0.00693∗∗∗ 0.00644∗∗∗

(0.00000544) (0.00000540) (0.00000536) (0.00000512)

Log(Value Added per Worker) 0.0941∗∗∗ 0.0894∗∗∗ 0.0853∗∗∗ 0.0127∗∗∗

(0.0000872) (0.0000872) (0.0000886) (0.000350)

Log(Number of Employees) 0.0211∗∗∗ 0.0202∗∗∗ 0.0195∗∗∗ -0.0210∗∗∗

(0.0000256) (0.0000260) (0.0000264) (0.000518)

Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x 4-Digit Occupation FE No No Yes Yes

Firm FE No No No Yes

R2 0.643 0.648 0.664 0.766

Adjusted R2 0.643 0.648 0.663 0.754

F 692641.2 629200.0 601937.9 335249.9

Observations 20506462 20506462 20500096 20367963

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an ordinary least squares regression using the Log(Hourly Wage) as a dependent variable. Each observation is an employment contract. The sample
includes all workers employed in 2014 and 2015 on January 1st (i.e, the employment stock). Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation
2.2.2. A labor market is defined over a commuting zone, a 4-digit occupation, and through the year. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined
as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two individual level control variables: gender (equal to one if the worker is a man,
zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The latter is the number of reported full-time equivalent number of
workers in the firm over the year. The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The log-log specification
was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (4): ceteris paribus, a
10% increase in labor market concentration lowers wages by approximately−0.00317× 0.1× 100 = −0.0317%.
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Table 2.K.2: Hourly Wages (IV) : Baseline with the Employment Stock

(1) (2) (3) (4)

Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage)

Log(Labor HHI) -0.0520∗∗∗ -0.0227∗∗∗ -0.0111∗∗∗ -0.0303∗∗∗

(0.000703) (0.00276) (0.00371) (0.00282)

Log(Product HHI) 0.0219∗∗∗ 0.0239∗∗∗ 0.0224∗∗∗ -0.000725

(0.000177) (0.000149) (0.000142) (0.00129)

Gender 0.107∗∗∗ 0.106∗∗∗ 0.105∗∗∗ 0.0930∗∗∗

(0.000154) (0.000151) (0.000151) (0.000140)

Age (in years) 0.00689∗∗∗ 0.00689∗∗∗ 0.00692∗∗∗ 0.00644∗∗∗

(0.00000562) (0.00000551) (0.00000537) (0.00000512)

Log(Value Added per Worker) 0.0908∗∗∗ 0.0870∗∗∗ 0.0830∗∗∗ 0.0128∗∗∗

(0.000114) (0.0000916) (0.0000894) (0.000351)

Log(Number of Employees) 0.0210∗∗∗ 0.0198∗∗∗ 0.0185∗∗∗ -0.0205∗∗∗

(0.0000278) (0.0000986) (0.0000276) (0.000523)

Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x 4-Digit Occupation FE No No Yes Yes

Firm FE No No No Yes

Observations 20506462 20506462 20500096 20367963

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from a two stage least squares regression using the Log(Hourly Wage) as a dependent variable. The instrument is described in section 2.3.2. Each
observation is an employment contract. The sample includes all workers employed in 2014 and 2015 on January 1st (i.e, the employment stock). Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman
index for the labor market, as described in equation 2.2.2. A labor market is defined over a commuting zone, a 4-digit occupation, and through time quarters. Log(Product HHI) is the logarithm of the
Herfindalh-Hirschman index for the product market. It is defined as described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two individual level
control variables: gender (equal to one if the worker is a man, zero otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees).
The latter is the number of reported full-time equivalent number of workers in the firm over the year. The former is the log of total value added (revenues minus intermediary costs) over a year divided by the
number of full-time equivalent employees. The log-log specification was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation
of the main coefficient of interest in column (4): ceteris paribus, a 10% increase in labor market concentration lowers wages by approximately−0.0303× 0.1× 100 = −0.303%.
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2.K.2 Industry Based Labor Market Concentration

Table 2.K.3: Hourly Wages (OLS) : Baseline with the Employment Stock and Industry based Labor Market
Concentration

(1) (2) (3) (4)

Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage)

Log(Labor HHI) 0.0123∗∗∗ 0.0137∗∗∗ 0.0167∗∗∗ 0.00434∗∗∗

(0.0000749) (0.0000775) (0.0000872) (0.000198)

Log(Product HHI) -0.0334∗∗∗ -0.0126∗∗∗ -0.0171∗∗∗ -0.00920∗∗∗

(0.0000883) (0.000103) (0.000121) (0.000211)

Gender: Male Dummy 0.106∗∗∗ 0.105∗∗∗ 0.104∗∗∗ 0.0930∗∗∗

(0.000151) (0.000150) (0.000150) (0.000140)

Age (in years) 0.00690∗∗∗ 0.00690∗∗∗ 0.00691∗∗∗ 0.00644∗∗∗

(0.00000544) (0.00000540) (0.00000536) (0.00000512)

Log(Value Added per Worker) 0.0949∗∗∗ 0.0884∗∗∗ 0.0841∗∗∗ 0.0126∗∗∗

(0.0000872) (0.0000874) (0.0000887) (0.000350)

Log(Number of Employees) 0.0202∗∗∗ 0.0190∗∗∗ 0.0185∗∗∗ -0.0211∗∗∗

(0.0000261) (0.0000263) (0.0000268) (0.000518)

Year FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x 4-Digit Occupation FE No No Yes Yes

Firm FE No No No Yes

R2 0.642 0.649 0.665 0.766

Adjusted R2 0.642 0.649 0.663 0.754

F 686628.1 634495.5 609015.0 335305.7

Observations 20506462 20506462 20500096 20367963

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an ordinary least squares regression using the Log(Hourly Wage) as a dependent variable. Each observation is an employment contract. The sample
includes all workers employed in 2014 and 2015 on January 1st (i.e, the employment stock). Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation
2.2.2. A labor market is here defined over a commuting zone, an industry, and through the year. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as
described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two individual level control variables: gender (equal to one if the worker is a man, zero
otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The latter is the number of reported full-time equivalent number of
workers in the firm over the year. The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The log-log specification
was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (4): ceteris paribus, a
10% increase in labor market concentration increases wages by approximately 0.00434× 0.1× 100 = 0.0434%.

155



Table 2.K.4: Hourly Wage (IV) : Baseline with the Employment Stock and Industry based Labor Market
Concentration

(1) (2) (3) (4)

Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage) Log(Hourly Wage)

Log(Labor HHI) 0.109∗∗∗ 0.240∗∗∗ -0.156∗∗∗ -1.077∗∗∗

(0.00153) (0.0374) (0.0593) (0.220)

Log(Product HHI) -0.157∗∗∗ -0.376∗∗∗ 0.284∗∗∗ 1.691∗∗∗

(0.00239) (0.0622) (0.0996) (0.345)

Gender 0.106∗∗∗ 0.104∗∗∗ 0.107∗∗∗ 0.0908∗∗∗

(0.000163) (0.000296) (0.000877) (0.000534)

Age (in years) 0.00686∗∗∗ 0.00672∗∗∗ 0.00705∗∗∗ 0.00644∗∗∗

(0.00000578) (0.0000290) (0.0000508) (0.0000112)

Log(Value Added per Worker) 0.0871∗∗∗ 0.0853∗∗∗ 0.0834∗∗∗ 0.00684∗∗∗

(0.000157) (0.000322) (0.000177) (0.00140)

Log(Number of Employees) 0.0144∗∗∗ 0.00984∗∗∗ 0.0225∗∗∗ -0.0357∗∗∗

(0.0000859) (0.00143) (0.00151) (0.00317)

Time FE Yes Yes Yes Yes

4-Digit Occupation FE Yes Yes No No

Commuting Zone FE No Yes No No

Commuting Zone x 4-Digit Occupation FE No No Yes Yes

Firm FE No No No Yes

Observations 20506462 20506462 20500096 20367963

Standard errors in parentheses

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table presents the regression output from an instrumental variables regression using the Log(Hourly Wage) as a dependent variable. Each observation is an employment contract. The sample
includes all workers employed in 2014 and 2015 on January 1st (i.e, the employment stock). Log(Labor HHI) is the logarithm of the Herfindalh-Hirschman index for the labor market, as described in equation
2.2.2. A labor market is here defined over a commuting zone, an industry, and through the year. Log(Product HHI) is the logarithm of the Herfindalh-Hirschman index for the product market. It is defined as
described in equation 2.2.4. The product market is defined over a commuting zone and at the industry level. There are two individual level control variables: gender (equal to one if the worker is a man, zero
otherwise) and age (in years). There are two firm level control variables: Log(Value Added per Worker) and Log(Number of Employees). The latter is the number of reported full-time equivalent number of
workers in the firm over the year. The former is the log of total value added (revenues minus intermediary costs) over a year divided by the number of full-time equivalent employees. The log-log specification
was used because the data presents a linear relationship under this form. The log-log specification lends itself to the following interpretation of the main coefficient of interest in column (4): ceteris paribus, a
10% increase in labor market concentration lowers hourly wages by approximately−1.077× 0.1× 100 = −10.77%.
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2.L Simulation

Table 2.L.1: Simulation Summary Statistics (2015)

count min max p25 p50 p75 mean sd

Original Labor Market HHI 2534847 .0006489 1 .0243952 .0688776 .2066116 0.175 0.247

Post Merger Labor Market HHI 2534847 0006489 1 .0248725 .07 .2073094 0.176 0.247

Note: The line Original Labor Market HHI presents the descriptive statistics for the observed level of labor market concentration for each
individual. The line Post Merger Labor Market HHI presents the descriptive statistics for the level of labor market concentration for a worker after
simulating the merger in her own industry (i.e,if a worker is in the car repair industry, then the reported HHI is the one this individual would have
after the two largest companies in the car repair industry merge). This table is calculated based on our repeated cross-section (DADS Salariés)
taken at the individual level.
Source: DADS Salariés and authors’ calculations.
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Figure 2.L.1: Industry Employment Loss in Blue and White Collar Jobs

Graph 2.1(a) : Each line represents the annual expected new blue collar jobs lost for workers across France induced from a merger in that
industry (i.e, a merger in the Retail industry would reduce annual recruitment of blue collars by 3800 jobs across France). It is calculated based
on equation 2.4.2. A white collar job is defined as having an occupation number starting with 5 and 6 in the French Professions et catégories
socioprofessionnelles occupation classification system.
Graph 2.1(b): Each line represents the annual expected new white collar jobs lost for workers across France induced from a merger in that industry
(i.e, a merger in the Computer Programming industry would reduce annual recruitment of white collar workers by 600 jobs across France). It is
calculated based on equation 2.4.2. A white collar job is defined as having an occupation number starting with 3 in the French Professions et
catégories socioprofessionnelles occupation classification system.
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Figure 2.L.2: Total Wage and Employment Effects (Relative to Industry Values)

Figure 2.2(a) : Each line represents the sum of annual expected wage bill loss for new hires across France induced from a merger, reported
in relation to the initial wage bill. It is calculated based on equation 2.4.1. Industry Total Annual Loss is calculated so as to include the loss to
workers in the industry that merged (i.e, the impact on car repairers of a merger in the car repair industry). So, the merger in the retail industry
would lead to a 2% reduction in that industry’s wage bill. Broad Total Annual Loss is calculated so as to include the loss to all workers in the
economy, including those in the industry that merged. So, the merger in the retail industry would lead to 2.2% reduction in annual wage bill loss
across the economy, once the broad effects taken into account.
Figure 2.2(b): Each line in light red represents the annual expected new loss to new hires for workers in that industry (i.e, a merger in the Building
Maintenance industry would reduce annual recruitment by 4.4% in the Building Maintenance industry). It is calculated based on equation 2.4.2.
Each line in dark red represents the annual expected new jobs lost for workers across France induced from a merger in that industry (i.e, a merger
in the Building Maintenance industry would reduce annual recruitment by 4.5% relative to the number of new hires in that industry). It is calculated
based on equation 2.4.2.
Source: DADS Salariés and authors’ calculations.

2.M Unionization Rates
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Table 2.M.1: Unionization Rates (Enquête Réponse 2011)

APE Code Unionization Rate Number of Respondents Industry Label
8 4,92% 61 Other mining and quarrying
10 12,48% 561 Manufacture of food products
11 5,41% 74 Manufacture of beverages
13 11,36% 88 Manufacture of textiles
14 7,14% 70 Manufacture of wearing apparel
15 12,20% 41 Manufacture of leather and related products
16 5,75% 87 Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting materials
17 11,70% 94 Manufacture of paper and paper products
18 11,11% 90 Printing and reproduction of recorded media
19 26,09% 23 Manufacture of coke and refined petroleum products
20 11,33% 300 Manufacture of chemicals and chemical products
21 11,66% 163 Manufacture of basic pharmaceutical products and pharmaceutical preparations
22 12,93% 379 Manufacture of rubber and plastic products
23 18,27% 197 Manufacture of other non-metallic mineral products
24 18,38% 185 Manufacture of basic metals
25 9,98% 581 Manufacture of fabricated metal products, except machinery and equipment
26 13,10% 229 Manufacture of computer, electronic and optical products
27 11,52% 217 Manufacture of electrical equipment
28 9,12% 351 Manufacture of machinery and equipment n.e.c.
29 16,34% 202 Manufacture of motor vehicles, trailers and semi-trailers
30 20,22% 178 Manufacture of other transport equipment
31 5,15% 97 Manufacture of furniture
32 11,43% 70 Other manufacturing
33 9,95% 191 Repair and installation of machinery and equipment
35 16,22% 148 Electricity, gas, steam and air conditioning supply
36 29,82% 57 Water collection, treatment and supply
37 0,00% 15 Sewerage
38 14,66% 116 Waste collection, treatment and disposal activities; materials recovery
41 5,70% 158 Construction of buildings
42 8,45% 284 Civil engineering
43 4,09% 1051 Specialised construction activities
45 2,92% 343 Wholesale and retail trade and repair of motor vehicles and motorcycles
46 5,65% 1238 Wholesale trade, except of motor vehicles and motorcycles
47 7,94% 1436 Retail trade, except of motor vehicles and motorcycles
49 13,25% 1094 Land transport and transport via pipelines
50 21,74% 23 Water transport
51 45,71% 35 Air transport
52 16,31% 564 Warehousing and support activities for transportation
55 11,50% 113 Accommodation
56 10,32% 281 Food and beverage service activities
58 11,22% 205 Publishing activities
59 11,63% 43 Motion picture, video and television programme production, sound recording and music publishing activities
60 7,69% 26 Programming and broadcasting activities
61 13,76% 109 Telecommunications
62 6,75% 385 Computer programming, consultancy and related activities
63 7,29% 96 Information service activities
64 0,00% 9 Financial service activities, except insurance and pension funding
66 8,62% 58 Activities auxiliary to financial services and insurance activities
68 14,29% 189 Real estate activities
69 3,17% 284 Legal and accounting activities
70 4,21% 285 Activities of head offices; management consultancy activities
71 5,75% 452 Architectural and engineering activities; technical testing and analysis
72 9,68% 93 Scientific research and development
73 16,00% 150 Advertising and market research
74 7,89% 38 Other professional, scientific and technical activities
75 0,00% 5 Veterinary activities
77 2,30% 87 Rental and leasing activities
78 25,00% 32 Employment activities
79 4,84% 62 Travel agency, tour operator and other reservation service and related activities
80 17,89% 123 Security and investigation activities
81 13,77% 334 Services to buildings and landscape activities
82 6,05% 215 Office administrative, office support and other business support activities
85 3,85% 78 Education
86 13,74% 393 Human health activities
87 5,47% 128 Residential care activities
88 7,35% 68 Social work activities without accommodation
90 7,69% 13 Creative, arts and entertainment activities
91 0,00% 10 Libraries, archives, museums and other cultural activities
92 23,33% 30 Gambling and betting activities
93 0,00% 14 Sports activities and amusement and recreation activities
94 20,00% 30 Activities of membership organisations
95 0,00% 18 Repair of computers and personal and household goods
96 10,00% 70 Other personal service activities
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Chapter 3

What Would Wages be Like Without

Antitrust Law?

Abstract:The U.S. Supreme Court exempted Major League Baseball from the Sherman Antitrust Act. As a

result, debuting players are still precluded from switching teams, rendering owners de facto monopsonies. By

how much does this lower wages? Using a quasi-random discontinuity in the rule determining eligibility for

Arbitration, by which a third party determines the player’s wage to a level commensurate with his market value,

this exemption is found to have lowered wages by at least 32% compared to its market rate.

3.1 Introduction

The fall of the labor share of income has re-affirmed the role of Antitrust law in safeguarding workers’ income, as

reflected by President Biden’s Executive Order on Promoting Competition in the American Economy (Council

of Economic Advisors, 2016; Posner, 2021). The relationship between both has never been clearer than

in Major League Baseball (MLB). Indeed, the 1922 U.S. Supreme Court decision1 to exempt MLB from the

Sherman Antitrust Act has allowed anti-competitive practices to proliferate, perpetuate, and exacerbate. The

most infamous of these practices is the so called Reserve Clause, according to which a player is bound to his

owner during his whole career. As a result of negocitations between the players’ union and the league,2 this

clause now effectively only lasts only six years3.

The current system functions as a Covenant not to Compete4 (CNC) pushed to its limit. Indeed, this clause

is long-lasting, inexpensively enforced, and covers the complete labor market. This context offers an ideal

case to study the effects of such impediments to workers’ mobility on their bargaining power (Kahn, 2000).

1Federal Baseball Club v. National League, 259 U.S. 200 (1922)
2Banner (2015) suggests that the reserve clause has remained for inexperienced players as a result of senior players conspiring

through the MLBPA to keep the salaries of inexperienced players low in hopes of sustaining high salaries for themselves.
3The 1975 Seitz Decision declared the Reserve Clause to be null, leading to a new Collective Bargaining Agreement with the Major

League Baseball Players Association (MLBPA). This new agreement set the status quo : players became free to negotiate with other teams
after six years of service time as Free Agents. Despite the Curt Flood Act (1998), which declared players protected by Antitrust law to the
same degree as any other professional athlete, this limited form of the original Reserve Clause has survived. In this sense, and despite the
restriction being no longer binding, it is still possible to observe the lingering effects of the Antitrust exemption. See Berri and Krautmann
(2019), Kahn (2000), and Hylton (1999) for additional details on the relationship between the antitrust exemption and its implications today.

4Also known more colloquially as a Non-Compete Clause.
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In particular, it allows us to quantify the importance of imperfect competition in determining wages. First, to

study the effect of such a clause, one would need to observe how wages change as a result of its sudden

disappearance. As we show below, the MLB’s “super two” cut-off offers a case of workers having the sudden

opportunity to join a semi-competitive labor market based on their accrued experience in this labor market.

Second, we are in the rare situation of being able to access high-quality data for both compensation and

measures of productivity for these players. Finally, it is possible to follow them across time and firm thanks to

easily available linked employer-employee data for almost all members of this labor force.

To this end, we exploit a quasi-random discontinuity in the rule determining eligibility for Arbitration, by which

a third party can determine a player’s wage, through a state-of-the-art non-parametric methodology based on

kernel weighted local-polynomials (Calonico et al., 2014). This rule, called the Super Two, is a random threshold

based on the accrued work-experience of players. Players with enough work-experience to cross the threshold

suddenly leave a monopsonistic labor market. Their wage is then determined by mutual agreement, with the

threat of going through Final Offer Arbitration (FOA) in case of disagreement. In this case, which is seldom

used in practice, both the player and the team submit a salary-proposition to an arbitrator who then selects the

one which she finds most commensurate with the player’s talent.

We find that wages increase by at least 45% when players become entitled to arbitration and this estimate

is shown to be robust to an array of placebo and falsification tests. We posit the new post-Arbitration wage to be

commensurate with the player’s market value on the basis that (a) wages do not markedly evolve when players

reach Free Agency, when players become free to negotiate their salary and change teams. Moreover, (b) we

show this result to be consist with the theoretical literature on Final-Offer Arbitration by revisiting the model of

Brams and Merrill (1983). (iii) This allows us to conclude that the the inability of players to change teams without

the agreement of their team owner results in wages being depressed by at least 32% below their market value.

These results contribute to several literatures. The first includes research on the prevalence and impact

of monopsony in labor markets. Recent examples include observational studies such as Azar et al. (2017b),

which measures labor market power through a proxy Herfindalh Hirschman Index (HHI) or, Azar et al. (2019),

which uses the same online job board data but posits structural modelling assumptions. These works are

complemented by experimental studies such as Dube et al. (2020), who uses the Amazon’s Mechanical Turk

Platform to evaluate workers’ labor supply elasticity. In general, these papers detect significant wage markdowns

(i.e. wages are found to be below the Marginal Revenue Product). This has led some to question the role and

responsibility of Antitrust policy in the promulgation of monopsony power (Naidu et al., 2018b; Posner, 2021).

This paper contributes to this literature by establishing a direct link between monopsony power and antitrust

law, by providing additional evidence for the capacity for monopsony to lower wages, and by complementing

the methodological approaches of past studies by using state-of-the-art quasi-experimental methods (Calonico

et al., 2014).

Second, this article contributes to the literature on Covenants not to Compete. This literature builds on the

observation that these covenants are pervasive among the American workforce and even among low income

workers (see Starr et al. (2015)). This suggests that their real purpose is to lower worker mobility and provide

additional bargaining power to employers. These covenants have been found to lower wages, as recently

evidenced by Balasubramanian et al. (2017) who measured changes in technology workers’ wages when Hawaii

banned these clauses. However, as noted by Council of Economic Advisors (2016) more research is needed.

This paper examines an extreme version of these covenants and, in this sense, not only provides further
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evidence, but also an upper bound estimate of the effect of these clauses on wages; suggesting that non-

competes can have potentially deleterious effects.

Third, this paper contributes to the literature studying alternative ways to determine wages. It shows that

the threat of Final Offer Arbitration can lead wages to effectively match those of semi-competitive labor market

(Ashenfelter and Hyslop, 2001). This opens the question of the more generalized application of Final Offer

Arbitration as a threat which can be used by both workers and firms to settle wages in situations where market

forces may be inadequate (Mas, 2006).

Fourth, this paper also adds to sports economics which uses the industry as a “labor market laboratory”

Kahn (2000). In particular, outside of baseball, the Reserve Clause can be seen as similar to the Bosman

Ruling (1995) from the European Courts of Justice, which allowed soccer players to move across European

countries to play in different national leagues and teams. Research such as Binder and Findlay (2012) argued

that this decision resulted in significant improvement in the performance of Champions’ League teams. This

suggests that, perhaps as in more usual industries, competition in the labor market improves the quality of

the services produced. Within baseball, this paper contributes to the numerous bodies of research probing

the relationship between players’ wages and their performance Kahn (2000). This literature builds on Scully

(1974)’s seminal paper, which attempted to use team-level accounting data along with match-level data to

recover players’ marginal revenue product. More recently, Berri and Krautmann (2019) provided an alternative

approach based on using the labor share of income within baseball (when known) and in other sports (such

as in basketball) to induce the loss of income of players due to the Reserve Clause. They suggest that the

labor share rose from 20% in the 1950s to perhaps 60% in the early 1980s. In contrast, this paper provides

a novel way to study wage suppression in Major League Baseball through the use of the Super Two cut-off5.

This novel method is based on transparent identification conditions, avoids the selection bias which plagued

previous studies, and can be subjected to several rigorous placebo and falsification tests.

This paper develops these points in the following three sections. Section 3.2 presents the data along with

the research design upon which this paper is built. Section 3.3 provides estimation results and robustness tests.

Finally, Section 3.4 discusses the interpretation of these results.

3.2 Research Design

3.2.1 Data

We rely on freely accessible data on Major League Baseball players, their service time, and their salaries. The

available sample covers the period 2010 to 2018. The players’ salaries and service time are available from

the website Baseball-Reference.com. This website is an exhaustive repository of information on Major League

players and one of the only one which also keeps records of players’ service times. Players’ performance ratings

and salaries from the freely accessible Lahman Database are used to complement the former. This database is

well known within sabermetrics and has already been used within the context of economic research in articles

such as Hakes and Sauer (2006). This dataset is complemented with the annual Super Two cut-off dates found

5We are not, however, the first to use this cut-off within the economic literature. Papps (2010)’s study of efficiency wages uses the
cut-off to instrument for players’ income. This allowed him to conclude that raising income also raised players’ performance.
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on the website MLBTradeRumors.com and are reported in Table 3.B.2.6

For the purposes of this study, players without salary or known service time were dropped from the sample.

However, all players included in the Lahman database are present in the final sample. Summary statistics for

the final sample are provided in Table 3.B.1. Given that active rosters are comprised of 25 players and 30

teams, the nearly 800 players available each year in our sample can be said to cover the population of interest.

This is confirmed by considering Table 3.B.3 which displays the share of players in already two years of accrued

service time (explained below). The Super-Two cut-off is calculated such that 22% of these players become

eligible for arbitration. We observe an average of 24% which suggests that our sample does not significantly

depart from the overall population.

This paper exploits the following variables throughout:

– Yearly income : this variable is provided in nominal U.S. dollars and does not include potential one-off

bonuses. This variable is used in this paper after being transformed using the natural logarithm. This

variable is available for 7603 observations. The mean income approaches 4 million U.S. dollars (for

reference, the contractual minimum wage in the MLB is of 545 000 U.S. dollars for 2018). Below the

Super Two threshold, the mean salary is of only USD 697 741. Above, this same amount has a mean

of USD 6 074 523. This reflects not only the effect of Arbitration but also the experience accrued by and

attrition of players above the threshold.

– Weight : measured in pounds during the rookie year. This variable is available for 7407 observations.

The mean weight during the rookie year is 213 pounds with 211 for those below and 214 for those above.

– Rookie Year: calendar year during which a player accrued at least 45 days of service time or exceeded

130 At Bats (AB), approximately the number of opportunities to bat, or 50 innings pitched in Major League

Baseball. The mean rookie year is 2009, with those below the Super Two cut-off at 2012 (more recent

players) and those above the cut-off at 2006 (older players).

– At Bats per Home Run (ABHR) : the ratio of the number of At Bat opportunities to the number of Home

Runs hit (a home run is the most valuable hit allowing all players on base to score for their team).7 With

the Runs Batted In (RBI), it constitutes a measure of player performance.8 This variable is available for

only 3335 observations which is to be expected given that many players never hit any home runs. The

mean ABHR is at 51 but at 54 below the Super Two threshold and 50 above.

– Runs Batted In (RBI) : This variable attributes runs to players whose batting caused the run to occur (i.e,

reach a new base). With the At Bats per Home Run (ABHR), this variable constitutes a measure of player

performance. This variable is available for 7015 observations. The average RBI is 21. Below the Super

Two cut-off, the mean RBI is 17. Above, it is 23.

6This data was collected based on the code available at: https://github.com/jason-sa/baseball_lin_regression.git
which comes with a MIT License to “use, copy, modify, merge, publish”.

7Many players never hit a home-run. We cannot substitute their value with a zero as it would require including a zero in a denominator.
8This measure of performance is transparent and easy to interpret. However, more sophisticated measures of performance such as

Wins Above Average (WAA) or Wins Above Replacement (WAR) may more accurately capture players’ contribution to a team. These
measures rely on proprietary formula and are harder to interpret. Although unreported, we have replicated results which rely on Ats Bats
per Home Run (ABHR) and Runs Batted In (RBI) using both WAA and WAR as measured by Baseball-Reference. In all cases, we find no
qualitative change in results relative to those in the main body of the text.
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– Days to Super Two cut-off: this is the running variable used in the regression discontinuity design

implemented in this paper. The service time is re-centered as the number of days difference to the

Super Two cut-off. The service time is the number of days a player spends on a MLB’s active roster of 25

players. A player accrues a year of service for at least 172 days out of the 183 spent on this roster. It is

recorded in the format YY.DDD to reflect that days spent above 172 do not extend to service time in the

following year. Player’s above the Super Two cut-off (0 in our data) can request Salary Arbitration and,

above six years of service, can attempt to change teams as a Free Agent. This variable is available for

7603 observations. The mean days of service time if 319. Below the cut-off, the mean is at -252 days.

Above, it is at 683 days.

– Within +/- 10 days of cut-off: this is a dummy variable equal to one if an observation is within 10 days

of the cut-off. 2% (or 126 observations) of the sample is within ten days from the cut-off, composed of

2% (or 55 observations) of observations below the cut-off and 2% (or 71 observations) of observations

above the cut-off.

As a robustness measure, the main specifications were also run on an alternative dataset which includes a

better coverage of players. This data is the freely accessible Cot’s Baseball Contracts database.9 It is slightly

larger (8690 observations) but could not be easily linked to the Lahman database for lack of player identification

numbers. This meant that some of the robustness checks in the paper would not have been possible using

solely this data. However, it is used to run the main specification (reported in Table 3.B.5 and in Figure 3.A.6).

3.2.2 Research Context and Identification Strategy

Our first goal is to measure the degree to which wages rise when players become eligible for Arbitration.10 In

Section 3.4, we will argue that this effect is akin to the one of accessing a competitive market. Arbitration is a

provision appearing in its modern form in the 1970 Collective Bargaining Agreement (CBA) negotiated by the

Major League Baseball Players’ Association (MLBPA). A player eligible for Arbitration can be heard by a third

party arbitrator to resolve a salary dispute. In this case, both the team and the player submit a wage proposition

and the arbitrator chooses one of the two after having made an appraisal of the player’s performance in relation

to his peers and their respective salaries. In practice, however, the threat of Arbitration often leads the parties

to reach an agreement beforehand.

Players become eligible for Arbitration by accruing service time, as a result of having been placed on a

team’s active roster for a given number of days. Players with already two years of service time and having

accrued an amount of days above the Super Two cut-off (described below) are eligible for Arbitration. One

cannot directly compare players with and without eligibility for arbitration because teams will be selective in

which players they allow to become potentially eligible. As shown in Figure 3.A.1, which displays the amount of

service time accrued by players the year of their drop-out from Major League Baseball (or of our dataset), there

are two significant moments: when players become eligible for Arbitration (red bar, in year 3) and when players

become Free Agents (green bar, at the end of year 6). In turn, this means that players are selected are likely to

differ in potentially unobserved ways from those which dropped out earlier in their career.

9This data was used in Papps (2010).
10A potential extension of this paper could include looking at the effects on player mobility and career length.
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In turn, it would be misleading to compare the incomes of those eligible and non-eligible players since they

are likely to differ in their characteristics. This can be seen by consider the descriptive statistics of Table 3.B.1.

The Run batted In (RBI) of players with arbitration is 23.23 whereas it is only of 17.65 for those non-eligible.

Similarly, the mean At Bats per Home Run (ABHR) of the former is lower (50.28) than the latter (54.18). As

such, there is evidence that selection effects would generate a composition effects : eligible players are also,

on average, better players than non-eligible players.

This problem can be alleviated by comparing who are randomly selected into eligibility.11 We do so by

considering players below and above the so-called Super Two threshold. This threshold determines a player’s

eligibility for Arbitration and is the result of the Major League Baseball Players Association collective bargaining

agreement of 1997 (Prospectus, 2021). To calculate it, the MLB league selects all players with at least 86 days

of service on the active roster (or injured list) that year. It then chooses the cut-off such that it includes the top

22% of players in terms of accrued service time. Although teams can avoid eligibility for Arbitration by keeping

players off the active roster, the cut-off is largely considered to be unpredictable and a source of injustice among

both owners and players. The historical thresholds are presented in Table 3.B.2 whilst the distribution of players

with already two years of accrued service time is displayed in Figure 3.A.3. We observe that the distribution

of players who are eligible for arbitration takes no noticeable pattern. These irregular conditional distributions

suggest, informally speaking, that the value of the random threshold is indeed random.

More formally, this identification condition can be tested thanks to the McCrary (2008) test. The test

supposes that, in the absence of manipulation on behalf of team owners, there should be evidence of smoothness

in the density function of players in terms of service time. In contrast, the density should be discontinuous at the

cut-off if team owners are able to predict the cut-off and assure that the minimal number of their players become

eligible for arbitration. As displayed in Table 3.B.1, 126 player-years in our data are within ten days of the cut-off

(55 below and 71 above). Informally speaking, one would expect more observations below the threshold than

above if teams could predict the cut-off date. More formally, we can consider a graphical representation of

this test and density function, as provided in Figure 3.A.7. Table 3.B.7 shows the formal statistical test from

assuming the null hypothesis of continuity in the density function. Despite testing six different parametric forms

(polynomial approximation of degree one to six), discontinuity in the density at the cut-off is always rejected at

the 5% level.12

In order to assess the reliability of the McCrary (2008) test, we also apply it to the three-year service time

cut-off. One could legitimately expect that owners let go of players before the arbitration process awards them

a higher salary. Some evidence of this behavior is detected by the test, as shown in Figure 3.A.8. The 95%

confidence intervals for the approximated density around the three-year cut-off (516 days) do not overlap. The

figure is consistent with our priors because the density of players below the cut-off is statistically greater than

the density of players above the cut-off (and therefore, eligible for Arbitration). Considering the evidence through

different levels of parametric flexibility, as reported in Table 3.B.8, there is some evidence suggesting that, for a

sufficiently smooth density (which can be well approximated by a low degree local kernel-weighted polynomial),

players’ service time becomes discontinuous at the three-year cut-off. So, players’ service time is likely to be

11A related issue is attrition bias. A player who is above the cut-off is more likely to continue playing than one who falls below. A
potential solution discussed in Dong (2019) involves controlling for the inverse mills’ ratio promoted by Heckman (1979a), as implemented
by McCrary and Royer (2011). We implemented this approach using age fixed effects, years fixed effects, and the player’s rookie service
time as instrument in the probit (i.e, selection) equation. Results were not qualitatively changed.

12Note, this result is not surprising given that the threshold is determined by the aggregate behavior of the different teams.
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subject to manipulation around the three-year cut-off13. This suggests that the McCrary test is reliable and, in

turn, that the Super Two cut-off is not subject to manipulation.

Having considered the identification condition, we can now turn to descriptive evidence of the impact of

Arbitration on income. This can be appreciated graphically. Figure 3.A.2 displays the median log-income of

players within 12 months worth of service time around the cut-off14. There is a clear jump in the income of

players who have passed the threshold. This effect is particularly strong for those who are within 30 extra days

of the cut-off. This jump is grossly equal to one log point (exp(14 − 13) − 1 ≈ 172%) in median income.

However, more sophisticated econometric tools are needed in order to assess the impact of arbitration. By

considering only players near the cut-off, the jump will reflect the effect of Arbitration on comparable players,

that is, on players with equal chances of dropping out from the league. This will provide us with an estimate

which is robust to the underlying attrition bias15.

3.2.3 Econometric Method

We implement our research design by use of the non-parametric local kernel-weighted polynomial approximation

methodology developed by Calonico, Cattaneo, Farrell, Jansson, Ma, Titiunik and Vazquez-Bare. Their approach

is flexible, well-documented, and has received acceptance within the profession (e.g, see Pons and Tricaud

(2018)). As this methodology is non-parametric in nature, it prevents inference based on arbitrary parametric

specifications. This methodology takes into account the bias which is naturally present when employing the

regression discontinuity design, and provides a formula for robust standard errors at the same time. Moreover,

this methodology is well known by practitioners thanks to its availability in popular econometric software (Calonico,

2017).

For completeness, this paper provides a brief and intuitive overview of the methodology. A more complete

introduction can be found in Calonico (2017) and the full details in Calonico et al. (2014), Calonico et al. (2015),

and Calonico et al. (2019). Assuming a cross-section for simplicity16, the observations are indexed by i = 1 to

i = N. We are interested in an outcome denoted by Yi . The treatment is administered if the running variable

Xi is above the threshold x∗.

Ideally, we would want to compare the value of Yi above and below the cut-off but, for a given individual,

we only observe one or the other. This requires us to make further assumptions on the rule determining the

attribution of the treatment so that we recover a consistent estimate of the Average Treatment Effect (ATE). This

assumption is akin to stating that, near the cut-off, the running variable is not correlated with any unobservable.

We denote this assumption as the Identification Condition. We can then formulate the treatment effect τ as

τ = lim
x↑x∗
E(Yi |Xi = x)− lim

x↓x∗
E(Yi |Xi = x) (3.2.1)

To obtain a sample counterpart to τ , which we will call bτ , we need to estimate the conditional expectation

function E(Yi |Xi = x) above and below the cut-off x∗. We approximate this function by a local kernel-

weighted polynomial function. More precisely, we can solve for the vector of parameters β, above and below

13Although unreported in this paper, the same exercise can be run at the year six cut-off, when players become Free Agents. A mass
of players drop out at the cut-off and there is some evidence of discontinuity in the density function at the cut-off.

14This result is invariant to using means instead of medians.
15As expected and discussed above, the effect of Arbitration net of attrition bias is much lower, as revealed by Table 3.B.4.
16We treat our data as a repeated cross-section in effect.
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the threshold, which provides the best fit. We using the following formulas:

Óβ+ = arg min
β∈Rp+1

N
∑

i=1

1(Xi ≥ x∗)
�

Yi − rp(Xi − x∗)β]2 Khn(Xi − x∗) (3.2.2)

and

Óβ− = arg min
β∈Rp+1

N
∑

i=1

1(Xi < x∗)
�

Yi − rp(Xi − x∗)β]2 Khn(Xi − x∗) (3.2.3)

whereKhn is a kernel function with bandwidth hn and rp is the polynomial expansion of degree p of the variable

x . That is, rp(x) = (1, x, ..., xp).

Let’s explain the intuition. Restricting ourselves to one side of the cut-off (implemented by the indicator

function 1(·), taking a value of one if its argument is true, in the formulas), these formulas solve a least-squares

problem for a vector of parameters β which approximate the conditional expectation function with a polynomial

expansion of degree p around the cut-off x∗. However, the values of Y for values of X far away from the cut-off

are likely to become increasingly determined by factors other than the treatment status. We therefore desire to

discount the observations withX far away from x∗. On the other hand, there are probably few observations that

are very close to x∗. So, the econometrician is faced with a bias-variance trade-off. This trade-off is translated

into our estimation problem by the use of kernel functions K which discount observations at a distance from

x∗ at a speed commensurate with the bandwidth hn. In our case, we use the Epanechnikov (parabolic) kernel

defined by :

KEhn(X) =
3

4hn
(1− (X/hn)2) with |X/hn| ≤ 1

We select the bandwidth minimizing the theoretical Mean Squared Error (MSE), as shown in Calonico (2017).

We can then write the conditional expectation function as

Ûlim
x↑x∗
E(Yi |Xi = x) = e′0

Óβ+ (3.2.4)

and
Ûlim

x↓x∗
E(Yi |Xi = x) = e′0

Óβ− (3.2.5)

with e0 = (1, 0, ..., 0) ∈ Rp+1 being the counter-part of rp(x) = (1, x, ..., xp) as x → 0.

The regression tables in this paper will usually present three cases based on these estimates. The first

is the conventional estimate. It is based on ignoring the bias introduced by kernel weighting and, therefore,

includes observations for which the local conditional Independence assumption may not hold. The second,

called the bias-corrected takes this bias into consideration by estimating a higher order polynomial of degree q,

using it to measure the bias, and subtracting this measure from our original p degree polynomial approximation.

The third, denoted as the robust estimator, also adapts the estimators’ standard errors to take into account the

bias. Indeed, given that the bias must be estimated, the confidence intervals need to reflect the additional

variability induced by this step. More details on the asymptotic behavior of these estimators can be found in the

original publications (Calonico et al., 2014, 2015, 2019).
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3.3 Empirical Results

3.3.1 Main Result

We now present the main specification of this research. We look at the discontinuity in log-income above and

below the Super Two cut-off. There is very strong evidence that income rises once players become eligible for

Arbitration. The result of this exercise is presented in Figure 3.A.5 using a kernel weighted local polynomial

of degree four. There is clearly a large jump in income at the cut-off and, despite the high degree of flexibility

in the parametric form, there is no sign that the polynomial below the threshold is increasing as it reaches the

cut-off. Moreover, income continues to rise with service time above the cut-off, as one would expect when

players develop experience in the game and are no longer subject to restrictions to competition.

These results are confirmed more formally when considering the regression output. This is provided in

Table 3.B.4. Each column presents a different polynomial degree, from one to six. Although the estimated

effect from an increase in wages ranges from 47% (column 4) to 92% (column 1), the effect does not seem to

fall as we increase the flexibility of the polynomial. Indeed, the effect is up to 58% with a polynomial of degree

six (column 6). In all cases, whether we consider the conventional or robust estimator, we find highly statistically

significant effects at the 0.1% level. All in all, this provides strong evidence that wages are suppressed by the

Reservation Clause.

The results point towards the existence of non-random attrition among players. We expect that players

who survive within MLB may do so based on some unobserved characteristic. Failing to realise this would

lead the econometrician to conflate the effect of Arbitration with the effect of surviving to the point of being

eligible for Arbitration. This is akin to the Ability Bias within the context of the returns to education, where the

econometrician conflates the underlying ability to succeed, in both education and in the workplace, with the

effect of having received an education. In both cases, we expect the returns to Arbitration/education to be

overestimated as a result. Compared to the 1 log-point effect found in the previous section, the effect reported

in this section based on the regression discontinuity design can is nearly half, at 0.47 log-points. Therefore, the

use of the discontinuity design is justified.

3.3.2 Heterogeneity

The analysis of these results can be deepened by considering the heterogeneity in treatment effects. We do so

by considering the Quantile Treatment Effects in Regression Discontinuity model of Frandsen et al. (2012). By

considering the quantiles, we can evaluate the heterogeneity in treatment effect in terms of the player’s place in

the income distribution. This method is akin to the one developed by Calonico (2017) but focuses on quantiles

of the dependant variable. Intuitively speaking, it compares the θ-th quantile of the dependant variable above

and below the cut-off. These quantiles are estimated using a local-linear kernel weighted approximation (i.e,

polynomial of degree one). of the conditional expectation function and using these estimates to recover the

density function, and its respective quantile function, above and below the cut-off. The results are provided

in Table 3.B.11 and, for clarity, in graphical form in Figure 3.A.19. There is clear evidence of heterogeneous

treatment effects. The Arbitration process appears to increase the income of all players, but in particular for

those with initially higher income. This suggests that the Reserve Clause is particularly damaging for high
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performance and pay individuals.

3.3.3 Robustness

The previous estimates are now supplemented with five robustness tests.

Measurement Error. We test the main specification using the Cot’s Baseball Contracts dataset. This allows us

to assess the reliability of our results to potential outliers or mismeasured wages. This larger and more complete

dataset provides nearly identical results. Figure 3.A.6 shows the same discontinuity and the same shaped

conditional expectation function. However, it reports different outliers (red dots). Its respective regression

output, provided in Table 3.B.5 reveals even higher effects from arbitration. Now, the maximum effect if of 97%

and the lowest effect at 69%, with 72% found for the most flexible specification using a polynomial of degree

six.

Falsification using previous income. If the threshold is truly locally random, there should be no detectable

effect at the cut-off on the previous year’s income. As expected, we fail to detect any jump in the previous year’s

income around the Super Two cut-off. This is shown graphically in Figure 3.A.4 which displays the relationship

between players’ service time and their previous year’s log-income. There is no discernible discontinuity at the

threshold. This is confirmed more formally by considering its respective regression output, in Table 3.B.6. This

table presents six specifications, where each column provides the estimates for a polynomial approximation

of degree one to six. There is no evidence of a statistically significant discontinuity at the 5% level when

considering conventional or robust estimators.

Falsification using irrelevant variables. Similar falsification tests can be run on variables which, a priori,

should not be impacted at the cut-off. We use two measures : Year and Weight of the player when he became

a rookie. Graphical representation of the tests are provided in Figure 3.A.14 using a polynomial of degree 4.

No clear discontinuity at the cut-off can be detected. Similarly, the p-values reported in column (1) and column

(2) of Table 3.B.9 reveal no statistically significant effect.

Falsification using relevant variables. A more demanding falsification test involves testing for a discontinuity

in variables which should be in interest of team owners to manipulate. We use two measures : the At Bats per

Home Run (ABHR) and the Runs Batted In (RBI). Whilst the latter is likely doing a disservice to pitchers, the

former will only concern hitters. Again, Figure 3.A.17 reveals an absence of statistically significant discontinuity;

perhaps reflecting owners keeping exceptional players away from the cut-off to avoid the risk of Arbitration. The

same can be said in terms of ABHR, where the polynomial approximation ends at a lower point below the

threshold than it restarts above the cut-off. These findings are confirmed by the last two columns of Table 3.B.9

where no statistically significant effect is detected.

Placebo cut-offs. If the identification strategy truly holds, there should be no detectable effect at other cut-

offs. To test this implication, we run a series of placebo tests at other cut-offs. We report all tests run in

the interval [-200;-5] and [5;200] days around the cut-off (the test are run at the five day interval) in order to

avoid being selective in our reporting. The results from these tests are reported, in the form the bias-corrected

estimated treatment effect with 95% non-robust confidence intervals, in Figure 3.A.11. For these tests, we drop

values above or below the cut-off in order to not contaminate the estimator with the true cut-off. Apart from two

estimates which are significant at the 5% level, there is no systematic effect detected17.

17Finding two estimates to be statistically significant out of 78, is not particularly surprising given the problem induced by multiple
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All in all, these tests provide strong evidence that the identification strategy implemented in this paper does

not lead to any unexpected implications or require any unrealistic assumption.

3.4 Interpretation

3.4.1 Discussion

To better understand the estimation results of Section 3.3 and, by extension, the degree to which wages are

depressed by the inability of players to change teams, it is important to clarify how the post-Arbitration wage

relates to other tangible and economically relevant market structures. For example, Krautmann (1999) argued

that the Free Agent market is competitive and that, for this reason, their wages must be close to their Marginal

Revenue Product (MRP; i.e, the marginal contribution of a player to his team’s revenue).

To the degree that players post-Arbitration wages are similar to those of Free Agents, one may be tempted

to qualify the post-Arbitration wage as equal to the MRP. However, there are several limitations to this argument.

As noted in Bradbury (2013), the MLB labor market is not perfectly competitive and those imperfections are likely

to translate into Free Agents being paid below their MRP. He argues that some players are ready to trade-off

income for long-term contracts, hedging the risk of injury. Other players have a preference for their home team

and are ready to cut their salary expectations to play for this team. Similarly, Rottenberg (1956) notes that many

MLB teams and players are, at best, imperfectly substituable. These frictions are likely to render Free Agents’

salaries below those of their MRP.18

Rather, we suggests that it is more natural to interpret the estimated results in terms of the value provided

by a semi-competitive market. That is, we consider the post-Arbitration wages to be similar to those of Free

Agents’ and that the latter, being the result of an imperfectly competitive market, represents a relevant and

natural benchmark to assess the damage of restricting the mobility of players across firms. This benchmark

is pertinent for several reasons. First, the (potentially imperfect) market outcome is considered the natural

benchmark within the context of Antitrust policy. Second, the imperfectly competitive market is not a hypothetical

market structure: it is both real and observed despite being vague in its definition. Lastly, the “market rate”

represents the natural rate which can be obtained without introducing an additional regulatory body. For these

reasons, if the eligibility for Arbitration raises income by 47% at the minimum (or 92% at the maximum), then

the restriction to player mobility can be considered to have depressed wages by 32% at the minimum (and 48%

at the maximum) below their market rate.19.

3.4.2 Empirical Evidence

To show this interpretation to be valid, we now provide empirical evidence. In Section 3.4.3, we supply

theoretical support in favor of this interpretation by re-visiting the model of Final Offer Bargaining of Brams

testing.
18Under the light of partial identification, that is, by considering the post-Arbitration wage to be below that of the MRP, one can argue that

our results provide a lower bound estimate of the labor share of income. In other words, if the eligibility for Arbitration raises income by 47%
at the minimum (or 92% at the maximum), then the pre-Arbitration wage must be at most 68% (or at least 52%) of the MRP. Mathematically
speaking, if the initial wage is w , the Arbitration effect τ , and the Marginal Revenue Product y , then we have w × (1 + τ) = y which
implies the labor share of income w

y
= 1
1+τ

.
19If the initial wage is w , the wage reducing effect of the Reserve Clause is θ, and the competitive market wage W , then we have

W × (1− θ) = w which implies that, for treatment effect τ , we obtain θ = τ
1+τ

.
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and Merrill (1983).

We argue that if the wages set for players eligible for Arbitration do not significantly differ from the rate

determined by players who become Free Agents (and therefore have their wage determined by market forces),

then the former can be interpreted as being akin to the latter. This implies that we should not see unexpected

changes in income growth when players gain the right to become a free agent. To show this, we run a wage-

growth regression which identifies the average income growth rate across the player’s life-cycle. We implement

this regression by running an exponential regression model20 (PPML) on income, whilst controlling for age,

team, year, and player fixed-effects (Blackburn, 2007). We add a set of variables which measure the elasticity

of income to an additional year of service time. The results are available in Table 3.B.10 along with different

specifications allowing the reader to ascertain the stability of the reported coefficients to different specifications.

The coefficients of column (4), which are based on all control variables and are therefore considered to

be the most reliable, are plotted in Figure 3.A.18 for clarity along with their 95% confidence interval, using

heteroskedasticity robust standard errors. The figure reveals that wages rise drastically, ceteris parisbus, with

years of service time when players become eligible for Arbitration, at year three. However, at year six (green

vertical line), the growth elasticity is not particularly strong and appears part of a downward growth trend. This

suggests that the post-Arbitration wage is not markedly different from the Free Agent wage. For this reason, it

is plausible to qualify the post-Arbitration wage as being similar to its market value.

3.4.3 Theoretical Evidence

Finally, we now provide a simple model which shows that the post-arbitration wage is commensurable with the

market rate. This model builds on the approach to Final-Offer Arbitration proposed by Brams and Merrill (1983).

We show that when the arbitrator bases her expectations on wages of players determined by a market, the

compensation of players eligible to arbitration (but not the free market) is equal to the salary of players on the

market. It follows that one should interpret the findings obtained in Section 3.3 as the effect of players having

their wage being determined under a monopsonistic regime to reflecting market forces and rates.

Setup. In this model, player P and team T submit wage-offers to arbitrator A. We suppose the arbitrator

has a reference wage wA in mind for player P which reflects what she perceives to be her value. The arbitrator

chooses the wage-offer which is closest in absolute value to this reference wage. However, from the point of

view of the team and of the player, this reference wage wA is random and follows a well-behaved distribution

FwA , such that wA ∼ FwA .

Strategies. Player P and team T submit wages wT and wP . The offer proposed by the player must always

be above or equal the wage offered by the team, or else there is a possibility of a pareto improving wage

agreement. As such, we take it that

wP > wT (3.4.1)

The arbitrator chooses the offer wT if it its closest (in absolute value) to the target wage wA determined by the

arbitrator. As stated by Farber (1980), this implies

wA − wP < wT − wA (3.4.2)

20This alternative to the usual log-log regression is robust to potential heteroskedasticity of the error term, as advocated by Bellégo
et al. (2021). The coefficients can nonetheless be interpreted as elasticities.
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Proof. Offer from player T is chosen if

||wT − wA|| < ||wP − wA||⇐⇒
√

[wT − wA]2 <
q

[wP − wA]2(3.4.3)

which implies by virtue of the square-root function being always positive that

[wT − wA]2 < [wP − wA]2 (3.4.4)

We now look at the different cases regarding the relationship between wP , wT and wA.

– Case (a) : wA > wP > wT . We know 0 > wP −wA > wT −wA which implies that 0 < [wP − wA]2 <

[wT − wA]2 in contradiction of the assumption of Equation 3.4.4.

– Case (b) : wP > wA > wT . By assumption of equation 3.4.4 and knowing that wP > wA, we see that

wP − wA > ||wT − wA|| such that we can write wA < wP − ||wT − wA|| < wP − [wT + wA] by the

triangle inequality. We then obtain wP + wT > wP − wT > 2wA. Given this, we can obtain equation

3.4.2 by direct re-arrangement.

– Case (c) : wP > wT > wA. This implies that wT − wP > wA − wP which can be further written as

wT − wA > wT − wP > wA − wP because wA < wP as in Equation 3.4.2.

We can now consider the associated probability given by

P r(Arbitrator chooses offer wT ) = P r(wA <
wP + wT

2
) = FwA(

wP + wT
2

) (3.4.5)

Preferences. Assuming the absence of risk-aversion among parties and that the game is zero-sum, as in

Brams and Merrill (1983), we model the player’s expected utility by

EFwA (UP ) =
h

1− FwA(
wP + wT

2
)
i

× wP
︸ ︷︷ ︸

Util if wP is chosen

+FwA(
wP + wT

2
)× wT

︸ ︷︷ ︸

Util if wT is chosen

(3.4.6)

such that she weights her utility according to the arbitrator’s probability of selecting her offer. The counter-part

profits for the firm, who obtains revenue YP from player P , are given by

EFwA (ΠT ) = YP −
h

1− FwA(
wP + wT

2
)
i

× wP − FwA(
wP + wT

2
)× wT (3.4.7)

Nash Equilibrium. We now focus on the pure-strategy Nash Equilibrium described by Brams and Merrill

(1983) in their Theorem 1. They show that if there exist a pure-strategy, then it equals






wT = MFwA
− 2F ′wA(MFwA

)−1 for player P,

wP = MFwA
+ 2F ′wA(MFwA

)−1 for team T,
(3.4.8)

where MFwA
is the median of distribution FwA , such that F ′wA(MFwA

) = 0.5, and F
′

wA
(·) is the associated

probability density function. As shown in Brams and Merrill (1983), this equilibrium not only requires F
′

wA
(MFwA

)

to exist, it also requires it to be non-zero. We will show that in the sub-case considered in this paper, the

additional requirements which are necessary for this equilibrium to exist and to be global are met.

Proof. For completeness and readability, we reproduce the proof for this equilibrium in Brams and Merrill (1983)

whilst adapting it to avoid normalizing the median to zero. We solve for this Nash Equilibrium by maximizing

172



equations 4.5.2 and 3.4.7 with respect to wP and wT . We obtain as first-order conditions

∂wPEFwA (UP ) =
h

1− FwA(
wP + wT

2
)
i

− 0.5F
′

wA
(
wP + wT

2
)(wP − wF ), (3.4.9)

∂wPEFwA (ΠT ) = FwA(
wP + wT

2
)− 0.5F

′

wA
(
wP + wT

2
)(wP − wF ), (3.4.10)

Setting both conditions to zero for an optimal value, we first difference both to obtain

FwA(
wP + wT

2
) = 0.5 (3.4.11)

such that at equilibrium, the average wage offer MFwA
= wP+wT

2 equals the median assessment of the

arbitrator. Summing equations 3.4.9 and 3.4.10 gives

F
′

wA
(
wP + wT

2
)(wP − wF ) = 1 (3.4.12)

and substituting equation 3.4.11 provides us with the equilibrium wage-offers.

Belief Formations. We now posit a model of belief-formation among arbitrators. We suppose the arbitrator

randomly and independently samples with replacement the wages of players who are of the same quality as

player P. We suppose that the pool of players is composed of a fraction ρ ∈ (0, 1) with wages determined by

arbitration and (1− ρ) with wages determined by market forces.21. Arbitrator A draws N wages from this pool

and takes the average of this sample as her reference point wA.22

Proposition 1 (Asymptotic Belief Distribution.). For sufficiently large N, the distribution of wA, FwA(·) follows

a normal distribution centered around the average draw µ and with variance σ2 equal to such that

wA ∼ N(µ,
σ2

N
) (3.4.13)

Proof. Let Zi be a draw from the pool of players. It is a weighted convolution between two random variables.

The first is a draw from the pool of players eligible for arbitration. It is a bernouilli random variable which takes

value wP with probability 0.5 and wT with probability 0.5, with mean wP+wT
2 and variance (wP−wT )2

4 . The

second is a draw from the pool of players with wages determined by the market. We suppose this draw w i
C

follows a distribution with mean E(w i
C

) and variance V (w i
C

) <∞. Then, the mean of Zi is given by

µ = ρ×
wP + wT

2
+ (1− ρ)× E(w iC) (3.4.14)

and the variance of Zi by

σ2 = ρ2 ×
(wP − wT )2

4
+ (1− ρ)2 × V (w iC) (3.4.15)

We suppose that sample average of Zi , denoted by Z̄n determines the arbitrator’s reference wage wA such

that wA = Z̄n. Then, by the Lindeberg–Lévy Central Limit Theorem, as N →∞
√
N(wA − µ)

d−→ N(0, σ2) (3.4.16)

This setup seems plausible for several reasons. (a) Wages are publicly known and this allows the arbitrator

to provide an objective argument to justify her assessment. (b) Players eligible for arbitration are of a sufficiently

21In practice, one can imagine the arbitrator discounts the wage-value of older players’ of the same quality as player P but who are on
the market wages to account for differences in experience and tenureship.

22This sense of fair assessment is also motivated by the way arbitrators are selected. Both the MLBPA and the league can propose an
arbitrator and have veto power over the proposition of the other party. This suggests that arbitrators do not have any particular leniency for
one party over the other. Unfortunately, arbitrators do not publish opinions, making it difficult to offer further evidence (Monhait, 2010).
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homogeneous quality such that an arbitrator can find a sufficiently large amount of comparable players for the

central limit theorem to be applicable. (c) Assuming that the arbitrator’s beliefs are normally distributed is

plausible in the sense that the normal distribution is symmetric around both its mean and median. It would be

difficult to imagine why the distribution of beliefs would be asymmetric. (d) it is a common method of assessment

in Corporate Finance to look at comparable assets in order to quantify its value (Vernimmen et al., 2018). Finally,

(e) the normal distribution implies that the equilibrium defined in Equation 3.4.8 is a global equilibrium.23 This

suggests that the normal distribution does not imply undesirable features in this model.

Equilibrium Beliefs and Wages. We require consistent equilibrium beliefs between the value of a player

P addressing her case to arbitrator A and the value assessed by arbitrator A of players with wages already

determined by arbitration. By this, we mean that the expected value of the drawn reference wage wA from the

pool of players who were already eligible for arbitration must be equal to the expected wage from the overall

pool of workers from which the arbitrator draws (i.e, µ = E(wA)). When this is the case, the wage set by the

arbitrator is on average equal to the average market value of the player E(w i
C

).

Theorem 1 (Equilibrium Wages). If the arbitrator has consistent equilibrium beliefs (i.e, µ = E(wA)), her

expected reference wage wA will equal the expected market wage E(wA) = E(w i
C

).

Proof. Let arbitrator A have equilibrium beliefs which are consistent in the sense that her assessment for

the value of player P must equal the average assessment for players of the same quality who have already

undergone arbitration. Because wA is normally distribution, its mean and median co-incide. So, we also have

E(wA) = wP+wT
2 . In turn

E(wA) = µ = ρ× E(wA) + (1− ρ)× E(w iC) (3.4.17)

which implies in non-degenerate cases (i.e, when ρ < 1) that

E(wA) = E(w iC) (3.4.18)

One can interpret the underlying mechanism as follows. Players and teams account for the uncertainty

surrounding the arbitrator’s reference point by, respectively, over and under-bidding compared to the median

assessment for the arbitrator. However, this median assessment is selected to be on average consistent with the

wages of players already eligible for arbitration. Recursively, only players with wages exogeneously determined

by the market can provide a reference point for the arbitrator. As such, the average and median reference

point must reflect this market value such that the change in wages observed when players become eligible to

arbitration is akin to those of gaining access to free agents’ labor market.

Conclusion

This research made the link between labor markets and antitrust law explicit. It argued that antitrust law protects

the mobility of players which, in turn, is the source of workers’ bargaining power. Barring this right, players suffer

from depressed wages. To see this, we evaluated the impact of players gaining access to Arbitration, by which

a third-part can set wages. Using the “Super Two” cut-off as an instrument randomly selecting players into the

23See example 1.E in Brams and Merrill (1983) for proof of this statement.
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former, we find that players eligible to arbitration obtain extra-ordinary wage growth. To make this argument, we

relied on a regression discontinuity design and supported our argument with several placebo and robustness

tests.

We then argued that the post-Arbitration wage is akin to the one which could have resulted from the

imperfectly competitive market for Free Agents. Indeed, we showed the absence of any kink in the growth

rate of players’ wages at Free Agency. Then, by revisiting the model of Final-Offer arbitration of Brams and

Merrill (1983), we showed that this result can be expected when arbitrators use the wages of free agents to

guide their assessment of players eligible for arbitration. In consequence, we conclude that that when players

are unable to make team owners compete for their services, wages can be expected to fall between 32% to

48% below their market value.

In this regard, a note of caution for policy makers. As shown in Figure 3.A.19, which displays the quantile

treatment effects developed by Frandsen et al. (2012), we observe that becoming eligible for Arbitration results

in a drastic increase in the spread of the income distribution. That is, Arbitration can be shown to have increased

the income of the highest paid players as well as inter-player income inequality. This suggests that removing

anti-competitive clauses can be the source of significant growth in income inequality and that should be done

whilst simultaneously developing regulatory forces and re-distributive instruments.

3.A Figures
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Figure 3.A.1: Selection in Major League Baseball Players (MLB)

This figure plots the event density. That is, the distribution of player drop-out from Major League Baseball (MLB)

in relation to service time. Each observation is a single baseball player along with her final observed service

time. This figure reveals two events of significant drop-out. The first in red, at three years of service time, players

appear to be let go once Arbitration becomes mandatory. The second in green, at six years, when players can

become Free Agents. Therefore, there appears to be significant non-random attrition among MLB players.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Figure 3.A.2: The Super Two cut-off and Major League Baseball Pay

This figure plots the relationship between Service Time (in months) and the median income of MLB players,

around the Super Two cut-off. Each observation consists of a combination of a player and of a year, grouped

in bins of 30 days (i.e., a month). Each bar represents the median income observed in one of these bins. This

figure reveals a clear jump in the incomes of players above the Super Two cut-off compared to those lacking

service time. Pay of players without Arbitration (lacking service time) is stable across service time but increasing

in service time for player with Arbitration.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Figure 3.A.3: 2nd Year Distribution of Service-time around Super Two cut-off

This figure plots the distribution of players across Service Time (in months) for players with only two years of

accrued service time, around the Super Two cut-off. Each subplot represents the distribution of players for

different years of cut-offs.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Figure 3.A.4: Falsification Test - Impact of Super Two cut-off on Previous Year Income

This figure plots a falsification test. The full sample (a panel of players across years) is used. It shows the

relationship between the accrued service time and player’s past income (in natural logarithms) around the

Super Two cut-off point. As described in Calonico et al. (2015), each red dot (or bin) is the sample log-income

at a given service time. The blue line approximates the population conditional expectation functions, above and

below the cut-off, by a kernel-weighted polynomial function of order 4 (standard order) using the Epanechnikov

kernel. This figure reveals no discontinuity, in previous year log-income at the cut-off.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Figure 3.A.5: Main Specification of the Regression Discontinuity Design

This figure plots the main specification of this paper. The full sample (a panel of players across years) is used. It

shows the relationship between the accrued service time and player’s income (in natural logarithms) around the

Super Two cut-off point. As described in Calonico et al. (2015), each red dot (or bin) is the sample log-income

at a given service time. The blue line approximates the population conditional expectation functions, above and

below the cut-off, by a polynomial function of order 4 (standard order). This figure reveals a large discontinuity,

in log-income at the cut-off. For clarification, the extreme values around -500 days of service time are outliers

but do not reflect an error within the data. These points reflect the existence of highly paid rookies starting in

2014. Their exclusion does not change the main point-estimate of this paper.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Figure 3.A.6: Main Specification using Cot’s Baseball Contracts Database

This figure plots the main specification of this paper using an alternative dataset, the Cot’s Contract Database.

The full sample (a panel of players across years) is used. It shows the relationship between the accrued service

time and player’s income (in natural logarithms) around the Super Two cut-off point. As described in Calonico

et al. (2015), each red dot (or bin) is the sample log-income at a given service time. The blue line approximates

the population conditional expectation functions, above and below the cut-off, by a polynomial function of order

4 (standard order). This figure also reveals a large discontinuity, in log-income at the cut-off.
Source: Cot’s Baseball Contracts, MLBTradeRumors.com, and author’s calculations.
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Figure 3.A.7: Manipulation Test - Continuity at cut-off

This figure plots the McCrary (2008) Manipulation test as implemented by Cattaneo et al. (2019). The full

sample (a panel of players across years) is used. It shows the density in service time of players around

the Super Two cut-off point. The blue line approximates the density function, above and below the cut-off,

by a kernel-weighted polynomial function of order 2 using the Epanechnikov kernel. This figure reveals no

discontinuity in the density and so, no sign of manipulation of players at the cut-off.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Figure 3.A.8: Manipulation Test - Continuity at Year 3 cut-off (516 days)

This figure plots the McCrary (2008) Manipulation test as implemented by Cattaneo et al. (2019). The full

sample (a panel of players across years) is used. It shows the density in service time of players around the

Year 3 cut-off point of 516 days. The blue line approximates the density function, above and below the cut-off,

by a kernel-weighted polynomial function of order 2 using the Epanechnikov kernel. This figure reveals signs of

discontinuity and so, of signs of manipulation from the team owners.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Figure 3.A.9: Below the cut-off
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Figure 3.A.10: Above the cut-off

Figure 3.A.11: Placebo test - False cut-offs

This figure plots two sets of placebo tests based on false cut-offs. Figure 3.A.9 shows the point-estimate along

with the 95% confidence intervals from running the main specification of this paper at the different service time

days (with an interval of five days starting at -200 days) excluding values above zero. Figure 3.A.10 does the

same, showing the (so called bias-robust) point-estimate along with their non-robust 95% confidence intervals

from running the main specification of this paper at the different service time days (with an interval of five days

starting at 20 days) , but excluding values below zero. More precisely, it shows the result from running the Local

Polynomial Regression Discontinuity Estimation with Robust Bias-Corrected Confidence Intervals procedure

developed in Calonico et al. (2014), Calonico et al. (2019) and Calonico et al. (2015) at the different cut-off days.

Essentially, this method estimates a kernel-weighted (i.e, to limit the importance of values far away from the cut-

off) polynomial (to have a flexible function form the conditional expectation) above and below the cut-off and

tests for the existence of a statistically significant difference at this cut-off, using heteroskedastic-robust standard

errors. The inherent bias of the conditional expectation polynomial of order (p) is corrected by estimating a

polynomial of higher degree (q) and using its derivative. The Epanechnikov kernel is used along with the order

two polynomial. These figures reveal that, taking into account that multiple testing will naturally lead to detecting

some tests as indicating statistically significance, there is no evidence of discontinuous responses of income to

service time other than at the Super Two cut-off.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Figure 3.A.12: Rookie Year
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Figure 3.A.13: Weight

Figure 3.A.14: Robustness Check - Irrelevant Variables

These figures plot robustness tests. The full sample (a panel of players across years) is used. It shows the

relationship between the accrued service time and player’s rookie year (Figure 3.A.12), and with their weight

(in Figure 3.A.13). As described in Calonico et al. (2015), each red dot (or bin) is the sample mean of the

outcome at a given service time. The blue line approximates the population conditional expectation functions,

above and below the cut-off, by a kernel-weighted polynomial function of order 4 (standard order) using the

Epanechnikov kernel. Figure 3.A.12 and Figure 3.A.13 reveal no evidence of a discontinuity, suggesting an

absence of unexpected result.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Figure 3.A.15: Run Batted In
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Figure 3.A.16: At Bats per Home Run

Figure 3.A.17: Robustness Check - Relevant Variables

These figures plot robustness tests. The full sample (a panel of players across years) is used. It shows the

relationship between the accrued service time and player’s Run Batted In (RBI, in Figure 3.A.15), and with the

At Bats per Home Run (ABHR, in Figure 3.A.16). As described in Calonico et al. (2015), each red dot (or

bin) is the sample mean of the sabermetric at a given service time. The blue line approximates the population

conditional expectation functions, above and below the cut-off, by a kernel-weighted polynomial function of

order 4 (standard order) using the Epanechnikov kernel. Figure 3.A.15 reveals a potential discontinuity at the

Super Two cut-off whereas Figure 3.A.16 does not.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Figure 3.A.18: Marginal Years of Increase Income by Service Time

This figure shows the coefficients estimated in Table 3.B.10, column (4). This table reports the results from

Exponential Regressions Wage-regression using the full sample and heteroskedasticity robust standard errors.

A set of variables for each year of service time is estimated. Contrary to usual fixed-effects, the variable of year

of service number x equals to one if the player has accrued at least x years of service. The interpretation of

the estimates of year 6 in the specification of column 4 is that, keeping fixed the year, the age, the team and the

player, an increase of service time from year 5 to year 6 increases income by 34%.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Figure 3.A.19: Quantile Treatment Effects
This figure shows the coefficients estimated in Table 3.B.11. This table reports the results from running the
Quantile Treatment Effects in Regression Discontinuity model of Frandsen et al. (2012). This method is akin to
the one developed by Calonico (2017) but focuses on quantiles of the dependant variable. It compares the θ-th
quantile of the dependant variable above and below the cut-off. This quantile is estimated using a local-linear
kernel weighted approximation (i.e, polynomial of degree one). This model was estimated on the full sample
using the log-income as a dependant variable and the Epanechnikov kernel. The bandwidth is based on the
optimal mean squared error procedure and was simply recovered from the degree one local kernel-weighted
polynomial approximation provided in column (1) from 3.B.4. The Average Treatment Effect (ATE) from the
latter is plotted in red, as a reference. This figure reveals that Arbitration has a positive effect over the whole
distribution but with disproportionately large effects at the top of the income distribution.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s
calculations.
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Table 3.B.2: Yearly Super Two cut-off and Sample

Arbitration Year Super Two Year cut-off Nb. Observations %

2010 2009 2.139 833 11.0
2011 2010 2.122 809 10.6
2012 2011 2.146 851 11.2
2013 2012 2.140 871 11.5
2014 2013 2.122 887 11.7
2015 2014 2.133 869 11.4
2016 2015 2.130 853 11.2
2017 2016 2.131 851 11.2
2018 2017 2.123 779 10.2

The Super Two cut-off is provided in the standard form used within the literature. It is to be interpreted as

YY.DDD where Y stands for Year, and D for Day. Players that were selected into Arbitration by the 2009 Super

Two cut-off, at 2 years and 139 days of service time, received their new income in 2010. 11% of the sample are

wage observations in the year 2010.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Table 3.B.3: Share of Sample in Year 2 above Super Two cut-off

Super Two Year Share above cut-off (%)
2009 22.58
2010 24.18
2011 19.79
2012 25.42
2013 22.88
2014 23.42
2015 25.00
2016 27.19
2017 24.75

This table displays the share of players above the Super Two cutoff date, per year. We observe that broadly

speaking, the share of players above the cut-off is, on average, in line with the expected value (22%). This

suggests the sample correctly covers the underlying population.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s

calculations.
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Table 3.B.10: Exponential Wage Regression with Service Years Fixed Effects

(1) (2) (3) (4)

Years of Service (Cascading Fixed Effect) Income Income Income Income

1 0.00626 0.0277 0.0360 0.199∗∗∗

(0.0684) (0.0721) (0.0718) (0.0756)

2 0.428∗∗∗ 0.469∗∗∗ 0.477∗∗∗ 0.536∗∗∗

(0.0682) (0.0701) (0.0699) (0.0677)

3 0.882∗∗∗ 0.939∗∗∗ 0.937∗∗∗ 1.003∗∗∗

(0.0559) (0.0574) (0.0575) (0.0578)

4 0.461∗∗∗ 0.545∗∗∗ 0.530∗∗∗ 0.555∗∗∗

(0.0398) (0.0393) (0.0397) (0.0491)

5 0.355∗∗∗ 0.448∗∗∗ 0.438∗∗∗ 0.481∗∗∗

(0.0403) (0.0388) (0.0392) (0.0463)

6 0.215∗∗∗ 0.330∗∗∗ 0.309∗∗∗ 0.374∗∗∗

(0.0461) (0.0434) (0.0422) (0.0466)

7 0.0980∗ 0.224∗∗∗ 0.220∗∗∗ 0.316∗∗∗

(0.0520) (0.0471) (0.0443) (0.0471)

8 0.0977∗ 0.224∗∗∗ 0.211∗∗∗ 0.259∗∗∗

(0.0548) (0.0497) (0.0473) (0.0468)

9 0.0607 0.187∗∗∗ 0.175∗∗∗ 0.240∗∗∗

(0.0610) (0.0558) (0.0533) (0.0486)

10 0.0859 0.206∗∗∗ 0.196∗∗∗ 0.250∗∗∗

(0.0679) (0.0624) (0.0587) (0.0501)

11 0.00438 0.0976 0.0894 0.189∗∗∗

(0.0789) (0.0718) (0.0675) (0.0523)

12 0.0901 0.226∗∗∗ 0.200∗∗∗ 0.243∗∗∗

(0.0894) (0.0796) (0.0766) (0.0570)

13 -0.102 0.0650 0.0298 0.281∗∗∗

(0.108) (0.0967) (0.0958) (0.0627)

14 -0.0790 0.0296 0.0553 0.154∗∗

(0.142) (0.132) (0.123) (0.0759)

15 -0.104 0.0905 0.0421 0.161∗

(0.198) (0.175) (0.156) (0.0940)

16 0.408∗ 0.564∗∗∗ 0.449∗∗∗ 0.461∗∗∗

(0.237) (0.181) (0.165) (0.101)

17 -0.171 0.0303 0.0574 0.214∗

(0.260) (0.184) (0.177) (0.127)

18 0.0913 0.113 0.146 0.469∗∗∗

(0.290) (0.242) (0.222) (0.134)

19 -0.757 -0.755 -0.824 -0.550

(0.543) (0.531) (0.549) (0.599)

20 0.848 0.967∗ 0.858 0.707

(0.724) (0.550) (0.560) (0.608)

21 -0.303 -0.132 -0.0806 0.553∗∗∗

(0.661) (0.550) (0.452) (0.141)

22 -2.139∗∗∗ -1.394∗∗ -1.111∗ -0.00416

(0.425) (0.701) (0.674) (0.718)

Year FE Yes Yes Yes Yes

Age FE No Yes Yes Yes

Team FE No No Yes Yes

Player FE No No No Yes

Observations 7582 7579 7579 7057
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Robust Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

This table reports various specifications of an Exponential Regression Wage-regression using the full sample and heteroskedasticity robust

standard errors, as advocated by Bellégo et al. (2021).. A set of variables for each year of service time is estimated. Contrary to usual

fixed-effects, the variable of year of service number x equals to one if the player has accrued at least x years of service. In the first column,

only year fixed effects are used. The second adds age fixed effects, whilst the third also has team fixed effects. The final column includes

player fixed effects. The latter requires a connected set of players of moving across teams and the removal of singletons (player with a

single observation), explaining the fall in the number of observations. The interpretation of the estimates of year 6 in the specification of

column 4 is that, keeping fixed the year, the age, the team and the player, an increase of service time from year 5 to year 6 increases

income by 34%. This figure reveals that income does not rise particularly significantly when players become Free Agents (year 6). To the

contrary, income rises particularly strongly when players reach salary arbitration in year 3.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s calculations.
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Table 3.B.11: Quantile Treatment Effects

Log(Income)

Quantile 1 0.283∗∗∗

(0.0568)
Quantile 2 0.405∗∗∗

(0.0548)
Quantile 3 0.559∗∗∗

(0.0613)
Quantile 4 0.735∗∗∗

(0.0716)
Quantile 5 0.930∗∗∗

(0.0881)
Quantile 6 1.266∗∗∗

(0.0883)
Quantile 7 1.423∗∗∗

(0.0678)
Quantile 8 1.540∗∗∗

(0.0613)
Quantile 9 1.304∗∗∗

(0.304)

Observations 7603
Kernel Epanechnikov
Bandwidth 222.8
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

This table reports the results from running the Quantile Treatment Effects in Regression Discontinuity developed by Frandsen et al. (2012). This method is akin to the

one developed by Calonico (2017) but focuses on quantiles of the dependant variable. It compares the θ-th quantile of the dependant variable above and below the

cut-off. This quantile is estimated using a local-linear kernel weighted approximation (i.e, polynomial of degree one). This model was estimated on the full sample using

the log-income as a dependant variable and the Epanechnikov kernel. The bandwidth is based on the optimal mean squared error procedure and was simply recovered

from the degree one local kernel-weighted polynomial approximation provided in column (1) from Table 3.B.4. The results are plotted in Figure 3.A.19. This table reveals

that Arbitration has a positive effect over the whole distribution but with disproportionately large effects at the top of the income distribution.
Source: Lahman’s Baseball Database, MLBTradeRumors.com, Baseball-Reference.com, and author’s calculations.
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Chapter 4

Price Discrimination and Big Data:

Evidence from a Mobile Puzzle Game

This chapter is based on work with Christian Helmers, Alessandro Iaria, Stefan Wagner, and Julian Runge.

Abstract: We use data from a mobile puzzle game to investigate the welfare consequences of price discrimination.

We rely on experimental variation to characterize player behavior and estimate a model of demand for game

content. Our counterfactual simulations show that the game developer’s observed pricing is far from optimal.

Profit would increase by 340% if the game developer used optimal uniform pricing instead. What is more

important, our results suggest that optimal uniform pricing results in almost the same increase in profits as

first-degree price discrimination (347%). All pricing strategies considered—including optimal uniform pricing—

induce a transfer of surplus from players to game developer without, however, generating sizeable dead-weight

losses.

4.1 Introduction

Price discrimination is ubiquitous in offline markets (Varian, 1989). As is well known, charging different prices

to different consumers according to their willingness-to-pay often enables companies to increase profits (Tirole,

1988).

Despite its promises, price discrimination has however not been implemented on a large scale in the

monetization of digital products, where ”examples remain fairly limited” (Council of Economic Advisors, 2015).

This is surprising because price discrimination could be implemented at comparably lower costs for digital

products. By the nature of the underlying technology, companies can easily collect large amounts of detailed

data about consumer characteristics and behavior (Goldfarb and Tucker, 2019). The resulting (big) data

could be used to determine personalized prices for consumers with different characteristics and search or

consumption histories, that is, engage in price discrimination, to increase a company’s profit. On the one hand,

firms reported to fear consumer backlash and negative press coverage when engaging in price discrimination

(Garbarino and Maxwell, 2010; Li and Jain, 2016; DellaVigna and Gentzkow, 2019). An example is Amazon’s

early attempt to price discriminate buyers of DVDs based on their individual purchase history, which met

dramatic resistance and negative publicity (Rosencrance, 2019). Similarly, the Wall Street Journal revealed
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in 2012 that Staples was charging consumers online different prices based on their location. On the other hand,

there is a growing body of evidence to suggest that, in many important industries, because of path-dependence,

imperfect information, learning, or conflicting incentives, sometimes for-profit firms do not maximize profit (Cho

and Rust, 2010; DellaVigna and Gentzkow, 2019; Fioretti, 2020; Hortaçsu et al., 2021; Huang et al., 2020;

Orbach and Einav, 2007) and, indeed, Dube and Misra (2019) estimate that, in the context of a digital recruiting

firm, both profit and consumer surplus would often increase with personalized pricing.

In this paper, we contribute to this debate by investigating the welfare consequences of price discrimination

for a mobile gaming app. Gaming accounts for over three quarters of total app revenue in the major app stores,

including Apple’s App Store and Google’s Playstore (TechCrunch, June 11, 2019). Mobile games attracted over

150 million users worldwide and generated almost US$100 billion in revenue in 2020 (Statista, 2021). While

game developers in this market collect around 90% of their revenues through paying customers on the basis of

freemium models1 (advertising accounts only for a small share of revenue), the efficiency of alternative pricing

strategies in this industry has not yet received much scholarly attention. In our study, we focus on the popular

category of “casual games” (games characterized by a sequence of levels that can be solved in a short amount

of time) and analyze data from one of the most popular match-3 games of all times. The data consist of the

full in-game behavior and purchase decisions of about 300,000 players around the world for a two-week period

between the end of October and early November 2013.

In the game, players solve puzzles through levels, and while the first 40 levels are free, from level 40

players must unlock a “pay-gate” every 20 levels to proceed (to the premium levels). Players can unlock any

of these pay-gates by purchasing a “key.” In this paper, we study the welfare consequences—for both the

game developer and players—of five alternative pricing strategies to unlock pay-gates: the game developer’s

observed pricing; optimal uniform pricing; two forms of personalized pricing (third-degree price discrimination),

one based on a player’s gaming ability as measured in the free levels prior to the first pay-gate, the other based

on the GDP per capita of a player’s country; and first-degree price discrimination.

We combine experimental variation in the data with a structural model to estimate demand for free and

paid-for content (additional levels) and then simulate the above counterfactual pricing strategies. We rely on

the experimental variation in the data in two ways. First, we use it to learn about player behavior and document

that players are unsophisticated and myopic, which greatly simplifies the specification of the structural model

and the subsequent counterfactual simulations. Second, we rely on the experimental variation to estimate the

demand model, in particular to address the standard challenges of price endogeneity and endogenous sample

selection that would otherwise complicate identification (Gandhi and Nevo, 2021). Another helpful feature of

the game is that no advertisement was displayed to players around the time of data collection. This allows

us to focus on in-app purchases as the only source of revenue. The co-existence of in-app purchases and

advertisement would introduce dynamic interactions between pricing and advertising decisions which would be

extremely hard to model, estimate, and ultimately simulate in counterfactual scenarios (Dubois et al., 2017).

Our counterfactual simulations suggest that observed pricing is far from optimal. By relying on optimal

uniform pricing, the game developer could increase profit by 340%. Even more strikingly, while more flexible

and discriminatory pricing strategies would lead to larger profit, the relative increases would be very limited

1Freemium refers to a hybrid pricing model combining free and paid features of a product—basic features of a product can be used
for free perpetually while more advanced features or more intensive use requires the payment of a fee. Freemium is particularly common
for mobile apps, where consumers strongly favor apps that are free and monetized through in-app purchases rather than advertisement
(Ghose and Han, 2014a).
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compared to simple uniform pricing: first-degree price discrimination would generate a mere 2% increase in

profit over optimal uniform pricing. Our analysis suggests that this is the result of myopic player behavior, which

limits the extra gains of more elaborate pricing strategies. All the alternative pricing strategies considered—

including uniform pricing—would induce a transfer of surplus from players to game developer without generating,

however, sizeable dead-weight losses on average.

Our findings are consistent with the aforementioned literature documenting that, sometimes, for-profit firms

do not maximize profits (Cho and Rust, 2010; DellaVigna and Gentzkow, 2019; Dube and Misra, 2019; Fioretti,

2020; Hortaçsu et al., 2021; Huang et al., 2020; Orbach and Einav, 2007). The fact that uniform pricing results

in profit close to more complex and discriminatory pricing strategies is in line with Chu et al. (2011). They show

that in the context of a theater company, simple pricing rules can sometimes generate almost as much profit

as complex ones that would however be difficult to implement. Our results are also consistent with Levitt et al.

(2016), who document limited gains of second-degree price discrimination for a large online gaming firm, and

more in general with the empirical literature on the trade-offs of price discrimination and personalized pricing

in the era of big data (Rossi et al., 1996; Shiller and Waldfogel, 2011; Shiller, 2015; Waldfogel, 2015). Limited

gains from price discrimination may partly explain why it is rarely observed in business practice, where—as

already mentioned above—additional risks tied to consumer backlash also need to be considered (Council of

Economic Advisors, 2015; DellaVigna and Gentzkow, 2019).

In contrast to our results, however, Dube and Misra (2019) document substantial returns of personalized

pricing for a digital recruiting firm, highlighting the need for caution in drawing general conclusions: while we

do not see any evidence for this in our analysis, in other digital contexts more complex pricing strategies

may be more profitable. That said, both our results and Dube and Misra (2019) stress the large potential

of “empirical” pricing rules. In the case of the game we study, by optimally choosing a uniform price on the

basis of detailed data and appropriate empirical methods, the game developer could increase profit more than

fourfold. Importantly, our results also highlight that, although these increases in profit would necessarily come

at the expense of consumer surplus, the pricing strategies considered do not generate average losses in total

welfare.

Our paper contributes to a recent and growing literature investigating various aspects of mobile apps.

Due to data limitations, most researchers have either exclusively focused on the supply side or employed

very aggregate measures of demand, such as aggregate rankings or number of downloads from app stores

(Bresnahan et al., 2015; Carare, 2012; Ershov, 2018; Ghose and Han, 2014b; Yi et al., 2019; Yin et al., 2014;

Yuan, 2020; Wen and Zhu, 2019). Our user-level panel data instead allow us to delve deeper into the in-app

purchase behavior of about 300,000 users around the world and to investigate the efficiency of discriminatory

pricing strategies in a mobile game.

Despite widespread interest amongst practitioners and scholars alike (Fudenberg and Villas-Boas, 2006,

2012; Varian, 1989), there is relatively limited empirical evidence on the returns of price discrimination in

practical applications, and essentially none for mobile games.2 In general, the extant empirical evidence is

mixed, documenting limited returns in some cases (Rossi et al., 1996; Levitt et al., 2016; Shiller and Waldfogel,

2011; Shiller, 2015; Waldfogel, 2015) but larger in others (Adams and Williams, 2019; Cho and Rust, 2010;

2Even though we focus on first-degree and third-degree price discrimination, there is a small empirical literature investigating the
returns of second-degree price discrimination (quantity discounts): in carbonated soft drinks (Iaria and Wang, 2021), in coffee shops
(McManus, 2007), in cable television (Crawford and Shum, 2007), in the yellow pages (Aryal and Gabrielli, 2020), and for an online gaming
company (Levitt et al., 2016).

202



DellaVigna and Gentzkow, 2019; Dube and Misra, 2019; Iaria and Wang, 2021; List, 2004). Our paper contributes

to this debate by providing the first empirical investigation on price discrimination for a mobile game. Despite the

focus on a specific game, our empirical analysis speaks to a broader audience than freemium game providers:

pay-gates are important monetization mechanisms also for other types of digital content providers including

newspapers, magazines, and streaming services (e.g., Amazon Prime and You Tube).3

From a methodological perspective, ours is one of few empirical papers that combine both structural

methods and randomized experiments (Cohen et al., 2016; Dube and Misra, 2019; Einav and Levin, 2010;

Levitt and List, 2009; Todd and Wolpin, 2020). Our structural demand model for game content is needed to

simulate the likely welfare consequences of counterfactual pricing strategies not observed in the data, while

the experimental variation allows us to mitigate some of the standard endogeneity issues that would otherwise

cripple identification and estimation.

The paper continues as follows. Section 4.2 describes the game for which we have data and discusses the

way prices are set. Section 4.3 describes the data and the available sources of exogenous variation. Section 4.4

describes how we model player behavior and Section 4.5 reports our estimation results. Section 4.6 discusses

our simulations for a number of counterfactual pricing rules. Section 4.7 draws some conclusions.

4.2 Mobile Game

4.2.1 Game Description

We empirically investigate the efficiency of price discrimination in the context of a game app which was produced

by a large mobile game developer (“firm”) and launched in August 2013. Like other popular mobile games, such

as Candy Crush Saga or Bejeweled, the game we study is a casual game characterized by a sequence of levels

that can be cleared in a relatively short amount of time. It belongs to the mobile puzzle game genre and has

been downloaded around 80 million times so far, making it one of the most popular match-3 games of all time.

The goal for players is to clear levels by connecting lines of jellies of the same color in order to “splash” them

and achieve varying objectives.

The initial allocation of jellies is random and a move consists of connecting at least three jellies of the same

color; the longer the line (also called ”snake”) of connected jellies, the more points are awarded (see Figure

4.1). Connected jellies are removed and replaced by a random set of new jellies. Players must achieve different

objectives to clear different levels, for example reach a minimum score, remove slime, move diamonds from

top to bottom, and so forth, which are all achieved by connecting and removing jellies. The number of moves

for each level is capped, and the maximum number of allowed moves varies by level. In contrast to traditional

video games, the difficulty of each level does not increase as players advance. There are occasional spikes

in difficulty in certain levels, although these do not occur at regular intervals (Debeauvais and Lopes, 2015).

Levels distinguish themselves by their layout, objectives, or features, such as the presence of obstacles, and so

on. To advance, players must clear every level. Once a level has been cleared, it can be replayed at any time.

Players are awarded a score for their performance, which largely depends on the length of the snakes

3Another related emerging literature is that on algorithmic pricing. The majority of economics papers in this literature have so far been
theoretical, mainly about the potential for algorithmic pricing to facilitate collusion (Miklós-Thal and Tucker, 2019; Calvano et al., 2020;
Brown and MacKay, 2021), even though a few studies in progress are investigating the topic empirically, such as Assad et al. (2020) for
gas stations and Hortaçsu et al. (2021) for airline companies.
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Figure 4.1: 3-match mobile game

formed as well as the total number of moves needed to clear a level. Upon clearing a level, players are awarded

one, two, or three “stars” depending on their score for that level. Stars are cumulative and, as we explain below,

play an important role in the monetization of the game, whereas the score is specific to each level and plays no

role other than to determine the number of stars.

4.2.2 In-App Purchases and Monetization

The game is a freemium product. A certain number of levels can be played for free (with a few restrictions), but

premium content, such as additional levels or features, need to be unlocked via in-app purchases. Importantly

for our empirical analysis, during the period of our data collection, no in-app advertisement was displayed to

players. This allows us to focus on in-app purchases as the only source of revenue for the firm and, in turn, to

estimate a tractable choice model useful for the simulation of counterfactual pricing strategies. The co-existence

of in-app purchases and advertisement would introduce dynamic interactions between pricing and advertising

decisions which would be extremely hard to model, estimate, and ultimately simulate in counterfactual scenarios

(Dubois et al., 2017).

In-app purchases must be paid in “virtual coins” and each player receives an initial endowment of 70 of

these. This endowment of virtual coins corresponds to approximately $1 at the time our data collection. Once

players have spent their endowment, they must purchase additional virtual coins to buy any of the following

features.4 First, players can purchase additional “moves” if they run out of these before having successfully

cleared a given level. Second, players are initially endowed with five “lives.” A life is lost every time a player

attempts to but does not successfully clear a level. Lives replenish automatically, a life being added every 30

minutes. If a player loses all five lives, they either wait for 30 minutes before they can continue to play, or

purchase a bundle of five lives. Alternatively, a player can gain lives by inviting friends to download the game

via Facebook.

4Note that, since our data were collected, some of the game’s features have changed and additional opportunities for in-app purchases
were introduced.
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Figure 4.2: Players’ decision tree

ReplayReplay

Level 1Level 1
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Level 2Level 2

Level 3Level 3
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FriendFriend StarsStars

Level 41Level 41

Figure 4.2 illustrates player i ’s decision tree. They start at level one and then either stop playing immediately

or clear this level. By clearing any level, i can obtain three, two, or one star depending on the score obtained

in that level. Starting from level 40, every 20 levels player i meets a “pay-gate,” which we denote by t =

40, 60, ..., T (i.e., pay-gates appear at level 40, 60, etc.). These pay-gates separate free levels from premium

levels, and must be unlocked for i to proceed in the game. Players have three options to unlock pay-gates (see

Figure 4.3): (a) purchase a “key” using 70 virtual coins, (b) invite friends on Facebook to download the game,

or (c) accumulate a sufficient number of stars.

Regarding option (c), each pay-gate has a threshold number of stars that is pay-gate specific and rising

as the player progresses through the game. If a player gets to the pay-gate with a number of stars equal or

greater than this threshold, the pay-gate unlocks. For brevity, we refer to the difference between i ’s number of

accumulated stars through their play up to pay-gate t and the number of stars needed to unlock pay-gate t as

“star gap” and we denote it by sgi ,t . Only players with a positive star gap (sgi ,t > 0) must unlock pay-gate t .

To do so, they can use either option (a) or (b), or alternatively can go back and re-play previous levels to gain

additional stars where they obtained less than three, a behavior called “grinding.”

At the moment of the data collection, the firm was relying on a simple uniform pricing strategy of 70 virtual

coins (approximately $1) across all pay-gates and players for the purchase of a key to unlock a pay-gate.5 As

illustrated in Figure 4.4, the purchase of keys to unlock the first three pay-gates (levels 40, 60, 80) corresponded

to the largest share of in-app purchases (43%). Because of this and to maintain the econometric model and

simulations practically viable, we focus on the firm’s choice of which prices to charge for the keys to unlock

5Some form of price discrimination was still implemented by offering features in bundles as well as by offering quantity discounts on
larger amounts of virtual coins.
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Figure 4.3: Example of a pay-gate.

these three pay-gates.6

6As discussed below, in Appendix 4.A.2 we also provide supporting evidence that purchases of keys do not appear to crowd out other
in-app purchases, suggesting that the two can be studied separately without excessive loss of generality.
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Figure 4.4: Spending patterns across life cycle
Notes: This figure displays the relative frequency of purchases observed in the game according to the highest level achieved. For example, a player who reaches pay-gate 40 with
a positive star gap has as highest level achieved ` = 40. If keys are purchased at this pay-gate, we count a purchase for ` = 40. The sample includes all players (i.e, Group 20,
Group 40, and Group No Star) and concerns only purchases at or before reaching level ` = 80.

4.3 Data

4.3.1 Data and Variables

We have tracking data for all users around the world that installed the game between October 30th and

November 4th 2013 on Apple devices (iPhones and iPads) and that played at least one round of the game.

We have a sample of 292,179 players, and for each we observe the full history of play at an extraordinary

level of detail for the 15 days following the installation of the game, including any purchase of virtual coins.7 In

particular, we rely on the following information to describe players’ behavior and characteristics.

Level attempted and completed: For each player, we observe the level played in any given round of playing.8

This allows us to track the sequence in which different levels are played and re-played. We also observe

whether a level was cleared or not at a given attempt. Finally, we assume that a player drops out after the last

attempt to clear a level.

Score and stars awarded: We observe the score each player was awarded for clearing a level. As discussed

above, the score reflects how well a player performs in a given level. The number of stars awarded in a level

is then determined as a function of the score obtained (stars are only awarded if a level is successfully cleared

and star thresholds vary across levels).

Player’s ability: A unique feature of online games, as opposed to more traditional offline games, is the possibility

of measuring, almost in real time, a player’s gaming ability. We measure a player’s ability as the average snake-

length over the first 20 rounds played, where the longer the average snake of connected jellies, the larger the

7Parts of these data were also used in Wagner and Runge (2018).
8Rounds denominate the cumulative number of levels played irrespective of whether a level was played multiple times or not.
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score obtained by the player. The larger our measure of ability, the greater the player’s skill in identifying the

patterns required to succeed in the game. As shown in Figure 4.5, this measure of player’s ability is almost

normally distributed with some additional concentration around the mean. It can also be interpreted in relative

terms: the top player (with a measure of 11.6) can be considered “twice as able as” the average player (with

average measure of 5.4).

Controlling for ability is important both economically and econometrically. Economically, willingness to pay

may vary with players’ ability, affecting the optimal pricing strategy of the firm. Analogously, not controlling for

players’ ability may give rise to complex forms of endogeneity hard to address econometrically.

Figure 4.5: Distribution of players’ ability
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Notes: This figure displays the distribution of our measure of ability across players. The mean is presented through the vertical red line and the plot is overlaid with a normal

distribution in green. The description of this variable is provided in Section 4.3.1. The sample is a cross-section of all players (Group 20, Group 40, and Group No Grind).

Star gap: As discussed above, each pay-gate is unlocked (and will not appear again) if a player reaches it with

a sufficient number of stars, what we call a non-positive star gap. When a player reaches a locked pay-gate

(i.e., with a positive star gap), they cannot proceed in the game until they unlock it. When reaching a locked

pay-gate, players can grind in an attempt to decrease their star gap enough so to unlock the pay-gate. To

simplify the analysis, we consider a measure of star gap inclusive (or gross) of grinding, rather than considering

grinding as a separate decision: we measure sgi ,t to be i ’s star gap at pay-gate t after all the grinding—when

they either unlock t or drop out of the game. If star gaps were measured net of grinding, i ’s decision at pay-gate

t with sgi ,t > 0 would be whether to unlock t , to grind in order to lower sgi ,t , or to stop playing. Differently, by

measuring star gaps gross of grinding, we simplify i ’s decision at pay-gate t with sgi ,t > 0 to be only between

unlocking t or stopping to play, given that sgi ,t > 0 is already inclusive of all of i ’s grinding at t .9

Pay-gate locked and unlock mechanism: We observe whether a player reaches a locked pay-gate and how they

unlock it (or whether they drop out of the game). As mentioned above, when approaching pay-gate t with fewer

stars than those necessary to unlock it, sgi ,t > 0, player i ’s options to unlock t are: (a) paying 70 virtual coins

to purchase a key, (b) inviting a friend on Facebook to download the game, or (c) going back to previous levels

to collect more stars (i.e., grinding). Importantly for our econometric analysis, as discussed in detail below,

9This will become clearer after having formally specified the choice model in Section 4.5, see in particular footnote 15 and the
surrounding discussion.
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players are not notified about the appearance of pay-gates every 20 levels when they start playing.

Price to unlock a gate: Any player i reaching pay-gate t with a positive star gap sgi ,t > 0 cannot proceed in

the game without unlocking it. As discussed above, a way to unlock a pay-gate is to purchase a key. In the

period of our data, the price of a key was set by the firm to pi ,t = 70 virtual coins, approximately $1, uniformly

for any i and t . The appropriate choice of pi ,t (in terms of virtual coins) by the firm, potentially discriminating

across i ’s and t ’s, is the main object of our empirical analysis. Because keys are priced in virtual coins and

players can rely on their endowment of virtual coins to buy keys (thus spending potentially less in terms of real

money), we consider pi ,t as the effective or residual price of purchasing a key: e.g., the full price of the key

minus i ’s endowment of virtual coins when reaching t (e.g., if the full price of a key is 70 virtual coins and i

owns 30 virtual coins when reaching pay-gate t with sgi ,t > 0, then pi ,t = 70− 30 = 40).

Player demographics: We observe a number of player-specific characteristics measured when a player downloads

the game. These variables are collected in a vector we callXi throughout the paper. Most of these characteristics

relate to the device used to play the game. We know whether the game was downloaded to a mobile phone

or a tablet (iPad). We also observe whether a player has updated their device to the latest version of the

relevant operating system (iOS7) and whether the device was “jailbroken” by its owner (Jailbroken).10 Finally,

we observe the country of a player (as indicated by the national app store used to download the app) and relate

it to its 2013 GDP per capita measured in purchasing power parity. We assign these countries to fourteen

groups which we refer to as “regions.” This assignment is detailed in Appendix 4.G and the share of players in

each region is displayed in Figure 4.G.1.

Table 4.1 reports summary statistics for Xi among the 292,179 players in the data.

Table 4.1: Descriptive statistics of players’ characteristics Xi

mean sd min max
Maximum Level Reached 21.30 17.16 0.00 179.00
Player’s Ability 5.41 0.82 0.44 11.67
Log(GDP per Capita (PPP, 2013)) 10.55 0.48 6.54 11.85
Jailbroken Dummy 0.01 0.11 0.00 1.00
iOS7 Dummy 0.78 0.42 0.00 1.00
iPad Dummy 0.31 0.46 0.00 1.00
Num. of Players 292,179

Notes: This table provides descriptive statistics for the demographic variables. The definitions of the variables are detailed in Section 4.3.1. The sample includes all players (Group
20, Group 40, and Group No Grind) and the statistics are computed across this cross-section of players.

4.3.2 Exogenous Variation

In addition to the extremely detailed player-specific information described above, our data are also unique

in providing various sources of exogeneous variation helpful to characterize players’ behavior and to identify

our econometric model. The first source of exogeneous variation is represented by controlled experiments

conducted by the firm during the period of our data collection. The second is represented by a form of

randomness in the degree of difficulty faced by different players when playing any level.

10Jailbreaking means removing all restrictions imposed on the device in order to allow the installation of software not supported by
Apple.
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4.3.2.1 Controlled Experiments

During the period of our data collection, the firm conducted a controlled experiment that randomly allocated

players to three different designs of the pay-gates separating free from premium levels. Figure 4.3 illustrates

what the firm considered the default design of the pay-gates in the game: 40 free levels before the first pay-gate

appears, with a new pay-gate appearing every 20 levels thereafter. The default design allows for three options

to unlock a pay-gate: (a) paying 70 virtual coins to purchase a key, (b) inviting friends to download the game

via Facebook, or (c) having a non-positive star gap sgi ,t ≤ 0. About 16% of all players were allocated to this

default design (called Group 40).

The experimental variation introduced by the firm consists of two variations relative to the default design. In

the first variation (called Group 20), a subset of nearly 16% of players was exposed to an earlier first pay-gate

already after clearing level 20. This setting allows for the same three options to unlock pay-gates as the default

design. In the second variation (called No Stars), the first pay-gate appears after clearing level 40 as in the

default design, however option (c) to unlock pay-gates with non-positive star gaps is not available. When i from

this group reaches any pay-gate t , independently of sgi ,t , they must choose either option (a) or (b) to unlock

it and proceed in the game. The No Stars group represents around 68% of players in our sample. Table 4.2

summarizes the main features of these three groups.

Table 4.2: Experimental groups

Group Level Unlock with Share in

1st pay-gate sg≤0 sample

Group 40 40 Yes 0.16

Group 20 20 Yes 0.16

No Stars 40 No 0.68

Table 4.G.2 in the Appendix provides descriptive statistics for these three groups, confirming that player-

specific characteristics are well-balanced.

Player attrition. Player attrition is a common feature in this type of game. Figure 4.6 shows the share of

active players at the start of each level (i.e., players who have not yet dropped out), comparing Group 20 to

Group 40 (left panel) and No Stars to Group 40 (right panel). The graph shows that attrition is high in all three

groups as players progress in the game. Overall, only about 24% of all players clear level 40 and reach pay-gate

40. Not surprisingly, the left panel of Figure 4.6 reveals a slight difference in attrition rates at level 20 between

Group 20 and Group 40, as only players in Group 20 face a pay-gate at level 20. However, between levels 21

and 40, the gap between the two groups closes again and approximately 23.9% of Group 20 reaches level 40

compared to 24.5% of Group 40. The right panel of Figure 4.6 shows similar attrition rates for Group 40 and

the No Stars group at level 40, suggesting that both groups are strongly affected by the appearance of the first

pay-gate. Overall, this evidence is in line with Debeauvais and Lopes (2015), who document—for a different

cohort of players—that attrition is larger in levels with pay-gates than in regular levels. In our analysis, we

discard observations beyond level 80. This is essentially without loss of generality, in that 99.95% of all players

drop out before level 80.
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Figure 4.6: Kaplan-Meier survival function (by group)
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Notes: This figure displays the share of players according to the highest level ` they have reached, by treatment group. The left panel compares Group 20 and 40. The right panel
compares Group 40 and Group No Star. These treatment groups are defined in Section 4.3.2.1. The sample includes all players.

Choices at pay-gates. In Table 4.3, we summarize players’ choices at the pay-gates of levels 20 and 40.

In Group 20 about 83.09% of all players reached the first pay-gate at level 20 with sufficient stars to unlock it

(sg ≤ 0). The vast majority of players without sufficient stars (sg > 0) used the initial endowment of virtual

coins to purchase a key (13.93%), only 1.41% used real money, while 1.56% invited friends on Facebook to

download the game.

Table 4.3: Comparison of unlock mechanisms between treatment and control groups

Group 20 Group 40 No Stars

1st pay-gate at level 20 1st pay-gate at level 40

Number % Number % Number %

Players reach pay-gate 20 19,183 44.38 19,367 44.35 91,394 44.49

Players unlock pay-gate 20 18,203 94.89

Unlock option

sg ≤ 0 15,126 83.09

sg > 0 Buy key: Real money 257 1.41

Buy key: Endowment 2,536 13.93

Facebook 284 1.56

Players reach pay-gate 40 10,329 23.90 10,694 24.49 50,469 24.57

Players unlock pay-gate 40 4,989 48.30 5,203 48.65 25,701 50.92

Unlock option

sg ≤ 0 1,135 22.75 1,094 21.02

sg > 0 Buy key: Real money 853 17.10 826 15.87 5,350 20.81

Buy key: Endowment 1,791 35.89 2,168 41.66 14,121 54.94

Facebook 1,210 24.25 1,115 21.42 6,230 24.24

This indicates that the pay-gate at level 20 is a relatively soft monetization trigger, as most players were

able to unlock it either with sg ≤ 0 or using their initial endowment of virtual coins. At level 40, the share

211



of players with sg ≤ 0 is significantly lower compared to the pay-gate at level 20, yet similar across Group

20 (22.75%) and Group 40 (21.05%). The share of players purchasing a key using real money increases to

17.10% for Group 20 and to 15.87% for Group 40. As expected, players in the No Stars group, which cannot

unlock pay-gate 40 using their accumulated stars, were significantly more likely than the others to purchase a

key, either using real money (20.81%) or their endowment of virtual coins (54%).

As discussed in Sections 4.4 and 4.5, we use this experimental variation to test competing hypotheses of

players’ behaviour and specify a more appropriate choice model, such as the degree of forward-looking behavior

with respect to upcoming pay-gates (comparing Group 20 and Group 40), and to overcome identification

concerns about endogenous selection on positive star gaps in estimation (relying on the No Stars group).

4.3.2.2 Randomness in the Difficulty of Levels

The structure of the game offers another useful source of exogenous variation: the difficulty of levels. Every

time a new round of the game is played, there is a random draw of jellies which may incidentally deliver an

easier or harder problem for the player to solve. A “good” draw may lead the player to succeed at a given level,

while a “bad” one may be enough to induce the same player to fail. When a player gets closer to failing a level,

they may face more of an incentive to purchase and spend virtual coins to obtain additional lives or moves, so

to get the final boost needed to clear the level. Controlling for a player’s ability, worse random draws of jellies

will result in stronger incentives to purchase and spend virtual coins for reasons other than a key.

Following this line of reasoning, as detailed in Section 4.5, we exploit i ’s “bad luck in the random draws of

jellies” as a source of exogenous variation—an instrument—for i ’s effective price of a key pi ,t (defined as 70

virtual coins minus i ’s endowment) in the estimation of i ’s probability to purchase a key.

4.4 Characterizing Player Behavior Using Exogenous Variation

4.4.1 The Firm’s Revenue Function

Our goal is to estimate a realistic but parsimonious model of player behavior useful to simulate alternative pricing

strategies and their returns both to the firm and to players. We focus on the firm’s revenue from purchases of

keys and ignore other in-app purchases (e.g., additional lives or moves). This approach is motivated by the

evidence shown in Figure 4.4 (most in-app purchases are concentrated at pay-gates) and the absence of any

in-app advertising at the time of our data collection. We also show in Appendix 4.A.2 that purchases of keys

do not crowd out other in-app purchases, suggesting that the two can be studied separately without excessive

loss of generality.

We aggregate player i ’s decisions between any two pay-gates into a single choice, abstracting from the

intermediate choices made at each level. Our choice model has two components. First, the probability that

i reaches pay-gate t (denoted by i → t) with a positive star gap given that she already unlocked pay-gate

t − 20:

P r i ,t(i → t, sgi ,t > 0|t + 20, ..., T ). (4.4.1)

Second, conditional on pay-gate t being locked to i (denoted by the indicator locki ,t = 1) and effective
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price pi ,t , the probability of purchasing a key at t (denoted by buyi ,t = 1, we describe this categorical variable

in Section 4.5 in more detail):

P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t , t + 20, ..., T ). (4.4.2)

Relying on (4.4.1) and (4.4.2), we then specify the firm’s expected revenue from player i at pay-gate t ,

Ri ,t . Finally, our simulation exercises entail the maximization of Ri ,t with respect to pi ,t across all players

and pay-gates—under various constraints on the flexibility of prices (from uniform price to first degree price

discrimination). Because every additional player does not generate any increase in the firm’s costs (at least

within the range observed in our sample), throughout the paper we assume that the firm’s marginal costs are

zero, and that expected revenue equals expected profit.

In general, probabilities (4.4.1) and (4.4.2) could be complex functions of i ’s expectations about future

realizations of any variable (e.g., sgi ,t+20 and pi ,t+40). To keep the empirical model manageable, especially

in view of our extensive simulation exercises, we propose (and then verify empirically) the following simplifying

assumption.

Assumption 1 (Myopia). Players’ decisions in t are conditionally independent of expectations about future

decisions and variables to be realized in t + 20, t + 40, ..., T .

Assumption 1 implies that player behavior can be represented by a (i , t)-specific static choice model, so

that (4.4.1) and (4.4.2) simplify to P r i ,t(i → t, sgi ,t > 0) and P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t), respectively.

Importantly, the conditional independence implied by this assumption should be intended with respected to the

observable characteristics we can control for in the data, such as i ’s demographics and ability, and various fixed

effects. We discuss the details of the empirical specification of our model in Section 4.5.

Denote i ’s effective prices from pay-gate t + 20 until T by pi ,>t = (pi ,t+20, pi ,t+40, ..., pi ,T ). Then, given

choice models (4.4.1) and (4.4.2) and Assumption 1, the firm’s expected revenue from player i at pay-gate t of

charging effective prices pi ,≥t , given that i already unlocked pay-gate t − 20, can be expressed as:

Ri ,t(pi ,t |pi ,>t)

= P r i ,t(i → t, sgi ,t > 0)× P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t)× pi ,t

+ P r i ,t(i → t, sgi ,t > 0)×
�

1− P r i ,t(buyi ,t = 0|locki ,t = 1, pi ,t)
�

× Ri ,t+20(pi ,t+20|pi ,>t+20)

+ P r i ,t(i → t, sgi ,t ≤ 0)× Ri ,t+20(pi ,t+20|pi ,>t+20).

(4.4.3)

As this expression indicates, despite the simplifying assumptions, the firm’s expected revenue from i at

pay-gate t is an intricate recursive function. Conditional on i having unlocked pay-gate t − 20, it depends on

i ’s probability of reaching pay-gate t with sgi ,t > 0 (so that pay-gate t is locked, locki ,t = 1), i ’s probability of

purchasing a key (buyi ,t = 1) given locki ,t = 1, i ’s probability of unlocking the current pay-gate (buyi ,t 6= 0)

given locki ,t = 1, price pi ,t , and finally—should i unlock the current pay-gate—the expected revenue stemming
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from potential purchases of keys to unlock future pay-gates.11 The first line of model (4.4.3) denotes the firm’s

expected revenue from i ’s current purchase of a key to unlock pay-gate t , the second and third lines instead

denote the firm’s expected revenue from i ’s future purchases of keys to unlock pay-gates t + 20, t + 40, ..., T .

Before getting to the details of how we specify the components of model (4.4.3), we rely on the exogeneous

variation described above to test the consistency of Assumption 1 with observed player behavior.

4.4.2 Testing Assumption 1

The validity of the expected revenue function in (4.4.3) crucially depends on the validity of Assumption 1 for the

game we study. Here we rely on the exogenous variation available in the data to provide empirical evidence in

support of this simplifying assumption.

Assumptions 1 requires that players’ current choices are not influenced by their expectations regarding

future events. The experimental variation in our data allows us to test for the absence of forward-looking

behavior in various ways. In particular, we exploit the exogenous information shock to players in Group 20, who

become aware of the existence of pay-gates twenty levels before the other players.

If players were forward-looking, those in Group 20 could show different attrition rates compared to other

players. Having passed the the first pay-gate at level 20, their expected utility from continuing the game could

be lower due to the anticipation of additional pay-gates (i.e., entailing costs with positive probability) at future

levels. As a consequence, attrition rates could be higher. In particular, we test for differences in the total number

of rounds played between players in Group 20 that were exposed to the pay-gate at level 20 but had sgi ,t ≤ 0

and similar players in Group 40 who were not exposed to the pay-gate at level 20. These “similar” players in

Group 40 are those who had a sufficient number of stars to immediately unlock the pay-gate at level 20 had

they been allocated to treatment Group 20. We do not find significant differences (Table 4.4, row 1).

Table 4.4: Experimental evidence for myopia: Group 20 vs Group 40

Group 40 Group 20 Diff. Std. Err. Obs.

Number of rounds before drop out 121.026 122.860 -1.833 1.633 21,899

Rounds played between 21 and 40 (or drop out) 51.400 51.582 -0.181 0.509 21,899

Stars collected between 21 and 40 (or drop out) 24.014 23.951 0.063 0.149 21,899

Re-played levels between 21 and 40 (or drop out) 26.375 27.354 -0.978 0.761 21,899

Notes: This table presents evidence regarding players’ forward-looking behavior. The description of the variables is provided in Section 4.3.1. The sample of players includes all

players in Group 20 and 40 who have crossed level ` = 20 with a non-positive star gap. Columns “Group 40” and “Group 20” report the mean for Group 40 and 20 players,

respectively. Column “Diff.” provides the (mean) difference between the two former columns. Column “Std. Err.” presents the standard errors associated with the mean of column

“Diff.”.

Awareness of the existence of pay-gates should affect the propensity to grind of forward-looking players

(i.e., re-play past levels to collect additional stars). A player that is aware of the existence of future pay-gates,

and the possibility of unlocking them with a sufficient number of stars, should grind more than unaware players,

in order to increase the chance of reaching the next pay-gate with a non-positive star gap. However, we find no

significant difference in the number of rounds played between levels 21 and 40 for the same groups of players

11As mentioned in Section 4.2.2, players can unlock pay-gates not only by purchasing keys but also by asking friends on Facebook to
download the game. In this sense, as detailed in Section 4.5, the categorical variable buyi ,t can take more values than only 0 (stop playing)
and 1 (purchase a key), and (1− P r i ,t(buyi ,t = 0|locki ,t = 1, pi ,t)) ≥ P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t).
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used in the previous test (Table 4.4, row 2). We also find no significant differences in the number of stars

collected (Table 4.4, row 3) and in the number of re-played levels between levels 21 and 40 (Table 4.4, row 4).12

We look for evidence of forward-looking behavior in two additional ways. First, we test for evidence of

forward-looking behavior by checking whether the number of additional stars collected after having cleared a

level for the first time affects the player’s probability to re-play that level. For example, if player i cleared level 23

for the first time with n ∈ {1, 2, 3} stars and is able to move on to level 24, we check if their probability to re-play

level 23 depends on n. Obtaining only one or two stars leaves open the possibility to collect an additional two

or one stars, respectively, by re-playing the level, hence increasing the chance of reaching the next pay-gate

with a non-positive star gap. Table 4.5 shows estimation results for a multinomial logit model of the probability

to re-play any level between 21 and 40 that was cleared for the first time with n stars (with the case of n = 3

stars as the excluded category, i.e. no incentives to re-play those levels). In line with economic intuition, the

estimated intercepts suggest that the probability to re-play any level in 21-40 is increasing in the number of

stars a player can still collect by re-playing it. The Group 20 indicator, however, is not significantly different from

0, providing no statistical evidence in support of forward-looking behavior. This is also shown graphically in a

more disaggregate way, level by level starting from level 1, in Appendix Figures 4.A.1, 4.A.2, and 4.A.3. These

graphs confirm that players in Groups 20 and 40 have virtually identical probabilities of re-playing any specific

level initially cleared with a given number of stars, both before and—importantly—after players in Group 20

become aware of the existence of the pay-gate at level 20.

Table 4.5: Experimental evidence for myopia: Group 20 vs Group 40

Multinomial Logit

P r(Re-play level in 21-40,Stars = 1)

Group 20 (relative to Group 40) 0.014

(0.057)

Constant 0.602

(0.039)

P r(Re-play level in 21-40,Stars = 2)

Group 20 (relative to Group 40) 0.013

(0.053)

Constant 0.083

(0.037)

Observations 20,997

Notes: This table presents the results from multinomial logit regressions where we estimate the propensity to replay levels depending on the number of stars collected when first

clearing the level. Each observation is a case where a player re-played a level of the game which was previously cleared. The sample includes all players in Group 40 and 20 which

cleared level ` = 20 with a non-positive star gap. The base category is (Re-play level in 21-40, Stars = 3). Standard Errors are clustered at the player-level.

Second, we inspect the distribution of effective prices players face when they reach the pay-gate at level 40.

Remember that pi ,t is defined as 70 virtual coins (the price of a key to unlock any pay-gate) minus i ’s residual

endowment of virtual coins by the time they reach t . Since the initial endowment provided to every player is

70 virtual coins, by not using any of it until level 40, i would face pi ,40 = 0 and be able to purchase a key

to unlock pay-gate t = 40 without spending any real money. However, players can spend their endowment

12In additional tests (not reported, but available on request), we also check the propensity to re-play specific levels for the same group
of players and find no significant differences.
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Figure 4.7: Distribution of effective prices pi ,t at pay-gate t = 40
Notes: This histogram displays the effective price distribution at pay-gate 40 for Group 20 and Group 40. Each observation is a player who faces pay-gate 40 with a positive star
gap. The sample includes all players of Group 40 and 20 who satisfy this condition.

on a number of items before reaching pay-gate t = 40 to enhance their play experience, such as purchasing

boosters, additional lives or moves, etc. Awareness of the existence of pay-gates is expected to induce forward-

looking players to save up on their endowment of virtual coins, so to ensure a lower effective price at the next

pay-gate. We then ask whether players in Group 20 with sgi ,20 ≤ 0, who are aware of the existence of pay-

gates from level 20, spend their endowment between levels 21 and 40 differently than players in Group 40, who

are unaware of the existence of pay-gates until level 40. Figure 4.7 illustrates the distribution of effective prices

faced by players in Group 20 and Group 40 when reaching the pay-gate at level 40. The distributions of effective

prices faced by the two groups is very similar and indicates that awareness of the existence of pay-gates did not

lead players in Group 20 to save more of their endowment of virtual coins in anticipation of the next pay-gate.

To corroborate these results, Appendix Figures 4.A.4 and 4.A.5 repeat the same exercise for pay-gates t = 60

and t = 80.

4.5 Choice Model: Specification and Estimation

Our model abstracts from players’ disaggregate level-specific choices and focuses on whether they reach each

pay-gate t (discrete choice model (4.4.1)) and, conditional on reaching it with sgi ,t > 0, whether they choose to

unlock it and how (discrete choice model (4.4.2)). Here we specify the empirical counterparts of these discrete

choice models and estimate them relying on the exogenous variation described in Section 4.3.2.

4.5.1 Discrete Choice Model (4.4.1): Reaching Pay-Gates with a Positive Star Gap

We specify discrete choice model (4.4.1) as the product of two binary choice models:
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P r i ,t(i → t, sgi ,t > 0) = P r t(i → t|Xi)× P r t(sgi ,t > 0|i → t, Xi), (4.5.1)

whereXi is a vector of observable i -specific characteristics such as i ’s demographics and player ability (see

Section 4.3.1 for a description of these variables). After having unlocked pay-gate t − 20, player i can either

clear all levels between t − 19 and t and reach the next pay-gate t , or stop playing before reaching it. This is

the first binary choice model in (4.5.1), P r t(i → t|Xi). Upon reaching pay-gate t , we then distinguish between

sgi ,t > 0 and sgi ,t ≤ 0 to determine if i faces the next choice, discrete choice model (4.4.2), of whether and

how to unlock pay-gate t . This is the second binary choice model in (4.5.1), P r t(sgi ,t > 0|i → t, Xi).

Neither of the binary choice models in our empirical specification (4.5.1) depends on the effective price pi ,t

of purchasing a key to unlock pay-gate t . While this is true by construction for P r t(i → t|Xi), in that pi ,t can

only be determined when i reaches pay-gate t , it may not be true for P r t(sgi ,t > 0|i → t, Xi). Given our

definition of star gap as inclusive of grinding (see Section 4.3.1), this exclusion restriction may be violated for

example if players were more likely to grind (and so to lower their star gaps) when facing higher effective prices,

since unlocking pay-gates by non-positive star gaps would become relatively cheaper than by purchasing keys.

Table 4.6 suggests this is not the case and reports supportive empirical evidence in favor of this exclusion

restriction using the sample of players in Group 40,13 a linear probability model for P r t(sgi ,t > 0|i → t, Xi)

has an estimated coefficient on pi ,t which is very close to zero, especially once we control for the observable

i -specific characteristics Xi .

(1) (2) (3)

P r t(sgi ,t > 0|i → t) P r t(sgi ,t > 0|i → t) Prt(sgi ,t > 0|i → t, Xi)

Effective price, pi ,t 0.0000359 0.0000515* 0.0000258

(0.0000192) (0.0000206) (0.0000188)

Pay-gate fixed effects No Yes Yes

Player-specific characteristics (Xi ) No No Yes

Observations 12,600 12,600 12,600

Num. of players 10,692 10,692 10,692

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4.6: Linear Probability Model of Effective Price on Positive Star Gap
Notes: This table shows estimation results for the linear probability model of the effective price pi ,t on player i facing a positive star gap at pay-gate t . The dependent variable is

a dummy variable equal to one when a player has a positive star gap, as defined by equation (4.4.1), and zero otherwise. The explanatory variable is the effective price, defined

in Section 4.3. The sample includes all players from Group 40 who have reached pay-gate 40, 60, or 80. Each observation is a player/pay-gate combination. In the first column,

we include no controls. In the second column, we add pay-gate fixed effects. In the third column, we include the demographics Xi defined in Section 4.3.1. Standard errors are

clustered at the player level.

The exclusion of pi ,t from the empirical specification of model (4.5.1) has practical implications for our

analysis. Because of their conditional independence of pi ,t , the binary choice models in (4.5.1) will only act

as “constant weights” in any of the maximizations of the firm’s expected revenue (4.4.3) to be performed in our

simulations. We therefore do not make any further assumption and estimate them as non-parametric functions

of Xi for each pay-gate t .

We separately estimate each of the two binary choice models in (4.5.1) by a standard K-Nearest Neighbors

13As explained below, we focus on the players in this group to estimate model (4.5.1).
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(kNN) estimator from the sample of players in Group 40 (the same sample used in Table 4.6). We restrict

the estimation of model (4.5.1) to the players in Group 40, since this is the default design of the game.14 In

Appendix 4.B, we describe the kNN estimator of (4.5.1) and present its estimates, while in Figure 4.8 we plot

the two estimated binary choice models as functions of player’s ability.

Figure 4.8: kNN Estimates of Model (4.5.1) and Player’s Ability
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Notes: These figures display binned scatter plots of the relationship between the estimated probabilities of model (4.5.1) and ability. The estimates are produced using the

kNN procedure described in Appendix 4.B. Ability is defined in Section 4.3.1. The left panel displays the probability of reaching pay-gate 40 given that the player is at level 0,

P ri ,0(i → 40). The right panel displays the probability of a positive star gap given that the player has reached pay-gate 40 P ri ,40(sgi ,40 > 0|i → j). The sample used includes

all players of Group 40.

We see that, in line with intuition, more able players are less likely to drop out of the game (except for the top

5% of players) (left panel) and are more likely to reach pay-gates with a non-positive star gap (thus unlocking

them without the need to purchase keys) (right panel).

4.5.2 Discrete Choice Model (4.4.2): Purchasing a Key to Unlock a Pay-Gate

The estimation of discrete choice model (4.4.2), P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t), presents at least two

challenges: sample selection on sgi ,t > 0 and endogenity of pi ,t .

First, given the structure of the game, only players with sgi ,t > 0 face locki ,t = 1 and can be observed to

purchase a key at pay-gate t . In the absence of experimental variation, we would then have to estimate (4.4.2)

exclusively on the sample of players observed to reach pay-gate t with sgi ,t > 0, P r i ,t(buyi ,t = 1|locki ,t =

1, pi ,t , sgi ,t > 0). It is however possible that the willingness to purchase a key at t differs systematically

between the players observed with sgi ,t > 0 and those observed with sgi ,t ≤ 0, so that P r i ,t(buyi ,t =

1|locki ,t = 1, pi ,t , sgi ,t > 0) 6= P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t). Fortunately, the experimental variation

described in Section 4.3.2 allows us to overcome this by restricting estimation of model (4.4.2) to the sample

of players in the No Stars group. Players in the No Stars group cannot use their accumulated stars to unlock

14Players in Group 20 face an additional pay-gate at level 20 which increases their attrition, while those in No Stars cannot use their
accumulated stars to unlock pay-gates; hence they have fewer incentives to obtain non-positive star gaps.
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pay-gates and, independently of their observed star gap, always face locki ,t = 1.

Second, the effective price pi ,t , computed as 70 virtual coins minus i ’s residual endowment of virtual coins

at pay-gate t , depends on i ’s decision of whether to purchase and spend virtual coins before reaching pay-

gate t . This decision, in turn, may correlate to i - and t-specific unobservable characteristics that also drive i ’s

willingness to purchase a key at pay-gate t . We address this potential endogeneity in two ways. On the one

hand, our empirical specification of model (4.4.2) controls for i ’s ability in the game, which would otherwise be

the most worrying omitted variable. On the other, as mentioned in Section 4.3.2 and discussed in more detail

below, we also exploit randomness in the difficulty of each level across players as an instrument for pi ,t : at the

beginning of each level, different players get a random draw of jellies which determines the level’s difficulty, and

in turn the players’ incentives to purchase and spend virtual coins for reasons other than a key (e.g., additional

lives or moves).

Model Specification. When i reaches locked pay-gate t , locki ,t = 1, for given effective price pi ,t , i faces

three options, denoted by buyi ,t ∈ {0, 1, 2}:15

buyi ,t = 0: Do not unlock pay-gate t and stop playing.

buyi ,t = 1: Purchase a key to unlock pay-gate t at a price of pi ,t virtual coins, where 70 virtual coins

cost around $1 in terms of real money.

buyi ,t = 2: Ask a friend on Facebook to download the game.

In order for our simulations to be practically viable but still capture rich forms of observed and unobserved player-

specific heterogeneity, we specify discrete choice model (4.4.2) parametrically as a mixed logit (McFadden and

Train, 2000). Player i ’s conditional indirect utility from choosing buyi ,t when facing locked pay-gate t is:

Ubuy,i ,t(ηi) =











ε0,i ,t if buyi ,t = 0

δ1 + δ1,t + δ1,i +Xiβ1 − (α+ αt + αi +Xiπ)pi ,t + ε1,i ,t if buyi ,t = 1

δ2 + δ2,t + δ2,i +Xiβ2 + ε2,i ,t if buyi ,t = 2,

(4.5.2)

where (δbuy + δbuy,t + δbuy,i) is an intercept given by the sum of a common δbuy component among players,

a pay-gate specific shift δbuy,t equal to zero at t = 40, and an unobserved player-specific random coefficient

δbuy,i , Xi is a vector of observable i -specific characteristics (see Section 4.3.1), (α+αt +αi +Xiπ) denotes

i ’s sensitivity to the effective price at pay-gate t , which is both a function of unobserved random coefficient αi

and observed heterogeneity (α+αt +Xiπ), while εbuy,i ,t is a residual error term we describe below. We allow

for a particularly flexible specification of price sensitivity, itself a function of the observable characteristics Xi ,

to investigate the potential of pricing strategies that take advantage of the detailed player-specific information

routinely collected by the firm. We gather the three random coefficients (δ1,i , δ2,i , αi) into the random vector

ηi and assume that they are jointly normal:

15Because our measure of star gaps is inclusive of grinding (see Section 4.3.1), any i with sgi ,t > 0 (and consequently with locki ,t =
1) cannot—by definition—be observed to unlock pay-gate t by further grinding: all of i ’s grinding for pay-gate t is already included in sgi ,t .
We therefore do not consider the option to grind as a further alternative to unlock pay-gates in model (4.5.7): all the grinding is captured by
the second component of model (4.5.1), P r t(sgi ,t > 0|i → t, Xi ).
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. (4.5.3)

As is standard, we normalize the systematic component of the indirect utility of buyi ,t = 0 (the outside

option of dropping out) to zero, U0,i ,t − ε0,i ,t = 0, and include the effective price pi ,t of purchasing a key only

in the indirect utility of purchasing a key, buyi ,t = 1.

Price Endogeneity and Control Function. As mentioned above, the effective price pi ,t could correlate with

the residual error term ε1,i ,t and be endogenous. Given the player-level nature of the data, we cannot rely on

the standard instrumental variable techniques to address price endogeneity typically used in demand estimation

(Berry et al., 1995; Nevo, 2001b). However, we mitigate price endogeneity in two other ways. First, we include

i ’s ability among the observed regressorsXi—thus removing from the unobservable ε1,i ,t the most problematic

omitted variable. Second, we estimate the parameters of model (4.5.2) on the basis of a control function

approach (Blundell and Powell, 2004; Blundell et al., 2013).

Our control function relies on an instrument Zi ,t for price pi ,t obtained from the randomness in the difficulty

of each level across players (see Section 4.3.2). Controlling for i ’s ability, random variation in a level’s difficulty

prior to reaching pay-gate t will induce random variation in i ’s incentives to purchase and spend virtual coins

on items other than a key (e.g., more lives or moves to clear the level), and consequently in pi ,t . In practice,

we define Zi ,t as the number of times we observe i being close to failing any of the levels between pay-gates

t − 20 and t , where we consider i “being close to failing” level ` as i ’s score in ` within a 5% interval below the

`-specific score threshold necessary to clear level `:16

Zi ,t =

t
∑

`=1

1 (0.95× Necessary Score` < Scorei ,` < Necessary Score`) . (4.5.4)

We follow Petrin and Train (2010) and implement the control function approach to estimate model (4.5.2) as

follows. Given the instrument Zi ,t in (4.5.4), we assume that pi ,t is given by:

pi ,t = ζt +Xiγ + λZi ,t + µi ,t , (4.5.5)

where ζt is an intercept and µi ,t is an unobserved component of effective price potentially correlated with ε1,i ,t

(causing price endogeneity) but independent of (ε0,i ,t , ε2,i ,t). We also assume that the expectation of ε1,i ,t

conditional on µi ,t is linear:17

ε1,i ,t = θµi ,t + ε̃1,i ,t , (4.5.6)

where θµi ,t is our control function. Finally, by substituting (4.5.6) back into (4.5.2), defining (ε̃0,i ,t , ε̃2,i ,t) =

(ε0,i ,t , ε2,i ,t), Vbuy,i ,t(ηi) = Ubuy,i ,t(ηi)−ε̃buy,i ,t for each buyi ,t ∈ {0, 1, 2}, and assuming that (ε̃0,i ,t , ε̃1,i ,t , ε̃2,i ,t)

are i.i.d. Gumbel (McFadden, 1974), we obtain our mixed logit specification of discrete choice model (4.4.2):

P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t) =

∫

exp(V1,i ,t(ηi))

1 + exp(V1,i ,t(ηi)) + exp(V2,i ,t(ηi))
φ(ηi |Σ)dηi , (4.5.7)

16In Appendix 4.C.1, we discuss this instrument in more detail and report the first step estimates of equation (4.5.5) along with alternative
specifications of the instrument. Overall, estimation results are robust to alternative specifications of Zi ,t .

17We attempted the estimation of model (4.5.2) on the basis of various—more elaborate—specifications of both (4.5.5) and (4.5.6), but
found no substantial differences. As a consequence, we decided to stick to these simpler and similarly effective linear specifications.
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where φ(·|Σ) is the normal density of ηi in (4.5.3) withΣ denoting its variance-covariance matrix and V1,i ,t(ηi) =

δ1 + δ1,t + δ1,i +Xiβ1 − (α+ αt + αi +Xiπ)pi ,t + θµi ,t includes control function θµi ,t , based on (4.5.4),

(4.5.5), and (4.5.6), to account for the potential endogeneity of pi ,t .

Estimation Results. In the absence of experimental variation, only players with sgi ,t > 0 face a locked

pay-gate t and so the choice of whether to unlock it. This raises the concern that P r i ,t(buyi ,t = 1|locki ,t =

1, pi ,t , sgi ,t > 0) 6= P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t), which complicates the identification of mixed logit

model (4.5.7). As mentioned above, however, the experimental variation described in Section 4.3.2 allows us to

overcome this form of endogenous selection by estimating the model on the sample of players in the No Stars

group, who cannot use their accumulated stars to unlock pay-gates and always face locki ,t = 1.

Using the sample of players in the No Stars group, we address the additional concern of price endogeneity

by estimating (4.5.7) on the basis of the control function approach proposed by Petrin and Train (2010). We

first estimate (4.5.5) by OLS, compute each µ̂i ,t as the fitted residual of that regression, then plug µ̂i ,t in

V1,i ,t(ηi), and finally estimate mixed logit model (4.5.7) by Simulated Maximum Likelihood using 100 random

Halton sequences per player (Bhat, 2003). We compute the variance-covariance matrix of the estimator as in

Karaca-Mandic and Train (2003) to account for the two-step nature of the control function procedure. We report

the results for both estimation steps in Appendix 4.C, while here we visually summarize the implied estimated

price elasticities.

Figure 4.9 plots the distribution of the estimated price elasticities at pay-gate 40 evaluated at effective

prices pi ,40 = 10, 30, 70, 140 virtual coins (see Appendix 4.D.1 for the computational details). Each panel

plots the distribution of price elasticities across players when everyone faces the same effective price pi ,40.18

Two intuitive findings emerge from Figure 4.9: first, for any given effective price, there is heterogeneity across

players facing the same pay-gate; second, as pi ,40 increases, a player’s demand quickly becomes extremely

elastic.

18Importantly, while we relied on the players in the No Stars for the estimation of model (4.5.7) to avoid sample selection complications,
here we only plot the implied price elasticities for the players in Group 40, who face the default design of the game. See also footnote 19.
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Figure 4.9: Price Elasticity of Demand at Pay-Gate 40
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Notes: These histograms display the distribution of the price elasticity of demand at pay-gate 40 evaluated at different effective prices pi ,40 = 10, 30, 70, 140. Price elasticity of

demand is defined in Appendix 4.D.1. In each panel, the distribution of the price elasticity is evaluated at the same effective price pi ,40 for all players. The sample used to compute

these price elasticities includes all players of Group 40 (see footnote 19).

Figure 4.10 compares average price elasticities of demand across pay-gates when evaluated at a given

effective price. The left panel plots results for effective prices ranging from 0 to 40 virtual coins, while the right

panel plots results for effective prices ranging from 0 to 140 virtual coins (note the much larger scale on the

y-axis). Figure 4.10 makes clear that price elasticity is heterogeneous not only across players at a given pay-

gate, but also across pay-gates. This is driven by heterogeneity across players dropping out of the game and

thus “surviving” at each pay-gate. Moreover, the price elasticity seems to substantially increase (i.e., become

negative) for all pay-gates once the effective price goes beyond 50 virtual coins (right panel).
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Figure 4.10: Average Price Elasticity of Demand across Pay-Gates
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Notes: This figure displays the average price elasticity of demand across different pay-gates for given effective price. The left panel plots results for effective prices ranging from 0 to

40 virtual coins while the right panel for effective prices ranging from 0 to 140 virtual coins. For each given value of effective price p on the x-axis, we plot the average price elasticity

of demand of each pay-gate so that pi ,40 = pi ,60 = pi ,80 = p. The price elasticity of demand is defined in Appendix 4.D.1. The sample includes all players of Group 40 (see

footnote 19).

Finally, Figure 4.11 displays two binned scatter plots of the price elasticity of demand at pay-gate 40 with

respect to a player’s ability (left panel) and the log(GDP per capita) of their country (right panel). The left panel

shows a striking relationship between price elasticity and player’s ability. Less able players are more inelastic

with respect to the effective price pi ,t . For a given increase in pi ,t , they are more likely to purchase keys using

real money rather than to stop playing or ask a friend to download the game. The right panel of Figure 4.11

then confirms an intuitive positive relationship between price elasticity and GDP per capita of a player’s country:

for given increase in pi ,t , players from wealthier countries are far less price elastic at pay-gate 40 than players

from poorer countries.

Figure 4.11: Price Elasticity of Demand at Pay-Gate 40 by Ability and Log(GDP per Capita)
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Notes: This figure shows two binned scatter plots of the price elasticity of demand at pay-gate 40 with respect to a player’s ability (left panel) and the log(GDP per capita) of their

country (right panel). Price elasticity of demand is defined in Appendix 4.D.1. Players’ ability and log(GDP per capita) are defined in Section 4.3.1. In each panel, we segment the

x-axis in 100 equally sized groups. For each of these groups, we then plot the average price elasticity of demand on the y-axis. The sample includes all players of Group 40 who

reached pay-gate 40 with a positive star gap (see footnote 19). The effective prices used to calculate the price elasticity of demand are based on the empirical distribution of effective

prices as described in Appendix 4.D.2.

Overall, these results suggest that, choosing effective prices on the basis of routinely collected data may
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be profitable for the firm. For example, Figure 4.10 suggests that the firm may gain by setting effective prices

somewhere around 40-50 virtual coins, higher than the observed average effective prices of around 35 virtual

coins. In addition, Figure 4.11 confirms the importance of observing and controlling for player’s ability in studying

the pricing strategies of the firm, something that was not possible until a few years ago with standard offline

games.

4.5.3 Model Validation

In Appendix 4.E, we conduct some model validation analysis and illustrate the estimated model’s ability to

predict player behavior under counterfactual pricing strategies.

4.6 Simulation of Alternative Pricing Strategies

In this last Section, we rely on our estimated model to evaluate the returns of alternative pricing strategies for the

firm. To provide intuition, we first highlight some of the most salient trade-offs faced by the firm when choosing

effective prices. These trade-offs uncover the complex nature of the optimization problem and highlight the

value of the empirical methods we employ. Second, we simulate alternative pricing strategies characterized by

increasing discrimination and compare their implied expected revenues to those observed to be earned by the

firm. While we relied on the players in Group 40 for the estimation of model (4.5.1) and on those in No Stars

for the estimation of model (4.5.7), we perform all counterfactual simulations only with respect to the players in

Group 40. Players in Group 40 face the default design of the game, which corresponds to our discrete choice

model in equation (4.5.1).19

4.6.1 Understanding the Firm’s Optimization Problem

Here we use our estimates of models (4.5.1) (probability of reaching the next gate) and (4.5.7) (choice of how

to unlock a gate) and the simulation procedures detailed in Appendices 4.D.1 and 4.D.2 to investigate whether

the per-player expected revenue of the firm is affected by dynamic considerations (i.e., if prices at different

pay-gates should be set jointly or can instead be chosen independently) and by player heterogeneity (i.e., if the

firm should condition prices on observed ability and/or GDP per capita). In all simulations, per-player expected

revenue is averaged across the 43,660 players in Group 40 during the 15 days of our sample in 2013.

Dynamics across Pay-Gates. Although we show in Section 4.4.2 that players behave myopically, it is still

possible for the firm’s optimal pricing to involve dynamic considerations across pay-gates. As we saw in

Figure 4.10, because different players drop out of the game at different levels, the price responsiveness of the

“surviving” population changes at different pay-gates. Potentially, the firm could then increase expected revenue

by influencing this selection mechanism with an appropriate choice of effective prices at different pay-gates. For

instance, Figure 4.12 shows how per-player expected revenue (in $) from pay-gates 40, 60, and 80 changes as

the firm sets different combinations of effective prices across pay-gates 40 and 60 (keeping pi ,80 = 70). Each

line represents the perimeter of an iso-revenue area, gathering all combinations of (pi ,40, pi ,60) that deliver an

19Counterfactual simulations based on players from the other experimental groups would not be very informative, in that both players
in Group 20 and in No Stars face game rules incompatible with those of the default design of the game embodied in model (4.5.1).
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identical per-player expected revenue. Darker shades of blue are associated with lower per-player expected

revenue.
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Figure 4.12: Dynamic Pricing and Iso-Revenue Lines
Notes: This figure compares the per-player expected revenue (in $) from pay-gates 40, 60, and 80 for different combinations of effective prices at different pay-gates. Each line
represents the perimeter of an iso-revenue area, gathering all combinations of (pi ,40, pi ,60) (while keeping fixed pi ,80 = 70) that deliver an identical per-player expected revenue.
Darker shades of blue are associated to lower per-player expected revenue. The simulation of per-player expected revenue is based on our estimates of models (4.5.1) and (4.5.7)
and the procedure detailed in Appendices 4.D.1 and 4.D.2. Per-player expected revenue is averaged across the 43,660 players in Group 40 during the 15 days of our sample in
2013.

The per-player expected revenue iso-quants depicted in Figure 4.12 reveal two findings. First, there is some

dynamic connection between the effective prices across pay-gates. For example, for fixed pi ,60 = 50 virtual

coins, the firm can achieve the largest per-player expected revenue by setting 10 ≤ pi ,40 ≤ 55 virtual coins.

For 10 > pi ,40 > 55, the firm would decrease per-player expected revenue because keys to unlock pay-gate

40 would be either too cheap or too expensive, so that too many players would not unlock pay-gate 40 and

drop out of the game. Second, per-player expected revenue appears to be more responsive to changes in pi ,60

than to changes in pi ,40, stressing that not all pay-gates carry the same weight in terms of per-player expected

revenue for the firm. Despite all this, it is however important to highlight that Figure 4.12 does not exclude the

possibility that optimal effective prices across pay-gates may coincide, so that pi ,40 = pi ,60.

The potential dynamics of the problem faced by the firm can also be directly seen by looking at the per-

player expected revenue function presented in equation (4.4.3). The effective price pi ,t plays two roles: (i) it

affects i ’s expected revenue from pay-gate t , P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t)× pi ,t and (ii) it also affects i ’s

expected revenue from future pay-gates by changing the probability of a player dropping out, (1−P r i ,t(buyi ,t =

0|locki ,t = 1, pi ,t)) × Ri ,t+20(pi ,t+20|pi ,>t+20). In this sense, the effective price pi ,t must be chosen by the

firm to balance the per-player expected revenue from current pay-gate t and that from future pay-gates t ′ > t .

In Figure 4.13, we separately illustrate these by plotting the current (i) and future (ii) components of per-player

expected revenue (in $) from pay-gate 40 as a function of pi ,40, holding fixed (pi ,60, pi ,80) = (70, 70).

On the one hand, by increasing pi ,40, per-player expected revenue from future pay-gates 60 and 80

decreases due to a decrease in the probability of purchasing a key which is not compensated by an increased
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Figure 4.13: Current and Future Components of Per-Player Expected Revenue
Notes: This figure displays the current and future components of per-player expected revenue (in $) from pay-gate 40 as a function of pi ,40 , as described in equation (4.4.3). On
the x-axis we report different values of the effective price at pay-gate 40 (pi ,40) and on the y-axis we show: on the left, the per-player expected revenue from pay-gate 40 denoted
by P ri ,40(buysi ,t = 1|locki ,40 = 1, pi ,40) × pi ,40); on the right, the per-player expected revenue from future pay-gates 60 and 80 evaluated at (pi ,60, pi ,80) = (70, 70)
and denoted by (1− P ri ,40(buysi ,t = 0|locki ,40 = 1, pi ,40)) × Ri ,60(pi ,60 = 70|pi ,80 = 70). The simulation of per-player expected revenue is based on our estimates of
models (4.5.1) and (4.5.7) and the procedure detailed in Appendices 4.D.1 and 4.D.2. Per-player expected revenue is averaged across the 43,660 players in Group 40 during the 15
days of our sample in 2013.

probability to ask a friend to download the game to unlock pay-gate 40, (1 − P r i ,40(buyi ,40 = 0|locki ,40 =

1, pi ,40)). On the other, by increasing pi ,40, per-player expected revenue from current pay-gate 40 increases

up to pi ,40 = 50 and quickly falls afterward. Importantly though, note that the scale of the y-axis on the right-

hand side of Figure 4.13 is of an order of magnitude smaller than that on the left-hand side. This suggests that

the per-player expected revenue from current pay-gates could be what really matters when choosing effective

prices, and that ignoring this inter-pay-gates trade-off may not be very costly for the firm.

Player Heterogeneity. Any given price change will not impact homogeneously the expected revenue from

different players. As pointed out in Figure 4.11, this is due to player heterogeneity in terms of ability and GDP

per capita, which translates into heterogeneous price sensitivities. We explore this in Figure 4.14 by comparing

the per-player expected revenue from pay-gates 40, 60, and 80 for various effective prices across players with

different ability (left panel) and from countries with different GDP per capita (right panel). In each panel, we

set effective prices across all pay-gates and players to be uniform and equal to, in turn, 10, 30, and 70. Each

point represents the average simulated per-player expected revenue for the 5% of players closest to the value

of ability or log(GDP per capita) on the x-axes.

By looking at any binned scatter plot of the same color, we note that any uniform effective price leads to

a different per-player expected revenue depending on a player’s ability or log(GDP per capita). In addition, by

comparing the vertical distances among plots of different colors, we also observe that different uniform effective

prices will differently impact players with heterogeneous levels of ability or log(GDP per capita). For example,

while the three uniform prices considered lead to similar per-player expected revenues for players with lower
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ability (up to 5), more able players (with ability larger than 5) generate up to double the amount of per-player

expected revenue when the uniform price is 30 as opposed to 10 or 70.
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Figure 4.14: Per-Player Expected Revenue by Ability and GDP per Capita for Alternative Prices
Notes: These binned scatter plots compare the per-player expected revenue from pay-gates 40, 60, and 80 for various effective prices across players with different ability (left panel)

and from countries with different GDP per capita (right panel). In each panel, we set effective prices across all pay-gates and players to be uniform and equal to, in turn: 10, 30,

and 70. Each point represents the average simulated per-player expected revenue for the 5% of players closest to the value of ability or log(GDP per capita) on the x-axis. Ability

and log(GDP per capita) are described in Section 4.3.1. The simulation of per-player expected revenue is based on our estimates of models (4.5.1) and (4.5.7) and the procedure

detailed in Appendices 4.D.1 and 4.D.2. Per-player expected revenue is averaged across the 43,660 players in Group 40 during the 15 days of our sample in 2013.

4.6.2 Simulation Results

Next, we combine our estimates of models (4.5.1) (probability of reaching the next pay-gate) and (4.5.7) (choice

of how to unlock a pay-gate), as well as the simulation procedures detailed in Appendices 4.D.1 and 4.D.2 to

investigate the welfare effects of alternative pricing strategies, each requiring different levels of sophistication

and amounts of data. All simulations are based on the 43,660 players in Group 40 during the 15 days of our

sample in 2013.

We simulate alternative pricing strategies in which the firm directly chooses p∗
i ,t

for all players and pay-

gates t = 40, 60, 80 by maximizing per-player expected revenue from the perspective of level zero (just

before players start the game) under various constraints on the flexibility of prices across players and/or pay-

gates.20 We compare the relative performance of the following pricing strategies, ordered in terms of increasing

discrimination from uniform to first-degree price discrimination (see Appendix 4.D.2 for the details):

� Observed. The observed pricing chosen by the firm, where each p∗
i ,t

equals 70 virtual coins minus i ’s

remaining endowment when facing pay-gate t .

� Uniform (70). All players face the same effective price p∗
i ,t

= 70. This amounts to setting everybody’s

endowment of virtual coins to zero from the beginning of the game.

20The fact that in our counterfactuals the firm directly chooses effective prices corresponds to restricting players’ freedom to use the
initial endowment of 70 virtual coins. Independently of i ’s endowment at pay-gate t , to progress in the game, i must use real money to
purchase a key at the effective price of pi ,t virtual coins. This greatly simplifies our model and simulations because we can proceed without
specifying and estimating a further choice model for the allocation of the initial endowment of virtual coins. We believe this assumption is
without loss of generality: the firm could always change any feature of the initial endowment, such as restricting the way players are allowed
to use it, changing its magnitude (allowing players to have more or less than 70 virtual coins), or even removing it altogether (every player
gets an endowment of zero virtual coins).
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Table 4.7: Counterfactual Pricing Strategies, Effective Prices and Expected Revenues

Static Pricing Dynamic Pricing

Pricing Strategy Effective Price Per-Player Revenue ($) Effective Price Per-Player Revenue ($)

mean s.d. mean s.d. % mean s.d. mean s.d. %
Observed 35.566 34.529 0.011 0.108 - - - - - -
Uniform (70) 70.000 - 0.022 0.012 93.8% - - - - -
Uniform (Optimal) 45.000 - 0.049 0.024 340.0% 10.000 2.449 0.051 0.026 358.9%
GDP per Capita 44.500 1.500 0.049 0.025 340.7% 51.167 11.950 0.051 0.026 359.7%
Ability 44.500 3.841 0.049 0.025 343.7% 52.833 12.429 0.051 0.026 362.8%
Individual Level 45.166 5.065 0.050 0.025 346.9% 52.617 12.756 0.052 0.026 368.1%

Notes: This table summarizes our counterfactual simulation results in terms of effective prices and per-player expected revenues. Each row refers to a pricing strategy and
summarizes the simulated effective prices chosen by the firm (in virtual coins, where $1 ≈ 70 virtual coins) and the corresponding per-player expected revenues (in $). The
columns denoted by “%” report the percentage increase in per-player expected revenue implied by the row pricing strategy with respect to the observed pricing chosen by the
firm (i.e., 0% means same average as the observed pricing). All pricing strategies are briefly described in the text and explained in more detail in Appendix 4.D.2. The left panel
summarizes results for the case in which effective prices do not change among pay-gates (static pricing). The right panel instead summarizes results for the case in which effective
prices are allowed to change also among pay-gates (dynamic pricing). All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group
40 during the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.

Table 4.8: Counterfactual Pricing Strategies, Consumer Surplus and Total Surplus

Static Pricing Dynamic Pricing

Pricing Strategy ∆ Consumer Surplus ($) ∆ Total Surplus ($) ∆ Consumer Surplus ($) ∆ Total Surplus ($)

mean s.d. mean s.d. mean s.d. mean s.d.
Uniform (70) -0.0187 0.0137 -0.0083 0.0121 - - - -
Uniform (Optimal) -0.0369 0.0211 0.0008 0.0079 -0.0346 0.0203 0.0052 0.0097
GDP per Capita -0.0376 0.0223 0.0002 0.0090 -0.0344 0.0211 0.0055 0.0105
Ability -0.0383 0.0227 -0.0002 0.0069 -0.0334 0.0204 0.0068 0.0086
Individual Level -0.0380 0.0241 0.0005 0.0089 -0.0336 0.0224 0.0072 0.0108

Notes: This table summarizes our counterfactual simulation results in terms of per-player consumer surplus and per-player total surplus, computed as the sum between changes in
per-player expected revenue and in per-player consumer surplus. Each row refers to a pricing strategy and summarizes the simulated change in per-player consumer surplus and
in per-player total surplus (both in $) with respect to the observed pricing. All pricing strategies are briefly described in the text and explained in more detail in Appendix 4.D.2. The
left panel summarizes results for the case in which effective prices do not change among pay-gates (static pricing). The right panel instead summarizes results for the case in which
effective prices are allowed to change also among pay-gates (dynamic pricing). All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players
in Group 40 during the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.

� Uniform (Optimal). The firm optimally chooses either only one effective price p∗ for all players and pay-gates

(static) or an effective price p∗t common across players but specific to each pay-gate t (dynamic).

� GDP per Capita. Third-degree price discrimination based on the observed GDP per capita of a player’s

country. As for “Uniform (Optimal),” we consider both a static version in which the effective prices are identical

across pay-gates and a dynamic version in which the effective prices are also allowed to change across pay-

gates.

� Ability. Third-degree price discrimination based on the observed gaming ability of each player.21 We again

consider both a static (identical effective prices across pay-gates) and a dynamic version (potentially different

effective prices across pay-gates).

� Individual Level. First-degree price discrimination where the firm is free to choose a different effective price

for each player. We again consider both a static (identical effective prices across pay-gates) and a dynamic

version (potentially different effective prices across pay-gates).

Tables 4.7 and 4.8 summarize our counterfactual simulation results. Table 4.7 reports results of counterfactual

effective prices and expected revenues. Table 4.8 reports changes in consumer surplus and total surplus,

computed as the sum between changes in expected revenues and in consumer surplus. Each row of Table 4.7

21As described in Section 4.3.1, we compute ability from each player’s performance during the first 20 rounds of the game, something
observed by the firm by the time the player reaches the first pay-gate at level 40.
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refers to a pricing strategy and reports mean and standard deviation of the simulated effective prices chosen by

the firm (in virtual coins) and of the corresponding per-player expected revenues (in $). The columns denoted

by “%” report the percentage increase in per-player expected revenue implied by the row pricing strategy

with respect to the observed pricing chosen by the firm (0% means same average as the observed pricing).

Analogously, each row of Table 4.8 refers to a pricing strategy and summarizes the simulated change in per-

player consumer surplus and in per-player total surplus (both in $) with respect to the observed pricing. Figures

4.15–4.18 visualize these results by plotting the simulated distributions of effective prices, per-player expected

revenue, changes in per-player consumer surplus, and changes in per-player total surplus for the “static” pricing

strategies considered in the left panels of Tables 4.7 and 4.8. Appendix Figures 4.F.1, 4.F.2, 4.F.6, and 4.F.11

plot analogous simulated distributions for the “dynamic” pricing strategies considered in the right panels of

Tables 4.7 and 4.8.
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Figure 4.15: Distribution of Effective Prices in Static Pricing Strategies
Notes: This figure shows the simulated distribution of effective prices (in virtual coins, where $1 ≈ 70 virtual coins) across players and pay-gates for the “static” pricing strategies

considered in the left panel of Table 4.7. All pricing strategies are briefly described in the text and explained in more detail in Appendix 4.D.2. Static pricing strategies are those in

which effective prices do not change among pay-gates. All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the

15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.

Our counterfactual simulation results accord with intuition: more flexible and discriminatory pricing strategies

lead to larger per-player expected revenue at the expense of lower per-player consumer surplus. Uniform pricing

is associated with lower per-player expected revenue than discriminatory pricing strategies. Similarly, dynamic

pricing strategies that allow effective prices to vary across pay-gates lead to higher per-player expected revenue

than their more restrictive static counterparts. While it is well known that price discrimination will in general

enable a monopolist to seize larger portions of consumer surplus and thus increase profit at the expense of

consumer surplus (Varian, 1989), Tables 4.7 and 4.8 provide three striking and perhaps less obvious insights.

First, by comparing the first three rows of Table 4.7, from the firm’s perspective the free endowment of 70

virtual coins given to players when they begin playing is too large. The resulting average observed effective
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price of 35.6 virtual coins is too low. If the firm were to remove this free endowment and charge a uniform

effective price of 70 virtual coins (as in “Uniform (70),” second row of Table 4.7), per-player expected revenue

would almost double (93.8%). In addition, if it were also to optimally adjust the uniform effective price to

45 virtual coins (as in “Uniform (Optimal),” third row of Table 4.7), per-player expected revenue would more

than quadruple (340%). Observed pricing seems far from maximizing profit and the firm could be substantially

better-off by limiting itself to the use of uniform pricing. The fact that the firm may behave sub-optimally does not

affect the validity of our counterfactual simulations. Indeed, because the marginal cost of each additional player

is zero, we only rely on the estimation of demand for game content (which does not require any assumption

about profit-maximization by the firm).22

Second, while more flexible and discriminatory pricing strategies lead to larger per-player expected revenue,

the relative gains from their implementation are limited when compared to a simple uniform pricing strategy. This

can be seen by comparing the third with the last three rows (fourth to sixth) of Table 4.7. Despite the different

distributions of effective prices implied by each pricing strategy (Figure 4.15), the corresponding distributions of

per-player expected revenues are remarkably similar (Figure 4.16), with the relative gains of static “Individual

Level” (45, 2 of average effective price) with respect to static “Uniform (Optimal)” (a unique effective price)

being essentially negligible ($0.050 − $0.049 = $0.001). Appendix Figure 4.F.3 further stresses this point:

we construct 20 groups of players based on players’ ability (left panel) and GDP per capita (right panel) and

plot the average group-specific difference in per-player expected revenue. Remarkably, “Uniform (Optimal)”

performs almost as well as any discriminatory pricing strategy not only on average (left panel of Table 4.7) but

also conditional on player’s ability and GDP per capita (Appendix Figure 4.F.3).

The right panel of Table 4.7 and Appendix Figures 4.F.1, 4.F.2, and 4.F.4 tell a similar story also for dynamic

versions of these pricing strategies, underlying that even when the effective prices can change across pay-

gates, “Uniform (Optimal)” (three prices p∗40, p
∗
60, p

∗
80) still seizes most of the potential revenue of “Individual

Level” (three prices p∗
i ,40
, p∗
i ,60
, p∗
i ,80

for each i = 1, ..., 43660). Appendix Figure 4.F.5 then compares the

relative gains of implementing a dynamic versus a static version of each pricing strategy by ability group and

GDP per capita. Consistent with the findings that players behave myopically and that inter-pay-gates trade-offs

may not be very relevant for the firm (Section 4.4.2 and Figures 4.12 and 4.13), Appendix Figure 4.F.5 shows

that while dynamic pricing strategies slightly outperform their static counterparts, the implied relative gains are

in practice very limited (note the smaller order of magnitude of the y-axis with respect to Appendix Figures 4.F.3

and 4.F.4).

22Deviations from profit-maximization instead represent a problem when the simulation of counterfactuals also requires the estimation
of marginal cost functions, which typically hinges on the correct specification of the optimization problem solved by the firm (Berry et al.,
1995; Nevo, 2001a).
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Notes: This figure shows the simulated distribution of per-player expected revenue (in $) across players for the “static” pricing strategies considered in the left panel of Table 4.7. All

pricing strategies are briefly described in the text and explained in more detail in Appendix 4.D.2. Static pricing strategies are those in which effective prices do not change among

pay-gates. All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the

formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.

Figure 4.16: Distribution of Per-Player Expected Revenue, Static Pricing Strategies

Mirroring these findings, Table 4.8 illustrates that each of the alternative pricing strategies would lead to a

loss in per-player consumer surplus. This can be clearly seen in Figure 4.17, which shows that the distribution

of changes in per-player consumer surplus associated to each alternative pricing strategy would always have

negative support. This makes intuitive sense, in that each alternative pricing strategy would imply a higher

average effective price than the observed one (of around 10 virtual coins, see left panel of Table 4.7), enabling

the firm to extract more of the players’ surplus. Importantly, mixed logit model (4.5.7) allows players to drop out

of the game at any pay-gate t (by choosing buyi ,t = 0) if, for example, effective prices were “too high.” In other

words, this simulated extraction of consumer surplus is not conditional on the players being held “captive” in

the game, but it is rather based on a more effective exploitation of their preferences. Appendix Figures 4.F.6–

4.F.10 visualize additional dimensions of heterogeneity. Although also dynamic counterfactual pricing strategies

induce losses in consumer surplus (Appendix Figure 4.F.6), they usually generate smaller decreases than their

static counterparts (Appendix Figure 4.F.7).

Third, by summing the increases in expected revenue and the decreases in consumer surplus, Table

4.8 shows that, on average, the per-player total surplus implied by most of the alternative pricing strategies

would be non-negative (with the exception of “Uniform (70)” and of the static version of "Ability"). On average,

these counterfactual pricing strategies would generate enough additional expected revenue to compensate

the corresponding loss in consumer surplus. As the right panel of Table 4.8 illustrates, the dynamic pricing

strategies would perform slightly better than their static counterparts as a result of a slightly larger increase

in expected revenue (Appendix Figure 4.F.5) and a slightly smaller decrease in consumer surplus (Appendix

Figure 4.F.7). The fact that average per-player total surplus is non-negative suggests that these pricing strategies
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would not only enable the firm to extract more of the players’ surplus, but that they would also not lead to sizeable

dead-weight losses—despite the increase in average effective price of around 10 virtual coins. Figure 4.18 and

Appendix Figure 4.F.11 highlight the distributional content of this result, stressing that—despite the non-negative

average—, there would always be groups of players associated to negative changes in total surplus.
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Notes: This figure shows the simulated distribution of changes in per-player consumer surplus (in $) across players for the “static” pricing strategies considered in the left panel of

Table 4.7 as opposed to the observed pricing. All pricing strategies are briefly described in the text and explained in more detail in Appendix 4.D.2. Static pricing strategies are those

in which effective prices do not change among pay-gates. All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the

15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.

Figure 4.17: Distribution of ∆ Per-Player Consumer Surplus, Static versus Observed Pricing

To summarize, our counterfactual simulation results suggest that: (i) observed pricing is far from profit

maximizing and leaves a lot of surplus in the hands of players, (ii) optimal uniform pricing would enable the firm

to appropriate most of the returns associated to more complex pricing strategies, and (iii) each of the pricing

strategies considered—including optimal uniform pricing—would induce a transfer of surplus from the players

to the firm without, however, generating any sizeable dead-weight loss on average.
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Notes: This figure shows the simulated distribution of changes in per-player total surplus (in $) across players for the “static” pricing strategies considered in the left panel of Table

4.8 as opposed to the observed pricing. Changes in per-player total surplus are computed as the sum between changes in per-player expected revenues and in per-player consumer

surplus. All pricing strategies are briefly described in the text and explained in more detail in Appendix 4.D.2. Static pricing strategies are those in which effective prices do not

change among pay-gates. All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013.

Details of the formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.

Figure 4.18: Distribution of ∆ Per-Player Total Surplus, Static versus Observed Pricing

Findings consistent with (i) have been documented in other industries: because of path-dependence,

imperfect information, learning, or conflicting incentives, sometimes for-profit firms do not maximize profit (Cho

and Rust, 2010; DellaVigna and Gentzkow, 2019; Dube and Misra, 2019; Fioretti, 2020; Hortaçsu et al., 2021;

Huang et al., 2020; Orbach and Einav, 2007). Finding (ii) is in line with Chu et al. (2011), who show in the context

of a theater company that simple pricing rules can sometimes generate almost as much profit as complex ones

that would however be hard to implement. Finding (ii) is also close in spirit to Levitt et al. (2016), who document

limited gains of second-degree price discrimination for a large online gaming firm, and more in general to

the empirical literature on the trade-offs of price discrimination and personalized pricing in the era of big data

(Rossi et al., 1996; Shiller and Waldfogel, 2011; Shiller, 2015; Waldfogel, 2015). Limited gains from price

discrimination may partly explain why it is rarely observed in business practice, where additional risks tied to

consumer backlash and regulatory scrutiny also need to be considered (Council of Economic Advisors, 2015;

DellaVigna and Gentzkow, 2019).

In contrast to our results, however, Dube and Misra (2019) document substantial returns of personalized

pricing for a digital recruiting firm, highlighting the need for caution in drawing general conclusions. While

we do not find any such evidence, in other digital contexts more complex pricing strategies may be much

more profitable. That being said, both our results and Dube and Misra (2019) stress the large potential of

“empirical” pricing rules. In our context, the firm could increase per-player expected revenues more than fourfold

by optimally choosing a uniform effective price on the basis of detailed data and appropriate empirical methods.

Importantly, finding (iii) stresses that, although these increases in profit would necessarily come at the expense

of decreases in consumer surplus, the pricing strategies considered would not generate average losses in total
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welfare.

4.6.3 Robustness Checks

In Appendix 4.F.1, we repeat all counterfactual simulations accounting for the predictive biases of our estimated

model as documented in Appendix 4.E. We do this by limiting our counterfactual simulations to the sub-sample

of players in Group 40 for which the estimated model has the best predictive power. These checks show no

qualitative difference in our results and suggest that theses predictive biases do not play a crucial role for our

simulations exercises.

4.7 Conclusion

Our results indicate that the game developer can substantially increase profit by setting prices on the basis of

readily available information on player characteristics and in-game behavior. As expected, the increase in profit

would largely result from a transfer of surplus from players to game developer (Varian, 1989). However, most

of the pricing strategies considered would not decrease total surplus on average. Our results also show that

a simple uniform pricing strategy may already guarantee most of the profit implied by elaborate forms of price

discrimination (Chu et al., 2011), which might help explain why price discrimination has been rarely used in

online markets.

Our study analyzes price setting in a popular mobile game that, during the period of data collection, had

a number of specific features. While these features and some of our modelling choices facilitate our empirical

analysis, they may also limit the generality of our findings. First, no advertisement was shown in the game

during data collection. With advertisement, the problem of the firm would differ, in that the firm could decide

to trade-off revenue from in-app purchases in favor of consumption of game content, possibly by reducing the

prices for in-app purchases. Second, our data show no evidence of a trade-off for the firm between revenue

from pay-gates and other in-app purchases. Similar to advertisement, in other freemium apps this trade-off may

be more prominent and lead to a more complex maximization problem for the firm. Third, similar to Dube and

Misra (2019), our counterfactual simulations treat the firm as a monopolist and this may cause an overestimation

of its market power when choosing prices for premium content. We believe this assumption to be appropriate

in freemium games such as the one we study, where competition among mobile games occurs mostly before

players download the game (for free) and then substantially softens after a player has downloaded and started to

play (when the prices for premium content are incurred). However, this may be less applicable to non-freemium

contexts in which competing firms charge positive prices already for the download of their apps.

4.A Assumptions

4.A.1 Further Evidence in Support of Assumption 1
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Figure 4.A.1: Group 20 vs Group 40: Prob. to re-play level initially cleared with one star
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Notes: This figure compares the propensity to replay a level according to the number of available stars and according to being in Group 40 or 20. The y-axis variable is, for a given
level `, the share of replays which were done when only a single star had previously been collected at this level (i.e, there are two remaining stars). The sample includes players
who have crossed pay-gate 20 but have no gone beyond pay-gate 40. Among these, we keep only players of Group 40 and 20 who hit pay-gate 20 with a non-positive star gap. The
definition for stars is provided in Section 4.3.1.

Figure 4.A.2: Group 20 vs Group 40: Prob. to re-play level initially cleared with two stars
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Notes: This figure compares the propensity to replay a level according to the number of available stars and according to being in Group 40 or 20. The y-axis variable is, for a given
level `, the share of replays which were done when two stars had previously been collected at this level (i.e, there are one remaining stars). The sample includes players who have
crossed pay-gate 20 but have no gone beyond pay-gate 40. Among these, we keep only players of Group 40 and 20 who hit pay-gate 20 with a non-positive star gap. The definition
for stars is provided in Section 4.3.1.
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Figure 4.A.3: Group 20 vs Group 40: Prob. to re-play level initially cleared with three stars
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Notes: This figure compares the propensity to replay a level according to the number of available stars and according to being in Group 40 or 20. The y-axis variable is, for a given
level `, the share of replays which were done when three stars had previously been collected at this level (i.e, there are zero remaining stars). The sample includes players who have
crossed pay-gate 20 but have no gone beyond pay-gate 40. Among these, we keep only players of Group 40 and 20 who hit pay-gate 20 with a non-positive star gap. The definition
for stars is provided in Section 4.3.1.

Figure 4.A.4: Distribution of effective prices pi ,t at pay-gate t = 60
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Notes: This histogram displays the effective price distribution at pay-gate 60 for Group 20 and Group 40. Each observation is a player who faces pay-gate 60 with a positive star
gap. The sample includes all players of Group 40 and 20 who satisfy this condition.
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Figure 4.A.5: Distribution of effective prices pi ,t at pay-gate t = 80
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Notes: This histogram displays the effective price distribution at pay-gate 80 for Group 20 and Group 40. Each observation is a player who faces pay-gate 80 with a positive star
gap. The sample includes all players of Group 40 and 20 who satisfy this condition.

4.A.2 Relationship between Pay-Gate Purchases and Non-Pay-Gate Purchases

This Appendix provides evidence that purchases outside of pay-gates (i.e., non-pay-gate purchases within

the game) are not affected by purchases at pay-gates (i.e., purchases of keys to unlock pay-gates). This is

important to justify our focus on the firm’s revenue from purchases at pay-gates (see Section 4.4.1). The

evidence presented in this appendix suggests that purchases at pay-gates do not crowd out non-pay-gate

purchases. This allows us to analyze revenue from purchases at pay-gates separately from other in-game

purchases.

We do this by relying on the experimental design described in Section 4.3.2.1 and used to test Assumption

1 in Section 4.4.2. In particular, we compare non-pay-gate purchases by players in Group 20 who faced an

additional pay-gate at level 20 with those of players in the other experimental groups who did not. We consider

players in Group 20 with a positive star gap at pay-gate t = 20 to be “treated” with an additional pay-gate.

Players of Group 40 and No Star with a positive star gap at pay-gate t = 20 are instead considered as the

control group, because they did not face any pay-gate t = 20. We implement this test using two alternative

measures of payment outside of pay-gates. We define two alternative variables measuring the non-pay-gate

purchases by players: “Accumulated Purchases” as the total number of purchases made by a player between

level ` = 21 and level ` = 39 and “Indicator of Purchase” as a dummy equal to one if “Accumulated Purchases”

is greater than zero.

We start by comparing non-pay-gate purchasing behaviors on the basis of t-tests. Table 4.A.1 compares

the purchasing behavior of players in Group 20 versus players in No Star, while Table 4.A.2 compares Group

20 with Group 40. In both cases and for both variables, we find no statistically significant differences.
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Table 4.A.1: T-test on Non-Pay-Gate Purchases: Group 20 VS No Star

(1) (2) (3)

No Star Group 20 No Star−Group 20

mean SE mean SE diff. t-test

Accumulated Purchases 0.061 0.671 0.053 0.506 -0.008 -1.207

Indicator of Purchase 0.023 0.151 0.023 0.149 -0.001 -0.352

Observations 39102 7409 46511

Notes: This table presents evidence on whether facing an additional pay-gate affects the future non-pay-gate purchasing behavior of Group 20 players relative to No Star players.

The variable “Accumulated Purchases” is the number of times a player made a purchase between levels ` = 21 and ` = 39. The variable “Indicator of Purchase” is instead a

dummy equal to one if “Accumulated Purchases” is positive. The sample includes all 7,409 players in Group 20 and 39,102 in No Star who reached level 20 with a positive star

gap, case in which players in Group 20 faced a pay-gate but those in No Star did not. Columns “No Star” and “Group 20” report the means and standard errors, respectively, for

the players in No Star and Group 20. Column “No Star−Group 20” reports the difference in mean and associated t-test between the two previous columns. The t-test is calculated

assuming unequal variances.

Table 4.A.2: T-test on Non-Pay-Gate Purchases: Group 20 VS Group 40

(1) (2) (3)

Group 40 Group 20 Group 40−Group 20

mean SE mean SE diff. t-test

Accumulated Purchases 0.056 0.521 0.053 0.506 0.003 0.330

Indicator of Purchase 0.021 0.143 0.023 0.149 -0.002 -0.840

Observations 8252 7409 15661

Notes: This table presents evidence on whether facing an additional pay-gate affects the future non-pay-gate purchasing behavior of Group 20 players relative to No Star players.

The variable “Accumulated Purchases” is the number of times a player made a purchase between levels ` = 21 and ` = 39. The variable “Indicator of Purchase” is instead a

dummy equal to one if “Accumulated Purchases” is positive. The sample includes all 7,409 players in Group 20 and 8,252 in Group 40 who reached level 20 with a positive star gap,

case in which players in Group 20 faced a pay-gate but those in Group 40 did not. Columns “Group 40” and “Group 20” report the means and standard errors, respectively, for the

players in Group 40 and Group 20. Column “No Star−Group 20” reports the difference in mean and associated t-test between the two previous columns. The t-test is calculated

assuming unequal variances.

Next, we compare non-pay-gate purchasing behaviors on the basis of a non-parametric Kolmogorov-

Smirnov test. The Kolmogorov-Smirnov test detects whether the distribution of a variable differs between

two samples. On the basis of the same variables and samples as above, Tables 4.A.3 and 4.A.2 report the

Kolmogorov-Smirnov test results. For each variable, the first row assesses whether the players in No Star (or

in Group 40) have smaller values than the players in Group 20. The second row instead performs the opposite

comparison, assessing whether the players in Group 20 have smaller values than the players in No Star (or

in Group 40). The third row “Combined K-S” is the overall test, which is the maximum between the previous

two rows. In all cases and for both variables, we observe very high p-values suggesting the absence of any

significant difference between the players in No Star (or in Group 40) and those in Group 20. Overall, based on

our t-tests and Kolmogorov-Smirnov tests, we do not find evidence that facing the additional pay-gate at t = 20

affects players’ non-pay-gate purchasing behavior between levels ` = 21 and ` = 39.
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Table 4.A.3: Kolmogorov-Smirnov test on Non-Pay-Gate Purchases: Group 20 VS No Star

Largest diff. p-value

Accumulated Purchases

No Star 0 1

Group 20 0,001121 0,984466

Combined K-S 0,001121 1

Indicator of Purchases

No Star 0 1

Group 20 0,000667 0,994474

Combined K-S 0,000667 1

Notes: This table presents evidence on whether facing an additional pay-gate affects the future non-pay-gate purchasing behavior of Group 20 players relative to No Star players.

The variable “Accumulated Purchases” is the number of times a player made a purchase between levels ` = 21 and ` = 39. The variable “Indicator of Purchase” is instead a

dummy equal to one if “Accumulated Purchases” is positive. The sample includes all 7,409 players in Group 20 and 39,102 in No Star who reached level 20 with a positive star gap,

case in which players in Group 20 faced a pay-gate but those in No Star did not. Columns “Largest diff.” and “p-value” report, respectively, the largest difference and associated

p-value for each row on the basis of the Smirnov-Kolmogorov test (where zero means “no difference”). The first row considers the largest difference between the players in No Star

and in Group 20. The second row considers the largest difference between the players in Group 20 and in No Star. The last row considers the largest overall difference.

Table 4.A.4: Kolmogorov-Smirnov test on Non-Pay-Gate Purchases: Group 20 VS Group 40

Largest Diff. p-value

Accumulated Purchases

Group 40 0,001967 0,970253

Group 20 -0,00125 0,987925

Combined K-S 0,001967 1

Indicator of Purchases

Group 40 0,001967 0,970253

Group 20 0 1

Combined K-S 0,001967 1

Notes: This table presents evidence on whether facing an additional pay-gate affects the future non-pay-gate purchasing behavior of Group 20 players relative to Group 40 players.

The variable “Accumulated Purchases” is the number of times a player made a purchase between levels ` = 21 and ` = 39. The variable “Indicator of Purchase” is instead a

dummy equal to one if “Accumulated Purchases” is positive. The sample includes all 7,409 players in Group 20 and 8,252 in Group 40 who reached level 20 with a positive star gap,

case in which players in Group 20 faced a pay-gate but those in Group 40 did not. Columns “Largest diff.” and “p-value” report, respectively, the largest difference and associated

p-value for each row on the basis of the Smirnov-Kolmogorov test (where zero means “no difference”). The first row considers the largest difference between the players in Group

40 and in Group 20. The second row considers the largest difference between the players in Group 20 and in Group 40. The last row considers the largest overall difference.

As a final piece of evidence, we estimate the correlation between pay-gate purchases and non-pay-gate

purchases for players in Group 40 (i.e., those who play the standard version of the game). In Table 4.A.5, we

regress measures of non-pay-gate purchases on a dummy variable equal to one if the player unlocked pay-

gate t by purchasing a key. In the first column, we use as dependent variable the number of non-pay-gate

purchases made by the player in the nineteen levels between the two subsequent pay-gates t and t + 20.

In the second column, we instead use a dummy equal to one if the first dependent variable is greater than

zero (i.e., the player makes at least one non-pay-gate purchase in these nineteen levels between pay-gate t

and t + 20). Both regressions include player fixed effects and dropout-level fixed effects (these control for the

specific levels at which players are observed to drop out of the game). Because of the player fixed effects, the

sample includes only the players observed to reach at least two pay-gates with a positive star gap. In both

regressions, the estimated coefficient is slightly positive but largely non-significant. Both regressions suggest
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that once we control for a player’s propensity to make in-app purchases (i.e., player fixed effects), pay-gate t

purchases do not affect subsequent non-pay-gate purchases between levels ` = t + 1 and ` = t + 19.

Nb. purchases in t < ` < t + 19 Any purchase in t < ` < t + 19

Purchase key at t 0.123 0.0256

(0.178) (0.0252)

Player FE Yes Yes

Dropout-level FE Yes Yes

Observations 2,438 2,438

Nb. Players 1,170 1,170

*p < 0.05, **p < 0.01, ***p < 0.001

Table 4.A.5: Correlation Between Non-Pay-Gate Purchases and Pay-Gate Purchases
Notes: This table presents evidence regarding the relationship between pay-gate purchases (i.e., purchases of keys to unlock pay-gates) and non-pay-gate purchases (i.e., other

in-app purchases) for the players in Group 40 (i.e., those who play the standard version of the game). Each column presents OLS estimates of a measure of non-pay-gate purchases

on a dummy variable equal to one if the player unlocked pay-gate t by purchasing a key. The first column reports estimation results for the first measure of non-pay-gate purchases:

the number of non-pay-gate purchases made by the player in the nineteen levels between the two subsequent pay-gates t and t+20. The second column instead reports estimation

results for the second measure: a dummy equal to one if the first measure is greater than zero (i.e., the player makes at least one non-pay-gate purchase in these nineteen levels

between pay-gate t and and t + 20). Both regressions include player fixed effects and dropout-level fixed effects (these control for the specific levels at which players drop out of

the game). Because of the player fixed effects, the sample includes the players in Group 40 observed to reach at least two pay-gates with a positive star gap. Standard errors are

clustered at the player level.
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4.B kNN Estimator of Model (4.5.1)

4.B.1 Theory

This description of the kNN procedure we use to estimate each of the two binary choice models in (4.5.1) is

based on Altman (1992).

We observe an i.i.d. sample of data {Xi , Yi} for i = 1, ..., N, where Xi is a vector of explanatory variables

and Yi is a binary dependent variable taking values in {0, 1}. The objective is to estimate the probabilities

P r(Yi = 1|Xi) and P r(Yi = 0|Xi) = 1 − P r(Yi = 1|Xi) associated with explanatory variables Xi without

making parametric assumptions. To this end, we select a neighborhood N(Xi) of points, with cardinality k =

|N(Xi)| around Xi and estimate the sample counter-parts of these probabilities as

ÓP r(Yi = 1|Xi) =

∑

k∈N(Xi ) Yk

k
. (4.B.1)

The neighborhood of points N(Xi) for each observed value of Xi depends on two features. First, the

size of the neighborhood denoted generically by the integer k ∈ [1, N]. Second, the distance between any two

pointsXj andXs , denoted by dj,s , is calculated using a metric. Examples of such metrics include the Euclidean

distance (dj,s = (Xj−Xs)(Xj−Xs)′), the Mahalanobis distance (dj,s = (Xj−Xs)V −1(Xj−Xs)′ where V is

the covariance matrix of the matrix X which stacks the vectors of differences), or more generally the Minkowski

distance (dj,s =
�

∑N

s=1 |Xj −Xs |
p
�1/p

for p ∈ N).23 To make variables comparable, we standardize (by

subtracting the mean and dividing by the standard deviation) each explanatory variable in Xi . This makes our

analysis robust to scale and location distortions.

4.B.2 Implementation

To select a sufficient number of neighbors k and an appropriate metric d , we search through various possible

combinations. In particular, we follow the approach taken in Mitchell (1997) and discussed in Mullin and

Sukthankar (2000) by selecting the combination that provides the smallest 5-fold cross validation loss based on

the Mean Squared Error MSE(d, k) =
∑N

j=1

�

Yi − Ŷj
�

, where Ŷj is the model’s predicted outcome. The final

distance (d), number of neighbors (k), and 10-fold cross validation error rate for equation (4.5.1) are reported

in Tables 4.B.1 and 4.B.2. We observe a 10-fold cross validation error rate between 15% and 30% which

suggests the models are predicting relatively well the underlying probabilities.

Table 4.B.1: kNN Estimation : P ri ,t(sgi ,t > 0|i → t) for Group 40

Observations k Distance Error Rate

Pay-gate 40 7,812 62 Standardized Euclidean 14%

Pay-gate 60 1,433 55 Standardized Euclidean 21%

Pay-gate 80 129 10 Hamming 23%

23In our implementation, other metrics include the correlation distance, the hamming distance, the cosine distance, the Chebychev, the
Jaccard distance, and the Spearman distance.
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Table 4.B.2: kNN Estimation : P ri ,t(i → t + 20) for Group 40

Observations k Distance Error Rate

Pay-gate 40 43,660 256 Minkowski 18%

Pay-gate 60 5,205 1,996 Cityblock 28%

Pay-gate 80 917 374 Correlation 14%

4.B.3 Validation

To validate our kNN estimates, we first compare their accuracy with respect to the underlying data. In Figure

4.B.1, we show that the kNN estimates match, on average, the empirical transition probabilities of equation

(4.5.1). Moreover, as a sanity check, we display in Figure 4.B.2 the relationship across pay-gates between the

estimated probabilities at pay-gate 40 and at pay-gate 60. As expected, players who are more likely to reach

pay-gate 40 are also more likely to reach pay-gate 60 (conditional on unlocking pay-gate 40) and those who are

more likely to have a positive star gap at pay-gate 40 (conditional on reaching pay-gate 40) are also more likely

to have a positive star gap at pay-gate 60 (conditional on reaching pay-gate 60).

Figure 4.B.1: Comparing Observed and kNN Estimates of Probabilities in Model (4.5.1)
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Notes: This figure displays the average probability of reaching the next pay-gate (left panel) and of having a positive star gap conditional on having reached a pay-gate (right

panel). These probabilities are displayed based on the data (in blue) and based on the kNN estimates (in red) (described in the main text around equation (4.5.1) and above in this

Appendix). The sample used is made of all players in Group 40 who have cleared the previous pay-gates.

242



Figure 4.B.2: Binned scatter plot of kNN Estimates of model (4.5.1) across Pay-gates
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Notes: This figure displays the relationship between the probabilities at pay-gate 40 and 60 of reaching the next pay-gate (left panel) and having a positive star gap (right panel).

These binned scatter plots rely on the kNN estimates described in the main text around equation (4.5.1) and above in this Appendix. The sample includes all players in Group 40.
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4.C Demand Estimates

4.C.1 First Step Estimates, Equation (4.5.5)

In this Appendix, we report the first step estimates of equation (4.5.5) and then assess the robustness of our

instrument by considering two alternatives.

Figure 4.C.1 shows that the distribution of the instrument Zi ,t based on equation (4.5.4) has fat tails,

confirming the presence of wide sample variation.

Figure 4.C.1: Histogram of the Instrument (Zi ,t )
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Notes: This histogram displays the dispersion of the instrument Zi ,t (based on equation (4.5.4)) used to estimate equation (4.5.5). The sample includes all observations in which a

player from Group “No Star” faced a pay-gate.

Figure 4.C.2 displays a kink in the probability of a non pay-gate purchase when the player nears the

necessary score cut-off, clarifying the type of variation leveraged by the proposed instrument.
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Figure 4.C.2: Binned Scatter Plot of Purchase Probability on the Instrument
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Notes: This binned scatter plot displays the relationship between the probability of a purchase at a level ` against the instrument Zi ,t . The instrument Zi ,t is constructed on the

basis of equation (4.5.4) but adapted for visual inspection as the ratio between the player’s score and the minimum required to pass the level attempted. On the y-axis, we plot the

probability of making a purchase (outside of a pay-gate) for different values of the instrument on the x-axis. The sample includes all observations of all groups excluding observations

corresponding to pay-gates.

Figure 4.C.3 confirms the intuition of the instrument: the left panel shows that the more often a player

marginally failed a level, the more likely she is to face a lower effective price at the following pay-gate. The right

panel illustrates that this is the result of players being pushed to purchase virtual coins to obtain additional lives

or moves while trying to clear those challenging levels they marginally failed.

Figure 4.C.3: Binned Scatter Plot of Effective Price on the Instrument
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Notes: These binned scatter plots display (left panel) the relationship between the average effective price pi ,t against the instrument Zi ,t and (right panel) the probability of

purchasing virtual coins before reaching the next pay-gate against the instrument Zi ,t . The instrument Zi ,t is constructed on the basis of equation (4.5.4). On the y-axis, we plot

residualized averages (i.e, the average residual from a regression on pay-gate fixed effects) for various values of the instrument on the x-axis. The sample includes all observations

in which players of Group “No Star” faced a pay-gate.

Table 4.C.1 reports the first step estimates of equation (4.5.5), which confirms the intuitive patterns from

Figure 4.C.3. Conditional on controlling for pay-gate fixed effects and player-specific characteristicsXi (including

i ’s ability), there is a negative and highly statistically significant relationship between the number of times a
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player marginally failed a round of the game (Zi ,t ) and the effective price (pi ,t ). In particular, each marginal

failure is found to lower the effective price by 0.457 virtual coins. The strength of the instrument is reflected in

the large F-statistics. All in all, this Table suggests the instrument to be highly informative.

(1) (2)
Effective Price Effective Price

Instrument Zi ,t (δ) -0.329∗∗∗ -0.457∗∗∗

(0.0355) (0.0359)
Pay-gate fixed effects (ζt ) Yes Yes
Player-specific characteristics Xi (γ) No Yes
Observations 44,385 44,385
Num. of players 37,025 37,025
F-statistic 941.9 179.4
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4.C.1: First-Step Estimation, Equation (4.5.5)
Notes: This table reports estimates of equation (4.5.5), a regression of the instrument Zi ,t based on equation (4.5.4) on the effective price pi ,t . In the first column, we control for
pay-gate fixed effects, while in the second we also control for player-specific characteristics Xi (described in Section 4.3.1). The specification in the second column is the one we
use to construct the control function (equation (4.5.6)) for the estimation of mixed logit (4.5.7). The sample includes all observations in which a player in the Group “No Star” faced a
pay-gate: 37,025 different players who faced a total of 44,385 pay-gates. Standard errors are clustered at the player level.

We now repeat the first step estimation of equation (4.5.5) by using two alternatives instruments. We denote

by Z(1)
i ,t

our first alternative instrument, which also counts levels the player marginally cleared:

Z(1)
i ,t

=

t
∑

`=1

1 (0.95× Necessary Score` < Scorei ,` < 1.05× Necessary Score`) (4.C.1)

and by Z(2)
i ,t

the second alternative instrument, which decreases the threshold below which a player is

considered to have marginally failed to pass a given level:

Z(2)
i ,t

=

t
∑

`=1

1 (0.90× Necessary Score` < Scorei ,` < Necessary Score`) . (4.C.2)

Estimation results are reported in Table 4.C.2, which broadly confirm the robustness of the instrument Zi ,t to

alternative specifications. Varying the definition of the instrument does not qualitatively affect the negative and

significant relationship with pi ,t , as also confirmed by the stability of the F-statistic across regressions. The

magnitude of the estimated coefficient halves as a consequence of doubling the length of the interval used for

the alternative instruments compared to Zi ,t .

4.C.2 Second Step Estimates, Equation (4.5.7)

Here we report the second step estimates of mixed logit model (4.5.7) and then assess their robustness using

two alternative instruments described by equations (4.C.1) and (4.C.2) in Table 4.C.4.

Table 4.C.3 presents our main estimates of the parameters in equation (4.5.7). In terms of the utility

of purchasing a key using virtual coins (buyi ,t = 1), we observe that the constant price coefficient α is

negative and statistically significant. The coefficient θ on µi ,t , where θµi ,t is the control function and µi ,t is

estimated using (4.5.5) (see Appendix 4.C.1), is positive and significant (t ≈ 11.28)—confirming the presence

of endogeneity in the effective prices.
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(1) (2) (3)
Effective Price Effective Price Effective Price

Instrument Zi ,t (δ) -0.457∗∗∗

(0.0359)

Alternative instrument Z(1)
i ,t

-0.267∗∗∗

(0.0196)

Alternative instrument Z(2)
i ,t

-0.231∗∗∗

(0.0189)
Pay-gate fixed effects (ζt ) Yes Yes Yes
Player-specific characteristics Xi (γ) Yes Yes Yes
Observations 44,385 44,385 44,385
Num. of players 37,025 37,025 37,025
F-statistic 179.4 181.3 178.8
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4.C.2: Robustness of First Step Estimation, Equation (4.5.5)
Notes: This table reports additional estimation results of equation (4.5.5), using alternative definitions of the instrument as in equations (4.C.1) and (4.C.2). In the first column, we

report estimates using the basic definition of the instrumentZi ,t , while in the second and third we report estimates using the alternative definitions of the instrumentZ(1)
i ,t

andZ(2)
i ,t

.

The sample includes all observations in which a player in the Group “No Star” faced a pay-gate: 37,025 different players who faced a total of 44,385 pay-gates. Standard errors are
clustered at the player level.

We asses the robustness of these estimates using two alternative instruments. These instruments are

described by equations (4.C.1) and (4.C.2) in Appendix 4.C.1. For each of these instruments, we re-estimate

both the first step equation (4.5.5) and the mixed logit model (4.5.7). Table 4.C.4 reports our estimates.

Compared with the estimates presented in Table 4.C.3, we do not observe any change in the signs across

the different specifications for coefficients that are statistically significant. Both the constant associated with the

price coefficient (α) and the control function (θ) are within a 95% confidence interval based on the estimates

of Table 4.C.3 (i.e, respectively [−1.01;−0.68] and [−0.51;−0.36]) suggesting limited differences across

specifications. We conclude that our model estimates are robust to alternative specifications of the instrument

for effective prices.

Table 4.C.3: Second Stage Estimates

Variable Coefficient Standard Error

Purchase (buyi ,t = 1)

Intercepts (δ1)

Constant (δ1) 64,620 6,365

Intercepts Pay-Gate Shifters (δ1,t)

Pay-Gate 60 (δ1,60) -4,680 0,628

Pay-Gate 80 (δ1,80) 4,054 0,132

Demographics (β1)

Australia and New Zealand -0,452 0,043

Southern Asia -1,455 0,170

Southern Europe -0,112 0,088
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Table 4.C.3: Second Stage Estimates

Variable Coefficient Standard Error

Sub Saharan Africa -3,830 0,370

West Asia -3,315 0,372

Eastern Asia 0,258 0,014

Eastern Europe -0,302 0,022

Latin American and Caribbean 2,266 0,189

Northern Africa -5,614 0,536

Northern America -2,489 0,256

Northern Europe -1,976 0,184

Other -4,925 0,568

South Eastern Asia 0,334 0,052

Control Function (θ) 0,440 0,039

Log(GDP per Capita) -1,768 0,179

iOS7 -2,225 0,126

iPad 1,487 0,116

Jailbroken 0,490 0,062

Ability -3,929 0,350

Effective Price Intercept (α)

Constant (α) -0,852 0,083

Effective Price Pay-Gate Shifters

Pay-Gate 60 (α60) 0,036 0,007

Pay-Gate 80 (α80) 0,053 0,008

Effective Price Demographic (π)

Australia and New Zealand 0,017 0,001

Southern Asia 0,019 0,002

Southern Europe 0,004 0,001

Sub Saharan Africa -0,014 0,000

West Asia -0,015 0,001

Eastern Asia -0,007 0,000

Eastern Europe 0,020 0,003

Latin American and Caribbean 0,022 0,002

Northern Africa -0,222 0,017

Northern America 0,007 0,001

Northern Europe 0,005 0,000

Other 0,005 0,000

South Eastern Asia 0,018 0,002

Log(GDP per Capita) 0,020 0,002
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Table 4.C.3: Second Stage Estimates

Variable Coefficient Standard Error

iOS7 -0,002 0,000

iPad -0,001 0,000

Jailbroken -0,018 0,002

Ability 0,006 0,001

Ask a Friend (buyi ,t = 2)

Intercepts (δ2)

Constant (δ2) -43,650 6,696

Intercepts Pay-Gate Shifters (δ2,t)

Pay-Gate 60 (δ2,60) -8,078 1,100

Pay-Gate 80 (δ2,80) -4,662 0,612

Demographics (β2)

Australia and New Zealand -4,307 0,611

Southern Asia -4,406 0,379

Southern Europe -1,531 0,206

Sub Saharan Africa -7,681 0,724

West Asia -3,578 0,456

Eastern Asia -6,415 0,865

Eastern Europe -6,631 0,958

Latin American and Caribbean -1,158 0,108

Northern Africa 0,998 0,312

Northern America -5,635 0,810

Northern Europe 0,334 0,055

Other -3,531 0,281

South Eastern Asia 3,459 0,544

Log(GDP per Capita) 4,458 0,668

iOS7 1,850 0,248

iPad -1,509 0,223

Jailbroken 1,447 0,109

Ability -0,348 0,036

Covariance Matrix

σδ2,i 10,025 1,491

ρδ2,i ,δ1,i 0,432 0,081

σδ1,i 3,241 0,485

ρδ2,i ,αi -0,043 0,004

ρδ1,i ,αi -0,035 0,003

σαi -0,001 0,000
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Notes: This table reports estimation results of equation (4.5.7). Standard errors are calculated using the method by Karaca-Mandic and Train (2003) to account for the two-step

nature of the estimation procedure. The estimation procedure is described in Section 4.5.2 and uses 100 Halton draws per player as detailed by Bhat (2003). Each variable is

defined in Section 4.3.1. The reference region is Western Europe. The sample includes all observations in which a player in the Group “No Star” faced a pay-gate: 37,025 different

players who faced a total of 44,385 pay-gates.
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Table 4.C.4: Robustness of Second Stage Estimates

Alternative Instrument Z(1)
i ,t

Alternative Instrument Z(2)
i ,t

Variable Coefficient Standard Error Coefficient Standard Error

Purchase (buyi ,t = 1)

Intercepts (δ1)

Constant (δ1) 69,907 4,767 57,527 4,329

Intercepts Pay-Gate Shifters (δ1,t)

Pay-Gate 60 (δ1,60) -5,653 0,470 -4,481 0,175

Pay-Gate 80 (δ1,80) 4,268 0,645 4,384 1,058

Demographics (β1)

Australia and New Zealand -0,677 0,055 -0,643 0,119

Southern Asia -1,748 0,109 -1,424 0,094

Southern Europe -0,419 0,098 -0,181 0,059

Sub Saharan Africa -4,257 0,252 -3,464 0,244

West Asia -3,613 0,196 -2,716 0,128

Eastern Asia 0,061 0,035 -0,014 0,047

Eastern Europe -0,312 0,064 -0,319 0,054

Latin American and Caribbean 2,141 0,571 2,024 0,337

Northern Africa -5,905 0,542 -4,822 0,268

Northern America -2,645 0,030 -1,983 0,095

Northern Europe -2,168 0,106 -1,809 0,101

Other -5,296 0,645 -4,658 0,241

South Eastern Asia 0,277 0,192 0,223 0,055

Control Function (θ) 0,483 0,060 0,418 0,047

Log(GDP per Capita) -1,746 0,281 -1,406 0,055

iOS7 -2,452 0,239 -2,209 0,344

iPad 1,536 0,197 1,321 0,079

Jailbroken 0,601 0,070 0,513 0,037

Ability -4,324 0,614 -3,644 0,351

Effective Price Intercept (α)

Constant (α) -0,913 0,006 -0,742 0,042

Effective Price Pay-Gate Shifters

Pay-Gate 60 (α60) 0,045 0,001 0,030 0,005

Pay-Gate 80 (α80) 0,058 0,001 0,038 0,007

Effective Price Demographic (π)

Australia and New Zealand 0,021 0,001 0,018 0,001

Southern Asia 0,019 0,011 0,011 0,001

Southern Europe 0,004 0,004 0,002 0,002

Sub Saharan Africa -0,012 0,018 -0,012 0,003
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Table 4.C.4: Robustness of Second Stage Estimates

Alternative Instrument Z(1)
i ,t

Alternative Instrument Z(2)
i ,t

Variable Coefficient Standard Error Coefficient Standard Error

West Asia -0,015 0,005 -0,013 0,002

Eastern Asia -0,006 0,010 -0,005 0,001

Eastern Europe 0,025 0,000 0,019 0,000

Latin American and Caribbean 0,025 0,005 0,017 0,001

Northern Africa -0,297 2599 -0,623 5660246

Northern America 0,009 0,002 0,009 0,000

Northern Europe 0,006 0,001 0,005 0,001

Other 0,010 0,005 0,003 0,004

South Eastern Asia 0,017 0,003 0,011 0,001

Log(GDP per Capita) 0,019 0,010 0,015 0,000

iOS7 -0,003 0,000 -0,003 0,000

iPad 0,000 0,001 0,000 0,001

Jailbroken -0,017 0,002 -0,015 0,001

Ability 0,007 0,002 0,004 0,000

Ask a Friend (buyi ,t = 2)

Intercepts (δ2)

Constant (δ2) -65,547 28,772 -51,045 7,597

Intercepts Pay-Gate Shifters (δ2,t)

Pay-Gate 60 (δ2,60) -10,966 2,887 -8,690 0,982

Pay-Gate 80 (δ2,80) -5,752 0,919 -4,531 0,219

Demographics (β2)

Australia and New Zealand -6,424 2,581 -5,020 0,879

Southern Asia -5,733 2,715 -4,081 3,227

Southern Europe -2,080 0,645 -1,700 0,268

Sub Saharan Africa -10,525 5,170 -9,185 5,016

West Asia -5,090 1,872 -3,992 0,572

Eastern Asia -8,789 2,244 -7,007 0,943

Eastern Europe -9,015 1,214 -7,260 0,814

Latin American and Caribbean -1,515 0,203 -1,301 0,335

Northern Africa 1,655 0,567 0,678 1,019

Northern America -8,222 3,084 -6,457 1,013

Northern Europe 0,433 0,095 0,315 0,032

Other -4,723 1,013 -3,657 0,426

South Eastern Asia 5,072 1,795 4,104 0,617

Log(GDP per Capita) 6,554 2,743 5,109 0,724

iOS7 2,622 0,876 2,114 0,343
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Table 4.C.4: Robustness of Second Stage Estimates

Alternative Instrument Z(1)
i ,t

Alternative Instrument Z(2)
i ,t

Variable Coefficient Standard Error Coefficient Standard Error

iPad -2,234 0,858 -1,752 0,318

Jailbroken 1,459 0,672 1,501 0,682

Ability -0,469 0,176 -0,377 0,078

Covariance Matrix

σδ2,i 15,174 5,826 11,948 2,230

ρδ2,i ,δ1,i 1,756 0,103 1,639 0,084

σδ1,i -3,346 1,741 1,719 0,883

ρδ2,i ,αi -0,061 0,004 -0,053 0,013

ρδ1,i ,αi 0,029 0,026 -0,013 0,024

σαi 0,001 0,003 0,000 0,007

Notes: This table reports estimation results of equation (4.5.7). Standard errors are calculated using the method by Karaca-Mandic and Train (2003) to account for the two-step

nature of the estimation procedure. The estimation procedure is described in Section 4.5.2 and uses 100 Halton draws per player as detailed by Bhat (2003). Each variable is

defined in Section 4.3.1. The reference region is Western Europe. The sample includes all observations in which a player in the Group “No Star” faced a pay-gate: 37,025 different

players who faced a total of 44,385 pay-gates.
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4.D Price Elasticities and Counterfactual Simulations

4.D.1 Formulae

In this Appendix, we detail the formulae used to compute all our model predictions and simulations.

Price Elasticity of Demand. For player i at pay-gate t and given ηi , we refer to the multinomial logit

formula as:

MNLi ,t(ηi) =
exp(V1,i ,t(ηi))

1 + exp(V1,i ,t(ηi)) + exp(V2,i ,t(ηi))
,

where, as described in Section 4.5.2, V1,i ,t(ηi) = δ1+δ1,t +δ1,i +Xiβ1−(α+αt +αi +Xiπ)pi ,t +θµi ,t

includes control function θµi ,t , based on (4.5.4), (4.5.5), and (4.5.6), to account for the potential endogeneity

of pi ,t , and V2,i ,t(ηi) = δ2 + δ2,t + δ2,i + Xiβ2. Then, mixed logit model (4.5.7) implies the following price

elasticity of demand:

pi ,t

P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t)

∂P r i ,t(buyi ,t = 1|locki ,t = 1, pi ,t)

∂pi ,t
=

−pi ,t(α+ αt +Xiπ)
∫

MNLi ,t(ηi)φ(ηi |Σ)dηi

∫

αiMNLi ,t(ηi) (1− MNLi ,t(ηi))φ(ηi |Σ)dηi ,

(4.D.1)

where φ(·|Σ) is the normal density of ηi in (4.5.3) with Σ denoting its variance-covariance matrix.

Per-Player Expected Revenue. Here we derive the formulae we use to compute the per-player expected

revenue at level 0 in all our simulations with the exception of Figure 4.13 (which we instead discuss in the next

sub-section). We calculate the per-player expected revenue at level 0 from pay-gate 40 (and none of the next

pay-gates) as:

Ei ,0[Ri ,40(pi ,40)] = P r i ,0(i → 40, sgi ,40 > 0)× P r i ,40(buyi ,40 = 1|locki ,40 = 1, pi ,40)× pi ,40

where P r i ,0(i → 40, sgi ,40 > 0) is i ’s probability of reaching pay-gate 40 with a positive star gap given that

the player is at the beginning of the game, at level 0. This can be simply expressed in terms of the estimated

probabilities in equation (4.5.1) as P r i ,0(i → 40, sgi ,40 > 0) = P r i ,40(i → 40, sgi ,40 > 0), given that

t = 40 is the first pay-gate i can encounter in the game. Per-player expected revenue at level 0 from pay-gate

60 (and none of the next pay-gates) is equal to:

Ei ,0[Ri ,60(pi ,40, pi ,60)] = P r i ,0(i → 60, sgi ,60 > 0)× P r i ,60(buyi ,60 = 1|locki ,60 = 1, pi ,60)× pi ,60.

where P r i ,0(i → 60, sgi ,60 > 0) is i ’s probability of reaching pay-gate 60 with a positive star gap given that

she is at level 0. We can again express this in terms of the estimated probabilities in models (4.5.1) and (4.5.7)

as:
P r i ,0(i → 60, sgi ,60 > 0) = P r i ,60(i → 60, sgi ,60 > 0)× P r i ,40(i → 40)×

�

P r i ,40(sgi ,40 > 0|i → 40)× (1− P r i ,40(buyi ,40 = 0|locki ,40 = 1, pi ,40) + (1− P r i ,40(sgi ,40 > 0|i → 40))
�

,

where P r i ,60(i → 60, sgi ,60 > 0) denotes i ’s probability of reaching pay-gate t = 60 with a positive star

gap given that she unlocked pay-gate t = 40, and so on for the other probabilities. Similarly, we can write the
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per-player expected revenue at level 0 from pay-gate 80 as:

Ei ,0[Ri ,80(pi ,40, pi ,60, pi ,80)] = P r i ,0(i → 80, sgi ,80 > 0)× P r i ,80(buyi ,80 = 1|locki ,80 = 1, pi ,80)× pi ,80.

where P r i ,0(i → 80, sgi ,80 > 0) is i ’s probability of reaching pay-gate 80 with a positive star gap given that

she is at level 0. This can be expressed in terms of the estimated probabilities in models (4.5.1) and (4.5.7) as:
P r i ,0(i → 80, sgi ,80 > 0) = P r i ,80(i → 80, sgi ,80 > 0)×

P r i ,40(i → 40)×
�

P r i ,40(sgi ,40 > 0|i → 40)× (1− P r i ,40(buyi ,40 = 0|locki ,40 = 1, pi ,40) + (1− P r i ,40(sgi ,40 > 0|i → 40))
�

×

P r i ,60(i → 60)×
�

P r i ,60(sgi ,60 > 0|i → 60)× (1− P r i ,60(buyi ,60 = 0|locki ,60 = 1, pi ,60) + (1− P r i ,60(sgi ,60 > 0|i → 60))
�

.

Finally, we calculate the per-player expected revenue from player i at level 0 (from all pay-gates) given

effective prices pi = (pi ,40, pi ,60, pi ,80) as:

Ri ,0(pi) = Ei ,0[Ri ,40(pi) + Ri ,60(pi) + Ri ,80(pi)]. (4.D.2)

This is the central expression at the basis of our counterfactual simulations, i.e. what the firm maximizes

when choosing effective prices, and the main focus of the simulation method described in Appendix 4.D.2.

Revenue Decomposition in Figure 4.13. Here we derive the formulae used in Figure 4.13. While the

computation of P r i ,40(buyi ,40 = 1|locki ,40 = 1, pi ,40)×pi ,40 is immediate from the estimates of model (4.5.7),

the computation of (1−P r i ,40(buyi ,40 = 0|locki ,40 = 1, pi ,40))×Ri ,60(pi ,60|pi ,80) requires the calculation of

Ri ,60(pi ,60|pi ,80). This in turn can be expressed as a function of the probabilities estimated in models (4.5.1)

and (4.5.7) as:
Ri ,60(pi ,60|pi ,80) = P r i ,40(i → 60, sgi ,60 > 0)× P r i ,60(buyi ,60 = 1|locki ,60 = 1, pi ,60)× pi ,60

+P r i ,60(i → 60)×
�

P r i ,60(sgi ,60 > 0|i → 60)× (1− P r i ,60(buyi ,60 = 0|locki ,60 = 1, pi ,60) + (1− P r i ,60(sgi ,60 > 0|i → 60))
�

×P r i ,80(i → 80, sgi ,80 > 0)P r i ,80(buyi ,80 = 1|locki ,80 = 1, pi ,80)× pi ,80,

Per-Player Consumer Surplus. Here we derive the formulae we use to compute changes in per-player

consumer surplus at level 0 in all our simulations. The derivations follow closely those for the per-player

expected revenue above and here we rely on some of the objects defined there. We calculate the per-player

consumer surplus at level 0 from pay-gate 40 (and none of the next pay-gates) as:

Ei ,0[CSi ,40(pi ,40)] = P r i ,0(i → 40, sgi ,40 > 0)× CSi ,40(locki ,40 = 1|Xi , pi ,40).

Based on standard formulae for mixed logit models (Train, 2009), the per-player consumer surplus at level 40

from pay-gate 40 is given by:

CSi ,40(locki ,40 = 1|Xi , pi ,40) = Ci ,40 + Ei ,40
�

ln(1 + exp(V1,i ,40(ηi)) + exp(V2,i ,40(ηi)))

(α+ α40 + αi +Xiπ)

�

where Ci ,40 is an unknown player-specific constant. Similarly, per-player consumer surplus at level 0 from

pay-gate 60 (and none of the next pay-gates) is equal to:

Ei ,0[CSi ,60(pi ,40, pi ,60)] = P r i ,0(i → 60, sgi ,60 > 0)× CSi ,60(locki ,60 = 1|Xi , pi ,60),

where

CSi ,60(locki ,60 = 1|Xi , pi ,60) = Ci ,60 + Ei ,60
�

ln(1 + exp(V1,i ,60(ηi)) + exp(V2,i ,60(ηi)))

(α+ α60 + αi +Xiπ)

�

.

In turn, we can write the per-player consumer surplus at level 0 from pay-gate 80 as:

Ei ,0[CSi ,80(pi ,40, pi ,60, pi ,80)] = P r i ,0(i → 80, sgi ,80 > 0)× CSi ,80(locki ,80 = 1|Xi , pi ,80).
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where

CSi ,80(locki ,80 = 1|Xi , pi ,80) = Ci ,80 + Ei ,80
�

ln(1 + exp(V1,i ,80(ηi)) + exp(V2,i ,80(ηi)))

(α+ α80 + αi +Xiπ)

�

.

We calculate the per-player consumer surplus at level 0 (from all pay-gates) given effective prices pi =

(pi ,40, pi ,60, pi ,80) as:

CSi ,0(pi) = Ei ,0[CSi ,40(pi ,40) + CSi ,60(pi ,60) + CSi ,80(pi ,80)]. (4.D.3)

Finally, for any given two vectors of effective prices pi and p′
i
, we compute the associated change in per-

player consumer surplus simply as:

∆CSi ,0(pi , p
′
i) = CSi ,0(pi)− CSi ,0(p′i).

Note that this difference at the player-level has the important advantage of removing, for each i , the unknown

constants Ci ,40, Ci ,60, and Ci ,80.

4.D.2 Simulation Method

Here we describe our simulation procedure both in the case of the observed pricing strategy chosen by the firm

and in the case of the counterfactual pricing strategies we investigate. In general, to simulate the model, one

needs to specify each player’s effective price pi ,t and corresponding residual µi ,t from equation (4.5.5) at each

possible pay-gate t .

Observed Pricing Strategy. Even in the case of the observed pricing strategy, because some players may

have dropped out before reaching pay-gate 80, we cannot back out (pi ,t , µi ,t) directly from the data for all

players and pay-gates. To address this missing data problem, we follow the approach by Jacobi and Sovinsky

(2016) and treat the unobserved (pi ,t , µi ,t) as random effects to be integrated over their empirical distribution.

We are interested in simulating the firm’s expected revenue (4.D.3) from player i before they start to play

(at t = 0) for any given vector of effective prices pi = (pi ,40, pi ,60, pi ,80) and corresponding residuals from

equation (4.5.5), µi = (µi ,40, µi ,60, µi ,80). To stress the dependence on both pi and µi , due to the control

function in mixed logit model (4.5.7), we extend the notation of per-player expected revenue (4.D.3) to explicitly

account also for µi , Ri ,0(pi , µi). For those players who did not reach pay-gate t , we cannot directly back out

(pi ,t , µi ,t) but assume that it follows the same empirical distribution F̂p,µ,t as among those players observed

to reach pay-gate t . In particular, we compute the joint distribution F̂p,µ,t as F̂p,t F̂µ|p,t , the product of the

unconditional distribution of pi ,t and the conditional distribution of µi ,t given pi ,t . We then approximate the

per-player expected revenue

EF̂p,µ [Ri ,0(pi , µi)] =

∫

Ri ,0(pi , µi)dF̂p,µ,40(pi ,40, µi ,40)dF̂p,µ,60(pi ,60, µi ,60)dF̂p,µ,80(pi ,80, µi ,80)

(4.D.4)

by taking 10,000 draws of (pd , µd) from F̂p,µ = F̂p,µ,40F̂p,µ,60F̂p,µ,80 for each i and computing the average:

ÊF̂p,µ [Ri ,0(pi , µi)] =
1

10, 000
×
10,000
∑

d=1

Ri ,0(pd , µd), (4.D.5)

where Ri ,0(pi , µi) is derived above in Appendix 4.D.1, equation (4.D.3).

256



Counterfactual Pricing Strategies. In each of the counterfactual pricing strategies described in Section 4.6.2

and detailed below, the firm chooses effective prices so to maximize the sum of per-player expected revenue

Ri ,0(pi , µi) in equation (4.D.3) (see Appendix 4.D.1) across players subject to some constraints. To simulate

these counterfactuals, we assume that µi is also unobserved to firm and that its distribution is invariant to the

specific pricing strategy used. More precisely, we assume that µi ,t follows the same empirical distribution F̂µ,t

as among those players observed to reach pay-gate t and that the firm uses F̂µ,t to form expectations with

respect to µi ,t . We then approximate the per-player expected revenue for a given vector of effective prices pi

EF̂µ [Ri ,0(pi , µi)] =

∫

Ri ,0(pi , µi)dF̂µ,40(µi ,40)dF̂µ,60(µi ,60)dF̂µ,80(µi ,80) (4.D.6)

by taking 10,000 draws of µd from F̂µ = F̂µ,40F̂µ,60F̂µ,80 for each i and computing the average:

ÊF̂µ [Ri ,0(pi , µi)] =
1

10, 000
×
10,000
∑

d=1

Ri ,0(pi , µd). (4.D.7)

Alternative Pricing Strategies Considered. Here we detail the optimization problem of the firm in the

simulation of each of the counterfactual pricing strategies described in Section 4.6.2. All counterfactuals are

computed for the 44, 660 players in Group 40 (those who play the standard version of the game) over pay-gates

40, 60, and 80.

� Uniform (Optimal) Static Pricing:

(p∗, p∗, p∗) = arg max
p

44,660
∑

i=1

ÊF̂µ [Ri ,0(p, p, p, µi)] .

� Uniform (Optimal) Dynamic Pricing:

(p∗40, p
∗
60, p

∗
80) = arg max

p40,p60,p80

44,660
∑

i=1

ÊF̂µ [Ri ,0(p40, p60, p80, µi)] .

� GDP per Capita Static Pricing for players in ventile G = 1, ..., 20 of GDP per capita:

(p∗G , p
∗
G , p

∗
G) = arg max

pG

∑

i∈G
ÊF̂µ [Ri ,0(pG , pG , pG , µi)] ,

where each ventile G gathers 5% of players in terms of the observed distribution of GDP per capita.

� GDP per Capita Dynamic Pricing for players in ventile G = 1, ..., 20 of GDP per capita:

(p∗G,40, p
∗
G,60, p

∗
G,80) = arg max

pG,40,pG,60,pG,80

∑

i∈G
ÊF̂µ [Ri ,0(pG,40, pG,60, pG,80, µi)] ,

where each ventile G gathers 5% of players in terms of the observed distribution of GDP per capita.

� Ability Static Pricing for players in ventile A = 1, ..., 20 of ability:

(p∗A, p
∗
A, p

∗
A) = arg max

pA

∑

i∈A
ÊF̂µ [Ri ,0(pA, pA, pA, µi)] ,

where each ventile A gathers 5% of players in terms of the observed distribution of ability.

� Ability Dynamic Pricing for players in ventile A = 1, ..., 20 of ability:

(p∗A,40, p
∗
A,60, p

∗
A,80) = arg max

pA,40,pA,60,pA,80

∑

i∈A
ÊF̂µ [Ri ,0(pA,40, pA,60, pA,80, µi)] ,

where each ventile A gathers 5% of players in terms of the observed distribution of ability.
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� Individual Static Pricing for player i = 1, ..., 43660:

(q∗i , q
∗
i , q

∗
i ) = arg max

qi
ÊF̂µ [Ri ,0(qi , qi , qi , µi)] .

� Individual Dynamic Pricing for player i = 1, ..., 43660:

p∗i = arg max
pi
ÊF̂µ [Ri ,0(pi , µi)] .

For simplicity, we solve each of these optimization problems using a simple grid search over effective prices.

For each effective price the firm can choose, we specify a grid with intervals of 5 virtual coins going from

0 to 100, [0, 5, 10, ..., 95, 100]. For example, in Uniform (Optimal) Static Pricing this results in 21 possible

combinations of effective prices, while in Individual Dynamic Pricing in 213 = 9, 261 combinations for each

player i = 1, ..., 43660. We then evaluate the per-player expected revenue for each combination of effective

prices and player and solve the above optimization problems. We do not extend the support of the optimizations

above 100 virtual coins as we never found any optimal effective price to be larger than 70 virtual coins (which

is also the maximum value we observe in the data). The step size of 5 virtual coins was selected as a trade-off

between precision and required computational time.
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4.E Model Validation

Our simulation exercises rely on the estimated model’s ability to predict player behavior under counterfactual

pricing strategies. In this section, we investigate the predictive power of the estimated model in terms of a

player’s expected revenue. As mentioned at the beginning of Section 4.6, while we relied on the players in

Group 40 for the estimation of model (4.5.1) and on those in No Stars for the estimation of model (4.5.7), we

test the model’s predictive power and perform all counterfactual simulations only with respect to the players in

Group 40. Players in Group 40 face the default design of the game, which corresponds to our discrete choice

model in equation (4.5.1).

As can be seen in equation (4.4.3), to compute the per-player expected revenue at pay-gate t , we need to

know the effective prices they would face at t and later pay-gates. However, for those players that drop out of the

game before pay-gate t , we do not observe these effective prices. We address this “missing data” problem as

in Jacobi and Sovinsky (2016) and treat the effective prices as another dimension of unobserved heterogeneity

to be integrated over when calculating expectations. We assume the true t-specific distribution of pi ,t across

players, Ft(pi ,t), can be consistently estimated as the empirical distribution of the observed effective prices

at t , F̂t(pi ,t), and then integrate per-player expected revenue over F̂t(pi ,t) for each i . In Appendix 4.D.1 we

report the formulae used to compute per-player expected revenue (used also in the counterfactual simulations)

and in Appendix 4.D.2 we describe the details of this simulation procedure (and of the procedure used for the

counterfactual simulations). Below we report our validation results comparing the per-player average observed

revenue with its counterpart as predicted by the estimated model.

The estimated model is very good at predicting the average observed per-player revenue of $0.011 (from

purchases of keys to unlock pay-gates), delivering a t-test as small as −0.09249. Note that this result is not

mechanical, in that the estimated parameters are not chosen to minimize the distance between observed and

predicted revenue, but rather the probabilities of models (4.5.1) and (4.5.7). Importantly for the investigation

of price discrimination, Figures 4.E.1 and 4.E.2 illustrate the accuracy of the estimated model in predicting

revenues for specific profiles of the observed player-specific characteristics Xi .

Figure 4.E.1 compares the total revenue by geographical region (in $) as observed in the data against

that as predicted by the estimated model across different geographical regions. We calculate observed total

revenue as the sum over 43,660 players in Group 40 of the revenue collected at pay-gates 40, 60, and 80

in each geographical region during the 15 days of our sample in 2013. The figure confirms the presence of

geographical heterogeneity in total revenue and that the estimated model is good at capturing it. In general, the

geographical regions for which more revenue is observed (and so for which we have more observations) are

also those for which the estimated model delivers more accurate predictions.
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Figure 4.E.1: Observed Against Simulated Total Revenue by Region
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Notes: This figure compares the total revenue by geographical region (in $) as observed in the data against that as predicted by the estimated model across different geographical

regions. We calculate the observed total revenue as the sum over 43,660 players in Group 40 of the revenue collected at pay-gates 40, 60, and 80 in each geographical region

during the 15 days of our sample in 2013. The expected total revenue as predicted by our estimated model is based on the simulation procedure detailed in Appendices 4.D.1 and

4.D.2. The geographical regions are described in Section 4.3.1 and Appendix 4.G.

Figure 4.E.2 compares the total revenue (in $) as observed in the data against that as predicted by the

estimated model across players with different ability (left panel) and from countries with different GDP per

capita (right panel). In particular, the left panel reports results by deciles (D1 being the lowest and D10 the

highest decile) of ability while the right panel by deciles of log(GDP per capita). We calculate observed total

revenue as the sum over 43,660 players in Group 40 of the revenue collected at pay-gates 40, 60, and 80 in

each decile during the 15 days of our sample in 2013. The left panel shows that, when it comes to ability, the

estimated model does a good job at predicting total revenue for 50% of players, those with ability between the

third and the seventh decile. However, it tends to under-predict for most able players (the top three deciles)

and to over-predict for the least able ones (the bottom two deciles). The right panel of Figure 4.E.2 confirms

that, with the exception of the bottom two deciles of poorest countries, the estimated model is overall good at

predicting total revenue in terms of players’ log(GDP per capita). As we discuss at the end of Section 4.6 in the

main text, in robustness checks reported in Appendix 4.F.1, we account for these predictive biases by limiting

our counterfactual simulations to the sub-sample of players in Group 40 for whom the estimated model has

better predictive power (deciles D3-D7 of ability and D3-D10 of GDP per capita).
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Figure 4.E.2: Observed Against Predicted Revenue by Ability and GDP per Capita
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Notes: These figures compare the total revenue (in $) as observed in the data against that as predicted by the estimated model across players with different ability (left panel) and

from countries with different GDP per capita (right panel). In particular, the left panel reports results by deciles (D1 is the lowest decile and D10 the highest) of players’ ability while

the right panel by deciles of log(GDP per capita). Ability and log(GDP per capita) are described in Section 4.3.1. We calculate the observed total revenue as the sum over 43,660

players in Group 40 of the revenue collected at pay-gates 40, 60, and 80 in each decile during the 15 days of our sample in 2013. The expected total revenue as predicted by our

estimated model is based on the simulation procedure detailed in Appendices 4.D.1 and 4.D.2.
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4.F Additional Simulation Results
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Figure 4.F.1: Distribution of Effective Prices in Dynamic Pricing Strategies
Notes: This figure shows the simulated distribution of effective prices (in virtual coins, where $1 ≈ 70 virtual coins) across players within each pay-gate for the “dynamic” pricing

strategies considered in the right panel of Table 4.7. All pricing strategies are decreibed in detail in Appendix 4.D.2. Dynamic pricing strategies are those in which effective prices

are allowed to change among pay-gates. All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our

sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.
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Notes: This figure shows the simulated distribution of per-player expected revenue (in $) across players for the “dynamic” pricing strategies considered in the right panel of Table 4.7.

All pricing strategies are described in detail in Appendix 4.D.2. Dynamic pricing strategies are those in which effective prices are allowed to change among pay-gates. All simulations

are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the formulae and simulation

procedures used can be found in Appendices 4.D.1 and 4.D.2.

Figure 4.F.2: Distribution of Per-Player Expected Revenue, Dynamic Pricing Strategies
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Figure 4.F.3: ∆ Per-Player Expected Revenue, Static versus Observed Pricing
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Notes: These binscatters display the average gains in per-player expected revenue (in $) of engaging in the “static” pricing strategies considered in the left panel of Table 4.7 as

opposed to the observed pricing. For each static pricing strategy, we construct 20 groups of players based on players’ ability (left panel) and log(GDP per capita) (right panel) and

plot the average group-specific difference in per-player expected revenue on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 4.3.1. All pricing

strategies are briefly described in the text and explained in more detail in Appendix 4.D.2. Static pricing strategies are those in which effective prices do not change among pay-gates.

All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the formulae

and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.
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Figure 4.F.4: ∆ Per-Player Expected Revenue, Dynamic versus Observed Pricing
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Notes: These binscatters display the average gains in per-player expected revenue (in $) of engaging in the “dynamic” pricing strategies considered in the right panel of Table 4.7 as

opposed to the observed pricing. For each static pricing strategy, we construct 20 groups of players based on players’ ability (left panel) and log(GDP per capita) (right panel) and

plot the average group-specific difference in per-player expected revenue on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 4.3.1. All pricing

strategies are described in detail in Appendix 4.D.2. Dynamic pricing strategies are those in which effective prices are allowed to change among pay-gates. All simulations are based

on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the formulae and simulation procedures

used can be found in Appendices 4.D.1 and 4.D.2.
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Figure 4.F.5: ∆ Per-Player Expected Revenue, Dynamic versus Static Pricing
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Notes: These binscatters display the average gains in per-player expected revenue (in $) of engaging in the “dynamic” versus the “static” versions of each of the pricing strategies

considered in Table 4.7. For each pricing strategy, we construct 20 groups of players based on players’ ability (left panel) and log(GDP per capita) (right panel) and plot the average

group-specific difference in per-player expected revenue on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 4.3.1. All pricing strategies are

briefly described in the text and explained in more detail in Appendix 4.D.2. Static pricing strategies are those in which effective prices do not change among pay-gates. Dynamic

pricing strategies are instead those in which effective prices are also allowed to change among pay-gates. All simulations are based on our estimates of models (4.5.1) and (4.5.7)

and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices 4.D.1 and

4.D.2.
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Notes: This figure shows the simulated distribution of changes in per-player consumer surplus (in $) across players for the “dynamic” pricing strategies considered in the right panel

of Table 4.8. All pricing strategies are briefly described in the text and explained in more detail in Appendix 4.D.2. Dynamic pricing strategies are those in which effective prices

change among pay-gates. All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013.

Details of the formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.

Figure 4.F.6: Distribution of ∆ Per-Player Consumer Surplus, Dynamic versus Observed Pricing
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Notes: This figure shows the simulated distribution of changes in per-player consumer surplus (in $) across players of engaging in the “dynamic” versus the “static” versions of each

of the pricing strategies considered in Table 4.8. All pricing strategies are briefly described in the text and explained in more detail in Appendix 4.D.2. Dynamic pricing strategies are

those in which effective prices change among pay-gates. Static pricing strategies are those in which effective prices do not change among pay-gates. All simulations are based on

our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the formulae and simulation procedures used

can be found in Appendices 4.D.1 and 4.D.2.

Figure 4.F.7: Distribution of ∆ Per-Player Consumer Surplus, Dynamic versus Static Pricing
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Figure 4.F.8: ∆ Per-Player Consumer Surplus, Static versus Observed Pricing
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Notes: These binscatters display the average change in per-player consumer surplus (in $) of engaging in the “static” pricing strategies considered in the left panel of Table 4.8 as

opposed to the observed pricing. For each static pricing strategy, we construct 20 groups of players based on players’ ability (left panel) and log(GDP per capita) (right panel) and

plot the average group-specific difference in per-player expected consumer surplus on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 4.3.1. All

pricing strategies are briefly described in the text and explained in more detail in Appendix 4.D.2. Static pricing strategies are those in which effective prices do not change among

pay-gates. All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the

formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.
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Figure 4.F.9: ∆ Per-Player Consumer Surplus, Dynamic versus Observed Pricing
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Notes: These binscatters display the average change in per-player consumer surplus (in $) of engaging in the “dynamic” pricing strategies considered in the right panel of Table

4.8 as opposed to the observed pricing. For each dynamic pricing strategy, we construct 20 groups of players based on players’ ability (left panel) and log(GDP per capita) (right

panel) and plot the average group-specific difference in per-player consumer surplus on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 4.3.1.

All pricing strategies are briefly described in the text and explained in more detail in Appendix 4.D.2. Dynamic pricing strategies are those in which effective prices change among

pay-gates. All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the

formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.

270



Figure 4.F.10: ∆ Per-Player Consumer Surplus, Dynamic versus Static Pricing
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Notes: These binscatters display the average change in per-player consumer surplus (in $) of engaging in the “dynamic” versus the “static” versions of each of the pricing strategies

considered in Table 4.8. For each pricing strategy, we construct 20 groups of players based on players’ ability (left panel) and log(GDP per capita) (right panel) and plot the average

group-specific difference in per-player consumer surplus on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 4.3.1. All pricing strategies are

briefly described in the text and explained in more detail in Appendix 4.D.2. Dynamic pricing strategies are those in which effective prices change among pay-gates. Static pricing

strategies are those in which effective prices do not change among pay-gates. All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in

Group 40 during the 15 days of our sample in 2013. Details of the formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.

271



-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
0

0.05

0.1
Uniform (Optimal)

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
0

0.05

0.1
GDP per Capita

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
0

0.05

0.1
Ability

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
0

0.05

0.1
Individual Level

Notes: This figure shows the simulated distribution of changes in per-player total surplus (in $) across players for the “dynamic” pricing strategies considered in the right panel of

Table 4.8 as opposed to the observed pricing. Changes in per-player total surplus are computed as the sum between changes in per-player expected revenues and in per-player

consumer surplus. All pricing strategies are briefly described in the text and explained in more detail in Appendix 4.D.2. Dynamic pricing strategies are those in which effective prices

change among pay-gates. All simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013.

Details of the formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.

Figure 4.F.11: Distribution of ∆ Per-Player Total Surplus, Dynamic versus Observed Pricing
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Figure 4.F.12: ∆ in Per-Player Total Surplus, Static versus Observed Pricing
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Notes: These binscatters display the average gains in per-player total surplus (in $) of engaging in the “static” pricing strategies considered in the left panel of Table 4.8 as opposed

to the observed pricing. For each static pricing strategy, we construct 20 groups of players based on players’ ability (left panel) and log(GDP per capita) (right panel) and plot the

average group-specific difference in per-player expected revenue on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 4.3.1. All pricing strategies

are briefly described in the text and explained in more detail in Appendix 4.D.2. Static pricing strategies are those in which effective prices do not change among pay-gates. All

simulations are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the formulae and

simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.
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Figure 4.F.13: ∆ in Per-Player Total Surplus, Dynamic versus Observed Pricing
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Notes: These binscatters display the average gains in per-player total surplus (in $) of engaging in the “dynamic” pricing strategies considered in the right panel of Table 4.8 as

opposed to the observed pricing. For each dynamic pricing strategy, we construct 20 groups of players based on players’ ability (left panel) and log(GDP per capita) (right panel)

and plot the average group-specific difference in per-player expected revenue on the y-axis. The definitions of ability and log(GDP per capita) are provided in Section 4.3.1. All

pricing strategies are described in detail in Appendix 4.D.2. Dynamic pricing strategies are those in which effective prices are allowed to change among pay-gates. All simulations

are based on our estimates of models (4.5.1) and (4.5.7) and on the 43,660 players in Group 40 during the 15 days of our sample in 2013. Details of the formulae and simulation

procedures used can be found in Appendices 4.D.1 and 4.D.2.

4.F.1 Robustness Checks

In this Appendix, we repeat all counterfactual simulations limiting the sample of players in Group 40 to those

for whom the estimated model displays the best predictive power in terms of expected revenue, namely the

players with ability in deciles D3-D7 and GDP per capita in deciles D3-D10. We do this in order to account

for the predictive biases of our estimated model as documented in Appendix 4.E. Overall, these robustness

checks show no qualitative difference in any of our results and suggest that the predictive biases documented

in Appendix 4.E do not play a crucial role in our simulations exercises.
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Table 4.F.1: Robustness Check : Simulation of Effective Prices and Expected Revenue with Restricted Sample

Static Pricing Dynamic Pricing

Pricing Strategy Effective Price Per-Player Revenue ($) Effective Price Per-Player Revenue ($)

mean s.d. mean s.d. % mean s.d. mean s.d. %
Observed 35,566 34,529 0,014 0,120 - - - - - -
Uniform (70) 70,000 - 0,028 0,008 98.1% - - - - -
Uniform (Optimal) 45,000 - 0,056 0,020 292.4% 10,000 2,450 0,057 0,021 302.3%
GDP per Capita 44,385 1,642 0,056 0,020 292.2% 51,451 11,839 0,058 0,021 304.8%
Ability 45,001 0,075 0,056 0,020 292.4% 53,323 12,059 0,058 0,021 305.1%
Individual Level Pricing 45,603 3,086 0,056 0,020 294.1% 53,418 12,073 0,058 0,021 308.1%

Notes: This table summarizes our counterfactual simulation results in terms of effective prices and per-player expected revenues using a restricted sample. Each row refers to
a pricing strategy and summarizes the simulated effective prices chosen by the firm (in virtual coins, where $1 ≈ 70 virtual coins) and the corresponding per-player expected
revenues (in $). The columns denoted by “%” report the percentage increase in per-player expected revenue implied by the row pricing strategy with respect to the observed pricing
chosen by the firm (i.e., 0% means same average as the observed pricing). All pricing strategies are briefly described in the text and explained in more detail in Appendix 4.D.2.
The left panel summarizes results for the case in which effective prices do not change among pay-gates (static pricing). The right panel instead summarizes results for the case in
which effective prices are allowed to change also among pay-gates (dynamic pricing). All simulations are based on our estimates of models (4.5.1) and (4.5.7). The sample excludes
players in Group 40 who are below the 2nd decile in terms of GDP per Capita, below the third decile in terms of ability, and above the seventh decile in ability. There are 17,719
remaining players. Details of the formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.

Table 4.F.2: Robustness Check : Simulation of Consumer Surplus and Total Surplus with Restricted Sample

Static Pricing Dynamic Pricing

Pricing Strategy ∆ Consumer Surplus ($) ∆ Total Surplus ($) ∆ Consumer Surplus ($) ∆ Total Surplus ($)

mean s.d. mean s.d. mean s.d. mean s.d.
Uniform (70) -0,0227 0,0128 -0,0088 0,0115 - - - -
Uniform (Optimal) -0,0441 0,0187 -0,0025 0,0059 -0,0417 0,0181 0,0014 0,0068
GDP per Capita -0,0451 0,0202 -0,0035 0,0077 -0,0412 0,0192 0,0022 0,0085
Ability -0,0441 0,0187 -0,0025 0,0059 -0,0396 0,0178 0,0038 0,0066
Individual Level -0,0443 0,0215 -0,0025 0,0079 -0,0397 0,0207 0,0042 0,0094

Notes: This table summarizes our counterfactual simulation results in terms of per-player consumer surplus and per-player total surplus, computed as the sum between changes in
per-player expected revenue and in per-player consumer surplus using a restricted sample. Each row refers to a pricing strategy and summarizes the simulated change in per-player
consumer surplus and in per-player total surplus (both in $) with respect to the observed pricing. All pricing strategies are briefly described in the text and explained in more detail in
Appendix 4.D.2. The left panel summarizes results for the case in which effective prices do not change among pay-gates (static pricing). The right panel instead summarizes results
for the case in which effective prices are allowed to change also among pay-gates (dynamic pricing). All simulations are based on our estimates of models (4.5.1) and (4.5.7). The
sample excludes players in Group 40 who are below the 2nd decile in terms of GDP per Capita, below the third decile in terms of ability, and above the seventh decile in ability.
There are 17,719 remaining players. Details of the formulae and simulation procedures used can be found in Appendices 4.D.1 and 4.D.2.
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4.G Data

Table 4.G.1: Countries and Region Assignment

Country Region

Afghanistan Southern Asia

Åland Islands Northern Europe

Albania Southern Europe

Algeria Northern Africa

American Samoa Other

Andorra Southern Europe

Angola Sub-Saharan Africa

Anguilla Latin America and the Caribbean

Antarctica Other

Antigua and Barbuda Latin America and the Caribbean

Argentina Latin America and the Caribbean

Armenia Western Asia

Aruba Latin America and the Caribbean

Australia Australia and New Zealand

Austria Western Europe

Azerbaijan Western Asia

Bahamas Latin America and the Caribbean

Bahrain Western Asia

Bangladesh Southern Asia

Barbados Latin America and the Caribbean

Belarus Eastern Europe

Belgium Western Europe

Belize Latin America and the Caribbean

Benin Sub-Saharan Africa

Bermuda Northern America

Bhutan Southern Asia

Bolivia (Plurinational State of) Latin America and the Caribbean

Bonaire, Sint Eustatius and Saba Latin America and the Caribbean

Bosnia and Herzegovina Southern Europe

Botswana Sub-Saharan Africa

Bouvet Island Latin America and the Caribbean

Brazil Latin America and the Caribbean

British Indian Ocean Territory Sub-Saharan Africa

Brunei Darussalam South-eastern Asia

Bulgaria Eastern Europe

Burkina Faso Sub-Saharan Africa

Burundi Sub-Saharan Africa

Cabo Verde Sub-Saharan Africa

Cambodia South-eastern Asia

Cameroon Sub-Saharan Africa

Canada Northern America

Cayman Islands Latin America and the Caribbean

Central African Republic Sub-Saharan Africa

Chad Sub-Saharan Africa
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Chile Latin America and the Caribbean

China Eastern Asia

Christmas Island Australia and New Zealand

Cocos (Keeling) Islands Australia and New Zealand

Colombia Latin America and the Caribbean

Comoros Sub-Saharan Africa

Congo Sub-Saharan Africa

Congo, Democratic Republic of the Sub-Saharan Africa

Cook Islands Other

Costa Rica Latin America and the Caribbean

Cote d’Ivoire Sub-Saharan Africa

Croatia Southern Europe

Cuba Latin America and the Caribbean

Curacao Latin America and the Caribbean

Cyprus Western Asia

Czechia Eastern Europe

Denmark Northern Europe

Djibouti Sub-Saharan Africa

Dominica Latin America and the Caribbean

Dominican Republic Latin America and the Caribbean

Ecuador Latin America and the Caribbean

Egypt Northern Africa

El Salvador Latin America and the Caribbean

Equatorial Guinea Sub-Saharan Africa

Eritrea Sub-Saharan Africa

Estonia Northern Europe

Eswatini Sub-Saharan Africa

Ethiopia Sub-Saharan Africa

Falkland Islands (Malvinas) Latin America and the Caribbean

Faroe Islands Northern Europe

Fiji Other

Finland Northern Europe

France Western Europe

French Guiana Latin America and the Caribbean

French Other Other

French Southern Territories Sub-Saharan Africa

Gabon Sub-Saharan Africa

Gambia Sub-Saharan Africa

Georgia Western Asia

Germany Western Europe

Ghana Sub-Saharan Africa

Gibraltar Southern Europe

Greece Southern Europe

Greenland Northern America

Grenada Latin America and the Caribbean

Guadeloupe Latin America and the Caribbean

Guam Other

Guatemala Latin America and the Caribbean

Guernsey Northern Europe

Guinea Sub-Saharan Africa
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Guinea-Bissau Sub-Saharan Africa

Guyana Latin America and the Caribbean

Haiti Latin America and the Caribbean

Heard Island and McDonald Islands Australia and New Zealand

Holy See Southern Europe

Honduras Latin America and the Caribbean

Hong Kong Eastern Asia

Hungary Eastern Europe

Iceland Northern Europe

India Southern Asia

Indonesia South-eastern Asia

Iran (Islamic Republic of) Southern Asia

Iraq Western Asia

Ireland Northern Europe

Isle of Man Northern Europe

Israel Western Asia

Italy Southern Europe

Jamaica Latin America and the Caribbean

Japan Eastern Asia

Jersey Northern Europe

Jordan Western Asia

Kazakhstan Other

Kenya Sub-Saharan Africa

Kiribati Other

Korea (Democratic People’s Republic of) Eastern Asia

Korea, Republic of Eastern Asia

Kuwait Western Asia

Kyrgyzstan Other

Lao People’s Democratic Republic South-eastern Asia

Latvia Northern Europe

Lebanon Western Asia

Lesotho Sub-Saharan Africa

Liberia Sub-Saharan Africa

Libya Northern Africa

Liechtenstein Western Europe

Lithuania Northern Europe

Luxembourg Western Europe

Macao Eastern Asia

Madagascar Sub-Saharan Africa

Malawi Sub-Saharan Africa

Malaysia South-eastern Asia

Maldives Southern Asia

Mali Sub-Saharan Africa

Malta Southern Europe

Marshall Islands Other

Martinique Latin America and the Caribbean

Mauritania Sub-Saharan Africa

Mauritius Sub-Saharan Africa

Mayotte Sub-Saharan Africa

Mexico Latin America and the Caribbean
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Other (Federated States of) Other

Moldova, Republic of Eastern Europe

Monaco Western Europe

Mongolia Eastern Asia

Montenegro Southern Europe

Montserrat Latin America and the Caribbean

Morocco Northern Africa

Mozambique Sub-Saharan Africa

Myanmar South-eastern Asia

Namibia Sub-Saharan Africa

Nauru Other

Nepal Southern Asia

Netherlands Western Europe

New Caledonia Other

New Zealand Australia and New Zealand

Nicaragua Latin America and the Caribbean

Niger Sub-Saharan Africa

Nigeria Sub-Saharan Africa

Niue Other

Norfolk Island Australia and New Zealand

North Macedonia Southern Europe

Northern Mariana Islands Other

Norway Northern Europe

Oman Western Asia

Pakistan Southern Asia

Palau Other

Palestine, State of Western Asia

Panama Latin America and the Caribbean

Papua New Guinea Other

Paraguay Latin America and the Caribbean

Peru Latin America and the Caribbean

Philippines South-eastern Asia

Pitcairn Other

Poland Eastern Europe

Portugal Southern Europe

Puerto Rico Latin America and the Caribbean

Qatar Western Asia

Reunion Sub-Saharan Africa

Romania Eastern Europe

Russian Federation Eastern Europe

Rwanda Sub-Saharan Africa

Saint Barthelemy Latin America and the Caribbean

Saint Helena, Ascension and Tristan da Cunha Sub-Saharan Africa

Saint Kitts and Nevis Latin America and the Caribbean

Saint Lucia Latin America and the Caribbean

Saint Martin (French part) Latin America and the Caribbean

Saint Pierre and Miquelon Northern America

Saint Vincent and the Grenadines Latin America and the Caribbean

Samoa Other

San Marino Southern Europe
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Sao Tome and Principe Sub-Saharan Africa

Saudi Arabia Western Asia

Senegal Sub-Saharan Africa

Serbia Southern Europe

Seychelles Sub-Saharan Africa

Sierra Leone Sub-Saharan Africa

Singapore South-eastern Asia

Sint Maarten (Dutch part) Latin America and the Caribbean

Slovakia Eastern Europe

Slovenia Southern Europe

Solomon Islands Other

Somalia Sub-Saharan Africa

South Africa Sub-Saharan Africa

South Georgia and the South Sandwich Islands Latin America and the Caribbean

South Sudan Sub-Saharan Africa

Spain Southern Europe

Sri Lanka Southern Asia

Sudan Northern Africa

Suriname Latin America and the Caribbean

Svalbard and Jan Mayen Northern Europe

Sweden Northern Europe

Switzerland Western Europe

Syrian Arab Republic Western Asia

Taiwan, Province of China Eastern Asia

Tajikistan Other

Tanzania, United Republic of Sub-Saharan Africa

Thailand South-eastern Asia

Timor-Leste South-eastern Asia

Togo Sub-Saharan Africa

Tokelau Other

Tonga Other

Trinidad and Tobago Latin America and the Caribbean

Tunisia Northern Africa

Turkey Western Asia

Turkmenistan Other

Turks and Caicos Islands Latin America and the Caribbean

Tuvalu Other

Uganda Sub-Saharan Africa

Ukraine Eastern Europe

United Arab Emirates Western Asia

United Kingdom of Great Britain and Northern Ireland Northern Europe

United States of America Northern America

United States Minor Outlying Islands Other

Uruguay Latin America and the Caribbean

Uzbekistan Other

Vanuatu Other

Venezuela (Bolivarian Republic of) Latin America and the Caribbean

Viet Nam South-eastern Asia

Virgin Islands (British) Latin America and the Caribbean

Virgin Islands (U.S.) Latin America and the Caribbean
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Wallis and Futuna Other

Western Sahara Northern Africa

Yemen Western Asia

Zambia Sub-Saharan Africa

Zimbabwe Sub-Saharan Africa

Figure 4.G.1: Share of Players per Region
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Table 4.G.2: Balance test: Comparison across groups

1st gate at level 20 1st gate at level 40 Differences

Stars Stars No stars

(1) (2) (3) (1)-(2) (1)-(3) (2)-(3)

Mean Std. dev. Mean Std. dev. Mean Std. dev.

Avg. Snake Length 5,226 0,817 5,221 0,810 5,223 0,811 0,005 0,003 -0,002

Avg. Move Count 10,399 2,331 10,398 2,315 10,388 2,319 0,002 0,012 0,010

Avg. Final Score 24973,640 6554,295 24963,570 6544,456 24940,420 6570,346 10,070 33,220 23,150

Avg. Rounds per Level 3,932 5,665 3,989 5,787 3,934 5,703 -0,058 -0,002 0,055*

Number of Players 43,218 43,660 205,415

*p < 0.10, **p < 0.05, ***p < 0.01.

Notes: This table provides evidence of balance between the different experimental groups. The sample includes all players in each group, as explained in section 4.3.2. It provides

averages and associated t-tests (with unequal variances) across these groups. For the purposes of comparison, averages are calculated across the first 20 levels of the game,

dropping rounds of the game spent on levels already previously cleared. The average snake length is the per-player average number of consecutive jellies assembled in a round

of the game. The average move count counts instead the number different moves played in the game. The average final score reflects the aggregate performance of a player in a

given round of the game. The average rounds per level is the number of attempts before first success.
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Chapter 5

Dealing with Logs and Zeros in

Regression Models

This chapter is joint work with Christophe Bellégo and David Benatia.

Abstract: Log-linear models are prevalent in empirical research. Yet, how to handle zeros in the dependent

variable remains an unsettled issue. This article clarifies it and addresses the “log of zero” by developing a

new family of estimators called iterated Ordinary Least Squares (iOLS). This family nests standard approaches

such as log-linear and Poisson regressions, offers several computational advantages, and somehow reconciles

the log(1 + Y ) with econometric theory. We extend it to the endogenous regressor setting (i2SLS) and

overcome other common issues with Poisson models, such as controlling for many fixedeffects. We also

develop specification tests to help researchers select between alternative estimators. Finally, our methods

are illustrated through numerical simulations and replications of recent publications.

5.1 Introduction

The log-linear and log-log models are among the most frequent specifications used in empirical research.1

However, having to deal with the (natural) logarithm of a zero in the response variable is a common issue faced

by practitioners. There is, unfortunately, a lack of consensus about the best practice to address those zeros, as

evidenced by the many alternative solutions used in recent leading publications. This paper not only clarifies this

issue, it also develops a new family of estimators and a model selection procedure. Our estimators are simple

iterative extensions of ordinary least squares (OLS) and two-stage least-squares (2SLS). They are consistent,

asymptotically normal, computationally simple, and can accommodate many fixed-effects. We also develop

specification tests aimed at verifying the external validity of the model with respect to the observed patterns of

zeros in the data. Those tests prove to be helpful for selecting the most suitable approach to address the log of

zero in any given setting.

The log transformation is popular because (1) the parameter estimate is related to an elasticity;2 (2) logs can

linearize a theoretical model, e.g. a Cobb-Douglas production function (Goldberger, 1968) or a gravity equation

1In this paper, we focus on the log-linear model and address the minor differences of the log-log model as an extension.
2In a log-log model such as log(y) = β log(x) + ε, the elasticity of y with respect to x is given by ∂ log(y)

∂ log(x)
= ∂y

∂x
x
y
= β.
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(Head and Mayer, 2019); (3) logs can make heteroskedasticity vanish in some settings, e.g. when the variance

of a variable is proportional to its squared mean (Carroll and Ruppert, 1984); (4) the data is sometimes naturally

related by a log-linear relationship (Ciani and Fisher, 2018); or even (5) it provides a concave transformation

(MacKinnon and Magee, 1990).

However, the variable taken in logs may contain non-positive values. For example, a company can employ

no worker, a product can have no sales or two countries zero trade in a given year. In these cases, the log is

undefined and a fix is needed. Although this problem is quite common, the solution to be adopted is still unclear

to many empirical researchers. We have reviewed all articles published in the American Economic Review

(AER) between 2016 and 2020 to support this statement. Figure 5.1 summarizes our findings. It shows that

nearly 40% of empirical papers used a log-specification and 36% of these faced the problem of the log of zero.

It corresponds to an average of 10 publications per year dealing with the log of zero in the AER.

dbdb
23 (48%)23 (48%)

341341

133 (39%)133 (39%)

48 (36%)48 (36%)

Figure 5.1: Prevalence of the Log of Zero in the AER (2016-2020)

No single solution has achieved consensus. In most publications, the authors chose to keep the zero

observations and opted to either (1) add a positive discretionary value to the dependent variable (48%), (2) use

Poisson-type estimators (35%), or (3) apply the inverse hyperbolic sine (IHS) transformation (15%). Discarding

non-positive observations occurred in 31% of publications. We also note that in around 20% of cases, the

authors compared several methods in order to gauge the robustness of their results.3

Moreover, researchers seldom report all their intermediary results leading to the submission of an article.

To uncover existing practices, we have conducted a survey in three online seminars in economic departments

asking “What would you do when facing the log of zero?”.4 Among the 28 respondents (including 21% of Ph.D

students), 42% opt for the popular fix, 35% for mixture models (Tobit, Heckit, etc.), and 18% for abandoning the

use of a log-like specification. Putting the latter individuals aside, only 46% would compare multiple approaches,

on average 2.7 each. It is interesting to note that the (somewhat large) stated preference for mixture models is

not reflected in recent AER publications.

The issue of the log of zero extends well beyond economics. The question “Log transformation of values

3This excludes cases where the authors decided to use a linear specification by fault of having to use such a fix. See Table 5.4.2 in
the Appendix for additional details and information regarding data collection.

4See Appendix 5.4.3 for the survey and for the exhaustive set of results.
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that include 0 (zero) for statistical analyses?” asked in 2014 on the forum ResearchGate, a multidisciplinary

research-oriented social network, has received 38 contributions from researchers in various fields, including,

but not limited to, medicine, biology, statistics and engineering. The thread has been read 120,000 times as of

August 2020.5 The prevalence of each solution is comparable to that in the AER. Adding a positive constant

is suggested 50% of the time. Poisson, mixture models, and transformations like IHS are each recommended

only 12.5% of the time.

There are hence five main solutions to the “log of zero”. The most common fix consists in adding a positive

constant to all observations (MaCurdy and Pencavel, 1986). This approach will thereafter be referred to as the

“popular fix”. A second solution is to delete the non-positive observations from the sample (Young and Young,

1975). A third solution uses transformations of the response variable, such as IHS, akin to the log function

(MacKinnon and Magee, 1990; Burbidge et al., 1988; Johnson, 1949). A fourth solution consists in adopting

mixture models (e.g. Tobit or Heckit) where a sample selection process explains the occurrence of non-positive

observations (Heckman, 1979b; Eaton and Tamura, 1994; Helpman et al., 2008). Finally, Poisson models

(Gourieroux et al., 1984) handle the presence of zeros well in many settings. They are especially popular in

international trade where it is the workhorse model for the estimation of gravity equations (Head and Mayer,

2019). To the best of our knowledge, Santos Silva and Tenreyro (2006) were the first to argue in favor of Poisson

regression to address the log of zero.

However, to deal with the log of zero and select among these models one must first address the critical

question “why do the data contain zeros?”.6 It could be due to either data problems, such as measurement

errors of small values, or a “true zero”, for example when a product has exactly zero sale. In any case, one

must make distributional assumptions about the zeros either explicitly (e.g. Tobit or Heckit) or implicitly through

moment restrictions (e.g. PPML or IHS). We will discuss the assumptions made by existing methods, and

propose a model of the latter type. The main advantage of this approach is that it does not require to specify a

selection process explaining the occurrence of zeros.

The main focus of our paper is the identification of the model parameters rather than the prediction of an

outcome. Identification is key for the estimated parameters to have an economic interpretation. It typically

relies on exogeneity restrictions in the form of moment conditions between the errors and regressors, like OLS

or Poisson regression. Our discussions with empirical researchers revealed that many opt for the popular

fix approach because they do not feel comfortable assuming the exogeneity restriction imposed by Poisson

models.7 Instead, they seem to believe that adding a constant to the outcome before taking the log function

yields an error satisfying an exogeneity condition close to that of OLS in a log-linear model. Unfortunately, it

does not.

Our approach consists in adding an observation-specific value to the outcome instead of a constant. It

makes use of an exogeneity condition, either user-chosen or data-driven, in a range of possible conditions

between that of the log-linear model and Poisson. Our estimators are then computed thanks to an iterative

procedure. We rely for that on the asymptotic theory developed in Dominitz and Sherman (2005) to prove the

5See https://www.researchgate.net/post/Log_transformation_of_values_that_include_0_zero_for_
statistical_analyses2, and Figure 5.4.1 in the Appendix.

6This question echoes that of Heckman (1979b) about missing data: “why are the data missing?”.
7In February 2021, Jeffrey Wooldridge tweeted “Poisson regression can get one so far with so little trouble, why do so many still

resist? [...]” ( https://twitter.com/jmwooldridge/status/1363828456136523779?s=20.) Ten years earlier, the President of
StataCorp, William Gould, wrote a blog post arguing that researchers should use Poisson regression rather than OLS with a log outcome:
https://blog.stata.com/2011/08/22/use-poisson-rather-than-regress-tell-a-friend/.
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consistency and asymptotic normality of our estimators. Iterative estimation methods are frequently encountered

in physics and machine learning, where Iterated Reweighted Least-Squares (IRLS) are widely used for robust

estimation (Dembinski et al., 2019). Although less popular in economics, iterative estimators are used in some

settings. For instance, Blundell and Robin (1999) propose an iterative solution for demand estimation to improve

computational efficiency with respect to non-linear methods. Another example is the iterative estimation strategy

in Head and Mayer (2014) of the structural gravity model of Anderson and van Wincoop (2003).

We make three principal contributions. First, we clarify the log of zero issue in a didactic way by reviewing

existing practices. Second, we develop a new family of solutions, referred to as iterated OLS (iOLS). They

consist in adding a data-dependent value to each observation and iterating OLS on the transformed model

until convergence. They have multiple advantages: (a) they can be estimated by ordinary least squares, hence

are computationally fast and easy to implement8; (b) robust standard errors are readily available; (c) they do

not suffer from highly dispersed response variables; (d) they extend naturally to the endogenous setting using

iterated 2SLS (i2SLS); and (e) they are amenable to different identifying assumptions. Finally, we develop a

procedure to select which solution should be preferred in any given setting. This procedure helps choosing the

most plausible model(s) given the data at hand. It consists in testing the implicit assumption about the patterns

of zeros made by each approach. More formally, it is a test of whether the conditional probability of having a

zero implied by the model is consistent with the data.

Our methodological contributions are illustrated through numerical simulations and (partial) replications

of three recent publications in top-tier economics journals. First, Santos Silva and Tenreyro (2006) compare

various estimators to estimate gravity models of trade and argue in favor of Poisson regression. Second,

Michalopoulos and Papaioannou (2013) adds a positive constant to the response variable in order to examine

the role of pre-colonial ethnic institutions on economic development. Third, Card and DellaVigna (2020)

investigate the preferences of academic journal editors with the IHS transformation. Our tests reveal that

no single solution is preferred in all settings. Nevertheless, iOLS tends to be selected more often than other

methods in those examples.

The remaining of the paper is organized as follows. Section 5.2 clarifies the log of zero issue and discusses

existing practices found in empirical research. Section 5.3 develops a new family of solutions. Section 5.4

presents specification tests and a data-driven model selection procedure. Numerical simulations are presented

in Section 5.5. Partial replications of leading publications are proposed in Section 5.6. Section 5.7 concludes

the paper.

The Appendix section also contains several useful extensions to our methods. First, we adapt it to the

endogenous setting in Appendix 5.2.1. Second, we address the case where discarding zeros does not jeopardize

identification in Appendix 5.2.2. Third, we show in Appendix 5.2.3 how to deal with negative values in Y .

Appendix 5.2.4 discusses log-log specifications with zeros in the independent variables. Appendix 5.2.5 develops

a computationally fast “within” iOLS estimator to avoid the incidental parameter problem when many fixed-effects

are included. Appendix 5.2.6 shows how to deal with the log of a ratio of two response variables. Appendix

5.2.7 makes use of yet another alternative exogeneity condition close to that of the log-linear model. Finally,

Appendix 5.2.8 details the testing procedures in the endogenous regressors setting.

8Stata packages for iOLSδ and i2SLSδ (with potentially high dimensional fixed effects) are available from www.https://github.
com/ldpape.
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5.2 Existing Practices

Let us consider an iid sample of observations {Yi , Xi}ni=1, where n denotes the sample size, generated by the

“true” model given by

Yi = exp(X ′iβ + εi)ξi , (5.2.1)

where β is a fixed parameter of interest in RK , with K ≥ 1, εi is an iid mean-zero error term, and ξi ∈ {0, 1}
is a Bernoulli random error and, without loss of generality, we take E[exp(εi)ξi ] = 1. Let X denote the n ×K
matrix comprised of the K-dimensional column vector Xi with elements Xki , for 1 ≤ k ≤ K. Let us assume

that E(XiX
′
i
) <∞, and X has full column rank.

Yi can either be equal to zero, when ξi = 0, or take positive values, when ξi = 1. Taking logs on both

sides of (5.2.1) is allowed only if Yi (and thus ξi ) takes only strictly positive values. Doing so yields the log-linear

model given by

log(Yi) = X ′iβ + εi . (5.2.2)

For parsimony, we will rely on the more compact multiplicative representation,

Yi = exp(X ′iβ)Ui , (5.2.3)

where Ui = exp(εi)ξi has mean one, and refer to the equivalent additive model

Yi = exp(X ′iβ) + εi , (5.2.4)

with εi = exp(X ′
i
β)(Ui − 1) treated as a mean-zero error.

5.2.1 The popular fix: to add a positive constant

The most popular solution is to add a positive constant∆ to all observations Yi so that Ỹi = Yi +∆ > 0 and the

log-transformation becomes feasible. The choice of ∆ is discretionary and may arbitrarily bias the estimates

and their standard errors. Moreover, the size of the bias will depend on the data at hand, suggesting that adding

the smallest possible constant is not necessarily the least “harmful” choice.9

To understand the bias, consider the model specified in (5.2.1). Adding∆ > 0 and applying the log function

yields after rearrangement

log(Yi +∆) = X
′

iβ + log

�

Ui +
∆

exp(X ′
i
β)

�

(5.2.5)

where the error term ωi = log
�

Ui + ∆
exp(X ′

i
β)

�

is correlated with Xi by construction, even when Ui and Xi are

statistically independent, and creates an endogeneity bias. Although the choice of∆matters, exp(X ′
i
β) can be

arbitrarily close to zero hence leading to possibly large biases. Thus, the “popular fix” estimator is (in general)

not consistent.10

Anecdotal evidence reveals that empiricists sometimes believe this bias to be negligible for small values of

∆, or for ∆ = 1. This belief holds true only under strong and unverifiable restrictions about the underlying

9Other variants include adding a constant solely to the non-positive values and including an additional dummy variable indicating such
a treatment, generating the same kind of troubles. Alternatively, Johnson and Rausser (1971) propose to estimate the constant along with
the other parameters. However, their method does not guarantee unbiased estimates.

10This estimator is consistent under the condition E(ωi |X) = constant which implies strong assumptions of the joint distribution of
Ui and Xi .
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DGP. To illustrate this point, we rely on numerical simulations based on the design detailed in Section 5.5 (DGP

1). The objective is to estimate the parameters β1 = β2 = 1. Figure 5.2 presents the mean estimates using

the popular fix, i.e. the OLS estimate of (5.2.5), as a function of the value of ∆. For this parameter, the mean

squared bias is minimized at ∆ = 0.7, but the bias of each parameter varies with the constant and remains

substantial. The “best” value for ∆ is hence neither arbitrarily small nor equal to 1, contrary to common belief.
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Figure 5.2: Bias against ∆

5.2.2 Other methods

Among the models which can address the log of zero, Non-linear methods are popular because they offer a

valid approach in many settings. There are also approaches which should usually be avoided.

Poisson models. The model presented in (5.2.1) is non-linear in variables and parameters. The parameters

are identified and non-linear estimators, such as the generalized method of moments (GMM), yield consistent

estimates of β under the strict exogeneity restriction E(Ui |Xi) = 1 which implies the unconditional moments11

E(Xi(Yi − exp(X ′iβ))) = 0. (5.2.6)

which allow the estimation of β by maximizing the Pseudo log-likelihood of the Poisson model (Gourieroux et al.,

1984). This approach is computationally efficient because it is a well-defined concave problem. Santos Silva

and Tenreyro (2006) were the first to argue for Pseudo-Poisson Maximum Likelihood (PPML) as a potential

solution for the appearance of zeros in Yi . This approach is based on the additive representation of the model

in (5.2.4) assuming E(εi |Xi) = 0, which is equivalent to E(Ui |Xi) = 1.

Nevertheless, these Poisson regression has several shortcomings. First, existence of a solution is not

guaranteed leading to convergence issues. Second, their precision can be sensitive to the dispersion of Yi

because of the exponential function. Third, they can be difficult to estimate with many fixed-effects. Fourth,

instrumental variables require stronger assumptions and may dramatically increase computational complexity.12

11Choosing the “best” unconditional moments, or rather picking the optimal instruments, from a conditional moment restriction is beyond
the scope of this paper. The interested reader is referred to Chamberlain (1987).

12Non-linear IV estimators require strict exogeneity between the errors and instruments unlike linear estimators.
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Most of these issues have been discussed and addressed in a series of papers (Santos Silva and Tenreyro,

2010, 2011; Correia et al., 2019).13

Mixture models and Heckman’s correction. Censorship models, such as Tobit models (Tobin, 1958), provide

another non-linear solution. They consist in modeling the selection explicitly, Yi = 0 or Yi > 0, using a latent

variable approach under chosen distributional assumptions. This approach is not often used to address the log

of zeros but has been relied upon in the context of gravity equations. For example, Eaton and Tamura (1994)

implement a Tobit approach to model thresholds above which trade starts to be measured.

The Heckman’s (“Heckit”) correction (Heckman, 1979b) is seldom used for the log of zero. In the setting

provided by model (5.2.1), it assumes that ξi = 1 if X ′
i
γ + νi > 0, and ξi = 0 otherwise. X ′

i
γ + νi is hence

referred to as the “selection equation”. The key identifying restriction is that εi and νi are bivariate normal, so

that E[εi |Ui > 0, X] admits the closed-form expression

E[εi |νi > −X ′iγ,X] = λ
φ(−X ′

i
γ)

Φ(X ′
i
γ)

, (5.2.7)

for φ(·) and Φ(·) denoting the Gaussian probability density and distribution functions, respectively. λ and γ are

estimable parameters.

Estimation takes two steps. First, a probit model of Yi > 0 conditional onXi yields γ̂. Second, the log-linear

regression with an additional term, as specified by

log(Yi) = X ′iβ + λ
φ(−X ′

i
γ̂)

Φ(X ′
i
γ̂)

+ ei , (5.2.8)

is estimated by OLS to obtain β and λ. The relevance of the correction term can be tested using a t-test to

check whether λ̂ is different from zero. When λ̂ is zero, the mechanism generating the zeros is not correlated

to the outcome and OLS regression using the positive values of Yi will provide a consistent estimate of β.

Therefore, this simple two-step approach can be used to investigate whether discarding zeros would threaten

identification. Note that, however, this approach is heavily dependent on the distributional assumption in

absence of instrumental variables in the selection equation.

Discarding zeros. The simplest solution is to delete the zero observations and estimate (5.2.2) directly with

OLS. Formally, discarding zeros introduces a selection bias unless the following condition holds,

E[ε|ξ = 1, X] = constant. (5.2.9)

Similarly, one could discard zeros and estimate (5.2.4) with PPML assuming

E[exp(ε)|ξ = 1, X] = constant. (5.2.10)

Doing so assumes away any role played by the zeros and has context-dependent consequences; rendering

it inadvisable at least since Young and Young (1975). At the very least, it will change the scope of the study

by narrowing down the focus to observations for which Yi > 0. The economic interpretation of the error term

should always be discussed when making such an assumption. For instance, some empirical studies relying

on the mincer equation for the purpose of estimating the returns to schooling use the log wage and discard

unemployed individuals. Unemployed agents have unobserved wage rates which can be labelled as zeros. If εi

13The authors also have a dedicated website with helpful resources about Poisson regression (https://personal.lse.ac.uk/
tenreyro/lgw.html).
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captures the unobserved ability of individual i , it will undoubtedly be correlated with her employment outcome

ξi = 1 or ξi = 0, hence introducing a sample selection bias when discarding the zeros.

Transformations. An alternative approach relies on log-like transformations applicable to non-positive values.

The most popular are the “popular fix”, presented earlier, and the IHS (MacKinnon and Magee, 1990; Burbidge

et al., 1988; Johnson, 1949).14 It consists in transforming Yi into Ỹi = log(θYi +
q

θ2Y 2
i

+ 1)/θ and estimating

Ỹi = X ′β + ωi by OLS. If the underlying model writes in log, then this transformation will likely yield biased

estimates.15 Nearly all economic applications set θ to 1 such that Ỹ tends toward log(2Y ) for large values

of Y . There is also a version with a location parameter as discussed in MacKinnon and Magee (1990). This

transformation essentially consists in adding a positive observation-specific value to the response variable

before applying the log function. Its similarity with the log function may lead to treating them interchangeably.

However, for small values of Yi , these transformations can behave differently. Besides, as shown in Bellemare

and Wichman (2020), the interpretation of the coefficients is not trivial and the underlying elasticity is potentially

biased or undefined.16 It is hence satisfactory in contexts where applying a concave transformation is the main

objective, e.g. for prediction models, where identification is not an issue, or when the exogeneity restriction can

be justified as discussed later on.

5.3 Iterated Ordinary Least Squares (iOLS)

In this section, we develop a new approach based on the popular fix. This new approach yields a family of

estimators requiring only OLS to implement. For clarity, we first show how our estimation procedure arises

in the context of the log of zeros. Second, we derive its asymptotic properties. Third, we detail how minor

modifications can accommodate alternative exogeneity conditions.

5.3.1 Fixing the popular fix (iOLSδ)

We let ∆i vary across observations such that Yi +∆i > 0. From (5.2.5), we have

log(Yi +∆i) = X ′iβ + log

�

Ui +
∆i

exp(X ′
i
β)

�

. (5.3.1)

Letting ∆i = δ exp (X ′
i
β), for some δ > 0, this equation becomes

log(Yi + δ exp(X ′iβ)) = X ′iβ + υi . (5.3.2)

where the new error term υi = log (δ + Ui) is assumed to satisfy an exogeneity restriction (discussed later).

This shows that adding a constant value to Yi falls short of the varying ∆i = δ exp(Xiβ) required to suppress

bias.

The DGP specified in (5.2.1) assumesE[Ui ] = 1,17 implying that the transformed error υi is not mean-zero.

Instead, we have E[log(δ + Ui)] = c , where c is an unknown constant depending on higher-order moments

14An extended concave version of this transformation is provided by Ravallion (2017).

15Considering model (5.2.1), having consistent estimates requires a moment condition like E(log(θUi +

Ç

θY 2
i
+1

exp(X′
i
β
)|X) = 0, which

may be difficult to justify.

16The authors show that in Ỹi = X ′iβ + εi , the elasticity ζ̂yx = β̂x
√
y2+1

y
is a function of x , y , or is not defined for y = 0. β is an

elasticity only if x = 1 and y is large.
17This assumption is only useful to identify the intercept term.
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of Ui . To see this, consider the Taylor expansion of log(δ + Ui) around log(1 + δ) to obtain

c = log(1 + δ)−
1

2(1 + δ)2
E[(Ui − 1)2] +

1

3(1 + δ)3
E[(Ui − 1)3] + ..., (5.3.3)

where the second and third terms are respectively the variance and third centered moment of Ui . The first

centered moment is assumed to be zero. Thus, this transformation introduces a nuisance parameter in the form

of an extra constant term.

5.3.2 Identification

Demeaning this new error term is required to identify the parameters. Let us assume the exogeneity condition

E[Xiυi ] = 0, where υi = υi −c denotes the centered error term of the linearized model. This condition yields

the set of k + 1 equations

E
�

Xi
�

log(Yi + δ exp(X ′iβ))− c
��

= E
�

XiX
′
i

�

β, (5.3.4)

with k + 2 unknowns. This system identifies β only if c is known. Fortunately, the multiplicative model in (5.2.1)

provides the additional restriction necessary for identification. Let us write X ′
i
β = β1 +Xr

′

i
βr , where β1 is the

constant term and the other term represents the non-deterministic part. We rewrite (5.2.1) into

Yi = exp(β1 +Xr
′

i β
r )Ui = exp(β1) exp(Xr

′

i β
r )Ui . (5.3.5)

Rearranging, taking expectations and applying the log function gives the following expression for the intercept

given the other parameters

β1β = log(E[Yi exp(−Xr ′i β
r )]). (5.3.6)

Therefore, the parameters are identified and the nuisance c can be written as18

c(β) =E[log(Yi + δ exp(β1β +Xr
′

i β
r ))− β1β −X

r ′

i β
r ]. (5.3.7)

5.3.3 Estimation by iOLS

The following transform of the response variable yields a (seemingly) linear model:

Ỹ iOLSδ
i

(β) = log(Yi + δ exp(X ′iβ))− c(β) = X ′iβ + υi (5.3.8)

We refer to this model as iOLSδ , because it depends on the choice of the parameter δ, which will be discussed

shortly together with the exogeneity restriction. The moment condition E[Xiυi ] = 0 yields

β = E[XiX
′
i ]
−1E

�

Xi Ỹi(β)
�

, (5.3.9)

which characterizes β as the solution of a fixed-point problem. Based on this insight, we propose an iterative

least-squares estimator.

Algorithm 1 (iOLS estimator). The iOLS estimator is defined as the following iterative procedure:

1. Initialize t at 0 and let β̂0 be an initial estimate, as obtained for example with the “popular fix” estimator

β̂PF = [X ′X]−1X ′ log(Y +∆) ∈ RK , for some ∆ > 0;

18In our practical implementation, we solve the identification problem by using the consistent estimator defined for any φ as ĉ(φ) =
1
n

∑n
i=1 log(Yi + δ exp(φ̃

1
φ
+ Xr

′
i
φr )) − 1

n

∑n
i=1(φ̃

1
φ
+ Xr

′
i
φr ), where the constant parameter estimate is replaced by the estimator

φ̃1
φ
= log(n−1

∑n
i=1 Yi exp(−Xr

′
i
φr )).
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2. Transform the dependent variable into ỸiOLSδ(β̂t) using (5.3.8);

3. Compute the OLS estimate β̂t+1 = [X ′X]−1X ′Ỹ (β̂t), and update t to t + 1;

4. Iterate steps 2 and 3 until β̂t converges.

We illustrate the algorithm in Figure 5.3 using the numerical simulations presented in Section 5.5 (DGP 1).

The iterative estimation procedure converges to a solution within 15 to 20 iterations on average. Moreover, only

a few iterations are required to suppress most of the bias of the popular fix estimator. Remark also that X ′X

needs only be inverted once.

5 10 15 20 25

Iteration

0.5

0.6

0.7

0.8

0.9

1

1.1

iOLS estimate in one simulation

Mean iOLS estimate across simulations

Mean Popular Fix estimate across simulations

True parameter

Figure 5.3: Convergence of iOLSδ=1 (DGP 1, n =1,000)

5.3.4 Asymptotic Properties

We establish the asymptotic properties of iOLSδ in the following theorem.

Theorem 2 (Consistency and Normality of iOLSδ). Under the above assumptions, the iOLSδ estimator is

consistent and achieves the parametric rate of convergence n−1/2. Formally, we have n1/2|β̂t(n)−β| = Op(1)

as n →∞ for any t(n) ≥ − 12 log(n)/ log(κ), where κ ∈ [0, 1) is the modulus of the associated contraction

mapping from RK to RK . In addition, iOLSδ is asymptotically normally distributed such that
√
n
�

β̂t(n) − β
� d→

N(0,Ω), as n → ∞, where Ω, as given in the proof, corresponds to the asymptotic covariance of the OLS

estimator in the last iteration up to minor modifications.

This asymptotic result guarantees root-n consistent estimates and, for any fixed n, the iterative process

converges after a finite number of iterations: t(n) ≥ − 12 log(n)/ log(κ), where κ ∈ [0, 1) is the modulus of

the associated contraction mapping. The numerical convergence will hence be slower for larger sample sizes n

and modulus κ closer to 1. κ depends on the DGP and is decreasing with δ. Note that there may exist values

of δ such that the algorithm does not converge in finite time. This occurs when δ implies a κ very close to

1, hence a very slow convergence. However, choosing a larger δ will mechanically decrease κ and solve this

issue.19

19The algorithm must include a safety check to ensure that κ is sufficiently smaller than 1. In practice, we take the median across
estimates obtained at each iteration by κ̂ = |βt+1 − βt |/|βt − βt−1|.
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The asymptotic distributions of iOLSδ and of OLS in the last iteration (once the estimator has converged)

are similar. Although the standard errors of the latter are incorrect for iOLSδ , a reweighting of the corresponding

covariance matrix using simple algebra is sufficient and allows to use any HAC-robust covariance estimator.20

5.3.5 Moment Selection

Our approach relies on an exogeneity condition about the error log(δ+Ui). In absence of zeros, the condition

is about log(δ + exp(εi)) hence about εi when δ → 0, like in the log-linear model (5.2.2), whereas the

Poisson condition is about exp(εi). Our understanding of the survey results presented in the introduction is

that economists concerned about identification prefer conditions about εi rather than exp(εi), and that is why

they often opt for the popular fix.

5.3.5.1 The role of δ

The conditionE[Xiυi ] = 0 is different from the conditionE[Ui |Xi ] = 1 assumed in Poisson models. Ultimately,

which conditional moment restriction is satisfied depends on the context and is unverifiable ex-ante. However,

as will be detailed later, one can test whether the restriction yields estimates that verify the implicit assumption

about the pattern of zeros.

The parameter δ allows selecting a restriction among the family of moments E[Xi log(δ + Ui)] = c .

Indeed, we observe at one extreme that when δ → 0, we have that lim
δ→0

log(δ + U) is exogenous to Xi , a

moment condition similar to the one assumed in the standard log-linear model. At the other extreme, when

δ → ∞, we have a condition equivalent to E[XiUi ] = constant, which corresponds to the (unconditional)

moment condition used in (multiplicative) Poisson regressions. In other words, δ allows one to pick any condition

(strictly) in-between these two extremes.

To see this, observe the Taylor expansion of E[Xi log(δ + U)] around Ui = 1

E[Xi log(δ + U)] = E[Xi ] log(1 + δ) +

¨ ∞
∑

k=1

(−1)k+1

k(1 + δ)k
E[(Ui − 1)kXi ]

«

. (5.3.10)

Assuming E[Xi(log(δ + U)− c)] = 0 to be true means the weighted sum of moment conditions between

Ui and Xi is constant; where weights depend on the parameter δ. As δ goes to infinity, the weighted sum on

the right-hand-side becomes negligible and log(δ + U) → log(δ) + U, so the limiting moment condition is

E[XiUi ] = constant.

This flexibility is of significant relevance. Indeed, the researcher usually lacks any a priori knowledge of the

right exogeneity condition (and associated δ). We thus provide a data-driven selection method for δ based on

testing the model’s validy with respect to the pattern of zeros.

5.3.5.2 Poisson regression as iOLS

If the Poisson condition (E[Ui |Xi ] = 1) holds in the data, then iOLSδ will deliver a reasonable approximation

for an arbitrarily large δ. Nevertheless, we now show how to enforce this condition directly in iOLSδ .

20A simple approximation of the standard errors for iOLSδ consists in multiplying those of the last step OLS by a factor 1 + δ.
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Multiplicative Poisson (iOLSU ). First, we consider the multiplicative version of the model. It relies on the

identifying assumption E(Ui |Xi) = 1, but only requires E((Ui − 1)Xi) = 0 for consistency. To enforce this

condition, we can add 1
1+δ (Ui − 1) on both sides of (5.3.2) and rearrange to obtain

log(Yi + δ exp(X ′iβ))−
�

log(δ + Ui)−
1

1 + δ
(Ui − 1)

�

= X ′iβ +
1

1 + δ
(Ui − 1). (5.3.11)

with Ui = Yi exp(−X ′
i
β), the second term on the left-hand-side can be rewritten into

ci(β) = log(δ + Yi exp(−X ′iβ))−
1

1 + δ
(Yi exp(−X ′iβ)− 1), (5.3.12)

to obtain a new transformed dependent variable

Ỹ iOLSU
i

(β) = log(Yi + δ exp(X ′iβ))− ci(β). (5.3.13)

and associated model

Ỹ iOLSU
i

(β) = X ′iβ + ηi , (5.3.14)

where ηi = 1
1+δ (Ui − 1) is a mean-zero error term, and is exogenous to Xi under the assumption E[Ui |Xi ] =

1. This estimator will be referred to as iOLSU . The choice of δ will be discussed shortly.

Additive Poisson (iOLSε). Similarly, one can enforce the additive representation based on model (5.2.4),

which assumes E[εi |Xi ] = 0, where εi = Yi − exp(X ′
i
β). This assumption is equivalent to E[Ui |X] = 1

but leads to a different least-squares objective function. iOLS can be adapted to this setting by adding and

substracting 1
1+δ (Yi − exp(X ′

i
β)) to (5.3.2) and changing ci(β) in (5.3.12) into

ci(β) = log(δ + Yi exp(−X ′iβ))−
1

1 + δ
(Yi − exp(X ′iβ)). (5.3.15)

This estimator, hereafter referred to as iOLSε, is equivalent to PPML but can yield numerically different

estimates. However, it may be less sensitive to the dispersion of the dependent variable since it does not require

computing the gradient, as in PPML, or the Hessian, as in the IRLS implementation of Poisson regression

(Correia et al., 2019). We derive the asymptotic properties of both estimators in the following theorem.

Theorem 3 (Consistency and Normality of iOLSU and iOLSε). Under the above assumptions, the two estimators

are consistent and achieve the parametric rate of convergence n−1/2. Formally, we have n1/2|β̂t(n) − β| =

Op(1) as n → ∞ for any t(n) ≥ − 12 log(n)/ log(κ), where κ ∈ [0, 1) is the modulus of the associated

contraction mapping fromRK toRK . In addition, they are asymptotically normally distributed such that
√
n
�

β̂t(n) − β
� d→

N(0,Ω), as n → ∞, where Ω, as given in the proof, differs for iOLSU and iOLSε but corresponds to the

asymptotic covariance of the OLS estimator in the last iteration up to minor modifications.

This result shows that our approach is flexible with respect to the choice of both the identifying restriction

and objective criterion without significant consequences in large samples, except for minor modifications to the

covariance matrix.

For both estimators, the parameter δ does not modify the relevant moment condition but is key to guarantee

the convergence of the algorithm. The modulus κ is a function of δ with two important features. First, the

algorithm will diverge for too small values of δ, which ultimately depends on the underlying DGP, because it

implies κ above 1. Second, a too large δ implies κ very close to 1, hence a slow convergence. Therefore, the

optimal δ is large enough to guarantee convergence but small enough so that convergence is fast. We address

these issues by starting with a small value which we multiply by 10 if the algorithm diverges, or if our estimate
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of κ is above 1, and repeat this incrementation until convergence.

Various extensions. In Appendix 5.2, we propose several extensions to the iOLS procedure. First, we adapt

it to the endogenous setting in Appendix 5.2.1. Second, we address the case where discarding zeros does not

jeopardize identification in Appendix 5.2.2. Third, we show in Appendix 5.2.3 how to deal with negative values

in Y . Appendix 5.2.4 discusses log-log specifications with zeros in the independent variables. Appendix 5.2.5

develops a computationally fast “within” iOLS estimator to avoid the incidental parameter problem when many

fixed-effects are included. Appendix 5.2.6 shows how to deal with the log of a ratio of two response variables.

Finally, Appendix 5.2.7 proposes an alternative solution to use the exogeneity condition of the log-linear model

E(εi |X) = 0, or an approximation of that condition.

5.4 Specification testing and model selection

Empirical researchers facing the log of zero usually compare several estimators to gauge the sensitivity of their

results. Yet, each estimator is only valid under specific identifying assumptions. The latter can be systematically

investigated through their implications regarding the patterns of zeros in order to substantiate the choice of an

estimation procedure.

The tests developed in this section offer an opportunity for an ex-post evaluation of the identifying restrictions

used for moment-based estimators. However, they are not useful to gauge the validity of the explicit distributional

assumptions made in mixture models. Our tests are specification tests used to evaluate the validity of conditional

moment restrictions, like E(Ui |Xi) = 1 for Poisson models.21 They are, as such, similar to the RESET test

of Ramsey (1969) for linear regression and its application for Poisson models by Santos Silva and Tenreyro

(2006).22 Our approach is, however, fundamentally different because it relies on testing the validity of the model

with respect to the conditional probability of observing a zero. It also provides a much more powerful test of the

conditional restrictions in this context as will be shown in the simulations.

A common limit of these tests is their focus on the conditional moment restrictions (e.g. E(Ui |Xi) = 1)

rather than the unconditional restrictions (e.g. E((Ui − 1)Xi) = 0). The former is a sufficient condition

whereas the latter is a necessary condition for consistency. We argue that statistical evidence in favor of a

sufficient condition is still valuable information that the associated model bears some validity. The main issue

is, however, that a rejection of the sufficient condition is not evidence against the necessary condition. In other

words, these tests may lead to reject a correct model. Bearing these limits in mind, we proceed to present our

methods.

5.4.1 Specification testing

Testing the Poisson condition. For clarity, we first look at the implications made by Poisson models regarding

the pattern of zeros.23 A related approach will be applied for other restrictions including for iOLS. Noting that a

21Santos Silva et al. (2015) proposed a radically different approach based on non-nested hypothesis tests (Davidson and MacKinnon,
1981) which consists in testing two competing models against each other.

22Extensions of the RESET test are proposed in Wooldridge (1997).
23Appendix 5.2.8 details how these tests can be implemented in the endogenous setting.
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zero can only be observed if Ui = 0, the Poisson restriction (E(Ui |Xi) = 1) can be decomposed into

E[Ui |Xi ] = E[Ui |Xi , Ui > 0]P r(Ui > 0|Xi) = E(Ui), (5.4.1)

since E[Ui |Xi , Ui = 0] = 0. There are only two possibilities for this condition to hold true. First, E[Ui |Xi , Ui >
0] and P r(Ui > 0|Xi) vary with Xi in such a way that the condition holds. It happens, for example, if Ui is

conditionally Poisson, or more generally, if it follows a mixture distribution with a mass probability at zero such

that the condition holds. Second, this condition also holds if, instead, E[Ui |Xi , Ui > 0] and P r(Ui > 0|Xi)
are constant. The former is an exogeneity restriction between Xi and Ui , conditional of the error being positive,

which assumes away any selection bias. The latter means that the occurrence of a zero does not depend on

Xi . In this case, discarding zeros or not before estimation is irrelevant for identification.

This equation reveals the implicit relation between zeros and non-zero observations,

E[Ui |Xi , Ui > 0] =
E(Ui),

P r(Ui > 0|Xi)
, (5.4.2)

which means that the conditional error term for non-zero observations is inversely proportional to the conditional

probability of having a non-zero observation.24 We propose to investigate whether this implication matches what

is observed in the data. To do so, we develop a test to assess whether the residuals implied by the chosen

model satisfy this relationship where the conditional probability is estimated outside the model. This amounts

to evaluating the null hypothesis25

H0 : E[Ui |Xi , Ui > 0] =
E[U]

P r(Ui > 0|Xi)
, (5.4.3)

which implies that E[Ui |Xi , Ui > 0] and P r(Ui > 0|Xi)−1 are proportional.26

Under the null, one can model the error term Ui as

Ui = λE[U]P r(Ui > 0|Xi)−1 + νi (5.4.4)

for Ui > 0 with λ = 1 and E[νi |Ui > 0, Xi ] = 0. Therefore, one can evaluate H0 by testing whether λ = 1.

This test is done in 4 steps: (1) obtain a consistent estimator of P r(Ui > 0|Xi) denoted P̂ (X), which is

possible because Ui > 0 if and only if Yi > 0; (2) compute Poisson estimates β̂ for the multiplicative model, for

instance with iOLSU ; (3) recover the residuals Ûi = Yi exp(−X ′β̂);27 and (4) estimate the following regression

model

Ûi = λWi + νi , (5.4.5)

for strictly positive errors only, and whereWi = Ê[U]P̂ (Xi)
−1 and Ê[U] is the unconditional mean of Ûi across

both positive and zero observations.

The following t-stat allows evaluating the model’s validity:

t =
λ̂− 1

σ̂λ
. (5.4.6)

Under the null, the OLS estimate of λ is consistent since Ûi and P̂ (Xi) are consistent and t will hence

24It is worth noting that Heckman’s correction model enforces a comparable conditional moment restriction: E[log(Ui )|Xi , Ui >
0] =

λφ(−X′
i
γ)

P r(Ui>0|Xi )
. More generally, moment-based methods typically make implicit assumptions about the selection process, whereas

sample-selection models enforce explicit restrictions.
25E[U] is used to address the general framework where E[U] could differ from 1.
26We also need to test whether the probability of observing a zero depends on any Xi by assessing H0b : P r(Ui > 0|Xi ) = p, for

any constant p. The latter is easily checked by estimating a logit or probit model and testing the statistical significance of each Xi ’s. The
null is rejected if any coefficient is found to differ significantly from zero.

27For the additive model (PPML), one must use the “additive error” ε̂i + 1 = Ûi/ exp(X
′
i
β̂PPML), and regress ε̂i + 1 =

λE[U]P r(Ui > 0|Xi )−1 + νi .

296



converge to zero. In finite samples, however, the standard error estimates will need to be adjusted to account

for the additional noise introduced by first-step estimates.28 We opt for a pairs bootstrap to estimate this test

statistic in our practical implementation. This approach yields tPPML tiOLSU and tiOLSε .

Testing the iOLS restriction. The same reasoning can be applied to the iOLSδ conditionE[log(δ+Ui)|Xi ] =

c . The null hypothesis is now

H0 : E[log(δ + Ui)|Xi , Ui > 0]− log(δ) =
c − log(δ)

P r(Ui > 0|Xi)
, (5.4.7)

and the corresponding regression given by log(δ + Ûi) − log(δ) = λWi + νi , for strictly positive errors

only, where Ûi = Yi exp(−X ′β̂ iOLSδ) and Wi = (ĉ − log(δ))P̂ (Xi)
−1 based on ĉ obtained from iOLSδ . The

rest of the testing procedure is unchanged. This approach yields tiOLSδ .

Testing other restrictions. The same reasoning can be applied to the popular fix or the IHS. Using (5.2.5),

for the popular fix, the null hypothesis becomes

H0 : E[ωi |Xi , Ui > 0] = (X ′β − log(∆))
1− P r(Ui > 0|Xi)
P r(Ui > 0|Xi)

, (5.4.8)

and the corresponding regression model is given by ω̂i = λWi + νi , for strictly positive errors only. For the

popular fix, we would have ω̂i = log(Yi +∆)−X ′β̂PF andWi = (X ′β̂PF − log(∆))(1− P̂ (Xi))P̂ (Xi)
−1.29

The t-stat tPF and tIHS are obtained as above.

Testing whether zeros can be dropped. Discarding zeros is not recommended in general but can be valid

in some settings. Once zeros are dropped, researchers generally estimate either the log-linear model (5.2.2)

by OLS, or PPML based on (5.2.4).

In the former case, Heckman’s model is particularly useful. Statistical significance of the parameter λ

associated with the correction term, using the t-stat tHECK , is evidence that dropping zeros introduces a

selection bias. In the latter case, one can test for such bias by substituting (5.4.4) for λ = 1 into (5.2.3) to

obtain

Yi = exp(X ′iβ)
E(U)

P r(U > 0|Xi)
ηi , (5.4.9)

where ηi − 1 = νi exp(X ′
i
β)

E(U)
P r(U>0|Xi ))

−1. This expression simplifies to Yi = exp(X ′β − log(P r(U >

0|Xi)))ηi . Therefore, testing whether zeros can be discarded from PPML is possible by estimating the augmented

model on the strictly positive observations

Yi = exp(X ′β + θ log(P̂ (Xi))ηi , (5.4.10)

and evaluate H0 : θ = 0 with the t-statistic tPPML0 for the new regressor log(P̂ (Xi)). Under the Poisson

condition, we should observe θ = −1 but any deviation from θ = 0 may signal that zeros play a non-negligible

role, even if E[U|X] = 1 does not hold.

28The main difficulty in deriving a closed-form expression for σ̂λ is to account for the correlation between P̂ (Xi ) and β̂iOLSU which
are separately estimated. We do not address this issue.

29For the IHS, we would use the null hypothesis H0 : E[ωi |Xi , Ui > 0] = X ′β
1−P r(Ui>0|Xi )
P r(Ui>0|Xi )

. We would have ω̂i = Ỹi − X ′β̂IHS

andWi = X
′β̂IHS(1− P̂ (Xi ))P̂ (Xi )−1.
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Conditional probability estimation. Those tests require a consistent estimate of the conditional probability

function P (U > 0|·). Specifying a parametric model, like the logit, probit or even (ex-post bounded) linear

probability model, provides a simple option. However, the misspecification of P (U > 0|·) may distort the

test’s size and performance. A nonparametric estimate of the conditional probability should hence be preferred

whenever possible. Although consistent, nonparametric estimate can have poor small-sample behaviors especially

at the tails. We use a k-nearest neighbors (kNN) algorithm (Hastie et al., 2009) and “trim” observations

associated with predicted probabilities outside the 10% and 90% quantiles to correct for this issue.30

5.4.2 Model selection

We propose to select the most suitable approach using the previous tests.

First, iOLSδ for any δ ∈ (0,∞) is based on condition (A1):

E[log(δ + U)|X] = constant, (A1)

which depends on the choice of δ. The “best” model within this category minimizes t iOLSδ with respect to δ.

This rule will select the model with the least deviation between the implied and observed patterns of zeros.

Second, PPML, iOLSU and iOLSε are based on condition (A2):

E[U|X] = constant, (A2)

Third, OLS and PPML without zeros (or iOLSS in the Appendix 5.2.2) are based on either:

E[log(U)|U > 0, X] = constant, (A3)

or E[U|U > 0, X] = constant , which states that zeros can be discarded. Fourth, the Heckman’s correction

model is based on

(εi , νi)
′ ∼ bivariate Gaussian, (A4)

which is not readily testable. Fifth, the popular fix or the IHS transformation relies on assumptions of the form

E[ωi |X] = constant, (A5)

where ωi is a known function of Ui , Xi and β.

We propose a model selection procedure predicated on first using models based on moment conditions

rather than explicit distributional assumptions. This implies that we advocate for using more complex estimators

only when the simpler ones are rejected. The selection procedure is as follows:

1. Compute tiOLSU , tPPML, tiOLSδ for a range of δ, tPF and tIHS , and select the model with the smallest

t-statistic in absolute value, denoted |t1|. If |t1| < 1.96, stop and select this model;

2. Else, compute tPPML0, tHECK and take the maximum in absolute value to define |t2|. If |t2| < 1.96,

stop and report the estimates of PPML and OLS without zeros;31

3. Else, select Heckman’s correction model or another mixture model.

30See Cameron and Trivedi (2005) section 9.5.3 for a discussion of this common practice in nonparametric estimation.
31By taking the maximum of the two t-stats, we require that both tests suggest that zeros can be dropped before recommending to do

so. The rationale is that both tests have power against different alternatives, hence combining them enlarges statistical power.
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5.5 Simulations

Let us specify the dependent variable as

Yi = exp(β0 + β1X1i + β2X2i)Ui , (5.5.1)

where β0 = β1 = β2 = 1, Ui = exp(εi)ξi with ξi = 0 or 1, and P r(ξi = 0|Xi) = P (Xi) =
1

1+exp(γ0+γ1X1i+γ2X2i )
, with γ0 = −0.5, γ1 = 0.5 and γ2 = −0.5. We consider six DGPs specified as

follows:

• DGP 1 (A1): E[X ′
i
(log(1 + Ui) − c)] = 0. This DGP is useful to illustrate iOLSδ with δ = 1. Let us

assume that log(1 + εi) is uniformly distributed as U[ c
2P (Xi )

, 3c
2P (Xi )

] with X1i and X1i also uniformly

distributed as U[−1, 2]. Choosing c = 0.41512 yields the desired conditionE[X ′
i
(log(1+Ui)−c)] = 0

with E(Ui) = 1.

• DGP 2 (A2): E[Ui |Xi ] = 1. This DGP is aimed at comparing the alternative modelling approaches to

PPML. We assume that (X1i , X2i)
′ is bivariate normal with mean zero, variance σ2

X1
= σ2

X2
= 1 and

covariance σX1X2 = −0.3. We further assume that εi is Gaussian with mean− log(P (Xi))− 1/2 and

variance 1 so that exp(εi) is log-normal with conditional mean 1/P (Xi).

• The other DGPs are detailed in the Appendix. DGP 3 (A3) (E[Ui |Ui > 0, Xi ] = 1) is such that discarding

zeros and using PPML yields consistent estimates. DGP 4 (A4) is such that Heckman’s model applies.

DGP 5 (A5) is designed so that applying the IHS transform yields consistent OLS estimates. Finally,

DGP 6 (IV) assumes E[Ui |Xi ] 6= 1 but E[Ui |Zi ] = 1 which corresponds to the Poisson condition with

endogenous regressors.

We simulate 10,000 times each DGP, for two sample sizes (n = 1, 000 and n = 10, 000), and report the

mean and standard deviations for the following estimators: iOLSδ=1, iOLSδ=100, iOLSU (multiplicative Poisson),

iOLSε (additive Poisson), PPML (additive Poisson), iOLSS (see Appendix 5.2.5), OLS and PPML without zeros

(PPML0), Heckman’s corrected model, OLS after performing the inverse hyperbolic sine transform (IHS), and

the popular fix with∆ = 0.7 (PF).32 For DGP 6, where regressors are endogenous, we report the 2SLS analog

of the above estimators. The results for DGP 3 to 6 are included in Appendix 5.3.

32This is the “best” value for ∆ which minimizes the mean square bias, see Section 5.2.1.
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Table 5.1: Simulations: DGP 1 (A1: E[X ′
i
(log(1 + Ui)− c)] = 0)

n=1000 n=10,000

Cond. Estim. β0 β1 β2 β0 β1 β2

(A1)

iOLSδ=1 0.99 1.01 0.99 1.00 1.00 1.00

(0.09) (0.10) (0.10) (0.03) (0.03) (0.03)

iOLSδ=100 0.92 0.72 1.28 0.92 0.72 1.28

(0.07) (0.07) (0.07) (0.02) (0.02) (0.02)

(A2)

iOLSU 0.91 0.71 1.29 0.92 0.70 1.30

(0.07) (0.07) (0.07) (0.02) (0.02) (0.02)

iOLSε 1.00 0.61 1.27 1.01 0.60 1.28

(0.14) (0.13) (0.12) (0.04) (0.04) (0.04)

PPML 1.00 0.61 1.27 1.01 0.60 1.27

(0.14) (0.13) (0.12) (0.04) (0.04) (0.04)

(A3)

iOLSS 0.97 0.46 1.54 0.97 0.46 1.54

(0.06) (0.04) (0.04) (0.02) (0.01) (0.01)

OLS 1.77 0.50 1.50 1.77 0.50 1.50

(0.04) (0.03) (0.04) (0.01) (0.01) (0.01)

PPML0 2.04 0.27 1.58 2.05 0.26 1.58

(0.08) (0.09) (0.07) (0.02) (0.03) (0.02)

(A4)
Heckman −8.18 2.48 −0.48 −7.92 2.47 −0.47

(3.48) (0.56) (0.56) (1.02) (0.17) (0.17)

Others

IHST 0.89 0.56 0.18 0.89 0.56 0.18

(0.05) (0.07) (0.07) (0.02) (0.02) (0.02)

PF 0.46 0.52 0.18 0.46 0.52 0.18

(0.05) (0.06) (0.06) (0.01) (0.02) (0.02)

Notes: This table shows the parameter estimates and standard errors calculated on data simulated according to DGP1. The column

“Cond.” identifies the family of identifying condition on which the models in column “Estim.” rely. The estimates are reported based on a

sample of size n = 1000 or of n = 10, 000. Standard errors are presented in parentheses.

Bias and variance. Table 5.1 reports the results for DGP 1 based on the true identifying conditionE[X ′
i
(log(1+

Ui) − c)] = 0. All estimators but iOLSδ=1 are biased, confirming that the identifying conditions of iOLSδ

indeed differ from those assumed by PPML. This bias is severe for the inverse hyperbolic sine transformation,

the popular fix, and the Heckman correction. PPML exhibits a smaller bias than existing alternative estimators

and is found to have greater variance than iOLSU . As expected, iOLSε corresponds exactly to PPML estimates.

These results also illustrate the
√
n-consistency of the estimators as the standard errors are divided by 10 as

the sample size increases by 100-fold.
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Table 5.2: Simulations: DGP 2 (A2: E[Ui |Xi ] = 1)

n=1000 n=10,000

Cond. Estim. β0 β1 β2 β0 β1 β2

(A1)

iOLSδ=1 1.06 1.26 0.74 1.08 1.25 0.75

(0.19) (0.11) (0.11) (0.06) (0.04) (0.04)

iOLSδ=100 0.98 1.03 0.97 1.00 1.02 0.98

(0.17) (0.10) (0.10) (0.05) (0.03) (0.03)

(A2)

iOLSU 0.98 1.01 0.99 1.00 1.00 1.00

(0.17) (0.10) (0.10) (0.05) (0.03) (0.03)

iOLSε 1.02 0.99 0.97 1.00 1.00 1.00

(0.47) (0.17) (0.21) (0.19) (0.06) (0.09)

PPML 1.02 0.99 0.97 1.01 1.00 0.99

(0.47) (0.17) (0.21) (0.19) (0.06) (0.09)

(A3)

iOLSS 1.08 0.74 1.27 1.09 0.73 1.27

(0.14) (0.07) (0.07) (0.04) (0.02) (0.02)

OLS 1.52 0.73 1.27 1.52 0.73 1.27

(0.10) (0.06) (0.05) (0.03) (0.02) (0.02)

PPML0 2.05 0.69 1.29 2.05 0.69 1.30

(0.36) (0.14) (0.17) (0.15) (0.06) (0.07)

(A4)
Heckman −1.45 1.30 0.70 −1.40 1.30 0.70

(1.87) (0.35) (0.35) (0.56) (0.11) (0.11)

Others

IHST 0.82 0.72 0.05 0.82 0.72 0.05

(0.11) (0.07) (0.07) (0.03) (0.02) (0.02)

PF 0.38 0.68 0.06 0.38 0.68 0.06

(0.10) (0.07) (0.07) (0.03) (0.02) (0.02)

Notes: This table shows the parameter estimates and standard errors calculated on data simulated according to DGP2. The column

“Cond.” identifies the family of identifying condition on which the models in column “Estim.” rely. The estimates are reported based on a

sample of size n = 1000 or of n = 10, 000. Standard errors are presented in parentheses.

Table 5.2 reports the results for DGP 2 when E[Ui |Xi ] = 1 is the true identifying condition. We first observe

that only PPML, iOLSU and iOLSε are consistent. Second, we nonetheless see that iOLSδ=100 exhibits a small

bias but does not exclude the true value from its confidence interval. Third, we note that iOLSU dominates

PPML in terms of precision under this simulation design. Finally, we observe that the estimates of PF and IHS

have large biases.

Tests and model selection. The simulations are also useful to study our testing procedures. The conditional

probabilities to have a zero are logistic in all DGPs but (A4). In what follows, we mainly focus on the correct

parametric specification to compute the conditional probability of observing zero values (logit). We also report

and discuss some results when using a nonparametric approach (kNN) or a misspecified model (probit).

First, we report the frequency of selecting each δ in the set {0.1, 0.5, 1, 5, 10, 50, 100} for DGPs 1 and
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2, based on the smallest t-stat (section 5.4.1), When the true restriction is that of iOLSδ=1 (DGP 1), this

approach selects δ = 1 correctly 50% of the time for n = 10, 000 as opposed to 17% of the time when

n = 1000. In comparison, when the exogeneity condition of PPML is correct (DGP 2), a large δ is selected in

most simulations.33.

Table 5.3: Simulations: Data-driven selection of δ (iOLSδ)

δ

n DGP 0.1 0.5 1 5 10 50 100

1000
1 28% 18% 17% 16% 9% 5% 7%

2 14% 9% 8% 9% 7% 5% 48%

10,000
1 3% 32% 50% 14% 1% 0% 0%

2 0% 0% 2% 8% 14% 19% 57%

Notes: This table shows the relative frequency with which a given δ in the set {0.1, 0.5, 1, 5, 10, 50, 100} was chosen on the basis

of the 10,000 simulations. These simulations vary by sample size n and by DGP. These test assume the probability model to be logistic.

Interpretation: when the sample size is n=10,000 and the data was generated using DGP1, tiOLSδ=1 was the smallest 50% of the time, so

δ = 1 was selected 50% of the time.

Second, we show the empirical size and power of each test for all DGPs in Table 5.4 for a nominal size

of 5%. In DGP 1, the t-test tδ=1 rejects δ = 1 only 5% of the time which corresponds to the nominal test

size. The tests for iOLSδ=100, iOLSU and PPML have power against this alternative with a 100% rejection

rate in large samples. The results for DGP 2 show that the tests for iOLSδ=100, iOLSU , PPML and iOLSε are

correctly sized, and that the other tests have satisfactory power.34 Finally, the test for IHS is correctly sized in

DGP 5. It is worth noting that not all tests have power against each of the considered alternative, even in large

samples. This is the case for tδ=1 and tPF in DGP 5. Finally, the last column reports the empirical rejection

rates of the RESET test for PPML, including 3 polynomials terms (Santos Silva and Tenreyro, 2006; Ramsey,

1969). Findings reveal that the test is slightly oversized and lacks power against all considered alternatives.

For comparison, we report the empirical sizes and powers when using kNN instead of logit in Table 5.5.35 The

tests’ sizes are slightly distorted but exhibit satisfactory power.

33Results are similar for kNN and Probit (Appendix 5.3)
34Although not reported here for readability, tHECK and tPPML0 are correctly sized with only 5% rejection rates in DGP 3 where zeros

can be dropped, and exhibit some power under the alternatives.
35Results for Probit are reported in Table 5.3.7.
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Table 5.4: Simulations: Specification testing (Logit)

n DGP tδ=1 tδ=100 tU tε tPPML tIHST RESET

1000

1 6% 26% 25% 57% 57% 19% 12%

2 9% 5% 5% 4% 4% 22% 6%

3 11% 8% 8% 9% 9% 18% 5%

4 10% 7% 7% 13% 13% 39% 6%

5 6% 7% 7% 19% 19% 6% 9%

10,000

1 5% 100% 100% 100% 100% 87% 9%

2 47% 5% 5% 5% 5% 100% 7%

3 75% 33% 39% 62% 62% 100% 6%

4 61% 25% 30% 71% 70% 100% 6%

5 6% 22% 24% 94% 94% 5% 9%

Notes: This table shows the relative rejection frequency of each null hypothesis for 10,000 simulations. These simulations vary by sample

size (as reported by the column “n”) and by Data Generating Process (as reported in the column “DGP”). These test assume the probability

model to be logistic. RESET refers to the t-statistic associated with the joint significance of three polynomial terms. Interpretation: when

the sample size is n=1000 and the data was generated using DGP1, tδ=1 was rejected 6% of the time.

Finally, Table 5.6 reports selection rates using our procedure. The correct model is chosen more often as

the sample size enlarges. However, the estimates’ precision largely drives this selection. For example, the

Heckman model is only selected 14% of the time when n=10,000 in DGP 4, requiring more observations to

approach 100%.

Table 5.5: Simulations: Specification testing (kNN)

n DGP tδ=1 tδ=100 tU tε tPPML tIHST RESET

1000

1 8% 16% 18% 9% 9% 6% 12%

2 39% 9% 8% 6% 6% 14% 6%

3 66% 37% 35% 16% 16% 39% 5%

4 62% 29% 26% 9% 9% 70% 5%

5 5% 6% 6% 4% 4% 6% 9%

10,000

1 8% 98% 99% 63% 63% 21% 9%

2 98% 12% 8% 7% 7% 71% 7%

3 100% 95% 93% 53% 53% 100% 6%

4 100% 93% 88% 23% 23% 100% 6%

5 7% 13% 14% 5% 5% 5% 9%

Notes: This table shows the relative rejection frequency of each null hypothesis for 10,000 simulations. These simulations vary by sample

size (as reported by the column “n”) and by Data Generating Process (as reported in the column “DGP”). These test are based on a

non-parametric KNN probability model, trimmed of the top and bottom 10% observations. RESET refers to the t-statistic associated with

the joint significance of three polynomial terms. Interpretation: when the sample size is n=1000 and the data was generated using DGP1,

tδ=1 was rejected 8% of the time.
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Table 5.6: Simulations: Model selection

n DGP (A1) (A2) (A3) (A4) (A5)

1000

1 52% 25% 0% 0% 23%

2 24% 67% 4% 0% 5%

3 18% 60% 20% 0% 3%

4 25% 56% 19% 0% 0%

5 14% 14% 63% 0% 9%

10,000

1 93% 0% 0% 4% 2%

2 5% 95% 0% 0% 0%

3 0% 31% 67% 2% 0%

4 1% 67% 19% 13% 0%

5 41% 14% 3% 0% 41%

Notes: This table shows the selection frequency of each identifying restriction for 10,000 simulations. These simulations vary by sample

size (as reported by column “n”) and by Data Generating Process (as reported in column “DGP”). Selection is done assuming the probability

model to be logistic. Interpretation: when the sample size is n=1000 and generated by DGP1, a model with moments (A1) is chosen 51%

of the time.

5.6 Application

We now revisit three empirical studies published in top-tier economic journals where the log of zero had to be

addressed. First, Santos Silva and Tenreyro (2006) compare various estimators to estimate gravity models of

trade. Second, Michalopoulos and Papaioannou (2013) use the popular fix to examine the role of pre-colonial

ethnic institutions on economic development. Third, Card and DellaVigna (2020) investigate the preferences of

academic journal editors with the IHS transformation in the context of endogenous regressors.

For brevity, we report only the main estimates for the most relevant estimators. We focus on the data-

driven selected δ for iOLSδ , along with iOLSU , PPML and IHS. Standard errors, as reported in parenthesis, are

obtained using 300 pairs bootstrap. Comprehensive results for all estimators and tests discussed in the paper

are given in the Appendix.

5.6.1 Santos Silva and Tenreyro (2006)

First, we study the gravity model of Santos Silva and Tenreyro (2006). Their Table 3 reports models of bilateral

trade for data covering 136 countries in 1990. For importer (I) and exporter (X) countries, they control for

log(GDP), log(GDP per capita), log(Distance), along with dummies for contiguity, shared language, colonial ties,

access to the oceans, remoteness (which measures the access to other trading partners), free trade agreement

(FTA), and the existence of a preferential trade agreement. They advocate for PPML over a log-linear model

arguing that the latter is biased in presence of heteroskedastic errors.

We report the t-statistic and main estimates in Table 5.7 in order to compare the different approaches.36

The tests provide evidence against iOLS estimators but fail to reject PPML. Although the test for PPML0 fail to

reject that zeros can be discarded, the test for Heckman provides evidence of the opposite. Therefore, dropping

36The associated λ̂ statistics for all specifications are provided in Table 5.4.4 in the Appendix.
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zeros is not recommended and PPML should be preferred when using the parametric test with logit probability.

However, it should be noted that using a nonparametric approach (kNN) to estimate the conditional probability

of observing zeros for the test provides a different conclusion. PPML is no longer the preferred model and is

rejected in favor of iOLSδ=100 and iOLSU (see Table 5.4.4 in the Appendix).

Table 5.7: Estimates from Santos Silva and Tenreyro (2006)’s Table 3

iOLSδ=100 PPML* iOLSU Heckman PPML0

Log(Distance) -1.52 -0.78 -1.48 -1.26 -0.78

(0.08) (0.06) (0.08) (0.04) (0.06)

Contiguity 0.13 0.19 0.20 0.15 0.20

(0.38) (0.10) (0.38) (0.13) (0.10)

Language 0.76 0.75 0.69 0.77 0.75

(0.13) (0.14) (0.13) (0.07) (0.14)

Colonial 0.41 0.03 0.39 0.44 0.02

(0.15) (0.15) (0.15) (0.07) (0.15)

FTA 1.45 0.18 1.55 0.46 0.18

(0.49) (0.10) (0.57) (0.11) (0.10)

λ̂ 0.46 1.26 0.44 0.81 -0.22

(0.06) (0.39) (0.06) (0.09) (0.37)

t-Stat. [-9.82] [0.68] [-9.24] [8.75] [-0.59]
Notes: This table displays the main coefficients, standard errors (s.e) using 300 pairs bootstrap, and t-statistics (t-Stat.) for several models

of trade gravity, based on using a logistic probability model. The full list of control variables is provided in Section 5.6.1. iOLSδ=100,

iOLSU , and PPML0 are defined in Section 5.3 and 5.4.1. The symbol *denotes the specification recommended by the authors in their

original article. Our preferred specification (i.e. with the smallest t-stat) is in bold.

5.6.2 Michalopoulos and Papaioannou (2013)

Michalopoulos and Papaioannou (2013) examine the relationship between pre-colonial political centralization

and contemporary development in African countries. The latter is proxied using light density at night at the

regional level and used as the response variable through the “popular fix”: log(0.01 +Yi). The authors focuses

on the coefficient associated with Murdock’s 1967 index of jurisdictional hierarchy.37 The cross-sectional unit

is ethnicity-by-country. They control cumulatively for population density, location, and geography,38 and find

positive and significant estimates.

37Ranging between 0 and 4, it provides the number the number of jurisdictions above the local level for each ethnicity as reported in
1967. A large number indicates the presence of a centralized political organization.

38We focus on columns (2)-(4) of their Table 2. Full results along with a replication of their Table 3 (Panel A, column (1)-(4)), which
includes additional country fixed effects, are provided in the Appendix. The same conclusions apply.
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Table 5.8: Estimates from Michalopoulos and Papaioannou (2013)’s Table 2

PF* iOLSδ=0.05 iOLSδ=100 PPML iOLSU

Pop.

β̂ 0.35 0.53 0.44 0.29 0.41

(0.07) (0.11) (0.13) (0.12) (0.14)

λ̂ -0.88 1.01 1.08 2.62 1.09

(0.29) (0.02) (0.06) (0.57) (0.07)

t-Stat. [-6.40] [0.67] [1.36] [2.85] [1.30]

Pop. & Loc.

β̂ 0.32 0.40 0.36 0.14 0.35

(0.06) (0.09) (0.09) (0.11) (0.10)

λ̂ -0.56 1.00 1.03 3.68 1.03

(0.24) (0.04) (0.05) (1.24) (0.05)

t-Stat. [-6.58] [-0.04] [0.58] [2.16] [0.55]

Pop. & Loc. & Geo.

β̂ 0.19 0.09 0.11 0.00 0.10

(0.05) (0.11) (0.09) (0.10) (0.09)

λ̂ -0.18 0.82 0.85 1.94 0.85

(0.12) (0.19) (0.21) (0.91) (0.22)

t-Stat. [-9.46] [-0.91] [-0.69] [1.04] [-0.68]
Notes: This table displays the coefficient associated with jurisdictional hierarchy, standard errors (s.e) using 300 pairs bootstrap, and

t-statistics (t-Stat.) for various models of economic activity in African regions, proxied by light intensity at night. These tests are based on

using a logistic probability model. iOLSδ , iOLSU , and PPML0 are defined in Section 5.3 and 5.4.1. PF is the baseline relying on the

popular fix (∆ = 0.01). Three specifications are presented, controlling cumulatively for population density (Pop.), Location (Loc.), and

Geography (Geo.). Full estimates are available in Table 5.4.8 of the Appendix. The symbol *denotes the specification used by the authors

in their original article. Our preferred specifications (i.e. with the smallest t-stat) are in bold.

The results are reported in Table 5.8. The popular fix provides overly precise estimates but is always

rejected by our tests with λ far from 1. In comparison, iOLS yields values of λ fairly close to 1. Adding

geographic controls lowers the estimated β in all cases to the point where it is not statistically significant

anymore. We fail to reject PPML in this specification although with a fairly imprecise estimate of λ. Those

results reveal a much weaker statistical relationship between the variables under study than considered in

the original paper.39 Interestingly, the best model suggested by the test differs depending on the explanatory

variables included in the specification. Indeed, the exogeneity condition directly depends on X, which implies

that the right model to use for the estimation of the effects can change from one specification to another, simply

by adding a new variable in X, even though these specifications are very close.40

39In subsequent work, Michalopoulos and Papaioannou (2014) study the link between contemporary political institutions in Africa and
economic development. They find an absence of statistical significance using both the popular fix, OLS in level, and PPML (Table 6 in the
Appendix). In contrast, we find an absence of significance in terms of pre-ethnic political hierarchy and economic development.

40As seen in Table 5.4.7 in the Appendix, the nonparametric probability model used for the tests yields qualitatively similar results for
our main specification of interest (i.e, with population, location, and geographical controls). Indeed, iOLSδ=100 and iOLSU remain our
favored specification, associated in both cases with λ close to one.
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5.6.3 Card and DellaVigna (2020)

Finally, we revisit Card and DellaVigna (2020)’s study of journal editors. The data contains submission-level

information from four leading economics journal matched to Google Scholar citations. The authors address the

log of zero with the IHS transformation and study the role of many control variables. For simplicity, we focus our

attention on measuring the impact of receiving an invitation to Revise & Resubmit on the number of citations,

which is considered an endogenous variable. The authors take a control function approach, instrumented using

the “leave-out mean R&R rate of the editor”.41

Table 5.9 reports estimates in three cases: without correcting for the endogeneity, using the control function

approach, and with instrumental variables. In all cases, iOLSδ=50 is selected and PPML is rejected. The IHS

is also rejected although with a λ fairly close to 1.42 Accounting for the endogeneity of this variable yields a

lower estimate, even negative when using iOLS. Yet, it is never statistically significant.

This effect is interpreted as the mechanical publication effect and has a positive sign in the original paper:

an invitation for R&R should yield additional citations. Although not statistically significant, its sign changes

when using iOLSδ and iOLSU or using 2SLS instead of the control function. We interpret this negative sign

as follows. An editor which is more likely to offer R&R will mechanically do so for papers with lesser potential to

attract citations. Specification tests presented in the Appendix point in favor of iOLSδ=50 in all specifications,

and reject all other estimators based on the Poisson condition or discarding zeros.

41This instrument measures the frequency with which the same editor has invited other authors to revise their manuscript before
reassessment.

42The kNN nonparametric probability model favors iOLSδ=50 in the instrumental variable case but rejects all models in the other cases,
as shown in Table 5.4.14 in the Appendix.
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Table 5.9: Estimates from Card and DellaVigna (2020)

IHS* iOLSδ=50 PPML iOLSU

No correction for Endogeneity

β̂ 0.57 0.48 0.53 0.48

(0.05) (0.04) (0.04) (0.04)

λ̂ 0.97 1.00 1.12 1.00

(0.00) (0.00) (0.01) (0.00)

t-Stat. [-6.64] [0.73] [8.63] [-3.06]

Control Function

β̂ 0.07 -0.09 0.11 -0.08

(0.14) (0.13) (0.13) (0.13)

λ̂ 0.97 1.00 1.13 1.00

(0.00) (0.00) (0.02) (0.00)

t-Stat. [-5.84] [0.83] [8.36] [-2.93]

Instrumental Variables

β̂ -1.77 -1.20 -1.36 -1.11

(1.32) (1.86) (0.91) (1.76)

λ̂ 0.97 1.00 1.14 1.00

(0.01) (0.10) (0.02) (0.00)

t-Stat. [-3.53] [-0.04] [7.54] [-0.88]
Notes: This table displays the coefficient associated with an invitation to revise & resubmit (R&R), standard errors (s.e) using 300 pairs

bootstrap, and t-statistics (t-Stat.) for various models of citations. iOLSδ and iOLSU are defined in Section 5.3. Three specifications are

presented: no correction for endogeneity contrasts with control function and instrumental variables which rely on the Editor leave-out mean

R&R rate for identification. The symbol *denotes the specification used by the authors in their original article. Our preferred specifications

(i.e. with the smallest t-stat) are in bold.

5.7 Conclusion

This paper developed multiple contributions to address a common yet unresolved issue faced in empirical

research: the log of zero. First, we have attempted to clarify some issues and misconceptions with respect to

existing practices, such as adding an arbitrary constant to the dependent variable. Second, we have derived

a new family of estimators to estimate log-linear models when the dependent variable can take non-positive

values. Those estimators have several advantages, including: 1) computational simplicity, 2) a natural extension

to instrumental variables, 3) robustness to the inclusion of many fixed effects, and 4) their flexibility to exogeneity

restrictions. Third, we have developed testing procedures to verify the underlying exogeneity restrictions

imposed by our estimators and other well-known approaches, such as PPML or IHS. We show how these tests

can be helpful to guide empirical research. Fourth, all methods are illustrated through numerical simulations

and replications of recent publications in top-tier economics journals. We find that the exogeneity restrictions

used by our estimators are rarely rejected and often selected as the best solution in those applications.

The main takeaway from our research should be that no single method works for all settings, hence

different methods can lead to different conclusions. Hopefully, empirical researchers are now better equipped
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to substantiate their preferred method in any given setting. The methodology developed in this paper should

help find a consensus among practitioners about the best practice to address the log of zero. There are also

many possible extensions, including semi-parametric models of sample selection and regularized models like

the lasso, which we leave for future research.

5.A Mathematical Appendix

Proof of Theorem 2: Consistency. Recall that the parameter β ∈ RK is characterized by the fixed-point

equation

β = E[XiX
′
i ]
−1E

�

Xi Ỹi(β)
�

, (5.A.1)

where Ỹi(β) = log(Yi + exp(X ′
i
β))− c(β) is the transformed dependent variable. The mapping from RK to

RK which characterizes the parameter is hence defined ∀φ ∈ RK as

M(φ) = E[XiX
′
i ]
−1E

�

Xi Ỹi(φ)
�

. (5.A.2)

The sample counterpart of this mapping is given by

M̂n(φ) = [X ′X]
−1
X ′ ˆ̃Yi(φ), (5.A.3)

where ˆ̃Yi(φ) = log(Yi + exp(X ′
i
φ)) − ĉ(φ), with ĉ(φ) = 1

n

∑n

i=1 log(Yi + exp(φ̂1(φ) − φ1 + X ′
i
φ)) −

log( 1n
∑n

i=1(φ̂1(φ)− φ1 +X ′
i
φ)) for φ̂1(φ) = log(n−1

∑n

i=1 Yi exp(−Xiφ+ φ1))

Our proof follows Dominitz and Sherman (2005) who develop a convergence theory for iterative estimators.

Following their theory, the convergence of iOLS requires that M(·) and M̂n(·) be contraction mappings,

asymptotically.43

In order to show the convergence result n1/2|β̂t(n) − β| = Op(1) as n → ∞ by applying Theorem 1 in

Dominitz and Sherman (2005), we need to show that the following conditions hold:

(i)
�

M̂n(·) : n ≥ 1, ω ∈ S
	

is an asymptotic contraction mapping on (B0, EK), where S is a sample space,

EK is the Euclidean metric on RK and B0 is the closed ball centered at β0 of radius |β̂0 − β|;44

(ii) n1/2|βt(n) − β| = Op(1) as n →∞;

(iii) n1/2 supφ∈B0 |M̂n(φ)−M(φ)| = Op(1) as n →∞; and

(iv) supφ∈B0 ||V̂n(φ)− V (φ)|| = op(1) as n →∞.

For condition (i), we adapt the proof of Lemma 5 in Dominitz and Sherman (2005) as follows. The first

step is to consider that X is prewhitened so that X ′X = nIk . This assumption is useful to establish the local

contraction mapping property. From a multivariate Taylor expansion argument, Dominitz and Sherman (2005)

show that condition (i) boils down to showing that the largest eigenvalue of ∇φM̂n(β) = V̂n(β) is strictly less

that unity as n →∞. Note that we have

V̂n(φ) = [X ′X]−1X ′∇φ ˆ̃Y (φ)

= n−1X ′∇φ ˆ̃Y (φ),
(5.A.4)

43The reader is referred to Dominitz and Sherman (2005) for a formal definition of an asymptotic contraction mapping.
44Note that Dominitz and Sherman (2005)’s condition (i) is about M(·) and not M̂n(·). However those conditions imply each other

under conditions (iii) and (iv) by applying their Lemma 3 with trivial modifications.
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where the second equality uses prewhitening and∇φ ˆ̃Yi(φ) has element (i , k) defined as
�

∇φ ˆ̃Y (φ)
�

i ,k
=

exp(X ′
i
φ)Xki

Yi + exp(X ′
i
φ)
−
∂ĉ(φ)

∂φk
. (5.A.5)

Let us denote X1i = 1, for all i as the constant. By prewhitening, we have
∑n

j=1X1j = n and
∑n

j=1Xkj =

0 for k > 1.

∂ĉ(φ)

∂φk
= n−1

n
∑

i=1

exp(Xr
′

i
φr + φ̂1)( ∂φ̂

1

∂φk
+Xki)

Yi + exp(Xr
′

i
φr + φ̂1)

− n−1
n
∑

i=1

(
∂φ̂1

∂φk
+Xki), (5.A.6)

for k > 1 and ∂ĉ(φ)
∂φ1

= 0. This expression simplifies when evaluated at φ = β, as shown by

∂ĉ(β)

∂φk
= n−1

n
∑

i=1

Xki
1 + Ui

+Op(1), (5.A.7)

for k > 1 because φ̂1(β) = log(n−1
∑

i=1 Yi exp(−Xr ′
i
βr )) = β1+log(n−1

∑

i=1 Ui), where log(n−1
∑

i=1 Ui) =

Op(1) by iid assumption and E[Ui ] = 1, and n−1
∑n

i=1Xki = 0 by prewhitening. Thus, we have ∂φ̂1(β)
∂φk

= 0.

Therefore, each element (k, l) of V̂n(β) writes

�

V̂n(β)
�

k,l
= n−1

n
∑

i=1

XkiXl i
1 + Ui

− n−1
n
∑

i=1

Xkin
−1

n
∑

j=1

Xl j

1 + Uj
, (5.A.8)

for l > 1 and
�

V̂n(β)
�

k,l
= n−1

n
∑

i=1

Xki
1 + Ui

, (5.A.9)

for l = 1. Remark that for k = 1,∀l > 1 we have [Vn(β)]1,l = 0, and for k = 1, l = 1, we have
�

V̂n(β)
�

1,1
= n−1

∑n

i=1
1
1+Ui

< 1. Therefore, the eigenvalue associated with the constant term is strictly

below 1, and proving the convergence amounts to showing that the largest eigenvalue of the (K−1)×(K−1)

lower right-hand submatrix of V̂n(β) is strictly less than unity. All elements (k, l) for k, l > 1 of this matrix writes

�

V̂n(β)
�

k,l
= n−1

n
∑

i=1

XkiXl i
1 + Ui

. (5.A.10)

because of prewhitening. We can write this in matrix form as
�

V̂n(β)
�

k,l>1
= n−1X ′WX, (5.A.11)

where W is a diagonal matrix with elements (i , i) acting as weights given by 1
1+Ui

∈ (0, 1]. Note that those

weights become δ
δ+Ui

∈ [0, 1) for δ 6= 1. We can thus write W = W 1/2W 1/2, and rewrite the submatrix of

interest as the quadratic form
�

V̂n(β)
�

k,l>1
= n−1X ′W 1/2W 1/2X. (5.A.12)

Consequently, this matrix is nonnegative definite and so must have all nonnegative eigenvalues. We can

alternatively write the weight matrix W = In − D, where D is also a diagonal matrix with elements Ui
1+Ui

∈
[0, 1), or more generally Ui

δ+Ui
∈ [0, 1). Therefore, we have the alternative expression

�

V̂n(β)
�

k,l>1
= n−1X ′(In −D)X = IK−1 − n−1X ′D1/2D1/2X, (5.A.13)

where the second term is also a quadratic form. It follows that as n →∞, the maximum eigenvalue is equal to

max
|a|=1

a′
�

V̂n(β)
�

k,l>1
a = max

|a|=1
1− a′X ′D1/2D1/2Xa. (5.A.14)
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Assuming the data distribution is non-degenerate, a′X ′D1/2D1/2Xa is positive and bounded away from zero

for all unit vectors a ∈ RK−1. Thus, as n → ∞, the maximum eigenvalue of V̂n(β) is strictly less than unity.

This proves the result.

Let us turn to condition (ii). Following Dominitz and Sherman (2005), a sufficient condition to satisfy (ii) is

t(n) ≥ − 12 log(n)/ log(κ), where κ ∈ [0, 1) is the modulus of the contraction M(·), which can be estimated

as the mean or median of κ̂ = |β̂t+1 − β̂t |/|β̂t − β̂t−1| across several iterations.

For condition (iii), we want to show that n1/2 supφ∈B0 |M̂n(φ)−M(φ)| = Op(1) as n →∞. For any φ ∈
B0, recall that M̂n(φ) = X ′X−1X ′ ˆ̃Yi(φ). Under the iid assumption and assuming E[XiX

′
i
] < ∞, applying

the weak law of large numbers and Slutsky’s theorem yield n−1X ′X−1
p→ E[XiX

′
i
]−1 and ĉ(φ)

p→ c(φ) as

n → ∞, and thus n−1X ′ ˆ̃Yi(φ)
p→ E

�

Xi Ỹi(φ)
�

as n → ∞. Therefore, M̂n(φ)
p→ M(φ) as n → ∞ and

the Lindeberg-Levy’s central limit theorem gives |M̂n(φ) −M(φ)| = Op(n−1/2) for any φ ∈ B0, and thus in

particular

n1/2 sup
φ∈B0
|M̂n(φ)−M(φ)| = Op(1). (5.A.15)

For condition (iv), let us use the derivations obtained earlier and similar arguments than for condition (iii).

We have that ∇φĉ(φ)
p→ ∇φc(φ) and thus V̂n(φ)

p→ V (φ) as n → ∞. Therefore, the condition ||V̂n(φ) −
V (φ)|| = op(1) holds. Applying Theorem 1 in Dominitz and Sherman (2005) yields the desired convergence

result.

Proof of Theorem 2: Normality. We now make use of Theorem 4 in Dominitz and Sherman (2005) to derive the

asymptotic distribution of iOLS. All conditions have been verified in the previous results except that
√
n(M̂n(β)−

β)
d→ Z as n →∞, where Z is a limit distribution. Note that we have

ĉ(β) = n−1
n
∑

i=1

log(n−1
n
∑

j=1

Uj + Ui)− log(n−1
n
∑

j=1

Uj)
p→ E[log(1 + Ui)] = c, (5.A.16)

as n →∞, and
ˆ̃Yi(β) = log(1 + Ui) +X ′iβ − ĉ(β), (5.A.17)

so that
√
n[X ′X]−1X ′ ˆ̃Yi(β) =

√
n
�

β + [X ′X]−1X ′(log(1 + U)− ĉ(β))
�

. (5.A.18)

Under the iid assumption and the exogeneity condition E[Xi log(1 + Ui)] = c , the Lindeberg-Levy’s central

limit theorem yields
√
n
�

M̂n(β)− β
� d→ N(0,Σ), (5.A.19)

as n → ∞, where Σ is the asymptotic covariance matrix. Remark that it is the asymptotic covariance of the

OLS estimator of the regression of ˆ̃Y (β) onto X. Heteroskedasticity-robust estimators and alike apply exactly

as in the standard OLS setting. However, the iOLS estimator has a slightly different asymptotic distribution.

Theorem 4 of DS 2005 gives the following result
√
n
�

β̂i(n) − β
� d→ N(0,Ω−1), (5.A.20)

as n →∞, where Ω = (Ik − V (β))−1Σ(IK − V (β)) and the gradient∇φM(β) = V (β) is defined as

V (β) = E[XiX
′
i ]
−1E[

XiX
′
i

1 + Ui
], (5.A.21)
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of which each element is strictly below 1. Therefore sandwich-type covariance estimators are changed from

the classical expression

Σ̂ = (
1

n
X ′X)−1Σ̂0(

1

n
X ′X)−1 (5.A.22)

to

Σ̃ = (
1

n
X ′(I −W )X)−1Σ̂0(

1

n
X ′(I −W )X)−1, (5.A.23)

where W is a diagonal weighting matrix with diagonal element 1
1+Ui

, and Σ̂0 is an estimator of the covariance

of X ′
i
(log(1 + Ui)− c) across observations. For another δ 6= 1, we would have the weights δ

δ+Ui
∈ [0, 1). In

layman’s terms, the “meat” of HAC-robust estimators is unchanged but the “bread” is modified. As before, the

weights become δ
δ+Ui

when δ 6= 1.

An approximate solution consists in evaluating Ui at its mean so that a simple (though biased) estimator is

given by

Ω̂ =
1 + δ

δ
× Σ̂, (5.A.24)

where Σ̂ is the estimated covariance matrix (robust or not) of the OLS estimator in the last iteration. For

instance, this approximation yields standard errors twice as large as those of the OLS procedure for δ = 1.

Proof of Theorem 3: iOLSU . This proof is similar to that of the previous theorem, with small modifications.

Let us now consider
V̂n(φ) = [X ′X]−1X ′∇φ ˆ̃Y (φ)

= n−1X ′∇φ ˆ̃Y (φ),
(5.A.25)

where∇φ ˆ̃Yi(φ) has element (i , k) defined as
�

∇φ ˆ̃Y (φ)
�

i ,k
=

δ exp(X ′
i
φ)Xki

Yi + δ exp(X ′
i
φ)

+
∂Ûi(φ)

∂φk

�

1

1 + δ
−

1

Ûi(φ) + δ

�

. (5.A.26)

This expression simplifies, when evaluated at φ = β, to

�

∇β ˆ̃Y (β)
�

i ,k
= Xki

�

1−
Ui

1 + δ

�

, (5.A.27)

which yields

�

V̂n(β)
�

k,l
= n−1

n
∑

i=1

XkiXl i

�

1−
Ui

1 + δ

�

. (5.A.28)

Following the same reasoning as in the previous theorem, a sufficient condition for convergence is that Ui
1+δ

is between 0 and 1 for all i . Therefore, the choice of δ will affect both the speed of convergence and whether

the estimator converges at all. An efficient strategy for choosing δ is to start at a relatively small value and

increment it if convergence fails – which can be checked by estimating κ as explained above.

The proof of asymptotic normality is also unchanged, except that now the diagonal weighting matrix W in

Σ̃ = (
1

n
X ′(I −W )X)−1Σ̂0(

1

n
X ′(I −W )X)−1, (5.A.29)

has element 1− Ui
1+δ , and Σ̂0 is an estimator of the covariance of X ′

i
Ui across observations.

312



Proof of Theorem 3: iOLSε). This proof follows the same lines, with small modifications to the previous one.

The gradient∇φ ˆ̃Yi(φ) has now element (i , k) defined as
�

∇φ ˆ̃Y (φ)
�

i ,k
=

δ exp(X ′
i
φ)Xki

Yi + δ exp(X ′
i
φ)
−

1

Ûi(φ) + δ

∂Ûi(φ)

∂φk
+

1

1 + δ

∂(Yi − exp(X ′
i
φ))

∂φk
. (5.A.30)

This expression simplifies, when evaluated at φ = β, to

�

∇β ˆ̃Y (β)
�

i ,k
= Xki

�

1−
exp(X ′

i
β)

1 + δ

�

, (5.A.31)

which yields

�

V̂n(β)
�

k,l
= n−1

n
∑

i=1

XkiXl i

�

1−
exp(X ′

i
β)

1 + δ

�

. (5.A.32)

Following the same reasoning as in the previous theorem, a sufficient condition for convergence is that
exp(X ′

i
β)

1+δ is between 0 and 1 for all i . We suggest using the same trial and error approach based on estimating

κ.

The proof of asymptotic normality is also unchanged, except that now the diagonal weighting matrix W in

Σ̃ = (
1

n
X ′(I −W )X)−1Σ̂0(

1

n
X ′(I −W )X)−1, (5.A.33)

has element 1− exp(X
′
i
β)

1+δ , and Σ̂0 is an estimator of the covariance of X ′
i
εi across observations.

Proof of Theorem 4 : Instrumental Variables Consistency. Recall that the parameter β ∈ RK is characterized

by the fixed-point equation

βIV = E[X̆i X̆i
′
]−1E

�

X̆i Ỹi(β)
�

, (5.A.34)

where X̆ = PZX, PZ = Z(Z′Z)−1Z
′
, Z ∈ RM with M ≥ K, E(Z′

i
Xi) has rank K, and Ỹi(β) =

log(Yi + exp(X ′
i
β)) − c(β) is the transformed dependent variable. The mapping from RK to RK which

characterizes the parameter is hence defined ∀φ ∈ RK as

MIV (φ) = E[X̆i X̆i
′
]−1E

�

X̆i Ỹi(φ)
�

. (5.A.35)

The sample counterpart of this mapping is given by

M̂IV
n (φ) = [X̆i

′
X̆i ]
−1X̆i

′ ˆ̃Yi(φ), (5.A.36)

where ˆ̃Yi(φ) is defined as before.

Our proof is very similar to the one used to show Theorem 2. For condition (i), the first step is to consider

that Z is standardized so that X̆ is prewhitened: X̆ ′X̆ = nIk . As before, showing condition (i) boils down to

showing that the largest eigenvalue of ∇φM̂IV
n (β) = V̂ IVn (β) is strictly less that unity as n → ∞. Note that

we have
V̂ IVn (φ) = [X̆ ′X̆]−1X̆ ′∇φ ˆ̃Y (φ)

= n−1X̆ ′∇φ ˆ̃Y (φ),
(5.A.37)
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where the second equality uses prewhitening on X̆. Moreover,∇φ ˆ̃Yi(φ) has element (i , k) defined as
�

∇φ ˆ̃Y (φ)
�

i ,k
=

exp(X ′
i
φ)Xki

Yi + exp(X ′
i
φ)
−
∂ĉ(φ)

∂φk
. (5.A.38)

Let us denote X1i = 1 and Z1i = 1, for all i as the constant. By prewhitening X̆, we have
∑n

j=1 X̆1j = n

and
∑n

j=1 X̆kj = 0 for k > 1. The derivative of the nuisance parameter estimate writes

∂ĉ(φ)

∂φk
= n−1

n
∑

i=1

exp(Xr
′

i
φr + φ̂1)( ∂φ̂

1

∂φk
+Xki)

Yi + exp(Xr
′

i
φr + φ̂1)

− n−1
n
∑

i=1

(
∂φ̂1

∂φk
+Xki), (5.A.39)

for k > 1 and ∂ĉ(φ)
∂φ1

= 0. As before, this expression simplifies when evaluated at φ = β, as shown by

∂ĉ(β)

∂φk
=n−1

n
∑

i=1

Xki
1 + Ui

− n−1
n
∑

i=1

Xki +Op(1)

=n−1
n
∑

i=1

XkiUi
1 + Ui

+Op(1),

(5.A.40)

for k > 1 because φ̂1(β) = log(n−1
∑

i=1 Yi exp(−Xr ′
i
βr )) = β1+log(n−1

∑

i=1 Ui), where log(n−1
∑

i=1 Ui) =

Op(1) by iid assumption and E[Ui ] = 1.

Therefore, each element (k, l) of V̂ IVn (β) writes

�

V̂ IVn (β)
�

k,l
= n−1

n
∑

i=1

X̆kiXl i
1 + Ui

− (n−1
n
∑

i=1

X̆ki)(n−1
n
∑

j=1

Xl jUj

1 + Uj
), (5.A.41)

for l > 1 and
�

V̂ IVn (β)
�

k,l
= n−1

n
∑

i=1

X̆ki
1 + Ui

, (5.A.42)

for l = 1. Remark that for k = 1,∀l > 1 we have
�

V IVn (β)
�

1,l
= n−1

∑n

i=1
Xl i
1+Ui

, and for k = 1, l = 1, we

have
�

V̂ IVn (β)
�

1,1
= n−1

∑n

i=1
1
1+Ui

< 1. Therefore, all elements (k, l) for k, l ≥ 1 of this matrix writes

�

V̂ IVn (β)
�

k,l
= n−1

n
∑

i=1

X̆kiXl i
1 + Ui

. (5.A.43)

because of prewhitening. We can write this in matrix form as
�

V̂ IVn (βIV )
�

= n−1X ′PzWX, (5.A.44)

where W is a diagonal matrix with elements (i , i) acting as weights given by 1
1+Ui

∈ (0, 1]. The projection

matrix Pz being symmetric and idempotent, its eigenvalues are equal to either 0 or 1. Pz is hence a positive

semi-definite matrix. The product PzW is thus a positive semi-definite matrix because it is the product of two

symmetric positive semi-definite matrices.

Nevertheless PzW is not necessarily symmetric. For any vector a ∈ RK , a′X ′PzWXa and a′X ′ 12(PzW +

W ′Pz)Xa are the same quadratic forms. We have that X ′ 12(PzW +W ′Pz)X is positive semi-definite matrix

and all its eigenvalues are nonnegative and corresponds to those of X ′PzWX.

We can alternatively write the weight matrixW = In −D, whereD is also a diagonal matrix with elements
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Ui
1+Ui

∈ [0, 1). Therefore, we have the alternative expression
�

V̂ IVn (β)
�

= n−1X ′Pz(In −D)X

= X ′PzX − n−1X ′PzDX

= IK − n−1X ′PzDX,

(5.A.45)

where the second equality comes from Pz being idempotent, and prewhitening. It follows that as n → ∞, the

maximum eigenvalue is equal to

max
|a|=1

a′
�

V̂ IVn (β)
�

a = max
|a|=1

1− a′X ′
1

2
(PzD +D′Pz)Xa. (5.A.46)

Assuming the data distribution is non-degenerate, a′X ′ 12(PzD+D′Pz)Xa is positive and bounded away from

zero for all unit vectors a ∈ RK . Thus, as n → ∞, the maximum eigenvalue of V̂ IVn (β) is strictly less than

unity. This proves the result. The other conditions follow similar derivations as for Theorem 2 which complete

the proof.

Proof of Theorem 4: Instrumental Variables Normality. We now derive the asymptotic distribution of i2SLS.

We must show that
√
n(M̂IV

n (β)− β)
d→ Z as n →∞, where Z is a limit distribution. As before, we have

ĉ(β)
p→ E[log(1 + Ui)] = c, (5.A.47)

as n →∞, and
ˆ̃Yi(β) = log(1 + Ui) +X ′iβ − ĉ(β), (5.A.48)

so that
√
n[X̆ ′X̆]−1X̆ ′ ˆ̃Yi(β) =

√
n
�

β + [X̆ ′X̆]−1X̆ ′(log(1 + U)− ĉ(β))
�

. (5.A.49)

Under the iid assumption and the exogeneity condition E[X̆i(log(1 + Ui) − c)] = 0, the Lindeberg-Levy’s

central limit theorem yields
√
n
�

M̂IV
n (β)− β

� d→ N(0,Σ), (5.A.50)

as n → ∞, where Σ is the asymptotic covariance matrix. Remark that it is the asymptotic covariance of the

2SLS estimator of the regression of ˆ̃Y (β) onto X using Z as IV. Heteroskedasticity-robust estimators apply as

in the standard setting. However, the i2SLS estimator has a slightly different asymptotic distribution, because

the true β is unknown. Using the same reasoning as for iOLS, we obtain
√
n
�

β̂IV
i(n)
− βIV

�

d→ N(0, [ΩIV ]−1), (5.A.51)

as n → ∞, where ΩIV = (Ik − V IV (β))−1Σ(IK − V IV (β))−1 and the gradient ∇φMIV (β) = V IV (β) is

defined as

V (β) = E[X̆i X̆
′
i ]
−1E[

X̆iX
′
i

1 + Ui
]. (5.A.52)

Therefore sandwich-type covariance estimators are given by

Σ̃ = (
1

n
X ′

1

2
(Pz(I −W ) + (I −W )Pz)X)−1Σ̂0(

1

n
X ′

1

2
(Pz(I −W ) + (I −W )Pz)X)−1, (5.A.53)

where W is a diagonal weighting matrix with diagonal element 1
1+Ui

, and Σ̂0 is an estimator of the covariance

of PzX ′(log(1 + Ui) − c) across observations. Symmetrizing the weight matrix, as explained in the proof of

the preceding theorem, is required to have a symmetric positive definite matrix, hence invertible.
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5.2 Model Extensions

5.2.1 Instrumental variables

The estimation of causal relationships is central to social sciences. Yet, doing so is fraught with difficulties.

Simultaneity, an omitted variable, or the presence of measurement errors could result in biased estimates. For

example, if a researcher is interested in estimating the causal effect of the number of police officers on crime,

one may observe that the police is more often deployed in areas where crime is high and conclude that police

causes more crime.

A popular solution consists on finding an instrumental variable which affects the outcome only through the

endogenous variable. Using variation in the instrument, one can recover the impact of the main variable of

interest on the outcome through an estimation procedure known as Two Stage Least Squares (2SLS). For

example, Worrall and Kovandzic (2010) relies on exogenous variation in federal funding laws to instrument the

size of the police force.

Our iterated solution extends directly to this situation and consists, in turn, in running 2SLS iteratively.

Let us define Z as a n × L matrix with L ≥ K instrumental variables so that E[X ′Z] 6= 0. We assume

E(Z′Z) <∞ and denote Pz as the projection matrix Z(Z′Z)−1Z′. The following algorithm characterizes the

i2SLS estimators.

Algorithm 2 (i2SLS estimator). Let β̂0 be an initial estimate, as obtained for example with the 2SLS “popular

fix” estimator β̂2SLSPF = [X ′PzX]−1X ′Pz log(Y + ∆) ∈ RK , for some ∆ > 0. the i2SLS estimator is

obtained as follows.

1. Initialize t at 0;

2. Transform the dependent variable into Ỹ (β̂t);

3. Compute the 2SLS estimate β̂2SLSt+1 = (X ′PzX)−1(X ′Pz
ˆ̃Y (β̂t)), and update t to t + 1;

4. Iterate steps 2 and 3 until β̂2SLSt converges.

This iterative estimator converges under some conditions on Ỹ (·). The same transformations studied earlier

apply without further modifications. We prove the consistency of this estimator in the following theorem.

Theorem 4 (Consistency and Asymptotic Normality). Under the above assumptions, the i2SLS estimator is

consistent and achieves the parametric rate of convergence n−1/2. Formally, we have

n1/2|β̂IV
t(n)
− β| = Op(1) (5.2.1)

as n →∞ for any t(n) ≥ − 12 log(n)/ log(κ), where κ ∈ [0, 1) is the modulus of the associated contraction

mapping from RK to RK . In addition, the i2SLS estimator is asymptotically normally distributed such that
√
n
�

β̂IV
t(n)
− β

�

d→ N(0,ΩIV ), (5.2.2)

as n →∞, where ΩIV , as given in the proof, corresponds to the asymptotic covariance of the 2SLS estimator

in the last iteration up to minor modifications.

This asymptotic result reveals several desirable properties of our procedure. First, the i2SLS estimators

can be obtained easily using available software. Second, this iterative procedure makes non-linear instrumental
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variable estimation computationally tractable even when many control variables are included. This is particularly

important because current count models are hard to estimate, from a computational standpoint, when identified

on the basis of an instrumental variable.45 Finally, researchers often rely on the control function approach in

non-linear models. This method requires the error in the second stage to be an additively separable function of

the first-stage error and an independent error term. It also rules out settings where the endogenous variable is

not continuous (Wooldridge, 2015). In contrast, 2SLS (and thus i2SLS) does not require such assumptions.

Finally, the specification tests developed for iOLS are easily adapted for situations with endogenous regressors.

The main difference is that one must estimate P r(Y > 0|Z) instead of P r(Y > 0|X). Further details are

provided in Appendix 5.2.8.

5.2.2 Dispensable zeros (iOLSS)

In some circumstances, zeros can be dropped without consequence for identification. However, doing so comes

at the cost of a loss of efficiency. The condition for zeros to be “dispensable” in the PPML framework is

E(Ui |Xi , Ui > 0) = c, (5.2.3)

where c is a constant. This condition holds either when both E(Ui |Xi) and P r(Ui > 0|Xi) are constant in Xi

or when both vary with Xi . In the former case, whether one chooses to discard the zeros before estimation has

no consequence for identification but will affect precision. In the (somewhat more realistic) latter case, dropping

zeros is required for identification unless the term P r(Ui > 0|Xi) is explicitly modelled.

We now show that the iOLS estimators can accommodate this latter situation without loss of efficiency even

when zeros are dispensable. Without loss of generality, we will focus on iOLSU and assume E(Ui |Xi , Ui >
0) = c , although similar conditions could be considered for iOLSδ . We propose to keep all observations but

introduce a correction such that the conditional expectation E(Ui |Xi , Ui > 0) = constant is respected. Let

Ỹi denote the transformed dependent variable in (5.3.14), and take the conditional expectation on both sides to

obtain

E[Ỹi |Xi ] = X ′iβ +
1

1 + δ
(E[Ui |Xi ]− 1) . (5.2.4)

Substituting E(Ui |Xi) = cP r(Ui > 0|Xi), which holds by definition, yields

E[Ỹi |Xi ] = X ′iβ +
1

1 + δ
(cP r(Ui > 0|Xi)− 1) . (5.2.5)

Let us further assume that c = 1/P r(Ui > 0), without loss of generality, and rearrange the above

expression into

E[Ỹi |Xi ] = X ′iβ +
1

1 + δ

�

P r(Ui > 0|Xi)
P r(Ui > 0)

− 1

�

, (5.2.6)

which is equivalent to

E[Ỹi |Xi ]−
1

1 + δ

�

P r(Ui > 0|Xi)− P r(Ui > 0)

P r(Ui > 0)

�

= X ′iβ. (5.2.7)

Therefore, we can define a new transformation of the dependent variable

45For example, to our knowledge, there are no packages in Stata which allow one to estimate instrumental variable count models, as in
Mullahy (1997), with many categorical control variables.
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Ỹi(β) = log(Yi + δ exp(X ′iβ))− ci(β), (5.2.8)

where

ci(β) = log(δ + Yi exp(−X ′iβ))−
1

1 + δ
(Yi exp(−X ′iβ)− 1)

−
1

1 + δ

�

P r(Ui > 0|Xi)− P r(Ui > 0)

P r(Ui > 0)
− 1

�

,

(5.2.9)

is such that the exogeneity condition holds in the linear model because the conditional expectation of the new

transformed dependent variable has the correct mean.

We denote iOLSS the iOLS estimator based on this transformation. Before applying the iterative procedure,

one needs to estimate a probability model to obtain predictions of P r(Ui > 0|Xi). In our practical implementation,

we specify a logistic probability model to remain simple. P r(Ui > 0) is given by the average across observations.

The asymptotic properties of iOLSS depends on those of the estimator of P r(Ui > 0|Xi). Proving the

consistency of iOLSS directly follows from that of iOLSU , where the new added term in ci does not depend on

β but only on P r(Ui > 0|Xi). Therefore,
√
n-consistency is achieved if one has a

√
n-consistent estimator

of that conditional probability. A nonparametric estimator will hence yield a slower convergence rate. Besides,

this two-step estimation procedure requires one to correct the estimates’ standard errors. A simple yet more

computationally demanding approach is to use a bootstrap procedure.

5.2.3 Negative values

It sometimes occur that the dependent variable of interest take negative values in some instances. For example,

wholesale hourly electricity prices can be negative for some observations (De Vos, 2015) or firms’ profits can

turn negative (Draca et al., 2011). This prevents the use of a log-transformation, or requires one to discard

observations with negative values.

Our estimator extends to dependent variables taking negative values. However, one needs to specify a

model for negative values. For simplicity, we consider model (5.2.1) and assume that Ui can now take both

positive and negative values. The “popular fix” counterpart in this context would be to add a constant plus the

minimum of Yi in absolute terms. We consider, instead, the following model

log(Yi + ρ exp(X ′iβ)) = X ′iβ + log(ρ+ Ui) (5.2.10)

where ρ must be chosen such that Yi + ρ exp(X ′
i
β) > 0 ∀i . A necessary identifying restriction is then

given by E[X ′
i
(log(ρ+ Ui)− c)] = 0.

This transformation means that the log function’s vertical asymptote at zero is shifted leftwise towards the

minimum value of Y . Therefore, this approach is fundamentally different from the IHS, which imposes a S-shape

transformation around zero.

There are three possibilities to choose ρ. First, the error Ui is known to be bounded below so that Ui ≥ U.

One can simply choose ρ = δ + |U|, where the choice of δ follows the same argument as in the non-negative

setting. The rest of the procedure remains unchanged compared to iOLSδ .

Second, the error Ui is known to be bounded below, but U is unknown. It can be estimated by taking the

first-order statistic Û = min
i

Yi
exp(X ′

i
β)

. In this case, ρ̂ = δ + |Û| is estimated from the data. It is akin to the
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popular fix for negative data in that it also consists in adding an order statistic to the dependent variable. Here,

the convergence rate of Û is crucial to determine that of the iOLS estimator. For instance, if Ui is uniformly

distributed, the first-order statistic will converge at rate n−1 to the true lower bound and the convergence result

of the iOLS estimator will remain unaffected. Reversely, slower convergence rates will prevail if the first-order

statistic converges at a rate slower than n−1/2.

Finally, the error Ui could be unbounded. It is then unclear what is the appropriate exogeneity restriction.

For instance, the first-order statistic of a Gaussian error will go to −∞ at rate log(n). The parameter ρ will

slowly decrease with the sample size and never converge. iOLS consistency would require the identifying

restriction to depend on the sample size, which may not be meaningful in empirical applications. This case

can be addressed by imposing the same restriction for all sample sizes, say E[Ui |Xi ] = 1 for instance, and

consider the approach detailed in the previous paragraph as a reasonable approximation.

5.2.4 Log-log specifications

In many econometric applications, the main parameter of interest is an elasticity of Yi with respect to some

variable Xi . Elasticities are often estimated using a log-log specification. However, it is common to have both

dependent and independent variables that are equal to zero for some observations. Taking the log-transform of

either of these variables is impossible. We propose to address this issue as follows.

Let us consider the following data generating process

Yi = Xβ
i
Ui , (5.2.11)

with Xi > 0 and Ui ≥ 0. The iOLSδ estimator directly applies using the transformation

log(Yi + δXβ
i

) = β log(Xi) + ηi , (5.2.12)

under the exogeneity restriction E[log(Xi)ηi ] = 0, where ηi = log(δ+Ui)− c is the mean-zero error term of

the linearized model. The only difference with the log-linear setting is that the regressors are also in log form.

A potential issue arises whenXi can take zero values with positive probability. For any independent variable,

let us rewrite the above restriction as

E[log(Xi)ηi |Xi > 0]P r(Xi > 0) + lim
ε→0

E[log(ε)ηi |Xi = 0]P r(Xi = 0) = 0, (5.2.13)

which can be rewritten into

E[log(Xi)ηi |Xi > 0]P r(Xi > 0) + lim
ε→0

log(ε)E[1(Xi=0)ηi ]P r(Xi = 0) = 0. (5.2.14)

A sufficient condition for this equality to hold is to have both E[log(Xi)ηi |Xi > 0] = 0 and E[1(Xi=0)ηi ] = 0.

The former is the standard exogeneity condition stated for non-negative values of Xi , whereas the latter means

that the occurrences of zeros in Xi are exogenous to the errors. In the single covariate setting, one can simply

discard observations where Xi = 0 and estimate the model based on the condition E[log(Xi)ηi |Xi > 0] = 0.

In the multivariate case, this approach would lead to discard possibly many observations and greatly dampen

statistical power. Instead, one can make use of both restrictions and introduce an extra binary variable in the

model,46 as in

log(Yi +Xβ
i

) = β01(Xi=0) + βX̃i + ηi , (5.2.15)

46See also Battese (1997) for a very similar approach.
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where X̃i = log(Xi) for Xi > 0 and is equal to 0 otherwise, and the two parameters β0 and β should be equal

in principle. For ease of exposition, we have supposed the existence of a single explanatory variable but this

strategy can be used along with an intercept and other covariates.

5.2.5 Incidental parameter problem

In non-linear panel data models, individual fixed-effects are not consistent when the cross-sectional dimension n

increases to infinity while the time dimension T remains fixed. This issue is known as the incidental parameters

problem. It is a well-known issue with maximum likelihood estimators, but is not a problem for linear estimators

because the randomness of individual fixed-effects is “averaged out” and the parameters of interest are hence

consistently estimated.

Our estimators do not suffer from this problem as soon as fixed-effects are averaged out at each iteration.

A modified version of the iOLS algorithm can be used to accommodate many fixed effects by making use of

the Frisch-Waugh-Lovell theorem as follows. Let us decompose the set of regressors X = [X0, X1], where X0

are binary variables capturing all fixed-effects and X1 the remaining regressors (including the constant term).

Define the projection matrix P0 = X0(X
′
0X0)

−1X ′0 and denote the aggregate fixed-effect term by Λ = X ′0β0.

Algorithm 3 (iOLS estimator with many fixed effects). Let β̂0, and Λ̂0 be initial estimates. The iOLS estimator

is defined as the following iterative procedure:

1. Initialize t at 0;

2. Transform the dependent variable into ỸiOLS(β̂t , Λ̂t), where the term X ′β̂t is replaced by X ′1β̂t + Λ̂t ;

3. Partial out the transformed dependent variable ´̃YiOLS(β̂t , Λ̂t) = (In−P0)ỸiOLS(β̂t , Λ̂t) and the remaining

regressors variable X́1 = (In − P0)X1;

4. Compute the OLS estimate β̂t+1 = [X́1
′
X́1]
−1X́1

′ ´̃Y (β̂t), and update t to t + 1;

5. Recover the fixed-effects into the aggregate term Λ̂t = (Ỹ (β̂t)−X ′1β̂t+1)− ( ´̃Y (β̂t)− X́1
′
β̂t+1)

6. Iterate steps 2 to 5 until β̂t converges.

Note that all matrix inversions in this algorithm can be done only once. The presence of fixed-effects has

hence almost no effect on the computation speed of the iterative estimator. Remark further that this approach

relates to the Poisson estimator with high-dimensional fixed-effects. Indeed, Correia et al. (2019) transform the

PPML estimator into an iteratively reweighted least squares problem, then make use of the Frisch-Waugh-Lovell

theorem to fasten computations exactly like above. Their approach bears some similarities with our approach

for iOLSε (additive poisson), except that ours involves less matrix inversions.

5.2.6 The log of a ratio

Researchers are sometimes willing to estimate equations of the form

log(Yi1/Yi2) = X ′iβ + εi , (5.2.16)
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where Yi1 and Yi2 are two outcomes of interest. It may happen that both outcomes can take zero values, hence

not only the log is undefined but also the ratio. The “popular fix” estimator in this case consists in transforming

the outcomes and focus on the following model

log((Yi1 +∆)/(Yi2 +∆)) = X ′iβ + ωi , (5.2.17)

for some ∆ > 0.47 Needless to explain why this simple fix is not satisfactory. Instead, let us consider an

alternative solution where the two following equations are estimated jointly

log(Yi1 +∆) = X ′iβ1 + ε1i

log(Yi2 +∆) = X ′iβ2 + ε2i ,
(5.2.18)

by rewriting the problem as a seemingly unrelated regression problem. Here, we propose to use the popular

fix as a starting point, but other methods like iOLS will apply without difficulty. The parameter β of interest

corresponds to β1 − β2 and inference can be conducted using the delta-method. The advantage of this

approach is that one can separately check which model is best to address the log of zero in each equation.

5.2.7 Enforcing the log-linear model’s exogeneity condition

An alternative iOLS transformation would consist in letting δ vary across observations. For example, let δi =

δ(1− ξi) where ξi takes a zero value when Yi = 0 and is equal to 1 otherwise. Therefore, the iOLS transform

becomes

log(Yi + (1− ξi)δ exp(X ′iβ)) = X ′β + log((1− ξi)δ + Ui). (5.2.19)

Let us recall that Ui = exp(εi)ξi , thus the error term is log((1 − ξi)δ + exp(εi)ξi). We now develop its

conditional mean into

E(log((1− ξi)δ + exp(εi)ξi)|X) = E(εi |ξi = 1, X)P (X) + log(δ)(1− P (X)) (5.2.20)

On the other hand, the exogeneity condition imposed in the log-linear model is about

E(εi |X) = E(εi |ξi = 1, X)P (X) + E(εi |ξi = 0, X)(1− P (X)). (5.2.21)

Therefore, imposing the restriction E(log((1 − ξi)δ + exp(εi)ξi)|X) = 0 under the assumption that

E(εi |X) = 0 (log-linear) is equivalent to assuming that

E(εi |ξi = 0, X) = log(δ), (5.2.22)

where δ can be chosen using the testing procedures presented in the paper.

More generally, E(εi |X) = 0 implies that

E(εi |ξi = 1, X) = −E(εi |ξi = 0, X)(1− P (X))P (X)−1. (5.2.23)

We can hence evaluate any assumption about E(εi |ξi = 0, X) by considering a function δ(·) > 0 and test

whether the following condition holds

E(εi |ξi = 1, X) = − log(δ(X))(1− P (X))P (X)−1. (5.2.24)

This approach can be helpful although the choice of the candidate functions for δ(·) to be tested is beyond the

47Alternatively, in the context of a growth rate, Huber (2018) suggests using the “symmetric growth”. This fix consists in using 2
yt−yt−1
yt+yt+1

as “a second-order approximation to the ln growth rate. This measure is bounded in the interval [2, 2]. It has become standard in the
establishment-level literature because it naturally accommodates zeros in the outcome variable, for example due to zero household debt or
firm exit”.
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scope of this paper. Numerical simulations reveal that the algorithm has similar performance than iOLSδ .

5.2.8 Testing with endogenous regressors

In this section, we explain how our tests adapt to endogenous regressors.

Testing the Poisson condition. For Poisson models, we have

E[Ui |Zi ] = E[Ui |Zi , Ui > 0]P r(Ui > 0|Zi) = E(Ui), (5.2.25)

since E[Ui |Zi , Ui = 0] = 0. Following the same step as with exogenous regressors, the error term Ui under

the null is such that

Ui = λE[U]P r(Ui > 0|Zi)−1 + νi (5.2.26)

for Ui > 0 with λ = 1 and E[νi |Ui > 0, Zi ] = 0. There are hence two differences: 1. one needs to estimate

P (U > 0|Z) instead of P (U > 0|X), and 2. an IV estimator, like i2SLS, must be used to obtain Û.

Testing the i2SLS restriction. For iOLSδ , we have E[log(δ + Ui)|Zi ] = c . The null hypothesis is now

H0 : E[log(δ + Ui)|Zi , Ui > 0]− log(δ) =
c − log(δ)

P r(Ui > 0|Zi)
, (5.2.27)

hence the differences are the same than for Poisson models.

Testing other restrictions. Testing for other restrictions introduces some new steps. Developing the associated

exogeneity condition yields

E[ωi |Zi , Ui > 0]P (Zi) + E[ωi |Zi , Ui = 0](1− P (Zi)) = 0 (5.2.28)

which can be rearranged into

E[ωi |Zi , Ui > 0] = −E[ωi |Zi , Ui = 0](1− P (Zi))P (Zi)
−1. (5.2.29)

For the popular fix estimator, substituting the expression of ωi on the right-hand-side gives

E[ωi |Zi , Ui > 0] = −(log(∆)− E(X ′β|Z,U > 0))(1− P (Zi))P (Zi)
−1, (5.2.30)

where the new term E(X ′β|Z,U > 0) can be obtained from the first-stage estimates of the 2SLS procedure

neglecting the zero values. For the IHS estimator, we have the similar form

E[ωi |Zi , Ui > 0] = E(X ′β|Z,U > 0)(1− P (Zi))P (Zi)
−1. (5.2.31)
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5.3 Additional Simulations

There are six DGPs specified as follows:

• DGP 1: (A1) E[X ′
i
(log(1 + Ui) − c)] = 0. This DGP is useful to illustrate iOLSδ . Let us assume

that log(1 + εi) is uniformly distributed as U[ c
2P (Xi )

, 3c
2P (Xi )

] with X1i and X1i also uniformly distributed

as U[−1, 2]. Choosing c = 0.41512 yields the desired condition E[X ′
i
(log(1 + Ui) − c)] = 0 with

E(Ui) = 1.

• DGP 2 (A2): E[Ui |Xi ] = 1. This DGP is aimed at comparing the alternative modelling approaches to

PPML. We assume that (X1i , X2i)
′ is bivariate normal with mean zero, variance σ2

X1
= σ2

X2
= 1 and

covariance σX1X2 = −0.3. We further assume that εi is Gaussian with mean− log(P (Xi))− 1/2 and

variance 1 so that exp(εi) is log-normal with conditional mean 1/P (Xi).

• DGP 3 (A3): E[Ui |Ui > 0, Xi ] = 1. This DGP is such that discarding zeros and using PPML yields

consistent estimates. (X1i , X2i)
′ is distributed as in DGP 2, but now we assume exp(εi) ∼ U[1 −

min(1,
|X1i+X2i |
2 ), 1 + min(1,

|X1i+X2i |
2 )]. The purpose is to have a multiplicative error with mean 1 and

with variance as a function of Xi , as for DGP 1 and 2 but not through P (X).

• DGP 4 (A4): Heckit. This DGP is such that Heckman’s model applies. Let (X1i , X2i)
′ be distributed as

in DGP 2 and 3. In addition, assume that ξi = 1 if X ′
i
γ + νi > 0 and ξi = 0 otherwise. We further

assume (εi , νi)
′ to be iid joint Gaussian with variances σ2ε = σ2ν = 3 and covariance σ2εν = −2.7.

• DGP 5 (A5): Inverse Hyperbolic Sine. This DGP is designed so that applying the IHS transform yields

consistent OLS estimates. Let (X1i , X2i)
′ be iid uniform draws in [−0.5, 0.5] and εi be iid uniform

in [−X ′
i
β,X ′

i
β + 2X ′

i
β(1 − P (X))P (X)−1]. The model is log(Yi +

q

Y 2
i

+ 1) = X ′
i
β + ωi , with

ωi = ξiεi − (1− ξi)X ′iβ.

• DGP 6 (IV): E[Ui |Xi ] 6= 1 but E[Ui |Zi ] = 1. We finally turn to IV regression. Let us assume

that P r(ξi = 0|Zi) = P (Zi) = 1
1+exp(γ0+γ1Z1i+γ2Z2i )

, with the same parameters. The instrumental

variables Z1i and Z2i are iid normal with mean 1 and variance σ2
Z1

= σ2
Z2

= 1. We further assume

that εi is Gaussian with mean − log(P (Zi)) − 1/2 and variance 1 so that exp(εi) is log-normal with

conditional mean 1/P (Zi). Finally the endogenous regressors are such that Xik = 0.8Zik + 0.2εi , for

k = 1, 2.

Table 5.3.1 reports the results for DGP 3, where we can drop zeros because E[Ui |Ui > 0, Xi ] = 1 is

the right identifying restriction. We first observe in this case that only iOLSS and PPML0 provide consistent

estimates of β1 and β2. Second, we note that iOLSS provides standard errors which are several times smaller

than those corresponding to PPML0. Third, we report that OLS without zeros and the Heckman correction

provide estimates with some bias. This bias is more accentuated for the popular fix, the inverse hyperbolic sine

transformation and also applies to the remaining models. These results suggest that ignoring to drop zeros

when they are dispensable can lead to biased estimates.

Table 5.3.2 reports the results for DGP 4 which relies on the joint normality of the error terms in the selection

and outcome equations. As expected, the Heckman model provides the right estimates. The standard errors of
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the associated parameters are large nonetheless. We also observe that other models provide biased estimate,

suggesting that ignoring the selection process which governs the zeros can lead to misleading conclusions.

Finally, Table 5.3.4 reports the results for DGP 5, where the regressors are endogenous and requires

the use of instrumental variables to achieve identification under the assumption that E[Ui |Zi ] = 1. First,

we observe that only i2SLSU provides consistent estimates. Second, however and as expected, i2SLSδ=100

provides similar results to i2SLSU with a slight bias. This bias is more accentuated in i2SLSδ=1 and is even

more severe for the other models. In particular, the instrumental variable popular fix reports the wrong sign for

β2 further demonstrating its invalidity.

Table 5.3.1: Simulations: DGP 3 (A3)

n=1000 n=10,000

Cond. Estim. β0 β1 β2 β0 β1 β2

(A1)

iOLSδ=1 0.10 1.51 0.41 0.11 1.51 0.41

(0.15) (0.10) (0.10) (0.05) (0.03) (0.03)

iOLSδ=100 −0.04 1.32 0.68 −0.04 1.31 0.68

(0.10) (0.06) (0.06) (0.03) (0.02) (0.02)

(A2)

iOLSU −0.04 1.31 0.69 −0.04 1.30 0.69

(0.10) (0.06) (0.06) (0.03) (0.02) (0.02)

iOLSε −0.02 1.26 0.72 −0.03 1.27 0.73

(0.30) (0.11) (0.12) (0.11) (0.04) (0.04)

PPML −0.02 1.26 0.72 −0.03 1.27 0.73

(0.30) (0.11) (0.12) (0.11) (0.04) (0.04)

(A3)

iOLSS 0.06 1.00 1.00 0.06 1.00 1.00

(0.05) (0.03) (0.02) (0.02) (0.01) (0.01)

OLS 0.98 0.91 0.91 0.98 0.91 0.91

(0.05) (0.04) (0.04) (0.02) (0.01) (0.01)

PPML0 1.00 1.00 1.00 1.00 1.00 1.00

(0.17) (0.07) (0.07) (0.07) (0.03) (0.03)

(A4)
Heckman 0.97 0.91 0.91 0.98 0.91 0.91

(1.38) (0.26) (0.26) (0.41) (0.08) (0.08)

Others

IHST 0.67 0.72 −0.02 0.67 0.72 −0.02

(0.09) (0.06) (0.06) (0.03) (0.02) (0.02)

PF 0.24 0.68 −0.00 0.24 0.68 −0.00

(0.08) (0.06) (0.05) (0.03) (0.02) (0.02)

Notes: This table shows the parameter estimates and standard errors calculated on data simulated according to DGP3, as described in

Section 5.3. The column “Cond.” identifies the family of identifying condition on which the models in column “Estim.” rely. The estimates

are reported based on a sample of size n = 1000 or of n = 10, 000. Standard Errors are presented in between parentheses and are

calculated using pairs bootstrap based on 10,000 simulations.
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Table 5.3.2: Simulations: DGP 4 (A4)

n=1000 n=10,000

Cond. Estim. β0 β1 β2 β0 β1 β2

(A1)

iOLSδ=1 −0.98 1.86 0.14 −0.97 1.85 0.15

(0.19) (0.11) (0.11) (0.06) (0.04) (0.03)

iOLSδ=100 −1.03 1.67 0.33 −1.02 1.66 0.34

(0.16) (0.09) (0.09) (0.05) (0.03) (0.03)

(A2)

iOLSU −1.03 1.66 0.35 −1.02 1.65 0.35

(0.16) (0.09) (0.09) (0.05) (0.03) (0.03)

iOLSε −0.93 1.53 0.44 −0.94 1.54 0.45

(0.47) (0.19) (0.16) (0.19) (0.08) (0.06)

PPML −0.93 1.53 0.44 −0.94 1.54 0.45

(0.47) (0.19) (0.16) (0.20) (0.08) (0.06)

(A3)

iOLSS −0.92 1.34 0.66 −0.92 1.35 0.65

(0.13) (0.07) (0.07) (0.04) (0.02) (0.02)

OLS −0.57 1.29 0.71 −0.56 1.29 0.71

(0.12) (0.06) (0.07) (0.04) (0.02) (0.02)

PPML0 0.04 1.31 0.66 0.03 1.33 0.67

(0.41) (0.18) (0.14) (0.18) (0.07) (0.05)

(A4)
Heckman 1.02 1.00 1.00 1.00 1.00 1.00

(2.41) (0.45) (0.45) (0.73) (0.14) (0.14)

Others

IHST 0.29 0.68 0.00 0.29 0.68 0.00

(0.07) (0.05) (0.04) (0.02) (0.02) (0.01)

PF −0.08 0.63 0.00 −0.08 0.63 0.00

(0.06) (0.05) (0.04) (0.02) (0.02) (0.01)

Notes: This table shows the parameter estimates and standard errors calculated on data simulated according to DGP4, as described in

Section 5.3. The column “Cond.” identifies the family of identifying condition on which the models in column “Estim.” rely. The estimates

are reported based on a sample of size n = 1000 or of n = 10, 000. Standard Errors are presented in between parentheses and are

calculated using pairs bootstrap based on 10,000 simulations.
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Table 5.3.3: Simulations: DGP 5 (A5)

n=1000 n=10,000

Cond. Estim. β0 β1 β2 β0 β1 β2

(A1)

iOLSδ=1 2.12 3.23 4.33 2.13 3.23 4.35

(0.09) (0.41) (0.43) (0.03) (0.13) (0.14)

iOLSδ=100 2.06 3.34 5.42 2.07 3.34 5.45

(0.09) (0.31) (0.32) (0.03) (0.09) (0.10)

(A2)

iOLSU 2.06 3.35 5.49 2.07 3.35 5.52

(0.09) (0.30) (0.31) (0.03) (0.09) (0.10)

iOLSε 1.89 2.96 6.24 1.93 2.99 6.30

(0.37) (0.87) (1.26) (0.11) (0.27) (0.39)

PPML 1.89 2.96 6.24 1.93 2.99 6.29

(0.37) (0.87) (1.26) (0.11) (0.27) (0.40)

(A3)

iOLSS 2.06 3.02 5.75 2.07 3.03 5.78

(0.09) (0.25) (0.27) (0.03) (0.08) (0.08)

OLS 1.78 2.08 3.81 1.78 2.08 3.81

(0.10) (0.34) (0.37) (0.03) (0.11) (0.12)

PPML0 2.88 2.65 6.55 2.92 2.67 6.60

(0.34) (0.81) (1.17) (0.10) (0.25) (0.37)

(A4)
Heckman −32.86 7.64 −4.78 −39.49 10.59 −4.94

(436.74) (18.21) (18.86) (21.66) (4.00) (4.54)

Others

IHST 1.00 1.00 1.00 1.00 1.00 1.00

(0.05) (0.19) (0.20) (0.02) (0.06) (0.06)

PF 0.58 0.93 0.94 0.58 0.93 0.94

(0.05) (0.18) (0.19) (0.02) (0.06) (0.06)

Notes: This table shows the parameter estimates and standard errors calculated on data simulated according to DGP5, as described in

Section 5.3. The column “Cond.” identifies the family of identifying condition on which the models in column “Estim.” rely. The estimates

are reported based on a sample of size n = 1000 or of n = 10, 000. Standard Errors are presented in between parentheses and are

calculated using pairs bootstrap based on 10,000 simulations.
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Table 5.3.4: Simulations: DGP 5 (IV-A2)

n=1000 n=10,000

Estim. β0 β1 β2 β0 β1 β2

i2SLSδ=1 1.07 1.32 0.68 1.07 1.31 0.69

(0.25) (0.16) (0.13) (0.08) (0.05) (0.04)

i2SLSδ=100 0.99 1.03 0.97 0.99 1.02 0.98

(0.22) (0.13) (0.11) (0.06) (0.04) (0.03)

i2SLSU 0.99 1.01 0.98 1.00 1.00 1.00

(0.22) (0.13) (0.11) (0.07) (0.04) (0.04)

i2SLSε 1.42 0.99 0.95 1.33 1.02 1.01

(0.58) (0.27) (0.27) (0.32) (0.12) (0.15)

PPML 0.29 1.42 1.26 0.33 1.39 1.27

(0.67) (0.27) (0.29) (0.34) (0.13) (0.15)

OLS 0.83 1.10 1.66 0.91 1.05 1.63

(0.10) (0.06) (0.06) (0.09) (0.06) (0.04)

Heckman −1.66 1.69 1.07 −1.65 1.67 1.01

(1.73) (0.40) (0.40) (0.58) (0.14) (0.16)

2SLS 1.53 0.66 1.33 1.52 0.66 1.34

(0.11) (0.07) (0.06) (0.03) (0.02) (0.02)

IV PF −2.10 1.25 −0.47 −2.10 1.26 −0.48

(0.23) (0.16) (0.13) (0.07) (0.05) (0.04)

Notes: This table shows the parameter estimates and standard errors calculated on data simulated according to DGP5, as described in

Section 5.3. The column “Cond.” identifies the family of identifying condition on which the models in column “Estim.” rely. The estimates

are reported based on a sample of size n = 1000 or of n = 10, 000. Standard Errors are presented in between parentheses and are

calculated using pairs bootstrap based on 10,000 simulations.

Table 5.3.5: Simulations: Data-driven selection of δ (iOLSδ , kNN)

δ

n DGP 0.1 0.5 1 5 10 50 100

1000
1 6% 19% 21% 21% 10% 7% 16%

2 0% 2% 4% 9% 8% 11% 65%

10,000
1 0% 17% 62% 21% 1% 0% 0%

2 0% 0% 0% 2% 7% 12% 79%

Notes: This table shows the relative frequency with which a given δ in the set {0.1, 0.5, 1, 5, 10, 50, 100} was chosen on the basis of

the 10,000 simulations. These simulations vary by sample size n and by DGP. Interpretation: when the sample size is n=10,000 and the

data was generated using DGP1, δ = 1 was selected 50% of the time.
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Table 5.3.6: Simulations: Data-driven selection of δ (iOLSδ , Probit)

δ

n DGP 0.1 0.5 1 5 10 50 100

1000
1 19% 17% 20% 19% 11% 6% 9%

2 8% 7% 7% 8% 6% 5% 58%

10,000
1 0% 11% 57% 30% 1% 0% 0%

2 0% 0% 0% 1% 3% 7% 89%

Notes: This table shows the relative frequency with which a given δ in the set {0.1, 0.5, 1, 5, 10, 50, 100} was chosen on the basis of

the 10,000 simulations. These simulations vary by sample size n and by DGP. Interpretation: when the sample size is n=10,000 and the

data was generated using DGP1, δ = 1 was selected 50% of the time.

Table 5.3.7: Simulations: Specification testing (Probit)

n DGP tδ=1 tδ=100 tU tε tPPML tPF tIHST tHECK tPPML0

1000

1 6% 23% 21% 63% 63% 21% 21% 83% 57%

2 9% 6% 6% 4% 4% 11% 10% 32% 8%

3 11% 8% 9% 7% 7% 12% 11% 5% 6%

4 9% 7% 8% 10% 10% 29% 29% 10% 7%

5 6% 7% 7% 19% 19% 5% 5% 0% 0%

10,000

1 13% 100% 100% 100% 100% 91% 92% 100% 100%

2 33% 8% 7% 4% 4% 54% 49% 100% 41%

3 51% 27% 30% 34% 34% 40% 36% 5% 5%

4 46% 25% 28% 23% 23% 99% 99% 56% 11%

5 6% 22% 25% 94% 94% 5% 5% 43% 7%

Notes: This table shows the relative rejection frequency of each null hypothesis for 10,000 simulations. These simulations vary by sample

size (as reported by the column “n”) and by Data Generating Process (as reported in the column “DGP”). Interpretation: when the sample

size is n=1000 and the data was generated using DGP1, tδ=1 was rejected 6% of the time.
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Table 5.3.8: Simulations: Model selection (kNN)

n DGP (A1) (A2) (A3) (A4) (A5)

1000

1 33% 41% 0% 0% 26%

2 7% 62% 5% 0% 25%

3 1% 48% 34% 0% 17%

4 2% 65% 28% 0% 4%

5 15% 39% 24% 0% 22%

10,000

1 62% 5% 0% 0% 32%

2 0% 94% 0% 1% 5%

3 0% 21% 74% 5% 0%

4 0% 68% 19% 13% 0%

5 22% 46% 2% 0% 30%

Notes: This table shows the selection frequency of each identifying restriction for 10,000 simulations. These simulations vary by sample

size (as reported by column “n”) and by Data Generating Process (as reported in column “DGP”). Interpretation: when the sample size is

n=1000 and generated by DGP1, a model with moments (A1) is chosen 51% of the time.

Table 5.3.9: Simulations: Model selection (Probit)

n DGP (A1) (A2) (A3) (A4) (A5)

1000

1 54% 26% 0% 0% 19%

2 18% 70% 5% 0% 6%

3 11% 66% 18% 0% 5%

4 21% 61% 17% 0% 0%

5 5% 6% 87% 0% 2%

10,000

1 87% 0% 0% 12% 1%

2 1% 98% 0% 1% 0%

3 0% 37% 61% 1% 1%

4 0% 79% 18% 3% 0%

5 43% 14% 3% 0% 41%

Notes: This table shows the selection frequency of each identifying restriction for 10,000 simulations. These simulations vary by sample

size (as reported by column “n”) and by Data Generating Process (as reported in column “DGP”). Interpretation: when the sample size is

n=1000 and generated by DGP1, a model with moments (A1) is chosen 51% of the time.
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5.4 Data Appendix

5.4.1 American Economic Review (2016-2020)

Table 5.4.1: Solutions to the Log of Zero in the AER (2016-2020)

Log of Zero log(∆ + Yi ) PPML Drop IHS

48 23 (48%) 17 (35%) 15 (31%) 7 (15%)

Notes: This table reports the number of articles published in the American Economic Review from 2016 to 2020 where the issue of the

log of zero was encountered. “Log of Zero” is the number of publications where at least one regression had to address this issue. “log(∆ +

Yi )” refers to the common fix of adding some discretionary constant to the dependent variable before taking the logarithmic transformation.

“PPML” refers to Pseudo-Poisson Maximum Likelihood or Negative Binomial regression. “Drop” refers to cases where the problematic

observations are discarded. “IHS” refers to the Inverse Hyperbolic Sine Transformation of the dependent variable. Some articles used

several solutions, as robustness checks, which explains why the sum of solutions is different larger than 48.

Table 5.4.2: American Economic Review Cases per Year

Year Emp. Pub. log(Yi ) log(∆+Yi ) PPML Drop IHS

2016 69 27 2 4 7 1

2017 71 28 5 2 4 1

2018 69 32 4 4 2 1

2019 79 27 6 6 2 3

2020 53 19 6 1 0 1

Notes: This table displays the frequency of solutions observed in American Economic Review. The sample extends over the period Jan.

2016 to Oct. 2020. Emp. Pub. is the number of empirical papers (includes “data” section). The column log(Yi ) counts cases where

the dependent variable was in logarithmic form or in which a fix (such as log(∆ + Yi ), PPML, Drop, or IHS) is used. It excludes cases

where the author openly states that a logarithmic specification was preferred but rejected due to the existence of non-positive observations.

log(∆+ Yi ) is the popular fix. PPML refers to Poisson and Negative Binomial regression. Drop refers to cases where the author dropped

the problematic observations. IHS is the Inverse Hyperbolic Transformation.
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5.4.2 ResearchGate

19

6

5

5

2

1

0 5 10 15 20
mean of freq

Add a positive constant to the observations

Poisson regression (PPML)

Other transformations (inverse hyperbolic sine, box cox, …)

Mixture models (tobit, zero-inflated model, …)

Delete zero observations

Estimate in level instead of log (OLS regression)

Figure 5.4.1: Proposed solutions by category on ResearchGate (November 2018)
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5.4.3 Wooclap Survey

Figure 5.4.2: Wooclap Survey

Description. The survey was implemented during 3 seminars (CREST, HEC Montréal, and University of

Montréal) in 2021, before the speaker clarified the different approaches. The attendees could provide multiple

answers to the questions displayed in Figure 5.4.2 and were invited to indicate if they were a student. Results

are presented in Table 5.4.3.

Table 5.4.3: Wooclap Survey Results

Frequency

Popular fix 42,8 %

Poisson 17,8 %

Other transformation 17,8 %

Mixture 35,7 %

Drop zeros 17,8 %

Levels instead of logs 17,8 %

Another method 3,5 %

None satisfactory 25 %

Not applicable 3,5 %

Student 21,4 %

Nb. Respondents 28

Notes: This table displays relative frequency of answers to the Wooclap Survey. Intrepretation: 42.8% of respondents would use the

popular fix (but not necessarily exclusively).
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5.4.4 Santos Silva and Tenreyro (2006)

Table 5.4.4: Tests for Santos Silva and Tenreyro (2006)’s Table 3

PF IHST tδ=100 tPPML tiOLSU tHECK tPPML0

Logit Model

λ̂ 0.04 0.03 0.46 1.26 0.44 0.81 -0.22

(s.e) (0.02) (0.02) (0.06) (0.39) (0.06) (0.09) (0.37)

t-Stat. [-53.45] [-57.90] [-9.82] [0.68] [-9.24] [8.75] [-0.59]

KNN Model

λ̂ 0.27 0.21 0.93 1.72 0.92 0.81 0.75

(s.e) (0.01) (0.01) (0.05) (0.25) (0.05) (0.10) (0.37)

t-Stat. [-49.85] [-66.82] [-1.55] [2.86] [-1.51] [8.47] [2.00]
Notes: This table displays the λ̂-parameter, standard errors (s.e) using 300 pairs bootstrap, and t-statistics (t-Stat.) for several models of

trade gravity presented in Table 5.7. iOLSδ=100, iOLSU , and PPML0 are defined in Section 5.3 and 5.4.1. λ̂ and t-tests are defined in

Section 5.4.1.

Table 5.4.5: Logit Model for Santos Silva and Tenreyro (2006)’s Table 3

1(T rade > 0)

Coef. s.e.

Log-GDP (Exp.) 0.82 (0.02)

Log-GDP (Imp.) 0.59 (0.01)

Log-GDP per Capita (Exp.) 0.18 (0.02)

Log-GDP per Capita (Imp.) 0.20 (0.02)

Log(Distance) -0.84 (0.04)

Contiguity -0.84 (0.18)

Language 0.63 (0.07)

Colonial 0.26 (0.07)

LandLocked (Exp.) 0.10 (0.06)

LandLocker (Imp.) -0.13 (0.06)

Remote (Exp.) 0.24 (0.09)

Remote (Imp.) -0.12 (0.09)

Free Trade Agreement 2.27 (0.26)

Openness 0.49 (0.05)
Notes: This table displays the logit estimates and standard errors (s.e) based on 300 pairs bootstrap used to calculate the various

t-statistics of Tables 5.7 and 5.4.4.
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5.4.5 Michalopoulos and Papaioannou (2013)

Table 5.4.6: Tests for Michalopoulos and Papaioannou (2013)’s Table 2 (Logit)

PF iOLSδ=0.1 iOLSδ=0.5 iOLSδ=100 PPML iOLSU HECK PPML0

No Controls

λ̂ -2.95 1.00 1.00 1.01 1.04 1.00 65.16 30.07

(s.e) (0.33) (0.00) (0.00) (0.00) (0.02) (0.00) (16782) (7049)

t-Stat. [-11.98] [1.19] [1.17] [2.43] [2.11] [0.75] [0.00] [0.00]

Pop. Controls

λ̂ -0.88 1.00 1.01 1.08 2.62 1.09 19.38 11.12

(s.e) (0.29) (0.02) (0.02) (0.06) (0.57) (0.07) (5.50) (4.64)

t-Stat. [-6.40] [0.03] [0.67] [1.36] [2.85] [1.30] [3.34] [2.18]

Pop. & Loc. Controls

λ̂ -0.56 0.98 1.00 1.03 3.68 1.03 7.02 0.51

(s.e) (0.24) (0.05) (0.04) (0.05) (1.24) (0.05) (1.91) (2.45)

t-Stat. [-6.58] [-0.41] [-0.04] [0.58] [2.16] [0.55] [3.15] [-0.20]

Pop. & Loc. & Geo. Controls

λ̂ -0.18 0.80 0.82 0.85 1.94 0.85 2.84 0.80

(s.e) (0.12) (0.19) (0.19) (0.21) (0.91) (0.22) (0.55) (0.65)

t-Stat. [-9.46] [-1.06] [-0.91] [-0.69] [1.04] [-0.68] [3.35] [-0.30]

Pop. & Loc. & Geo. Controls

with Rule of Law Index

λ̂ -0.10 0.60 0.62 0.62 1.96 0.62 2.56 0.47

(s.e) (0.12) (0.22) (0.22) (0.24) (1.11) (0.24) (0.56) (0.66)

t-Stat. [-9.13] [-1.83] [-1.72] [-1.57] [0.86] [-1.56] [2.78] [-0.81]

Pop. & Loc. & Geo. Controls

with Log(GDP/Capita)

λ̂ -0.06 0.40 0.42 0.45 1.76 0.46 2.37 0.41

(s.e) (0.10) (0.26) (0.27) (0.28) (1.54) (0.28) (0.47) (0.73)

t-Stat. [-10.50] [-2.29] [-2.17] [-1.95] [0.49] [-1.93] [2.90] [-0.81]
Notes: This table displays the λ̂-parameter, standard errors (s.e) using 300 pairs bootstrap, and t-statistics (t-Stat.) for various models

of economic activity in African regions, proxied by light intensity at night, and presented in Tables 5.8 and 5.4.8. iOLSδ , iOLSU , and

PPML0 are defined in Section 5.3 and 5.4.1. PF is the baseline relying on the popular fix (∆ = 0.01). λ̂ and t-tests are defined in Section

5.4.1.This table relies on the logit procedure for these tests. Six specifications are presented, controlling cumulatively for population density

(Pop.), Location (Loc.), and Geography (Geo.). The last two controls for, respectively, the quality of the legal system (in 2007) and GDP per

Capita (in 2007).
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Table 5.4.7: Tests for Michalopoulos and Papaioannou (2013)’s Table 2 (KNN)

PF iOLSδ=0.1 iOLSδ=0.5 iOLSδ=100 PPML iOLSU HECK PPML0

No Controls

λ̂ -3.61 1.23 1.24 1.26 2.30 1.31 65.16 0.00

(s.e) (1.22) (0.20) (0.21) (0.30) (0.53) (0.32) (190.65) (39.73)

t-Stat. [-3.78] [1.16] [1.13] [0.86] [2.46] [0.96] [0.34] [-0.03]

Pop. Controls

λ̂ -2.14 0.91 0.89 0.81 0.02 0.79 19.38 1.52

(s.e) (0.33) (0.04) (0.05) (0.11) (0.72) (0.12) (5.58) (1.42)

t-Stat. [-9.39] [-2.23] [-2.10] [-1.73] [-1.36] [-1.82] [3.29] [0.37]

Pop. & Loc. Controls

λ̂ -2.10 0.94 0.92 0.87 1.62 0.87 7.02 -1.81

(s.e) (0.27) (0.03) (0.04) (0.07) (0.70) (0.07) (2.14) (3.01)

t-Stat. [-11.34] [-1.96] [-2.02] [-1.84] [0.88] [-1.85] [2.82] [-0.93]

Pop. & Loc. & Geo. Controls

λ̂ -1.83 1.08 1.05 1.01 1.56 1.01 2.84 -1.55

(s.e) (0.30) (0.04) (0.04) (0.06) (0.24) (0.06) (0.64) (1.57)

t-Stat. [-9.43] [1.91] [1.19] [0.12] [2.33] [0.13] [2.86] [-1.63]

Pop. & Loc. & Geo. Controls

with Rule of Law Index

λ̂ -1.24 1.08 1.06 1.02 1.73 1.02 2.56 -0.46

(s.e) (0.28) (0.06) (0.07) (0.09) (0.57) (0.09) (0.56) (0.87)

t-Stat. [-7.98] [1.39] [0.89] [0.23] [1.29] [0.25] [2.77] [-1.68]

Pop. & Loc. & Geo. Controls

with Log(GDP/Capita)

λ̂ -1.61 1.17 1.14 1.11 2.15 1.11 2.37 0.61

(s.e) (0.26) (0.08) (0.09) (0.13) (0.97) (0.13) (0.45) (0.70)

t-Stat. [-9.96] [1.97] [1.51] [0.83] [1.18] [0.84] [3.02] [-0.56]
Notes: This table displays the λ̂-parameter, standard errors (s.e) using 300 pairs bootstrap, and t-statistics (t-Stat.) for various models of

economic activity in African regions, proxied by light intensity at night, and presented in Tables 5.8 and 5.4.8. iOLSδ , iOLSU , and PPML0

are defined in Section 5.3 and 5.4.1. PF is the baseline relying on the popular fix (∆ = 0.01). λ̂ and t-tests are defined in Section 5.4.1.

This table relies on the KNN procedure for these tests. Six specifications are presented, controlling cumulatively for population density

(Pop.), Location (Loc.), and Geography (Geo.). The last two controls for, respectively, the quality of the legal system (in 2007) and GDP per

Capita (in 2007).
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Table 5.4.8: Estimates from Michalopoulos and Papaioannou (2013)’s Table 2

Coefficient estimate on Jurisdictional Hierarchy

PF iOLSδ=0.1 iOLSδ=0.5 iOLSδ=100 PPML iOLSU HECK PPML0

No Controls

β 0.41 0.66 0.66 0.44 0.50 0.38 5.65 0.43

(s.e) (0.07) (0.11) (0.10) (0.18) (0.21) (0.20) (23.06) (0.21)

t-Stat. [-11.98] [1.19] [1.17] [2.43] [2.11] [0.75] [0.00] [0.00]

Pop. Controls

β 0.35 0.53 0.53 0.44 0.29 0.41 1.59 0.30

(s.e) (0.07) (0.11) (0.11) (0.13) (0.12) (0.14) (0.42) (0.11)

t-Stat. [-6.40] [0.03] [0.67] [1.36] [2.85] [1.30] [3.52] [2.39]

Pop. & Loc. Controls

β 0.32 0.42 0.40 0.36 0.14 0.35 0.72 0.12

(s.e) (0.06) (0.09) (0.08) (0.09) (0.11) (0.10) (0.18) (0.11)

t-Stat. [-6.58] [-0.41] [-0.04] [0.58] [2.16] [0.55] [3.67] [0.21]

Pop. & Loc. & Geo. Controls

β 0.19 0.05 0.09 0.11 0.00 0.10 0.18 0.01

(s.e) (0.05) (0.11) (0.10) (0.09) (0.10) (0.09) (0.09) (0.10)

t-Stat. [-9.46] [-1.06] [-0.91] [-0.69] [1.04] [-0.68] [5.16] [1.23]

Pop. & Loc. & Geo. Controls

with Rule of Law Index

β 0.16 0.01 0.05 0.07 -0.04 0.07 0.12 -0.02

(s.e) (0.06) (0.12) (0.11) (0.10) (0.11) (0.10) (0.09) (0.11)

t-Stat. [-9.13] [-1.83] [-1.72] [-1.57] [0.86] [-1.56] [4.57] [0.71]

Pop. & Loc. & Geo. Controls

with Log(GDP/Capita)

β 0.20 0.01 0.04 0.04 -0.11 0.04 0.16 -0.09

(s.e) (0.05) (0.12) (0.12) (0.10) (0.10) (0.10) (0.08) (0.10)

t-Stat. [-10.50] [-2.29] [-2.17] [-1.95] [0.49] [-1.93] [5.01] [0.56]
Notes: This table displays the coefficient associated with jurisdictional hierarchy, standard errors (s.e) using 300 pairs bootstrap, and

t-statistics (t-Stat.) for various models of economic activity in African regions, proxied by light intensity at night. The t-Stats rely on the

logit probability model and procedure. iOLSδ , iOLSU , and PPML0 are defined in Section 5.3 and 5.4.1. PF is the baseline relying on

the popular fix (∆ = 0.01). Six specifications are presented, controlling cumulatively for population density (Pop.), Location (Loc.), and

Geography (Geo.). The last two controls for, respectively, the quality of the legal system (in 2007) and GDP per Capita (in 2007).
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Table 5.4.9: Tests for Michalopoulos and Papaioannou (2013)’s Table 3 (Logit)
(Panel A, columns (1)-(4))

PF iOLSδ=100 PPML iOLSU HECK PPML0

Country Fixed Effects Only

λ̂ -1.50 1.00 1.26 1.00 5.56 6.47

(s.e) (0.22) (0.01) (0.14) (0.01) (3.47) (4.29)

t-Stat. [-11.42] [0.31] [1.86] [0.27] [1.31] [1.27]

with Loc. & Geo. Controls

λ̂ -0.11 0.75 1.39 0.76 1.32 1.12

(s.e) (0.16) (0.22) (1.02) (0.22) (0.62) (0.66)

t-Stat. [-6.86] [-1.12] [0.39] [-1.08] [0.52] [0.18]

with Pop. Controls

λ̂ -0.05 0.55 4.60 0.55 0.65 -7.17

(s.e) (0.21) (0.26) (1.78) (0.26) (1.41) (3.26)

t-Stat. [-5.07] [-1.74] [2.03] [-1.72] [-0.25] [-2.51]

with Pop. & Loc. & Geo. Controls

λ̂ -0.01 0.16 0.22 0.16 0.96 -0.86

(s.e) (0.14) (0.36) (1.75) (0.36) (0.52) (0.95)

t-Stat. [-7.10] [-2.32] [-0.44] [-2.31] [-0.08] [-1.97]
Notes: This table displays the λ̂-parameter, standard errors (s.e) using 300 pairs bootstrap, and t-statistics (t-Stat.) for various models

of economic activity in African regions, proxied by light intensity at night. iOLSδ , iOLSU , and PPML0 are defined in Section 5.3 and

5.4.1. PF is the baseline relying on the popular fix (∆ = 0.01). λ̂ and t-tests are defined in Section 5.4.1. This table relies on the Logit

procedure for these tests. Four specifications are presented, controlling for different combinations of population density (Pop.), Location

(Loc.), and Geography (Geo.) along with country fixed effects.
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Table 5.4.10: Tests for Michalopoulos and Papaioannou (2013)’s Table 3 (KNN)
(Panel A, columns (1)-(4))

PF iOLSδ=100 PPML iOLSU HECK PPML0

Country Fixed Effects Only

λ̂ -2.66 1.02 1.14 1.02 5.56 -5.85

(s.e) (0.59) (0.07) (0.17) (0.07) (3.91) (4.93)

t-Stat. [-6.25] [0.30] [0.81] [0.29] [1.17] [-1.39]

with Loc. & Geo. Controls

λ̂ -1.70 0.95 0.99 0.95 1.32 -0.38

(s.e) (0.40) (0.10) (0.43) (0.10) (0.63) (1.49)

t-Stat. [-6.80] [-0.52] [-0.01] [-0.53] [0.51] [-0.93]

with Pop. Controls

λ̂ -2.07 0.95 1.70 0.95 0.65 0.58

(s.e) (0.42) (0.06) (0.72) (0.06) (1.29) (2.57)

t-Stat. [-7.25] [-0.86] [0.97] [-0.85] [-0.27] [-0.16]

with Pop. & Loc. & Geo. Controls

λ̂ -1.81 1.03 1.68 1.03 0.96 -0.70

(s.e) (0.34) (0.07) (0.53) (0.07) (0.52) (0.95)

t-Stat. [-8.33] [0.46] [1.28] [0.45] [-0.08] [-1.80]
Notes: This table displays the λ̂-parameter, standard errors (s.e) using 300 pairs bootstrap, and t-statistics (t-Stat.) for various models

of economic activity in African regions, proxied by light intensity at night. iOLSδ , iOLSU , and PPML0 are defined in Section 5.3 and

5.4.1. PF is the baseline relying on the popular fix (∆ = 0.01). λ̂ and t-tests are defined in Section 5.4.1. This table relies on the KNN

procedure for these tests. Four specifications are presented, controlling for different combinations of population density (Pop.), Location

(Loc.), and Geography (Geo.) along with country fixed effects.
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Table 5.4.11: Estimates from Michalopoulos and Papaioannou (2013)’s Table 3
(Panel A, columns (1)-(4))

Coefficient estimate on Jurisdictional Hierarchy

PF iOLSδ=100 PPML iOLSU HECK PPML0

Country Fixed Effects Only

β 0.33 0.38 0.34 0.38 0.71 0.29

(s.e) (0.07) (0.09) (0.19) (0.09) (3.47) (0.20)

t-Stat. [-11.42] [0.31] [1.86] [0.27] [1.60] [1.51]

with Loc. & Geo. Controls

β 0.28 0.43 0.03 0.44 0.38 0.02

(s.e) (0.07) (0.12) (0.18) (0.13) (0.62) (0.17)

t-Stat. [-6.86] [-1.12] [0.39] [-1.08] [2.14] [1.70]

with Pop. Controls

β 0.21 0.25 -0.02 0.25 0.19 -0.03

(s.e) (0.05) (0.06) (0.11) (0.06) (1.41) (0.11)

t-Stat. [-5.07] [-1.74] [2.03] [-1.72] [0.46] [-2.20]

with Pop. & Loc. & Geo. Controls

β 0.18 0.15 -0.11 0.15 0.14 -0.09

(s.e) (0.04) (0.08) (0.09) (0.08) (0.52) (0.10)

t-Stat. [-7.10] [-2.32] [-0.44] [-2.31] [1.86] [-0.91]
Notes: This table displays the coefficient associated with jurisdictional hierarchy, standard errors (s.e) using 300 pairs bootstrap, and

t-statistics (t-Stat.) for various models of economic activity in African regions, proxied by light intensity at night. The t-Stats rely on the

logit probability model and procedure. iOLSδ , iOLSU , and PPML0 are defined in Section 5.3 and 5.4.1. PF is the baseline relying on

the popular fix (∆ = 0.01). Four specifications are presented, controlling for different combinations of population density (Pop.), Location

(Loc.), and Geography (Geo.) along with country fixed effects.

Table 5.4.12: Logit Estimates for Michalopoulos and Papaioannou (2013)’s Table 2

1(Light > 0)

(1) (2) (3) (4) (5) (6)

Jurisdictional Hierarchy 0.85 0.68 0.68 0.62 0.55 0.41

(0.16) (0.16) (0.20) (0.23) (0.23) (0.26)

Population Density No Yes Yes Yes Yes Yes

Location Controls No No Yes Yes Yes Yes

Geographic Controls No No No Yes Yes Yes

Rule of Law Controls No No No No Yes No

Log(GDP per capita (2007)) No No No No No Yes
Notes: This table displays the logit estimates and standard errors (s.e) used to calculate the various t-statistics of Tables 5.8, 5.4.6, and

5.4.8.
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Table 5.4.13: Logit Estimates for Michalopoulos and Papaioannou (2013)’s Table 3 (Panel A, columns (1)-(4))

1(Light > 0)

(1) (2) (3) (4)

Jurisdictional Hierarchy 0.85 0.74 0.68 0.62

(0.16) (0.20) (0.16) (0.23)

Country Fixed Effects Yes Yes Yes Yes

Population Density No No Yes Yes

Geographic Controls No Yes No Yes

Location Controls No Yes No Yes
Notes: This table displays the logit estimates and standard errors (s.e) used to calculate the various t-statistics of Tables 5.4.10 and

5.4.11.

5.4.6 Card and DellaVigna (2020)

Table 5.4.14: Tests for Card and DellaVigna (2020) (KNN)

IHS iOLSδ=50 PPML iOLSU

No correction for Endogeneity

λ̂ 0.64 0.97 0.89 0.97

(s.e) (0.01) (0.01) (0.02) (0.01)

t-Stat. [-27.35] [-4.41] [-4.50] [-5.10]

Control Function

λ̂ 0.60 0.96 0.87 0.95

(s.e) (0.01) (0.01) (0.03) (0.01)

t-Stat. [-28.58] [-6.12] [-4.22] [-6.61]

Instrumental Variables

λ̂ 0.57 0.96 0.91 0.96

(s.e) (0.02) (0.08) (0.04) (0.01)

t-Stat. [-25.79] [-0.48] [-2.09] [-3.20]
Notes: This table displays the coefficient associated with an invitation to revise & resubmit (R&R), standard errors (s.e) using 300 pairs

bootstrap, and t-statistics (t-Stat.) for various models of citations based on the KNN procedure. iOLSδ , iOLSU , and PPML0 are defined

in Section 5.3 and 5.4.1. Three specifications are presented: no correction for endogeneity (OLS) contrasts with control function (CF) and

instrumental variables (IV) which rely on the Editor leave-out mean R&R rate for identification.
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Table 5.4.15: First-Stage Estimates Based on Card and DellaVigna (2020)

Revise & Resubmit

Coef. s.e

Editor leave-out-mean R&R rate 0.38 (0.08)

Fractions of referee recommendations

Reject -0.00 (0.01)

No Recommendation 0.21 (0.02)

Weak R&R 0.29 (0.01)

R&R 0.69 (0.02)

Strong R&R 0.96 (0.03)

Accept 0.91 (0.03)

Author Publications in 35 high-impact journal

One Publication -0.00 (0.01)

Two Publications 0.01 (0.01)

Three Publications 0.02 (0.01)

Four or Five Publications 0.03 (0.01)

Six or More Publications 0.05 (0.01)

Number of authors

Two Author -0.01 (0.01)

Three Authors -0.00 (0.01)

Four Authors 0.01 (0.01)
Notes: This table provides the first stage estimates used for the instrumental variable estimates provided in Table 5.9 and based on

the research of Card and DellaVigna (2020). Each observation of the data is at the submission level. The dependent variable before

transformation is a dummy equal to one if the authors were invited to resubmit. Each row of the table reports this estimate for a different

control variable. This specification includes year fixed effects and publication field fixed effects. Standard errors are provided in between

parenthesis and were calculated on the basis of 300 pairs bootstraps. The editor leave-out-mean R&R rate is the main variable of interest

and is considered as an exogenous instrument, measuring the proclivity with which an editor invites other authors to revise and resubmit

their research. Variables ending with Fract. measure the fraction of referee reports which were, respectively, negative, neutral, weakly

positive, very positive and pushing for acceptance of the article. Variables ending in Pub. refer to the number of publications published

in the top 35 journals by the submitting authors. Variables ending with Authors refer to the number of authors submitting their article for

publication to the journal.

342



Table 5.4.16: Logit Estimates based on Card and DellaVigna (2020) (OLS)

1(Citations > 0)

Coef. s.e

Revise & Resubmit 0.40 (0.10)

Fractions of referee recommendations

Reject 0.76 (0.08)

No Recommendation 0.77 (0.16)

Weak R&R 1.44 (0.14)

R&R 1.86 (0.16)

Strong R&R 2.00 (0.25)

Accept 2.24 (0.28)

Author Publications in 35 high-impact journal

One Publication 0.30 (0.06)

Two Publications 0.56 (0.08)

Three Publications 0.75 (0.08)

Four or Five Publications 1.00 (0.09)

Six or More Publications 0.88 (0.09)

Number of Authors

Two Authors 0.27 (0.05)

Three Authors 0.36 (0.07)

Four Authors 0.56 (0.13)
Notes: This table provides the logit estimates and standard errors (s.e) used to calculate the various t-statistics of Tables 5.9 (in the OLS

case), based on the research of Card and DellaVigna (2020). Each observation of the data is at the submission level. The dependent

variable is a dummy equal to one if the authors obtained at least one citation. Each row of the table reports this estimate for a different

control variable. This specification includes year fixed effects and publication field fixed effects. Standard errors are provided in between

parenthesis and were calculated on the basis of 300 pairs bootstraps. Variables ending with Fract. measure the fraction of referee reports

which were, respectively, negative, neutral, weakly positive, very positive and pushing for acceptance of the article. Variables ending in

Pub. refer to the number of publications published in the top 35 journals by the submitting authors. Variables ending with Authors refer to

the number of authors submitting their article for publication to the journal.
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Table 5.4.17: Logit Estimates Based on Card and DellaVigna (2020) (Control Function)

1(Citations > 0)

Coef. s.e

Revise & Resubmit -0.15 (0.26)

Control Function 0.35 (0.16)

Fractions of referee recommendations

Reject 0.76 (0.08)

No Recommendation 0.88 (0.16)

Weak R&R 1.57 (0.15)

R&R 2.18 (0.22)

Strong R&R 2.48 (0.33)

Accept 2.69 (0.34)

Author Publications in 35 high-impact journal

One Publication 0.31 (0.06)

Two Publications 0.56 (0.08)

Three Publications 0.76 (0.09)

Four or Five Publications 1.01 (0.09)

Six or More Publications 0.90 (0.09)

Number of Authors

Two Authors 0.27 (0.05)

Three Authors 0.36 (0.07)

Four Authors 0.56 (0.13)
Notes: This table provides the logit estimates and standard errors (s.e) used to calculate the various t-statistics of Tables 5.9 (in the

Control Function (CF) case), based on the research of Card and DellaVigna (2020). Each observation of the data is at the submission

level. The dependent variable is a dummy equal to one if the authors obtained at least one citation. Each row of the table reports this

estimate for a different control variable. This specification includes year fixed effects and publication field fixed effects. Standard errors are

provided in between parenthesis and were calculated on the basis of 300 pairs bootstraps. The editor leave-out-mean R&R rate is used to

form a control function for the invitation to revise and resubmit the manuscript. Variables ending with Fract. measure the fraction of referee

reports which were, respectively, negative, neutral, weakly positive, very positive and pushing for acceptance of the article. Variables ending

in Pub. refer to the number of publications published in the top 35 journals by the submitting authors. Variables ending with Authors refer

to the number of authors submitting their article for publication to the journal.
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Table 5.4.18: Logit Estimates Based on Card and DellaVigna (2020) (Instrumental Variable)

1(Citations > 0)

Coef. s.e

Editor leave-out mean R&R rate -1.06 (0.71)

Fractions of referee recommendations

Reject 0.76 (0.08)

No Recommendation 0.86 (0.16)

Weak R&R 1.52 (0.14)

R&R 2.08 (0.15)

Strong R&R 2.33 (0.23)

Accept 2.54 (0.27)

Author Publications in 35 high-impact journal

One Publication 0.31 (0.06)

Two Publications 0.56 (0.08)

Three Publications 0.76 (0.08)

Four or Five Publications 1.01 (0.09)

Six or More Publications 0.90 (0.09)

Number of authors

Two Author 0.27 (0.05)

Three Authors 0.36 (0.07)

Four Authors 0.56 (0.13)
Notes: This table provides the logit estimates and standard errors (s.e) used to calculate the various t-statistics of Tables 5.9 (in the

Instrumental Variable (IV) case), based on the research of Card and DellaVigna (2020). Each observation of the data is at the submission

level. The dependent variable is a dummy equal to one if the authors obtained at least one citation. Each row of the table reports this

estimate for a different control variable. This specification includes year fixed effects and publication field fixed effects. Standard errors are

provided in between parenthesis and were calculated on the basis of 300 pairs bootstraps. The editor leave-out-mean R&R rate is the main

variable of interest and is considered as an exogenous instrument, measuring the proclivity with which an editor invites other authors to

revise and resubmit their research. Variables ending with Fract. measure the fraction of referee reports which were, respectively, negative,

neutral, weakly positive, very positive and pushing for acceptance of the article. Variables ending in Pub. refer to the number of publications

published in the top 35 journals by the submitting authors. Variables ending with Authors refer to the number of authors submitting their

article for publication to the journal.
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