
HAL Id: tel-03670804
https://theses.hal.science/tel-03670804v1

Submitted on 17 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust and privacy preserving distributed machine
learning
Rania Talbi

To cite this version:
Rania Talbi. Robust and privacy preserving distributed machine learning. Artificial Intelligence
[cs.AI]. Université de Lyon, 2021. English. �NNT : 2021LYSEI077�. �tel-03670804�

https://theses.hal.science/tel-03670804v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de
l’INSA de Lyon

Ecole Doctorale N° 512
Mathématiques et Informatique (InfoMaths)

Spécialité/discipline de doctorat : INFORMATIQUE
NNT 2021LYSEI077

Robust and Privacy Preserving Distributed
Machine Learning

Soutenue publiquement le 19/11/2021, par :
Rania Talbi

Devant le jury composé de :

Benjamin Nguyen Professeur des Universités, INSA Val de Loire Rapporteur
Marc Tommasi Professeur des Universités, Université de Lille Rapporteur
Lydia Chen Maître de conférences, TU Delft Examinatrice
Lionel Brunie Professeur des Universités, INSA-Lyon Examinateur
Bouchenak Sara Professeur des Universités, INSA-Lyon Directrice de thèse

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Département FEDORA – INSA Lyon - Ecoles Doctorales

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE CHIMIE DE LYON

https://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr

M. Stéphane DANIELE
C2P2-CPE LYON-UMR 5265
Bâtiment F308, BP 2077
43 Boulevard du 11 novembre 1918
69616 Villeurbanne
directeur@edchimie-lyon.fr

E.E.A. ÉLECTRONIQUE, ÉLECTROTECHNIQUE,
AUTOMATIQUE

https://edeea.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Bâtiment Direction INSA Lyon
Tél : 04.72.43.71.70
secretariat.edeea@insa-lyon.fr

M. Philippe DELACHARTRE
INSA LYON
Laboratoire CREATIS
Bâtiment Blaise Pascal, 7 avenue Jean Capelle
69621 Villeurbanne CEDEX
Tél : 04.72.43.88.63
philippe.delachartre@insa-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,
MICROBIOLOGIE, MODÉLISATION

http://e2m2.universite-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
secretariat.e2m2@univ-lyon1.fr

M. Philippe NORMAND
Université Claude Bernard Lyon 1
UMR 5557 Lab. d’Ecologie Microbienne
Bâtiment Mendel
43, boulevard du 11 Novembre 1918
69 622 Villeurbanne CEDEX
philippe.normand@univ-lyon1.fr

EDISS INTERDISCIPLINAIRE SCIENCES-SANTÉ

http://ediss.universite-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
secretariat.ediss@univ-lyon1.fr

Mme Sylvie RICARD-BLUM
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
(ICBMS) - UMR 5246 CNRS - Université Lyon 1
Bâtiment Raulin - 2ème étage Nord
43 Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
Tél : +33(0)4 72 44 82 32
sylvie.ricard-blum@univ-lyon1.fr

INFOMATHS INFORMATIQUE ET MATHÉMATIQUES

http://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46
infomaths@univ-lyon1.fr

M. Hamamache KHEDDOUCI
Université Claude Bernard Lyon 1
Bât. Nautibus
43, Boulevard du 11 novembre 1918
69 622 Villeurbanne Cedex France
Tél : 04.72.44.83.69
hamamache.kheddouci@univ-lyon1.fr

Matériaux
MATÉRIAUX DE LYON

http://ed34.universite-lyon.fr
Sec. : Yann DE ORDENANA
Tél : 04.72.18.62.44
yann.de-ordenana@ec-lyon.fr

M. Stéphane BENAYOUN
Ecole Centrale de Lyon
Laboratoire LTDS
36 avenue Guy de Collongue
69134 Ecully CEDEX
Tél : 04.72.18.64.37
stephane.benayoun@ec-lyon.fr

MEGA MÉCANIQUE, ÉNERGÉTIQUE,
GÉNIE CIVIL, ACOUSTIQUE

http://edmega.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bâtiment Direction INSA Lyon
mega@insa-lyon.fr

M. Jocelyn BONJOUR
INSA Lyon
Laboratoire CETHIL
Bâtiment Sadi-Carnot
9, rue de la Physique
69621 Villeurbanne CEDEX
jocelyn.bonjour@insa-lyon.fr

ScSo ScSo*

https://edsciencessociales.universite-lyon.fr
Sec. : Mélina FAVETON
INSA : J.Y. TOUSSAINT
Tél : 04.78.69.77.79
melina.faveton@univ-lyon2.fr

M. Christian MONTES
Université Lumière Lyon 2
86 Rue Pasteur
69365 Lyon CEDEX 07
christian.montes@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, AnthropologieCette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Abstract

With the pervasiveness of digital services, huge amounts of data are nowadays continuously
generated and collected. Machine Learning (ML) algorithms allow the extraction of hidden
yet valuable knowledge from these data and have been applied in numerous domains,
such as health care assistance, transportation, user behavior prediction, and many others.
In many of these applications, data is collected from different sources and distributed
training is required to learn global models over them. However, in the case of sensitive
data, using traditional ML algorithms over them can lead to serious privacy breaches by
leaking sensitive information about data owners.

In this thesis, we propose mechanisms allowing to enhance privacy preservation and
robustness in the domain of distributed machine learning.

The first contribution of this thesis falls in the category of cryptography-based Privacy
Preserving Machine Learning (PPML). Many state-of-the-art works propose cryptography-
based solutions to ensure privacy preservation in distributed machine learning. Nevertheless,
these works are known to induce huge overheads time and space-wise. In this line of work,
we propose PrivML an outsourced Homomorphic Encryption-based Privacy Preserving
Collaborative Machine Learning framework, that allows optimizing runtime and bandwidth
consumption for widely used ML algorithms, using many techniques such as fast algorithms
for large integer arithmetic, ciphertext packing, approximate computations, and parallel
computing.

The other contributions of this thesis addresses the robustness issues in the domain
of Federated Learning (FL). Indeed federated learning is the first framework to ensure
privacy by design for distributed machine learning. Nonetheless, it has been shown that
this framework is still vulnerable to many attacks, among them we find poisoning attacks,
where participants deliberately use faulty training data to provoke misclassification at
inference time. We demonstrate that state-of-the-art poisoning mitigation mechanisms fail
to detect some poisoning attacks and propose ARMOR, a poisoning mitigation mechanism
for Federated Learning that successfully detects these attacks, without hurting models’
utility.

Keywords: Privacy, Homomorphic Encryption, Distributed Machine Learning, Robust-
ness, Federated Learning, Poisoning Attacks.

i

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Résumé

Avec l’omniprésence des services numériques, d’énormes quantités de données sont con-
tinuellement générées et collectées. Les algorithmes d’apprentissage automatique (ML)
permettant d’extraire des connaissances précieuses à partir de ces données et ont été
appliqués dans de nombreux domaines, tels que l’assistance médicale, le transport, la
prédiction du comportement des utilisateurs, et bien d’autres.

Dans beaucoup de ces applications, les données sont collectées à partir de différentes
sources et un entraînement distribué est nécessaire pour apprendre des modèles globaux
sur ces données. Néanmoins, dans le cas de données sensibles, l’exécution d’algorithmes
ML traditionnels sur ces données peut conduire à de graves violations de la vie privée en
divulguant des informations sensibles sur les propriétaires des données.

Dans cette thèse, nous proposons des mécanismes permettant d’améliorer la préservation
de la vie privée et la robustesse dans le domaine de l’apprentissage automatique distribué.

La première contribution de cette thèse s’inscrit dans la catégorie d’apprentissage
automatique respectueux de la vie privée (PPML) basé sur la cryptographie.

De nombreux travaux de l’état de l’art proposent des solutions basées sur la cryptographie
pour assurer la préservation de la vie privée dans l’apprentissage automatique distribué.
Néanmoins, ces travaux sont connus par leurs énormes coûts en termes de temps d’exécution
et d’espace. Dans cette lignée de travaux, nous proposons PrivML, un framework externalisé
d’apprentissage collaboratif basé sur le chiffrement homomorphe, qui permet d’optimiser le
temps d’exécution et la consommation de bande passante pour les algorithmes ML les plus
utilisés, moyennant de nombreuses techniques telles que le packing, l’usage d’algorithmes
optimisés de l’arithmétique multiprécision, les calculs approximatifs et le calcul parallèle.

Les autres contributions de cette thèse abordent les questions de robustesse dans le
domaine de l’apprentissage fédéré.

En effet, l’apprentissage fédéré est le premier framework à garantir la préservation
de la vie privée par conception dans le cadre de l’apprentissage automatique distribué.
Néanmoins, il a été démontré que ce framework est toujours vulnérable à de nombreuses
attaques, parmi lesquelles nous trouvons les attaques par empoisonnement, où les partic-
ipants utilisent délibérément des données d’entraînement erronées pour provoquer une
mauvaise classification au moment de l’inférence.

Nous démontrons que les mécanismes de mitigation de l’empoisonnement de l’état de
l’art ne parviennent pas à détecter certaines attaques par empoisonnement et nous pro-
posons ARMOR, un mécanisme de mitigation de l’empoisonnement pour l’apprentissage
fédéré qui parvient à détecter ces attaques sans nuire à l’utilité des modèles.

Mots-clés: Préservation de la vie privée, Apprentissage automatique distribué, Chiffre-
ment homomorphe, Robustesse, Apprentissage fédéré, Attaques par empoisonnement.

ii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Contents

I Introduction 9

I.1 Context and Problem Statement . 10

I.2 Improving the Efficiency of Cryptography-Based Privacy Preserving Ma-
chine Learning . 11

I.3 Mitigating Poisoning Attacks in Federated Learning 11

I.4 Summary of Contributions . 12
I.4.1 Publications and Communications 12
I.4.2 Developed software . 14

I.5 Thesis Roadmap . 14

II PrivML: Improving the Efficiency of Cryptography-Based Pri-
vacy Preserving Machine Learning 15

Chapter II.1: Background on Privacy Preserving Machine Learning 16

II.1.1 Background on Machine Learning . 17

II.1.2 Background on Privacy Preservation . 18
II.1.2.1 Privacy Preserving Machine Learning (PPML) 18
II.1.2.2 A Taxonomy of Privacy Preserving Machine Learning Methods 19
II.1.2.3 Basic Concepts of PPML . 20
II.1.2.4 Evaluation Metrics of PPML Methods 21

II.1.3 Related Work on Non-Cryptographic Privacy Preserving Machine Learn-
ing Techniques . 22
II.1.3.1 Perturbation Approaches . 22
II.1.3.2 Group-Based Anonymization 24
II.1.3.3 Machine Learning Output Privacy 24

II.1.4 Background on Cryptography . 26

1

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Contents

II.1.4.1 Homomorphic Encryption . 26
II.1.4.2 Secure Multi-Party Computation (MPC) 31
II.1.4.3 Universal Primitives of MPC 33

II.1.5 Related Work on Cryptography-Based Privacy Preserving Machine Learning 36
II.1.5.1 Homomorphic Encryption-Based PPML Methods 37
II.1.5.2 Secure Multi-Party-Based PPML Methods 41
II.1.5.3 Hybrid PPML Methods . 44

II.1.6 Summary of Related Work on PPML . 47

Chapter II.2: Design Principles of PrivML 50

II.2.1 System Model and Privacy Requirements 50
II.2.1.1 System Model . 50
II.2.1.2 Threat Model . 51
II.2.1.3 Privacy Requirements . 52

II.2.2 Cryptographic Primitives Underlying PrivML 52
II.2.2.1 The DT-PKC cryptosystem . 52
II.2.2.2 Cryptographic blinding . 53

II.2.3 Design Principles of PrivML . 54
II.2.3.1 Overview of PrivML . 54
II.2.3.2 Privacy Preserving Very Fast Decision Trees 55
II.2.3.3 Privacy Preserving Naive Bayes 60
II.2.3.4 Privacy Preserving Logistic Regression 62

II.2.4 Proposed Optimization Techniques . 64
II.2.4.1 Round Complexity Minimization 64
II.2.4.2 Logarithmic Probabilities for Naive Bayes 66
II.2.4.3 Random Large Numbers and Powers Pre-computation 66
II.2.4.4 Optimized Large Number Arithmetic 67
II.2.4.5 Parallel Computing . 67
II.2.4.6 Incremental Model Learning . 68

II.2.5 Security Analysis . 68
II.2.5.1 Security of PrivML’s Building Blocks 68
II.2.5.2 Security of PrivML’s Classifiers 69

II.2.6 Summary . 70

Chapter II.3: Evaluation of PrivML 71

2

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Contents

II.3.1 Implementation Details of PrivML . 71

II.3.2 Experimental Setup . 72
II.3.2.1 Hardware Environment . 72
II.3.2.2 Evaluation Datasets . 72

II.3.3 End-to-End Evaluation of PrivML . 73
II.3.3.1 Evaluation of Private Very Fast Decision Trees 73
II.3.3.2 Evaluation of Private Naive Bayes 75
II.3.3.3 Evaluation of Private Logistic Regression 76

II.3.4 Low-Level Evaluation of PrivML . 78
II.3.4.1 Performance of Underlying Cryptographic Primitives 78
II.3.4.2 Performance of Underlying Sub-Protocols 79
II.3.4.3 End-to-End Microbenchmarks of PrivML 80

II.3.5 Comparison of PrivML with Closest State-of-the-art Solutions 86

II.3.6 Summary . 87

III ARMOR: Mitigating Poisoning Attacks in Federated Learning 89

Chapter III.1: Background and Related Work on Robust Federated Learning 90

III.1.1 Generalities on Federated Learning . 91
III.1.1.1 Federated Learning’s Architecture and Workflow 92
III.1.1.2 Types of Federated Learning Settings 92

III.1.2 Related Work on Attacks Targeting Federated Learning 93

III.1.3 Related Work on Robust Federated Learning 96
III.1.3.1 Types of Poisoning Attacks . 96
III.1.3.2 Poisoning Scenarios in Federated Learning 97
III.1.3.3 Poisoning Mitigation in Federated Learning 98

III.1.4 Summary . 101

Chapter III.2: Design Principles of ARMOR 102

III.2.1 Threat Model and Problem Illustration 102
III.2.1.1 Thteat Model . 102
III.2.1.2 Implementing Edge-case Poisoning Attacks 103

3

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Contents

III.2.1.3 Problem Illustration . 104

III.2.2 ARMOR’s Defense Objectives. 105

III.2.3 Overview of ARMOR . 106

III.2.4 Background on Generative Adversarial Networks 108

III.2.5 ARgan: ARMOR ’s Generative Adeversarial Networks 108

III.2.6 MORpheus: ARMOR’s Attack Detection Mechanism 110

III.2.7 Summary . 111

Chapter III.3: Evaluation of ARMOR 112

III.3.1 Implementation Details . 112

III.3.2 Datasets and Model Architectures . 112

III.3.3 Experimental Setup . 112
III.3.3.1 Hardware and Software Environment 112
III.3.3.2 FL System Settings . 113
III.3.3.3 Evaluation Metrics . 113

III.3.4 Experimental Results . 113
III.3.4.1 ARMOR Achieving the Defense Objectives 114
III.3.4.2 Impact of Number of Malicious Clients 116
III.3.4.3 Effect of Non-IID Data Distributions 120
III.3.4.4 Effect of Differential Privacy 121
III.3.4.5 Cost of Defense . 121

III.3.5 Summary . 124

IV Conclusion and Perspectives 125

Bibliography 129

4

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

List of Acronyms

ACGAN Auxiliary Classifier Generative Adversarial Network

DDBM Data-Driven Business Model

CNN Convolutional Neural Network

DNN Deep Neural Network

DO Data Owner

DP Data Provider

FedAvg Federated Averaging

FHE Fully Homomorphic Encryption

FL Federated Learning

GAN Generative Adversarial Network

GC Garbled Circuits

HE Homomorphic Encryption

ML Machine Learning

MLaaS Machine Learning as a Service

MLSP Machine Learning Service Provider

MPC Multi Party Computation

OT Oblivious Transfer

PPML Privacy Preserving Machine Learning

PHE Partial Homomorphic Encryption

SIMD Single Instruction Multiple Data

SS Secret Sharing

SWHE SomeWhat Homomorphic Encryption

5

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

List of Figures

II.1.1 A taxonomy of Privacy Preserving Machine Learning. 19
II.1.2 Comparison between outsourced and collaborative PPMLs. 21
II.1.3 Main primitives of a HE scheme. 27
II.1.4 Secret Sharing diagram. 35
II.1.5 Sensitive information in a Machine Learning workflow. Each shaded box

indicates private data that should be accessible to only one party. 37
II.1.6 SecureML [97] architecture to achieve Outsourced Privacy Preserving

Machine Learning. 42
II.1.7 EzPC [106] internal architecture. 44
II.1.8 Architecture of the solution proposed by Nikolaenko et. al [114]. 45
II.1.9 Architecture of the Ciphermed framework proposed by Bost et al. [117]. 46
II.1.10 A classification of PPML methods based on privacy preservation mecha-

nisms that they use. 48
II.1.11 Privacy, Utility, and Runtime tradeoff comparison between cryptographic

and non-cryptographic techniques . 48

II.2.1 An overview of PrivML’s global architecture 51

II.3.1 Software architecture of the PrivML library 72
II.3.2 Testing scenario used to evaluate PrivML 74
II.3.3 Performance of Private Very Fast Decision Trees 75
II.3.4 Performance of Private Naive Bayes . 76
II.3.5 Performance of Private Logistic Regression 78
II.3.6 Execution time optimization of the primitives underlying DT-PKC with

respect to encryption key size . 80

6

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3.7 Performance of sub-protocols in terms of execution time and communica-
tion cost, SKS : Secure Key Switching, SE : Secure Entropy, STS : Secure
Threshold Selection, SHBC : Secure Hoeffding Bound Computation, SSig
: Secure Sigmoid computation, SDP : Secure Dot Product, SD : Secure
Division, SM : Secure Multiplication, SC : Secure Comparison, SLog
: Secure Logarithm, SExpo : Secure Exponentiation, SSqrt : Secure
Square Root. Enc: Encryption, PSdec1, PSdec2 : Two-step decryption,
SScalarMult : Secure Scalar Multiplication, SAdd : Secure Homomorphic
Addition. K=5, p=14 . 82

II.3.8 Cryptographic primitives and sub-protocols runtime proportion with
respect to PPML training time in seconds over the Adult, Nursery and
Bank using optimized vs. naive C++ implementation. 84

II.3.9 Cryptographic primitives and sub-protocols runtime proportion with
respect to PPML inference time per query in milliseconds over the Adult,
Nursery and Bank using optimized vs. naive C++ implementation. . . . 86

III.1.1 Federated Learning’s workflow and architecture 91

III.2.1 Examples of data poisoning in image classification 104
III.2.2 Impact of model poisoning on state-of-the-art defense mechanisms . . . 105
III.2.3 ARMOR architecture . 107
III.2.4 Overview of ARgan . 109
III.2.5 Overview of MORpheus . 110

III.3.1 Trade-off between robustness and utility – Data poisoning on the left
side, and model poisoning on the right side 114

III.3.2 Target task accuracy – Data poisoning on the left side, model poisoning
on the right side . 115

III.3.3 Impact of attack frequency on robustness and utility – Data poisoning
on left side, model poisoning on right side 117

III.3.4 Detailed impact of attack frequency on target task accuracy – Data
poisoning on left side, model poisoning on right side 118

III.3.5 Impact of attacker number on robustness and utility – Data poisoning
on left side, model poisoning on right side 119

III.3.6 Impact of client number on robustness and utility – Data poisoning on
left side, model poisoning on right side 120

III.3.7 Attack effectiveness with different non-IID settings – Data poisoning on
left side, model poisoning on right side 122

III.3.8 Attack effectiveness with various differential privacy settings – Data
poisoning on left side, model poisoning on rigth side 123

7

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

List of Tables

List of Tables

II.1.1 A list of Partially Homomorphic Encryption Schemes. 28
II.1.2 A list of Somewhat Homomorphic Encryption Schemes. 29
II.1.3 Oblivious Transfer inputs and outputs. 34

II.2.1 Computational cost and round complexity of elementary secure building
blocks . 65

II.2.2 Cost of PrivML’s secure building blocks vs. sequential composition of
elementary building blocks . 66

II.3.1 Real-world datasets used in PrivML’s evaluation 73
II.3.2 Performance of PrivML v.s. state-of-the-art solutions 86

III.1.1 State-of-the-art defense mechanisms against poisoning attacks in Feder-
ated Learning . 99

III.2.1 Notations used to describe ARMOR’s design principles 107

III.3.1 Cost of defense mechanisms . 123

8

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Part I

Introduction

9

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

I.1 Context and Problem Statement

Nowadays, a growing number of companies are migrating to business models that are
based on collecting and leveraging users’ data (Data-Driven Business Model DDBM).
This is possible by relying on Machine Learning (ML) methods to discover strategic and
relevant information from this data. By following such a strategy, these companies fully
capitalize their production process on the availability of data. However, these critical
resources may simply not be available, or their quantity might not be sufficient to extract
useful information.

Collaborative machine learning can be very useful in this context, where multiple parties
with common interests can collaborate to obtain ML models with better accuracy using
their joint data. Nevertheless, this scheme is not always feasible, due to legal, financial,
and competitive constraints, especially when the manipulated data is considered to be
sensitive. Such confidentiality problems can be observed in health systems, fraud detection,
recommendation systems, etc.

Given the many benefits of collaborative learning, much research has been conducted to
propose Privacy Preserving Machine Learning methods (PPML). These works fall into
two main categories based on which privacy preservation technique is used, where some
works rely on non-cryptographic techniques such as data randomization [1], and others
employ cryptographic techniques such as homomorphic encryption [2] to ensure privacy
preservation.

This thesis consists of two parts, in this first one, we consider a centralized ML as-a-
service architecture where different data owners outsource their training data to a service
provider that is supposed to do carry a training process on it without disclosing their
content. This gave rise to our privacy preserving classification framework PrivML that we
present below.

In a second part, we are interested in another more recent collaborative learning scheme
which is Federated Learning (FL) where the different collaborators perform local training
on their private data and only share model updates with an orchestrator who is responsible
for aggregating the different model updates sent by the different collaborators, updating
a global model and communicating it to them. This kind of scheme certainly allows not
to share the private data of the participants with a third party. However, it remains
vulnerable to a panoply of attacks [3] including poisoning attacks [4, 5] which we study
in-depth, where we propose a new detection mechanism called ARMOR to mitigate them.

10

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

I.2 Improving the Efficiency of Cryptography-Based Privacy
Preserving Machine Learning

Privacy Preserving Machine Learning solutions that rely on homomorphic encryption
(HE) do not impact models’ utility and accuracy while providing high privacy guarantees.
That being said, homomorphic encryption is known to induce high computational over-
heads. Moreover, state-of-the-art HE-based PPML methods differ in terms of HE schemes
(i.e., fully homomorphic FHE, somewhat homomorphic SWHE, or partially homomorphic
encryption PHE), in terms of secure computation architecture (i.e., multi-party computa-
tion MPC vs. single-party computation SPC), and in terms of other techniques such as
ciphertext packing, etc. [6]. This results in different impacts on computational overheads.

In this part of the thesis, we precisely explore the impact of different architectural and
design choices of HE-based PPML methods on actual PPML performance.

Our main objective is to design and implement a privacy preserving framework that
ensures a proper trade-off between the following criteria that we have identified to be crucial
for outsourced PPML services’ performance (i) Privacy guarantees. the provided solution
must ensure end-to-end privacy preservation of training data, machine learning models,
users’ requests, and system responses; (ii) Computational efficiency. the computational
overhead caused by privacy preservation mechanisms must be minimal; (iii) Service utility.
the utility of the provided privacy preserving ML service must be as close as possible to
their original implementations; (iv) Service usability. privacy preservation strategies must
not affect the service usability and must provide a suitable user experience.

To achieve the goals described above, we propose PrivML an outsourced homomorphic
encryption-based privacy preserving collaborative machine learning framework, that allows
optimizing runtime and bandwidth consumption for widely used ML algorithms, using
many techniques such as fast algorithms for large integer arithmetic, ciphertext packing,
approximate computations, and parallel computing.

We evaluate PrivML using real-world datasets and compare it with the most relevant
state-of-the-art HE-based PPML methods.

I.3 Mitigating Poisoning Attacks in Federated Learning

Federated learning (FL) is a new framework that enables orchestrated collaborative learning
without explicit exchange of training data, thus improving the privacy of user data [7].
Due to its attractive guarantees, it has been rapidly adopted in many application domains
such as next-word-prediction in Gboard [8], speech recognition [9], autonomous cars [10],
and many others.

Nevertheless, despite its advantages, it has been shown that Federated Learning is
very vulnerable to many attacks coming from the client-side since this framework is

11

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

user-driven [11]. In this part of this thesis, we focused primarily on data and model
poisoning attacks that target the robustness of Federated Learning [4, 5, 12]. In these
attacks, adversaries attempt to inject a malicious task into the federated model along with
its main task. This malicious task assigns a label chosen by the attacker to the input data
with a specific trigger. For example, an attacker can bypass a facial recognition-based
authentication system by assigning the wrong identity label to its images that authorize it
to access the system.

Detecting poisoning attacks in federated learning is a challenging problem because
participants only send model updates to the FL server instead of sending their raw training
data. As a result, the FL server holds less information about users’ behavior to detect
malicious participants. Many mechanisms have been proposed in the state-of-the-art to
enable the detection of such attacks. Although these mechanisms have various rules for
detecting poisoning, they all rely on auditing the geometric shape of model updates sent
by participants to the FL server.

In this second part of the thesis, we were able to show that attackers are still able to
evade these detectors by fabricating model updates that mimic the updates of benign
participants. Subsequently, we proposed ARMOR, a new GAN-based attack detector, to
analyze the information that model updates capture about user data, instead of monitoring
their geometric shapes.

We evaluate ARMOR using widely used image recognition datasets and deep neural
network architectures and demonstrate that they out-perform state-of-the-art mechanisms
in mitigating extremely aggressive poisoning attack scenarios.

I.4 Summary of Contributions

The contributions of this thesis are two folds : (c1) : PrivML: An efficient outsourced
online ML framework over encrypted data (c2) : ARMOR: A mitigation
mechanism against poisoning attacks in federated learning. In the following, we
enumerate the publications, communications, and developed software prototypes in the
scope of these two contributions.

I.4.1 Publications and Communications

• Fatma-Zohra El Hattab, Rania Talbi, Sara Bouchenak, and Vlad Nitu: ARMOR:
Mitigating Poisoning Attacks in Federated Learning. (Under Submission)

• Rania Talbi, and Sara Bouchenak: How Practical is Cryptography-Based Privacy
Preserving Outsourced Machine Learning (Under Submission)

• Fatma-Zohra El Hattab, Rania Talbi, Sara Bouchenak, and Vlad Nitu: Towards
Mitigating Poisoning Attacks in Federated Learning. In: Conférence francophone

12

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

d’informatique en Parallélisme, Architecture et Système (ComPAS). Lyon, France
2021.

• Jiyue Huang, Rania Talbi, Zilong Zhao, Sara Bouchenak, Lydia Y. Chen, Stefanie
Roos: An Exploratory Analysis on Users’ Contributions in Federated Learning. In:
International Conference on Trust, Privacy and Security in Intelligent Systems and
Applications (TPS-ISA). Virtual Conference 2020.

• Rania Talbi: Towards Practical Privacy-Preserving Collaborative Machine Learning
at a Scale. In: IEEE-IFIP International Conference on Dependable Systems and
Networks (DSN). València, Spain 2020.

• Fatma-Zohra El Hattab, Rania Talbi, Sara Bouchenak, and Vlad Nitu: How
Effective Are Data Poisoning Attacks on Federated Learning. In: Conférence
francophone d’informatique en Parallélisme, Architecture et Système (ComPAS).
Virtual Conference 2020.

• Nassim Ait-Ali-Braham, Rania Talbi, Sara Bouchenak, Caroline Fontaine: Priv-
ML: Leveraging Practical End-to-End Privacy in Collaborative ML Services. In:
Conférence francophone d’informatique en Parallélisme, Architecture et Système
(ComPAS). Anglet, France 2019.

• Rémi Canillas, Rania Talbi, Sara Bouchenak, Omar Hasan, Lionel Brunie, Laurent
Sarrat: Exploratory Study of Privacy Preserving Fraud Detection. In: International
Middleware Conference. Rennes, France 2018.

• Rania Talbi: Towards Incremental End-to-End Privacy Preserving Data Classi-
fication.In: International Middleware Conference. Doctoral Symposium. Rennes,
France 2018.

• Rania Talbi, Sara Bouchenak, Lydia Y. Chen: Towards Dynamic End-to-End
Privacy Preserving Data Classification. In: International Conference on Dependable
Systems and Networks Workshops. Luxembourg City, Luxembourg 2018

The following communications took place during this thesis project:

• In ComPAS 2021 (06 - 09 July 2021), ARMOR: Towards Mitigating Poisoning
Attacks in Federated Learning, virtual presentation.

• In DSN 2020 (29 June - 02 July 2021), Privacy-Preserving Collaborative Machine
Learning at a Scale, virtual presentation.

• In IRYXIS 2019 - Winter edition, (02 - 05 December 2019), Towards Robust Federated
Learning, Passau, Germany.

13

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

• In APVP 2019 (09 - 11 July 2019), Towards Practical Privacy-Preserving Collabora-
tive Machine Learning at a Scale, Baie de Somme, France.

• In IRYXIS 2019 - Summer edition (18 - 20 June 2019), Towards Practical and
Scalable Privacy-Preserving Collaborative Machine Learning Lyon, France.

• In GDR RSD ASF Winter School 2019 (04 - 07 February 2019), Towards Practical
Privacy-Preserving Machine Learning, Grenoble, France.

• In Middleware 2018 (10 - 14 December 2018), Towards Incremental End-to-End
Privacy Preserving Data Classification, Rennes, France.

I.4.2 Developed software

The following software prototypes were developed during this thesis:

• PrivML: C++ library for outsourced privacy preserving machine learning over
encrypted data.
Available at: https://gitlab.liris.cnrs.fr/rtalbi/DAPPLE-2.0

• ARMOR: Python library for poisoning attacks detection in federated learning
using GAN-based class representatives generation.
Available at: https://gitlab.liris.cnrs.fr/rtalbi/armorfd 1

I.5 Thesis Roadmap

This manuscript is structured as follows. In Part II, we present our contribution in
improving the efficiency of cryptography-based privacy preserving ML-as-a Service. Where
we first provide a general state-of-the-art and background overview in Privacy Preserving
Machine Learning (PPML). Then we present the design principles of our framework
PrivML that addresses the high overhead issues in cryptography-based PPML methods.
This part also provides the empirical evaluation results of PrivML. Part III is about
robustness issues in federated learning, where we first start by providing some generalities
on federated learning and the attacks that target it. After that, we discuss existing works
in poisoning attacks detection in federated learning. We then present ARMOR a poisoning
detection mechanism that we have proposed. Next, we present a detailed evaluation of
ARMOR and assess its advantages and drawbacks. Part IV concludes this thesis and
discusses future work and research directions.

1The ARMOR repository is not publically accessible for now considering that it is a work under
submission.

14

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Part II

PrivML: Improving the Efficiency of
Cryptography-Based Privacy Preserving Machine

Learning

15

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Ubiquitous computing is continually generating vast amounts of data in the current
information age, especially through IoT devices, web services, and social networks. The
analysis of this data has shown to be highly beneficial to a countless number of services such
as health-care [13], banking [14], cyber-security [15], commerce [16], transportation [17],
and many others. However, much of the collected information may contain sensitive private
data, which raises important privacy concerns [18,19].

The main concern for users is that their personal and highly sensitive data such as
photos and voice recordings are kept indefinitely by the companies that collect them and
that they can neither delete them nor restrict the purposes for which they are used.

Moreover, even when individuals or entities trust each other and are willing to share
their data, they might not be allowed to do so for legal reasons.

For example, let us consider the scenario in which many hospitals wish to jointly mine
their patients’ data for medical research. Usually, it is legally forbidden for these hospitals
to pool their data or to reveal them to each other. As a consequence, classical machine
learning solutions cannot be used. In such contexts, privacy constraints prevent valuable
knowledge extraction. Also, the concerns over massive collection of data are naturally
extending to analytic tools applied to data.

Machine Learning (ML), with its promise to efficiently discover valuable, non-obvious
information from large datasets, is particularly vulnerable to malicious users through
attacks against Machine Learning models [19, 20]. This concern is further amplified with
the increasing popularity of cloud service providers and the paradigm of Machine Learning
as a Service (MLaaS) [21].

To address the privacy issues in ML, a sub-field of Machine Learning, referred to as
Privacy Preserving Machine Learning (PPML), has gained significant development in
recent years. The objective of PPML is to protect sensitive information from unsolicited or
unsanctioned disclosure, and meanwhile, preserve the utility of data and provide effective
and efficient ML services. In short, Privacy Preserving Machine Learning aims to conciliate
data exploration with privacy preservation.

Machine Learning might seem in total contradiction with privacy protection at first
glance since the global purpose of the former is to extract valuable knowledge from raw
data while ensuring privacy goes through limiting access to the data.

This inherent goal conflict in Privacy Preserving Machine Learning makes the problem
extremely challenging. It has led to a rich literature with many heterogeneous solutions,

16

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

relying on different techniques (secure multi-party computation, homomorphic encryption,
differential privacy). However, despite the significant progress in this research area, the
question of Privacy Preserving Machine Learning is far from being solved and there is still
a large room for improvement of the current techniques.

This chapter provides a general overview of this emerging field. We start with a brief
review of basic notions regarding machine learning and privacy preservation, followed by a
taxonomy of PPML solutions and the field’s core concepts, and conclude with a summary
defining the research gap addressed in this first part of the manuscript.

II.1.1 Background on Machine Learning

Machine learning (ML) studies algorithms and statistical models that computer systems
use to efficiently perform a specific task without explicit instructions, relying on patterns
and inference instead. In other words, Machine learning algorithms build a mathematical
model of sample data to make predictions or decisions without being explicitly programmed
to perform them [22].

Machine learning algorithms differ in their global approach, the type of data they input
and output, and the type of problems they were designed to solve.

The most straightforward and widely accepted classification of ML algorithms encom-
passes three main categories, which are: Supervised Learning, Unsupervised Learning, and
Reinforcement Learning [23].

• Supervised Learning they are methods in which a training set is used and has
both the input data and the respective desired label/output. This dataset allows the
ML algorithm to learn specific patterns, distinguish data, and perform predictions
on previously unseen and unlabelled records.

• Unsupervised Learning these techniques attempt to find relations in the data
from unlabelled sets. They are used to find structure in data, like clustering data
points or dimensionality reduction [24].

• Reinforcement Learning these algorithms allow an agent required to take au-
tomated decisions to learn adequate policies to achieve its goal and maximize the
rewards it gets in a controlled environment when making good decisions.

According to [25], ML tasks can be decomposed into the following classes:

• Association rule learning a rule-based ML method is used for discovering inter-
esting relations between variables in large databases. For example, a supermarket
can use association rule mining to determine which products are frequently bought
together and use this information for marketing purposes [26].

17

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

• Clustering is the task of grouping a set of objects in such a way that objects in the
same group (called a cluster) are more similar to each other than to those in other
groups (clusters).

• Classification is the problem of identifying to which of a set of categories a new
observation belongs. In order to perform this mapping, a function or a model is
learned by deriving the relationship between the objects in the training set and their
corresponding classes.

• Regression is the task of approximating a mapping function f from input variables
to a continuous output variable y.

In this manuscript, we are particularly interested in supervised ML tasks, which are
classification and regression.

II.1.2 Background on Privacy Preservation

In the information scope, Westin et al. [27] defined privacy as: "The claim of individuals,
groups, or institutions to determine for themselves when, how, and to what extent
information about them is communicated to others."

In other words, it is the right to control the handling of one’s information. Thus, one
can conclude that the main idea of information privacy is controlling the collection and
handling of one’s data.

Data privacy is often seen as an aspect of data security. This is a questionable claim
since the goals of the two fields are quite divergent.

On the one hand, security protects the data against unauthorized access and modification.
However, once the data reaches an authorized recipient, security does not impose any
additional constraint having to do with revealing an individual’s personal information.
This is, on the other hand, the goal of data privacy.

Therefore, it is more appropriate to describe the relationship between data security and
data privacy, as the former being a prerequisite of the latter. Data must be protected
in storage and transmission by data security methods, but if one wants to achieve data
privacy, additional steps must be taken to protect sensitive data.

II.1.2.1 Privacy Preserving Machine Learning (PPML)

Privacy Preserving Machine Learning (PPML) [28,29] is a relatively novel research direction
where machine learning algorithms are analyzed for the side-effects they incur on data
privacy. The main objective of privacy preserving machine learning is to develop methods
for modifying the original data and algorithms in some way so that the private data and
personal information remain secret even when applying ML algorithms [30].

18

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

II.1.2.2 A Taxonomy of Privacy Preserving Machine Learning Methods

Many taxonomies of PPML techniques have been proposed in the literature [30–32]. Based
on these taxonomies, in the rest of this section, we present the most important dimensions
to take into consideration when designing a PPML method, as summarized in Figure II.1.1.

Figure II.1.1: A taxonomy of Privacy Preserving Machine Learning.

ML Task

All the ML tasks presented in the previous section might require a privacy protection
mechanism in the presence of sensitive data. Some PPML techniques can be applied
generically, regardless of the underlying ML task, while others are specifically designed for
a specific ML task (e.g., association rule hiding).

Data Life-Cycle

Data goes through a series of steps during the data analysis process, which we often refer
to as the data life-cycle. Each of these steps may include different actors that we can
choose to trust or not. Therefore, it becomes necessary to design PPML techniques that
ensure privacy during each phase. We briefly describe each of these phases below.

• Data Collection this is the step during which data is collected from data owners.
Deploying privacy mechanisms in this phase assumes that the entity collecting the
data is not trusted. This is generally achieved by adding randomization or an
encryption mechanism to the sensory device that collects the data.

19

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

• Data Publishing this is the step during which the collected data will be released
publicly or to third parties for data analysis. Therefore, the challenge is to give
access to a dataset without disclosing sensitive information.

• ML Output the output of the ML algorithm can be extremely revealing, even
without explicit access to the original dataset. In fact, it has been shown that Machine
Learning algorithms are vulnerable to numerous types of attacks, for example, the
membership inference attack proposed by Shokri et al. in [20].

Data Partitioning

Depending on the use case, data can be either centralized or partitioned across multiple
data owners. The partitioning can be horizontal, vertical, or arbitrary.

System’s Architecture

There are two major and widely used architectures in Privacy Preserving Machine Learn-
ing applications, which are the collaborative PPMLs and the outsourced PPMLs (See
FigureII.1.2). We briefly explain both of the architectures below.

• Collaborative PPMLs this is the case where there are n entities who want to
perform some ML task on the union of their datasets without revealing their private
data. Thus, these parties have to collaborate, following a specified protocol, to
achieve the desired task in a privacy preserving manner.

• Outsourced PPMLs this can be seen as an example of Machine Learning as a
Service (MLaaS), where a service provider offers ML services to users. In these
architectures, users and data owners have no reason to trust the service provider.
Therefore, data owners might be reluctant to share sensitive information with the
service provider, and the same holds for users who might require some protection on
their queries and outputs.

Privacy Preservation Mechanisms

The mechanisms used to ensure privacy can vary significantly for the same ML task (e.g.,
perturbation techniques, secure multi-party computation, homomorphic encryption, etc.).
These techniques differ in the privacy guarantees and performance they offer.

II.1.2.3 Basic Concepts of PPML

In this section, we present the different actors in a PPML system, the different types of
attributes, and the possible information disclosures.

20

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

(a) Architecture of a collaborative PPML.
(b) Architecture of an outsourced PPML.

Figure II.1.2: Comparison between outsourced and collaborative PPMLs.

Actors

In a typical data analysis scenario, one can identify many actors that may be involved in
different stages of the data analysis process. We list the most important ones below.

• Data Owner (DO) these are individuals or organizations that generate the original
raw data and offer the data to others, either actively or passively.

• Data Collector it is a user or an organization who collects data from data owners
and then publishes the data to an ML service provider.

• ML Service Provider is the entity who is responsible for performing ML tasks on
the collected data.

Attributes Types

In general, we can divide the attributes of a given data record into three categories
according to their semantics, which we list below.

• Explicit Identifiers these are the unique attributes that unambiguously identify
an individual, such as the full name and the passport number.

• Quasi-Identifiers these attributes do not directly identify a person but provide
partial information that may allow to re-identify it when gathered together with the
assistance of other information, such as age, career, postcode, and so on.

• Sensitive Information these attributes contain private information about an
individual, which should not be revealed (for example, medical data of a patient).

II.1.2.4 Evaluation Metrics of PPML Methods

Privacy Preserving Machine Learning algorithms can be evaluated according to different
metrics, including the privacy level, the utility of the data, and the method’s complexity.

21

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Privacy the most obvious metric on which a PPML method must be evaluated is
the level of privacy that it offers. We divide the privacy aspect into two components,
namely Data Privacy which is measured by the ability of an attacker to reconstruct the
original data. The more difficult it is, the better is the protection, and Result Privacy
which consists of protecting ML models against attacks that use them to infer sensitive
information about data.

Utility this metric evaluates the impact that PPML methods have on model accuracy.
It is very common for PPML methods to alter training data by inserting false samples or
blocking data values to hide sensitive information. They can also apply distortion on the
output of the ML algorithm, which can negatively impact ML models’ quality.

Complexity this metric relates to the efficiency and scalability of the considered PPML
mechanism time and space-wise.

II.1.3 Related Work on Non-Cryptographic Privacy Preserving
Machine Learning Techniques

Non-Cryptographic PPMLs are the most widely used lightweight methods to preserve
privacy in the context of machine learning. These PPML techniques rely on a set of
sanitization primitives that we enumerate below.

• Generalization is the replacement of a value by a more general one. For instance,
numerical data may be defined by intervals.

• Suppression is the removal of a specific attribute to prevent disclosure (typically
the case of explicit identifiers) or a specific row in a dataset.

• Anonymization is the de-association of Quasi-Identifiers (QIDs) and sensitive
attributes in two separate tables making it more difficult to link them.

• Randomization is the replacement of original data with synthetic values that have
identical statistical properties. For example, noise addition and data swapping.

Non-cryptographic PPML methods can be classified into three approaches which we
discuss in the following.

II.1.3.1 Perturbation Approaches

The general paradigm of perturbation approaches can be described as follows. Given
a set of data records denoted by T = {x1, ..., xN}. For each record xi ∈ T , we apply a
determined modification or perturbation to keep its true value secret.

Most perturbative methods reviewed below are special cases of matrix masking. If the
original dataset is T , then the masked dataset T ′ is computed as, T ′ = ATB + C where A

22

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

is a record-transforming mask, B is an attribute-transforming mask, and C is a displacing
mask (noise).

Additive Noise

The additive noise method was first introduced in the context of Privacy Preserving
Machine Learning in [28]. This technique randomizes the dataset by adding noise to it.
To be more precise, for each record xi ∈ T , a random noise component yi is independently
drawn from a noise distribution FY and then added to xi. Thus, the new set of distorted
records zi is denoted by T ′ = {z1 = x1 + y1, ..., zN = xN + yN}.

Let X be the random variable denoting the data distribution of the original records, Y

be the random variable describing the noise distribution, and Z be the random variable
denoting the final records, we have, Z = X + Y =⇒ X = Z − Y The distribution of
Y is publicly known, whereas the distribution of Z has to be estimated using a kernel
density estimation technique [33]. Then, by subtracting the density of Y , it is possible to
reconstruct an approximation of X’s density, as long as the number of samples N is large
enough and the noise variance is not too high.

Randomization using additive noise is a simple technique that can be applied at the data
collection phase and requires no intermediate storage of the real records. The downside is
that outliers are more susceptible to adversarial attacks, requiring the addition of more
substantial noise to hide them. It is also worth noticing that we only get the distribution of
X, rather than actual records. Noise addition is vulnerable to many types of attacks, from
which the most important are the Dimensionality Reduction Attack, and the Maximum
Likelihood Attack [34].

Multiplicative Noise

Multiplicative noise follows some of the ideas of additive noise, with a crucial difference:
the randomly generated noise is now multiplied by the attribute values instead of being
added to them.

There have been many successful attempts to realize multiplicative perturbations, and
most of them derive their roots in the work of [35].

Even though this method offers stronger privacy guarantees than additive noise, it
remains vulnerable to a few types of attacks, from which the most important are Known
Input-Output Attack and Known Sample Attack [34].

Data Swapping

Another widely used method to protect privacy is data swapping [36], in which the values
across multiples records are swapped in order to enhance privacy. To preserve utility, it
would be convenient to swap values that are close to each other. Therefore, swapping

23

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

is controlled by the distance between the swapped values, meaning that close values are
more likely to be swapped.

II.1.3.2 Group-Based Anonymization

An important drawback of the perturbative approaches is that they do not consider the
case where a publicly available record can be used to infer the identity of its owner. Other
frameworks such as K-Anonymity [37], L-Diversity [38], and T-Closeness [39] were proposed
to ensure identity privacy preservation.

II.1.3.3 Machine Learning Output Privacy

Most of the Privacy Preserving Machine Learning (PPML) techniques we have presented
so far are concerned with protecting individuals’ privacy against an attacker who has direct
access to the data. This is typically the case in a data publishing scenario. However, an
attacker can also infer sensitive information without even accessing the training dataset.
In fact, the outputs of ML algorithms can be highly revealing, even for an application that
prevents access to raw data. An adversary may query such applications and infer sensitive
information about the underlying data.

In the following, we provide a brief overview of the most important PPML algorithms
designed to decrease the privacy leakage of ML models. It is also worth mentioning that
all the techniques discussed in the previous sections can provide additional protection by
first sanitizing the dataset before the data analysis process.

(ϵ)-Differential Privacy

The differential privacy framework was proposed by Dwork et al. in [40]. This framework
offers strong privacy protection in the information-theoretic sense. The intuition is that an
attacker may obtain expected information by multiple queries on a dataset based on his
background knowledge regarding victims. Differential privacy ensures that the removal or
addition of a single data record does not substantially affect the outcome of any analysis.
Definition a randomized function f gives differential privacy if for all datasets D1 and
D2 differing on at most one element, and all S ⊆ Im(f) 1, we have,
P [f(D1) ∈ S] < eϵP [f(D2) ∈ S]
A mechanism f satisfying this definition addresses concerns that any participant might
have about the leakage of her personal information: even if the participant removed her
data from the dataset, no outputs would become significantly more or less likely to occure.
Differential privacy is achieved through noise addition to the output of the function f ,
usually using the Laplace mechanism [40].

1For a given function f , we denote Im(f) as the range of f , that is: Im(f) = {f(x)|x ∈ Df}, where Df

is the domain of f .

24

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Simply stated, the output is distorted as follows: T (x) = f(x) + Y , where Y ∼ Lap(λ) is a
Laplacian noise 2. By doing so, we obtain a mechanism that is ϵ-differentially private with
ϵ = ∆f

λ
, where ∆f = maxD1,D2∈D ∥f(D1)− f(D2)∥1 is often referred to as the sensitivity

of the function f .

Association Rule Hiding

Association rule hiding is a privacy preserving technique introduced in [41] whose objective
is to perform association rule mining without revealing the sensitive rules, by performing:

• Distortion in distortion [42], a given transaction is changed to a different value.

• Blocking where some entries of the dataset are blocked to prevent the discovery of
specific sensitive association rules [43].

In both approaches, some of the non-sensitive rules can be lost, and new false rules
(often referred to as ghost rules) may be created because of the distortion or blocking
process. These side-effects are undesirable since they reduce the utility of the data.

Downgrading Classifier Effectiveness

Machine learning models, and particularly classifiers, are prone to many types of attacks, for
instance, the membership inference attack 3 [20]. Furthermore, the results of a classification
application may be a piece of sensitive information for the owner of a dataset. Therefore,
we want to be able to modify the data so that the accuracy of the classification process
is reduced while keeping it acceptable for most applications. An example of these works
would be In [44] where the case of decision trees is considered. Note that the approaches
used for association rule hiding can also be generalized to rule-based classifiers since
rule-based classifiers often use association rule mining as a subroutine.

Query Auditing and Inference Control

There are two main approaches for query management in the literature of Privacy Preserving
Machine Learning, which are Query Auditing and Query Inference Control. Query
Auditing the basic idea is to perform some filtering on the model queries. In other words,
a fraction of queries is denied to prevent the querier from gaining too much information
about the raw data, consequently compromising the privacy of the training set records.
Several algorithms were proposed to tackle this problem [45]. Query Inference Control
in this approach, instead of controlling the set of authorized queries, perturbations are

2The probability density function of the Laplace distribution is given by the formula: f(x|µ, λ) =
1

2λ e(− |x−µ|
λ), where µ is the mean and λ is a scale parameter.

3A membership inference attack is an attack against Machine Learning models that aims to determine if
a particular record was part of the training set of the model.

25

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

used to protect the underlying data. These perturbations can be applied directly to the
data [38,39] or added to the query result.

II.1.4 Background on Cryptography

In this section, we introduce the most important cryptographic primitives that are widely
used in Privacy Preserving Machine Learning (PPML). Generally speaking, even the most
efficient of these techniques are considerably more expensive than the Non-cryptographic
methods. Despite this, the cryptographic approach remains attractive since it provides
much stronger privacy guarantees and does not alter data utility. There are two important
families of techniques that were exploited by researchers over the years to implement
cryptographic PPML methods, which are Homomorphic Encryption and Secure Multi-Party
Computation.

II.1.4.1 Homomorphic Encryption

Homomorphic Encryption (HE) is a special kind of encryption that allows a third party
(e.g., an ML service provider) to perform certain computable functions over encrypted
data while preserving the features of these functions and the format of the encrypted data.
This paradigm of computation over encrypted data was suggested by Rivest et al. in [46].
They imagined a scenario where a client encrypts its input x and sends it to a server, which
can then evaluate a function f on the encrypted input. The server returns an encryption
of the evaluated ciphertext to the client, who decrypts the output and recovers the result.

The encryption method must have certain special properties so that it allows the
processing of encrypted data. For example, Rivest et al. observed in [46] that RSA 4

enables multiplication of encrypted values. Specifically, starting from the encryption of
m1 and m2, one can compute an encryption of m1m2 without knowing the secret key.
This property is formally described in Equation (II.1.1), where N and e are the public
parameters of the cryptosystem.

c1 = Encpk(m1) = me
1 mod N

c2 = Encpk(m2) = me
2 mod N

=⇒ c1c2 = (m1m2)e mod N = Encpk(m1m2)

(II.1.1)
Rivest et al. naturally asked whether it was possible to compute more general functions
over encrypted data, and what one can do with an encryption scheme that enables such
computations. This question was the first stepping stone to what became one of the most
active research topics in modern cryptography.

4RSA (Rivest–Shamir–Adleman) is one of the first public-key cryptosystems and is widely used for secure
data transmission.

26

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Figure II.1.3: Main primitives of a HE scheme.

Definition a Homomorphic Encryption Scheme consists of four procedures (KeyGen,
Encrypt, Decrypt, Eval), each of which is described below.

• KeyGen generates the cryptographic keys (sk, pk)← KeyGen(λ), where sk is the
secret key, pk the public key and λ the security parameter 5.

• Encrypt produces a cipher c← Enc(pk, m) from a plaintext message m.

• Decrypt recovers the underlying plaintext message m← Dec(sk, c) from a cipher-
text c.

• Eval allows computations over ciphers. Specifically, for f ∈ F , where F is some
class of functions, Eval outputs c′ ← Eval(pk, f, c⃗) such that Dec(sk, c′) = f(m⃗),
where c⃗ is an encryption of m⃗.

An illustration of the evaluation procedure is given in Figure II.1.3. It shows that
homomorphically computing the function over encrypted inputs gives the same result
as encrypting the function’s output applied to the plaintext inputs. Depending on the
family of functions a homomorphic cryptosystem can evaluate, we distinguish three main
types of homomorphic schemes, which are Partially Homomorphic Encryption (PHE),
Somewhat Homomorphic Encryption (SWHE), and Fully Homomorphic Encryption (FHE).
In the following, we introduce the three HE families, their properties, and examples of
state-of-the-art schemes for each category.

Partially Homomorphic Encryption (PHE)

A Partially Homomorphic Encryption (PHE) scheme allows some computation over
encrypted data. More precisely, a PHE either supports addition or multiplication, but
not both. Depending on the supported operation, one can distinguish two sub-families of
PHE, namely additive and multiplicative homomorphisms.

• Additively Homomorphic Encryption these schemes support the addition of ci-
phertexts only. Formally, for a certain operation ⊕ (usually multiplication), we have,

5In cryptography, a security parameter is a way of measuring of how "hard" it is for an adversary to
break a cryptographic scheme.

27

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

E(m1)⊕E(m2) = E(m1 + m2). An example of such a scheme is the well-known Pail-
lier cryptosystem [47]. It is also worth mentioning that any additive homomorphic
cryptosystem allows performing multiplications with unencrypted scalar values, i.e,
E(m1r) = E(m1)⊗ r = E(m1)⊕ ...

r times
...⊕ E(m1).

• Multiplicatively Homomorphic Encryption in a multiplicatively homomorphic
encryption scheme, it is possible to evaluate the encryption of the product of two
messages from their encryptions. Stated differently, we have, E(m1) ⊗ E(m2) =
E(m1m2). Popular examples of such schemes are RSA [46] and ElGamal [48].

Table II.1.1 provides a non-exhaustive list of the most widely used Partially Homomorphic
Cryptosystems. All of them are public-key cryptosystems. They are quite limited in terms
of homomorphic capabilities (i.e., the set of supported operations), but are more efficient
than the two upcoming families.

Table II.1.1: A list of Partially Homomorphic Encryption Schemes.
Cryptosystem Type Message space Hardness assumption

[46] Mult ZN Factoring
[49] Add Z2 Quadratic Residuosity
[48] Mul ZN Discrete log
[50] Add ZN Higher Residuosity
[47] Add ZN Composite Residuosity
[51] Add ZN Decisional Diffie-Hellman and Factoring
[52] Add ZN P-Subgroup Assumption
[53] Add ZN Decisional Composite Residuosity

Somewhat Homomorphic Encryption (SWHE)

After the first plausible Fully Homomorphic Encryption scheme (FHE) published in
2009 [54], many Somewhat Homomorphic (SWHE) versions of FHE schemes were also
proposed because of the performance issues associated with FHE. In fact, every FHE
scheme is built upon a SWHE scheme to which a special procedure called bootstrapping is
added.

This section focuses on major SWHE schemes developed before 2009, which were used
as a stepping stone to the first plausible FHE scheme. We leave the new generation of
SWHE schemes to the next section since they are inseparable from FHE cryptosystems.
An SWHE scheme supports both additions and multiplications but in a bounded number.
Indeed, this kind of encryption scheme is limited to evaluating low-degree polynomials
over encrypted data. In other words, the number of possible additions and multiplications
over a ciphertext is limited.
In the literature of Homomorphic Encryption schemes, one of the first SWHE cryptosystems

28

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

is the Polly Cracker scheme [55]. It allows both multiplication and addition operations
over ciphertexts. However, the ciphertext size grows exponentially with homomorphic
operations, and the multiplication operation is very costly. Later more efficient variants
[56, 57] are proposed, but almost all of them are later shown vulnerable to attacks [58, 59].
Therefore, they are either insecure or impractical.
One of the most important steps toward FHE was introduced by Boneh-Goh-Nissim (BGN)
in [60]. BGN evaluates 2-DNF 6 formulas on ciphers, and it supports an arbitrary number
of additions and one multiplication by keeping the ciphertext size constant.
Another idea of evaluating operations on encrypted data is realized over different sets.
Sander, Young, and Yung (SYY) described the first SWHE scheme over a semigroup,
NC1 [61] 7. The proposed scheme supported polynomially many ANDing of ciphertexts
with one OR/NOT gate. However, the ciphertext size increased by a constant factor with
each OR/NOT gate evaluation. Yuval Ishai and Anat Paskin (IP) [62] expanded the set
to branching programs, which are the directed acyclic graphs where every node has two
outgoing edges with labeled binary 0 and 1.
Table II.1.2 summarizes the most important Somewhat Homomorphic Encryption Schemes
proposed before 2009.

Table II.1.2: A list of Somewhat Homomorphic Encryption Schemes.
Cryptosystem Circuit Size Circuit Type

SYY [61] Poly-many AND and one OR/NOT NC1 circuit
BGN [60] Unlimited Add and 1 Mul 2-DNF formula

IP [62] Arbitrary Branching Programs

Fully Homomorphic Encryption (FHE)

An encryption scheme is fully homomorphic if it can evaluate any boolean circuit without
restriction on the depth or the number of gates. The existence of a Fully Homomorphic
cryptosystem remained an open question for 30 years until Craig Gentry’s breakthrough in
2009 [54]. In the following, we present the simplified paradigm behind FHE cryptosystems
and the recent developments in the field.

The noise issue in his breakthrough, Gentry [54] started by proposing a semantically
secure SWHE based on ideals 8. The idea was that plaintext values are perturbations of an
element of the ideal, such that it is impossible to compute the nearest ideal element to a
cipher without the secret key. In order for the scheme to be secure, the perturbation needs
to be a random noise added to the cipher. The decryption function removes this noise and

6DNF stands for Disjunctive Normal Form, that is a boolean expression with at most two literals in each
clause.

7NC1 is a complexity class that includes circuits with poly-logarithmic depth and polynomial size.
8An ideal is simply a subset of a ring with some interesting algebraic properties.

29

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

treats each point as if it were located in the nearest unperturbed location. However, when
homomorphic operations are applied to the ciphertexts, their noise grows. The perturbed
point thus wanders far away from its actual position until decryption starts returning a
wrong value.

Bootstrapping the noise growth dramatically limits the set of functions that can
be computed homomorphically. Hence, the construction described above is a Somewhat
Homomorphic Encryption (SWHE) scheme. Gentry proposed a solution to this problem
by extending the SWHE with a particular procedure, which he called bootstrapping. On a
very high level, bootstrapping is a general procedure that takes as input a ciphertext and
outputs a new encryption of the same underlying plaintext value but with much less noise.

Bootstrapping is a technique in which a cryptosystem evaluates its decryption function
homomorphically.

Evolution of FHE Schemes although Gentry’s scheme [54] was very promising, it
also had many bottlenecks, such as its computational cost in terms of applicability in real
life. Therefore, many new schemes and optimizations have followed his work to address
the bottlenecks mentioned above.

After Gentry’s work, lattices have become more popular among cryptography researchers.
First, works like Smart and Vercauteren [63] focused on just improving Gentry’s scheme
in [54]. Then, an FHE scheme over integers based on the Approximate-GCD problem was
introduced by Van Dijk et al. [64].

Afterward, another FHE scheme whose hardness is based on Ring Learning with Error
(RLWE) problem was suggested in [65]. Lastly, an NTRU-like FHE was presented for its
promising efficiency and standardization properties [66]. NTRU-Encrypt is an old and
strongly standardized lattice-based encryption scheme whose homomorphic properties were
realized recently. So, these and similar attempts can be categorized into under four main
FHE families: (1) ideal lattice based [54], (2) over integers [24], (3) (R)LWE based [67],
and (4) NTRU-like [66].

For simplicity, we present a version of FHE schemes over integers, which is already the
most simple yet the least efficient compared to other modern FHE schemes.

Fully Homomorphic Encryption over Integers these schemes operate over integers
and their hardness assumption is based on the Approximate-Greatest Common Divisor
(AGCD) problem [68] 9. The primary motivation behind the scheme is its conceptual
simplicity. We briefly present a symmetric version of a FHE over integers.

• KeyGen for the given security parameter λ, a random odd integer k of bit length µ

is generated.

• Encrypt for random large prime numbers p and q, choose a small number r << k.
Then, the message m ∈ {0, 1} is encrypted by c = E(m) = m + 2r + pq, where p is

9AGCD problem tries to recover a secret integer p from the given set of xi = pqi + ri.

30

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

kept hidden as a private key and c is the ciphertext.

• Decrypt the ciphertext can be decrypted as follows: m = D(c) = (c mod p)
mod 2. Decryption works properly only if m + 2r < p

2 . This limits the depth of the
homomorphic operations performed on the ciphertext.

• Add E(m1) + E(m2) = m1 + 2r1 + pq1 + m2 + 2r2 + pq2 = (m1 + m2) + 2(r1 + r2) +
(q1 + q2)p. The output clearly falls within the ciphertext space and can be decrypted
if the noise |m1 +2r1 +m2 +2r2| < p

2 , where p is the private key. Since r1, r2 << p, a
various number of additions can still be performed on ciphertext before noise exceeds
p
2 .

• Mul. E(m1)E(m2) = (m1 + 2r1 + pq1)(m2 + 2r2 + pq2 = m1m2 + 2(m1r2 + m2r1 +
2r1r2) + kp. The encrypted data can be decrypted if the noise is smaller than half
of the private key, i.e., |m1m2 + 2(m1r2 + m2r1 + 2r1r2)| < p

2 . The noise grows
exponentially with the multiplication operation. This puts more restriction over the
homomorphic multiplication operation than addition.

Leveled Homomorphic Encryption a Leveled scheme is a Somewhat Homomorphic
Encryption scheme (SWHE) with good noise management techniques. This terminology
was introduced in [69], and any recent practical SWHE scheme is, in fact, a leveled one.
As previously mentioned, any FHE scheme has an associated SWHE cryptosystem (by
simply removing bootstrapping). It turns out that it is possible to evaluate non-trivial
circuits for a leveled scheme without resorting to bootstrapping. This idea has led to many
PPML solutions with improved efficiency (especially for the prediction phase of Machine
Learning models).
Packing one very important feature that many state-of-the-art homomorphic cryptosys-
tems provide is packing or SIMD (Single Instruction Multiple Data). Packing is a feature
that allows encoding many plaintext slots into a unique ciphertext. Subsequently, the op-
erations performed over this cipher automatically translate to the individual slots, thereby
allowing to process batches of data without any additional cost. For modern schemes, one
can batch thousands of values into the same cipher, which provides important performance
speed-up during the computations. As we will see in the next chapter, packing is one of
the most critical features that allowed the development of practical PPML solutions using
Homomorphic Encryption.

II.1.4.2 Secure Multi-Party Computation (MPC)

Secure Multi-Party Computation is a sub-field of cryptography allowing multiple parties
to collaboratively compute a function over their inputs while keeping them private [70].
Unlike traditional cryptography, where the adversary is outside the system of participants,

31

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

the adversary in this model controls actual participants. In the following, we briefly review
some definitions and basic notions around the paradigm of secure computation.

Trusted Party

The easiest way for a set of parties to achieve the secure computation of arbitrary functions
over their private inputs is to delegate the computation to a trusted party. Indeed, in the
real world, there is no such trusted party. Therefore, participants cannot afford the risk
of revealing their inputs to a third party. MPC protocols seek to offer the same security
guarantees as a trusted party model without requiring such a strong assumption.

Security in MPC

Defining security in the context of Secure Multi-Party Computation is a complex task.
Certainly, there are many desirable properties that one would want every secure MPC
protocol to satisfy. According to [70], the most important of these requirements are:

• Privacy no participant should be able to learn anything about other parties’ inputs,
except what can be derived from the output.

• Correctness every party should receive the correct output of the computation.

• Independence of Inputs corrupted parties must choose their inputs independently
of the honest parties. This property can be crucial in specific contexts, for example,
in a sealed auction.

• Fairness if one party learns the output, then all the parties learn it as well.

Note that the above list is not meant to be exhaustive, and defining security as a set of
requirements is not a viable approach. Therefore, to provide formal security guarantees, it
is necessary to give a simple and general definition of security that can implicitly capture
all the possible requirements. This is achieved using the standard Real World/Ideal World
Paradigm [71].

Adversarial Model

The MPC framework requires a very rigorous approach. Among the parameters that need
to be explicitly specified, the most important one is the adversarial model. An adversary
is an entity that takes over a subset of the parties and wants to attack the protocol.
The parties controlled by the adversary are called corrupted and follow the adversary’s
instructions.

Various aspects need to be defined when considering a given adversary. In the following,
we describe the main types of adversaries encountered in the literature.

32

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

• Corruption strategy the corruption strategy specifies when the parties are cor-
rupted. The most widely used models are:

– Static corruption in this model, the adversary chooses a fixed subset of
corrupted parties before the beginning of the computation.

– Adaptive corruption in this model, the adversary is given the ability to
corrupt parties dynamically during the computation.

• Allowed adversarial behavior specifies the set of actions corrupted parties are
allowed to take. The two main models in the MPC literature are:

– Semi-Honest Adversary in this model, the corrupted parties do not deviate
from the specified protocol. However, the adversary can view the private data
of all the corrupted parties and attempts to use this to learn information that
should remain private.

– Malicious Adversary in this adversarial model, the corrupted parties can
arbitrarily deviate from the protocol specification, according to the adversary’s
instructions. This is a relatively strong adversarial model since it allows any
malicious behavior.

• Complexity finally, one should also formalize the computational power of the
adversary. Two types of adversaries are generally considered:

– Polynomial-time the adversary is allowed to run in (probabilistic) polynomial-
time. We remark that any attack that cannot be carried out in polynomial-time
is not a threat in real life.

– Computationally unbounded in this model, the adversary has no computa-
tional limits whatsoever.

II.1.4.3 Universal Primitives of MPC

We introduce the most widely used primitives in Secure Multi-Party Computation, namely
Oblivious Transfer, Secret Sharing, Garbled Circuits. These building blocks are general
and allow the computation of arbitrarily complex functions securely.

Oblivious Transfer

Oblivious Transfer (OT) [72] is arguably the most essential primitive in secure multi-party
computation. In fact, it was shown by Kilian et al. [73] that using only oblivious transfer;
it is possible to construct any secure multi-party protocol.

Definition a 1-out-of-n oblivious transfer involves two parties, a sender and a receiver.
At a very high level, the functionality of the protocol can be described as follows. The

33

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

sender transfers one of potentially many pieces of information to a receiver but remains
oblivious as to what piece (if any) has been transferred, as shown in Table II.1.3.

Table II.1.3: Oblivious Transfer inputs and outputs.
Sender Receiver

Input x1, ..., xn i ∈ 1, ..., n
Output Nothing xi

1-out-of-2 Oblivious Transfer. we describe a simplified version of the general 1-out-
of-n oblivious transfer, namely the 1-out-of-2 oblivious transfer introduced by Even et
al. [74]. In this variant, the sender only holds two messages m0 and m1.

Algorithm 1 A simple 1-out-of-2 oblivious transfer protocol

Inputs: Messages m0 and m1
Outputs: ∅

(c0, c1) ← (EncP0(m0), EncP1(m1))
Send (c0, c1)

Inputs: σ ∈ {0, 1}
Outputs: mσ

Generate a pair of (secret, public) keys
(Kσ, Pσ) and a random P1−σ

Send (Pσ, P1−σ)

Decrypt cσ

The simple protocol described in Algorithm 1 is a valid instantiation of 1-out-of-2
oblivious transfer. In fact, by assumption, the sender should not be able to distinguish
between Pσ and P1−σ. The receiver, on the other hand, does not know K1−σ since P1−σ

was randomly generated. Therefore, he will only be able to decrypt cσ.

Secret Sharing

Secret sharing is also a fundamental building block in secure multi-party computation,
which was introduced independently by Shamir [75] and Blakley [76]. Secret sharing refers
to a set of methods for distributing a secret amongst a group of n participants; each
allocated a share of the secret. The secret can be reconstructed only when a sufficient
number t ≤ n of shares are combined together. The party that distributes the secret is
called the dealer, and the others are called the players.
Definition a t-out-of-n secret sharing scheme over message spaceM is a pair of algorithms
(Share, Reconstruct) such that:

• Share is a randomized algorithm that on any input m ∈ M outputs a n-tuple of
shares (s1, ..., sn).

34

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Figure II.1.4: Secret Sharing diagram.

• Reconstruct is a deterministic algorithm that given a t-tuple of shares outputs a
message in M

This scheme satisfies the following correctness requirement: ∀m ∈M, ∀S = {i1, ..., it} ⊆
{1, ..., n} of size t, P

Share(m)→(s1,...,sn)
[Reconstruct(si1 , ..., sit) = m] = 1

Many different and complex secret sharing schemes were developed in the literature. In
this section, we briefly introduce the one proposed by Shamir and al. in [75].

Shamir’s Secret Sharing Scheme The idea behind Shamir’s threshold scheme is
that k points are sufficient to define a polynomial of degree k − 1. Thus, the shares are
simply evaluations of a randomly generated polynomial at different points. The protocol
for generating the shares is described in Algorithm 2.

Algorithm 2 Shamir’s Share Computation
Inputs: Secret m,
Outputs: Shares s1, ..., sn

1: a0 ← m
2: Uniformly generate a1, ..., an

3: Construct the polynomial f(x) = a0 + a1x + ... + ak−1x
k−1

4: Evalute si = f(i) for i ∈ [1, n]
5: Send si to Pi for i ∈ [1, n]

The secret reconstruction follows immediately from Lagrange’s formula [77]. Given k

points (x0, y0), ..., (xk−1, yk−1), there is a unique polynomial f of degree k − 1 such that
yi = f(xi) and is given by formula II.1.2.

f(x) =
k−1∑
i=0

yili(x) (II.1.2)

35

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

where li(x)’s are the Langrange’s basis polynomials defined in Formula II.1.3.

li(x) =
∏

0≤m≤n−1,m̸=i

x− xm

xi − xm

(II.1.3)

Once the polynomial is reconstructed, the parties simply need to compute m = f(0).
Secure Computation with Secret Sharing. secret sharing can be used to perform

arithmetic operations over shares. Starting from the shares of A and B, it is possible
to privately compute shares of A + B and AB′. Therefore, one can evaluate arbitrary
polynomials over shares in a privacy preserving manner. We briefly highlight how this
applies to Shamir’s Secret Sharing Scheme.

• Addition the shares of a sum are simply the sums of the shares from the additive
properties of polynomials.

• Multiplication is not as straightforward as addition and requires communication
between the involved parties. The complete algorithm can be found in [78].

Garbled circuits

Yao’s garbled circuits [79] are a family of secure two-party computation protocols that allow
two parties, say P1 and P2, each of which has its own private inputs (x and y respectively),
to jointly compute a function f(x, y) (expressed as a Boolean circuit) without revealing
their secret inputs.

At a very high level, the protocol can be described as follows:

1. The underlying function is described as a Boolean circuit with 2-input gates. The
circuit public.

2. P1 garbles (encrypts) the circuit. We call P1 the garbler.

3. P1 sends the garbled circuit to P2 along with his encrypted input.

4. P2 through oblivious transfer receives his encrypted inputs from P1.

5. P2 evaluates (decrypts) the circuit and obtains the encrypted outputs. We call P2

the evaluator.

6. P1 and P2 communicate to learn the output.

II.1.5 Related Work on Cryptography-Based Privacy Preserving
Machine Learning

Cryptography-based Privacy Preserving Machine Learning approaches seek to protect
sensitive information from unauthorized parties. For example, ideally, both storage

36

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

and computation over data would be outsourced in an outsourced classification service.
Allowing a service provider to access training data or even classification requests and
responses can raise critical privacy concerns in these settings. Moreover, the model itself
might be sensitive as well. Figure II.1.5 illustrates the sensitive parts of an outsourced
Machine Learning application.

Figure II.1.5: Sensitive information in a Machine Learning workflow. Each shaded box
indicates private data that should be accessible to only one party.

In a collaborative PPML solution where no external service provider is implied, the ML
task is run by a set of parties that do not trust each other but still want to collaborate
and gather common knowledge on their joint datasets.

These are the two most important scenarios that are covered by cryptography-based
PPML methods. However, as explained in Section II.1.2.2, there are many other variables
to be considered, for instance: (1) which Machine Learning algorithm(s) to target?;
(2) which phase of the algorithm? training, classification, or both?; (3) what
cryptographic techniques to use?; (4) what is the required security level? which
information leakage can be afforded?

This important number of parameters and recent advances in cryptography have led
to the development of a rich literature around the field of Privacy Preserving Machine
Learning. In the following, we present a list of some of the most relevant state-of-the-art
works that adopted cryptographic primitives to ensure privacy preservation.

We arrange the selected works based on the cryptographic primitives they rely on to
ensure privacy, namely Homomorphic Encryption (HE), Secure Multi-Party Computation
(MPC), or a mix of both.

II.1.5.1 Homomorphic Encryption-Based PPML Methods

This section encompasses PPML methods that are solely based on Homomorphic Encryp-
tion. These solutions are arguably the most expensive ones regarding the computational
overhead but generally offer the highest level of security.

37

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

ML Confidential

Graepel et al. [80] suggested the use of Homomorphic Encryption for ML algorithms. They
focused on designing protocols to train ML models over encrypted data using a Somewhat
Homomorphic Encryption scheme (SWHE) and therefore were forced to use learning
algorithms in which the training phase can be expressed as a low degree polynomial.
As a result, most of the algorithms proposed were of the Linear Means (LM) classifier
and Fisher’s Linear Discriminant (FLD) Classifier. Their solution also supported private
inference.

This work was the first attempt to train Machine Learning models using solely Somewhat
Homomorphic Encryption (SWHE). They managed to build encrypted models from
encrypted data on a small scale. Nevertheless, efficiency degrades rapidly as the size of the
dataset grows (either horizontally or vertically). The authors reported that their solution
was roughly six orders of magnitude slower than plaintext training and that the overall
accuracy was not significantly affected by encryption.

Privacy Preserving Naive Bayes

Despite its simplisity, the Naive Bayes classifier is widely used due to its effectiveness. It
is even commonly adopted as a baseline standard by which other classifiers are evaluated.

Liu et al. [81] realized a secure patient-centric clinical decision support system based on
naïve Bayesian classification. They used an additive homomorphic [82] proxy aggregation
scheme to convert the encryption under different public keys into encryption under a
unique public key. This approach requires much less communication than fully distributed
solutions. However, this particular solution reveals the model (i.e., the table of probabilities)
in plaintext to a third party, which is a critical privacy breach that might not be acceptable
in many contexts.

Similarly [83] relies on Gentry’s fully homomorphic cryptosystem [54] to implement
a privacy-preserving Naive Bayes classifier under the assumption of honest-but-curious
participants. In this solution, a data owner outsources her training data encrypted under
the BGV cryptosystem to an ML service provider (MLSP). The latter is composed of
two parties P1 and P2 that collaborate in a two-party computation protocol to train a
Naive Bayes model using the homomorphic properties of BGV. This solution also covers
the inference phase. Furthermore, the MLSP’s two parties P1 and P2 are assumed to be
non-colluding. In order to reduce its computational costs, this PPML method relies on a
row-wise ciphertext packing where each data record is encrypted in the same ciphertext.
However, the computational overhead remains high since the authors rely on an old
generation FHE scheme.

38

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Privacy Preserving Logistic Regression

In statistics, the logistic model (or logit model) is a widely used statistical model for
classification. Its simplicity and computational tractability made it an interesting candidate
for Privacy Preserving Machine Learning, especially since this model is extremely useful
in the medical field and genomics [84].

Kim et al. [2] designed a solution for privacy preserving logistic regression using Fully
Homomorphic Encryption 10. The authors used the cryptosystem developed by Cheon et
al. [85], which supports approximate arithmetic of encrypted messages. Unlike existing
methods, this cryptosystem trades precision for efficiency so that the size of parameters
does not grow too large and is therefore very suitable for Machine Learning. The authors
implemented regular gradient descent and approximated the sigmoid function with a
least-square polynomial. More importantly, in order to obtain acceptable performances, a
vertical packing 11 of the training set was used (and therefore, the whole training algorithm
had been vectorized).

Kim et al. [86] proposed a very similar solution to the one described just above [2].
However, they designed a more elaborated packing technique that works row-wise and
column-wise. They managed to encode an entire dataset of 1579 samples and 18 features
into a single ciphertext. This very aggressive packing method had a significant impact
on the efficiency of their protocol, allowing them to train a logistic model over the
Edinburgh [87] dataset in 3.6 minutes (versus 114 minutes in [2]).

Both solutions presented above suffer from an important lack of scalability. In fact, by
avoiding bootstrapping, the number of gradient descent iterations must remain small (and
is pre-computed before the beginning of the training). Otherwise, the parameters of the
cryptosystem would grow extremely fast and make the computations dramatically slow.
Therefore, these solutions can only work with relatively small datasets.

In order to handle larger datasets, Han et al. [88] designed a very similar solution to [86]
but augmented the protocol with the bootstrapping procedure. By doing so, they managed
to train a logistic model over large datasets. Of course, adding bootstrapping made their
protocol significantly slower than [86] for small training sets, but the benefit becomes
evident when considering larger inputs. Concretely, using 200 iterations of gradient descent,
they managed to fit a dataset of 422,108 samples over 200 features in 1,060 minutes.

Homomorphic Neural Networks Inference (Cryptonets)

Gilad et al. [89] present a system called CryptoNets, which allows homomorphically
encrypted data feedforwarding an already-trained neural network. In their setting, a client
resorts to a cloud service to perform classification over its private data using a neural
10Strictly speaking, the scheme was used as a Somewhat Homomorphic cryptosystem since authors never

applied bootstrapping.
11Each ciphertext contains all the values of a unique attribute for the whole training set (a column).

39

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

network. Since CryptoNets considers that neural network weights are pre-trained, the
system aims at predicting individual data items and does not handle the training phase.

Gilad et al. were the first to propose an efficient solution for homomorphic neural
network inference. They used the leveled homomorphic encryption scheme YASHE [90] and
evaluated their solution on image classification using a small Convolutional Neural Network
(CNN) [91]. Authors addressed several challenges to make CNN’s more homomorphically
friendly: (1) they proposed to use a square activation function f(x) = x2 instead of the
usual sigmoid or ReLU; (2) they replaced max-pooling layers with mean pooling; (3) they
heavily relied on packing to amortize the computation cost of homomorphic encryption.

One should note that, although Cryptonets performed relatively well on small CNNs
(59000 predictions per hour when fully exploiting packing), the proposed approach does
not scale linearly with the depth of the neural network. The reason is that, for obvious
efficiency considerations, Gilad et al. avoided the costly bootstrapping operation, meaning
that they never reset the noise level in the ciphers. Consequently, the depth of the neural
net needs to be fixed beforehand, and adding more layers requires the selection of larger
parameters for the cryptosystem, thereby causing a much higher computation cost.

Hesamifard et al. [92] proposed Cryptodl, an extension of cryptonets. In this work, the
authors focused on the approximation of activation functions using low-degree polynomials.
They highlighted the fact that using the square function as suggested in Cyptonets is not
a viable solution. Hesamifard et al. tried several approximation techniques, such as Taylor
expansion, Chebyshev polynomials, and a novel approach based on the derivative of the
ReLU function. Their experimental results showed that putting more effort into providing
a good activation function positively impacts the accuracy with acceptable computational
overhead.

Bourse et al. [93] pointed out two critical limitations of Cryptonets: (1) the lack of
scalability due to Somewhat Homomorphic Encryption; (2) the heavy use of packing,
i.e., the amortized response time of Cryptonets is good as long as the client has many
batched requests. To address these issues, Bourse et al. proposed a scale-invariant
approach based on Fully Homomorphic Encryption (FHE). In their proposal, each neuron’s
output is refreshed through bootstrapping, resulting in arbitrarily deep networks being
homomorphically evaluated. They used the scheme proposed by Chillotti et al. [94],
known as TFHE (Fast Fully Homomorphic Encryption over the Torus), because of its
fast bootstrapping operation (but does not support batching). In order to accommodate
the supported operations in TFHE, Bourse et al. implemented Binarized Neural Network
(BNN), which are neural networks where signals and weights are restricted to the set
{−1, 1}. Overall, this approach led to an efficient solution that outperforms Cryptonets
for individual queries. However, it does not match the high throughput of Cryptonets
when batching is fully used for small CNNs. Still, the benefit of this approach becomes
evident when dealing with deeper networks.

40

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Privacy Preserving Distributed Deep Learning

Shokri et al. [95] proposed a PPML method to train and evaluate DNN. In their work,
every participant trains his local dataset with the same neural network model and uses the
selective parameter sharing of the model as a technique to benefit from other participants’
models without explicit sharing of training inputs.

Shokri et al. relied on a parameter server architecture, where each client sends a fraction
of his gradients (1% to 10%) to the server at each iteration to minimize the leakage from
the gradients. The authors also proposed to use differential privacy to mitigate the leakage
furthermore.

Aono et al. [96] showed that minimizing the number of gradients is not a sufficient
protection, even when only 1% of them are shared. Indeed, the authors could partially
reconstruct the dataset with a very small fraction of the gradients. Therefore, to mitigate
this leakage, Aono et al. proposed encrypting the gradients using additively homomorphic
encryption. They instantiated their design using two cryptosystems, namely Paillier and
an LWE-based scheme. Their approach incurred an acceptable overhead. Specifically, they
reported a running time of 2.5 hours to train a Neural Net over the MNIST dataset and
roughly 2-3 higher bandwidth usage.

II.1.5.2 Secure Multi-Party-Based PPML Methods

This section introduces some of the most relevant works in Privacy Preserving Machine
Learning that entirely rely on Secure Multi-Party Computation primitives. These solu-
tions are typically less computationally intensive than the ones based on Homomorphic
Encryption (HE), but, on the flip side, they usually require a lot of communication and
synchronization between the participants and impose a weaker security model.

SecureML

Mohassel and Zhang proposed a two-server model for privacy preserving training [97] in
an outsourced setting. Their protocols rely on Secure Multiparty Computation (MPC),
specifically Additive Secret Sharing and Garbled Circuits.

Unlike homomorphic encryption-based solutions, MPC protocols require many parties
and cannot be deployed on a unique server. These parties are generally the data owners,
who jointly build a model on the union of their inputs. However, this configuration differs
from the outsourced scenario targeted by SecureML, where clients want to delegate the
computation to an external ML server provider (cloud) and remain offline during the
whole process. Mohassel and Zhang resolved this issue by using a two-server model as a
proxy. Specifically, data owners secret-share their inputs among two non-colluding servers
to train various models using secure two-party computation (2PC). While their focus is on
training, they also support privacy-preserving predictions.

41

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Figure II.1.6: SecureML [97] architecture to achieve Outsourced Privacy Preserving Ma-
chine Learning.

Mohassel and Zhang implemented three ML models, namely linear regression, logistic
regression, and neural networks. They reported impressive execution times, with only a
few seconds (resp. few minutes) to train a linear (resp. logistic) regression over a million
samples of hundred features each. On the other hand, training a neural net is significantly
more expensive and takes a few hours to complete, even with a single hidden layer.

SecureML introduced many important optimizations. For instance, computations with
secret sharing were vectorized in a way that significantly reduced the communication
overhead. Moreover, their protocols are divided into an offline and an online phase, which
is an interesting paradigm that allows shifting the heavy computations to pre-processing
step where the cloud is not solicited. In order to maximize efficiency, authors mixed secret
sharing and garbled circuits along with conversion protocols and claimed that they selected
the most appropriate protocol for each computation.

Privacy Preserving Decision Trees

Lindell et al. [29] addressed a scenario involving two parties, each one of them holding a
dataset of different transactions. The parties wish to compute a decision tree by applying
the ID3 algorithm [98] to the union of their databases.

A key observation is that each tree node can be computed separately, with the output
made public, before continuing to the next node. In general, private protocols have
the property that intermediate values remain hidden. However, in ID3, some of these
intermediate values are part of the output and may, therefore, be revealed. Once the
attribute of a given node has been found, both parties can separately partition their
remaining transactions accordingly for the coming recursive calls. This means that
private distributed ID3 can be reduced to privately finding the attribute with the highest

42

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

information gain.
With an intelligent analysis of the problem, Lindell et al. reduced the problem of securely

computing ID3 to the computation of xln(x) using secret sharing and then performing an
argmax with garbled circuits.

SecureNN: Privacy Preserving Neural Network Training

Wagh et al. [99] propose SecureNN, a three-party secure computation solution for various
Neural Network building blocks such as matrix multiplication, convolutions, Rectified
Linear Units (ReLU), Maxpool, normalization, and so on. Using these building blocks,
authors managed to construct secure three-party protocols for training and inference of
several neural network architectures such that no single party learns any information about
the data. The proposed solution outperformed most existing works by at least one order of
magnitude. Their main contribution is new and efficient protocols for non-linear functions
such as ReLU and Maxpool that avoid using garbled circuits altogether, which constitute
the main bottleneck in previous solutions.

Privacy Preservation in Machine Learning Frameworks

Few recent attempts have been made to integrate privacy protection mechanisms into
Machine Learning frameworks such as Tensorflow [100], and Pytorch [101]. The main
motivations behind these works can be summarized as follows: (1) designing a PPML
solution from scratch requires deep knowledge in Machine Learning, Cryptography, and
Distributed Systems; (2) most of the implemented solutions remain research prototypes
that are never maintained nor re-used. Therefore, it could be highly beneficial to deploy
PPML solutions on existing ML platforms to give the user a higher level of abstraction
and benefit from the communities of these frameworks.

Dahl et al. [102] developed a library on top of Tensorflow they called tf-encrypted. They
implemented the well-known SPDZ protocol proposed by Damgard et al. [103], which is a
secure multi-party computation protocol based on secret sharing. They augmented it with
mechanisms that provide robustness against malicious adversaries. Dahl et al. implemented
the protocol in a two-party setting. By translating the protocol into regular Tensorflow
code, they benefited from the automatic optimizations of computation graphs built on
the framework. Moreover, they did not need to handle the network communication and
synchronization between the different parties since Tensorflow also manages this aspect.

Ryffel et al. [104] did similar work on the Deep Learning framework Pytorch and
developed a library called PySyft. They implemented the same secure computation
protocol (SPDZ) but in a different way. They heavily relied on the concept of remote-
tensor, which is a tensor located on a remote machine. Moreover, PySyft puts a focus on
a federated learning scenario [105], which is quite different from the centralized setting.

43

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Figure II.1.7: EzPC [106] internal architecture.

Secure Privacy Preserving Compilers

Chandran et al. proposed a new framework for compiling two-party protocols called
EzPC [106]. EzPC uses a specialized library called ABY [107] as its cryptographic back-
end. A simple and easy-to-use imperative programming language is compiled to ABY
input, as depicted in Figure II.1.7. An interesting feature of EzPC is its “cost awareness”,
i.e., its ability to automatically insert type conversion operations to minimize the resulting
protocol’s total cost. Underneath the hood, secure computation is performed in a two-party
setting using a mix of Boolean Sharing, Arithmetic Sharing, and Garbled Circuits. EzPC
introduced some mechanisms to choose which protocols should be used at each step of the
computation in a cost-aware manner.

The primary contribution of Chandran is a high-level language of secure computation
for the non-specialist. Although the resulting program will not be as efficient as a tailored
solution designed by an expert, the main gain comes from reducing the development time
and a better accessibility of MPC.

It is also worth noting that EzPC is not the first secure computation compiler. However,
previous implementations such as CBMC-GC [108], Fairplay [109], Sharemind [110],
ObliVM [111], SMCL [112], and Wysteria [113] either rely on secret sharing or garbled
circuits, but never combined. Moreover, EzPC was specifically optimized for Machine
Learning workflows and is, therefore, more aligned with the scope of this manuscript.

II.1.5.3 Hybrid PPML Methods

In the following, we briefly review the most important and recent hybrid Privacy Preserving
Machine Learning works in the literature. These solutions take the approach of combining
Homomorphic Encryption schemes with Secure Multi-Party Computation primitives. The
motivation behind this is to take advantage of each technique’s features and compensate
for their respective weaknesses.

44

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Figure II.1.8: Architecture of the solution proposed by Nikolaenko et. al [114].

Privacy Preserving Ridge Regression

Nikolaenko et al. [114] present a privacy preserving linear regression protocol on horizontally
partitioned data using a combination of Additively Homomorphic Encryption (AHE) and
Garbled Circuits and evaluate it on datasets with millions of samples. Authors adopted a
resolution based on the closed-form of linear regression [115]. The use of garbled circuits
imposes a two-party setting (Garbler-Evaluator), where the Garbler is responsible for the
circuit generation, and the Evaluator evaluates the circuit on new inputs. We refer to the
two parties as "Evaluator" and "Cloud service provider" (CSP) as denoted in the original
paper. They decomposed the training stage of their protocol into 2 phases:

• Phase 1 clients send outer-products of their feature vectors ai = xix
T
i in encrypted

form (using Paillier cryptosystem), as well as a pre-processed right-hand side bi =
yixi. The evaluator then sums-up the inputs homomorphically to form the matrix
A = ∑n

i=1 ai + λI and b = ∑n
i=1 bi.

• Phase 2 the evaluator solves the system Ax = b using a garbled circuit that
implements Choleskey decomposition. This circuit is pre-computed in an offline
phase with the CSP and only depends on the number of features d.

Nikolaenko et al. proposed a secure protocol against a semi-honest Evaluator and CSP
along with a variant that is secure even against a malicious CSP. They managed to fit
a linear regression for a dataset of 51,000 records and 22 features in roughly 3 minutes.
However, their solution is specifically designed for linear regression, and generalizing it to
other Machine Learning algorithms is not straightforward.

Secure K-NN

K-NN is a lazy learning classifier, where all computations are deferred until inference time.
A data instance is classified based on a majority vote of its neighbors, with the instance
being attributed the most common class among its k closest neighbors.

45

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Figure II.1.9: Architecture of the Ciphermed framework proposed by Bost et al. [117].

Kim et al. [116] proposed an approach based on garbled circuits for KNN. They
implemented a protocol based on Paillier’s cryptosystem to determine the most frequent
class. In order to improve the performance of their solution, the authors used an index
data structure to extract the k nearest neighbors. The major bottleneck of this work is
the generation of the index structure, which must be performed from scratch for each new
example added to the training set.

Ciphermed

Bost et al. [117] developed a two-party computation framework and mainly used homo-
morphic encryption as a privacy preserving technique. This has allowed the authors to
implement many classification models, including hyperplane decision, naïve Bayes, and
binary decision trees over ciphertexts. The authors used three homomorphic cryptosystems,
which are Paillier [47], Goldwasser–Micali [49], and a Somewhat Homomorphic Encryption
scheme (YASHE) [90], along with other Secure Multi-Party Computation primitives such as
Garbled Circuit. They proposed a client-server architecture where a cloud server responds
to clients’ classification requests over encrypted data in a privacy preserving fashion. They
designed interactive protocols for primitive operations (comparison, arg-max, dot product,
etc.) that involve the client during the computation. They also showed how to use these
building blocks to construct more complex Machine Learning classifiers, including Viola
and Jones face detection algorithm [118]. Notice however, that Bost et al. did not address
the training phase, i.e, they supposed a pre-trained plaintext model on the server-side.

Their main contribution is the smart combination of the homomorphic cryptosystems,
along with conversion protocols between them. Their protocols were designed to minimize
the computational overhead and accept a trade-off on the communication cost. They
achieved good performances with execution times ranging from hundreds of milliseconds
to a few seconds for a single classification. This work is considered as one of the most
important steps towards practical outsourced Privacy Preserving classification using a
cloud service.

46

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Privacy Preserving Neural Network Inference

Liu et al. propose MiniONN [119], a privacy preserving neural network prediction frame-
work. Authors designed oblivious protocols for operations routinely used in neural networks:
linear transformations, popular activation functions, and pooling operations. In partic-
ular, they use polynomial splines to approximate nonlinear functions (e.g., sigmoid and
tanh) with negligible loss in prediction accuracy. None of their protocols require any
changes to the training phase of the model being transformed. Their protocol is divided
into two phases: an independent offline phase and an online prediction phase. On one
hand, the online phase only involves lightweight cryptographic primitives such as secret
sharing and garbled circuits. On the other hand, the offline pre-computation phase uses
additively homomorphic encryption and the SIMD batch processing technique to perform
request-independent operations.

Jukevar et al. [120] proposed GAZELLE, the currently most efficient solution for oblivious
Convolutional Neural Network (CNN) inference. Their solution relies on a well-designed
combination of a Somewhat Homomorphic cryptosystem and garbled circuit. Even though
Jukevar et al. relied on a Lattice-based scheme, they never exploited its multiplicative
capabilities. The cryptosystem was used as an additively homomorphic one, and the
authors claimed that this approach is more efficient than using a classical additive scheme
such as Paillier. They introduced numerous optimizations, such as an elaborated packing
method and an aggressive parameter selection for their cryptosystem. Their solution
outperformed Cryptonets by two to three orders of magnitude in the execution time. Notice
however, that their protocol requires an interaction with the client for each activation layer
(due to the use of garbled circuits). Nevertheless, Jukevar et al. exploited this constraint
to make the client refresh the ciphertext, which allowed to control the noise growth due to
homomorphic encryption and thereby to gain linear scalability with respect to the depth
of the neural network.

II.1.6 Summary of Related Work on PPML

In this chapter, we presented some of the general prerequisites for Privacy Preserving
Machine Learning (PPML), including a succinct overview of core Machine Learning
concepts, along with basic notions related to privacy. We also introduced the terminology
related to the field of Privacy Preserving Machine Learning, and provided a taxonomy
of the most important families of PPML methods based on the privacy preservation
techniques they use. These two families are cryptography-based and non-cryptographic
PPML methods which we recall in Figure II.1.10. They mainly differ in terms of the privacy
level they offer, their impact on ML models’ utility, and the computational overhead they
induce. We presented a general overview of PPML methods in each one of these two
families and have shown that none of these PPML methods can outperform all the others

47

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

with respect to every metric. Specifically, in order to improve one of the aspects, it is
necessary to accept a trade-off on the two others.

Figure II.1.10: A classification of PPML methods based on privacy preservation mecha-
nisms that they use.

Indeed cryptographic techniques do not alter the accuracy of ML algorithms. However,
this utility preservation comes at a price in terms of efficiency. In fact, cryptographic
approaches introduce a significant computational/communication overhead and are several
orders of magnitude slower than the original ML algorithms. This overhead varies depending
on the used cryptographic primitive and is exceptionally high for PPML methods that
rely on homomorphic encryption, albeit that these PPML methods employ sophisticated
techniques to absorb this overhead, such as ciphertext packing and interesting combinations
between various cryptographic primitives that aims to take advantage of each primitive’s
features and compensate for their respective weaknesses.

On the other hand, non-cryptographic methods rely on altering the underlying data or
directly the output of the machine learning model using generalization or perturbation
techniques. Accordingly, these methods introduce an explicit trade-off between utility and
privacy but are considerably efficient time and space-wise.

Figure II.1.11 illustrates this tradeoff between privacy, utility and runtime between
cryptography-based and non-cryptographic PPML methods.

Figure II.1.11: Privacy, Utility, and Runtime tradeoff comparison between cryptographic
and non-cryptographic techniques

48

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.1 Background on Privacy Preserving Machine Learning

Finally, cryptography-based approaches provide the strongest and most formal security
guarantees, which are usually proven under a mathematical framework and do not rely
on any heuristic argument as in non-cryptographic techniques. This has interested us in
investigating strategies that enhance the computational efficiency of such PPML methods,
specifically those that rely on homomorphic encryption, which are still perceived as
impractical despite all the significant performance improvements they have witnessed
during the past decade.

49

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

In this chapter, we present the first contribution of this thesis which falls in the category of
cryptography-based privacy preserving machine learning. As shown in earlier parts of this
manuscript, many state-of-the-art works propose cryptography-based solutions to ensure
privacy preservation in distributed machine learning, specifically using homomorphic
encryption. Although these works offer solid, theoretically proven privacy guarantees,
they still suffer from impractical overheads time and space-wise. In this long line of work,
we propose PrivML an outsourced Homomorphic Encryption-based Privacy Preserving
Collaborative Machine Learning framework, that allows optimizing runtime and bandwidth
consumption for widely used ML algorithms, using many techniques such as ciphertext
packing, fast algorithms for large number arithmetic, approximate computations, and
parallel computing. In the following, we present the design choices of PrivML. We first
present the PrivML system and threat model. After that, we present the cryptographic
primitives that were used in PrivML and provide a detailed description of its design
principles. Next, we discuss the optimization strategies considered in PrivML, as well as
a theoretical analysis of the complexity of the building blocks composing it. We finally
conclude with security analysis of PrivML using a simulation-based approach following
the real/ideal world paradigm [121].

II.2.1 System Model and Privacy Requirements

In the following, we describe the global scheme of our outsourced Homomorphic Encryption-
based Privacy Preserving Collaborative Machine Learning framework PrivML, its privacy
requirements, as well as the threat model that it address

II.2.1.1 System Model

The PrivML framework consists of an ML service provider (MLSP) that interacts with
two types of clients: Data Owners (DO) and a set of authorized classification Queriers
(Q) as shown in Figure II.2.1.
We assume that a group of l Data Owners (DOi)l

i=1 with limited computational power that
hold each training data with an identical scheme, would like to use their datasets D1, ..., Dl

to train a global classifier without breaching their individual privacy. Hence, these parties
homomorphically encrypt their training datasets and send them to the ML service provider
MLSP , who builds a global classification model using this data in a privacy preserving

50

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

manner. The obtained classifier is used by the MLSP to classify encrypted data records
sent by queriers Q, without breaching the privacy of neither the received queries nor the
responses corresponding to them. When new data samples are available, or other data
owners join the system, the MLSP can incorporate this new knowledge in the current
model while maintaining the same privacy guarantees. The MLSP is equipped with two
units to leverage the services described above: a Master computation Unit (MU) and a
Secondary computation Unit (SU). The units MU and SU collaborate in a set of privacy
preserving two-party computation protocols (2PC) to perform ML tasks over encrypted
data. We assume the existence of an external trusted authority that it is responsible for
generating the cryptosystem’s global parameters, interacting with the data owners DO

and classification queriers Q in order to generate their respective private and public keys,
which they use to encrypt and decrypt the data they exchange with the service provider
MLSP in a secure manner. It is also responsible for generating the encryption keys used
by the computation units MU and SU during both of the learning and prediction phases.

21

𝑀𝑈

Se
cu
re
	k
ey
	S
w
itc
he

r	(
𝑝𝑘

%
)

𝑀𝐿	𝑆𝑒𝑟𝑣𝑖𝑐𝑒	𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟	(𝑀𝐿𝑆𝑃)

𝐷𝑂4

𝐷4

.......

𝐷𝑂5

𝐷5[𝐷5]	89:

𝐷𝑂;

𝐷;
S𝑈

Se
cu
re
	k
ey
	S
w
itc
he

r	(
𝑝𝑘

%
)

𝑄4

[𝑃𝑄4]	89>?

[𝑅4]	89>?

Decision	
Trees

Logistic	
Regression	

Naive	
Bayes	

.....

Secure	
Entropy

Secure	
Threshold	
Selection

...

Secure	Dot	
Product

Secure	
Sigmoid

...

Secure	
Division	

Secure	
Comparison

...

+

.......

𝑄5

𝑄A

[𝑃𝑄5]	89>:

[𝑅5]	89>:

[𝑃𝑄A]	89>B

[𝑅A]	89>B

[𝐷𝑀C]89D [𝐷𝑀E]89D [𝐷𝑀F]89D

Figure II.2.1: An overview of PrivML’s global architecture

II.2.1.2 Threat Model

In our threat model, we consider that data owners (DOi)l
i=1, classification queriers Q, and

the ML service provider MLSP are semi-honest parties that strictly follow the protocols
implemented in PrivML but are still curious to infer unauthorized information about
private data. We also assume that data owners do not inject any poisonous training data
and that the queriers do carry out black-box model inversion attacks, which we consider
out of the scope of this work. We introduce an active adversary A∗ in our model that aims
to get a hold on data records sent to the ML service provider by a challenged data owner
DO∗ and a classification querier Q∗, as well as classification responses that the MLSP

outputs. This adversary may eavesdrop on all communication channels to obtain this

51

II.2 Design Principles of PrivML

encrypted data. A∗ is also capable of compromising one or more data owners and queriers
except for DO∗ and Q∗. It can also compromise at most one of the computation units
MU or SU but never both simultaneously.

II.2.1.3 Privacy Requirements

In PrivML, we ensure the following privacy preservation guarantees :

1. Data owners (DOi)l
i=1 cannot learn each other’s individual training data.

2. The ML service provider (MLSP) does not learn the exact content of each data
owner’s training data.

3. The MLSP does not have access to the plaintext parameters of the learned classifi-
cation model.

4. The MLSP does not get hold of the exact content of the records sent to him by
queriers, nor to the classification results corresponding to them.

5. Classification queriers (Q) do not have access to the classification model held by the
service provider.

II.2.2 Cryptographic Primitives Underlying PrivML

We recall the cryptographic techniques underlying PrivML, namely, threshold additive
homomorphic encryption and cryptographic blinding.

II.2.2.1 The DT-PKC cryptosystem

In order to entirely outsource the computations required to learn and make use of ML
models in PrivML to an untrusted machine learning service provider (MLSP), we rely
on the Distributed Two-Trapdoor Public-Key Cryptosystem (DT-PKC) that was initially
proposed by Liu et al. in [82]. The aim of this work was to build a toolkit to run standard
operations like multiplication, division, and comparison over data that is encrypted under
multiple keys. The DT-PKC cryptosystem has two main properties: the first one is that it
is additively homomorphic, which is reflected by Formulas II.2.1a and II.2.1b below, and
the second particularity is that it has a distributed double trapdoor decryption mechanism.
The idea of double trapdoor decryption was initially proposed by Bresson et al. in [51],
where a master key MK can be used to decrypt any cipher that was encrypted under any
public key pk generated using the same global parameters as the key MK. In DT-PKC, a
similar master key exists but is distributed between two non-colluding parties into two
partial strong keys SK1 and SK2. In this case, the decryption of a cipher encrypted using

52

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

a public key pk, is done in two steps :
PSdec1([x]pk, SK1) = CT , PSdec2([x]pk, CT, SK2) = x.

The DT-PKC cryptosystem has the following primitives : Enc(m, pk) = [m]pk to encrypt
a message m, Dec([m]pk, sk) to decrypt a cipher [m]pk using the corresponding secret key,
PSdec1([x]pk, SK1), to partially decrypt a cipher by the first party using the first partial
strong key SK1, PSdec2([x]pk, PSDec1([x]pk, SK1), SK2), to entirely decrypt a partial
cipher by the second party using SK2.

II.2.2.2 Cryptographic blinding

As an additively homomorphic cryptosystem, given a plaintext domain ZN , DT-PKC
supports the two following properties:

[x]pk.[y]pk = [x + y]pk (II.2.1a)

[x]ypk = [y.x]pk, y ∈ ZN (II.2.1b)

These two properties can be used to cryptographically blind operands in a two-party
computation protocol (2PC). Assuming that two non-colluding but untrusted parties P1

and P2 hold each the cryptosystem’s partial strong keys : SK1 and SK2 and that these
two parties want to compute a function f : ZN

k → ZN given by (x1, ..., xk) 7→ f(x1, ..., xk),
where k ∈ N , without knowing neither the inputs (x1, ..., xk), nor the output f(x1, ..., xk).
Given a public key pk generated under the same global parameters as SK1 and SK2, the
first party receives the encrypted inputs under the same key pk ([x1]pk, ..., [xk]pk), then
generates a random value r = (ri)k

i=1 ∈ Zk
N and uses it to blind the inputs additively using

Formula II.2.1a, or multiplicatively using II.2.1b to obtain :
([B(x1, r1)]pk = b1, ..., [B(xk, rk)]pk = bk), where

B : ZN

2 → ZN

(x, α) 7→

x + α

α.x

(II.2.2)

After that, this party uses its key SK1 to partially decrypt the blinded inputs (b1, , ..., bk)
and sends them to the second party. P2 uses its part of the strong decryption key SK2

to entirely decrypt the blinded input via the primitive PSdec2, then applies f over these
values to get : f(B(x1, r), ..., B(xk, r)).
The second party will not be able to access the exact content of (x1, ..., xk), nor f(x1, ..., xk),
since only P1 knows r. She then re-encrypts this result under pk and sends it back to P1.
Assuming that function f has the analytical properties that allow isolating the actual

53

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

input from the blinding value r given a formula of the form :

f(B(x1, r1), ..., B(xk, rk)) =

f(x1, ..., xk) + g(r, x1, .., xk)

f(x1, ..., xk).g(r, x1, .., xk)
(II.2.3)

given g : ZN
2k → ZN , P1 tries to extract g(r, x1, .., xk) by relying Formulas II.2.1a and

II.2.1b.

II.2.3 Design Principles of PrivML

II.2.3.1 Overview of PrivML

In PrivML, we use the DT-PKC cryptosystem presented in Section II.2.2, to enable
data owners to entirely outsource a machine learning task to the ML service provider
MLSP , without requiring them to participate in the heavy computations implied by
this task. In order to train a classifier over their joint data, Data Owners (DOi)l

i=1

dynamically outsource their encrypted data to the ML Service Provider (MLSP) in
PrivML. Considering that mutually untrusted Data Owners must not learn each other’s
training data, each one of them encrypts his data using a unique public key (pki)l

i=1.
In order to use the blinding properties described in Section II.2.2.2, training data and
data model parameters are encrypted under the same key. Thus, we use the Secure Key
Switching building block described in Protocol 3 to convert all the encrypted training
data and prediction queries to a global key pkw described in (II.2.4), where β ∈ [1, N/4] is
an integer randomly generated by the key management infrastructure KMI, while g and
N are public parameters of the DT-PKC cryptosystem. (Si)6

i=1 are intermediate values
computed in each step of this protocol before obtaining its final output. More details
about the generation of encryption keys in DT-PKC can be found in [82].

pkw = gβ.
∏l

i=1 pki

skw = β + ∑l
i=1 ski

(II.2.4)

The global encryption key pkw is communicated to PrivML ’s Master computation Unit
MU . Not knowing the secret keys held by data owners, this unit cannot construct the
global secret key skw and, therefore, does not gain access to data encrypted under pkw.
Training data sent by Data Owners are continuously collected via the Secure Key Switching
protocol by the MLSP . Periodically (after some time ∆t), the MLSP launches a model
update process on the newly received training data if a model [DMk−1]pkw , k > 1 has
been already trained for the considered data scheme. If it is not the case, it is initialized
using this data.
At any time, the MLSP can also receive encrypted data records [PQ]pk′

j
sent by a

prediction Querier Qj that wants to get the class-label prediction of this record according

54

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

to the current classification model. The MLSP first changes the encryption key of the
query into the global key pkw, uses the learned data model to get the output [R]pkw in a
privacy preserving manner, then converts it into the Querier’s encryption key pk′

j, before
sending this response to the Querier.

In the rest of this section, we present a set of building blocks that rely on the 2PC scheme
described in Section II.2.2.2. At the basis of these constructions, we design protocols
that ensure privacy during both the learning and prediction phases of three classification
algorithms, namely Decision Trees, Naive Bayes, and Logistic Regression. The security
proofs of these protocols are presented in Section II.2.5.

Protocol 3 Secure Key Switcher
Inputs : [x]pka

, pkb

Output : [x]pkb

At MU DO:
1: Generate a random number r ∈ ZN

2: S1 ← [x]pka
.[r]pka

= [x + r]pka

3: S2 ← PSdec1(S1, SK1)
4: Send S1 and S2 to SU

At SU DO:
5: S3 ← PSdec2(S1, S2, SK2) = x + r
6: S4 ← Enc(S3, pkb) = [x + r]pkb

7: Send S4 to MU
At MU DO:

8: S5 ← [r]pkb

N−1 = [−r]pkb

9: S6 ← S5.S4 = [x + r − r]pkb
= [x]pkb

10: Return S6

II.2.3.2 Privacy Preserving Very Fast Decision Trees

Decision trees consist of a tree-like classification model that is constructed via recursive
partitioning of a training dataset into increasingly smaller and more homogeneous subsets
of data in terms of target class label. This classifier contains a set of internal nodes, each
of which is associated with a test on a given attribute. Each branch incoming from a
given node represents the outcome of its classification test. The leaf nodes of the tree
correspond to different class labels that are frequently observed there. The selection of test
attributes is made based on a specific splitting criterion G(x), where the selected attribute
maximizes the homogeneity of leaves that would result if the splitting is done according
to this attribute. A Hoeffding tree is a particular type of decision trees that supports
online learning. The Very Fast Decision Trees (VFDT) algorithm was proposed in [122] for
incrementally training a decision tree in an efficient manner. In this algorithm, a decision
tree is gradually updated when new incoming training data is observed. Assuming that
the probability distribution of this data does not change over time, the learned tree would
be nearly identical to the one that would be constructed if the same training data has
been used to train a standard decision tree in batch mode. This is ensured through the

55

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

Hoeffding bound H. This bound guarantees, with a high probability of θ = 1− δ, that a
separation attribute A, selected following the observation of a small number n of training
samples at a given node, will still be valid even if a larger number of samples is received,
if and only if the difference in terms of the splitting criterion G between this attribute
and the second-best attribute B at this level verify equation (II.2.5), where K is the total
number of class-labels in the training dataset.

∆G = G(A)−G(B) > H =
√

log(K)2.
ln(1/δ)

2n
(II.2.5)

The privacy preserving Very Fast Decision Trees (Priv-VFDT) protocol proposed in PrivML
allows the ML service provider MLSP to train, dynamically update, and use a decision
tree with respect to the privacy requirements defined in Section II.2.1.3. In this protocol,
MLSP entirely runs the computations required during both the learning and prediction
phases, without having to access neither the content of training data, classification queries,
and responses nor the parameters of the learned model. These parameters consist of test
attributes, record occurrence statistics, and class labels associated with the decision tree
leaves. This protocol results from the composition of the following building blocks in
both of the prediction and learning phases : (1) Secure Comparison, (2) Secure Division,
(3) Secure Multiplication, (4) Secure Information Gain computation, (5) Secure Threshold
Selection, and (6) Secure Hoeffding bound evaluation.

Secure Information Gain Computation

In order to decide whether to split a given leaf L or not after observing a subset S of
records in this leaf, and to select the best splitting criterion in case it needs to be split, we
use the information gain criterion described in the set of equations (II.2.6). This metric
measures the change in information entropy E for the leaf to be split from a prior state
to the state where a given classification test T is applied. K is the number of possible
classes, |Ck| is the number of records that have the class label Ck in S, p is the number of
leaves resulting from the split if the test T is applied (for example, in our case p = 2), and
(Sj)p

j=1 are the partitions of records resulting from splitting S into new leaves according to
the test T .

G(S, T) = E(S)− E(S|T),

E(S) = −∑K
k=1(

|Ck|
|S|).log2(|Ck|

|S|)

E(S|T) = ∑p
j=1

|Sj |
|S| .E(Sj)

(II.2.6)

To compute information gain over encrypted data, we use the building block described in
Protocol 4 to evaluate the entropy E of a given leaf, relying on equation (II.2.7). We also

56

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

use an adaptation of the Secure Division building block proposed [82] given in Protocol 8.

E(S) = log2(|S|)−
1
|S|

.
K∑

k=1
|Ck|.log2(|Ck|) (II.2.7)

Protocol 4 Secure Entropy
Input: ([|Ck|]pkw

)K
k=1, [|S|]pkw

Output: [E(S)]pkw

At MU DO:
1: Generate two random numbers R1 and R2 ∈ ZN

2: S1 ← ([|S|]pkw
)R1 = [R1.|S|]pkw

3: S2 ← (S1)R2 = [R1.R2.|S|]pkw

4: S3k ← ([|Ck|]pkw)R1 = [R1.|Ck|]pkw , k ∈ 1..K
5: S4 ← PSdec1(S1, SK1), S5 ← PSdec1(S2, SK1),
6: S6k ← PSdec2(S3k, SK1), k ∈ 1..K
7: Send (S1, S2, S3k, S4, S5, S6k), k ∈ 1..K to SU

At SU DO:
8: S7 ← PSdec2(S1, S4, SK2) = R1.S
9: S8 ← PSdec2(S2, S5, SK2) = R1.R2.S

10: S9k ← PSdec2(S3k, S6k, SK2) = R1.|Ck|, k ∈ 1..K

11: S10 ← Enc(log2(S8)− 1
S7

∑K
k=1 S9k.log2(S9k), pkw)

= [log2(S) + log2(R2)− 1
S .

∑K
k=1(|Ck|.log2(|Ck|)]pkw

12: Send S10 to MU
At MU DO:

13: S11 ← [log2(R2)]pkw

N−1 = [−log2(R2)]pkb

14: S12 ← S10.S11 = [log2(S) + log2(R2)− log2(R2)− 1
S .

∑K
k=1(|Ck|.log2(|Ck|)]pkw

= E(S)
15: Return S12

Secure Threshold Selection

In the privacy preserving Very Fast Decision Trees (Priv-VFDT) protocol, we use classi-
fication tests of the form Ai < Th, i ∈ 1..p, where Ai is one of the data attributes and
p is their total number. To select the best splitting test at a given leaf L, we compute
the information gain corresponding to every attribute of the dataset using α different
potential splitting thresholds G(S, Ai < Thij), i ∈ 1..p, j ∈ 1..α, where S is the set of
training records observed at L at splitting time.
We use the Gaussian approximation method proposed in [123] to generate these splitting
points candidates with little overhead dynamically. This method only requires that the
mean and standard deviation of each attribute to be known at the leaf node L subject to
splitting. We incrementally update these statistics as new data samples are being observed
by computing the sum of values and squares of values of that attribute for each newly
observed record. After that, when splitting is to be done, the mean and standard deviation
are computed using these running sums.
The splitting thresholds candidates Thij are given by: Thij = µi + σi.Φ−1(j

α+1), where Φ−1

is the inverse of the cumulative distribution function of the standard Gaussian, and µi and

57

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

σi are the mean and standard deviation of an attribute Ai at L. Our privacy preserving
implementation of the Gaussian threshold selection method is shown in Protocol 5. It
relies on the secure division and multiplication building-blocks inspired from [124] and
adapted to operands encrypted under the same key. For a given attribute Ai, the sum
of this attribute’s values aij, j ∈ 1..|S| and the sum of their squares are incrementally
updated in a privacy preserving manner. PrivML ’s secure division and multiplication
building blocks are presented in Protocols 8, and 9 respectively.

Protocol 5 Secure Threshold Selection
Inputs: A = [

∑|S|
j=1 aij]pkw

, B = [
∑|S|

j=1 a2
ij]pkw

, j, [|S|]pkw
, λ

Output: Thij

At MU DO:
1: Generate a random numbers R ∈ ZN

2: S1 ← AR = [R.
∑|S|

j=1 aij]pkw

3: S2 ← BR2 = [R2.
∑|S|

j=1 a2
ij]pkw

4: S3 ← ([|S|]pkw
)
√

R = [
√

R.|S|]pkw

5: S4 ← PSdec1(S2, SK1), S5 ← PSdec1(S3, SK1),
6: S6 ← PSdec1(S4, SK1)
7: Send S1, S2, S3, S4, S5,and S6 to SU

At SU DO:
8: S7 ← PSdec2(S1, S4, SK2) = R.A
9: S8 ← PSdec2(S2, S5, SK2) = R2.B

10: S9 ← PSdec2(S3, S6, SK2) =
√

R.|S|
11: S10 ← Φ−1(j

α+1)

12: S11 ← Enc(S10.
√

S8−S2
7

S9
, pkw) = [R 3

4 .σ.Φ−1(j
α+1)]pkw

13: S12 ← Enc(S7
S9

, pkw) = [
√

R.µ]pkw

14: Send S11, S12 to MU
At MU DO:

15: S13 ← [R 3
4]pkw , S14 ← [

√
R]pkw

16: S15 ← SecureDivision(S11, S13, λ)
17: S16 ← SecureDivision(S12, S14, λ), S17 ← S15.S16 = [Thij]pkw

18: Return S11

Secure Hoeffding Bound Computation

Given δ ∈ [0, 1], the parameter that determines the similarity between batch decision
tree and incremental Hoeffding trees learning, and K the number of classes in a training
dataset, two publicly known parameters, we use Protocol 6 to evaluate the Hoeffding
bound in a privacy preserving manner at a given leaf L subject to splitting. S represents
the set of training records observed at L.

Secure Comparison

In order to achieve secure comparison over encrypted operands, we use an adaptation of the
building block proposed in [125]. Secure comparison is required during both the learning
and prediction phases in the Priv-VFDT protocol, where the comparison operation OP

58

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

Protocol 6 Secure Hoeffding Bound Computation
Inputs: log(K)2, ln(1/δ), [|S|]pkw

,λ
Output: [H]pkw = [

√
log(K)2. ln(1/δ)

2.|S|]pkw

At MU DO:
1: Generate two random number R1 and r ∈ ZN

2: S1 ← log(K)2.ln(1/δ).r.R1, S2 ← ([|S|]pkw)2.R1

3: S3 ← PSdec1(S2, SK1)
4: Send S1, S2 and S3 to SU

At SU DO:
5: S4 ← PSdec2(S2, S3, SK2) = 2.|S|.R1

6: S5 ← Enc(
√

S1
S4

, pkw) = [
√

r.H]pkw

7: Send S5 to MU
At MU DO:

8: S6 ← [
√

r]pkw

9: S7 ← SecureDivision(S5, S6, λ)
10: Return S7

can be set either to the parameter "is greater than" (>) or "Equal to" (=). In this protocol,
the computation units only learn the final result of the comparison without revealing the
exact values of the operands. The detailed description of this building block in Protocol 7

Protocol 7 Secure Comparison
Input : [A]pkw

, [B]pkw
, OP ∈ {” > ”, ” = ”}

Output : [A > B]pkw
if OP = ” > ” else [A = B]pkw

At MU DO:
1: Generate two random numbers R1 and R2 ∈ ZN

2: S1 ← ([A]pkw
)R1 .[R2]pkw

= [R1.A + R2]pkw

3: S2 ← ([B]pkw
)R1 .[R2]pkw

= [R1.B + R2]pkw

4: S3 ← PSdec1(S1, SK1)
5: S4 ← PSdec1(S2, SK1)
6: Send S1, S2, S3 and S4 to SU

At SU DO:
7: S5 ← PSdec2(S1, S3, SK2) = R1.A + R2
8: S6 ← PSdec2(S2, S4, SK2) = R1.B + R2
9: if (OP = ” > ”) S7 ← Enc(S5 > S6) =

[R1.A + R2 > R1.B.R2]pkw else
S7 ← Enc(S5 = S6) = [R1.A + R2 = R1.B.R2]pkw

10: Send S7 to MU
At MU DO:

11: Return S7

Secure Division and Multiplication

In the following we give the detailed description of the Secure Division and Secure
Multiplication protocols. These protocols are very similar to the ones proposed in [82]
with proper adjustments to our setting, considering that all computations in PrivML are
done over values encrypted under a single global key pkw.

59

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

Protocol 8 Secure Division
Input : [A]pkw

, [B]pkw
, λ

Output : [10λ.⌊A
B ⌋]pkw

At MU DO:
1: Generate two random number R1 and R2 ∈ ZN

2: S1 ← ([A]pkw
)R1 .([B]pkw

)R1.R2 = [R1.A + R1.R2.B]pkw

3: S2 ← ([B]pkw
)R1 = [R1.B]pkw

4: S3 ← PSdec1(S1, SK1)
5: S4 ← PSdec1(S2, SK1)
6: Send S1, S2, S3 and S4 to SU

At SU DO:
7: S5 ← PSdec2(S1, S3, SK2) = R1.A + R1.R2.B
8: S6 ← PSdec2(S2, S4, SK2) = R1.B
9: S7 ← Enc(10λ.⌊S5

S6
⌋, pkw) = [10λ.(⌊A

B ⌋+ R2)]pkw

10: Send S7 to MU
At MU DO:

11: S8 ← ([10λ.R2]pkw
)N−1 = [−10λ.R2]pkw

12: S9 ← S7.S8 = [10λ.⌊A
B ⌋]pkw

13: Return S9

Protocol 9 Secure Multiplication
Input : [A]pkw , [B]pkw

Output : [A.B]pkw

At MU DO:
1: Generate two random numbers R1 and R2 ∈ ZN

2: S1 ← [A]pkw
.[R1]pkw

= [A + R1]pkw

3: S2 ← [B]pkw
.[R2]pkw

= [B + R2]pkw

4: S3 ← PSdec1(S1, SK1)
5: S4 ← PSdec1(S2, SK1)
6: Send S1, S2, S3 and S4 to SU

At SU DO:
7: S5 ← PSdec2(S1, S3, SK2) = A + R1
8: S6 ← PSdec2(S2, S4, SK2) = B + R2
9: S7 ← Enc(S5.S6) = [A.B + R1.R2 + R2.A + R1.B]pkw

10: Send S7 to MU
At MU DO:

11: S8 ← ([R1.R2]pkw
.([A]pkw

)R2 .([B]pkw
)R1)N−1 = [−R1.R2 −R2.A−R1.B]pkw

12: S9 ← S7.S8 = [A.B]pkw

13: Return S9

II.2.3.3 Privacy Preserving Naive Bayes

Naive Bayes is a simple yet highly effective classification algorithm. It is used to predict
the most probable class label C of a given record (x1, .., xn) by applying Bayes’s theorem,
assuming that every pair of features being classified are independent from each other, as
shown in equation (II.2.8).

c = argmaxcj
(P (cj|x1, .., xn)) ∼

c = argmaxcj
(P (cj)

∏
P (ai|cj))

(II.2.8)

The prior probabilities P (cj), and conditional probabilities P (ai|cj) are estimated from the
training set, typically by computing their respective frequencies. The classification model
consists of the conditional and prior class probabilities that are computed from training

60

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

data. Equations (II.2.9) and (II.2.10) show how these probabilities can be updated when a
set of training samples S = (xk1, xk2, ..., xkn, ck)|S|

k=1 is available, where θ is the number of
training records that had been seen before the update, ncj

is the number of occurrence of
the class label cj in the previously seen data, |S(c=cj)| is the number of records in S that
have the class label cj, |S((c=cj)∧(ai=v))| is the number of records that have both a class
label cj and the value v of the attribute ai, and |V (ai)| is the number of possible values of
this attribute.
For simplicity, we only consider the case of categorical attributes.

P (c = cj) =
θ.P (cj) + |S(c=cj)|

θ + |S| (II.2.9)

P (ai = v|c = cj) =

α.P (ai=v|cj)+|S((c=cj)∧(ai=v))|
α+|S(c=cj)|

α = ncj
+ |V (ai)|

(II.2.10)

In PrivML ’s Privacy preserving Naive-Bayes protocol (Priv-NB), we rely on the (1) Secure
Comparison, (2) Secure Division, (3) and Secure Logarithm building blocks.
To update and initialize prior class probabilities P (cj), as well as conditional probabilities
P (ai|cj) required in this classifier, we rely on a straightforward combination of the Secure
Comparison and Secure Logarithm building blocks. Using equations (II.2.9) and (II.2.10)
to update these probabilities implies doing one multiplication and one division for each
update. Considering that these operations are very costly when done over encrypted data,
we keep track of the running sums of occurrences required to compute these probabilities
and simply do a single division for each update as shown in equations (II.2.11) and (II.2.12),
where ncj

is the number of data samples seen before the update and that have the class
label cj and n((c=cj)∧(ai=v)) is the number of records having both a class label cj and the
value v for the attribute ai.

P (c = cj) =
ncj

+ |S(c=cj)|
θ + |S| (II.2.11)

P (ai = v|c = cj) =

n((c=cj)∧(ai=v))+|S((c=cj)∧(ai=v))|
α+|S(c=cj)|

α = ncj
+ |V (ai)|

(II.2.12)

The Secure Logarithm and the Secure Probabilities Update protocols are presented in
Protocols 10 and 11 respectively. The Secure Probabilities Update protocol takes as inputs
two parameters A and B that are set to the nominator and denominator values of the
update equations (II.2.11) and (II.2.12) according to the type of the probability to be
updated (prior or conditional probability). This protocol outputs both of the updated
probability P = A

B
and the symmetric value of its logarithm log(1

P
) = −log(P).

Moreover, to predict the class label of a given data record (x1, .., xn), we transform the

61

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

classification problem to a minimization problem of the sums of the logarithmic values of
these probabilities given in equation (II.2.13).

c = argmincj

∑
−log(P (cj|x1, .., xn)) ∼

c = argmincj
(−log(P (cj))−

∑
log(P (ai|cj)))

(II.2.13)

Protocol 10 Secure Logarithm
Input : [A]pkw

Output : [log(A)]pkw

At P1 DO:
1: Generate a random numbers R ∈ ZN

2: S1 ← ([A]pkw
)R = [R.A]pkw

3: S2 ← PSdec1(S1, SK1)
4: Send S1 and S2 to P2

At P2 DO:
5: S3 ← PSdec2(S1, S2, SK2) = R.A
6: S4 ← Enc(log(S3)) = [log(R.A) = log(R) + log(A)]pkw

7: Send S4 to P1
At P1 DO:

8: S5 ← ([log(R)]pkw)N−1 = [−log(R)]pkw

9: S6 ← S4.S5 = [log(A)]pkw

10: Return S6

Protocol 11 Secure Probabilities Update
Inputs: [A]pkw

, [B]pkw
, λ

Outputs: [P]pkw = [⌊A
B ⌋]pkw , [−log(P)]pkw

At MU DO:
1: S1 ← SecureDivision(A, B, λ) = [P]pkw

2: S2 ← SecureLogarithm(S1, λ) = [log(P)]pkw

3: S3 ← SN−1
2 = [−log(P)]pkw

4: Return S1, S3

II.2.3.4 Privacy Preserving Logistic Regression

Logistic Regression is a statistical method that allows predicting a dependent data variable
y by analyzing the relationship between a set of independent variables (x1, .., xn). This ML
method is used to solve binary classification problems by estimating the probability of a
default class C1 using a Sigmoid function as shown in equation (II.2.14). β is a coefficient
vector learned from historical training data.

P (Y = 1|X) = σ(βT .X) = 1
1 + e−βT .X

(II.2.14a)

P (Y = −1|X) = σ(−βT .X) = 1
1 + eβT .X

(II.2.14b)

A way to dynamically estimate the logistic model’s coefficients is to apply mini-batch
stochastic gradient descent (SGD) [126], which is used to incrementally minimize the loss

62

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

function ∑
i log(1 + e−yβ.Xi).

At the observation of a mini-batch set of training data XB, the update of the coefficients
vector using SGD is given in equation II.2.15, where α is the learning rate parameter that
controls the convergence speed towards the loss function’s minimum and YB is the vector
of class-labels corresponding to the training data records present in XB.

β ← β − 1
|XB|

α.XT
B .(σ(XB.βT)− YB) (II.2.15)

PrivML ’s Privacy preserving Logistic Regression protocol (Priv-LR) relies on two main
building blocks: (1) Secure Sigmoid, and (2) Secure Dot Product. We use the latter to
implement privacy preserving matrix multiplication, which is required for the gradient
descent update during the learning phase of this classifier.

Secure Sigmoid Evaluation

This building-block described in Protocol 12 allows evaluating the Sigmoid function over
[x]pkw , to predict the class label of an encrypted record. Since we can only manipulate
integers in the DTPKC cryptosystem, the output returned by this building block is an ap-
proximation of the form ⌊10λ.σ(u)⌋, where λ stands for the building block’s precision. Note
that we approximate the sigmoid function with a third-degree polynomial interpolation,
that is simpler to implement and less time-consuming.

Protocol 12 Secure Sigmoid
Inputs: [x]pkw

, λ
Output: ⌊10λ.(0.5 + 1.20096 · (x/8)− 0.81562 · (x/8)3)⌋
At P1 DO:

1: S1 ← [x]10λ∗0.15012
pkw

.[10λ ∗ 0.5]pkw
= [10λ ∗ (0.5 + 1.20096 · (x/8))]pkw

2: Generate a random number R ∈ ZN

3: S2 ← [x]Rpkw
= [R.x]pkw

4: S3 ← PSdec1(S2, SK1)
5: Send S3 and S2 to P2

At P2 DO:
6: S4 ← PSdec2(S2, S3, SK2) = R.x
7: S5 ← Enc(S3

4) = [R3.x3]pkw

8: Send S5 to P1
At P1 DO:

9: S6 ← SecureDivision(S5, [R3]pkw
, λ)

10: S7 ← S−0,0015∗10λ

6 .S1
11: Return S7

Secure Dot Product Computation

The building block presented in Protocol 13 is used to compute the dot product of two
vectors A and B encrypted under the same encryption key pkw.

63

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

Protocol 13 Secure Dot Product Computation
Inputs: [A = (ak)n

k=1]pkw , [B = (bk)n
k=1]pkw , λ Output: A.B

At MU DO:
1: Generate two random numbers R1 and R2 ∈ ZN

2: S1k ← [ak]N−R1
pkw

, S2k ← [bk]N−R2
pkw

, k ∈ 1..n
3: S3k ← PSdec1(S1k, SK1), S4k ← PSdec1(S2k, SK1), k ∈ 1..n
4: Send S1k, S2k, S3k and S4k to SU

At SU DO:
5: S5k ← PSdec2(S1k, S2k, SK2) = R1.ak, k ∈ 1..n
6: S6k ← PSdec2(S3k, S4k, SK2) = R2.bk, k ∈ 1..n
7: S7 ← Enc(

∑n
k=1 S5k.S6k) = [R1.R2.

∑n
k=1 ak.bk]pkw

8: Send S7 to MU
At MU DO:

9: Return S8 ← SecureDivision(S7, [R1.R2]pkw
, λ)

II.2.4 Proposed Optimization Techniques

The primary purpose of PrivML is to define a methodology for designing end-to-end privacy
preserving classification services with practical training and prediction time performance
without deteriorating the trained classifiers’ utility. To make these design objectives
feasible, we rely on the optimization strategies described below:

II.2.4.1 Round Complexity Minimization

A fundamental measure of efficiency in secure Multi-Party Computation protocols is
round complexity. Reducing the number of communication rounds between the protocol
participants (PrivML’s units MU and SU) allows minimizing the effect of network latency
and bandwidth, which improves the overall time complexity of the protocol. Therefore, to
optimize the performance of the classifiers implemented in PrivML, we design building
blocks with minimal round complexity instead of the straightforward combination of multi-
ple low-granularity ones as proposed for the DT-PKC cryptosystem [82]. In the following,
we consider the same assumptions as in [82] to evaluate the computational complexity
of the secure elementary building blocks, where they estimate that an exponentiation
operation with an exponent of size ||N || requires 1.5||N || multiplications. Consequently,
the cost of an encryption operation in DT-PKC is in the order of 1.5||N ||, while partial
decryption primitive PSdec1 and PSdec2 both have the same cost of 4.5||N ||. They also
neglect the cost of a fixed number of additions and multiplications [82]. Considering
the computational costs and round complexity of the elementary operations presented
in Table II.2.1, we provide in Table II.2.2 a theoretical comparison between the cost of
PrivML’s optimized secure building blocks and the sequential composition of the elementary
secure building blocks. Note that the privacy preserving implementation of elementary
operations of exponentiation and square root computation used in this analysis are given
at the end of this section in Protocols 15, and 14 respectively. In the case of entropy
computation, the Protocol 4 used in PrivML is better than the sequential composition of
the secure multiplication, division, and logarithm building blocks for a number of classes

64

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

K > 1, which is always the case in classification problems. The Secure Threshold Selection
building block presented in Protocol 5 is better than a sequential elementary-building
blocks composition in the case of a number of attributes p > 5 of the training dataset.

Protocol 14 Secure Square Root
Input : [A]pkw

Output : [
√

A]pkw

At P1 DO:
1: Generate a random numbers R ∈ ZN

2: S1 ← ([A]pkw
)R = [R.A]pkw

3: S2 ← PSdec1(S1, SK1)
4: Send S1 and S2 to P2

At P2 DO:
5: S3 ← PSdec2(S1, S2, SK2) = R.A
6: S4 ← Enc(

√
S3) = [

√
R.
√

A]pkw

7: Send S4 to P1
At P1 DO:

8: S5 ← [
√

R]pkw

9: S6 ← SecureDivision(S4, S5)
10: Return S6

Protocol 15 Secure Exponentiation
Input : [A]pkw

Output : [eA]pkw

At MU DO:
1: Generate a random numbers R ∈ ZN

2: S1 ← [A]pkw .[R]pkw = [A + R]pkw

3: S2 ← PSdec1(S1, SK1)
4: Send S1 and S2 to SU

At SU DO:
5: S3 ← PSdec2(S1, S2, SK2) = R.A
6: S4 ← Enc(eS3) = [eR.eA]pkw

7: Send S4 to MU
At MU DO:

8: S5 ← [eR]pkw

9: S6 ← SecureDivision(S4, S5)
10: Return S6

Building block Computational cost (#multiplications) Round complexity
Multiplication 33||N || 2

Division 28.5||N || 2
Subtraction 1.5||N || 0
Comparison 33||N || 2
Logarithm 18||N || 2
Square root 45||N || 2

Exponentiation function 46.5||N || 2

Table II.2.1: Computational cost and round complexity of elementary secure building
blocks

65

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

Operation

Cost of elementary
composition of secure

building blocks

Cost of PrivML’s
optimized secure
building blocks

Computational cost
(#multiplications)

Round
complexity

Computational cost
(#multiplications)

Round
complexity

Entropy
computation (78.5K − 31.5)||N || 6K − 2 (10.5K + 28.5)||N || 2

Threshold
Selection 168||N || 8 100.5||N || 10

Hoeffding
Bound

computation
108||N || 6 45||N || 4

Naive
Bayes

Probabilities
update

63 4 63 4

Sigmoid
function

computation
76.5 4 48 4

Dot
product

computation
33(p− 1)||N || 2(p− 1) (21p + 31.5)||N || 4

Table II.2.2: Cost of PrivML’s secure building blocks vs. sequential composition of elemen-
tary building blocks

II.2.4.2 Logarithmic Probabilities for Naive Bayes

In Naive Bayes classifier, in order to predict the class label of a given data record using
equation (II.2.8), Kp and K − 1 comparisons are required, where K is the number of class
values and p is the number of data attributes. This results in a computational cost of
33(Kp + K − 1)||N || and a round complexity of 2Kp + 2K − 2 rounds. To reduce these
costs, we use logarithmic probabilities in the prediction phase of this classifier as discussed
in Section II.2.3.3 by applying equation (II.2.13). This reduces the computational cost to
33(K − 1)||N || with a round complexity of 2K − 2 rounds, considering that the cost of
a homomorphic addition is insignificant compared to the Secure Multiplication building
block.

II.2.4.3 Random Large Numbers and Powers Pre-computation

Random large numbers are used in PrivML for generating the noise part of ciphertext
or for cryptographic blinding operations. Similar to Beaver Multiplication Triples pre-
computation for secret sharing [97], the idea is to carry offline pre-computation that are not
data-specific to absorb the computational overhead without influencing the security/privacy
guarantees of the system. In the case of the encryption primitive, in DT-PKC to encrypt

66

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

a plaintext value m under a public key pki a random sufficiently big number r ∈ [1, N/4]
is generated and the ciphertext can be obtained as [m]pki

= {Ti,1, Ti,2}, where Ti,1 =
grθi(1 + mN)modN2; Ti,2 = grmodN2. We have noticed that the computation of the
random number r and its corresponding random power gr 1 are the most time consuming
during encryption and in the same time are not dependant on online operands. This makes
it possible to pre-compute such values. Nonetheless, this strategy needs to be applied
carefully since the semantic security of the cryptographic primitives underlying PrivML
depends considerably on the randomness of such values. The idea is to pre-compute many
random powers of gr and use them to produce new random powers. This works because
any product of random powers of gr1gr2 will produce a new random power gr1+r2 . So
instead of carrying exponentiation during the online phase of our protocols, we transform it
to multiplications of randomly pre-computed powers, which is significantly less consuming.
Obviously, there is a trade-off between the storage of pre-computed powers and their
“randomness.” In order to evaluate the randomness of these values, we follow the guidelines
provided in [127] to optimize the efficiency of the Paillier cryptosystem. These guidelines
ensure that these pre-computations do not influence the security of the choice of r that
needs to be hard to guess by an attacker. To do that, the authors defined the number of
pre-computed powers required to obtain a certain security level. For instance, in most
of our experiments, we want to ensure an 80-bit security level; therefore, we consider
pre-computing a table of 220 random powers and multiplying 5 of them together. The
same idea is used for blinding values employed in PrivML’s building blocks.

II.2.4.4 Optimized Large Number Arithmetic

The high computational cost associated with cryptography-based PPML methods is closely
dependant on the efficiency of the algorithms used to carry large numbers arithmetic.
Considering that large number multiplication (which is also at the base of these numbers’
exponentiation) is a frequently used operation in the cryptographic primitives underlying
PrivML, we wisely choose the Schönhage and Strassen FFT fast multiplication algorithm
that relies on Fourier transforms, which is one of the best-known algorithms for multiplying
large integers [128]. We use a low-level assembly-based sub-routine provided in the GMP
library [129] for optimal performance.

II.2.4.5 Parallel Computing

PrivML uses parallel computing to reduce the computational overhead and improve our
protocols’ scalability when the dataset size grows. In the case of PrivML’s Very Fast
Decision Tree protocol, when trying to split a given leaf L, we compute information
gain simultaneously for different attributes (Ai)p

i=1 and for different splitting threshold

1g is a global parameter of DT-PKC corresponding to a generator of order 1
2 (p− 1)(q − 1)

67

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

(Thij)α
j=1, since there is no computational dependency between them. The selection of

possible thresholds is also made in parallel for multiple splitting attribute candidates.
Similarly, we perform a simultaneous update of occurrence statistics of attribute values

and class labels when receiving new training records, in both of PrivML’s Very Fast
Decision Tree protocol and Naive Bayes protocols. We do the same when updating the
conditional and prior probabilities in the Naive Bayes classifier.

II.2.4.6 Incremental Model Learning

Continuous model adaptation based on dynamic data arrival is a prevalent scenario in
nowadays online ML services. However, most of the existing privacy preserving machine
learning methods restrict to the classical batch learning setting. This can be very dis-
advantageous, considering the overhead that comes with existing cryptographic privacy
preserving techniques. In PrivML, we implement privacy preserving online classifier learn-
ing algorithms, which allows updating private data models when new data owners join the
collaborative learning process or when new training data is available, without having to
re-parse all the data handled so far and start the training from scratch.

II.2.5 Security Analysis

In this section, we provide simulation-based security proofs [121] of the privacy preserving
classification protocols proposed in PrivML according to the threat model and privacy
requirements described in Section II.2.1. The security of these protocols mainly relies on
the semantic security of the DT-PKC scheme [82] under the assumption of honest-but-
curious holders of the partial strong keys SK1 and SK2, which is the case of the adversary
model considered in PrivML.

II.2.5.1 Security of PrivML’s Building Blocks

In the following, we provide the proof for the Secure Entropy building block presented in
Protocol 4. The other building blocks rely on the exact same paradigm as presented in
Section II.2.2.2 and thus, have similar security proofs.

Theorem the building block proposed in Protocol 4 allows to correctly compute the
entropy of a given leaf node L according to equation (II.2.7) and is secure against a set of
semi-honest adversaries A = (AMU , ASU).

Proof let Sim = {SimAMU
, SimASU

} be a set of simulators of semi-honest adversaries
A = (AMU , ASU). SimAMU

simulates the behavior of adversary AMU . It first generates
K +1 random fictitious encrypted inputs ([|C∗

k |]pkw)K
k=1, [|S∗|]pkw by choosing random values

for (|C∗
k |)K

k=1 and |S∗|pkw respectively, and encrypting them via the encryption key pkw.
Using these random inputs, SimAMU

runs the first round of the Secure Entropy protocol

68

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

(Instructions 1-7) which is assigned to the first computation unit MU by generating two
random numbers R1, R2 ∈ ZN , then using them to compute values S1, S2, S3k, k ∈ 1..K

based on the homomorphic properties of the DT-PKC cryptosystem. SimAMU
then

computes the partial ciphers S4, S5, S6k, k ∈ 1..K using the first partial decryption
mechanism PSdec1, and sends the outputs (S1, S2, S3k, S4, S5, S6k), k ∈ 1..K to AMU . If
AMU replies with ⊥, then SimAMU

returns ⊥ as well. The view of AMU consists of the
fictitious encrypted inputs it generates. In both of the real and ideal executions, AMU

receives the values (S1, S2, S3k, S4, S5, S6k), k ∈ 1..K. This adversary’s real and ideal views
are indistinguishable due to the semantic security of the DT-PKC cryptosystem under the
semi-honest model. This is also the case of the third round of the Secure Entropy protocol
(Instructions 13-15), which is also assigned to MU .
SimASU

on the other hand, simulates the behavior of adversary ASU , by randomly choosing
a fictitious encrypted value for S∗

10 (Instruction 11) and sends it to ASU . If ASU replies with
⊥, then SimASU

returns ⊥ as well. The view of ASU is limited to the random encrypted
value it generates. In both real and ideal executions, ASU gets the value S∗

10. Thus, these
executions are indistinguishable due to the semantic security of the DT-PKC cryptosystem.

II.2.5.2 Security of PrivML’s Classifiers

The security of the classifiers implemented in PrivML is based on the modular sequential
composition of the secure building blocks they rely on [130]. Moreover, an active adversary
A∗ that intercepts communication between a target Data Owner DO or a target Querier Q

and the service provider MLSP does not learn anything about training data, classification
queries and responses due to the semantic security of DT-PKC.
Suppose this adversary corrupts one of the computation units MU or SU , or eavesdrops on
the communication channel between them. In that case, it does not learn anything on the
intermediary results they exchange or the protected classification model parameters. This
is explained by the fact that the values exchanged between these units are either encrypted
values under pkw, partial ciphers decrypted via the primitive PSdec1, or plaintext values
blinded with random integers in ZN . In these three situations, the adversary cannot infer
plaintext values without having access to either the strong key SK, the global secret key
skw, or the random values used for blinding. This adversary has only access to one of
the partial strong keys, either SK1 or SK2, and therefore cannot reconstruct the strong
key SK. Adversary A∗ also cannot reconstruct the secret global key skw since he does
not know the secret keys held by Data Owners. Even if the adversary A∗ corrupts the
secondary unit SU and has access to blinded plaintext operands, he cannot remove the
blinding values, which are only known by the master unit MU .

69

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.2 Design Principles of PrivML

II.2.6 Summary

This chapter presented the design principles of PrivML, an outsourced Homomorphic
Encryption-based Privacy Preserving Collaborative Machine Learning framework. We first
presented its system and threat model. Then we explained the cryptographic primitives
used to build the sub-protocols composing PrivML, which are the Distributed Two-
Trapdoor Public-Key Cryptosystem (DT-PKC) and cryptographic blinding. After that,
we discussed PrivML’s design principles, optimization strategies, and a security analysis of
its sub-protocols. In the next chapter, we present the evaluation results of PrivML using
real-world datasets in terms of efficiency time and space-wise and compare it to the closest
state-of-the-art PPML methods.

70

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

In this chapter, we present the empirical evaluation of PrivML whose design principles were
discussed earlier. We first describe the implementation details of the PrivML framework
and introduce our hardware and software experimental setup. After that, we present
the end-to-end evaluation results of this framework’s performance. Then, to get a better
insight on these high-level results, we carry a low-level performance evaluation of the
cryptographic primitives and building blocks underlying PrivML and study the impact of
the optimization strategies applied at this level on PrivML’s PPML protocols performance.
Finally, we carry a comparative analysis with the most relevant state-of-the-art solutions
time and space-wise.

II.3.1 Implementation Details of PrivML

We implemented the PrivML framework as a C++ library that is publicaly available
for other researchers and practitioners 1. It includes the Machine Learning algorithms
described in Section III.2, as well as their corresponding non-privacy preserving versions for
comparison purposes. PrivML uses the OMP 4.5 library [131] for parallel computing. The
framework also relies on GMP 6.1.2 [129], and MPFR 4.0.1 [132] libraries to implement
the proposed cryptographic building blocks and primitives of the DT-PKC cryptosystem.

Note that we provide our own implementation of the DT-PKC cryptosystem described
in [133] as a respond to the correctness issue raised in [134].

Our framework consists of five modules: (1) a Data and Model Manager, (2) a Cryp-
tographic Computation Manager, (3) a PPML Engine, (4) an ML Engine and (5) a Test
Bench. The Data and Model Manager handles the received training data, classification
queries, and the learned models in their encrypted or plaintext form. The Cryptographic
Computation Manager is responsible for orchestrating the computations over encrypted
data that are assigned to the computation units MU and SU . The PPML Engine runs
the PPML tasks that consist of initializing ML models, updating them when new training
data chunks are available, and using them to respond to incoming private classification
queries. The ML Engine implements the same tasks over plaintext data. We use the
Test Bench module to monitor and evaluate the framework’s performance. Figure II.3.1
provides an overview of this software architecture and shows the interactions that exist
between these components and how they interact with the data owners and classification

1https://gitlab.liris.cnrs.fr/rtalbi/DAPPLE-2.0

71

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

queriers.

Figure II.3.1: Software architecture of the PrivML library

II.3.2 Experimental Setup

II.3.2.1 Hardware Environment

Our experiments were conducted on a Dell PowerEdge C6420 server, with 2 Intel Xeon
Gold 6130-Skylake CPUs (2.10 GHz, 16 cores/CPU) and 192 GB RAM. We deployed two
KVM virtual machines on this server. The first virtual machine has 12 CPU cores and
16 GB of RAM and stands for the ML Service Provider (MLSP), while the second virtual
machine has a single CPU core with 4 GB of memory. This machine stands for prediction
Queriers Q. For simplicity, in our end-to-end experiments, we assume that the MLSP

already holds all the encrypted training data sent by Data Owners in advance. Thus, we
do not use an additional virtual machine to emulate interactions with Data Owners.

II.3.2.2 Evaluation Datasets

Our experiments rely on five real-world datasets, which are described in Table II.3.1. The
first one is the Adult dataset [135], which represents census data for predicting whether a
given individual makes more than $50,000 a year based on attributes, such as education,
hours of work per week, etc. The second dataset we use is Bank deposit data [135]. This
dataset is related to marketing campaigns of a Portuguese banking institution whose goal
was to predict if a client would subscribe to a term deposit or not. The third dataset is
the Nursery dataset [135] that aims to rank applications for nursery schools according
to social attributes such as parents’ occupation and financial state. We also use the Iris
dataset [135] for iris plant classification and the Edinburgh dataset for acute myocardial

72

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

infarction diagnosis in our comparison with state-of-the-art works that are the closest to
our setting. All of these datasets are pre-processed by removing missing values and by
encoding features into numerical ones.

Dataset
Total dataset

size (#records)
#attributes

Training set
size (#records)

Testing set
size (#records)

#classes

Adult [135] 48 842 14 1 600 400 2
Bank [135] 45 211 16 1 600 400 2

Nursery [135] 129 588 8 1 600 400 5
Iris [135] 150 4 120 30 3

Edinburgh [87] 1 253 9 1 002 251 2

Table II.3.1: Real-world datasets used in PrivML’s evaluation

II.3.3 End-to-End Evaluation of PrivML

For each of the Adult, Nursery, and Bank deposit datasets [135], we randomly select a
subset of 2,000 records while doing proper class re-balancing. We estimated that this
would be more practical than using the entire datasets since the experiments we run to
evaluate the PrivML framework can be very time-consuming for more significant amounts
of data.

We split each of these datasets into a training set D containing 80% of the records and
a testing set T containing the remaining 20%. The training set is then decomposed into
16 batches (Di)16

i=1 of 100 records each to observe the incremental learning of predictive
models.

As illustrated in Figure II.3.2, these batches are outsourced to the MLSP by different
Data Owners (DOi)16

i=1 at different moments. The MLSP learns an initial ML model after
receiving the first batch of data which he keeps updating after receiving the remaining
data batches. After each update, the current ML model is evaluated using the previously
selected testing set.

We have set the following experiments to use an encryption key length of 1024 bits to
get an 80-bits security level, with a parallelism level of 14 threads.

II.3.3.1 Evaluation of Private Very Fast Decision Trees

We first evaluate the Priv-VFDT classifier over the Adult, Nursery, and Bank datasets,
where we monitor the evolution of training time, prediction time, model accuracy, and
complexity. The latter is represented by the number of nodes of the learned decision tree
as new training samples are being incrementally outsourced to the ML Service Provider
(MLSP). We fix the probability δ = 10−6 and the number of possible splitting thresholds

73

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

[𝑇]	$%	:	Encrypted testing set

[𝐷(]	$%), 𝑖 ∈ 1. . 16 :	Encrypted	training	data	batches
[𝑤(]	$%1, 𝑖 ∈ 1. . 16 :	incremental	updates	of	the	ML	model

[𝐷2]	$%3

ML	model
initialization	
[𝑤2]	$%1

[𝐷4]	$%5

Evaluation	
using	
[𝑇]	$%

Evaluation	
using	
[𝑇]	$%

ML	model
Update	
[𝑤4]	$%1

...

[𝐷26]	$%37

ML	model
Update	
[𝑤26]	$%1

Evaluation	
using	
[𝑇]	$%

Figure II.3.2: Testing scenario used to evaluate PrivML

α = 2. We also limit the constructed decision tree growth by setting the maximum number
of nodes to 45 in the case of the Adult dataset, to 71 for the Nursery dataset, and 55 for the
Bank dataset. Figure II.3.3 illustrates the results obtained by averaging five consecutive
runs of the scenario described above for each one of the Adult, Nursery, and Bank datasets
using the Priv-VFDT classifier. The entire training process takes an average of 10 minutes
for the Adult dataset, 7 minutes for the Nursery dataset, and 3 hours and 43 minutes for
the Bank dataset. The training time observed after each model update or initialization is
mostly influenced by the number of leaf splits that occur after receiving new training data
samples. Once the maximum number of nodes is attained (model update 12 for the Adult
and Nursery datasets and update 11 for the Bank dataset), the model reaches a stable
state with an average update time of 31 seconds for the Adult dataset, 26 seconds for the
Nursery dataset and 13 minutes for the Bank dataset.
As for prediction time, it increases as the number of tree nodes grows. Starting from
model update #12 for the Adult and Bank datasets, the learned decision tree reaches the
maximum node number. Consequently, prediction time becomes stable with an average
value of 74 milliseconds per record for the Bank dataset and 51 milliseconds for the Adult
dataset. In the case of the Nursery dataset, the prediction time reaches a stable value
of 90 milliseconds once the maximum node number is reached after model update #11.
The obtained learning and prediction time obtained using the Priv-VFDT protocol for the
three datasets is still extremely high comparing to the plaintext version of this classifier
by a factor up to 9000 times. In terms of model utility, the obtained model accuracy is
identical to the plaintext version of the VFDT algorithm for both of the Adult and Bank
datasets with a maximum value of 71 % and 68 %, respectively. For the Nursery dataset,
we obtain a maximum accuracy of 76 % comparing to the plaintext version of the VTDT
algorithm that reaches up to 77 % of accuracy. This loss in terms of accuracy is due to
the computational approximations done in PrivML since the underlaying cryptosystem
only supports integer values. Note that the difference in training time between the three

74

II.3 Evaluation of PrivML

0 200 400 600 800 1000 1200 1400 1600
#Training samples

102

103

Tr
ain

in
g

tim
e (

s)

Bank
Adult

Nursery

(a) Training time

0 200 400 600 800 1000 1200 1400 1600
#Training samples

0

20

40

60

80

Pr
ed

ict
io

n
tim

e (
m

s)

Bank
Adult

Nursery

(b) Prediction query execution time

Figure II.3.3: Performance of Private Very Fast Decision Trees

datasets is due to their varying complexity, where the most complex one is the Bank
dataset. As for the inference time, it is rather influenced by the learned tree’s complexity,
where the most complex one belongs to the Nursery dataset.

II.3.3.2 Evaluation of Private Naive Bayes

We also evaluate the Priv-NB protocol over the Adult, Nursery, and Bank datasets in
terms of learning time, prediction time, and accuracy. For this classifier, we obtain a
practically stable update time for both Adult and Nursery datasets with an average value
of 30 and 16 seconds respectively and a total training time of 8 and 4 minutes, respectively.
As for the Bank dataset, it has an average update time of 72 seconds with a total learning
time of 19 minutes. The update time for this dataset grows as new attribute values are
observed for the first time. Thus their corresponding conditional probabilities need to be
initialized and updated with the arrival of new data records, which takes additional time.
The prediction time for this classifier is stable. It has an average value of 1300, 740, and

75

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

0 200 400 600 800 1000 1200 1400 1600
#Training samples

0

25

50

75

100

125

150

Tr
ain

in
g

tim
e (

s)

Bank
Adult

Nursery

(a) Training time

0 200 400 600 800 1000 1200 1400 1600
#Training samples

0

500

1000

1500

2000

2500

3000

Pr
ed

ict
io

n
tim

e (
m

s)

Adult Nursery Bank

(b) Prediction query execution time

Figure II.3.4: Performance of Private Naive Bayes

2700 milliseconds for each one of the Adult, Nursery, and Bank datasets, respectively, and
grows according to the dataset dimension. We also noticed that using log-probabilities
improves prediction time by 20% compared to an implementation where class prediction is
performed using equation (II.2.13). In addition, the accuracy obtained using the Priv-NB
protocol is identical to the one obtained using the original implementation of this classifier
with a maximum value of 77% and 78% for the Nursery and Bank datasets, respectively.
For the Adult dataset, a value of 72 % of accuracy is obtained using the Priv-NB protocol
compared to a maximum accuracy of 73 % of its plaintext counterpart. The training
and prediction time obtained using this classifier are up to 2000 times slower than their
plaintext counterparts in terms of computational overhead.

II.3.3.3 Evaluation of Private Logistic Regression

We evaluate the Priv-LR protocol over the Adult, Nursery, and Bank datasets, using a
mini-batch size of 100 records and a learning rate α = 100 for the Bank and Nursery

76

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

datasets and a value α = 1000 for the Adult dataset. Only one epoch was required for the
three datasets to reach a model convergence, where a maximum accuracy of 68 % was
obtained for the Adult dataset, 100 % for the Nursery dataset, and 72 % for the Bank
dataset.

The model accuracy obtained using the original version of this classifier is identical to
its privacy-preserving version implemented in PrivML for both of the Adult and Nursery
datasets, while it reaches a slightly higher value (73 %) for the Bank dataset.

The update time for this classifier is relatively stable. It has an average value of 9
minutes for the Bank dataset, 34 seconds for the Adult dataset, and 25 seconds for the
Nursery dataset. As for prediction time, it is essentially stable with an average value of
146 milliseconds for the Adult and Bank datasets and 122 milliseconds for the Nursery
datasets. This steady performance is due to the constant model complexity in logistic
regression as the incremental training process progresses, unlike decision trees for instance,
whose complexity gradually increases, making training and prediction time increase as
well. The learning and prediction time obtained with this classifier is also considerably
high comparing to the plaintext counterpart with a value of up to 10,000 times. ‘

77

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

200 400 600 800 1000 1200 1400 1600
#Training samples

102

Tr
ain

in
g

tim
e (

s)

Bank
Adult

Nursery

(a) Training time

0 200 400 600 800 1000 1200 1400 1600
#Training samples

0

50

100

150

200

250

300

Pr
ed

ict
io

n
tim

e (
m

s)

Adult Nursery Bank

(b) Prediction query execution time

Figure II.3.5: Performance of Private Logistic Regression

II.3.4 Low-Level Evaluation of PrivML

To better understand the results obtained in the previous section, we carry a low-level
evaluation of PrivML where we investigate the impact of our optimization strategies on
the performance of cryptographic primitives underlying PrivML as well as the building
blocks composing its PPML methods.

II.3.4.1 Performance of Underlying Cryptographic Primitives

We first evaluate the impact of our optimization strategies at the lowest granularity level
in PrivML, where we monitor the efficiency of the cryptographic primitives underlying
the DT-PKC cryptosystem. These optimizations are specifically the usage of fast large
number arithmetic and random large powers pre-computation.

Figure II.3.6 illustrates the execution time difference between two C++ implementations
of these primitives using growing encryption key sizes, where the first one employs our
optimizations, while the second one does not. We refer to the latter by naive C++

78

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

implementation.
We also include the original version of these primitives provided by the authors who

proposed the DT-PKC cryptosystem [133] to illustrate the impact of programming language
choice on runtime performance.

In this experiment, we run each one of the three first primitives (Enc, PSdec1, PSdec2)
for one million times while we run the primitives SScalarMult and SAdd for at least ten
million times since these two exhibit smaller runtimes. These experiments are conducted
using a fixed input message size of 48 bits encrypted using 512, 1024, 2048, and 4096 bits
encryption keys.

We notice that for the three implementations, the least costly primitives are the homo-
morphic addition and scalar multiplication that correspond to a large integer multiplication
and exponentiation. Using optimized large number arithmetic, the performance of these
two primitives is optimized by at least a factor of 2.

The most costly primitives of DT-PKC are the Enc and PSdec2 primitives that cor-
respond to two integer exponentiation and two multiplications in the case of the Enc

primitive and to one multiplication and one exponentiation in the case of PSDec2. Using
pre-computed random powers, we achieve an improvement up to a factor of 6000 for the
Enc primitive and up to a factor of 3 for the PSdec2 primitive.

It is worth mentioning that our optimized C++ implementation of the DT-PKC
cryptographic primitives described above is respectively 9000x, 11x, 3x, 21x, and 218x
times faster on average than the original Java implementation provided by [133].

II.3.4.2 Performance of Underlying Sub-Protocols

In this experiment, we monitor performance at the granularity of privacy preserving
building blocks, also referred to as sub-protocols.

We run each of the sub-protocols proposed in PrivML for ten thousand times using a
fixed input message size of 48 bits and a 1024 bits encryption key.

We carry a comparison between the time proportion spent in the cryptographic primitives
composing each sub-protocol (Enc, PSdec1, PSdec2, SScalarMult, SAdd), when using
their optimized C++ implementation given in Figure II.3.7a and their naive version in
Figure II.3.7b. Note that measurements for other non-cryptographic operations such as
square root, logarithm, division, etc., are not provided since they exhibit little execution
time comparing to the cryptographic primitives.

We notice a significant improvement time-wise when using the optimized primitives to
implement PrivML’s sub-protocols. At least 9% improvement in runtime is reported in
the case of the secure dot product sub-protocol (SDP) and up to 45% improvement in the
case of the secure probability update sub-protocol (SPU).

This noticeable improvement is mainly due to the decline of the costs of the Enc and
PSdec2 primitives, as demonstrated in the previous section.

79

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

Enc PSDec1 PSDec2 SScalarMult SAdd
Cryptographic primitives

10 3

10 2

10 1

100

101

102

103
Ex

ec
ut

io
n

tim
e

(m
s)

26.768

2.698 2.317 1.663
0.7860.967 0.486

1.158

0.164
0.016

0.002

0.192
0.597

0.180

0.001

Original Java Implementation
Naive C++ Implementation
Optimized C++ Implementation

(a) Key size=512 bits

Enc PSDec1 PSDec2 SScalarMult SAdd
Cryptographic primitives

10 1

100

101

102

103

Ex
ec

ut
io

n
tim

e
(m

s) 30.056
14.260 13.692

4.998

0.294

6.120
2.370

6.920

0.802

0.032
0.050

1.165
3.362

0.479

0.016

Original Java Implementation
Naive C++ Implementation
Optimized C++ Implementation

(b) Key size=1024 bits

Enc PSDec1 PSDec2 SScalarMult SAdd
Cryptographic primitives

10 2

10 1

100

101

102

103

104

Ex
ec

ut
io

n
tim

e
(m

s) 57.279 96.759 104.070
31.709

0.383
33.367 17.541 31.374

1.819
0.080

0.011

8.810
24.760

1.797

0.005

Original Java Implementation
Naive C++ Implementation
Optimized C++ Implementation

(c) Key size=2048 bits

Enc PSDec1 PSDec2 SScalarMult SAdd
Cryptographic primitives

10 2

10 1

100

101

102

103

104

105

106

Ex
ec

ut
io

n
tim

e
(m

s)

260.620
712.701 698.997

238.666

0.473

131.823 66.678
198.594

7.152

0.024
0.022

65.607
196.088

6.910

0.017

Original Java Implementation
Naive C++ Implementation
Optimized C++ Implementation

(d) Key size=4096 bits

Figure II.3.6: Execution time optimization of the primitives underlying DT-PKC with
respect to encryption key size

We also notice that the most costly building blocks in PrivML are the SDP, SSig, and SE
building blocks, respectively, due to their high complexity as theoretically demonstrated
in Section II.2.4.1.

We also measure the communication cost in bytes of our sub-protocols which correspond
to the amount of data exchanged between the computation units MU and SU (See Figure
II.3.7c). In terms of communication cost, the most expensive sub-protocol is the SDP

sub-protocol since the manipulated inputs of this sub-protocol which are exchanged after
cryptographic blinding between the computation units, are two vectors of a fixed dimension
of 14 in this experiment. The least expensive sub-protocol in terms of communication
cost is the SC sub-protocol since it has a low round complexity and the exchanged data
between the computation units are two blinded scalars in the first round and an encrypted
Boolean in the second one.

II.3.4.3 End-to-End Microbenchmarks of PrivML

Following the efficiency analysis at the cryptographic primitives and sub-protocols gran-
ularity in the previous sections, we carry a low-level end-to-end evaluation of PrivML’s
PPML methods. In analogy to the results presented in section II.3.3, this experiment is
carried using the Adult, Nursery, and Bank datasets [135].

In this experiment, we measure the time proportion spent in each sub-protocol imple-

80

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

SC SLog SD SM SE SSqrt SExp SPU SHBC SSig SDP STS

100

101

102

103

104

Ex
ec

ut
io

n
tim

e
(m

s)

21 25 32 33
81 60 53 47

85 88

320
122

Enc
PSDec1

PSDec2 SMult SAdd

(a) Cryptographic primitives runtime proportion with respect to each sub-protocol execution
time in milliseconds using their optimized C++ implementation.

SC SLog SD SM SE SSqrt SExp SPU SHBC SSig SDP STS
101

102

103

Ex
ec

ut
io

n
tim

e
(m

s)

35
44 47 57

94 78 78 85
130 133

353

176

Enc
PSDec1

PSDec2 SMult SAdd

(b) Cryptographic primitives runtime proportion with respect to each sub-protocol execution
time in milliseconds using their naive C++ implementation.

mented in PrivML as well as the time spent in the elementary cryptographic operations
(Enc,PSdec1,PSdec2,SScalarMult, SAdd) during both training (See Figure II.3.8) and
inference phase (See Figure II.3.9).

As shown in Figure II.3.8 the training process is improved by 27%, 19%, 26% on
the average for the Priv-NB, the Priv-VFDT, and the Priv-LR PPML methods when
employing the optimized C++ primitives’ implementation; this is due to performance
improvement of highly used sub-protocols such as secure comparison, secure division, and
secure multiplication which improved in terms of runtime by 39%, 32%, 41% respectively.

As illustrated in Figure II.3.8-c, this improvement is visible mainly in the absorption of
the Enc and PSDec2 primitives costs.

Similar observations can be made during the inference phase as shown in figure II.3.9
where inference time significantly improved by up to 27%, 32%, and 27% for the Priv-NB,
the Priv-VFDT, and the Priv-LR PPML methods, respectively.

81

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

SC

SL
og SD SM SE

SS
qr

t

SE
xp

SH
BC SS

ig

SD
P

ST
S0

500

1000

1500

2000

2500

Co
m

m
un

ica
tio

n
co

st
(B

yt
es

)

769

1056

1632

1920

1376

1184

928

1184

1504

2144

1632

(c) Communication cost in bytes of each sub-protocol in bytes.

Figure II.3.7: Performance of sub-protocols in terms of execution time and communication
cost, SKS : Secure Key Switching, SE : Secure Entropy, STS : Secure
Threshold Selection, SHBC : Secure Hoeffding Bound Computation, SSig
: Secure Sigmoid computation, SDP : Secure Dot Product, SD : Secure
Division, SM : Secure Multiplication, SC : Secure Comparison, SLog : Secure
Logarithm, SExpo : Secure Exponentiation, SSqrt : Secure Square Root.
Enc: Encryption, PSdec1, PSdec2 : Two-step decryption, SScalarMult :
Secure Scalar Multiplication, SAdd : Secure Homomorphic Addition. K=5,
p=14

Pri
v-N

B / A
du

lt

Pri
v-N

B / N
urs

ery

Pri
v-N

B / B
an

k

Pri
v-V

FD
T /

 Adu
lt

Pri
v-V

FD
T /

 Nurs
ery

Pri
v-V

FD
T /

 Ban
k

Pri
v-L

R / A
du

lt

Pri
v-L

R / N
urs

ery

Pri
v-L

R / B
an

k
0

2000

4000

6000

8000

10000

12000

14000

16000

Ex
ec

ut
io

n
tim

e
(s

)

SC
SLog
SD
SM
SE

SHBC
SSig
SDP
STS

(a) Sub-protocols runtime proportion with respect to each PPML execution time in seconds for a
specific dataset (Adult, Nursery, Bank) using optimized C++ implementation.

82

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

Pri
v-N

B / A
du

lt

Pri
v-N

B / N
urs

ery

Pri
v-N

B / B
an

k

Pri
v-V

FD
T /

 Adu
lt

Pri
v-V

FD
T /

 Nurs
ery

Pri
v-V

FD
T /

 Ban
k

Pri
v-L

R / A
du

lt

Pri
v-L

R / N
urs

ery

Pri
v-L

R / B
an

k
0

2000

4000

6000

8000

10000

12000

14000

16000
Ex

ec
ut

io
n

tim
e

(s
)

SC
SLog
SD
SM
SE

SHBC
SSig
SDP
STS

(b) Sub-protocols runtime proportion with respect to each PPML training time in seconds for a
specific dataset (Adult, Nursery, Bank) using naive C++ implementation.

Pri
v-N

B / A
du

lt

Pri
v-N

B / N
urs

ery

Pri
v-N

B / B
an

k

Pri
v-V

FD
T /

 Adu
lt

Pri
v-V

FD
T /

 Nurs
ery

Pri
v-V

FD
T /

 Ban
k

Pri
v-L

R / A
du

lt

Pri
v-L

R / N
urs

ery

Pri
v-L

R / B
an

k

101

102

103

104

105

106

Ex
ec

ut
io

n
tim

e
(s

)

Enc
PSDec2

PSDec1 SMult SAdd

(c) Cryptographic primitives runtime proportion with respect to each PPML training time in
seconds for a specific dataset (Adult, Nursery, Bank) using optimized C++ implementation.

83

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

Pri
v-N

B / A
du

lt

Pri
v-N

B / N
urs

ery

Pri
v-N

B / B
an

k

Pri
v-V

FD
T /

 Adu
lt

Pri
v-V

FD
T /

 Nurs
ery

Pri
v-V

FD
T /

 Ban
k

Pri
v-L

R / A
du

lt

Pri
v-L

R / N
urs

ery

Pri
v-L

R / B
an

k
102

103

104

105

106

Ex
ec

ut
io

n
tim

e
(s

)
Enc
PSDec2

PSDec1 SMult SAdd

(d) Cryptographic primitives runtime proportion with respect to each PPML training time in
seconds for a specific dataset (Adult, Nursery, Bank) using naive C++ implementation.

Figure II.3.8: Cryptographic primitives and sub-protocols runtime proportion with respect
to PPML training time in seconds over the Adult, Nursery and Bank using
optimized vs. naive C++ implementation.

Pri
v-N

B / A
du

lt

Pri
v-N

B / N
urs

ery

Pri
v-N

B / B
an

k

Pri
v-V

FD
T /

 Adu
lt

Pri
v-V

FD
T /

 Nurs
ery

Pri
v-V

FD
T /

 Ban
k

Pri
v-L

R / A
du

lt

Pri
v-L

R / N
urs

ery

Pri
v-L

R / B
an

k
0

1000

2000

3000

4000

5000

Ex
ec

ut
io

n
tim

e
(m

s)

SC
SLog
SD
SM
SE

SHBC
SSig
SDP
STS

(a) Sub-protocols runtime proportion with respect to each PPML inference time per query in mil-
liseconds for a specific dataset (Adult, Nursery, Bank) using optimized C++ implementation.

84

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

Pri
v-N

B / A
du

lt

Pri
v-N

B / N
urs

ery

Pri
v-N

B / B
an

k

Pri
v-V

FD
T /

 Adu
lt

Pri
v-V

FD
T /

 Nurs
ery

Pri
v-V

FD
T /

 Ban
k

Pri
v-L

R / A
du

lt

Pri
v-L

R / N
urs

ery

Pri
v-L

R / B
an

k
0

1000

2000

3000

4000

5000
Ex

ec
ut

io
n

tim
e

(m
s)

SC
SLog
SD
SM
SE

SHBC
SSig
SDP
STS

(b) Sub-protocols runtime proportion with respect to each PPML inference time per query in
milliseconds for a specific dataset (Adult, Nursery, Bank) using naive C++ implementation.

Pri
v-N

B / A
du

lt

Pri
v-N

B / N
urs

ery

Pri
v-N

B / B
an

k

Pri
v-V

FD
T /

 Adu
lt

Pri
v-V

FD
T /

 Nurs
ery

Pri
v-V

FD
T /

 Ban
k

Pri
v-L

R / A
du

lt

Pri
v-L

R / N
urs

ery

Pri
v-L

R / B
an

k
10 1

100

101

102

103

104

105

106

Ex
ec

ut
io

n
tim

e
(m

s)

Enc
PSDec2

PSDec1 SMult SAdd

(c) Cryptographic primitives runtime proportion with respect to each PPML inference time per
query in milliseconds for a specific dataset (Adult, Nursery, Bank) using optimized C++
implementation.

85

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

Pri
v-N

B / A
du

lt

Pri
v-N

B / N
urs

ery

Pri
v-N

B / B
an

k

Pri
v-V

FD
T /

 Adu
lt

Pri
v-V

FD
T /

 Nurs
ery

Pri
v-V

FD
T /

 Ban
k

Pri
v-L

R / A
du

lt

Pri
v-L

R / N
urs

ery

Pri
v-L

R / B
an

k

101

102

103

104

105

106

Ex
ec

ut
io

n
tim

e
(m

s)

Enc
PSDec2

PSDec1 SMult SAdd

(d) Cryptographic primitives runtime proportion with respect to each PPML inference time
per query in milliseconds for a specific dataset (Adult, Nursery, Bank) using naive C++
implementation.

Figure II.3.9: Cryptographic primitives and sub-protocols runtime proportion with respect
to PPML inference time per query in milliseconds over the Adult, Nursery
and Bank using optimized vs. naive C++ implementation.

II.3.5 Comparison of PrivML with Closest State-of-the-art Solutions

Secure classifier Dataset
Learning

time (mn)
PrivML’s improvement

of learning time
Prediction
time (ms)

PrivML’s improvement
of prediction time

Data owner-Provider
network bandwidth

(MB)

PrivML’s improvement
of Data Owner-Provider

network bandwidth

Querier-Provider
network bandwidth

(KB)

PrivML’s improvement
of Querier-Provider
network bandwidth

PrivML’s
Decision Trees Nursery [135]

23
N/A

35
1 order of magnitude

3.5
N/A

2
3 orders of magnitude

Ciphermed’s
Decision Trees [117]

N/A 1 615 N/A 4 483

PrivML’s
Naive Bayes Iris [135]

2
2 orders of magnitude

68
3 orders of magnitude

0.13
N/A

0.08
N/A

FHE-based
Naive Bayes [83]*

303 180 000 N/A N/A

PrivML’s
Logistic Regression

Edinburgh
[87]

3
Improved by 2x

81
N/A

2.4
Improved by 8x

1.5
N/A

FHE-based
Logistic Regression [86]

6.56 N/A 20.48 N/A

Table II.3.2: Performance of PrivML v.s. state-of-the-art solutions

In this section, we compare the privacy preserving PPML methods proposed in PrivML
to state-of-the-art solutions that are the closest to our setting. Meaning that they also
address privacy issues in outsourced machine learning using homomorphic encryption as
well, for the same ML algorithms.

These solutions are Ciphermed outsourced Decision Trees inference [117], FHE-based
outsourced Naive Bayes training and evaluation [83], and outsourced FHE-based logistic
regression training [86].

86

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

Table II.3.2 presents the results of this comparison in terms of learning time, prediction
time per record, and communication bandwidth consumption between the service provider
and data owners during the learning phase, as well as bandwidth consumption between
this provider and queriers in the inference phase.

We deployed the software prototype of Ciphermed [117], and FHE-LR [86] in our
experimental environment to establish a fair comparison. For the privacy preserving Naive
Bayes classifier proposed in [83], we rely on the evaluations conducted in this work since
its software implementation is not available.

As far as we know, no prior work has implemented the incremental training VFDT
algorithm [122] over encrypted data. Therefore, we only compare the prediction phase
of PrivML’s VFDT protocol with state-of-the-art Ciphermed’s Decision Tree presented
in [117]. The experiments were run over the Nursery dataset [135], using a pre-trained
Decision Tree of depth 4 and 17 nodes. PrivML is about 46 times faster and reduces the
bandwidth consumption by a factor of 2241. This improvement is because in PrivML, we
use a single partially homomorphic cryptosystem, and all the computations are performed
by the ML Service Provider MLSP . In contrast, Ciphermed [117] uses a mix of partially
and fully homomorphic encryption schemes and relies on a set of two-party computation
protocols that require clients to participate during the computations through many rounds.

We also compare the Priv-NB protocol proposed in PrivML with another outsourced
solution for privacy preserving Naive Bayes classification [83] that relies on Gentry’s fully
homomorphic cryptosystem [54]. We measure a learning time that is 151 times faster
using Iris dataset [135] and a speedup factor of 2,647 during the inference phase. However,
bandwidth consumption analysis was not provided in [83].

As for the Priv-LR protocol, we compare it with the winning solution of iDASH
security and privacy competition [84] that aims to optimize the efficiency of homomorphic-
encryption-based privacy preserving logistic regression training. This solution (FHE-
LR) [86] relies on a fully homomorphic cryptosystem for approximate numbers [85] to
achieve an entirely outsourced privacy preserving logistic regression protocol. The FHE-LR
solution provides significant improvement to previous FHE-based solutions by relying on
proper ciphertext packing and by using Nesterov’s accelerated gradient technique [136]
to increase the speed of convergence during the training phase. In PrivML, we obtain a
learning time twice faster than the FHE-LR solution using the Edinburgh dataset [87]
with 150 times lower bandwidth consumption.

II.3.6 Summary

This chapter presented the empirical evaluation of PrivML, that we propose to address
efficiency issues in homomorphic encryption-based outsourced privacy preserving machine
learning.

87

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

II.3 Evaluation of PrivML

We first presented an end-to-end evaluation of this framework’s performance in an
incremental learning setting for three widely used real-world datasets that exhibit privacy
concerns.

Then, to better understand these high-level results, we presented a low-level performance
evaluation at the granularity of cryptographic primitives and building blocks underlying
PrivML. Based on this analysis, we showed the impact of our optimization strategies
applied at those levels on PrivML’s end-to-end runtime performance.

Finally, we conducted a comparative evaluation of PrivML with the most relevant
state-of-the-art solutions that also aim to ensure outsourced privacy preservation in ML
using homomorphic encryption, time and space-wise.

88

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Part III

ARMOR: Mitigating Poisoning Attacks in
Federated Learning

89

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.1 Background and Related Work on Robust Federated
Learning

Over the last few years, due to many privacy scandals [137, 138], users are becoming
increasingly reluctant to share their private data with service providers. While outsourced
PPML-as-as service discussed in earlier stages of this thesis is a possible reassuring solution
for users, a new promising framework has recently emerged claiming to ensure privacy-by-
design in distributed ML services. This framework is called Federated Learning (FL) [139].
Thanks to FL, massive numbers of devices (also called workers) can collaboratively train a
model on their private data without sending the raw data to external service providers. To
this end, workers iteratively update a global model using their local training data and send
only these updates to a central party called the FL server that orchestrates the training
process. The FL server aggregates these model updates to produce a new version of the
model, which is, in turn, distributed to mobile devices. FL was rapidly adopted in multiple
thriving application domains such as next-word prediction in the Android keyboard [8],
healthcare [140], banking [141], and many more.

Even if FL has revolutionized machine learning and data processing in general by
extracting valuable features from edge-generated data while still providing strong privacy
guarantees, its architecture exposes a critical limitation. Many research works have
demonstrated that FL systems are highly vulnerable to various kinds of attacks and
failures [4, 142–145]. The FL protocol exposes an increased attack surface for two main
reasons. First, edge workers can access model parameters and influence their value through
the model updates sent to the FL server. Second, the data in FL is usually non-independent
and identically distributed (non-IID) among workers. Therefore, defining what a benign
update looks like and distinguishing it from malicious ones is not straightforward in this
ecosystem.

In this part of the thesis, we are interested in studying the threats targeting Federated
Learning with a particular focus on poisoning attacks that target FL robustness [4, 5, 12].
In these attacks, adversaries attempt to inject a backdoor task in the FL model along with
its main task. This backdoor assigns an attacker-chosen label to input data with a specific
trigger. For instance, an attacker can bypass a facial-recognition-based authentication
system by assigning to his images a wrong identity label that is authorized to access the
system. Detecting poisoning attacks in Federated Learning is challenging since participants
only send model updates to the FL server instead of their raw training data. Consequently,
the FL server holds less information about user behavior to detect malicious participants.

90

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.1 Background and Related Work on Robust Federated Learning

In this chapter, we provide a general overview of Federated Learning and the attacks that
target it. After that, we highlight the robustness issue in federated learning, providing a
detailed study on poisoning attacks in the FL setting as well as state-of-the-art mechanisms
proposed to counter them. Finally, we carry a comparative analysis between these works
to define the research gap to be addressed in this second part of the thesis.

III.1.1 Generalities on Federated Learning

Federated Learning (FL) is an emerging Machine Learning (ML) framework proposed by
Google [105,146] that provides privacy-by-design by distributing the learning tasks across
multiple workers (used interchangeably with users or clients) which train the model on
their local data, in collaboration with an FL server (also known as the aggregator) [7].

In FL, workers’ raw data is stored locally and never transferred. Instead, the client’s
local models are transferred to the FL server, where they are aggregated to achieve the
learning objective and build a global model [105].

For instance, multiple workers can jointly train a next-word predictor for keyboards
without revealing their raw data, which is kept on the worker’s device, and only the model
parameters are transferred to the FL server. This allows workers to train an ML model
while maintaining a high level of privacy.

In addition to its privacy-by-design purpose, Federated Learning was created to carry
collaborative learning in a particularly difficult setting where some of the following
assumptions about training data or all of them take place:

• Massively Distributed data points are held by a large number of workers.

• Non-IID data on each worker can be drawn from a different distribution, which
means that a randomly selected data point is far from being a representative sample
of the overall distribution of all worker’s training data.

• Unbalanced different workers hold varying amounts of training samples.

? =

Local
dataset

Local Model
Training

Selected Clients

1
2

3

4

5

Client Selection

Sending The
Local Model

Model Aggregation

Aggregated Model

Figure III.1.1: Federated Learning’s workflow and architecture

91

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.1 Background and Related Work on Robust Federated Learning

III.1.1.1 Federated Learning’s Architecture and Workflow

Figure III.1.1 depicts the workflow and architecture of Federated Learning systems. This
architecture represents the typical centralized FL system where the FL server orchestrates
the learning task among multiple workers. Other architectures have been proposed for
Federated Learning systems to optimize communication costs or overcome the single
failure point problem of the centralized approach. One example is the peer-to-peer FL
architecture [147].

As shown in Figure III.1.1, the FL workflow consists of several global rounds, where a
learning round usually includes the following steps: (1) First, the FL server selects a subset
of workers and sends them the global model. These clients are selected either randomly
or using specific client selection heuristics. For example, in [148] authors propose to
select clients based on their training performance. In [149] authors propose the CSFedAvg
protocol which chooses clients with lower degree of non-IID data to avoid the accuracy
degradation. (2) In the local model training step, each participant trains and optimizes
the global model on its local data. (3) Once a client completes training its local model,
it sends the model back to the FL server. Some clients may drop out during training or
model transmission due to limited computational resources, a large amount of training
data, poor connection, etc. Therefore, a percentage of failed clients is reported, and the
process continues with the number of updates received. However, if the number of clients
reported in time is not sufficient, the current round is abandoned [150]. (4) Then, in
the model aggregation step, the FL server aggregates the received updates from workers
using an aggregation method, for instance, the FedAvg algorithm [151] which calculates a
weighted average according to the size of each client’s data. The aggregated model will be
sent to the selected clients of the following round.

Note that other advanced aggregation algorithms exist, e. g. Federated Stochastic
Variance Reduced Gradient [152], FedPer [153], or FedMa [154]. These steps are repeated
until a stopping criterion is reached (e.g., a maximum number of rounds is reached, or the
model accuracy is greater than a defined threshold).

III.1.1.2 Types of Federated Learning Settings

Since federated learning is used in many domains with heterogeneous characteristics and
requirements, many FL settings exist. These settings differ in terms of:

• Data Distribution Scheme Federated Learning can be classified into three cate-
gories: Horizontal, Vertical, and Transfer FL. On one hand, in horizontal and vertical
FL, workers share the same feature space or the same instance space. An FL setting
is said to be horizontal if users’ local datasets have the same features and different
data records. In the case where users have different attributes that compose the
same data instances, FL is said to be vertically distributed. On the other hand, in

92

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.1 Background and Related Work on Robust Federated Learning

federated transfer learning (FTL), participants neither share data attributes nor
data records. In such a setting, the objective is to transfer the knowledge between
two supervised learning tasks of different workers that are related but do not have
many overlapping features or instances.

• Federation Level depending on the number of participants in an FL ecosystem,
Federated Learning can be categorized into Cross-silo, and Cross-device. In cross-silo
FL, workers are organizations, and their number is usually relatively small. However,
each party has a fairly large amount of data as well as sufficient computing resources.
On the opposite side, in cross-device FL the number of parties is relatively large,
and each party has smaller amounts of data and computing power. These parties
are usually mobile devices.

• FL Network Architecture FL can be either centralized or decentralized. In
Centralized FL settings, a central server orchestrates the training process by managing
the communication with the workers and the collection of local updates, while in
decentralized FL the objective is to avoid the existence of a single point of failure by
using a peer-to-peer architecture between workers for the federated training process.

In the rest of this thesis, we focus on centralized FL with horizontal data distribution in a
cross-device setting.

III.1.2 Related Work on Attacks Targeting Federated Learning

Due to its popularity and large-scale distributed nature, federated learning became an
attractive target to many attacks threatening either its privacy-by-design or its robustness.
Privacy in Federated Learning concerns workers’ local training data that should not be
revealed to anyone except their owners. On the other hand, Robustness concerns the
resistance of the FL model to faulty model updates. The aforementioned attacks mainly
differ in terms of:

Attack Timing federated learning attacks can be either carried during the training
phase or the inference phase while having white-box access to the model in most cases.

Attack Duration some FL attacks may require to be carried continuously through
multiple rounds to take effect. In this case, the attack is said to be stealthy. On the other
hand, some attacks are more straightforward and can be carried in a single shot.

Attack Influence there are two types of attacks targeting federated learning: causative
attacks and exploratory ones. The first type includes attacks aiming at provoking targeted
or untargeted misbehavior in the system. These attacks mainly influence the system’s

93

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.1 Background and Related Work on Robust Federated Learning

integrity. The second type of attacks aims to infer hidden information from the system.
They violate the system’s confidentiality/privacy preservation.

Attack Goal FL attacks may have a myriad of goals varying from provoking arbitrary
damage to the system to targeted causative or exploratory violations. Offenders might try
to prevent model convergence, deteriorate model accuracy, incorporate backdoors in the
model, infer private training data samples and labels, infer membership of a given data
sample in the training dataset, etc.

Adversarial Model in federated learning, attacks can either be carried by outsiders
who eavesdrop on messages exchanged in the system or from the inside by taking over
insider components. In this case, the offender might take over single or multiple partici-
pants (Sybil attacks) or control the federator itself.

Attacker Capabilities the attacker can be either an active adversary or a passive one.
An active attacker can influence the training/selection process and alter the model itself,
its local/global updates, or the participant selection procedure. While a passive attacker
is a simple insider/outsider observer of the system that analyzes messages he has access to
by taking control of a single or multiple participants or eavesdropping on the network.

Attacker Knowledge the background knowledge of the attacker is a deterministic
factor of the attack’s severeness. This knowledge might considerably vary depending on
whether the attack comes from inside or outside. For instance, the attacker may know
what the training data looks like, the global training hyper-parameters, which aggregation
algorithm is used, global data distribution, etc.

Based on the criteria mentioned above, we distinguish five main classes of attacks that
threaten federated learning:

(1) Poisoning Attacks these are causative training time attacks where an active
attacker takes over one or multiple participants and tries to influence the FL model in
some way. There are two types of poisoning attacks depending on the attacker’s objective.
The first type is targeted poisoning, where the attacker tries to inject a backdoor task of
his interest in the federated model along with the primary task it was initially trained
for without deteriorating its accuracy [4, 144, 155–159, 184]. This kind of attack can be
carried over multiple training rounds. In contrast, the most severe attacks can successfully
inject the backdoor in a single shot [4]. The second type is untargeted poisoning, where
the attacker’s goal is to cause a high miss-classification rate indiscriminately for testing
samples. This makes the learned model unusable and eventually leads to a denial of

94

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.1 Background and Related Work on Robust Federated Learning

service [158,158,160].

(2) Membership Attacks the objective of a membership attack is to guess whether
a data point had been used in training a model or not. This kind of threat could come
from the FL server side, which has access to individual updates sent by users over time, or
from the users’ side, who can observe the global model updates, as well as their own local
updates. The attacker can be passive or active. He can either observe model updates or
actively influence them to get more information about the membership of a given data
sample to the training dataset. Depending on the attacker’s background knowledge, these
attacks can be carried in a supervised or unsupervised manner. The latter might have
access to specific training data points or may have no access to any training data samples.
Implementations of membership attacks in the black-box/white-box settings as well as
passive/active attackers have been proposed by Melis et al. in [161] and Nasr et al. in [162].

(3) Data Inference Attacks these exploratory attacks are carried during training
time. In these attacks, a passive attacker either takes over the federator or eavesdrops
on the network to collect user model updates and reconstructs local training data used
to obtain them. In most of these attacks, the attacker is assumed to have white-box
access to the model which he uses to invert a target local model update. In the DLG
attack proposed by Zhu et.al in [163] as well as the attack proposed in [164], the attacker
relies on an optimization-based strategy that iteratively updates a dummy initialized data
sample while minimizing the distance between the attacked model update and the update
obtained when forwarding the dummy data through the network. The effectiveness of
these attacks is dependant on many federated learning parameters such as batch size;
training data feature space size, the used activation function, and especially the neural
network’s architecture.

(4) Free Riders Attacks in this category of attacks, selfish participants want to take
advantage of the federated learning service without actually participating in it due to
the lack of data, lack of computing resources, or even for privacy concerns. To do that,
these active adversaries craft fake updates via simple random generation or based on
previous versions of the model to pretend that they participate in the learning process [165].

(5) Evasion Attacks These are inference-time exploratory attacks where an active
adversary carefully crafts test-time tampered input that seemingly reassembles regular
inputs but at the same time efficiently tricks the model into provoking arbitrary miss-
classification. This kind of test-time input is referred to as adversarial examples [166–168].

In the following, we particularly focus on attacks targeting the robustness of federated
learning, meaning poisoning attacks.

95

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.1 Background and Related Work on Robust Federated Learning

III.1.3 Related Work on Robust Federated Learning

The robustness of Federated Learning is measured by its ability to train a correct model
that maintains adequate utility even in the presence of attacks that modify its behavior
by preventing its convergence or provoking miss-classification (poisoning attacks). In the
following, we focus on robustness issues in FL caused by poisoning and discuss in detail
the state-of-the-art mechanisms proposed to counter them.

Poisoning attacks are not limited to federated learning. In fact, they were proposed
long before FL where they have been applied in many use-cases such as malware signature
generation [169], spam filters [170], network traffic analysis systems for detecting DoS
attacks [171], social network sentiment analysis [172], and healthcare [173]. Federated
Learning is particularly prone to poisoning attacks for the following reasons:

(1) usually there are many participants in FL ecosystems, and most likely one or more
users would have faulty behavior; (2) since users’ local training data and their training
process are invisible to the server, it is impossible to verify the authenticity of the updates
sent by participants (3) local updates generated by multiple participants can be very
different from each other, and the secure aggregation protocol [174] means that the server
cannot audit local updates.

III.1.3.1 Types of Poisoning Attacks

Depending on whether or not the attacker has the ability to act directly on the updates
he sends, poisoning attacks can be classified as data poisoning or model poisoning attacks.

In data poisoning attacks, the adversary can only play with the data. He is unable to
modify the model sent to the server directly. He can, however, tamper with the labels of
some classes of data [4]. For example, in a classification case, images whose original class
labels are plane will be poisoned by malicious participants by changing their class to a
bird. The goal of the attack is to make the final global model more likely to misclassify
the airplane images as bird images at test time.

Another attack scenario is backdoor poisoning [175] in which an adversary can modify
individual features or small regions of the original training dataset to embed backdoors
in the model so that the model behaves according to the adversary’s goal if the input
contains the backdoor trigger. The attacker can inject poisoned data, incorporating specific
characteristics, and classify them with the desired label. For instance, an attacker can
teach a malware classifier that if a particular string is present in the file, that file should
always be classified as benign. Consequently, the attacker can craft any malware he wants,
and as long as he inserts the aforementioned string in his file somewhere, he will not be
detected as malware.

The impact of data poisoning on the FL model depends on the extent to which workers
engage in the attack and the amount of poisoned training data they use.

96

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.1 Background and Related Work on Robust Federated Learning

In the case of model poisoning attacks, the attacker has more knowledge and capabilities
than in data poisoning. He can directly modify the updates sent to the FL server in order
to inject a hidden backdoor into the global model [4]. The attacker aims to maximize
the accuracy of the poisoning task while maximizing the accuracy on the global model’s
primary task.

In [176] Blanchard et al. have demonstrated that model poisoning attacks are much
more effective than data poisoning in FL by analyzing a targeted model poisoning attack,
where a single malicious participant without collusion aims to make the model fail to
classify a set of chosen inputs. To increase attack stealth and avoid detection, they use an
alternate minimization strategy when generating poisoned model updates to simultaneously
optimize training loss, the adversarial objective, and the probability of being detected using
parameter estimation of benign participant updates. This model poisoning attack can
cause targeted poisoning of the FL model without being detected. It is worth mentioning
that although model poisoning attacks are more efficient than data poisoning, they require
much more sophisticated technical capabilities and high computational resources.

As mentioned in Section III.1.2, poisoning attacks can also be classified into targeted
and untargeted based on the attacker’s purpose that can either aim to provoke arbitrary
damage or have a well-defined target.

III.1.3.2 Poisoning Scenarios in Federated Learning

In the following, we cite the most commonly used poisoning attack scenarios against
federated learning.

(1) Label Flipping given a source class csrc and a target class ctarget, each malicious
participant Pi changes its dataset Di as follows: For all instances of Di whose class is
csrc, changes their class to ctarget [4]. We denote this attack as csrc → ctarget. For example,
in the FashionMnist image classification dataset, dress→ sandal indicates that images
whose original class labels are dress will be poisoned by malicious participants by changing
their class to sandal. The goal of the attack is to make the final global model more likely
to misclassify images of dresses as images of sandals at test time. Label flipping is a
well-known attack in centralized ML and FL. Unlike other types of poisoning attacks,
label flipping does not require the adversary to know the global data distribution, DNN
architecture, loss function, etc. It is time and energy-efficient. It is also easy to perform
by non-experts and does not require any modification or alteration of the FL software on
the participant side.

(2) Artificial Pattern Overlaying in this scenario, the attacker adds an artificial
pattern in the feature space which can be for instance a visual pattern in the case of
image classification or a word in the case of text processing, which does not exist in the

97

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.1 Background and Related Work on Robust Federated Learning

original dataset, and associates this pattern with a particular class, which is called the
target class [175].

(3) Distributed Pattern Overlaying distributed Backdoor Attacks (DBA) is a
special case of pattern overlaying where the triggering pattern is divided into several
sub-patterns, each of which is inserted into the training dataset of one of the malicious
participants [177]. Compared to the previous attack scenario, the success rate of DBA
attacks is significantly higher. They are also more persistent (their impacts last longer).

(4) Model Replacement in this scenario, the adversary’s goal is to replace the global
model with its local model after aggregation. Thus, for a target poisoned version of the
model w, if the attacker has knowledge of the number of workers participating in the
current FL round as well as the aggregation algorithm used by the server FL, the attacker
can forge an update of the model such that after the aggregation, the global model is
replaced by the attacker’s the poisoned model w [4].

(4) Edge-case Poisoning edge-case backdoors are a particular class of poisoning
attacks that were introduced by Wang et al. [178]. In this class of attacks, the adversary
uses data chosen from the heavy tails of the feature distribution space to carry data and
model poisoning attacks. This class of attacks is particularly aggressive since the attacker
targets data points that are unlikely to occur in other workers’ training datasets (have low
occurrence probability), which makes it harder for the FL server to evaluate the reliability
of the model updates generated by such attacks.

(5) Model Update Sign Flipping in this attack, the adversary inverts the sign of his
local model update without changing its amplitude. He trains the local model correctly
on the unaltered data and then he inverts the result obtained before sending it to the
FL server in order to degrade the performance of the global model. It acts only on the
sign without touching the amplitudes in order to escape the defenses based on norm
thresholding that we will discuss in the next section [160].

(6) Adding Gaussian noise to Model Updates in this scenario, malicious clients
add Gaussian noise to their local model updates. Adding noise can sometimes help protect
data privacy. However, adding too much noise hurts model performance and that is the
goal of this attack [160].

III.1.3.3 Poisoning Mitigation in Federated Learning

Mitigation techniques of poisoning attacks in FL fall into two main categories: aggregation-
based approaches and detection-based approaches, which are described in the following.

98

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.1 Background and Related Work on Robust Federated Learning

Defense
mechanism

Poisoning mitigation
approach

Poisoning attack type Compatible
with secure
aggregation

Poisoning detection
indicator

Additional assumptions
on adversary

Aggregation Detection Data
poisoning

Model
poisoning

Multi-Krum
[179]

✓ ✗ ✓ ✓ ✗

Average of mean
squared distances
of model updates

A priori knowledge
about the number

of adversaries

Trimmed Mean
[180]

✓ ✗ ✓ ✓ ✗

Exclude the β highest
and lowest values

of local model parameters

A priori knowledge
about the number

of adversaries
NDC
[181]

✓ ✗ ✓ ✓ ✗ L2 norm of model updates
Attackers’ updates
have a large norm

RFA [182] ✓ ✗ ✓ ✓‘ ✗ Geometric median
Attackers’ updates are

significantly different from honest
updates in terms of direction

FLTrust [183] ✗ ✓ ✓ ✓‘ ✗

Cosine similarity
between the FL server update

and workers’ updates

The FL server has a clean
root dataset that is used

to define what a clean update
looks like

FoolsGold
[184]

✗ ✓ ✓ ✓ ✗
Cosine similarity between

model updates

At least 2 sybils share
the same attack goal,
and model updates
significantly differ

from honest updates
RoNI
[185]

✗ ✓ ✓ ✓ ✓
Accuracy difference
at a given window

The FL server holds
a representative testing set

Table III.1.1: State-of-the-art defense mechanisms against poisoning attacks in Federated
Learning

Aggregation-Based Mitigation Approaches

These defense mechanisms do not explicitly detect poisoning attacks but instead define
model update aggregation mechanisms that limit the damage induced by attackers.

Krum is one of the most prominent and popular defense mechanisms of this kind [179].
It relies on the robust property of the median to measure the central tendency of model
updates. Krum assumes up to f , malicious workers. At the end of each round and for
every received model update, the FL server sums up the distance to its m− f − 2 closest
neighbors, m being the number of workers involved in a round. Finally, the FL server
computes a gradient step with the update that minimizes the above-computed sum. In the
geometric representation of the model updates, this is the vector closest to the barycenter.

Multi-Krum is a derivative of Krum that selects k vectors that have the highest scores
instead of selecting a single one, and then the value of the Multi-Krum aggregation function
would be equal to the mean of these vectors.

RFA is an aggregation algorithm that computes a weighted geometric median on the
local models by using the smoothed Weiszfeld’s algorithm [182]. However, this mechanism
relies on central assumption which is often not realistic in FL setups. It assumes that
all workers have similar learning objectives, and therefore, their model updates point
to similar directions. In this context, the update vector sent by an attacker is usually
different from the other honest workers’ updates, and thus, the former can be easily filtered

99

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.1 Background and Related Work on Robust Federated Learning

out. Nevertheless, in FL the data is non-independent and identically distributed (non-
IID) among the workers, so workers’ update vectors are more likely to be scattered in space.

NDC is an aggregation algorithm that relies on the assumption that attackers send
model updates with larger norms than honest workers (boosted updates) [181]. Therefore,
NDC introduces a protection mechanism that is based on norm clipping. The model
updates with large norms are reduced so that their magnitude becomes comparable to
other model updates. The authors of NDC also introduce another attack mitigation
mechanism where the FL server adds a Gaussian noise to all model updates received from
the workers [181]. The objective here is to reduce the impact of malicious workers, however,
at the expense of degraded quality of honest updates.

Trimmed Mean is another mitigation mechanism that falls in this category [180]. In
this mechanism, the FL server considers all model updates received from the workers in
training round, sorts the update parameters based on each coordinate, removes the β

largest and smallest ones, and then computes the mean of the remaining m−2β parameter
vectors, m being the number of workers involved in an FL round.

Detection-Based Defense Approaches

Whereas aggregation-based mitigation approaches aim to reduce the impact of possible
malicious FL clients through specific aggregation techniques, this second FL defense
category aims to detect attackers. Here, the FL server first carries a model update auditing
process that aims to find indicators of attack presence in the system. If this is the case,
the FL server tries to reduce or eliminate the impact of the detected attack.

FoolsGold the intuition behind FoolsGold [184] is somehow the opposite of Krum. It
assumes that Sybil workers who have the same poisoning objective will produce gradients
pointing to similar directions. Therefore, in the context of an FL setup based on non-IID
data, which leads to model updates scattered in space, workers’ gradients with similar
directions are supposed to be malicious. FoolsGold tries to reduce their impact by adapting
each worker’s learning rate according to a trust score based on the intuition described
earlier. In addition, FoolsGold also considers historical information from past rounds to
detect sybils that perform an attack in different rounds. To measure similarity between
worker updates, the authors rely on a weighted cosine similarity between the updates of
most indicative features of the last layer of the FL model. The corollary of this approach is
that no benign workers share similar data distributions. Otherwise, they can be mistakenly
reported as attackers.

FLTrust is another state-of-the-art poisoning mitigation mechanism that assumes that

100

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.1 Background and Related Work on Robust Federated Learning

the FL server collects a dataset (called root dataset) used to train a model like the other
workers [183]. He then attributes trust scores to workers and uses them as a multiplicative
factor of each worker’s model updates. The FL server grants the highest score to his own
update and decreases trust scores to workers with model updates in the opposite direction.

RoNI the Reject On Negative Impact (RoNI) defense [185] is a technique that measures
the empirical effect of training data and removes samples that have a significant negative
impact on classification accuracy. RoNI was not proposed to address FL poisoning.
However, it was adapted to the FL context by Fung et al. in [184] by assuming that the
FL server holds a representative testing set, allowing it to monitor accuracy fluctuation
at each round. If accuracy at a given round drops more than a pre-defined threshold, a
poisoning is detected, and a rollback to the previous sane model version is required.

III.1.4 Summary

In this chapter, we presented a general overview of the emerging framework of Federated
Learning that rapidly gained much interest due to its promising privacy-by-design guar-
antees. Nonetheless, we have shown that this framework is far from being perfect and
discussed the potential threats that target its privacy and robustness guarantees.

We particularly focused on robustness issues in federated learning, where we first gave
an overview on targeted and untargeted poisoning attacks in Federated Learning, their
different types, and various scenarios. After that, we discussed the existing mitigation
mechanisms proposed to counter them. We categorized these mechanisms into aggregation-
based or detection-based poisoning mitigation techniques, which are summarized in Table
III.1.1.

Based on this overview, one can clearly notice the need for a poisoning mitigation
mechanism that is compatible with federated learning’s secure aggregation, and that does
not have complex and conflicting assumptions with the FL ecosystem, namely the presence
of a validation set of the FL server-side. The following chapter addresses this research gap
by proposing our own detection-based poisoning mitigation mechanism ARMOR.

101

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.2 Design Principles of ARMOR

This chapter presents ARMOR; the first FL defense mechanism against targeted poison-
ing attacks that is compatible with secure aggregation. ARMOR relies on Generative
Adversarial Networks (GANs) to create an artificial testing set based on workers’ model
updates and uses it to detect poisoning attacks. Unlike other existing poisoning mitigation
mechanisms, ARMOR does not rely on gradient auditing and thus, can detect even the
most severe poisoning scenarios, which are edge-case backdoors. At the beginning of this
chapter, we provide a concrete illustration of this poisoning scenario, showing that the
strongest state-of-the-art poisoning detectors fail to recognize it. After that, we define
the threat model addressed in ARMOR as well as its defense objectives and capabilities.
Finally, we provide a detailed overview of ARMOR’s components ARgan and MORpheus
and how these two interact to uncover poisoning efficiently.

III.2.1 Threat Model and Problem Illustration

In the following, we are interested in poisoning attacks where an active adversary takes
over one or multiple worker devices to carry targeted poisoning attacks throughout the
training process. The adversary that we consider has the following properties:

III.2.1.1 Thteat Model

Attacker’s Objectives the goal of the malicious worker is to make the global FL model
misclassify a subset of particular data samples S to a target class Ct. The data samples
S have particular features P ∗ that we refer to as the attack trigger. For instance, in the
case of a malware detection system, an attacker who wants to evade the detection would
carefully add a watermark which serves as the attack trigger P ∗ in a set of malicious
applications of his choice S and changes their labels from the malicious applications class
to the benign applications class. The latter represents the attacker’s target class Ct.

Attacker’s Capabilities as in previous works [4, 142,144,177,186,187], we assume that
the attacker can access the global model that is sent by the FL server in each round, and
that it can directly manipulate the training data on the malicious devices that he holds.
The attacker overlays the attack trigger P ∗, and carries a label flipping to the target class
Ct. It also has the capacity to train an attack model over this data wattack with a set of
hyper-parameters of his choice (namely, the learning rate and the number of local training

102

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.2 Design Principles of ARMOR

epochs). In the case of a model poisoning attack, the attacker can generate a model update
that provokes the replacement of the global model with the attacker’s model wattack. This
is referred to as model replacement.

Attacker’s Knowledge as any other worker, the attacker has access to previous versions
of the FL model. It also has access to an attack training dataset Dattack to carry data or
model poisoning. This dataset is used to train an attack model wattack. In the case of
model poisoning attacks specifically, the attacker knows the total number of workers in the
system and the number of users selected at a given round. This knowledge is necessary to
generate malicious model updates that provoke the replacement of the global model with
the attacker’s model.

III.2.1.2 Implementing Edge-case Poisoning Attacks

Edge-case backdoors introduced by Wang et al. [178] consider an attacker that uses data
points chosen from the heavy tails of the feature distribution space. In the rest of this
chapter, we consider the following implementation of edge-case backdoor attacks.

Edge-Case Data Poisoning Attack we consider the task of image classification, where
the attacker introduces a visual pattern P ∗ in a subset of training images S of different
classes by changing the value of some pixels and labeling the images of this subset with a
target label Ct. For instance, we implemented such a poisoning attack on image data with
a visual pattern P ∗ added to the top left corner of the images as illustrated in Figure III.2.1,
although other patterns could be considered. Thus, the attacker can build the Dattack

dataset used for local training. The resulting poisoned local model updates are then sent
to the FL server. To make the attack harder to detect by the FL server, the adversary
applies projected gradient descent to produce model updates that are close to the last
global model version. For instance, as illustrated in Figure III.2.1 the attacker overlies a
pattern of green pixels in different traffic sign images and labels them as speed limit traffic
signs. By doing so, and when trained on the Dattack attack dataset, the model learns that
any image having this specific visual pattern should be classified to the Ct target class.

Edge-Case Model Poisoning Attack similarly to data poisoning shown in Figure III.2.1,
an attacker that aims to carry model poisoning has the objective of misclassifying images
that incorporate a triggering visual pattern to a target class which is used to train an
attack model wattack. This model incorporates the backdoor task while still having good
accuracy on the main task. The latter uses this model to carry the model replacement
attack proposed in [4], where given the global model of the current round and the number
of workers in that round, the attacker generates a model wattack∗ that when aggregated
with other workers’ local models, provokes the replacement of the global model with the

103

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.2 Design Principles of ARMOR

Figure III.2.1: Examples of data poisoning in image classification

attacker’s model wattack. In addition, the attacker applies projected gradient descent to
reduce the probability of the attack being detected.

III.2.1.3 Problem Illustration

A recent study shows that edge-case backdoor attacks are robust to state-of-the-art FL
defense mechanisms that are based on robust aggregation or norm clipping [178]. These
attacks aim to produce a model that achieves high accuracy on both the main task and
a backdoor task chosen by the attacker to avoid detection. Therefore, the attacker aims
to inject a persistent edge-case backdoor attack where the model keeps a high accuracy
on the backdoor task for several FL rounds after the occurrence of the attack since the
attacker is not always selected in every FL round.

Figure III.2.2 compares the behavior of three state-of-the-art FL defense mechanisms in
case of edge-case backdoor attacks1, namely Multi-Krum [179], NDC [181] and Trimmed
mean [180]. On the one hand, it evaluates the robustness of the FL defense mechanism
against the attack, and on the other hand, the utility achieved with that mechanism. The
former is evaluated in terms of backdoor task accuracy, and the latter is evaluated in terms

1The experimental setup is detailed in §III.3.3.

104

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.2 Design Principles of ARMOR

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

0 10 20 30 40 50 60 70 80
FL rounds (%)

70

75

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Figure III.2.2: Impact of model poisoning on state-of-the-art defense mechanisms

of main task accuracy (See Section III.3.3.3). We can observe that the attack reaches
100% accuracy in only a few rounds, while maintaining a good accuracy on the main task,
thus keeping the attacker undetected by the FL server.

III.2.2 ARMOR’s Defense Objectives.

We aim to design an FL defense mechanism that achieves robustness against malicious
users without sacrificing the global FL model utility. In particular, we consider the FL
system under no attacks and no defense mechanism as a baseline to discuss utility, i. e. our
method should be robust against malicious workers while providing an accuracy that is as
close as possible to the FL system without attacks and no defense mechanism. Specifically,
we aim to fulfil the two following properties:

• Robustness our FL defense mechanism should ensure that the global FL model is
unlikely to predict the attacker-chosen target labels for the attacker-chosen target
samples.

• Utility our FL defense mechanism should preserve the classification accuracy of the
global model in the presence of adversaries performing data poisoning and model
poisoning attacks. In particular, we aim to design a mechanism that can learn a

105

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.2 Design Principles of ARMOR

global model under attacks that is as accurate as the global model learned by the
baseline FL system under no attacks and no defense mechanism.

Defender’s Capabilities the defense against FL attacks is performed on the FL server
side. It has the capability to compute a poisoning indicator, based on which it can decide
whether to take into account the new aggregated FL model or to ignore the received model
updates and keep the last sane version of it.

Defender’s Knowledge our defense mechanism does not have access to the users’ raw
training data nor audits the workers’ model updates. In contrast to existing robust FL
systems [179, 180], our defense mechanism does not need to know the number of malicious
workers nor the number of workers involved in an FL round. As the FL server, the defense
mechanism has access to the global FL model at different rounds and the newly aggregated
FL model built with clients’ updates. Furthermore, unlike other existing works [185], our
defense mechanism does not need a testing set usually applied to carry attack detection.

III.2.3 Overview of ARMOR

ARMOR, is a novel FL defense mechanism that addresses the threat model introduced in
Section III.2.1, and has the defense objectives presented in Section III.2.2. The overall
architecture of ARMOR is described in Figure III.2.3.

ARMOR is composed of two main components, namely ARgan, and MORpheus. The
first component ARgan is used to generate a synthetic dataset based on model updates
which is used by the second component MORpheus to detect poisoning attacks, and if any,
provide proper mitigation against them.

Table III.2.1 provides a summary of notations used throughout the chapter. Our
poisoning defense mechanism does not make any assumptions, neither on the proportion
of attackers in the system nor their data distributions.

The insight behind ARMOR is as follows. Let B be a backdoor task that aims to
misclassify a subset of data samples that belong to a source class Csource and that hold a
particular data pattern P ∗ into a target class Ctarget. Supposing that the backdoor task B

is successfully injected in the model at round t (wt), the class-representatives of the target
class Ctarget that can be generated based on this model would tend to be confused with
the source class Csource, when they are fed to a non-poisoned model (e. g. wt−1).

Based on this intuition, when auditing a model wt, ARMOR monitors the difference
between the loss obtained when feeding class representatives to this model wt and the
models of the two previous rounds (wt−1 and wt−2). If this difference is too high compared
to a given threshold, the current model is considered to be corrupted and ARMOR ignores
workers’ model updates and keeps the last sane version of the model. In order to generate

106

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.2 Design Principles of ARMOR

class-representatives, ARMOR relies on a set of Generative Adversarial Networks (GANs)
that are trained on the FL server side based on workers’ model updates. The total number
of these GAN models is equal to the number of target classes of the FL model, where each
GAN is trained to generate data samples of a given class at a round t.

Figure III.2.3: ARMOR architecture

Notation Description

wjt Local model of client uj at round t

B Backdoor task

Csource Backdoor’s source class

Ctarget Backdoor’s target class

A∗ Poisoning attacker

w∗ Attacker’s malicious model

wt Global model at round t

ARGANkt ARMOR’s GAN of class Ck at round t

Genkt Generator of class Ck at round t

Diskt Discriminator of class Ck at round t

dkl Data representative l of class Ck, where l ∈ [1..L]

Dt Data representatives test set at round t

L(Dt, wt) Testing loss obtained when evaluating Dt using the model wt

Table III.2.1: Notations used to describe ARMOR’s design principles

107

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.2 Design Principles of ARMOR

III.2.4 Background on Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of ML networks composed of two
neural network models, a Generator (Gen) and a Discriminator (Dis) that contest with
each other in a zero-sum game. On one hand, the Generator aims to build a model that
creates fake inputs of specific targets as realistic as possible. On the other hand, the
Discriminator can distinguish between the fake data of the generative model and the real
data. The steps for training a GAN are as follows:
(i) Fake images generation. The Generator is queried to generate a batch of fake
images F (t).
(ii) Fake image-based loss computation. The generated fake images F (t) are fed to
the discriminator to compute the loss L(p(t), Cfake), where p(t) is the prediction output
obtained by the discriminator when feeding F (t) to it, that is p(t) = Distk(F (t)) which is
backward-propagated to compute the gradients for fake data ∆Wfake.
(iii) Sampling of Real images. A batch of real data R(t) is sampled from the training
dataset.
(iv) Real image-based loss computation. R(t) are fed to the discriminator to compute
the loss L(p(t), Creal) which is backward-propagated to compute the gradients for real data
∆Wreal.
(v) Discriminator update. The discriminator is updated with the sum of the two sets
of gradients ∆Wreal + ∆Wfake.
(vi) Generator update. The fake data is once again fed to the discriminator to compute
the loss L(p(t), Creal) which this time is backward-propagated through the generator,
to improve its capacity to mimic real data based on the discriminator’s output. The
generator’s goal is to generate images that look like real ones, so its objective is also to
minimize the loss on the real image class of the Discriminator.

The competition between the Generator and the Discriminator ends at Nash equilibrium
when the Discriminator cannot distinguish fake samples from the real ones.

III.2.5 ARgan: ARMOR ’s Generative Adeversarial Networks

The vanilla GAN architecture presented before cannot be used to uncover potential attacks
in Federated Learning since the FL server does not have access to a real dataset. However,
the FL global model was trained with real data. Therefore, our intuition is to replace
the Discriminator’s gradients computed on real data with artificial ones based on the FL
global model. Let us name this new GAN architecture ARgan for further reference, where
an ARgan instance is associated with each class, as shown in Figure III.2.4.

In Algorithm 16 the lines in black represent the common path between the vanilla GAN
and an ARgan instance, while the lines in blue are specific to vanilla GAN, and the lines

108

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.2 Design Principles of ARMOR

Figure III.2.4: Overview of ARgan

in red are specific to ARgan. Similar to vanilla GANs, an ARgan instance consists of a
generator and a discriminator.

Algorithm 16 Vanilla GAN (blue) vs ARgan (red)
Input: Model at current round wt, and class k
Output: Class representatives Dt

1: for e ∈ 1..Epochs do
2: Generate a random noise vector X(t) ← Random()
3: Get fake data F (t) ← Gentk(X(t))
4: Feed F (t) to the discriminator p

(t)
fake ← Distk(F (t))

5: Compute gradients ∆Wfake based on L(p(t)
fake, Cfake)

6: Feed real data R(t): p
(t)
real ← Distk(R(t))

7: Compute gradients ∆Wreal based on L(p(t)
real, Creal)

8: Update Distk with ∆Wreal + ∆Wfake

9: Update Distk with wt

epochs
+ ∆Wfake

10: Update Gentk by computing L(p(t), Creal)
11: if test_accuracy(F (t), wt) > α then : break
12: end for
13: Output the class-representatives Dt ← F (t)

The FL global model is augmented with an additional class representing fake data
samples so that its gradients are compatible with the discriminator. The latter competes
with the generator whose goal is to spawn data points belonging to a given label’s class
representatives. The adversarial training of an ARgan instance is similar to the five steps
presented before for the vanilla GAN, except step 3 where instead of computing gradients
on real data (lines 6-8), the ARgan instance computes artificial gradients based on the
global FL model, which was trained on real data (line 9). Thus, ARMOR relies on ARgank

instance to generate representatives of a class Ck at every FL round t.

109

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.2 Design Principles of ARMOR

Figure III.2.5: Overview of MORpheus

III.2.6 MORpheus: ARMOR’s Attack Detection Mechanism

Attack detection in ARMOR is performed by its MORpheus component, which is described
in Figure III.2.5. First, MORpheus builds a testing set Dt of class representatives for
each class Ck, where k ∈ [1..K]. These class representatives are built using Algorithm 16.
Afterwards, MORpheus feeds this testing set Dt to the current model wt, and to the models
of the two previous FL rounds wt−1 and wt−2. Note that it is possible to use more previous
model versions to detect the occurrence of poisoning based on loss monitoring. However,
based on our empirical evaluation (See next chapter), we noticed that two previous models
were sufficient to have good attack mitigation success rates.

The testing loss is computed for each one of these model versions and then used to
detect poisoning via Eq. (III.2.1). If a poisoning is detected, workers’ model updates
are ignored. Otherwise, they are taken into account in the new global FL model. The
detection formula is described in Eq. (III.2.1).

Detect_Poisoning (wt, wt−1, wt−2) =
1, if (L(Dt,wt)−L(Dt,wt−1)

max(L(Dt,wt),L(Dt,wt−1) > γ1

and L(Dt,wt)−L(Dt,wt−2)
max(L(Dt,wt),L(Dt,wt−2) > γ2)

0, otherwise

(III.2.1)

110

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.2 Design Principles of ARMOR

Algorithm 17 MORpheus’s Attack Detection
Inputs: Model at current round wt, models at previous rounds wt−1, and wt−2

At each iteration t do :
1: Dt ← ClassRepresentatives(wt)
2: Feed the class-representatives to wt, wi−t, and wt−2
3: yt ← wt(Dt), yt−1 ← wt−1(Dt), yt−2 ← wt−2(Dt)
4: Compute the testing loss for wt, wt−1, and wt−2
5: Lt ← L(yt, k), Lt−1 ← L(yt−1, k), Lt−2 ← L(yt−2, k)
6: if Detect_Poisoning(wt, wt−1, wt−2) == 1 then :
7: Ignore workers’ model updates (wt = wt−1)

III.2.7 Summary

In this chapter, we presented ARMOR, a new mitigation mechanism against poisoning
attacks that unlike state-of-the-art works relies on the informational essence of model
updates to detect poisoning instead of monitoring their geometrical shapes. The intuition
behind ARMOR is to use a set of generative-adversarial networks to generate synthetic
testing data, which is used to monitor loss changes based on which poisoning is detected. In
the next chapter, we present the empirical evaluation of ARMOR as well as its comparison
with state-of-the-art works.

111

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

In this chapter, we present the empirical evaluation of the poisoning mitigation mechanism
ARMOR that was presented earlier. In this evaluation, we assess the impact of this defense
mechanism on model utility and its capability to counter edge-case backdoor attacks.
We carry our evaluation using widely used image recognition datasets and compare our
proposal to the closest state-of-the-art poisoning defense mechanisms. Our evaluation
takes into consideration different settings that differ in terms of attackers’ number, workers’
number, training data distribution, and differential privacy noise level.

III.3.1 Implementation Details

We implemented the proposed FL defense mechanism, as well as the data poisoning and
model poisoning attacks using the PyTorch framework [188]. The software prototype has
2.5 KLOC of code and is publicly available at 1 We also compare against three state-
of-the-art defense mechanisms by using the implementation provided by their authors:
Multi-Krum [189], NDC [190] and Trimmed Mean [191].

III.3.2 Datasets and Model Architectures

Our experiments are conducted using the real-world MNIST [192] and FashionMNIST [193]
datasets for image classification tasks. These two datasets contain 50,000 training images
and 10,000 test images. For the MNIST dataset, we use a five-layer neural network with
three convolution layers and two fully connected layers. As for the FashionMNIST dataset,
we trained a four-layer convolutional neural network with two convolution layers, a fully
connected layer, and a max-pooling layer. The non-IID data distribution used in our
experiments is generated using the Dirichlet distribution [194].

III.3.3 Experimental Setup

III.3.3.1 Hardware and Software Environment

All our experiments are executed on a server with 2 Intel Xeon Gold 6126 CPUs with 12
cores each, 1 Nvidia Tesla P100-PCIE-16GB GPU, with 192 GiB memory, and deployed
in Ubuntu 18.04 operating system.

1https://gitlab.liris.cnrs.fr/rtalbi/armorfd (hidden until the corresponding research paper is published).

112

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

III.3.3.2 FL System Settings

In our experiments, we consider a total number of 10 clients, among which there is a
single attacker (Unless otherwise specified). In each experiment, the models are trained
for 80 FL rounds, and the adversary starts conducting its attacks from the first round.
The default attack step is set to 1, where the attacker is selected and performs its data
poisoning or model poisoning attack at each round. Note that the initial model used at
the beginning of the experiments is pre-trained until a proper accuracy is reached.

For the aggregation algorithm used by the FL server, we use FedAvg [151], where each
worker trains its model for five local epochs with a local learning rate of 0.01. We assume
that all workers are always selected in each FL round. The training batch size is set
to 64. The parameters of all defense mechanisms that we consider in our evaluations
were empirically chosen. We use the following default parameters unless stated otherwise:
β = 20% of dropped highest and lowest updates for Trimmed Mean, we set the number of
byzantine workers to f = 1 for Multi-Krum, and use a norm bound of M = 5 for NDC.
For a fair comparison, different configurations of each state-of-art defense mechanism were
evaluated to choose the one with the best behavior. When it comes to ARMOR, we set
the maximum number of ARgan epochs to 100, and use the following detection thresholds
γ1 = 0.12, γ2 = 0.12, and α = 90.

III.3.3.3 Evaluation Metrics

Backdoor task accuracy. This metric corresponds to the number of data samples of
the attacker’s testing set that fall into the target class Ct divided by the size of this testing
set.
Model accuracy this metric corresponds to the F1-score value obtained when evaluating
the accuracy of the global model’s main task using a backdoor-free testing set.
Attack success per round given a threshold δ that is empirically chosen (fixed in our
experiments to δ = 60%), if the backdoor task’s accuracy at a given round exceeds δ, the
attack success for that round is equal to 1; otherwise it is equal to 0.
Attack success rate it is the average of all values of attack success per round, for all
training rounds between the first time an attack is injected and the last round of the
experiment.
Mitigation success rate this metric is equal to 1 − attack success rate.
Runtime cost it measures the average execution time of an FL round when using a
specific defense mechanism against poisoning attacks.

III.3.4 Experimental Results

113

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

III.3.4.1 ARMOR Achieving the Defense Objectives

In the following, we evaluate the trade-off between the model’s accuracy and its robustness
against targeted data and model poisoning attacks when using ARMOR as well as the
three state-of-the-art defense mechanisms. The attacker follows the threat model described
in Section III.2.1 and tempers with training data to inject the edge-case backdoor task
described in Section III.2.1.2. As shown in Figure III.3.1, ARMOR achieves the optimal
trade-off for both of the MNIST and FashionMNIST datasets, with a high attack mitigation
success rate for data and model poisoning attacks and in the same time ensures a model
accuracy that is identical to an attack-free baseline.

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC
Trimmed Mean

ARMOR

(a) MNIST

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean
ARMOR

(b) MNIST

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum
NDC

Trimmed Mean
ARMOR

(c) FashionMNIST

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean ARMOR

(d) FashionMNIST

Figure III.3.1: Trade-off between robustness and utility – Data poisoning on the left side,
and model poisoning on the right side

As for the state-of-the-art defenses, they all fail to protect against the edge-case backdoor
attack in most cases, except for the Multi-Krum mechanism, that mitigates data poisoning
attacks with a success rate of 4% and 52%, c.f., Figures III.3.1a and III.3.1c. However,
Multi-Krum fails to protect against model poisoning attacks since the adversary manages
to generate model updates that are very close to the global model and are selected by
its aggregation rule. Thus, compared to its competitors, ARMOR improves resilience to
attacks by +48% to +100%.

Figure III.3.2 shows the detailed evolution of the backdoor accuracy with respect to FL
rounds for the same scenarios described earlier. One can notice that ARMOR successfully

114

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

mitigates the data and model poisoning attacks in all FL rounds for both data and model
poisoning, except for round 57 in the case of model poisoning, where the backdoor task
is injected only at a very low accuracy (11%). This is due to the fact that the attack at
this FL round is not strong enough to provoke a loss difference that exceeds ARMOR’s
detection thresholds. Multi-Krum has the best behavior among the state-of-the-art defense
mechanisms, particularly using the FashionMNIST dataset, where the latter manages to
counter data poisoning attacks at some FL rounds (between 30-50 and 60-70) and model
poisoning attacks during the first 10 FL rounds. Interestingly, NDC manages to reduce
the impact of model poisoning attack (with a minimal value of 70%) since this attack
generates model updates with a significant norm.

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

(a) MNIST

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

(b) MNIST

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

(c) FashionMNIST

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

(d) FashionMNIST

Figure III.3.2: Target task accuracy – Data poisoning on the left side, model poisoning on
the right side

Impact of Attack Frequency
In the following experiment, we evaluate the trade-off between model accuracy and

backdoor accuracy for different attack frequencies using the FashionMNIST dataset, for
ARMOR, as well as each one of the state-of-the-art poisoning defense mechanisms. We
consider four different attack rates. In the first one, the attacker is selected in all FL rounds,

115

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

while in the rest of the scenarios, it is selected every 2, 3, and 5 FL rounds, respectively.
Figure III.3.3 illustrates the results obtained for both data (left side) and model poisoning
(right side) attacks. Figure III.3.4 shows the detailed evolution of the backdoor accuracy
with respect to FL rounds, considering the same attack scenarios described above. One
can notice that ARMOR successfully mitigates the data and model poisoning attacks for
all attack frequencies.

The state-of-the-art defense mechanisms either entirely or partially fail to mitigate
the edge-case backdoor attacks as the attack frequency increases. For instance, Multi-
Krum manages to considerably reduce the backdoor accuracy for data poisoning with
an attack occurring every 5 FL rounds (Maximum accuracy of 18%). Nonetheless, for
model poisoning, Multi-Krum only manages to counter the attack with the same frequency
during the first 28 rounds. After that, the backdoor is successfully and sustainably injected
within the model. Similar behavior is observed with higher attack frequencies, especially
with model poisoning attacks where the attacker carefully crafts model updates that are
close to the model of the previous round, which makes the attacker’s updates more likely
to be selected by Multi-Krum.

When it comes to the NDC and Trimmed Mean defense mechanisms, they either entirely
fail to detect the attack or manage to counter it only during the first few rounds. Finally,
the attack is always successfully injected into the model since the attacker’s model updates
start to become close to the global model (lower norms in the case of NDC or lower model
weight values for trimmed mean). These two defense mechanisms have remarkably better
performance with data poisoning and lower attack frequency because this attack is less
powerful, so it takes more time to be successfully introduced within the model.

III.3.4.2 Impact of Number of Malicious Clients

Figure III.3.5 shows the impact of the number of FL malicious clients on the mitigation
success rate and the accuracy of the main task, with ARMOR and state-of-the-art defense
mechanisms applied on FashionMNIST. We assume that defense mechanisms are unaware
of the variation of the number of attackers in the system. Here, the mitigation success
rate metric is calculated as defined in Section III.3.3.3. We observe that ARMOR achieves
a 100% mitigation success rate even when the number of attackers increases. ARMOR
essentially detects the presence of the backdoor in the model, so it is orthogonal to the
percentage of malicious clients.

As the number of attackers increases, the backdoor injection becomes more reliable and
less detected by state-of-the-art detection mechanisms. For e. g. with Multi-Krum, the
mitigation rate drops from 52% to 19% for data poisoning attacks.

For NDC, we observe that it is quite efficient in model poisoning attacks since model
updates are boosted, but not very efficient with data poisoning attacks where updates have
a similar norm as regular workers’ updates. When we increase the number of attackers, its

116

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum
NDC

Trimmed Mean ARMOR

(a) Attack frequency 1/1

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum
NDC

Trimmed Mean ARMOR

(b) Attack frequency 1/1

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum
NDC

Trimmed Mean

ARMOR

(c) Attack frequency 1/2

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean

ARMOR

(d) Attack frequency 1/2

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC
Trimmed Mean

ARMOR

(e) Attack frequency 1/3

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean
ARMOR

(f) Attack frequency 1/3

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean ARMOR

(g) Attack frequency 1/5

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean
ARMOR

(h) Attack frequency 1/5

Figure III.3.3: Impact of attack frequency on robustness and utility – Data poisoning on
left side, model poisoning on right side

117

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

(a) Attack frequency 1/1

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

(b) Attack frequency 1/1

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

(c) Attack frequency 1/2

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

(d) Attack frequency 1/2

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

(e) Attack frequency 1/3

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

(f) Attack frequency 1/3

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

(g) Attack frequency 1/5

0 10 20 30 40 50 60 70 80
FL rounds

0

20

40

60

80

100

Ba
ck

do
or

 ta
sk

 a
cc

ur
ac

y
(%

)

(h) Attack frequency 1/5

Figure III.3.4: Detailed impact of attack frequency on target task accuracy – Data poison-
ing on left side, model poisoning on right side

118

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

efficiency remains unchanged because even if the gradients’ norm is clipped, the percentage
of malicious gradients is enough to inject the backdoor.

For Trimmed Mean, the attack is never detected. However, the accuracy of the main task
degrades when there are more attackers because more malicious gradients are aggregated
into the global model.

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum
NDC

Trimmed Mean ARMOR

(a) 10% are attackers

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum
NDC

Trimmed Mean ARMOR

(b) 10% are attackers

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum
NDC

Trimmed Mean

ARMOR

(c) 20% are attackers

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC
Trimmed Mean ARMOR

(d) 20% are attackers

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean ARMOR

(e) 50% are attackers

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC
Trimmed Mean

ARMOR

(f) 50% are attackers

Figure III.3.5: Impact of attacker number on robustness and utility – Data poisoning on
left side, model poisoning on right side

Impact of Total Number of Clients
Figure III.3.6 shows the mitigation success rate and accuracy with respect to the number

of clients in the system, which varies from 10 to 100, keeping the percentage of attackers
fixed at 10%. ARMOR consistently achieves a mitigation success rate of 100%. This is due

119

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

to the fact that the backdoor remains the same regardless of the number of workers in the
system, as the number of attackers is relative to the total number of workers in the system.
The mitigation success rate for state-of-the-art systems remains essentially constant.

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum
NDC

Trimmed Mean ARMOR

(a) 10 clients

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum
NDC

Trimmed Mean ARMOR

(b) 10 clients

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-KrumNDC

Trimmed Mean
ARMOR

(c) 50 clients

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100
M

ai
n

ta
sk

 a
cc

ur
ac

y
(%

)

Multi-Krum

NDC

Trimmed Mean
ARMOR

(d) 50 clients

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC
Trimmed Mean

ARMOR

(e) 100 clients

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean
ARMOR

(f) 100 clients

Figure III.3.6: Impact of client number on robustness and utility – Data poisoning on left
side, model poisoning on right side

III.3.4.3 Effect of Non-IID Data Distributions

Figure III.3.7 shows the trade-off between the attack mitigation rate and the main
task accuracy for different non-IID data distributions between different clients. These
distributions were randomly generated or used the Dirichlet distribution with a parameter
varying in [0,∞[. The higher this parameter is, the more similar is the distribution between

120

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

clients.
To evaluate ARMOR, we have applied three Dirichlet parameter values, namely 0.1,

0.5, and 1. The mitigation rate degrades for state-of-the-art systems like Multi-Krum
and Trimmed Mean, which are only made for IID settings because with non-IID data
distribution, the distance between the different updates is higher and does not necessarily
indicate the presence of attackers. NDC slightly degrades the main task accuracy because
the gradients come from different norms, which are reduced automatically, while ARMOR
achieves a mitigation rate equal to 100%.

III.3.4.4 Effect of Differential Privacy

We also conducted experiments to explore the behavior of detection mechanisms when
combined with differential privacy. We recall that differential privacy consists in clipping
the gradients before adding a Gaussian noise configured with ϵ. Figure III.3.8 shows the
tradeoff between the mitigation rate and the utility of the detectors, for different noise
levels ϵ = {0.5, 2, 8}. A low value for ϵ corresponds to a significant noise added to the
updates, and conversely, a high value corresponds to a low noise. As differential privacy
may perturb the attack success rate, we assume that the attacker does not add noise to
its updates in our attack.

From these figures, we can see that adding differential privacy, with a medium to small
noise, helps the state-of-the-art detection mechanisms mitigate the attack without hurting
the overall performance. However, with a large noise, even if the mitigation rate is high,
the model’s utility is much lower (a drop up to 30%). ARMOR always has a higher
mitigation rate than other detectors regardless of the noise magnitude.

III.3.4.5 Cost of Defense

We measured the runtime overhead induced by each one of the defense mechanisms
considered in this evaluation. The results are reported in Table III.3.1. The previous
experiments show that our defense mechanism ARMOR achieves the optimal trade-off
between poisoning mitigation and model utility. However, this is done at the expense of
an important runtime overhead due to the GAN training process, which has a relatively
high cost. The runtime overhead of ARMOR is much slower than other state-of-the-art
poisoning mitigation mechanisms that simply audit the geometric shape of model updates.

Nevertheless, this cost can further be reduced using parallel GPU computation on the FL
server side. The per-class GANs are independent from each other, so they can be trained
in parallel on multiple GPUs. Moreover, recent works aim to improve the convergence
speed of GANs [195], which could greatly help to reduce ARgan cost.

121

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum
NDC

Trimmed Mean ARMOR

(a) Random (IID)

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum
NDC

Trimmed Mean ARMOR

(b) Random (IID)

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum
NDC

Trimmed Mean
ARMOR

(c) Dirichlet 1

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-KrumNDC
Trimmed Mean ARMOR

(d) Dirichlet 1

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean ARMOR

(e) Dirichlet 0.5

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean
ARMOR

(f) Dirichlet 0.5

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean ARMOR

(g) Dirichlet 0.1

0 20 40 60 80 100
Mitigration success rate (%)

80

85

90

95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC
Trimmed Mean

ARMOR

(h) Dirichlet 0.1

Figure III.3.7: Attack effectiveness with different non-IID settings – Data poisoning on
left side, model poisoning on right side

122

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

0 20 40 60 80 100
Mitigration success rate (%)

60
65
70
75
80
85
90
95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean
ARMOR

(a) ϵ = 8

0 20 40 60 80 100
Mitigration success rate (%)

60
65
70
75
80
85
90
95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean
ARMOR

(b) ϵ = 8

0 20 40 60 80 100
Mitigration success rate (%)

60
65
70
75
80
85
90
95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean ARMOR

(c) ϵ = 2

0 20 40 60 80 100
Mitigration success rate (%)

60
65
70
75
80
85
90
95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDC

Trimmed Mean
ARMOR

(d) ϵ = 2

0 20 40 60 80 100
Mitigration success rate (%)

60
65
70
75
80
85
90
95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-Krum

NDCTrimmed Mean
ARMOR

(e) ϵ = 0.5

0 20 40 60 80 100
Mitigration success rate (%)

60
65
70
75
80
85
90
95

100

M
ai

n
ta

sk
 a

cc
ur

ac
y

(%
)

Multi-KrumNDC

Trimmed Mean
ARMOR

(f) ϵ = 0.5

Figure III.3.8: Attack effectiveness with various differential privacy settings – Data poi-
soning on left side, model poisoning on rigth side

Defense mechanism Cost

Multi-Krum 8 ms

NDC 7 ms

Trimmed Mean 3 ms

ARMOR 21 s

Table III.3.1: Cost of defense mechanisms

123

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

III.3 Evaluation of ARMOR

III.3.5 Summary

This chapter evaluated ARMOR, a novel federated learning defense method against targeted
poisoning attacks and, more precisely, edge-case backdoors. Our empirical evaluation
was carried on two real-world datasets, MNIST and FashionMNIST, and relied on widely
used neural network architectures. Our results show that ARMOR can achieve edge-case
backdoor robustness against a significant fraction of malicious clients under different
non-IID data distributions and various differential privacy settings. We demonstrate that
our method outperforms all state-of-the-art robust FL solutions and by large margins.
Interesting future work includes investigating techniques to improve the convergence speed
of GANs in ARgan, and designing stronger poisoning attacks to ARMOR.

124

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Part IV

Conclusion and Perspectives

125

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Concluding Remarks

Collaborative Machine Learning is a widely used ML setting where multiple parties with
common interests collaborate to get better and more accurate machine learning models
using their joint data. Due to legal, financial, and competitive constraints, this scheme
is not always feasible, particularly in the presence of sensitive data or when malicious
participants target the system.

This thesis tackled important research questions related to the aforementioned privacy
and robustness issues in collaborative machine learning frameworks and resulted in two
main contributions. The first one is PrivML: an outsourced homomorphic encryption-
based privacy preserving ML framework, while the second one is ARMOR: a mitigation
mechanism against poisoning attacks in federated learning.

The first contribution of this thesis focused on efficiency issues in Privacy Preserving
Machine Learning (PPML) that rely on cryptographic techniques, specifically Homomorphic
Encryption (HE). Indeed these techniques do not impact models’ utility and accuracy while
providing high privacy guarantees. Still, they are known to induce high computational
overheads.

In this part of the thesis, we precisely examined the impact of different architectural and
design choices of HE-based PPML methods on actual PPML performance. Our foremost
objective was to design and implement a privacy preserving framework that ensures a
proper trade-off between privacy guarantees, computational efficiency, and service utility.

To this end, we propose PrivML an outsourced homomorphic encryption-based privacy
preserving collaborative machine learning framework that allows optimizing runtime and
bandwidth consumption for widely used ML algorithms, using many techniques such as
fast algorithms for large integer arithmetic, ciphertext packing, approximate computations,
and parallel computing. The software prototype of the PrivML framework is publically
available for researchers and practitioners 1.

The second part of the thesis focused on robustness issues in a specific collaborative
learning framework which is Federated Learning (FL). Unlike the outsourced setting
considered in the first part of this thesis, in this framework, the different collaborators
perform local training on their private data and do not outsource them to an external
service provider. Instead, they only share model updates with an orchestrator who is
responsible for aggregating the different model updates sent by the different collaborators,
updating a global model, and communicating it to them.

This kind of scheme is designed to ensure data privacy. However, it remains vulnerable
to a panoply of client-side attacks [3] including poisoning attacks [4, 5] which we studied
in-depth. In these attacks, adversaries attempt to inject a malicious task into the federated
model along with its main task. This malicious task assigns a label chosen by the attacker

1https://gitlab.liris.cnrs.fr/rtalbi/DAPPLE-2.0

126

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

to the input data with a specific trigger.
Detecting poisoning attacks in federated learning is challenging because participants

only send model updates to the FL server instead of their raw training data. As a result,
the FL server holds less information about users’ behavior to detect malicious participants.

In this second part of the thesis, we have shown that attackers can still evade exist-
ing poisoning detectors by building model updates that mimic the updates of benign
participants.

Subsequently, we proposed ARMOR, a new GAN-based poisoning attack detector that
analyzes the information that model updates capture about users’ data allowing it to
mitigate extremely aggressive poisoning attack scenarios. The software prototype of
ARMOR is also publically available for researchers and practitioners 2

Research Perspectives

In the following, we enumerate the potential research directions of this work in both
privacy preservation and robustness research questions investigated in this thesis.

Privacy Preservation in Collaborative ML

The current implementation of PrivML uses rigid parameter configuration regardless of the
privacy requirements desired by ML service providers and users. A potential improvement
of this work is to generalize it into a PPML compiler that transforms privacy and even
efficiency requirements into dynamic cryptographic and ML parameter configuration. The
idea is to make PrivML as customized as possible, where users can benefit from the optimal
privacy-level and performance trade-off.

Also, although PrivML offers quite interesting privacy guarantees, it does not ensure
protection against some inference attacks that can extract sensitive information about
models or users’ data only using consecutive queries. It only would be convenient to
complete our work with an appropriate query auditing strategy allowing us to improve its
privacy preservation guaranties.

Poisoning Mitigation in Federated Learning

In ARMOR, we currently use as many GAN models as the number of classes of a given
dataset. Consequently, and considering how time-consuming training generative adversarial
networks can be, this solution is inconvenient for datasets with more significant class
numbers. A potential solution for this is to use conditional GAN to allow a single GAN to
inspect poisoning for all class labels.

2https://gitlab.liris.cnrs.fr/rtalbi/armorfd (hidden until the corresponding research paper is published).

127

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Another aspect that can be investigated is to use other data types to evaluate ARMOR.
In this manuscript, we only evaluated our solution using image classification datasets which
are MNIST and FashionMNIST. It would be interesting to observe how ARMOR behaves
using more complex datasets such as Cifar100 or Trafic Signs classification datasets. It
also would be interesting to consider textual data.

For now, ARMOR focuses on single-shot attacks since usually attackers have fewer
chances of being selected all the time and tend to carry single-shot attacks that take effect
immediately. However, in other contexts where somehow the attacker is sure of being
selected in multiple rounds, the latter can carry adaptive attacks that accumulate the
poisoning effect across multiple rounds. ARMOR needs to be improved to capture such
attacks mainly by inspecting more previous model versions to detect the gradual poisoning.

Also, when poisoning is detected, ARMOR carries a rollback to the previous sane model
version. However, this operation can be rather destructive since useful benign updates of
that round are not exploited, and the exact identity of attacks remains undetected and
thus unpunished. In improved versions of ARMOR, one can consider a more detailed
investigation of model updates once a poisoning is detected to find the attack provenance
and punish the responsible or ban them from the system.

128

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 308–318. ACM, 2016.

[2] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, and Xiaoqian Jiang. Secure
logistic regression based on homomorphic encryption: Design and evaluation. JMIR
medical informatics, 6(2):e19, 2018.

[3] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

[4] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. How to backdoor federated learning. In International Conference
on Artificial Intelligence and Statistics (AISTATS 2020), pages 2938–2948, 2019.

[5] Clement Fung, Chris J M Yoon, and Ivan Beschastnikh. Mitigating sybils in federated
learning poisoning. arXiv preprint arXiv:1808.04866, 2018.

[6] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon. Logistic
Regression Model Training Based on the Approximate Homomorphic Encryption.
IACR Cryptol. ePrint Arch., 2018:254, 2018.

[7] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine
learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST), 10(2):12, 2019.

[8] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong,
Daniel Ramage, and Françoise Beaufays. Applied federated learning: Improving
google keyboard query suggestions. arXiv preprint arXiv:1812.02903, 2018.

[9] Dhruv Guliani, Francoise Beaufays, and Giovanni Motta. Training speech recog-
nition models with federated learning: A quality/cost framework. arXiv preprint
arXiv:2010.15965, 2020.

129

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[10] Shiva Raj Pokhrel and Jinho Choi. A decentralized federated learning approach
for connected autonomous vehicles. In 2020 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW), pages 1–6. IEEE, 2020.

[11] Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated learning: A survey.
arXiv preprint arXiv:2003.02133, 2020.

[12] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden
vulnerability of distributed learning in byzantium. arXiv preprint arXiv:1802.07927,
(CONF), 2018.

[13] Hian Chye Koh, Gerald Tan, et al. Data mining applications in healthcare. Journal
of healthcare information management, 19(2):65, 2011.

[14] Vivek Bhambri. Application of data mining in banking sector. IJCST, 2(2):199–202,
2011.

[15] Anna L Buczak and Erhan Guven. A survey of data mining and machine learning
methods for cyber security intrusion detection. IEEE Communications Surveys &
Tutorials, 18(2):1153–1176, 2016.

[16] Ron Kohavi. Mining e-commerce data: the good, the bad, and the ugly. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 8–13. ACM, 2001.

[17] Harvey J Miller and Jiawei Han. Geographic data mining and knowledge discovery.
CRC Press, 2009.

[18] Pierangela Samarati. Protecting respondents identities in microdata release. IEEE
transactions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

[19] Ljiljana Brankovic and Vladimir Estivill-Castro. Privacy issues in knowledge discov-
ery and data mining. In Australian institute of computer ethics conference, pages
89–99, 1999.

[20] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. In Security and Privacy (SP),
2017 IEEE Symposium on, pages 3–18. IEEE, 2017.

[21] Mauro Ribeiro, Katarina Grolinger, and Miriam AM Capretz. Mlaas: Machine
learning as a service. In 2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA), pages 896–902. IEEE, 2015.

[22] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

130

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[23] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
machine learning. MIT press, 2018.

[24] Laurens Van Der Maaten, Eric Postma, and Jaap Van den Herik. Dimensionality
reduction: a comparative. J Mach Learn Res, 10:66–71, 2009.

[25] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data mining
to knowledge discovery in databases. AI magazine, 17(3):37, 1996.

[26] Muhammad Zulfadhilah, Yudi Prayudi, and Imam Riadi. Cyber profiling using
log analysis and k-means clustering. International Journal of Advanced Computer
Science and Applications, 7(7):430–435, 2016.

[27] Alan F Westin and Oscar M Ruebhausen. Privacy and freedom, volume 1. Atheneum
New York, 1967.

[28] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In
Proceedings of the 2000 ACM SIGMOD international conference on Management of
data, volume 29, pages 439–450. ACM, 2000.

[29] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Annual
International Cryptology Conference, pages 36–54. Springer, 2000.

[30] Vassilios S Verykios, Elisa Bertino, Igor Nai Fovino, Loredana Parasiliti Provenza,
Yucel Saygin, and Yannis Theodoridis. State-of-the-art in privacy preserving data
mining. ACM Sigmod Record, 33(1):50–57, 2004.

[31] Charu C Aggarwal and S Yu Philip. A general survey of privacy-preserving data
mining models and algorithms. In Privacy-preserving data mining, pages 11–52.
Springer, 2008.

[32] Lei Xu, Chunxiao Jiang, Jian Wang, Jian Yuan, and Yong Ren. Information security
in big data: privacy and data mining. IEEE Access, 2:1149–1176, 2014.

[33] Bernard W Silverman. Density estimation for statistics and data analysis. Routledge,
2018.

[34] Kun Liu, Chris Giannella, and Hillol Kargupta. An attacker’s view of distance
preserving maps for privacy preserving data mining. In European Conference on
Principles of Data Mining and Knowledge Discovery, pages 297–308. Springer, 2006.

[35] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into
a hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

131

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[36] Stephen E Fienberg and Julie McIntyre. Data swapping: Variations on a theme by
dalenius and reiss. In International Workshop on Privacy in Statistical Databases,
pages 14–29. Springer, 2004.

[37] Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing infor-
mation: k-anonymity and its enforcement through generalization and suppression.
Technical report, technical report, SRI International, 1998.

[38] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan
Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In null, page 24.
IEEE, 2006.

[39] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy
beyond k-anonymity and l-diversity. In 2007 IEEE 23rd International Conference
on Data Engineering, pages 106–115. IEEE, 2007.

[40] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of cryptography conference, pages
265–284. Springer, 2006.

[41] Mike Atallah, Elisa Bertino, Ahmed Elmagarmid, Mohamed Ibrahim, and Vassilios
Verykios. Disclosure limitation of sensitive rules. In Knowledge and Data Engineering
Exchange, 1999.(KDEX’99) Proceedings. 1999 Workshop on, pages 45–52. IEEE,
1999.

[42] Stanley RM Oliveira, Osmar R Zaiane, and Yücel Saygin. Secure association rule
sharing. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages
74–85. Springer, 2004.

[43] Yücel Saygin, Vassilios S Verykios, and Chris Clifton. Using unknowns to prevent
discovery of association rules. ACM Sigmod Record, 30(4):45–54, 2001.

[44] LiWu Chang and Ira S Moskowitz. Parsimonious downgrading and decision trees
applied to the inference problem. In Proceedings of the 1998 workshop on New
security paradigms, pages 82–89. ACM, 1998.

[45] Francis Y Chin and Gultekin Ozsoyoglu. Auditing and inference control in statistical
databases. IEEE Transactions on Software Engineering, (6):574–582, 1982.

[46] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and
privacy homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[47] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In International Conference on the Theory and Applications of Cryptographic
Techniques, pages 223–238. Springer, 1999.

132

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[48] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.

[49] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer
and system sciences, 28(2):270–299, 1984.

[50] Josh Benaloh. Dense probabilistic encryption. In Proceedings of the workshop on
selected areas of cryptography, pages 120–128, 1994.

[51] Emmanuel Bresson, Dario Catalano, and David Pointcheval. A simple public-key
cryptosystem with a double trapdoor decryption mechanism and its applications. In
International Conference on the Theory and Application of Cryptology and Informa-
tion Security, pages 37–54. Springer, 2003.

[52] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as
secure as factoring. In International conference on the theory and applications of
cryptographic techniques, pages 308–318. Springer, 1998.

[53] Ivan Damgård and Mads Jurik. A generalisation, a simpli. cation and some appli-
cations of paillier’s probabilistic public-key system. In International Workshop on
Public Key Cryptography, pages 119–136. Springer, 2001.

[54] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the forty-first annual ACM symposium on Theory of computing, pages 169–178,
2009.

[55] Michael Fellows and Neal Koblitz. Combinatorial cryptosystems galore! Contempo-
rary Mathematics, 168:51–51, 1994.

[56] Françoise Levy-dit Vehel and Ludovic Perret. A polly cracker system based on
satisfiability. In Coding, Cryptography and Combinatorics, pages 177–192. Springer,
2004.

[57] Le Van Ly. Polly two: a new algebraic polynomial-based public-key scheme. Applicable
Algebra in Engineering, Communication and Computing, 17:267–283, 2006.

[58] Rainer Steinwandt. A ciphertext-only attack on polly two. Applicable Algebra in
Engineering, Communication and Computing, 21(2):85–92, 2010.

[59] Françoise Levy-dit Vehel, Maria Grazia Marinari, Ludovic Perret, and Carlo Traverso.
A survey on polly cracker systems. In Gröbner Bases, Coding, and Cryptography,
pages 285–305. Springer, 2009.

[60] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts.
In Theory of Cryptography Conference, pages 325–341. Springer, 2005.

133

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[61] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for
nc/sup 1. In 40th Annual Symposium on Foundations of Computer Science (Cat.
No. 99CB37039), pages 554–566. IEEE, 1999.

[62] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Theory of Cryptography Conference, pages 575–594. Springer, 2007.

[63] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with
relatively small key and ciphertext sizes. In International Workshop on Public Key
Cryptography, pages 420–443. Springer, 2010.

[64] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
homomorphic encryption over the integers. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 24–43. Springer,
2010.

[65] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 1–23. Springer, 2010.

[66] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Proceedings
of the forty-fourth annual ACM symposium on Theory of computing, pages 1219–1234.
ACM, 2012.

[67] Zvika Brakerski and Vinod Vaikuntanathan. Fully Homomorphic Encryption from
Ring-LWE and Security for Key Dependent Messages. In Annual cryptology confer-
ence, pages 505–524. Springer, 2011.

[68] Nick Howgrave-Graham. Approximate integer common divisors. In International
Cryptography and Lattices Conference, pages 51–66. Springer, 2001.

[69] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT), 6(3):13, 2014.

[70] Ronald Cramer, Ivan Bjerre Damgård, et al. Secure multiparty computation. Cam-
bridge University Press, 2015.

[71] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general composition
theorem for secure reactive systems. In Theory of Cryptography Conference, pages
336–354. Springer, 2004.

[72] Michael O Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive, 2005:187, 2005.

134

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[73] Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings of the
twentieth annual ACM symposium on Theory of computing, pages 20–31. ACM, 1988.

[74] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Communications of the ACM, 28(6):637–647, 1985.

[75] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[76] George Robert Blakley. Safeguarding cryptographic keys. In Managing Requirements
Knowledge, International Workshop on, pages 313–313. IEEE Computer Society,
1979.

[77] Edward Waring. Vii. problems concerning interpolations. Philosophical transactions
of the royal society of London, (69):59–67, 1779.

[78] Amos Beimel. Secret-sharing schemes: a survey. In International Conference on
Coding and Cryptology, pages 11–46. Springer, 2011.

[79] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foundations of
Computer Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

[80] Thore Graepel, Kristin Lauter, and Michael Naehrig. Ml confidential: Machine
learning on encrypted data. In International Conference on Information Security
and Cryptology, pages 1–21. Springer, 2012.

[81] Ximeng Liu, Rongxing Lu, Jianfeng Ma, Le Chen, and Baodong Qin. Privacy-
preserving patient-centric clinical decision support system on naive bayesian classifi-
cation. IEEE journal of biomedical and health informatics, 20(2):655–668, 2016.

[82] Ximeng Liu, Robert H Deng, Kim-Kwang Raymond Choo, and Jian Weng. An
efficient privacy-preserving outsourced calculation toolkit with multiple keys. IEEE
Transactions on Information Forensics and Security, 11(11):2401–2414, 2016.

[83] Sangwook Kim, Masahiro Omori, Takuya Hayashi, Toshiaki Omori, Lihua Wang,
and Seiichi Ozawa. Privacy-Preserving Naive Bayes Classification Using Fully
Homomorphic Encryption. In International Conference on Neural Information
Processing, pages 349–358. Springer, 2018.

[84] XiaoFeng Wang, Haixu Tang, Shuang Wang, Xiaoqian Jiang, Wenhao Wang, Diyue
Bu, Lei Wang, Yicheng Jiang, and Chenghong Wang. idash secure genome analysis
competition 2017, 2018.

135

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[85] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In International Conference on
the Theory and Application of Cryptology and Information Security, pages 409–437.
Springer, 2017.

[86] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon. Logistic
regression model training based on the approximate homomorphic encryption. BMC
medical genomics, 11(4):83, 2018.

[87] RL Kennedy, HS Fraser, LN McStay, and RF Harrison. Early diagnosis of acute
myocardial infarction using clinical and electrocardiographic data at presentation:
derivation and evaluation of logistic regression models. European heart journal,
17(8):1181–1191, 1996.

[88] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. Logistic
regression on homomorphic encrypted data at scale. 33(01):9466–9471, 2019.

[89] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. Cryptonets: Applying neural networks to encrypted data with
high throughput and accuracy. In International Conference on Machine Learning,
pages 201–210, 2016.

[90] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security
for a ring-based fully homomorphic encryption scheme. In IMA International
Conference on Cryptography and Coding, pages 45–64. Springer, 2013.

[91] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[92] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural
networks over encrypted data. arXiv preprint arXiv:1711.05189, 2017.

[93] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast
homomorphic evaluation of deep discretized neural networks. In Annual International
Cryptology Conference, pages 483–512. Springer, 2018.

[94] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 3–33. Springer, 2016.

136

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[95] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings
of the 22nd ACM SIGSAC conference on computer and communications security,
pages 1310–1321. ACM, 2015.

[96] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. Privacy-preserving
deep learning via additively homomorphic encryption. IEEE Transactions on Infor-
mation Forensics and Security, 13(5):1333–1345, 2018.

[97] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 19–38. IEEE, 2017.

[98] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[99] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party secure com-
putation for neural network training. Proceedings on Privacy Enhancing Technologies,
1:24, 2019.

[100] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pages 265–283, 2016.

[101] Nikhil Ketkar. Introduction to pytorch. In Deep learning with python, pages 195–208.
Springer, 2017.

[102] Morten Dahl, Jason Mancuso, Yann Dupis, Ben Decoste, Morgan Giraud, Ian
Livingstone, Justin Patriquin, and Gavin Uhma. Private machine learning in
tensorflow using secure computation. arXiv preprint arXiv:1810.08130, 2018.

[103] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In Annual Cryptology Conference,
pages 643–662. Springer, 2012.

[104] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel
Rueckert, and Jonathan Passerat-Palmbach. A generic framework for privacy pre-
serving deep learning. arXiv preprint arXiv:1811.04017, 2018.

[105] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Feder-
ated optimization: Distributed machine learning for on-device intelligence. arXiv
preprint arXiv:1610.02527, 2016.

[106] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. Ezpc: Programmable, efficient, and scalable secure two-party computation

137

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

for machine learning. Technical report, Cryptology ePrint Archive, Report 2017/1109.
https://eprint. iacr. org/2017/1109, 2017.

[107] Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework for
efficient mixed-protocol secure two-party computation. In NDSS, 2015.

[108] John C Mitchell, Rahul Sharma, Deian Stefan, and Joe Zimmerman. Information-
flow control for programming on encrypted data. In 2012 IEEE 25th Computer
Security Foundations Symposium, pages 45–60. IEEE, 2012.

[109] Dahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron Sella, et al. Fairplay-secure
two-party computation system. In USENIX Security Symposium, volume 4, page 9.
San Diego, CA, USA, 2004.

[110] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In European Symposium on Research in Computer
Security, pages 192–206. Springer, 2008.

[111] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. Oblivm:
A programming framework for secure computation. In 2015 IEEE Symposium on
Security and Privacy, pages 359–376. IEEE, 2015.

[112] Janus Dam Nielsen and Michael I Schwartzbach. A domain-specific programming
language for secure multiparty computation. In Proceedings of the 2007 workshop
on Programming languages and analysis for security, pages 21–30. ACM, 2007.

[113] Aseem Rastogi, Matthew A Hammer, and Michael Hicks. Wysteria: A program-
ming language for generic, mixed-mode multiparty computations. In 2014 IEEE
Symposium on Security and Privacy, pages 655–670. IEEE, 2014.

[114] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and
Nina Taft. Privacy-preserving ridge regression on hundreds of millions of records. In
2013 IEEE Symposium on Security and Privacy, pages 334–348. IEEE, 2013.

[115] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. Introduction to
linear regression analysis, volume 821. John Wiley & Sons, 2012.

[116] Hyeong-Jin Kim, Hyeong-Il Kim, and Jae-Woo Chang. A privacy-preserving knn
classification algorithm using yao’s garbled circuit on cloud computing. In 2017
IEEE 10th International Conference on Cloud Computing (CLOUD), pages 766–769.
IEEE, 2017.

[117] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine
learning classification over encrypted data. In NDSS, volume 4324, page 4325, 2015.

138

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[118] Paul Viola, Michael Jones, et al. Rapid object detection using a boosted cascade of
simple features. CVPR (1), 1:511–518, 2001.

[119] Jian Liu, Mika Juuti, Yao Lu, and N Asokan. Oblivious neural network predictions
via minionn transformations. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 619–631. ACM, 2017.

[120] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE:
A Low Latency Framework for Secure Neural Network Inference. In William Enck
and Adrienne Porter Felt, editors, 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 1651–1669. USENIX
Association, 2018.

[121] Yehuda Lindell. How to
te it–A Tutorial on the Simulation Proof Technique. In Tutorials on the Foundations
of Cryptography, pages 277–346. Springer, 2017.

[122] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Kdd,
volume 2, page 4, 2000.

[123] David Maxwell Chickering, Christopher Meek, and Robert Rounthwaite. Efficient
Determination of Dynamic Split Points in a Decision Tree. In Proceedings 2001
IEEE International Conference on Data Mining, pages 91–98. IEEE, 2001.

[124] Lichun Li, Rongxing Lu, Kim-Kwang Raymond Choo, Anwitaman Datta, and Jun
Shao. Privacy-preserving-outsourced association rule mining on vertically partitioned
databases. IEEE Transactions on Information Forensics and Security, 11(8):1847–
1861, 2016.

[125] Pei-Yih Ting and Xiao-Wei Huang. Distributed Paillier Plaintext Equivalence Test.
IJ Network Security, 6(3):258–264, 2008.

[126] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the
trade, pages 421–436. Springer, 2012.

[127] Christine Jost, Ha Lam, Alexander Maximov, and Ben JM Smeets. Encryption
performance improvements of the paillier cryptosystem. IACR Cryptol. ePrint Arch.,
2015:864, 2015.

[128] Pierrick Gaudry, Alexander Kruppa, and Paul Zimmermann. A gmp-based im-
plementation of schönhage-strassen’s large integer multiplication algorithm. In
Proceedings of the 2007in1982auditing international symposium on Symbolic and
algebraic computation, pages 167–174, 2007.

139

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[129] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.org/.

[130] Ran Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of CRYPTOLOGY, 13(1):143–202, 2000.

[131] OpenMP Architecture Review Board. OpenMP Application Program Interface
Version 3.0, May 2008.

[132] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul
Zimmermann. MPFR: A Multiple-Precision Binary Floating-Point Library with
Correct Rounding. ACM Transactions on Mathematical Software (TOMS), 33(2):13,
2007.

[133] Ximeng Liu, Robert Deng, Kim-Kwang Raymond Choo, and Yang Yang. Privacy-
Preserving Outsourced Support Vector Machine Design for Secure Drug Discovery.
IEEE Transactions on Cloud Computing, 2018.

[134] Chen Li and Wenping Ma. Comments on “An Efficient Privacy-Preserving Out-
sourced Calculation Toolkit with Multiple Keys”. IEEE Transactions on Information
Forensics and Security, 13(10):2668–2669, 2018.

[135] Dheeru Dua and Casey Graff. UCI machine learning repository,
https://archive.ics.uci.edu/ml, 2017.

[136] Yurii E Nesterov. A method for solving the convex programming problem with
convergence rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547,
1983.

[137] The Cambridge Analytica Scandal. https://www.theguardian.com/news/series/
cambridge-analytica-files.

[138] T.C. Sottek and Janus Kopfstein. Everything You Need to Know
About PRISM. https://www.theverge.com/2013/7/17/4517480/
nsa-spying-prism-surveillance-cheat-sheet.

[139] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger-
man, Vladimir Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan
McMahan, et al. Towards federated learning at scale: System design. MLSys, 2019.

[140] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi
Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-
Hein, et al. The future of digital health with federated learning. NPJ digital medicine,
3(1):1–7, 2020.

140

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

http://gmplib.org/
https://www.theguardian.com/news/series/cambridge-analytica-files
https://www.theguardian.com/news/series/cambridge-analytica-files
https://www.theverge.com/2013/7/17/4517480/nsa-spying-prism-surveillance-cheat-sheet
https://www.theverge.com/2013/7/17/4517480/nsa-spying-prism-surveillance-cheat-sheet

Bibliography

[141] Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning for
open banking. In Federated learning, pages 240–254. Springer, 2020.

[142] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local Model Poison-
ing Attacks to Byzantine-Robust Federated Learning. In 29th USENIX Security
Symposium (USENIX Security 2020), pages 1605–1622, 2020.

[143] Virat Shejwalkar and Amir Houmansadr. Manipulating the Byzantine: Optimizing
Model Poisoning Attacks and Defenses for Federated Learning. In Network and
Distributed Systems Security Symposium (NDSS 2021), 2021.

[144] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
Analyzing Federated Learning Through an Adversarial Lens. In International
Conference on Machine Learning (ICML 2019), pages 634–643, 2019.

[145] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh
Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack
of the tails: Yes, you really can backdoor federated learning. arXiv preprint
arXiv:2007.05084, 2020.

[146] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[147] Abhijit Guha Roy, Shayan Siddiqui, Sebastian Pölsterl, Nassir Navab, and Christian
Wachinger. Braintorrent: A peer-to-peer environment for decentralized federated
learning. arXiv preprint arXiv:1905.06731, 2019.

[148] Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo,
Yi Zhou, Heiko Ludwig, Feng Yan, and Yue Cheng. Tifl: A tier-based federated
learning system. In Proceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing, pages 125–136, 2020.

[149] Wenyu Zhang, Xiumin Wang, Pan Zhou, Weiwei Wu, and Xinglin Zhang. Client
selection for federated learning with non-iid data in mobile edge computing. IEEE
Access, 9:24462–24474, 2021.

[150] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger-
man, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan
McMahan, et al. Towards federated learning at scale: System design. arXiv preprint
arXiv:1902.01046, 2019.

141

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[151] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. Communication-efficient learning of deep networks from
decentralized data, 2017.

[152] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Feder-
ated optimization: Distributed machine learning for on-device intelligence, 2016.

[153] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav
Choudhary. Federated learning with personalization layers, 2019.

[154] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman
Khazaeni. Federated learning with matched averaging, 2020.

[155] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data poisoning
attacks against federated learning systems. In European Symposium on Research in
Computer Security, pages 480–501, 2020.

[156] Di Cao, Shan Chang, Zhijian Lin, Guohua Liu, and Donghong Sun. Understanding
distributed poisoning attack in federated learning. In 2019 IEEE 25th International
Conference on Parallel and Distributed Systems (ICPADS), pages 233–239. IEEE,
2019.

[157] Yang Liu, Zhihao Yi, and Tianjian Chen. Backdoor attacks and defenses in feature-
partitioned collaborative learning. arXiv preprint arXiv:2007.03608, 2020.

[158] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Local
model poisoning attacks to byzantine-robust federated learning. arXiv preprint
arXiv:1911.11815, 2019.

[159] Chien-Lun Chen, Leana Golubchik, and Marco Paolieri. Backdoor attacks on
federated meta-learning. arXiv preprint arXiv:2006.07026, 2020.

[160] Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. Learning to detect
malicious clients for robust federated learning. arXiv preprint arXiv:2002.00211,
2020.

[161] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploit-
ing unintended feature leakage in collaborative learning. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 691–706. IEEE, 2019.

[162] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis
of deep learning: Passive and active white-box inference attacks against centralized
and federated learning. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 739–753. IEEE, 2019.

142

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[163] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Advances
in Neural Information Processing Systems, pages 14774–14784, 2019.

[164] Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy, Stacey
Truex, and Yanzhao Wu. A framework for evaluating gradient leakage attacks in
federated learning. arXiv preprint arXiv:2004.10397, 2020.

[165] Jierui Lin, Min Du, and Jian Liu. Free-riders in federated learning: Attacks and
defenses. arXiv preprint arXiv:1911.12560, 2019.

[166] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndić, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning
at test time. In Joint European conference on machine learning and knowledge
discovery in databases, pages 387–402. Springer, 2013.

[167] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[168] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE,
2017.

[169] James Newsome, Brad Karp, and Dawn Song. Paragraph: Thwarting signature
learning by training maliciously. In International Workshop on Recent Advances in
Intrusion Detection, pages 81–105. Springer, 2006.

[170] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph, Benjamin IP
Rubinstein, Udam Saini, Charles Sutton, J Doug Tygar, and Kai Xia. Exploiting
machine learning to subvert your spam filter. LEET, 8:1–9, 2008.

[171] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-hon
Lau, Satish Rao, Nina Taft, and J Doug Tygar. Antidote: understanding and
defending against poisoning of anomaly detectors. In Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement, pages 1–14, 2009.

[172] Andrew Newell, Rahul Potharaju, Luojie Xiang, and Cristina Nita-Rotaru. On the
practicality of integrity attacks on document-level sentiment analysis. In Proceedings
of the 2014 Workshop on Artificial Intelligent and Security Workshop, pages 83–93,
2014.

[173] Mehran Mozaffari-Kermani, Susmita Sur-Kolay, Anand Raghunathan, and Niraj K
Jha. Systematic poisoning attacks on and defenses for machine learning in healthcare.
IEEE journal of biomedical and health informatics, 19(6):1893–1905, 2014.

143

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

Bibliography

[174] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical
secure aggregation for privacy-preserving machine learning. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages
1175–1191, 2017.

[175] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:
Evaluating backdooring attacks on deep neural networks. IEEE Access, 7:47230–
47244, 2019.

[176] Peva Blanchard, Rachid Guerraoui, Julien Stainer, and Others. Machine learning
with adversaries: Byzantine tolerant gradient descent. In Advances in Neural
Information Processing Systems, pages 119–129, 2017.

[177] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized Byzantine-Tolerant
SGD. arXiv e-prints, page arXiv:1802.10116, February 2018.

[178] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh
Agarwal, Jy yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the
tails: Yes, you really can backdoor federated learning, 2020.

[179] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
Machine learning with adversaries: Byzantine tolerant gradient descent. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[180] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-
robust distributed learning: Towards optimal statistical rates. In International
Conference on Machine Learning, pages 5650–5659, 2018.

[181] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H. Brendan McMahan.
Can you really backdoor federated learning? CoRR, abs/1911.07963, 2019.

[182] Krishna Pillutla, Sham M. Kakade, and Zaid Harchaoui. Robust aggregation for
federated learning, 2019.

[183] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. FLTrust: Byzantine-
Robust Federated Learning via Trust Bootstrapping. In Network and Distributed
Systems Security Symposium (NDSS 2021), 2021.

[184] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. The Limitations of
Federated Learning in Sybil Settings. 2020.

144

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

[185] Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. The security
of machine learning. Machine Learning, 81(2):121–148, 2010.

[186] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A Little Is Enough: Circumventing
Defenses For Distributed Learning. In Advances in Neural Information Processing
Systems (NeurIPS 2019), volume 32, 2019.

[187] Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Byzantine-Robust Learning
on Heterogeneous Datasets via Resampling. arXiv e-prints, page arXiv:2006.09365,
2020.

[188] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems (NeurIP 2019), pages 8024–8035.
2019.

[189] Sébastien Rouault Georgios Damaskinos, Arsany Guirguis. Aggregathor. https:
//github.com/LPD-EPFL/AggregaThor, 2019.

[190] Hongyi Wang Kartik Sreenivasan. Ood federated learning. https://github.com/
ksreenivasan/OOD-Federated-Learning, 2020.

[191] Shuhao Fu, Chulin Xie, Bo Li, and Qifeng Chen. Attack-resistant feder-
ated learning with residual-based reweighting. https://github.com/fushuhao6/
Attack-Resistant-Federated-Learning, 2019.

[192] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[193] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. CoRR, abs/1708.07747, 2017.

[194] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of
non-identical data distribution for federated visual classification. arXiv preprint
arXiv:1909.06335, 2019.

[195] Jiachen Zhong, Xuanqing Liu, and Cho-Jui Hsieh. Improving the speed and quality
of gan by adversarial training. arXiv preprint arXiv:2008.03364, 2020.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

https://github.com/LPD-EPFL/AggregaThor
https://github.com/LPD-EPFL/AggregaThor
https://github.com/ksreenivasan/OOD-Federated-Learning
https://github.com/ksreenivasan/OOD-Federated-Learning
https://github.com/fushuhao6/Attack-Resistant-Federated-Learning
https://github.com/fushuhao6/Attack-Resistant-Federated-Learning

FOLIO ADMINISTRATIF

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON

NOM : TALBI DATE de SOUTENANCE : 19/11/2021
(avec précision du nom de jeune fille, le cas échéant)

Prénoms : Rania

TITRE: Robust and Privacy Preserving Distributed Machine Learning

NATURE : Doctorat Numéro d'ordre : 2021LYSEI077

Ecole doctorale : InfosMaths

Spécialité : Informatique

RESUME :

Avec l’omniprésence des services numériques, d’´énormes quantités de données sont continuellement générées
et collectées. Les algorithmes d’apprentissage automatique (ML) permettant d’extraire des connaissances
précieuses à partir de ces données et ont été appliqués dans de nombreux domaines, tels que l’assistance
médicale, le transport, la prédiction du comportement des utilisateurs, et bien d’autres.
Dans beaucoup de ces applications, les données sont collectées à partir de différentes sources et un entraînement
distribué est nécessaire pour apprendre des modèles globaux sur ces données. Néanmoins, dans le cas de
données sensibles, l'exécution d'algorithmes ML traditionnels sur ces données peut conduire à de graves
violations de la vie privée en divulguant des informations sensibles sur les propriétaires et les utilisateurs des
données.

Dans cette thèse, nous proposons des mécanismes permettant d'améliorer la préservation de la vie privée et la
robustesse dans le domaine de l'apprentissage automatique distribué.

La première contribution de cette thèse s'inscrit dans la catégorie d'apprentissage automatique respectueux de la
vie privée basé sur la cryptographie.

De nombreux travaux de l'état de l'art proposent des solutions basées sur la cryptographie pour assurer la
préservation de la vie privée dans l'apprentissage automatique distribué. Néanmoins, ces travaux sont connus
pour induire d'énormes coûts en termes de temps d'exécution et d'espace. Dans cette lignée de travaux, nous
proposons PrivML, un framework externalisé d'apprentissage collaboratif basé sur le chiffrement homomorphe, qui
permet d'optimiser le temps d'exécution et la consommation de bande passante pour les algorithmes ML les plus
utilisés, moyennant de nombreuses techniques telles que le packing, les calculs approximatifs et le calcul
parallèle.

Les autres contributions de cette thèse abordent les questions de robustesse dans le domaine de l'apprentissage
fédéré.

En effet, l'apprentissage fédéré est le premier framework à garantir la préservation de la vie privée par conception
dans le cadre de l'apprentissage automatique distribué. Néanmoins, il a été démontré que ce framework est
toujours vulnérable à de nombreuses attaques, parmi lesquelles nous trouvons les attaques par empoisonnement,
où les participants utilisent délibérément des données d'entraînement erronées pour provoquer une mauvaise
classification au moment de l'inférence.

Nous démontrons que les mécanismes de mitigation de l'empoisonnement de l'état de l'art ne parviennent pas à
détecter certaines attaques par empoisonnement et nous proposons ARMOR, un mécanisme de mitigation de

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

l'empoisonnement pour l'apprentissage fédéré qui parvient à détecter ces attaques sans nuire à l'utilité des
modèles.

MOTS-CLÉS :
Préservation de la vie privée, robustesse, apprentissage automatique distribué, apprentissage fédéré, attaques par
empoisonnement, chiffrement homomorphe.

Laboratoire (s) de recherche :

LIRIS

Directeur de thèse:

Pr. Sara Bouchenak

Président de jury :

Composition du jury :

- Benjamin Nguyen, Professeur INSA Val de Loire, Rapporteur.
- Marc Tommasi Professeur à l’université de Lille, Rapporteur.
- Lydia Chen, Maître de conférences, TU Delft, Examinatrice.
- Lionel Brunie, Professeur INSA Lyon, Examinateur.
- Sara Bouchenak, Professeur INSA Lyon, Directrice de thèse.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI077/these.pdf
© [R. Talbi], [2021], INSA Lyon, tous droits réservés

	Notice XML
	Page de titre
	Abstract
	Résumé
	Contents
	List of Acronyms
	List of Figures
	List of Tables
	Part I Introduction
	I.1 Context and Problem Statement
	I.2 Improving the Efficiency of Cryptography-Based Privacy Preserving Machine Learning
	I.3 Mitigating Poisoning Attacks in Federated Learning
	I.4 Summary of Contributions
	I.4.1 Publications and Communications
	I.4.2 Developed software

	I.5 Thesis Roadmap

	Part II PrivML: Improving the Efficiency of Cryptography-Based Privacy Preserving Machine Learning
	II.1 Background on Privacy Preserving Machine Learning
	II.1.1 Background on Machine Learning
	II.1.2 Background on Privacy Preservation
	II.1.2.1 Privacy Preserving Machine Learning (PPML)
	II.1.2.2 A Taxonomy of Privacy Preserving Machine Learning Methods
	II.1.2.3 Basic Concepts of PPML
	II.1.2.4 Evaluation Metrics of PPML Methods

	II.1.3 Related Work on Non-Cryptographic Privacy Preserving Machine Learning Techniques
	II.1.3.1 Perturbation Approaches
	II.1.3.2 Group-Based Anonymization
	II.1.3.3 Machine Learning Output Privacy

	II.1.4 Background on Cryptography
	II.1.4.1 Homomorphic Encryption
	II.1.4.2 Secure Multi-Party Computation (MPC)
	II.1.4.3 Universal Primitives of MPC

	II.1.5 Related Work on Cryptography-Based Privacy Preserving Machine Learning
	II.1.5.1 Homomorphic Encryption-Based PPML Methods
	II.1.5.2 Secure Multi-Party-Based PPML Methods
	II.1.5.3 Hybrid PPML Methods

	II.1.6 Summary of Related Work on PPML

	II.2 Design Principles of PrivML
	II.2.1 System Model and Privacy Requirements
	II.2.1.1 System Model
	II.2.1.2 Threat Model
	II.2.1.3 Privacy Requirements

	II.2.2 Cryptographic Primitives Underlying PrivML
	II.2.2.1 The DT-PKC cryptosystem
	II.2.2.2 Cryptographic blinding

	II.2.3 Design Principles of PrivML
	II.2.3.1 Overview of PrivML
	II.2.3.2 Privacy Preserving Very Fast Decision Trees
	II.2.3.3 Privacy Preserving Naive Bayes
	II.2.3.4 Privacy Preserving Logistic Regression

	II.2.4 Proposed Optimization Techniques
	II.2.4.1 Round Complexity Minimization
	II.2.4.2 Logarithmic Probabilities for Naive Bayes
	II.2.4.3 Random Large Numbers and Powers Pre-computation
	II.2.4.4 Optimized Large Number Arithmetic
	II.2.4.5 Parallel Computing
	II.2.4.6 Incremental Model Learning

	II.2.5 Security Analysis
	II.2.5.1 Security of PrivML’s Building Blocks
	II.2.5.2 Security of PrivML’s Classifiers

	II.2.6 Summary

	II.3 Evaluation of PrivML
	II.3.1 Implementation Details of PrivML
	II.3.2 Experimental Setup
	II.3.2.1 Hardware Environment
	II.3.2.2 Evaluation Datasets

	II.3.3 End-to-End Evaluation of PrivML
	II.3.3.1 Evaluation of Private Very Fast Decision Trees
	II.3.3.2 Evaluation of Private Naive Bayes
	II.3.3.3 Evaluation of Private Logistic Regression

	II.3.4 Low-Level Evaluation of PrivML
	II.3.4.1 Performance of Underlying Cryptographic Primitives
	II.3.4.2 Performance of Underlying Sub-Protocols
	II.3.4.3 End-to-End Microbenchmarks of PrivML

	II.3.5 Comparison of PrivML with Closest State-of-the-art Solutions
	II.3.6 Summary

	Part III ARMOR: Mitigating Poisoning Attacks inFederated Learning
	III.1 Background and Related Work on Robust Federated Learning
	III.1.1 Generalities on Federated Learning
	III.1.1.1 Federated Learning’s Architecture and Workflow
	III.1.1.2 Types of Federated Learning Settings

	III.1.2 Related Work on Attacks Targeting Federated Learning
	III.1.3 Related Work on Robust Federated Learning
	III.1.3.1 Types of Poisoning Attacks
	III.1.3.2 Poisoning Scenarios in Federated Learning
	III.1.3.3 Poisoning Mitigation in Federated Learning
	III.1.4 Summary

	III.2 Design Principles of ARMOR
	III.2.1 Threat Model and Problem Illustration
	III.2.1.1 Thteat Model
	III.2.1.2 Implementing Edge-case Poisoning Attacks
	III.2.1.3 Problem Illustration

	III.2.2 ARMOR’s Defense Objectives.
	III.2.3 Overview of ARMOR
	III.2.4 Background on Generative Adversarial Networks
	III.2.5 ARgan: ARMOR ’s Generative Adeversarial Networks
	III.2.6 MORpheus: ARMOR’s Attack Detection Mechanism
	III.2.7 Summary

	III.3 Evaluation of ARMOR
	III.3.1 Implementation Details
	III.3.2 Datasets and Model Architectures
	III.3.3 Experimental Setup
	III.3.3.1 Hardware and Software Environment
	III.3.3.2 FL System Settings
	III.3.3.3 Evaluation Metrics

	III.3.4 Experimental Results
	III.3.4.1 ARMOR Achieving the Defense Objectives
	III.3.4.2 Impact of Number of Malicious Clients
	III.3.4.3 Effect of Non-IID Data Distributions
	III.3.4.4 Effect of Differential Privacy
	III.3.4.5 Cost of Defense

	III.3.5 Summary

	Part IV Conclusion and Perspectives
	Concluding Remarks
	Research Perspectives

	Bibliography
	FOLIO ADMINISTRATIF

