
HAL Id: tel-03670830
https://theses.hal.science/tel-03670830v1

Submitted on 17 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical study on viscoelastic Rayleigh-Bénard
convection

Xin Zheng

To cite this version:
Xin Zheng. Numerical study on viscoelastic Rayleigh-Bénard convection. Mécanique des fluides
[physics.class-ph]. Université de Lyon, 2021. Français. �NNT : 2021LYSEI088�. �tel-03670830�

https://theses.hal.science/tel-03670830v1
https://hal.archives-ouvertes.fr


N°d’ordre NNT : 2021LYSEI088

THESE de DOCTORAT DE L’UNIVERSITE DE LYON 
opérée au sein de 

L’INSA LYON

Ecole Doctorale N° EDA162  

Mécanique, Energétique, Génie Civil, Acoustique 

Spécialité/ discipline de doctorat : Thermique Energétique 

Soutenue publiquement le 09/12/2021, par : 

Xin ZHENG 

Numerical Study on Viscoelastic 
Rayleigh-Bénard Convection 

Devant le jury composé de : 

Nouar, Chérif/Directeur de recherche/ENSEM, Nancy    Rapporteur 

Castelain, Cathy/Directrice de recherche/Université de Nantes  Rapporteur 

Le Quéré, Patrick/Directeur de recherche émérite/Université Paris-Saclay Examinateur 

XIN, Shihe/Professeur des Universités/INSA-LYON    Directeur de thèse 

BOUTAOUS, M’hamed/Maître de Conférences/INSA-LYON   Co-directeur de thèse 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



Département FEDORA – INSA Lyon - Ecoles Doctorales 

������ ������	��
������ NOM ET COORDONNEES DU RESPONSABLE�

CHIMIE CHIMIE DE LYON 

https://www.edchimie-lyon.fr 
Sec. : Renée EL MELHEM 

Bât. Blaise PASCAL, 3e étage 

secretariat@edchimie-lyon.fr 

�

M. Stéphane DANIELE 
C2P2-CPE LYON-UMR 5265 

Bâtiment F308, BP 2077 

43 Boulevard du 11 novembre 1918 

69616 Villeurbanne 

directeur@edchimie-lyon.fr 
�

���� ÉLECTRONIQUE, ÉLECTROTECHNIQUE, 
AUTOMATIQUE 

https://edeea.universite-lyon.fr 
Sec. : Stéphanie CAUVIN 

Bâtiment Direction INSA Lyon 

Tél : 04.72.43.71.70  

secretariat.edeea@insa-lyon.fr�

M. Philippe DELACHARTRE 
INSA LYON 

Laboratoire CREATIS 

Bâtiment Blaise Pascal, 7 avenue Jean Capelle 

69621 Villeurbanne CEDEX 

Tél : 04.72.43.88.63  
philippe.delachartre@insa-lyon.fr�

����� ÉVOLUTION, ÉCOSYSTÈME, 
MICROBIOLOGIE, MODÉLISATION 

http://e2m2.universite-lyon.fr 
Sec. : Sylvie ROBERJOT 

Bât. Atrium, UCB Lyon 1 

Tél : 04.72.44.83.62 

secretariat.e2m2@univ-lyon1.fr 
�

M. Philippe NORMAND 
Université Claude Bernard Lyon 1 

UMR 5557 Lab. d’Ecologie Microbienne 

Bâtiment Mendel 

43, boulevard du 11 Novembre 1918 

69 622 Villeurbanne CEDEX 
philippe.normand@univ-lyon1.fr�

�	���� INTERDISCIPLINAIRE SCIENCES-SANTÉ 

http://ediss.universite-lyon.fr 
Sec. : Sylvie ROBERJOT 

Bât. Atrium, UCB Lyon 1 

Tél : 04.72.44.83.62 

secretariat.ediss@univ-lyon1.fr 
�

Mme Sylvie RICARD-BLUM 
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires 

(ICBMS) - UMR 5246 CNRS - Université Lyon 1 

Bâtiment Raulin - 2ème étage Nord 

43 Boulevard du 11 novembre 1918 

69622 Villeurbanne Cedex 

Tél : +33(0)4 72 44 82 32 
sylvie.ricard-blum@univ-lyon1.fr 
�

������
��� INFORMATIQUE ET MATHÉMATIQUES 

http://edinfomaths.universite-lyon.fr 
Sec. : Renée EL MELHEM 

Bât. Blaise PASCAL, 3e étage 

Tél : 04.72.43.80.46  

infomaths@univ-lyon1.fr�

M. Hamamache KHEDDOUCI 
Université Claude Bernard Lyon 1 

Bât. Nautibus 
43, Boulevard du 11 novembre 1918 
69 622 Villeurbanne Cedex France 
Tél : 04.72.44.83.69 
hamamache.kheddouci@univ-lyon1.fr�

����������
MATÉRIAUX DE LYON 

http://ed34.universite-lyon.fr 
Sec. : Yann DE ORDENANA 

Tél : 04.72.18.62.44 

yann.de-ordenana@ec-lyon.fr�

M. Stéphane BENAYOUN 
Ecole Centrale de Lyon 

Laboratoire LTDS 

36 avenue Guy de Collongue 

69134 Ecully CEDEX 

Tél : 04.72.18.64.37 
stephane.benayoun@ec-lyon.fr�

����� MÉCANIQUE, ÉNERGÉTIQUE, 
GÉNIE CIVIL, ACOUSTIQUE 

http://edmega.universite-lyon.fr 
Sec. : Stéphanie CAUVIN 

Tél : 04.72.43.71.70  

Bâtiment Direction INSA Lyon 

mega@insa-lyon.fr�

M. Jocelyn BONJOUR 
INSA Lyon 

Laboratoire CETHIL  

Bâtiment Sadi-Carnot 

9, rue de la Physique  

69621 Villeurbanne CEDEX  
jocelyn.bonjour@insa-lyon.fr�

����� ScSo* 

https://edsciencessociales.universite-lyon.fr 
Sec. : Mélina FAVETON 

INSA : J.Y. TOUSSAINT 

Tél : 04.78.69.77.79 
�������	�
�������
�������	��

M. Christian MONTES 
Université Lumière Lyon 2 

86 Rue Pasteur 

69365 Lyon CEDEX 07 
christian.montes@univ-lyon2.fr�

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



iii

INSA LYON

Abstract

Mecanique, energetique, Genie Civil, acoustique

Center for Energy and Thermal Sciences of Lyon (CETHIL)

Doctor of Philosophy

Numerical study on viscoelastic Rayleigh-Bénard Convection

by Xin ZHENG

A direct numerical simulation (DNS) solver based on Fortran language was developed for

the viscoelastic laminar Rayleigh-Bénard convection in 2D and 3D rectangular cavity. The

solver considers a quasi-linear treatment to hyperbolic terms of the governing equation sys-

tem to avoid numerical instability at high Weissenberg number. The procedure of DNS solver

is based on Finite difference method and includes a variety of temporal discrete schemes (such

as 1-order Euler, 2-order backward differential formula), spatial discrete schemes (such as the

upwind scheme, central differential scheme, and High Order Upstream Central scheme), and

viscoelastic constitutive models (such as Oldroyd-B (OB) and Phan-Thien-Thanner (PTT) mod-

els).

Most of the investigation in this thesis focuses on the viscoelastic RBC with the PTT model,

because the PTT model is a nonlinear model that is suitable for simulating more complex vis-

coelastic fluids. The contents of this thesis can be divided into three parts: (a) we focused on

the viscoelastic RBC in a 2 : 1 cavity and presented a particular regular reverse convection phe-

nomenon in detail. At the same time, we studied the influence of different rheological parame-

ters of viscoelastic fluid (ǫ, ξ, β, and We) on the flow and heat transfer characteristics. We have

also discovered, for the first time, the second critical Ra corresponding to the transition from

reversal convection to steady convection. (b) We also studied the viscoelastic RBC in the tilted

cavity and checked the influence of (β,We) on the convection structure and heat transfer. The

results show that flow structure, heat transfer capacity, and critical Rayleigh number of tilted

RBC are almost the same for a medium filled with weak elasticity fluids (β = 0.9,We = 0.1)

and Newtonian fluids. However, flow pattern transition process will change dramatically, even

if the inclination angle is small (α < 2), when the fluid is very elastic (β = 0.1,We > 0.5). (c)

preliminary numerical study about three-dimensional viscoelastic RBC has also started in this

thesis, in order to see how the periodic convection with strong elasticity works in 3D cavity.
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INSA LYON

Abstract

Mecanique, energetique, Genie Civil, acoustique

Center for Energy and Thermal Sciences of Lyon (CETHIL)

Doctor of Philosophy

Numerical study on viscoelastic Rayleigh-Bénard Convection

by Xin ZHENG

Un solveur de simulation numérique directe (DNS) basé sur le langage Fortran a été développé

pour la convection de Rayleigh-Bénard laminaire viscoélastique dans des cavités rectangulaires

2D et 3D. Le solveur considère un traitement quasi-linéaire des termes hyperboliques du sys-

tème d’équations gouvernant pour éviter l’instabilité numérique à un nombre de Weissenberg

élevé. Le solveur DNS développé est basé sur la méthode des différences finies et comprend

plusieurs schemas temporels (tels que Euler d’ordre 1, Euler d’ordre 2), des schémas spatiaux

(tels que le schéma amont, schéma centré, et HOUC) et deux modèles constitutifs viscoélas-

tiques (les modèles Oldroyd-B (OB) et Phan-Thien-Thanner (PTT)).

La plupart de travaux de recherche realisés dans cette thèse concernent la RBC viscoélas-

tique avec le modèle PTT, car le modèle PTT est un modèle non linéaire qui est plus approprié

pour simuler des fluides viscoélastiques complexes. Le contenu de cette thèse peut être divisé

en trois parties: (a) nous nous concentrons sur le RBC viscoélastique dans une cavité 2D de

rapport de forme 2 : 1 et nous avons présenté en détail le phénomène de convection inverse

régulier. En même temps, nous avons étudié l’influence de différents paramètres rhéologiques

du fluide viscoélastique (ǫ, ξ, β et We) sur les caractéristiques d’écoulement et de transfert de

chaleur. Nous avons également découvert, pour la première fois, le deuxième Ra critique cor-

respondant á la transition de la convection d’inversion à la convection stationnaire. (b) Nous

avons également étudié la RBC viscoélastique dans une cavité inclinée et vérifié l’influence de

(β,We) sur la structure d’écoulement et le transfert de chaleur. Les résultats montrent que la

structure d’écoulement, la capacité de transfert de chaleur et le nombre de Rayleigh critique sont

presque les mêmes pour un milieu rempli des fluids á faible élasticité (β = 0, 9,We = 0, 1) ou

newtoniens. Cependant, le processus de transition d’écoulement changera radicalement, même

si l’angle d’inclinaison est petit (α < 2), lorsque le fluide est très élastique (β = 0, 1,We > 0, 5).

(c) Des résultats préliminaires de RBC viscoélastique tridimensionnelle sont également obtenus

dans cete thése, afin de voir comment le phénomène d’inversion observé en 2D se comporte

dans une cavité tridimensionnelle.
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The phenomenon of Rayleigh-Bénard convection with viscoelastic fluid is a common and

complicated physical phenomenon in industrial processes or daily life. Viscoelastic Rayleigh-

Bénard convection, as an important branch of the basic problem of thermal convection, has also

received extensive attention in the past few decades. In this chapter, we will separately intro-

duce what is thermal convection driven by bouyancy (especially Rayleigh-Bénard convection)

and the effect of viscoelastic characteristics on thermal convection.

1.1 Research background

1.1.1 Rayleigh-Bénard convection

In nature, the local density of a fluid change with its temperature or solute concentration, and

the buoyancy caused by the difference in density will drive the fluid to move. This kind of

flow is called convection. The convection is one of the most extensive flow in nature, includ-

ing two mechanisms of heat transfer and mass transfer, and is closely related to people’s daily

life and production processes. Among convection patterns, Rayleigh-Bénard convection is the

most classic thermal convection model abstracted from many natural phenomena, and it is

also considered to be one of the most simplified models for studying the mechanism of ther-

mal convection. In 1900, Rayleigh-Bénard convection was first observed by Bénard (1900) in

an experiment, in which unstable flow driven by thermal buoyancy is induced by the surface
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2 Chapter 1. Introduction

FIGURE 1.1: Three flow regimes of Rayleigh-Bénard convection, including ther-
mal conduction, stable thermal convection and turbulent thermal convection (Do-

ering, 2020).

tension of a fluid changed by temperature. So, above convection can be called Bénard convec-

tion. Soon after, Rayleigh (1916) studied a kind of special flow pattern, a thermal buoyancy-

driven convection phenomenon was found and caused by the local temperature or density is

not uniform in the fluid layer through theoretical analysis. Therefore, nowadays, most com-

mon “Rayleigh-Bérnard convection” is used to refer to the effect caused by temperature, and

“Bérnard-Maramgoni convection” is used to refer to the effect caused by surface tension.

Physical configuration of a Rayleigh-Bénard convection can be described by, as shown in

Fig. 1.1, a closed cavity filled with fluid, heated by the bottom plate and cooled by the top plate.

The local density of fluid will increase near the cooling plate and decrease close the heating

plate. Due to the effects of buoyancy, cooled (higher density) fluid tends to move down, and

heated (lower density) fluid tends to move up. When the temperature difference between the

upper and lower plates is small, the fluid in the cavity remains static, and the heat is only trans-

ferred through heat conduction, as shown at the top subgraph of Fig. 1.1; when the temperature

difference increases into a certain range, the fluid in the cavity will gradually enter a steady

flow state, and the heat exchange will be enhanced due to the convection effect, as shown at the

middle subgraph of Fig. 1.1; when temperature difference further increases, steady convection

will be broken and transformed to regular oscillating convection or quasi-oscillating convection,

and heat exchange will be further enhanced; the fluid flow state will change to irregular motion,

and finally enter turbulent flow, when the temperature difference is large to a certain extent, as

shown at bottom subgraph of Fig. 1.1. Concerning flow pattern evolution in Rayleigh-Bénard

convention system, there are three most important flow structures: boundary layer, plume, and

large-scale circulation. The boundary layer describes that fluid close to the wall, the flow can

still be regarded as laminar flow approximately, and the velocity and temperature maintain a
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1.1. Research background 3

(A) Atmosphere convection (Stevens, 2005) (B) Convection in the crushed rock layer (Qian et
al., 2013)

(C) Earth mantle convection (Hilst., Spring 1998) (D) Convection in LNG tank. (Roh et al., 2013)

FIGURE 1.2: Application of Rayleigh-Bénard convection

simple linear distribution. The fluid generated and moved from the upper and lower bound-

ary layers due to buoyancy is called plume, inside the dashed box of the bottom subgraph of

Fig. 1.1. During the movement, the hot and cold plumes self-organize to form a circular flow

that fills the cavity, which is called large scale circulation (LSC). The development process of

Rayleigh-Bénard convection can be described as the flow passing through supercritical bifurca-

tion to reach a steady convective state, and then transitioning to a turbulent state after several

consecutive bifurcations.

1.1.2 Application of Rayleigh-Bénard convection

One of the reasons why Rayleigh-Bénard convection is widely studied is its extensive applica-

tion background. Studying the problem of Rayleigh-Bénard convection can help us deepen our

understanding of the nature of convection phenomena and guide human life and production.

Fig. 1.2 shows four examples of the application of the Rayleigh-Bénard convection. Rayleigh-

Bénard convection is one of the most practical model for weather prediction (Stevens, 2005), as

shown in Fig. 1.2a, because the ground absorbs solar radiation, the air temperature rises and

heat is dissipated to the outer space around the earth, also due to the uneven solar radiation

and the uneven distribution of the heat of each terrain, leading to the uneven distribution of
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4 Chapter 1. Introduction

the earth’s surface temperature causing the fact that the hot air current rises while the cold air

drops, leading to different convection phenomena distributed at a different location, further

leading to different weather conditions such as winds and rainfall. With season changes, the

Rayleigh-Bénard convection phenomenon will appear in the gravel layer of the roadbed (as

shown in Fig. 1.2b): in winter, the temperature of frozen soil is higher than the land surface

temperature, and due to buoyancy, Rayleigh-Bénard convection is formed with hot air move

downward and cold air move upward; in summer, on the contrary, the temperature of frozen

soil is lower than the surface temperature, under the effect of gravity, no convection is gener-

ated (Qian et al., 2013). The movement of mantle inside the earth is also a good example of

Rayleigh-Bénard convection (Hilst., Spring 1998), as shown in Fig. 1.2c, the slow creeping of

partially molten magma in shallow regions of the earth due to the difference in density is called

mantle convection, which can gradually transfer the heat from the core to the surface of the

earth. The sinking or ascending movement of molten magma is the main cause of plate subduc-

tion and volcanic eruptions, and it is also one of the driving forces that lead to plate movement.

In addition to geophysics, Rayleigh-Bénard convection system is also refluected in all aspects of

life, as shown in Fig. 1.2d, in the storage and transportation process of natural liquefied gas, be-

cause the external heat flowmay cause the liquid in the tank to form turbulent Rayleigh-Bénard

convection driven by a very small temperature difference, causing the pressure in the storage

tank to surge, it is very easy to cause serious accidents (Roh et al., 2013) .

Rayleigh-Bénard convection system is everywhere, studying the Rayleigh-Bénard convec-

tion problem can enable people to deepen the understanding of the phenomenon of thermal

convection in life. In-depth research on Rayleigh-Bénard convection has very important theo-

retical value and practical significance.

1.1.3 Viscoelastic Rayleigh-Bénard convection

Due to the wide range of applications of the Rayleigh-Bénard problem, its flow media are also

diverse, by the way of example, egg whites and molten magma are all non-Newtonian fluids.

In terms of material properties, fluids can be divided into two categories: Newtonian fluids

and non-Newtonian fluids. In the research of fluid mechanics, the fluid that satisfies Newton’s

internal friction law is called Newtonian fluid; on the contrary, it is called non-Newtonian fluid,

which means that its shear stress and shear strain have a nonlinear relationship. For Newtonian

fluid, it can be seen everywhere in life, such as air and water. Similarly, non-Newtonian fluids

are also very common in engineering and nature and play an important role, mainly including

polymer solutions, polymer melts, foam solutions, suspensions, emulsions, pastes and some

biological fluids, etc. Examples are shown in Fig. 1.3, such as honey, hot chocolate, toothpaste,

magma and blood, etc.

The rheological properties of viscoelastic fluids are greatly different from that of Newtonian

fluids, which makes them of great research value in flow and heat transfer. In 1948, Toms (1948)

first reported that the addition of polymethyl methacrylate to chlorobenzene can significantly

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés
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(A) Honey (B) Hot chocolate (C) Toothpaste

(D) Magma (E) Blood

FIGURE 1.3: Examples of Non-Newtonian fluid

reduce the resistance of turbulent flow at the First International Conference on Rheology. This

phenomenon is called the Toms effect. From then on, the study of heat transfer in viscoelas-

tic fluid flow was started. Due to the complexity of polymer drag reduction, research scholars

have always paid attention to the research on polymer drag reduction. Using this effect (Toms

effect) can effectively reduce friction resistance, thereby improve pipeline transportation effi-

ciency and reduce energy consumption. However, in recent years, a large number of scholars

have discovered that while polymer has a drag reduction effect, it has the effect of decreasing

heat transfer performance, and this discovery undoubtedly opens the other side of the study of

polymers. Existing research results show that additive polymers can increase the heat transfer

performance of fluids under certain conditions, but under other conditions, they will weaken

the heat transfer of fluids. These indicate that the flow and heat transfer effects of polymer ad-

ditives on fluid flow are complicated and that the research on heat transfer and flow of polymer

additives is still in infancy.

1.2 Objective and contributions of the thesis

From the perspective of engineering background and academic research, this thesis points out

the importance of viscoelastic fluid Rayleigh-Bénard convection research, and its complexity of

flow and heat transfer against conventional Newtonian Rayleigh-Bénard convection.

The main goal and contribution of this thesis can be described as follows:

- Develop numerical simulation solvers for viscoelastic fluid Rayleigh-Bénard convection

system that satisfy the requirements of calculation accuracy and speed.

- Use the developed solver to study the flow pattern transition of viscoelastic Rayleigh-

Bénard convection in a closed cavity.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



6 Chapter 1. Introduction

- Use the calculation results to analyze the effect of viscoelastic properties on the flow and

heat transfer of Rayleigh-Bénard convection from the energy point of view.

- Investigate the flow and heat transfer of viscoelastic Rayleigh-Bénard convection in an

inclined cavity.

- Extand the 2D solver to 3D condition.

1.3 Methodology

The main research methods of fluid mechanics are as follows: theoretical analysis, numerical

calculation, and experimental research. In complex situations, measurement is often very dif-

ficult or even impossible. Compared with the research method of experiments, computational

fluid dynamics has the characteristics of no restrictions on parameters, low cost, and no inter-

ference in the flow field. Based on the above reasons, this work adopts numerical simulation

researchmethods and uses Fortran language to develop a set of solvers for calculating viscoelas-

tic Rayleigh-Bénard convection. Then, the self-developed solver is used to numerically simulate

the Rayleigh-Bénard convection configuration we concerned with and analyze the results.

1.4 Outline of the thesis

The chapters of this thesis are organised in the following:

- Chapter 1: The context and objective of this thesis.

- Chapter 2: The literature review of viscoelastic Rayleigh-Bénard covnection.

- Chapter 3: The governing equations and numerical shemes used in developed sovler.

- Chapter 4: Numerical study of two dimensional viscoelastic Rayleigh-Bénard convection

in a 2:1 enclosure cavity, revealing regular reversal convection phenomenon in certain

conditions.

- Chapter 5: Numerical study of two dimensional viscoelastic Rayleigh-Bénard convection

in a tilted cavity.

- Chapter 6: Three dimensional viscoelastic Rayleigh-Bénard convection in a cavity.

- Chapter 7: conlustions and perspectives.
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Chapter 2

Literature review

Contents

2.1 Newtonian Rayleigh-Bénard convection . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Onset of Rayleigh-Bénard convection . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Routes from laminar to chaos . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Turbulence regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Efficiency of heat exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Viscoelastic Rayleigh-Bénard convection . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Toms effect and its application . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Onset and bifurcation of convection . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Heat transfer enhancement or suppression . . . . . . . . . . . . . . . . . 25

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Newtonian Rayleigh-Bénard convection

For the Rayleigh-Bénard convection, the earliest research began in the early 19th century, Bé-

nard (1900) built a Rayleigh-Bénard-like convection experiment device and observed convection

phenomenon driven by surface tension. After that, Rayleigh (1916) used the small disturbance

theory for the first time to study the Rayleigh-Bénard convection problem, and established gov-

erning equation of convection driven by thermal bouyancy. Their results showed that fluid flow

stability is directly related to the Rayleigh number when the fluid is stationary and heated at

the bottom: the smaller the Rayleigh number, the more stable the fluid; the greater the Rayleigh

number, the worse the fluid stability. The Rayleigh number mentioned is defined as:

Ra =
α∆TgH3

κν
(2.1)

where g is the gravity acceleration, α is the coefficient of thermal expansion of the fluid, ∆T =

T0 − T1 (T0 > T1) is the temperature difference with T0 the temperature on the lower boundary

and T1 on the upper boundary, H is the distance between lower and upper boundaries, κ is the

thermal diffusivity and ν is the kinematic viscosity.
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8 Chapter 2. Literature review

In a sense, this theory lays the theoretical foundation for the study of thermal convection

problems. But it is worth noting that the convection phenomenon observed by Bénard (1900)

in the experiment is not caused by surface tension, but caused by its temperature gradient.

Therefore, in a fluid configuration with the heated lower part and the cooled upper part, the

corresponding convective flow caused by buoyancy is called Rayleigh-Bénard convection.

In the following century, research on Rayleigh-Bénard convection has developed rapidly,

and many important results of stability theory and heat exchange efficiency have been obtained

(Busse, 1978; Behringer, 1985; Chandrasekhar, 2013). The "Chicago Convection Experiment"

hold in the 1980s was an important milestone in the study of modern Rayleigh-Bénard convec-

tion systems (Castaing et al., 1989; Sano, Wu, and Libchaber, 1989). The experimental results

showed that the fluid flow in the Rayleigh-Bénard system will gradually enter "soft turbulence"

and "hard turbulence" regimeswhen Ra gradually increases. Subsequently, the research focus of

the Rayleigh-Bénard convection system includes not only flow stability and heat transfer char-

acteristics but also the statistical characteristics of the physical quantities of the system under

the turbulent state (Siggia, 1994).

From the above-mentioned historical evolution of Rayleigh-Bénard convection research, we

know that the main issues on Rayleigh-Bénard convection include: a) the onset and transition

of Rayleigh-Bénard convection (stability analysis); b) the heat transfer capability of thermal

convection; c) the flow structure. Therefore, we will do a literature review of the above three

research aspects of Rayleigh-Bernard convection with Newtonian fluids in this section.

2.1.1 Onset of Rayleigh-Bénard convection

As mentioned above, in a Rayleigh-Bénard convection system, when Ra is small enough (for

example the temperature difference is sufficiently small), the fluid is completely motionless and

the heat transfer entirely depends on thermal diffusion. But, the thermal buoyancy-driven onset

of convective instability (transition from conduction to convection) takes place when Ra exceeds

a critical value (Drazin and Reid, 2004), and this transition only depends on the aspect ratio of

the configuration and boundary conditions (i.e. rough or smooth) but not on the Prandtl num-

ber, this results had been summarized by Venturi, Wan, and Karniadakis (2010) and Ma and

Wang (2004). By the way of example, for the Rayleigh-Bénard convection in cavity with 1:1

aspect ratio or infinite domain, the critical Rayleigh values of onset have been given by linear

or nonlinear stability analysis and experiment in many published work (Davis, 1967; Stork and

Möller, 1972; Chandrasekhar, 2013; Gelfgat, 1999; Venturi, Wan, and Karniadakis, 2010; Allgo-

wer and Georg, 2012; Asokan and Zabaras, 2005), and are equal to 2858 and 1708, respectively.

Prandtl number is a dimensionless parameter and is defined as a ratio of momentum diffusivity

to thermal diffusivity:

Pr =
kinetic viscosity

thermal di f f usivity
=

ν

κ
(2.2)
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2.1. Newtonian Rayleigh-Bénard convection 9

where ν is the kineticc viscosity and κ is the thermal diffusivity. Several Prandtl number com-

monly used in numerical simulation and experimental research are given at Tab. 2.1.

Fluids mercury gases water silicon

Pr 0.025 0.7 3-10 5-50

TABLE 2.1: Examples of the Prandtl number of fluids (Miesch, 2005)

FIGURE 2.1: Effects of the width-to-height aspect ratio on the critical Rayleigh
number (D’Orazio, Cianfrini, and Corcione, 2004; Gelfgat, 1999; Bouabdallah et
al., 2016; Lee, Schultz, and Boyd, 1989; Mizushima, 1995; Velte, 1964; Kurzweg,

1965).

For the study about the onset of Rayleigh-Bénard convection with Newtonian fluids, regard-

less of the influence of the fluid property parameter Pr, many attentions had been paid to the

effects of the width-to-height aspect ratio on the first critical Rayleigh number (D’Orazio, Cian-

frini, and Corcione, 2004; Lee, Schultz, and Boyd, 1989; Gelfgat, 1999; Bouabdallah et al., 2016;

Velte, 1964; Mizushima and Adachi, 1997; Kurzweg, 1965). Among them, work of D’Orazio,

Cianfrini, and Corcione (2004) and Bouabdallah et al. (2016) about the influence of the width-

to-height ratio of the cavity on the critical Rayleigh number almost cover whole aspect ratio

scale, D’Orazio, Cianfrini, and Corcione (2004) focused on the small aspect ratio (A < 1), and

Bouabdallah et al. (2016) focused on the big aspect ratio (A > 2), as shown in Fig. 2.1. Gelfgat

(1999) considered a more complex Rayleigh-Bénard convection system, in which the tempera-

ture boundary conditions are described by Eq. (2.4), and fixed Bi = 1, the results are shown in

Fig. 2.1. The results show that the critical values of Ra in Gelfgat’s cases are smaller than those

in Bouabdallah’s.
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y = 0 T = 1 (2.3)

y = 1
∂T

∂y
= −BiT (2.4)

where Bi is constant.

Lee, Schultz, and Boyd (1989) checked the critical Rayleigh number of Rayleigh-Bénard

convection in a cavity with width-to-hight ratio over (A ∈ [0.5, 7.0]). They also considered

the conditions with insulated side walls and conducting side walls. For the Rayleigh-Bénard

convection with conducting side walls, Velte (1964) also did some work in calculating critical

Rayleigh number at different width-to-height ratio (A = [2/3, 1, 1.3, 1.5, 2]). Mizushima (1995)

studied the Rayleigh-Bénard convection in finite and infinte domain and calculated the critical

Rayleigh number for (A ∈ [0.1, 10.0]). These results are also shown in Fig. 2.1.

2.1.2 Routes from laminar to chaos

Once Ra exceeds the critical value for convection onset, as shown in Fig. 2.3, the steady laminar

state convection will take place, related numerical and experimental results had been published

by Bouabdallah et al. (2016), Venturi, Wan, and Karniadakis (2010), Gelfgat (1999), and Paul et

al. (2012). Moreover, past the steady laminar convection stage, there are alsomany flow patterns

and bifurcations in the way of transition from laminar to chaos. These transition routes under

different Prandtl number Pr and aspect ratio A have been compared with dynamical systems

theories, and have been well studied in numerous simulations and experiments in the past

several decades (Gollub and Benson, 1980; Maurer and Libchaber, 1980; Bouabdallah et al.,

2016; Venturi, Wan, and Karniadakis, 2010; Mizushima and Adachi, 1997).

We have already known that the onset Rayleigh number of the Rayleigh-Bénard convection

is independent of Prandtl number in section 2.1.1, the sequence of bifurcation and evolution

process to chaos and turbulence critically depend on the Prandtl number and width-to-height

aspect ratio in Rayleigh-Bénard convection system (Yanagita and Kaneko, 1995; Paul et al.,

2012). Therefore, in following sections, the flow pattern routes to chaos will be introduced

separately by low Prandtl number (Pr < 1) and high Prandtl number (Pr > 1).

Low Prandtl number (Pr < 1)

For Rayleigh-Bénard convection in a cavity with 1:1 aspect ratio and Pr = 0.7, Bouabdallah

et al. (2016) found that the stable laminar convection will disappear at Ra = 16Rac1, then flow

become time-dependent. Their study has been made for Ra in the range [2.5 ∗ 103, 106], and

four flow patterns were obtained, which include single-cell stable convection (1S), two verti-

cal cells stable convection(2S), two vertical cells periodic oscillatory convection(2VC) and two

horizontal cells periodic oscillatory convection(2HC), the evolution process and isotherms of

flow patterns have been shown in Tab. 2.2 and Fig. 2.2. Venturi, Wan, and Karniadakis (2010)
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2.1. Newtonian Rayleigh-Bénard convection 11

(A) 1S (B) 2S, 2VC (C) 2HC

FIGURE 2.2: Temperature contours at different flow convection patterns in
(Bouabdallah et al., 2016)

(A) Ra = 15000, 1S (B) Ra = 15000, 2VC (C) Ra = 21000, 3VC

FIGURE 2.3: Temperature contours at different Rayleigh number in (Venturi, Wan,
and Karniadakis, 2010)

investigated the instability of the Rayleigh-Bénard convection onset and tested the effects of the

initial conditions on the development of the supercritical flow pattern in a 2D closed cavity with

the same physical configuration as Bouabdallah et al. (2016), using deterministic linear stabil-

ity analysis theory and parameter continuation techniques. Venturi showed that there are two

kinds of stable convection pattern with one or two cells at the same Rayleigh number, under the

different initial flow states, as shown in Fig. 2.3a and Fig. 2.3b. It should be noted that Venturi

just tested Ra up to Ra = 22000.

High Prandtl number (Pr > 1)

Compared to the ‘route’ in a square configuration, the routes to chaos are always more complex

(Kaneko, 1986; Sano and Sawada, 1984), and especially depending on thewidth-to-height aspect

ratio (Γ). Even the route to chaos will change due to changes in the history of the parameters

(Yanagita and Kaneko, 1995). These changes are mainly reflected in changes of the cells in the

domain, including the number and pattern (Paul et al., 2012; Paul, Wahi, and Verma, 2011).

In previous work with high Prandtl number cases, the most common liquid is water that

we can see everywhere, the Prandtl number of water is about 7.56. Therefore, many work on

the Rayleigh-Bénard convection are carried out when Pr is equal to around 7.0 (Velte, 1964;

Mizushima and Adachi, 1997; Paul et al., 2012; Paul, Wahi, and Verma, 2011).

For Pr = 6.8 cases in a box with aspect ratio of Γ = 2
√
2, Paul et al. (2012) and Paul,

Wahi, and Verma (2011) did lots of work on the flow pattern transition in almost the whole
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Source Ra Cells Flow regime

Gelfgat (1999) and Bouabdallah et al. (2016) 2858.01 None stationary
Venturi, Wan, and Karniadakis (2010) 2858.02 None stationary

Bouabdallah et al. (2016) [2.5 ∗ 103, 1.8 ∗ 104] 1-cell (1S) stable state
Venturi, Wan, and Karniadakis (2010) [6742.31, 11279] 2-cell unstable
Venturi, Wan, and Karniadakis (2010) [11279, 1.8 ∗ 104] 1-cell/2-cell stable state

Bouabdallah et al. (2016) [1.9 ∗ 104, 4.57 ∗ 104] 2-cell (2VC) stable state
Venturi, Wan, and Karniadakis (2010) [1.9 ∗ 104, 2.2 ∗ 104] 1-cell/2-cell stable state
Venturi, Wan, and Karniadakis (2010) []19634, 2.1 ∗ 104] 3-cell stable

Bouabdallah et al. (2016) [4.58 ∗ 104, 99 ∗ 104] 2-cell (2VC) periodic oscillatory

Bouabdallah et al. (2016) [5 ∗ 104, 4.1 ∗ 105] 1-cell (2S) steady state

Bouabdallah et al. (2016) [4.2 ∗ 105, 1 ∗ 106] 2-cell (2HC) periodic oscillatory

TABLE 2.2: Review of flow pattern transition along Rayleigh number in 2D cavity
with 1:1 aspect ratio, Pr = 0.7.

Rayleigh number range-from conduction state to the developed turbulence. In his study, steady

convection is born when Ra exceeds the critical value (Rac), after that, time-periodic convection

appears through aHopf bifurcation at Ra = 80Rac. After this time-periodic convection, a period

doubling bifurcation (Ra = 500Rac) will lead the flow to another time-period state and quasi-

periodic state, and eventually chaos (Ra = 750Rac). For the convection structures that appeared

in the investigations (Paul et al., 2012; Paul, Wahi, and Verma, 2011), some earlier experimental

and numerically studies also showed the same flow situation (Gollub and Benson, 1980; Maurer

and Libchaber, 1979; Curry et al., 1984).

For Pr = 15.0 case in a square cavity, Lappa (2011) did lots of work in a domain with strict

geometry symmetry. Under their condition, four flow patterns had been obtained at different

Rayleigh numbers, they are respectively the antisymmetric–antisymmetric mode with single

roll, the symmetric–antisymmetric mode with two vertical rolls, the antisymmetric–symmetric

mode with two horizontal rolls, and the symmetric–symmetric mode with four rolls (Fig. 2.4).

For a more intuitive understanding, Fig. 2.4 plots a synthesis of flow behaviours at different

Rayleigh numbers, and a large-scale-flow Reynolds number as a function of Ra. The Reynolds

number used is defined as:

Re =
UcH

ν
(2.5)

where Uc is characteristic velocity scale of flow and H is a characteristic length scale, that is

distance between the heating and cooling plates in our cases.

The flowpatterns found in Lappa’s simulation (Lappa, 2011) were also observed byMizushima

and Adachi (1997) in a square cavity with Pr = 7.0, as shown in Fig. 2.5. They checked the crit-

ical Rayeigh numbers for four flow fields types (1S, 2VC, 2HC, 4C) are equal to 5011.3, 7972.4,

28830 and 27933, respectively.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



2.1. Newtonian Rayleigh-Bénard convection 13

FIGURE 2.4: Reynolds number of the flywheel as a function of Ra, the flow pattern
evolves from laminar to chaotic and the range of Rayleigh is [103, 1010] (Lappa,

2011). In the cases, Pr = 15.0 and width-to-height aspect ration A = 1.0.

(A) 1S (B) 2VC (C) 2HC (D) 4C

FIGURE 2.5: Streamlines at different flow convection patterns in (Mizushima and
Adachi, 1997)

2.1.3 Turbulence regime

After convection flow passes the steady convection and time-periodic oscillating convection,

convection flow entered a more disorderly state in time and space. These flow states are called

turbulence, which is unstable and random and contrasts with the laminar flow. In fact, most of

the flows we meet in natural and industrial processes are turbulent, they all show a complex

flow structure, unlike laminar flow which has an obvious main flow or layered structure. The

blowing wind, and flowing river, are good examples of the turbulent flow in our life.

The flow transition from laminar flow to turbulence is firstly observed by Hagen (1839),

which initiated more than a century of investigation on turbulence. Half a century later, British

scientist Reynolds conducted experimental research and showed that there are two kinds of

flow regimes with completely different internal structures in liquid flow: laminar flow and tur-

bulent flow (Reynolds, 1883). He revealed an important fluid flow mechanism, that is, accord-

ing to flow velocity, the fluid flow has two different forms and proposed the famous Reynolds
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FIGURE 2.6: Laminar, transitional and turbulent flow states in a pipe (Reynolds,
1883).

number for the transition from laminar flow to turbulent flow (including the case of stratified

flow). When the fluid velocity is small, the fluid particles only move one-dimensionally along

the flow direction, and there is no macroscopic mixing with the surrounding fluid, that is, strat-

ified flow. This flow pattern is called laminar flow or stagnant flow. After the fluid velocity

increases to a certain value, the fluid particles move randomly in other directions in addition

to the flow in the main direction of the flow, that is, there is an irregular pulsation of the fluid

motion.

In the following hundred years of research on turbulence, researchers have put forward

many important theories:

- Energy cascade (1920s): Johnson (1922) discovered the cascade process of turbulent ki-

netic energy. The large-scale vortex pulsation is like a large energy storage pool, which

continuously obtains energy from the outside and outputs energy to the small-scale ed-

dies; the small-scale turbulence is like an energy-consumingmachine, where all the kinetic

energy output from the large-scale turbulence is consumed or dissipated, the inertia of the

fluid is like a conveying machine, transmitting large-scale pulsations to small-scale pulsa-

tions. The larger the Reynolds number of the flow, the larger the inertial area between the

large-scale energy storage and the small-scale energy consumption.

- Isotropic turbulence theory (1935): Taylor (1935) set up one or several rows of regular

grids in the uniform airflow of the wind tunnel experiment. When the uniform airflow

flows through the grid, irregular disturbances are generated. When this kind of irregular

disturbance moves downstream, because there is no external disturbance, it gradually

evolves into isotropic turbulence.

- Kolmogorov scale (1941): Moscow mathematician Kolmogorov further developed G.I.

Taylor’s homogeneous isotropy theory (Taylor, 1935) into a locally uniform isotropy sta-

tistical theory, and for the first time in human history derived the law of turbulent mi-

crostructure: the structure-function of −p/3 law. The spatial distribution characteristics

of turbulence are revealed for the first time. Although this theory has some flaws, but it is

still known as the greatest turbulence theory achievement in human history so far.
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2.1. Newtonian Rayleigh-Bénard convection 15

- Coherent turbulent structure (1967): Kline et al. (1967) used hydrogen bubble technology

to show the coherent structure of large-scale vortices in the turbulent boundary layer.

Robinson (1991) drew the burst pattern of the turbulent boundary layer.

When Ra gradually increases, the fluid flow in the Rayleigh-Bénard system will enter tur-

bulence, therefore, the research focus of the Rayleigh-Bénard system shifted from the stability

of the system and the formation of chaotic modes to the statistical characteristics of the physical

quantities of the system under the turbulent state (Siggia, 1994).

2.1.4 Efficiency of heat exchange

There are three types of heat transfer: heat conduction, thermal convection, and radiation. The

heat transfer efficiency of heat conduction and radiation is highly constrained, caused by their

simple and inflexible way of heat exchange (mainly limited by distance and material proper-

ties). Therefore, the efficiency of the heat transfer of the convection has always been the focus

of convection research. In addition, that is also the focus of study on the Rayleigh-Bénard con-

vection, in the past century.

In order to test the heat transfer capacity of a Rayleigh-Bénard system, a dimensionless

number, Nusselt number, should be introduced (Kays, 2011), that is defined as:

Nu =
hH

k
(2.6)

where k is the fluid thermal conductivity, and h is the convective heat transfer coefficient (W/(m2K)).

In the Rayleigh-Bénard system, convective heat transfer coefficient can be understood as the

rate of the heat transfer between solid boundary and the fluid per unit surface area per unit

temperature difference:

h =
q

∆T
(2.7)

where q is the local heat flux density (W/m2) and ∆T is the temperature difference (K).

The Nusselt number represents the ratio of convective to conductive heat transfer and there-

fore the averaged temperature gradient at boundaries of the fluid domain. High Nusselt num-

ber in Rayleigh-Bénard convection means there is stronger convection. Generally, different

values of the Nusselt number correspond to different flow patterns, and Kays (2011) gave a

proximate range:

• value of Nu = 1 corresponds to heat transfer by pure conduction.

• value of Nu ∈ (1, 10) corresponds to slug flow or laminar flow.

• value of Nu ∈ (10, 1000) corresponds to turbulent flow.

Scholars did much work to find the scaling relationship of Nu with Ra and Pr, which can

be used to express the energy transmission and heat transfer capacity in the Rayleigh-Bénard
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system. The scaling law of Nusselt number with Rayleigh and Prandtl number can be expressed

as:

Nu = Nu(Ra, Pr) (2.8)

This can be written as a common form of power law equation, when Prandtl number is fixed:

Nu = CRaα (2.9)

where C is a constant and α is the index.

Basic conditions

For flow regime before turbulent flow, the flow pattern always exhibits steady or temporal-

spatial periodic or quasi-temporal-spatial periodic characteristics.

FIGURE 2.7: Nusselt number as a function of Rayleigh number with the one-cell
steady state, at fixed Prandtl number Pr = 0.71 and different heigh-to-width as-

pect ratio A ∈ [1, 6] (D’Orazio, Cianfrini, and Corcione, 2004).

D’Orazio, Cianfrini, and Corcione (2004) numerically studied the scale relationship of Rayleigh

number and Nusselt number in an enclosure Rayleigh-Bénard system with various heigh-to-

width aspect ratio A ∈ [1, 6], when Prandtl number is fixed at 0.71, as shown at Fig. 2.7. In his

simulation, Ra is controlled within the interval of Ra ∈ [103, 106], due to the maintained one-cell

flow pattern for different heigh-to-width aspect ratio enclosure domain.

Bouabdallah et al. (2016) numerically investigated the Nusselt number as a function of Ra

in Rayleigh-Bénard system at different width-to-height aspect ratio, the results are shown in

Fig. 2.8.

In terms of experimental investigation, Castaing et al. (1989) built a Rayleigh-Bénard con-

vection device with aspect ratio 1:1, filled by helium gas. The values of Rayleigh number and

Prandtl number in their experiments are Ra ∈ [106, 6 ∗ 1012] and Pr ∈ [0.65, 1.5], respectively.

Fig. 2.9 shows the scaling laws of the Rayleigh and Nusselt numbers in the study of Castaing

et al. (1989), where the Nusselt curve is divided into two parts: ’soft turbulence’ and ’hard tur-

bulence’, and the transition takes place at Ra = 4 ∗ 107. In addition, their experimental results
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2.1. Newtonian Rayleigh-Bénard convection 17

FIGURE 2.8: Nusselt number as a function of Rayleigh number at different width-
to-height aspect ratio A = (1, 2, 4, 8) (Bouabdallah et al., 2016).

FIGURE 2.9: The scaling law of Nusselt and Rayleigh number. (Castaing et al.,
1989)

pointed out that Nusselt number is closely proportional to Ra
2
7 , not to Ra

1
2 obtained by Kraich-

nan (1962) and Long (1975). The ’soft turbulence’ and ’hard turbulence’ are different from the

distribution of the temperature in the central vertical line, as shown in Fig. 2.9, specifically the

’soft regime’ has a more gaussian character and ’hard regime’ has a more exponential character.

The similar results (power-law index of Ra equal 2
7 ) to the Castaing et al. (1989) have also been

observed by subsequent studies (Shraiman and Siggia, 1990; Chavanne et al., 1997; Zaleski,

1998; Cioni, Ciliberto, and Sommeria, 1997).

In addition, many experimental investigations were carried out around the situation with

Pr ∈ [4.0− 7.0], and gave very significant results (Rossby, 1969; Funfschilling et al., 2005; Sun

et al., 2005; He et al., 2012; Cheng et al., 2015), as shown in Fig. 2.10. The dashed lines in the

figure are fitted by He et al. (2012). Rayleigh number in these experiments covers the ’soft’ and

’hard’ turbulent regime, Ra ∈ [103, 1016].
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FIGURE 2.10: Scaling law of Nusselt number and Rayleigh number, when Pr ∈
[4, 7]. This results was summarized by Plumley and Julien (2019)

Heat exchange enhancement

The heat transfer capability is a significant indicator of the Rayleigh-Bénard system, especially

for evaluating Rayleigh-Bénard systems in industrial production, therefore it is necessary to en-

hance heat transfer (Bergies, 1999; Kakaç et al., 2013). For Rayleigh-Bénard convection system,

the enhanced heat exchange technologies proposed up to now can be divided into passive and

active techniques (Bergies, 1999): active techniques require the use of external power, they could

be surface vibration or pulse (Raji et al., 2013), application of multiphysics fields (Pallares and

Davidson, 2000), etc; passive techniques do not require external power, mainly include treated

surfaces (Du and Tong, 1998), additives for liquids (Cheng et al., 2017), etc.

(A) thermal pulse along time (B) Periodic averaged Nusselt number

FIGURE 2.11: (a) temperature of cooling boundary change over time. (b) Periodic
averaged Nusselt number with different amplitudes a and frequency τ. (Raji et

al., 2013)

Boundary temperature pulse: Raji et al. (2013) considered the effects of pulse tempera-

ture boundary on the heat transfer capacity, applied a pulse cooling bounday condition on a

Rayleigh-Bénard system with aspect ratio A = 1 and Pr = 0.71. In his cases, the temperature of

heating is constant T
′
H = 1 and that of the cooling boundary, as shown in Fig. 2.11a, is set as:

T
′
C = T

′
C + a ∗ sin(2πt/τ) (2.10)
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2.1. Newtonian Rayleigh-Bénard convection 19

where T
′
C = 1

Lx

∫ Lx

0 T|y=Lydx is the averaged temperature of cooling boundary, a is the coefficient

of amplitude and τ is the period. When a = 0, this physical configuration represents a typical

Rayleigh-Bénard convection.

Fig. 2.11b shows the effect of the period τ on the time-averagedNusselt number for Ra = 106

with different amplitude a, where a ∈ (0, 0.2, 0.4, 0.6). In this numerical study, Raji et al. (2013)

found that periodic cooling can be used to notably enhance the heat exchange in comparison

with the case of constant cooling temperature, and the maximum enhancement is about 46%

and takes places when τ = 0.01 and a = 0.6 . They also tested the cases with Ra = 105 and

observed the heat exchange enhancement with pulse temperature boundary.

FIGURE 2.12: Nu as a function of Ra. (•) represents the work from King et al.
(2009) and (∗) represents the work from Rossby (1969).

Application of multiphysics fields: King et al. (2009) considered rotating convection, which

is influenced by the ratio of the relevant global-scale Coriolis force and buoyancy force, the ro-

tation effect changes not only the average motion of the fluid but also the intensity of the turbu-

lence and the pulsation structure. The Prandtl number was fixed at 7 in King’s experiments. As

shown in Fig. 2.12, we can obviously observe that the rotation conditions may delay the onset

of convection, but when Rayleigh number exceeds a certain value, the heat transfer capability

will increase.

Rough surface: In fact, most convection phenomena in nature are accompanied by rough

surfaces. Shen, Tong, and Xia (1996) and Du and Tong (1998) experimental studied the effects of

the rough heating and cooling surface on the convection flow and heat exchange in a cylindri-

cal Rayelgh-Bénard system filled with water. They experimented on two experimental config-

urations with same the inner diameter 20cm and different height 20cm and 40cm, respectively.

Fig. 2.13a shows temperature and velocity near the heating rough boundary, and Fig. 2.13b plots

the Nusselt number as a function of Rayleigh number in cases with smooth and rough surfaces.

76% increase in heat transfer rate was found in the case with rough surfaces (Du and Tong,

1998).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



20 Chapter 2. Literature review

(A) Flow near rough boundary

(B) Nu vs. Ra

FIGURE 2.13: (a) The velocity and temperature distribution near the rough bound-
ary . (b) Nu as a function of Ra in the smooth (triangles) and rough (circles) cells.
The solid symbols are obtained in the cells with height of 20cm, and the open

symbols are obtained in the cells with height of 40cm. (Du and Tong, 1998)

(A) Nu vs. Ra (B) Physical configuration

FIGURE 2.14: Rayleigh-Bénard cell with partition constraint. (Bao et al., 2015)

Partition constraint: In the Rayleigh-Bénard system heat transfer enhancement study (Bao

et al., 2015), a new mechanism that will lead to greater heat transfer is revealed: that is, when

the vertical partition is inserted vertically into the gap between the cooling and heating plates,

convection will become spontaneously organized and more consistent, ultimately leading to an

unprecedented increase in heat transfer. Bao et al reported an experimental and numerical study

about heat transfer enhancement in Rayleigh-Bénard convection cell with vertical partitions

inserted, as shown in Fig. 2.14b. In their cases, Prandtl number equal to 5.3, and Rayleigh

number coverage [3.5 ∗ 107, 8.3 ∗ 108]. As shown in Fig. 2.14a, increasing the number of intervals

will increase the heat transfer efficiency, and when the interval number is 6, the heat transfer

efficiency will increase by nearly 30%.

Additives: Drag reducers are polymer compounds that have the effect of reducing drag.

Adding it to the fluid during fluid transportation can reduce resistance and improve heat trans-

fer efficiency. This part of the content will be elaborated in Sec. 2.2.1 and Sec. 2.2.
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2.2 Viscoelastic Rayleigh-Bénard convection

For flow system driven by thermal buoyancy, how viscoelastic properties affect flow and heat

transfer is a problem worthy of study. Whereas there has been extensive fundamental research

of the Rayleigh-Bénard convection in Newtonian fluids, much less progress has been achieved

in understanding the convection with viscoelastic fluids. The main reason for this phenomenon

comes from the late start of the research on viscoelastic Rayleigh-Bénard convection, the com-

plexity of viscoelastic fluid characteristics, and the nonlinear thermal coupling between vis-

coelastic fluid properties and flow. The current research status of viscoelastic Rayleigh-Bénard

convection will be introduced below.

2.2.1 Toms effect and its application

Following the discovery of the British scholar Toms (1948), the Toms effect is used to effectively

improve flow efficiency and reduce energy loss. In fact, in the past few decades, experiments

using additives to reduce resistance have been launched in various fields, including oil trans-

portation, water transportation, fire protection, heating, etc. In 1970, Paterson and Abernathy

(1970) experimentally studied the drag reduction and polymer degradation in turbulent pipe

flow with dilute water solutions of unfractionated polyethylene oxide (PEO). They found that

when the solute concentration reaches 0.1mg/L, the additive has already produced a rent re-

duction effect on the flow. Thereafter, in 1982, Oliver and Bakhtiyarov (1983) found the critical

concentration can be reduced to 0.02mg/L when the additives are polyacrylamides (PAM). In

1982, Burger, Munk, and Wahl (1982) added polymer additives to Alaska’s oil pipeline and in-

creased the ability to transport oil by 25%. This is the first time that additives have been applied

to actual business for drag reduction.

However, under the conditions of strong shearing force and high temperature, the polymer

chain-like macromolecular structure, which is the main role of drag reduction, will be perma-

nently destroyed, resulting in the loss of turbulent drag reduction effect. After the internal

network structure of the surfactant is destroyed, it will be repaired and rebuilt in a very short

period of time, so that it has the effect of reducing drag again. Aiming at the characteristics of

surfactants, in 2004, Takeuchi (2007) added a 0.5% LSP-01A surfactant to the heating circulation

system of the main hall of Sapporo City in Japan. After a year of stable operation, it was found

that the energy consumption of the power system was reduced by about 65%.

On the other hand, Groosman and Groisman and Steinberg (2000) discovered for the first

time that there is a rotating flow between parallel plates under the conditions of small Reynolds

(Re) and large Weissenberg number (We). This phenomena is also called elastic turbulence.

Compared with laminar flow, the flow resistance under this condition is greatly increased, and

the mixing efficiency is enhanced to a certain extent. Using this effect can effectively strengthen

the heat and mass transfer in the microchannel, which has considerable application value in the

chemical, pharmaceutical, and medical industries such as heat dissipation chips, microreactors,

disease monitoring, and so on. At present, for additive fluid flow, turbulent drag-reductin with
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high Re and low We and mixing enhancement with low Re and high We (caused by elastic

turbulence) has received widespread attention.

As mentioned above, in a flow heat exchange system, flow and heat transfer characteristics

are two inseparable considerations. Studies have found that viscoelastic properties will also

cause deterioration of heat transfer while reducing drag. As shown in Fig. 2.15, Li, Kawaguchi,

and Hishida (2004) experimentally investigated the drag reduction and heat transfer reduction

characteristics of a channel flow at different background temperature and Reynolds numbers

in 30ppm dilute aqueous solution of a cationic surfactant of cetyltrimethylammonium chloride

(CTAC).

FIGURE 2.15: Drag reduciton (DR) and heat transfer reduction (HTR) as different
Reynold number with various temperature (Li, Kawaguchi, and Hishida, 2004).

Fig. 2.15 shows the relationship between drag reduction rate and heat transport reduction

with Reynold numbers and temperature. The drag reduction and heat transport reduction are

defined as:

DR =
f0 − f

f0
and HTR =

Nuo − Nu

Nu0
(2.11)

The result shows that under the same Reynold number and temperature, the heat trans-

fer deterioration rate is always higher than the drag reduction rate; with Reynold number or

temperature increase, DR and HTR both increase first and then decrease, in another word, for

this kind of drag reduction agent, there is critical value for Reynold number and temperature,

once this critical value is exceeded, the drag reduction effect disappears and the heat transfer

performance is restored.

Due to the fact that additive drag reduction is accompanied by heat transfer attenuation,

in order to achieve a balance between drag and heat transfer reduction, scholars are dedicated

to exploring the limits of the flow drag reduction and heat transfer deterioration of viscoelastic

fluids (Li et al., 2001; Qi et al., 2003). These methodsmainly include pipe diameter effect method

(Li, Kawaguchi, and Yabe, 2001), network structure destruction method (Qi et al., 2001), ultra-

sonic method (Qi, 2002) and ultraviolet irradiation method (Qi, 2002), etc. The basic principle
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is to destroy the macromolecular structure in the solution without forming a viscoelastic effect,

thereby reducing the deterioration of heat transfer.

2.2.2 Onset and bifurcation of convection

Due to its rich bifurcation sequence and flow structure, Rayleigh-Bénard convection is always

used to study the flow state transition of fluid dynamics. The same is true for viscoelastic

Rayleigh-Bénard convection. Pattern selection at the start-up of the Rayleigh-Bénard convection

with Newtonian fluids has been studied extensively numerically and experimentally. How-

ever, viscoelastic Rayleigh-Bénard convection studies are very few compared to Newtonian

Rayleigh-Bénard convection. Rayleigh-Bénard convection is complicated enough by its very

nature with the further difficulties introduced by the non-linear constitutive model of the vis-

coelastic fluid with additional material parameters, such as relaxation and retardation times as

well as the degree of elasticity embedded in the fluid. Due to the influence of strong nonlinear-

ity, for the start-up of the viscoelastic Rayleigh-Bénard convection, many aspects of this physical

phenomenon are still not yet clearly elucidated. Because the viscoelastic Rayleigh-Bénard con-

vection as applications is both present and emerging in industry and nature (some examples

are chemical and manufacturing processes and convection in the Earth’s mantle), it is absolutly

necessary for further in-depth investigation of viscoelastic RBC.

Given the compounded difficulties of observation on experimentally investigation, a nu-

merical approach is best suited to tackle this problem. A major difficulty in numerical simu-

lations of the flow of viscoelastic fluids is the instability caused by the increasing inertia and

elasticity of the fluid independently of the discretization chosen called in the literature the High

Weissenberg number problem (HWNP). Linear stability analysis predicts the critical Rayleigh

number at which thermal convection starts whereas the magnitude of the convection amplitude

is determined by the nonlinear stability analysis, Park and Ryu (2002). Linear and non-linear

stability analyses in the literature provide evidence that many parameters have a huge impact

on the critical Rayleigh number and convection flow pattern.

The earliest linear and non-linear stability analysis of the Newtonian Rayleigh-Bénard con-

vection were conducted by Malkus and Veronis (1958). For viscoelastic Rayleigh-Bénard con-

vection, the first investigation of linear stability analysis was published as early as 1968, Green

III (1968), who used an upper convected Maxwell model with a single relaxation time to charac-

terize the fluid, to describe the onset of a thin fluid layer heated from the bottom and to establish

the conditions under which an oscillating convection instability may appear. This was followed

by Vest and Arpaci (1969) and Sokolov and Tanner (1972) who expanded the investigation of

this intriguing phenomenon to the oscillating mode of instability, which appears when the ratio

of viscoelastic relaxation time to thermal relaxation time is high. The thermal relaxation time

mentioned is defined by d2/κ, where d is the thickness of the viscoelastic fluid layer and κ is

the thermal diffusivity. In the following decades, nonlinear stability analysis of the viscoelas-

tic Rayleigh-Bénard convection has been a focus of attention by several investigators (Eltayeb,
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1977; Rosenblat, 1986; Renardy and Renardy, 1992; Martinez-Mardones and Perez-Garcia, 1992;

Park and Lee, 1995; Park and Ryu, 2001; Park and Park, 2004; Park, 2018). In their contri-

butions, the relationship between rheology parameters of viscoelastic fluids and the critical

Rayleigh number (reflecting the flow mode instability that is flow pattern transition from sta-

tionary convection to oscillating convection) was further investigated in-depth and illustrated.

A more sophisticated viscoelastic constitutive models were used in their studies as compared

to the basic upper-convected Maxwell model usedin the pioneering work of Green III (1968).

The heating and cooling boundary conditions used ranged from the rigid-free condition with a

free surface to the rigid-rigid (solid wall) condition. Most of the research works outlined above

focused on periodic boundary conditions and/or infinite planes, which can be approximated

by a one-dimensional instability analysis. Of course, this treatment also limits the application of

the stability analysis, as the boundary conditions have a significant effect on the flow and heat

transfer in the Rayleigh-Bénard convection.

In many related studies, the first linear and nonlinear instability analysis of the viscoelastic

Rayleigh-Bénard convection in an closed cavity with aspect ratio A ∈ [1, 10] was conducted by

Park and Ryu (2001). They used a Chebyshev pseudo-spectral method coupled with a general

viscoelastic constitutive model which encompasses Maxwell, Oldroyd, and Phan-Thien-Tanner

models. The effects of the Weissenberg number We and β (ratio of solvent viscosity µs to total

viscosity µ0 = µs + µp, where µp is the viscosity came from polymer addtive) on the criti-

cal Rayleigh number for convection start-up and the convection cell structure under different

aspect ratios were studied. Park and Ryu (2001) also investigated flow pattern selection mech-

anisms under different We and β, with aspect ratios A = 2.0 and 6.0. They determined that the

critical Rayleigh number decreases as Weissenberg number We increases and/or β decreases.

Except the onset of convection, flow pattern selection is also strongly dependent on the pa-

rameters We and β. Stability exchange criteria derived is only valid when a new flow pattern

grows monotonically without oscillation (Park and Lee, 1995). If the flow pattern grows with

oscillation the instability is called overstability. With We increases and/or β decreases enough,

the start-up convection flow pattern will transit from stability exhcange steady mode to over-

stability oscillatory mode (Park and Ryu, 2002). Fig. 2.16 shows the cirtical Rayleigh number

and the boundary separating exchange of stabilities and Hopf bifurcation in β − λ0 plane for

viscoelastic Rayleigh-Bénard convection with aspect ratio 2 : 1, where β = µm0/µ0 is the re-

tardation ratio (where µm0 is the zero-shear rate molecular-contributed viscosity) and λ0 is the

relaxation time (Park and Ryu, 2002). Park and Park (2004) and Park (2018) also numerically

simulated the Rayleigh-Bénard convection with a Phan-Thien-Tanner constitutive model and

showed that the time period of local vorticity intensity is almost two times larger than that of

local momentum with growing values of β.

Khayat (1994), Khayat (1995a), and Khayat (1995b) also conducted numerical studied on the

initiation and chaotic dynamics of the viscoelastic Rayleigh-Bénard convection (Oldroyd-B and

up-convected Maxwell constitutive model were used) and pointed out that when We exceeds

a certain critical value, the convective system will not appear in a steady state (Khayat, 1995a),
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FIGURE 2.16: The cirtical Rayleigh number and the boundary separating ex-
change of stabilities and Hopf bifurcation in β − λ0 plane in viscoelastic Rayleigh-
Bénard convection with aspect ratio 2 : 1, where β = µm0/µ0 is the retardation
ratio (where µm0 is the zero-shear rate molecular-contributed viscosity) and λ0 is

the relaxation time (Park and Ryu, 2002).

but the viscoelasticity promotes the initiation of convection and the transition of flow pattern

(Khayat, 1995b).

2.2.3 Heat transfer enhancement or suppression

When Rayleigh number is large enough, the Rayleigh-Bénard convection enters a completely

chaotic state. In this case, the stability analysis methods can not handle such strong nonlinear

problems, so most of the studies currently use experimental research and numerical simulation

methods.

Ahlers andNikolaenko (2010) performed Rayleigh-Bénard convection experiment on a cylin-

drical container with Γ = 1, and used a poly-[ethylene oxide] (PEO) aqueous solutio as the

experimental medium. With Ra ∈ [5 ∗ 109, 7 ∗ 1010] and different concentration of PEO, they

found that as the solute concentration increases, the heat transfer effect becomes worse. Within

the range of the test parameters, the heat transfer decay rate reaches amaximum of 10%. This re-

sult seems to be contrary to the conclusion of another study (Benzi, Ching, andDeAngelis, 2010)

about the effect of polymer additives on heat transfer in turbulent Rayleigh-Bénard convection.

Benzi, Ching, and De Angelis (2010) numerically (direct numerical simulation) investigated the

effects of the polymer additives on the heat transfer in turbulent Rayleigh-Bénard convective

flows with Pr ∼ 1 and Ra ∼ [1010, 1013.5]. They found that increasing the Weissenberg num-

ber will lead to increased heat transfer capacity, and has a relationship Nu ∼ We
3
2 . Benzi and
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Ahlers firstly proposed that the heat transport of turbulent viscoelastic fluid Rayleigh-Bénard

convection should be divided into a central area (Bulk) and a boundary layer area (BL). They

speculated that polymer additives can enhance the heat transfer in the central area of Rayleigh-

Bénard convection and deteriorate it in the boundary layer area. The overall increase or deteri-

oration depends on which area is the dominant flow.

In order to clarify this issue, researchers (Wei, Ni, and Xia, 2012; Xie et al., 2015; Benzi and

Chu, 2011; Benzi et al., 2016) have begun to study the effects of polymers on the heat transfer

in the central and boundary layer regions. Wei, Ni, and Xia (2012) conducted experiments in

cylindrical cavities with smooth and rough bottom plates with Ra ∼ 109, Pr ∼ 4.3. Through

calculating the dynamic energy dissipation rate and heat dissipation rate, they found that the

central area of the convection in the cavity with a rough low plate is dominant rather than the

boundary layer region, while the boundary layer region is the dominant flow in the convection

with smooth boundary. The experimental results showed that in the smooth bottom plate case,

Nu decreases (maximum 12.8%) with increasing polymer concentration, while in the rough

bottom plate case, the large-scale circulation velocity (7% and 4% respectively) and Nu increase

with polymer concentration.

In order to further reveal the mechanism of heat transfer enhancement caused by the central

area, Xie et al. (2015) conducted experiments on a cylindrical square cavity with a rough bottom

plate within a certain Ra range (3.18 ∗ 109, 7.43 ∗ 109), and used thermistor and laser Doppler ve-

locimetry (LDV) to measure temperature and velocity. By calculating the correlation coefficient

between velocity and temperature, the results showed that polymer additives can enhance the

heat transport of the coherent structure, and inhibit the heat transport of the incoherent struc-

ture. These two sets of experiments directly proved that polymer additives can enhance heat

transfer in the central area of convection.

Benzi and Chu (2011) numerically investigated the effects of the polymer additives on the

heat transfer in a laminar boundary layer, used an Oldroyd-B constitutive model and found

that the increase in the viscosity of the boundary layer region leads to an increase in resistance,

which slows down the horizontal and vertical flow and weakens heat transfer. Similar conclu-

sions were also observed in the paper byWei, Ni, and Xia (2012). Subsequent research by Benzi,

Ching, and De Angelis (2016) did the same simulation except using a more accurate viscoelastic

constitutive model, Finitely Extensible Nonlinear Elastic-Peterlin (FENE-P), and it is found that

when the stretched length L is large, the viscoelastic fluid deteriorates heat transfer, and when

the length L is small, the heat transport is enhanced. This result is also similar to that of the

earlier work of Dubief (2010). Benzi, Ching, and De Angelis (2016) subsequently numerically

studied the viscoelastic fluid Rayleigh-Bénard convection in 3D infinitely long parallel plates.

They found that Nu showed a non-monotonic change with the Weissenberg number, and the

evolute route can be divided into three sections: stable section; enhanced heat transfer section;

and a weakened heat transfer section. The effect of viscoelastic on Rayleigh-B’enard convec-

tiveis far from simple, and the mechanism of influence is not single. These issue still needs to

be studied more deeply.
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2.3 Conclusion

In this chapter, we firstly introduce the basic research status of Newtonian Rayleigh-Bénard

convection, such as the critical Ra of convection onset, the transition of flow pattern, and the

influence of parameters (Ra, Pr, A) on the flow structure and heat transfer capacity. In addi-

tion, some heat transfer enhancement techniques used in Rayleigh-Bénard convection are also

introduced. Secondly, the effects of viscoelastic properties on flow and heat transfer in channel

flow or in Rayleigh-Bénard convection are introduced, main focuses are on additives for drag-

reduction and heat transfer enhancement or suppression. Finally, we summarized the current

research status of viscoelastic Rayleigh-Bénard, and proposed the parts that need in-depth re-

search in next stage .
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Chapter 3

Flow modeling and numerical approach
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In this chapter, we introduce the governing equations used and the simulation solver devel-

oped to numerically simulate the Rayleigh-Bénard convection with Newtonian or viscoelastic

fluids. This chapter will be organized as follows. Firstly, the basic nature of fluids is intro-

duced. Secondly, the governing equations will be presented, which include the mass conser-

vation equation, momentum conservation equation, the energy conservation equation, and the
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viscoelastic fluid constitutive equation. Thirdly, the numerical schemes applied to solve the

governing equations will be illustrated, the solution process will also be shown. Finally, we do

code validation by comparing the results obtained to the works of literature on the Newtonian

and the viscoelastic Rayleigh-Bénard convection.

3.1 Introduction of non-Newtonian fluids

This part mainly explains the classification of fluids and the material properties of viscoelastic

fluids.

3.1.1 Classification of fluids

Rheology is a science about the flow characteristics of matter. In the perspective of rheology,

fluids are usually divided into Newtonian fluids and non-Newtonian fluids. The common flu-

ids in our lives, such as water and air, are Newtonian fluids, they all show a simple linear

relationship between shear stress and shear deformation, as presented by Eq. (3.1). Unlike the

Newtonian fluids, non-Newtonian fluids exhibit a more complex nature between shear stress

and shear deformation, not only related to deformation but also time-dependent. Depending

on the different properties, non-Newtonian fluids can be divided into time-dependent viscosity

fluid, non-Newtonian viscosity fluid, and viscoelastic fluid:

• Newtonian fluids is such a fluid: shear stress shows a linear relationship with shear de-

formation, which can be described as follows:

τ = µ
du

dy
(3.1)

where τ is the shear stress, µ is shear viscosity of the fluid, and du
dy is the derivative of the

velocity component which is parallel to the shear direction.

• Generalized non-Newtonian fluid The viscosity of generalized non-Newtonian fluid has

a more complex relationship with the shear strain rate but has nothing to do with the

shear time of the fluid. In view of this, the generalized non-Newtonian fluid is also called

non-time-varying non-Newtonian fluid.

• Time-dependent viscosity fluid For a time-dependent viscosity fluid, the viscosity is de-

termined by two items instead of one (different from non-Newtonian fluids), namely the

shear strain rate and the shearing time.

• Viscoelastic fluids The viscoelastic fluid is between viscous fluid and elastic solid. They

exhibit both viscous and elastic properties. Under the condition that the yield strength

is not exceeded, the deformation energy is partially restored after the shear stress is re-

moved.
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FIGURE 3.1: Flow curves of Newtonian and non-Newtonian fluids: Shear stress σ
as functions of the shear rate γ̇ (Yang and Du, 2019).

Fig. 3.1 shows the relationship between shear rate and shear stress of common non-Newtonian

fluids. Most polymer solutions we met show characteristics of shear thinning, they belong to

the class of pseudoplastic materials. And an example of common shear-thickening (Dilatant)

fluids is cornstarch in water. The viscoelastic fluids we studied in the present work belong to

pseudoplastic material.

3.1.2 Microstructure of viscoelastic fluids

We can consider that viscoelastic fluid is understood as a certain concentration of macromolecu-

lar structure in Newtonian fluid. Viscoelastic fluid exhibits more complex rheological behavior

than Newtonian fluids, due to the existence of macromolecular structures. Therefore, a simple

viscous continuous medium model (such as water) is not sufficient to represent the rheological

behavior of viscoelastic fluids. Taking into account the contribution of macromolecular in vis-

coelastic fluids, many excellent constitutive models have been or are derived by modeling the

behavior of the polymer macrostructures. Two main macrostructure models are shown below:

• Spring-dumbbell model

This model is the simplest macrostructure model, derived from the Hookean dumbbells

model, which treats the molecular structure as spring-dumbbell: chains contain beads

connected with elastic springs, as shown in Fig 3.2a. The interaction between the polymer

and the fluid is reflected by the interaction force imposed on the dumbbell, and the molec-

ular elasticity changes are reflected by the internal spring. We can understand this model

as stochastic spring-dumbbells scattered in a Newtonian fluid. The main representative

of this model is the Oldroyd-B model, as shown in Fig 3.2a.

• Network model
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The network theory was originally extended into viscoelastic study by Phan-Thien and

Tanner (1977), who derived the PTT constitutive model (we used in this dissertation) from

this network model. This model assumes that the polymer is represented by a network

consisting of nodes connected by spring junctions, as shown in Fig. 3.2b. The movement

of the nodes represents the effect of the flow on the polymer.

(A) Spring-dumbbell model. (B) Network model.

FIGURE 3.2: Polymer macro-structure models.

3.1.3 Rheology parameters

Due to the existence of viscoelastic effects, viscoelastic fluids have flow characteristics very dif-

ferent fromNewtonian fluids, and produce their unique flow phenomena, such as rod climbing,

swell, tubeless siphon, Kaye effect, and shear-thinning phenomenon. To describe the character-

istics of viscoelastic fluids, several important parameters are introduced here: viscosity ratio,

relaxation time, and normal stress difference.

• Solvent viscosity, solute viscosity and viscosity ratio (β) In viscoelastic fluids, ν0 is de-

fined as the viscosity with shear rate equal to zero, and described as:

ν0 = νs + νp (3.2)

where νs is solvent viscosity and νp is solute viscosity(namely the contribution of poly-

mer). Naturally, a new dimensionless number β is induced, which describes the ratio

between viscosity of the solvent νs and viscosity with zero shear rate ν0:

β =
νs

ν0
=

νs

νs + νp
(3.3)

• Relaxation time (λ)Asmentioned above, the rheology behavior of viscoelastic fluids have

the time-dependent feature, because the stretching and shrinking behaviors of macro-

molecular structures in viscoelastic fluids at one moment are impacted by flow history.

An important physical quantity in a viscoelastic fluid is proposed: λ relaxation time.

For Newtonian fluids, the stress on the fluid micelles disappeared immediately when the

strain was suddenly removed. However, the stress on the micelles of the viscoelastic fluid
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only disappeared after a relaxation time λ and furthermore its time evolution is not lin-

ear. In order to describe the rheology behaviour, the dimensionless quantity Weissenberg

number We, is induced:

We =
λUc

H
(3.4)

where Uc is the characteristic velocity (m/s) and H is the characteristic length (m). We

describes the ratio between the elastic forces to the viscous forces.

• Normal stress differences Another important variable defined for viscoelastic is the nor-

mal stress difference, which is the main behavior of elascity. The normal stress differences

are defined as:

N1 = τ11 − τ22 (3.5)

N2 = τ22 − τ33 (3.6)

where τ11, τ22 and τ33 are the normal stresses on x−, y− and z− directions, respectively,

(Pa). In Newtonian fluid, the normal stress differences all equal zero N1 = N2 = 0, but in

viscoelastic fluid, they exist and are not equal to zero.

3.1.4 Viscoelastic constitutive models

At present, the most commonly used viscoelastic constitutive models are Oldroyd-B, Gieseskus,

and Phan-Thien-Tanner models. Gieseskus model can be obtained through the simplification of

the Phan-Thien-Tanner model, so this subsection mainly describes Oldroyd-B and Phan-Thien-

Tanner constitutive models.

• Oldroyd-B constitutive model

The Oldroyd-B fluid is one of the most simplified constitutive models that can describe

the viscosity and elasticity behaviors of the fluids, it is derived by taking into account

extra stress in the governing equations of Navier-Stokes equation and Upper-convected

Maxwell model (one of the Maxwell models), the latter is the most popular linear vis-

coelastic model. The model can be written as

∇
τp =

1

λ
τp + 2

µp

λ
D (3.7)

where:

– τp is the elastic extra stress tensor

– D is the deformation rate tensor, strain rate tensor,D = 1
2 (∇u+∇uT ), u is the fluid

velocity
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– λ is the relaxation time

– µp is the elastic viscosity

–
∇
〈•〉 is an operator that describe upper convected time derivative of the stress tensor:

∇
τp =

∂

∂t
τp + u · ∇τp − ((∇u)T · τp + τp · (∇u)) (3.8)

• Phan-Thien-Tanner constitutive model

The PTT model is also derived from the Maxwell model, by introducing the elongation

behavior of the macromolecular structure and the slip behavior between molecules. The

constitutive equation is shown in Eq. (3.9).

∇
τp =

1

λ
τp + 2

µp

λ
D− ǫ

µp
tr(τp)τp − ξ(Dτp + τpD) (3.9)

where:

– ǫ represents the elongation behaviour of the polymer

– ξ represents the slip behaviour among polymer molecula

There are still many studies aiming at constructing constitutive models that can better de-

scribe the flow characteristics of viscoelastic fluids. The methods used are the followings: 1)

mechanical comparison, 2) adding nonlinear term, 3) model modification, 4) irreversible ther-

modynamic.

3.2 Governing equations

The Rayleigh-Bénard convection is one of the most classical physical phenomena, which in-

volve in both fluid flow and heat transfer. All the physical processes in a continuous medium

involving fluid flow and heat transfer must conform to three fundamental physical laws: mass

conservation; momentum conservation and energy conservation. The definition of the above

three physical laws are described as below:

• Mass conservation, in any material system isolated from the surroundings (isolated sys-

tem), no matter what changes or processes occur, its total mass remains unchanged.

• Momentum conservation, a system is not subject to external forces or the sum of external

forces is zero, the total momentum of this system remains unchanged. More generally

the rate of change of momentum in a system is equal to the resultant fore acting on the

system.
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3.2. Governing equations 35

• Energy conservation, energywill neither be produced nor vanished, it will only transform

from one form to another, or from one object to another, while the total amount of energy

remains the same.

In order to better understand the applicability of the above conservation laws, we should

know the scale classification of the materials and the continuous mechanics. We know that

the smallest units of the fluids are molecules, molecules consist of things and are separated by

space. On the microscopic scale, the fluids are noncontinuous. But we observe objects or phe-

nomena from amacroscopic scale, which is much larger than themolecular scale. On themacro-

scopic scale, certain objects or physical phenomena can be considered as continuous, meaning

the matter is continuously distributed and fills over the space. This continuous matter can be

divided into subunit, and each subunit has the same physical properties as the whole.

FIGURE 3.3: Applicability range of the numerical model corresponding to the
Knudsen number (Ivanov, Bondar, and Markelov, 2007).

Based on the above description, a dimensionless number, the Knudsen number (Kn), has to

be introduced to make the analytical method used in this thesis more understandable. Knudsen

number (Kn = λ/L) describes the ratio of the mean free path length of the molecular (λ) to

the physical characteristic length scale (L) and helps us determine which mechanical model

(statistical mechanics (microscopic scale) or continuous mechanics (macroscopic scale)) to use

to discuss physical processes.

The regime classification of fluid flow by Kn is shown in Fig. 3.3. For Kn > 10, the flow

can be defined as free molecular flow, where the mean free path of the molecular is larger than

the length scale of the fluid, the flow is in a transition state between the free molecule and

continuous regimes. For 0.001 < Kn < 0.1, the flow is in a slip flow regime, which means the

fluid flow is in a continuous state, but the boundary slip needs to be considered. For Kn < 0.001,

The flow is in a continuous regime, where the mean free path of the molecular is much smaller

than the length scale of the flow. The present work concerns the continuous regime.
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3.2.1 Mass conservation

It is assumed that there is an infinitesimal element of fluid in the fluid flow, as mentioned above.

The law ofmass conservation requires that themass of the element is constant δm = ρδV, means

that the mass increase of the element within a united time is equal to the mass input at the same

time, where δm is mass of the fluid element, ρ is the density of the fluid and the δV is the volume

of the element, shown in Fig. 3.4. This can be expressed as:

D(δm)

Dt
= 0 (3.10)

where D(·)
Dt = ∂(·)

∂t + (u · ∇)(·) is the material derivative, with u = (u, v,w) the velocity vector.

Substituting δm = ρδV into Eq. (3.10), we obtain:

Dρ

Dt
+ ρ[

1

δV

DδV

Dt
] = 0 (3.11)

The rate of volume change ( 1
δV

DδV
Dt ) can be written as the divergence of flow velocity (∇·u).

Dρ

Dt
+ ρ∇ ·u = 0 (3.12)

Under Boussinesq approximation (explained in Sec. 3.2.2), Eq. (3.11) can be presented as:

∇ ·u = 0 (3.13)

Eq. (3.13) is a divergence form of the continuous equation, it is derived based on the in-

finitesimal fluid elements move with fluid flow.

FIGURE 3.4: The conservation of mass in an infinitesimal control volume of fluid.
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3.2.2 Momentum equation and Boussinesq approximation

The momentum equation is derived by introducing Newton’s second law (Fx = max, where m

is the mass of the object, Fx and ax are the force and acceleration of the movement in direction

x), which describes the sum of the forces acting on the fluid elements is equal to the mass of

the elements multiplied by the acceleration of the movement. The forces acting on the elements

mainly are surface force (such as shear and normal stress on the surface) and bulk force (such

as gravity). The equation with incompressible restriction can be expressed as:

ρ0
∂u

∂t
+ u∇ ·u = −∇p+∇ ·σ − ρgez (3.14)

where u, p, g stand for the velocity vector, the pressure, the gravitational acceleration, respec-

tively. ez is the unit vector in the vertical direction. The last term of Eq. (3.14) will be treated by

the Oberbeck-Boussinesq approximation, which will be shown below. The total stress σ can be

expressed as:

σ =




τs Newtonian fluids

τs + τp Viscoelastic fluids
(3.15)

where τs and τp are force contribution of the Newtonian solvent and embedded polymeric

long chain molecules, respectively. In Newtonian fluids, τp does not exist, and the solvent

contribution τs = µsD is well known.

• Boussinesq approximation The Boussinesq approximation is widely used in buoyancy-

driven flow, the density differences in the gravity term of momentum equation are con-

sidered, while in the other terms,they are neglected. The Boussinesq approximation is

valid only when ∆ρ << ρo. Under the Boussinesq approximation, we have the relation

ρ = ρ0[1− α(T− T0)], where α is coefficient of thermal expansion. Eq. (3.14) can be rewrit-

ten as

ρ0
∂u

∂t
+ u∇ ·u = −∇p̃+∇ ·σ + ρ0α(T − T0)gez (3.16)

where p̃ = p− ρ0gez

3.2.3 Energy equation and temperature equation

The energy equation also can be derived by the perspective of infinitesimal element of the fluid.

For the infinitesimal fluid elements following the flow, the energy conservation law describes

that the energy change inside the fluid element is equal the net heat input plus the power of the

work done by volume and surface force on the volume:

∆(U + Ekin) = Q−W (3.17)

where,
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38 Chapter 3. Flow modeling and numerical approach

• ∆U: internal energy change in the element

• ∆Ekin: kinetic energy change

• Q: heat input

• W: work done by the element

If we expand the terms in Eq. (3.17) from the perspective of interaction between infinitesimal

element and the surrounding fluid, we obtain,

∂

∂t
[ρ(e+

1

2
v2)] +∇ · [ρv(e+ 1

2
v2)] = ∇ · q+∇ · (σ · ρv) + ρv · F (3.18)

where,

• ρ is the density

• e is the internal energy per unit mass

• v is the velocity vector

• v2 is the square of the velocity magnitude

• q is the conductive heat flux vector (q = −k∇T), k is the thermal conductivity and T is the

temperature

• σ is the total stress tensor, including pressure and extra stress tensor σ = (−pI + τs) + τp

• F is the body force per unit mass; i.e., the gravity gez

The terms on the left-hand side of Eq. (3.18) are the rate of energy change per unit element.

The terms on the right-hand side of Eq. (3.18) are the net heat conduction input into the element,

the work done by the total stress tensor, the work done by body forces, respectively.

By considering that the conduction heat transfer is governed by Fourier’s law, the energy

equation can also be written with enthalpy, as Eq. (3.19), where enthalpy is related to internal

energy as h = e+ p/ρ.

ρ[
∂h

∂t
+∇ · (hu)] = −Dp

Dt
+∇ · (k∇T) + φ (3.19)

where φ is the dissipation of the element work on the element by the viscous and extra tensor,

which is irreversibly converted into internal energy,

φ = τs : ∇u+ (τp : ∇)u (3.20)

The pressure term on the RHS of Eq. (3.19) is usually neglected. If the dissipation can be

neglected, the energy conservation equation can be simplified to

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



3.2. Governing equations 39

ρcp[
∂T

∂t
+ (u · ∇)T] = k∇2T + φ (3.21)

where cp is the specific heat at constant pressure. By using the Boussinesq approximation in

Eq. (3.21) and ignoring the dissipation by viscous forces, we can get,

∂T

∂t
+ (u · ∇)T =

k

ρ0cp
∇2T (3.22)

3.2.4 Viscoelastic constitutive equations

The polymeric contribution to the stress, τp, is the molecular extra-stress tensor and can be

obtained by a different viscoelastic constitutive equation, as explained in Sec. 3.1.4. These vis-

coelastic constitutive models can be cast in one general viscoelastic constitutive equation:

∂τp
∂t

+ (u · ∇)τp −∇uT · τp − τp · ∇u =
1

λ
τp + 2

µp

λ
D+ A[− ǫ

µp
tr(τp)τp − ξ(Dτp + τpD)]

(3.23)

It is called the PTT model. Different values of the model parameters will allow to recover

particular viscoelastic constutive models,

• A = 0 : Oldroyd-B model

• A 6= 0, ξ = 0, ǫ 6= 0: Giesekus model

• A 6= 0, ξ 6= 0, ǫ 6= 0: PTT model

3.2.5 Boundary conditions

According to the physical conditions on the boundary, there are three types boundary condi-

tions:

• First-type boundary condition: A boundary condition which specifies the value of the

function itself, is also called Dirichlet boundary condition.

• Second-type boundary condition: A boundary condition which specifies the value of the

normal derivative of the function, is also called Neumann boundary condition.

• Third-type boundary condition: A boundary condition which specifies the combination

of the two previous is also called the Robin boundary condition.

The problems studied in this thesis concern a cavity filled with a viscoelastic fluid and they

are defined on the computational domain Ω: (x, y) ∈ [0, L]× [0, H] The velocity boundary con-

ditions are no slip (the first-type boundary condition), the velocity of the fluid at the boundary is
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40 Chapter 3. Flow modeling and numerical approach

equal to zero. The thermal boundary conditions are adiabatic (the second-type boundary condi-

tion) on the vertical walls and isothermal (the first-type boundary condition) on the horizontal

walls:

• at y = 0 : u1 = u2 = 0, T = T0

• at y = H : u1 = u2 = 0, T = T1

• at x = 0, L : u1 = u2 = 0, ∂T
∂x = 0

There is no boundary condition for the pressure (p) and the elastic stress τ .

3.3 Numerical integration

3.3.1 Nondimensionalization

The following scale factors are introduced to non-dimensionalize the governing field equations:

H the cavity height for length, Uc = κ
H

√
Ra the reference velocity for velocity, H/Uc for time,

T0 − T1 for temperature difference, ρ0U
2
c for pressure and shear tensor. Here Ra is the Rayleigh

number defined as Ra = αg∆TH3/νκ, κ = k/ρ0Cp is the thermal diffusivity and ν is the kine-

matic viscosity of the working fluid. Using the scaling factors, we can define the folows dimen-

sionless variables:

x∗ =
x

H
, t∗ = t

Uc

H
, u∗ =

u

Uc
, T∗ =

T − T1

T0 − T1
, p∗ =

p

ρ0U2
c

and τ ∗

p =
τp

ρU2
c

In order to simplify the notation, we drop hereafter ∗ from all the dimensionless variables

and formulas. The dimensionless governing equations are then rewritten as:

∇ · u = 0 (3.24)

∂u

∂t
+ (u · ∇)u = −∇p+ β

Pr√
Ra

∆u+∇ · τp + PrTej (3.25)

∇
τp +

τp

We
√

Ra
− 2

1− β

Ma2
D = A[−ǫ

√
Ra

(1− β)Pr
tr(τp)τp − ξ(Dτp + τpD)] (3.26)

∂T

∂t
+ (u · ∇)T =

1√
Ra

△T (3.27)

where β = µs/µ0 is the ratio of solvent viscosity to total viscosity µ0 = µs + µp, Pr = µ0Cp/k

is the Prandtl number, We = λκ/H2 the Weissenberg number and the Mach number Ma =√
RaWe/Pr which describes the ratio of the characteristic velocity of the flow to the shear wave

speed. Furthermore, we can introduce an elastic number E = Re/We =
√

Ra/PrWe.

We point out that due to the definition of the reference velocity Uc = κ
H

√
Ra in this paper,

the natural way to defineWe is to use Uc as has been done by Cheng et al. (2017). The drawback
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Ra αg∆TH3/νκ β µs/µ0 Re
√

Ra/Pr

Pr µ0Cp/k We λκ/H2 E
√

Ra/PrWe

TABLE 3.1: Summary of dimensionless numbers

of using Uc to define We is that the defined We will change with Rayleigh number. In this thesis

a definition of We independent of Ra, We = λκ/H2, was used: for example for Ra = 1600 and

We = 0.1 in the present work the equivalent Weissenberg number is We = 10.58 in the work by

Cheng et al. (2017) and Li et al. (2017) (in their work Uc =
√

αgH∆T).

3.3.2 Meshing and approximating derivatives

A closed-form mathematical expression, such as a function, or a differential equation, or an in-

tegral equation of a function, is regarded as continuous in a certain area and has infinite number

of values. The essence of discretization is to approximate it with another similar expression, but

this approximate expression only specifies a value on a limited number of discrete points or

control bodies in the area. The analytical solution of the partial differential equation is a closed-

form expression, which describes the continuous change of the function in the region. On the

contrary, the numerical solution can only give results on discrete points in the area, and these

discrete points are called grid points.

For better understanding, Fig. 3.5 shows a set of discretized grid points in the x − y of the

Cartesian coordinate system. In Fig. 3.5, the intervals of each node in both x and y direction are

the same, which are ∆x and ∆y respectively. In fact, ∆x and ∆y do not have to be constants. The

grid is marked with i in the x direction and j in the y direction. If the mark P point is (i, j), then

the points around P point are (i+ 1, j), (i− 1, j), (i, j+ 1), (i, j− 1) respectively. At this time, the

physical quantities we need are stored on grid nodes similar to P. In other words, continuous

physical quantities in the physical field are represented by discrete physical quantities on grid

points.

FIGURE 3.5: The finite difference method spatial grid
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42 Chapter 3. Flow modeling and numerical approach

The finite difference method is a kind of numerical analysis scheme, its purpose is to obtain

a numerical solution that is close to the real solution by solving discrete equations. The discrete

equations are obtained through approximating derivatives with finite differences. The calcu-

lating domain is divided into a finite number of cells, and variables information are stored in

the junctions. The calculating time is also discretized into a finite number of steps. The value

of the solution at these discrete points is approximately obtained by solving discrete equations

including finite differences and values from nearby junctions.

For the finite difference method, the nodes are located on the corner points of the sub-

regions, and the clusters of curves dividing the sub-regions are grid lines. In order to determine

the control volume of each node, it is necessary to draw a boundary line at the middle position

of the adjacent nodes, and these interface lines constitute the control volume of each node. In

the process of simulation evolution along the timeline, the discretization in space at each time

level is the same as shown in Fig. 3.6 for a uniform grid.

FIGURE 3.6: time evolution

The general form of the reciprocal finite difference can be derived using Taylor series ex-

pansion. As shown in Fig. 3.5, the first order partial derivative velocity at position (i, j) can be

expressed as

fi+1,j = fi,j +
∂ f

∂x
|i,j(xi+1,j − xi,j) +

∂2 f

∂x2
|i,j

(xi+1,j − xi,j)
2

2
+

∂3 f

∂x3
|i,j

(xi+1,j − xi,j)
3

6
+ · · · (3.28)

after considering the uniform grid, Eq. (3.28) can be write as

fi+1,j = fi,j +
∂ f

∂x
|i,j(∆x) +

∂2 f

∂x2
|i,j

∆x2

2
+

∂3 f

∂x3
|i,j

∆x3

6
+ · · · (3.29)

If the above algebraic difference is used as an approximation of the partial derivative, we

have
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∂ fi,j

∂x
=

fi+1,j − fi,j

∆x
+

∂2 fi,j

∂x2
∆x

2
+

∂3 fi,j

∂x3
∆x2

6
+ · · · (3.30)

and the truncation error is order of O(∆x),

∂ f

∂x
|i,j =

fi+1,j − fi,j

∆x
+O(∆x) (3.31)

where the symbol O(∆x) is mathematically representing "a term of the same order as ∆x".

Eq. (3.31) is called the first order forward difference of the derivate (
∂ fi,j
∂x ). Here, we display

several common and used in this thesis discrete schemes:

1st order upwind scheme (∆x):

∂ fi,j

∂x
=

{
fi+1,j− fi,j

∆x
fi,j− fi−1,j

∆x

(3.32)

2nd order central difference scheme (∆x2):

∂ fi,j

∂x
= fi+1,j− fi−1,j

2∆x
(3.33)

∂ f 2i,j

∂x2
= fi+1,j−2 fi,j+ fi−1,j

∆x2
(3.34)

2nd order upwind scheme (∆x2):

∂ fi,j

∂x
=

{−3 fi,j+4 fi+1,j− fi+2,j

2∆x
3 fi,j−4 fi−1,j+ fi−2,j

2∆x

(3.35)

3rd order high order upstream central scheme (∆x3):

∂ fi,j

∂x
=





λ
fi−2,j−6 fi−1,j+3 fi,j+2 fi+1,j

6∆x1
if λ > 0

λ
−2 fi−1,j−3 fi,j+6 fi+1,j− fi+2,j

6∆x1
if λ < 0

0 otherwise

(3.36)

3.3.3 Quasi-linear treatment

For viscoelastic fluid flow, the complexity is not only reflected by the fact that it is different from

Newtonian fluid in the flow and heat transfer, but also in the process of numerical simulation.

The numerical difficulties lie mainly in (a) the constitutive equation of viscoelastic fluids that

can accurately reflect the actual elastic response; (b) the sufficient numerical stability of coupling

the Navier-Stokes equation and constitutive equation of viscoelastic fluids.

So far, the numerical simulation methods for viscoelastic fluid flow mainly include molec-

ular dynamics method (Jin, 2007), Monte Carlo method (Xu, Ding, and Yang, 1997; Xu, Ding,
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and Yang, 2000), Brownian dynamics method (Somasi et al., 2002), Smoothed Particle Hydro-

dynamics method (Ye et al., 2019) and direct numerical simulation method (Tsukahara et al.,

2011). Apart from direct numerical simulation methods, the other numerical methods are all

from a microscopic perspective, considering the interaction of viscoelastic particles to describe

the state of viscoelastic fluid molecules in the flow, and they need huge computer resources.

In the process of solving the viscoelastic fluid flow by direct numerical simulation, because

the constitutive equation of the viscoelastic fluid is a hyperbolic equation and lacks a viscous

dissipation term, there will be physical discontinuities in the elastic stress tensor, which may

cause great elastic deformation. This problemwill cause calculation instability when simulating

the cases with highWeissenberg number (Keunings, 1987). In order to avoid this problem, some

scholars added an artificial viscosity term into the viscoelastic constitutive equation (Sureshku-

mar and Beris, 1995; Zhang et al., 2016). This operation increases the elastic dissipation and

reduces the elastic stress gradient, but it also makes the calculation result untrue. It is found

that using a suitable discrete scheme for the convection term in the viscoelastic constitutive

equation can effectively improve the stability of the calculation.

MINMOD method: Min, Yoo, and Choi (2001) proposed that the use of a third-order com-

pact welcome style and the introduction of local artificial viscosity can ensure the stability and

accuracy of the calculation. Yu and Kawaguchi (2004) tried to solve the problem by aMINMOD

(Zhu and Rodi, 1991) discrete scheme, but it is found that this method cannot guarantee the

symmetric positive definite nature of the conformation tensor, and it still cannot carry the large

We situation. In order to ensure the symmetrical positive definite nature of the conformation

tensor, Kurganov and Tadmor (2000) proposed the K-T format of the central difference, which

was further improved by Vaithianathan et al. (2006), so that the conformation tensor can always

be positive and symmetric.

Log-conformation reformulation: Fattal and Kupferman (2004) and Fattal and Kupferman

(2005) believe that the fundamental reason for the emergence of the High Weissenberg Num-

ber Problem (HWNP) is that the direct polynomial fitting solution to the conformation tensor

transport equation is only valid when We is small. When We increases to a certain value, the

growth of the conformation tensor is of exponential type, the polynomial fitting method is no

longer applicable, resulting in an increased error and unstable calculation. As any symmetric

positive definite matrix can be decomposed into the form of A = DΛDT, therefore a logarith-

mic reconstructionmethod is proposed. First, a simple logarithmic transformation is performed

on the conformation tensor, and then the output of the transformed conformation tensor index

is solved. In this way, the solution of tensor multiplication is transformed into the form of a

solution of tensor exponent addition, which greatly reduces the error caused by the polynomial

fitting. The logarithmic reconstruction method of conformation has become the most effective

method to solve High Weissenberg Number Problem at present. In the process of solving the

constitutive equation, it can not only ensure the symmetric positive definiteness of the confor-

mation tensor but also calculation error of eliminate the conformation tensor under high We

(Hulsen, Fattal, and Kupferman, 2005; Afonso et al., 2009; Balci et al., 2011).
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Quasi-linear treatment: This treatment has been developed by Hagani (2021) and is used in

the present work.

To simplify the numerical process, we firstly reorganized for 2D cases Eq. (3.25) and Eq. (3.26)

into a quasi-linear system by separating the homogeneous part and the source term:

∂W

∂t
+

2

∑
i=1

Ai
∂W

∂xi
= Sql (3.37)

where W = [u1, u2, τ11, τ12, τ22] is the vector of variables including velocity components ui and

extra-stress components τij. Sql , the source term, includes pressure, buoyancy and viscous terms

of the momentum equation and feature terms of the PTT constitutive equation and is written as

Sql =


 −∇p+ β Pr√

Ra
∆u+ PrTej

−τp

We
√

Ra
− A[ ǫ

√
Ra

(1−β)Pr
tr(τp)τp + ξ(Dτp + τpD)]


 (3.38)

Ai is the matrix acting on the first derivative of W in the flow direction i. For example A1 is

expressed in Eq. (3.39), and more detail will be shown in Appendix. A.

A1 =




u1 0 −1 0 0

0 u1 0 −1 0

−2( 1−β
Ma2

+ τ11) 0 u1 0 0

−τ12 −( 1−β
Ma2

+ τ11) 0 u1 0

0 −2τ12 0 0 u1




(3.39)

In simple shear flow with an Oldroyd-B constitutive model, the system is hyperbolic only

when τii +
1−β
Ma2

is positive for each i, Crochet, Davies, and Walters (2012) and Trebotich, Colella,

and Miller (2005). To reveal the hyperbolic feature of our quasi-linear governing system, the

spectra of Ai need to be real. Symbolic computation of the eigenvalues and eigenvectors of

Ai shows that the eigenvalues of Ai depend on
√

τii +
1−β
Ma2

for each i, which means that the

eigenvalues are real only when

τii +
1− β

Ma2
≥ 0. (3.40)

Following Tsai and Miller (2014) for the Giesekus model, we get for the PTT model:

G(τp +
1− β

Ma2
)GT =

t∫

−∞

e
t−s√
RaWe [

1− β√
RaWeMa2

GGT − ǫ

√
Ra

(1− β)Pr
Gtr(τp)τpG

T

− ξG(Dτp + τpD)GT ]ds

(3.41)
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46 Chapter 3. Flow modeling and numerical approach

where G is decomposition transformation gradient. The hyperbolicity of the PTT model re-

quires that the RHS of Eq. (3.41) is positive,

1− β√
RaWeMa2

GGT − ǫ

√
Ra

(1− β)Pr
Gtr(τp)τpG

T − ξG(Dτp + τpD)GT
> 0. (3.42)

This should be verified a posteriori.

If Eq. (3.42) holds true, we can rewrite Ai as Ai = LiΛiRi, where Λi is a diagonal matrix

containing the eigenvalues of Ai. Li is the matrix formed by the eigenvectors of Ai and Ri is the

inverse of Li. The convective terms of Eq. (3.37) can then be transformed into

Ai
∂W

∂xi
= LiΛi

∂RiW

∂xi
(3.43)

This transformation allows to calculate first Λi
∂RiW

∂xi
by using suitable numerical schemes

and to compute explicitly the convective terms Ai
∂W
∂xi

as can be seen hereafter.

After introducing the quasi-linear treated, the governing system can be written as follows:





∂T

∂t
+ (u · ∇)T = 1√

Ra
△T

∂W

∂t
+

2

∑
i=1

Ai
∂W

∂xi
= Sql

∇ · u = 0

(3.44)

3.3.4 Temporal discretisation

For a time-related physical problem described by the governing equation, the calculation of the

time term in the differential form promotes the evolution of the variables in each governing

equation. The general governing equation with variable Φ can be write as:

∂Φ

∂t
= F(t,Φ(t)) (3.45)

Here, we define the difference of two time levels [t, t + ∆t] is one time step size ∆t. The

time-related term, left side term, can be discretised to first-order backward difference form:

Φn+1 − Φn

∆t
= F(Φn+1) (3.46)

or second-order discretised backward difference form:

3Φn+1 − 4Φn + Φn−1

2∆t
= F(Φn+1) (3.47)

where n− 1, n and n+ 1 denote the last time level, present time level, and next level.
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3.3. Numerical integration 47

Implementation of backward differential fomula

For governing Eqs. (3.44) used in our work, it is discretized in time by a semi-implicit second-

order scheme: partial derivatives in time are treated by a second-order backward differential

formulation (BDF2). The Backward Differential Formula is a kind of linear multi-step method

and firstly proposed by Curtiss and Hirschfelder (1952), which approximate the derivative of

the time term of the governing equation by known information from already computed time

points.

The quasi-linear terms, PTT related nonlinear terms, and the convective term in the energy

equation is treated explicitly by a second-order extrapolation in time. The diffusion terms, re-

laxation terms, mass conservation, and pressure gradients are treated implicitly.

Application of BDF2 to the governing system is shown as follows:





3Tn+1 − 4Tn + Tn−1

2∆t
+ 2 ((u · ∇)T)n − ((u · ∇)T)n−1 = 1√

Ra
△Tn+1

3Wn+1 − 4Wn +Wn−1

2∆t
+ 2

(
2

∑
i=1

Ai
∂W

∂xi

)n

−
(

2

∑
i=1

Ai
∂W

∂xi

)n−1

= Sn+1
ql

∇ · un+1 = 0

(3.48)

with

Sn+1
ql =




−∇pn+1 + β Pr√
Ra

∆un+1 + PrTn+1ej
−τ n+1

p

We
√

Ra
−2A[ ǫ

√
Ra

(1−β)Pr
tr(τp)τp+ξ(Dτp+τpD)]n+A[ ǫ

√
Ra

(1−β)Pr
tr(τp)τp+ξ(Dτp+τpD)]n−1




(3.49)

Alternative direction implicit method

Eqs. (3.48-3.49), apart from the velocity-pressure coupling, lead to Helmholtz equations for the

unknowns Tn+1, un+1
1 and un+1

2 and simple scalar equations for τn+1
11 , τn+1

12 , and τn+1
22 ,

(1+
2∆t

3We
√

Ra
)τn+1

ij = RHS (3.50)

that can be easily solved at any grid point. We use the energy equation to illustrate the ap-

proach used to solve the Helmholtz equations. Themethod is similar to the alternative direction

method. The Helmholtz equation for Tn+1 is written as

(
1− 2∆t

3
√

Ra
△
)

Tn+1 =
4

3
Tn − 1

3
Tn−1 − 4∆t

3
((u · ∇)T)n +

2∆t

3
((u · ∇)T)n−1 (3.51)

The 2D Helmholtz operator can be factorized into a product of two 1D operators:
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48 Chapter 3. Flow modeling and numerical approach

FIGURE 3.7: Solving process for a 2D ADI scheme.

1− 2∆t

3
√

Ra
△ = (1− 2∆t

3
√

Ra

∂2

∂x21
)(1− 2∆t

3
√

Ra

∂2

∂x22
)− 4∆t2

9Ra

∂2

∂x21

∂2

∂x22
(3.52)

The cross term is of the order of ∆t2 and neglecting it results in a first-order time scheme.

The factorized operator is only applied to temperature increment (Tn+1 − Tn) to keep a second

order time scheme, which is of the order of ∆t. In this way

4∆t2

9Ra

∂2

∂x21

∂2

∂x22
(Tn+1 − Tn) (3.53)

becomes of the order of ∆t3 and can be neglected without decreasing the accuracy of the second-

order time scheme. The final equation of temperature to be solved is the following:

(1− 2∆t

3
√

Ra

∂2

∂x21
)(1− 2∆t

3
√

Ra

∂2

∂x22
)(Tn+1−Tn)=

2∆t

3
√

Ra
△Tn+

1

3
(Tn−Tn−1)

−4∆t

3
((u · ∇)T)n+

2∆t

3
((u · ∇)T)n−1

(3.54)

In this way, solving the 2D temperature Helmholtz equation can be done by solving only 1D

problems (first in the x1 direction and then in the x2 direction). Fig. 3.7 shows a solve process of

a 2D ADI. The same method is also used to solve the Helmholtz equations for the velocity.

3.3.5 Spatial discretisation

We use the finite differential method to discretize the governing equations in space. The finite

differential method had briefly introduced above, Sec. 3.3.2.

Velocity- pressure staggered grid

For the velocity-pressure coupling problem, if the velocity and pressure components are placed

on the same nodes, a common pressure chessboard problem will arise. The checkerboard prob-

lem describes that the pressure gradient using the central difference method Eq. (3.55) will get

an unreasonable solution in the case of a regular grid, as described in Fig. 3.8.
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FIGURE 3.8: Checkerboard pressure problem on a normal grid.

∂pi,j

∂x
=

pi+1,j − pi−1,j

2∆x
(3.55)

In order to avoid this problem, Harlow and Welch (1965) proposed the staggered grid tech-

nique. A staggered grid is a manner of spatial discretization, in which the variables are not

allocated at the same position. For the present problem, the main nodes (nodes made by the

original grid) are marked with temperature, velocity components, and elastic stress compo-

nents. We define the new nodes obtained by moving the original grid by half the grid distance

in the x direction and y direction as the secondary grid nodes, which are marked by a scalar of

pressure. The above description is shown in Fig. 3.9. This technique not only retains the central

difference discrete scheme for pressure but also effectively avoids numerical errors caused by

the pressure chessboard problem.

FIGURE 3.9: Stagerred grid.
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50 Chapter 3. Flow modeling and numerical approach

Projection method

The velocity-pressure coupling is treated by the projection method: enforcing the incompress-

ibility constraint at time step (n+ 1) in themomentum equation results in a Poisson equation for

the pressure pn+1 or its increment (pn+1 − pn). Pressure increment is used in the present study.

In the prediction step, momentum equations are solved using the gradients of pn. The resulting

velocity field is not divergence-free; in the correction step this velocity field is projected onto a

divergence-free space by using the gradients of (pn+1 − pn) and the resulting Poisson equation

is solved by a partial diagonalization method. The calculation process is as follows:

- Prediction step

3u∗ − 4un+1 + un

∆t
= 2HPn+1

u − HPn
u −∇pn+1 + β

Pr√
Ra

∆u∗ + PrTn+2ez (3.56)

u∗∣∣
∂Ω

= ub · n (3.57)

where ub and n are the velocity and normal vectors at the domain boundaries ∂Ω, HPu

includes all the contributions of the hyerbolic terms in the momentum equation.

- correction step: φ = pn+1 − pn

un+1 − u∗

∆t
= −∇φ (3.58)

∇ · un+1 = 0 (3.59)

=⇒ ∇2φ = −∇ · u∗

∆t
(3.60)

the correction step is used to project the velocity onto a divergence-free vector space and

get ultimate pressure and velocity. Then update pressure with pn+1 = pn + φ and velocity.

High order upstream central scheme

Concerning Eqs.(3.49 -3.50), a second-order central differencing is applied to all the terms ex-

cept for the quasi-linear terms which are expressed by Eq (3.43). A High-Order (third order)

Upstream Central (HOUC-3) scheme (Nourgaliev and Theofanous, 2007) is applied to ∂RiW
∂xi

ac-

cording to the sign of the eigenvalues in Λi. For example for i = 1, the matrix of coefficient A1

shown at Eq. (3.39) has five eigenvalues:

Λ1 =
[
λ1, λ2, λ3, λ4, λ5

]

and the five corresponding eigenvectors R1. R1W have five columns:
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R1W =
[
(R1W)1, (R1W)2, (R1W)3, (R1W)4, (R1W)5

]

Note that R1 like λ1, λ2, . . ., λ5 contains only information related to A1 at the grid point

(l,m). By the way of example, in order to calculate λ2
∂(R1W)2

∂x1
at grid point (l,m), the following

HOUC-3 scheme is applied (the nodes used shown in Fig. 3.10):

λ2
∂(R1W)2

∂x1

∣∣∣∣
l,m

=





λ2
(R1W)2l−2,m−6(R1W)2l−1,m+3(R1W)2l,m+2(R1W)2l+1,m

6∆x1
if λ2 > 0

λ2
−2(R1W)2l−1,m−3(R1W)2l,m+6(R1W)2l+1,m−(R1W)2l+2,m

6∆x1
if λ2 < 0

0 otherwise

(3.61)

At any grid point (l,m) application of HOUC-3 scheme to the five eigenvalues allows to cal-

culate explicitly Ai
∂W
∂xi

. Second-order schemes are used for grid points near the domain bound-

aries.

FIGURE 3.10: Nodes used of the HOUC-3 scheme on a one-dimensional with
uniform grid for different eigenvalue λ2.

3.3.6 Tridiagonal matrix algorithm (TDMA)

Second-order central differencing is applied to Eq. (3.54), the obtained algebraic equations are

tridiagonal and can be solved by the tridiagonal matrix algorithm (TDMA) (Patankar, 2018).

Tridiagonal matrix algorithm is a one-dimension simplified form of Gaussian elimination, and

also able to solve multi-dimension problems through the line-by-line way. Its advantage is to

save storage and computing resources.

The process of the TDMA mainly consists of two stages: a forward elimination phase and a

backward substitution phase.

aixi−1 + bixi + cixi+1 = yi, i = 1, 2, 3, ..., n (3.62)

By the way of example, the process of the TDMS for 1D problem, as Eq. (3.62), with n un-

knowns as follows:

• matrix form of Eq. (3.62) with (a1 = 0, cn = 0)
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b1 c1 0

a2 b2 c2

a3 b3 c3

· · ·
· · ·

· · ·
an−1 bn−1 cn−1

0 an bn







x1

x2

x3

·
·
·

xn−1

xn




=




y1

y2

y3

·
·
·

yn−1

yn




(3.63)

• Step 1: forward elimination phase:

b1x1 + c1x2 = y1 =⇒ x1 +
c1
b1

x2 =
y1
b1

(new row 1) (3.64)

with new c∗1 =
c1
b1

and y∗1 =
y1
b1
. We use Eq. (3.64) to eliminate a2x1 on row two:

(b2 −
c1
b1
)x2 + c2x3 = y2 −

y1
b1

(new row 2) (3.65)

with new c∗2 = b2 − c1
b1

and y∗2 = y2 − y1
b1
. The following rows are processed like Eq. (3.65).

Finally, a new matrix was obtained:




1 c∗1 0

1 c∗2
1 c∗3

· ·
· ·

· ·
1 c∗n−1

0 1







x1

x2

x3

·
·
·

xn−1

xn




=




y∗1
y∗2
y∗3
·
·
·

y∗n−1

y∗n




(3.66)

• Step 2: backward institution phase:

In backward institution phase, we start from last row and step backward,

xn = y∗n (row n) (3.67)

xi = y∗i − c∗i y
∗
i+1 (for i = n− 1 · · · 1) (3.68)

The following rows are also processed like Eq. (3.68), and a tridiagonal matrix is solved.
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3.4 Code validation

The purpose of this section is to verify the calculation capabilities of the solver we developed,

including the ability to calculate flow and heat transfer in viscoelastic fluid flow. We will verify

the accuracy of the solver in temporal and space and examine the convergence by comparing it

with the results of published publications. Part of this chapter had been published in the The

American Society of Mechanical Engineers conference paper, and the title is ’A new approach to

the numerical modeling of the viscoelastic Rayliehg-Bénard convection’.

3.4.1 Overview of solving process

So far, the introduction of the solver for viscoelastic RBC is finished and Fig. 3.11 shows the

calculation flow chart of the solver.
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012#"* *(#3"'4 3"$*33, /"#$

%&"*$5*2'#"* 6*(74'"8 +"
%

9$*33:$* '&;<=5*& >

9$*33:$* 47$$*4"'7&, -"#$

?*(74'"8 47$$*4"'7&, +"#$

012#"* "*51*$#":$*, ."#$

@7&6*$A*&" 7$

*&2 B "'5*C
D&2

EF

9$7G*4"'7& 5*"H72

012#"* I81*$J7('4 "*$53, K&
LM

LN&

FIGURE 3.11: Flow chart of the numerical solve progress.
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54 Chapter 3. Flow modeling and numerical approach

3.4.2 Newtonian Rayleigh-Bénard convection in square cavity

Firstly, we tested the spatial and temporal convergence of the solver in Newtonian Rayleigh-

Bénard convection in enclusure square cavity. In order to be consistent with the references,

the Prandtl number is fixed at Pr = 0.71 and the Rayleigh number at Ra = 105 in this phys-

ical configuration. The test computations have been carried out for four time steps (∆t =

0.01, 0.005, 0.001, 0.0005) and four grids (Nx ∗ Ny = 32 ∗ 32, 64 ∗ 64, 128 ∗ 128, 256 ∗ 256). And

in order to check the heat transfer capacity, here, we define two Nusselt numbers at the bot-

tom and the up boundaries of the cavity. They present the dimensionless mean temperature

gradient averaged over the heating and cooling boundaries at steady state.

NuH = −
1∫

0

∂T∗

∂y∗
|y∗=0dx

∗, NuU = −
1∫

0

∂T∗

∂y∗
|y∗=1dx

∗

The results are shown in Tab. 3.2 and Tab. 3.3, where umax and vmax are the maxima of

velocity at x− and y− directions in the flow domain. The convergence in space and time is well

observed.

grid umax vmax NuH

32 ∗ 32 0.2867 0.315335 3.9931
64 ∗ 64 0.2893 0.316230 3.9198

128 ∗ 128 0.2898 0.316303 3.9113
256 ∗ 256 0.2898 0.316312 3.9108

TABLE 3.2: Convergence of umax, vmax and NuH with grid refinement for cases
with Pr = 0.71 and Ra = 105. The time step is set at ∆t = 0.001.

Time step 0.01 0.005 0.001 0.0005

NuH 1.000158 1.000175 1.000182 1.000182
NuU 1.000152 1.000171 1.000178 1.000178

TABLE 3.3: Average Nu number at upper and bottom boundary with different
time step for cases with Pr = 0.71 and Ra = 105, when dimensionless time is

equal to t = 10. The grid setting 128 ∗ 128 was chosen.

After checking the temporal and spatial convergence of the solver, a validation the numeri-

cal scheme capability so constructed through a comparison with the case of Newtonian fluids,

for which a benchmark is available in the literature. It consists of Newtonian RBC flow in a

square cavity with Prandtl number equal to 7.0 and Ra = 105 and 106 (Ouertatani et al., 2008).

The comparisons concern the hot wall Nusselt number NuH and the maximum velocity com-

ponents.

As shown in Table 3.4, our results (Pre.) are in real agreement with those from the published

benchmark (Ref.), in terms of maximum velocity and Nusselt number at two different Rayleigh

numbers. Fig. 3.12 show the comparison of u velocity distribution on the central vertical line of

the flow domain from our simulated results and reference (Ouertatani et al., 2008). The intrinsic
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FIGURE 3.12: comparison of the u velocity distribution on the central vertical line
of the flow domain from our simulated results and reference (Ouertatani et al.,

2008).

behavior of the code developed was first tested. The results of the numerical tests have all

confirmed that the code is second-order accurate both in time and space in agreement with the

theoretical behavior of the numerical schemes used (Hagani et al., 2018).

Ra
umax ∗ 10 vmax ∗ 10 NuH

Pre. Ref. Pre. Ref. Pre. Ref.

105 3.457 3.443 3.757 3.757 3.889 3.910
106 3.699 3.709 4.051 4.060 6.277 6.309

TABLE 3.4: Numerical results of a RBC benchmark in a square cavity filled with a
Newtonian fluid of Pr = 7.0 (Ouertatani et al., 2008).

3.4.3 Viscoelastic Rayleigh-Bénard convection

The second validation consists of a comparison with the results presented in Park and Ryu

(2001) for a viscoelastic RBC in a closed cavity of aspect ration 2 : 1. The authors investigated the

stability of a viscoelastic fluid of Pr = 7.0 described by an Oldroyd-Bmodel and determined the

critical value Rac corresponding to the convection set-up for various parameters (aspect ratios,

Weissenberg number, β).

For a polymer solution of β = 0.6 with an important contribution of the solvent, the con-

vection set-up is almost the same as a Newtonian fluid (β = 1): the same Rac, steady flow and

the same cell number at a fixed aspect ratio. For example in a cavity of aspect ratio 2 : 1 the un-

stable mode is steady and has two flow cells and the critical Rayleigh number is approximately

equal to 2000 at We = 0.0075. We performed numerical simulations for several Ra above 2000
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FIGURE 3.13: Square of vertical velocity (β = 0.6) and amplitude of vertical ve-
locity (β = 0.2) at four monitoring points versus Ra in a 2 : 1 cavity filled with
an Oldroyd-B fluid. (a) β = 0.6, We = 0.0075, 2-cell steady flow, (b) β = 0.2,
We = 0.1, 2-cell time-periodic flow, (c) β = 0.2, We = 0.1, 3-cell time-periodic
flow. The monitoring points are P1 (H, H/2), P2 (3H/4, H/2), P3 (H/4, H/2) and
P4 (H/2, H/4). The solid lines are linear fitting curves of the numerical results
and the linear relationship indicates that the corresponding bifurcation (pitchfork
for β = 0.6 and Hopf for β = 0.2) is supercritical. The estimated Rac is equal to
respectively 2008(β = 0.6), 1387 (β = 0.2 and 2-cell flow) and 1395 (β = 0.2 and

3-cell flow).

and obtained steady-state solutions of two-cell flow. Fig. 3.13 (a) shows a linear relationship

between Ra and velocity squared at four monitored points, confirms that the convection set-up

corresponds to a supercritical pitchfork bifurcation and indicates that the Rac = 2008 is located

slightly above 2000 according to the extrapolation.

For a polymer solution of β = 0.2 with an important contribution of polymer, Park and Ryu

(2001) reported an overstability or Hopf bifurcation leading to time-dependant flows. Also,

the authors showed that for the aspect ratio of 2 : 1 two different modes with two and three

cells respectively are unstable at almost the same Rayleigh number (about 1380). Simulations

performed for the aspect ratio 2 : 1 yielded only a time-periodic flow of two cells and a three-

cell flow was first obtained by using an aspect ratio of 2.2 : 1 and then stabilized for the aspect

ratio 2 : 1. For both flow structures, time-periodic flows were obtained for several Rayleigh

numbers and the squares of velocity amplitude displayed a linear relationship with Rayleigh

number (Fig. 3.13 (b) and (c)). This confirms that the convection set-up takes place through

a supercritical Hopf bifurcation. Extrapolation yielded Rac = 1387 for the flow structure of

two cells and Rac = 1395 for three flow cells. An instantaneous stream function of each flow

structure is depicted in Fig. 3.14. In terms of flow structure (two or three cells), the flow feature

(steady-state or time-dependent) and the critical Rayleigh number, the present results agree

well with the previous study of viscoelastic RBC in the literature (Park and Ryu, 2001).
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(A) streamline for 2 rolls (B) streamline for 3 rolls

(C) isothermal for 2 rolls (D) isothermal for 3 rolls

FIGURE 3.14: Instantaneous streamlines and isothermal of two convective flow
structures (Pr = 7.0, β = 0.2, We = 0.1 and Ra = 1480. (A, C) 2-cell time-periodic
flow is observed after a supercritical Hopf bifurcation. (B, D) 3-cell time-periodic

flow is also observed.

It is thus concluded that a numerical solver of the governing equations of incompressible

viscoelastic fluids in Rayleigh-Bénard configuration was developed, where viscoelastic fluids

were described by the Oldroyd-B and Phan-Thien-Tanner models. To ensure numerical sta-

bility, a quasi-linear treatment was adopted to calculate the hyperbolic part. To validate the

solver, Newtonian and viscoelastic Rayleigh-Bénard convection cases were simulated: the re-

sults showed a good match with the published data in the literature. Especially in a 2 : 1 cavity

filled with viscoelastic fluid, the results obtained in terms of flow structure (number of cells),

flow feature (steady or not) and critical Rayleigh number are in good agreement with the results

of Park and Ryu (2001). This suggests that the numerical solver developed can be used to study

viscoelastic Rayleigh-Bénard convection with confidence.

3.5 Conclusion

In this chapter, we have introduced the numerical scheme used to solve Newtonian or viscoelas-

tic Rayleigh-Béanrd convection problems in detail and summarised the process of the solver in

Sec. 3.4.1. We checked the temporal and spatial convergence of the solver for simulating the

Newtonian or viscoelastic Rayleigh-Bénard.Through comparing the results of our solver with

those in the published literature, it is shown that our solver has the ability to solve Newtonian

or viscoelastic Rayleigh-Bénard convection.
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58 Chapter 3. Flow modeling and numerical approach

It should be noted that time-dependent convection onset in an enclosure of aspect ratio

2:1 is chosen to validate the code developed using the parameters (β,We) = (0.6, 0.0075) and

(0.2, 0.1) and Pr = 7.0. The critical Rayleigh numbers are obtained and compared with those in

the literature for these values of the parameters for both two-cell and three-cell convection flow

configurations thus validating the code developed.
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Chapter 4

Regular reversal convection in 2D

rectangular cavity
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4.1 Introduction

At present, the understanding of viscoelastic Rayleigh-Bénard convection has been very rich,

especially for the onset of Rayleigh-Bénard convection and the corresponding bifurcation. In

non-linear dynamic systems, the influence of fluid rheology and physical properties on the

transition and heat transfer of thermal convection has also attracted more attention, especially

viscoelasticity, which may lead to a new flow structure of thermal convection, further affecting

the heat transfer efficiency.
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60 Chapter 4. Regular reversal convection in 2D rectangular cavity

Regarding the start-up and bifurcation problems of Rayleigh-Bénard convection, linear and

non-linear stability analysis is traditionally used for research, but due to the over idealization,

the results are still insufficient. Many researchers have shown that the constitutive equations

of most viscoelastic fluids are hyperbolic-elliptic equations in the steady state and hyperbolic-

parabolic equations in the transient state. As a result, stability analysis can only be limited

to some basic constitutive models (such as the Maxwell model, etc.), and cannot reveal the

influence of complex rheological properties on thermal convection, such as shear thinning and

elastic nonlinearity. After entering the oscillation interval, even if it is a non-linear stability

analysis, the error of the result will gradually expand. Therefore, it is necessary to study the

instability of more real viscoelastic fluid thermal convection.

FIGURE 4.1: Physical configuration: A rectangular cavity with an aspect ratio 2 : 1
filled by the viscoelastic fluid, heated at (T2) by the bottom and cooled at (T1) by
the top. Both vertical boundaries are adiabatic and all boundaries are no-slip for
velocity. We use H as the reference length, in dimensionless form the cavity is

defined by x ∈ [0, 2] and y ∈ [0, 1].

In this chapter, we present the numerical results of the viscoelastic Rayleigh-Béarnd con-

vection in a 2:1 cavity shown in Fig.4.1, where the viscoelastic constitutive models include the

Oldroyd-B model and the Phan-Thien-Tanner model. The main contents include: the influence

of the rheology parameters of viscoelastic fluids on the onset critical Rayleigh number Rac1 and

the critical Rayleigh number Rac2, which induce flow pattern transition; the mechanism of the

flow and heat transfer in viscoelastic Rayleigh-Bénard convection; analysis of the reversal con-

vection process from perspective of the energy budget, and summary of the general laws of

reversal convection.

4.2 Onset of the viscoelastic RBC

4.2.1 Supercritical Hopf bifurcation

As mentioned in the last chapter, there is a critical Rayleigh number for the onset of Rayleigh-

Bénard convection, and we call this critical Rayleigh number as Rac1. When Rayleigh number

exceeds this critical value, a convection will occur in the cavity. Below Rac1, the fluid in the
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4.2. Onset of the viscoelastic RBC 61

cavity was in a state of pure heat conduction. From the perspective of the direct numerical

simulation, if a small temperature perturbation is given to the flow field at the initial moment,

and if Ra < Rac1, the temperature perturbation will be gradually damped until the entire cavity

returns to a pure heat conduction state. On the contrary, if Ra > Rac1, the perturbation will be

continuously amplified, and cause convective flow throughout the cavity.

FIGURE 4.2: y-direction velocity time evolution at the central point of the domain
for viscoelastic Rayleigh-Bénard convection (Oldroyd-B constitutive model was
used) with two concentration (β = (0.1, 0.9)), when Ra equal to 0.9Rac and 1.1Rac.
In simulations, we set Pr = 7.0 and We = 0.1 and the corresponding RBC is of

two cells.

By the way of example, a geometry configuration like Fig. 4.1 was adopted, and a monitor

point was fixed at the centre of the fluid domain P(1, 1/2). Fig. 4.2 shows the y-direction ve-

locity at point P evolves along time at different Rayleigh numbers (Ra = 0.9Rac1 and 1.1Rac1)

and for two polymer concentration β = (0.1, 0.9) with Oldroyd-B model. The initial condition

of the simulations used is a random temperature disturbance. It can be found that the initial

disturbance is damped and that the y− velocity evolves slowly to zero at Ra = 0.9Rac1. Note

that for the case with β = 0.9 the fluid velocity evolves monotonically to zero while for the case

with β = 0.1 it is oscillatorilly damped to zero. At Ra = 1.1Ra, the velocity of the case with

β = 0.9 increases monotonically to steady-state, however, it is periodically amplified to reach a

constant amplitude for case with β = 0.1. Not all the onsets of viscoelastic R-B convection are

oscillating as is shown in Fig. 4.2: for large β and small We the convection onset will take place

through a pitchfork bifurcation and a steady-state convection will be observed as is the case for

the Newtonian fluids. The mechanism of flow pattern selection of time dependent viscoelastic

RBC onset will be analyzed in Sec. 4.3.
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62 Chapter 4. Regular reversal convection in 2D rectangular cavity

4.2.2 Effect of (ǫ, ξ) on Rac1

In fact, the viscoelastic constitutive model used in Sec. 4.2.1 is the Oldroyd-B constitutive model,

which corresponds to a PTT fluid with ξ = 0 and ǫ = 0. The investigation about effect of the

rheology parameters of the Oldroyd-B constitutive fluids on the first critical Rayleigh num-

ber has been presented by Park and Ryu (2001) through linear instability analysis, shown in

Fig. 2.16. However, the existing work has not studied the rheological parameters in more com-

plex viscoelastic models, such as ǫ and ξ in PTT constitutive model. From this starting point,

viscoelastic RBC flows with the PTT model were simulated for various values of ξ with ǫ = 0.1

and various values of ǫ with ξ = 0, respectively. ǫ and ξ are two important rheological pa-

rameters of the PTT model, they characterize elongational behavior of the polymer molecules

and slip between the long chain molecules and the surrounding continuum. These simulations

aim to understand their effects on the convection onset and heat transfer. In order to determine

the influence of the parameters, in the following simulations we fixed Pr = 7.0, β = 0.2 and

We = 0.1 and the corresponding result concern mainly the two-cell R-B flows.

(A) Rac1 for ǫ (B) Rac1 for ξ

(C) Time period for ǫ (D) Time period for ξ

FIGURE 4.3: Effects of ǫ and ξ on the critical Rayleigh number and oscillating time
period of the 2-cell flow pattern at Pr = 7.0, β = 0.2, and We = 0.1. The effects of

ǫ are studied for fixed ξ = 0 while those of ξ are investigated for ǫ = 0.1.

For each pair of ξ and ǫ, several Rayleigh numbers are investigated. We found that the

convection onset takes place also with time-dependent flows. At supercritical Rayleigh num-

bers, the relationship between Ra and the square of the velocity amplitude is linear. This means
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4.2. Onset of the viscoelastic RBC 63

that the corresponding Hopf bifurcation is supercritical. Through an extrapolation approach

illustrated in Fig. 3.13, the corresponding critical Rayleigh number, Rac1, is determined and

presented in Fig. 4.3.

We observe that ξ and ǫ have a very weak influence on the convection onset and the crit-

ical Rayleigh number. With ξ = 0 and ǫ in the range of [0, 0.7] the critical Rayleigh number,

Rac1, decreases very slightly and remains almost constant. With ǫ = 0.1 and ξ in the range of

[0, 0.2] the decrease in Rac1 is slightly more important but less than 2%. This means that en-

hanced slip between polymer molecules and the surrounding continuum can make the onset

of the oscillating convection occur slightly earlier. The first critical Rayleigh numbers (Rac1)

obtained for viscoelastic Rayleigh-Bénard convection mentioned above are smaller than that in

the Newtonian case in the same physical configuration.

4.2.3 Effect of We and β on Rac1

In addition to ǫ and ξ, the viscosity ratio β representing the solution concentration and the

Weissenberg number We representing the elsticity of viscoelastic fluids will also affect the oc-

currence of convection. Fig. 4.4 shows the influence of solution concentration (β ∈ (0.1, 0.2)) at

different Weissenberg numbers (We ∈ [0.075, 0.25]) on Rac1 for ǫ = 0.1 and ξ = 0.05. It can be

observed that as β decreases, the elastic effect (We) increases, which promotes the occurrence

of viscoelastic convection, resulting in a decrease in Rac1. These results show that during the

start-up phase of convection, even for small We flow conditions, the elastic force generated by

the action of the elastic fluid molecules is still very strong, so that the effect of the properties of

the viscoelastic fluid on Rac1 is relatively big. But with the continuous increase of We, the influ-

ence of the viscoelastic effect gradually decreases. This trend is also proved by Li and Khayat

(2005).
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FIGURE 4.4: Effects of (We, β) on the first critical Rayegih number Rac1 at Pr =
7.0, ǫ = 0.1 and ξ = 0.05 in a 2 : 1 cavity.
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64 Chapter 4. Regular reversal convection in 2D rectangular cavity

4.3 Time-dependent viscoelastic RBC

As said above, when Ra passes Rac1, a regular reverse convection takes place for viscoelastic

RBC, which is different from the frequent turbulent random reversal phenomenon and rarely

reported. We briefly introduce the reverse Rayleigh-Bénard convection in a cavity of aspect ratio

2:1 filled with PTT viscoelastic fluids. The previous values of the parameters β = 0.2, We = 0.1

and Pr = 7.0 are kept. In fact, for the parameters ǫ = 0.1, ξ = 0.05 and Ra = 1480, depending

on the initial conditons two reversal convection patterns are found, regular reverse with 2 and 3

cells, as shown in Fig. 4.5 and Fig. 4.6. Both figures describe the half period, λ/2, of the regular

reverse. It can be easily found that 2-cell reverse convection is strictly symmetric with respect

to x = 1, while 3-cells are center-symmetric.

(A) u, t = 0 (B) u, t = 1
4π (C) u, t = 1

2π

(D) T, t = 0 (E) T, t = 1
4π (F) T, t = 1

2π

(G) u, t = 3
4π (H) u, t = π

(I) T, t = 3
4π (J) T, t = π

FIGURE 4.5: Velocity vector and isothermal lines of the reverse convection with 2
cells at five time points of the half period. We fixed Ra = 1480, Pr = 7.0, β = 0.2,

We = 0.1, ǫ = 0.1 and ξ = 0.05.

In order to better understand the flow pattern transition related to the convection onset, we

use hereafter time evolution of the total kinetic energy defined by

ETotal =
∫

Ω

1

2
(u2 + v2)dΩ (4.1)
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(A) u, t = 0 (B) u, t = 1
4π (C) u, t = 1

2π

(D) T, t = 0 (E) T, t = 1
4π (F) T, t = 1

2π

(G) u, t = 3
4π (H) u, t = π

(I) T, t = 3
4π (J) T, t = π

FIGURE 4.6: Velocity vector and insotermal lines of the reverse convection with 3
cells at five time points of the half period. We fixed Ra = 1480, Pr = 7.0, β = 0.2,

We = 0.1, ǫ = 0.1 and ξ = 0.05.

FIGURE 4.7: Time evolution of total kinetic energy Etotal and five particular time
points studied in detail in order to show the flow pattern transition of 2-cell con-

vection.

where Ω is the computational domain.
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66 Chapter 4. Regular reversal convection in 2D rectangular cavity

4.3.1 Two-cell reverse convection

Fig.4.7 plots the total kinetic energy Etotal as a function of time and shows a regular periodic

behavior. On this figure are marked five particular time points for one kinetic energy period,

λ/2, from t1 to t5: t1 and t5 are at the maximum kinetic energy while t3 is at the minimum

kinetic energy (about zero). Note that one time period of kinetic energy is only one half of time

period of velocity, i.e. the convection reverse. The flow fields corresponding to these five time

points are displayed in Fig. 4.8 and Fig. 4.9.

(A) t = t1, kinetic energy (B) t = t2, kinetic energy (C) t = t3, kinetic energy

(D) t = t1, T (E) t = t2, T (F) t = t3, T

(G) t = t4, kinetic energy (H) t = t5, kinetic energy (I) t ∈ (t3, t4), kinetic energy

(J) t = t4, T (K) t = t5, T
(L) colorbar

FIGURE 4.8: Kinetic energy (streamline) and temperature snapshots of convection
reversal in a 2:1 cavity filled with a PTT fluid (β = 0.2, We = 0.1, Pr = 7.0 ǫ = 0.1,
ξ = 0.05 and Ra = 1440) at the five particular time points indicated in Fig. 4.7.

Fig. 4.8i shows the streamline when t is between t3 and t4.

At t1, Etotal is maximum and flow is upward along the cavity centerline. Velocity gradient

also reaches its extreme values. The extrema of the velocity gradient amplify and continue to

amplify τij.

At t2, the extrema of τ11 and τ22 happen at about (x, y) = (1, 0.9) and (x, y) = (1, 0.3),
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4.3. Time-dependent viscoelastic RBC 67

respectively. These extrema are much larger than those in the same regions at t1. From t1 to t2,

the amplification of τij also increases its divergence, for example u1 and u2 are amplified due

to ∂τ11
∂x1

and ∂τ22
∂x2

, respectively. The increase in ∂τ11
∂x1

about (x, y) = (0, 75, 0.9) increases therefore

u1 there, this makes u1 (< 0) evolve toward 0. The decrease in ∂τ22
∂x2

(< 0) about (x, y) = (1, 0.4)

decreases u2 there as well. The amplification of τii weakens considerably the velocity field as the

maximum velocity changes from approximately 0.09 at t1 to approximately 0.015 at t2. During

the same period no significant change is observed on the temperature field. The weakening of

the velocity field continues from t2 to t3 and t4.

(A) t = t1, τ11 (B) t = t2, τ11 (C) t = t3, τ11

(D) t = t1, τ22 (E) t = t2, τ22 (F) t = t3, τ22

(G) t = t4, τ11 (H) t = t5, τ11

(I) colorbar

(J) t = t4, τ22 (K) t = t5, τ22

FIGURE 4.9: Normal stresses τ11 and τ22 snapshots of convection reversal in a 2:1
cavity filled with a PTT fluid (β = 0.2, We = 0.1, Pr = 7.0 ǫ = 0.1, ξ = 0.05 and

Ra = 1440) at the five particular time points indicated in Fig. 4.7.

When time passes t2, two small vortices appear near the bottom wall about the cavity verti-

cal centerline (see Fig. 4.8c), then grow rapidly up and invade completely the cavity at t4. It is

in the interval from t3 to t4 that temperature field undergoes an important evolution.

At t4 temperature distribution is almost completely conductive. Note also that at t4 velocity

field remains very weak and is downward along the cavity centerline. A weak velocity field
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68 Chapter 4. Regular reversal convection in 2D rectangular cavity

means also a weak source term of τp. As τp is governed approximately by

∂τp
∂t

+ τp/We+
ǫ
√

Ra

(1− β)Pr
tr(τp)τp = 0 (4.2)

τii is damped slightly from t2 to t3 and damped strongly from t3 to t4. The signs of τ11 and τ22

change along the vertical centerline on the way from t4 to t5. When t4 is reached τ11 is negative

at (x, y) = (1, 0.2) and positive at (x, y) = (1, 0.8), while they are getting to change sign. At t5

τ11 is positive at (x, y) = (1, 0.2) and negative at (x, y) = (1, 0.8). From t4 to t5 velocity field

is amplified to reach an extremum at t5 and temperature field also evolves from conductive

distribution to convective distribution. Again the amplified velocity gradient amplifies τp and

the amplified extrema of τp’s divergenceweaken the velocity field; weak velocity field damps τp

in turn, small vortices appear near the top wall about the vertical centerline, grow rapidly and

invade the cavity, flow direction is reversed and convective temperature distribution switches

to a conductive distribution; the damping of τp continues, τii change signs along the cavity

vertical centerline, velocity is amplified again to reach the extremum and temperature field

becomes again convective.

The above observations indicate that there is a phase shift between the amplification and

damping cycles of the velocity (see Fig. 4.10) and the extra-stress. This phase shift is responsible

for the time-dependent flow regime.
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FIGURE 4.10: Time evolution of the extra-stresses τii at positions on the vertical
centerline . It is clear from the time evolution of these entities from t1 to t5 that
the extrema of τii occur later in time than the maximum of kinetic energy and

therefore than the velocity extrema.

Energy transport equation

In order to have a deeper understanding of reverse convection, a simple idea is to follow Cheng

et al. (2017) and Li et al. (2017) who give a new insight into reversal mechanic by considering

the turbulent kinetic energy budget (TKE). An understanding of the reversal evolution, and

the effects of the viscoelastic feature on it, can be obtained by considering the global and local

energy transport between flow structure and polymer.
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4.3. Time-dependent viscoelastic RBC 69

From Eq. (3.13) (mass conservation equation) and Eq. (3.16) (momentum equation), we can

establish the kinetic energy equation of the instantaneous fluid flow:

dE

dt
= ΦD + ΦV + ΦG + ΦF (4.3)

where

• E = 1
2uiui denotes the kinetic energy;

• ΦD = − ∂(puj)
∂xj

+ β Pr√
Ra

∂2Eij

∂x2j
represents the pressure diffusion and molecular viscous trans-

port;

• ΦV = −β Pr√
Ra

∂ui
∂xj

∂ui
∂xj

represents the viscous dissipation, which describes the work done by

a fluid on adjacent layers because the action of shear forces is transformed into heat;

• ΦG = −ui
∂τij

∂xj
= −(

∂(uiτij)
∂xj

− τij
∂ui
∂xj

) denotes the energy transition between flow structures

and polymer microstructures due to the stretching and relaxation behaviour of polymer

chains.

• ΦF = PrTejuj is buoyancy flux which describes the work done by the density difference

according to the Boussinesq approximation.

In the term ΦG,
∂(uiτij)

∂xj
and τij

∂ui
∂xj

denote the elastic dissipation and interactive impact be-

tween flow and polymers respectively. In RHS of Eq. (4.3), ΦG only offers the intensity of energy

transfer between flow and polymer structures, doesn’t directly represent the magnitude of the

elastic potential energy. For a flow with the viscoelastic fluid of the PTT model, we can think of

the component Cij of the conformation tensor C as the end-to-end moment (〈rirj〉) of the exten-

sion of the polymers, modelled as linear spring-dumbbell. In this scaling, the equilibrium con-

formation corresponds to an isotropic distribution with unit end-to-end displacements. When

C is a unit vector, it means that the polymer structure is in a natural state, without force. We

know that the relationship between the elastic stress and conformation tensor can be expressed

by

τp =
1− β

We
(C − I) (4.4)

where C is the polymer conformation tensor and I is the unit matrix . The elastic energy stored

in the polymers is proportional by

tr(τp) ∼
1− β

We
(tr(C) + constant) (4.5)

In the following, wewill use the total normal elastic stress (τii) to represent the stretching and

shrinking energy of the macromolecular structure of polymer in the viscoelastic flow. Eq. (4.5)

is important for the convection flow with the PTT model in our simulation, as shown the third

term of LHS of Eq. (4.2).
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Eq. (4.3) describes the relationship among different energy contributions, it can be used in

either the current local form or the global-integrated form (with operator 〈·〉Ω). The energy

convection framework described by Eq. (4.3) is pictured in Fig. 4.11.

FIGURE 4.11: Energy convertion framework for viscoelastic Rayleigh-Bénard con-
vection. Three energy reservoirs, the kinetic energy reservoir, the elastic energy
reservoir and the buoyancy potential energy reservoir are EK, EE and EF respec-
tively in the RBC system. Energy transport between EK and EE is performed by

ΦG. Energy transport between EF and EE is performed by buoyancy flux ΦF.

Process of kinetic energy transport

To discuss the influence of We and β on the energy transport mechanism in reverse regime, and

depcit the energy transfer process, we fixed the following parameters Ra = 1200, Pr = 7.0,

ǫ = 0.1 and ξ = 0.05.

Firstly, we checked the effect of the (We, β) on the energy evolution, We and β adopted

are in We ∈ (0.1, 0.15, 0.2) and β ∈ (0.1, 0.2) respectively. Fig. 4.12 shows each type of the

integrated energy (〈·〉Ω) evolution corresponding to the dimensionless time in one completed

reversal period with various β and We. In order to facilitate the comparison, the time period

in each case is rescaled graphically into the same x-coordinate range, and the real time period

is texted in the right-down of the figure. 〈ΦV〉Ω is negative or almost zero during the reversal

process, this agrees with its definition. 〈ΦD〉Ω is almost zero all the time and can be neglected

in the process of kinetic energy transport. 〈ΦF〉Ω is globally generating term during the process

because it is most of the time positive, this agrees with the fact that RBC is a buoyancy-driven

flow. 〈ΦG〉Ω is globally dissipation term because it is most of the time negative.

According to the instantaneous flow structure and potential energy state of the reverse con-

vection, we tend to divide a half-period of the reversal process (from the time-point with peak

kinetic energy value to next maximum kinetic energy time-point with opposite velocity direc-

tion) into two phases, including the phase kinetic-decrease (a − b) and the phase kinetic-increase

(b − a∗): in phase kinetic-decrease, the kinetic energy 〈E〉Ω decrease from the peak value (a) to

zero (b). As 〈E〉Ω gets to almost zero, each term in left of Eq. (4.3) is equal to almost zero as well;

in phase kinetic-increase, the flow structure is reorganized, the kinetic energy gradually increases

and gets to peak value again (a∗). Actually, the phase kinetic-increase is a complex process that

the flow structure is driven by multi contributions from elastic stress and thermal buoyancy
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4.3. Time-dependent viscoelastic RBC 71

in the different time range. The elastic stress does work to increase kinetic energy in phase

(b − d) and the buoyancy flux does work to increase kinetic energy in phase (c − a∗). In order

to explain the reversal process clearly, we prefer to divide the kinetic-increase phase into three

sub-phases by distinguishing the contributions that drive the flow,: phase elastic-contribution

(b− c), in which only elastic stress does positive work on flow structure; phase elastic-buoyancy-

contribution (c − d), in which elastic stress and thermal buoyancy do positive work on flow

structure together; and phase buoyancy-contribution (d − a∗), in which only thermal buoyancy

do positive work on flow structure. Note that a complete reverse period has two kinetic energy

periods, which differ only in the evolution of velocity direction (from u2 > 0 to u2 < 0 or from

u2 < 0 to u2 > 0).

As shown in Fig. 4.12, the phase kinetic-decrease starts at time-point (a) and ends at time-

point (b), in which the global kinetic energy decreases from peak value (a) to zero (b). in the

same phase, the term of elastic energy exchange 〈ΦG〉Ω remains negative, which means the

system energy was transformed from the kinetic energy into elastic potential energy, in another

word, the kinetic energy was stored into polymer macromolecular structure. In addition, the

buoyancy flux 〈ΦF〉Ω which is the only generating term also decreases to zero, resulting in the

gradually vanishing of the velocity field. At the end of the phase kinetic-decrease, the high values

of normal stress (τ11, τ22) appeared in the near-wall areas and along the vertical central line as

shown in Fig. 4.9b and Fig. 4.9e. Two symmetric small vortices are born and grow near the

horizontal wall about the vertical centerline of the cavity when time pass time-point (b), shown

in Fig. 4.8b and Fig. 4.8c.

The elastic-contribution and elastic-buoyancy-contribution phases are in time range (b− c) and

(c− d). At the start of the elastic-contribution the velocity field almost stays stationary and buoy-

ancy flux is also almost zero, but, elastic stress field has important value (shown in Fig. 4.9b

and Fig. 4.9e). At the the beginning of phase elastic-contribution, 〈ΦG〉Ω changes from negative

to positive, kinetic energy slightly increases but buoyancy flux keeps going down to negative

values 〈ΦF〉Ω < 0, whichmeans that polymer structure starts to do positive work (contribution)

on the flow structure, however, buoyancy distribution plays an inhibiting role in flow convec-

tion. In this phase, an important question was raised: what supports the reverse occurrence and

its growth? The only positive energy input (for flow structure) to drive the birth of opposite

convection is the release of the elastic stress (〈ΦG〉Ω > 0), especially normal stress τ22 (in the

central region of the domain) and τ11 (in the near-horizontal wall) which offer enormous tensile

force, the elastic energy of polymer macrostructure is transformed into the kinetic energy of

flow structure, it even cancels out the dissipation effect of the negative buoyancy flux (shown

in Fig. 4.8f and Fig. 4.8j).

At the phase elastic-buoyancy-contribution, 〈ΦF〉Ω changes its sign to be positive, both 〈ΦF〉Ω

and 〈ΦG〉Ω contribute and accelerate the growth of the new vortices. Because both 〈ΦF〉Ω and

〈ΦG〉Ω are positive, the growth rate of kinetic energy is significantly improved and a more

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



72
C

h
ap

te
r

4.
R

eg
u

la
r

re
v

er
sa

l
co

n
v

ec
ti

o
n

in
2D

re
ct

an
g

u
la

r
ca

v
it

y

a

b

c

d a

*

b

*

c

*

d

*

a

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

β= 0.1, We= 0.6

Time period= 0.69

a

b

c

d a

*

b

*

c

*

d

*

a

β= 0.1, We= 0.8

Time period= 0.84

a

b

c

d a

*

b

*

c

*

d

*

a

β= 0.1, We= 1.0

Time period= 1.12

a

b

c

d a

*

b

*

c

*

d

*

a

−0.2

−0.1

0.0

0.1

0.2

β= 0.2, We= 0.6

Time period= 0.80

a

b

c

d a

*

b

*

c

*

d

*

a

β=0.2, We=0.8

Time period=0.97

a

b

c

d a

*

b

*

c

*

d

*

a

β=0.2, We=1.0

Time period=1.15

FIGURE 4.12: Different energy evolution in one period corresponding to a complete reversal for β = 0.1 (top) and β = 0.2 (bottom)
and We = (0.150, 0.200, 0.250) (from left to right), where the time period was normalized graphically. The (——) corresponding
to buoyancy flux (〈ΦF〉Ω), the (——) corresponding to kinetic diffusion (〈ΦD〉Ω), the (——) corresponding to energy exchange
between flow structures and polymer microstructures due to the stretching and relaxation of polymer chains (〈ΦG〉Ω), the (——)
corresponding to bulk viscous dissipation of kinetic energy (〈ΦV〉Ω), the (——) corresponding to global kinetic energy (〈E〉Ω). We

fixed Ra = 1200, Pr = 7.0, ǫ = 0.1 and ξ = 0.05.
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4.3. Time-dependent viscoelastic RBC 73

important dissipating 〈ΦV〉Ω is also found in this phase. For flow structure, in elastic-buoyancy-

contribution phase, the original vortices completely vanish and new vortices with opposite rota-

tion take up all the domain, as shown in Fig. 4.8g.

The buoyancy-contribution phase depicts the rapid increase of kinetic energy to the maxi-

mum value because the new large-scale circulations are formed and the flow structure is more

efficiently driven by the buoyancy. In phase buoyancy-contribution (b − a∗), the elastic potential

energy finishes its mission in the former two phases (initiate and accelerate reversals) and turns

to absorb energy from flow structure in this phase, as shown in Fig. 4.12. The contours of the

normal stresses (τ11, τ22) at key time points can be observed at Fig. 4.9g (Fig. 4.9h) and Fig. 4.9j

(Fig. 4.9k): they are amplified again. Comparatively speaking, the increase in viscosity ratio (β)

will reduce the time period while the increase in elastic strength (We) is opposite.

FIGURE 4.13: Time proportion of each phase in one kinetic energy period for
cases with We = (0.1, 0.15, 0.2) and β = (0.1, 0.2). Other parameters are fixed
Ra = 1200, Pr = 7.0, ǫ = 0.1 and ξ = 0.05. As a kinetic energy period is only the
half period of the convection reversal, the time ratio is based on the convection
reversal period and the sum of the ratios is equal to 0.5. The time period for ech

cases are shown in Fig. 4.12 and remarked by red text.

Fig. 4.13 summarizes the time ratio proportion of the each phase in one whole reverse period

for cases with We = (0.1, 0.15, 0.2) and β = (0.1, 0.2). We define time ratio proportion of the

each phase by:
tphase

tperiod
∗ 100% (4.6)

where tphase is the time of each phase, tperiod is the reversal time period of one flow reversal,

which is shown in Fig. 4.12 and remarked in red text. Half period (a− b− c− d− a∗) is shown in

the figure, as the time proportion of each phase in two half periods is the same. It can be clearly

found that time proportion changes of each phase are almost monotonic relative toWe and β. As
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74 Chapter 4. Regular reversal convection in 2D rectangular cavity

We increases and β decreases, the time proportion of the phase kinetic-decrease was is extended.

This can be explained by the fact that, as the elastic effect increases in the reversal process, the

macromolecular structure of the polymer can absorb and store more potential energy, and that

it takes longer time for the energy to transfer from the flow structure to the elastic structure. For

large We and small β the stronger elastic effect means that elastic energy will be released more

quickly and strongly into the flow structure when the average kinetic energy of the velocity

field is almost zero. The reversal process takes place at the beginning of the elastic-contribution

phase, in this phase elastic stress does positive work alone on flow structure, and drives reverse

to occur. As We increases and β decreases, the time proportion of elastic-contribution and elastic-

buoyancy-contribution phases is compressed. In fact, elastic energy release takes less time to

bring buoyancy flux to be positive and buoyancy flux increases rapidly and makes 〈ΦG〉Ω to be

begative rapidly. The time proportion of phase (d − a∗) also decrease with increasing We and

decreasing β. It leads to a decrease in phase kinetic-increase for large We and small β.

(A) (B)

(C) (D)

FIGURE 4.14: (a) Averaged kinetic energy 1
λ

∫ λ
0 〈E〉Ωdt, (b) averaged energy ex-

change rate between flow structure and polymer ( 1λ
∫ λ
0 〈ΦG〉Ωdt), (c) averaged

buoyancy flux ( 1λ
∫ λ
0 〈ΦF〉Ωdt), and (d) averaged elastic potential power intensity

( 1λ
∫ λ
0 〈(τ11 + τ22)〉Ωdt) as a function of We with β = (0.1, 0.2).
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4.3. Time-dependent viscoelastic RBC 75

In addition, temporally-spatially averaged energies are also studied. Fig. 4.14 shows the

temporally-spatially averaged values of kinetic energy (E), energy exchange rate (ΦG), buoy-

ancy flux (ΦF) and total normal elastic stress (τii) as functions of We with different β. Under the

same conditions, it is easy to find that these quantities increase with We increasing and β de-

creasing. Bigger We and smaller β make higher the kinetic energy and changes the convective

flow.

Spatial distribution of energies

In this part, we shift our attention from spatially integrated variables to local distribution to see

how each type of energy evolves in the reverse process, that allows us to know more about re-

verse process. Fig. 4.15 gives the detail of spatial distribution of the potential energies, including

E, ΦG and ΦF, for Ra = 1200, Pr = 7.0, β = 0.1, We = 0.150, ǫ = 0.1 and ξ = 0.05. Following

Fig. 4.12, potential energy contours corresponding to five key time-points (a − b − c − d − a∗)

are presented. The streamline is drawn in E figures, and the isoheight with zero value is drawn

in ΦG and ΦF figures.

From Fig. 4.15 we can see that, at the beginning of the kinetic-decrease phase (t = a), two

symmetrical large circulations completely fill up the domain and are shown in Fig. 4.15a. At t =

a the elastic-kinetic energy exchange term 〈ΦG〉Ω is negative, but ΦG is not negative everywhere

in the cavity: the local maximum and minimum values take place about the vertical central

line, as shown in Fig. 4.15d. This indicates that kinetic energy is globally being either stored or

dissipated in polymer structure and that the negative area fills most of the cavity as indicated

by Fig. 4.15d, but, at some places the kinetic energy is released into the flow. At the same time,

the buoyancy flux (〈ΦF〉Ω > 0) does the positive work on flow structure, but note that ΦF is not

positive everywhere in the cavity as shown in Fig. 4.15g). We distiguish positive and negatie

zones seperated by u2 = 0 and T = 0 as ΦF = Tu2. Obviously the positive zones are larger the

the negative ones: The central part near the bottom and the top parts near the cavity corners are

negative zones and ΦF is dissipating kinetic energy there. From t = a to t = b, the kinetic energy

〈E〉Ω is reduced to almost zero. At t = b, 〈E〉Ω = 0 and the velocity field is zero everywhere

in the cavity. 〈ΦG〉Ω = 0 and 〈ΦF〉Ω = 0 because u2 is very weak and almost zero everywhere

in the cavity. It is at this moment that positive zones of ΦG appear and behave as the source

term of the kinetic energy: the kinetic energy increases very slowly from t = b to t = c. This

confirms that from t = b to t = c 〈ΦG〉Ω is the only positive source term to amplify the kinetic

energy and hence the velocity field. At t = c, 〈ΦG〉Ω > 0 and ΦG = −uij
∂τij

xj
> 0 takes place in

most of the cavity because of τij
∂ui
xj

in the term ΦG while 〈ΦF〉Ω = 0 is due to the symmetries

observed in T (T is almost fully conductive) and u2. From t = c the positive zones of ΦF are

growing and 〈ΦF〉Ω becomes a positive source term of the kinetic energy and both 〈ΦF〉Ω and

〈ΦG〉Ω contribute to increasing the kinetic energy. At t = d, 〈ΦG〉Ω is back to zero again and

the positive zones of ΦF become larger than the negative ones. From t = d, 〈ΦF〉Ω is the only

positive source term which increases the kinetic energy.
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(A) t = a, E (B) t = b, E (C) t = c, E

(D) t = a, ΦG (E) t = b, ΦG (F) t = c, ΦG

(G) t = a, ΦF (H) t = b, ΦF (I) t = c, ΦF

(J) t = d, E (K) t = a∗, E (L) colorbar

(M) t = d, ΦG (N) t = a∗, ΦG

(O) t = d, ΦF (P) t = a∗, ΦF

FIGURE 4.15: The contours of E, ΦG, ΦF at five key time-points (a− b− c− d− a∗).
The streamline is drawn in E figures, and the isoheight with zero value is drawn in
ΦG and ΦF figures. In the case we fixed Ra = 1200, Pr = 7.0, β = 0.1, We = 0.150,

ǫ = 0.1 and ξ = 0.05.
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Total normal elastic stress (τ11 + τ22)

Regarding the mechanism of the viscoelastic reverse convection, in order to make it more in-

tuitive, the mechanism can be explained from the perspective of the movement of the long

molecular chain of polymer in the convection. The spatial distribution of the total normal elas-

tic stress (τ11 + τ22) at key time-point (corresponding to the Fig. 4.13) are shown in Fig. 4.16. In

the figure, the red region represents high value of the (τ11 + τ22) and white region represents

low value of the (τ11 + τ22), and the elastic stress in the central vertical region mainly is con-

tributed by τ22, the elastic stress in the horizontal regions near top and bottom walls are mainly

contributed by τ11.

(A) t = a (B) t = b (C) t = c

(D) t = d (E) t = a∗

FIGURE 4.16: Total normal elastic stress ((τ11 + τ22)|(i,j)) distribution and evo-
lution in half period. The red region means maximum value and white region

means minimum value.

In phase kinetic-decrease (a− b), the longmolecular chains of polymer (in the blue box region)

are in a state of continuous extension, as shown in Figs. (4.16a-4.16b). In this process, the energy

stored by the long-chain tension. In phase elastic-contribution (b − c), the flow velocity is small

enough and the elastic potential energy is large enough, the long-chain of polymer starts to

shrink and rebound, as shown in Figs. (4.16b-4.16c). During this process, the polymer releases

energy into the flow, meanwhile, the flow reverses. Finally, under the action of the thermal

buoyancy and the elasticity, the large-scale circulation in the domain gradually increases in

velocity in the opposite direction, as shown in Figs. (4.16c-4.16d).

4.3.2 Three-cell reverse convection

In order to fully explain the mechanism of the viscoelastic property which drives the reversal

convection, we also checked the kinetic energy transport in the reversal convection system with

3 cells. To facilitate comparison with the 2-cell situation, in the 3-cell case, we picked up the

same fixed parameters Ra = 1200, Pr = 7.0, β = 0.1, We = 0.150, ǫ = 0.1 and ξ = 0.05.
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78 Chapter 4. Regular reversal convection in 2D rectangular cavity

FIGURE 4.17: Different averaged quantities as function of dimensionless time in
regular reversal convection system with 3 cells, where the rheology parameters

are β = 0.1, We = 0.15, Ra = 1200, ǫ = 0.1 and ξ = 0.05.

Fig. 4.17 plots the different averaged terms (appearing in the kinetic energy) transport equa-

tion in the 3-roll regular reversal convection along dimensionless time. The time period for this

case is λ = 0.92, which is longer than that in the 2-roll situation (λ = 0.69). Compared with

the 2-roll reversal convection, the time evolutions show similar behaviour as that in Fig. 4.12.

Fig. 4.17 displays also the five key time-points (a, b, c, d, a∗). Time point a marks the maximum of

the kinetic energy and the minimum of the viscous dissipation, the maximum of the buoyancy

flux 〈ΦF〉Ω and the minimum of 〈ΦG〉Ω occur later, but note that there is a slight delay between

the extrema of 〈ΦF〉Ω and 〈ΦG〉Ω. Time-point b corresponds to the moment where 〈E〉Ω, 〈ΦF〉Ω

and 〈ΦG〉Ω are equal to almost zero. At this particular time, 〈ΦG〉Ω becomes possitive and there-

fore becomes a production term, while 〈ΦF〉Ω becomes negative and becomes dissipation term.

Time-point c is the moment where 〈ΦF〉Ω crosses zero again. Between b and c, 〈ΦF〉Ω behaves

as a dissipation term and after c both 〈ΦF〉Ω and 〈ΦG〉Ω are preduction terms. At time-point d,

〈ΦF〉Ω crosses zero again and retakes its role of a dissipation term. Between d and a∗ 〈ΦF〉Ω is

the only driving force to amplify to kinetic energy and hence the velocity field.

The mechanism of the convection reversal is the following: before the time point a, the

buoyancy flux 〈ΦF〉Ω increase in time, amlifies the kinetic energy and adds energy in the elastic

reservoir; 〈ΦF〉Ω reachs its maximum after the time-point a and continues to decrease 〈ΦG〉Ω

which reaches its minimum later. This delay in time leads that the kinetic energy 〈ΦF〉Ω +

〈ΦG〉Ω + 〈ΦV〉Ω + 〈ΦD〉Ω is negative and that the kinetic energy 〈E〉Ω is decreased, and reduced

to almost zero at time point b. The elastic potential plays then the leading role as a producton

term after b and makes 〈ΦG〉Ω to become positive again before retaking the dissipation role at

time point d.

As observed in the 2-cell case, at t = a 〈ΦF〉Ω is a positive term, but ΦF displays local

negative zones and at t = b and c 〈ΦF〉Ω is equal to zero because of u2 ∼ 0 at t = b and the

symmetries of T and u2 at t = c. In the same way 〈ΦG〉Ω is a dissipation term at t = a but ΦG

displays local positive zones. In terms of the total nomal stress, it remains globally positive: it

is amplified from t = a to b, and decreased from t = b to t = c and d. From t = d to a∗ it is
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(A) t = a, Streamline (B) t = b, Streamline (C) t = c, Streamline

(D) t = a, Buoyancy flux (E) t = b, Buoyancy flux (F) t = c, Buoyancy flux

(G) t = d, Streamline (H) t = a∗, Streamline
(I) colorbar

(J) t = d, Buoyancy flux (K) t = a∗, Buoyancy flux

FIGURE 4.18: The contours of the kinetic energy E, buoyancy flux ΦF at five key
time-points (a − b − c − d − a∗). In the case we fixed parameters Ra = 1200,

Pr = 7.0, β = 0.1, We = 0.150, ǫ = 0.1 and ξ = 0.05.

increased again.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



80 Chapter 4. Regular reversal convection in 2D rectangular cavity

(A) t = a, ΦG (B) t = b, ΦG (C) t = c, ΦG

(D) t = a, τii (E) t = b, τii (F) t = c, τii

(G) t = d, ΦG (H) t = a∗, ΦG
(I) colorbar

(J) t = d, τii (K) t = a∗, τii

FIGURE 4.19: The contours of ΦG, total normal stress τii at five key time-points
(a− b− c− d− a∗). In the case we fixed parameters Ra = 1200, Pr = 7.0, β = 0.1,

We = 0.150, ǫ = 0.1 and ξ = 0.05.

4.4 Second transition at critical Rayleigh number Rac2

In this part we will discuss another important parameter in 2-cell periodic reversal convection,

reversal frequency, and its behavior with increasing Rayleigh number. This further leads to

another key phenomenon, the transition to 2-cell steady-state flows, and the definition of the

second critical number Rac2. At the same time, we will also study the influence of different

rheological parameters on Rac2.

Fig. 4.20 shows the time period of reverse at different (ǫ, ξ) and Rayleigh numbers for vis-

coelastic RBC in 2:1 cavity with fixed Pr = 7.0, β = 0.2, and We = 0.1. The overall observation

is that increase in both ǫ and ξ increases the periods of time-dependant flows, but near the crit-

ical points, at Ra = 1400 for example, ǫ and ξ have limited effects on the period increase while

at higher Rayleigh number the increase in time period is more important. For a fixed pair of (ǫ,

ξ) the period of time-dependant flow increases with Rayleigh number except for (ǫ, ξ) = (0, 0)
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4.4. Second transition at critical Rayleigh number Rac2 81

(Oldroyd-B fluid). In fact for Oldroyd-B fluid the time period decreases slightly with Ra increas-

ing, that means the flow frequency becomes greater; For the PTT model cases, the time period

becomes longer.

(A) ǫ ∈ [0.0, 0.7] and ξ = 0
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(B) ǫ = 0.1 and ξ ∈ [0.0, 0.2]

FIGURE 4.20: Effects of ǫ and ξ on the time period of the two-cell flows with
Pr = 7.0, β = 0.2, and We = 0.1. (a) Time period versus Ra at different ǫ and
ξ = 0 (ξ = 0.0 and ǫ = 0.0 denotes Oldroyd-B model) . (b) Time period versus Ra
at different ξ and ǫ = 0.1. Increasing ǫ and ξ leads to increase in time period and

it is more pronounced at higher Rayleigh number.

For a fixed pair of ǫ and ξ, when increasing further Rayleigh number, a particular phe-

nomenon is observed. Both the convection reversal period and the reversal amplitude increase

with Rayleigh number, for PPT constitutive model, as is shown in Fig. 4.20 and Fig. 4.21. The

effects of Rayleigh number on the period is stronger than on the amplitude. Beyond a certain

limit there is no more time-dependent flow and a steady-state flow is observed. This transition

from time-periodic flow to steady-state flow corresponds to another type of bifurcation which

is a drift pitchfork bifurcation instead of a Hopf bifurcation.
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FIGURE 4.21: Time evolution of u2 at the cavity center (x, y) = (1, 0.5). For both
PTT cases the increase in amplitude and the decrease in frequency are observed
with increasing Rayleigh number. In the cases, β = 0.2, We = 0.1 and Pr = 7.0.

In fact, the control parameter controls the frequency of the reversal flows which is equal to

zero at the critical point. The oscillation frequency ω of the reversal convection flow is defined

as ω = 1/λ where λ is the oscillation period. Fig. 4.22 displays the relationship between ω2,

square of the oscillation frequency of the reversal convection flow, and Rayleigh number, a
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FIGURE 4.22: Square of the oscillation frequency of reversal convection flow ver-
sus Rayleigh number (β = 0.2, We = 0.1, Pr = 7.0, ǫ = 0.1 and ξ = 0.05). A linear
relationship is observed and the extrapolation of the linear fitting curve yields

Rac2 = 1635.

trivial linear relationship is obvious: the drift pitchfork bifurcation is supercritical. The linear

curve has a cross-over point with ω2 = 0, which is the second bifurcation point, Rac2. An

extrapolation of the linear fitting curve can be used again to obtain Rac2, the second critical

Rayleigh number. Above Rac2, viscoelastic Rayleigh-Bénard convection flow is steady.

4.4.1 Effects of (ǫ, ξ) on Rac2

The samemethodology is applied to ǫ ∈ [0.1, 0.7]with ξ = 0 and ξ ∈ [0.01, 0.2]with ǫ = 0.1 and

Rac2 was obtained. Fig. 4.23 plots two critical Rayleigh numbers Rac1 and Rac2 against different

values of ǫ and ξ used to illustrate the effect of ǫ and ξ on the critical Rayleigh numbers. Rac2

decreases with increasing ǫ (with ξ = 0) and ξ (with ǫ = 0.1). The decrease in Rac2 is more

pronounced than that in Rac1: Rac2 decreases from 1762 at ǫ = 0.1 to 1585 at ǫ = 0.7 for ξ = 0

and from 1732 at ξ = 0.01 to 1500 at ξ = 0.2.

The two critical Rayleigh numbers separate the domain of Rayleigh numbers studied into

three regions in terms of flow and heat transfer: (i) pure heat conduction without convection

flow, Ra < Rac1 (Region 1); (ii) time-periodic oscillating flow, Rac1 < Ra < Rac2 (Region 2); (iii)

steady-state convective flow and heat transfer, Ra > Rac2 (Region 3). Region 2 decreases with

increasing ǫ and ξ due to the decrease of Rac2. Flow regime above Rac2 is not studied in the

present thesis.
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FIGURE 4.23: Critical Rayleigh numbers Rac1 and Rac2 versus ǫ and ξ. (a) Effect
of ǫ on Rac with ξ = 0. (b) Effect of ξ on Rac with ǫ = 0.1. The critical Rayleigh
numbers Rac1 and Rac2 divide the flow regime into three regions: pure conduction
without convective flow (Region 1), time-periodic convective flow limited by Rac1
and Rac2 (Region 2) and steady-state convective flow for Ra > Rac2 (Region 3). In

the cases, β = 0.2, We = 0.1 and Pr = 7.0.

4.4.2 Effects of We and β on Rac2

For PPT constutivemodel, except (ǫ, ξ), there are other important rheological parameters (β,We)

that have an important influence on the second critical Rayleigh number Rac2. Fig. 4.24 shows

the effects of the Weissenberg number on the two critical Rayleigh numbers when β is fixed at

(0, 1, 0.2), where the coverage range of We is [0.075, 0.25]. We can observe that the Weissenberg

number has an important influence on the two critical Rayleigh number, reducing the values of

two critical Rayleigh numbers. At the same time, a threshold of the Weissenberg number also

was found. For example, when β = 0.2 and the threshold of Weissenberg number is around

0.067. This means that the reverse convection phenomenon will disappear, no matter what

Rayleigh number is, when Weissenberg number is less than 0.067.
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FIGURE 4.24: Critical Rayleigh numbers Rac1 and Rac2 as a function of We with
β = 0.1, 0.2. The definition of Region 1, Region 2 and Region 3 are same as that
in Fig. 4.23. The other rheology parameters are fixed at Pr = 7.0, ǫ = 0.1 and

ξ = 0.05.
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84 Chapter 4. Regular reversal convection in 2D rectangular cavity

4.4.3 Summary of the studied cases

In this part, we summarized the cases simulated, Tab. 4.1 gives the viscoelastic convection con-

dition with different Ra and We. In this table, (S) represents the steady convection and (R)

represents the reversal convection. β = 0.2, ǫ = 0.1 and ξ = 0.05 were fixed in simulations.

When We = 0.07125, only three cell reversal convection was observed. For We = 0.225 and

We = 0.25 cases, we did not calculate 2-cell steady convection, because the corresponding com-

prehensive elastic coefficient is too large under this rheology parameter, especially when β is

small (= 0.2), which exceeds the solving ability of this solver. In fact, when β is relatively small,

the proportion of elasticity in the fluid is particularly large, and the convection is dominated by

the elastic part.

FIGURE 4.25: Mean kinetic energy E = 1
λ

1
Ω

∫ λ
0

∫ Ω

0 (uiui)dtdV as a function of
Ra in viscoelastic Rayleigh-Bénard convection, where the viscoelastic constitutive
model is Phan-Thien-Tanner (PTT) model with We ∈ [0.07125, 0.250] and β = 0.2.
In the figure, (•) means 3-cell reversal flow, (△) means 2-cell reversal flow and (×)

means 2-cell steady convection flow.

Fig. 4.25 shows the temporally-spatially averaged E as a function of Ra with different We. It

can be found that We increases will cause an increase in E, which was explained in the previous

section (Sec. 4.3.1). From Fig. 4.25, the following results are obtained:

• The different flow structures have different increase rate of kinetic energy (as Ra). Among

them, the steady-state flow has the highest increase rate of kinetic energy.

• As Ra closes the second critical Rayleigh number (flow changes from 2R to 2S), the average

kinetic energy will decrease slightly.
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4.4. Second transition at critical Rayleigh number Rac2 85

We Ra
Cells

number
Flow
regime

0.07125
– 2 R

[1920, 1960, 2120, 2240, 2400, 2560] 2 S
[1400, 1856, 1880, 1944, 2080] 3 R

0.075
[1864, 1880] 2 R

[1896, 2056, 2320, 2400] 2 S
[1720, 1760, 1800, 1816, 1840, 1856, 1920, 2000,

2040, 2080, 2160, 2240]
3 R

0.1
[1400, 1480, 1560, 1680, 1760] 2 R

[1800, 1920, 2080] 2 S
[1424, 1504, 1584, 1664, 1744, 1824, 1904, 1984,

2064, 2144, 2224]
3 R

0.125

[1200, 1240, 1264, 1280, 1440, 1520, 1560, 1600,
1640, 1680]

2 R

[1720, 1840] 2 S
[1360, 1456, 1552, 1648, 1760, 1880, 2000, 2160,

2320]
3 R

0.150
[1040, 1120, 1136, 1200, 1280, 1360, 1440, 1520] 2 R

[1616, 1696] 2 S
[1216, 1296, 1376, 1456, 1584, 1680, 1840, 2000,

2080]
3 R

0.175
[960, 1040, 1240, 1320, 1400, 1520] 2 R

[1560, 1600] 2 S
[1296, 1456, 1616, 1696] 3 R

0.2
[880, 920, 976, 1080, 1200, 1360, 1440] 2 R

[1480, 1512] 2 S
[1136, 1296, 1456, 1616] 3 R

0.225
[840, 880, 1040, 1200, 1280, 1360] 2 R

– 2 S
[1136, 1296, 1456, 1616] 3 R

0.250
[800, 840, 976, 1080, 1200, 1240, 1280, 1320] 2 R

– 2 S
[1136, 1296, 1456, 1616] 3 R

TABLE 4.1: The flow condition with different Weissenberg numbers and Rayleigh
numbers. In tested cases, Pr = 7.0, β = 0.2, ǫ = 0.1 and ξ = 0.05

• There is a overlap range of Rayleigh number for 2-cell and 3-cell reversal flows. Note that

3-cell reversal flow overlaps both 2-cell reversal and 2-cell steady-state flows. Under a

certain Ra, the same convection system can have different flow states, reverse convection

or stable convection. Such as when We = 0.125 and Ra = 1750, the flow state can be 3-

cell reverse convection or 2-cell steady-state convection, depending on the previous flow

mode. For the reversed convection state, the 3-cell situation is more stable than the 2-cell

reversal convection.

• No matter which the initial flow state (2-cell or 3-cell reverse convection) is, the steady-

state convection obtained always has only two circulations.
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86 Chapter 4. Regular reversal convection in 2D rectangular cavity

FIGURE 4.26: Averaged energy exchange rate ΦG as a function of Ra in viscoelas-
tic Rayleigh-Bénard convection, where the viscoelastic constitutivemodel is Phan-
Thien-Tanner (PTT) model with We ∈ [0.07125− 0.250] and β = 0.2. In the figure,
(•) means 3-cell reversal flow, (△) means 2-cell reversal flow and (×) means 2-cell

steady convection flow.

Fig. 4.26 shows the capacity of the energy exchange between flow structure and polymer

macro-molecular structure at different We, Ra, and flow condition. From Fig. 4.26, we can find

that the overall energy exchange capacity of steady-state convection is stronger than that in

reversed convection. The existence of the reversal phenomenon has a huge impact on the energy

dissipation of the system. We can found a threshold of the energy exchange rate of ΦG (in range

of (−0.05,−0.06) for this simulation series) between reversal and steady convection, regular

reversal convection only takes place when ΦG is above this value, and the flow pattern will

change to steady convection once ΦG is under this value. ΦG shows a more linear relationship

with Ra in the reverse region, compared with that in the steady convection region.

Fig. 4.27 shows the time shift (delay) of peak value of (E, ΦF) and (ΦF, ΦG) as a function of

Ra. The time shift proportion is defined by:

R(E,ΦF) = (tΦF peak value
− tEpeak value

)/tperiod (4.7)

R(ΦF ,ΦG) = (tΦG peak value
− tΦF peak value

)/tperiod (4.8)

where tEpeak value
, tΦF peak value

and tΦG peak value
are the time points when the peak values of E, ΦF

and ΦG take place in one period. It can be easily found that the time shift R(E,ΦF) and R(ΦF ,ΦG)

almost show the same decrease trend as Ra increases, and when Ra is close to the second critical

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



4.5. Heat transfer characteristic 87

FIGURE 4.27: The time shift (delay) of peak value of (E, ΦF) and (ΦF, ΦG) as a
function of Ra is shwon. In the figure, tEpeak value

, tΦF peak value
, tΦG peak value

are the

time point when the peak value of E, ΦF and ΦG take place in one period. Here,
we fixed Pr = 7.0, β = 0.2, We = 0.1, ǫ = 0.1 and ξ = 0.05.

Rayleigh number Rac2, R(E,ΦF) and R(ΦF ,ΦG) are almost equal to zero. This fact also supports

our proposition that the formation of viscoelastic periodic reversal convection is due to the

alternating transition of system energy in kinetic energy, elastic energy, and buoyancy potential

energy.

4.5 Heat transfer characteristic

Different from steady-state convection, the periodic behavior of the distribution of velocity and

temperature in regular oscillating convection will have a huge impact on the heat transfer ca-

pacity of the system. Therefore, this section directly studies the influence of different rheological

parameters on heat transfer efficiency. Here we use a nondimensional parameter Nu (Nusselt

number) to scale the heat transfer capacity of the system, Nu is defined as the nondimensional

temperature gradient at the bottom boundary of the cavity, and the spatially averaged Nusselt

number Nus and the spatially-temporally averaged Nusselt number Nuts can be described as:

Nus =
1

2

2∫

0

∂T

∂y
|y=0dx (4.9)

Nuts =
1

λ

1

2

λ∫

0

2∫

0

∂T

∂y
|y=0dxdt (4.10)
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88 Chapter 4. Regular reversal convection in 2D rectangular cavity

4.5.1 Viscous and elastic dissipation

If we consider the viscous and elastic dissipation in the viscoelastic Rayleigh-Bénard convection

system, the temperature equation should be writen as:

ρcp(
∂T

∂t
+ (u · ∇)T) = k∇2T + 2µsD : ∇u+ τp : ∇u (4.11)

where the second term on the right-hand side is the viscous dissipation term causing temper-

ature rise in the flow and the third term is called elastic dissipation. After introducing dimen-

sionless quantities, Eq. (4.11) is organized as

∂T

∂t
+ (u · ∇)T =

1√
Ra

∇2T + 2β
EcPr√

Ra
D : ∇u+ Ecτp : ∇u (4.12)

where Eckert number Ec, expressing the relationship between kinetic energy and the enhalpy,

is used to characterize the influence of the dissipations :

Ec =
U2

c

cp∆T
=

(
α
H

√
Ra
)2

cp∆T
=

α2Ra

H2cp∆T
(4.13)

where α is the fluid thermal diffusivity, cp is the specific heat capacity, H is the cavity height and

∆T is the temperature difference between the upper and lower horizontal boundaries. When Ec

is very small (≪ 1), the effects of the viscous dissipation can be neglected.

(A) (D : ∇u), viscous dissipation without the co-

efficient (2β EcPr√
Ra
)

(B) (τp : ∇u), elastic dissipation without the coef-
ficient (Ec).

FIGURE 4.28: Viscous and elastic dissipaitons in case with Pr = 7.0, Ra = 1600,
β = 0.2, We = 0.1.

Fig. 4.28 shows the spatially averaged dimensionless viscous and elastic dissipations for the

case with Pr = 7.0, Ra = 1600, β = 0.2, We = 0.1. As is indicated by the figure, the vis-

cous dissipation is always positive and thus a positive source term for temperature. While the

elastic disspation is positive for most of the time and negative for a short time during one pe-

riod. Therefore the elastic dissipation could also lead to decreasing temperature. For all the

cases investigated in this work, Ec takes on values of O(10−10), and the magnitude of 2β EcPr√
Ra
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4.5. Heat transfer characteristic 89

corresponds toO(10−11). Il means that the viscous and elastic disspitions are very small in mag-

nitude and do not play any role on temperature. Therefore, the viscous and elastic dispersions

can be neglected in the numerical simulations and this justifies completely the equation used in

the present study.

4.5.2 Nu changes with non-dimentional time

To understand the effects of ǫ and ξ on heat transfer, two pairs of (ǫ, ξ), (0.1, 0) and (0.1, 0.05),

are chosen and the corresponding Nusselt numbers are displayed in Fig. 4.29.
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FIGURE 4.29: Time evolution of Nus ( (a) and (b) ) and instantaneous local Nu
on the bottom wall ( (c), (d), (e) and (f) ) at different Ra for 2-cell convective flow.
(c) and (d) correspond to the time point t1 while (e) and (f) to the time point t5.
Both t1 and t5 concern the maximum of the total kinetic energy: at t1 upward
convective flow near the cavity center is at its maximum and the minimum of Nu
on the bottom wall is located at x = 1; at t5 downward convective flow near the
cavity center is at its maximum and the maximum of Nu on the bottom wall is

located at x = 1.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



90 Chapter 4. Regular reversal convection in 2D rectangular cavity

The time evolutions of the spatially averaged Nusselt number Nus are shown for several

Rayleigh numbers in Figs. 4.29a and 4.29b. For a fixed pair of (ǫ, ξ), both the amplitude and the

period of Nus increase with increasing Rayleigh number the same as the velocity. It is worth

mentioning that the frequency of Nus is two times that of the velocity: one time period of

velocity is two times that of Nus and there are two maximum values and two minimum values

of Nus in one velocity period. When the velocity gets to its maximum value (see Fig. 4.21), Nus

reaches the first maximum value (local Nu distribution is shown in Figs. 4.29c and 4.29d); then

convection reversal occurs, velocity drops from maximum to zero, Nus moves from the first

maximum to the first minimum value of about one. Subsequently, velocity increases to reach its

maximum value in the opposite direction at the same time, Nus reaches the second maximum

value (local Nu on the bottom wall is depicted in Figs. 4.29e and 4.29f).

For the influence of We on heat transfer capacity Nu, Fig. 4.30 illustrated the influence of

Weissenberg number for the time evolution of Nusselt number. The results show that the am-

plitude and time period of Nu gradually increases with the increase of We, and the peak is

sharper. In contrast, when We is small, the change of Nu within one period is more symmetri-

cal. The similar results were also given by Li and Khayat (2005).
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FIGURE 4.30: Time signature for the Nusselt number, Nu, and effect of Weis-
senberg number for We ∈ [0.125, 0.250] with Ra = 1280, Pr = 7.0 and β = 0.2.

4.5.3 Effect of (ǫ, ξ) and We on averaged Nu

For the influence of rheology parameters on the heat transfer capacity, we first consider the two

parameters, ǫ and ξ. Fig. 4.31 illustrates the variation of the Nusselt number averaged in time
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4.5. Heat transfer characteristic 91

and space Nuts versus Ra for different values of (ǫ, ξ). Note that the reduction of Ra interval in

the figure is due to the reduction of Rac2 with increasing ǫ or ξ.
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FIGURE 4.31: Effects of (ǫ, ξ) on the Nusselt number averaged in time and space
Nuts of 2-cell convection flow at Pr = 7.0, β = 0.2 and We = 0.1. With ξ =
0 increasing ǫ decreases Nuts whereas with ǫ = 0.1 increasing ξ only slightly
increases Nuts. The reduced range of Ra at higher ǫ or ξ corresponds to the fact
that Rac2 is reduced and that Ra range of the time-dependent flow is reduced.

Fig. 4.31a shows the time-averaged Nusselt number changes with Rayleigh nubmer at dif-

ferent ǫ, for ξ = 0 increasing ǫ decreases Nuts and the relationship between Nuts and Ra is

almost linear. It should be noted that the general viscoelastic constitutive model with ξ = 0

represents the Giesekus model. Fig. 4.31b shows the time-averaged Nusselt number changes

with Rayleigh nubmer at diferent ǫ, the results show that for ǫ = 0.1 increasing ξ increases Nuts

slightly. However the curves of Nuts show more non-linear characteristic than that in cases

with ξ = 0. Butǫ and ξ have opposite and limited effects on heat transfer. Increasing elon-

gational behavior of polymer molecules decreases slightly heat transfer in the time-dependent

flow regime.
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92 Chapter 4. Regular reversal convection in 2D rectangular cavity

FIGURE 4.32: Averaged Nusselt number Nuts as a function of Ra in viscoelastic
Rayleigh-Bénard convection, where the viscoelastic constitutive model is Phan-
Thien-Tanner (PTT) model with We ∈ [0.07125− 0.250] and β = 0.2. In the figure,
(•) means 3-cell reversal flow, (△) means 2-cell reversal flow and (×) means 2-cell

stable convection flow.

From the perspective of heat transfer capacity, the Nu increase rate in 2-cell steady-state

convections is much greater than that of reverse convection, as described in Fig. 4.32. The reason

probably is in the flow process of reverse convection, the continuous stretching and contraction

of the polymer structure in the system play an intermittent obstructive effect on the flow.

4.6 Conclusion

For viscoelastic R-B convecton with We increasing and β decreasing, time-dependent flow in-

stead of steady flow, sets up at the convection onset. The main results we obtained are the

following:

• For convection with PTT model, critical Rayleigh numbers corresponding to the onset of

time-dependent convection are determined for various values of the constitutive param-

eter ǫ with ξ = 0 and various values of the constitutive parameter ξ with fixed ǫ = 0.1.

There is only a slight dependency of the critical Rayleigh number on these parameters.

• For time-dependent reversal convection, 2-cell and 3-cell flow structures evolute was in-

vestigated in detail. We revealed the energy relationship in the regular reversal convec-

tion, and determined the elasticity effect on the promotion of reversal formation. The
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potential energy in the convection system is periodically transported between the flow

structure and by elastic force and thermal buoyancy. There seems to be a critical value

of energy exchange rate ΦG between periodically reversed convection and steady-state

convection.

• At higher Rayleigh numbers, time-dependent flow is replaced by a steady-state flow, here,

we found another critical Rayleigh number Rac2. This flow transition corresponds to

a drift pitchfork bifurcation. The critical Rayleigh number Rac2 is also determined for

various values of ǫ with ξ = 0 and various values of ξ with ǫ = 0.1 in our simulations.

For the parameters investigated, increasing We will make Rac1 and Rac2 both decrease,

andwill make the range of Ra for the regular reversal will enlarge. A smaller β will induce

smaller Rac1 and Rac2.

• The influence of ǫ, ξ, and We on heat transfer is investigated for the time-dependent flow

regime. The results show that ǫ and ξ have opposite but limited effects on heat transfer.

Increasing ǫ decreases Nu whereas Nusselt number increases slightly with increasing ξ.

Increasing We improve the capacity of heat exchange.

The onset of the time-dependent reverse convection in the Rayleigh-Bénard convection with

nonlinear viscoelastic fluids is a novel flow feature because of the particular flow patterns.

These flow reversal characteristics should be distinguished from a random reversal in turbu-

lent Rayleigh-Bénard convection.
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Chapter 5

Convection in 2D tilted cavity
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5.1 Introduction

In the previous chapter, we introduced some special phenomena of viscoelastic Rayleigh-Bénard

convection (RBC) in a horizontal rectangular cavity, i.e. the reversal phenomena and special

flow pattern transition, etc. In fact, in actual life or industrial production, most of the occur-

rence of RBC will not run in an horizontal space, horizontal RBC is an ideal situation. Through

a simple mechanical analysis, for a tilted RBC system, we can know that the gravity is not only

applied in the direction perpendicular to the bottom heating wall, but part of that is placed in

the direction paralleled to the heating wall. Many pieces of research showed that the existence

of the inclination in RBC will make a huge impact on the flow and heat transfer characteristics.

For tilted Newtonian RBC, lots of experiments and numerical simulation studies had given

us an in-depth understanding of it in past decades (Catton, Ayyaswamy, and Clever, 1974;

Arnold, Catton, and Edwards, 1976; Soong et al., 1996; Corcione, 2003; Torres et al., 2015; Wang

et al., 2018). The steady convection in tilt cell with different aspect ratios and Ra was exper-

imentally investigated by Arnold, Catton, and Edwards (1976). They investigated the effects

of tilt angle (from 0◦ to 90◦) on heat transfer capacity in rectangular cavity for a wide range

Ra ∈ [103, 106] and several aspect ratios (Γ ∈ (1, 2, 6, 12)). Their results gave a simple scaling

law between heat transfer capacity and Ra. Acharya and Goldstein (1985) did similar work

about 2D RBC of air in tilted (α ∈ (0◦, 30◦, 60◦, 90◦)) square cavity for Ra ∈ [103, 105] by DNS,
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96 Chapter 5. Convection in 2D tilted cavity

and mainly studied the heat transfer characteristics of the convection system. For tilted convec-

tion patterns transiton, Torres et al. (2015) showed flow patterns evolute for physical configura-

tions changing from the RBC (heated and cooled by horizontal walls) to the natural convection

(heated and cooled by side walls) in 3D cubical cavity with Pr = 0.71. Wang et al. (2018) inves-

tigated the effect of tilt angle on turbulent RBC in the caivty with two aspect ratio Γ = (1, 2) by

2D direct numerical simulation. They mapped out the flow states in α − Pr space for Ra = 107

and Γ = (1, 2), and α − Ra space for Pr = 0.3 and Γ = (1, 2). In the cases with Γ = 1, the tur-

bulent flow reversals are detected at small α, and that will vanish once α > 7◦. For Γ = 2 cases,

three flow structures are found in α − Pr space with Ra = 107 and α − Ra space with Pr = 0.3,

they are 2-roll flows without flow reversals and with flow reversals, and the single-roll flow

without flow reversals.

For tilted non-Newtonian RBC, only Khezzar, Siginer, and Vinogradov (2012) did relevant

research. Their studies are based on a steady 2D RBC in rectangular cavities filled by power-law

fluids, a comprehensive study of the influence of tilt angle, Rayleigh number, Prandtl number,

and aspect ratio on Nusselt number was given.

At the present stage, we didn’t found any numerical investigation of the inclined RBC with

the nonlinear viscoelastic fluid constitutive model. Given the interesting reversal phenomenon

and the complex flow bifurcation of viscoelastic RBC described in Chapter 4, an investigation

about tilted viscoelastic RBC is necessary. In this chapter, we will study numerically the vis-

coelastic RBC in an inclined cavity. Firstly, we introduce flow and heat transfer in typical

Newtonian RBC for a moderate Rayleigh number Ra = 5000. It will help to compare with

viscoelastic RBC in the present work. Then, we study the tilted viscoelastic RBC under two vis-

cosity ratios β = (0.1, 0.9), and discuss the influence of the inclination angle on critical Rayleigh

number Rac for convection onset, heat transfer capacity, etc.

Physical model

A two-dimensional inclined rectangular cavity filled with Newtonian or viscoelastic fluids is

adopted, as described in Fig. 5.1. The temperature and velocity boundary conditions are set

as the same as that in Chapter 4. In the figure, α represents the inclined angle, and g is the

gravity. The tilt angle α in this chapter is fixed in the range of [0◦, 90◦]. The aspect ratio is

A = L/H = 2 : 1 with L = 2 and H = 1.

In the tilted physical configuration, the gravity acceleration can be decomposed into two

parts: one perpendicular to the bottom (heating boundary), another parallel to the bottom, that

can be described by:

geg = −(sin(α)ge1 + cos(α)ge2) (5.1)

where eg is the unit vector in the gravity direction, e1 and e2 are the unit vectors in x and y

directions, respectively. gsin(α)e1 and gcos(α)e2 are the components of the gravity contribution
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FIGURE 5.1: Physical configuration with inclination.

in the parallel and perpendicular directions of the bottom. Substitute Eq. (5.1) into Eq. (3.16),

the dimentionless momentum equation for tilted viscoelastic RBC can be written as:

∂u

∂t
+ (u · ∇)u = −∇p+ β

Pr√
Ra

∆u+∇ · τp − (sin(α)PrTe1 + cos(α)PrTe2) (5.2)

To facilitate the description, we choose the coordinate axes that are consistent with the cavity

walls, as is shown in Fig. 5.1. Concerning the number of nodes we follow the setting of the

previous chapter, namely Nx × Ny = 128× 64 for cases with aspect ratio 2 : 1 and Nx × Ny =

64× 64 for cases with aspect ratio 1 : 1.

5.2 Newtonian RBC in tilted cavity

We start by studying the Newtonian RBC in tilted closed cavity. In the simulated cases, the

Prandtl number and Rayleigh number are fixed at Pr = 7.0 and Ra = 5000, respectively. The

rotation angle is in range of [0◦, 45◦].

5.2.1 Flow patterns

The isolines of the dimensionless velocity and temperature for α = (0◦, 5◦, 10◦, 15◦, 30◦, 45◦) are

shown in Fig. 5.2 and Fig. 5.3. From the figures, we can find that, except the situation (Fig. 5.2a

and Fig. 5.3a) without inclination, the distribution of the velocity all shows a similar profile. The

velocity value in the domain first increases with α increasing (Fig. 5.2b to Fig. 5.2f). The flow

directions in the simulated cases are all counterclockwise (Fig. 5.2b to 5.2f), which is consistent

with the rotation direction of the configuration. These flows are obtained by the initial conditon

like Fig. 5.5a. When the initial state is like Fig. 5.5a, flow will quickly change to single-roll

convection as α appears. In the work of Shishkina and Horn (2016), this transition angle is in

α ∈ [0.45◦, 0.9◦] under tilted RBC for fixed parameters Pr = 100 and Ra = 106.

In fact, when the inclined angle is in certain range for Ra = 5000, the flow can also keep two-

cell sturcture with counterclockwise-clockwise directions. In order to obtain two-cell structure,
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98 Chapter 5. Convection in 2D tilted cavity

(A) Velocity, α = 0◦
(B) Velocity, α = 5◦

(C) Velocity, α = 10◦

(D) Velocity, α = 15◦

(E) Velocity, α = 30◦
(F) Velocity, α = 45◦

FIGURE 5.2: Isolines of the dimensionless velocity with α =
(0◦, 5◦, 10◦, 15◦, 30◦, 45◦) in cases with Pr = 7.0 and Ra = 5000. The circu-

lations are in the counterclockwise direction.

we transform the stable solution shown in Fig. 5.2a and Fig. 5.3a. We rewrite the temperature

solution as following:

T(x, y) = TL(x, y) + TP(x, y) (5.3)

where TL(x, y) = T2 − y
H (T2 − T1) is the basic conductive temperature distribution. We trans-

form temperature and velocity as follows:

T̃(x, y) = TL(x, y)− TP(x, y) (5.4)

(ũ, ṽ)(x, y) = −(u, v)(x, y) (5.5)

where T̃(x, y) and (ũ, ṽ)(x, y) are the new intial condition.

We also tested the cases with α = (0◦, 5◦, 10◦, 15◦, 30◦, 45◦), and we got the same solutions

shown in Fig. 5.3 for α = (15◦, 30◦, 45◦). But, for the cases with α = (5◦, 10◦), the results show

different flow structures, as shown in Fig. 5.4, the counterclockwise-clockwise circulations filled

the flow space. As α increasing, the counterclockwise circulation gradually becomes bigger and

fills up the domain evently, and the clockwise circulation gradually disappears. When α exceeds

12◦, the flow becomes a single large-scale circulation, as shown in the (Fig. 5.2b to Fig. 5.2f).

The reason that the two different flow conditions both exist at a certain inclination can be
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(A) Temperature, α = 0◦
(B) Temperature, α = 5◦

(C) Temperature, α = 10◦

(D) Temperature, α = 15◦

(E) Temperature, α = 30◦
(F) Temperature, α = 45◦

FIGURE 5.3: Isoheight of the dimensionless velocity with α =
(0◦, 5◦, 10◦, 15◦, 30◦, 45◦) in cases with Pr = 7.0 and Ra = 5000. The circu-

lations are in the counterclockwise direction.

briefly explained as follows. Fig. 5.5 shows the relationship between the flow structures direc-

tion and the buoyancy at four different situations. Fthermal buoyancy is caused by the gravity, Fx and

Fy denote the horizontal (parallel to the heating wall) and vertical (perpendicular to the heating

wall) components. Figs. 5.5a and 5.5b show that in the normal RBC, directions of Bénard cells

are random (counterclockwise-clockwise or clockwise-counterclockwise). Once the inclination

exists, the inclination will make an opposite influence on counterclockwise and clockwise cir-

culations, respectively. The buoyancy force along with heating and cooling walls (Fx) will have

a positive impact on the counterclockwise circulation (because it is in the flow direction) and a

negative effect for the clockwise one(because it is in the opposite direction of the flow). If the

initial flow situation is like Fig. 5.5a, the counterclockwise circulation will quickly fill up the

domain and the flow transition to the single counterclockwise roll convection is observed, as

shown in Fig. 5.5c. If the initial flow situation is like Fig. 5.5b, as α increases, counterclockwise-

clockwise circulations will keep the original situation for small α firstly (as shown in Fig. 5.5d)

and then transit to the single clockwise circulation convection, as shown in Fig. 5.5c. For this sit-

uation, the threshold value (αc) of the tilted angle in the present work (Pr = 7.0 and Ra = 5000)

is between αc ∈ (10◦, 12◦) for the transition from two-roll counterclockwise-clockwise convec-

tion to single roll clockwise circulation convection.

For further understanding, Fig. 5.6 shows the bifurcation diagram for tilted Newtonian RBC

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



100 Chapter 5. Convection in 2D tilted cavity

0

.0

0

0

.2

5

0

.5

0

0

.7

5

1

.0

0

1

.2

5

1

.5

0

1

.7

5

2

.0

0

0

.0

0

.2

0

.4

0

.6

0

.8

1

.0

0

.

0

4

0

0

.0

8

0

0

.

1

2

0

0

.

1

2

0

0.1

20

0

.

1

6

0

0

.

1

6

0

0

.

1

6

0

0

.

2

0

0

0

.

2

0

0

0

.

2

0

0

(A) Velocity, α = 5◦
0

.

0

0

0

.

2

5

0

.

5

0

0

.

7

5

1

.

0

0

1

.

2

5

1

.

5

0

1

.

7

5

2

.

0

0

0

.

0

0

.

2

0

.

4

0

.

6

0

.

8

1

.

0

0

.

0

4

0

0

.

0

8

0

0

.

0

8

0

0

.

1

2

0

0

.

1

2

0

0

.

1

2

0

0

.

1

6

0

0

.

1

6

0

0

.

2

0

0

0

.

2

0

0

0

.2

0

0

0

.

2

4

0

(B) Velocity, α = 10◦

0

.0

0

0

.2

5

0

.5

0

0

.7

5

1

.0

0

1

.2

5

1

.5

0

1

.7

5

2

.0

0

0

.0

0

.2

0

.4

0

.6

0

.8

1

.0

-0

.4

50

-

0

.

3

0

0

-

0

.

1

5

0

0

.

0

0

0

0

.

1

5

0

0

.3

0

0

0.4

50

(C) Temperature, α = 5◦
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FIGURE 5.4: Velocity and temperature porfiles at steady-state convection with 2
large-scale circulation (counterclockwise-clockwise) in cases with Pr = 7.0 and

Ra = 5000, when α = 5◦ and α = 10◦.

with α = 2◦. In the figure, the velocity u2 at the monitor point (x, y) = (7/8, 1/2) is used as the

solution representative to describe the flow evolution with Ra. From Fig. 5.6, it can be seen that

two flow pattern branches exist, 1-roll –> 2-roll and 2-roll. For branch 1-roll –> 2-roll, the appear-

ance of the inclination breaks the pure thermal conduction of the horizontal RBC and single-roll

convection takes place in the same direction as the cavity rotation (counterclockwise) at relative

small Ra. As Ra further increases, the flow pattern naturally develops a 2-roll convection with

clockwise-counterclockwise circulations. We can call Ra range of the flow pattern transition as

the imperfect pitchfork bifurcation. Another flow branch with two counterclockwise-clockwise

rolls starts approximatively at P1 (about Ra = 2100). An unstable flow branch is connected

with it, but can not be obtained by our solver. This bifurcation diagram is a deformed diagram

of a pitchfork bifurcation and it is called imperfect pitchfork bifurcation. As α increases, this

imperfect pitchfork bifurcation takes place at higher Ra, for example, the imperfect pitchfork

bifurcation occurs at Ra = 5000 when α is around 12◦. In order to clearly shows the flow pattern

transition when Ra passes the imperfect pitchfork bifurcation, i.e. the transition from the 1-roll

steady convection to 2-roll steady convection, Fig. 5.7 shows the streamlines at several Rayleigh

numbers. It is clear that the center of the large circulation moves to the right as Ra increases,

and then a new circulation is generated when Ra cross the imperfect pitchfork bifurcation.
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(A) Horizontal, Clockwise-Counterclockwise
cells

(B) Horizontal, Counterclockwise-Clockwise
cells

(C) Counterclockwise cells (D) Counterclockwise-Clockwise cells

FIGURE 5.5: The relationship between the flow direction near heating wall and
the thermal buoyancy.

5.2.2 Heat transfer

Fig. 5.8 shows Nu distribution along the bottom boundary for the cases with Γ = (1 : 1, 2 : 1)

for Ra = 5000 and Pr = 7.0, where Fig. 5.8a concerns the 1 : 1 cavity and Fig. 5.8b plots

the 2 : 1 cavity. (Cc) and (c) in Fig. 5.8a represent circulation directions, i.e. counterclockwise

direction and clockwise direction, respectively. In Fig. 5.8b (1cell) and (2cell) mean that one or

two circulations take place in the cavity.

Fig. 5.9 shows the averaged Nu with different α for Γ = (1 : 1, 2 : 1), Pr = 7.0 and

Ra = 5000. The black curves are for the Γ = 1 : 1 cases and the red curves are for the Γ =

2 : 1 cases. For the Γ = 1 : 1 cases, two paths of Nu along α exist when tilted angle under

12◦. For the decreasing one, the circulation is in clockwise direction, we can explain that the

increase in α weakens the flow circulation, and the minimum value of Nu can reach Nu = 1.33

at α = 10◦. For the gradually increasing one, the circulation is in the counterclockwise direction,

the increase in α means that the buoyancy force strengthens the flow circulation. This coupling

effect reaches its maximum when the angle is equal to 45◦, the corresponding averaged Nu

reaches about 2.

Similar explanations as above can also be applied to the cases with 2 : 1 cavity. For the red

curves in Fig. 5.9, the red filled circles (•) represent the flow patterns with two rolls, and the

red filled stars (⋆) represent the flow patterns with a single roll. Compared with the single-roll

cases, the two-roll cases have a larger averaged Nu under the same tilt angle (when α < 10◦).
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102 Chapter 5. Convection in 2D tilted cavity

FIGURE 5.6: Bifurcation diagram for tilted Newtonian RBC with fixed Pr = 7.0
under inclination α = 2◦. u2 represents the ’y-’ velocity at the monitor point
(x, y) = (7/8, 1/2). Colored curves represent different flow patterns: (——) cor-
responding to stable convection with flow pattern transition from 1-roll (counter-
clockwise) to 2-roll (clockwise-counterclockwise); (——) corresponding to stable
convection with 2-roll with counterclockwise-clockwise direction. P1 is the saddle

node.

(A) Ra = 1000, α = 2◦ (B) Ra = 2050, α = 2◦ (C) Ra = 2075, α = 2◦

(D) Ra = 2100, α = 2◦ (E) Ra = 2150, α = 2◦ (F) Ra = 2500, α = 2◦

FIGURE 5.7: Streamlines evolution along with Rayleigh number for Newtonian
cases with α = 2◦ for the branch of 1-roll –> 2-roll.

The reason is there are two peak values in the profile of the local Nu distribution for 2-roll

convection compared with the 1-roll convection, as shown in Fig. 5.8b, and the trough values

of the local Nu are almost the same for 1-roll and 2-roll conditions. Similar to the cases of the

configuration with 1 : 1 aspect ratio, for the single roll branch in the 2 : 1 cases, Nu increases

with tilt angle α. The peak value of Nu occurs at α = 60◦. A similar result also was given
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(A) 1 : 1 (B) 2 : 1

FIGURE 5.8: Nu distribution along with x positon for Ra = 5000 and Pr = 7.0.
(Cc) and (c) represent circulation directions, i.e. counterclockwise direction and

clockwise direction.

FIGURE 5.9: Nu for different tilted angle at 1 : 1 and 2 : 1 cavity. The black curves
represent the cases with aspect ratio 1 : 1 and the red curves represent the cases

with aspect ratio 2 : 1.

by Bairi, Laraqi, and Maria (2007), who experimentally investigated the RBC at a moderate

Rayleigh number (Ra < 106) in the cavity with an aspect ratio of 1.5 : 1.

5.3 Viscoelastic RBC in tilted cavity

We pay attention to the tilted viscoelastic RBC in cavity with aspect ratio of 2 : 1, and present

the results obtained in two parts: (a) the results about the tilted viscoelastic RBC with high β

and small We (weak elasticity) will be given to illustrate the effect of viscoelasticity, through
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104 Chapter 5. Convection in 2D tilted cavity

comparison with the Newtonian cases; (b) the temporal and spatial evolution of the reversal

convection under the action of a small α for small β and large We (strong elasticity) will be

given to describe the effect of α on the viscoelastic reversal.

5.3.1 Steady convection in dilute solutions (β = 0.9)

A series of tilted RBC filled with weak elasticity viscoelastic fluids was simulated to obtain

the effect of viscoelastic properties on the convection. Pr = 7.0, ǫ = 0.1, ξ = 0.05 and

Ra = 5000 are used in simulations. The overlapping velocity isolines for stable Newtonian

and viscoelastic convections in tilted cavity with different α are shown in Fig. 5.10. In the figure,

colored curves represent isolines of dimensionless velocity for the cases with the Newtonian

fluid (black line) and viscoelastic fluids (β = 0.9,We = 0.0025, 0.01, 0.02) (red, blue and green)

at α = (0◦, 30◦, 45◦, 60◦, 90◦). The results show that the increasing We has slightly enhencement

effect on the velocity field. Fluids with low We are almost Newtonian.

(A) α = 0◦

(B) α = 30◦
(C) α = 45◦

(D) α = 60◦
(E) α = 90◦

FIGURE 5.10: The overlapping dimensionless velocity isolines for Newtonian
fluid ((β = 1,We = 0)) (black line) and viscoelastic fluid with (β = 0.9,We =
0.0025) (red line), (β = 0.9,We = 0.01) (blue line), and (β = 0.9,We = 0.02)

(green line) at α = (0◦, 30◦, 45◦, 60◦, 90◦).
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5.3. Viscoelastic RBC in tilted cavity 105

Meanwhile, except the α = 0◦ case, the velocity fields are similar for other α. The tempera-

ture and y− velocity distribution along the y = 0.5 center line for the cases with We = 0.01 at

different α are presented in Fig. 5.11. Compared with the velocity distribution, α has less impact

on the temperature distribution for the viscoelastic cases, as shown in Fig. 5.11a. In terms of

velocity, α influences only the biggest velocity value which occurs at about 45◦, 60◦.

(A) T. (B) v.

FIGURE 5.11: Temperature and v-velocity distribution along the central horizontal
line of the cavity for tilted viscoelastic RBC with fixed parameters Ra = 5000,

Pr = 7.0, β = 0.9, We = 0.01, ǫ = 0.1 and ξ = 0.05.

FIGURE 5.12: Bifurcation diagram for tilted weak viscoelastic RBC at inclination
α = 2◦ under fixed parameters Pr = 7.0, β = 0.9, We = 0.01, ǫ = 0.1 and ξ = 0.05.
y-axis represents the ’y-’ velocity at the monitor point (x, y) = (7/8, 1/2). The
flow structure profile of the branch of 1-roll –> 2-roll is similar to that shown in

Fig. 5.7.

We also checked the flow bifurcation for weak viscoelastic RBC with fixed parameters Pr =

7.0, β = 0.9, We = 0.01, ǫ = 0.1 and ξ = 0.05 (Fig. 5.12). The results are almost the same

compared with the Newtonian cases, excepts the bifurcation points P1 is slightly lagging (see

Fig. 5.7 for the details).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



106 Chapter 5. Convection in 2D tilted cavity

FIGURE 5.13: Averaged Nu as a function of the inclined angle (α =
(0◦, 30◦, 45◦, 60◦, 90◦)) for Newtonian fluid and viscoelastic fluid with different
We. In simulated viscoelastic cases, parameters are fixed at Ra = 5000, Pr = 7.0,

β = 0.9, ǫ = 0.1 and ξ = 0.05.

Fig. 5.13 plots the averaged Nu in tilted Newtonian and viscoelastic RBC as a function of

α at different We. It can be found that the properties of viscoelastic fluids do not change the

influence of α on Nu, and the peak value of the averaged Nu for viscoelastic RBC also takes

place at α about 60◦. The maximum value Nu (α = 60◦) is almost 10% higher than the minimum

value (α = 0◦), whether it is Newtonian fluid or viscoelastic fluid. The enhancement of the heat

transfer brought by the increasing We gets to peak when α = 60◦.

5.3.2 Reversal convection in concentrated solutions (β = 0.2)

In the last chapter, we found that a special regular reverse convection phenomenon takes place

for viscoelastic RBC in the certain range of β andWe. In this part, we extend that investigation to

the effect of α on this viscoelastic reversal convection. Following the parameters setting of Chap-

ter 4, the PTT constitutive model is still used in the following cases, where We = (0.1, 0.15, 0.2),

β = 0.2, ǫ = 0.1 and ξ = 0.05. The calculation parameters and the corresponding flow struc-

tures of the tested cases in Tab. 5.1, where 1S and 2S represent the steady convection with a

single roll and two rolls, respectively; 2R and 3R represent time-dependent reversal convection

with two rolls and three rolls, respectively.

From Tab. 5.1, we find that once the inclination takes place (α 6= 0), the original flow state

(conduction state in horizontal cases) under the same parameters setting is broken (see the flow

transition from (α = 0◦, We = 0.1, Ra = 640) to (α = 2◦, We = 0.1, Ra = 640)). For tilted cases,

there is no more pure conduction state, and the flow transition path is different from α = 0◦

cases. By the way of example at We = 0.1 and α = 2◦, as increasing Ra, the flow state first

quickly gets to the region of steady laminar convection with a single roll, and then changes to

the time-dependent reversal convection with three rolls (3R) as we have known in Chapter 4. At

the same time, another branch of time-dependent convectionwith left-right movement (2R) also
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5.3. Viscoelastic RBC in tilted cavity 107

α We 640 800 960 1120 1280 1360 1440 1600 1920 2080 2160
1040 1760

0◦
0.1 – – – – – – 2R,3R 2R,3R 3R,2S 3R,2S 3R,2S
0.15 – – – – 2R,3R 2R,3R 2R,3R 2R,3R 3R,2S 3R,2S 3R,2S
0.2 – – 2R,3R 2R,3R 2R,3R 2R,3R 2R,3R 3R,2S 2S 2S 2S

2◦
0.1 1S 1S 1S 1S 1S 1S 1S 2R, 3R 2R, 3R 2R, 3R 2R, 3R
0.15 1S 1S 1S 2R 2R 2R 2R 2R 2R 2R
0.2 1S 1S 2R 2R 2R 2R

3◦
0.1 1S 1S 1S 1S 1S 1S 1S 1S 2R
0.15 1S 1S 1S 1S 2R 2R 2R 2R
0.2 1S 1S 2R 2R 2R 2R

5◦
0.1 1S 1S 1S 1S 1S 1S 1S 1S
0.15 1S 1S 1S 1S 1S 1S 1S 1S
0.2 1S 1S 1S 1S 1S 1S

TABLE 5.1: The flow patterns at different Rayleigh numbers with various tilted
angle α = (0◦, 2◦, 3◦, 5◦) and different Weissenberg number We = (0.1, 0.15, 0.2).

takes place for Ra big enough and α small enough. At the same tilt angle α = 2◦, as We further

increases, the flow pattern 3R does not take place, only 2R takes place. The same situation is

also observed for α = 3◦. As α increases to 3◦, for We = 0.1, only the flow patterns 1S and 2R

are observed. One can find that increasing We will reduce the critical Rayleigh number for flow

transition from steady-state to reversal. When α exceeds a certain value αc (in present cases αc is

in range of [3◦, 5◦]), the periodic reversal convection (tilted 2R and 3R) totally disappears, only

1S exists. Note that for high Ra the critical α for Newtonian reversal RBC with Ra = 4 ∗ 107,

Pr = 2 is about 7◦ (Wang et al., 2018).

In order to understand the flow pattern transition in the tilted viscoelastic RBC more in-

tuitively, we simulated cases with fixed inclination α = (0◦, 2◦) and studied the relationship

between the velocity and Ra. In the studied cases, fluid parameters are Pr = 7.0, β = 0.2, We =

0.1, ǫ = 0.1 and ξ = 0.05. Fig. 5.14 shows the bifurcation diagrams in range of (0 < Ra < 2500)

for the horizontal (α = 0◦) and tilted (α = 2◦) viscoelastic RBC. Fig. 5.14a plots the y− velocity

at monitor point (x, y) = (7/8, 1/2) as a function of Ra for a normal horizontal viscoelastic

RBC. There are two (positive and negative) solution branches for convection pattern of 2R and

3R, the positive and negative values of branches are maximum and minimum velocities in one

reversal period, respectively. For α = 0◦ both 2R and 3R time-dependent reversal convection

set from pure conduction state and possess two slighty different Hopf bifurcation points P1 and

P2. With increasing Ra, the secondary bifurcation P3, the drift pitchfork bifurcation, takes place

and induces the flow transition from 2R to 2S.

Fig. 5.14b plots the y− velocity at monitor point (x, y) = (7/8, 1/2) as function of Ra for

tilted viscoelastic RBC with α = 2◦ and fixed parameters Pr = 7.0, β = 0.2, We = 0.1, ǫ = 0.1

and ξ = 0.05. The bifurcation diagram of α = 0◦ viscoelastic RBC was also drawn in the fig-

ure by transparent grey curves. The curve (——) corresponds to the steady convection with

counterclockwise single roll (1S), the curve (——) corresponds to the time-dependent reversal
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108 Chapter 5. Convection in 2D tilted cavity

(A) Horizontal cases, α = 0◦.

(B) Tilted cases, α = 2◦.

FIGURE 5.14: Bifurcation diagrams showing the multiple flow patterns found in
horizontal viscoelastic RBC and tilted viscoelastic RBC. y-axis represents the ’y-’
velocity at the monitor point (x, y) = (7/8, 1/2). The simulated cases correspond

to Pr = 7.0, β = 0.2, We = 0.1, ǫ = 0.1 and ξ = 0.05.

convection with three rolls (3R), and the curve (——) corresponds to the time-dependent rever-

sal convection with two rolls with horizontal movement (2R). The branch of 3R develop from

the bifurcation H1. Considering the reversal in α = 0◦ viscoelastic RBC, there is a certain Ra

range for coexistence of 2R and 3R (shown in Fig. 5.14a). In order to find 2R reversal convection

at α = 2◦, we read 2R solution of α = 0◦ viscoelastic RBC as the initial value, and changed the

inclination to α = 2◦. The branch of tilted 2R, that develop from the bifurcation H2. Due to the
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5.3. Viscoelastic RBC in tilted cavity 109

inclination, the rolls in tilted 2R has the characteristics of periodic horizontal oscillation (flow

reversal process can be found in Fig. 5.15), instead of standing wave in horizontal 2R. However,

this time-dependent reversal convection also disappears with the further increase of α and we

observe only steady-state single roll convection (Tab. 5.1). Compared to the bifurcation points

P1 and P2 in the horizontal cases, H1 and H2 are slightly higher. It should be noted that due

to the inclination, the branches of tilted 2R and 3R are not symmetric about the x-axis, and the

maximum value of the downward velocity will be slightly larger than the maximum value of

the upward velocity.

Flow transition in tilted cavity

Figs. 5.15-5.17 depict two kinds of velocity vector evolution of tilted 2R and tilted 3R listed in

Tab. 5.1. Obviously, they both have the special characteristics brought by the inclination.

(A) t1 = 0 (B) t2 = 1
8λ (C) t3 = 1

4λ

(D) t4 = 3
8λ (E) t5 = 1

2λ (F) t6 = 5
8λ

(G) t7 = 3
4λ (H) t8 = 7

8λ (I) t9 = λ

(J) colorbar

FIGURE 5.15: Evolution of the velocity vector of the periodic flow with α = 2◦

and Ra = 1760. In simulated case, Pr = 7.0, β = 0.2, We = 0.1, ǫ = 0.1 and
ξ = 0.05. The time period is λ = 88.29. The time range t1− t9 covers one period.

The main reason for periodic reversal convection is the alternating growth of the velocity

field and the elastic stress field, generation and growth of the new vortex are driven by elastic

dissipation and buoyancy flux, which are described in Sec. 4.3. The convection consists of two

circulations with the clockwise and counterclockwise flow directions, and each circulation is of
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110 Chapter 5. Convection in 2D tilted cavity

FIGURE 5.16: Nine snapshots of the temperature field superimposedwith velocity
vectors during two of the flow reversals for Ra = 107, Pr = 0.71, α = 1◦ in cavity

with aspect ratio 2 (Wang et al., 2018).

equal status in the whole process for α = 0◦. However, when the flow space is tilted, from the

convection patterns of tilted 2R and tilted 3R (shown in Fig. 5.4), it can be easily observed that

the counterclockwise circle (with the same direction to the inclination of space) is stronger than

the clockwise one, and that this trend is enhanced with α increase, as shown in Fig. 5.4. We call

the circulation with counterclockwise rotating the main circulation and the clockwise rotating

one the secondary circulation.

The periodic reversal is mainly reflected in the continuous absorption of the secondary circu-

lation energy by the main circulation, driven by elastic energy releasing and buoyancy flux(the

process has been explained in Sec. 4.3.1). Take the tilted 2R as an example, as shown in Fig. 5.15,

in this process the continuous energy obsorption of the macromolecular structure makes the

secondary circulation (right part in Fig. 5.15a) smaller and due to the energy release of the

macromolecular structure the main circulation (Fig. 5.15b) keeps getting bigger. From Fig. 5.15a

to Fig. 5.15c we see this evolution: the main circulation grows and occupies almost the whole

cavity. From Fig. 5.15c to Fig. 5.15d it moves from left to right and frees the left part for another

secondary circulation which is formed completely in Fig. 5.15e. Then the secondary circulation

is weakened again (Fig. 5.15f) and the main circulation grows and moves from right (Fig. 5.15g)

to left (Fig. 5.15h). Finally the secondary circulation is formed again (Fig. 5.15h) and amplified

(Fig. 5.15i). The repeated occurrence of the above process alternately forms this time-dependent

reversal convection (tilted 2R). In the above reversal procedure, the strict symmetry of geome-

try is broken by the small-angle tilt. As α increases, the critical Ra of tilted 2R appears to increase

slightly, and then when α is large enough, tilted 2R disappears and only 1S appears. This tilted

reversal phenomenon, the main circulation absorbs the secondary circulation and then reverses,

also exists in the Newtonian fluid RBC at high Rayleigh number (Ra ∼ 107) (Wang et al., 2018),
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5.3. Viscoelastic RBC in tilted cavity 111

as shown in Fig. 5.16. Fig. 5.16 depicts a turbulent Newtonian RBC reversal process, we can

clearly observe that the main circulation is strengthened and that the secondary circulation is

weakened (from Fig. 5.16a to 5.16b), and then the main circulation takes up space and generates

the secondary circulation (from Fig. 5.16c to 5.16f) to form a reversal.

(A) t1 = 0 (B) t2 = 1
8λ (C) t3 = 1

4λ

(D) t4 = 3
8λ (E) t5 = 1

2λ (F) t6 = 5
8λ

(G) t7 = 3
4λ (H) t8 = 7

8λ (I) t9 = λ

(J) colorbar

FIGURE 5.17: Evolution of the velocity vector of the periodic flow with α = 2◦

and Ra = 1760. In simulated case, Pr = 7.0, β = 0.2, We = 0.1, ǫ = 0.1 and
ξ = 0.05. The time period is λ = 23.15. The time range (t1− t9) cover one period.

Fig. 5.17 shows the reversal evolution process of 3R. In Fig. 5.17a, the main circulations are

located on the left and the right and the secondary circulation in the center is then weakened

and obsorbed (Fig. 5.17b and Fig. 5.17c). The main circulations take the cavity center (after

Fig. 5.17d) and the secondary circulations are formed (Fig. 5.17e). The main circulation grows

(Fig. 5.17f) and the secondary circulations are weakened (Fig. 5.17g). The main circulation is

broken to fill the left and right parts of the cavity (Fig. 5.17h).
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112 Chapter 5. Convection in 2D tilted cavity

(A) Tilted 2R, Ra = 1744 (B) Tilted 3R, Ra = 1520

(C) Tilted 2R, Ra = 1760 (D) Tilted 3R, Ra = 1600

(E) Tilted 2R, Ra = 1800 (F) Tilted 3R, Ra = 1840

FIGURE 5.18: Different averaged quantities as function of dimensionless time
in regular tilted reversal convection system for tilted 2R and tilted 3R patterns,
where the rheology parameters are β = 0.2, We = 0.1, Pr = 7.0, ǫ = 0.1 and

ξ = 0.05.

Fig. 5.18 plots the different energy transports in tilted 2R and 3R reverse convection system

with fixed rheology parameters β = 0.2, We = 0.1, Pr = 7.0, ǫ = 0.1 and ξ = 0.05. Figs. 5.18a,

5.18c and 5.18e are for tilted 2R pattern, and Figs. 5.18b, 5.18d and 5.18f are for tilted 3R pat-

tern. Note that a velocity reversal period consists of two half periods, and each half period can

be expressed as kinetic energy from one maximum to another maximum, but the direction of

velocity is opposite. The kinetic energy evolution in the two half-periods is equivalence in mag-

nitude, in horizontal 3R and 2R reversals. This situation also occurs in tilted 2R reversal (shown

at Fig. 5.18a, 5.18c and 5.18e) because there is only one primary circulation and one secondary

during the entire reversal process, and the evolution process is only an exchange between these

two circulations (shown in Fig. 5.15). But that is completely broken in tilted 3R because in one

half period two main circulations absorb the secondary circulation and in another half period

the main circulation absorbs two secondary circulations. The explanation for this phenomenon

in 3R pattern can be traced back to the fact (in Sec. 5.2.1) that the counterclockwise flow circu-

lation is the primary flow, that clockwise flow circulation is the secondary flow, the counter-

clockwise circulation is always stronger than clockwise one, which is obviously affected by the

inclination and explained in Sec. 5.2.1.

Heat transfer

Here, we discuss the heat transfer properties, the heat transport in strong elasticity RBC at

different β, α, We, and Ra was studied. For periodic convections, the periodically and spatially

averaged Nusselt number Nuts has been defined in Eq. (4.10). Fig. 5.19 shows Nuts as a function

of Ra for α = (2◦, 3◦, 5◦), Pr = 7.0, β = 0.2, ǫ = 0.1 and ξ = 0.05.
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(A) α = 2◦ (B) α = 3◦

(C) α = 5◦

FIGURE 5.19: Nuts as a function of Ra for α = (2◦, 3◦, 5◦) andWe = (0, 1, 0.15, 0.2).
In the figure, • and H represent 1S and tilted 2R convection conditions, respec-

tively.

We distinguish the two kinds of flow pattern by • (1S) and H (tilted 2R), it can be easily

found that heat exchange capacity will increase with α increasing for flow pattern tilted 1S, it is

the same as in weak elastic RBC. However this rule is opposite for tilted 2R pattern, one can see

case groups (We = 0.15, α = (2◦, 3◦)) and (We = 0.2, α = (2◦, 3◦)). Compared with the weak

elastic RBC, Nuts is also enhanced by increasing We, we can see that from the cases with α = 2◦

and We = 0.1, 0.15, 0.2. The reason is that the strong elasticity breaks at smaller Ra the steady

single roll convection, and increases the tilted 2R convection intensity.

Fig. 5.20 shows the local Nu distribution for cases when temporally-spatially averaged Nu

gets to maximum. Fig 5.20a displays the local Nu distributions in steady flow condition under

strong elasticity cases (We = 0.2 and β = 0.2), with different inclined angles (2◦, 3◦, 5◦). We can

clearly find that increasing slightly the inclined angle will greatly change the local Nu distri-

bution. Fig. 5.20b shows the local Nu distribution with diffrent Ra, under fixed inclined angle

α = 5◦, β = 0.2 and We = 0.2.
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(A) Local Nusselt number at heating boundary with
different inclined angle, under We = 0.2, β = 0.2

and Ra = 800.
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β = 0.2 and α = 5◦.

FIGURE 5.20: Local Nu distributions.

5.4 Conclusion

In this chapter, the Newtonian and viscoelastic RBC in a 2D inclined closed cavity with aspect

ratio 2 : 1 is numerically studied, and we can observe that:

• For tilted Newtonian RBC, three types of flow structures take place in Ra range about the

onset of convection, effects of α on flow patterns was investigated in 2 : 1 cavities. For a

moderate Rayleigh number (Ra = 5000 in our cases), when α remains small (about 12◦),

two convection patterns (1S and 2S) take place, andwith α increasing, one (2S) disappears.

Nu shows a trend of first increasing and then decreasing with α increasing. For weak

elasticity cases, viscoelasticity has a very limited effect, compared with the Newtonian

cases. We shows an improvement effect on Nu.

• For strong elasticity tilted viscoelastic RBC, the periodic reversal convection also takes

place, for example in the cases with β = 0.2, α = 2◦, bifurcation diagram (Fig. 5.14)

shows that there are three flow patterns: one steady single roll convection and two time-

dependent reversals take place. The inclination delays the occurrence of the reversal, and

when the inclination is big enough, the periodic reversal will vanish. Compared with

typical horizontal viscoelastic RBC, any small α will also have a huge impact on flow

pattern and Nu. For steady flow, increasing α will bring enhancement of heat transfer.

For reversal flow, increasing α will bring weaken of heat transfer.
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Chapter 6

Three-dimensional viscoelastic laminar

Rayleigh-Bénard covnection
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In this chapter, the 3D viscoelastic Rayleigh-Bénard convection problemwas studied through

our developed solver. First, we will introduce the governing equations and the essential numer-

ical scheme. Second, we will validate the solver for Newtonian and viscoelastic 3D Rayelgih-

Bénard convection. Finally, the flow structure in 3D viscoelastic RBC cavities with different

aspect ratio will be shown.

6.1 Introduction

As we know, few previous numerical studies of the Rayleigh-Bénard convection have focussed

on the viscoelastic fluid convection, and fewer researches focus on numerical simulation of

three-dimensional viscoelastic Rayleigh-Bénard convection. A main reason is that huge com-

puting resources are required for three-dimensional problems.

For 3D viscoelastic Rayleigh-Bénard problem, Park and Ryu (2001) and Park and Ryu (2001)

first numerically investigated the effects of the aspect ratio and elasticity intensity (β,We) on

the convection onset for the cases with either two periodic horizontal directions or one periodic

horizontal direction. They gave for the first time Rac as functions of aspect ratio A and elastic in-

tensity (β,We). Lappa and Boaro (2020) for the first time numerically examined the dynamics of

viscoelastic RBC with the FENE-CR model in a 3D cylindrical geometries and showed the tran-

sition of more complex and diverse flow patterns under strong elasticity and different aspect
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ratio. The rheology parameters in the examined cases are set as Prandtl number Pr = 8.0, as-

pect ratio 0.7 < A = (height/diameter) < 1 and different elasticity 0 < We < 0.2. Benzi, Ching,

and De Angelis (2010) and Benzi, Ching, and De Angelis (2016) also did relative work about

the three-dimentional Rayleigh-Bénard convection between parallel plates filled with polymer

solution through direct numerical simulation. Cai et al. (2016) numerically investigated the

effect of the viscoelatic Rayleigh-Bénard convection in 3D unbounded system and found that

the viscoelastic fluid will delay the onset of the Rayleigh-Bénard convection under a certain

condition.

From the above review, it can be found that most of the existing studies have been pro-

duced for the case of laterally unbounded geometries (mainly in infinite horizontal layers with

periodic boundary conditions), so we will focus on the three-dimensional Rayleigh-Bénard con-

vection in a finite domain in this chapter.

6.2 Physical configuration and numerical scheme

6.2.1 Governing equations and boundary conditions

The physical model is shown in Fig. 6.1, we consider a three dimensional cell of height H, width

Lx and depth Ly containing a viscoelasitc fluid. The cell is heated at the bottom boundary and

cooled at the top boundary, which induce a temperature difference ∆T = T2 − T1. Boussinesq

approximation is used to simplify the Navier-Stokes equation to describe the buoyancy-driven

flow.

FIGURE 6.1: A schematic diagram of the 3D viscoealstic Rayleigh-Bénard convec-
tion cell.
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6.2. Physical configuration and numerical scheme 117

The governing equations for 3D cases, similar to those in 2D introduced in Chapter 3, in-

clude mass conservation equation Eq. (6.1), momentum equation Eq. (6.2), viscoelastic consti-

tutive equation Eq. (6.3) and temperature equation Eq. (6.4). In dimensionless form, they read:

∇ · u = 0 (6.1)

∂u

∂t
+ (u · ∇)u = −∇p+ β

Pr√
Ra

∆u+∇ · τp + PrTez (6.2)

∇
τp +

τp

We
√

Ra
− 2

1− β

Ma2
D = −ǫ

√
Ra

(1− β)Pr
tr(τp)τp − ξ(Dτp + τpD) (6.3)

∂T

∂t
+ (u · ∇)T =

1√
Ra

△T (6.4)

where the velocity vector becomes u = (u1, u2, u3) and the elastic stress tensor becomes

τp =




τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33


 (6.5)

Concerning the boundary conditions, the upper and lower boundaries are isothermal, and

the other walls are adiabatic. All the boundaries are no-slip for velocity. The length, width and

height of the cell are respectively Lx = 2, Ly = 1 and H = 1. The boundary conditions are set

as follows:

• at z = 0 : u1 = u2 = u3 = 0, T = 1

• at z = 1 : u1 = u2 = u3 = 0, T = 0

• at x = 0, 2 : u1 = u2 = u3 = 0, ∂T
∂x = 0

• at y = 0, 1 : u1 = u2 = u3 = 0, ∂T
∂x = 0

The local and averaged Nusselt numbers at the bottom in 3D are, respectively, given by the

following:

Nu = −∂T

∂z
|z=0 (6.6)

Nus =
1

A

∫ Lx

0

∫ Ly

0
(−∂T

∂z
|z=0) dxdy (6.7)

where A = LxLy is the area of the bottom boundary.

6.2.2 Numerical schemes

Here we just briefly introduce the numerical schemes used in the three-dimensional situation.

For three-dimensional cases, a second-order semi-implicit time scheme is used: the implicit
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118 Chapter 6. Three-dimensional viscoelastic laminar Rayleigh-Bénard covnection

terms are mass conservation, pressure gradient, molecular diffusion, relaxation term, and ther-

mal diffusion; other terms including the quasi-linear forms are explicit. Time evolution imple-

mented makes use of the 2-order backward differential formula (BDF2) for time integration and

a 3D Alternative Direction Implicit (ADI). This can decompose a 3D problem into three groups

of one-dimensional problems and solve them in dimensional order. Take the temperature equa-

tion as an example, as described in Eq. (3.54), the time discretised partial differential equation

is:

3Tn+1 − 4Tn + Tn−1

2∆t
= −(2 ((u · ∇)T)n − ((u · ∇)T)n−1)

+
1√
Ra

(
∂2T

∂x21
+

∂2T

∂x22
+

∂2T

∂x23
)n+1 +O(∆t2)

(6.8)

After reorganization, it can be writen:

(
1− 2∆t

3
√

Ra
(

∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
)

)
Tn+1 =

4Tn − Tn−1

3
− 4∆t

3
((u · ∇)T)n

+
2∆t

3
((u · ∇)T)n−1 +O(∆t2)

(6.9)

Solving this 3D system by the ADI method amounts to approaching the 3DHelmholtz oper-

ator by factorizing it into three 1D operators. In fact, factorization of the 3D Helmholtz operator

for temperature will destroy the order 2 of the time scheme. In order to maintain the order 2 of

the time scheme, temperature increment δT = Tn+1− Tn was brought in, where δTn+1 ≈ O(∆t),

and then the equation becomes:

(1− 2∆t

3
√

Ra

∂2

∂x21
)(1− 2∆t

3
√

Ra

∂2

∂x22
)(1− 2∆t

3
√

Ra

∂2

∂x23
)δT=

2∆t

3
√

Ra
△Tn+

1

3
(Tn − Tn−1)

−4∆t

3
((u · ∇)T)n+

2∆t

3
((u · ∇)T)n−1 +O(∆t3)

(6.10)

In space, second-order central differencing is applied to most of the terms except for the

quasi-linear parts which are treated in the eigenspace of Ai by a High-Order (3-order) Upstream

Central (HOUC) scheme according to the sign of each eigenvalue. Finally, the velocity-pressure

coupling is assured by the projection method.

6.2.3 Code validation

At present, there are no published papers investigating the three-dimensional laminar vis-

coelastic RBC in a rectangular closed cavity. The validation work will start with the steady

Newtonian RBC.
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Newtonian RBC

A pure thermally conductive temperature field is initially distrubed at a certain positon to get

the target final convective structure. Fig. 6.2 shows two kinds of convection structure and local

Nusselt number distribution at the bottom heating boundary. The flow structure is represented

by isothermal surfaces, and the color on the isothermal surface is marked as the velocity in the

x− direction.

(A) (B)

(C) (D)

FIGURE 6.2: Structure S3 and S5 mentioned in (Pallares, Grau, and Giralt, 1999)
at Pr = 0.71, Ra = 6× 104. (A) and (B) are local Nusselt number distribution at
heating boundary and isosurfaces of temperature for flow structure of S3 (Single
roll elongated towards two opposite horizontal edges). (C) and (D) are local Nus-
selt number distribution at heating boundary and isosurface of temperature for
flow structure of S5 (Four roll structure, each one with its axis perpendicular to

one sidewall).

Fig. 6.3 shows the grid independence verification carried out for two kinds of convection

structure at Pr = 0.71 and Ra = 6× 104 with uniform grids of N = NxNyNz nodes (N = 323,
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120 Chapter 6. Three-dimensional viscoelastic laminar Rayleigh-Bénard covnection

423, 523 and 643). A sufficiently small time step is fixed at ∆t = 0.001, in order to avoid errors

caused by the size of the time step. The values of dotted line in Fig. 6.3 are Nus at the heating

bottom boundary for the two convection structures obtained by Pallares et al (Pallares, Grau,

and Giralt, 1999). In fact, we can find that the averaged Nu obtained by each grid number is

very close to the result of Pallares et al (Pallares, Grau, and Giralt, 1999), especially when the

grid number is big enough (N = 643). That also means that the node number N = 643 is

sufficient to calculate the Newtonian Rayelgih-Bénard convection at this Rayleigh number.

30 35 40 45 50 55 60 65

Grid

3.118

3.120

3.122

3.124

3.126

3.128

3.130

N
u

S3

Pallares

(A) S3

30 35 40 45 50 55 60 65

Grid

3.552

3.554

3.556

3.558

3.560

3.562

N
u

S5

Pallares

(B) S5

FIGURE 6.3: Nus at the bottom boundary according to the mesh refinement. The
dashlines in the figure are the results of Pallares, Grau, and Giralt (1999). The
numbers on the x-axis indicate the number of nodes in one direction of the cube,
and the number of nodes in the three directions is the same. (A) Nus with flow

structure of S3. (B) Nus with flow structure of S5.

6.3 Results

We are interested in viscoelastic RBC taking place in a 3D rectangular cavity with aspect ratio of

2 : 1 : 1 and the PTT viscoealstic fluids with Pr = 7.0, β = 0.2,We = 0.1, ǫ = 0.1 and ξ = 0.05.

For the 3D cases studied, we give a perturbed initial condition simaliar to 2D for 3D viscoelastic

RBC. Specifically, the initial zero field for velocity and elastic stress, vertical direction gradient

change for temperature field (Ti,j,k = ∆T(1− zk)) with a perturbition T(1,1/2,1/2) = T(1,1/2,1/2) +

0.01T0, T(1/4,1/2,1/2) = T(1/4,1/2,1/2) − 0.01T0 and T(7/4,1/2,1/2) = T(7/4,1/2,1/2) − 0.01T0, where T0

is the average of T0 = (T1 + T2)/2.

Under such a parameters setting condition, the regular reversal convction that has been ob-

tained in 2D viscoelastic RBC also takes place in 3D. The first time-dependent solution has been

obtained at Ra = 1600 and two other solutions have been obtained at respectively Ra = 1616

and 1632. In a similar way used in 2D cases, the solution amplitudes squared can be plotted

against Ra (Fig. 6.4a) and the least square method allows to determine the critial Rayleigh num-

ber: Rac1 = 1591.7. The critical Rayleigh number equals to Rac1 = 1384.3 in 2D cases with

parameters Pr = 7.0, β = 0.2,We = 0.1, ǫ = 0.1 and ξ = 0.05. Fig. 6.4b plots u2 at P1( 12 ,
1
2 ,

1
2 )

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



6.3. Results 121

along dimensionless time with different Ra. Due to the computation cost the highest Ra studied

is equal to 1720 and the convective flow obtained is still periodic.
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FIGURE 6.4: (A) The square of u2 amplitude at monitoring point P1( 12 ,
1
2 ,

1
2 ) as a

function of Ra. (B) time evolution of u2 at P1( 12 ,
1
2 ,

1
2 ) at three different Ra.

In order to assess the effects of the mesh size and timestep size on the results, the time

step and grid independence for viscoelastic Rayleigh-Bénard convection have been investigated

based on a careful analysis of three time steps (∆t = 0.5E − 3, 0.1E − 2, 0.2E − 2) and four uni-

form mehses (Nx × Ny × Nz = 64× 32× 32, 96× 48× 48, 128× 64× 64, 160× 80× 80). The

Rayleigh number are fixed at Ra = 1600. The detailed settings of (∆t,∆x) and the results ob-

tained are given in Tab. 6.1.

Num. ∆t Nx × Ny × Nz Nus λ vmax τ22 max Tmax

t1m1 0.002 64× 32× 32 1.00234 11.702 0.02444 0.00448 0.02116
φ(%) 0.05 0.47 4.82 3.44 2.03

t2m1 0.001 64× 32× 32 1.00280 11.750 0.02560 0.00462 0.02152
φ(%) 0.004 0.068 0.311 0.431 0.370

t3m1 0.0005 64× 32× 32 1.00284 11.758 0.02568 0.00472 0.02160
φ(%) – – – – –

t2m2 0.001 96× 48× 48 1.00286 11.754 0.02566 0.00466 0.02156
φ(%) 0.006 0.033 0.310 1.271 0.185

t2m3 0.001 128× 64× 64 1.00290 11.762 0.02570 0.00468 0.02158
φ(%) 0.00199 0.0169 0.155 0.8474 0.0925

t2m4 0.001 160× 80× 80 1.00292 11.762 0.02574 0.00472 0.02160
φ(%) – – – – –

TABLE 6.1: Simulation cases for time step andmesh independence. Nx, Ny and Nz

are the number of grid points in x, y, and z directions, respectively. The rheology
parameters in test cases are Ra = 1600, Pr = 7.0, β = 0.2, We = 0.1, ǫ = 0.1 and
ξ = 0.05. λ is the time period of reversal convection. The monitor point is fixed at

P( 12 ,
1
2 ,

1
2 ).

The monitoring variables in the Tab. 6.1 are averaged Nusselt number at the heating bound-

ary Nus, time period λ, peak value of the velocity, normal stress and temperature (v, τ22, T) at
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122 Chapter 6. Three-dimensional viscoelastic laminar Rayleigh-Bénard covnection

monitoring point (P( 12 ,
1
2 ,

1
2 )), respectively. The cases (t1m1, t2m1, t3m1) are used to examine

the time step independence by comparing the relative error with the reference case (t4m1), the

relative error is calculated by, for example, φNut1m1
= (Nut1m1 − Nut3m1)/Nut3m1. The cases

(t3m1, t3m2, t3m3, t3m4) are used to examine the mesh independence by compare the relative

error with the reference case (t2m4). It is easy to find that when the number of grids exceeds

128× 64× 64 and the time step is smaller than ∆t = 0.001, the relative error of the result is

extremely small (less than 0.43% for time step and 0.85% for mesh), so the further simulations

performed still use this setting.

A comparison of 2D and 3D results of visocelastic RBC with PTT model will be presented

in this part. Due to the time-consuming of 3D calculation, the 3D results obtained are limited.

For the test case, the relevant parameters are as follows: Pr = 7.0, Ra = 1600, β = 0.2, We = 0.1

and ǫ = 0.1. The aspect ratios of 2D and 3D configurations are ((Lx : H) = 2 : 1) and (Lx : Ly :

H = 2 : 1 : 1), respectively.

spatio-temporal evolution of velocity and temperature

As mentioned earlier, there are two different flow states within the parameters studied in a 2D

horizontal cavity, namely: steady convection and oscillating reversal convection. In these flows,

the convective cell is closed, the fluid can only circulate in its own cell, and the cell will not move

in the horizontal direction, as described in Fig. 4.5 and Fig. 4.6.

However, when the same parameters are set in 3D cases, a new and interesting phenomenon

appears: Travelling wave. In Newtonian fluid 3D RBC and cylindrical liquid bridge viscoelas-

tic 3D RBC system (Lappa, 2011), the bifurcation of the critical mode will also lead to similar

phenomena. For intuitive understanding, Fig. 6.5 plots the isosurface of velocity scale colored

by y− velocity at key time-points for the 3D cases in one period. The minimum E take place at

t = (b, b∗), when they are two rolls in the domain.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



6.3. Results 123

(A) t = a (B) t = a+ (C) t = b

(D) t = c (E) t = a∗ (F) t = a ∗+

(G) t = b∗ (H) t = c∗ (I) t = a

FIGURE 6.5: The isosurfaces of velocity
√

u2 + v2 + w2 = 0.012 colored by y−
velocity at key time-points in one period. The parameters are Ra = 1600, Pr = 7.0,

We = 0.1, β = 0.2, ǫ = 0.1 and ξ = 0.05.

Fig. 6.6 plots the components of the velocity U at the clip planes yz and xz, when t = a.

Fig. 6.6a-6.6f show the (u, v) contours in the yz planes at x = 0.5, 1.0, 1.5. w contours are not

shown because it is really weak. Combining with Fig. 6.5, we can find that w is almost zero in

the domian, and the reverse is a kind of qusi-2D flow. By monitoring the evolution of a variable

with time to draw its spatio-temporal contour, it is possible to clearly distinguish the difference

between the oscillating reversal convection and the traveling convection, Fig. 6.7 displays the

time evolution of the vertical velocity v and the temperature T on the horizontal section y = 1/2

for 2D case and (y, z) = (y = 1/2, z = 1/2) for 3D case.

When the flow is 2D periodic reversal convection, as shown in Fig. 6.7a-6.7b, the spatio-

temporal contours of temperature and velocity are regular periodic structures, the peaks and

troughs of the detection variables appear alternately. It is especially important to note that the

phase of temperature and velocity has not moved in the space evolution: the spatial position

between the main convective cells has not changed.

However, when looking at 3D viscoelastic RBC, a completely different spatio-temporal evo-

lution is discovered, it is in a traveling wave state, as shown in Fig.6.7c and 6.7d. The pattern is

some inclined wave-like periodic curves, which indicates that the position of the convective cell

in the horizontal direction has changed over time. The moving speed can be obtained by calcu-

lating the slope of the curve (ut = ∆x/∆t, ∆x is the distance moved within ∆t). From Fig. 6.7d,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



124 Chapter 6. Three-dimensional viscoelastic laminar Rayleigh-Bénard covnection

(A) x = 0.5, u at yz plane. (B) x = 1.0, u at yz plane. (C) x = 1.5, u at yz plane.

(D) x = 0.5, v at yz plane. (E) x = 1.0, v at yz plane. (F) x = 1.5, v at yz plane.

(G) y = 0.5, v at xz plane. (H) y = 0.5, w at xz plane. (I) Colorbar.

FIGURE 6.6: The components of the velocity U at the clip planes yz and xz, when
t = a.

we found that the moving direction of the travelling vortex is leftward, the new vortex is gen-

erated from right side wall and the older vortex is annihilated at left side. In fact, in the study

of Lappa (2011), it was discovered that traveling wave convection could change the direction

of traveling. Experimentally, Metivier et al. (2020) gave an impressed results for the oscillating

viscoelastic RBC with Carbopol gel (the maxwell model). A very intuitive velocity vector di-

agram of reversal convection are given for different yield stress cases, and they discussed the

effect of elasticity on reverse.

Fig. 6.8 shows the Nusselt number changes along time for 2D standing vortices and 3D

travelling vortices. We can find that there is a huge difference in the values of Nu amplitude

between 2D standing vortices and 3D travelling vortices, and the time period of the traveling

vortices is smaller than that in 2D case. Furthermore, Figs. (6.9a-6.9d) depict the y-velocity and
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FIGURE 6.7: Spatio-temporal evolution of temperature (left) and v-velocity (right)
at central horizontal cross line for 2D (up) and 3D (bottom) conditon. (A, B) stand-

ing wave; (C, D) traveling wave at clip of y = 1/2.

temperature contour for 2D and 3D (at middle surface with y = 1/2), when averaged Nusselt

number arrived at the peak value.

Energy transport

Fig. 6.10 depicts the energies transport between different energy forms for 2D and 3D conditions

with Pr = 7.0 We = 0.1, β = 0.2, ǫ = 0.1 and ξ = 0.05. The reverse is standing wave in 2D

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



126 Chapter 6. Three-dimensional viscoelastic laminar Rayleigh-Bénard covnection

FIGURE 6.8: Averaged Nu changes along time for 2D and 3Dwith Ra = 1.01Rac1.

(A) 2D, y− velocity. (B) 3D, y− velocity.

(C) 2D, temperature (D) 3D, temperature

FIGURE 6.9: Contours of the y− velocity and the temperature for 2D (A and C),

and for 3D at x − z plane with y =
Ly

2 (B and D), when spatially averaged Nu
arived at peak value.

(Fig. 6.10a) and is travelling wave in 3D (Fig. 6.10b).

In the figure, the (——) corresponding to global kinetic energy (〈E〉ω); the (——) correspond-

ing to kinetic diffusion (〈ΦD〉ω); the (——) corresponding to buoyancy flux input (〈ΦF〉ω); the

(——) corresponding to bulk viscous dissipation of kinetic energy (〈ΦV〉ω); and the (——) corre-

sponding to energy exchange between flow structures and polymer microstructures due to the

stretching and relaxation of polymer chains (〈ΦG〉ω). For 2D periodic reversal convection de-

scribed in detail in Chapter. 4, we know that there is a process of elastic force dragging and then

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



6.3. Results 127

(A) 2D standing reversal convection

(B) 3D convection with travelling wave.

FIGURE 6.10: Time evolution of energy transport for 2D and 3D convection when
We = 0.1, β = 0.2 and ǫ = 0.1. (A) corresponding to 2D stable convection;
(B) corresponding to 2D periodic reversal convection; (C) corresponding to 3D

convection with travelling wave.

promoting the flow in the flow reversal. This process is mainly reflected in the time difference

between the peak value of E (positive), ΦG (positive) and ΦF (negative). Obviously, the pro-

cess of elastic force acting on the flow structure also appears in 3D traveling convection, which

even plays a greater role in promoting the development of traveling convection, as shown in

Fig. 6.10b. Owing to the higher frequency of new vortices generation (frequency can be ob-

served in Fig. 6.10b) and more complicated interactions between the vortices and boundaries,

the viscous dissipation ratio is significantly increased in 3D traveling convection.

Comparing Fig. (6.10a-6.10b), the negative work of ΦF vanish in 3D cases, therefore, there is

no the time point d (when ΦF crosses the zero value from negative to positive). In 3D, 〈ΦF〉 > 0

means that the buoyancy is always a source term. The fact that ΦG become positive both in 2D

and 3D cases means that ΦG acts during most of the time as a dissipation term but as a source

term for a short time (from b to c). Through comparing energy transition process in 2D and

3D, we remark four key time-points (a − b − c − a∗) in the half period of reverse, as shown in

Fig. 6.10b. In the time line, a and a∗ present the time points of kinetic energy peak value with

opposite velocity directions, b and c present the time point where ΦG crosses the zero value

from negative value to positive value and from positive value to negative value.

We know that the 3D travelling reverse is a kind of quasi-2D reverse, Fig. 6.11 plots contours

of E, T, ΦG and ΦF for 3D reversal convection at xz plane with y = 0.5 in a half period. In

order to easily compare with the 2D reverse, the colored boxes mark the characteristic areas of

the reversal convection process, especially the spatial and temporal distribution of the kinetic
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(A) t = a, E (B) t = a, T (C) t = a, ΦG (D) t = a, ΦF

(E) t = b, E (F) t = b, T (G) t = b, ΦG (H) t = b, ΦF

(I) t = c, E (J) t = c, T (K) t = c, ΦG (L) t = c, ΦF

(M) t = a∗, E (N) t = a∗, T (O) t = a∗, ΦG (P) t = a∗, ΦF

(Q) colorbar (R) colorbar

FIGURE 6.11: The contours of E, T, ΦG and TΦF at four key time-points (a− b−
c − a∗) for the 3D cases with parameters Ra = 1600, Pr = 7.0, We = 0.1, β = 0.2,

ǫ = 0.1 and ξ = 0.05.

energy E, T and ΦG. We can find that the E, T, and ΦG fields in 2D (Figs. 4.18-4.19) and 3D cases

show highly consistent behavior at the key time points.

6.4 Conclusion

The aim of this chapter is to introduce the preliminary work on 3D viscoelastic Rayleigh-Bénard

convection, we extended the solver to have a capacity for solving 3D Newtonian and viscoelas-

tic Rayleigh-Bénard convection. The capability and accuracy of the solver were tested by a

benchmark case of 3D Newtonian Rayleigh-Bénard convection, and compared with the result

of Pallares, Grau, and Giralt (1999). Independence of time step and grid also was checked for

3D viscoelastic Rayleigh-Bénard convection. Finally, we show the difference of energy evolution

between 3D viscoelastic RBC with traveling-wave convection and 2D Rayleigh-Bénard convec-

tion with standing wave. Obviously, there needs more work on 3D Rayleigh-Bénard convection

due to the need of important computing resources.
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Chapter 7

Conclusions and perspectives

Conclusions

The objective of this thesis includes two main parts. The first part is to develop a direct numer-

ical simulation (DNS) solver for the viscoelastic laminar Rayleigh-Bénard convection in 2D/3D

rectangular cavities. The second part is to numerically study the flow and heat transfer charac-

teristics in viscoelastic laminar RBC based on the in-house solver.

In Chapter 1 and Chapter 2, we introduced the background of this thesis and state-of-the-

art of the viscoelastic Rayleigh-Bénard convection. In Chapter 3, the numerical procedure of the

solver is introduced, accuracy and capacity of the solver for studying viscoelastic RBC are in-

vestigated. In Chapter 4, the 2D viscoelastic Rayleigh-Bénard convection with PTT model was

investigated in a 2 : 1 cavity for different (ǫ, ξ, β,We). Following the idea of Chapter 4, the vis-

coelastic RBC in an inclined cavity was studied in Chapter 5. Finally, in Chapter 6 we extended

the solver to 3D, because important computing resources were needed, we only simulated a

few cases to investigate the flow structure of viscoelastic RBC in 3D.

Based on the above works, the following conclusions are obtained:

1. A direct numerical simulation solver that can simulate 2D and 3D viscoelastic Rayleigh-

Béanrd convection is developed. This solver includes a variety of time and space discrete

schemes, and also covers a variety of constitutive models of viscoelastic fluids (such as

the Oldroyd-B, Giesekus, PTT model). Then the accuracy and capacity of this solver are

verified for viscoelastic Rayleigh-Béanrd convection flow.

2. The influence of rheology parameters (β,We, ǫ, ξ) on the critical Rayleigh number of con-

vection onset Rac1 in horizontal 2D viscoelastic (PTT model) RBC with an aspect ratio of

2 : 1 was investigated. The flow pattern selection for the onset of RBC strongly depends

on the rheology parameters (We and β), steady-state convection takes place when We is

small and β is big, but, a regular reversal takes place when We is big and β is small. The

results show that the elasticity and concentration of the viscoelastic fluids all make Rac1

decrease for oscillating convection.

3. Through the study of the influence of elasticity and concentration on reverse convection, it

is found that the relationship between reversal frequency and Ra has two opposite trends
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for the Oldroyd model (negative) and PTT model (positive). With increasing Ra the PTT

model leads to the existence of a second critical Rayleigh number Rac2, which makes the

flow transition from periodic reverse convection to steady-state convection. At the same

time, the results show that both elasticity and concentration will reduce Rac2.

4. For 2D viscoelastic RBC, comparedwith steady-state convection there will bemore system

energy dissipation in time-periodic reversal convection, due to the continuous stretching

and contraction process of polymer molecules in the fluid. When the Rayleigh number

exceeds Rac2, the convection flow is always with 2 rolls, and the heat transfer capacity

shows more non-linear behavior with Ra. For the reverse convection with 2-roll and 3-

roll, the Ra domain of the 3-roll case is often larger, which also means that solution branch

of 3-roll periodic reversal convection, will enter the steady-state convection at higher Ra

compared to the 2-roll branch.

5. For 2D tilted viscoelastic RBC, we focused on the flow and heat transfer in the case with

strong elasticity, because the cases with weak elasticity do not showmuch difference from

those with a Newtonian fluid. The flow and heat transfer with strong elasticity will have a

huge change, even if there is a small inclined angle. In the cases we simulated, this angle is

less than 1◦. The periodic reversal convection still exists in strong elastic RBC, depending

on the inlined angle. When inlined angle exceeds a critial value, reverse will vanish and

only steady-state convection exists.

6. For the numerical simulation of the 3D viscoelastic RBC, due to the limitation of compu-

tational resources and time, we only verified the solving ability and accuracy of the solver

and simulated the cases under certain parameters to compare the results with the 2D sit-

uation. The important conclusion is that the 3D reversal is due to traveling wave instead

of standing wave in 2D cases.

Perspectives

The current solver does not cover parallel calculations in the solution process for three-dimensional

viscoelastic Rayleigh-Bénard convection. In the next stage, it would be interesting to optimize

the calculation speed of the solver, using openMP and MPI.

In the present work, we have done a lot of research on the time period reversal viscoelastic

Rayleigh-Bénard convection in horizontal and inclined two-dimensional rectangular cavities

and a three-dimensional cavity. The main content includes the discovery of the threshold of

fluid state transitions and the description of reversal formation. However, there is still a lot of

work worthy of in-depth study:

1. Since the main purpose of this article is to elaborate on the problem of regular reversal

convection in the strong elasticity viscoelastic RBC, it mainly discusses the influence of

the relative rheological parameters of the particular viscoelastic fluid model (PTT model)
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on the flow and heat transfer. Obviously, this is not enough for a more comprehensive

understanding of this reversal phenomenon, so we should consider more relevant param-

eters, such as Prandtl number, the aspect ratio of geometric shapes, etc.

In fact, the present work on viscoelastic RBC is devoted to Pr = 7 due to the existing

studies available in the literature. Experimentally speaking, most of viscoelastic fluids are

water solutions of polymers, surfactants, etc. and viscoelastic behavior is mainly due to

increased viscosity compared to that of water while the corresponding thermal conductiv-

ity, specific heat and density of the solutions remain to be more or less the same as water.

In this sense most of viscoelastic fluids have much bigger Prandtl numbers. In order to

experimentally check the existence of convection reversal observed in the present work

and design experimental studies, it will be crucial to explore higher Prandtl number cases

2. Viscoelastic RBC flow has extremely rich flow states, in this workwe only explored a small

part of them. More flow transitions need to be studied.

3. The research on the viscoelastic RBC within the 3D finite domain is just the beginning.

There is still much work to do in the future, such as exploring the flow patterns transition

under strong elasticity, the influence of rheological parameters on flow heat transfer, and

so on.
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Appendix A

Coefficient matrix for quasi-linear terms

Due to space reasons, the coefficient matrix of governing equations after quasi-linearization is

not given in Chapter 3 of the main part of thesis. Here I will show this process in detail. The

dimensionless governing equations for viscoelastic RBC system are:

∇ · u = 0 (A.1)

∂u

∂t
+ (u · ∇)u = −∇p+ β

Pr√
Ra

∆u+∇ · τ + PrTez (A.2)

∂T

∂t
+ (u · ∇)T =

1√
Ra

△T (A.3)

∂τ

∂t
+ (u · ∇)τ −∇uT · τ − τ · ∇u+

1

We
τ − 2

1− β

Ma2
D = S (A.4)

where S are the source term, as depicted in:

S =





0 (Oldroyd-B model)

−α
√

Ra
(1−β)Pr

τ2 (Giesekus model)

−ǫ
√

Ra
(1−β)Pr

tr(τ)τ − ξ(Dτ + τD) (PTT model)

(A.5)

In numerical process mass conservation is coupled in the momentum equation, and reo-

ranized the momentum equation and viscoelastic constitutive equation into a quasi-linear sys-

tem by separating the homogeneous part and the source term:

∂W

∂t
+

n

∑
i=1

Ai
∂W

∂xi
= Sql (A.6)

where Sql is the sorce term as introduced in Chapter 3; n = 2 and n = 3 for two or three di-

mension cases, respectively. Correspondingly, the variables verctar are W = [u1, u2, τ11, τ12, τ22]

(for 2D) and W = [u1, u2, u3, τ11, τ12, τ13, τ22, τ23, τ33] (for 3D). And follow Sec. 3.3.3, we can

rewrite Ai as Ai = LiΛiRi, where Λi is a diagonal matrix containing the eigenvalues of Ai. Li

is the matrix formed by the eigenvectors of Ai and Ri is the inverse of Li. The convective terms

of the Eq.A.6 can then be transformed into Ai
∂W
∂xi

= LiΛi
∂RiW

∂xi
. In following, I will introduce

the coefficient maxtrixs Ai and corresponding matrix (Li, Λi and Ri) for 2D and 3D separatly.

The eigenvalue vector Λi and eigenvector matrix Ri are calculated by a Maxima application

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI088/these.pdf 
© [X. Zheng], [2021], INSA Lyon, tous droits réservés



134 Appendix A. Coefficient matrix for quasi-linear terms

(“Maxima, a Computer Algebra System”), which a system for the manipulation of symbolic

and numerical expressions.

A.1 For 2D cases

The coefficient matrix in x1 direction:

A1 =




u1 0 −1 0 0

0 u1 0 −1 0

−2( 1−β
Ma2

+ τ11) 0 u1 0 0

−τ12 −( 1−β
Ma2

+ τ11) 0 u1 0

0 −2τ12 0 0 u1




(A.7)

LA1
=




1 1 0 0 0

0 0 1 1 0
√
2
√

τ11 +
1−β
Ma2

−
√
2
√

τ11 +
1−β
Ma2

0 0 0

0 0
√

τ11 +
1−β
Ma2

−
√

τ11 +
1−β
Ma2

0

0 0 2τ12√
τ11+

1−β

Ma2

− 2τ12√
τ11+

1−β

Ma2

1




(A.8)

Λ1 =




u1 −
√

2(τ11 +
1−β
Ma2

)

u1 +
√

2(τ11 +
1−β
Ma2

)

u1 −
√

τ11 +
1−β
Ma2

u1 +
√

τ11 +
1−β
Ma2

u1




(A.9)

RA1
=




1
2 0 1

2
3
2

√
τ11+

1−β

Ma2

0 0

1
2 0 − 1

2
3
2

√
τ11+

1−β

Ma2

0 0

0 1
2 0 1

2
√

τ11+
1−β

Ma2

0

0 1
2 0 − 1

2
√

τ11+
1−β

Ma2

0

0 0 0 − 2τ12
τ11+

1−β

Ma2

1




(A.10)

The coefficient matrix in x2 direction:

A2 =




u2 0 0 −1 0

0 u2 0 0 −1

−2τ12 0 u2 0 0

−( 1−β
Ma2

+ τ22) −τ12 0 u2 0

0 −2( 1−β
Ma2

+ τ22) 0 0 u2




(A.11)
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LA2
=




0 0 1 1 0

1 1 0 0 0

0 0 2τ12√
τ22+

1−β

Ma2

− 2τ12√
τ22+

1−β

Ma2

1

0 0
√

τ22 +
1−β
Ma2

−
√

τ22 +
1−β
Ma2

0
√
2
√

τ22 +
1−β
Ma2

−
√
2
√

τ22 +
1−β
Ma2

0 0 0




(A.12)

Λ2 =




u2 −
√

2(τ22 +
1−β
Ma2

)

u2 +
√

2(τ22 +
1−β
Ma2

)

u2 −
√

τ22 +
1−β
Ma2

u2 +
√

τ22 +
1−β
Ma2

u2




(A.13)

RA2
=




0 1
2 0 0 1

2
3
2

√
τ22+

1−β

Ma2

0 1
2 0 0 − 1

2
3
2

√
τ22+

1−β

Ma2

1
2 0 0 1

2
√

τ22+
1−β

Ma2

0

1
2 0 0 − 1

2
√

τ22+
1−β

Ma2

0

0 0 1 − 2τ12
τ11+

1−β

Ma2

0




(A.14)

A.2 For 3D cases

The coefficient matrix in x1 direction, and in order to facilitate the display, we define H =√
1−β
Ma2

+ τ11:

A1 =




u1 0 0 −1 0 0 0 0 0

0 u1 0 0 −1 0 0 0 0

0 0 u1 0 0 −1 0 0 0

−2H2 0 0 u1 0 0 0 0 0

−τ12 −H2 0 0 u1 0 0 0 0

−τ13 0 −H2 0 0 u1 0 0 0

0 −2τ12 0 0 0 0 u1 0 0

0 −τ13 −τ12 0 0 0 0 u1 0

0 0 −2τ13 0 0 0 0 0 u1




(A.15)
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L1 =




1 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0√
2H −

√
2H 0 0 0 0 0 0 0

0 0 H 0 −H 0 0 0 0

0 0 0 H 0 −H 0 0 0

0 0 2 τ12
H 0 −2 τ12

H 0 1 0 0

− τ23
H

τ23√
2H

τ13
H

τ12
H − τ13

H − τ12
H 0 1 0

0 0 0 2 τ13
H 0 −2 τ13

H 0 0 1




(A.16)

Λ1 =




u1 −
√
2H

u1 +
√
2H

u1 − H

u1 − H

u1 + H

u1 + H

u1

u1

u1




(A.17) R1 =




1
2 0 0 1

2
3
2 H

0 0 0 0 0

1
2 0 0 − 1

2
3
2 H

0 0 0 0 0

0 1
2 0 0 1

2H 0 0 0 0

0 0 1
2 0 0 1

2H 0 0 0

0 1
2 0 0 − 1

2H 0 0 0 0

0 0 1
2 0 0 − 1

2H 0 0 0

0 0 0 0 −2 τ12
H2 0 1 0 0

0 0 0 τ23
2H2 − τ13

H2 − τ12
H2 0 1 0

0 0 0 0 0 −2 τ13
H2 0 0 1




(A.18)

The coefficient matrix in x2 direction with H =
√

1−β
Ma2

+ τ22:

A2 =




u2 0 0 0 −1 0 0 0 0

0 u2 0 0 0 0 −1 0 0

0 0 u2 0 0 0 0 −1 0

−2τ12 0 0 u2 0 0 0 0 0

−H2 −τ12 0 0 u2 0 0 0 0

−τ23 0 −τ12 0 0 u2 0 0 0

0 −2H2 0 0 0 0 u2 0 0

0 −τ23 −H2 0 0 0 0 u2 0

0 0 −2τ23 0 0 0 0 0 u2




(A.19)

L2 =




0 0 1 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 2 τ12
H 0 −2 τ12

H 0 1 0 0

0 0 H 0 −H 0 0 0 0

− τ13√
2H

τ13√
2H

τ23
H

τ12
H − τ23

H − τ12
H 0 1 0

√
2H −

√
2H 0 0 0 0 0 0 0

0 0 0 H 0 −H 0 0 0

0 0 0 2 τ23
H 0 −2 τ23

H 0 0 1




(A.20)
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Λ2 =




u2 −
√
2H

u2 +
√
2H

u2 −
√
2H

u2 −
√
2H

u2 +
√
2H

u2 +
√
2H

u2

u2

u2




(A.21) R2 =




0 1
2 0 0 0 0 1

2
3
2 H

0 0

0 1
2 0 0 0 0 − 1

2
3
2 H

0 0

1
2 0 0 0 1

2H 0 0 0 0

0 0 1
2 0 0 0 0 1

2H 0
1
2 0 0 0 − 1

2H 0 0 0 0

0 0 1
2 0 0 0 0 − 1

2H 0

0 0 0 1 −2 τ12
H2 0 0 0 0

0 0 0 0 − τ23
H2 1 τ13

2H2 − τ12
H2 0

0 0 0 0 0 0 0 −2 τ23
H2 1




(A.22)

The coefficient matrix in x3 direction with H =
√

1−β
Ma2

+ τ33:

A3 =




u3 0 0 0 0 −1 0 0 0

0 u3 0 0 0 0 0 −1 0

0 0 u3 0 0 0 0 0 −1

−2τ13 0 0 u3 0 0 0 0 0

−τ23 −τ13 0 0 u3 0 0 0 0

−H2 0 −τ13 0 0 u3 0 0 0

0 −2τ23 0 0 0 0 u3 0 0

0 −H2 −τ23 0 0 0 0 u3 0

0 0 −2H2 0 0 0 0 0 u3




(A.23)

L3 =




0 0 1 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

1 1 0 0 0 0 0 0 0

0 0 2 τ13
H 0 −2 τ13

H 0 1 0 0

− τ12√
2H

τ12√
2H

τ23
H

τ13
H − τ23

H − τ13
H 0 1 0

0 0 H 0 −H 0 0 0 0

0 0 0 2 τ23
H 0 −2 τ23

H 0 0 1

0 0 0 H 0 −H 0 0 0√
2H −

√
2H 0 0 0 0 0 0 0




(A.24)
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Λ3 =




u3 −
√
2H

u3 +
√
2H

u3 − H

u3 − H

u3 + H

u3 + H

u3

u3

u3




(A.25) R3 =




0 0 1
2 0 0 0 0 0 1

2
3
2 H

0 0 1
2 0 0 0 0 0 − 1

2
3
2 H

1
2 0 0 0 0 1

2H 0 0 0

0 1
2 0 0 0 0 0 1

2H 0
1
2 0 0 0 0 − 1

2H 0 0 0

0 1
2 0 0 0 0 0 − 1

2H 0

0 0 0 1 0 −2 τ13
H2 0 0 0

0 0 0 0 1 − τ23
H2 0 − τ13

H2
τ12
2H2

0 0 0 0 0 0 1 −2 τ23
H2 0




(A.26)
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Appendix B

Coding improve for saving calculating

time

For a CFD solver, with the demand for increasing the calculation accuracy and the scale of

the calculating nodes, the resulting high-intensity calculation load problem will become more

prominent. The existing two main aspects to solve this problem are: improve the accuracy

and convergence characteristics of the algorithm and/or improve computing efficiency, such as

parallel computing or algorithm optimization. In the early stage of coding the solver, we have

done some work on the optimization algorithm, to reduce the calculation time of the solver.

Initially, we solved linear large sparse systems of linear algebraic equations by precondi-

tioned conjugate gradient (PCG) method through a software package named Nonsymmetric

Preconditioned Conjugate Gradient (NSPCG), which is designed to solve large sparse systems

of linear algebraic equations by a variety of different iterative methods and developed by Oppe,

Joubert, and Kincaid (1989).

B.1 Test for Newtonian cases

Firstly, we take a Newtonian Rayleigh-Bénard convection in cavity with aspect ratio 1 : 1,

the Prandtl number and Rayleigh number are Pr = 7.0 and Ra = 105, respectively. The

function, cpu_time() in Fortran, is used to record CPU time. Tab. B.1 shows the time cost of

each part of the calculating procedure in one time step for different grid node numbers in 2D

and 3D configurations.

cpu time 1282 2562 5122 323 643 1283

Advection terms 0.004 0.02 0.076 0.028 0.196 1.68
NSPCG T 0.004 0.028 0.2 0.032 0.288 2.36
NSPCG U 0.008 0.048 0.3 0.09 0.762 7.26
NSPCG P 0.02 0.164 1.54 0.08 1.588 14.62
Rest 0.012 0.032 0.116 0.042 0.298 4.24

Total 0.048 0.292 2.232 0.272 3.132 30.16

TABLE B.1: Time cost summary for each part of the solver.
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Fig. B.1 shows the pie chart of the proportion of time cost by each part in different grid

node sets. It can be easily found that the time cost for calculating the pressure is the largest

part, followed by the solution for velocity and temperature. The proportion of the time cost of

pressure solution increases as the number of grid nodes increases.

FIGURE B.1: Proportion of the time cost of each part in one time step procedure.

In order to know if they are better solver for the solution of linear equations, we used Alter-

native Direction Implicite method (ADI) instead of the PCG method, and checked the cost time

of each part, as shown in Tab. B.2. It was found that the total time cost is saved by almost 22%

for solver using ADI. It can be concluded that ADI solver are more interesting and reduce the

computational cost.

2562 5122

NSPCG
Total: 0.292
A terms: 0.02
P terms: 0.164

Total: 2.232
A terms: 0.076
P terms: 1.54

ADI
Total: 0.230
A terms: 0.022
P terms: 0.12

Total: 1.782
A terms:0.08
P terms: 0.72

FIGURE B.2: Time cost summary for solver with ADI and NSPCG in 2D Newto-
nian Rayleigh-Bénard convection. A presents the Advection terms in the table.

The figure shows the total time cost for solver with NSPCG and ADI.
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B.2 Test for viscoelastic cases

In fact, most of the matrix operations in the quasi-linearization process (embodied in hyperbolic

terms) are sparse matrix operations, which means that a large part of the operations are not use-

ful operations (∗0). Take the calculation R1 ·W as example, as shown in Eq. ??, the computation

including red color item in the matrix R1 are not necessary and can be avoided.

R1 ·W =




1
2 0 0 1

2
3
2 H

0 0 0 0 0

1
2 0 0 − 1

2
3
2 H

0 0 0 0 0

0 1
2 0 0 1

2H 0 0 0 0

0 0 1
2 0 0 1

2H 0 0 0

0 1
2 0 0 − 1

2H 0 0 0 0

0 0 1
2 0 0 − 1

2H 0 0 0

0 0 0 0 −2 τ12
H2 0 1 0 0

0 0 0 τ23
2H2 − τ13

H2 − τ12
H2 0 1 0

0 0 0 0 0 −2 τ13
H2 0 0 1




·




u1

u2

u3

τ11

τ12

τ13

τ22

τ23

τ33




(B.1)

Algorithm 1 Calculate hyperbolic term L1Λ1
∂R1W

∂x using original coding.

Require: W = (u1, u2, u3, τ11, τ12, τ13, τ22, τ23, τ33): variables; Nx,Ny,Nz: number of the space
node at three direction

Output: L1Λ1
∂R1W

∂x
1: for i = 1; Nx; i++ do

2: for j = 1; Ny; j++ do

3: for k = 1; Nz; k++ do

4: compute L1; Λ1; R1

5: compute R1Wi−2,j,k, R1Wi−1,j,k, R1Wi,j,k, R1Wi+1,j,k, R1Wi+2,j,k

6: if Λ1 < 0 then

7: compute ( ∂R1W
∂x )i,j,k using backward HOUC3

8: else if Λ1 = 0 then

9: do not compute ( ∂R1W
∂x )i,j,k

10: elseΛ1 > 0
11: compute ( ∂R1W

∂x )i,j,k using forward HOUC3 (Eq. 3.61).
12: end if

13: compute (Λ1
∂R1W

∂x )i,j,k
14: compute (L1Λ1

∂R1W
∂x )i,j,k

15: end for

16: end for

17: end for

So we further optimized this part by expanding the eigenvector matrix L1 and R1 (here we

take L1Λ1
∂R1W

∂x as an example, the operation using the red matrices can be improved). Be-

cause we already know the expression of the matrix coefficients of hyperbolic terms, we use

manual multiplications and avoid (∗0) calculations (instead of matrix multiplication function :

matmul(R1,W ) in Fortran) to reduce the operation number.
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Algorithm 1 shows the original program for calculating hyperbolic part, it is ealy found that

there is many unnecessary operating for steps 6-11 to compute R1 ·W , especially, when we use

high order discrete form (such as HOUC3). We know that HOUC3 for ∂R1W
∂x will need one or

two grid nodes informaton around the central point, for example, (R1 ·W )i−2,j,k, (R1 ·W )i−1,j,k,

(R1 ·W )i,j,k, (R1 ·W )i+1,j,k will be calculated for Λ1 > 0. In fact, R1 is related to the grid point

(i, j) and independent of x, therefore we have R1 · ∂W
∂x = ∂R1W

∂x . So we can impove this part

by computing ( ∂W
∂x )i,j,k first, and then compute (R1

∂W
∂x )i,j,k to save computing resource. The

improved promgram Algorithm 2 is shown as follows:

Algorithm 2 Calculate hyperbolic term L1Λ1
∂R1W

∂x using imporved coding.

Require: W = (u1, u2, u3, τ11, τ12, τ13, τ22, τ23, τ33): variables; Nx,Ny,Nz: number of the space
node at three direction

Output: L1Λ1
∂R1W

∂x
1: for i = 1; Nx; i++ do

2: for j = 1; Ny; j++ do

3: for k = 1; Nz; k++ do

4: compute L1; Λ1; R1

5: end for

6: end for

7: end for

8: for i = 1; Nx; i++ do

9: for j = 1; Ny; j++ do

10: for k = 1; Nz; k++ do

11: if Λ1 < 0 then

12: compute ( ∂W
∂x )i,j,k using backward HOUC3

13: else if Λ1 = 0 then

14: do not compute ( ∂W
∂x )i,j,k

15: elseΛ1 > 0
16: compute ( ∂W

∂x )i,j,k using forward HOUC3, where backward and forward
17: HOUC3 has been introduced by Eq. 3.61.
18: end if

19: compute (Λ1R1
∂W
∂x )i,j,k using only the non-zero element of R1

20: compute (L1Λ1R1
∂W
∂x )i,j,k using only the non-zero element of L1

21: end for

22: end for

23: end for

24: where red matrixes means that has been improved as Eq. ??.

Tab. B.2 shows the comparasion of total time cost for three improved solver stages in 3D

Newtonian Rayleigh-Bénard convection cases. The results show that through hyperbolic term

optimization, for 3D Newtonian fluid RBC, the time cost of one time step calculation for the

same nodes number (1283) can be saved 30%.

Through the test for Newtonian cases, we know that ADI is more effectively than NSPCG

for sovling linear algebraic equation in saving time. In following viscoelastic cases, we all adapt
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CPU time 163 323 643 1283

NSPCG + Original Algorithm 1 0.032 0.28 3.22 30.16
ADI + Original Algorithm 1 0.016 0.18 2.12 21.26
ADI + improved Algorithm 2 0.014 0.16 2.06 18.28

TABLE B.2: Time cost for three coding conditions with different grid numbers in
3D Newtonian Rayleigh-Bénard convection cases.

ADI to sovle linear algebraic equation. Tab. B.3 shows time cost at each sovle part for 2D vis-

coelastic cases with original Algorithm 1 and improved Algorithm 2, respectively. We named

the case with grid of 128× 128 with Algorithm 1 for 2D as 2D128Al1. From Tab. B.3, we can

find that the total time cost will save about 60% in 2D viscoelastic cases, when we improved

Algorithm 1 to Algorithm 2. Take 2D512Al1 and 2D512Al2 as examples, the total saving time

ratio is equal to (1.956− 0.82)/1.956 ≈ 58%.

Case Grid Hyper part τ term T term u term p term Total

2D128Al1 1282 0.088 0.016 0.004 0.004 0.008 0.120
2D256Al1 2562 0.352 0.060 0.012 0.028 0.028 0.480
2D512Al1 5122 1.412 0.216 0.056 0.108 0.164 1.956

2D128Al2 1282 0.02 0.012 0.004 0.004 0.008 0.048
2D256Al2 2562 0.076 0.044 0.012 0.024 0.032 0.188
2D512Al2 5122 0.304 0.184 0.048 0.092 0.192 0.820

TABLE B.3: Time cost for 2D viscoelastic Rayleigh-Bénard convection cases with
original Algorithm 1.

Number Grid Hyper part τ term T term u term p term Total

3D32Al1 323 0.584 0.216 0.012 0.036 0.044 0.892
3D64Al1 643 4.520 1.696 0.108 0.280 0.328 6.932
3D128Al1 1283 35.378 12.788 0.828 2.132 2.836 53.964

3D32Al2 323 0.208 0.128 0.016 0.032 0.044 0.428
3D64Al2 643 1.600 1.000 0.108 0.244 0.340 3.292
3D128Al2 1283 12.692 7.732 0.868 1.916 2.964 26.176

3D128Al2-1 1283 16.652 12.780 0.828 2.128 2.964 35.356

TABLE B.4: Time cost for 3D viscoelastic Rayleigh-Bénard convection cases with
improved Algorithm 2, where 3D128Al2-1 presents using original L1 and R1 in

Algorithm 2 instead of L1 and R1 in computing.

Here, we summary the main difference betweenAlgorithm 1 andAlgorithm 2: (1) In actual

calculation, we use Ri
∂W
∂x instead ∂RiW

∂x , so that we can save computation of four times Matrix

multiplication for a certain point; (2) We already found that R and L are sparse matrices, we just

calculate nonzero useful operations for RiW and Li(Λ
∂RiW

∂x ) in Algorithm 2. In order to study

the influence of (2) on the calculation time, we separately designed the case 3D128Al2-1. We use

original Ri and Li in 3D128Al2-1. Tab. ?? shows time cost at each sovle part for 3D viscoelastic

cases with original Algorithm 1 and improved Algorithm 2, respectively. We can find that the
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144 Appendix B. Coding improve for saving calculating time

total time cost will save about 50% in 2D viscoelastic cases, when we improved Algorithm 1

to Algorithm 2. Take 3D128Al1 and 3D128Al2 as examples, the total saving time ratio is equal

to (53.964− 26.176)/53.964 ≈ 52%. In addition, comparing 3D128Al2 and 3D128Al2-1, we can

easily find that LiΛRi
∂W
∂x is more effective than LiΛRi

∂W
∂x in saving time, time cost saving is about

26%.
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