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i

Avant-propos

Une thèse, comme la plupart des écrits scientifiques, n’est pas une lecture très accessible.
Pourtant, je veux profiter de ces quelques lignes pour souligner que ce travail n’est pas
qu’une affaire de spécialistes.

D’abord parce qu’aucune recherche scientifique n’est un travail purement personnel.
Durant ce doctorat, j’ai profité des conseils de mes encadrants, Rémy Cazabet et Céline
Robardet, de l’équipe du LIRIS, mais aussi de toutes les recherches précédentes, dont une
partie seulement est présente dans la bibliographie. Plus largement, j’ai pu profiter de vingt
ans d’enseignement, de l’école à l’université, et du travail de tout ceux qui, à travers la
société, contribuent à les faire fonctionner : professeurs bien sûr, mais aussi les secrétaires,
agents d’entretien et les maçons qui ont construit les bureaux dans lesquels nous travaillons.
Je ne connais évidemment pas tous leurs noms, mais je tiens à dire que sans eux, ce travail
n’existerait pas.

Au-delà des remerciements, ces liens nous engagent. La science n’a de sens que si elle
permet à l’humanité de comprendre son environnement et sa propre organisation sociale
de manière à pouvoir s’y orienter. L’étude des réseaux en particulier doit nous permettre
de prendre conscience des liens qui existent, dans la nature comme dans la société, que ce
soient les liens entre protéines nécessaires au fonctionnement d’une cellule ou les interactions
sociales qui permettent la vie collective. Pouvoir décrire, comprendre et anticiper l’évolution
des besoins en terme d’échange d’information, d’énergie, de transport, dans une période ou
ces échanges se développent à l’échelle mondiale, c’est un outil formidable que l’humanité
a à sa disposition pour pouvoir organiser consciemment sa vie sociale.

Il est d’autant plus important de le rappeler que bien souvent, les résultats des travaux
scientifiques sont utilisés non pour améliorer le sort de l’humanité, mais contre elle. Sans
même parler des merveilles technologiques qui foisonnent dans l’industrie de l’armement,
il est certain que les applications de l’étude des graphes pour l’espionnage automatique et
la spéculation financière mobilisent plus de moyens que pour la recherche en chimie et en
médecine.

Arracher la science à la dictature du profit pour la mettre au service des besoins de
l’humanité entière, c’est une tâche qui dépasse évidemment le cadre strictement universitaire,
et qui ne pourra être accomplie que par la masse des travailleurs eux-même. En ce sens, ce
modeste travail leur appartient.
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Foreword

A thesis, as any scientific writing, is not a very accessible reading. Yet, I want to take
advantage of those few lines to underling that this work is not only a matter for specialists

First of all because no scientific research is a fully personal work. All along this PhD, I
benefited of advice from my supervisors, Rémy Cazabet and Céline Robardet, from the LIRIS
team, but also from all previous research only part which is mentioned in the bibliography.
Beyond that, I benefited of twenty years of instruction, from school to university, and from
the work of all those who, all across society, contribute to it : teachers of course, but also the
secretaries, cleaners, and mason who built the office we work in everyday. I cannot know all
their names, but I want to say that without them, this work would not exist.

Beyond gratitude, these links bind us. Science has no sense but to give humanity the
ability to understand its environnement and its own social organization in order to direct
itself. Studying networks in particular must help us to be conscious of the links that exist, in
nature as well as in society, be there protein interactions necessary to the functionning of the
cell, or social interactions necessary to collective living. Being able to describe, understand
and predict the evolution of the needs in terms of communication and transportation, in a
period where those exchanges develop at a global scale, is a wonderful tool humanity has at
its disposal to organize consciously it social live.

It is even more important to recall this that, most often, scientific results are used not
to improve humanity’s fate but against it. Setting aside the technological wonders which
abound in the armament industry, it is certain that graph theory applications in automatic
spying and financial speculation attract more money than chemical and medical research.

Take science out of the dictatorship of profit to make it serve the needs of the whole
humanity is a task that obviously outreaches the academic framework. It can only be achieved
by the bulk of workers themselves. In that respect, this modest work belongs to them.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI093/these.pdf 
© [L. Duvivier], [2021], INSA Lyon, tous droits réservés



Contents

Contents iii

1 Introduction 1
1.1 Why study graphs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Why study random graphs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Complex networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the art 1
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Empirical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Degree distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Scale-free degree distribution . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Small-world property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Community structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.5 Spatial models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Parameter inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Non statistical parameter inference . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Canonical and microcanonical ensembles . . . . . . . . . . . . . . . . . 10
2.3.3 Exponential random graphs . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 Microcanonical stochastic blockmodel inference . . . . . . . . . . . . . 14

2.4 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Frequentist inference and statistical tests . . . . . . . . . . . . . . . . . 16
2.4.2 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Minimum description length . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Statistical test over a metric microcanonical ensemble 23
3.1 The microcanonical ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Distance to the barycenter . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Graph space and the edit distance expected value . . . . . . . . . . . . . . . . 26
3.2.1 Edit distance to the barycenter . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Edit distance expected value . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Model likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Statistical hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . 33

iii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI093/these.pdf 
© [L. Duvivier], [2021], INSA Lyon, tous droits réservés



iv Contents

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 The limits of entropy 39
4.1 Entropy based stochastic block model selection . . . . . . . . . . . . . . . . . . 40
4.2 The issue with heavily populated graph regions . . . . . . . . . . . . . . . . . 41
4.3 The density threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Consequences on model selection . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Edge sequence statistical models prequential inference 49
5.1 Edge sequence statistical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.2 Edge probability distribution statistical inference . . . . . . . . . . . . 53

5.2 Edge sequence model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 Parameter inference by minimum description length . . . . . . . . . . 55
5.2.2 Hyperparameter selection by prequential inference . . . . . . . . . . . 57

5.3 Applications to model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.1 Stochastic blockmodel partition selection . . . . . . . . . . . . . . . . . 59
5.3.2 Stochastic blockmodel and configuration model . . . . . . . . . . . . . 64

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusion 71
6.0.1 Perspectives and future work . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 75

7 Appendix 87
7.1 Graph space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1.1 Barycenter graph weight of various statistical models . . . . . . . . . . 87
7.1.2 Convergence proof for the edit distance expected value . . . . . . . . . 89

7.2 Edge statistical model sequential inference . . . . . . . . . . . . . . . . . . . . 92
7.2.1 Proof of existence and unicity of the minimum . . . . . . . . . . . . . . 92
7.2.2 Proof of existence and unicity of the minimum (configuration model) . 94
7.2.3 Proof of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2.4 Description length computation . . . . . . . . . . . . . . . . . . . . . . 98
7.2.5 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2.6 Edge prediction probability . . . . . . . . . . . . . . . . . . . . . . . . . 100

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI093/these.pdf 
© [L. Duvivier], [2021], INSA Lyon, tous droits réservés



Chapter 1

Introduction

Why study graphs?

At first glance, graphs might seem a very abstract topic. Indeed, they are a mathematical
construction, not something people deal with in their everyday life. What we do encounter
are situations in which people, objects or places interact with each other. People are connected
by social relationships, electric devices by wires, cities by roads, atoms by chemical bonds,
etc. Graphs, defined as a set of n nodes V connected together by a set of edges E Ă V2 are a
fundamental object to reason about those interconnected systems.

Figure 1.1 – Illustration of the knight and seven bridges of Königsberg problems (source
https://fr.wikipedia.org/wiki/Problème_du_cavalier and https://fr.wikipedia.
org/wiki/Problème_des_sept_ponts_de_Königsberg). Ces images sont disponibles sous
license Creative Commons Attribution-Share Alike 3.0 Unported

One of the oldest known problem about graphs dates back to about 840. In his book
Kitab ash-shatranj, the Arab mathematician Al-Adli studied chess. He wanted to determine
whether it is possible for a knight to go through every 64 squares of a chessboard without
passing two times on the same square. This problem can easily be formulated using graph
formalism: V is defined as ~0, 7�ˆ ~0, 7� (each node is associated to the coordinates pi, jq of a
square on the chessboard) and two nodes are connected if and only if the knight can go from

1
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2 Chapter 1. Introduction

one square to the other. Then the problem boils down to deciding whether it is possible to go
through all nodes of the graphs exactly once by following edges, which is a classical route
problem in graph theory. One similar problem was studied by Leonhard Euler in 1741, when
he wanted to determine whether it was possible to travel through the city of Königsberg
going exactly once over each of the seven bridges in the city Euler [1741]. In the XIX century,
graph theory found applications in chemistry when Arthur Cayley Cayley [1857], followed
later on by George Pölya Polya and Read [2012]; Pólya [1937] used it to enumerate the
molecules that could be formed with a given set of atoms, knowing the number of bonds an
atom can build.

These questions have in common that they do not depend on the nature of the interactions
(knight move, bridge or chemical bond). Graphs allow to neglect this information when it
is not relevant, and it provides an efficient summary of a set of constraint which must be
satisfied. It is thus helpful when studying systems in which local constraints are easy to
describe and one wonders how they affect the global behaviour of the system.

A good example of such a problem is map colouring: in 1852, Francis Guthrie conjectured
that any map could be coloured with no more than four colours, in such a way that no two
adjacent countries would be of the same colour. By representing each country by a node and
connecting them if they share a border, this conjecture is equivalent to: any planar graph
can be coloured with four different colours in such a way that any two adjacent nodes have
different colours. This statement is easy to understand, and it is easily verified on any small
graph simply by colouring it by hand. Yet, the formal proof of this theorem, known as the
four colours theorem, was only found more than a century later by Kenneth Appel and
Wolfgang Hakenin Appel and Haken [1989] and it required hours of computations to check
thousands of special cases. One of the reason that makes this result hard to prove is that, as
explained by Arthur Cayley in 1879 Cayley [1879], if one manages to colour a graph of n
nodes with four colours, and then adds one node, there is no guarantee that this new node
can be coloured without modifing others’ nodes colour, even if they are very far in the graph.

This illustrates how local constraints may induce long range correlations between vari-
ables, which is at the heart of many problems in graph theory. Along the XX century, many
types of graphes were studied, to model different kind of constraints: directed edges, when
interactions are asymmetric, weighted edges, when the strength of interaction must be taken
into account, etc. For a summary of classical results in graph theory, one may refer to Berge
[1958].

Why study random graphs?

However rich these definitions of a graph may be, they all remain in a deterministic frame-
work: given two nodes, one can always tell whether they are adjacent (i.e. connected by an
edge) or not. This hypothesis is too strong in many real life situations, in which the graph of
interactions cannot be entirely known. There might be various reasons to this impossibility:
interactions may evolve quickly over time, they may be difficult or expansive to detect, etc.
To take into account this uncertainty, one must study random graphs defined as a probability
distribution over all possible graphs.

A typical random graph question is percolation: given the probabilities for each edge to
be present, what is the probability for the overall graph to be connected (i.e. For any pair

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI093/these.pdf 
© [L. Duvivier], [2021], INSA Lyon, tous droits réservés



1.2. Why study random graphs? 3

of node pu, vq, there exist a path pu0 “ u,u1,u2, . . . ,un´1,un “ vq such that for all i, ui and
ui`1 are adjacent) Bollobas et al. [2006]? For example, in the domain of telecommunications,
when relay stations with a limited communication range might be added or deleted quickly,
what is the required density of stations in order for a message to be able to go from one point
to another Gilbert, E.N. [1959]?

One of the simplest, yet extremely rich, model of random graphs was described in 1959
by Paul Erdös and Alfréd Rényi Karoński and Ruciński [1997]. They define a random graph
Gpn,mq as a set of n nodes V, which are connected by m edges drawn at random from V2.
This model allowed them to derive the probability that Gpn,mq is connected, depending
on m Erdös, P. and Rényi, A. [1959, 1960]. Studying a relaxation of this model, where the
number of edges m is replaced with a probability p for each edge to be drawn at random,
they showed that there exists a critical probability pc such that if p ă pc, then the probability
for Gpn, pq to be connected is asymptotically null, while if p ą pc it tends to 1.

Figure 1.2 – The largest connected component of a random graph with 150 nodes and an
edge probability ranging from 0.005 to 0.015.

This result is important because it shows how processes occuring on graphs may exhibit
non-linear behaviour. For example, in the context of an epidemic which spreads following
random contacts between people, the number of people infected is not proportional to the
probability of transmitting the disease. As long as the contagion probability remains below
the critical probability, the disease will remain limited to a small group of people, but as
soon as it crosses this threshold, it will almost surely infect the whole population. Of course,
modelling social interactions as random is simplistic, but such threshold appears also under
stronger assumptions, even though its value may vary Sattenspiel and Simon [1988].

It should be stressed that this threshold was obtained as a result of combinatorics, inde-
pendently from the physical mechanisms which determine the actual probability p for an
interaction to occur between two nodes in the graph. This shows that a global property of
the system (for example, the whole population is infected) might be determined as much by
the structure of the interaction graph (do people encounter each other uniformly at random
or not?) as it is by the nature of interactions (what is the probability of contagion when they
encounter?).
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4 Chapter 1. Introduction

Complex networks

The spread of computers in the 1990’s induced a major shift in graph theory. Until then,
it had essentially been a matter of interest for mathematicians, who dealt with hand-built
networks. They had studied specific classes of graphs defined by a set of strict rules and
displaying a lot of structure and symmetries, such as lattices, cliques, trees, etc., and on
the other hand random graphs, which by definition have no structure at all. Yet, there
was a lack of graphs obtained from observations with which theoretical results could be
compared. Sociologists did use graph to model social interactions Sampson [1968]; Zachary
[1977] but as observations had to be recorded manually, the size of the few graphs available
was necessarily limited. To obtain a social network, for example, sociologists would need to
count the number of interactions between each person in the group , as would do biologists
observing a group of animals Lusseau et al. [2003]. These empirical networks would have
at most a few dozens nodes. It was thus hard to infer general results about graphs from so
little information.

Computers changed this situation by making many real-life interaction networks easier to
record, and also giving the computation power necessary to automatically analyze networks
with up to millions of nodes. In biology, it allowed to study networks of chemical reactions
in the metabolism Hartwell et al. [1999]; Holme et al. [2003], neurons in the brain Eguiluz
et al. [2005]; Rubinov and Sporns [2010], or protein-protein interaction networks Maslov and
Sneppen [2002]. Infrastructure networks also became easier to study, be they power grid
Amara et al. [2011], railways Latora and Marchiori [2002], or internet Faloutsos et al. [2011].
Communication networks, even with millions of nodes became available, like the world
wide web Kleinberg et al. [1999], citation networks between authors Seglen [1992] and of
course online social networks Adamic et al. [2001].

Figure 1.3 – A map of a portion of the internet network in 2005 (source https://fr.
wikipedia.org/wiki/Internet, disponible sous licence Creative Commons Attribution 2.5
Générique). Nodes are IP adress, and edges indicate their connections.
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1.3. Complex networks 5

This novel availability of real-life networks quickly led to observations that existing
models were not able to explain about their degree distribution, clustering coefficient, path
length, and so on, which has fuelled interest in graph theory to design new models. The
wealth of structures exhibited by graphs at the local and global level implies that in many
cases, various models can be applied to a given graph. This is problematic as those models
may induce different explanations of a given phenomenon, and different previsions about
futur interactions. For example, is the number of phone calls from one city to another
determined by their population? The distance between them? The language spoken in each?
If different factors must be taken into account, what should be their relative weights? Such
questions require to evaluate the relevance of a model with respect to an observed graph.

In chapter 2, I start by reviewing some of the most common models and model design
frameworks that have been developed in the last twenty years. Then, I present model se-
lection techniques, and how they were adapted to the case of graph models. In chapter 3,
I introduce Graph Spaces, an approach that combines probability distributions with graph
distances to evaluate the probability that a given graph was generated by a candidate model.
I then move on in chapter 4 from this statistical test approach to bayesian model selection,
and more precisely to the case of entropy based model selection that was used in the case
of stochastic blockmodels. After showing some of its limits, I develop another model se-
lection framework in chapter 5, based on a reformulation of graph models as probability
distributions on sequences of edges.
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Chapter 2

State of the art

Definitions

Before entering in more details into the state of the art, I will first state some basic definition
and notation that will be used in the rest of the thesis. A labeled graph is a graph whose
nodes are labeled from 0 to n ´ 1. Such a graph can be represented by its adjacency matrix
A PMnpt0, 1uq defined as:

@i, j P ~0,n´ 1�2,Ai, j “

#

1 if pi, jq P E
0 else

An example of a labelled graph and its adjacency matrix are displayed in figure 2.1.

Figure 2.1 – Example of a simple undirected graph and its adjacency matrix

A graph is said to be undirected if its adjacency matrix is symmetric, else it is directed. It has
no self-loop if @i P ~0,n´ 1�,Aii “ 0. Finally, it is weighted if there exists a function w : E Ñ R
which associates a weight to each of its edges. In this case, one may consider the weight
matrix W PMnpRq such that Wi, j “ wpi, jq rather than the adjacency matrix of the graph. A

1
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2 Chapter 2. State of the art

graph with no weight is called a simple graph. In this thesis, unless otherwise specified, we
will consider labelled and directed multigraphs with self loops, because, although they are
not the most widely used in practice, they allow for simpler computations.

Definition 1. A graph model is a probability distribution P over a set of graphs Ω. If this set is a
singleton, the model is said to be deterministic, else it is probabilistic. A model class is a function
that maps a set of parameter θ P Θ to a model

Φ : θ ÞÑ Pθ

For example, the class of complete simple graphs takes as parameter a number of nodes
n and maps it to the deterministic model corresponding to the complete simple graph with
n nodes Kn. Most classes of graphs in classical graph theory like n-ary trees, lattices, and so
on, can be seen as classes of deterministic models of graphs (or deterministic classes). In the
litterature, the word "model" is frequently used to designate both models and model classes.
However, it is useful to distinguish them to reason about parameter inference and model
selection.

In this thesis, I will focus on probabilistic model classes, the simplest of which, as already
mentioned in introduction, is the random graph model studied by Erdös and Rényi Erdös,
P. and Rényi, A. [1959, 1960]. It was initialy defined over the set of simple undirected graphs
with no self-loops. It takes as parameters a number of nodes n and a number of edges m, and
the model ERpn,mq generates a graph by picking at random m edges among the M “

npn´1q
2

possible pairs of nodes. Each graph is thus generated with a probability

PERpn,mqrGs “
1

`M
m

˘

This formulation can be said "hard", in the sense that it assigns null probability to any
graph on n nodes which does not have precisely m edges. In practice, a softer formulation
is frequently used which takes as parameter a probability p P r0, 1s. Then, for each pair of
node u ă v P V, the corresponding edge is selected with probability p and rejected with
probability p1´ pq. The probability to generate a graph G with m edges is then

PERpn,pqrGs “ pmp1´ pqM´m

The possibility to derive exact formulas for the probability distribution allows to compute
expected values for the degree distribution, the average path length, the size of greatest
connected component, etc. This model is rarely useful in modeling real data because the
hypothesis that edges are placed at random is most of the time too strong an assumption.
Yet, it provides a null model against which real networks can be compared in order to
understand what makes them different from random.

The exploration of a large amount of networks coming from different fields of research
has highlighted non-trivial common properties such as the "small-world" property, long-
tailed degree distributions, or community structure. All those properties do not match with
deterministic classes of graphs, like lattices or trees, which have high average path length,
constant degree distribution, and exhibit no cluster. They do not match either with random
graph models whose clustering coefficient are low, whose degree distribution are binomial
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2.2. Empirical models 3

and which also have no cluster. Indeed, these so-called complex networks seem to lie some-
where between perfectly symmetric and random graphs, which imposes to propose new
models to explain these observations.

In section 2.2, I will present a selection of the most widely used graph model classes. The
interested reader can find more complete reviews in Barthelemy [2011]; Goldenberg et al.
[2009]; Goyal and Ferrara [2018]; Newman [2003]. In section 2.3, I present the statistical meth-
ods that were developed to infer the parameter of a model from an observed graph. Finaly,
in section 2.4, I conclude the state of the art with a review of model selection techniques, and
how they have been adapted to the study of graphs.

Empirical models

The development of new graph models steemed from the observation of real world networks
whose structure could not be explained by graph theory. It thus started on an empirical
basis: as new properties were observed, new models were proposed to explain the processes
through which they could have emerged. Following this line of thought, I will present in
this section some of the most famous ones, along with the properties they were designed to
explain.

Degree distribution

Random graphs assume that all nodes are equally likely to interact with any other node,
which is not a realistic assumption in many situations. All chemical elements do not establish
the same number of bonds, every person do not establish the same number of social ties,
etc. The simpler indicator of a node propensity to interact is the number of other nodes it is
adjacent to, measured by its degree:

ki “

n´1
ÿ

j“0

Ai, j

When studying directed graphs, one can distinguish incoming and outgoing edges to obtain
the corresponding indegree and outdegree.

The distribution of degrees pkiqiPV in social networks was studied as early as the 1960’s,
with works by Rapoport Rapoport and Horvath [1961] or Price Price [2011], who showed that
it was significantly different from the limit Poisson distribution expected for large Erdös-
Rényi random graphs. This sparked interest toward the study of graphs with prescribed
degree sequence: sociologist and biologist in particular were interested to know whether the
strong interactions they observed between some people or species should be considered the
result of their higher interaction propensity or whether additional reasons should be seeked
Connor and Simberloff [1979]; Harper jr [1978]; Strauss [1982]. To do so, they needed to
generate random networks having the same degree distribution as the observed network in
order to have a comparison point. This class of random networks with a prescribed degree
distribution is known as the configuration model. I will present its undirected version, as
the directed one can easily be derived from it.

The theoretical analysis of the configuration model is harder than the one of the Erdös-
Rényi class because of the difficulties to compute the probability distribution associated
to a degree sequence pkiqiP~0,n´1�. Computing the number of different simple undirected
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4 Chapter 2. State of the art

graphs which correspond to a given sequence is an open question, and only asymptotical
results were found in the 1970’s Bender [1974]; Bender and Canfield [1978]. Analytical results
have been obtained for the average path length, the size of the giant component, and other
characteristic graph properties Chung and Lu [2002]; Molloy and Reed [1998]; Molloy et al.
[2011]; Newman et al. [2001], but the lack of a closed formula for the probability distribution
implies that any new question about the configuration model requires an ad hoc analytical
approach.

When the analytical study is not possible, one may turn to a more experimental approach.
Algorithms exist that generate graphs with prescribed degree sequence. In particular, the
switching algorithm starts from a graph G with the desired degree sequence (typically, the
observed network), and generates a random graph with the same sequence by randomly
switching pairs of edges. At each swith, four nodes i, j,k,l are chosen such that pi, jq, pk, lq P E
and pi, kq, p j, lq < E, then edges pi, jq and pk, lq are removed and replaced by pi, kq and p j, lq.
By definition, each switch preserves the degree sequence. This algorithm allows to check
at each step that no multiedge or self-loop is formed, which is useful to obtain a simple
graph, but the number of switches necessary to shuffle edges can be very high. What is
more, this algorithm does not sample uniformly from the set of all possible simple graphs.
This is problematic if one wants to use it, for example, to estimate the probability of an edge
between two nodes from a randomly generated sample. In Milo et al. [2003], authors present
an algorithm that does sample uniformly, but at the cost of an even longer running time. The
uniform generation of graphs, especially simple graphs, with prescribed degree sequence is
still an active topic of research, information about recent advances can be found in Arman
et al. [2019].

The Molloy-Reed algorithm allows to quickly generate graphs with an arbitrary degree
sequence pkiqi. It starts with each node i having ki half-edges attached to it and sequentially
selects pairs of nodes with free half-edges to connect them together. Because it may select
pairs of nodes that have already been selected, or the pairs of the form pi, iq, it generates
multigraphs with self-loops. It can be used to generate simple graphs by relaunching the
algorithm until no self-loop or multiedge is obtained, but there is no guarantee that the
process terminates, because some degree sequences cannot be realized as a simple graph
Hakimi [1962]; Havel [1955]. Also, in this case too the algorithm does not sample uniformly
from the set of simple graphs.

These theoretical issues with the configuration model are one of the main reason why
the analytical study of graph models are easier on multigraphs with self-loops. In this case,
the Molloy-Reed algorithm shows that the expected number of edges between two nodes of
degree ki and k j is

ErWi, js “

$

’

’

&

’

’

%

kik j

2m´ 1
if i , j

kipki ´ 1q
2m´ 1

if i “ j

Yet, the probability for two nodes i and j to be connected is not easy to compute. In the
litterature, the following approximation is frequently made

PrWi, j “ 1s « ErWi, js “
kik j

2m´ 1
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However, it is important to bare in mind that this formula does not correspond to a proper
probability, which can be seen by the simple fact that it may be greater than 1, and that this
approximation is valid only if the probability that i and j are connected by more than one
edge is negligible.

To obtain a proper probability distribution to work with, one can relax the degree con-
straints. In Giona Casiraghi and Nanumyan [2018] authors propose a soft configuration
model (SCM) defined as an hypergeometric probability distribution

PSCMppkiqiqrGs “

ś

iă jPV
`2Ξi, j

Gi, j

˘
ś

iPV
` Ξi,i

Gi,i{2

˘

`M
m

˘

where @i, j,Ξi, j “ kik j and M “
ř

i, j Ξi, j. This distribution is defined over the set of all graphs
with n nodes and m edges, and it assigns non-null probability to graphs whose degree
distribution is not equal to pkiqiPV. The degree constraints are verified only on average, in the
sense that

@i P V,ErdegGpiqs “ ki

This is why this version of the configuration model is said to be soft, with respect to the
microcanonical version that assigns null probability to any graph whose degree sequence
does not match the prescribed objective values.

Scale-free degree distribution

A particular family of degree distributions which has been observed in many different context
are the so-called long-tailed degree distributions Albert and Barabási [2002]; Faloutsos et al.
[2011]; Price [2011], and more specifically power laws of the form

Prks “ Cˆ k´α, α ą 1

where C is a normalization constant defined as C “
ş`8

0 x´αdx. These distributions have been
particularly studied because of their scale invariance property, in the sense that if the variable
k is scaled by a factor λ, the distribution is identical up to a constant Prλks “ λ´α ¨Prks. The
fact that degrees distribute, at least approximately, according to such distributions would
suggest that there exists no characteristic number of neighbours by nodes, no characteristic
scale of study. This has been shown to have several consequences on the properties of the
graph Albert et al. [2000]; Bollobás and Riordan [2004]; Cohen et al. [2011]; Pastor-Satorras
and Vespignani [2001].

In Barabasi and Albert [1999], Barabasi and Albert develop a preferential attachment
model to explain the emergence of such a scale-invariant degree distribution. Instead of a
fixed number of nodes n, they consider a dynamic model, starting with a small number of
nodes n0, and then adding nodes one at a time. Each time a new node is added, it links to m
other nodes. The probability that it links to node i is given by

Pris “
ki

ř

jPV k j

They show that this simple preferential attachment mechanism leads to a power law distri-
bution of degrees.
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6 Chapter 2. State of the art

In practice, it is often hard to tell whether the power law is a better explanation to
networks degree distribution than other long-tailed distribution (i.e. distributions decaying
more slowly than exponential) Broido and Clauset [2019]; Clauset et al. [2009], which has
fulled a long debate on the topic Holme [2019]. However, what is clear is that most networks
exhibit significantly more high-degree nodes than would be expected for a random graphs
and that this property has important consequences regarding the structure of the graph.

Small-world property

The particularities of real networks are not limited to their degree distribution. It has been
shown that many networks exhibit a transitive structure, in the sense that if there is an edge
pi, jq and an edge p j, kq in the graph, there is a high probability that edge pi, kq is present too
Holland and Leinhardt [1976]. Let’s denote Npiq “ t j P V | pi, jq P Eu the set of neighbours
of a node i. By definition the number of neighbours is |Npiq| “ ki and, in a simple undirected
graph, there can be at most kipki´1q

2 edges between them. Then, the transitivity of interactions
around a node i can be measured through its clustering coefficient

CCGpiq “
2

kipki ´ 1q

ÿ

j,kPNpiq

G j,k

At the level of the graph, one can consider its mean value CCG “
1
n
ř

iPV CCGpiq. A high
value of this clustering coefficient means that nodes tend to interact locally and form small
clusters of densely interconnected nodes.

On the other hand, it is also known that distances between nodes in a network tend to be
surprisingly small, as was illustrated by a famous experiment by Milgram in 1967 Milgram
[1967]. In random graphs, average distances are known to be proporitional to the logarithm
of the number of nodes Chung and Lu [2002]. However, one would expect average distances
in networks with a high clustering coefficient to be much higher, as nodes tend to connect
with the neighbours of their neighbours. Indeed, on regular lattices, the average distance
grows proportionally to the number of nodes.

In their paper Watts and Strogatz [1998], Watts and Strogatz show that various networks
exhibit at the same time a high clustering coefficient and short average distances. They
reproduce these features by randomly rewiring edges in a regular ring of nodes. As more
and more randomness is added, average distances drop while the clustering coefficient
remains high until a significant portion of edges has been rewired. They do not claim that
this model actually replicate the real mechanisms of networks formation, but it shows how
both properties can be obtained as a result of a combination of randomness and structure in
the network.

Community structure

The degree distribution and clustering coefficient focus on local correlations in edge dis-
tribution. In Girvan and Newman [2002], authors argue that there exists groups of nodes,
which they call communities, which tend to connect more densely with each others, beyond
their imediate neighbourhood and that such communities can be found in several real world
networks.
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2.2. Empirical models 7

This idea can be formalized into a class of graph models using stochastic blockmodels
(SBM), which were introduced in Holland et al. [1983]. This class of models takes as param-
eters a partition of the n nodes in p blocks B “ pb1, . . . , bpq and a block adjacency matrix
M PMppNq. It generates an undirected simple loop-free graph G by picking at random Mi, j
edges among the Ki, j “ |bi||b j| different pairs of nodes between block bi and b j (within a given

block, Ki “
|bi|p|bi|´1q

2 ). A graph G is therefore generated with probability

PSBMpB,MqrGs “
1

´

ś

1ďiă jďp
`Ki, j

Mi, j

˘

ˆ
śp

i“1

` Ki
Mi,i

˘

¯

Just as the Erdös Rényi model, it can be relaxed by using a block probability matrix P P

Mnpr0, 1sq, rather than a block adjacency matrix. In this case, the graph G is generated with
probability

PSBMpB,PqrGs “
ź

1ďiď jďp

P
mi, j

i, j p1´ Pi, jq
Ki, j´mi, j

where mi, j is the number of edges between block bi and b j in G.
Many variations over the stochastic blockmodel have been introduced. In particular, in

Karrer and Newman [2010], authors propose a degree-corrected version to model simulta-
neously the influence of the degree distribution and of the community structure over the
distribution of edges. In Airoldi et al. [2008], a mixed-membership stochastic blockmodel is
introduced, in which nodes are allowed to belong to multiple blocks. A review of the varia-
tions and developments over the stochastic blockmodel can be found in Lee and Wilkinson
[2019].

Spatial models

Many real-world network such as transportation, communication and infrastructure net-
works are typically embedded in a geometric space, most of the time in 2 dimensions. In
networks where the interaction cost between entities depends on the distance between them,
it may be a crucial element to explain edge distribution Barthelemy [2011]. In particular, the
gravity model has been used on various spatial network dataset Bhattacharya et al. [2008];
Jung et al. [2008]; Lambiotte et al. [2008]; Levy [2010]. It is based on the same principle as the
configuration model, but it adds a deterrence function f pdq to ponder the expected weight
of an edge pi, jq based on the distance between the nodes di j

@i, j P V,ErWi, js “ f pdi jqkik j

In Expert et al. [2011] and Cazabet et al. [2017], authors looked after communities by opitimiz-
ing an alternative modularity formula where the expected number of edges between two
nodes in the configuration model had been replaced by the same quantity in the gravity
model. It allows them to detect deviations from a null model which takes into account the
effect of space, and thus detect communities beyond groups of nodes which are geometricaly
close.

The deterrence function can be learned on the data, but it adds many parameters to the
model, which can lead to overfitting. In Simini et al. [2012], authors propose a simpler model
to capture the effect of distance on interactions. Inspired from the radiation process, this
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8 Chapter 2. State of the art

model takes as parameter for each node i its outdegree kout
i and its population ni. For each

pair of node i, j separated by a distance di j, they derive the expected weight of the edge i Ñ j
as

ErWi, js “ ki
nin j

pni ` si jqpni ` n j ` si jq

where si j “
ř

k|0ădikădi j
nk. This model has no free parameters, which ensures that the cor-

respondence between its prediction and observed data cannot be an artifact of the learning
procedure. However, it also makes the model less flexible and it seems not to adapt well to
all scales of study Barbosa et al. [2018]; Liang et al. [2013]; Masucci et al. [2013].

Graph embedding Spatial models can be extended to graphs whose nodes have no spatial
coordinates by embedding their nodes in a low-dimension space. The random dot product
model presented in Nickel [2008] is a class of models in which nodes are represented by
vectors pxiqiPV inRd, where d is supposed to be small, and the probability of an edge between
vertices i and j is defined as a function of the dot product of their associated vectors:

PDPppxiqiqrAi, j “ 1s “ f
`

xT
i ¨ x j

˘

Authors study various embedding and probability function to show that those models are
able to reproduce observed properties of real networks such as clustering and heavy-tailed
degree distribution.

Relying on the dot product implies that only undirected graphs can be modeled, as it
assigns symmetric roles to the vectors xi and x j. However, more general functions can be
considered as well. For example, stochastic blockmodels can be considered as a special case
of graph embedding. The SBM defined by the partition b1, . . . , bp and the probability matrix
P can be described using the canonical base peiqiP~0,p´1� of Rd, by associating to each node
u P bi the vector ei and defining

fpei, e jq “ Pi, j

Embedding node in an euclidian space allows to use generic tools on vectorial data, for
example to perform clustering Lyzinski et al. [2016]. A review of graph embedding techniques
and usage can be found in Cai et al. [2018].

As we see, the wealth of structure in networks has sparcked the development of a large
variety of probabilistic classes of graph models. Those classes have a direct practical interest
in the sense that, given a model class and a set of parameter θ, one can use the probability
distributionPθ to generate synthetic networks mimicking real networks structure. These can
then serve as benchmarks to test network algorithms, or as null models to be compared with
real networks. In practice though, one often needs to generate graphs that reproduce the
structure of an observed network G. This means that the parameter set θ cannot be chosen
arbitrarily by the user, but should be infered on observed data.

Parameter inference

Parameter inference is the inverse problem of graph generation. Given a model class Φ and a
set of parameter θ P Θ, one can generate a graph G by randomly picking it from Ω following
the probability distribution Pθ. On the other hand, the problem of parameter inference is:
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2.3. Parameter inference 9

given an observed graph G and a model class Φ, to find the parameter set θ‹ P Θ such that
the model Pθ‹ best fits (in some sense that will be detailed later on) the graph G. For certain
classes of models, this inference is obvious. In the case of the hard configuration model, for
example, the only degree sequence pk‹i qiPV such that PCMppk‹i qiq

rGs , 0 is given by

@i P V, k‹i “ degGpiq

For other classes, there exist several parameters θ such that PθrGs , 0, each of the corre-
sponding model Pθ is a candidate model for G. For example, in the stochastic blockmodel
class, each partition B “ pb1, . . . , bpq of V corresponds to a candidate model MB.

Many methods exist to select the best parameter set θ‹. In this section, after illustrating
why a statistical approach to parameter inference is necessary, I review the statistical methods
that have been used to rigorously compute the likelihood that an observed network was
generated by a candidate model with a specific parameter set.

Non statistical parameter inference

To select the optimal parameter θ‹ given an observed graph G, one must define an objective
function Ψ : pΘ,Ωq Ñ R such that

θ‹ “ argmax
θPΘ

Ψpθ,Gq

Various objective function can be defined to infer the parameters of a model class. A good
example of this is community detection: since the fundamental article Girvan and Newman
[2002], many methods to partition the nodes of a graph have been proposed, relying on
various definitions of a community and as many algorithms to detect them, which do not
lead to the same partition for a given graph. A review can be found in Fortunato and Hric
[2016].

What is more, even when the graph is generated with known block structure, they do
not necessarily retrieve it. A typical example is the famous modularity function, which was
introduced by Girvan and Newman Newman [2004, 2006]; Newman and Girvan [2004]. It
relies on the fact that the expected number of edges between two nodes u and v with degrees
ku and kv is, according to the configuration model, ErWu,vs “

kukv
2m . Consequently, they define

the modularity of a partition of the nodes B “ b1, . . . , bp as

QpB,Gq “
p
ÿ

i“1

ÿ

u,vPbi

Au,v ´
kukv

2m

They argue that maximizing the modularity of the partition corresponds to groups of nodes
which are more densely connected than one would expect if edges were randomly dis-
tributed, and therefore select the partition B‹ as

B
‹ “ argmax

B

QpB,Gq

However, communities found this way are not necessarly meaningful. Guimerà, Sales-
Padro and Amaral showed that modular partitions can be found even in random graphs
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10 Chapter 2. State of the art

Guimera et al. [2004], as illustrated in figure 2.2. This is due to the fact that density het-
erogeneities in the distribution of edges arise from random fluctuation, an issue which
was further investigated in Reichardt and Bornholdt [2006]. What is more, modularity ap-
pears to have a resolution limit: it is biased toward communities of a specific size, therefore
splitting larger communities and merging smaller ones Fortunato and Barthelemy [2007];
Lancichinetti and Fortunato [2011]. Indeed, finding communities in graphs is not just about
discovering densely interconnected groups of nodes. One also has to determine whether
these heterogeneities are stronger than expected from random fluctuations. Without consid-
ering this statistical significance, the node partition found cannot be rigorously interpreted.

Figure 2.2 – Adjacency matrix of a random graph (left), and the same matrix with nodes
reordered according to the maximum modularity partition (right). Modularity optimization
detects variation of densities that are present in the graph, but they are due to random
fluctuations and not to a block structure .

Graph embedding also often relies on the optimization of ad hoc objective functions Goyal
and Ferrara [2018]. As the feature vectors are learned using machine learning techniques,
the corresponding model has no direct interpretation and must be used as a black box.
What is more, as underlined in Tang et al. [2015, 2017], different embeddings can lead to the
same probability distributions, which makes even harder the inference, interpretation and
comparison of models learned from different observations.

Canonical and microcanonical ensembles

These issues illustrate the need for a principled parameter inference methodology. In par-
ticular, the use of probabilistic classes of models makes it natural to use the likelihood of a
parameter set Lpθ,Gq as an objective function

θ‹ “ argmax
θPΘ

Lpθ,Gq

“ argmax
θPΘ

PθrGs
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This way, the selected set of parameter θ‹ has a natural interpretation as the parameter set
whose associated model generates the observed network with the highest probability.

However, by itself likelihood maximisation is not sufficient to ensure that the infered
parameter set can be properly interpreted. Indeed, we have seen in the first section that the
definition of a model class φ : θ ÞÑ Pθ may introduce bias in the probability distribution
associated with a parameter set. For example, if one defines the configuration model based on
the switching algorithm, the associated probability distribution PCMppkiqiq is not uniform on
all possible graphs with the prescribed degree sequence. Therefore, the fact that an observed
graph G is generated with high probability does not necessarily mean that its structure is
determined by its degree distribution. It may be an artefact of the model class definition.

To avoid such bias, statistical methods for graph modeling have been developed Cimini
et al. [2018]; Park and Newman [2004a]. They fundamentaly shift the modeling perspective:
empirical modeling starts by defining an algorithm to generate graphs with prescribed prop-
erties, and then studies the probability distribution induced by this algorithm; on the other
hand, statistical modeling considers those properties as a constraint imposed on the graph
and define the associated probability distribution as the maximaly random distribution
under these constraints, independently of the mechanisms that could lead to it.

It is analogous to the statistical mechanics treatment of a gas made of a large number n
of particles. Just as the state of such a physical system is characterized by a large number
of quantities (at least the position pi and velocity vi of each particle i), the state of a graph
is characterized by the set of edges E which connect its nodes. In both cases, determining
the exact state st of the system from an initial state s0 and some intrinsic laws is intractable.
Therefore, rather than trying to compute this exact state, statistical modeling enumerates
all the possible states and considers the probability for the system to be in each of these
states. In Jaynes [1957], the author defends such a modeling procedure in statistical physics
by arguing that even though we have no guarantee that the obtained model is the right one,
it is the best possible hypothesis that can be made given available observations: the same
argument is valid as well for graphs.

To define the probability distribution, statistical modeling relies on a set of constraints.
In statistical physics, it can typically be macroscopic quantities such as the temperature,
pressure, etc. which can be measured on a real system. In graph modeling, these measureable
quantities are connectivity measures which will be denoted pεiqiP~0,d´1�, along with a set of
objective values pηiqiP~0,d´1� (typically measured on the real network which is studied).
Examples of common statistical graph classes and their associated connectivity measures
are presented in table 2.1.

Table 2.1 – Common statistical graph models and their associated properties

Model M Connectivy measure pεiqi
Erdös-Renyi number of nodes and number of edges
Configuration model degree distribution
Stochastic block model block to block density
Gravity model node position, strength, and deterrence function
Radiation model node position and strength

Given the connectivity measures and the objective values, there exists two methods to
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12 Chapter 2. State of the art

define the associated statistical model.

Microcanonical ensemble The first is to define the distribution on the so-called micro-
canonical ensemble

Ωpηiqi “ tH “ pV,EHq | @i, εipHq “ ηiu

In this case, the constraints are said to be hard, because any state of the system which does
not fit the constraints has a null probability. For the states H which are in Ωpηiqi , there is no
reason to favour one of them, so the probability distribution is uniform

@H P Ωpηiqi ,PrHs “
1

|Ωpηiqi |

Let’s remark that this probability distribution is the one which maximizes Shannon’s entropy
SrPs “

ř

HPΩpηiqi
PrHs log2pPrHsq, under the constraint that @H < Ωpηiqi ,PrHs “ 0, which

ensures that no undesired bias is added to the model.
This modeling methodology is simple, but computing the probability distribution re-

quires to compute the cardinal of the microcanonical ensemble, also called its entropy. For
classes as simple as the configuration model, this issue is known to be difficult. Asymptotic
values for the number of graphs with specified degree sequence were found as soon as 1974
Bender [1974]; Bender and Canfield [1978], but there still is no exact general formula. Exact
and approximate values for other microcanonical ensembles’ entropy where computed in
Bianconi [2008, 2009]; Coon et al. [2018]; Peixoto [2012].

Canonical ensemble To circumvent this obstacle, one can relax the constraints and impose
that the objective values are matched only on average. In this case, the probability distribution
is defined on the canonical ensemble, i.e. the set of all possible graphs on nodes V

ΩV “ tH “ pV,Equ

Depending on the graph studied, this ensemble can be restricted to undirected graphs,
simple graphs, to forbid self-loops, etc. The probability distribution is then defined as the
maximum entropy distribution which satisfies

@i,ErεipHqs “ ηi

As developed in Barndorff-Nielsen [2014], such a distribution can always be written

PrGs “
1
Z

exp

˜

d´1
ÿ

i“0

θipη̄qεipGq

¸

where Z is the normalization constant (also called partition function) defined as

Z “
ÿ

G

exp

˜

d´1
ÿ

i“0

θipη̄qεipGq

¸
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2.3. Parameter inference 13

To fit such a model, one must compute the values of the parameters pθiqi. Theoretically,
the derivative of lnpZq according to a given θi gives the expected value of the corresponding
observable

B lnpZq
Bθi

“
1
Z

ÿ

G

εipGq exp

˜

d´1
ÿ

i“0

θipη̄qεipGq

¸

“ ErεipGqs

Thus, if these derivatives can be computed explicitly with respect to pθiqi, imposing that
@i P ~1, d�,ErεipGqs “ ηi gives a set of d equations with d unknowns to solve, whose solution
corresponds to the more likely set of parameters pθ̂iqi. However, in practice, these derivatives
may be hard to compute or give rise to intricated systems of equations.

Both methods have been used to define statistical models, so we will briefly review these
applications.

Exponential random graphs

The first attempt to apply statistical physics tools to graph modeling dates back to the
1980’s with what would then be called exponential random graphs. They were designed to
go beyond the configuration model and capture higher order correlations between edges
Anderson et al. [1999]; Wasserman and Pattison [1996].

To do so, these classes rely on the canonical ensemble. In Holland and Leinhardt [1981],
Holland and Leinhardt consider the number of node pairs pi, jq in a directed graph which
are mutually connected, in order to evaluate the tendency of interactions to be reciprocal.
In Park and Newman [2004b], Park and Newman study the case of 2-stars. However, to
account for more complex correlations between edges, one has to introduce more complex
patterns like triangles, stars, etc. which involve a higher number of nodes and edges. Doing
so, the explicit formula for the partition function Z implies to enumerate those patterns on
all possible graphs in Ω, which is impossible as soon as the number of nodes grows above
10.

In Franck O. and Strauss D. [1986], Franck and Strauss considered the number of triangles
and stars to account for correlations between edges sharing at least one node (a model they
call Markov graphs). To overcome the partition function computation issue, they introduce
a pseudolikelihood estimator to estimate values for the parameters pθiqi. This methodology
was then adapted by Wasserman and Pattison in Wasserman and Pattison [1996] and Wasser-
man, Anderson and Crouch in Anderson et al. [1999] to the more general case of an arbitrary
set of connectivity measures ε̄. However, the pseudolikelihood estimator neglects the fact
that pattern count are not independent from one another. For example, triangles contains
2-stars, and thus increasing the number of triangles in a graph implies that the number of
2-stars will increase too. What is more, the larger the patterns considered, the more likely
they are to overlap and the more hazardous it is to neglect those dependencies. In practice,
it causes models to be easily degenerate Handcock et al. [2003]; Newman [2003] and very
sensitive Van Duijn et al. [2009].

Stochastic blockmodels. In Hastings [2006], Hastings uses the exponential random graphs
formalism to determine the most likely node affiliation in p blocks, with a connection prob-
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14 Chapter 2. State of the art

ability inside blocks pin and outside blocks pout. Apart from its statistical rigor, this method
is more flexible than modularity maximization as it allows to seek groups of nodes with
similar connectivity patterns beyond assortativity (i.e. nodes belonging to the same group
connects more densely with each other). In Newman and Leicht [2007], authors extend it
to an arbitrary number p of blocks with no prescribed connectivity pattern, and in Karrer
and Newman [2010], to the case of a degree-corrected stochastic blockmodel, which takes
into account both the degree distribution and a decomposition of the graph in blocks, and
show that it is able to outperform classical stochastic blockmodels in detecting communities
in real networks. This formalism also provided a framework to study the detectability of
communities and allowed to identify density threshold beyond which even perfectly defined
communities cannot be recovered Abbe and Sandon [2015]; Decelle et al. [2011a,b]; Hu et al.
[2012].

Microcanonical stochastic blockmodel inference

Statistical stochastic blockmodeling highlighted another pitfall for parameter inference pro-
cedure. Apart from the bias toward specific values, any inference procedure should incorpo-
rate mechanisms to prevent overfitting. This is particularly obvious in the case of stochastic
blockmodel, because there is one trivial node partition which always leads to the best possible
fit: the total partition whereBtot “ pbi “ tiuqiPV, whose corresponding stochastic blockmodel
generates the observed graph with probability 1. This model perfectly fits observed data, but
it is useless as it does not extract any structure from it. Indeed, a good model should both
fit the observations and simplify them. Previously mentioned papers solved this problem
by imposing the number of blocks p to seek in the graph. However, most of the time this
information is not available beforehand and one needs to infer it too.

In Peixoto [2013], the author presents a methodology based on the maximum description
length (MDL)Grunwald [2004] to do so. The model takes as parameters a node partition B
and a block adjacency matrix M whose entries Mrs corresponds to the number of edges going
from block r to block s. The model is based on the microcanonical ensemble

ΩSBMpB,Mq “

$

&

%

G | @r, s P ~0, p´ 1�2,
ÿ

iPbr, jPbs

Gi j “ Mrs

,

.

-

To obtain the probability that a given graph G was generated using parametersB and M, the
formula is reversed using Baye’s theorem.

PrB,M|Gs “
PrG|B,Ms ˆ PrB,Ms

PrGs

where PrB,Ms is a prior probability distribution on the parameter set. As PrGs does not
depend on B and M, finding the most probable parameters given G amounts to maximizing
PrG|B,Ms ˆ PrB,Ms To avoid overfitting, PrB,Ms imposes a lower probability to finer
partitions. This way, refining the partition reduces PrG|B,Ms “ 1

|ΩSBMpB,Mq|
but at the same

time increasesPrB,Ms. This is made possible thanks to the unification of the parameter set of
all stochastic blockmodels, which allows to define a unique prior distribution on all possible
parameters. The difficulty then shifts to the definition of the prior distribution, which must
be designed not to introduce new biases.
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2.4. Model selection 15

This method has been applied to degree-corrected stochastic blockmodels, nested stochas-
tic blockmodels Peixoto [2019], and weighted stochastic blockmodels Peixoto [2018]. All these
contributions remain within the scope of finding a block structure, but statistical modeling
paves the way for a wider comparison methodology between graph classes. Indeed, most
classes of models are designed to capture one aspect of the graph structure, and neglect the
other ones. Even the stochastic blockmodels, which are flexible enough to describe both as-
sortative or dissasortative, core-periphery, and nested structure cannot capture, for instance,
the spatial structure of a network. Yet, it is very unlikely that any real network’s structure
can be explained as the result of a single mechanism: nodes’ interaction intensity, transitivity,
communities, distances, and other factors all have an impact on the resulting distribution of
edges. Thus, nearly any class of model can be fitted on a dataset and give some information
about the network. In order to determine whether one of these factors dominates the other,
it is necessary to be able to compare them both in terms of accuracy and simplicity.

Model selection

Generaly speaking, the problem of model selection is, given a set of candidate models pMiqiPQ
to find the best one with respect to an observed dataset. It is a classical problem in data
analysis: linear or polynomial regression, clustering in Rd, or fitting a normal distribution
are typical example of model selection Ding et al. [2018]. Parameter inference, as described
in the previous section, is a particular case of model selection in which the candidate models
belong to the same model class. They can thus be indexed by their associated parameters,
which all lie in the same parameter space Θ. For example, to fit a stochastic blockmodel, one
explores the space of all node partitions to find the most appropriate one. In this section, we
consider a more general problem in which models do not belong to the same class, which
imply that their parameters do not necessarily lie in the same parameter space.

A central issue in selecting a model, especially parametrical models, is to avoid both
overfitting and underfitting. Generally speaking, by increasing the number of parameters of
a model, it can be made arbitrarily close to the data. For example, when fitting a polynomial
curve of unknown degree on a set of n points, increasing the degree of the polynomial
increases the number of degrees of freedom of the model, up to the point where a polynomial
of degree n´1 can pass exactly through each point in the set. Yet, such an overfitted model is
useless as it lacks generalizability and may not fit new data produced by the same mechanism.
On the other hand, an underfitted model will lack accuracy and neglect important piece of
information present in the observations, as illustrated on figure 2.3

Performing model selection on graphs brings about new challenges as classical model
selection technique were designed for numerical of vectorial datasets. Of course, through its
adjacency matrix a graph can be considered as a vector and statistical models can be seen
as probability distributions on subset of Rn2

. Model selection thus boils down to finding
the probability distribution that best fits the observed dataset, which is a common task in
statistical inference. The main problem is that in the vast majority of cases, the dataset to be
modeled consists of a single network while statistical inference requires many observations
to be sound.

This issue questions the very definition of overfitted and underfitted model: as there is
a single observation, there is no clue to the intrinsic variability of the dataset with which to
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16 Chapter 2. State of the art

Figure 2.3 – Examples of underfitted (left) and overfitted (right) models

compare the model. In Ghasemian et al. [2019], authors tackle this question, showing that
there is a trade-off between a model’s capacity to describe the edges present in the observed
graph and its capacity to predict new edges produced by the same mechanism. They identify
this trade-off as a way to determine whether a model is overfited or underfited. Doing so,
they slightly change the modeling perspective by considering the edges and not the whole
graph as the fundamental observations. We will see in the thesis the possible consequences
of such a perspective shift.

In the following, we present some classical model selection techniques and how they
were adapted to the specific case of graph dataset.

Frequentist inference and statistical tests

Frequentist inference relies on convergence theorems like the central limit theorem to design
statistical tests. Assuming that a sequence of random variables pXiqiP~0,n´1� were indepen-
dently generated from the same distributionP0, it states that the distribution P̄ of their mean
X̄n “

1
n
řn´1

i“0 Xi converges toward a normal law PNpµ,σq.

Statistical tests Based on this theorem, various tests have been designed to check whether
a sample pxiqiP~0,n´1� was generated from a distribution P0, whether two samples were
generated from the same distribution, and so on. As these tests rely on asymptotic results,
their application requires the sample size n to be large enough to justify the use of the limit
distribution. These tests were originaly designed for real-valued random variable so they
need to be adapted to graphs. In practice, efforts in this domain have focused on determining
whether two graphs (or two graph samples) were generated by the same model Fraiman
and Fraiman [2018]; Fujita et al. [2020]; Ghoshdastidar et al. [2017]; Tang et al. [2014, 2017].
This allows to perform statistical tests on models’ parameters, which are real numbers, but
it does not provide a statistical procedure to determine which model is the more relevant
given an observed graph.

In Takahashi et al. [2012], authors develop a fitting procedure based on the comparison
of the observed graph spectrum with the average spectrum of graphs generated by a model.
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2.4. Model selection 17

However, this procedure is based on information theoretic criterion rather than statistical
inference, and only serves as a preliminary phase for the statistical comparison of graph
samples. In Cerqueira et al. [2017], a methodology is presented to evaluate the statistical
relevance of a model with respect to a graph sample, based on the distance between the
average graph of the sample and the mean of the model distribution. This method can
indeed be used to statisticaly infer the most fitted model, but it relies on a graph sample
which must be sufficiently large, while in most real situation only a single graph is observed.

Graph distances This last work also brings forward the question of the distance between
graphs. Statistical tests on real numbers rely on an intuitive notion of distance, for example
to compute confidence interval. When considering graphs, the distance which is used is in
itself an important question as it may change the appreciation of whether a model generates
graph similar to those observed, and thus its relevance.

In Cerqueira et al. [2017], authors rely on euclidian space distances. Given a labeling
function φ : V Ñ ~0,n ´ 1�, there is a one-to-one correspondance between graphs and
adjacency matrices so any distance overMnpRq can be applied to graphs. In particular, the
L1 distance

d1pG,Hq “
ÿ

i, j

|Gi, j ´Hi, j|

has a natural interpretation as it counts the number of differences between edges in two
graphs G and H over the same set of vertices. In this context, it is called the edit distance.
However, this interpretation is correct only under the assumption that node labeling is the
same between graph G and H. In our case, this means that models must keep node labels
unchanged when generating random graphs.

Apart from the labeling question, the edit distance as well as other purely algebraic
distances do not take into account the topological significance of different edges when
computing the distance. For example in figure 2.4, there is a single edge of difference both
between graph G1 and G2 and between graph G1 and G3. However, deleting the bridge edge
has much more impact on the overall topology of the graph, which is not accounted for by
the edit distance. It is to take into account those topological properties that graph-specific
distances where designed, such as DeltaCon Koutra et al. [2013], the Resistance-perturbation
distance Monnig and Meyer [2016] or the Network portrait divergence Bagrow and Bollt
[2019]. A review of existing graph distances can be found in Wills and Meyer [2019].

Bayesian inference

In situations where the central limit theorem hardly applies, statistical inference may be per-
formed using bayesian techniques. Theoretically, it is grounded on representation theorems
which originated with De Finetti’s work on exchangeable random sequences Finetti [1937].
A sequence of random variables pXiqiPN taking value in a space Ω is said to be exchangeable,
if for any permutation σ ofN and any sequence of subset of Ω, pAiqiPN

PrpXi P AiqiPNs “ PrpXσpiq P AiqiPNs
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18 Chapter 2. State of the art

Figure 2.4 – Example of the non equivalence of edges in computing distances between graphs

De Finetti’s theorem states that for such a sequence, there always exists a probability measure
µ on the set ProbpΩq of probability distributions on Ω such that

PrpXi P AiqiPNs “

ż

QPProbpΩq

ź

iPN

QpAiqdµpQq

This result can and is frequently understood as a two stage procedure to generate the random
sequence pXiqi:

• first, a probability distribution Q (the model), is drawn at random, following the prior
distribution µ.

• second, the Xi are generated independently, following the distribution Q.

In particular, the joint distribution for the model and the observations can be written

PrpXiqi,Qs “ PrpXiqi|Qs ˆ dµpQq

“
ź

i

QrXis ˆ dµpQq

In order to select the model that most likely generated a sequence of observations pxiqiP~0,n´1�
given a prior distribution µ, this formula can be reversed using Bayes’ theorem

Q̂ “ argmin
QPProbpΩq

PrQ|pxiqiP~0,n´1�s

“ argmin
QPProbpΩq

PrpXiqiP~0,n´1�|Qs ˆ dµpQq
PrpxiqiP~0,n´1�s

“ argmin
QPProbpΩq

n´1
ź

i“0

Qrxis ˆ dµrQs as PrpxiqiP~0,n´1�s does not depend on Q
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2.4. Model selection 19

In practice, two difficulties arise to use such techniques in statistical inference. First, given
a dataset, there might be different possibilities to define the exchangeable sequence on which
the representation theorem is applied, and they lead to different model. Most modelisation
methods based on this bayesian framework have relied on the hypothesis that vertices
are exchangeable. It allows to use the random arrays representation theorem by Aldous
Aldous [1981] and Hoover Hoover [1979]. These results have been widely applied to graph
modelisation, and have shown nice connections with the theory of graph limits Lovász and
Szegedy [2006], giving rise to the theory of graphons Bollobás and Riordan [2011]; Diaconis
and Janson [2007]; Orbanz and Roy [2015]. The major limit this theory suffers from to model
real network is that it can only model dense graphs (i.e. the number of edges in the graph
scales proportionaly to |V|2). Indeed, the only graphon which produces sparse graph is the
zero-graphon which generates graphs with no edges.

The stochastic blockmodel inference presented in section 2.3.4 can also be seen as an
application of this methodology, in which the exchangeable element is implicitly considered
to be the whole graph and the model space is restricted to stochastic blockmodels. However,
it implies that when a single graph is observed, the sequence of observations contains a single
element, which is problematic to perform statistical inference. Finally, in two articles, Crane
and Dempsey advocated for the use of edge exchangeable models Crane and Dempsey [2016,
2018], showing that they can be used to model sparse networks.

Minimum description length

Once the exchangeable elements are chosen, they define a value space Ω and thus a model
space ProbpΩq, but one still has to define the prior distributionµ in order not to bias the model
selection. To do so, the connection between bayesian inference and the minimum description
length (MDL) principle for model selection Barron et al. [1998]; Grunwald [2004]; Grünwald
and Roos [2019] prooves useful. This principle steams from the idea that a good model needs
to satisfy two antagonistic requirement: it must fit to the observations, but at the same time
simplify them in order to extract their structure and remove noise. The best model is thus
defined as the one which compress the most the observations. The description length of the
observations pxiqiP~0,n´1� using a model Q is defined as

DLppxiqiP~0,n´1�,Qq “ DLppxiqiP~0,n´1�|Qq `DLpQq

where DLpQq is the description length of the model and DLppxiqiP~0,n´1�|Qq the description
length of the dataset, given the model. The first term corresponds to the complexity of the
model: the more parameters it has, the longer it is to encode. The second term corresponds
to the accuracy of the description: the closer the model fits to the dataset, the less additional
information is required to describe pxiqiP~0,n´1� when Q is known.

To compute these description length, one needs a quantitative theory of information. It
can be defined in different ways depending on the type of encoding Kolmogorov [1968], but
the most common one is the one defined by Shannon in 1948 Shannon [1948] which relies on
statistical regularities to encode messages. Given a set of messages Ω, and a source which
picks independently at random messages following a probability distribution P and sends
them over a binary channel, it can be shown that the best average compression is obtained
when the code length of a message x P Ω is DLpxq “ ´ log2pPrxsqGrunwald [2004]. Therefor,
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with the notations introduced above, the total description length can be written as

DLppxiqiP~0,n´1�,Qq “ ´ log2pPrpxiqiP~0,n´1�,Qsq

“ ´ log2

˜

n´1
ź

i“0

Qrxis ˆ dµpQq

¸

“ ´

n´1
ÿ

i“0

log2pQrxisq ´ log2pdµpQqq

This expression highlights that the prior distribution µ captures the complexity of the
model, by assigning lower probabilities (and thus longer description length) to more complex
models. This way it counterbalances the fact that a model with more parameters will always
be able to fit more tightly to observations and thus predict them with higher accuracy (leading
to shorter description length). What is more, this expression also implies that, as the size of
the sample grows, the relative weight of the prior distribution decreases, which is coherent
with the fact that the risk of overfitting decreases as the sample grows.

Conclusion

As we have seen, there is a wide spectrum of graph models and modeling frameworks,
many of them being parametric and thus susceptible to be fitted to any particular observed
network. To capture the fundamental structure of a network, one must be able to sort out the
most relevant ones which implies to compare their relative performance. This is necessary
as well for models whose parameters can range over several orders of granularity, such as
the node partition of blockmodels or the deterence function of the gravity model, as a too
low level of granularity may lead to underfitting and a too high level to overfitting.

The main difficulty in performing such performance comparison is to find meaningful
criterions which can be applied to models whose parameters do not belong to the same
parameter space. While one may compare community detection algorithms based on their
ability to recover a known planted partition, There is no standard procedure to compare the
relevance of a stochastic blockmodel and a configuration model in modeling an observed
network. Being probabilistic models, they all incorporate probability distributions that can
be used to evaluate their prediction power, but those probability distributions are not always
defined on the same sets, and sometimes we do not even have an explicit formula for them (for
example in the case of the configuration model). What is more, several models’ distributions
are defined on sets of graphs (microcanonical and canonical ensembles), which implies that
their fitting on a single network amounts to statistical inference on a single observation. This
undermines any attempt to interpret rigorously the results of such an hazardous inference
process.

In this thesis, I first present in chapter 3 a statistical test methodology to evaluate the
probability that an observed graph was generated by a candidate model. To do so, I intro-
duce and study the properties of graph spaces, the set of graphs that a given model can
generate, whose probabilitic structure is enriched with a geometric structure. This approach
is inspired by the frequentist inference methodology, while the rest of the thesis focuses
on bayesian inference model selection techniques. In chapter 4, I study bayesian stochastic
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blockmodel inference based on the microcanonical ensemble. I show that using the entropy
of the microcanonical ensemble to measure the complexity of a model leads to a bias toward
overfitted model, which can only be mitigated by the introduction of some specific prior dis-
tribution over candidates models. Finally, in chapter 5, I introduce edge statistical models, a
reformulation of statistical models as probability distributions on sequence of edges to avoid
the single observation inference issue. I then show how bayesian inference can be applied to
this new formulation and illustrate its results both on stochastic blockmodel inference and
on stochastic blockmodel and configuration model comparison.

Some of these contributions were published in the Complex Networks conferences in
2019 and 2020 Duvivier et al. [2019, 2020]. Two others have been submitted to the IEEE
TNSE journal Duvivier et al. [2021b] and to the Journal of Complex Networks Duvivier et al.
[2021a].
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Chapter 3

Statistical test over a metric
microcanonical ensemble

Statistical modeling provides a common formulation for various graph models, which is
useful to perform model selection. By formalizing them as probability distributions over sets
of graphs, it allows to evaluate the likelihood that an observed graph was generated by a
candidate model. This is particularly interesting in the case of the microcanonical ensemble,
as the probability distribution is fully characterized by the entropy of the associated ensem-
ble, i.e. the logarithm of its cardinal. Therefore, many papers have focused on computing the
size of various graph ensemble Bianconi [2009], Peixoto [2012], Zingg et al. [2019]. A whole
methodology for community detection based on those principles has been developed in the
case of stochastic blockmodels Peixoto [2019]. The issue is that, by considering models as
unstructured sets, this approach neglects graphs topology.

Indeed, graphs are also geometrical objects, in the sense that one can define distances
between them. Such a distance induces a structure on a model’s ensemble. Much work has
been devoted to quantifying how similar two graphs are Wills and Meyer [2019], especially
from a topological point of view Monnig and Meyer [2016], Koutra et al. [2013]. These
distances between two graphs can be generalized to evaluate the quality of a model by
computing a distance between an observed graph and the graph ensemble associated to a
model. For example, the widely used measure for community detection known as modularity
Newman [2006] evaluate the quality of a partition by comparing the edge weight in the
observed graph with the expected edge weight of the graph in the configuration model. In
this case, the problem is to evaluate the statistical significance of the results, in order not to
mistake noise for structure, as was pointed out in Guimera et al. [2004].

In this chapter, I first review in section 3.1.1 and 3.1.2 existing techniques to measure the
relevance of a model with respect to a graph based on the microcanonical ensemble. Then, I
introduce in section 3.2 the edit distance expected value, a measure which takes into account
both the geometric and the probabilistic structure of the graph ensemble. Finally, I show
how this measure can be used to evaluate a model relevance with respect to a given graph
in section 3.3.

23
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24 Chapter 3. Statistical test over a metric microcanonical ensemble

The microcanonical ensemble

As explained in section 2.3 of the state of the art, the microcanonical ensemble describes the
structure of a graph G based on connectivity measures pεiqi and objective values pνiqi Cimini
et al. [2018], which define the set of graphs

ΩM “ tH | @i, εipHq “ νiu

In the rest of the chapter, we will consider labelled directed multigraphs with self-loops.
Although they are not the most widely used in practice, it makes probability derivations
easier, especially for the configuration model.

Entropy

The probability distribution P associated to the microcanonical ensemble ΩM is the uniform
one:

@H P ΩM,PpHq “
1

|ΩM|

Thus, computing the probability to choose G among all possible graphs in ΩM boils down
to counting the number of graphs it contains. The Shannon entropy of this distribution is
SpPq “ logp|ΩM|q, and it is directly related to the likelihood of a given model. If we observe
a graph G and consider a set of modelsM “ tM1, . . . ,Mpu, we can find which model G has
most likely been sampled from by maximising its likelihood

M˚ “ argmax
MiPM

PrMi|Gs

which can be done using Bayes theorem

PrMi|Gs “
PrG|Mis ˆ PrMis

PrGs

If we assume a non-informative uniform prior distribution on all models PrMis “
1
p , as

PrGs is a constant, maximising the likelihood is equivalent to maximising PrG|Mis “
1

|ΩMi |

or minimising the entropy logp|ΩMi |q. This idea is developed and applied to the case of
stochastic blockmodels in Peixoto [2019].

However, considering the common situation in which one is interested in modeling
the global topology of G rather than its precise edge list, likelihood maximisation appears
insufficient as a model selection criterion. For example, if we consider the three graphs on
figure 3.1, with G1 as a reference, both G2 and G3 are different from G1, but the topology
of G1 and G2 is almost the same. Therefore, a model which produces mostly G3-like graphs
cannot be considered as good a model for G1 as one which produces G2-like ones. This shows
that a purely probabilistic approach to model selection is not fully adequate, at least in the
microcanonical framework.
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3.1. The microcanonical ensemble 25

Figure 3.1 – Three graphs with 8 nodes and 10 edges. G1 and G2 (leftmost) share the same
topology even if they are not strictly equal, which is not the case of G3 (rightmost).

Distance to the barycenter

On the other hand, one may measure how typical G is with respect to ΩM by comparing it
with an appropriate representative of this ensemble, for example its barycenter:

GM “
ÿ

HPΩM

PpHqH

If we denote WG the weight matrix of graph G, it can easily be derived that

(3.1) @pi, jq P V2,WGMpi, jq “ ErWHpi, jqs

Remark. GM does not necessarily belong to ΩM. In particular, even if all graphs in ΩM have whole
weight, it does not imply that GM’s edge weights are integers. Examples of barycenter weights for
common models are derived in appendix 7.1.1 and given in table 3.1

Table 3.1 – Statistical graph models’ barycenter weight

Model M Parameters GMpi, jq mGM

Erdös-Renyi n,m m
n2 m

Configuration model pkin
i , k

out
i qiPV

kout
i kin

j

m m

Stochastic block model pmr,sqr,s
mci ,cj

|ci||c j|
m

Gravity model pkiqiPV, f kik j f pdpi, jqq m

Radiation model pkin
i , k

out
i qiPV

kout
i kin

i kin
j

pkin
i `si jqpkin

i `kin
j `si jq

m

The famous modularity function to evaluate the quality of a node partition B “ pb1, . . . , bpq

on a graph G “ pV,Eq with weight matrix WG is defined as the difference between the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI093/these.pdf 
© [L. Duvivier], [2021], INSA Lyon, tous droits réservés



26 Chapter 3. Statistical test over a metric microcanonical ensemble

number of edges inside each cluster and the expected number for a random graph with the
same degree distribution (i.e. following the configuration model). It can be understood as a
comparison with the barycenter GM of the corresponding configuration model.

QpG,Bq “
1

2m

p
ÿ

i“1

ÿ

u,vPbi

˜

WGpu, vq ´
kout

u kin
v

m

¸

“
1

2m

p
ÿ

i“1

ÿ

u,vPbi

`

WGpu, vq ´WGMpi, jq
˘

“ dpG,GMq

A problem is that G is compared with a single graph GM which is supposed to account for
the whole graph ensemble ΩM. In particular, all information about the dispersion around the
barycenter is lost, which undermines any attempt to interpret statistically the results. This in
turn shows how a purely geometrical approach to model selection also fails to account for
the whole structure of ΩM.

Graph space and the edit distance expected value

As we have seen, existing techniques to compare a graph G and a model M exploit in
different ways the ensemble ΩM. Entropy based techniques described in section 3.1.1 focus
on its cardinal, but they neglect the topological similarities of graphs inside the ensemble.
On the other hand, as described in section 3.1.2, an objective function such as the modularity
accounts for these similarities, but it does so with a single graph which is supposed to
represent the whole set. Reality is more complex: ΩM is a set of graphs with a probability
distribution, and it can be further structured with a metric. Both aspects, probabilistic and
geometric, should be taken into account in order to understand the structure of ΩM, and the
plausibility that a graph G was generated by the associated model M.

Definition 2. A graph space is a triplet pΩM,P,dq where ΩM is a set of graph, P : ΩM Ñ r0, 1s is
a probability distribution on this set, and d : Ω2

M Ñ R
` is a distance on ΩM.

Many different measures exist to compute a similarity score between two graphs G and
H Wills and Meyer [2019]. One of the simplest is the edit distance. For two graphs on the
same vertex sets G1 “ pV,E1q and G2 “ pV,E2q, it counts the number of differences between
their respective sets of edges.

edpG1,G2q “
ÿ

pi, jqPV2

|WG1pi, jq ´WG2pi, jq|

As expected from its name, edit distance is a distance between graphs. Indeed, if we consider
the weight matrix WG of a graph G as a point in Rn2

, the edit distance corresponds to the
L1 distance and for any model M, ΩM is a subset of Rn2

. The dimension prevents any direct
drawing of it for graphs with more than 2 nodes, but it is possible to obtain some intuition
about its shape.
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3.2. Graph space and the edit distance expected value 27

In the following, we will use a normalized version of the edit distance which can be
interpreted as the fraction of different edges between G1 and G2.

nedpG1,G2q “
1

2m

ÿ

pi, jqPV2

|WG1pi, jq ´WG2pi, jq|

This normalized edit distance is no longer a distance onRn2
. Yet, for all models M considered

here, the number of edges m is constant over the set ΩM. Thus, the normalized edit distance
is equivalent to edit distance inside ΩM and it allows to compare more easily results between
various models, because whatever the model M, the distance between any two graphs G1
and G2 in ΩM is at most 1.

Edit distance to the barycenter

ΩM barycenter has already been introduced in section 3.1.2, where it was used as a proxy for
the whole space. Using normalized edit distance, it is possible to check how much graphs in
ΩM are similar to the barycenter GM. We consider six different models:

1. EM: Erdös-Renyi with 50 nodes and 1000 edges

2. CFM cst: configuration model with 50 nodes and a constant degree distribution (kin
i “

kout
i “ 20)

3. CFM arith: configuration model with 50 nodes and an arithmetic degree distribution
(kin

i “ kout
i “ i` 1)

4. SBM hom: stochastic block model with 50 nodes and 5 communities, each having
internal density 1.2, and external density 0.2.

5. SBM het: stochastic block model with 50 nodes and 5 communities, with internal
density 0.4, 0.8, 1.2, 1.6, 2, and external density 0.2.

For each model M, we pick a random sample SM of 100 graphs in ΩM and for all G P SM
we compute the normalized edit distance to the barycenter nedpG,GMq. Results are shown
in figure 3.2.

The first thing to underline is that whatever the model, nedpG,GMq is greater than 0.5,
which means that most graphs in ΩM have at most half of their edges in common with GM.
This observation shows that for those models, the graph space is not concentrated around
its barycenter. On the contrary, most graphs in ΩM seem to be at a specific distance from its
barycenter, as would happen for a sphere with a radius depending on the model: 0.67 for ER
and CFM cst, 0.55 for CFM arith, 0.69 for SBM hom and 0.71 for SBM het.

All models were chosen to have similar entropy, as shown in table 3.2, yet their charac-
teristic distance to the barycenter vary greatly. Furthermore, we observe that these quantities
are not positively correlated: CFM arith, which is the model with the larger entropy is also the
one which is the most concentrated around its barycenter. This means that even if this model
can generate a higher number of different graphs, the graphs it produces tend to be more
similar one to the other than for other models. This is logical as this model preserves a degree
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28 Chapter 3. Statistical test over a metric microcanonical ensemble

Figure 3.2 – Edit distance to the barycenter for 6 different models. For each model M
in ordinate, we draw 100 graphs G at random from ΩM and compute for each of them
nedpG,GMq. The distribution of results is then plotted as a boxplot.

Model Characteristic distance Entropy
ER 0.67 2050

CFM cst 0.67 2500
CFM arith 0.55 3300
SBM hom 0.69 1840
SBM het 0.71 1840

Table 3.2 – Edit distance to the barycenter and entropy.

distribution, which enforces more constraints on edges’ distribution than an Erdös-Renyi or
a stochastic block model.

This concentration of graphs at a specific distance from the barycenter is a consequence
of the dimensionality of the vector space. Let’s denoteBpG, rq the ball of center G and radius
r in pRn2

, edq. We consider the set

ΩMprq “ tG P ΩM|nedpG,GMq ď ru
“ tG P ΩM| edpG,GMq ď 2mru
“ ΩM XBpGM, 2mrq

The volume Vnprq of BpGM, 2mrq is proportional to rn2
, therefore

(3.2) @r ă 1,
Vnprq
Vnp1q

ÝÑ
nÑ8

0

The volume of the ball concentrates quickly at its periphery as the dimension increases, and
so does the volume of ΩM. The additional constraints on ΩM modify its shape in such a way
that graphs too far away from the barycenter are rare, which explains why the concentration
does not happen at distance 1 from the barycenter. Still, this phenomenon is strong enough
to imply that even graphs generated according to a model M will share only a relatively
small fraction of their edges with the barycenter of the model.
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3.2. Graph space and the edit distance expected value 29

Edit distance expected value

The previous observations on the structure of graph spaces show that in order to compare
a graph G with a model M, one should consider more than the mere cardinal of ΩM. One
possibility to evaluate how similar to G are the graphs in ΩM is to compute the expected
value of the normalized edit distance:

EDEVpG,Mq “ E
HPΩM

»

–

1
2m

ÿ

pi, jqPV2

|WGpi, jq ´WHpi, jq|

fi

fl

To illustrate how EDEV provides further information on the place of G within the graph
space, we compare it with entropy for different synthetic graphs. A low value indicates
that G is close to other graphs in ΩM, and thus that it is typical of the model, while a high
value shows that it is an outlier. As a case study, we consider the Erdös-Renyi model. Let’s
recall that we consider multigraphs, which implies that we allow for densities rising above
1. The extension of Erdös-Renyi model to multigraphs is straigthforward, ΩERpn,mq contains
all multigraphs with n nodes and m edges and each multigraph is generated with the same
probability 1

|ΩERpn,mq|
. In practice, we consider models with n “ 100 nodes and a number of

edges m ranging from 100 to 500000. For each, we consider three graphs:

• G1pmq, picked uniformly at random inside ΩERpn,mq

• G2pmq, a graph made of two equal communities, each with n
2 nodes and m

2 edges,
perfectly separated.

• G3pmq, the graph where all edges are between nodes 0 and 1.

Results are shown on figure 3.3.
For each value of m, all three graphs belong to the graph ensemble ΩERpn,mq. We observe

that as density increases |ΩERpn,mq| grows exponentially, which implies that the probability
to pick at random G1pmq, G2pmq or G3pmq becomes even less probable. Yet, in the case of the
random graph G1pmq this is counter-intuitive: as density grows and becomes higher than
1, most graph in ΩERpn,mq become complete graphs with each edge having weight about m

n2 .
This is the case of G1 too with a high probability, so ERpn,mq is very likely to produce graphs
similar to G1pmq, even if it is very unlikely to produce G1pmq itself.

On the other hand, edit distance expected value is able to capture this phenomenon.
While it is close to 1 for all three types of graphs when density is low because in this situation
a random model can hardly predict correctly which edge is present in any graph, it decreases
quickly towards 0 when density rises above 0.1 for G1pmq. For G2pmqwe have an intermediate
situation: edit distance decreases too, but it reaches its minimum around 0.5, indicating that
even when it is densely populated, the model is only able to reproduce correctly half of its
edges. This is normal as G2pmq concentrates them inside the communities, which means on
half of all possible node pairs. These observations are actually a particular case of a more
general result, which can be stated as:
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30 Chapter 3. Statistical test over a metric microcanonical ensemble

Theorem 1. Let B1 and B2 be two partition on ~1,n�, with p1 and p2 blocks respectively. Let
M1 PMp1pNq and M2 PMp2pNq be two block adjacency matrices such that

ÿ

i, jPr1,p1s
2

M1ri, js “
ÿ

k,lPr1,p2s2

M2rk, ls “ m

Let’s consider two series of stochastic blockmodels defined as S1pkq “ pB1, k ¨ M1q and S2pkq “
pB2, k ¨M2q, whose barycenters are denoted G1pkq and G2pkq. We have that

1. There exists d P R,@k PN, edpG1pkq,G2pkqq “ d

2. Let pGkqkPN be a series of random graphs, each drawn following model S1pkq.

(3.3) EDEVpGk,S2pkqq
P
ÝÑ
kÑ8

d

a proof of this result can be found in appendix 7.1.2

Remark. In particular, if M1 “ M2, this theorem means that the normalized edit distance expected
value between a graph picked at random and the barycenter of the stochastic blockmodel converges
toward 0 as the density grows to infinity: ΩSpkq shrinks around GSpkq. This is what we observe with
G1pmq. Yet, we also observe on figure 3.3 that the normalized edit distance converges toward 0 only
as density rises above 1. Thus, in practice, the vast majority of real world networks are too sparse for
this assumption to hold true and most graphs in ΩSpkq are far from GSpkq, as developed in section 3.2.1

Model likelihood

As the distance to the barycenter, the expected value of the normalized edit distance is
characteristical of a model. For a model M, the values of EDEVpH,Mq for graphs H in ΩM
are concentrated around a specific value dM. We can use this fact to rule out models which
fit badly on an observed graph G.

For example, let’s consider the configuration model CFMDpn, kout
i , kin

i q

n “ 50

@i P ~0,n´ 1�, kout
i “ kin

i “ i

We use this model to generate a graph Gi. CFMDpn, kout
i , kin

i q will be called the generative
model, and Gi the observed graph. On this observed graph, we test the stochastic blockmodel
SBMi obtained by partitioning its nodes in two blocks: B0 contains even nodes and B1 odd
nodes (this way we avoid to put all high-degree nodes in the same block) and learning the
block adjacency matrix on Gi. We call SBMi the candidate model. We generate a sample Si of
100 test graphs with the candidate model SBMi and compare the normalized edit distance
EDEVpGi,ΩSBMiq of the observed graph to the candidate model with EDEVpH,ΩSBMiq for all
test graphs H P Si. This experiment is performed 5 times, and results are shown on figure
3.4.

We observe that for all five experiments, the normalized edit distance expected value
to the candidate model SBMi for the observed graph Gi is around 0.74, while for the test
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3.3. Model likelihood 31

Figure 3.3 – Entropy and edit distance expected value against density. For each density,
three graphs are generated. G1pmq is random, G2pmq is made of two random communities
and G3pmq has its edges concentrated on a single pair of nodes of weight m. On the top plot,
the entropy logp|ΩERpn,mq|q is plotted against the density m

n2 . As all graphs belong to the same
graph ensemble ΩERpn,mq, the three curves are the same. On the bottom plot the edit distance
expected value EDEVpGpmq,ΩERpn,mqq is plotted against density.
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32 Chapter 3. Statistical test over a metric microcanonical ensemble

Figure 3.4 – 5 graphs Gi were generated with a generative model CFMDpn, kout
i , kin

i q. Their
normalized edit distance expected value with respect to a candidate model SBMi is plotted as
diamond. As a comparison point, the distribution of the normalized edit distance expected
value for 100 test graphs generated with SBMi is plotted as dots and boxplot.

Figure 3.5 – 5 graphs Gi were generated with a generative model SBMpn,B,Mq. Their normal-
ized edit distance expected value with respect to a test model CFMDi is plotted as diamond.
As a comparison point, the distribution of the normalized edit distance expected value for
100 test graphs generated with CFMDi is plotted as dots and boxplot.
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3.3. Model likelihood 33

graphs generated by SBMi it is between 0.53 and 0.56. This shows that the normalized edit
distance expected value to SBMi is significantly different for the observed graphs, which were
generated by the configuration model CFMDpn, kout

i , kin
i q, and for the test graphs generated

by the stochastic blockmodel SBMi. It is thus very unlikely that the observed graph Gi was
generated by the candidate model SBMi.

We then perform the same experiment the other way round, by considering as generative
model a stochastic blockmodel SBM0pn,B,Mq defined by

n “ 50
B “ ~0, 24�, ~25, 49�

M “

„

500 0
0 500



5 graphs Gi are generated using this stochastic blockmodel. As candidate model, we consider
a configuration model CFMDi obtained by learning the degree sequence of Gi. A sample S1

of 100 test graphs is randomly picked in ΩCMFDi and we compare EDEVpGi,ΩCFMDiq with
EDEVpH,ΩCFMDiq for all H P S1. Results are shown on figure 3.5. Once again, we observe that
the normalized edit distance expected value to the candidate model CFMDi is significantly
different for the observed graphs, which were generated by SBMpn,B,Mq, and for the test
graphs generated by CFMDi. This allows us to reject the hypothesis that the observed graph
Gi was generated by the candidate model CFMDi.

Statistical hypothesis testing

This methodology can be formalized using statistical hypothesis testing. Let’s say we have
a graph G and a model M (possibly obtained by fitting some parameters on G). We want to
test the hypothesis H : “the observed graph G has been generated by the candidate model
M". We do so in the following way:

1. Choose a confidence level δ, for example 0.01.

2. Generate a random sample from the candidate model S Ă ΩM, of nb test graphs.

3. Infer the probability distribution Ped of EDEVpH,ΩMq for H P ΩM from the sample S.

4. Compute the probability

p “ Pedr|EDEVpH,ΩMq ´ dM| ě |EDEVpG,ΩMq ´ dM|s

5. If p ă δ, it means that the probability that G was generated by M is inferior to δ and
the hypothesisH can be rejected.

In practice, to infer the probability distribution Ped, we assume that this distribution is
normal, so we only need to infer the mean dM and the standard deviation σM of the dis-
tribution. This assumption is verified on the models described in the previous subsection,
by comparing the cumulative distribution function of the sample with the one of the cor-
responding normal distribution. An example is shown in figure 3.6. The shapiro-wilk test
returned a p-value below 0.05 (around 0.01) for 2 of the 10 models. This means that the
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34 Chapter 3. Statistical test over a metric microcanonical ensemble

Figure 3.6 – Comparison between the empirical distribution of the edit distance expected
value for graphs generated with a configuration model (CFMD0) and the normal distribution
with the same mean and standard deviation.

Figure 3.7 – Spatial graph generated using the waxman random geometric model. 100
nodes are randomly distributed in a r0, 1s ˆ r0, 1s square. They are then connected with a
probability depending on the distance d between nodes: ppdq “ 10 exp

` d
0.05L

˘

, with L the
maximum distance between two nodes. Communities are computed using graph tools1.
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normal distribution can only be considered a rough estimate in general, but we found it
good enough as a first approximation.

Let’s consider a situation in which one wishes to evaluate the relevance of the block
structure computed on a graph G, with a weight matrix WG. Whatever the graph, and the
partition B “ pb1, . . . , bpq of its n nodes, it is always possible to define M PMppNq as

@i, j P ~1, p�,Mri, js “
ÿ

uPbi,vPb j

WGru, vs

such that G P ΩSBMpn,B,Mq. One may then wonder whether this stochastic blockmodel is
a relevant model of G. An even trickier question is to evaluate whether any stochastic
blockmodel can be a relevant model. In particular, spatial models can generate graphs with
groups of nodes densely connected due to their position rather than to block membership.
An example of such a graph is shown in figure 3.7. It may then be hard to tell whether the
blocks found are indeed a legitimate model of the observed graph or should be considered
as artefacts, consequences of the underlying spatial structure.

To illustrate how statistical hypothesis testing allows to adress this issue, we consider
eight models: four stochastic blockmodels and four waxman model for random geometric
graphs2 with different sets of parameters. The waxman model for spatial graphs allows
to easily control the strength of the spatial structure, by tuning the speed at which edge
probability decays as the distance between nodes rises. The number of nodes is fixed to
n “ 100 and the parameters are fixed such as to ensure a density d around 0.036. All stochastic
blockmodels use a node partition in four blocks of 25 nodes, with a block adjacency matrix
of the form:

»

—

—

–

mint mext mext mext
mext mint mext mext
mext mext mint mext
mext mext mext mint

fi

ffi

ffi

fl

The four stochastic blockmodels are then defined by:

1. M0: mint “ 90, mext “ 0

2. M1: mint “ 75, mext “ 5

3. M2: mint “ 60, mext “ 10

4. M3: mint “ 45, mext “ 15

This way, the graphs generated using SBM0 are made of perfectly separated blocks of nodes,
while those generated by SBM3 have blocks with as many internal and external edges.

For the waxman models, we also consider four parameter sets:

1. M4: α “ 0.1, β “ 1

2. M5: α “ 0.08, β “ 1.6
1https://graph-tool.skewed.de/
2https://networkx.org/documentation/stable/reference/generated/networkx.generators.

geometric.waxman_graph.html
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Figure 3.8 – For each model Mi in ordinate, and each graph number i in absciss, we compute
the probability pi, j that a graph generated using SBMi, j has a normalized edit distance
expected value to SBMi, j further away from the mean value di, j than Gi, j. The probability is
plotted in heatmap.

3. M6: α “ 0.06, β “ 2.7

4. M7: α “ 0.04, β “ 8.5

The lower the value of α, the stronger the spatial structure.
With each model Mi, we generate 8 graphs pGi, jq jP~0,7�. On each of those observed graph,

we find the minimum entropy node partition Bi, j using graph tools, and fit a candidate
stochastic blockmodel SBMi, j on Gi, j based on this node partition. We then evaluate the
relevance of this stochastic blockmodel using the previously described methodology. We use
a confidence level δ of 0.01 and a sample size nb “ 200. The probabilities pi, j obtained are
plotted in figure 3.8.

We observe that for all graphs generated by stochastic block models but one, pi, j ą 10´2 “

δ. On the other hand, for all spatial graphs pi, j ă δ. This means that the hypothesis "Gi, j has
been generated by the candidate stochastic block model SBMi, j" is rejected for all 32 spatial
graphs, and for the 8th graph generated by SBM2. Let’s stress again that a probability pi, j
superior to δ does not mean that SBMi, j is the right model for Gi, j. It only means that there is
not enough statistical evidence to reject it.

These results show that, on 32 spatial graphs generated with various sets of parameters,
the statistical hypothesis testing methodology is able to correctly identify that the block
structure found is not a relevant model, despite being the solution maximizing the likelihood.
This result is not trivial, as illustrated by the graph depicted on figure 3.7. What is more, this
methodology manages to reject the block structure for all spatial graphs while spuriously
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rejecting it for only one out of 32 graphs originally generated with a stochastic blockmodel.
In other words, there is no false negative, and only one false positive.

Strictly speaking, these results only allow to rule out one node partition. As the block
structure tested were fitted on the observed graphs using minimum entropy, one could
argue that ruling out this partition implies that no other node partition can lead to a relevant
model. However, for most real graphs, there is more than one plausible node partition and
minimizing the entropy of a partition is a stochastic process. Therefore, the experiment
should be performed more than once to conclude that the observed graph has no block
structure.

Conclusion

Widely used quality measures for graph models rely either on the number of different
graphs they can produce, which neglects the geometric structure of the graph space, or on
a direct comparison with the barycenter of those graphs, which discards information about
the distribution around this barycenter. Because of these restrictions, they are unable to
distinguish between graphs which have a typical structure of a model and graphs which
may be generated by this model but as outliers.

This chapter shows how graph spaces can provide additional information on the structure
of graphs generated by a model, which is captured neither by the entropy nor the barycenter.
By computing the expected value of the normalized edit distance for a given graph, we obtain
a criterion which can be used to evaluate the model quality with respect to this graph. Finally,
we incorporate this criterion to a statistical hypothesis testing methodology to perform model
selection.

This theoretical framework can be used for any statistical model, and particularly spatial
models. It allows to compare them with SBM or configuration model, and perform model
selection between models of different nature. What is more, statistical hypothesis testing
provides a rigorous methodology to evaluate the relevance of a candidate model to an
observed graph.

Any graph property could be used for such a test: average path length, clustering coef-
ficient, etc. The main requirement for such a property to be used in statistical testing is that
the distribution of its possible values for a given model is concentrated around its mean. If
it is not, no value measured on the observed graph will allow to reject the candidate model.

Apart from its simplicity to compute and interpret, one important advantage of the
normalized edit distance expected value is that for most models its values concentrate quickly
around the mean. It should be underlined that this fundamental property is a consequence
of a geometrical result (the volume of a ball in n dimensions), which highlights the benefits
of considering the geometric structure of graph ensembles. However, the edit distance is
not the only distance that can be used. Considering other metrics which are more sensitive
to the global topology of the network, like the perturbation-resistance distance or spectral
distances, could provide additional insight on the structure of the graph space.
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Chapter 4

The limits of entropy

Statistical tests, as described in the previous section, are a powerful and well-established
method to confront the predictions of a probabilistic model with observations. Yet, in the
case of automatic model selection, it suffers from an import drawback: by design, it can only
reject a candidate model if the probability it assigns to the observation is too low. When
comparing different models, it may reject some of them and not others, but it does not
provide an automatic way to rank them in order to select the best one. On the other hand,
the minimum description length principle does provide such a ranking, as illustrated by the
stochastic blockmodel inference methodology presented in section 2.3 of the state of the art.

This method relies on the hypothesis that there exists an original partition of the nodes,
and that the graph under study was generated by picking edges at random with a prob-
ability that depends only on the communities to which its extremities belong. The idea is
to find the most likely original partition for a SBM with respect to a graph by maximizing
simultaneously the probability to choose this partition and the probability to generate this
graph, given the partition. To perform the second maximization, it assumes that all graphs
are generated with the same probability and it thus searches a partition of minimal entropy,
in the sense that the cardinal of its microcanonical ensemble (i.e. the number of graphs the
corresponding SBM can theoretically generate Cimini et al. [2018]) is minimal, which is
equivalent to maximizing its likelihoodPeixoto [2012].

Contrarily to other ad hoc community detection methods, such as modularity maxi-
mization, the minimization of the microcanonical ensemble entropy relies on a statistical
reasoning to select the node partition. It thus claims to select the most likely node partition
with respect to the evidence present in the observed graph. However, communities were
first defined empiricaly as groups of nodes defined by a characteristic connection density.
In particular, it is commonly accepted that complete graphs with no edges between them
should correspond to different communities.

In this chapter, we show that in practice the minimum entropy partition does not always
correspond to this intuitive definition of communities. Even when the number and the size
of the communities are prescribed beforehand, the node partition which corresponds to the
sharper communities is not always the one with the lower entropy, even asymptoticaly. We
demonstrate that when community sizes and edge distribution are heterogeneous enough, a
node partition which places small communities where there are the most edges will always
have a lower entropy. Finally, we illustrate how this issue implies that such heterogeneous
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40 Chapter 4. The limits of entropy

stochastic block models cannot be identified correctly by this model selection method. As the
minimization of the entropy of the microcanonical ensemble is equivalent to the maximiza-
tion of the likelihood of the associated node partition, these results question the underlying
statistical reasoning. We thus conclude by discussing the relevance of assuming an equal
probability for all graphs in this context.

Entropy based stochastic block model selection

The stochastic block model is a generative model for random graphs. It takes as parameters
a set of nodes V “ r1; ns partitioned in p blocks (or communities) C “ pciqiPr1;ps and a block-
to-block adjacency matrix M whose entries correspond to the number of edges between two
blocks. The corresponding microcanonical ensemble is defined as

ΩC,M “

$

&

%

G | @c1, c2 P C,
ÿ

iPci, jPc j

Wpi, jq “ Mpc1,c2q

,

.

-

Where W is the weight matrix of graph G. Generating a graph with the stochastic block model
associated to C,M amounts to drawing at random G P ΩC,M. The probability distribution
PrG|C,Ms on this ensemble is defined as the uniform one:

PrG|C,Ms “
1

|ΩC,M|

whose entropy equals S “ lnp|ΩC,M|q. It has been computed for different SBM flavours in
Peixoto [2012]. It measures the number of different graphs a SBM can generate with a given
set of parameters. The lower it is, the higher the probability to generate any specific graph
G.

On the other hand, given a graph G “ pV,Eq, with a weight matrix W, it may have been
generated by many different stochastic block models. For any partition C “ pciqiPr1;ps of V,
there exists one and only one matrix M such that G P ΩC,M, and it is defined as:

@c1, c2 P C,Mpc1,c2q “
ÿ

iPc1, jPc2

Wpi, jq

Therefore, when there is no ambiguity about the graph G, we will consider indifferently a
partition and the associated SBM in the following.

The objective of stochastic block model inference is to find the partition C that best
describes G. To do so, bayesian inference relies on the Bayes theorem which stands that:

(4.1) PrC,M|Gs “
PrG|C,Ms ˆ PrC,Ms

PrGs

As PrGs is the same whatever C, it is sufficient to maximize PrG|C,Ms ˆ PrC,Ms. The
naive approach which consists in using a maximum-entropy uniform prior distribution for
PrC,Ms simplifies the computation to maximizing directly PrG|Cs (the so called likelihood
function) but it will always lead to the trivial partition @i P V, ci “ tiu, which is of no use
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4.2. The issue with heavily populated graph regions 41

because the corresponding SBM reproduces G exactly: M “ W andPrG|Cs “ 1. To overcome
this overfitting problem, another prior distribution was proposed in Peixoto [2019], which
assigns lower probabilities to the partitions with many communities. Yet, when comparing
two models C1,M1 and C2,M2 with equal prior probability, the one which is chosen is still
the one minimizing |ΩC,M| or equivalently the entropy S “ lnp|ΩC,M|q, as logarithm is a
monotonous function.

The issue with heavily populated graph regions

In this chapter, we focus on the consequence of minimizing the entropy to discriminate
between node partitions. To do so, we need to work on a domain of partitions on which the
prior distribution is uniform. As suggested by Peixoto [2019], we restrict ourselves to finding
the best partition when the number p and the sizes psiqiPr1;ps of communities are fixed because
in this case, both PrCs and PrM|Cs are constant. This is a problem of node classification, and
in this situation the maximization of equation 7.12 boils down to minimizing the entropy of
ΩC,M, which can be written as:

S “
ÿ

i, jPr1;ps

ln

«

ˆ

sis j `Mpi, jq ´ 1
Mpi, jq

˙

ff

as shown in Peixoto [2012].
Yet, even within this restricted domain (p and psiqi are fixed), the lower entropy partition

for a given graph G is not always the one which corresponds to the sharper communities. To
illustrate this phenomena, let’s consider the stochastic block models whose matrices M are
shown on figure 4.1, and a multigraph G P ΩSBM1 XΩSBM2 .

• SBM1 corresponds to C1 “ tca
1 : t0, 1, 2, 3, 4, 5u, cb

1 : t6, 7, 8u, cc
1 : t9, 10, 11uu

• SBM2 corresponds to C2 “ tca
2 : t0, 1, 2u, cb

2 : t3, 4, 5u, cc
2 : t6, 7, 8, 9, 10, 11uu.

As G P ΩSBM1 XΩSBM2 , it could have been generated using SBM1 or SBM2. Yet, the point of
inferring a stochastic block model to understand the structure of a graph is that it is supposed
to identify groups of nodes (blocks) such that the edge distribution between any two of them
is homogeneous and characterized by a specific density. From this point of view C1 seems a
better partition than C2:

• The density of edges inside and between ca
2 and cb

2 is the same (10), so there is no
justification for dividing ca

1 in two.

• On the other hand, cb
1 and cc

1 have an internal density of 1 and there is no edge between
them, so it is logical to separate them rather than merge them into cc

2.

Yet, if we compute the entropy of SBM1 and SBM2:

S1 “ ln
„ˆ

395
360

˙

` 2ˆ ln
„ˆ

17
9

˙

“ 136
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42 Chapter 4. The limits of entropy

S2 “ ln
„ˆ

53
18

˙

` 4ˆ ln
„ˆ

98
90

˙

“ 135

The entropy of SBM2 is lower and thus partition C2 will be the one selected. Of course, as
|ΩSBM2 | ă |ΩSBM1 |, the probability to generate G with SBM2 is higher than the probability to
generate it with SBM1. But this increased probability is not due to a better identification of the
edge distribution heterogeneity, it is a mechanical effect of imposing smaller communities in
the groups of nodes which contain the more edges, even if their distribution is homogeneous.
Doing so reduces the number of possible positions for each edge and thus the number of
different graphs the model can generate.

Figure 4.1 – Block-to-block adjacency matrices of two overlapping stochastic block models.
Even though the communities of SBM1 are better defined, SBM2 can generate less different
graphs and thus generates them with higher probability.

This problem can also occur with smaller densities, as illustrated by the stochastic block
models whose block-to-block adjacency matrices are shown on figure 4.2. SBM3, defined as
one community of 128 nodes and density 0.6 and 32 communities of 4 nodes and density 0.4
has an entropy of 17851. SBM4 which merges all small communities into one big and splits
the big one into 32 small ones has an entropy of 16403.

The density threshold

More generally, let’s consider a SBM pC1,M1q with one big community of size s, containing
cˆm0 edges and q small communities of size s

q containing pmiqiPr1;qs edges each, as illustrated
on figure 4.3. Its entropy is equal to:

S1pcq “ ln
„ˆ

s2 ` cˆm0 ´ 1
cˆm0

˙

`

q
ÿ

i“1

ln

«

ˆ s2

q2 `mi ´ 1
mi

˙

ff
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4.3. The density threshold 43

Figure 4.2 – Block-to-block adjacency matrices of two overlapping stochastic block models
with lower densities. Once again, even though SBM3 has better defined communities, SBM4
is more likely a model for graphs G P ΩSBM3 XΩSBM4

On the other hand, the entropy of the SBM pC2,M2q which splits the big community into q
small ones of size s

q and merges the q small communities into one big is:

S2pcq “ ln

«

ˆs2 `
řq

i“1 mi ´ 1
řq

i“1 mi

˙

ff

` q2ln

»

–

ˆ s2`cˆm0
q2 ´ 1
cˆm0

q2

˙

fi

fl

So, with C1 “
řq

i“1 ln
„

`
s2

q2`mi´1
mi

˘



and C2 “ ln
„

`s2`
řq

i“1 mi´1
řq

i“1 mi

˘



, which are constants with
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44 Chapter 4. The limits of entropy

Figure 4.3 – Theoretical pair of stochastic block models. The right-side partition splits the
big community in q “ 3 small ones and merges the small communities in one big.

respect to c:

S1pcq ´ S2pcq “ ln
„ˆ

s2 ` cˆm0 ´ 1
cˆm0

˙

´ q2ln

»

–

ˆ s2`cˆm0
q2 ´ 1
cˆm0

q2

˙

fi

fl` C1 ´ C2

“ ln

«

cˆm0
ź

k“1

k` s2 ´ 1
k

ff

´ ln

»

—

—

—

–

¨

˚

˝

cˆm0
q2
ź

k“1

k` s2

q2 ´ 1

k

˛

‹

‚

q2
fi

ffi

ffi

ffi

fl

` C1 ´ C2

“ ln

»

—

–

cˆm0
q2
ź

k“1

śq2´1
i“0 pk` s2 ´ 1` iˆ cˆm0

q2 q

pk` s2

q2 ´ 1qq2

fi

ffi

fl
` C1 ´ C2

ą ln

»

—

–

cˆm0
q2
ź

k“1

¨

˝

k` s2 ´ 1

k` s2

q2 ´ 1

˛

‚

q2fi

ffi

fl
` C1 ´ C2

ą q2

cˆm0
q2
ÿ

k“1

ln

«

1`
pq2 ´ 1qs2

q2k` s2 ´ q2

ff

` C1 ´ C2(4.2)

Now, as

ln

«

1`
pq2 ´ 1qs2

q2k` s2 ´ q2

ff

„
kÑ8

pq2 ´ 1qs2

q2k` s2 ´ q2
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and
cˆm0

q2
ÿ

k“1

pq2 ´ 1qs2

q2k` s2 ´ q2 Ñ
cÑ8

8

we have that

(4.3) q2

cˆm0
q2
ÿ

k“1

ln

«

1`
pq2 ´ 1qs2

q2k` s2 ´ q2

ff

Ñ
cÑ8

8

and thus, by injecting equation 4.3 inside 4.2, Dc,@c1 ą c,S2pc1q ă S1pc1q. Which means that
for any such pair of stochastic block models, there exists some density threshold for the big
community in C1 above which pC2,M2q will be identified as the most likely model for all
graphs G P ΩpC1,M1q XΩpC2,M2q.

Consequences on model selection

In practice, this phenomena implies that a model selection technique based on the mini-
mization of entropy will not be able to identify correctly some SBM when they are used
as generative models for synthetic graphs. To illustrate this, we generate graphs and try
to recover the original partition. The experiment is conducted on two series of stochastic
block models, one with relatively large communities and another one with smaller but more
sharply defined communities:

• SBM7pdq is made of 5 blocks (1 of 40 nodes, and 4 of 10 nodes). Its density matrix D
is given on figure 4.4 (left) (one can deduce the block adjacency matrix by Mpci,c jq “

|ci||c j| ˆDpci,c jq).

• SBM8pdq is made of 11 blocks (1 of 100 nodes, and 10 of 10 nodes). The internal density
of the big community is d, it is 0.15 for the small ones and 0.01 between communities.

For each of those two models, and for various internal densities d of the largest community,
we generate 1000 random graphs. For each of these graphs, we compute the entropy of the
original partition (correct partition) and the entropy of the partition obtained by inverting the
big community with the small ones (incorrect partition). Then, we compute the percentage
of graphs for which the correct partition has a lower entropy than the incorrect one and plot
it against the density d. Results are shown on figure 4.4 and 4.5.

We observe that as soon as d reaches a given density threshold (about 0.08 for SBM7pdq
and 0.18 for SBM8pdq), the percentage of correct match drops quickly to 0. As d rises over
0.25, the correct partition is never the one selected. It should be highlighted that in these
experiments we only compared two partitions among the Bn possible, so the percentage of
correct match is actually an upper bound on the percentage of graphs for which the correct
partition is identified. This means that if SBM7pdq or SBM8pdq are used as generative models
for random graphs, with d ą 0.25, and one wants to use bayesian inference for determining
the original partition, it will almost never return the correct one. What is more, the results of
section 4.3 show that this will occur for any SBM of the form described in figure 4.3, as soon
as the big community contains enough edges.
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46 Chapter 4. The limits of entropy

Figure 4.4 – Block-to-block adjacency matrix of SBM7pdq (left) and percentage of graphs
generated using SBM7pdq for which the original partition has a lower entropy than the
inverted one against the density d of the big community (right).

Figure 4.5 – Percentage of graphs generated using SBM8pdq for which the original partition
has a lower entropy than the inverted one against the density d of the big community.
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Discussion

We have seen in section 4.1 that model selection techniques that rely on the maximization of
the likelihood function to find the best node partition given an observed graph boils down
to the minimization of the entropy of the corresponding ensemble of generable graphs in
the microcanonical framework. Even in the case of bayesian inference, when a non-uniform
prior distribution is defined on the set of possible partitions, entropy remains the criterion
of choice between equiprobable partitions. Yet, as shown in section 4.2 and 4.3, entropy
behaves counter intuitively when a large part of the edges are concentrated inside one big
community. In this situation, a partition that splits this community in small ones will have
a lower entropy, even though the edge density is homogeneous. Furthermore, this happens
even when the number and sizes of communities are known. Practically, as explained in
section 4.4, this phenomena implies that stochastic block models of this form cannot be
recovered using model selection techniques based on the mere minimization of the cardinal
of the associated microcanonical ensemble.

Let’s stress that contrarily to the resolution limit described in Fortunato and Barthelemy
[2007] or Peixoto [2013], the problem is not about being able or not to detect small com-
munities with no prior knowledge about the graph, it occurs even though the number and
sizes of communities are known. It is also different from the phase transition issue that has
been investigated in Abbe and Sandon [2015]; Decelle et al. [2011a,b]; Hu et al. [2012] for
communities detection or recovery because it happens even when communities are dense
and perfectly separated. Entropy minimization fails at classifying correctly the nodes be-
tween communities because it only aims at identifying the SBM that can generate the lowest
number of different graphs. Splitting dense groups of nodes into small blocks enforces more
constraints on edge positions and thus mechanically reduces the size of the microcanonical
ensemble. This is a form of overfitting, in the sense that the higher probability to generate
the observed graph is not due to a better identification of the heterogeneity in the observed
edge distribution, but is an artifact due to the model selection technique.

The results presented in this chapter were obtained for a particular class of stochastic
block models. First of all, they were obtained for the multigraph flavour of stochastic block
models. As the node classification issue occurs also for densities below 1, they can probably
be extended to simple graphs, but this would need to be checked, as well as the case of
degree-corrected stochastic block models. Furthermore, the reason why the log-likelihood
of a stochastic block model C,M for a graph G is equal to the entropy of ΩC,M is that we
consider the microcanonical ensemble, in which all graphs have an equal probability to be
generated. It would be interesting to check if similar results can be obtained when computing
PrG|C,Ms in the canonical ensemble Peixoto [2012]. Finally, we assumed that for a graph
G and two partitions C1 and C2 with the same number and sizes of blocks, the associated
block-to-block adjacency matrices M1 and M2 have the same probability to be generated,
and this assumption too could be questioned.

Yet, within this specific class of SBM, our results illustrate a fundamental issue with the
stochastic block model statistical inference process. Since the random variable whose distri-
bution we are trying to infer is the whole graph itself, we are performing statistical inference
on a single observation. This makes frequentist inference impossible, but bayesian inference
also has strong limitations in this context. In particular, the only tool to counterbalance the
observation and avoid overfitting is to specify the kind of communities we are looking for

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI093/these.pdf 
© [L. Duvivier], [2021], INSA Lyon, tous droits réservés



48 Chapter 4. The limits of entropy

beforehand, through the prior distribution. If it is agnostic about the distribution of edge
densities among these communities, the mere minimization of the entropy of the posterior
distribution fails to identify the heterogeneity in the edge distribution. Beside refining even
more the prior distribution, another approach could be to consider a graph as the aggregated
result of a series of edge positioning. If the considered random variable is the position of an
edge, a single graph observation contains information about many of its realizations, which
reduces the risk of overfitting.
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Chapter 5

Edge sequence statistical models
prequential inference

As recalled in the state of the art, by defining models as probability distributions, statistical
models offer a natural measure of their complexity, the entropy, which makes them compara-
ble. What is more, this probabilistic definition allows to rigorously compute the most likely
set of parameters used to generate a given observation, thanks to bayesian inference. This has
been applied to community detection in Prokhorenkova and Tikhonov [2019], by defining a
stochastic blockmodel with a given set of parameters as a probability distribution on a set of
graphs, and applying Bayes’ theorem to compute the most likely set of parameters given an
observed graph. In Peixoto [2019], the author leverages the fact that in the microcanonical
ensemble, the maximisation of the likelihood of a set of parameters is equivalent to the
minimization of the entropy of its associated probability distribution to perform inference.

However, as developed in chapter 4, these works relies on probability distributions de-
fined on sets of graphs, which means that the observation of a single graph (which in practice
is the most common situation) corresponds to a single realization of the random variable.
Even though bayesian inference requires less observations than frequentist inference to be
sound, a single realization induces a high risk of overfitting. It is also not trivial to adapt this
methodology to compare not only different sets of parameters (such as node partitions in
the stochastic blockmodel), but models of a different nature (such as a stochastic blockmodel
and a configuration model).

In this chapter, we introduce an alternative point of view on graph statistical models,
which relies on probability distributions defined on sets of edges. Because a single graph
contains many edges, it implies that the same observed graph corresponds to several real-
izations of the random variable rather than a single one. As a consequence, the inference
of the underlying probability distribution can be made more rigorous using prequential
inference Dawid [1984]. It allows to control the number of parameters of the model in order
to ensure that it remains below the number of observations, which is a necessary condition
to avoid overfitting. Moreover, as it formulates all statistical models in terms of probability
distributions on the same set of edges, it provides a natural framework to compare them and
find the most relevant one with respect to a given graph.

The chapter is organized as follows. In section 5.1, we introduce edge sequence statistical
models and explain how they differ from usual graph statistical models. In section 5.2, we
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50 Chapter 5. Edge sequence statistical models prequential inference

develop sequential edge probability inference, a theoretical framework to perform inference
using probability distribution on sets of edges. We then illustrate in section 5.3 how it can
be used both to infer the parameters of a statistical model (subsection 5.3.1) and to compare
stochastic blockmodel and configuration model with respect to a given graph (subsection
5.3.2).

Edge sequence statistical model

Definition

Statistical models aim at describing the distribution of edges in a graph as the result of a
random process subject to some constraints. As developed in the state of the art, statistical
graph models are usually defined as a set of graphs ΩM and a probability distributionPM on
this set. There exists two main ways to define such models, inspired from statistical physics:
microcanonical and canonical ensembles Cimini et al. [2018], whose definitions can be found
in section 2.3 of the state of the art. In both cases, the random variable whose probability
distribution is studied is a graph. As in practice we almost always study a single graph, the
problem with such a model definition is that statistical inference involves to fit a probability
distribution on a single realization of the random variable, which implies a high risk of
overfitting.

To overcome this issue, we consider graphs as the aggregated trace of a sequence of
edges E “ pe1, . . . , emq, and define models as probability distributions P over the set of all
edge sequences

E “
ď

mě0

!

pe1, . . . , emq P
`

~0,n´ 1�2˘m
)

For the simplicity of computations, we consider directed graphs and authorize self-loops
but the methodology could easily be adapted for undirected edges and forbidden self-loops
by restricting this set of possible edges. We will call this type of models edge sequence
statistical models.

Edge sequence statistical models naturally generate temporal multigraphs, in which
edges are ordered and each edge may appear multiple times. Indeed, even if a given edge
pu, vq has already been sampled, its probability to be sampled again is a priori not null. This
is a natural way to model many real life interactions, even though this type of graphs is not
the most widely used in practice. Fortunately, edge sequence statistical model adapts easily
for static and simple graphs, since a static graph can be considered as the trace of a temporal
one, in which edge ordering has been dropped.

Definition 3. We say that an edge sequence E “ pe1, . . . , emq collapses to a static multigraph G,
described by its weight matrix WG iff:

@u, v P ~1,n�,WGru, vs “ | tk P r1,ms | ek “ pu, vqu |

We denote this E Ó G, and for any static multigraph G we define the set of edge sequences which
collapse to it by

E
Ó

G “ tE | E Ó Gu
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The probability to generate a static graph G is thus defined as

PÓrGs “
ÿ

EPEÓG

PrEs

This definition is not very practical as it implies to compute the probability of all edge
sequences in EÓG to compute the probability of G. It is very demanding as the size of the
set is the multinomial coefficient

` m
w1,...,wn2

˘

. In the rest of the chapter, we restrict ourselves to
edge sequence models in which edges are generated independently from one another, from a
fixed probability distribution PM on ~0,n´ 1�2. The probability of a sequence E “ pe1, . . . emq

is thus

PrEs “
m
ź

i“1

PMreis

which does not depend on the order of edges in the sequence. Examples are given below of
statistical models which verify this hypothesis.

Example. Let’s take some examples to illustrate how frequently used statistical models can
be formulated as probability distribution on edges. The simplest model is the fully random
Erdos-Reyni. It corresponds to the uniform distribution on ~1,n�2:

@u, v P r1,ns,PERpnqru, vs “
1
n2

Then, the configuration model: instead of a degree sequence, it takes as parameter a probability
distribution ppiqiPr1,ns corresponding for each node to its probability of being picked at random
as an extremity of the generated edge:

@u, v P r1,ns,PCFMpppiqiqru, vs “ pu ˆ pv

It’s directed version is straightforward, considering the probability distributions ppout
i qi and

ppin
i qi.

Finally, the stochastic blockmodel takes as parameter a partition B “ pb1, . . . , bpq and a block
probability matrix P P Mppr0; 1sq such that

ř

i, j |bi||b j|Pi, j “ 1. If u P bi and v P b j, the edge
pu, vq is generated with probability:

PSBMpB,Pqru, vs “ Pi, j

These models fit well within the assumption of independent edge generation. On the contrary, this
is not the case, for instance, of the preferential attachment model of Barabasì and Albert Barabasi
and Albert [1999]. It is naturally described as an edge sequence probability distribution, but at
each step the probability to generate an edge depends on the previously generated ones.

Under this assumption, as all edge sequences inEÓG contain the same edges with the same
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multiplicity, by definition we have:

@E0 P E
Ó

G, PMrGs “
ÿ

EPEÓG

PMrEs

“ |E
Ó

G| ˆ PMrE0s

This means that, from a probabilistic point of view, any sequence E0 P E
Ó

G can equivalently
be chosen as a representative of G.

Let’s stress that the assumption of independent edge generation is made only for the
sake of tractability of the study of static graphs. The edge sequence framework is of course
particularly natural if one wants to study temporal graphs, in which case there is a priori no
reason to make such an assumption.

Beyond edge ordering, considering a simple graph means that we also discard edge
multiplicity.

Definition 4. We say that an edge sequence simplifies to a static simple graph G described by its
adjacency matrix AG iff:

@u, v P ~1,n�,AGru, vs “ 1pu,vqPE

We denote this E ó G, and for any static simple graph G with m edges, we define the set of edge
sequences which simplify to it, by:

E
ók
G “ t|E| “ m` k | E ó Gu

E
ó

G “
ď

kě0

E
ók
G

The number of edge sequences of length pm`kqwhich simplify to G grows exponentially
with k as m!mk ď |E

ók
G | ď mm`k. On the other hand, the probability to sample longer sequences

decreases exponentially with k

@M,@E P Eók
G ,PMrEs ď

ź

ePG

PMres ˆ pk
0 with p0 “ max

ePG
PMres

Therefore, as long as we consider models M such that DK,maxePG PMres ď K
n2 and m

n2 !
1
K ,

the weight of Eók
G decreases exponentially with k in EóG. Thus, we assume that the weight is

concentrated on EÓG “ E
ó0
G and that we can choose a representative of G, E0 P E

Ó

G.
At this point, it is worth stressing how the graph and edge sequence model formulation

differ in the very definition of models. For the sake of simplicity, let’s consider the Erdös-
Rényi model for multigraphs with n nodes and m edges. In the microcanonical formulation,
each multigraph in

ΩERpn,mq “

$

&

%

G |
ÿ

u,vPV2

WGru, vs “ m

,

.

-

is generated with the same probability

PERpn,mqrGs “
1

|ΩERpn,mq|
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On the other hand, in the edge sequence based formulation it is the edges in the sequence
which are generated uniformly with probability 1

n2 , such that any sequence of length m is
generated with probability 1

n2m . Therefore, a graph G P ΩERpn,mq is generated with probability

PMrGs “ |E
Ó

G| ˆ PMrE0s

“

ˆ

m
w1, . . . ,wn2

˙

ˆ
1

n2m

which is clearly not the uniform distribution on ΩERpn,mq. A multigraph whose links are
concentrated on a single pair of nodes pu, vqwith weight m will be generated with probability

1
n2m while a multigraph with m different edges of weight 1 (we suppose here that m ď n2)
will be generated with probability m!

n2m . This illustrates how the choice of the fundamental
elements in generating a graph (vertex, edge or the whole graph itself) subsequently modifies
the set on which maximum entropy probability distributions are computed, and therefore
the probability distribution associated with a model.

Edge probability distribution statistical inference

As an edge statistical model is defined as a probability distribution on ~1,n�2, an edge
sequence E corresponds to m independent realizations of a random variable following the
same unknown probability distribution P0. The objective of statistical inference is to make
an estimation Q˚pEq of P0, avoiding both overfitting and underfitting, among the set of all
possible models.

Definition 5. LetM‚
npr0, 1sq be the set of all probability distributions on ~1,n�2:

M
‚
npr0, 1sq “

$

&

%

Q PMnpr0, 1sq |
ÿ

u,vP~1,n�2

Qru, vs “ 1

,

.

-

.

Its elements can be seen as nˆ n matrices or as probability distributions. In the following we will use
both points of view.

We use the cross entropyHrP,Qs “ ´
ř

u,vPru, vs log2pQru, vsq as a measure of similarity
onM‚

npr0, 1sq. It can be understood as the expected length of a message generated following
P but encoded with a code optimal for Q. It is minimal when Q “ P, in which case it is
equal to the entropy SrPs. In this paper, the sequence to encode will be E, therefore the best
compression is achieved for a code based on the empirical distribution PE.

Definition 6. Let PE be the empirical distribution

@pu, vq P ~1,n�2,PEru, vs “
#tk | ek “ u Ñ vu

m
.

We can observe that this naive estimation leads to overfitting, as the corresponding code
would probably perform poorly for another sequence E1 generated using the same original
distribution P0. On the other hand, the most general code, which performs equally well on
all possible edge sequences, is obtained based on the uniform distributionPU, but it is clearly
underfitting as this code does not tell us anything aboutP0. This is illustrated on Figure 5.1.
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54 Chapter 5. Edge sequence statistical models prequential inference

Definition 7. We say that an estimation Q˚pEq of P0 is overfitting if

HrPE,Q
˚pEqs ăHrPE,P0s

on the other hand, we say it is underfitting if

HrPE,Q
˚pEqs ąHrPE,P0s

Figure 5.1 – Given an original probability distribution P0, we generate a sequence of edges
pe1, . . . , emq. For k P ~1,m�, we plot the cross entropy of the empirical distribution Ppe1,...,ekq

with the uniform distribution (blue line), original distribution (red line), and the empirical
distribution itself (yellow line), against k. We say that an estimationQ˚pe1, . . . , ekq is overfitting
ifHpPpe1,...,ekq,Q

˚pe1, . . . , ekqq lies in the yellow zone, and that it is underfitting if it lies in the
blue zone.

For a given sequence E, it is very likely that our estimation Q˚pEqwill be at least slightly
overfitting or underfitting, but our objective is that

E
ei„P0

“

HrPpe1,...,emq,Q
˚pe1, . . . , emqs

‰

E
ei„P0

“

HrPpe1,...,emq,P0s
‰ ÝÑ

mÑ8
1

The main risk of overfitting comes from the fact that estimating Q˚pEq implies the infer-
ence of n2 ´ 1 parameters: we infer Q˚pEqru, vs for each pu, vq P ~1,n�2, under the constraint
that φ0pQ˚pEqq “

ř

u,vQ
˚pEqru, vs ´ 1 “ 0. As m is typically much smaller than n2, such a

large number of parameters induces a high risk of overfitting.
To avoid this phenomenon, we need to make assumptions about P0 in order to restrict

the search space. We do so by introducing hyperparameters to control the number of degrees
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5.2. Edge sequence model selection 55

of freedom of the model by adding constraints on the probability distribution. A hyperpa-
rameter can be described as a function

φ : MnpRq Ñ R
s`1

Q ÞÑ pφ0pQq, . . . , φspQq

where φ0pQq “
ř

u,vQru, vs ´ 1 is the basic constraint assuring that Q belongs toM‚
npr0, 1sq

and s is the number of additional constraints. The search space under these constraints is
reduced to:

M
φ
n pr0, 1sq “ tQ PMnpr0, 1sq | φpQq “ 0u

We can suppose that the constraints are independent (if they are not, it means that the same
search space could be obtained with less constraints). Thus, the number of parameters to
infer boils down to n2 ´ s´ 1.

Example. Let’s assume that P0 is a stochastic blockmodel based on a partition B “ pb1, . . . , bpq.
According to the definition given above, it means that

DM PMppr0, 1sq,@u P bi, v P b j,P0ru, vs “ Mri, js

It is equivalent to say that

@i, j P ~1, p�,@u,u1 P bi,@v, v1 P b j,P0ru, vs ´ P0ru1, v1s “ 0

which corresponds to a system of n2 ´ p2 linearly independent constraints. Thus, under this
assumption, we are left with only p2 ´ 1 parameters to infer.

Therefore, edge statistical model selection involves two distinct issues:

1. For each possible hyperparameter φ, estimate the probability distribution Q˚φpEq that

most likely generated E inMφ
n pr0, 1sq.

2. Select the best model Q˚pEq among all possible estimate pQ˚φpEqqφ.

These two main questions are discussed in the next section.

Edge sequence model selection

Parameter inference by minimum description length

Let’s consider first the issue of estimating the probability distributionQ˚φpEq that most likely

generated E inMφ
n pr0, 1sq, given the hyperparameter φ. We rely on the minimum description

length principle (a detailed tutorial can be found in Grunwald [2004]; Grünwald and Roos
[2019]). It states that, as any regularity in a sequence of observations can be used to compress
it, the best statistical model for the sequence E is the one which minimizes the description
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56 Chapter 5. Edge sequence statistical models prequential inference

length of the model DφpQq plus the description length of the observations compressed using
this model DpE|Qq:

(5.1) Q˚φpEq “ argmin
QPM

φ
n pr0,1sq

DpE|Qq `DφpQq

The description length of the sequence can be computed as

DpE|Qq “ ´
m
ÿ

i“1

log2pQreisq

as detailed in Annex 7.2.4.
Then, to compute the description length of the model DφpQq, we need to define a prob-

ability distribution P̄φ onMφ
n pr0, 1sq. This so-called prior distribution is used to encode the

model with a length DφpQq “ ´ log2pP̄φrQsq. The goal of this term is to take into account
the complexity of the model, in order to avoid overfitting. Therefore, simpler models should
have shorter description length. To achieve this, we define the prior distribution such that the
description length of a model is inversely proportional to its information content, measured
by its entropy:

P̄φrQs “
1

Zφ
ˆ 2SrQs

with Zφ “
ş

M
φ
n pr0,1sq

2SrQs dQ a normalization constant to ensure that P̄φrQs integrates to 1

overMφ
n pr0, 1sq.

Remark. The expression prior distribution we used to refer to P̄φ refers to the bayesian ter-
minology. This is on purpose, as this approach is equivalent to bayesian statistical inference, as
detailed in Annex 7.2.5.

With this definition of P̄φ,

DφrQs “ ´ log2pP̄φrQsq

“ ´SrQs ` log2pZφq

As Zφ is constant on Mφ
n pr0, 1sq, we can neglect it in the minimization and equation 5.1

becomes

(5.2) Q˚φpEq “ argmin
QPM

φ
n pr0,1sq

´

m
ÿ

i“1

log2pQreisq ´ SrQs

In the following, we denote

fpQ,Eq “ ´
m
ÿ

i“1

log2pQreisq `
ÿ

u,v
Qru, vs log2pQru, vsq

and thus we can rewrite equation 5.2 as

(5.3) Q˚φpEq “ argmin
QPM

φ
n pr0,1sq

fpQ,Eq

We have the following property (see proof in Annex 7.2.1):
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Property 1. IfMφ
n pr0, 1sq is a convex set, then for any edge sequence E, f has a unique minimum

Q˚φpEq overMφ
n pr0, 1sq.

Remark. In particular, if φ is an affine function,Mφ
n pr0, 1sq is the intersection of an affine subspace

ofMnpRq with r0, 1sn
2
. Consequently, it is convex and Q˚φpEq exists and is unique.

According to the Lagrange multiplier theorem, this minimum verifies

Dpλ jq P R
s`1, ~∇ f pQ˚φpEq,Eq `

s`1
ÿ

j“1

λ j~∇φ jpQ˚φpEqq “ 0

This is a set of n2 ` s ` 1 equations with as many unknowns which we solve numerically
using Newton’s method.

Finally, we obtain the following result (see proof in Annex 7.2.3):

Theorem 2. Let peiqiPN be a sequence of independent and identically distributed random vari-
ables following P0 PM

‚
npr0, 1sq.

@φ,Q˚φpe1, . . . , exq ÝÑxÑ8
argmin
QPM

φ
n pr0,1sq

HpP0,Qq

Remark. In particular, if P0 belongs toMφ
n pr0, 1sq, it means that Q˚φpEq converges toward P0 as

the number of observations grows.

Hyperparameter selection by prequential inference

Now that we know how to infer Q˚φpEq for any given φ, the second step for model selection
consists in choosing the best estimation Q˚pEq among them. Let’s consider a set of hyperpa-
rameters Φ “ tφ1, . . . , φqu. To select the best hyperparameter φ˚pEq P Φ, we keep using the
minimum description length principle.

However, applying it straightforwardly leads to the same risk of overfitting as if we had
considered the whole graph to be our random variable in the first place. It would annihilate
the advantage of considering each edge as an independent observation, and thus the very
reason to use edge statistical model rather than graph statistical models. Indeed, the naive
approach would be to select φ˚ by minimizing

φ˚ “ argmin
φPΦ

DpE|φq `Dpφq

where the description length of the hyperparameter is defined based ona a prior distribution
Dpφq “ ´ log2pP̄rφsq and the description length DpE|φq of E given a hyperparameter φ is
defined as its description length using the best model compatible with φ, Q˚φpEq.

DrE|φs “ ´
m
ÿ

i“1

log2pQ
˚
φpEqreisq `DφrQ

˚
φpEqs

“ mˆHrPE,Q
˚
φpEqs `DφrQ

˚
φpEqs
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58 Chapter 5. Edge sequence statistical models prequential inference

In this case, it is clear that DrE|φs would be minimum for the null hyperparameter φ0 :
Q Ñ

ř

u,vQru, vs ´ 1 because in this caseMφ0
n pr0, 1sq “M‚

npr0, 1sq, so PE PM
φ0
n pr0, 1sq and

Q˚φ0
pEq “ PE, which by definition minimizes HrPE,Q˚φpEq. Yet, this model is just a copy of

the observations and this would be a total overfit. The only way to mitigate this overfitting
would be to rely on an ad hoc prior distribution P̄ on Φ, which is exactly what is done in
Peixoto [2019] in the case of graph statistical model and the microcanonical ensemble.

Our objective is to define a methodology which does not need this ad hoc prior dis-
tribution. We do not use the full sequence of edge E to optimize the model given the
hyperparameter, but rather a training set of edges L to compute the optimal modelQ˚φpLq for
each hyperparameter, and then use this model to define the description length of E given an
hyperparameter φ and a learning set L

DLrE|φs “ ´
m
ÿ

i“1

log2pQ
˚
φpLqreisq `DφrQ

˚
φpLqs

“ mˆHrPE,Q
˚
φpLqs `DφrQ

˚
φpLqs

In practice, L is necessarily a subset of E, but the question is its size. The smaller it is, the
more we risk underfitting: the extreme example is for L “ H, because then @φ,Q˚φpLq is
the uniform distribution, which is the extreme case of underfitting. On the other hand, the
larger the size of the learning set, the more we favour hyperparameters with many degrees
of freedom and risk overfitting: if L “ E, we get back to the previously described issue.

Choosing a fixed size for the learning set (or a fixed proportion of the total number of
edges) would still amount to arbitrarily decide where to put the limit between overfitting
and underfitting. Instead, our aim is that this limit is discovered based on the dataself itself.
To do so, we use prequential inference instead of a fixed learning set. This statistical infer-
ence methodology was introduced in Dawid [1984] and its connection with the minimum
description length principle is developed in Barron et al. [1998]; Grünwald and Roos [2019].
To understand the difference, let’s go back to the basis and consider the situation where E is
a sequence of messages that a source (Alice) draws at random and transmits to a destination
(Bob).

In the classical minimum description length setting, the prior distribution on all possible
hyperparameters corresponds to code for each hyperparameter that Alice and Bob agree on
beforehand. They also agree on the length m1 of the subset to be used as learning set. When
drawing at random a sequence of edges E to transmit, Alice reads the learning set L made of
the first m1 edges, she computes the optimal model Q˚φpLq for each hyperparameter, and the
optimal hyperparameter φ˚ “ argmin

φPΦ
DLpE|φq `Dpφq. Finally, she sends to Bob the code of

the optimal hyperparameter φ˚, the code of the optimal model given this hyperparameter
Q˚φpLq, and the code for the sequence, given this model.

In prequential inference on the other hand, instead of using a fixed code C˚pLq, Alice
updates the optimal model (and thus her code) for each hyperparameter as she observes more
and more edges. At step k, Alice has observed edges pe1, . . . , ek´1q and she has transmitted
them to Bob. Therefore, both of them can compute Q˚φpe1, . . . , ek´1q and the corresponding
code C˚φpk ´ 1q. Alice draws the edge ek and transmits it to Bob using this code. Then Alice
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and Bob both update their code to C˚φpkq, and so on. This way, the description length is

DrE|φs “ ´
m
ÿ

k“1

log2pQ
˚
φpe1, . . . , ek´1qreksq

At step k, the probability distributionQ˚φpe1, . . . , ek´1q is the model that best fits the first k´

1 observations withinMφ
n pr0, 1sq. Thus,Q˚φpe1, . . . , ek´1qreks is the probability, given those ob-

servations and the hyperparameter, to correctly guess the kth edge, and´ log2pQ
˚
φpe1, . . . , ek´1qreksq

can be interpreted as the quantity of information about ek contained in the previous edges.
This way, we do not need to rely on an ad hoc prior distribution to avoid overfitting. Hy-
perparameters which give too much degrees of freedom to the model induce models which
are close to already observed edges but do not necessarily predict well the next ones. On the
other hand, hyperparameters that do not have enough degrees of freedom induce models
which are not able to capture the statistical reguarities present in observed edges to predict
the next ones. Overall, both lead to poor description lengths.

As we do not rely on the prior distribution to counterbalance overfitting, we can use a
non-informative uniform distribution on Φ as prior distribution, so DpΦq is constant and the
best hyperparameter is computed as

φ˚pEq “ argmin
φPΦ

´

m
ÿ

k“1

log2pQ
˚
φpe1, . . . , ek´1qreksq

Overall, the model selected is

Q˚pEq “ Q˚φ˚pEqpEq

Prequential inference implies that the optimal model Q˚pEq is dependent on the order
of edges in E. This means that if the studied graph G is static, the model selected depends
on the ordering of edges we make when we choose a representative E P E

Ó

G. However,
as we assumed in the beginning that all edges were indepently generated from the same
probability distribution, the procedure will always converge toward the same distribution
so if there are enough edges in the graph the results should not vary much with the order of
edges. In practice, we observe that changing edge ordering have little impact on the results
even for graphs with realistic densities.

Applications to model selection

Stochastic blockmodel partition selection

Finding the appropriate number of blocks of the partition. To test prequential edge prob-
ability inference, we start by using it to tackle the classical problem of partition selection in
stochastic blockmodels. We consider an edge sequence E “ pe1, . . . , emq which we assume
was generated by a stochastic blockmodel P0 based on a partition B0, as described in sec-
tion 5.1.1. Our objective is to retrieve P0 and B0 among the set of all possible stochastic
blockmodels. Each partition B “ pb1, . . . , bpq of ~1,n� corresponds to a hyperparameter φB
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made of n2 ´ p2 ` 1 constraints. If we designate inside each block bi a representative ui, this
hyperparameter can be expressed as:

φB
0 pQq “ 1´

ÿ

u,v
Qru, vs

@i, j,@u P biztuiu,@v P b jztu ju, φ
B
u,vpQq “ Qrui,u js ´Qru, vs

The constraint φBpQq “ 0 expresses the fact that Q is a probability distribution and that
edge generation probabilities are constant along the blocks defined by B. Thus, selecting the
partition within a set tB1, . . . ,Bqu that is more likely to be the original one boils down to the
inference of the most likely hyperparameter in Φ “ tφB1 , . . . , φBqu. In particular, it should be
noted that all those hyperparameters are affine functions, so Remark 5.2.1 tells us that for
each of them, Q˚φpEq exists, is unique, and can be computed using Lagrange multipliers and
Newton’s method.

Exploring the full partition space is a challenge on its own, as this space grows exponen-
tially with n. Therefore, to perform our test, we generate synthetic graphs with a stochastic
blockmodel and observe how it behaves for a particular subset of the possible partitions of
the nodes. Of course, this means that we cannot be sure that the minimum we find corre-
sponds to the minimum over every possible partition. Yet, it allows us to test the robustness
of prequential edge probability inference against common pitfalls, and in particular with
respect to partitions which are a coarsening or a refinement of the original partition.

We consider a stochastic blockmodel S0 “ pB0,M0q on 128 nodes divided into 4 blocks:

B “ ~1, 32�, ~33, 64�, ~65, 96�, ~97, 128�

M “
1

1282 ¨

»

—

—

–

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

fi

ffi

ffi

fl

Remark. As the stochastic blockmodel defined here is an edge statistical model, the coefficients Mri, js
should not be interpreted as the density between blocks i and j. They are the probability for each edge
going from block i to block j to be generated:

@u P bi, v P b j,PS0ru, vs “ Mri, js

We generate 50 graphs with S0 and test 8 hyperparameters corresponding to partitions
refined from 1 block to 128. Each partition is obtained by dividing the blocks of the previous
one in half. We plot the mean prediction probability 1

m
řm

k“1Q
˚

φBpe1, . . . , ek´1qreks against the
number of blocks in B. Results are shown in Figure 5.2. We observe that the mean prediction
probability rises as the number of blocks of the partition grows from one to four, which
corresponds to the original partition used to generate the graphs. Then, further refinement
of the partition used as hyperparameter does not bring significant increase in the mean
prediction probability.
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Figure 5.2 – For each of the 50 graphs generated with S0 “ pB0,M0q, we plot the mean
prediction probability against the number of blocks of the hyperparameter for partitions
ranging from 1 single block to 128 blocks containing a single node.

Figure 5.3 – For the 50 graphs generated with S0, and the eight partitions obtained by
coarsening / refining B0, we plot the mean code length against the number of blocks in the
partition.

Then, we plot the mean code length ´ 1
m
řm

k“1 log2pQ
˚

φBpe1, . . . , ek´1qreksq against number
of blocks in B in Figure 5.3. The mean code length is proportional to the description length
DrE|φBs so they have the same minimum, but it has the advantage of being insensitive to the
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Figure 5.4 – Mean code length against cut (left) and offset (right)

length of the edge sequence. We observe that for all fifty graphs, it presents a clear minimum
at the original four blocks partition B0. For coarser partitions, the mean code length is higher
because, as illustrated in Figure 5.2, the prediction probability is lower and

Q˚
φBpe1, . . . , ek´1qreks ă Q

˚

φB2
pe1, . . . , ek´1qreks

ùñ ´ log2pQ
˚

φBpe1, . . . , ek´1qreksq ą ´ log2pQ
˚

φB2
pe1, . . . , ek´1qreksq

Then, for finer partitions, it is due to the slower convergence rate. Indeed, as logarithm is a
concave function

´ log2

˜

1
m

m
ÿ

k“1

Q˚
φBpe1, . . . , ek´1qreks

¸

ă ´
1
m

m
ÿ

k“1

log2pQ
˚

φBpe1, . . . , ek´1qreksq

Therefore, the greater the fluctuations of the prediction probability, the higher the mean
code length. More details about the convergence of the prediction probability depending
on the hyperparameter can be found in Annex 7.2.6. In the end, the minimum description
length makes it possible to retrieve the original partition B0, avoiding both overfitting and
underfitting, with no previous knowledge or assumption about the number of blocks.

Cutoff and offset We then considered the performance of the mean code length when
modifing blocks’ sizes or shifting blocks. To do so, we generated 10 graphs with 128 nodes
and 2800 edges, made of two perfectly separated communities of equal size. Then, for each
of these graphs, we computed the mean code length for two sequence of partitions.

• Scut “ pBpcq “ pr1, cs, rc, 128sqqcPt0,8,16,24,...,128u

• So f f set “ pBpoq “ pr1` o, 64` os, r1, os Y r65` o, 128sqoPt0,4,8,12,...,32uq

Results are plotted, respectively against c and o, on figure 5.4.
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We observe that for all graphs, the minimum of mean code length is reached when c “ 64
in the first sequence, and when o “ 0 in the second, which both correspond to the partition
B1 used to generate them. This means that mean code length is robust against shifting blocks
and modifying blocks’ sizes.

Merge / split issue. As shown in chapter 4, stochastic blockmodel selection based on
the minimization of the microcanonical ensemble entropy, even though it is statistically
grounded, may be subject to overfitting in the sense that splitting large communities while
merging small ones may lead to a lower entropy because it imposes more constraints on
edges’ position.

To illustrate how prequential edge probability inference helps solving this problem, let’s
consider a stochastic blockmodel S1 “ pB,Mq defined on a set of n “ 12 nodes:

B “ ~0; 5�, ~6; 8�, ~9; 11�

M “

»

–

0.026 0 0
0 0.003 0
0 0 0.003

fi

fl

We test two different partitions: the original one, B, and the inverse partition in which
the large communities is split and small ones are merged B: “ ~0; 2�, ~3; 5�, ~6; 11�. To
do so, we generate 100 graphs Gi made of m “ 378 edges with S1 and for each graph,
we compute the mean code length and the entropy (using graph-tool1) for both partitions.
Then, for both quality functions, we compute the percentage of graphs for which the original
partition is identified as better than the inverse one. Results are shown in Table 5.1. While
the mean code length almost always correctly identifies the original partition, the entropy
of the microcanonical ensemble never does so. The graphs considered here have a very high
density, which makes them not very realistic, but same results can be obtained with lower
density graphs. Let’s consider a stochastic blockmodel S2 with n “ 256 nodes, partitioned in
33 communities, one of size 128, and 32 of size 4:

B “ ~1, 128�, ~129, 132�, ~133, 136�, . . . , ~253, 256�

The internal probability of the big community is 6ˆ 10´5, the one of the small communities
is 7.6 ˆ 10´4, and the probability between communities is null. We compare this original
partition with the inverse one:

B: “ ~1, 4�, ~5, 8�, . . . , ~125, 128�, ~129, 256�

We generate 100 graphs with S2 and compute for each of them the entropy of both partitions
and the mean code length with φB and φB: . Results are shown in Table 5.1. We see that in
this case too, the mean code length always identifies the original partition as the best one,
while the entropy does not.

1https://graph-tool.skewed.de
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Table 5.1 – Percentage of correct match for heterogeneous graphs.

SBM Mean code length Entropy
S1 96% 0%
S2 100% 0%

Zachary Karate Club Finally, we test the mean code length quality function on the zachary
karate club network. We study three different partitions of it. First of all, the sociological
partition, B100, which is the partition described in the original paper as corresponding to the
sociological ground truth about communities in the karate club. B200 is the partition obtained
by minimizing the modularity using the louvain algorithm, and B300 the partition obtained
by minimizing the entropy using the graph-tool library. Those partitions are illustrated on
figure 5.5.

For each of these partitions, we compute the mean code length. We also do so for 100
random partitions of the graph, with 1 to 5 blocks, and for each of these partitions, we
compute the mean code length for 99 random refinement of them, obtained by randomly
dividing each block in two. Results are plotted on figure 5.6.

We observe that the mean code length is minimum for the minimum entropy partition.
All studied partitions perform better than the random ones, so the mean code length captures
the fact that they reproduce part of the structure of the network. Yet, for B100 and B200 many of
their random refinements improve the compression, sometimes by a large amount, indicating
that they are not optimal. This is not the case for the minimum entropy partition B300. There
are only 2 refinements out of 99 which perform a little better, an issue we have seen may
happen due to random fluctuations. These results are coherent with previous work showing
that B100 is actually not fully supported by statistical evidence in the network. In the case
of B200, modularity is defined based on nodes’ degree, so the selected partition compensate
for node degrees, which are not considered here. Finally, minimizing the entropy without
correcting for the degree leads to the identification of two blocks of hubs, at the center of
each sociological communities, and two blocks corresponding to their periphery. This is not
necessarily what we expect, because we are used to communities defined with an implicit
or explicit degree correction, but as we have not imposed such constraints so far, this result
corresponds to the statistical evidence present in the network.

Stochastic blockmodel and configuration model

The main benefit of edge statistical models is that it provides a common framework to
compare models whose parameters lie in different parameter space. To illustrate this, let’s
consider two widespread models: the stochastic blockmodel and the configuration model.
The first one has been introduced in the previous section, so we start by describing the
edge-version of the configuration model, and then show how both models can be compared
using prequential inference.

We consider the directed version of the configuration model. The classical version of
this model takes as parameters the sequences of node in pkout

u quPV and out pkin
u quPV degrees.

For the edge version, we keep the idea that the probability of generating an edge u Ñ v is
determined by two probability distributions pout and pin over ~1,n�. pout

u is the probability to
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Figure 5.5 – Three different partitions of the zachary karate club network. Sociological (upper
left), minimum modularity (upper right), minimum entropy (lower)

Figure 5.6 – Mean code length for different partitions of the zachary karate club network
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pick node u as the source of the edge and pin
v the probability to pick v as its destination:

@u, v,QCMru, vs “ pout
u ˆ pin

v

Therefore, a probability distribution Q PM‚
npr0, 1sq corresponds to a directed configuration

model if and only if:

@u, v,Qru, vs ˆQr1, 1s ´Qru, 1s ˆQr1, vs “ 0

In this case, pout
u “

ř

vQru, vs and pin
v “

ř

uQru, vs. This gives us a system of pn´1q2 indepen-
dent constraints to use as hyperparameter φCM. It is worth noting that this hyperparameter
is not an affine function, so Remark 5.2.1 does not apply. However, we have the following
result (see proof in Annex 7.2.2):

Property 2. For any edge sequence E, f has a unique minimum Q˚
φCMpEq overMφCM

n pr0, 1sq.

Yet, this still leaves 2n´2 parameters to infer, which remains high in comparison with the
number of observations m and thus induces a risk of overfitting. To overcome this problem,
we consider a block version of the configuration model. It means that, given two partitions
of ~1,n�, Bin and Bout, ppin

u quP~1,n� is constant over the blocks of Bin and ppout
u quP~1,n� is constant

over the blocks of Bout. Thus, if Bin is made of qin blocks and Bout of qout blocks, there are only
qout ` qin ´ 2 parameters left to infer.

At this point, the benefit of prequential inference becomes even clearer. If we had relied
on the classical minimum description length formulation, we would have had to define a
prior distribution on all the possible hyperparameters, both for the stochastic blockmodels’
partitions and for the configuration models’ partitions. It is not clear at all how such a
distribution could be defined without introducing bias in the model selection. On the other
hand, prequential inference allows us to neglect this issue and let the inference process
itself select the hyperparameter which best manages to predict succesive edges based on the
previously observed ones.

In practice, we consider two models on n “ 128 nodes: the stochastic blockmodel S1 “

pB1,M1q (and its associated hyperparameter φB1) defined as

B1 “ ~1, 64�, ~65, 128�

M1 “
1
n2 ¨

„

2 0
0 2



and the block configuration model CM defined by

Bout “ ~1, 96�, ~97, 120�, ~121, 126�, ~127, 128�

pout “ r0.0054; 0.0109; 0.0217; 0.0435s

Bin “ p~1, 2�, ~3, 8�, ~9, 32�, ~33, 128�q

pin “ r0.0435; 0.0217; 0.0109; 0.0054s

which corresponds to a hyperparameter φBout,Bin .
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Figure 5.7 – Mean code length of two families of edges sequences, encoded using stochastic
blockmodel hyperparameter and configuration model hyperparameter.

Figure 5.8 – Mean code length against mixing parameter.
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For each probability distribution PS1 and PCM, we generate 10 edge sequences of length
1000 to 10000. Then, for each edge sequence, we compute its mean code length using hyper-
parameters φB1 and φBout,Bin . Results are shown in Figure 5.7.

We observe that, for the sequences of edges which are generated usingPCM (blue dots and
crosses), the mean code length is lower when using the configuration model hyperparameter
φBout,Bin . On the other hand, for the sequences generated using PS1 (yellow dots and crosses),
the mean code length is lower when using the stochastic blockmodel hyperparameter φB1 .
Thus, the best compression actually corresponds to the correct hyperparameter.

What is even more interested, is that we can also use sequential edge probability infer-
ence to identify the most significant property when the edge distribution is the result of a
combination of factors. Continuing with models PS1 and PC, let’s define the mixed model:

Ppλq “ λ ¨ PC ` p1´ λq ¨ PS1

We consider 11 values of λ between 0 and 1, and for each, we generate 10 edge sequences of
length 2800. Then, for each edge sequence, we compute its mean code length using φBout,Bin

and φB1 . Results are shown in Figure 5.8
We observe that as λ rises from 0 to 1, the mean code length using the block hyperpa-

rameter φB1 rises from 13 to 14, with a pick up to 15.5. On the other hand, the mean code
length using the configuration structure decreases from a little more than 14 down to 13.5. It
shows that the mean code length is able to capture the increasing influence of the block struc-
ture and the decreasing influence of the configuration structure in the distribution of edges.
When one model clearly dominates the other (i.e. λ ď 0.2 or λ ě 0.8) the corresponding
hyperparameter leads to a better compression.

Conclusion

In conclusion, we have shown how prequential inference can be used in graph model selec-
tion, by considering probability distributions on edge sequences rather than static graphs.
Describing models of various nature as probability distributions on edge allows to easily
compare their performance thanks to minimum description length (or equivalently bayesian
inference). Moreover, by introducing additional constraints as hyperparameters, we are able
to lower the number of parameters of the model below the number of observations on which
inference is performed, which is necessary to avoid overfitting.

We have illustrated how this framework can be used to select the most significant node
partition according to information present in edge distribution. Because it relies on statistical
inference, it provides a simple way to discriminate automatically between too fine and too
coarse partitions with no a priori information.

The main advantage of prequential edge probability inference is that it provides a com-
mon formulation of models of different nature in order to compare them. It is thus able,
for example, to automatically detect whether the distribution of edges is determined rather
by nodes’ block membership (block structure) or by their potential to emit or receive edges
(configurational structure), even in cases where both structures are mixed.

We believe these results to be a foretaste of the potential of this approach. Because it
has firm theoretical grounds, we are convinced that it can provide fruitful applications in
many domains where interactions are the results of entangled mechanisms whose effect
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on the overall graph topology can only be told apart by rigorous statistical analysis. It
therefore provides a reliable criterion which, combined with a methodology to explore the
hyperparameter search space, can lead to the automatic selection of the best model for a
given graph.
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Chapter 6

Conclusion

The study of real-world networks for the last twenty years has revealed their wealth of
structure at various scales and in turn has fostered the development of a wide variety of
models to explain the emergence of these structures. Yet, this very wealth of structure implies
that any modeling attempt which is not firmly grounded on statistical basis risks to mistake
random fluctuations for significant patterns or vice-versa while fitting the model. What is
more, the existence of various candidate models for an observed network stresses the lack
of a principled methodology to compare their relative relevance.

Statistical modeling provides a firm basis to tackle this model evaluation issue. Fitting
probability distributions on observations, and comparing their relevance with respect to a
set of observations are common tasks in statistical analysis. Formulating graph models as
probability distributions allows to mobilize its results to perform rigorous model fitting and
selection. However, graphs have peculiarities that must be accounted for in order for these
results to be interpretable. In this thesis, we explored different ways of adapting statistical
analysis tools to graph model selection.

In chapter 3, we focus on the formulation of a statistical test to evaluate the probability
that a candidate model was used to generate an observed network. Our main contribution
is to study the structure of the microcanonical ensemble associated with a model not only
from a combinatorial point of view (to compute its entropy), but also from a geometric point
of view thanks to the normalized edit distance. We show that the obtained graph space’s
shape is such that the distance to the barycenter and the normalized edit distance expected
value concentrate around values which are characterics of the model. As a consequence,
we are able to statisticaly test the hypothesis that an observed network was generated by
a candidate model. Contrarily to the mere likelihood, this test does not only measure the
probability to generate the observed network itself, but also networks which are close to it.

In chapter 4 and 5, we move on to a bayesian inference approach. In chapter 4, we
investigate the asymptotic properties of bayesian inference based on the microcanonical
ensemble’s entropy. We observe that, under certain circumstances, increasing the density of
edges within a planted partition generative model makes it not easier but harder to retrieve,
even though the number and sizes of blocks are known. We show that this is due to the fact
that imposing small blocks in dense regions imposes more constraints on the model and thus
lowers entropy independently of the statistical evidence present in the graph, which is a form
of overfitting. At a more fundamental level, it is a consequence of the fact that defining the
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probability distribution associated with a model on the microcanonical ensemble implies to
consider the whole graph as the random variable, therefore performing statistical inference
on a single observation.

To overcome this issue, we propose in chapter 5 a reformulation of graph statistical
models in terms of probability distribution on the set of edges. This way, even a single
graph contains several realization of the random variable. This formulation allows us to
use prequential inference, a statistical inference methodology which, while still based on
the minimum description length principle, does not require to rely on an ad hoc prior
distribution to avoid overfitting. The parameters of the model are updated sequentially
as edges are observed one after the other, and at each step it measures the ability of the
candidate model to take advantage of the statistical regularities in the first observed edges
to predict the next one. This way, it is able to discard both the models which do not have
enough degrees of freedom to fit the observations (and thus underfit them) and those which
have too much degrees of freedom and fail to predit yet unobserved edges (thus overfitting).
We also show how prequential inference can be used to compare models that do not share
the same parameter space, namely the configuration model and the stochastic block model.
As it does not rely on a prior distribution on the parameter space to avoid overfitting, it
removes the need to assign beforehand a probability to each possible parameter set, which
is hard to do without introducing bias in the model selection.

Perspectives and future work

Statistical graph model selection is a recent topic of research, especially if we consider not
only the selection of the right set of parameters but also the comparison of models whose
parameters do not belong to the same parameter space. As always, these contributions raise
as much new questions than they answer. Graph space geometric structure and properties
under other metric would deserve to be investigated. The edit distance we considered is
simple, but it is not the most adapted to the study of graphs as it neglects the topological
role of edges. Graph designed metrics such as DeltaCon, the perturbation-resistance metric,
or others could provide more meaningful tests. Apart from the metric, it would also be
interesting to investigate the change to the geometric structure of the graph space induced
when restricting the model to simple and undirected graphs, which are more used in practice.

Considering edge statistical models, we believe our theoretical results to give some hints
about the nature of overfit and underfit in graph model selection. Edge statistical model and
prequential inference show that a model selection procedure relying only on the statistical
evidence present in the data is possible. External specification such as a prior distribution,
which are necessary to other procedure to avoid overfitting, induce the risk to introduce
bias in the selection procedure. This is even truer as the models to compare are based on
parameters belonging to different parameter space (such as a stochastic blockmodel and a
configuration model). Removing these specifications thus opens the way to unbiased model
comparison.

In practice, we tested the procedure almost exclusively on small synthetic graphs. Al-
though the results are promising, it is clearly not sufficient to state definitive conclusions
about it. One important obstacle is the computational complexity of prequential inference,
as it requires to refit the model several times for a single network. Testing the procedure on
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real networks or exploring large parameter spaces like the node partition space for stochastic
blockmodel inference would imply to drastically reduce this computation time.

It would also be interesting to investigate the performance of this methodology on tem-
poral graphs which are naturaly described by edge sequences. In such a case, as the order of
edges is known, the assumption of independence between edges’ generation could probably
be removed, allowing to consider a wider class of models. In particular, the Barabasi-Albert
model of preferential attachment could be evaluated using this methodology.
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Chapter 7

Appendix

Graph space

Barycenter graph weight of various statistical models

We have defined the barycenter of a graph model as

GM “
ÿ

HPΩM

PpHq ¨H

Which means that

@pi, jq P V2,WGMpi, jq “
ÿ

HPΩM

PpHq ˆWHpi, jq

“ ErWHpi, jqs

Let’s illustrate how this can be computed for some classical models.

Erdös-Rényi model The simplest graph model is the Erdös-Rényi model for random
graphs. It’s associated microcanonical ensemble can be defined as:

ΩERpn,mq “ tH “ pV,Eq | |V| “ n^ |E| “ mu

Let’s recall that for the sake of simplicity, we chose to consider multigraphs with self loops.
Thus, the computation of ErWHpi, jqs is particularly simple. Indeed, if for each pair of node
pi, jq P V2 and each k P r1,mswe define the random variable Xi, j,k which is equal to 1 if the kth

edge is i Ñ j and to 0 else, then we have that WHpi, jq “
řm

k“1 Xi, j,k. It is a sum of independent
Bernouillis’ random variable so it follows a binomial law of parameters m and 1

n2 , and thus

(7.1) WGERpn,mqpi, jq “ E
ΩER
rWHpi, jqs “

m
n2

Configuration Model For the configuration model, all graphs in the microcanonical en-
semble must have the same degree distribution. Let’s consider the directed version.

ΩCFMD “ tG | @i P V,degout
G piq “ kout

i ^ degin
G piq “ kin

i u
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To compute the weight of the barycenter graph’s edges, we consider that each node i has kout
i

outgoing stubs and kin
i ingoing stubs. Any graph in ΩCFMD is characterized by a configuration

of connections of outgoing stubs with ingoing stubs. For every pair of nodes i, j P V2 and
any pair of stub k P r1, kout

i s, l P r1, kin
j s, we define the random variable Xi, j,k,l which is equal

to 1 if the kth outgoing stub of i is connected to the lth ingoing stub of j, and to 0 otherwise.
Then

WHpi, jq “
kout

i
ÿ

k“1

kin
j
ÿ

l“1

Xi, j,k,l

As each outgoing stub of i has the same probability to be connected to any of the m ingoing
stubs

@i, j, k, l,PrXi, j,k,l “ 1s “
1
m

Thus, WHpi, jq follows a binomial law of parameters 1
m and kout

i ˆ kin
j . Finally

(7.2) WGCFMDpi, jq “ E
ΩCFMD

rWHpi, jqs “
kout

i ˆ kin
j

m

Stochastic blockmodel The case of the stochastic blockmodel can be treated in the same
way as erdös-rényi. It is defined, considering a partition of the nodes B “ pb1, . . . , bqq and a
block adjacency matrix M PMqpNq by

ΩSBM “

$

&

%

H | @bk, bl,
ÿ

iPbk

ÿ

jPbl

WHpi, jq “ Mpk, lq

,

.

-

So, for any pair of nodes i P bk, j P bl, WHpi, jq follows a binomial law of parameters (Mpk, lq,
|bk||bl|). Thus

(7.3) WGSBMpi, jq “ E
ΩSBM

rWHpi, jqs “
Mpk, lq
|bk||bl|

Spatial models References for the gravitational model and the radiation model can be
found in Barthelemy [2011] and Simini et al. [2012]. In both cases, they are constructed in
such a way that edges weight have a given expected value. In the case of the gravitational
model, it is

(7.4) WGgravpi, jq “ fpdpi, jqq ˆ kout
i ˆ kin

j

where dpi, jq is the distance from node i to node j, and f is a deterence function.
Finally, in the case of the radiation model, it is

(7.5) WGradpi, jq “
kout

i ˆ kin
i ˆ kin

j

pkin
i ` si jq ˆ pkin

i ` kin
j ` si jq

with si j “
ř

uPCpi, jq kin
u and Cpi, jq “ tu P V | 0 ă dpi,uq ă dpi, jqu.
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Convergence proof for the edit distance expected value

First of all, let’s proove the following lemma

Lemma 1. Let B be a partition of ~1,n� with p blocks. Let M PMppNq be a block adjacency matrix.
For all k P N, we define the stochastic blockmodel Spkq “ pB, k ¨Mq, and its barycenter GSpkq. We
consider a sequence of random graphs pGkqkPN, each drawn from Spkq. We have that

edpGk,GSpkqq
P
ÝÑ
kÑ8

0

Given the notation above, we want to proove that:

@α ą 0,PredpGk,GSpkqq ą αs ÝÑ
kÑ8

0

Let α ą 0. Let’s denote m “
ř

i, j Mi, j the number of edges of graphs in ΩSp1q. By definition,

edpGk,GSpkqq “
1

2km

ÿ

u,v
|WGkpu, vq ´WGSpkqpu, vq|

Thus,

edpGk,GSpkqq ą αñ Dpu, vq,

ˇ

ˇ

ˇ

ˇ

ˇ

WGkpu, vq ´WGSpkqpu, vq

2km

ˇ

ˇ

ˇ

ˇ

ˇ

ą
α

n2

and

PredpGk,GSpkqq ą αs ď
ÿ

u,v
P

«ˇ

ˇ

ˇ

ˇ

ˇ

WGkpu, vq ´WGSpkqpu, vq

2km

ˇ

ˇ

ˇ

ˇ

ˇ

ą
α

n2

ff

Let’s consider two blocks bi and b j in B. We know that @u P bi, v P b j,WGSpkqpu, vq “ k ¨
Mi, j

|bi||b j|

and WGkpu, vq „ Bpk ¨ Mi, j, pi, jq with pi, j “
1

|bi||b j|
. Therefore, according to the Bienaymé-

Tchebychev inequality:

P

«
ˇ

ˇ

ˇ

ˇ

ˇ

WGkpu, vq ´WGSpkq

2km

ˇ

ˇ

ˇ

ˇ

ˇ

ą
α

n2

ff

ď
kˆMi, j ˆ pi, j ˆ p1´ pi, jq ˆ n2

4ˆ k2 ˆm2 ˆ α

ď
Mi, j ˆ pi, j ˆ p1´ pi, jq ˆ n2

4ˆ kˆm2 ˆ α
ÝÑ
kÑ8

0

Thus,

(7.6) PredpGk,GSpkqq ą αs ÝÑ
kÑ8

0

Which prooves the lemma.
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We can now proove the theorem

Theorem 3. Let B1 and B2 be two partition on ~1,n�, with p1 and p2 blocks respectively. Let
M1 PMp1pNq and M2 PMp2pNq be two block adjacency matrices such that

ÿ

i, jPr1,p1s
2

M1ri, js “
ÿ

k,lPr1,p2s2

M2rk, ls “ m

Let’s consider two series of stochastic blockmodels defined as S1pkq “ pB1, k ¨ M1q and S2pkq “
pB2, k ¨M2q, whose barycenters are denoted G1pkq and G2pkq. We have that

1. There exists d P R,@k PN, edpG1pkq,G2pkqq “ d

2. Let pGkqkPN be a serie of random graph each drawn following model S1pkq.

EDEVpGk,S2pkqq
P
ÝÑ
kÑ8

d

For any pair of nodes i, j, belonging to blocks bpiq and bp jq in B1 (resp. B2), the weight of
the edge i Ñ j in G1pkq (resp. G2pkq) is given by:

WG1pkqri, js “ k ¨
Mrbpiq, bp jqs
|bpiq||bp jq|

Therefore, the edit distance between G1pkq and G2pkq is

edpG1pkq,G2pkqq “
1

2km

ÿ

i, jPr1,ns2

ˇ

ˇWG1pkqri, js ´WG2pkqri, js
ˇ

ˇ

“
1

2km

ÿ

i, jPr1,ns2

ˇ

ˇ

ˇ

ˇ

k ¨
M1rb1piq, b1p jqs
|b1piq||b1p jq|

´ k ¨
M2rb2piq, b2p jqs
|b2piq||b2p jq|

ˇ

ˇ

ˇ

ˇ

“
1

2m

ÿ

i, jPr1,ns2

ˇ

ˇ

ˇ

ˇ

M1rb1piq, b1p jqs
|b1piq||b1p jq|

´
M2rb2piq, b2p jqs
|b2piq||b2p jq|

ˇ

ˇ

ˇ

ˇ

which is constant with respect to k. In the following we will denote this distance d for the
sake of conciseness. We want to show that

EDEVpGk,S2pkqq
P
ÝÑ
kÑ8

d

We start by noticing that

EDEVpGk,S2pkqq ´ d “ E
HPS2pkq

redpGk,Hqs ´ d

ď E
HPS2pkq

redpGk,G1pkqq ` edpG1pkq,G2pkqq ` edpG2pkq,Hqs ´ d

ď edpGk,G1pkqq ` E
HPS2pkq

redpG2pkq,Hqs

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI093/these.pdf 
© [L. Duvivier], [2021], INSA Lyon, tous droits réservés



7.1. Graph space 91

On the other hand,

d´ EDEVpGk,S2pkqq “ E
HPS2pkq

redpG1pkq,G2pkqq ´ edpGk,Hqs

ď E
HPS2pkq

redpG1pkq,Gkq ` edpGk,Hq ` edpH,G2pkqq ´ edpGk,Hqs

ď edpGk,G1pkqq ` E
HPS2pkq

redpG2pkq,Hqs

Thus

(7.7) |EDEVpGk,S2pkqq ´ d| ď edpGk,G1pkqq ` E
HPΩS2pkq

redpG2pkq,Hqs

Because Gk is generated following S1pkq, a direct application of lemma 1 is that

edpGk,G1pkqq
P
ÝÑ
kÑ8

0

What is more, if H is generated following S2pkq, we also have that

edpH,G2pkqq
P
ÝÑ
kÑ8

0

which implies that edpH,G2pkqq
L
ÝÑ
kÑ8

0 and in particular

E
HPΩS2pkq

rH,G2pkqs ÝÑ
kÑ8

0

Finally, we obtain that

edpGk,G1pkqq ` E
HPΩS2pkq

rH,G2pkqs
P
ÝÑ
kÑ8

0

And thanks to equation 7.7:

(7.8) EDEVpGk,S2pkqq
P
ÝÑ
kÑ8

d
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Edge statistical model sequential inference

Proof of existence and unicity of the minimum

We prove the following result

If Mφ
n pr0, 1sq is a convex set, then for any edge sequence E, f has a unique minimum

Q˚φpEq overMφ
n pr0, 1sq.

Let’s consider φ such that Mφ
n pr0, 1sq is a convex set, and let E be an edge sequence. Let’s

denote
M

φ
n ps0, 1sq “ tQ PM

φ
n pr0, 1sq | @u, v,Qru, vs ą 0u

All Q thus removed fromMφ
n pr0, 1sq lies on its boundary, so as it is supposed to be convex,

M
φ
n ps0, 1sq is convex too. We consider the function

fE :Mφ
n ps0, 1sq Ñ R

Q ÞÑ ´

m´1
ÿ

i“0

log2pQreisq `
ÿ

u,v
Qru, vs log2pQru, vsq

For all pairs of nodes pu, vq, we denote

Ku,v “ #tk P ~0,m´ 1� | ek “ u Ñ vu

Then, fE can be rewriten

@Q, fEpQq “
ÿ

u,vP~0,n´1�

pQru, vs ´ Ku,vq log2pQru, vsq

fE is C2 onMφ
n ps0, 1sq and it’s Hessian matrix is
»

—

—

—

—

—

–

K0,0

Qr0,0s2 `
1

Qr0,0s 0 . . . 0

0 K1,0

Qr1,0s2 `
1

Qr1,0s . . . 0
...

...
. . . 0

0 0 0 Kn´1,n´1

Qrn´1,n´1s2 `
1

Qrn´1,n´1s

fi

ffi

ffi

ffi

ffi

ffi

fl

which is positive definite onMφ
n ps0, 1sq, so fE is strictly convex on this set. AsMφ

n ps0, 1sq is
a convex set, we obtain that fE has a unique minimum over it, which we can denote Q˚φpEq.

It remains to be proven that Q˚φpEq is the minimum of fE overMφ
n pr0, 1sq.M

φ
n pr0, 1sq is the

closure (in the topological sense) of Mφ
n ps0, 1sq, so fE can be continuously extended to it,

provided that we extend it’s codomain to R̄ “ R Y 8. Let’s consider Q P Mφ
n pr0, 1sq such

that Du, v,Qru, vs “ 0 and a sequence pQiqiPN P M
φ
n ps0, 1sq that converges toward Q. There

are two different situations.
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1. If Du0, v0,Qru0, v0s “ 0^ Ku0,v0 ą 0. Then,

@i, fEpQiq “
ÿ

u,vP~0,n´1�

pQiru, vs ´ Ku,vq log2pQiru, vsq

“
ÿ

u,v,u0,v0

pQiru, vs ´ Ku,vq log2pQiru, vsq`

pQiru0, v0s ´ Ku0,v0q log2pQiru0, v0sq

Thus,
fEpQiq ÝÑ

iÑ8
8

So we define fEpQq “ 8 and in particular fEpQq ą fEpQ˚φpEqq.

2. If @u, v,Qru, vs “ 0 ñ Ku,v “ 0. Then,

@i, fEpQiq “
ÿ

u,vP~0,n´1�

pQiru, vs ´ Ku,vq log2pQiru, vsq

“
ÿ

u,v|Qru,vsą0

pQiru, vs ´ Ku,vq log2pQiru, vsq`

ÿ

u,v|Qru,vs“0

Qiru, vs log2pQiru, vsq

Thus,
fEpQiq ÝÑ

iÑ8

ÿ

u,v|Qru,vsą0

pQru, vs ´ Ku,vq log2pQru, vsq

and we define
fEpQq “

ÿ

u,v|Qru,vsą0

pQru, vs ´ Ku,vq log2pQru, vsq

By continuity of fE, we know that fEpQq ě fEpQ˚φpEqq. Let’s show that this inequality is strict.
We consider the restriction of fE to the interval

I “ tλ ¨Q˚φpEq ` p1´ λq ¨Q, λ P r0, 1ru ĂM
φ
n ps0, 1sq

Because of the strict convexity of fE onMφ
n ps0, 1sq, fE

ˇ

ˇ

I is a strictly increasing function of λ.
As a consequence,

fEpQ
˚
φpEqq ă lim

λÑ1
fE
ˇ

ˇ

Ipλ ¨Q
˚
φpEq ` p1´ λq ¨Qq “ fEpQq

Which proves that in both cases, Q˚φpEq is the only minimum of f overMφ
n pr0, 1sq.
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Proof of existence and unicity of the minimum (configuration model)

We prove the following result

For any edge sequence E, f has a unique minimum Q˚
φCMpEq overMφCM

n pr0, 1sq.

Let’s define the set of probability distributions on ~1,n�:

Definition 8. We denoteVnpr0, 1sq the set

Vnpr0, 1sq “

#

p P r0, 1sn |
n´1
ÿ

u“0

prus “ 1

+

By definition, we have a bijection

ψ :Vnpr0, 1sq2 ÑM
φCM

n pr0, 1sq

ppout, pinq ÞÑ Q “ pout ¨ ppinqT

Let’s consider a probability distributionQ PMφCM

n pr0, 1sq, and pout, pin PVnpr0, 1sq2 such that
@u, v,Qru, vs “ poutrus ¨ pinrvs, then

fpQ,Eq “ ´
m
ÿ

i“1

log2pQreisq `
ÿ

u,v
Qru, vs log2pQru, vsq

“ ´

m
ÿ

i“1

log2pp
outruis ¨ pinrvisq `

ÿ

u,v
ppoutrus ¨ pinrvsq log2pp

outrus ¨ pinrvsq

“ ´

m
ÿ

i“1

log2pp
outruisq `

ÿ

u

ÿ

v
poutrus ¨ pinrvs ¨ log2pp

outrusq`

´

m
ÿ

i“1

log2pp
inrvisq `

ÿ

u

ÿ

v
poutrus ¨ pinrvs ¨ log2pp

inrvsq

“ ´

m
ÿ

i“1

log2pp
outruisq `

ÿ

u
poutrus ¨ log2pp

outrusq`

´

m
ÿ

i“1

log2pp
inrvisq `

ÿ

v
pinrvs ¨ log2pp

inrvsq(7.9)

Hence, if we introduce

Ku “ #tk P ~1,m�,uk “ uu
Kv “ #tk P ~1,m�, vk “ vu

following the same reasoning as in Annex 7.2.1, we can define

gout
E :Vnpr0, 1sq Ñ R

p ÞÑ
ÿ

u
pprus ´ Kuq ¨ log2pprusq
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gin
E :Vnpr0, 1sq Ñ R

p ÞÑ
ÿ

v
pprvs ´ Kvq ¨ log2pprvsq

They both have a unique minimum which we denote respectively pout˚pEq and pin˚pEq. Then,
we define

Q˚
φCMpEq “ ψpp

out˚pEq, pin˚pEqq

Let’s show that Q˚
φCMpEq is the unique minimum of f overMφCM

n pr0, 1sq. Let Q PMφCM

n pr0, 1sq

such that fpQ,Eq ď fpQ˚
φCMpEq,Eq. Let pout P Vnpr0, 1sq and pin P Vnpr0, 1sq such that Q “

ψppout, pinq. According to equation 7.9,

fpQ,Eq “ gout
E ppoutq ` gin

E pp
inq

So, by definition of Q,

gout
E ppoutq ` gin

E pp
inq ď gout

E ppout˚q ` gin
E pp

in˚q

Which implies that pout “ pout˚ and pin “ pin˚, and thus that Q “ Q˚
φCMpEq. So Q˚

φCMpEq is the

unique minimum of fpQ,Eq overMφCM

n pr0, 1sq.
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Proof of convergence

We prove the following result:

Let peiqiPN be a sequence of independent and identically distributed random variables
following P0 PM

‚
npr0, 1sq.

@φ,Q˚φpe1, . . . , exq ÝÑxÑ8
argmin
QPProb_matφ

HpP0,Qq

Let P0 PM
‚
npr0, 1sq.

Let peiqiPN be a sequence of independent and identically distributed random variables
following P0.

Let’s consider the function

f pQ, xq “ ´
x
ÿ

i“1

log2pQreisq `
ÿ

u,v
Qru, vslog2pQru, vsq

We want to show that:

@φ, argmin
QPM

φ
n pr0,1sq

f pQ, xq ÝÑ
xÑ8

argmin
QPM

φ
n pr0,1sq

HpP0,Qq

Letφbe an hyperparameter andQ PMφ
n pr0, 1sq. Following the weak law of large numbers

´
1
x

x
ÿ

i“1

log2pQreisq ÝÑxÑ8
HpP0,Qq

Hence
1
x

f pQ, xq ´HpP0,Qq ÝÑxÑ8
0

So if we consider the sequence of functions

gx : Mφ
n pr0, 1sq Ñ R

Q ÞÑ
1
x

f pQ, xq ´HpP0,Qq

it converges point-wise toward 0. As it is an equicontinuous family of functions defined on
a compact set of Rn, it converges uniformly toward 0. This means that

(7.10) @δ ą 0, DA P R`,@Q PMφ
n pr0, 1sq,@x ě A,

ˇ

ˇ

ˇ

ˇ

1
x

f pQ, xq ´HpP0,Qq

ˇ

ˇ

ˇ

ˇ

ă δ

What is more, if we let P1 “ argmin
QPM

φ
n pr0,1sq

HpP0,Qq.H is a strictly convex function of Q so

(7.11) @ε ą 0, Dδ ą 0,@Q PMφ
n pr0, 1sq, |HpP0,Qq ´HpP0,P

1q| ă δñ |Q´ P1| ă ε
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With those two inequalities, we can proceed to the convergence demonstration. Let
ε ą 0, δ such as in equation 7.11, A such as in equation 7.10 with δ

3 , and x ě A. Let
Qpxq “ argmin

QPM
φ
n pr0,1sq

1
x f pQ, xq. Because of equation 7.10, we have that

ˇ

ˇ

ˇ

ˇ

1
x

f pQpxq, xq ´HpP0,Qpxqq
ˇ

ˇ

ˇ

ˇ

ă
δ
3

ˇ

ˇ

ˇ

ˇ

1
x

f pP1, xq ´HpP0,P
1q

ˇ

ˇ

ˇ

ˇ

ă
δ
3

Thus, if |HpP0,Qpxqq ´HpP0,P1q| ě δ:

1
x

f pQpxq, xq ěHpP0,Qpxqq ´
δ
3

ěHpP0,P
1q `

2δ
3

ąHpP0,P
1q `

δ
3

ą
1
x

f pP1, xq

Which contradicts the definition of Qpxq. Thus |HpP0,Qpxqq ´HpP0,P1q| ă δ, and because
of equation 7.11

|Qpxq ´ P1| ă ε

Which proves that:
argmin
QPM

φ
n pr0,1sq

f pQ, xq ÝÑ
xÑ8

argmin
QPM

φ
n pr0,1sq

HpP,Qq

And as this is true for any hyperparameter φ, the result is proved.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI093/these.pdf 
© [L. Duvivier], [2021], INSA Lyon, tous droits réservés



98 Chapter 7. Appendix

Description length computation

To compute the description length of a sequence E, a fundamental result in information
theory states that, if a source (let’s call her Alice) draws messages independently at random
from a set Ω following a probability distribution Q and then transmit them to a destination
(Bob) over a binary channel, then the code CQ : Ω Ñ r0, 1s˚ which minimizes the expected
length of the total message ExPΩr|Cpxq|swill be such that:

@x P Ω, |Cpxq| “ ´ log2pQrxsq

Therefore, if we suppose that all edges ei P E were generated independently following a
probability distribution Q, we obtain that:

DpE|Qq “ ´ log2pQrEsq

“ ´ log2

˜

m
ź

k“1

Qreks

¸

“ ´

m
ÿ

i“1

log2pQreksq
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Bayesian inference

We have defined the estimationQ˚φpEq as the model which allows for the best compression of

E. Yet, if we considerMφ
n pr0, 1sq as the set of models which could have been used to generate

E, Q˚φpEq can also be interpreted as the most likely hypothesis among them.

According to Bayes’ theorem, the probability that a model Q P Mφ
n pr0, 1sq was the one

used to generate the edge sequence E is

PφrQ|Es “
PrE|Qs ˆ P̄φrQs

PrEs

Therefore, as PrEs does not depend on Q,

(7.12) Q˚φpEq “ argmax
QPM

φ
n pr0,1sq

PrE|Qs ˆ P̄φrQs

In practice, it means that if we infer the most likely model for an empty sequence,Q˚φrHs

will be the highest entropy model withinMφ
n pr0, 1sq. On the other hand, as we have more and

more observations, the sequence E becomes longer and the influence of the prior distribution
P̄φrQs becomes negligible. As the probability to generate an edge pu, vq with a model Q is
simply Qru, vs and edges are assumed to be independent, this equation becomes

Q˚φpEq “ argmax
QPM

φ
n pr0,1sq

m
ź

i“1

Qreis ˆ
1

Zφ
ˆ 2SrQs

To perform the maximization, it is simpler to consider the logarithm of this expression. As
log2 is a monotonous function, it does not change the value of Q˚φpEq.

Q˚φpEq “ argmax
QPM

φ
n pr0,1sq

log2

˜

m
ź

i“1

Qreis ˆ
1

Zφ
ˆ 2SrQs

¸

“ argmax
QPM

φ
n pr0,1sq

m
ÿ

i“1

log2pQreisq ` SrQs

“ argmin
QPM

φ
n pr0,1sq

´

m
ÿ

i“1

log2pQreisq ´ SrQs
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Model Partition Block probability matrix

S0 B0 “ ~1, 128� M0 “
1
n2 ¨

“

1
‰

S1 B1 “ ~1, 64�, ~65, 128� M1 “
1
n2 ¨

„

2 0
0 2



S2
B2 “ ~1, 32�, ~33, 64�,
~65, 96�, ~97, 128� M2 “

1
n2 ¨

»

—

—

–

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

fi

ffi

ffi

fl

Table 7.1 – Three stochastic blockmodels defined as edge probability distributions.

Edge prediction probability

We investigate how the prediction probability of the next edge evolves as Alice draws more
and more edges. We consider three stochastic blockmodels on n “ 128 nodes based on three
partitions B0, B1 and B2. B0 is made of a single block of size 128, B1 of two blocks of size
64 and B2 of four blocks of size 32, obtained by dividing B1’s block in half. The three SBMs
are fully described in Table 7.1. For each SBM, we randomly sample m “ 2800 edges and
thus obtain three graphs: G0, G1 and G2. We want to study the edge prediction probability
evolution depending on the constraints used to learn the model. Thus, for each of the three
graphs, and each of the three hyperparameters φB0 , φB1 , φB2 , we plot the evolution of the
prediction probability Q˚φpe1, . . . , ek´1qreks against k in Figure 7.1.

This simple example shows how the level of constraints imposed by the hyperparameter
acts on the probability prediction of the next edge. For all three graphs, whatever k, the
prediction probability based on the null partition B0 is constant at 0.00006 (black dots). This

is logical, as the only probability matrix inMφB0

n pr0, 1sq is the uniform distribution. Therefore,

@k,Q˚
φB0
pe1, . . . , ek´1qreks “

1
n2 “

1
1282 « 0.00006

For other hyperparameters (red and yellow dots), the results depend on the graph. On G0,
generated with B0 and thus presenting no block structure, models based on more refined
partitions do not lead on average to better prediction probabilities than the one based on B0.
For some edges their prediction probability is better, but as often it is worse. On average,
they have the same prediction power, but the convergence toward the generative probability
distribution is slowed down by random fluctuations due to the additional degree of freedom
allowed.

On the other hand, for G1, generated with B1 (two blocks), we observe that refining the
partition from one block to two allows the prediction probability to increase quickly. While
it remains 1

n2 for the hyperparameter φB0 , it converges to 2
n2 for the hyperparameter φB1 (red

dots). Yet, refining even more the partition is worthless, as illustrated by the B2 partition
(yellow dots), with 4 blocks, which does not bring any improvement on average. Finally,
considering G2, we observe that refining the partition brings more and more improvement
to the prediction probability. With B0 it remains stable at 1

n2 , with B1 it rises up to 2
n2 , and with
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7.2. Edge statistical model sequential inference 101

Figure 7.1 – For each graph, we plot the edge prediction probability Q˚
φBpe1, . . . , ek´1qreks

against k. Black dots corresponds to the model learned with partition B0, red dots with
partition B1 and yellow dots with partition B2. As the number of observed edges grows, the
prediction converges to a value which depends on G and B. When the learning partition
is coarser than the original partition, the prediction probability converges to a lower value.
When it is finer, it converges toward the same value, but more slowly.

B2 up to 4
n2 . This shows that increasing the number of degrees of freedom of the model (i.e.

reducing the number of constraints of the hyperparameter) is a double-edged sword. As long
as it allows the model to better fit correlations that are present in the observations, it leads
to better prediction performance. Yet, this comes at the price of a slower convergence of the
model. It is the combination of those two effects which allows us to detect both overfitting
and underfitting models.
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