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Abstract

The research on the vibroacoustic behavior of cylindrical shells has been of great interest in

the industry for its applications in the naval and aeronautics domains. The application of a

coating on submerged cylindrical shells allows reducing the noise radiated and scattered by

the shell and finds great utility in the necessity of acoustic furtivity and stealth of submarine

vehicles. The coatings applied on underwater structures are viscoelastic materials that can

generally be decomposed into two categories. Decoupling coatings isolate the hull from the

surrounding medium and reduce the radiated noise to serve as a protection against passive

sonars, while anechoic coatings serve as a protection against active sonars by reducing the

acoustic scattering from the hull. If fully coated cylindrical shells have been intensively

studied in the literature, few works can be found on partially coated cylindrical shells.

Modelling the vibroacoustic behavior of such structures may be useful for predicting the

impact of missing coating tiles, or for studying cylindrical shells with several kinds of coatings.

Compared to fully coated cylindrical shells, the loss of axisymmetry induced by the partial

coating leads to a coupling of the circumferential orders of the submerged shell, leading to

prohibitive calculation costs for numerical methods and an impossibility of applying classical

semi-analytical methods.

In this work, a subtractive modelling approach is developed to circumvent this issue. It is

based on a reverse formulation of the Condensed Transfer Function method, a substructuring

approach that has already proven its ability in dealing with complex vibroacoustic problems.

Considering this subtractive modelling approach, the partially coated cylindrical shell can be

studied from the model of a fully coated cylindrical shell, from which a model of the missing

part of the coating is removed. The theoretical framework of the method is explored for 1-D

and 3-D problems before being applied to analytical test cases to evaluate the accuracy of

the method. Numerical errors are then introduced in the models to explore the sensitivity of

the method to model errors. Finally, the subtractive modelling approach is applied to the

practical case of interest, which is the partially coated cylindrical shell.
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Résumé

La recherche sur le comportement vibroacoustique des coques cylindriques est d’un grand

intérêt dans un contexte industriel, pour ses applications dans les domaines naval et aéro-

nautique. Afin de limiter le bruit rayonné et diffusé par les coques, et dans un contexte

de grande nécessité de furtivité acoustique et de discrétion des navires sous-marins, des

revêtements peuvent être appliqués sur la surface de la coque. Les revêtements que l’on peut

trouver sur des structures sous-marines sont des matériaux viscoélastiques que l’on peut

généralement séparer en deux grandes catégories. D’un côté, les matériaux de masquage

permettent d’isoler la coque résistante du milieu environnant, servant ainsi de protection face

aux sonars passifs. D’un autre côté, les matériaux anéchoïques ont pour but de protéger le

sous-marin face aux sonars actifs en limitant au maximum la réflexion des ondes provenant

de l’extérieur. Si l’on peut trouver dans la littérature de nombreuses recherches s’intéressant

aux coques cylindriques entièrement revêtues, peu de travaux ont été effectués sur les coques

partiellement revêtues. Modéliser le comportement vibroacoustique de telles structures

pourrait s’avérer utile afin de prédire l’impact des zones de revêtement manquantes, ou pour

étudier des coques cylindriques présentant plusieurs types de revêtement différents. Par

rapport à une coque entièrement revêtue, la perte de l’axisymétrie induite par le revêtement

partiel entraîne un couplage des ordres circonférentiels de la coque en eau, ce qui conduit à

des calculs très lourds limitant la possibilité d’utiliser les méthodes numériques classiques,

tout en rendant impossible l’application des méthodes semi-analytiques usuellement utilisées

pour étudier les coques cylindriques.

Dans cette thèse, une approche de modélisation soustractive est développée afin de

remédier à ce problème. Elle se base sur une formulation inversée de la méthode des

fonctions de transfert condensées (CTF, Condensed Transfer Function), une approche de

sous-structuration ayant déjà montré sa capacité pour étudier et modéliser des systèmes

vibroacoustiques complexes. Grâce à cette approche de modélisation soustractive, une coque

cylindrique partiellement revêtue pourrait être modélisée en partant d’un modèle de la coque

cylindrique intégralement revêtue, auquel on enlèverait un modèle de la partie manquante

du revêtement. Les principes théoriques de la méthode sont dans un premier temps explorés

sur des problèmes 1-D et 3-D, avant d’être appliqués à des cas tests permettant d’évaluer
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l’efficacité et la précision de la méthode. Des erreurs numériques sont ensuite introduites

afin d’évaluer la sensibilité de la méthode aux erreurs de modèle. Enfin, l’approche de

modélisation soustractive est appliquée au cas d’intérêt initial, correspondant à la coque

cylindrique partiellement revêtue.

N.B. : le manuscrit étant rédigé en anglais, un résumé étendu en français peut être consulté en

annexe E.
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E Young’s modulus of the cylindrical shell

F Radial force exerted on the shell

G Green function

H Transfer function

H(1)
n Hankel function of the first kind and of order n

H(2)
n Hankel function of the second kind and of order n

Jn Bessel function of the first kind and of order n

L f Axial force exerted on the shell

Li Length of the rod i

Lp Sound Pressure Level

MT Tangential moment exerted on the shell

N Number of condensation functions

NL Maximal degree of the associated Legendre polynomial

Nmax Maximal circumferential wavenumber

Pi Amplitude of the acoustic plane wave

Pn Legendre polynomial
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Pm
n Associated Legendre polynomial

Q Volume velocity flow

Qi Amplitude of the monopole source

R Radius of the cylindrical shell

S Surface of the finite cylindrical shell

Sn Struve function

T Tangential force exerted on the shell

U Axial displacement of the shell

V Tangential displacement of the shell

V0 Uniform radial velocity of the shell

W Radial displacement of the shell

Wa Radiated power

Z0 Acoustic impedance

Zc Coating impedance

Z f Fluid loading impedance

ZR Radiation impedance of a baffled circular piston

Zs Impedance of the cylindrical shell

Lower-case Roman Letters
j Unit imaginary number

a Sphere radius

ap Radius of the circular piston

c f Sound speed in the fluid

cp Rubber sound speed

cs Longitudinal waves celerity in the shell

d Size of the patch

de Size of the elements of the FEM model

dsegm Size of the segments

fc Critical frequency of the shell

fr Ring frequency of the shell

h Thickness of the cylindrical shell

h(1)n Spherical Hankel function of the first kind and of order n

h(2)n Spherical Hankel function of the second kind and of order n

hp Rubber thickness

jn Spherical Bessel function of the first kind and of order n

k f Acoustic wavenumber in the fluid

kl Wavenumber of the longitudinal waves in the shell
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kr Radial wavenumber

ks Flexural wavenumber of a plate of same thickness as the shell

kx Axial wavenumber

n Circumferential wavenumber

p Pressure

p0 Reference sound pressure

pd Double layer potential

ps Single layer potential

r Radial coordinate

u Normal velocity

x Axial coordinate

yn Spherical Bessel function of the second kind and of order n

Capital Greek Letters
∆ Laplacian operator

∆ Vibroacoustic excitation vector

Λ Condensed pressure and radial velocity vector

Φ Modal basis

Ω Decoupling interface

Ωs Patch area

Π Power flow exchanged between two subsystems
˜̃∆ Determinant of the spectral Flügge matrix taking into account the fluid impedance

Lower-case Greek Letters
β Shell thickness parameter

βij Intermodal coupling loss factor between two subsystems

ξ Vibroacoustic unknown vector

χ Fraction of the fluid impedance

δSn Area around the node n

δ Dirac delta distribution

η Loss factor in the fluid

ηs Structural damping coefficient

ηij Coupling loss factor between two subsystems

λ Wavelength

λ f Acoustic wavelength in the exterior fluid

λp Acoustic wavelength in the rubber

λs Flexural wavelength

δU Velocity jump vector
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µ Layer of dipole sources

ν Layer of monopole sources

νp Rubber loss factor

νs Poisson’s ratio of the cylindrical shell

ω Angular frequency

ωc Central angular frequency in the frequency band of interest

ϕ Azimutal angle

ψn,m Spherical harmonics

ρ f Fluid density

ρp Rubber density

ρs Density of the cylindrical shell

σ Radiation efficiency of a cylindrical shell

θ Tangential coordinate

φ Tangential rotation

φj Condensation function

ξ Time-averaged total energy

kp Acoustic wavenumber in the rubber

Symbols and accents
1 Derivative with respect to the argument

x, y Scalar product
˜̃ Quantity in the spectral domain (2D Fourier transform)

 Reduced matrix
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Introduction

Context

The work presented in this thesis was funded by Naval Group, a french industrial specialized

in the design and realization of naval vessels, including submarines. It was conducted in

collaboration with the Laboratoire Vibrations Acoustique (LVA) of INSA de Lyon.

In the naval industrial context, modelling the vibroacoustic behavior of submerged cylin-

drical shells has been a challenging issue for the last decades. In the civil area, there is a

growing interest in limiting the noise emitted by naval vehicles for environmental protection

matters, and for enhancing the detection performance of Sonar arrays that can be embedded

on ships for fisheries research. Concerning military applications, the ongoing acoustic warfare

has led to strict requirements regarding the acoustic performances of submarine hulls, and

the increasing performances of the Sonar antennas induces the need of modelling the systems

over a large frequency range (from several Hz to several kHz depending on the application).

In particular, three main operational capabilities arise from different kinds of excitation of the

hull:

ACOUSTIC DISCRETION: when the hull is subjected to internal mechanical (presence of

floors, engine foundations or pumps) or acoustical (reverberant field) excitations, the

radiated noise of the vehicle in the far-field can be detected by passive sonars listening

to the sea with a hydrophone array (see figure 1a). That noise must hence remain as

low as possible.

ACOUSTIC STEALTH: when the hull is subjected to an external acoustical excitation (a plane

wave), the scattered pressure field induced by the acoustic wave impacting the hull

can be detected and measured by active sonars (see figure 1b). It is thus necessary to

minimize this scattered field as much as possible, in order to reduce the acoustic target

strength of the vehicle.

SONAR PERFORMANCES: the hull of a submarine vehicle is often equiped with an array

of hydrophones in order to detect and localize other naval vehicles. However, the

turbulences induced by the vehicle moving into the fluid domain or the internal
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mechanical and acoustical sources can increase the self-noise in the near-field of the

vehicle, which disturbs the measurements of the embedded sonar array. This near-field

radiated pressure must hence be controlled as much as possible in order to have a

high signal-to-noise ratio, both for passive and active sonar situations.

Passive Sonar Active Sonar(a) (b)

Sonar dome Sonar dome

Figure 1: (a) Passive Sonar. (b) Active Sonar.

In order to reduce the radiated noise and scattered pressure field of the hull, and to be

as efficient as possible concerning those operational capabilities, acoustic coatings can be

applied on the hull’s surface. These coatings consist in viscoelastic materials and can be

separated into two main categories:

ANECHOIC COATINGS: by absorbing the incoming acoustic waves, anechoic coatings re-

duce the scattering from the hull and hence serve as a protection again active sonars.

They are used to reduce the vehicle’s target strength.

COMPLIANT COATINGS: by isolating the hull from the surrounding medium, compliant

(or decoupling) coatings reduce the noise radiated by the hull and hence serve as

a protection against passive sonars while reducing the self-noise. They are used to

improve the acoustic stealth and the sonar performances.

While many works have been conducted in the literature concerning acoustic coatings

and fully coated cylindrical shells, less attention has been paid to the case of partially coated

cylindrical shells. Compared to a fully coated shell, the loss of the axisymmetry introduced

by the partial coating induces a coupling of the circumferential orders of the submerged shell,

making unusable the semi-analytical methods usually employed to study cylindrical shells.

Hence, the few studies available in the literature on this topic are reduced to low-frequencies

or to simplified models regarding the modelling of the coating or the shell (as it will be

highlighted in the state of the art review of this thesis).
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Yet, being able to study a partially coated cylindrical shell in a wide range of frequencies

is an important issue in an industrial context. Indeed, one could be interested in quantifying

the impact of missing tiles at the surface of the shell, as illustrated in figure 2a. Besides,

the two categories of coatings are generally simultaneously applied on a submarine hull.

Anechoic coatings can be found on the flank of the hull and on the sail (which does not belong

to the pressure hull), while decoupling coatings are applied everywhere else as illustrated

in figure 2b. This non-axisymmetric configuration of the hull constitutes a particular case

of partial coating that must be addressed as it answers to industrial needs. Furthermore,

some particular areas of the hull are more challenging for the application of coatings and

their impact on the vibroacoustic behavior must be quantified as well. Notably, for self-noise

applications, it could be of interest to model the effect of un-joined coating tiles on the

performances of the sonar array. Finally, one could find a physical or economical interest in

applying coating solutions only on targeted areas of the shell.

Decoupling coating

Anechoic coating

(a) (b)

Figure 2: (a) Submarine hull with missing coating tiles. (b) Schematic view of a submarine
hull covered with decoupling and anechoic coatings.

Objective of the thesis

The aim of this thesis is to develop a numerical method capable of modelling a partially

coated cylindrical shell in a wide range of frequencies, with a reasonable computational

cost meeting industrial needs. This method should be able to take into account different

geometries of the shell, including internal frames such as stiffeners, bulkheads or floors, and

present the possiblity of considering not only partial coating, but also the presence of two

different kinds of coating materials at the surface of the shell. The past collaborations between

INSA de Lyon and several industrial partners of the naval domain allowed the development

of vibroacoustic models of submerged cylindrical shells, either with internal substructures,

multilayered coatings, or both. However, these models were limited to axisymmetric systems.

Besides, the usual analytical and semi-analytical methods available in the literature showed
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their limitations in dealing with non-axisymmetric systems due to the coupling of the circum-

ferential orders. In order to utilize existing models and to circumvent the limitations of the

existing methods, a new lead is explored in this work: subtractive vibroacoustic modelling.

Using this concept, the partially coated cylindrical shell can be studied from an existing

model of the fully coated shell, from which the missing part of the coating is removed and

replaced by water, as illustrated in figure 3.

Figure 3: Studying a partially coated cylindrical shell using subtractive vibroacoustic mod-
elling.

The subtractive modelling approach proposed in this thesis will be based on a reverse

formulation of the Condensed Transfer Function (CTF) method, a substructuring approach

initially developed to couple subsystems along lines or surfaces. After having established the

principles of this approach named the reverse Condensed Transfer Function (rCTF) method,

applications on academic test cases will be carried out. They will allow to validate numerically

the proposed approach, to study its validity range and to evaluate its performances. Finally,

as a first example of naval application, the rCTF approach will be applied to simulate the

behavior of a partially coated cylindrical shell.

In the next chapter, a review of the literature is proposed on the three topics related to

this work: the acoustic radiation of submerged cylindrical shells, the modelling of acoustic

coatings for naval applications, and the numerical methods in vibroacoustics, including

substructuring and decoupling approaches. Following this analysis, the methodology and

organization of the document will be presented.
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Chapter 1

Literature review

The aim of this chapter is to give a comprehensive overview of the literature concerning three

topics in relation with the problem presented in the introduction. Firstly, the vibroacoustic

problem of a bare cylindrical shell is addressed, starting from the in vacuo case to more

complex configurations, with the influence of fluid loading and internal structures such

as stiffeners. Then, the second part deals with the different kinds of coatings that can be

considered and the studies that have been carried out so far on partial coating. In the third

part, numerical methods used to solve vibroacoustic problems will be presented with their

advantages and limitations. It can be underlined that some mathematical developments will

be proposed in this chapter, as they will serve as a basis for the next chapters. Finally, the

methodology of this work and the organization of the document will be presented.

1.1 Vibroacoustic behavior of cylindrical shells

1.1.1 In vacuo cylindrical shells

The vibroacoustic behavior of cylindrical shells has been studied with great interest over

the last decades, particularly for its industrial applications such as aeronautics and naval

domains. In his book published in 1972, Leissa [1] compiled a great part of the work that

had been done on the vibrational behavior of thin shells so far, and particularly the principal

assumptions and theories. A first theory on the vibrations of thin elastic shells was derived by

Love [2] and exhibited hypothesis known as the Love’s First Approximation Theory (LFAT) :

- the shell is thin, meaning that its thickness is small compared to its other dimensions;

- the deflections of the shell are small, meaning that the second- and higher-order mag-

nitude in the strain-displacement relations may be neglicted compared to first-order

terms;

- the transverse normal stress is negligible compared to the other normal stress compo-

nents;
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- normals to the underformed middle surface remain straight and normal to the deformed

middle surface, and suffer no change in dimensions.

Following these postulates, other thin shell theories have emerged, and particularly thin

cylindrical shell theories. We can state the Donnell-Mushtari’s theory, the Sanders’ theory

or the Flügge’s theory. Ruotolo [3] showed that Donnell’s theory exhibits high errors in

the evaluation of the eigenfrequencies of the structure and does not fit well with internal

stiffeners. On the contrary, Flügge’s theory [4–6] has proven its convenience and accordance

with other theories and will be used in this work. Let us consider an in vacuo infinitely long

cylindrical shell, of radius R and thickness h, as in figure 4. The shell material is assumed

to be elastic and isotropic, and is characterized by its Young’s modulus E, density ρs and

Poisson’s ratio νs. The shell is considered as thin, meaning that R " h.

uv

w

h

R

x
θ

Figure 4: Infinite cylindrical shell and associated coordinate system

Let us define U, V and W, which are the axial, tangential and radial displacements of the

shell, respectively. L f , T and F are respectively the axial, tangential and radial forces exerted

on the shell by a point force, and MT is the tangential moment exerted on the shell by the

external load. As we are in harmonic regime, the time dependence ejωt (with j2 = �1, ω the

pulsation and t the time) is omitted. The vibrational behavior of the shell is described by the

Flügge’s equations as follows

[
R2 B2

Bx2 +
(

1 + β2
) 1� ν

2
B2

Bθ2 � ρR2 1� ν2

E
B2

Bt2

]
U +

[
R

1 + ν

2
B2

BxBθ

]
V

+

[
Rν

B
Bx

� β2R3 B3

Bx3 + β2R
1� ν

2
B3

BxBθ2

]
W = �

(
1� ν2) R2

Eh
L f δ(x)δ(θ)

(1.1a)

[
R

1 + ν

2
B2

BxBθ

]
U +

[
R2
(

1 + 3β2
) 1� ν

2
B2

Bx2 +
B2

Bθ2 � ρR2 1� ν2

E
B2

Bt2

]
V

+

[ B
Bθ

� β2R2 3� ν

2
B3

Bx2Bθ

]
W = �

(
1� ν2) R2

Eh
Tδ(x)δ(θ)

(1.1b)
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[
Rν

B
Bx

� β2R3 B3

Bx3 + β2R
1� ν

2
B3

BxBθ2

]
U +

[ B
Bθ

� β2R2 3� ν

2
B3

Bx2Bθ

]
V

+

[
1 + β2

(
R4 B4

Bx4 + 2R2 B4

Bx2Bθ2 +
B4

Bθ4

)
+ ρR2 1� ν2

E
B2

Bt2 + β2
(

1 + 2
B2

Bθ2

)]
W

=

(
1� ν2) R2

Eh
(Fδ(x)� MTδ1(x)) δ(θ)

(1.1c)

where δ and δ1 respectively correspond to the Dirac distribution and its derivative, and

β = h
R
?

12
is the shell thickness parameter. The natural damping of the shell can be accounted

for by adding a complex part with a loss factor ηs to the Young’s modulus of the shell

E� = E(1 + jηs).

In order to study cylindrical shells, it can be more convenient to write the equations of

motion in the wavenumber domain, as it has been completely described by Skelton [7]. In

cylindrical coordinates, any physical field f (r, θ, x) can be expressed using a Fourier series

decomposition along coordinate θ and a Fourier transform along coordinate x as follows

f (r, θ, x) =
1

2π

n=+8¸
n=�8

ejnθ

» +8

�8
˜̃f (r, n, kx)ejkxx dkx (1.2)

where kx is the axial wavenumber, and n is the circumferential order. The associated spectral

quantity ˜̃f (r, n, kx) is given by the 2D Fourier transform

˜̃f (r, n, kx) =
1

2π

» 2π

0

» +8

�8
f (r, θ, x)e�j(nθ+kxx) dx dθ (1.3)

The Flügge system in Eq. (1.1) can hence be rewritten in the spectral domain as follows

 ˜̃ZUU
˜̃ZUV

˜̃ZUW
˜̃ZUV

˜̃ZVV
˜̃ZVW

˜̃ZUW
˜̃ZVW

˜̃ZWW


 ˜̃U

˜̃V
˜̃W

 =

(
1� ν2) R2

Eh

 � ˜̃L f

� ˜̃T
˜̃F + jkx

˜̃M

 (1.4)

The spectral expressions of the Flügge’s operator and the spectral displacements are given

in Appendix A, and their value in the physical space can be retrieved using the inverse

Fourier operation described in Eq. (1.2).

Studying cylindrical shells exhibits characteristic frequencies at which the properties of

the shell show a change in behavior [8] and particularly in the radiation efficiency. The

radiation efficiency σ corresponds to the ratio between the actual far-field radiated power

Wa and the power that would be radiated by a cylindrical shell having the same radiating

surface S and an uniform radial velocity V0 [9]

σ =
Wa

ρ f c f SV2
0

(1.5)
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where ρ f is the fluid density and c f the sound speed in the fluid. This value is particularly

high around the ring frequency of the shell fr, at which the longitudinal wavelength equals

the circumference of the shell [10, 11]. This frequency is given by the following relation[11]

fr =
cs

2πR
(1.6)

where cs is the celerity of the longitudinal waves in the shell

cs =

d
E

(1� ν2
s ) ρs

(1.7)

Above the ring frequency, the radial displacements are weakly coupled from longitudinal

and tangential displacements, and it can be considered that the cylindrical shell behaves

like a plate [12]. On the other hand, the critical frequency fc is the frequency at which the

acoustic wavenumber k f = ω/c f in the medium is the same as the flexural wavenumber of

an equivalent plate of thickness h, and is defined as [8]

fc =
c2

f

?
12

2πhcs
(1.8)

The coincidence frequency corresponds to the maximum value of the radiation efficiency,

that tends to 1 above fc (supersonic domain) and is lower under fc (subsonic domain).

1.1.2 Effect of heavy fluid loading

In order to study the behavior of submerged structures or fluid-filled structures, the effect

of fluid loading must be investigated. Compared to in vacuo shells, shells surrounded by

an acoustic medium present lower natural frequencies, due to an accession to inertia and

dissipation of energy by radiation, as it has been highlighted by Junger and Garrelick [13].

The effect of fluid loading can be accounted for by adding a pressure reaction in the right-

hand side of the third equation of the Flügge’s system (Eq. (1.1c)). In this work, we will only

consider external pressure, meaning that the internal pressure will not be taken into account

(i.e. there is no acoustic domain inside the shell). Eq. (1.1c) hence becomes

[
Rν

B
Bx

� β2R3 B3

Bx3 + β2R
1� ν

2
B3

BxBθ2

]
U +

[ B
Bθ

� β2R2 3� ν

2
B3

Bx2Bθ

]
V

+

[
1 + β2

(
R4 B4

Bx4 + 2R2 B4

Bx2Bθ2 +
B4

Bθ4

)
+ ρR2 1� ν2

E
B2

Bt2 + β2
(

1 + 2
B2

Bθ2

)]
W

=

(
1� ν2) R2

Eh
(Fδ(x)δ(θ)� MTδ1(x)δ(θ)� p(x, θ))

(1.9)

In the fluid medium, the pressure p in Eq. (1.9) satisfies the homogeneous Helmholtz

equation [8]
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∆p(r, θ, x) + k2
f p(r, θ, x) = 0 (1.10)

where ∆ = (B2/Bx2) + (B2/Br2) + (1/r)(B/Br) + (1/r2)(B2/Bθ2) is the Laplacian operator

in cylindrical coordinates, and k f is the acoustic wavenumber. The radiated far-field pres-

sure verifies the Sommerfeld radiation condition [14], while the kinematic condition at the

cylindrical interface between the shell and the fluid medium satisfies the Euler condition

#
lim
rÑ8r

(
jk f p + Bp

Br

)
= 0

Bp
Br (R, θ, x) = ρ f Ẅ(θ, x),

(1.11)

Applying a 2D Fourier transform as in Eq. (1.3) to Eqs. (1.10) and (1.11) allows solving

the problem in the wavenumber domain. The spectral pressure can be expressed in terms of

the spectral radial displacement of the shell ˜̃W as well as the spectral fluid "impedance" ˜̃Z f

(defined as the spectral pressure over the spectral displacement)

˜̃p(R, n, kx) =
˜̃Z f (R, n, kx)

˜̃W(n, kx) (1.12)

with the spectral fluid impedance being:

˜̃Z f (R, n, kx) =
ρ f ω2

kr

H(2)
n (krR)

H(2)1
n (krR)

(1.13)

where k2
r = k2

f � k2
x. H(2)

n and H(2)1
n are the Hankel function of the second kind and of order n

and its derivative with respect to its argument, respectively. The relation in Eq. (1.12) can

be injected into the spectral Flügge’s system accounting the fluid loading, yielding a linear

system that can be solved by inverting the Flügge’s operator. The results are explicited by

Maxit and Ginoux [15] and given in Appendix A. The resolution of this system of equations

give us the spectral radial displacement ˜̃W, which allows deducing the spectral pressure at

any distance r from the shell. The radiated pressure for a point (r, θ, x) can then be estimated

by applying a 2D inverse Fourier transform

p(r, θ, x) =
1

2π

n=+8¸
n=�8

ejnθ

» +8

�8

ρ f ω

kr

H(2)
n (krr)

H(2)1
n (krR)

˜̃W(kx, n)ejkxxdkx (1.14)

The far field radiated pressure (r " 2π
k f

) can be computed using the stationary phase

theorem based on an asymptotic value of the Hankel function for large arguments. With θ

being the circumferential angle and ϕ the azimutal angle, the stationary phase theorem yields

p(r, ϕ, θ) =
8̧

n=�8

2jρ f ω2

rk f cos ϕ

˜̃W(�k f sin ϕ, n)

H(2)1
n (rk f cos ϕ)

e�jrk f +jn(θ+π
2 ), r " 2π

k f
(1.15)
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Here, the developments have been presented considering an infinite cylindrical shell.

However, in practice, finite shells are of interest, especially when industrial applications

are considered. Different models of finite cylindrical shells extended by cylindrical rigid

baffles have been developed in the past. Using a similar approach based on Fourier integrals,

Sandman [16] evaluates the fluid radiation loading exhibited by the vibrating modes of a

finite cylindrical shell. Harari and Sandman [10] use a modal approach to study the vibratory

response of laminated shells both in vacuo and embedded in an acoustic medium. They

find that the presence of the fluid induces cross-modal coupling on the response of the shell.

This modal coupling is further investigated by Stepanishen [17], by combining the Fourier

integral approach with a Green’s integral equation representation of the acoustic loading

on the shell. A modal analysis is also used by Laulagnet and Guyader [18] to compute the

radiated power and shell quadratic velocity of cylindrical shells loaded by light and heavy

fluids. They exhibit that for heavy fluid loading, strong power radiation is obtained for low

radiation efficiency and small power radiated by strong radiation efficiency, as opposed to

what was observed for light fluid loading. Photiadis [19] studies the response on and near the

surface of a fluid-loaded infinite cylindrical shell excited by a ring drive, for frequencies below

the ring frequency of the shell. His objective is to gain an understanding of the individual

components of the Green’s function of the system, which takes into account the acoustic wave

emanating from the drive and evanescent surface waves propagating along the cylinder. The

understanding of these propagating waves is also studied by Sinha et al., both analytically

and experimentally [20, 21], to serve as a basis to study more complex phenomena.

1.1.3 Shells with internal axisymmetric structures

In industrial applications, such as naval or aeronautical domains, the shells are reinforced

by axisymmetric structures called stiffeners, in order to strengthen the hull against buckling

or hydrostatic pressure in case of submerged shells as studied here. They are also a means

to reduce the thickness of the shell, and thus its weight. Other axisymmetric structures are

encountered in submarine shells such as bulkheads between the different compartments

and at the ends of the pressure hull. It is therefore necessary to predict their influence on

the vibroacoustic behavior of the shell. The case of in vacuo ring-stiffened cylindrical shells

is studied by Galletly [22] using Lagrange’s equations to derive the dynamic equations of

the system. Compared to an unstiffened shell, it is shown that the stiffened case exhibits an

increase in the frequencies of vibration of the structure. Sewall and Naumann [23] compare

analytical and experimental results for cylindrical shells with and without longitudinal

stiffeners, using a Rayleigh-Ritz procedure for the analytical calculation. The conclusion

is similar to the study of Galletly, and they also show that the stiffeners properties can be
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averaged over the shell surface when the rings are closely spaced (when the wavelength

of vibration is much greater than the stiffeners spacing), hence limiting its validity. In

order to overcome this limitation, Mead and Bardell [24] study axially and circumferentially

stiffened shells by reducing them to a one-dimensional periodic system. Wah and Hu [25]

propose a different approach, valid for evenly spaced ring stiffeners and not based on energy

methods, where the stiffeners are considered as discrete members, allowing to find an exact

solution for the inter-ring shell motion. They find that the inter-ring displacements depend

on the ring spacing, their stiffness in comparison with that of the shell, but also strongly

on the circumferential wavenumber. Using the Finite Element Method (FEM) (which will

be presented in section 1.3.1), Al-Najafi and Warburton [26] allow themselves to study the

influence of parameters such as non-periodic stiffeners spacing, different cross-sections

among the stiffeners, or the eccentricity of the ring centroid relative to the shell middle

surface.

The far-field acoustic radiation from a fluid-loaded stiffened shell excited by a point force

is studied by Burroughs [27], by adding to the solution for the unsupported cylinder, the

effect of the sets of rings. It is concluded that the radiation pattern appears like an array of

ring radiators, thus highlighting the influence of the stiffeners. It is also emphasized that

structural damping reduces the area over which radiation occurs, which reduces the peaks

and valleys in the acoustic radiation. This study is extended to different kinds of driving

mechanisms [28] and the single radial drive shows itself to produce the greater acoustic

radiation per pound of input force. Finite ring stiffened cylindrical shells were also greatly

studied by Laulagnet and Guyader [29], for both light and heavy fluid loading. The effect of

the stiffeners is studied in terms of radiated power, shell quadratic velocity and radiation

coefficient. The calculation is derived using a Green’s integral approach as described in [17],

for frequencies below the ring and coincident frequencies of the shell. The stiffeners have a

strong effect on the quadratic velocity of the shell in water, but less on the radiated power,

due to their influence on phenomena controlled by high circumferential order modes. It is

also shown that increasing the damping of the stiffeners is mostly inefficient in reducing

the radiated noise. This method is however limited to low frequencies due to the difficulty

of estimating numerically the modal radiation impedances. Yan et al. [30, 31] analyze the

vibrational power flow propagation in an infinite ring-stiffened cylindrical shell immersed in

heavy fluid by using a space-harmonic method, allowing themselves to expand the response

of the periodic structure to harmonic excitations in the terms of a series of space harmonics.

They compare results for stiffened and unstiffened shells and come to a conclusion that the

stiffeners mainly have a great influence at middle frequencies due to their spacing comparable

to the shell wavelength along axial direction, but less at low and high frequencies.
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Caresta and Kessissoglou [32] use a semi-analytical method to study the influence of

bulkheads, ring-stiffeners and fluid loading on the structural and acoustic responses of a

finite cylindrical shell. The stiffeners are accounted for by averaging their properties over

the surface of the cylindrical shell, while bulkheads and end plates are modelled as thin

circular plates. The results are compared to a coupled FEM/BEM reference calculation. Maxit

and Ginoux [15] propose a substructuring approach called the Circumferential Admittance

Approach (CAA) to study non-periodically stiffened cylindrical shells in a wide frequency

range. The contributions from the fluid loaded shell and those from the stiffeners and internal

bulkheads are studied separately before assembling the results using transfer functions. The

stiffeners are described using a FEM model while the fluid loaded shell is studied using an

accelerated spectral resolution of the Flügge’s equations in the wavenumber domain. The

results in terms of vibratory field of the shell and radiated pressure field are very satisfactory

compared to existing methods, while the computational time is improved.

1.2 Acoustic coatings for naval applications

With the ongoing necessity of acoustic stealth and furtivity of submarine hulls, much attention

has been given in the past decades to the study of acoustic coatings in order to reduce the

acoustic radiation and scattering of submerged structures. As described in the Introduction,

the coatings applied on underwater structures are viscoelastic materials that can generally be

decomposed into two main categories:

• Anechoic coatings serve as a protection against active sonars by reducing the acoustic

scattering from the hull;

• Compliant or decoupling coatings isolate the hull from the surrounding medium and

reduce the radiated noise to serve as a protection against passive sonars.

A review of such coatings will be given in this section, with the numerical methods to

model them.

1.2.1 Modelling acoustic coatings

With the generalization of applying acoustic coatings to increase the furtivity of submarine

hulls emerged the necessity of correctly modelling such coatings. This challenge has been

addressed by many researchers over the past decades and some of the methods to model

acoustic coatings will be presented in this section.

12
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI082/these.pdf 
© [F. Dumortier], [2021], INSA Lyon, tous droits réservés



1.2.1.1 The locally reacting material approach

To study the radiation, reflection and transmission of an infinite plane panel coated on its two

surfaces with a compliant coating and immersed in a fluid medium, Maidanik and Tucker

[33] develop a method where the coating is considered as a locally reacting material. Such

a material is characterized by a constant complex stiffness and with no thickness, and for

which the thickness deformation at a given position depends on the surface acoustic pressure

at this position only. This way of modelling a compliant coating has been widely used in

the past decades and is still taken under consideration today in certain studies [34]. One of

the reasons is that it is relatively easy to implement and gives good insights in the global

behavior of the coated structure. To complete the study of Maidanik and Tucker, Crighton [35]

observes that decoupling coatings reduce the subsonic wave pressure field and the acoustic

field with negligible change in the structural response of the panel either close to or far from

the excitation. These studies were carried out with plane membranes as backing structures

of the coating. Membranes differ from thin plates in the fact that they do not support shear

and are thus easier to handle and the physical interpretations are easier to obtain. Foin et al.

[36] study the acoustic behavior of a finite, baffled elastic plate-compliant coating system,

using a locally reacting material as coating, with the aim to derive a global vibratory indicator

to represent the acoustic efficiency of the decoupling treatment, independently of the plate

dimensions.

The literature on cylindrical shells covered with compliant coatings is also very significant,

and we owe to Laulagnet and Guyader a great amount of knowledge on this topic. In [37]

they study the acoustic radiation from a finite cylindrical shell covered with a compliant

coating. The shell is closed at its two ends by rigid baffles, and the compliant coating is

modelled using a reacting material. They evaluate the power radiated by the shell, and the

shell radial quadratic velocity with and without compliant coating, and for several values

of the stiffness and loss factor of the coating. It is found that a global reduction of power

radiation is observed with the presence of a compliant coating, and this reduction increases

with the stiffness and loss factor of the coating. The work of Laulagnet and Guyader is

extended by Cuschieri and Feit [38] to consider the scattering from a coated cylindrical shell,

that is to say that the external force is an external acoustic plane wave instead of a mechanical

drive force applied on the shell. For the radiation problem, the radial velocity at the interface

between the coating and the exterior fluid can be expressed using Zs, Z f and Zc which are

the impedances of the shell, the fluid and the coating, respectively ([38])

Ẇa =
F

Z f + Zs +
ZsZ f

Zc

(1.16)

where F is the excitation force. A simplified form of the impedance Zc of the coating "can be
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taken to be simply that of the decoupling layer, that is the coating has only radial stiffness"

([38, 39])

Zc = �jρ f c f χ(1 + jη) (1.17)

with ρ f being the density of the fluid, c f acoustic wave speed in the fluid, χ the fraction of

the fluid impedance and η the damping term. If the scattering problem is considered and the

excitation is a plane wave of amplitude Pi, the radial velocity at the interface between the

coating and the exterior fluid is

Ẇa =
Pi

Z f +
ZsZc

Zs+Zc

(1.18)

From the expressions in Eqs. (1.16) and (1.18), we can notice that, for the radiation

problem, the coating can be seen as being mounted in series with the exterior fluid and in

parallel with the shell, while for the scattering problem, the coating can be seen as being

mounted in series with the shell and in parallel with the exterior fluid. This highlights the

significant difference of behavior whether the considered problem is the radiation or the

scattering. Besides, as the coating is softer than the shell, the term ZsZc
Zs+Zc

in Eq. (1.18) can

become negligible compared to Z f , which leads to results showing no substantial differences

between the coated and uncoated shells for the scattering problem. This behavior exhibits the

properties of decoupling coatings, used in industrial applications for reducing the radiation

but not necessarily the scattering, for which anechoic coatings are used.

1.2.1.2 Three-dimensional theory of elasticity

As stated before, using the locally reacting material model to describe acoustic coatings is

easy to implement, but it is however limited in a physical point of view. This method does

not correctly describe the three-dimensional behavior of the layer as it does not allow for

wave effects in the layer nor calculating its hydrostatic compressibility factor. To capture all

the physical phenomena involved in the coating, it can hence be necessary to use a three-

dimensional theory of elasticity. We can cite the work of Keltie [40] who studies the response

of a compliant coating attached to an infinite thin plate and impacted by an acoustic plane

wave. The study is carried in two dimensions and the compliant coating is described using

longitudinal and shear potentials, and the objective is to get an understanding of the dynamic

processes affecting the coating response, in order to embed an array of sensors in the coating.

Berry et al. [41] investigate the three-dimensional theory of elasticity on a finite bending plate

with a compliant coating, embedded in a infinite rigid baffle, and excited by a point force.

A comparison is made with the locally reacting model taken from [36] which exhibits the

differences between the two models.
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In [42], Hull and Welch develop an analytical model of a rib-stiffened thick plate assembly,

comprising a steel backing plate and an acoustic coating, both described using the three-

dimensional Navier-Cauchy equations of motion. The model aims at being more accurate for

high wavenumbers and frequencies, where thin-plate theories generally used fail. The results

can be compared in low frequency and low wavenumber to a fluid-loaded, ribbed, Bernoulli-

Euler thin plate model previously developed in [43–45], and show very good agreement. It is

also found that the ribs have a significant impact of the structural acoustic response of the

system. However, Remillieux and Burdisso [46] compare these results to a FEM formulation

and find that the results presented by Hull and Welch in [42] are partially incorrect due to an

inappropriate chosen number of modes. It must be mentioned that the FEM calculation is

much more time consuming than the analytical one, the time ratio between the two studies

being 140. This highlights the accuracy of the FEM method, but also its limitations due to

prohibitive calculation costs, which will be further explored in section 1.3.1. The study is

then extended to the analysis of void inclusions in the elastic layer, as a first step towards the

incorporation of a sensor array in the coating.

Concerning cylindrical shells, the behavior of such structures is often studied using

multilayer shell theories. In [47], Markus investigates the case of a cylindrical shell coated

with a viscoelastic material, either on one side or on both sides of the shell. Gaunaurd [48]

studies the scattering of a plane wave by a hollow coated cylinder immersed in a heavy fluid

and filled by a light fluid. Each medium is considered as a layer and the equations of motion

in the layers are solved by matching ten boundary conditions at the fluid-solid and solid-solid

interfaces. Schmidt and Jensen [49] study wave propagations in multilayered viscoelastic

media by developing a Direct Global Matrix (DGM) approach, based on continuity and

equilibrium relations at the interfaces between the layers. The approach is then applied

to cylindrically layered shells excited by ring forces [50], and the stability of the method

is improved by using new representations of the potentials in each layer. Laulagnet and

Guyader [51] study the radiation of a finite cylindrical shell where the coating is described

using Navier’s equations to take into account the Young’s modulus, Poisson’s ratio and mass

density of the coating. In order to solve these equations in the low frequency domain, the

transverse displacement in the coating is described by the means of an asymptotic expansion

to account for the finite character of the shell. Significant insights are obtained from this study

that could not be derived using the locally reacting material theory in [37]. The shell exhibits

an antiresonance phenomenon due to the presence of the coating, and a wave conversion

phenomenon is described in the coating, explaining the observed noise reduction. It is

suggested that, in order to improve the noise reduction as much as possible, the hydrostatic

compressibility factor must be high enough, while the Young’s modulus and density of the
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layer must be as low as possible. Cuschieri [52] use the multilayer shell theory to study an

infinite cylindrical shell with a compliant coating using a three-dimensional description of

the coating. Radiation and scattering are studied, and the shell surface velocity response

Green’s function is obtained. In their book, Skelton and James [7] propose a mathematical

framework for planar, spherical and cylindrical layered media, with a procedure close to

the DGM approach where dynamic stiffness matrices for each layer must be obtained. The

procedure for an infinite cylindrically layered medium as in figure 5a will be presented here,

with an example of how to obtain the dynamic stiffness matrix of a fluid layer.

(a) (b)

Figure 5: (a) Cylindrically layered medium [7]. (b) Layer of acoustic fluid [7].

In a fluid layer as presented in figure 5b, the pressure satisfies the homogeneous Helmholtz

equation in Eq. (1.10) between the inner and outer radii a and b, respectively. The problem is

solved in the spectral domain by the means of a 2D Fourier tranform introduced in Eq. (1.3).

The solution can be expressed in terms of Bessel functions as

p(r, n, kx) = A1 Jn(krr) + A2H(1)
n (krr) (1.19)

where Jn is the Bessel function of the first kind and of order n, and H(1)
n is the Hankel function

of the first kind and of order n. A1 and A2 are arbitrary constants of integration. The pressure

and normal radial velocities at the inner and outer boundaries can be linked using the Euler

relation

Bp
Br

(r, n, kx) = ρω2ur(r, n, kx) (1.20)

By combining Eqs. 1.19 and 1.20, the pressure at the inner and outer boundaries can be

expressed by solving the following system

(
p(b, n, kx)
p(a, n, kx)

)
=

ρω2

krW

(
a11(n, kx) a12(n, kx)
a21(n, kx) a22(n, kx)

)(
ur(b, n, kx)
ur(a, n, kx)

)
(1.21)
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where

W = J1n(krb)H(1)1
n (kra)� H(1)1

n (krb)J1n(kra)
a11 = Jn(krb)H(1)1

n (kra)� H(1)
n (krb)J1n(kra)

a22 = J1n(krb)H(1)
n (kra)� H(1)1

n (krb)Jn(kra)
a12 = �2j/πkrb, a21 = 2j/πkra

(1.22)

Finally, in terms of spectral surface tractions, Sr(b, n, kx) = �p(b, n, kx) and Sr(a, n, kx) =

p(a, n, kx), the spectral dynamic stiffness matrix equation is

[D(n, kx)]

(
ur(b, n, kx)
ur(a, n, kx)

)
=

(
Sr(b, n, kx)
Sr(a, n, kx)

)
(1.23)

where the elements of [D(n, kx)] are

d11 = �(ρω2/krW)a11(n, kx), d12 = �(ρω2/krW)a12(n, kx)
d21 = (ρω2/krW)a21(n, kx), d22 = (ρω2/krW)a22(n, kx)

(1.24)

This dynamic stiffness matrix [D(n, kx)] is required for the assembly procedure. The pro-

cessus of obtaining the dynamic stiffness matrix is the same for elastic isotropic, anisotropic

and viscous fluid layers. Once the dynamic stiffness matrices have been obtained for all the

layers of the cylindrically layered medium, the assemblage of the M layers together with the

interior and exterior media results in the following system

[Z(n, kx)] tu(n, kx)u = tE(n, kx)u (1.25)

where [Z(n, kx)] is the assembly matrix of the dynamic stiffness matrices of all the layers.

The size of [Z(n, kx)] is 3(M + 1)� 3(M + 1). tu(n, kx)u is a 3(M + 1) column vector con-

taining the spectral displacements at the (M + 1) interfaces, while tE(n, kx)u is a 3(M + 1)

column vector of spectral excitations and depends on the nature of the excitation (mechanical,

monopole, plane wave...). Once the spectral displacements have been obtained, the displace-

ments in the physical space can be retrieved by applying an inverse 2D Fourier transform as

defined in Eq. (1.2).

The method developped by Skelton and James can be applied for any number and nature

of layers, including anisotropic elastic and viscous fluid layers as evoked earlier. The problem

of anisotropy is also addressed by Chen et al. [53] and Dutrion [54] by discretizing each

anisotropic layer into several isotropic sublayers. Dana et al. [55] study the response of a

fluid-loaded multilayered cylindrical shell excited by an acoustic plane wave, where the

layers can either be fluid or solid. Each layer is characterized by a transfer matrix instead

of a dynamic stiffness matrix used for example in the Skelton approach [7]. The transfer

matrix of the assembly may be evaluated by multiplying the layer transfer matrices as usually

done with the well known Transfer Matrix Method (TMM). However, it has been shown that
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convergence issues appear at high frequencies, for large thicknesses of the layers (i.e. the so

called large fd problems). To overcome this issue, a procedure assembly of the transfer matrix

similar to the one of the DGM method is considered. The proposed approach shows a good

numerical stability over both a wide range of axial wavenumbers and circumferential orders,

but also the ability to consider intermediate fluid layers.

1.2.2 Technologies for acoustic coatings

1.2.2.1 Different kinds of technologies

In order to optimize the radiation and scattering reduction of acoustic coatings, several kinds

of technologies have been developed. The review drawn in this paragraph does not aim

at being fully exhaustive, as the recent advances in this domain are wide, and this topic

could take as much as an entire dedicated chapter. For a deeper analysis of these different

designs, the reader can refer to the works of Méresse [56] and Roux [57]. The most widespread

technology, that is used for anechoic applications, is the "Alberich" coating. Such coatings

were developed by Meyer [58] and consist of a viscoelastic coating in which periodically

distributed air cavities are included. When these coatings are excited by an acoustic wave,

these inclusions introduce resonances in the rubber and the energy scattered by the cavities

is absorbed by the material. Gaunaurd [59] studies the acoustic absorption of an Alberich

coating composed of a multiperforated rubber layer bonded to a rigid backing and covered

with a nonperforated rubber layer. The study is carried out by isolating a cavity, hence

reducing the problem to a one-dimensional model of a lossy viscoelastic ring. He highlights

a resonance mechanism associated with the radial motion of the cylinder ring, while Lane

[60] focuses on the drum-like resonance of the cover layer having a higher influence on the

anechoic performance of the coating. While the inclusions in the previously cited studies

are all cylindrical, Gaunaurd et al. [61, 62] investigate spherical inclusions, allowing for

an easier analytical treatment of the resonance scattering theory. It is worth mentioning

that the methodology to predict the dynamic behavior of Alberich coatings in the evoked

studies is based on the Effective Medium Theory (EMT). A unified treatment of this theory is

developped in [63], and the principle lies in determining effective values of the sound speed

and compressional waves attenuation in inhomogeneous media. Experimental investigations

are conducted by Audoly [64] on test panels made with viscoelastic materials containing

resonant cavities. The comparison with EMT exhibits differences that can be explained by

two principal facts: the interaction between the inclusions is not taken into account in the

EMT, and the experimentations are conducted on finite panels while the EMT relies on the

asumption of infinite panels. According to Audoly, coatings with periodic inclusions such

as Alberich coatings are better described using FEM formulations, as the periodicity of the
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structure allows studying only one period using Bloch type relations on the boundaries of

the structure to simulate the periodicity [65]. The sound transmission in the rubber is studied

by Hladky-Hennion and Decarpigny in [65], while Langlet et al. [66] calculate the effective

wavenumber of the medium using the same code.

The characteristics of elastomers correspond to the need of dissipating vibratory energy,

but the celerity of longitudinal waves in these materials is often close to the one of water,

hence meaning a problematic acoustic transparency when immerged in water. To this

end, micro-cavities or soft-wall micro-balloons can be included in the elastomer, forming

the family of micro-inclusion materials. The micro-inclusions allow reducing the celerity

of longitudinal waves in the material, which can be tuned depending on the application

(decoupling or anechoic). The size of the inclusions, particularly for low-frequencies, are

very small compared to the wavelength, which means that the material can be considered

as homogeneous [67]. Similar effective medium theories as the ones used for Alberich

coatings can be used to describe such materials [68]. However, for higher frequencies, the

micro-inclusions can resonate and the material can no longer be considered as homogeneous

[69]. Materials exhibiting such characteristics of resonant inclusions can be considered as

belonging to the category of meta-materials. Although the definition of meta-materials is

not always clear, they can be considered as materials which exhibit unusual properties, with

values or strong variations with frequency of the constitutive acoustic parameters not found

in conventional materials [57]. A thorough review of meta-materials is carried out by Ma

and Sheng in [70]. Solid resonant inclusions have been investigated by Liu et al. [71] by

inserting in a relatively rigid matrix a steel sphere embedded in an elastically soft material.

Contrary to air or void inclusions, this kind of material is not constrained by the increase in

hydrostatic pressure, but the increase of density due to the steel core renders it inapplicable

for decoupling use. It can hence only be used as an anechoic coating. In [72], Wen et al.

use the FEM to study the same material. Two peaks of absorption are observed, the first

one corresponding to the spring-mass like system exhibited by the core in the soft material,

and the second one corresponding to the conversion of longitudinal waves into transversal

wave along the soft material. Another kind of designs, that must be distinguished from

meta-materials, are phononic crystals. Phononic crystals exhibit periodic properties, while for

meta-materials the inclusions can be randomly distributed [57]. Phononic crystals can also be

constituted by resonant inclusions, and the medium is thus referred to as Locally Resonant

Phononic Crystal (LRPC). Alberich types anechoic coatings are a particular case of LRPC.

The concept of phononic crystal is studied by Kushwaha et al. [73] by including aluminium

cylinders in a nickel matrix, and they highlight the presence of an absolute frequency band

gap in which no eigenfrequency is permitted in the material. Leroy et al. [74, 75] design
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a phononic crystal consisting of gas bubbles in a viscoelastic matrix. A simple model is

developed in good accordance with experimental results.

1.2.2.2 Inclusion of coating technologies in vibroacoustic models

If the technologies evoked in section 1.2.2.1 are designed to improve the performances of

acoustic coatings, it is of paramount importance to study their behavior in vibroacoustic

contexts, that is when they are backed by a solid structure. To this end Meng et al. [76] use

the FEM to analyse acoustic performances of several kinds of coatings, including Alberich

coatings, backed by a steel plate. It is found that, in addition to the aforementioned inclusion

resonances, the longitudinal resonance of the anechoic layer and the steel slab induce a new

absorption peak, meaning that the steel plate enhances the performances of the anechoic

coating. A similar study is conducted by Zhou et al. [77] with a particular interest given to

the incident angle of the plane wave. On the topic of Alberich coatings, Ivansson [78] studies

coatings with sperical inclusions and backed by a steel plate using a semi-analytical method,

where an analogy is used between sound scattering by cavities in the rubber and electron

scattering by atoms in a lattice. The absorption loss of each isolated cavity is corrected by a

factor to account for the coupled effect of the different cavities, hence giving an increased

level of physical understanding of the phenomenon than the paper of Gaunaurd [59]. This

method, named Multiple Layer Scattering (MLS), is extended to non-spherical scatterers

for the investigation of superellipsoidal cavities [79] or infinite cylindrical cavities [80]. It is

found that, for infinite cylindrical cavities, with axes in a lateral direction, the thickness of the

coating can be reduced by a factor three without losing absorption performances, and mixing

cavities of differents sizes can be favorable.

Sharma et al. [81] develop a semi-analytical model of a coating with a single periodic layer

of cylindrical voids and apply the method for the case of such a coating with a steel backing

plate. The theory is compared with a FEM calculation and shows very good agreements for

several numbers of layers of voids and several void diameters. Later on, they investigate

similar technologies with hard inclusions [82], and the homogenisation theory is used to result

in a mulilayered medium. The comparison with a FEM calculation highlights the independant

effects of the cylindrical voids and steel cylinders on the two observed absorption peaks.

Ke et al. [83] use the FEM approach coupled to a Newton’s iterative method to evaluate the

performances of an anechoic layer attached to a steel plate, and apply later the method to

a steel spherical shell. However, it must be emphasized that, for most of the technologies

evoked in section 1.2.2.1, ongoing researchs focus on the acoustic characteristics of such

materials, hence the available literature on their application in a vibroacoustic model is not

substantial.
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1.2.3 Influence of partial coating

While a massive amount of research on coated surfaces exists in the literature, and especially

coated cylindrical shells, little attention has been given to partial coating. For cylindrical

shells, breaking the axisymmetry increases substantially the computational costs. While most

analytical methods that have been presented cannot deal with this situation due to their lack

of versatility, numerical methods such as FEM are limited to low frequencies due to their high

computational cost at mid and high frequencies. Nevertheless, some authors investigated

the case of partial coating. Ferri et al. [84] study the scattering of a plane wave by finite and

infinite partially coated cylindrical shells. The coated and uncoated surfaces are modeled by

assuming that the specific local impedance is constant along arcs of cylindrical surfaces. The

effect of partial coating is thus accounted for as an impedance discontinuity at the adjacent

regions between coated and uncoated surfaces. Laulagnet and Guyader [85] investigate the

effect of circumferential partial coating on the sound radiation from a cylindrical shell (see

figure 6). The decoupling coating is modelled as a locally reacting material as described

in section 1.2.1.1, which means that the results cannot be as accurate as wished due to the

lack of accuracy of this method. The effects are observed in terms of quadratic velocity of

the shell and of the coating, and of far-field radiated power. It is found that, compared to

full coating, partial coating increases substantially the acoustic radiation. For cases where

the shell is coated on only 10% of its circumference, partial coating even induces a higher

radiation factor than for the case of the bare shell, and this effect is observed well below the

coincidence frequency.

Figure 6: Cross-section of a partially coated cylindrical shell [85].

Similar conclusions are drawn by Cuschieri and Feit [38] when they evaluate the near-

and far-field radiation and the scattering from partially coated cylindrical shell, using the

locally reacting material theory to model the coating. In addition, they exhibit the influence

of the edge smoothness on the strength of the radiated acoustic field. Both papers highlight
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the influence of the loss of axisymmetry in those results. More recently, Liu et al. [86] studied

a finite cylindrical shell partially covered along its length, which means that they do not

break the axisymmety. Their conclusion is different than in the previous papers, and this

highlights the influence of the axisymmetry of the acoustic response of cylindrical shells.

1.3 Numerical methods in vibroacoustics and naval applica-
tions

Simple vibroacoustic problems can be addressed by solving by an analytical way the equa-

tions of motion of the structure or the equations of propagation in the medium. However,

when the problems become more complex, it is not always possible to derive an analytical

formulation. Numerical methods in vibroacoustics have emerged with this need of mod-

elling complex problems, for which analytical formulations are no longer available. Several

methods have been developed, covering a wide range of frequencies. Among those methods,

elements based methods are very accurate but also time consuming and therefore restricted

to low frequencies. On the other hand, energy-based methods allow studying vibroacoustic

problems at high frequencies. Finally, substructuring methods can be used to extend the

domain of application of low-frequency methods towards higher frequencies. In this section,

an overview of these methods will be presented.

1.3.1 Element-based methods

1.3.1.1 The Finite Element Method

(a) Principle

The Finite Element Method (FEM) is one of the most common ways to solve engineering

problems, with a wide range of applications over multiple domains. In particular, it has been

widely used in vibroacoustics for its ability in dealing with problems exhibiting complex

geometrical situations [87]. The original problem is transformed into an equivalent integral

formulation, and the partial differential equations are solved by discretizing the domain into

small subdomains called finite elements. Each element contains a certain amount of nodes

depending on its shape, at which the field variables are calculated. The mass and stiffness

matrices, noted respectively M and K, are defined and the FEM model is obtained for an

angular frequency ω via the following expression

(
K� �ω2M

)
U = F (1.26)

In Eq. (1.26), U represents the unknown vector and is marked here as a displacement
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vector, while F corresponds to the vector of external forces, as it is usually written for a

structural problem. For the case of an acoustic problem, the unknown vector would be

a pressure vector, while the external forces vector could take several forms depending on

the acoustic excitation. In order to introduce damping in the model, the stiffness matrix

can take a complex value K� = K(1 + jη), with η being the damping value. The system in

Eq. (1.26) can be solved directly by inverting the dynamic matrix
(
K� �ω2M

)
. This process

is very accurate, but also very time consuming for large systems. The computational efforts

induced by the direct resolution can be reduced by using a modal expansion technique. The

eigenfrequencies of the problem are calculated by solving the eigenvalue problem

ω2
nMΦn = KΦn (1.27)

with ωn being the eigenfrequencies and Φn the associated mode shapes. The frequency

response of the system can be calculated as a linear combination of the modes associated

with the eigenvalues. The resulting sum is theoretically infinite, but in practice, it is truncated

to a finite value Nm, determined by the modes having a resonance frequency until 1.5 times

the maximal frequency of interest. It yields

U =
Nm̧

n=1

anΦn (1.28)

where an is the modal amplitude and can be calculated from the reduced mass matrix

M = ΦTMΦ, the reduced stiffness matrix K = ΦTKΦ and the reduced force vector F = ΦTF

an =
(

K(1 + jη)�ω2
nM
)�1

F (1.29)

The reduced system is much faster to compute, but has a poor convergence outside

of resonance peaks because of the basis truncation. To circumvent this issue, Rubin [88]

proposes to take into account the contribution of neglected modes, called residual modes.

This technique has proven to have a better convergence than the modal expansion method

alone, with a calculation time that remains low compared to the direct inversion of the

dynamic matrix.

It must be emphasized that the size of the discretization follows a wavelength-based

criterion. In industrial applications, a criterion of 6 elements per wavelength (the nature of

which depends on the considered problem) is generally retained. This assumption clearly

exhibits the frequency limitations of the method, as prohibitive calculation costs will shortly

be met as the frequency of the study will increase.

In the case of fluid-structure coupling for vibroacoustic problems, the FEM problem that

must be solved has to take into account both the displacement field of the structure (a shell
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for example) and the pressure field in the acoustic cavity (i.e. a bounded fluid domain). The

coupled problem is stated as [89]

(
�ω2

[
MS 0

ρsRT MF

]
+

[
KS �R
0 KF

])"
U
P

*
=

"
0
0

*
(1.30)

where MS and KS are the mass and stiffness matrices of the structure, respectively, MF and

KF are the mass and stiffness matrices of the fluid, respectively, ρs is the shell density, and R

is the Fluid-Structure Interaction matrix. It is worth noticing that this pressure/displacement

formulation yields non-symmetric matrices, despite the conservative nature of the mechanical

coupling. When the acoustic domain is unbounded, the FEM is not well indicated. Methods

to study infinite domains will be investigated in the next section.

(b) The component mode synthesis

Following earlier works dealing with matrix methods for structural analysis, Hurty

[90] proposes to study complex structural systems by dividing them into interconnected

components treated separately. This method is called the Component Mode Synthesis (CMS),

and is "a technique to simplify the analysis of complicated finite element models" [91]. Several

kinds of displacement modes (rigid-body modes, constraint modes and normal modes) are

considered to evaluate the displacements of the separate components and the mass, stiffness

and damping matrices of the complete systems can be obtained, as well as the response

of the system. Similarly to this method, Gladwell [92] develops a method, called branch

mode analysis, in order to calculate the natural frequencies and principal modes of a system

with many degrees of freedom. The principle of the method is to impose a sequence of sets

of constraints such that, when a set is imposed, only one component of the system, called

branch, can vibrate, the other ones remaining fixed or vibrating as rigid bodies. This allows

determining natural frequencies and principal modes of these branches. These branch modes

are then introduced into a Rayleigh-Ritz procedure to determine the natural frequencies and

modes of the whole system. This method is particularly appropriate for systems consisting

of a main structure linked to secondary systems, but is restricted due to the fact that the

boundary between the substructures is assumed to be rigid, condition that is not always met

in general. To circumvent this issue, Craig and Bampton [93] propose a fixed interface method

based on the component mode synthesis method developed by Hurty. The approach however

differs from the previous one as all the boundary freedoms are treated alike rather than being

separated into determinate and indeterminate constraints. This difference leads to an easier

formulation of substructures problems and shortens computing times. Alternatively, Rixen

[94] develops a free-interface method dual to the Craig-Bampton fixed interface method. The
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substructures are assembled through interface forces instead of displacements and injected

into a FEM code as macro-elements. Finally, one can cite hybrid methods like the one

proposed by MacNeal [95] where fixed and free connections can be retained between the

substructures. This method is interesting in the sense that the boundary conditions may be

selected to optimize accuracy.

1.3.1.2 The Boundary Element Method

(a) Principle

Exterior problems with infinite domains can be studied using the Boundary Element

Method (BEM) instead of FEM. Contrary to the FEM where all the domain must be discretized,

only the boundary of the domain is discretized when using the BEM, hence reducing by one

dimension the considered problem [96]. The Sommerfeld radiation condition, introduced

in Eq. (1.11) and of paramount importance for exterior radiation problems, is automatically

satisfied by the equations exhibited by the BEM. There are classically two ways of solving a

BEM problem: the direct and indirect formulations.

The direct BEM formulation is based on the resolution of the Helmholtz equation defined

in Eq. (1.10) by the means of an integral formulation and the use of the Green’s function.

Let us consider a solid structure bounded by a closed surface S, embedded in an infinite

homogeneous acoustic medium Ω. The free-space Green’s function G(r, q) is introduced and

verifies the following equation [97]

∆G(r, q) + k2
f G(r, q) = �δ(|r � q|), (r, q) P Ω (1.31)

where δ is the Dirac delta function and |  | denotes the cartesian distance. The free-space

Green’s function represents the effect at point q of a unit point source located at point r and

radiating into the medium, satisfies the Sommerfield radiation condition, and is given in

three dimensions by

G(r, q) =
ejk f |r�q|

4π|r � q| (1.32)

The application of the Green’s Second Theorem enables one to obtain the direct formula-

tion of the BEM

c(r)p(r) =
» »

S

[
p(r)

BG
Bn

(r, q)� G(r, q)
Bp
Bn

(r)
]

dS (1.33)

with n being the normal exterior to the closed surface S, and c(r) is a coefficient depending

on the receptor’s location
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c(r) =
" 1

2 , r P S
1, r P Ω

(1.34)

The indirect BEM formulation is based on layer potentials, as it has been shown by Filippi

that the solution of the Helmholtz equation can take the form of a linear combination of

simple layer and double layer potentials [98]

p(r) = αps(r) + βpd(r) (1.35)

where α and β are constant complex coefficients. The simple layer potential ps(r) is a potential

due to a layer of monopole sources, and represents a velocity jump at the crossing of the

surface S. It is given by

ps(r) =
» »

S
ν(q)G(r, q)dS (1.36)

where ν(q) is the layer of monopole sources. The double layer potential pd(r) is a potential

due to a layer of dipole sources, and represents a pressure jump between the interior side

and the exterior side of the surface S. It is given by

ps(r) =
» »

S
µ(q)

BG
Bn

(r, q)dS (1.37)

where µ(q) is the layer of dipole sources. It must be emphasized that the direct and indirect

formulations of the BEM are equivalent, as it has been formally demonstrated by Brebbia

and Butterfield [99]. As for the FEM, the size of the discretization of the boundary follows a

wavelength-based criterion, which is equivalent to the FEM criterion as the generally adopted

criterion yields 6 elements per wavelength at the highest considered frequency, where the

wavelength corresponds for a vibroacoustical problem to the smaller value between the

acoustic wavelength in the fluid medium and the flexural wavelength of the structure.

(b) Alternative methods

Additionnally to the BEM, other methods have been developed to study the acoustic

radiation in unbounded domains. For example, the Perfectly Matched Layer (PML) approach,

initially derived for electromagnetic fields [100], is well adapted to emulate the Sommerfeld

radiation condition by absorbing all the incoming waves propagating towards infinity and

by dissipating their energy. Such layers can be implemented in FEM codes such as in the

COMSOL Multiphysics® 5.6 [101] software with the Acoustics module. The PML layer

must be meshed in the same way as the rest of the model, and its size is determined by the
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acoustic wavelength at the smallest considered frequency, which means that studies in the

low frequency range exhibit very large PML thicknesses.

Besides, Infinite Elements have been considered as an adaptation of the FEM method

to the propagation in infinite domains [102]. A series of shape functions analogous the

Lagrange polynomials, including an exponential decay term, are used. Variants of this

method have emerged, and we can notably cite the Wave-enveloppe (WE) method, in which

complex conjugates of the element shape functions are used as weighting functions in a

Petrov-Galerkin procedure [103, 104].

1.3.1.3 Naval applications

The methods presented subsections 1.3.1.1 and 1.3.1.2 present the advantage of being able to

deal with complex systems. They have hence been widely applied in naval applications, to

study for example immersed cylindrical shells.

Zhou and Joseph [105] study the acoustic radiation from a fluid-loaded stiffened cylin-

drical shell using the BEM to model the acoustic medium, for which the results are used

as an entry in a FEM calculation to model the cylindrical shell. The results are compared

to experimental investigations from Chen and Schweikert [106]. The results show a good

agreement, but are limited to low frequencies (250 Hz for a diameter of the shell of 1.25 m)

due to the substantial computational cost of the numerical calculations. As already evoked

in subsection 1.1.3, Caresta and Kessissoglou [32] use a coupled FEM/BEM calculation as a

reference to study in the low-frequency range a finite stiffened cylindrical shell immersed in

heavy fluid and under axial load, where both ends of the cylinder are closed by circular plates.

Their semi-analytical model also incorporates internal bulkheads to account for the separation

of the different areas in a submarine hull. The cylinder is extended by two semi-infinite

rigid baffles, hence the scattering at the finite ends is not taken into account. In later studies

[107, 108], they close the shell using truncated conical shells, and evaluate the influence of

these ends. They also show that the far-field radiated sound is greater in the case of a radial

load compared to an axisymmetric excitation of the hull due to the circumferential bending

modes from n = 1. To calculate the surface and far-field radiated pressures, they use a direct

BEM formulation. Merz et al. [109, 110] use a hybrid FEM/BEM method to simulate the

vibro-acoustic response of a submarine hull due to propeller forces. The hull is described

by a FEM model, while the surrounding fluid is modelled by BEM. The study is limited to

the low frequencies (i.e. under 100 Hz) due to the size of the model, which would require

prohibitive computational costs at higher frequencies. Once again, the size of the model limits

the frequency range of the study, which does not go beyond 100 Hz. A coupled FEM/BEM

method used with a Krylov subspace model order reduction allows considering the study of

the radiation from a fluid-loaded cylindrical shell closed at each end by hemispherical end
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caps by Peters et al. [111]. The computational effort required from a fully coupled FEM/BEM

method is limited by the model order reduction and the conclusions drawn from their study

are very satisfaying and allow considering more complex physical problems in future studies.

FEM coupled with a PML layer is used by Zampolli et al. [112] to study the radiation and

scattering by axially symmetric objects subject to non-symmetric loading. This technique

can be applied to any structure within this scope, including cylindrical shells. In order to

circumvent the low-frequency issues of the PML layer, a wavelength-dependent rescaling of

the PML is used, enabling keeping a single thickness of the absorbing layer where the size of

the mesh is adapted to the corresponding frequency band.

1.3.2 Energy-based methods

1.3.2.1 The Statistical Energy Analysis

The approaches presented in section 1.3.1 are a good way to estimate the eigenvalues of

complex systems, but in practice, they are limited in frequency and cannot be used at mid

and high frequencies. For example, for the CMS presented in subsection 1.3.1.1, the solution

obtained is only an approximation of the actual eigensolution of the original structure [113].

This is partly due to the fact that the theoretically infinite modal basis must be truncated to a

finite number of modes, leading to convergence issues, particularly when frequency increases.

Furthermore, such deterministic methods are very sensitive to the input parameters, and a

slight change can induce very large dispersions in the response, as described by Guyader

[114]. Following these statements, Statistical Energy Analysis (SEA) methods have been

developed to address the necessity of predicting average noise and vibration levels in various

frequency bands of complex systems containing substructures [115]. The approach is first

evoked by Lyon and Maidanik [116] without employing the term SEA. The wave based

approach employed in [116] is balanced by a modal approach described by Smith [117], but

the two approaches give the same results. The method has been vastly investigated and is

thorougly described by Burroughs et al. [115] and Maxit [118]. It describes the power flow

exchanged between two subsystems of a complex system. Let us consider two subsystems

which may be driven, dissipate energy through internal viscous damping and there is a

conservative interchange of energy between them [119]. If, in the considered frequency band,

are included N1 resonant modes for subsystem 1 and N2 resonant modes of subsystem 2,

and considering that one mode of one subsystem is not coupled with modes of the same

subsystem but is coupled by gyroscopic elements with the modes of the other subsystem

[120], the power flow exchanged by the two subsystems reads

Π1�2 = ωcη12

(
ξ1 � N1

N2
ξ2

)
(1.38)
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where ωc is the central angular frequency of the frequency band of interest, ξ1 and ξ2 represent

the time-averaged total energies of subsystems 1 and 2, respectively, and η12 is the coupling

loss factor. The latter can be expressed as

η12 =

°N1
p=1
°N2

q=1 β12
pq

N1ωc
(1.39)

with β12
pq being the intermodal coupling factor. The difficulty of applying the SEA lies in the

evaluation of the coupling loss factors. Besides, the SEA is based on several assumptions,

some of which are [119]

- subsystems and coupling mechanisms are assumed linear;

- only statistically independent, stationary driving forces are applied to the subsystems;

- the driving forces have flat spectra compared with the frequency responses of the

subsystems;

- the coupling between the subsystems is conservative and weak;

- modes are statistically independant within subsystems which implies that the modal

components of the driving forces should all be directly proportional to the overall

driving force levels;

- the damping is light compared with the frequency bandwidth.

The concept of SEA leads to a new scientific method applied to sound and vibration, as it

proposes an energetic description of the systems [121]. One of the particularities of the SEA

is to be efficient in the high frequency range where no other numerical tool is available, but it

comes with the loss of details in description of the behavior of the system [122].

1.3.2.2 Alternative methods

To circumvent some issues related to the range of validity of the SEA, Maxit [118] and

Guyader [123] extend the method to subsystems with non-uniform modal energy distribution

by developing the Statistical modal Energy distribution Analysis (SmEdA). This method

improves energy prediction compared to SEA in certain typical configurations. The SEA is

also coupled with deterministic methods such as FEM or CMS [124] to find applications in a

wider range of frequencies. In [125], the partioning of complex dynamic systems into local

and global sets of degrees of freedom enables the use of SEA for the local components and

deterministic methods (FEM, fuzzy structure theory) for the global components. A test case

application on coupled rods yields very good results form low to high frequency excitation.
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Hybrid SEA/FEM methods can also be used to find the coupling loss factors necessary to

apply the SEA [120, 126, 127], or to model systems comprising of subsystems with long

wavelength behavior (where FEM is used) and short wavelength behavior (where SEA is

used) [128].

The Dynamic Energy Analysis (DEA) [129] is proposed in order to enhance the range of

applicability of standard SEA, by interpolating SEA and full ray tracing technique. The SEA

is then improved by using the BEM for the spatial variable which leads to large efficiency

gains [130]. One can also cite the Energy Finite Element Analysis (EFEA) [131–133], which

offers an improved alternative to the SEA for simulating the structural-acoustic behavior of

large-scale structures. It is based on deriving governing differential equations in terms of

energy density variables and employing a FEM approach for solving them numerically.

1.3.2.3 Naval applications

The SEA method has been widely used in the naval domain for its ability in giving results

in high-frequency ranges. For example, in [134], a finite cylindrical shell whose dimensions

correspond to those of a submarine hull is studied in a wide frequency range. A coupled

FEM/BEM method is used for the low frequencies (with the model described in [111]), while

the SEA is used above 200 Hz. In order to bridge the frequency gap between the two models,

a substructuring method, the CTF (which will be developed in more details in sections 1.3.3.4

and 3.1), is used. Determining the self noise of a submarine hull in the high-frequency range

is also crucial in order to quantify the acoustic detection performance of a sonar system. The

SEA can be used for such study [135] and allows estimating that, at high speeds, the flow

noise can be supposed to be the main contribution of self noise. SEA [136] or SmEdA [137]

have been used to study the radiation efficiency of cylindrical shells. In the latter, the SmEdA

provides better results than the SEA compared to experimental investigations due to a more

precise estimation of the coupling loss factors. Fluid-loaded stiffened cylindrical shells can

also be studied using the EFEA method in [138]. They use the periodic properties of the

structure due to the regular spacing of the stiffeners and consider the fluid loading as an

added mass with radiation effects.

The SEA can also be used to study the efficiency of decoupling coatings (as described

in section 1.2) at high frequencies [139]. The difficulty in estimating the efficiency of the

decoupling coating using the SEA lies in the necessity of introducing some parameters in the

SEA model (such as the added mass of the plate). Similarly, partial covering of a cylindrical

shell with a decoupling coating has been studied with SEA [140]. The leak effect observed

with an analytical calculation in [85] is found back in this study and shows that the SEA

can be used to study such structures at high frequencies (as the SEA calculation in the low

frequency range does not show accurate results compared to the analytical one). These
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studies demonstrate that the SEA and its derivatives can be a powerful tool to study complex

structures in a frequency range where other methods fail to give results with reasonable

computation costs. However, it must be emphasized that, for naval applications, the weak

coupling asumption of the SEA is often hardly verifiable. As an outcome, studying the heavy

fluid-structure interaction using SEA can lead to inaccurate results due to the added mass

and added stiffness effects of the heavy fluid [141].

1.3.3 Substructuring methods based on admittance concepts

In order to overcome the frequency limitations of the element-based methods presented in

section 1.3.1, substructurings methods based on admittance concepts have been developed.

They allow studying complex systems by separating them into several substructures that can

be linked using frequency transfer functions. In theory, these methods show no frequency

dependency and can then be applied over a larger frequency domain, especially at mid

frequencies. They can thus constitute a bridge between the elements-based methods presented

in section 1.3.1 and the energy-based methods presented in section 1.3.2, as it was evoked in

[134].

1.3.3.1 The admittance method

The admittance method, also called mobility method, is a kind of substructuring method,

where subsystems are coupled via transfer functions based on mechanical continuity between

the subsystems. It has hence no theoretical frequency limitations. This method is initially

derived from electrical concepts by Firestone [142], and the concept of mobility is defined

as the ease of motion, meaning the ratio of the velocity accross an element to the force

through an element. One must precise that hypothesis of linear structures and harmonic

excitations are necessary assumptions to apply admittance concepts. The origins of the

method are presented by Gardonio and Brennan [143], from the original concepts emanating

from the electrical field to the more recent advances and applications of the method in the

end of the 20th century. Rubin [144] is the first to define admittance matrices to account for

several coupling points and degrees of freedom. This allows defining point-admittances

for diagonal terms of the matrix and cross- of transfer-admittances for extra-diagonal terms

of the matrix. The impedance matrix can be defined similarly, with the difference that the

impedance represents the effect upon the resultant force of the application of a velocity [145].

The impedance can hence be seen as the inverse of the admittance, as admittance is a concept

which sums velocity responses while impedance is a concept that sums force responses.

It is worth noticing that these transfer functions can be characterized by different means

(analytical, numerical or experimental), thus giving these methods a useful versatility.
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The formalism for multi-point coupled structures is established by Petersson and Plunt

[146, 147] and effective point or overall mobilities are defined to reduce the calculations and

measurements by taking into account the contributions of all the coupling points into the

response at a single point of the structure, and determining contributions of extra-diagonal

terms that can be neglected. Petersson [148, 149] uses this theory to predict the response of

two plates perpendicularly assembled and the influence of each plate of the point mobilities

at the intersection. The admittance method is also used by Wilken and Soedel [150] to

study the modal characteristics of ring-stiffened cylindrical shells. A similar study, where the

stiffeners are replaced by welded circular plates, is proposed by Huang and Soedel [151]. Line

admittances are defined from responses of the plate and the shell to line forces distributed

along the interface, and the results show a good agreement with numerical simulations

obtained via FEM. The approach is also extended to weakly-coupled structural-acoustic

systems by Kim and Brennan [152].

1.3.3.2 The Circumferential Admittance Approach

The Circumferential Admittance Approach (CAA) is developped by Maxit [153] as an ex-

tension of the classical admittance approach to axisymmetric line coupled subsystems. It

allows studying for example the vibro-acoustic behavior of fluid-loaded cylindrical shells

non-periodically stiffened by internal frames (that can be stiffeners or bulckheads) as in [15].

An example of such a stiffened cylindrical shell, with an associated radial displacement field

at the surface of the shell for a point force excitation, is illustrated in figure 7. This method

can be extended to scattering from such structures [154], or by taking into account random

excitations such as Turbulent Boundary Layers (TBLs) [155]. The principle is to consider the

non-stiffened shell as a first subsystem and the internal structures as multiple individual

subsystems. The circumferential admittances, that are the necessary transfer functions for the

application of the method, can be calculated using the FEM for the internal structures, and

using a spectral approach as described in section 1.1.2 for the cylindrical shell. The method

is also valid for fluid-filled stiffened cylindrical shells, as it has been applied to study the

spatial coherence and vibratory fields induced by a TBL in fluid-filled pipes [156], or to detect

acoustic leaks in sodium water heat exchangers using a beamforming technique [157].

1.3.3.3 The Patch Transfer Function method

The Patch Transfer Function (PTF) method is an extension of the admittance method to

subsystems that are coupled along surfaces. The method is introduced by Ouisse et al. [158]

and consists in partitioning the coupling surface between the subsystems into elementary

surfaces called patches that are successively excited to build the transfer matrix. The size

of the patches is defined following a criterion equivalent to the Nyquist-Shannon sampling
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(a) (b)

Figure 7: (a) Stiffened cylindrical shell comprising three sections with various stiffeners
spacing and cross-sections, separated by spherical bulkheads [15]. (b) Example of a radial
displacement field at 500 Hz at the surface of the shell, when a radial point force is applied
on a stiffener [15].

theorem [159], which means that the maximum size of a patch should be half the smallest

wavelength of the problem. It is hence much less restrictive than the FEM criterion evoked

in section 1.3.1.1. Once the transfer matrix has been obtained, the Patch Transfer Functions

(PTFs) are assembled using the superposition principle valid for linear passive systems along

with continuity relations.

This method has been widely studied in literature because of its various industrial ap-

plications. In the automotive industry, Ouisse et al. use the PTF method to calculate the

noise radiated through openings of the engine cavity of a car, while Veronesi et al. [160]

investigate the vibro-acoustic properties of porous materials present in automotive vehicles

for lightweight purpose after having studied coupled vibro-acoustic problems [161]. Chazot

and Guyader [162, 163] use the PTF method to calculate the transmission loss of double

panels that can be filled with air or with porogranular materials. The PTF method is also

used for the study of micro-perforated panel liners in complex vibro-acoustic environments

[164–166]. An inverse PTF method is also studied for source identification applications

[167–169]. The convergence of the method was improved by Aucejo et al. [170] for the case of

strong vibro-acoustic coupling by using residual mode shapes in the cavity when the different

subsystems are computed using FEM. In particular, it was found that the criterion yielding 2

patches per acoustic wavelength may not be sufficient in the case of strong coupling. Maxit

et al. [171] hence propose to partition the subdomains outside the acoustic near-field of the

structure to keep the initial criterion for the size of the patches. This work is then applied to

the sound transmission from a bulkhead through ballast compartments in a submarine, for

which an illustration is proposed in figure 8.

1.3.3.4 The Condensed Transfer Function method

As a generalization of both the CAA and PTF methods, Meyer et al. [172] develop a substruc-

turing approach called the Condensed Transfer Function (CTF) method to couple subsystems

along lines or surfaces. For the case of a structural system, the displacements and forces at the
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(a)

(b)

(c)

Figure 8: (a) View of the ballast compartments of a submarine hull, separated by bulkheads
[171]. (b) Definition of the patches at the different interfaces ballast compartment-bulkhead
[171]. (c) FEM model definition of the different subsystems constituting the PTF model [171].

junctions of the subsystems are decomposed into a set of orthonormal functions, called the

condensation functions, that can take various forms: gate functions, complex exponentials or

Chebyshev polynomials for example. The PTF method can hence be seen as a particular case

of the CTF method where the condensation functions are 2D gate functions. It is also more

general than the CAA as it can be applied to non-axisymmetric systems. This method will

be vastly investigated in this work, and a clear formalism will be developped for the case of

acoustic subsystems in section 3.1.

(a) (b)

Figure 9: (a) Cylindrical shell stiffened by non-axisymmetric internal frames [173]. (b)
Example of radial displacement field at 1000 Hz at the surface of the shell, when a radial
point force is applied on a stiffener bounded to the non-axisymmetric frame [173].
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The CTF method finds applications in various industrial domains, especially the naval

domain where it has been used to study the acoustic radiation [173] and scattering [174] of

submerged stiffened cylindrical shells with non-axisymmetric internal substructures such

as floors (see figure 9a). The study of the axisymmetric structure can be done using the

CAA, while the incorporation of non-axisymmetric internal substructures is taken care of

using the CTF method. An example of the radial displacement field at the surface of the

shell for a mechanical point force applied on a stiffener is shown at 1000 Hz in figure 9b.

Hu et al. [175, 176] use the CTF method to model a panel-cavity system in mid and high

frequencies. They use complex exponential functions as condensation functions and improve

the convergence of the method using a piecewise calculation scheme. Later on, Hu et al. [177]

also use the CTF method to study double skin façade systems.

1.3.4 Decoupling procedures

While the substructuring methods presented in this chapter are based on the coupling

of subsystems, it can sometimes be necessary to decouple subsystems. Such decoupling

procedures could be useful to evaluate the effect of a default in a system or to account for

complex geometries without having to use computationally intensive methods such as FEM.

As far as the author knows, Soedel and Soedel [178] are the first to subtract systems by using

a reverse formulation of the admittance method. When measuring transfer functions of

an automotive suspension system, their aim is to suppress the contribution of an auxiliary

airspring necessary to hold the suspension system in position (see figure 10).

Figure 10: Decoupling in an automotive suspension system [178].

While the examples presented concern discrete systems, they affirm that the receptance

subtraction will also work for continuous systems. Gontier and Bensaibi [179] try to identify

the influence of bolted or insulating joints in structural elements by subtracting the dynamic

behavior of a known part (for example a beam, a plate or a shell) from the measured behavior

of the whole structure. The analysis is carried out in the time domain and is called modal
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subtracting. It was observed that the procedure was highly sensitive to approximations in

the modal description of the known structure, but the results show satisfying performances

even for measurement noise levels over 5%.

Decoupling procedures have been widely investigated by D’Ambrogio and Fregolent

[180–182] in an experimental context, to estimate the Frequency Response Functions (FRFs)

of a part of interest (which will be called subsystem A for the sake of clarity) from the FRFs of

the global large system (which will be called system A+B) and a physical model of a part to

be removed (which will be called subsystem B). The natural frequencies of the decoupled

subsystem A are then deduced. The effect of modal truncation, which is due to the fact

that only a limited number of modal parameters can be identified experimentally for the

global system A+B, is observed on the accuracy of prediction of the natural frequencies

of the decoupled subsystem A. It is found that the number of modes must be correctly

chosen because a model truncated to a insufficient number of modes leads to an increase of

the predicted natural frequencies. However, in practice, identifying a sufficient number of

modes from measurement data can be challenging. Besides, in order to match the Degree of

Freedoms (DoFs) of the global system A+B (determined experimentally) and of the removed

subsystem B (determined using a FEM model), an expansion of the coupling DoFs of the

global system A+B must be performed, and the effect of this expansion on the prediction of

the natural frequencies of the decoupled subsystem A is quantified as well. It is important to

mention that this study is carried out with point-coupled discrete substructures, and that the

final outcome is to determine the natural frequencies of the decoupled subsytem A. There is

no emphasis in the vibratory reponse of the decoupled subsystem A at a given point of the

subsystem. In [181], they study the drive-point mobility of the decoupled subsystem A at the

coupling DoFs from data regarding the global system A+B and the removed subsystem B.

They identify that the lack of measured DoFs produces ill-conditioning at the neighbourhood

of the natural frequencies. This can be corrected by taking into account internal DoFs of

the global system A+B in the measured FRF (i.e. DoFs that are not located at the coupling

interface), and the comparison of the decoupling results with a reference calculation for a

simple test case exhibits excellent results. In [182], the decoupling problem is revisited in the

general framework of frequency based substructuring by adding to the global structure A+B

a fictitious subsystem which is the negative of the removed subsystem B that was considered

in [180, 181]. A dual domain decomposition is performed by taking into account the total

set of DoFs (i.e. the coupling DoFs and the internal DoFs of the global system A+B) in order

to predict the drive-point mobility at the coupling DoFs of the decoupled subsystem A. It

must be emphasized that the reponses are computed at the coupling DoFs only, and that the

response at any point of the decoupled subsystem A is not of interest in these studies.
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Still from an experimental point of view, Sjövall and Abrahamsson [183] address the

problem of substructure idenfication by performing measurements of a large system A+B in

which the system to be identified constitutes the subsystem A. A validation is proposed by

reassembling the subsystems A and B and comparing with the initial large system A+B. They

identify that the inversion of the problem can exhibit ill-conditioned matrices, which will

result in a failed procedure if the frequency of general anti-resonances for the global system

A+B appear near a frequency where the removed subsystem B has a regular resonance. This

issue can be corrected in the same way as shown by D’Ambrogio and Fregolant [181] by

taking non-interface DoFs in addition to the coupling DoFs. Voormeeren and Rixen [184]

develop a mathematical framework for the dual formulation of the decoupling problem,

before applying it on an academic test case and an experimental case study. These studies

are restricted to discrete substructures with point coupling, and the responses are calculated

at the coupling interfaces between the subsystems. Tuysuz and Altintas [185] use a similar

decoupling procedure for the updating of thin-walled workpiece structures from which

material is removed by machining. It is shown that the updated FRFs are predicted 20 times

faster than a full order FEM analysis.

In [186], virtual decoupling is performed on vibroacoustical systems. The aim of the paper

is to build an equivalent vibroacoustical system capable of representing the same behavior

as an experimentally measured one, in order to perform decoupling calculations on this

equivalent system. These calculations have the objective of identifying, from the coupled

modes of the vibroacoustical system, which modes are governed by the structural or acoustic

part. This study is also a means of validating the uncoupled numerical models used in early

design stages of vibroacoustical systems. The procedure is based on the identification of the

complex modes of the vibroacoustical system, by the use of an extension of the least-square

complex frequency-domain to non-symmetrical cases (as the vibroacoustic formulation is

non-symmetrical by nature, see for instance Eq. (1.30)). A QR reduction technique is then

used in order to reduce the number of DoFs in the system (and hence reduce the calculation

costs and complexity of the procedure). The obtained modes are subsequently optimized

using the properness enforcement method, and, if necessary, an original mini-FRF method, in

order to reduce the sensitivity of the inverse method to measurement noise. Finally, a modal

assurance is proposed to filter the redundant modes, and obtain a physical configuration of

the structural and acoustic DoFs. The procedure is firstly tested on a simulated case, allowing

the idenfication of each step and the potential blocking points of the method. It is then applied

on an experimental setup consisting in an acoustic cavity closed by an aluminum plate. The

plate is then replaced by a marble cover to have a reference calculation on the acoustic

cavity alone, allowing the validation of the proposed procedure. It must be emphasized that
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the nature of this work is to identify, in a coupled vibroacoustic system, which modes are

governed by the acoustic or structural part of the system. In that sense, the study conducted

in [186] differs from the other decoupling studies presented in this section, and from the

primary point of interest of the present thesis that will be developed in the next chapters.

However, this study gives a significant insight on the potential applications of decoupling

procedures in vibroacoustics.

Decoupling procedures have also been addressed from a numerical point of view, for

example by Huang and Ting [187] who propose a Reverse Receptance Approach (RRA)

similar to the study of Soedel and Soedel [178]. They use this technique to predict the natural

frequencies and modes of an annular plate consisting of two circular plates deducted from one

another, with several kinds of boundary conditions (figure 11). It is found that the diameter

ratio between the initial and deducted plates plays a key role in the convergence of the results,

and the errors between the RRA and theoretical calculations remain under 1% when the

ratio is under 0.4. Similar studies are conducted by Huang for the analysis of grooved plates

[188, 189] or circular holes in rectangular plates [190], or by Cho and coworkers [191, 192] on

rectangular plates with arbitrary openings. These studies are also interesting in the fact that

they exhibit line coupling and are hence not restricted to discrete subsystems.

Figure 11: Decoupling of circular plates [187].

1.4 Methodology and document organization

The aim of the present work is to develop a subtractive modelling approach, based on both

substructuring and decoupling methods, which can be applied to study the acoustic radiation

of a partially coated cylindrical shell immersed in water. Indeed, the literature on fully coated

shells is comprehensive, but less attention has been paid to the problem of partial coating,

as it has been emphasized in the literature review. Compared to fully coated cylindrical

shells, the loss of axisymmetry induced by partial coating makes classical semi-analytical
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methods unusable. Element-based methods such as FEM and BEM allow studying such

systems, but their substantial computational cost at mid and high frequencies makes them

unadapted to an industrial context. On the other hand, substructuring methods have proven

to be able to deal with such problems. In particular, the CTF method has shown its ability in

coupling non-axisymmetric subsystems, in order to study either mechanical, acoustical or

vibroacoustical problems with challenging geometries.

Based on the CTF method and on the concept behind decoupling procedures, a new

subtractive substructuring method, called the reverse Condensed Transfer Function (rCTF)

method, is developed to decouple systems along lines or surfaces. The main objective of the

rCTF method is to be able to predict the response at any point of the decoupled subsystem,

and not only at the decoupling interface.

The investigations concerning the development of this new technique have been decom-

posed into 4 steps, each of which constitutes a chapter of the thesis. A first investigation on

subtractive modelling is carried out by considering a 1-D mechanical problem consisting in

the decoupling of vibrating rods. The receptances of the decoupled structure are computed

from information concerning the initial and removed rods. Two approaches, a local one and

a global one, are explored, and the responses at the decoupling point are studied. These

investigations are described in chapter 2, and the results are used as a first insight on the

potentials of subtractive modelling.

The theoretical formulation of the rCTF method can then be developed, at first for an

acoustical problem, and its foundations are laid. On the basis of a reverse formulation of

the CTF method, a subtracted subsystem can be removed from a global system, and the

procedure to obtain the response at any point of the decoupled subsystem is proposed. As

for the CTF method, the rCTF method is based on the definition of condensation functions.

These condensation functions are then used to compute the Condensed Transfer Functions

(CTFs) of the initial (sub)systems. These developments are presented in chapter 3, in which

a first application of the rCTF method is carried out on an academic test case consisting in

the scattering of an acoustic plane wave by a rigid sphere in an infinite water medium. The

Condensed Transfer Functions are at first computed from analytical models of the initial

(sub)systems, with two types of condensation functions investigated. These models can be

described either by the local or the global decoupling forms of chapter 2, and both approaches

are explored.

If, in chapter 3, the CTFs are computed from analytical models, in practice, numerical

models must be considered, especially for the removed subsystem. Differences can then ap-

pear between the representations of the initial global system and of the subtracted subsystem,

which can induce errors in the response of the final, target subsystem. The procedure to
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compute the CTFs from numerical models must hence be developed, in order to evaluate the

sensitivity of the method to numerical errors. These investigations are carried out in chapter

4, and applied to the same test case as in chapter 3. The advantages and drawbacks of the

local and global rCTF approaches are then discussed in order to select the more relevant one

for the industrial application.

Once the theoretical fundaments of the approach have been established, and the method

has been applied to several test cases to evaluate its accuracy and sensitivity to model errors,

it can be used to study the radiation of a partially coated cylindrical shell immersed in water.

To this end, a global system consisting in a fully coated cylindrical shell is considered, from

which the missing part of the coating is removed (as illustrated in figure 12). The CTFs

of the fully coated cylindrical shell are computed considering a semi-analytical spectral

approach, where the shell is described by the Flügge’s equations and the coating is modelled

as an equivalent fluid having acoustic properties close to decoupling coatings. The CTFs

of the missing part of the coating are calculated from a FEM model. These calculations are

performed in chapter 5, before re-coupling the obtained decoupled subsystem to a FEM

model of the water occupying the missing part of the coating. The influence of partial coating

on the radiation from the shell is then discussed for different configurations regarding the

position of the excitation and the angular spreading of the coating.

Figure 12: Example of application of the rCTF method: modelling of a partially coated
cylindrical shell.
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Chapter 2

Subtractive modelling on a
one-dimensional mechanical system

In this chapter, a first investigation is carried out on subtractive modelling by exploring the

decoupling of a master rod by a subtracted rod using receptance formulations such as in

[178]. The principle of this investigation is illustrated in figure 13.

= - 

Master rod Subtracted rod Target rod 

Figure 13: Principle of the decoupling of rods.

The aim of this investigation is to obtain a good insight on the feasibility of subtractive

modelling, and its sensitivity to model errors. The focus is brought out on the estimation of

the receptances of the target rod from the ones of the master and subtracted ones. Model

errors will be introduced by considering 2 types of models to represent the master and

subtrated rods: an analytical one and a FEM one. Two formulations are explored in this

chapter:

• A local approach where the master rod is disassembled at one of its ends by the

substracted rod, leading to a single point-decoupling equation. This approach will be

developed in section 2.1.

• A global approach where the master rod is disassembled at an intermediary position by

the subtracted rod, leading to a matrix decoupling formulation. This approach will be

developed in section 2.2.

41
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI082/these.pdf 
© [F. Dumortier], [2021], INSA Lyon, tous droits réservés



A part of this chapter is based on the article "First investigations on subtractive modeling

with the condensed transfer functions method", published in Forum Acusticum, Dec 2020,

Lyon, France.

2.1 First approach: local decoupling

2.1.1 Direct and reverse formulations of the receptance approach

Let us consider three vibrating elastic rods as shown in figure 14, only subjected to traction

and compression. The rod 1+2 consists in the assembling of the rods 1 and 2. One of its

ends is supposed clamped whereas the other one is free. The direct formulation of the

receptance approach consists in writing the receptance µ11 of the rod 1+2 at the point 1 from

the receptances α11 and β11 of the rods 1 and 2, respectively, at the same point.

= + 

(1) 

1 

α 

(2) 

β 

1 1 

(1+2) 

μ 

Figure 14: Coupling of rods.

It is reminded that the receptance of the rod 1+2, µij, represents the ease of motion of the

structure at point i when it is subjected to a harmonic point force at point j

µij =
Ui

Fj
(2.1)

where Fj is the amplitude of the harmonic longitudinal force applied at point j at the angular

frequency ω and Ui is the amplitude of the longitudinal displacement response at point i.

One has to keep in mind that µij is a complex value, taking into account the phase shift

between the force at point j and the displacement at point i. When the points i and j are

the same, the receptance is referred to as "direct receptance" while it is referred to as "cross

receptance" when they differ.
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Based on the reciprocity principle [193], the receptances are symmetric, which means

that they remain the same if the point of excitation and the point of response are exchanged:

µij = µji. The definition of the receptances, which has been presented here for the master rod

is extended for the receptances of the rod 1 and 2, αij and βij, respectively.

In order to obtain the receptance µ11 as a function of α11 and β11, a harmonic longitudinal

force, F1+2
1 , is prescribed at point 1 of the rod 1+2. The longitudinal displacement at the same

point, U1+2
1 should then be evaluated by assembling the rods 1 and 2. As a first step, we

consider that the two rods are uncoupled. The longitudinal forces, F1
1 and F2

1 are supposed to

be applied at point 1 on each of the two rods 1 and 2, respectively. Taking into account the

linear vibratory behavior of the rods, the displacements at point 1 for these two rods can be

written

"
U1

1 = α11F1
1

U2
1 = β11F2

1
(2.2)

As a second step, the displacement continuity and force equilibrium between the two

rods at the coupling point yield the following relations

"
U1

1 = U2
1 = U1+2

1
F1

1 + F2
1 = F1

(2.3)

Introducing Eq. (2.2) in Eq. (2.3), we can deduce

U1+2
1 =

α11β11

α11 + β11
F1 (2.4)

and then the receptance of the rod 1+2 as a function of α11 and β11 is inferred

µ11 =
α11β11

α11 + β11
(2.5)

Now, let us consider the decoupling problem as illustrated in figure 15. It consists in

estimating the receptance α11 of the rod 1 from the ones of the rod 1+2, µ11, and of the rod 2,

β11. In what follows, rod 1 will be referred to as "target rod", whereas rods 2 and 1+2 will be

referred to as "subtracted rod" and "master rod", respectively, as in figure 13. For our basic

system, α11 is obtained straightforwardly by inverting Eq. (2.5)

α11 =
β11µ11

β11 � µ11
(2.6)

With this operation, has been established the principle of the local decoupling where only

two quantities are needed for the calculation of α11: the receptance at the point 1 of the master

rod and the receptance at the point 1 of the subtracted rod. Under the considered assumptions,

the proposed calculation with Eq. (2.6) is exact. However, in practice, the receptances µ11

and β11 are not necessarily estimated with the same calculation process. Some differences
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Figure 15: Decoupling of rods.

between the two models considered for these calculations can be introduced. The goal of the

following investigations is to estimate the impact of these model errors on the decoupling

accuracy and to highlight the parameters allowing to reduce the sensitivity to these errors.

2.1.2 Test case parameters and calculation of the receptances

The mechanical characteristics and dimensions of the nominal rods for the numerical applica-

tions are given in the table 1. The structural damping is introduced in the modelling through

a complex Young’s modulus: E� = E(1 + jη).

Parameter Notation Value Unit
Young modulus E 210 GPa
Poisson coefficient νs 0.3 -
Density ρs 7800 kg/m3

Structural damping coeff. ηs 0.02 -
Celerity of long. waves cs 6020 m/s
Length of the target rod 1 L1 3 m
Length of the subtracted rod 2 L2 0.8 m
Length of the master rod 1+2 L1+2 3.8 m
Section of the rods S 0.052 m2

Table 1: Mechanical characteristics and rod dimensions.

By comparing the results of the decoupling approach in Eq. (2.6) with an analytical

calculation of the receptance of the target rod, we will be able to estimate the accuracy of the

technique. Two processes for estimating the receptances of the master rod and the subtracted

rod used in the decoupling technique will be considered in the following:

44
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI082/these.pdf 
© [F. Dumortier], [2021], INSA Lyon, tous droits réservés



- the first one consists of an analytical calculation based on the forced wave decomposition

approach as described in [194]. This approach is exact in the sense that the equations

of motion of the rod as well as the boundary conditions are strictly verified if the

assumptions of the theory are verified.

- the second is based on a FEM simulation. The rod is decomposed in a certain amount

of 1-dimensional rod elements and the forced response corresponding to the receptance

is obtained by a direct analysis in the FEM Structural Dynamic toolbox implemented in

MATLAB® [195]. The accuracy of the response depends on the element size. This ap-

proach can be qualified as approximate in opposition to the exact analytical calculation.

Several combinations of these processes for evaluating β11 and µ11 are possible:

- the first one consists in considering an analytical calculation for both receptances. The

good agreement between this calculation and the reference one that was observed

allowed us to numerically validate Eq. (2.6) and the analytical calculations of the

different receptances (results not shown here). The expressions of these receptances for

the three rods are given in Appendix B.

- the second one consists of considering a FEM simulation for both receptances. The good

accuracy of this solution compared to the reference results validated the numerical

process for estimating the receptances (results not shown here). They were calculated

in the frequency band [100, 10000] Hz, with 2000 values logarithmically spread over the

domain in order to describe properly the resonances and anti-resonances of the rods.

The size of the finite elements was 0.1 m in order to satisfy the criterion of at least 6

elements per longitudinal wavelength at 10000 Hz, and the mesh was applied regularly

along the rods. In the following, these calculation characteristics will still be considered.

- the last one that will be of interest for our study consists of considering the analytical

model for the receptance of the master rod while the FEM model is used to estimate the

receptance of the subtracted rod. These results will be analyzed in the next section.

2.1.3 Results

In the following, we show and discuss different results concerning the decoupling of the

analytical model of the master rod with the FEM model of the subtracted rod. Let us

start by comparing the receptance α11 obtained by decoupling with the reference analytical

calculation as shown in figure 16a. The relative error made on α11, calculated using the

analytical reference result, is also shown in figure 16b.
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Figure 16: (a) Receptance α11 obtained by decoupling. (b) Relative error on α11.

The results show a good fit between the two curves in the main part of the frequency range.

Some discrepancies can however be observed around 1600 Hz, 4800 Hz and 8200 Hz, and

they appear clearly when looking at the relative error in figure 16b. These discrepancies were

not obtained when the receptances of the subtracted rod were calculated analytically. The

cause of these errors will be investigated in the next section in order to assess the method’s

sensitivity to model errors.

2.1.3.1 Analysis of errors

As the analytical calculation serves as a reference and the receptance of the master rod has

been calculated analytically, there are no model errors on µ11. The model errors hence rely

only on the subtracted rod. From the expression of α11 given in Eq. (2.6), we can derive the

small variations of α11 due to the small variations of β11

δα11 =
µ2

11

(β11 µ11)
2 δβ11 (2.7)

From Eq. (2.7), we can deduce that there are two critical conditions that induced significant

errors on α11:

- as could be expected, the first condition is when the errors on β11, namely δβ11, are

high.

- the second condition is when β11 is close to µ11, and µ11 is non-zero.

As it was observed in figure 16 that the errors on α11 are the highest around the three

mentioned frequencies (i.e. 1600 Hz, 4800 Hz and 8200 Hz), one could expect that at least

one of the two conditions previously evoked are satisfied at these frequencies. The relative

error on β11 is shown in figure 17a, while the receptances β11 and µ11 are plotted in the figure
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17b, both in terms of amplitude and phase. As a comparison, the receptance β11 is presented

for the two calculations (analytical and FEM modelling), while only the analytical value is

presented for the receptance µ11.

(a) (b)

Figure 17: (a) Relative error on β11. (b) Comparison between β11 and µ11.

From figure 17, we can deduce that the two critical conditions are indeed satisfied at the

three incriminated frequencies, which explains the errors observed in figure 16. In figure 17a,

we notice that the model errors on β11 are significant for the resonant frequencies and the

anti-resonant frequencies (due to a slight shift of the frequencies between the analytical and

FEM calculations). Furthermore, the figure 17b shows that all the anti-resonant frequencies

of β11 are also anti-resonant frequencies for µ11, which means that the receptances of the

two beams are equal or close in the relatively small frequency ranges surrounding these

anti-resonant frequencies. On the contrary, at the resonant frequencies of β11, even if the

error on β11 is significant, the receptances β11 and µ11 are very different, which explains why

there is no apparent error made on α11. Besides, there are some frequencies for which the

curves of β11 and µ11 cross each other (i.e. 960 Hz and 3870 Hz), but for which there are no

signficant errors made on α11. This can be explained by the fact that the errors on β11 are

relatively small for these frequencies as they do not correspond to resonant or anti-resonant

frequencies.

In conclusion, the errors on α11 are significant when the two critical conditions described

above are fulfilled, and this corresponds to the anti-resonant frequencies of the subtracted

rod. It should be emphasized that regarding the figure 17a, the relative error on β11 can

be quite high, meaning that the hypothesis of small variations of β11 is not always verified.

Nevertheless, the analysis carried out in this section gives a good insight on the sources of

errors of the decoupling method.

One solution for reducing the errors on α11 consists in limiting the numerical errors on

β11 by considering a finer mesh for the FEM model. As the subtracted rod is relatively small
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and the original FEM model is not too large in terms of degrees of freedom, refining the

mesh would not affect significantly the calculation time. However, this solution would not

be well adapted for more complex cases. Alternatively, the errors on α11 will be small if β11

and µ11 are significantly different. In the following two sections, we are going to investigate

the influence of both the length of the subtracted rod and the structural damping.

2.1.3.2 Influence of the length of the subtracted rod

From the previous observations, it can be expected that the length of the subtracted rod plays

a key role on the errors made on the receptances of the target rod when the decoupling is

done because the anti-resonances of the subtracted rod are incriminated.

The receptances β11 (computed with FEM modelling) and µ11 (computed using the analyt-

ical solution) are compared in figure 18 for two new lengths of the subtracted rod: L2 = 0.3 m

and L2 = 1.3 m, while L1, the length of the target rod, is kept unchanged. It can be observed

that when the subtracted rod is 1.3 m long, its receptance β11 has 5 anti-resonances in common

with µ11 whereas the receptance of the 0.3 m long subtracted rod has only 1 anti-resonance in

common with µ11.

(a) (b)

Figure 18: Comparison of β11 and µ11 for two different lengths of the subtracted rod. (a)
L2=0.3 m. (b) L2=1.3 m.

As a result, the decoupling with the 1.3 m long subtracted rod exhibits more critical

frequency domains than the one with the 0.3 m long subtracted rod as it can be observed

in figure 19, where the relative errors on α11 have been plotted as a function of frequency.

The subtracted rod studied in section 2.1.3 was also added to this figure (L2 = 0.8 m). These

critical frequency domains correspond to the mutual anti-resonances of the master and

subtracted rods as already observed for the initial case in figure 16. We can emphasize that

for these new calculations, the length of the master rod has been adapted such that the length

of the target rod remains unchanged.
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To have an overview on the errors on α11, the mean value of the relative errors over the

whole frequency range were calculated for the three subtracted rod lengths (0.3 m, 0.8 m and

1.3 m). We obtain 9.6%, 14.7% and 18.1%, respectively, which means that there is a clear trend

showing that the errors on α11 are higher when the subtracted rod is longer.
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Figure 19: Relative error on α11 for several lengths of the subtracted rod.

2.1.3.3 Influence of structural damping

Another alternative to avoid errors on α11 is to modify the amplitude of the anti-resonances

such that the influence of the common anti-resonances between the two rods will be reduced.

A way of achieving this aim is to increase the structural damping of the rods. Hence, the

calculations made previously were reiterated with a structural damping coefficient of 20%

(i.e. ηs = 0.2) against 2% (i.e. ηs = 0.02) previously. The geometrical parameters of the rods

are the ones of the nominal case defined in table 1.

The receptance α11 obtained with the 20% structural damping coefficient is displayed in

figure 20a and shows that the reference and decoupling curves fit much better than in figure

16. There are still errors around the anti-resonant frequencies of β11, but these errors are

much smaller than the ones with the 2% structural damping coefficient. Figure 20b shows the

relative error made on α11 with the two different values of the structural damping coefficient.

It can be seen that the maximum error is 10 times smaller. Also, the mean relative error in

the whole frequency range of interest, which is of 4.9%, has been divided by 3 when the

structural damping coefficient is increased by a factor 10.

With the same geometrical and mechanical parameters (except the structural damping
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Figure 20: (a) Receptance α11 obtained by decoupling. (b) Relative error on α11 with two
different values of the structural damping coefficient.

(a) (b)

Figure 21: Sources of errors with a higher structural damping coefficient. (a) Absolute error
on β11. (b) Comparison between β11 and µ11.

coefficient) and the same mesh size, it is interesting to note that in figure 21a, the model

errors on β11 have been reduced by a factor 10. Also, in figure 21b, around the anti-resonant

frequencies, the values of the receptances are not as close to each other as they are in figure

17b. This means that even when the two critical conditions are satisfied, the error made on

α11 is limited, as can be seen in figure 20b. The amplitude of the relative error is also much

lower, even at frequencies where the two critical conditions are not necessarily satisfied.

To conclude this section, we can emphasize that the results obtained with this local

decoupling approach have shown that the sensitivity of the method to model errors is

influenced by the length of the subtracted rod and the structural damping of the different

rods. However, for the practical applications of the subtractive modelling, the geometrical

and mechanical properties of the master and target structures will be fully defined. It will

hence not be possible to change the dimensions nor the structural damping coefficient of
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the subtracted structure to reduce the sensitivity to model errors, considering this local

decoupling approach. To circumvent this issue, in the next section, we focus on another

reverse formulation of the receptance approach.

2.2 Second approach: global decoupling

2.2.1 Principle

Let us now consider the new decoupling problem presented in figure 22a. Instead of decou-

pling the master rod at one of its ends, it is disassembled at an intermediary position by the

subtracted rod. As a result, the decoupling process will exhibit two different rods. The part

below the coupling point 1 corresponds to the target rod as in section 2.1 whereas the part

above the coupling point 2 will not be of interest in the following. With such a decoupling

process, we will be able to modify the length of the subtracted rod without modifying the

length of the part of interest. Indeed, if the position of the point 1 is considered as fixed, only

the length of the part which is not of interest will change when the subtracted rod’s length

changes.

The coupling problem associated to the new decoupling process is shown in figure 22b.

The equations associated to this coupling problem will be presented before being reversed to

exhibit the decoupling problem.

= + 

(1) 

2 

1 

α 

(2) 

2 

β 

1 1 
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(1+2) 
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= - 

(2) 
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(1) 
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(1+2) 
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Figure 22: (a) Decoupling at an intermediary position of the master rod by a subtracted rod.
(b) Coupling problem associated to the decoupling one.

As the problem exhibits two coupling points, each rod is characterized by receptance

matrices to account for the direct receptances at points 1 and 2, and for the cross receptance be-
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tween point 1 and point 2. The receptance matrices for the rods 1, 2, and 1+2, are respectively

defined by

A =

[
α11 α12
α12 α22

]
, B =

[
β11 β12
β12 β22

]
, M =

[
µ11 µ12
µ12 µ22

]
, (2.8)

Their expressions for the analytical model are given in Appendix B whereas the same

process as the one described in section 2.1 is used to extract them from the FEM model.

In order to derive the receptance matrix of the master rod as a function of those of the

target and subtracted rods, a unitary harmonic longitudinal force is prescribed successively

at the coupling points 1 and 2. At first, let us suppose that the unit force is applied at point 1.

The force vector is then defined by

F =

[
1
0

]
(2.9)

The displacement vectors (containing the displacements at the point junctions) associated

to the two rods can be written as a function of the receptance matrix and the force vector

(considering the superposition principle for linear passive systems). On another hand,

the displacement continuity and force equilibrium at the junction can be written with the

displacement and force vector quantities. It yields

$''&
''%

U1 = AF1
U2 = BF2
U1+2 = U1 = U2
F = F1 + F2

(2.10)

where Uı represents the displacement vector of rod ζ, and Fı corresponds to the applied force

vector on rod ζ (ζ stands for 1, 2 or 1+2). The resolution of this system of equations gives

U1+2 = A(A + B)�1BF (2.11)

U1+2 contains the displacements at the coupling points for the master rod when excited

by a unit point force at point 1. It corresponds then to the first column of the receptance

matrix M of the master rod. Repeating the process for a force applied at point 2, we deduce

the expression of the receptance matrix M

M = A(A + B)�1B (2.12)

As in the section 2.1, the decoupling problem is derived from the coupling problem by

inverting Eq. (2.12). The receptance matrix A of the targeted rod is then written

A = B(B�M)�1M (2.13)
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We can notice that this expression has the same form than the one derived in Eq. (2.6),

but with matrices instead of single values. In the following sections, the general decoupling

formula of Eq. (2.13) is going to be used to obtain the receptances α of the target rod, but

ultimately only the receptance α11 will be of interest for us, as it was the initial quantity

of interest of the study. In theory, α12 and α21 will be null as there is no physical coupling

between the two points on the target rod. It must hence be checked that the values given by

the decoupling technique concerning these quantities are negligible compared to the direct

receptances, α11 and α22. The material characteristics are the same than those of table 1, and

the dimensions of the rods are given in table 2. One has to be aware that, now that the rod

1 is composed of two parts, L11 refers to the lower part of the rod (which is of interest, and

remains the target rod), while L12 refers to the upper part of the rod, and will be refered to as

"residual rod".

Length of the target rod L11 3 m
Length of the residual rod L12 0.3 m
Length of the subtracted rod 2 L2 0.5 m
Length of the master rod 1+2 L1+2 3.8 m
Section of the rods S 0.052 m2

Table 2: Dimensions of the rods.

It should be noted that the size of the master rod as well as the position of the coupling

point 1 have been chosen to be the same than in section 2.1, so that the comparison between

the two studies remains relevant.

2.2.2 Results

The decoupling process was achieved using Eq. (2.13) and the receptance matrix of the

master rod M calculated analytically (see B.2.1), whereas those of the subtracted rod B were

computed by FEM simulation as in section 2.1. The results in terms of α11 are shown in

figure 23a, while the amplitudes of the receptances β11 (computed analytically and with FEM

modelling) and µ11 are presented in figure 23b.

Figure 23a shows discrepancies around 5500 Hz for α11, and contrary to the observations

made in the section 2, these discrepancies do not appear around the anti-resonant frequency

of the subtracted rod. According to figure 23b, it can be stated that the discrepancies tend to

appear around the resonant frequency of the subtracted rod which is 5271 Hz. We can also

observe, as it could be expected, that the receptances β11 and µ11 do not present common

anti-resonances as it was the case in section 2.1, because the subtracted rod is no longer

located at the extremity of the master rod. On the other hand, the cross receptances α12 and

α21 obtained by the decoupling technique present values significantly lower than those of α11
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Figure 23: (a) Comparison of α11 between Eq. 2.13 and the reference analytical calculation. (b)
Amplitude of the receptances β11 and µ11.

(i.e. between -280 dB and -220 dB, except for few frequencies corresponding to maxima of the

relative error). These non-null cross receptances are the results of numerical errors, but they

express well that the points 1 and 2 are not physically coupled in the subsystem 1.

The decoupling formula of Eq. (2.13) involves the inversion of the matrix B M. This

inversion can amplify the numerical discrepancies related to the model errors and lead to

the errors observed in figure 23a. The sensitivity of this matrix inversion to numerical errors

can be characterized by the condition number, which corresponds to the ratio between the

highest of the two eigenvalues of the matrix over the lowest one. The condition number of

the receptance matrices B, M, and B M, are shown in figure 24a. The relative error on α11

is also presented in figure 24b, in order to investigate the relation between a potentially high

condition number of the inverted matrix B M and a significant relative error on α11. As

there are no apparent errors below 1000 Hz in figure 23a, the curves in figure 24 are plotted

only above 1000 Hz for a better clarity.

103 104

Frequency (Hz)

100

101

102

103

104

Co
nd

iti
on

 n
um

be
r 

Inverted matrix
Master rod 1+2
Slave rod 2

(a) (b)

Figure 24: (a) Condition number of the receptance matrices. (b) Relative error on α11.
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The red curve displayed in figure 24a, corresponding to the inverted matrix, shows that

there is a frequency domain between 4600 Hz and 6500 Hz where the condition number

is relatively high (i.e. greater than 100). This high condition number can be associated to

the ill-conditoning of the matrix B for frequencies close to the resonant frequency, 5271 Hz

(see the blue curve). In addition, as previously shown in section 2.1.3.1, model errors on the

receptances of the subtracted rod are the most significant at the resonant and anti-resonant

frequencies of the rod. As a result, the ill-conditioning of the inverted matrix amplifies the

model errors committed on the receptances of the subtracted rod at frequencies close to

its resonances. This may explain the important relative errors on α11 in figure 24b in the

frequency band [4600 - 6500] Hz. For frequencies higher than 6500 Hz, the relative errors

observed in figure 24b remain significant. However, these errors can be associated to slight

frequency shifts in the prediction of α11 as it can be observed in figure 23a.

It has been observed here that the global decoupling technique leads to significant dis-

crepancies compared to the reference for frequencies close to the resonant frequency of the

subtracted rod. This contrasts with the local decoupling technique studied in section 2.1

which exhibited significant discrepancies for frequencies close to the anti-resonant frequencies

of the subtracted rod. In order to investigate in further details this difference, we are going

to study in the next section the results of the global decoupling technique when the length

of the residual rod tends towards zero (i.e. when the subtracted rod moves to the extremity

of the master rod). We can wonder if the results of the local decoupling technique, which

supposes a decoupling at one end of the master rod, can be found to be an asymptotic case of

the global decoupling technique.

2.2.3 Influence of the length of the residual rod

In the following, the length of the subtracted rod has been set to L2=0.8 m as in section 2.1.

This choice is motivated by the fact that this length allows the presence of several resonant

(i.e. 3264 Hz and 6651 Hz) and anti-resonant frequencies (i.e. 1624 Hz, 4941 Hz and 8433 Hz)

in the frequency range of interest (see figure 17b), thus allowing a better potential of analysis

than with a shorter rod.

In figure 25, the condition number and the relative error on α11 as a function of frequency

and of the length L12 are shown. The length L12 is varying between 1 cm and 1.5 m (with a

logarithm scale), and since the position of the coupling point 1 has not changed, it means that

the size of the master rod also varies in this study. The red dashed lines correspond to the

resonant frequencies of the subtracted rod, while the white dashed lines correspond to the

resonant frequencies of the residual rod. In figure 25b, the scale of the plot was reduced to

a maximum relative error of 5. Even if larger errors can appear, the interest of the present
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(a)

(b)

Figure 25: Asymptotic study - (a) Condition number of the inverted matrix. (b) Relative error
on α11.

study relies on the frequency localization of the maximum errors rather than their values

(when they are large). The tendencies observed on these two figures seem to remain the

same, regardless of the position of the subtracted rod. The condition number of the inverted

matrix keeps maximum values at the resonances of the subtracted rod which are 3264 Hz

and 6651 Hz. Equivalently, the main errors on α11 are located around these resonances of

the subtracted rod. This phenomenon tends to stay the same when L12 gets closer to zero,

even if a decrease of the errors may be observed. Also, it is interesting to notice that the

diagonal patterns that tend to appear following the maxima of relative errors are parallel

to the resonances of the residual rod (see the white dashed lines). This means that there

is a correlation between the errors of the global decoupling technique and the presence of

resonances of the residual rod. This phenomenon explains the fact that when the residual rod

is too short to have any resonance in this frequency domain, the errors are much lower. We
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can also underline that the other frequencies at which moderate errors are observed when

L12 is small correspond to resonances of the master rod. However, no particular error seems

to appear at the anti-resonant frequencies of the subtracted rod when L12 tends towards zero.

This is particularly highlighted in figure 26 showing the amplitude of α11 and the associated

relative error as a function of frequency when L12=0. The discrepancies that were observed

in figure 16 with the local decoupling technique are not recovered. Although this situation

corresponds to a decoupling at the extremity of the master rod with the global decoupling

technique, we do not find back the same results as with the local decoupling technique.

The difference between the two techniques can be highlighted with the analytical expres-

sion of α11, when resolving Eq. (2.13)

α11 =

(
(β22 µ22)µ11 + µ2

12
)

β11 β2
12µ11

(β22 µ22) (β11 µ11) (β12 µ12)
2 (2.14)

This expression differs from Eq. (2.6). It does not depend only on the receptances at point

1 that characterized the local decoupling technique, but it depends also on the receptances

at point 2 as well as the cross receptances betweeen the two points. This is a characteristic

of the global decoupling technique which is less sensitive to model errors but needs more

parameters to be computed. As a result, it can be seen in figure 26 that the remaining errors

correspond to slight frequency shifts in the prediction of α11, due to the frequency shifts

resulting from the FEM calculations on β11 that can be seen in figure 17b. One must note that

the scale of the vertical axis in figure 17b is smaller than in figure 16b.
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Figure 26: (a) Amplitude of the receptance α11 when the global decoupling technique is
applied at the extremity of the master rod. (b) Associated relative error.

2.2.4 Optimization of the decoupling process

Before concluding this study, one can be interested in finding the optimal configuration

allowing to minimize the errors on α11. Indeed, when applying a subtractive modelling
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technique, we generally start from a model of the master structure whereas the characteristics

of the target model are already defined. Hence, the only parameters that are not fixed are

related to the model of the subtracted structure. In our rod problem, the length of the master

rod and the position of the coupling point 1 (that defined the length of the target rod) are

fixed. Hence the only parameter that can be adjusted is the length of the subtracted rod.

Moreover, it has previously been highlighted that the main errors induced by the global

decoupling technique appear at the resonances of the subtracted rod. By reducing the size of

this rod, it can be expected that the first resonance would be shifted outside the frequency

band of interest, leading to a better accuracy of the method.

(a) (b)

Figure 27: Optimization - (a) Condition number of the inverted matrix. (b) Relative error on
α11.

In figure 27, the condition number and relative error are then plotted for several lengths

of the subtracted rod as a function of frequency. The length of the subtracted rod varies from

0.1 m to 1.5 m with 0.1 m increments. As the length of the master rod is fixed (i.e. 4.5 m), as

well as the position of the coupling point 1 (hence the length of the target rod), the length

of the residual rod is varied in reverse, from 1.4 m to 0 m. The length of the target rod L11

remains 3.0 m (as in the previous calculations). We can clearly see in this figure that the

maxima of the condition number, corresponding to the resonances of the subtracted rod,

are shifted towards the high frequencies as L2 decreases, until reaching 0.2 m (delimited by

the white line on the figure). For L2 between 0.1 m and 0.2 m, the subtracted rod does not

exhibit resonances in the frequency band anymore. The condition number tends however

to increase in the low frequency domain. The global trend of the relative error on α11 that

can be observed in figure 27b is in agreement with the one of the condition number: the

relative error decreases when L2 decreases, until becoming negligible when L2 is lower than

0.2 m. Besides, the high condition numbers in the low frequencies for the small lengths of

the subtracted rod that was observed in figure 27a do not impact the relative error. This

can be explained by the small errors induced by the FEM calculation of the receptances of

the subtracted rod in the low frequency range (compared to those in the higher part of the
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frequency range).

The figure 28 shows the global decoupling process as well as the associated relative error

on α11 when the subtracted rod is 0.1 m long. The maximum relative error is 12% (see the

black curve), which is much lower than the relative error observed in the figure 24b for which

the length of the subtracted rod was 0.5 m. Moreover, taking into account of the small size of

the subtracted rod, the FEM mesh can be refined without greatly affecting the computational

cost. For instance, for a subtracted rod of 0.1 m, the calculation of its receptances with a

mesh size of dx=0.1 m took 5.6 s, while the same calculation with a mesh size of dx=0.01 m

required 6.6 s. The comparison of the results of the decoupling process and relative errors for

these two calculations is presented in figure 28a (blue curve) for the results and figure 28b

(red curve) for the relative error. For a difference of computing time of only 1 s, the errors

were reduced by a factor that goes up to 73. Hence, the balance between the increase of the

computing time and the decrease of the errors is largely in favour of the latter, by the use of a

finer mesh.
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Figure 28: (a) Amplitude of the receptance α11 when the global decoupling technique is
optimized, for two different mesh sizes. (b) Associated relative errors.

2.3 Conclusion

The concept of subtractive modelling that consists in predicting the behavior of a target

structure by decoupling a subtracted structure from the master one has been investigated

for the case of rods decoupling. The use of this academic structure allowed studying the

sensitivity of the decoupling to model errors. These model errors correspond to the difference

that can appear between the numerical models of the master structure and the subtracted

structure, and their real value. In the numerical applications that were presented, the master
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rods were represented by analytical models whereas the subtracted rods were simulated by

FEM models. Two reverse formulations of the receptance approach have been studied:

- The first one, the local approach, is only based on the receptances at the coupling

junction of interest. In this case, the decoupling was performed by removing the

subtracted rod located at one extremity of the master rod. Significant errors were

observed at the anti-resonant frequencies of the subtracted rods. They are due to the

conjunction of two phenomena. On the one hand, the errors induced by the FEM model

of the subtracted rod compared to an analytical model are significant at the resonances

and anti-resonances of the rod. On the other hand, the sensitivity analysis for small

variations carried out on the analytical formula of the reverse formulation showed

that an amplification of the errors appears when the receptances of the subtracted

and master rods are close to each other. This situation appears at the anti-resonance

frequencies of the subtracted rods;

- The second one, the global approach, is based on a matrix formulation considering the

receptances between different points. The decoupling was performed with a subtracted

rod located at any position of the master rod. With this approach, the errors appear at

the resonant frequencies of the subtracted rod due to the ill-conditioning of the matrix

to be inverted. The process can however be improved by considering a short subtracted

rod for which the first resonance is outside the frequency range of interest. In this

situation, the decoupling technique exhibits a good accuracy even if the subtracted

rod is modelled by the FEM with a relatively coarser mesh. The accuracy can still be

increased by considering a finer mesh that would not affect greatly the computing time

as the size of the subtracted rod is small.

These results obtained on a simple case give some important insights for the extension

of the decoupling technique for subtractive modelling on more complex cases. In the next

chapter, an acoustical 3-D problem will be considered, exhibiting a more complex and global

formulation.
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Chapter 3

Subtractive modelling on a complex
vibroacoustic system: principle of the
reverse Condensed Transfer Function
method

The subtractive modelling principle explored in the previous chapter is extended here for

complex vibroacoustic problems. This generalization is made by reversing the formalism of

the Condensed Transfer Function method [172], recently developed to couple mechanical

and acoustical subsystems. For the sake of conciseness and clarity, the reverse formulation

will be developed and applied in this chapter for a 3-D acoustical system, although it could

also be developed and applied for vibroacoustic problems as it will be shown in chapter 5. In

addition to this extension, particular attention is paid in this chapter on the estimation of the

response at any point of the target subsystem (and not only on the estimation of the transfer

functions at the decoupling interface). To this end, a dedicated formulation is proposed and

numerically validated in this chapter.

The formalism of the Condensed Transfer Function method, introduced in [172], is pro-

posed for an acoustical system in section 3.1. The equations of the CTF method are then

reversed to obtain the reverse Condensed Transfer Function (rCTF) method in section 3.2.

Subsequently, the rCTF method is applied on an academic test case consisting in the scattering

of an acoustic plane wave by a rigid sphere in an infinite water domain in section 3.3. The

possibility of local and a global decoupling formulations will be investigated as an analogy

with the developments in chapter 2. This application serves as an numerical validation of the

rCTF method, with the Condensed Transfer Functions (CTFs) necessary to apply the method

being calculated analytically.

Part of this chapter is based on the article "Vibroacoustic subtractive modeling using a

reverse condensed transfer function approach", published in the Journal of Sound and Vibration

[196].
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3.1 Principle of the direct CTF method for acoustic problems

Subsystem 1 Subsystem 2 System 1+2

Ω ΩΩ

(S) (S)

M1 M2

x

Figure 29: Principle of the direct CTF method.

In this section, the principles of the CTF approach for an acoustic problem are recalled (see

the references of Meyer [172] and Hu [175] for details and for vibroacoustic and mechanical

problems). Let us consider two acoustical domains coupled along a surface Ω, where x

is a point on Ω, and excited by an acoustic source (S) applied on subsystem 1, as shown

in figure 29. The responses are calculated in harmonic regime. A set of N orthonormal

functions defined on Ω, called the condensation functions (CFs), is considered: ϕi
1 i N. It

is assumed that for each subsystem α, the pressures pα and the normal velocities uα (where

the outer-pointing normal is defined as positive) at the junction can be approximated as a

linear combination of the CFs

pα(x)
N

i=1

Pi
α ϕi(x) and uα(x)

N

i=1

Ui
α ϕi(x) x Ω (3.1)

where Pi
α and Ui

α are the unknowns. To estimate them, it is necessary to define for each

uncoupled subsystem α 1, 2 , the condensed transfer function between ϕi and ϕj by

applying a prescribed velocity uα = ϕj on Ω

Zij
α =

p̄α, ϕi

uα, ϕj = p̄α, ϕi (3.2)

with p̄α the resulting pressure at the junction Ω when the subsystem is excited by uα = ϕj

and , the scalar product defined on the surface Ω by

f , g =

Ω

f (x)g (x)dx (3.3)

where * denotes the complex conjugate. Moreover, the condensed blocked pressure of each

uncoupled subsystem α is defined by
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P̃i
α = x ˜̄pα, φiy (3.4)

where ˜̄pα is the pressure at the junction of the uncoupled subsystem α when only external

loading is applied. Assuming there is no external load applied on subsystem 2, P̃i
2 = 0, @i P

J0, NK.

In the following, the condensed impedance matrix of subsystem α will be referred to as

Zα, where the coefficient of the ith row and jth column corresponds to Zij
α . Similarly, Uα, Pα

and P̃α will denote the condensed velocity vector, the condensed pressure vector, and the

condensed blocked pressure vector associated with subsystem α, respectively.

An external load (S) is applied on subsystem 1, while the junction Ω exhibits a normal

velocity u1 on subsystem 1 and u2 on subsystem 2. In response to these normal velocities

and the external load, the superposition principle for linear passive systems [173] gives us

expressions relating to the condensed velocities and pressure vectors

"
P1 = P̃1 + Z1U1
P2 = Z2U2

(3.5)

The pressure continuity and normal velocities equilibrium at the junction yields (taking

into account the definition of the normals)

"
p1(x) = p2(x)
u1(x) + u2(x) = 0 , @x P Ω (3.6)

By injecting Eq. (3.1) in Eq. (3.6) and projecting the results on the CFs, one obtains

"
P1 = P2
U1 + U2 = 0 (3.7)

In the following, when the two subsystems are coupled, P1+2 denotes the condensed

pressure vector whereas U1+2 denotes the condensed velocity vector on Ω. By convention,

U1+2 = U1 = �U2 and P1+2 = P1 = P2. By combining Eq. (3.5) and Eq. (3.7), the coupling

velocities U1+2 between the two subsystems can be deduced

(Z1 + Z2)U1+2 = �P̃1 (3.8)

Once the coupling velocities have been calculated by inverting Eq. (3.8), the response at

given points M1 (in subsystem 1) and M2 (in subsystem 2) can be deduced

#
p1+2(M1) = p̃1(M1) + Z1(M1)U1+2

p1+2(M2) = �Z2(M2)U1+2

(3.9a)
(3.9b)

Zα(Mα) is the vector of the point condensed impedance and should be distinguished from

the condensed impedance matrix Zα. The ith component of this vector, Zi
α(Mα), is defined as
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the pressure at point Mα when a normal velocity corresponding to the condensation function

ϕi is prescribed on Ω.

3.2 Reverse CTF method

3.2.1 Principle

Ω ΩΩ

(S) (S)

M1

System 1+2 Subsystem 2 Subsystem 1

Figure 30: Principle of the rCTF method.

In this section, we develop the subtractive approach consisting in reversing the CTF

approach. The behavior of the complete system 1+2 as well as that of subsystem 2 are

assumed as known, and the aim of this development is to deduce the behavior of subsystem

1, as shown in figure 30. In Eq. (3.9a), p̃1(M1) represents the pressure at point M1 when

subsystem 1 is uncoupled from subsystem 2. It is thus the quantity of interest for the present

study. We can write

p̃1(M1) = p1+2(M1) Z1(M1)U1+2 (3.10)

The coupling velocities U1+2 at the junction can be retrieved using Eq. (3.5) combined

with the pressure continuity and velocity equilibrium of Eq. (3.7)

U1+2 = Z2
1P1+2 (3.11)

Finally, the pressure at a given point M1 of uncoupled subsystem 1 can be rewritten as

p̃1(M1) = p1+2(M1) + Z1(M1)Z2
1P1+2 (3.12)

As the behavior of subsystem 2 and of the global system 1+2 are assumed as known,

p1+2(M1), Z2 and P1+2 are therefore known quantities. In order to evaluate p̃1(M1), the next

subsections are focused on determining Z1(M1) as well as Z1, the condensed impedance

matrix of subsystem 1.

64
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI082/these.pdf 
© [F. Dumortier], [2021], INSA Lyon, tous droits réservés



3.2.2 Calculation of the point condensed impedance using a reciprocity
principle

We now focus on the calculation of the impedance Z1(M), with M being a given point

located in the acoustic domain associated with subsystem 1. We recall that the ith component

of this vector, Zi
1(M), corresponds to the pressure at point M when a prescribed velocity

corresponding to the condensation function φi is imposed on the coupling surface. It can be

expressed as

Zi
1(M) =

¼
Ω

Hp/Q (M, M1) φi (M1)dM1 (3.13)

where Hp/Q (M, M1) = p(M)
Q(M1)

is the transfer function corresponding to the ratio between the

pressure at point M and the volume velocity flow of the monopole source at point M1. In

Eq. (3.13), φi (M1)dM1 is the product between normal velocity φi (M1) and elementary surface

dM1, and corresponds to a volume velocity flow. Hence, Hp/Q (M, M1) φi (M1)dM1 represents

the pressure at point M induced by a monopole source of volume velocity φi (M1)dM1 and

of elementary surface dM1. The sum of these contributions over the surface Ω corresponds to

the quantity Zi
1(M).

On the other hand, the reciprocity principle states that the response of a linear system to a

time-harmonic disturbance that is applied at some point by an external agent is invariant

with respect to the exchange of the input and observed reponse points [193, 197]. In this case,

it means that the pressure radiated at point M when it is excited by a monopole source of

unit volume velocity at point M1 equals the pressure radiated at point M1 when it is excited

by a monopole source of unit volume velocity at point M

Hp/Q (M, M1) = Hp/Q (M1, M) (3.14)

Hence, Eq. (3.13) can be rewritten

Zi
1(M) =

¼
Ω

Hp/Q (M1, M) φi (M1)dM1 (3.15)

A new interpretation of Zi
1(M) can be given from Eq. (3.15). It corresponds to the pressure

on the coupling surface projected on the condensation function φi, induced by a monopole

source of unit volume velocity situated on point M. From this interpretation, Z1(M) is

therefore the vector of the blocked pressure on the coupling surface when the excitation is a

monopole source of unit volume velocity: Z1(M) = P̃M
1 . The exponent M is introduced in

the notation to specify that the considered excitation is a unitary monopole located at point

M.
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This quantity, P̃M
1 , can be estimated from the knowledge of the pressure induced by the

monopole source on the global system 1+2. Let us assume that we know PM
1+2, the vector of

the condensed pressure induced by the monopole source of unit volume velocity and located

at the point M in the global system 1+2.

Eq. (3.5) and Eq. (3.7) related to the CTF approach can still be applied for the present case.

From these equations, P̃M
1 can be expressed as

P̃M
1 =

(
I + Z1Z2

�1
)

PM
1+2 (3.16)

where I is the identity matrix.

At this stage, Z1 is still unknown. We will see in the next subsection how to estimate it

from the condensed impedance matrix of subsystem 2, Z2, and of the global system, Z1+2.

3.2.3 Calculation of the condensed impedances of subsystem 1

Our aim in this subsection is to derive the condensed impedance matrix of subsystem 1, Z1,

from those of subsystem 2 and the global system 1+2, respectively Z2 and Z1+2.

The condensed impedances of subsystems 1 and 2 were previously defined by Eq. (3.2).

Let us now define the condensed transfer function of the global system 1+2 between φi and φj

by applying a prescribed velocity jump at the junction Ω corresponding to the condensation

function φj

Zij
1+2 =

Pi
1+2

δU j
1+2

=

@
p̄1+2, φiD@

φj, φj
D =

A
p̄1+2, φi

E
(3.17)

where p̄1+2 corresponds to the pressure at junction Ω resulting from the prescribed velocity

jump, δU j
1+2 = φj.

The condensed velocity jump vector at the junction associated with the prescribed velocity

jump corresponding to the condensation function φj is given by

δU1+2 =



0
...
0
1
0
...
0


, (3.18)

where the position of 1 corresponds to the jth component. Eq. (3.5) and Eq. (3.7) related to

the CTF approach can still be applied for this case, but as there is no external excitation in

subsystem 1, and the prescribed velocity jump is applied at the junction, they are slightly

modified
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$''&
''%

Pδ
1 = Z1Uδ

1
Pδ

2 = Z2Uδ
2

Pδ
1+2 = Pδ

1 = Pδ
2

δU1+2 = Uδ
1 + Uδ

2

(3.19)

One has to keep in mind that the outer-pointing normal is defined as positive, thus

explaining the last equation in the system of Eq. (3.19). The exponent δ is introduced to

signify that the vectors of the condensed pressure and normal velocity result from the

prescribed velocity jump defined by Eq. (3.18). From Eq. (3.19), we can deduce

Pδ
1+2 = Z1 (Z1 + Z2)

�1 Z2δU1+2 (3.20)

Since a velocity jump at the junction Ω corresponding to the condensation function φj

is prescribed at the junction, this condensed pressure vector gives us the jth column of the

condensed impedance of the global system, Z1+2. By replacing δU1+2 by the identity matrix,

in order to sweep all the cases of excitation by the CFs, we can then deduce the following

relation

Z1+2 = Z1 (Z1 + Z2)
�1 Z2 (3.21)

By inverting the previous equation, we finally obtain

Z1 = Z2 (Z2 � Z1+2)
�1 Z1+2 (3.22)

This result is the same than the one in Eq. (2.13) and shows the analogy which can be

drawn between the different methods of decoupling.

3.2.4 Synthesis of the reverse CTF principle

In the previous sections, all the quantities needed for the application of the rCTF method

were obtained from information concerning subsystem 2 and the global system 1+2. Finally,

putting all this information together will allow us to estimate the pressure at a given point of

the uncoupled subsystem 1.

The expression of the vector of the point condensed impedance, corresponding to the

blocked pressure induced by a unitary monopole can be obtained by injecting the result of

Eq. (3.22) into Eq. (3.16)

Z1(M1) = P̃M1
1 =

(
I + Z2 (Z2 � Z1+2)

�1 Z1+2Z2
�1
)

PM1
1+2 (3.23)

Ultimately, the pressure at point M1 of the uncoupled subsystem 1 given by Eq. (3.12) can

be rewritten as
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p̃1(M1) = p1+2(M1) +
(

I + Z2 (Z2 � Z1+2)
�1 Z1+2Z2

�1
)

PM1
1+2Z2

�1P1+2 (3.24)

This final expression constitutes the main theoretical result of reverse Condensed Transfer

Function (rCTF) method. It permits estimating the response at any point of subsystem 1 from

the knowledge of quantities related to subsystem 2 and to the global system 1+2.

3.3 Analytical validation of the proposed rCTF approach

3.3.1 Test case definition

To validate and evaluate the accuracy of the rCTF method proposed in the previous section

and based on Eqs. (3.22) and (3.24), we are going to compare the results obtained with the

rCTF method to the reference results for an academic test case. The latter consists in the

scattering problem of a rigid sphere in an infinite water domain, impacted by an acoustic

plane wave. The choice of this test case was motivated by the fact that it constitutes a common

reference case in the literature to study the acoustic scattering by an immersed object and

that the principle of the proposed approach is general and can be applied to various cases.

Furthermore, the reference calculation, developed in [8] and based on the expansion of a

plane wave in spherical harmonics, is an analytical solution easy to implement and gives

accurate results with reasonable calculation costs. Consistently with the developments in

chapter 2, this problem will be investigated under a local and a global form, and the results

obtained from these two formulations will be compared in order to see if the conclusion from

the rod case study can be extended to a 3-D problem.

3.3.1.1 Local form of the problem

In chapter 2, the local formulation of the decoupling problem was defined by taking into

account only one coupling point. The analogy with the 3-D case of interest here is to take into

account one coupling surface between the two subsystems. As illustrated in figure 31, the

rCTF approach will deal with this problem by removing a water sphere (i.e. the subsystem 2)

from an infinite water domain (i.e. the global system 1+2). An infinite water domain with a

rigid sphere will then be obtained (i.e. subsystem 1). The characteristics of the infinite domain

and the sphere are given in table 3. The origin of the coordinates is taken at the center of the

sphere, and the calculations will be conducted in the spherical coordinate system shown in

figure 31.
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Figure 31: Illustration of the rCTF method principle applied to the scattering of a rigid sphere
- local approach.

Parameter Notation Value Unit
Radius a 1 m
Density ρ f 1000 kg.m-3

Sound speed c f 1500 m.s-1

Table 3: Fluid characteristics and dimensions of the local problem.

3.3.1.2 Global form of the problem

Concerning the global formulation of the problem, two coupling surfaces will be considered,

as illustrated in figure 32. Hence the rCTF approach will deal with this problem by removing

a hollow water sphere (i.e. the subsystem 2) from an infinite water domain (i.e. the global

system 1+2). An infinite water domain with a rigid sphere and a residual water sphere will

then be obtained (i.e. subsystem 1), and the pressure field scattered by the rigid sphere should

be the same than in the local form and the reference calculation. In order to distinguish these

two parts of the decoupled subsystem, in the following, the part corresponding to the infinite

water domain with a rigid sphere will be referred to as the target subsystem, while the part

corresponding to the residual water sphere will be referred to as the residual subsystem, as a

reference to the denominations in section 2.2. Consistently with the conclusion of subsection

2.2.4 concerning the optimization process of the rod case study, the interior radius of the

hollow sphere should be chosen to be close from the exterior radius of the sphere. This

will reduce the thickness of the hollow sphere, hence limiting the standing waves in the

radial direction in order to minimize the number of resonances and anti-resonances of the

subsystem in the frequency range of interest (as it was observed in chapter 2 that model

errors can be amplified at these frequencies). The characteristics of the infinite domain and of

the hollow sphere are given in table 4. One must emphasize that for this global decoupling

process, only the response in the infinite medium with the rigid sphere at its center will be of

interest, as we are not interested in the response in the residual water sphere.
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Figure 32: Illustration of the rCTF method principle applied to the scattering of a rigid sphere
- global approach.

Parameter Notation Value Unit
Exterior radius aext 1 m
Interior radius aint 0.9 m
Density ρ f 1000 kg.m-3

Sound speed c f 1500 m.s-1

Table 4: Fluid characteristics and dimensions of the global problem.

3.3.1.3 Definition of the reference calculation and of the calculation parameters

For the purposes of comparison, a theoretical reference calculation is performed by develop-

ing the incident plane wave and the scattered pressure field in spherical harmonics, and by

writing that the normal velocity at the surface of the sphere is null [8]. Harmonic responses

are calculated from frequencies between 100 Hz and 1000 Hz, with a step of 1 Hz. This

frequency range was considered to obtain the first two resonant frequencies of the water

sphere (i.e. 497 Hz and 798 Hz) and its first anti-resonant frequency (i.e. 750 Hz).

It is reminded here that the objective of this test study is to validate from a practical

point of view the subtractive modelling approach developed in section 3.2, and to study

the influence of several parameters, as the type and the number of CFs. At this stage of

the development of the proposed approach, it is then more relevant to focus on the validity

and convergence of the approach rather than its computational performances compared to

alternative ones. This is why the reference calculation of this application test is a theoretical

one and that there is no emphasis on the computational time of the proposed approach in

this chapter.

Finally, it must be emphasized that, for the direct CTF approach, the coupling between the

model of a water sphere and the model of a rigid sphere immersed in water can be qualified

as strong coupling. Indeed, the behavior of these subsystems when they are coupled together

(corresponding to the model of an infinite water medium) is significantly different from those
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when they are uncoupled. Considering this case allows to evaluate the ability of the rCTF

approach to decouple subsystems that are strongly coupled.

To apply the rCTF approach, in accordance with the theoretical backgrounds of section

3.2, the condensed impedances defined by Eq. (3.2) for subsystem 2 and Eq. (3.17) for system

1+2 should be calculated. These quantities are related to the set of CFs, tφiu1¤i¤N . Two types

of CFs are considered and presented in the next section before analyzing the results of the

rCTF approach.

3.3.2 Definition of the condensation functions

Two types of CFs will be considered in the following, in order to study their influence on the

performance of the rCTF method:

• the weighted spherical harmonics;

• the 2D gate functions.

3.3.2.1 Weighted spherical harmonics

As developed in Appendix C, the pressure field in the infinite domain and in the sphere can

be described as an infinite sum of so called spherical harmonics. Hence, for the condensed

impedances, using spherical harmonics as CFs will result in a greatly simplified expression.

The spherical harmonics are defined in spherical coordinates as

ψn,m (θ, ϕ) =

d
2n + 1

4π

(n�m)!
(n + m)!

Pm
n (cos θ)ejmϕ, n P J0, NLK, m P J�n, nK (3.25)

where Pm
n is the associated Legendre polynomial and NL is the maximal degree of the

associated Legendre polynomial. The condensation function φi associated with the spherical

harmonic ψn,m and called the weighted spherical harmonic is then defined at the surface of

the sphere of radius a by

φi =
1
a

ψn,m, i P J1, NK, n P J0, NLK, m P J�n, nK (3.26)

The number of CFs N is directly linked to the maximal degree of the associated Legendre

polynomial NL by the following relation

N = (NL + 1)2 (3.27)

As an illustration, examples of spherical harmonics on the surface of the sphere are

presented in figure 33. The condensation functions associated with the spherical harmonics
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form an orthonormal set for the scalar product in spherical coordinates at the surface of the

sphere

A
φi, φj

E
=

» 2π

0

» π/2

�π/2
φi φj�a2 sin θ dθ dϕ = δij, (3.28)

with δij being the Kronecker symbol, and * denoting the complex conjugate.

Applying the rCTF approach using weighted spherical harmonics as CFs will result in

considering condensed impedance matrices that are diagonal, as a result of the orthonormal

properties of the spherical harmonics. This means that the contributions of the different

CFs (i.e. the spherical harmonics) will be independent from one another. This consitutes a

particular case that can be compared to the decoupling of rods in chapter 2, but it can be

useful for analyzing the results.

(a) (b)

Figure 33: Examples of spherical harmonic functions. (a) ψ2,1 (b) ψ3,0

3.3.2.2 2D gate functions

The second type of CFs investigated are the 2D gate functions φi, i P J1, NK. They are defined

depending on their area Ωs as follows

φi(θs, ϕs) =

$&
%

1?
Ωs

if
"

θi�1 ¤ θs   θi
ϕi�1 ¤ ϕs   ϕi

0 elsewhere
(3.29)

It can be easily verified that the CFs defined by Eq. (3.29) are orthonormal with the scalar

product defined in Eq. (3.28). The four angles θi�1, θi, ϕi�1, ϕi that appear in this expression

are defined in figure 34a. They parametrize the corners of the patch i that can be linked to

the ith 2D gate function. The coupling surface Ω is then divided into N patches defining the

N gate functions as CFs (see figure 34b). The condensed impedance between CF i and CF j

corresponds to the mean pressure on the patch i when a unit prescribed normal velocity is

imposed on patch j. Contrary to the spherical harmonics as CFs, the 2D gate functions as CFs

lead to non-diagonal condensed impedance matrices. In terms of matrix resolution, the latter
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case is more general than the former one, as it can be applied on non-canonical geometries.

It is also emphasized that the CTF approach considering this type of CFs corresponds to

the PTF approach described in the literature. Applying the rCTF approach in this case can

therefore be considered as applying the reverse PTF approach.

(a) (b)

Figure 34: (a) Definition of a patch related to a 2D gate functions. (b) Definition of the patches
over the sphere surface.

3.3.2.3 Calculation of the condensed transfer functions and convergence criteria

To apply the rCTF approach, the condensed impedances of the water sphere Z2 and the

infinite water medium Z1+2 must be calculated. Moreover, to assess the accuracy of the

method for evaluating the condensed impedances of the water sphere Z1 using Eq. (3.22), it is

necessary to calculate Z1 directly to obtain a comparison point. The analytical calculations of

these condensed impedances for both subsystems and for the global system are developed in

Appendix C for the two types of CFs. These calculations are based on a spherical harmonics

decomposition of the pressure field in the water medium.

The number of CFs considered and thus of condensed impedances, plays a key role in the

convergence of the CTF method [172, 175, 176]. According to the previous studies on the CTF

method, a criterion equivalent to the Nyquist-Shannon sampling theorem assuming at least

two points per wavelength to sample a signal should be applied. As the problem considered

is purely acoustical, the acoustic wavelength at the highest frequency of interest (i.e. 1000 Hz),

λmin = 1.5 m, should be considered for the criterion. For the weighted spherical harmonics as

CFs, the maximal degree of the Legendre polynomial NL related to Eq. (3.26) should respect

the criterion [172]

NL �
2πa
λmin

(3.30)
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In the present case, this criterion yields NL = 5, giving a number of CFs equal to N = 36

(following Eq. (3.27)). For the 2D gate functions as CFs, the size d of the patches should be

smaller than half the smallest wavelength

d   λmin

2
(3.31)

In order to be compliant with this criterion, the sphere is divided into 58 patches, with 12

patches on the principal circumference. The patches considered in the following calculations

are those displayed in figure 34b). It can be seen that the patches on the top and the bottom

of the sphere take the shape of triangles instead of trapezoids for the other patches, and that

the nodes between two consecutive patches are not necessarily coincident. However, these

geometrical particularities concerning the patches do not have any influence on the results

of the PTF method (see [171]). It can be noticed that the number of CFs considered with the

weighted spherical harmonics is lower than that considered with the 2D gate functions. This

is due to the fact that the size of some patches is well below the criterion in [171], because of

geometrical constraints.

According to the calculation of the condensed impedances for the 2D gate functions as

CFs in Appendix C, their expressions (see Eq. (C.14), Eq. (C.23) and Eq. (C.34)) depend on

an infinite sum of spherical harmonics. In practice, these series must be truncated to a finite

value N2D
L , corresponding to the maximal degree of the associated Legendre polynomials of

the spherical harmonics decomposition of the pressure fields. The value of N2D
L influences

the convergence and the cost of the calculation of the condensed impedances. After trial

and error tests, it was found that using N2D
L =50 is a good compromise in order to converge

correctly without being too numerically costly. We underline here that this parameter is

related to the method of evaluating the condensed impedances and does not directly concern

the convergence of the CTF or rCTF approaches, which is characterized by the criteria in Eqs.

(3.30) and (3.31).

3.3.3 Decoupling of the condensed impedances with the local rCTF ap-
proach

3.3.3.1 Results

As a first validation of the local decoupling approach (figure 31), the condensed impedances

of subsystem 1, Z1, obtained from Z2, Z1+2 and the decoupling formula of Eq. (3.22), are

compared to the results of the analytical expression of Z1 given in Eq. (C.33) for the weighted

spherical harmonics, and Eq. (C.34) for the 2D gate functions.

The comparison is proposed in figure 35. The comparison for 3 weighted spherical

harmonics as CFs (respectively the couples (n, m) = (0, 0), (n, m) = (1, 0), (n, m) = (2, 0))
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Figure 35: Comparison between the condensed impedances computed analytically and with
the local rCTF approach. (a) Weighted spherical harmonics. (b) 2D gate functions.

are plotted in figure 35a. A perfect match can be seen between the rCTF approach and the

reference calculation, except for a single frequency at 750 Hz for the first spherical harmonic.

The reasons for this discrepancy at this particular frequency will be studied in the next

subsection.

Concerning the comparison for 2D gate functions as CFs, figure 35b shows the results

for 3 different condensed transfer functions (TFs) in order to sweep different possibilities

(the coordinates given correspond to the (θi�1, ϕi�1) bottom left angle in figure 34a, with the

origin of coordinates taken on the top of the sphere):

• the first TF is a direct impedance on a trapezoid patch (θi�1 = π/2, ϕi�1 = 0): the

excitation patch and the observation patch are the same.

• the second TF is a crossed impedance between two trapezoid patches that are widely

separated one from another (θi�1 = π/3, ϕi�1 = 9π/5, θj�1 = 5π/6, ϕj�1 = 9π/5).

• the third TF is a crossed impedance between a trapezoid patch and a triangular patch

that are close to each other (θi�1 = π/3, ϕi�1 = 8π/5, θj�1 = π/6, ϕj�1 = 12π/7).

As with the weighted spherical harmonics, the comparison between the reference curves

and the rCTF curves show a quasi-perfect match, except for the second and third transfer

functions for which an error appears at 750 Hz (as in figure 35a for the weighted spherical

harmonics as CFs).

In the following subsection, the numerical sensitivity of the method will be investigated

to identify the possible sources of this error at 750 Hz.

75
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI082/these.pdf 
© [F. Dumortier], [2021], INSA Lyon, tous droits réservés



3.3.3.2 Analysis of numerical sensitivity

The application of Eq. (3.22) related to the rCTF method involves the inversion of the subtrac-

tion of the impedance matrices, Z2 � Z1+2. This inversion can imply numerical instabilities.

As it has already been explained in subsection 2.2.2, the sensitivity of the matrix inversion to

the numerical errors can be characterized by the condition number. Particularly high values

indicate that the problem is ill-conditioned and sensitive to numerical errors.

In figure 36, the condition numbers of the impedance matrix of subsystem 2 and system

1+2, as well as the condition number of the inverted matrix, are plotted as a function of

frequency for the weighted spherical harmonics. As the condensed impedance matrices are

diagonal in this case, the condition number corresponds to the ratio between the largest value

on the diagonal and the smallest one. It appears that for each of the matrices investigated, the

problem is particularly ill-conditioned at 750 Hz, which was the critical frequency identified in

the previous subsection. It can also be noted that for Z2 and Z2 �Z1+2, two other frequencies

show high condition numbers, at 497 Hz and 798 Hz. These two particular frequencies

correspond to the resonance frequencies of the water sphere. As these frequencies are clearly

identified and no significant error can be observed at these frequencies in the figure, they will

not be investigated.
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Figure 36: Condition number of the condensed impedances: case of the weighted spherical
harmonics as CFs.

As the problem encountered in figure 35a appears only on the condensed impedance

associated with the first spherical harmonic, the first condensed impedances of subsystems

2 and 1+2 are shown in figure 37. It can be seen that for both systems, an anti-resonant

phenomenon appears at 750 Hz (i.e. the impedances tend toward zero). Looking at Eq. (C.22)

and Eq. (C.13) reveals that this anti-resonant phenomenon is due to the first spherical Bessel

function of the first kind that cancels at this frequency. In addition, since the two condensed

impedances have the same value at this frequency, the subtraction of the two matrices that

appear in Eq. (3.22) is also null. This explains the particularly high value of the condition
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number and the numerical errors observed previously.

The same analysis was carried out with the 2D gate functions as CFs. The condition

number also presents significant values for the two resonance frequencies of the water sphere

and a very high value at 750 Hz, the anti-resonant frequency of the water sphere. Since

the analysis leads to the same conclusions as for the weighted spherical harmonics, the

results are not plotted here. These observations are consistent with the obervation made

when evaluating the local decoupling of rods in subsection 2.1. This stresses out an intrinsic

property of local decoupling procedures: they are particularly sensitive around the anti-

resonant frequencies of the known subsystems, regardless of the considered problem (this

conclusion was already evoked in previous works, see [180, 181]).
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Figure 37: Comparison of the 1st condensed impedance of subsystems 2 and 1+2 (weighted
spherical harmonics as CFs).

It must be noted that the previous calculations were performed considering a null damping

loss factor for the fluid domain that constitutes the theoretical case. We observed that the

absence of damping in the model leads to the high numerical instabilities encountered,

especially around the anti-resonant frequency. This is also consistent with the observation

made for the local decoupling of rods in subsection 2.1, when an increased damping coefficient

led to mitigated errors in the decoupling process.

In practice, acoustic waves are slightly attenuated during their propagation due to dis-

sipative effects (viscosity and thermal conductivity). In order to consider this physical

phenomenon and to evaluate the impact of the damping on the numerical sensitivity of the

method, slight damping is introduced in the model through a complex acoustic wavenumber

k�f = k f (1� jη) (3.32)

where j is the complex number j2 = �1.

In the following part of the study, the damping loss factor of the water is set to η = 0.001.

The condition numbers related to the impedance matrices were recalculated by considering
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this slight damping and are shown in figure 38. It is noteworthy that the values were greatly

reduced in general and for the critical frequencies in particular, compared to the case without

damping. The inverted matrix Z2 �Z1+2 is still ill-conditioned at the anti-resonant frequency,

but to a much smaller extent.
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Figure 38: Condition number of the condensed impedances with a slight damping (weighted
spherical harmonics as CFs).

As the condition number was significantly reduced by adding damping in the model, we

can expect to obtain accurate results with the rCTF approach over the whole frequency range

of interest. This is verified in figure 39. The errors observed in figure 35 for the case without

damping are not observed for the case with slight damping. This result is valid for the two

types of CFs considered in this paper.
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Figure 39: Comparison between the condensed impedances computed analytically and with
the local rCTF approach. Case with a slight damping in the model. (a) Weighted spherical
harmonics. (b) 2D gate functions.

It can be concluded from this study that the decoupling formula in Eq. (3.22) is validated

numerically for the practical case including a slight damping in the water medium (i.e. for

the non-conservative system). The dissipative effect allows to avoid the numerical errors
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at the anti-resonant frequency of the water sphere that were observed for the case without

damping (i.e. the conservative system).

3.3.4 Decoupling of the condensed impedances with the global rCTF
approach

3.3.4.1 Results

If the decoupling formula of Eq. (3.22) has been validated for the local decoupling technique,

it will now be investigated for the global decoupling approach presented in figure 32. The

results of the decoupling will be compared to the results of the analytical expression of

Z1 (given in Appendix C). Even if we are only interested in the response of the target

subsystem, it can also be interesting to study the capacity of the global decoupling approach

to correctly describe the condensed impedances of the residual subsystem, and to account for

the decoupling between the target and residual subsystems. Also, if in subsection 3.3.3, the

results were shown for the two different kinds of CFs, the investigations here will be carried

out using the 2D gate functions only as CFs. This choice is motivated by the fact that the

weighted spherical harmonics were useful to analyze the results of the decoupling but they

will be hardly transposable to other systems. In addition, it can be observed in figure 39 that

the decoupling with the weighted spherical harmonics produces perfect results in the entire

frequency range, while the decoupling with the 2D gate functions exhibits slight shifts in the

high frequencies. It will hence be interesting to see if these discrepancies subsist with the

global decoupling approach.
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Figure 40: Comparison between the condensed impedances computed analytically and with
the global rCTF approach. (a) Condensed impedances of the target subsystem. (b) Condensed
impedances of the residual subsystem and crossed condensed impedance between a patch
on the exterior surface and a patch on the interior surface.

The results of the global decoupling technique are shown in figure 40. The condensed

impedances of the target subsystem are presented in figure 40a for the same TFs as in figure
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39b. We can see that this global decoupling process induces huge errors around 575 Hz

and 935 Hz, errors that have not been observed for the local decoupling case. Also, the

behavior of the residual subsystem (corresponding to a water sphere with a radius of 0.9 m)

in figure 40b is not correctly described, as the predicted resonance frequencies (573 Hz and

935 Hz) are higher than the real ones (552 Hz and 887 Hz). It is interesting to notice that the

resonance frequencies of the residual subsystem obtained with the rCTF method correspond

to the frequencies for which large errors were observed on the prediction of the condensed

impedances of the target subsystem in figure 40a (i.e. 575 Hz and 935 Hz). Finally, when

looking at the yellow curve in figure 40b, the decoupling between the target and residual

subsystems is not taken into account. Indeed, we should only see residual values as the two

parts are not physically coupled (as it has been observed in section 2.2) whereas the values

here are not negligible. In particular, peaks of resonance appear and seem to be located at the

same frequencies than the errors observed for the target and residual subsystems.
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Figure 41: (a) Comparison of the condensed impedances of the full and hollow water spheres.
(b) Condition number of the condensed impedance matrices of the global rCTF approach.

The direct condensed impedance on a trapezoidal patch of the hollow water sphere

(subsystem 2) is shown in figure 41a, and a comparison is made with the same condensed

impedance for the full water sphere used in the local decoupling approach in subsection

3.3.3. The first observation that can be made is that there is a supplementary resonance in

the frequency range of interest for the hollow sphere than for the full sphere. This result

was not expected at first sight as the goal of considering a hollow sphere was to reduce the

standing waves in the radial direction and then the number of resonances of the subtracted

subsystem. The resonances that are observed for the hollow sphere are resonances in the

circumference of the system and were not anticipated. Furthermore, when looking at the

condition number of the inverted matrix Z2 � Z1+2, we can see two peaks appearing around

the two previously identified frequencies (i.e. 575 Hz and 935 Hz). However, these peaks in
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the condition number curves are not related to any resonance or anti-resonance of the hollow

water sphere nor the infinite domain. This means that, contrary to what was observed in

section 2.2, the resonant frequencies of the removed subsystem are not necessarily the most

ill-conditioned in the global approach of decoupling. Hence, the promising results of the

global decoupling technique observed in section 2.2 for the rod case study are not recovered

here.

An explanation of the discrepancies observed could be found from the proximity of

the two coupling surfaces. Indeed, it has already been observed for the case of strong

coupling between an elastic plate and an acoustic cavity filled with water in [170, 171] that

substructuring in the near-field of the plate could induce problems of convergence of the CTF

approach. In the next subsection, a new test case will be considered in order to study this

hypothesis on a different case.

3.3.4.2 Coupling and decoupling of a full water sphere and a hollow water sphere

The supplementary coupling and decoupling test case is presented in figure 42. The coupling

problem in figure 42a consists in adding a hollow sphere to a full sphere. The interior radius

of the hollow sphere corresponds to the radius of the full sphere, such that the coupling

between these two subsystems is a sphere having the same radius as the exterior radius of the

hollow sphere. It results that the decoupling problem in figure 42b consists in subtracting a

hollow sphere from a full sphere in order to obtain a sphere of smaller radius than the initial

one. The radii in this study are the same than the ones defined in table 4.

The formulation of the problem is slightly different than for the case illustrated in figure

32, as the subsystem 1 (the small sphere) has one coupling surface Ωint to account for, whereas

the subsystem 2 (the hollow sphere) has two coupling surfaces Ωext and Ωint. Hence, the

condensed impedance matrix of subsystem 2 will be separated into 4 submatrices as follows

Z2 =

[
Z11

2 Z12
2

Z21
2 Z22

2

]
(3.33)

where the superscript 1 corresponds to the exterior coupling surface Ωext while the superscript

2 corresponds to the interior coupling surface Ωint. The analytical values of these condensed

impedances are given in Appendix C.3. We can underline that, as Ωext is at the boundary of

the fluid domain, the excitation used to define the condensed impedances of the system 1+2

related to the patches belonging to this surface is a prescribed normal velocity (corresponding

to the condensation function). As for the interior surface Ωint, a prescribed normal velocity

jump is used to define the condensed impedances as for the previous problem, because for

the system 1+2 this inner surface is a fictitious one. Applying the superposition principle for

linear passive systems along with the pressure continuity and velocities equilibrium as in
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Figure 42: Supplementary coupling and decoupling test case. (a) Coupling problem. (b)
Decoupling problem.

section 3.1 yields, after some development, the following expression for Z1+2

Z1+2 = Z12
2
(
Z1 + Z22

2
) 1 Z21

2 + Z11
2 (3.34)

The decoupling problem can then be solved by inverting Eq. (3.34) in order to express the

condensed impedances of the subsystem 1 from the condensed impedances of the subsystems

1+2 and 2

Z1 = Z21
2

(
Z11

2 Z1+2

) 1
Z12

2 + Z22
2 (3.35)

The result obtained with Eq. (3.35) is compared to an analytical calculation of the con-

densed impedances of a water sphere of radius 0.9 m in figure 43 for the same TFs as in figure

40. We can see that, for the same removed subsystem and the same distance between the two

coupling surfaces as in the global decoupling approach (figure 32), the decoupling process of

the condensed impedances works well better here than in subsection 3.3.4.1 with the infinite

fluid domain 1+2. This means that the poor convergence of the decoupling process in the

previous subsection does not come from the proximity between the two coupling surfaces.

Hence, the origin of the two particularly ill-conditioned frequencies observed in figure 41b

has not been clearly identified.

Alternatively, it was observed in subsection 2.2.3 that when the residual subsystem

does not have any resonance in the frequency range of interest, the errors from the global

decoupling approach are mitigated. This will be investigated in the next subsection.
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Figure 43: Comparison between the condensed impedances computed analytically and with
the rCTF approach for the near-field test case.

3.3.4.3 Global decoupling with a small residual subsystem

p p

Figure 44: Global decoupling approach with an interior radius of 0.1 m.

In subsection 2.2.3, it was observed that for the exact same case of rod decoupling at

the extremity of the master rod, the global decoupling approach was much more accurate

than the local one. More generally, the global decoupling approach has shown that, for a

given size of the subtracted subsystem, the results were better in the absence of resonances of

the residual subsystem. Following this statement, the global decoupling approach will be

investigated here for the case of a hollow sphere with an interior radius of 0.1 m as illustrated

in figure 44.

If we compare the condensed impedances of the full sphere with the condensed impedances

of the hollow sphere of interior radius 0.1 m in figure 45a, we can see that the two subsystems
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Figure 45: (a) Comparison of the condensed impedances of the full water sphere and the
hollow water sphere of interior radius 0.1 m. (b) Condition number of the condensed
impedance matrices of the global rCTF approach with the hollow water sphere of interior
radius 0.1 m.

have an almost identical behavior, as there is only a 1 Hz shift in the first resonance of the

subsystem, while the second resonance appears at the same frequency. This means that the

comparison between this global decoupling appraoch and the local decoupling one of figure

31 can be considered as a 3D analogy of the asymptotic approach in subsection 2.2.3.

Also, looking at the condition number of the inverted matrix in figure 45b shows that that

there isn’t any ill-conditioned frequency that is not associated with a resonant or anti-resonant

phenomenon. Indeed, the most ill-conditioned (i.e. 833 Hz) frequency corresponds to the

common anti-resonant frequency of the hollow sphere and of the infinite water medium.

For the latter, it is different than for the local decoupling case even if the subsystem is the

same, because the condensed impedance matrix does not have the same size nor values (see

Appendix C.1).

Following this, the comparison between the analytical and global rCTF calculations of

Z1 is shown in figure 46a for the target subsystem and figure 46b for the residual subsystem.

The same TFs as in figure 40 are presented. We can observe that the results in figure 46a are

very close to the ones of figure 39b related to the local decoupling approach. Furthermore,

the residual system is correctly described in figure 46b, which can be explained by the fact

that there is no resonant nor anti-resonant phenomenon in the frequency range of interest

for the residual system. Finally, the absence of coupling between the two surface Ωint and

Ωext is correctly taken into account as the values displayed by the yellow curve are negligible

compared to the other curves.

The results obtained for this study show that the global approach of the rCTF study

for 3D cases can only by valid in the absence of resonant and anti-resonant phenomena of

the residual subsystem in the frequency range of the study. This limits the applicability of
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Figure 46: Comparison between the condensed impedances computed analytically and
with the global rCTF approach with the hollow water sphere of interior radius 0.1 m. (a)
Condensed impedances of the target subsystem. (b) Condensed impedances of the residual
subsystem and crossed condensed impedance between a patch on the exterior surface and a
patch on the interior surface.

the method, but there could still be an interest of using this approach when evaluating the

response at any point of the decoupled subsystem. This will be investigated in the next

section.

3.3.5 Prediction inside the fluid domain with the rCTF method: pressure
scattered by the rigid sphere

Now, let us focus on assessing the rCTF approach to predict the pressure at a given point

inside the target subsystem using the formula in Eq. (3.24). To do that, we consider the

scattering problem of a plane wave impacting a rigid sphere, as this case was intensively

studied in literature [8] (see figure 47). In the following section, the principle of this calculation

used as reference will be recalled before comparing its results with the rCTF approach.

3.3.5.1 Reference calculation

In spherical coordinates, the pressure field of a plane wave of angular frequency ω travelling

in the direction (θ = π, ϕ = 0) can be defined by

pi(R, θ) = Pie
jk f R cos θ (3.36)

with Pi being the amplitude of the plane wave, and k f the acoustic wavenumber in the fluid

domain. The expression in Eq. (3.36) can be expanded in spherical harmonics using Legendre

polynomials
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Figure 47: Reference case: plane wave travelling towards a rigid sphere.

pi(R, θ) = Pi

+

n=0

(2n + 1) jnPn (cos θ) jn (k0R) (3.37)

with Pn (cos θ) the Legendre polynomial, and jn the spherical Bessel function of the first kind.

Considering the solutions in the spherical coordinates of the homogeneous Helmholtz

equation and the homogeneous Euler equation at the surface of the sphere, we can calculate

the pressure scattered by the rigid sphere of radius a [8]

ps (R, θ) = Pi

+

n=0

(2n + 1) jnPn (cos θ)
jn (k0a)
hn (k0a)

hn (k0R) (3.38)

where hn is the spherical Hankel function of the first kind, and jn and hn are the derivatives

of the spherical Bessel function of the first kind and the spherical Hankel function of the first

kind with respect to their argument, respectively. The total pressure field in the medium

is thus the addition of the incident and the scattered pressures ptot = pi + ps . In practice,

the infinite sums in Eqs. (3.37) and (3.38) must be truncated to a finite value. After trial and

errors testing, the calculation converged for N = 40 spherical harmonics. This yields

ptot(R, θ) = Pi

40

n=0

(2n + 1) jnPn (cos θ)

[
jn(k0R)

jn(k0a)hn(k0R)
hn(k0a)

]
(3.39)

3.3.5.2 Comparison for the local decoupling approach

To apply the decoupling formula in Eq. (3.24) to predict the total pressure at any point M1

in the fluid domain, we must still evaluate P1+2, the condensed pressure vector induced by

the acoustic plane wave and PM1
1+2, the condensed pressure vector induced by a monopole

source located at point M1 and of unit volume velocity. The details of the calculations are
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given in Appendix C.5. The results of the rCTF calculations can be observed in two different

ways. The first possibility is to evaluate the pressure at a given point of the domain over the

whole frequency range, and the second one is to plot a cartography of the pressure in the

domain, at a given frequency. For the sake of clarity and in order to avoid having too many

figures, the first solution will be presented for the calculation using the weighted spherical

harmonics as CFs, while the second solution will be presented for the calculation using the

2D gate functions as CFs (this is related to the local rCTF form, as only the 2D gate functions

were used as CFs for the global rCTF form).

At first, the decoupling formula in Eq. (3.24) is tested using the weighted spherical

harmonics as CFs for the local decoupling approach, by evaluating the pressure at a given

point of the domain over the frequency range of interest. This calculation is also a means of

evaluating the criterion proposed in Eq. (3.30), related to the maximal degree of the associated

Legendre polynomial NL. The results are presented in figure 48 for 4 different points, to

account for different possibilities regarding the angle and the distance to the surface of the

sphere. The quantity plotted here is the sound pressure level (SPL), in dB, the reference sound

pressure being p0 = 1 µPa

Lp = 20 log
(

p
p0

)
(3.40)

For each point, the rCTF method is applied with 3 different values of NL to evaluate the

convergence of the method regarding the criterion defined. In section 3.3.2.3, the criterion

in Eq. (3.30) yielded NL = 5, corresponding to N = 36 CFs. The results are also presented

for NL = 3 and NL = 7, corresponding to N = 16 and N = 64 CFs, respectively. Both

calculations were carried out considering a damping loss factor, η = 0.001.

The results displayed in figure 48 show that the convergence criterion proposed in

Eq. (3.30) is verified, because the evolution of the pressure for each evaluated point is

described correctly, with errors that never exceed 1 dB. The results with NL = 3 clearly show

that taking fewer CFs than the criterion defined leads to large errors, while the results with

NL = 7 are very accurate, but required an increase in computation time. Finally, we can

conclude that the results obtained with NL = 5 are very satisfactory, both in terms of accuracy

and computation time, and the criterion in Eq. (3.30) is validated from a practical point of view.

In the following, the calculation of the total pressure in the domain (corresponding to the

sum of the incident pressure and the pressure scattered by the rigid sphere) is carried out

using the 2D gate functions as CFs, using the definition of the patches at the surface of the

sphere presented in figure 34b. The results obtained with the proposed method (i.e. Eq. (3.24))

can be compared to the theoretical results given by Eq. (3.39). The map of the sound pressure
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(a) (b)

(d)(c)

Figure 48: Total pressure in the medium - Comparison between the theoretical results and
the local rCTF results for 4 different points with the weighted spherical harmonics as CFs.
Point 1 - r = 1.5 m, θ = π; Point 2 - r = 1.3 m, θ = 4π/7; Point 3 - r = 1 m, θ = π/3; Point 4 -
r = 1.5 m, θ = 0.

level (in dB ref 1 µPa according to equation 3.40) around the sphere is presented in figure 49

for the 2 calculations and for 3 different frequencies:

• f1=497 Hz corresponds to the first resonant frequency of the water sphere.

• f2=750 Hz corresponds to the anti-resonant frequency of the water sphere.

• f3=1000 Hz corresponds to the highest calculated frequency.

The latter allows us to verify if the method converges correctly when the criterion is

applied whereas the first two correspond to the critical frequencies already evoked in the

previous section.

For all the graphs, the plane wave is travelling towards the positive x direction and

reaches the sphere at x = �1. The graphs on the left hand side show the results of the

theoretical calculation (i.e. Eq. (3.39)), while the figures on the right hand side show the

results of the decoupling calculation (i.e. Eq. (3.24)). As for the weighted spherical harmonics,

both calculations were carried out considering a damping loss factor η = 0.001.

All the graphs display a similar global behavior, with a maximum pressure around the

point of impact of the plane wave with the sphere (i.e. (x, y) = (�1, 0)) while the minimum

pressures are located in the shadow zone of the sphere (around θ = π/6) and in a zone before

the point of impact (between x = �1.2 and x = �2) where destructive interferences appear.
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(a) (b)

(c) (d)

(e) (f)

Figure 49: Total pressure in the medium - Comparison between the theoretical results (a,c,e)
and the local rCTF results using 2D gate functions as CFs (b,d,f) for 3 frequencies: (a,b), 497
Hz; (c,d), 750 Hz; (e,f), 1000 Hz.

The comparison shows a very good agreement between the two calculations. Minor

errors occur in the shadow zone of the sphere, and several numerical discontinuities occur

at the maximum frequency, but the errors never exceed 1 dB. One has to be aware that

the different fields of interest in this study (acoustic pressure, acoustic velocity) exhibit

continuous properties. However, as described in Eq. (3.1), these fields are approximated on

the basis of the CFs which, in the present case, are discontinuous (following the definition
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of the patches in Eq. (3.29)). Hence, the decomposition of continuous fields on the basis of

discontinuous functions leads to slightly rougher approximations than the decomposition

on the weighted spherical harmonics displayed on figure 48, thus explaining the numerical

discontinuities occuring at the maximum frequency. These discontinuities are thus not related

to the number of CFs nor to the convergence criterion proposed in Eq. (3.31). Finally, we can

affirm that these results are very satisfactory and thus we can conclude on the validity of the

proposed developments for the local decoupling approach.

3.3.5.3 Comparison for the global decoupling approach

Concerning the global decoupling approach, the results will be presented for the case de-

scribed in subsection 3.3.4.3 (i.e. with an interior radius of 0.1 m for the hollow sphere),

still with the 2D gate functions as CFs. Once again, the calculations are carried out with a

damping loss factor of η = 0.001. At first, the evolution of the scattered pressure as a function

of frequency at the 4 same points as in figure 48 is shown in figure 50. Even if a comparison

with figure 48 would not be relevant as the CFs are not the same, plotting these curves for

the global decoupling approach allows verifying that there isn’t any problematic frequency

that has not been identified in subsection 3.3.4.3. The results of the global decoupling process

in figure 50 are consistent with the observations made for the decoupling of the condensed

impedances. The method is accurate from an analytical point of view, even if some slight

disturbances can be observed in the high frequencies.

Figure 50: Total pressure in the medium - Comparison between the theoretical results and
the global rCTF results for 4 different points. Point 1 - r = 1.5 m, θ = π; Point 2 - r = 1.3 m,
θ = 4π/7; Point 3 - r = 1 m, θ = π/3; Point 4 - r = 1.5 m, θ = 0.
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Similarly as for the local decoupling approach, a cartography of the pressure can be

plotted for several frequencies in order to verify that the scattered field is correctly described.

This is done in figure 51, where the scattered field is presented at 833 Hz (as it is the ill-

conditioned frequency identified in figure 45b) and 1000 Hz. The results from this global

approach at 1000 Hz are almost identical to the results from the local approach in figure 49,

while at 833 Hz the calculation is very accurate. The global approach is thus also validated

from an analytical point of view. Following this statement, the potential interest of the global

approach compared to the local approach will have to be investigated when model errors are

introduced in the calculations. This will be done in the next chapter.

(a) (b)

(c) (d)

Figure 51: Total pressure in the medium - Comparison between the theoretical results (a,c)
and the global rCTF results (b,d) for 2 frequencies: (a,b), 833 Hz; (c,d), 1000 Hz.

3.4 Conclusion

In this chapter, the theoretical framework of the reverse Condensed Transfer Function method

has been established in order to estimate both the condensed impedances and the response at

any point of the target subsystem. The principle has been presented for the case of acoustic

problems. However, as the formalism of the CTF approach was developed for mechanical,
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acoustic or vibroacoustic problems, the reverse formulation can be easily derived for these

different types of problems.

The formulation was studied numerically in the case of a rigid sphere immersed in water

and impacted by a plane wave. Investigations were carried out to derive a local and a

global decoupling approach and the accuracy of both methods has been studied. In the local

approach, using analytical models of the infinite water medium and of the water filled sphere,

the proposed approach allowed predicting by subtraction the behavior of the rigid sphere

immersed in water. Comparisons of the results with theoretical calculations led to validate

the approach for two types of condensation functions, namely weighted spherical harmonics

and 2D gate functions. The case with the weighted spherical harmonics as condensation

functions is a particular case where the impedances of the different condensation functions

are uncoupled. Consistently with the observations made in the local decoupling technique

of chapter 2, the introduction of damping in the model (as it occurs in real situation due

to viscosity and thermal conductivity) mitigates the numerical instabilities around the anti-

resonance of the water sphere in the local approach.

For the global decoupling approach, the behavior of the rigid sphere immersed in water

was obtained from a model of the infinite water medium and of the hollow water sphere.

It was found that the method works only when the residual subsystem (a water sphere of

smaller radius in this case) does not exhibit any resonant or anti-resonant behavior in the

frequency range of interest. The damping introduced in the local approach was directly taken

into account for the investigations of the global approach, but it must be noted that it doesn’t

reduce all the observed discrepancies.

In the next chapter, numerical investigations will be carried out on the same test case by

introducing model errors in the calculation of the condensed impedances. The investigations

will be carried out with the local and global decoupling approaches in order to compare their

robustness when model errors are introduced.
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Chapter 4

Numerical sensitivity of the reverse
Condensed Transfer Function method

In chapter 3, the principle of the reverse Condensed Transfer Function method has been

presented, and the method was validated on a test case considering a local and a global

formulation. For practical applications, the CTFs of the global system or of the subtracted

subsystem would be generally evaluated using numerical methods. The use of such methods

will introduce numerical errors in the evaluation of the CTFs and condensed pressures. In

this chapter, the effect of these numerical errors on the prediction of the subtractive modelling

approach is investigated. By doing so, the sensitivity of the method to numerical errors

will be investigated for the two formulations. The principle of computing the condensed

impedances from numerical models of bounded and unbounded domains will be presented

in section 4.1, while an application on the same test case as in the previous chapter will be

carried out in section 4.2. The robustness of the local and global rCTF approaches will be

compared in order to select which of these two approaches will be used in the next chapter.

4.1 Computing the condensed impedances and pressures from
numerical acoustic models

In this chapter, all the developments are carried by considering the 2D gate functions as CFs

(i.e. the patches). Indeed, the weighted spherical harmonics presented in section 3.3.3 were

interesting in order to understand the principle of the method as the components of each

spherical harmonics are uncoupled one from each other, but they constitute a particular case

which cannot be applied on other non-spherical systems.

When considering acoustic or vibroacoustic systems, it is important to draw a distinction

between bounded and unbounded domains in order to apply the most appropriate numerical

method to describe the system. Indeed, as presented in subsection 1.3.1, while the FEM can

be very accurate for multiple problems, it is not adapted for infinite domains, for which

the BEM is generally used. The calculation of the CTFs from numerical models will hence
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be presented here for these two cases. The developments will be carried out for acoustical

systems, which means that the condensed transfer functions will be condensed impedances,

but the reasoning can be transposed to other systems.

4.1.1 Condensed impedances of bounded systems

The Finite Element Method has proven itself to be a powerful tool to study bounded acoustic

systems of moderate size. The principle for calculating the condensed impedances of a

bounded subsystem α (for instance, the sphere of the subtracted subsystem in the previous

chapter) from its FEM model will be developed here. For an acoustical system, the FEM

formulation that is solved yields

(
[K]�ω2[M](1� 2jη)

)
tPu = tQu (4.1)

where [K] and [M] are the acoustic stiffness and mass matrices, respectively, η is the damping

loss factor, tPu is the output pressure vector, and tQu is the input volume velocity vector.

In order to compute the condensed impedance matrix of this system, the nodes of the

FEM model on the coupling surface Ω (or coupling surfaces Ωint and Ωext for the particular

case of global decoupling) of the system must be associated with the different patches. For

an incident patch j, all the nodes that have been identified to be belonging to this patch are

excited by a unit volume velocity flow rate weighted by the area of the patch (consistently

with the definition of the CFs in Eq. (3.29)). Following this, the input volume velocity vector

tQju associated to the incident patch j will have Nj components Qj
n, with Nj being the number

of nodes belonging to the patch j

Qj
n =

δSna
Ωj

, n P J1, NjK (4.2)

where δSn is the area around the node n, and Ωj the area of the patch j. The resulting pressure

vector Pj of the FEM model is then obtained by inverting the dynamic matrix of Eq. (4.1)

Pj =
(
[K]�ω2[M](1� 2jη)

)�1 tQju (4.3)

In order to compute the condensed impedance between the incident patch j and the

receiving patch i, all the Mi nodes belonging to the receiving patch must be identified, and

the resulting pressures at these nodes are summed

Zij
α =

1?
Ωi

Mi̧

m=1

Pj
mδSm (4.4)

where Pj
m is the pressure at node m (belonging to the patch i) when the system is excited on

the patch j, δSm is the area around the node m, and Ωi the area of the patch i.
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4.1.2 Condensed impedances of unbounded systems

To compute the condensed impedances at the coupling surface Ω of an unbounded system γ

(for instance, the infinite fluid domain of system 1+2 in the previous chapter), a formulation

derived from the indirect BEM formulation will be considered. As evoked in Eq. (1.35), the

pressure field from a radiating surface can be expressed using a linear combination of single

and double layer potentials [98]

p(M) = αps(M) + βpd(M) (4.5)

In the following, as we are only interested in emulating a velocity jump at the crossing of

the fictitious surface, only the single layer potential will be of interest. Hence, β is set to 0

while α is set to 1. The pressure field can then be written [96]

p(M) =

» »
Ω

ν(P)G(M, P)dΩ(P), M P Ω, P P Ω (4.6)

where ν(P) is the single layer potential due to a layer of monopole sources and represents

a velocity jump at the crossing of the fictitious surface Ω. G(M, P) is the free-field Green

function and corresponds to the pressure field at point M due to a monopole source located

at point P. Its value is recalled

G(M, P) = �ejk f (1�jη)|M�P|

4π|M� P| (4.7)

with k f being the acoustic wavenumber, η the damping loss factor and |M� P| the Euclidian

distance between points M and P. In order to evaluate numerically the integral in Eq. (4.6),

the surface Ω is discretized into a finite number of points. The size of this discretization

will be discussed later. To include this formulation into the rCTF problem to calculate the

condensed impedances of an unbounded subsystem, the velocity jump in Eq. (4.6) must

correspond to a condensation function φj (i.e. a patch), and each point of the discretization

belonging to the incident patch j must be identified. Let us place the problem in an arbitrary

system of coordinates, where the patches are distributed along the ξ and ζ dimensions. If

the patch j is discretized into Rj points between ξ j�1 and ξ j in the ξ dimension and into Sj

points between ζ j�1 and ζ j in the ζ dimension, the integral in Eq. (4.6) is approximated using

a rectangular rule

p(M) =

R j̧

rj=1

S j̧

sj=1

G(ξrj � ξM, ζsj � ζM)a
Ωj

δξ jδζ j,
"

ξrj P [ξ j�1, ξ j]

ζrj P [ζ j�1, ζ j]
(4.8)

where Ωj is the surface of the patch j, and δξ j and δζ j are the discretization step in the ξ

dimension and ζ dimension of patch j, respectively.
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In order to compute the condensed impedance between the incident patch j and the

receiving patch i, all the points of the discretization belonging to the receiving patch must be

identified, and the resulting pressures at these points are summed. If the patch i is discretized

into Ri points between ξi�1 and ξi in the ξ dimension and into Si points between ζi�1 and ζi

in the ζ dimension, it yields

Zij
α =

Ri̧

ri=1

Si̧

si=1

R j̧

rj=1

S j̧

sj=1

G(ξrj � ξri , ζsj � ζsi)a
ΩjΩi

δξ jδζ jδξiδζi,
"

ξri P [ξi�1, ξi]
ζri P [ζi�1, ζi]

(4.9)

where Ωi is the surface of the patch i, and δξi and δζi are the discretization step in the ξ

dimension and ζ dimension of patch i, respectively.

4.2 Application on the academic test case: scattering of a
plane wave by a rigid sphere

Now that the framework to numerically compute the condensed impedances of acoustic

bounded and unbounded subsystems has been developed, it will be applied to a test case. The

same case as in section 3.3 will be considered (see figure 31 for the local approach and figure

32 for the global approach), as the analytical developments have already been carried out

and can constitute a basis to compare the results of the analytical and numerical calculations.

4.2.1 Numerical calculations of the condensed impedances and pressures

4.2.1.1 Condensed impedances of the water sphere for the local approach

For the case of the water sphere, as the domain is bounded, a FEM formulation will be used

as described in subsection 4.1.1. The FEM model of the sphere is generated using the Altair

Hypermesh® software [198] and the mass and stiffness matrices are extracted from the model

generated by the Structural Dynamic Toolbox implemented in MATLAB® [195]. The size of

the mesh is a key element for the method to correctly converge. In acoustic problems, the

retained criterion is generally 6 elements per acoustic wavelength at the highest considered

frequency, fmax

de  
c f

6 fmax
(4.10)

with c f =1500 m/s. As the computation is carried out between 100 and 1000 Hz, the maximum

size of the elements should be lower than 0.25 m. The model obtained with this criterion is

showed in figure 52a, and exhibits 1613 nodes and 7686 elements. It must be stressed that

a damping loss factor of η=0.001 has been introduced in the FEM model as in chapter 3. In

order to compute the condensed impedances of this subsystem, the surface of this sphere
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is partitioned into patches as shown in figure 34b, following the criterion for the size of the

patches defined in Eq. (3.31). According to the developments described in subsection 4.1.1,

the nodes belonging to the incident patch j and the receiving patch i must be identified in

the FEM model. An example of this identification is shown in figure 52b. The black dots

correspond to the limits of each patch, while the green and red dots are the nodes of the FEM

model belonging to the incident and receiving patches, respectively.

(a) (b)

Figure 52: a) FEM model of the water sphere with a criterion of 6 elements per wavelength at
the highest considered frequency. b) Localization of the nodes belonging to the incident and
receiving patches.

Following the procedure 4.1.1, the matrix of the condensed impedances is computed, and

the results can be compared to the analytical calculation described in Appendix C.2. In figure

53, the results obtained with the analytical and FEM calculation are compared for 2 different

condensed impedances, a direct condensed impedance (1st TF) and a crossed condensed

impedance (2nd TF).

We can observe that the results of the FEM calculation are globally correct, but the

resonances of the water sphere are not accuratly predicted. Indeed, it was identified in

subsection 3.3.1.3 that the water sphere exhibits two resonances in this frequency range,

the first one at 497 Hz and the second one at 798 Hz. These are slightly shifted in the FEM

calculation, as the first resonance of the FEM calculation is at 500 Hz while the seconde one is

at 807 Hz. As is has been highlighted in subsection 3.3.3.2, the ill-conditioning of the inverted

matrix in Eq. (3.22) at the resonant frequencies could lead to significant amplifications of

the errors induced by these frequency shifts. For this reason, the retained criterion of 6

elements per acoustic wavelength at the highest considered frequency may not be enough for

applying the rCTF. These calculations were hence reiterated on a finer model of the water

sphere, with a criterion of 15 elements per acoustic wavelength at the highest considered

frequency. This model is shown in figure 54a, and we can see in 54b that there are much more

nodes belonging to each patch that there were for the criterion of 6 elements per acoustic
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Figure 53: Comparison of the condensed impedances of the water sphere obtained with an
analytical calculation and a FEM model.

wavelength. Indeed, the model exhibits 31302 nodes and 176996 elements.

(a) (b)

Figure 54: a) FEM model of the water sphere with a criterion of 15 elements per wavelength
at the highest considered frequency. b) Localization of the nodes belonging to the incident
and receiving patches.

When comparing the analytical and FEM calculations in figure 55, we can see that the new

FEM calculation is more accurate. The first resonance appears at 497 Hz as for the analytical

computation, while the second resonance appears at 799 Hz, which is a 1 Hz shift compared

to the analytical computation. This means that, even if slight errors are remaining, better

results can be expected when performing the decoupling calculations using the rCTF method

than with the previous criterion.
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Figure 55: Comparison of the condensed impedances of the water sphere obtained with an
analytical calculation and a finer FEM model.

4.2.1.2 Condensed impedances of the hollow water sphere for the global approach

For the case of the hollow water sphere necessary for the global decoupling procedure, as it is

also a bounded system, a FEM formulation is used as well. The FEM model of the subsystem

studied in subsection 3.3.4.3 is shown in figure 56, with a sectional view in figure 56b in

order to see the interior radius of the hollow sphere. The criterion of 15 elements per acoustic

wavelength at the highest considered frequency is once again retained, and the procedure for

calculating the condensed impedances of the subsystem is the same as in subsection 4.2.1.1

for the water sphere.

(a) (b)

Figure 56: FEM model of the hollow water sphere. (a) Exterior view. (b) Sectional view.

The comparison between the analytical calculation (given in Appendix C.3) and FEM

99
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI082/these.pdf 
© [F. Dumortier], [2021], INSA Lyon, tous droits réservés



calculations for the condensed impedances of the hollow sphere are shown in figure 57 for

three different TFs:

• 1st TF: direct condensed impedance at the exterior surface of the hollow sphere.

• 2nd TF: crossed condensed impedance between two patches located at the interior

surface of the hollow sphere.

• 3rd TF: crossed condensed impedance between a patch located at the exterior surface of

the hollow sphere and a patch located at the interior surface of the hollow sphere.

As it was observed for the water sphere, the FEM calculation of the hollow sphere is very

accurate, as there is at most a 1 Hz shift between the resonances calculated analytically and

the ones calculated with the FE formulation.

Figure 57: Comparison of the condensed impedances of the hollow water sphere obtained
with an analytical calculation and a FEM calculation.

4.2.1.3 Condensed impedances of the infinite water medium

Concerning the infinite water medium, the condensed impedances will be computed using

the procedure described in subsection 4.1.2 as it is an unbounded domain. As developed

in Appendix C.1, the approach is the same whether the local or global formulations are

considered. In the following, the reasoning will be carried out considering the local rCTF

formulation, exhibiting only one fictitious surface Ω in the infinite medium. Similarly to the

case of the FEM model of the water sphere, the size of the discretization of the fictitious surface
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Ω of the sphere in the infinite medium plays a key role in the accuracy of the computation.

However, there isn’t any common criterion as for the FEM method, so an initial size of the

discretization will be chosen arbitrarily and a trial and error test has been carried out to

determine the appropriate size of discretization in order to have a good balance between

accurate results and reasonable computational costs.

(a) (b)

R

ɸ    

θ    

P    

x      

y      

z      
(c)

Figure 58: Example of two discretizations of the incident and receiving patches. (a) δθ =
δφ = 4 . (b) δθ = δφ = 1 . (c) Associated spherical coordinate system.

In figure 58, two examples of discretizations of the incident and receiving patches are

presented. In figure 58a, the discretization step is 4° in the θ and φ dimensions, while in figure

58b, the discretization step is 1° in the θ and φ dimensions (see figure 58c for the spherical

coordinate system). The results for these two discretization sizes will be compared to the

analytical calculations of the condensed impedances of the infinite water medium developed

in Appendix C.1.

A particular attention must be paid to the case of the "input" condensed impedances (i.e.

when the excited and receiving patches are the same). Indeed, looking at Eq. (4.7), the Green

function exhibits a singularity when the source and receiving points are the same. A first

possibility to circumvent this issue is to define a criterion of minimal distance ε between two

points. Hence, if the source and receiving points are the same or if the distance between them

is smaller than ε, one of the points is slightly shifted so that the distance between the two

points will be ε.

A second possibility to circumvent this issue is to approximate this condensed impedance

using an analogy with the radiation impedance of a baffled circular piston having the same

surface as the patch. This quantity, corresponding to the pressure at the surface of the piston

when a uniform vibrating velocity is prescribed, is defined as [199]

ZR = Z0

(
1

J1(2k f ap)

k f ap
j
S1(2k f ap)

k f ap

)
(4.11)

where Z0 is the acoustic impedance, ap is the radius of the circular piston, J1 is the Bessel

function of the first kind and S1 is the Struve function. By analogy, the impedance of a
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uniform velocity jump on a circular surface is given by the same expression. The radius ap of

the baffled circular piston is obtained from the area Ωi of the patch i:

ap =

c
Ωi

π
(4.12)

One must note that this solution is independent of the discretization size, as the input

condensed impedance of the patch is associated to the impedance calculated in Eq. (4.11).

These two solutions are compared in figure 59 for two cases of direct condensed impedances

corresponding to the two different geometries of patches (trapezoid patches and triangular

patches). For each figure, a zoom is presented in the high frequency range in order to have

clearer vision of the differences with the analytical calculation.
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(a) (b)

Figure 59: Accuracy of the calculation of direct impedances. a) Trapezoid patch. b) Triangular
patch.

It is interesting to observe that for the trapezoid patch in figure 59a, the analogy of the

circular piston is more accurate than the criterion of minimal distance for both discretization

sizes. For the triangular patch however (figure 59b), the criterion of minimal distance is more

accurate for a discretization size of 1°. This could be explained by two facts. Firstly, the

equivalence between the triangular shape of the patch and the circular surface associated to

Eq. (4.11) is certainly less accurate than for a trapezoidal shape. And secondly, the points of

the discretization are closer to one another near the "top" of the sphere, meaning that there

are more points in the triangular patches than there are in the trapezoid patches. Finally, it is

relevant to compare the calculation times for the 3 solutions (for one condensed impedance),

as it is necessary, in an industrial context, to mitigate the calculation costs. For a calculation

from 100 Hz and 1000 Hz with a frequency resolution of 1 Hz, they yield:

• Criterion of minimal distance with a discretization size of 4°: 0.91 s and 0.97 s for the

trapezoid and triangular patches, respectively.
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• Criterion of minimal distance with a discretization size of 1°: 15 s and 44 s for the

trapezoid and triangular patches, respectively.

• Analogy with the circular piston: 0.09 s and 0.12 s for the trapezoid and triangular

patches, respectively.

From this observation, it can be concluded that the analogy with the circular piston is the

best choice in order to have the best balance between accuracy and reasonable computational

cost.

(a) (b)

Figure 60: Comparison between the analytical and numerical calculations for the crossed
impedances of the infinite water medium. a) Crossed impedances at the surface Ω for the
local approach and Ωext for the global approach. b) Crossed impedances involving Ωint for
the global approach.

For the case of the crossed condensed impedances, a comparison between the analytical

calculation (developed in Appendix C.1) and the numerical calculation is proposed in figure

60a for two different condensed impedances (involving trapezoid and triangular patches) at

the fictitious surface Ω. Results are also shown for the global rCTF approach in figure 60b

in order to verify that the results are correct regardless of the considered fictitious surface.

Hence, the 3rd TF corresponds to a crossed impedance where the two patches are located on

the two different fictitious surfaces Ωext and Ωint, while the 4th TF corresponds to a crossed

impedance for which the two patches are located on the interior fictitious surface Ωint. For the

numerical calculation, the results are presented for the two discretization sizes of 4° and 1°. It

can be observed that the calculation with the finer discretization is more accurate, but more

time consuming. The impact of these differences will have to be studied when performing

the decoupling calculations in order to obtain the best balance between computation costs

and accurate results.
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4.2.1.4 Condensed pressures of the infinite water medium

Finally, in order to apply the rCTF method to predict the pressure at any point of the

decoupled subsystem (Eq. (3.24)), it is necessary to compute the condensed pressures from

the exterior and monopole excitations, P1+2 and PM1
1+2, respectively, in the infinite water

medium. To do so, the same discretization as in subsection 4.2.1.3 is used at the fictitious

surface Ω of the sphere for the local approach, or fictitious surfaces Ωext and Ωint for the

global approach.

In order to compute the condensed pressure induced by the acoustic plane wave excitation,

P1+2, the expression of the incident pressure from the plane wave is considered

Pinc = Pie
jk f r cos θ (4.13)

where Pi is the amplitude of the incident plane wave. The condensed pressure on the receiving

patch i is then obtained by evaluating this expression at each point of the discretization of the

patch i, and by summing these responses using a rectangular rule. If the patch i is discretized

into Ri points between θi�1 and θi in the θ dimension and into Si points between ϕi�1 and ϕi

in the ϕ dimension, it yields

P1+2(i) =
Pi?
Ωi

Ri̧

ri=1

Si̧

si=1

ejk f a cos θri r sin θri δθiδϕi,
"

θri P [θi�1, θi]
ϕsi P [ϕi�1, ϕi]

(4.14)

where r can either be the radius of the exterior surface of the sphere or the radius of the

interior surface of the hollow sphere, depending on the considered approach.

The procedure for calculating PM1
1+2 is similar, with the incident pressure from the monopole

located at the point M1 replacing the incident pressure from the plane wave. The incident

pressure at a given point M belonging to the fictitious surface Ω induced by a monopole

source located at the point M1 is given by

PM1
inc = �Qijωρ f

ejk f |M1�M|

4π|M1 � M| (4.15)

where Qi is the amplitude of the monopole and |M1 � M| is the cartesian distance between

the source and receiving points. The condensed pressure is obtained by evaluating this

expression at each point of the discretization of the receiving patch i, and by summing these

responses using a rectangular rule. If the patch i is discretized into Ri points between θi�1

and θi in the θ dimension and into Si points between ϕi�1 and ϕi in the ϕ dimension, it yields

PM1
1+2(i) =

�Qijωρ f?
Ωi

Ri̧

ri=1

Si̧

si=1

ejk f |M1�M(θri ,ϕsi )|

4π|M1 � Mri |
r sin θri δθiδϕi,

"
θri P [θi�1, θi]
ϕsi P [ϕi�1, ϕi]

(4.16)
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The expressions in Eqs. 4.14 and 4.16 are compared to the analytical calculation (for which

the expressions are given in Appendix C.5) in figure 61. The condensed pressure from the

plane wave excitation is shown in figure 61a for a trapezoidal patch (1st CP) and a triangular

patch (2nd CP), while it is shown for the monopole excitation in figure 61b for a trapezoidal

patch (1st CP) and a triangular patch (2nd CP). Concerning the monopole excitation, the

incident point was located at a point M1 of spherical coordinates (2, 0, 0). Once again, the

results from the numerical calculation are presented for the two discretization steps of 4°

and 1°. The results presented in figure 61 only correspond to patches at the exterior surface

Ωext of the fictitious sphere (or hollow sphere for the global approach). Results at the interior

fictitious surface Ωint for the global rCTF approach are very similar, the only difference being

the amplitude of the pressures. As the conclusions will be the same as for the exterior surface

Ωext, they are not shown here.

(a) (b)

Figure 61: Comparison between the analytical and numerical calculations for the condensed
pressures. a) Plane wave excitation. b) Monopole excitation.

Similarly as for the condensed impedances in subsection 4.2.1.3, the calculation with

the finer discretization is more accurate and very close to the analytical calculation, but it

is more time consuming. For the plane wave excitation, this does not cause any problem

as the calculation has to be carried out once, but for the monopole excitation, it must be

computed for all the points of the medium in order to draw a cartography of the scattered

pressure as in figures 49 or 51. The choice of the discretization for this calculation will then

be driven by the accuracy of the decoupling calculation. It is important to mention that,

contrary to the calculation of the condensed impedances, the calculation of the condensed

pressures will be less sensitive to model errors as it does not involve an inversion of matrix

that amplifies errors. If this accuracy is judged to be sufficient for the coarser discretization

size, this solution will be retained.
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4.2.2 Decoupling calculations with the numerical models

4.2.2.1 Decoupling of the condensed impedances

As a first step of evaluating the sensitivity of the rCTF method to model errors, the calculation

of the condensed impedances of the decoupled subsystem 1, Z1, are computed using Z1+2,

Z2, and the decoupling formula of Eq. (3.22). The computations are carried out for the local

and global rCTF approaches, and the results are compared to the analytical calculation of

Z1 presented in Appendix C.4. In order to sweep different possibilities of transfer functions

(TFs), the comparison is shown for:

• a direct condensed impedance on a trapezoid patch (the excitation and observation

patch are the same) - 1st TF.

• a direct condensed impedance on a triangular patch - 2nd TF.

• a crossed condensed impedance between two trapezoid patches that are close to each

other - 3rd TF.

• a crossed condensed impedance between a trapezoid patch and a triangular patch that

are widely separated one from another - 4th TF.

Also, for the global rCTF approach, the condensed impedances of the residual subsystem

(i.e. the water sphere of radius 0.1 m) and between the two surfaces Ωext and Ωint are

evaluated. For the latter, the absence of coupling between the subsystems must result in

negligible values of the condensed impedances when performing the decoupling. This will

be investigated in the next paragraphs.

The comparison between the analytical calculation and the numerical decoupling cal-

culation is shown in figure 62. Figures 62a and b concern the local rCTF approach, while

the results of the global rCTF approach are presented in figures 62c and d. Also, figures

62 a and c present the results for the coarse discretization in the infinite water medium (i.e.

δθ = δϕ = 4�), while figures 62 b and d present the results for the fine discretization in the

infinite water medium (i.e. δθ = δϕ = 1�). Comparing the results for the coarse and the

fine discretizations allows having a perspective on the necessary level of accuracy of the

numerical models to apply the rCTF method. We can see that for the local rCTF approach, the

results are globally correct except around the anti-resonant frequency of the water sphere. For

the global rCTF approach however, the errors are globally more constant along the frequency

range, even if some slight disturbances can be observed for the 3rd and 4th TFs around 830 Hz.

For both approaches, there is no substantial difference between the calculations with the two

different discretization sizes.

What was observed in chapter 3 is found back in this numerical calculation, and is

amplified due to the presence of numerical errors. Indeed, when looking at the condition
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Figure 62: Comparison between the condensed impedances computed analytically and
with the numerical rCTF approach. (a) Coarse discretization in the infinite water medium
- local rCTF approach. (b) Fine discretization in the infinite water medium - local rCTF
approach.(c) Coarse discretization in the infinite water medium - global rCTF approach. (d)
Fine discretization in the infinite water medium - global rCTF approach.

number of the condensed impedance matrices of subsystems 1+2 and 2 and of the inverted

matrix in figure 63, the maxima of the condition number for both the local and global

approaches are located at the same frequencies shown in figures 38 and 45b, respectively.

If the amplitudes of these maxima are lower than for the analytical case, this observation

is due to the fact that contrary to the analytical calculation, for the numerical ones, the

condensed impedance matrices of the global system 1+2 and of the subtracted subsystem

2 are not computed using the same approach. However, the presence of maxima in the

condition numbers, especially around the anti-resonant frequencies of the subsystems, result

in increased errors when performing the rCTF calculation with numerical errors in the

condensed impedances of the subsystems. Also, we can see in figure 63 that the condition

number is generally higher for the global approach, meaning that the errors can be more

amplified. This explains that, except for the anti-resonant frequency, the errors are generally

higher in the frequency range for the global approach than for the local approach in figure 62.
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Figure 63: Condition number of the condensed impedance matrices and of the inverted
matrix. (a) Local rCTF approach. (b) Global rCTF approach.
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Figure 64: Condensed impedances of the residual subsystem and crossed condensed
impedance between the two subsystems.

Concerning the condensed impedances involving the residual subsystem for the global

rCTF approach, the results are shown in figure 64. Compared to the analytical case in

subsection 3.3.4.3, the introduction of numerical errors induces important errors in the whole

frequency range. The behavior of the residual subsystem is not correctly decribed and

the errors are even amplified around 830 Hz which is the anti-resonant frequency of the

hollow sphere and a frequency at which the condensed impedance matrix of the infinite

water medium is ill-conditioned. The calculation with a finer discretization size is slightly

better, but the errors remain high compared to the reference case. Concerning the crossed

impedance between the subsystems, as also shown in figure 64, the absence of coupling

is not correctly accounted for, as the amplitude of these condensed impedances cannot be

considered as negligible, especially in the high frequencies of the calculation. The influence

of these results on the computation of the scattered pressure using the global rCTF method

will be investigated in the next section.
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4.2.2.2 Total pressure in the medium

Finally, the sensitivity of the method to model errors will be investigated when evaluating

the total pressure in the medium (it is reminded that this quantity corresponds to the sum of

the incident pressure and the pressure scattered by the rigid sphere) using Eq. (3.24). At first,

the evolution of the pressure is presented as a function of the frequency for 3 different points

of the domain, chosen at different distances and orientations from the surface of the sphere.

The comparison is made with the theoretical calculation described by Eq. (3.39). As for the

decoupling of the condensed impedances in subsection 4.2.2.1, the results are shown for the

two different discretization sizes in the infinite water medium in figure 65, for both the local

and global rCTF approaches. The scales have been set to be the same for all figures in order

to observe more clearly the differences between the calculations.

(a) (b)

(c) (d)

Figure 65: Total pressure in the medium - evaluation of the rCTF approach for 3 points in the
fluid domain. Point 1 - r = 1.5 m, θ = π; Point 2 - r = 1.3 m, θ = 4π/7; Point 3 - r = 1 m,
θ = π/3. (a) Coarse discretization in the infinite water medium - local rCTF approach. (b) Fine
discretization in the infinite water medium - local rCTF approach. (c) Coarse discretization
in the infinite water medium - global rCTF approach. (d) Fine discretization in the infinite
water medium - global rCTF approach.

For the local approach (figures 65a and b), the behavior that was observed for the decou-
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pling of the impedances, namely exhibiting errors situated around the anti-resonance of the

water sphere, are found back here, and the errors have been slightly amplified. One can also

notice that these errors seem to be higher when the pressure is observed at the surface of the

sphere (i.e.point 3). Even if a criterion was established to circumvent the singularities that can

happen when the monopole is situated at the surface of the sphere, the high values exhibited

by monopoles at such short distances may be prohibitive. Also, the calculations with the two

different discretization sizes exhibit similar results. As it was observed for the decoupling

of the condensed impedances, we can consider that the gain in accuracy provided by the

finer discretization is not sufficient compared to the substantial increase of computation time.

Finally, we can emphasize that in most parts of the frequency range of the calculation, the

local decoupling technique can be considered as very accurate.

Concerning the global approach (figures 65c and d), the results are globally better than for

the local approach, as the results are correct over the whole frequency range. Slight errors

appear around 830 Hz as this was the ill-conditioned frequency identified before, but these

errors remain low. Errors also appear at higher frequencies, especially for the point located on

the surface of the sphere, as it was already observed for the local rCTF approach. However,

it is interesting to notice that, for this calculation, there is a non-negligible difference when

considering the two different discretization sizes. The finer discretization exhibits much

better results, especially in the high frequencies. As this behavior was not observed when

decoupling the condensed impedances using Eq. (3.22), this means that the improvement

given by the finer discretization is related to the computation of the condensed pressures.

However, one has to keep in mind that the computation times are substantially increased

when considering this solution.

In order to verify the accuracy of the rCTF method even at the frequencies where errors

appear in figure 65, a cartography of the total pressure field around the rigid sphere can be

plotted for these frequencies. For the local rCTF approach, these cartographies are shown

in figure 66 and compared to the theoretical calculation of Eq. (3.39). They are plotted at

750 Hz and 1000 Hz for the coarser discretization size, as the difference between the two

discretization sizes is not substantial, contrary to their difference in computation time. The

results can be considered as very satisfactory, as even for the most critical frequency (figure

66b), the global behavior is well described in the medium despite some discrepancies located

mainly at the vincinity of the sphere. It is important to mention that the maxima and minima

of pressure are correctly located.

Concerning the global approach, these cartographies are shown at 828 Hz (where the

discrepancies happen due to the ill-conditioning issue) and 1000 Hz, for the coarser dis-

cretization size as well. Even if for this approach, the finer discretization size seems more
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(a) (b)

(c) (d)

Figure 66: Total pressure in the medium - Comparison between the theoretical results (a,c)
and the numerical local rCTF results (b,d) for 2 frequencies: (a,b), 750 Hz; (c,d), 1000 Hz.

accurate, it is important to verify the results when the coarser discretization is chosen in order

to have reasonable computation costs. As was observed for the local approach, the results are

accurate as the behavior of the system is correctly described despite some discrepancies. One

can also observe, for this case more than for the local rCTF approach, that the result of the

calculation is not symmetric with respect to the incident angle of the plane wave, whereas the

system is symmetric (as it can be observed for the theoretical result). This phenomenon is due

to the fact that the FEM model of the hollow sphere (see figure 56) is not perfectly symmetric.

However, this does not change the conclusions of this study as the maxima and minima of

pressure are correctly located, even if the amplitudes can show some discrepancies.

Finally, it can be concluded from this study that introducing numerical errors in the

calculation of the condensed impedances and pressures does not lead to prohibitive errors

when performing the rCTF method. For the local rCTF method, the discretization size of

the infinite water medium does not play a significant role in the accuracy of the results. For

the global rCTF method however, the results are more accurate with a finer discretization

size in the infinite water medium, but this solution comes with a substantial increase of

computation time. In order to quantify this increase, the computation times for all the
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(a) (b)

(c) (d)

Figure 67: Total pressure in the medium - Comparison between the theoretical results (a,c)
and the numerical global rCTF results (b,d) for 2 frequencies: (a,b), 828 Hz; (c,d), 1000 Hz.

considered approaches are summed up in table 5 for the calculation of:

• the scattered pressure field around the rigid sphere at a single frequency; this calculation

includes the calculation of the condensed pressures.

• the condensed impedance matrix of the system 1+2 (the infinite water medium).

• the condensed impedance matrix of the subsystem 2 (the water sphere for the local

rCTF approach and the hollow water sphere for the global rCTF approach).

Looking at this table, we can see that when the discretization size in the infinite water

medium is relatively coarse, most of the computing time is taken by the calculation of the

condensed impedances of the subsystem 2. As these calculations do not exhibit substantial

differences in their result, it can be preferable to choose the local rCTF approach as it is slightly

less computationally intensive and easier to derive. For the local approach, improving

the discretization size does not change considerably the results while being much more

computationally intensive, which means that this solution is less optimal for industrial

applications. Finally, the global rCTF approach with a finer discretization size is the most
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accurate one, but also far more computationally intensive. This means that, for an industrial

application of the method as the one that will be studied in the next chapter, this increase

in computation time may limit the advantages of the rCTF method compared to existing

methods such as FEM. In the following chapter, the local rCTF method will hence be retained

as it shows accurate results with reasonable computing times.

rCTF approach Discretization size Calculation time
Cartography Z1+2 Z2

Local Coarse (δθ = δϕ = 4�) 1 min 54 s 1 min 56 s 7 h 48 minFine (δθ = δϕ = 1�) 30 min 2 s 8 h 35 min

Global Coarse (δθ = δϕ = 4�) 3 min 27 s 6 min 7 s 8 h 55 minFine (δθ = δϕ = 1�) 1 h 7 min 27 h 31 min

Table 5: Computation times

4.3 Conclusion

In this chapter, the sensitivity of the rCTF method to model errors was investigated for

the local and global approaches described in chapter 3. The principles for calculating the

condensed impedances and pressures from numerical models of the subsystems were estab-

lished and applied on the same test case than in chapter 3. For bounded systems, the FEM

method is used to calculate the condensed impedances, while for unbounded systems, a

Green formulation derived from the integral formulation is used to estimate the condensed

impedances and pressures.

For the local rCTF approach, the introduction of numerical errors led to discrepancies

around the anti-resonance of the water sphere and of the infinite water medium, and in the

high frequencies at the vicinity of the rigid sphere. The mesh size of the FEM model and

the discretization size of the Green formulation played a key role in the convergence of the

method. However, it is not necessary to choose a very fine discretization size for the Green

formulation as the substantial increase of computing time is not balanced with an increase in

the accuracy of the results.

Concerning the global rCTF approach, some slight discrepancies were observed around

the resonance of the hollow sphere, and also in the high frequencies at the vicinity of the rigid

sphere. However, contrary to the local rCTF approach, refining the discretization size of the

Green formulation for the infinite water medium leads to more accurate results, especially

in the high frequency range. However, this solution comes with a substantial increase of

computing time. Also, it is important to mention that this solution is valid only in the case

where the residual subsystem does not exhibit any resonant or anti-resonant phenomenon in

the frequency range of interest, as it was observed in the previous chapter.
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The rCTF method based on numerical models has thus shown its ability to correctly

predict the behavior of the target subsystem. The local approach appeared more appropriate

in an industrial context by being less computationally intensive compared to the global

approach. The global approach has however shown some interesting insights in the potential

of the method that should be further investigated in the future. In the following chapter, the

local rCTF method will be applied on a case closer to the industrial application, consisting in

studying the acoustic radiation from a partially coated cylindrical shell.
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Chapter 5

Acoustic radiation from a partially coated
cylindrical shell using the rCTF method

In the previous chapters, the principle of the reverse Condensed Transfer function method

has been established, and the Condensed Transfer Functions necessary to apply the method

have been calculated using analytical formulations in chapter 3, and numerical formulations

in chapter 4. In this chapter, the local rCTF method will be used to study the radiation from a

partially coated cylindrical shell (subsystem 1 in figure 68). To do so, a part of the coating

(subsystem 2 in figure 68), represented by a FEM-type numerical model, will be removed

from a semi-analytical model of the fully coated cylindrical shell (system 1+2 in figure 68).

Ω

Ω

Subsystem 1 Subsystem 2System 1+2

Figure 68: Principle of studying a partially coated cylindrical shell using the rCTF method.

The calculation of the CTFs and condensed pressures of the global system 1+2 and of the

CTFs of the decoupled subsystem 2 will be developed in section 5.1. Then, the decoupling

procedures of the rCTF method will be performed in section 5.2, while the possibility of

recoupling this model to a numerical model of the water occupying the removed part of the

coating will be investigated in section 5.3. Finally, a parametric study will be carried out in

section 5.4 in order to evaluate the influence of the size of the removed part of the coating and

the location of the external mechanical force on the vibroacoustic behavior of the partially

coated cylindrical shell. It is worth mentioning that, although the theoretical developments

are proposed for a 3-D model, the calculations developed in this chapter are carried out from
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2-D models, in order to be able to compare the results to a reference calculation. This will be

explained in more details in section 5.1.

5.1 Calculation of the Condensed Transfer Functions and con-
densed pressures

As in chapter 4, the CFs are 2D gate functions, meaning that the decoupling interface Ω is

divided into a given number of patches for system 1+2 and subsystem 2, as shown in figure

68. Following this definition of the CFs, the CTFs of the system 1+2 and the subsystem 2 can

be calculated.

The calculation of the CTFs of the system 1+2 will be developed in subsection 5.1.1, by

considering two different decoupling boundaries. The condensed pressures and condensed

radial velocities of the system 1+2 will be calculated in subsection 5.1.2, while the Condensed

Transfer Functions of the subsystem 2 will be investigated in subsection 5.1.3.

5.1.1 Calculation of the Condensed Transfer Functions of the system 1+2

5.1.1.1 Presentation of the system

In order to compute the CTFs of the system 1+2, which is the fluid loaded fully coated

cylindrical shell, the integral formulation presented in section 4.1.2 is used as the system

is unbounded. In the following, we consider a fluid loaded infinite cylindrical shell with

a single layer of coating, excited by a radial point force located at the inner surface of the

shell, as shown as a sectional view in figure 69. The developments that will be carried out

in the next paragraphs can nevertheless be extended to the case of multilayered coatings.

As a matter of simplicity for this first application of the rCTF method to a partially coated

cylindrical shell, the considered coating will be soft rubber (reference to such materials can be

found in [81] and [82]), which implies that it will be modelled as an equivalent fluid in which

the shear waves are neglected. However, it is important to indicate that the extension of this

formulation to layers of solid material to model the coating is possible, but more complex

in practice. Indeed, in order to take into account both the compressional and shear waves

in the material, the displacements in the three directions in the material must be considered

(see [55] for the reference to such materials). As this extension is not the primary aim of this

thesis, it will not be considered here.

The shell has radius R, thickness h, Young’s modulus E , density ρs and Poisson’s ratio

νs, while U, V and W denote the axial, tangential and radial displacements of the shell,

respectively. Its behavior will be described using the Flügge’s equations introduced in section

1.1. The coating is a rubber of thickness hp, density ρp, and is modelled as an equivalent fluid,

meaning that the transverse waves travelling in the coating are not taken into account. The
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Thin shellAcoustic coating
(equivalent fluid)

Surrounding fluid

Ω

F

Part to be
removed

Figure 69: System 1+2: fully coated cylindrical shell immersed in an infinite fluid medium.

celerity of longitudinal waves in the coating is denoted by cp, and the damping loss factor is

denoted by ηp. The shell is surrounded by an infinite fluid domain of density ρ f and speed of

sound c f , in which a damping loss factor η is accounted for as in chapters 3 and 4. Both fluid

domains are modelled using the Helmholtz equations, the Sommerfeld radiation condition is

verified at infinity (see Eq. (1.11)) for the exterior fluid, and the continuity of normal velocities

and pressures at the shell-soft rubber and soft rubber-exterior fluid are considered.

Acoustic interface

Unknown p 

Excitation ẟu
Vibroacoustic interface a

Unknown ua 

Excitation ẟpa

Acoustic interface b

Unknown pb 

Excitation ẟub

Ω1 Ω2

(a) (b)

Figure 70: (a) Definition of the decoupling boundary Ω1. (b) Definition of the decoupling
boundary Ω2.

To compute the CTFs of the system 1+2, two different decoupling boundaries will be

considered:

• The decoupling boundary Ω1 is shown in figure 70a and exhibits a single acoustic

interface, with a residual coating layer.

• The decoupling boundary Ω2 is shown in figure 70b and exhibits one acoustic interface

(for the patches located at the acoustic coating-surrounding fluid interface and the

patches located in the thickness of the acoustic coating) and one vibroacoustic interface

(for the patches located at the shell-acoustic coating interface).
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Following this, two different kinds of excitations must be considered, leading to two

different ways of computing the CTFs:

• an acoustical excitation (i.e. array of monopole sources representing a velocity jump at

the crossing of the surface) for the acoustic interface;

• a mechanical excitation (i.e. array of point forces representing a pressure jump at the

crossing of the surface) for the vibroacoustic interface.

The calculation of the CTFs of the system 1+2 is performed by a semi-analytical spec-

tral procedure which is fully developed in Appendix D. The equations of the problem are

transposed in the wavenumber domain by a Fourier transform along the coordinate x and

a Fourier series decomposition along the coordinate θ. These equations are then solved for

the coordinate r to deduce the impedance of the fluid and the coating, and the response

of the system to the different excitations. These quantities are then transposed back to the

physical domain by the means of a 2-D inverse Fourier Transform, and the CTFs can then be

computed. In the following, this procedure will be referred to as the "spectral approach".

When the decoupling boundary Ω1 is considered, all the CTFs will be condensed impedances,

and they are computed following the procedure described in chapter 3. The CTF matrix will

hence be noted Z1+2, and the developments to compute these condensed impedances are

presented in Appendix D.5.1.

However, when the decoupling boundary Ω2 is considered, the CTF matrix of the system

1+2 exhibits 4 different kinds of CTFs:

• Condensed impedances (i.e. acoustic pressure over acoustic velocity) when both inci-

dent and receiving patches are located on an acoustic interface.

• Condensed mobilities (i.e. radial shell velocity over radial pressure applied on the shell)

when both incident and receiving patches are located on a vibroacoustic interface.

• Condensed velocity transmissibilities (i.e. radial shell velocity over acoustic velocity)

when the incident patch is located on an acoustic interface while the receiving patch is

located on a vibroacoustic interface.

• Condensed pressure transmissibilities (i.e. acoustic pressure over radial pressure ap-

plied on the shell) when the incident patch is located on a vibroacoustic interface while

the receiving patch is located on an acoustic interface.

The CTF matrix will hence be noted H1+2 (the notation "H" is used to signify that the

CTFs are not necessarily condensed impedances), and will be separated into 4 submatrices

which are each computed separately,
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H1+2 =

[
Huaδpa

1+2 Huaδub
1+2

Hpbδpa
1+2 Hpbδub

1+2

]
(5.1)

where

Huaδpa
1+2 =

[
u1+2

a

δp1+2
a

]
, Huaδub

1+2 =

[
u1+2

a

δu1+2
b

]
, Hpbδpa

1+2 =

[
p1+2

b

δp1+2
a

]
, Hpbδub

1+2 =

[
p1+2

b

δu1+2
b

]
(5.2)

Following this notation, the CTF matrix H1+2 links the excitation vector ∆1+2 and the

unknown vector ξ1+2 via the following relation

ξ1+2 = H1+2∆1+2 (5.3)

with

∆1+2 =

[
δp1+2

a
δu1+2

b

]
, ξ1+2 =

[
u1+2

a
p1+2

b

]
(5.4)

All the developments to compute the CTFs of the system 1+2 when the decoupling

boundary Ω2 is considered are presented in Appendix D.5.2.

5.1.1.2 Results and comparison with a reference calculation

In order to verify the formulations developed in the previous subsections, the results can

be compared to a reference calculation obtained from a FEM model of the system 1+2. In

the following sections, the calculations will be carried out with 2-D models of the systems

of interest. Indeed, studying the radiation from the partially coated cylindrical shell with

2-D models in a first place presents some advantages. As the rCTF formulation is rather

complex, using 2-D models removes a layer of complexity, hence increasing the possibility of

testing different configurations. Furthermore, considering 2-D models allows performing

FEM calculations to serve as reference for comparing with the results of the rCTF method.

This would not have been possible with 3-D models as the FEM method is not indicated

for solving problems involving infinite cylindrical shells. Finally, one can stress out that

considering 2-D models for the partially coated cylindrical shell is sufficient to obtain a first

overview on the effects of partial coating in the vibroacoustic behavior of the shell. If the

results obtained from this 2-D study are considered satisfactory, a 3-D study will be taken

into consideration for a further work.

(a) Presentation of the calculation parameters and of the reference calculation
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The calculation is carried out with a cylindrical shell coated with a rubber-like material

having characteristics close to decoupling coatings. The coated shell is surrounded by water.

The characteristics of the shell, the coating and the water are presented in table 6. The

calculations are performed in a frequency range between 5 Hz and 1500 Hz, with a frequency

step of 5 Hz. It is important to mention that for this application, the material properties were

considered constant in the frequency range of interest. This is generally not the case when

decoupling coatings are considered in industrial applications.

Parameter Notation Value Unit
Shell radius R 1 m
Shell thickness hs 0.01 m
Shell Young’s modulus E 210 GPa
Shell Poisson’s ratio νs 0.3 -
Shell density ρs 7800 kg.m-3

Shell damping loss factor ηs 0.01 -
Rubber thickness hp 0.1 m
Rubber density ρp 1000 kg.m-3

Rubber speed of sound cp 290 m.s-1

Rubber loss factor ηp 0.1 -
Exterior fluid density ρ f 1000 kg.m-3

Exterior fluid speed of sound c f 1500 m.s-1

Exterior fluid loss factor η 0.001 m.s-1

Table 6: Material and fluid characteristics of the problem.

We are interested in removing a part of the coating ranging from 0 to π/4 rad (as illustrated

with Ω in figure 69). As the problem is now in 2-D, the CFs will be gate functions, meaning that

the interface Ω must be divided into a finite number of segments. The size of these segments

will be determined from the smallest wavelength at the highest considered frequency (i.e.

1500 Hz) between:

• the minimal acoustic wavelength in the surrounding fluid, λmin
f ;

• the minimal acoustic wavelength in the rubber, λmin
p ;

• the minimal flexural wavelength of the shell, λmin
s . It must be emphasized that this

value will be approximated using the flexural wavelength of a plate of similar thickness.

As the curvature increases the stiffness of the plate, the wavelength at a given frequency

increases as well, meaning that the criterion for the plate will be more restrictive than

the criterion for the shell.

As we saw in chapter 3, the segments must be smaller than half the minimal wavelength

at the highest considered frequency in order for the calculation to converge, which means
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dsegm ¤ min

(
λmin

f

2
,

λmin
p

2
,

λmin
s
2

)
(5.5)

At 1500 Hz, they yield

λmin
f = 1 m , λmin

p = 0.19 m , λmin
s = 0.26 m (5.6)

We must hence take the acoustic wavelength in the rubber as the most critical criterion,

hence leading to the following minimal size for the segments

dsegm ¤ 0.095 m (5.7)

Following this criterion, the interface Ω is divided into 9 segments along the θ coordinate

and 2 segments along the r coordinate. The accuracy of this division (and of the selected

criterion) will be discussed in section 5.2 when the decoupling calculations will be performed.

In order to compute the CTFs of the system 1+2, the segments must be discretized into a

finite number of points to apply the integral formulation described in section 4.1.2. As a first

step, the segments are discretized into 7 points. The accuracy of the calculations with this

discretization size will be evaluated in subsection 5.2.2, and if needed, the discretization will

be refined. The obtained discretized interface Ω is displayed in figure 71. It can be noticed

that some discretization points belong simultaneously to two segments, but this particular

configuration does not have any impact on the calculations.

Segments boundaries
Discretization points

Figure 71: Division of Ω into segments and discretization of the segments.

To serve as a reference, a FEM calculation is performed using the software COMSOL

Multiphysics® 5.6 [101] with the Acoustics module. However, it is important to mention that
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there is no possibility to define directly in COMSOL Multiphysics® an excitation correspond-

ing to a velocity jump at the crossing of a surface in an acoustic medium. This is problematic

in the aim of computing the condensed impedances Zij
1+2 for the acoustic formulation and

the CTFs Hpbδub,ij
1+2 and Huaδub,ij

1+2 for the vibroacoustic formulation. To circumvent this issue, an

array of 7 monopole sources is placed along the incident segments to simulate the velocity

jump as for the rCTF calculation. Concerning the calculations of Huaδpa,ij
1+2 and Hpbδpa,ij

1+2 for

the excited segments on the vibroacoustic interface, a pressure load can be directly applied

in COMSOL Multiphysics®. The CTFs are then obtained by integrating the pressure (or

the shell radial velocity depending on the considered CTF) along the receiving segment

using the intop command (which allows evaluating the integral of the chosen quantity over a

defined volume, area or line) and dividing this value by the square root of the length of the

receiving segment according to the definition of the CFs. For a receiving segment located at

the interface between the coating and the surrounding fluid, it yields

Zij
1+2 =

1a
di

» θi

θi�1

pj(R + hp)dθ (5.8)

where pj is the pressure induced by the excitation on the incident segment j, and di is the

length of the receiving segment i for which θi�1 and θi are the angular boundaries.

Finally, it is important to stress that, as the calculations are carried out using 2-D models,

the formulation developed in the previous subsections is simplified. The 2-D assumptions

transform the kx vector into a single value which will be 0 in the computations. Thus, to go

back to the physical space for a spectral quantity ˜̃p, a 1-D inverse Fourier transform (which

takes here the form of a discrete sum of the components of a Fourier series) is necessary

p =
1

2π

n=+8¸
n=�8

˜̃pejnθ (5.9)

As for the n vector, an infinite sum appears in Eq. (5.9), which must in practice be

truncated to a finite value. This value, Nmax, is derived from the maximal value of the

different wavenumbers of the problem,

Nmax = int
[
κnR max(k f , kp, ks)

]
+ 1 (5.10)

where κn is a margin coefficient (typically κn = 1.5), k f is the acoustic wavenumber in

the surrounding fluid, kp is the acoustic wavenumber in the rubber, and ks is the flexural

wavenumber of a plate with the same thickness and material properties as the cylindrical

shell.
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(b) Results for the decoupling boundary Ω1

At first, the condensed impedances of the system 1+2 are shown when the decoupling

boundary Ω1 is considered, exhibiting acoustic interfaces only. The results diplayed in

figure 72a correspond to the comparison between the semi-analytical model (for which

the developments are presented in Appendix D) and the FEM calculation. Three different

condensed impedances are displayed in figure 72a: one direct condensed impedance (1st TF),

one crossed condensed impedance with two segments far away from each other (2nd TF), and

one crossed condensed impedance with two segment close to each other (3rd TF). The excited

and receiving segments corresponding to those condensed impedances are shown in figure

72b. The blue point corresponds to the excited segment for the three TFs (and hence the

receiving segment also for the 1st TF), the yellow point corresponds to the receiving segment

for the 2nd TF and the green point corresponds to the receiving segment for the 3rd TF.
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Figure 72: (a) Condensed impedances of the system 1+2 for the decoupling boundary Ω1
(including the acoustic interface). (b) Position of the excited and receiving segments.

Some minor discrepancies can be observed, for example in the high-frequency range

for the direct condensed impedance. These discrepancies do not necessarily mean that the

errors come from the spectral calculations, but rather from the difference between the spectral

formulation and the reference calculations (which can come from the differences of modelling

of the shell, which was described using the Flügge theory for the spectral formulation, while

solid elements were used for the FEM calculation). However, the aim of this comparison is to

validate the proposed formulation and to make sure that we model correctly the behavior of

the fully coated cylindrical shell, and we can safely affirm that this aim has been met from

the observation of figure 72.
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(c) Results for the decoupling boundary Ω2

We are now interested in evaluating the CTFs of the system 1+2 when considering the

decoupling boundary Ω2, exhibiting acoustic and vibroacoustic interfaces. The comparison

between the spectral approach and the FEM calculation are shown in figure 73 for the 4

different kinds of CTFs regarding the position of the incident and receiving segments. For

the condensed mobilities (figure 73a) and condensed impedances (figure 73d), the first TF

corresponds to a direct TF (i.e. the excited and receiving segments are the same), while

the second TF corresponds to a crossed TF (i.e. the excited and receiving segments are

different). As for the condensed velocity transmissibilities (figure 73b) and condensed

pressure transmissibilities (figure 73c), the first TF corresponds to a crossed TF where the

excited and receiving segments are close to each other, while the second TF corresponds to

a crossed TF where the excited and receiving segments are far away from each other. For

each CTFs displayed in figure 73, the excited and receiving segments are shown next to the

corresponding figure (the blue point always corresponds to the excited segment).
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Figure 73: CTFs of the system 1+2 for the decoupling boundary Ω2 (including the vibroacous-
tic interface). (a) Huaδpa,ij

1+2 . (b) Huaδub,ij
1+2 . (c) Hpbδpa,ij

1+2 . (d) Hpbδub,ij
1+2 .

As it was already observed for the decoupling boundary Ω1, we can see some minor

discrepancies between the reference calculation and the semi-analytical formulation, but

there is globally a very good correlation between the two calculations. We can also notice
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that, depending on the nature of the CTFs, the amplitudes are very different, but this is only

due to the nature of the excitation and of the measured quantity.

5.1.2 Condensed pressures and condensed radial velocities of system 1+2

In order to apply the equations of the rCTF method, we have seen in chapter 3 that condensed

pressures must be computed for the global system 1+2. For the case of interest here, this

is also true when the decoupling boundary Ω1 is considered. The two kinds of condensed

pressures that must be computed are:

• P1+2: the condensed pressures from the external excitation, which is a mechanical point

force on the inner surface of the shell;

• PM
1+2: the condensed pressures induced by a monopole excitation located point M in

the exterior fluid. It is reminded that this condensed pressure allows evaluating the

pressure at point M in the target subsystem using a reciprocity principle (see subsection

3.2.2).

When the decoupling boundary Ω2 is considered, condensed radial velocities must be

computed for the patches located on a vibroacoustic interface, in addition to the condensed

pressures for the patches located on an acoustic interface. The two kinds of condensed radial

velocities are:

• U1+2: the condensed radial velocities from the external excitation;

• UM
1+2: the condensed radial velocities induced by a monopole excitation located point

M in the exterior fluid.

Hence, when the decoupling boundary Ω2 is considered, we can separate the vector of

the condensed pressures and radial velocities into two different vectors

Λ1+2 =

[
U1+2,a
P1+2,b

]
, ΛM

1+2 =

[
UM

1+2,a
PM

1+2,b

]
(5.11)

The procedure to compute the condensed pressures and condensed radial velocities of

the system 1+2 is developed in Appendix D.6.

As in subsection 5.1.1.2, the calculation is carried out with a 2-D model of the fully

coated cylindrical shell, and the results are compared with a FEM calculation performed

with COMSOL Multiphysics® 5.6. The comparison between the two calculations when

the excitation is the mechanical point force is shown in figure 74 for two condensed radial

velocities (figure 74a) and two condensed pressures (figure 74b). We can see that there are a

few minor discrepancies, especially around some anti-resonant frequencies, but globally the

125
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI082/these.pdf 
© [F. Dumortier], [2021], INSA Lyon, tous droits réservés



200 400 600 800 1000 1200 1400
Frequency (Hz)

-150

-140

-130

-120

-110

-100

-90

-80
C

o
n
d
e
n
se

d
 r

a
d
ia

l 
v
e
lo

ci
ty

 (
d
B

 r
e
f 

1
 m

.s
-1

)

FEM - 1st CRV Spectral - 1 st CRV

FEM - 2nd CRV Spectral - 2nd CRV

FEM - 1st CRV Spectral - 1 st CP

FEM - 2nd CRV Spectral - 2nd CP

(a) (b)

Figure 74: (a) Condensed radial velocities due to a mechanical point force. (b) Condensed
pressures due to a mechanical point force.

concordance between the FEM calculation and the spectral formulation is very good. This

observation thus validates these calculations.
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Figure 75: (a) Condensed radial velocities due to a unitary monopole. (b) Condensed
pressures due to a unitary monopole.

As for the monopole excitation in the surrounding fluid, the comparison between the two

calculations is shown in figure 75 for two condensed radial velocities (figure 75a) and two

condensed pressures (figure 75b). The results are very accurate as the comparison between

both calculations shows a quasi-perfect match, hence also validating these calculations.

Following this, we can focus on computing the CTFs of the subtracted subsystem.

5.1.3 Condensed Transfer Functions of subsystem 2

We are now interested in computing the CTFs of the subsystem 2, which is the missing part

of the coating in the target subsystem and will be referred to as the removed patch in the

following (this must not be confused with the patches used as condensation functions in the
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previous chapters). As this is a bounded subsystem, the procedure to compute these CTFs is

the one described in section 4.1.1. A FEM model of the removed patch is generated using the

Acoustics module of the software COMSOL Multiphysics® 5.6 [101], and the acoustic mass

and stiffness matrices of the model are extracted using LiveLinkTM for MATLAB® [200]. The

FEM model is shown in figure 76, with a size of elements that has been obtained using the

common criterion of 6 elements per acoustic wavelength at the highest considered frequency.

Figure 76: FEM model of the removed patch.

As this subsystem is entirely acoustical, the CTFs will be condensed impedances. For

this subsystem, there is no reference calculation, but the condensed impedances have been

double checked by considering a second way of carrying out the calculation to obtain these

CTFs. This second calculation is performed entirely in the COMSOL Multiphysics® software.

The segments are defined at the exterior boundaries of the model, and all the segments

are successively excited by an acoustic normal velocity, while the others remain rigid. The

pressure in the receiving segments is then evaluated by performing an integration over the

segments (using the command intop as evoked in subsection 5.1.1) to obtain the CTFs as

in Eq. (5.8). Besides, the FEM model is rather small, with few nodes and elements, hence

the sources of errors when computing the CTFs are limited. Three condensed impedances

of the subsystem 2 are shown in figure 77a: one direct condensed impedance (1st TF), one

crossed condensed impedance with two segments far away from each other (2nd TF), and one

crossed condensed impedance with two segment close to each other (3rd TF). The position

of the excited and receiving segments are displayed in figure 77b, with the color of the

points matching the color of the curves (it is worth mentioning that there is no necessity

to precise which segment is the excited one and which segment is the receiving one as the

condensed impedances are symmetric). This figure allows identifying the resonant and

anti-resonant frequencies of the subtracted subsystem, which are the most likely to cause
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errors when performing the decoupling calculations. As a way a validating these calculations,

an eigenvalue study has been carried out on the FEM model to derive the eigenfrequencies

of the model. It turns out that the first five eigenfrequencies of the subsystem are: 175 Hz,

350 Hz, 525 Hz, 700 Hz and 874 Hz, which is consistent with the resonances observed in

figure 77.
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Figure 77: (a) Condensed impedances of subsystem 2. (b) Position of the excited and receving
segments.

In subsection 5.1.1, the boundary Ω2 has been defined in order to consider the vibroacous-

tic interface. In view of applying the decoupling calculation of the rCTF method with the

boundary Ω2, some adjustments are necessary when considering the CTFs of the subsystem 2.

Indeed, as already stated, this subsystem is entirely acoustical. However, it must be stressed

that the rCTF formulation derived in section 3.2 was designed for acoustical (sub)systems,

and one cannot replace condensed impedances with CTFs of different nature without modi-

fying the rCTF formulation. To this end, the condensed impedances of the subsystem 2 will

be converted into a vibroacoustic form to match with the formulation accounting for the

decoupling boundary Ω2 in subsection 5.1.1 , and a vibroacoustic formulation of the rCTF

method will be derived in a following section.

In order to convert Z2 into its vibroacoustic form H2, the matrix is separated into 4

submatrices, as it was done for H1+2. To be consistent with the notations used in section 5.1.1,

in the following, the subscript a will denote segments located at a solid-fluid interface, while

the subscript b will denote segments located at a fluid-fluid interface. We can hence note

Z2 =

[
Zpaua

2 Zpaub
2

Zpbua
2 Zpbub

2

]
(5.12)

where
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Zpaua
2 =

[
p2

a
u2

a

]
, Zpaub

2 =

[
p2

a

u2
b

]
, Zpbua

2 =

[
p2

b
u2

a

]
, Zpbub

2 =

[
p2

b
u2

b

]
(5.13)

Let us define the excitation vector Φ2 and the unknown vector Ψ2 as

Φ2 =

[
u2

a
u2

b

]
, Ψ2 =

[
p2

a
p2

b

]
(5.14)

The excitation and unknown vectors are linked by the condensed impedance matrix of

the subsystem

Ψ2 = Z2Φ2 (5.15)

The aim is hence to convert this last equation into a vibroacoustic equation similar to

Eq. (5.3)

ξ2 = H2ζ2 (5.16)

with

ζ2 =

[
p2

a
u2

b

]
, ξ2 =

[
u2

a
p2

b

]
, H2 =

[
Huapa

2 Huaub
2

Hpbpa
2 Hpbub

2

]
(5.17)

After some developments, it is possible to go from Eq. (5.15) to Eq. (5.16) by expressing

H2 using the submatrices of Z2

H2 =

[
(Zpaua

2 )�1 �(Zpaua
2 )�1Zpaub

2
Zpbua

2 (Zpaua
2 )�1 Zpbub

2 � Zpbua
2 (Zpaua

2 )�1Zpaub
2

]
(5.18)

The behavior of these CTFs is shown in figure 78 for the 4 different submatrices. For each

submatrix, a sketch is proposed with the blue point corresponding to the incident segment,

and the green points corresponding to the receiving segments. For the condensed admittances

(figure 78a) and condensed impedances (figure 78d), the blue curve corresponds to a direct

CTF (i.e. the incident and receiving segments are the same), which explains that there is only

one green point in these figures.

The behaviors exhibited in figure 78 are very different from the ones observed in figure 77

for the acoustic interface Ω1. The resonances have been shifted towards higher frequencies,

as the first resonance appears above 700 Hz. This is due to the change in the boundary

conditions of the problem. Indeed, for the acoustic interface Ω1, the condensed impedances

were computed considering a null velocity on all the segments except the incident one. For

the vibroacoustic interface Ω2 however, the segments located at a solid-fluid interface have a

zero-pressure boundary condition. This also explains for example the behavior of the 2nd

TF in figure 78d, as the receiving segment is located in the thickness of the coating, hence
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Figure 78: CTFs of subsystem 2 converted in vibroacoustic form. (a) Hua pa,ij
2 . (b) Huaub,ij

2 . (c)
Hpb pa,ij

2 . (d) Hpbub,ij
2 .

being close to the zero-pressure boundary condition. A FEM verification has also been

carried out with this change in boundary conditions in order to compute the eigenfrequencies

of the subsystem with the vibroacoustic interface Ω2. The first five eigenfrequencies are:

711 Hz, 732 Hz, 790 Hz, 878 Hz and 989 Hz. This is also consistent with the resonances

observed in figure 78, even if they are slightly blurred, due to the proximity of the different

resonances and to the high damping of the subsystem. Besides, we can observe that, for a

single submatrix, the amplitudes of the CTFs can cover a wide range of values, a behavior

that was not observed for the system 1+2. This could induce a difference in the conditioning

of the CTF matrix compared to the condensed impedance matrix and have an implication

on the accuracy of the rCTF calculations. This will be investigated when performing the

decoupling calculations in the next section, as all the quantities necessary to apply the rCTF

method have been obtained.

5.2 Decoupling calculations using the rCTF method

In this section, the decoupling calculations of the local rCTF method will be carried out to

remove the coating tile from the fully coated cylindrical shell. However, before performing

these calculations, the procedure to derive the CTFs of the target subsystem 1 from the CTFs

of the global system and the subtracted subsystem when the decoupling boundary Ω2 is
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considered must be explicited. This will allow predicting the pressure inside the target

subsystem for the vibroacoustic formulation. It must be mentioned that the intermediary

results corresponding to the decoupling of the CTFs (i.e. Eq. (3.22)), which were investigated

in details in chapters 3 and 4, will not be addressed in this section. Indeed, in the previous

chapters, this investigation constituted a first insight in evaluating the accuracy of the rCTF

method (in chapter 3) and its sensitivity to model errors (in chapter 4). However, these results

do not constitute the main objective of this application, which is to study the response at any

point of the decoupled subsystem. This will hence be the main focus in this section.

5.2.1 Vibroacoustic formulation of the rCTF method

In order to compute the CTFs of the target subsystem for the decoupling boundary Ω2

exhibiting the vibroacoustic interface, the procedure developed in section 3.2.3 must be

reiterated for the problem at hand here. If the CTFs of the global system (Eqs. 5.1 and 5.2)

and of the subtracted subsystem (Eqs. 5.18 and 5.13) have already been defined, one must

explicit the CTFs of the target subsystem in consistency with the vibroacoustic interface

H1 =

[
Huapa

1 Huaub
1

Hpbpa
1 Hpbub

1

]
(5.19)

where

Huapa
1 =

[
u1

a
p1

a

]
, Huaub

1 =

[
u1

a

u1
b

]
, Hpbpa

1 =

[
p1

b
p1

a

]
, Hpbub

1 =

[
p1

b
u1

b

]
(5.20)

Following this notation, the CTF matrix H1 links the excitation vector ζ1 and the unknown

vector ξ1 via the following relation

ξ1 = H1ζ1 (5.21)

with

ζ1 =

[
p1

a
u1

b

]
, ξ1 =

[
u1

a
p1

b

]
(5.22)

To express H1 as a function of H1+2 and H2, we consider at first the coupling problem

to express H1+2 from H1 and H2. The velocity equilibrium at the solid-fluid interface and

pressure continuity at the fluid-fluid interface yield

"
u1

a + u2
a = 0

p1
b � p2

b = 0
(5.23)

From these conditions, it is not possible to obtain a direct relation between ξ1 and ξ2. To

circumvent this issue, a change in the normal orientation is considered for u2
a, leading to the

following: ū2
a = �u2

a. The subtracted subsystem hence reads
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ξ̄2 = H̄2ζ2 (5.24)

with

ξ̄2 =

[
ū2

a
p2

b

]
, H̄2 =

[ �(Zpaua
2 )�1 (Zpaua

2 )�1Zpaub
2

Zpbua
2 (Zpaua

2 )�1 Zpbub
2 � Zpbua

2 (Zpaua
2 )�1Zpaub

2

]
(5.25)

Using these notations, a system similar than the one in Eq. (3.19) can be obtained

$''&
''%

ξ1 = H1ζ1
ξ̄2 = H̄2ζ2
ξ1 = ξ̄2 = ξ1+2
∆1+2 = ζ1 + ζ2

(5.26)

All calculations done, the CTFs of the global system can then be expressed using the CTFs

of the target and subtracted subsystems

H1+2 = H1 (H1 + H̄2)
�1 H̄2 (5.27)

Subsequently, the CTFs of the target subsystem can obtained by inverting the expression

in Eq. (5.27)

H1 = H̄2 (H̄2 �H1+2)
�1 H1+2 (5.28)

And finally, the pressure at any point of the target subsystem can be obtained after some

developments using the vibroacoustic form of the CTFs

p̃1(M) = p1+2(M) +
(

I + H̄2 (H̄2 �H1+2)
�1 H1+2H̄�1

2

)
ΛM

1+2H̄�1
2 Λ1+2 (5.29)

5.2.2 Pressure radiated in the surrounding medium using the rCTF method

The rCTF method is used here to predict the pressure at any point of the surrounding medium

in the target subsystem. One has to be aware that this does not exactly correspond to the

partially coated cylindrical shell, as removing the coating patch will result in a rigid screen in

place of the coating patch (illustrated in figure 79). To study the radiation from the partially

coated cylindrical shell, the target subsystem obtained here must be coupled to a model of a

water patch in a subsequent step. This will be investigated in section 5.3.

The pressure radiated by the shell in the surrounding fluid of the target subsystem is

calculated at first at 2 different points (see figure 79, in which the distances between the points

and the rubber-surrounding fluid interface have not been scaled): the first point is 1 m away

from the shell and at the same angle as the mechanical force (i.e. θ = π/2 rad), while the

second point is 50 cm away from the shell, and at an angle corresponding to a boundary of
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F

Point 1

Point 2

Figure 79: Target subsystem: localization of the measurement points.

the removed patch (i.e. θ = 0 rad). The results of the rCTF method are shown in figure 80 for

both formulations (corresponding to Eq. (3.24) for the acoustic formulation and Eq. (5.29) for

the vibroacoustic formulation), and are compared to a FEM calculation serving as a reference.

We can see that, for the first point, the results are globally good above 600 Hz, but the errors

are higher in the low frequencies, especially for the vibroacoustic formulation. As for the

second point, which is more impacted by the presence of the rigid screen, both formulations

exhibit considerable errors.

(a) (b)

Figure 80: Radiated pressure in the target subsystem using the rCTF method. (a) 1st point. (b)
2nd point.

A first way to mitigate those errors would be to refine the discretization for the com-

putation of the CTFs of the global system 1+2, and for the condensed pressures and radial

velocities. In figure 80, 7 points were used to discretize the segments, as evoked in subsection

5.1.1.2. A new calculation is hence carried out by discretizing the segments into 25 points,

and the results are shown in figure 81. We can see that, for both points, the results are slightly
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better than before, but subsequent errors persist in the low frequencies, and for the second

point in the whole frequency range.

(a) (b)

Figure 81: Radiated pressure in the target subsystem using the rCTF method - computation
with a finer discretization. (a) 1st point. (b) 2nd point.

The difference of results for the two decoupling boundaries is particularly glaring in

the low-frequency range, especially for the first point where the errors are much higher

for the decoupling boundary Ω2. To explain this fact, one can have a look at the condition

number of the different CTFs matrices of interest in both formulations. We can see in figure

82 that the CTFs matrices when the decoupling boundary Ω2 is considered are much more

ill-conditioned than those in the acoustic formulation. As it has already been evoked in

subsection 5.1.3, the CTFs matrices in the vibroacoustic formulation exhibit a very wide range

of amplitudes for both the global system and the subtracted subsystem. This behavior can

potentially lead to important disparities in the eigenvalues of the matrices, and hence high

values of the condition numbers. This probably explains why the vibroacoustic formulation

is much more sensitive to model errors.

A second possibility to mitigate those errors could be to use a finer mesh for the FEM

model of the subsystem 2. However, this solution has been tested and does not really have

an influence on the results, as the model is sufficiently described using the criterion of 6

elements per acoustic wavelength at the highest considered frequency. The results are thus

not shown here. We can thus conclude that the decoupling does not work really well here.

One explanation could come, as it has already been evoked in section 3.3.4, from the fact

that substructuring in the near-field of a structure (a plate in references [170, 171]) can induce

problems of convergence of the CTF approach (or PTF in the references). To explore this lead,

in the next subsection, the decoupling will be carried out by considering removing only a

fraction of the patch along the thickness.
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Figure 82: Condition number of the CTFs matrices. (a) Acoustic rCTF formulation. (b)
Vibroacoustic rCTF formulation.

5.2.3 Removing a fraction of the patch

5.2.3.1 Test case with a half-patch

F

Point 1

Point 2

Figure 83: Target subsystem obtained by removing a half-patch.

To verify if the hypothesis proposed in the previous paragraph is correct, we are interested

here in removing only a half-thickness of the initial subtracted subsytem: the part that is

not directly bonded to the shell. This allows partioning at a given distance of the vibrating

structure, as it was proposed in [171], and in order to avoid the description, with the rCTF

method, of the complex interaction between the vibrating structure and the surrounding

fluid. The target subsytem is hence a coated cylindrical shell, with an angular domain where

only half of the coating thickness is coated, the other half being a rigid screen, as shown in

figure 83. Given that there is no more vibroacoustic decoupling interface, only the acoustic

formulation of the rCTF method will be explored here.

The results of the decoupling calculation using the rCTF method are presented in figure 84

135
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI082/these.pdf 
© [F. Dumortier], [2021], INSA Lyon, tous droits réservés



(a) (b)

Figure 84: Radiated pressure in the target subsystem when removing a half-patch using the
rCTF method. (a) 1st point. (b) 2nd point.

for the same points, and with 7 points used to discretize the segments for the global system.

We can see that the results are much better for this case study, as the comparison with the

reference FEM calculation shows a quasi-perfect match for the first point. The results for

the second points show more discrepancies, but it is important to mention that, unlike the

previous calculation, the resonances and anti-resonances are located at the correct frequencies,

especially in the low-frequency range.

To verify the validity of this calculation in another way, cartographies can be plotted at

a single frequency to observe the radiated pressure field in the surrounding fluid medium.

At first, a cartography is proposed at 500 Hz is figure 85, a frequency at which the results of

the rCTF calculation is very close to the reference calculation for both points. In addition, a

cartography at the same frequency is shown in figure 85c for the global system 1+2, which is

the fully coated cylindrical shell, and for the same mechanical excitation. There is an excellent

correlation between the reference (figure 85a) and rCTF (figure 85b) calculations, with minor

discrepancies in the shadow area of the shell where the pressure is at its minima values. It

is also very interesting to notice that there is a clear difference between the pressure field in

the target subsystem and the pressure field in the global system. The loss of axisymmetry is

well observed, and the presence of the rigid screen in the target subsystem in place of a part

of the coating is correctly taken into account when performing the rCTF calculation. This

statement is very important, as it shows that even if some errors can appear when performing

the decoupling calculations, the impact of the default (here, the missing part of the coating) is

correctly modelled.

In a second step, cartographies are proposed in figure 86 at 2 frequencies: at 195 Hz,

which is a resonant frequency of the target subsystem in the low frequency range (see figure

84), and at 905 Hz, which is the anti-resonant frequency at which the error is the highest in
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(a) (b)

(c)

Figure 85: Cartography of the radiated pressure in the surrounding fluid using the rCTF
method. (a) FEM calculation at 500 Hz. (b) rCTF calculation at 500 Hz. (c) FEM calculation
500 Hz for the global system 1+2.

figure 84b. From the observation of these cartographies, we can see that the radiated pressure

field is correctly described in all the surrounding fluid medium, as the patterns of maxima

and minima of pressure are precisely localized. Some discrepancies in the amplitudes can

sometimes be observed, particularly in the vicinity of the subtracted subsystem, but these

errors do not change the global behavior of the pressure field in this area. Furthermore, as

already evoked when analyzing figure 85, the pressure field is not axisymmetric, highlighting

the presence of the rigid screen for both FEM and rCTF calculations.

5.2.3.2 Parametric study on the thickness of the removed coating patch

Following this observation, it could be interesting to carry out a parametric study regarding

the fraction of the thickness of the coating patch that is removed. Starting from the case

studied in subsection 5.2.3.1 (i.e. 50%), we can go towards cases where the inner coupling

interface gets closer to the exterior surface of the shell. Ultimately, it will also be interesting

to compare the differences between the several target subsystems that are going to be studied

here, and also with the target subsystem of interest described in figure 79.
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(a) (b)

(c) (d)

Figure 86: Cartography of the radiated pressure in the surrounding fluid using the rCTF
method. (a) FEM calculation at 195 Hz. (b) rCTF calculation at 195 Hz. (c) FEM calculation at
905 Hz. (d) rCTF calculation at 905 Hz.

In figure 87, the pressure radiated at the two previously studied points are displayed for

the FEM and rCTF calculations, for four different fractions of removed coating patch: 75%

(figure 87a), 80% (figure 87b), 85% (figure 87c) and 90% (figure 87d). It is reminded that the

results for the 100% case are presented in figure 80 while the results for the 50 % case are

shown in figure 84. The observation of the results, especially for the second point, shows a

clear tendancy for the results to deteriorate when the inner coupling interface gets closer to

the shell’s surface. Above the fact that the size of the subtracted subsystem increases (which

can result in higher errors as it has been highlighted in chapter 2), the explanation of these

errors comes from the proximity of the shell’s surface. Hence, it can be interesting to compare

the evolution of the radiated pressure at the points of interest for the different configurations.

This will permit estimating the accuracy of the calculation if only a fraction of the coating

thickness is removed, instead of the whole coating thickness.

The comparison between the different configurations is displayed in figure 88 for the

second point only as it is the one more impacted by the changes in configurations (the

configurations have been split into two figures in order to keep a clear view of the different
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(a) (b)

(c) (d)

Figure 87: Parametric study for several fractions of thickness of the coating. (a) 75%. (b) 80%.
(c) 85%. (d) 90%

(a) (b)

Figure 88: Comparison of the FEM reference calculation for several fractions of thickness of
the coating. (a) 100%, 90% and 85%. (b) 85%, 80% and 75%.

curves). It is interesting to notice that in figure 88b, the behavior of the three configurations is

very close, especially in the low frequency range. However, the 90% and 100% configurations

in figure 88a exhibit different behaviors, especially in the low frequency range. This means
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that for points close to the coupling interface in the surrounding fluid of the target subsystem,

it is not possible to use a less sensitive configuration in order to get an approximated value of

the radiated pressure. Hence, in order to correctly predict the radiated pressure in this area,

another way must be explored to improve the results of the rCTF for the 90% and, as much

as possible, 100% configurations.

5.2.4 Influence of the size of the segments

When the interface between two subsystems is situated in the near-field of a structure, it

has been observed in [170] that the criterion of Eq. (3.31) used for the size of the patches to

apply the PTF method may not be sufficient. The investigations in [170] show that for this

situation, corresponding to substructuring in the near field zone of the vibrating structure,

refining the criterion regarding the minimum wavelength (considering the acoustic and

structural subsystems) at the highest considered frequency can significantly improve the

results (the criterion λ/6 was retained in [170]). On another hand, in her PhD thesis, Berton

[201] observed that, to predict the fluid added mass effect on the modes of a vibrating

structure immersed in water, a criterion λn/15 was necessary, where λn corresponds to the

modal wavelength of the considered mode n. We can hence verify the influence of the size of

the segments on the results of the rCTF calculation here.

5.2.4.1 Calculations with the 90% patch

At first, this study is carried out by removing 90% of the thickness of the coating patch. As a

preliminary observation, we can notice that a zoom in the low-frequency range of figure 87d

shows that the calculation for the 90% patch seems to converge until 30 Hz with the criterion

λ/2, at least regarding the correct placement of the resonances and anti-resonances. At this

frequency, the different wavelengths of interest read

λ f = 50 m , λp = 9.76 m , λs = 1.81 m (5.30)

Hence, at this frequency, the most restraining criterion is linked to the flexural wavelength

of the shell. Regarding the initial size of the segments, this limit of convergence is reached for

a criterion equivalent to λ/18. This means that it may be necessary to apply this criterion at

1500 Hz in order for the calculation to converge completly. Before verifying this assumption, it

can be interesting to see if a less restraining criterion could be sufficient. Indeed, reducing the

size of the segments considerably increases the computing time, hence a good balance must

be found between satisfactory results and computational cost. To this end, the evolution of the

radiated pressure in the target subsystem is evaluated in figure 89 for three different criteria

regarding the size of the segments: λ/2, λ/4 and λ/6 (the criterion used in [170]). A zoom in
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the low-frequency range is proposed in figure 89b in order to have a better appreciation of

the convergence of the calculations in this range.

(a) (b)

Figure 89: Evaluation of the influence of the criterion for the size of the segments. (a) Results
in the whole frequency range. (b) Zoom in the low frequency range.

We can see a huge difference between the λ/2 calculation, and the λ/4 and the λ/6

calculations. However, between the λ/4 and the λ/6 calculations, the difference is not

substantial. Some discrepancies can be observed, but there is no clear difference in the

frequency at which the convergence is reached (between 1200 Hz and 1300 Hz for both

calculations, with some minor discrepancies appearing at the resonances and anti-resonances).

The λ/4 calculation even seems to present a better convergence, but the discrepancies are

slightly higher at the resonances and anti-resonances than for the λ/6 calculation.

In order to verify these observations, a cartography of the radiated pressure can be plotted

for these three criteria at 540 Hz, frequency at which the criterion λ/2 should not converge,

contrary to the other 2 criteria. It could also be interesting to verify if there is a notable

difference between the λ/4 and λ/6 calculations.

The cartographies presented in figure 90 confirm the previous observations. The rCTF

calculation has not converged in figure 90b for the criterion λ/2, but it has converged for

the criteria λ/4 (90c) and λ/6 (90d). Also, the calculations for the λ/4 and λ/6 criteria are

almost entirely identical, which supports the observations drawn from figure 89. Thus, we

can imagine that a more restraining criterion won’t necessary improve the results. To verify

this statement, the rCTF calculation is carried out for 3 other criteria in figure 91: λ/8, λ/12

and λ/18 (which was previously identified as the possible criterion for the rCTF calculation

to correctly converge).

From the results presented in figure 91, we can confirm the previous assumption. Indeed,

there isn’t any substantial benefit in applying more restrictive criteria, as the limit of conver-

gence is globally the same for all the studied criteria from λ/4 to λ/18. As the point at which
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(a) (b)

(c) (d)

Figure 90: Cartography of the radiated pressure at 540 Hz for several criteria regarding the
size of the segments, when removing 90% of the coating patch. (a) FEM calculation. (b) rCTF
calculation with λ/2 criterion. (c) rCTF calculation with λ/4 criterion. (d) rCTF calculation
with λ/6 criterion.

the results are presented is located in the most critical area where errors can appear, we can

safely assume that this conclusion will not change when considering other points, further

away from the rigid screen. Besides, the discrepancies observed above 1300 Hz remain for

all the studied criteria, meaning that the rCTF method fails to converge in this frequency

domain. Possibilities to improve this convergence will be discussed in the perspectives of

this work. We can now try to carry out the same investigations for the initial rCTF calculation

consisting in removing the whole coating patch, in order to obtain more satisfactory results.

5.2.4.2 Calculations with the whole patch considering the acoustic formulation

When the whole patch is removed, as it has been investigated in subsection 5.2.2, it is difficult

to identify a limit on convergence for the second investigated point (see figure 81b), as the

calculation does not seem to converge at all. Hence, a first calculation is carried out for the

criteria λ/4 and λ/6 in figure 92 (with a zoom in the low frequency range in figure 92b). If

the results are slightly better than for the λ/2 criterion, it is still difficult to identify clearly
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Figure 91: Radiated pressure from rCTF calculations with restrictive criteria regarding the
size of the segments.

(a) (b)

Figure 92: Evaluation of the influence of the criterion for the size of the segments when
removing the full patch. (a) Results in the whole frequency range. (b) Zoom in the low
frequency range.

a convergence frequency as it was done when removing the 90% patch. However, for this

case, the inner coupling interface is bonded to the shell’s surface, which means that a more

restrictive criterion could be necessary, contrary to the 90% patch. The calculations where

hence carried out for criteria ranging from λ/8 to λ/25, but the results did not improve

and are thus not shown here. This assumption can be confirmed when a cartography of the

pressure field is plotted at 1000 Hz for the λ/4 and λ/6 criteria in figure 93. We can see a

slight benefit in using the λ/6 criterion instead of the λ/4 criterion, especially in the area

where the pressure is lower on the left-hand side of the shell. Some discrepancies can be
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observed between the FEM and rCTF calculations in the vicinity of the coupling interface,

but in the majority of the domain, there is a very good agreement between both calculations.

(a) (b)

(c)

Figure 93: Cartography of the radiated pressure at 1000 Hz for several criteria regarding the
size of the segments, when removing 100% of the coating patch. (a) FEM calculation. (b)
rCTF calculation with λ/4 criterion. (c) rCTF calculation with λ/6 criterion.

5.2.4.3 Calculations with the whole patch considering the vibroacoustic formulation

Besides, if this study has been carried out for the acoustic formulation, it could also be

interesting to perform rCTF calculations considering the vibroacoustic formulation with

smaller segments to see if the results from this formulation can be improved.

The results of these investigations for the vibroacoustic rCTF formulation are presented

in figure 94 for the criteria λ/4 and λ/6 (with a zoom in the low frequency range in figure

94b). They show no significant improvement compared to the λ/2 calculation in figure 81b,

and we can also notice that there is almost no difference between those two calculations. We

can hence conclude that the size of the segments has an influence on the results of the rCTF

method only when the acoustic formulation is considered.

The investigations carried out in this section gave significant insights on the validity of the

rCTF method for the present case of interest. Of the two proposed formulations, the acoustic
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(a) (b)

Figure 94: Evaluation of the influence of the criterion for the size of the segments when
removing the full patch considering the vibroacoustic formulation. (a) Results in the whole
frequency range. (b) Zoom in the low frequency range.

one presented the best results and a better potential for improvement when considering

the size of the segments and the fraction of the patch to be removed. It will hence be the

one retained. It is important to stress that the mitigated results discussed here concern the

particular case of the pressure field in the area close to the coupling interface. The pressure

field in the remaining parts of the target subsystem obtained using the rCTF method is very

close to the reference calculation. However, the target subsystem obtained here corresponds

to a partially coated cylindrical shell where a rigid screen has taken the place of the missing

part of the coating. In order to study the radiation from a partially coated cylindrical shell in

water, this target subsystem must be coupled to a water patch to fill the rigid screen. This is

investigated in the next section.

5.3 Recoupling with a water tile

Now that a coating patch has been removed from the fully coated cylindrical shell, we are

interested in coupling this model to a FEM model of the water to fill the missing part of the

coating, as shown in figure 95. Here after, this operation will be referred to as "recoupling".

The formulation to perform this recoupling calculation, based on the direct CTF approach, is

developed before being applied to the radiation of the partially coated cylindrical shell.

5.3.1 Formulation for the recoupling

The necessary equations to couple two subsystems along an interface Ω have been presented

in section 3.1. The two equations of interest here are reminded

145
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI082/these.pdf 
© [F. Dumortier], [2021], INSA Lyon, tous droits réservés



FF

M1 M1

Subsystem 1 Subsystem 2' System 1+2'

M2' M2'

Ω

Ω

Figure 95: Recoupling with a water tile.

p1+2 (M1) = p̃1(M1) + Z1(M1)U1+2

p1+2 (M2 ) = Z2 (M2 )U1+2

(5.31a)
(5.31b)

where the point M1 initially belongs to subsystem 1, while the point M2 initially belongs to

subsystem 2’. These equations correspond to the pressure at any point of the final recoupled

subsystem, and the subscript 2’ denotes the recoupled water patch. Let us, at first, focus on

Eq. (5.31a), in order to obtain the radiated pressure in the exterior acoustic domain. p̃1(M1) is

the blocked pressure when the subsystem 1 is uncoupled from subsystem 2’ and corresponds

to the quantity computed in section 5.2. We must hence calculate Z1(M1) and U1+2 .

Z1(M1) is the vector of the point condensed impedances of subsystem 1, and its compo-

nents are defined as the pressure at point M1 when normal velocities corresponding to each

condensation function are prescribed on Ω. Using a reciprocity principle as in section 3.2.2,

this quantity is equal to the condensed pressure at the surface Ω when a monopole of unit

volume velocity is located at the point M1 of the uncoupled subsystem 1. It is hence noted

P̃M1
1 , and has been calculated in Eq. (3.23)

P̃M1
1 =

(
I + Z2 (Z2 Z1+2)

1 Z1+2Z2
1
)

PM1
1+2 (5.32)

Concerning U1+2 , it is given directly by Eq. (3.8)

U1+2 = (Z1 + Z2 )
1 P̃1 (5.33)

As Z1 has already been computed, the necessary quantities here are Z2 (which can be

obtained in the same way as Z2, through a FEM calculation), and P̃1. The latter corresponds

to the condensed pressure at the surface Ω of the uncoupled subsystem 1 when the excitation

is the external mechanical force and can then be noted P̃1. It is calculated in a similar way as

P̃M1
1 in Eq. (5.32)
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P̃1 =
(

I + Z2 (Z2 � Z1+2)
�1 Z1+2Z2

�1
)

P1+2 (5.34)

From these information, Eq. (5.31a) can be rewritten

p1+21(M1) = p1+2(M1) +
(

I + Z2 (Z2 � Z1+2)
�1 Z1+2Z2

�1
)

PM1
1+2Z2

�1P1+2

� P̃M1
1

(
Z2 (Z2 � Z1+2)

�1 Z1+2 + Z21
)�1

P̃1

(5.35)

Concerning the pressure at the point M21 , initially belonging to the subsystem 2’ (i.e. the

water patch), it is described in Eq. (5.31b). The quantity Z21(M21) can be obtained by placing

a unitary monopole at point M21 in subsystem 2’ and computing the condensed pressure at

the surface Ω. This calculation can be done directly in the FEM model of the water patch. All

the necessary quantities to compute the pressure in the recoupled system have then already

been calculated. The computations will hence be carried out in the next sections.

5.3.2 Recoupling with the 90% patch

In section 5.2, we have seen that the decoupling calculations of the rCTF exhibit non negligible

errors in the vicinity of the coupling interface. A way to mitigate those errors was to reduce

the size of the segments, and to consider removing only a fraction of the coating patch

instead of its entirety. These two combined solutions gave interesting results, which lead

us to consider, at first, this configuration for the recoupling calculations. In the following,

the calculations will be carried out considering the λ/6 criterion to define the size of the

segments.
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Figure 96: Pressure radiated by the partially coated shell after recoupling with the 90% patch.
(a) 1st point. (b) 2nd point.

The pressure radiated by the partially coated cylindrical shell when 90% of the coating

patch is removed (and replaced by water) is shown in figure 96 for the two points previously
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investigated (see figure 79). At first sight, we can notice that the recoupling seems to work

fine until 1300 Hz. Above this frequency, some discrepancies appear, especially for the point

located close to the coupling interface. The zoom in the low-frequency range allows verifying

that the resonances and anti-resonances in this range are perfectly described, both in terms of

frequency and amplitude.

(a) (b)

(c) (d)

Figure 97: Pressure radiated by the partially coated shell after recoupling with the 90% patch -
cartographies. (a) FEM calculation at 50 Hz. (b) rCTF calculation at 50 Hz. (c) FEM calculation
at 1435 Hz. (d) rCTF calculation at 1435 Hz.

These results can be completed with cartographies plotted at several frequencies. In

figure 97, cartographies are shown at 50 Hz (which is a resonant frequency of the system in

the low-frequency range) and 1435 Hz, as it is the frequency at which the error is maximal

in figure 96b. The first cartography, at 50 Hz shows a perfect match, but we can observe

that the pressure field is symmetric with respect to the direction of application of the force

(i.e. θ = π/2 rad). This highlights that the effect of the removed patch is negligible at this

frequency, which means that, if at least the rCTF calculation does not introduce errors for this

configuration, this result is not sufficient to conclude that the rCTF calculation is accurate.

Besides, the cartography at 1435 Hz shows discrepancies between the FEM calculation and

the rCTF calculation, even if global trends are similar on the two figures. Contrary to the
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calculation at 50 Hz, it is possible to observe the effect of the missing patch, as the pressure

field is not symmetric anymore. To draw a stronger conclusion on the result of this study, a

cartography is hence plotted at 800 Hz in figure 98. At this frequency, the influence of the

removed patch is highlighted by the asymmetry of the pressure field, and the match between

the two calculations is almost perfect, with very minor discrepancies located at points where

the pressure is minimal. The comparison with the radiated pressure field when the shell is

fully coated will be carried out in subsection 5.3.3 when the recoupling of the whole patch

will be investigated.

(a) (b)

Figure 98: Pressure radiated by the partially coated shell after recoupling with the 90% patch
- cartographies. (a) FEM calculation at 800 Hz. (b) rCTF calculation at 800 Hz.

5.3.3 Recoupling with the whole patch

The results in subsection 5.3.2 show that recoupling the target subsystem of section 5.2 with a

water patch tends to mitigate the errors of the decoupling. This can be explained, notably,

by the fact that the recoupled system (i.e. the partially coated cylindrical shell) exhibits less

resonances and anti-resonances than the target subsystem of section 5.2, when the missing

part of the coating was replaced by a rigid screen. These promising results will hence be

applied to the practical case of interest: the partially coated cylindrical shell where the whole

coating patch has been removed and replaced by a water patch. The results of this recoupling

are shown in figure 99 for the same two points. A supplementary curve has been added to

show the behavior of the fully coated cylindrical shell. This comparison allows highlighting

the influence of the partial coating.

If the comparison between the reference calculation and the rCTF one shows that the

recoupling with the whole patch is slightly less accurate than for the 90% patch (due to the

higher errors resulting from the decoupling process), the results remain very satisfactory.

In the low-frequency range, the resonances and anti-resonances are still correctly described
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Figure 99: Pressure radiated by the partially coated shell after recoupling with the whole
patch. (a) 1st point. (b) 2nd point.

both in terms of frequency and amplitude. Some slight discrepancies can be observed at

higher frequencies, but the errors remain low, except above 1300 Hz as it has already been

highlighted in subsection 5.3.2. Besides, the comparison with the curves corresponding to

the fully coated cylindrical shell show that the influence of the partial coating is correctly

taken into account with the rCTF calculations. The difference of behavior between the fully

coated and partially coated shell is particularly highlighted in figure 99b corresponding to

the second investigated point, which was predictable as this point is located close to the

missing part of the coating. It is also interesting to notice that, for both points, the zoom in

the low-frequency range shows that the fully coated and partially coated shells exhibit a very

similar behavior, with the same resonances and anti-resonances. Once again, these results

can be validated with cartographies to observe the radiated pressure field in the recoupled

system.

A first cartography is proposed at 800 Hz in figure 100, with the reference FEM calculation

in figure 100a, the rCTF calculation in figure 100b, and a FEM calculation of the pressure

radiated by the fully coated shell in figure 100c. This frequency was chosen as, in subsection

5.3.2, this frequency was estimated to be more meaningful than the calculation at 50 Hz, as

it highlights the influence of the removed patch (contrary to the low-frequency range, as it

has been observed in figure 99). Besides, the comparison between figures 96 and 99 shows

that in the low-frequency range, the behavior of the recoupled system whether the removed

patch in the 90% one or the 100% one is almost identical. Hence, for the calculation at 50 Hz,

the cartography looks very much like the one in figure 97a or b. We can observe that the

results of the rCTF calculation at 800 Hz are excellent compared to the reference one, and the

difference between the partially coated shell and the fully coated shell is well highlighted.

Besides, it is interesting to notice that the pressure fields for the partially coated shell in figure
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(a) (b)

(c)

Figure 100: Pressure radiated by the partially coated shell after recoupling with the 100%
patch - cartographies at 800 Hz. (a) FEM calculation. (b) rCTF calculation. (c) Pressure
radiated by the fully coated shell.

100 stays very similar to the ones in figure 98 related to the 90% patch. This means that the

results obtained with the latter, which are slightly better than for the 100% patch, remain a

satisfactory approximation of the behavior of the partially coated shell when it is studied

using the rCTF method.

At 1435 Hz, as we can see in figure 101, there is also a significant difference between the

radiated pressure fields of the partially coated and fully coated cases. If some discrepancies

can be observed between the rCTF and FEM calculations, the global behavior of the pressure

field is correctly described and the difference with the fully coated configuration is well

accounted for. Furthermore, it is important to keep in mind that the cartographies proposed

here correspond to the frequency at which the errors are higher, meaning that in all the

remaining of the frequency range, the results will be very accurate as in figure 100. This leads

us to the conclusion that the rCTF method gives meaningful results when evaluating the

radiation properties of the partially coated cylindrical shell.
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(a) (b)

(c)

Figure 101: Pressure radiated by the partially coated shell after recoupling with the 100%
patch - cartographies at 1435 Hz. (a) FEM calculation. (b) rCTF calculation. (c) Pressure
radiated by the fully coated shell.

5.4 Influence of the size of the removed tile and of the location
of the external force

In the previous section, we have seen that the rCTF method, applied to the radiation of a

partially coated cylindrical shell, provides meaningful results. Given this observation, the

influence of several parameters, such as the size of the patch (in terms of angular spreading of

the removed patch), or the location of application of the external force relative to the location

of the removed patch, is studied. As we have seen in section 5.3 that the rCTF method with

the recoupling of the water patch converges almost perfectly up to 1300 Hz, the results in

this section will be limited to this frequency range. The possibilities of improvement of the

method to higher frequencies will be discussed in the conclusion of this work.

5.4.1 Influence of the size of the removed patch

As a first study, we are interested in evaluating the influence of the size of the removed patch.

Indeed, it is important to know to what extent the absence of coating in a given angular
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area of the shell impacts the vibroacoustic behavior of this one. In the previous sections, the

removed patch was ranging from 0 to π/4 rad. In this study, different calculations will be

carried out with the same mechanical force as in the previous sections (i.e. θ = π/2 rad),

and for three other maximal angles for the boundary of the removed patch: π/12, π/8 and

π/2 rad. The first two values were chosen beacause, when the impact of a missing patch

is evaluated, the concerned missing part of the coating is generally smaller than the one

studied in the previous sections. For the last case, π/2 rad, the aim is to evaluate the impact

of removing such a big part of the coating, which should be more important than for the

other investigated cases, even if this does not have a practical application in industry.

(a) (b)

Figure 102: Influence of the angular spreading of the removed patch. (a) 1st point (θ = π/2
rad, 1 m away from the shell). (b) 2nd point (θ = 0 rad, 50 cm away from the shell).

The evolution of the pressure at the two previously investigated points in the surrounding

fluid for the different sizes of removed patches are shown in figure 102, for a mechanical point

force located at an angle of π/2 rad (as in the previous sections). Firstly, we can remark, as it

was also observed in section 5.3, that in the low-frequency range (i.e. below 100 Hz), the size

of the removed patch doesn’t have any influence, nor the absence of coating. In the remaining

parts of the frequency domain, there is no clear tendancy showing that the impact of the

absence of coating tends to be higher when the removed patch is bigger. For the 1st point,

we can even observe that when the angular spreading of the removed patch is the highest

(i.e. for the π/2 patch), the radiated pressure tends to be lower. Besides, it is important to

mention that the difference between the different investigated cases is more important for

the 2nd point than for the 1st point. This result was expected as this point is located at the

same angle as one boundary of the removed patch, and it is close to the interface between

the coating and the surrounding fluid. This point is hence more impacted by the absence of

coating, and also necessarily by the difference of size of the removed patches.

To observe clearly this behavior, a cartography is plotted at 640 Hz for the four different
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(a) (b)

(c) (d)

(e)

Figure 103: Influence of the angular spreading of the removed patch - cartographies at 640 Hz.
(a) π/2. (b) π/4. (c) π/8. (d) π/12. (e) Fully coated cylindrical shell.

angular spreading configurations in figure 103. At this frequency, we can see in figure 102

that the radiated pressure at the 1st point is close for the four configurations, but more

important differences are observed for the 2nd point. Looking at these figures, it is possible to

confirm that there is no substantial difference between the four configurations in the angle of

application of the mechanical force (i.e. π/2 rad, at which is located the 1st point). However,

other areas are much more impacted by the size of the removed patch, especially those where

the radiated pressure diplays minimal values, and in the direct vicinity of the removed patch
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(where the 2nd point is located). Besides, it is interesting to notice that, for figures 103b,

c and d (corresponding to the π/4, π/8 and π/12 configurations, respectively), the three

lobes of maximal pressure are quite distinct, contrary to the figure 103a (corresponding to

the π/2 configuration) where a fourth lobe appears at an angle around π/4 rad, angle at

which the radiated pressure decreases in the other configurations. This is hence clearly the

zone where the absence of coating on a large angular area has the more impact. Finally, the

radiated pressure field in figure 103d, corresponding to the π/12 configuration, is almost

symmetric with respect to the angle of application of the force. This result shows clearly that

this configuration is the closest from the fully coated cylindrical shell, which is displayed

in figure 103e as a matter of comparison. These cartographies hence provide meaningful

insights on the influence of the size of the removed patch. But they are shown for a single

point of application of the force. In the next subsection, two other mechanical excitations will

be considered and the results in terms of radiated pressure field will be discussed.

5.4.2 Influence of the location of the external mechanical force

In subsection 5.4.1, as for the previous sections, the calculations have been carried out

considering an external mechanical force located at an angle of π/2 rad. We are interested here

in evaluating the difference in the vibroacoustic behavior of the partially coated cylindrical

shell when the location of application of the force is modified. To this end, two other external

mechanical forces are considered. The first one (F1 in figure 104) is located at an angle of

θ = 0 rad, angle corresponding to a boundary of the removed patch. And the second force

(F2 in figure 104) is located at an angle of θ = π/4 rad, which corresponds to a position

where floors of engine foundations can be placed in naval applications, implying mechanical

excitations of the shell.

F1
F2

Figure 104: Location of the two external mechanical forces.
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For this parametric study, we will focus on analyzing cartographies at a single frequency

rather than the evolution of the radiated pressure at isolated points, as it allows a more global

vision of the vibroacoustic behavior of the partially coated cylindrical shell. Also, in order

to compare with the external mechanical force applied in the previous sections, the same

frequency as in subsection 5.4.1 will be investigated (i.e. 640 Hz). In order to avoid displaying

too many figures for the sake of clarity, the results will be presented for two different sizes of

the removed patches. Firstly, the π/12 configuration will be investigated in order to see if

the modification of point of application of the force has an impact on the almost symmetric

nature observed in figure 103d. And secondly, the π/4 configuration will be investigated

in order to have a different behavior than the π/12 configuration on a case still having an

industrial interest, contrary to the π/2 configuration for example.

(a) (b)

(c)

Figure 105: Radiated pressure at 640 Hz when the force is located at θ = 0 rad. (a) π/4
removed patch configuration. (b) π/12 removed patch configuration. (c) Fully coated
cylindrical shell.

The cartographies when the external mechanical force is located at θ = 0 rad is displayed

in figure 105. From this figure, it is clear that applying the force at an angle where the

cylindrical shell is not coated exhibits a higher impact on the partial coating than in the

case investigated in figure 103. The radiated pressure field in figure 105b, corresponding
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to the π/12 configuration, is much further from being symmetric with respect to the angle

of application of the force than in figure 103d. The impact is however less pronounced for

the π/4 configuration (figure 105a), as the displayed behavior is close to the one of the fully

coated shell. This means that, depending on the location of application of the force, the ratio

between the angular spreading of the removed patch and the whole circumference of the

shell plays a role in the vibroacoustic behavior of the partially coated shell, but the impact is

not necessarily proportional to this ratio.

(a) (b)

(c)

Figure 106: Radiated pressure at 640 Hz when the force is located at θ = �π/4 rad. (a)
π/4 removed patch configuration. (b) π/12 removed patch configuration. (c) Fully coated
cylindrical shell.

Concerning the case where the force is applied at θ = �π/4 rad, displayed in figure

106, the impact of the partial coating is much less pronounced. The three configurations

of partial or full coating (π/4, π/12 and fully coated shell, respectively) display a similar

behavior, even if the π/12 configuration is closer from being symmetric with respect to the

angle of application of the force than the π/4 configuration. For this latter, we can see that

the behavior is the same than the one in figure 103b, which is normal because the angular

distance between the point of application of the force and the closer boundary of the removed

patch is equal to π/4 rad for both cases. We can conclude from this study that the impact
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of the partial coating is much more marked when the shell is excited in the vicinity of the

removed patch. Following this observation, for practical applications, it should be advised

avoiding removing a part of the coating close to locations where the shell can be mechanically

excited by the presence of floors, engine foundations, or other internal frames. However, this

study needs to be extended in order to draw conclusions with certainty regarding industrial

applications of the rCTF method.

5.5 Conclusion

The rCTF method, developed in chapter 3, has been applied in this chapter to an industrial

case, in order to study the radiation of a partially coated cylindrical shell. Following the

procedure to compute the Condensed Transfer Functions from numerical models developed

in chapter 4, a numerical model of the removed part of the coating has been subtracted from

a semi-analytical model of a fully coated cylindrical shell immerged in water. This allowed

obtaining a partially coated cylindrical shell, for which the removed part of the coating has

been replaced by a rigid screen. This model was then coupled to a numerical model of a

water tile using the CTF method to obtain the partially coated cylindrical shell immersed in

water.

Numerical applications have been presented considering 2-D models, which allowed

reducing the complexity of the problem, and gave the possibility of performing a reference

FEM calculation to have a meaningful point of comparison. Contrary to the previous chap-

ters, the system studied in this chapter was a vibroacoustical one. Hence, two decoupling

boundaries have been considered to perform the decoupling calculations of the rCTF method.

A vibroacoustic formulation was then proposed, and the results between the acoustic and

vibroacoustic formulation were compared to those of the reference calculation. It appeared

that the rCTF calculations considering the acoustic decoupling boundary led to better results,

while being easier to implement. It has also been observed that performing decoupling calcu-

lations in the vicinity of a vibrating structure can induce large errors, which were reduced by

considering smaller segments along the decoupling boundaries of the 2-D models.

Finally, the recoupling procedure, consisting in coupling the model obtained from the

rCTF method to a numerical model of a water tile using the CTF method, allowed mitigating

the errors induced by the decoupling calculations of the rCTF method. The good results

produced by the procedure enabled carrying out a first parametric study on the influence

of the size of the removed part of the coating and the position of the external mechanical

force. These studies will have to be extended to allow more robust conclusions regarding the

impact of the partial coating on the vibroacoustic behavior of the cylindrical shell, but the

results obtained in this chapter constitute a meaningful basis on which future works can be
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considered.
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General conclusions and perspectives

Conclusions

In this work, a substructuring subtractive modelling approach has been developed. Based

on a reverse formulation of the Condensed Transfer Function method, it allows decoupling

along lines or surfaces a subsystem from a global system. Presented for an acoustical system,

it can either be applied to mechanical, acoustical or vibroacoustical problems.

The theoretical fundamentals of this approach have been established. Starting from the

coupling problem of the CTF method, the pressures and radial velocities are projected on

a set of orthonormal condensation functions, and the CTFs of the uncoupled subsystems

can be calculated. Using the superposition principle, along with the pressure continuity and

radial velocities equilibrium at the coupling interface, allow deducing the behavior of the

coupled system. Then, the formulation is reversed, and the vibroacoustic behavior of the

target subsystem can be obtained from information concerning the global system and the

subtracted subsystem. This formulation allows predicting the response at any point of the

target subsystem, and not only on the decoupling interface. As the global system and the

subtracted subsystem are studied separately, they can be characterized by different means

(analytical, numerical, experimental). An example has been shown for an academic test case,

where the CTFs of the initial (sub)systems were computed analytically at first, allowing the

validation of the method. They were then computed from numerical models, which can be

based on different methods whether or not the system is bounded. When the studied system

is the partially coated, fluid loaded cylindrical shell, the rCTF method can be applied by

considering a semi-analytical formulation for the submerged fully coated cylindrical shell,

and a FEM calculation for the removed part of the coating.

The sensitivity of the rCTF method to model errors has been evaluated, at first on a

1-D case. It has been highlighted that the rCTF method is particularly sensitive at the com-

mon anti-resonances between the global system and the subtracted subsystem. Besides, it

tends to exhibit higher errors when the size of the subtracted subsystem increases. On the

other hand, if it has been observed that increasing the damping of the materials leads to
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better results, particulary around the sensitive anti-resonances of the (sub)systems, other

possibilities have been investigated to improve the convergence of the method. Following

this, a global decoupling approach has been considered, where the subtracted subsystem

is decoupled at two different interfaces from the global system, exhibiting a residual sub-

system. This approach presents the combined theoretical interests of reducing the size of

the subtracted subsystem and minimizing the number of resonances and anti-resonances

of the subsystem in the frequency range of interest. It also has the advantage of a greater

flexibility, as the second decoupling interface can be chosen by the user. If the application

of the global decoupling approach has given promising results on a 1-D test case, the imple-

mentation of the global rCTF approach on the 3-D case consisting in the scattering of a plane

wave by a rigid sphere yielded more mitigated results, notably because of the presence of

unanticipated resonances in the circumference of the subtracted hollow sphere. By choosing

a different second coupling interface, closer to the center of the sphere, and exhibiting a

smaller residual sphere, the global rCTF approach produced more interesting results, simi-

lar to those of the local rCTF approach when the CTFs were computed from analytical models.

To evaluate the sensitivity of the local and global rCTF approaches to model errors for the

3-D case, the procedure to compute the CTFs from numerical models of the global system

and subtracted subsystem has been established. For the global system, a Green formulation

was derived allowing computing the CTFs of unbounded domains. As for the subtracted

subsystem, a FEM formulation, well adapted for bounded domains of moderate size, was con-

sidered. When numerical models were used to compute the CTFs, the local and global rCTF

approaches displayed similar results when a moderate discretization size was considered for

the global system. The advantages of the global rCTF approach were especially highlighted

when a very precise model of the global system was taken into account. However, this gain

came with an increased difficulty of application of the method, and, above all, a substantial

increase in the required computational effort, hardly compatible with industrial needs.

Following the conclusions drawn from the primary applications of the rCTF method, the

local approach was used to study the radiation of a partially coated cylindrical shell immersed

in water. The formulation was proposed for a general, 3-D case, but was applied with 2-D

models in order to be able to have a reference FEM calculation in a wide frequency range,

which would not have been possible considering 3-D models. The rCTF method has shown

its ability in dealing with vibroacoustical problems, exhibiting vibroacoustic decoupling

interfaces. To study such interfaces, a first possibility is to slightly shift the interface in the

acoustic domain, so that the rCTF formulation remains entirely acoustical. The possibility
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of considering directly the vibroacoustic interface by defining mechanical excitations and

unknowns has been discussed, yielding a vibroacoustic formulation of the rCTF method. The

results with the acoustic rCTF formulation showed a better convergence, especially when

smaller segments, corresponding to the condensation functions, were considered to address

the convergence issues of decoupling near a vibrating structure. Then, it was observed

that the process of recoupling the target subsystem with a model of the water occupying

the missing part of the coating, using the direct CTF method, tends to mitigate the errors

induced by the decoupling process. As a result, the radiated pressure field of the partially

coated cylindrical shell was very well described by the rCTF method, in the major part of

the frequency range and of the fluid domain. This result hence allowed a first analysis of

the impact of the partial coating on the vibroacoustic behavior of the cylindrical shell. It

was observed that the influence of the partial coating tends to be reduced when the missing

part of the coating is smaller. Besides, the impact of the partial coating is higher when the

excitation force is located at the vicinity of the removed tile. If these results could have

been expected, this study allowed quantifying them, and constitutes a first step showing the

potential applications of the rCTF method for the study of partially coated cylindrical shells.

Further work - perspectives

Many perspectives can now be considered. Firstly, as we saw in chapter 5, some errors

subsist when the rCTF method is applied to study the radiation from a partially coated

cylindrical shell, in particular in the high-frequency range. The possibility of improving the

convergence of the method has already been addressed by dividing the decoupling interface

into smaller segments. This study was carried out considering the local rCTF approach, but

we saw in chapter 4 that the global rCTF approach can exhibit more robust results, with

the disadvantage of being more computationally intensive. As a short-term perspective,

we could be interested in applying the global rCTF approach for this case study in order

to see if better results can be obtained in the high frequency range and in the vicinity of

the removed coating tile. As the local rCTF method yielded very satisfactory results in the

major part of the frequency range and of the fluid medium, improving the results with the

global rCTF approach could be done without increasing substantially the computation cost,

by considering only the parts of the frequency range and of the fluid domain where the

local rCTF approach fails to give very accurate results. On the other hand, reducing the

size of the segments at the decoupling interface was associated to utilizing gate functions

as condensation functions. It has already been observed in other studies [175, 176] that the

use of complex exponentials as condensation functions can improve the convergence of the

CTF method. It would hence be a possibility to apply these condensation functions when
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studying the partially coated cylindrical shell using the rCTF method.

In the medium term, in order to carry out more thorough studies on partially coated

cylindrical shells, the rCTF method must be conducted considering 3-D models of the fully

coated cylindrical shell and of the removed part of the coating. Indeed, the study with 2-D

models allows observing the impact of partial coating along the radial and circumferential

coordinates, but there is no information regarding the longitudinal coordinate. Besides, con-

sidering 2-D models is equivalent to study a cylindrical shell for which the angular spreading

of the partial coating is the same over the length of the shell. In our case, when the impact of

a missing tile is evaluated, one must be able to consider non constant geometrical configura-

tions over the length of the shell. The consideration of 3-D models would, in addition, enable

the implementation of the rCTF method in a ready-to-use software, allowing the application

of the method on the design process of industrial systems.

On another hand, it has been stated in chapter 5 that the coating was modelled as an

equivalent fluid having properties close to decoupling coatings (i.e. longitudinal wave speed

and damping). This approximation was acceptable as the aim of this thesis was to conduct a

first validation of the rCTF method on an industrial case, and equivalent fluids can very well

represent the behavior of "soft rubber" materials. However, these materials only represent a

part of the materials that can be considered in the naval industry. Hence, in the medium-term

future, one could be interested in extending the model to solid coatings where the displace-

ments in the three directions in the material are considered, allowing to take into account

both the longitudinal and shear waves. In a similar spirit, different properties for the material

could be investigated, in order to study both decoupling and anechoic coatings. And finally,

being able to consider different kinds of coating would introduce the possibility of applying

the rCTF method to a cylindrical shell coated with both anechoic and decoupling materials

(as illustrated in figure 2b). Instead of recoupling the target subsystem with a model of water

occupying the missing part of the coating, as it was done in chapter 5, a coating tile having

different properties from the initial coating material could be considered for the recoupling.

This way, configurations found in the naval industry could be investigated in a relatively

simple way.

In the naval industry, cylindrical shells are generally coupled to internal structures as it

has been addressed in section 1.1.3. When axisymmetric internal structures such as stiffeners,

bulkheads or endcaps are considered, the CAA is well indicated to study such structures.

Non-axisymmetric internal structures such as floors or engine foundations can also be taken
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into account with the help of the CTF method. By coupling the CAA and CTF methods

to the rCTF method, the vibroacoustic behavior of stiffened, non-axisymmetric, partially

coated cylindrical shells immersed in water could hence be investigated in a more distant

future. As these substructuring approaches are all based on the same assumptions, it is

theoretically possible to use them simultaneously for a single system. Besides, the study of

chapter 5 is focused on the radiation of the partially coated cylindrical shell, meaning that the

considered excitation is a mechanical force applied on the inner surface of the shell. In order

to explore further the vibroacoustical properties of such shells, different kinds of excitations

could be investigated. Considering an acoustic plane wave excitation would allow studying

the scattering from a partially coated cylindrical shell. Random excitations such as TBLs

could also be addressed as the understanding of the vibroacoustical behavior of submerged

structures under such excitations constitutes a challenging issue in current research. As

the CAA and CTF method have already proven their ability in dealing with acoustical and

random excitations, extending the rCTF method to such excitations should not be a problem.
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Appendix A

Spectral expressions of the Flügge operator
and spectral displacements

The spectral Flügge’s equations are derived in this appendix, with heavy fluid loading taken

into account. The spectral Flügge’s system yields ˜̃ZUU
˜̃ZUV

˜̃ZUW
˜̃ZUV

˜̃ZVV
˜̃ZVW

˜̃ZUW
˜̃ZVW

˜̃ZWW


 ˜̃U

˜̃V
˜̃W

 =

(
1� ν2) R2

Eh

 � ˜̃L f

� ˜̃T
˜̃F + jkx

˜̃M� ˜̃p

 (A.1)

where

˜̃ZUU = �R2k2
x � n2 1�ν

2 (1 + β2) + R2k2
l

˜̃ZUV = �R 1+ν
2 nkx

˜̃ZUW = jkx

(
Rν + β2R3k2

x � β2R 1�ν
2 n2

)
˜̃ZVV = �R2k2

x
1�ν

2 (1 + 3β2)� n2 + R2k2
l

˜̃ZVW = jn
(
1 + β2R2 3�ν

2 k2
x
)

˜̃ZWW = 1 + β2 (R4k4
x + n2(2R2k2

x + 2) + n4 + 1
)� R2k2

l

(A.2)

with β = h
R
?

12
and kl = ω

b
ρs(1�ν2)

E . The solutions for the spectral displacements are then

˜̃U =� γ
˜̃ZVV(

˜̃ZWW � γ ˜̃Z f )� ˜̃Z2
VW

˜̃∆
˜̃L f

� γ
˜̃ZUV

˜̃ZUW � ˜̃ZUU
˜̃ZVW

˜̃∆
˜̃T

+ γ
˜̃ZUV

˜̃ZVW � ˜̃ZVV
˜̃ZUW

˜̃∆
( ˜̃F � jkx

˜̃M)

(A.3a)

˜̃V =� γ
˜̃ZVW

˜̃ZUW � ( ˜̃ZWW + γ ˜̃Z f )
˜̃ZUV

˜̃∆
˜̃L f

� γ
˜̃ZUU(

˜̃ZWW + γ ˜̃Z f )� ˜̃Z2
UW

˜̃∆
˜̃T

+ γ
˜̃ZUW

˜̃ZUV � ˜̃ZUU
˜̃ZVW

˜̃∆
( ˜̃F + jkx

˜̃M)

(A.3b)
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˜̃W =� γ
˜̃ZUV

˜̃ZVW � ˜̃ZUW
˜̃ZVV

˜̃∆
˜̃L f

� γ
˜̃ZUW

˜̃ZUV � ˜̃ZVW
˜̃ZUU

˜̃∆
˜̃T

+ γ
˜̃ZUU

˜̃ZVV � ˜̃Z2
UV

˜̃∆
( ˜̃F + jkx

˜̃M)

(A.3c)

where γ =
(1�ν2)R2

Eh , and ˜̃∆ is the determinant of the Flügge’s matrix taking into account the

impedance of the fluid:

˜̃∆ = ˜̃ZUW( ˜̃ZUV
˜̃ZVW � ˜̃ZUW

˜̃ZVV) +
˜̃ZVW( ˜̃ZUW

˜̃ZUV � ˜̃ZVW
˜̃ZUU)+

( ˜̃ZWW + γ ˜̃Z f )(
˜̃ZUU

˜̃ZVV � ˜̃Z2
UV)

(A.4)

The spectral tangential rotation is

˜̃φ = jkx
˜̃W (A.5)
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Appendix B

Analytical expressions of the receptances

B.1 Analytical receptances of the target and residual rods

In order to calculate the receptances of the target rod considered in chapter 2, a harmonic

longitudinal force F is applied on the point 1 of the rod, according to the definition of

the receptance in Eq. (2.1). The equation of motion corresponding to the problem of a

longitudinally vibrating rod is given by

ES
B2U
Bx2 � ρsS

B2U
Bt2 = 0 (B.1)

where U is the displacement of the rod. Considering the stationary response of the rod for

a harmonic force of angular frequency ω, the rod displacement can be written u(t, x) =

U(x)ejωt and Eq. (B.1) becomes

ES
d2U(x)

dx2 + ρSω2U(x) = 0 (B.2)

The solution of Eq. (B.2) takes the form

U(x) = Aejksx + Be�jksx (B.3)

where ks is the wavenumber (ks =
b

ρs
E ω = csω). The unknown coefficients A and B can be

found from the boundary conditions of the rod. As the lower end of the target rod is clamped

and the upper end is the point of application of the force, it yields

"
U(x = 0) = 0
ES dU

dx (x = L11) = F
(B.4)

Injecting the system of Eq. (B.4) into Eq. (B.3), the displacement field along the target rod

can be written

U(x) =
F sin(ksx)

ksES cos(ksL11)
(B.5)

The receptance α11 of the target rod can finally be deduced
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α11 =
U(x = L11)

F
=

tan(ksL11)

ksES
(B.6)

Considering the rod 1 in section 2.2, a residual part appears above the point 2 as shown in

figure 22. As there is no physical coupling between points 1 and 2 of the rod 1, the crossed

receptances are null

α12 = α21 = 0 (B.7)

Finally, the receptance α22 of the residual part of rod 1 can be calculated using the same

process as for α11. The difference lies in the boundary conditions, as the harmonic longitudinal

force is now applied on point 2, and the upper end of the rod is free. In order to respect the

sign convention adopted for the calculation of α11, the force applied on point 2 must be in the

opposite direction of the force applied on point 1. It yields

"
ES dU

dx (x = 0) = �F
ES dU

dx (x = L12) = 0
(B.8)

The expression of the receptance is then

α22 = � 1
ksES tan(kL12)

(B.9)

B.2 Analytical receptances of the subtracted rod

The receptances of the subtracted rod can be computed with the same process and boundary

conditions as for the calculation of α22, as it is a rod with free boundary conditions with a

longitudinal force applied at one of its ends. We can then directly derive the direct receptances

of the subtracted rod

β11 = � 1
ksES tan(kL2)

and β22 =
1

ksES tan(kL2)
(B.10)

Once again, the sign difference between β11 and β22 comes from the sign convention when

applying the longitudinal force. As for β12, it can be computed by taking the displacement at

the end of the rod which is opposite to the point of application of the force. As the receptance

are symmetric based on the reciprocity principle [193], either end can be used to carry on

with the calculation. Finally, it yields

β12 = β21 =
1

ksES sin(kL12)
(B.11)

168
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI082/these.pdf 
© [F. Dumortier], [2021], INSA Lyon, tous droits réservés



B.2.1 Analytical receptances of the master rod

The process for calculating the receptances of the master rod is a bit more complicated than

for the two other rods, as the force must now be applied at a point in the middle of the rod

(see [194]).

The rod is separated in two parts at the point of application of the force (which will be

point 1 for µ11 and µ12 and point 2 for µ21 and µ22, see figure 22). The displacement of the

lower section of the rod will be referred to as U1, while the displacement of the upper section

of the rod will be referred to as U2. The process will be shown for a longitudinal force applied

on point 1, hence the receptances computed here will be µ11 and µ12. The process for µ21 and

µ22 is the same and will not be demonstrated here. One has to keep in mind that, as for the

receptances of the subtracted rod, the symmetry of the receptances means that µ12 equals µ21.

The displacements of the master rod can be written as

"
U1(x) = A1ejksx + B1e�jksx, x P [0, L11]
U2(x) = A2ejksx + B2e�jksx, x P [L11, L1+2]

(B.12)

where A1, A2, B1 and B2 are the unknowns. As the rod is clamped at its lower end and free at

its upper end, the boundary conditions are

"
U1(x = 0) = 0
ES dU2

dx (x = L1+2) = 0
(B.13)

The two other necessary equations to solve the system are given by the displacement

continuity and force equilibrium at the point of application of the force

"
U1(x = L11) = U2(x = L11)
dU1
dx (x = L11)� dU2

dx (x = L11) =
F

ES
(B.14)

Hence, by solving the systems of Eq. (B.13) and Eq. (B.14), one can deduce the displace-

ment field in the two sections of the master rod

U1(x) =
F sin(kx)

ksES
ejksL11 + ejks(2L1+2�L11)

1 + e2jksL1+2
, x P [0, L11] (B.15)

U2(x) =
F sin(ksL11)

ksES
ejksx + ejks(2L1+2�x)

1 + e2jksL1+2
, x P [L11, L1+2] (B.16)

Finally, the receptances of the master rod can be deduced

µ11 =
sin(ksL11)

kES
ejksL11 + ejks(2L1+2�L11)

1 + e2jksL1+2
(B.17)

µ12 =
F sin(ksL11)

ksES
ejks(L11+L2) + ejks(2L1+2�(L11+L2))

1 + e2jksL1+2
(B.18)

Following the same process, the final receptance µ22 is given by
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µ22 =
F sin(ks(L11 + L2))

ksES
ejks(L11+L2) + ejks(2L1+2�(L11+L2))

1 + e2jksL1+2
(B.19)
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Appendix C

Analytical calculation of the condensed
transfer functions and condensed pressures
for the test case application

C.1 Condensed impedances of the infinite water medium

C.1.1 Local rCTF approach

In order to calculate the condensed impedances of the infinite water domain 1+2 in chapter

3 (see figure 31), and in accordance with its definition in Eq. (3.17), a normal velocity jump

φj is imposed on the fictitious surface Ω. The resulting pressure on the surface is estimated

using a spherical harmonics decomposition [199], considering two domains: D+, the volume

outside the surface of the sphere of radius a, and D�, the volume inside the surface of the

sphere. It is written

p+(R, θ, ϕ) =
+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ)

[
A+

n,mh(1)n (k f R) + B+
n,mh(2)n (k f R)

]
, for R ⩾ a (C.1a)

p�(R, θ, ϕ) =
+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ)

[
A�

n,m jn(k f R) + B�n,myn(k f R)
]

, for 0 ⩽ R ⩽ a (C.1b)

where h(1)n and h(2)n are the spherical Hankel functions of the first and second kind, respectively,

and jn and yn are the spherical Bessel functions of the first and second kind, respectively. k f

is the acoustic wavenumber and ψn,m (θ, ϕ) are the spherical harmonics defined in Eq. (3.25).

Applying the boundary conditions at infinity (divergent waves) and at the center of the

sphere (convergent waves) to the properties of the spherical Hankel and Bessel functions

yields

"
B+

n,m = 0
B�n,m = 0 (C.2)

The pressure fields in the domains D+ and D� are thus
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p+(R, θ, ϕ) =
+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ) A+

n,mh(1)n (k f R), for R ⩾ a (C.3a)

p�(R, θ, ϕ) =
+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ) A�

n,m jn(k f R), for 0 ⩽ R ⩽ a (C.3b)

A velocity jump δu is imposed on the surface of the sphere, such that the impedance

is given by Z = p/δu. The pressure continuity and velocity equilibrium conditions at the

surface of the sphere (i.e. R = a) are then written

"
p+(a, θ, ϕ) = p�(a, θ, ϕ)
δu = u+(a, θ, ϕ) + u�(a, θ, ϕ)

(C.4)

The second equation of C.4 takes into account the orientation of the normals, as in the

section 3.2.3, with the normal pointing in the outer-direction of the considered domain. The

pressure and the radial velocity are linked by the Euler relation

un = � 1
jωρ f

Bp
Br

(C.5)

With the orientation of the normals previously defined, we can write

"
u+(a, θ, ϕ) = �un
u�(a, θ, ϕ) = un

(C.6)

Furthermore, the spherical Hankel and Bessel functions can be derived with respect to

their argument according to the following relation

B fn

Bx
(x) =

n
x

fn(x)� fn+1(x) (C.7)

In the following, and in order to clarify the equations, the spherical Hankel function of

the first kind h(1)n is denoted by hn. Combining Eq. (C.3a) and Eq. (C.3b) with the relations in

Eq. (C.4) and Eq. (C.5) yields

+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ) A+

n,mhn(k f a) =
+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ) A�

n,m jn(k f a) (C.8a)

δu =
k f

jωρ f

+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ)

[
A+

n,mh1n(k f a)� A�
n,m j1n(k f a)

]
(C.8b)

Using the orthonormal properties of the spherical harmonics (see Eq. (3.28)), we can

multiply Eq. (C.8a) and Eq. (C.8b) by ψν,µ and integrate them on the surface of the sphere to

eliminate the sums

#
A+

n,mhn(k f a) = A�
n,m jn(k f a)´

Ω δuψ�ν,µ(θ, ϕ)a2 sin θdθdϕ =
k f a2

jωρ f

[
A+

n,mh1n(k f a)� A�
n,m j1n(k f a)

] (C.9)
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where * denotes the complex conjugate. In order to calculate the condensed impedances, the

velocity jump must correspond to a condensation function φj, which are either weighted

spherical harmonics or 2D gate functions, which means

¼
Ω

δuψ�n,m(θ, ϕ)a2 sin θdθdϕ =

¼
Ω

φjψ�n,m(θ, ϕ)a2 sin θdθdϕ = ε
j
n,m(a) (C.10)

The evaluation of the factor ε
j
n,m, which depends on the the radius a of the sphere, will be

evaluated for each type of CF. Eq. (C.9) now becomes

#
A+

n,mhn(k f a) = A�
n,m jn(k f a)

ε
j
n,m(a) =

k f a2

jωρ f

[
A+

n,mh1n(k f a)� A�
n,m j1n(k f a)

] (C.11)

The resolution of this system of equations enables us to obtain the pressure at the surface

of the sphere for the infinite domain

p(a, θ, ϕ) = ωρ f k f

+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ) jn(k f a)hn(k f a)εj

n,m(a) (C.12)

For each CF, the pressure must be projected on the CF φi to obtain the condensed

impedance, according to Eq. (3.17). For the weighted spherical harmonics, it yields

Zij
1+2 =

"
ωρ f k f a2 ji(k f a)hi(k f a) if i = j

0 elsewhere
(C.13)

The form of this expression is explained by the orthonormal properties of the spherical

harmonics, thus resulting in a diagonal condensed impedance matrix. As for the 2D gate

functions, the condensed impedances of the global system 1+2 is given by

Zij
1+2 = ωρ f k f

+8̧

n=0

ņ

m=�n
jn(k f a)hn(k f a)εj

n,m(a)εi�
n,m(a) (C.14)

C.1.2 Global rCTF approach

In order to apply the global rCTF approach, the condensed impedances of the infinite water

medium must be considered with the two fictitious surfaces Ωint and Ωext of the system

(see figure 32), and the calculations are carried out using only the patches as condensation

functions. Three different cases must hence be explored:

• Case 1: when the excitation and receiving patches are both located at the exterior surface

Ωext.

• Case 2: when the excitation and receiving patches are both located at the interior surface

Ωint.
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• Case 3: when the excitation and receiving patches are located on different surfaces.

For cases 1 and 2, the developments are the same than those presented in C.1.1. The

condensed impedances can thus be obtained directly from Eq. (C.14)

Zij
1+2 = ωρ f k f

+8̧

n=0

ņ

m=�n
jn(k f aext)hn(k f aext)ε

j
n,m(aext)ε

i�
n,m(aext),

"
patch i P Ωext
patch j P Ωext

(C.15)

Zij
1+2 = ωρ f k f

+8̧

n=0

ņ

m=�n
jn(k f aext)hn(k f aint)ε

j
n,m(aint)ε

i�
n,m(aint),

"
patch i P Ωint
patch j P Ωint

(C.16)

For the case 3 however, the reasoning is slightly different. In the following, the develop-

ments will be carried out by considering that the incident patch is located on Ωext while the

receiving patch is located on Ωint. The inverse case follows the same principle and will not

be explicited here, as the symmetric properties of the condensed impedances do not require

to carry out both calculations. Using Eqs. C.3a, C.3b and C.11, the pressure in the domain

interior and exterior to Ωext can be written

p+(R, θ, ϕ) = ωρ f k f

+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ) jn(k f aext)hn(k f R)εj

n,m(aext), for R ⩾ aext (C.17a)

p�(R, θ, ϕ) = ωρ f k f

+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ) jn(k f R)hn(k f aext)ε

j
n,m(aext), for 0 ⩽ R ⩽ aext

(C.17b)

The pressure at the interior surface Ωint can hence be deducted from Eq. (C.18)

p(aint, θ, ϕ) = ωρ f k f

+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ) jn(k f aint)hn(k f aext)ε

j
n,m(aext), for 0 ⩽ R ⩽ aext

(C.18)

Finally, the condensed impedances between the incident patch j and the receiving patch i

is obtained by projecting Eq. (C.18) on the patch i

Zij
1+2 = ωρ f k f

+8̧

n=0

ņ

m=�n
jn(k f aint)hn(k f aext)ε

j
n,m(aext)ε

i�
n,m(aint),

"
patch i P Ωint
patch j P Ωext

(C.19)

C.2 Condensed impedances of the water sphere

In order to calculate the condensed impedances of the water sphere for the local rCTF

approach (see figure 31), and in accordance with its definition in Eq. (3.2), a normal velocity
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is imposed on the spherical surface Ω (where the positive outer-pointing normal points

towards the exterior of the sphere), corresponding to a condensation function: u = φj. The

calculation process to estimate the resulting pressure is therefore similar to that carried out in

C.1.1, except that the calculation is performed only inside the sphere. The pressure inside the

sphere is given by Eq. (C.1b), whereas the Euler equation on the surface Ω yields (taking into

account the orientation of the outer-pointing normal)

φj = � 1
jωρ f

Bp
Br

(C.20)

The pressure at the surface Ω of the sphere is easily derived

p(a, θ, ϕ) = � jωρ f

k f a2

+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ)

jn(k f a)
j1n(k f a)

ε
j
n,m(a) (C.21)

As it was done in C.1.1, and following the definition of the condensed impedances of

Eq. (3.2), the condensed impedances at the surface of the sphere for the weighted spherical

harmonics are given by

Zij
2 =

#
� jωρ f

k f

ji(k f a)
j1i(k f a) if i = j

0 elsewhere
(C.22)

As for the 2D gate functions, the condensed impedances are

Zij
2 = � jωρ f

k f a2

+8̧

n=0

ņ

m=�n

jn(k f a)
j1n(k f a)

ε
j
n,m(a)εi�

n,m(a) (C.23)

C.3 Condensed impedances of the hollow sphere

In order to calculate the condensed impedances of the hollow sphere for the global rCTF

approach (see figure 32), two different calculations must be carried out, wether the incident

patch is located on Ωext or on Ωint. For the former, in accordance with the definition of the

condensend impedance in Eq. (3.2), a normal velocity is imposed on the spherical surface

Ωext (where the positive outer-pointing normal points towards the exterior of the hollow

sphere), corresponding to a condensation function: u = φj. The velocity at the interior surface

Ωint is then null. The pressure inside the hollow sphere is written

p(R, θ, ϕ) =
+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ)

[
An,m jn(k f R) + Bn,myn(k f R)

]
, for aint ⩽ R ⩽ aext (C.24)

The boundary conditions at Ωext and Ωint can be expressed using the Euler relation
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φj = � 1
jωρ f

Bp
Br

(aext, θ, ϕ), 0 =
1

jωρ f

Bp
Br

(aint, θ, ϕ) (C.25)

Following developments similar to the ones carried out in C.1.1, the pressure inside the

hollow sphere in given by

p(R, θ, ϕ) =
jωρ f

k f

+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ)

y1n(k f aint)jn(k f R)� j1n(k f aint)yn(k f R)
j1n(k f aint)y1n(k f aext)� j1n(k f aext)y1n(k f aint)

ε
j
n,m(aext),

for aint ⩽ R ⩽ aext
(C.26)

In order to obtain the condensed impedance between the incident patch j and the receiving

patch i, the relation in Eq. (C.26) is projected on the patch i. If the patch i is located at the

exterior surface Ωext, it yields

Zij
2 =

jωρ f

k f a2
ext

+8̧

n=0

ņ

m=�n

y1n(k f aint)jn(k f aext)� j1n(k f aint)yn(k f aext)

j1n(k f aint)y1n(k f aext)� j1n(k f aext)y1n(k f aint)
ε

j
n,m(aext)ε

i�
n,m(aext),

"
patch i P Ωext
patch j P Ωext

(C.27)

If the patch i is located at the interior surface Ωint, it yields

Zij
2 =

jωρ f

k3
f (aextaint)2

+8̧

n=0

ņ

m=�n

y1n(k f aint)jn(k f aext)� j1n(k f aint)yn(k f aext)

ε
j
n,m(aext)εi�

n,m(aint)
,

"
patch i P Ωint
patch j P Ωext

(C.28)

For the case where the incident patch is located on Ωint, in accordance with the definition

of the condensend impedance in Eq. (3.2), a normal velocity is imposed on the spherical

surface Ωint (where the positive outer-pointing normal points towards the interior of the

hollow sphere), corresponding to a condensation function: u = φj. The velocity at the exterior

surface Ωext is then null. The boundary conditions at Ωext and Ωint can be expressed using

the Euler relation

0 = � 1
jωρ f

Bp
Br

(aext, θ, ϕ), φj =
1

jωρ f

Bp
Br

(aint, θ, ϕ) (C.29)

Following the same developments as before, the condensed impedance between the

incident patch j and the receiving patch i can be obtained. For the case where the receiving

patch is located on Ωext, the symmetric properties of the condensed impedances lead to a

result corresponding to Eq. (C.28). If the patch i is located at the interior surface Ωint, it yields

176
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI082/these.pdf 
© [F. Dumortier], [2021], INSA Lyon, tous droits réservés



Zij
2 =

jωρ f

k f a2
int

+8̧

n=0

ņ

m=�n

y1n(k f aext)jn(k f aint)� j1n(k f aext)yn(k f aint)

j1n(k f aint)y1n(k f aext)� j1n(k f aext)y1n(k f aint)
ε

j
n,m(aint)ε

i�
n,m(aint),"

patch i P Ωint
patch j P Ωint

(C.30)

C.4 Condensed impedances of the reference subsystem

The analytical condensed impedances of the infinite fluid domain bounded by the spherical

surface Ω (subsystem 1 on figure 31) are calculated to validate and evaluate the ability of

the rCTF method. As defined in Eq. (3.2), a normal velocity is imposed on the surface Ω

(where the positive outer-pointing normal now points towards the center of the sphere),

corresponding to a condensation function: u = φj. The pressure inside the water domain

bounded by the surface Ω is described by Eq. (C.1a), whereas the Euler equation on the

surface Ω yields (taking into account the orientation of the outer-pointing normal)

φi =
1

jωρ f

Bp
Br

(C.31)

Again, we derive the pressure at the surface Ω of the sphere

p(a, θ, ϕ) =
jωρ f

k f a2

+8̧

n=0

ņ

m=�n
ψn,m (θ, ϕ)

hn(k f a)
h1n(k f a)

ε
j
n,m(a) (C.32)

As with the previous sections, and following the definition of the condensed impedances

of Eq. (3.2), the condensed impedances at the surface of the sphere for the weighted spherical

harmonics are given by

Zij
1 =

#
jωρ f

k f

hi(k f a)
h1i(k f a) if i = j

0 elsewhere
(C.33)

As for the 2D gate functions, the condensed impedances are

Zij
1 =

jωρ f

k f a2

+8̧

n=0

ņ

m=�n

hn(k f a)
h1n(k f a)

ε
j
n,m(a)εi�

n,m(a) (C.34)

Concerning the condensed impedances of the residual subsystem for the case of the global

decoupling approach, they correspond to the condensed impedances of a water sphere or

radius aint. Their expression is given in Eq. (C.23).

C.5 Calculation of the condensed pressures

The developments in this section are carried out considering the infinite water medium of

the local rCTF approach (see subsystem 1+2 in figure 31). For the global rCTF approach, the
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developments are the same, but the condensed pressures must be evaluated at both fictitious

surfaces Ωext and Ωint of the subsystem.

C.5.1 Condensed pressure induced by a unit monopole

In order to calculate PM1
1+2, the condensed pressure vector induced by a monopole of unit

volume velocity located at point M1 in the infinite water domain 1+2, the expression of

the free-space Green’s function is expanded in spherical harmonics [8]. The acoustic field

pressure at any point M(R, θ, ϕ) due to a spherical source located at point M1(R1, θ1, ϕ1) is

given by

pM1
i = jωρ f

ejk f |M�M1|

4π|M�M1| (C.35)

where |  | represents the Euclidean norm.

Expanding this expression in spherical harmonics, the pressure induced by the monopole

can be rewritten

pM1
i =

ωρ f k f

4π

+8̧

n=0

ņ

m=0

κm
(n�m)!
(n + m)!

(2n + 1) cos (m(ϕ� ϕ1))

Pm
n (cos θ) Pm

n (cos θ1) jn(k f R)hn(k f R1)

(C.36)

where

κm =

"
1 if m = 0
2 if m � 0 (C.37)

According to the definition of the condensed pressure, the pressure at the surface of

the sphere (i.e. R = a) is projected on the condensation functions according to the scalar

product in spherical coordinates defined in Eq. (3.28). For the weighted spherical harmonics

as condensation functions, the ith component of PM1
1+2 is given by

PM1
1+2,i =

@
pi, ψν,µ

D
=

ωρ f k f

(4π)3/2

+8̧

n=0

ņ

m=0

κm
(n�m)!
(n + m)!

(2n + 1)

d
(2ν + 1)

(ν� µ)!
(ν + µ)!

Pm
n (cos θ1) jn(k f a)hn(k f R1)¼

Ω

cos (m(ϕ� ϕ1)) e�jµϕPm
n (cos θ) Pµ

ν (cos θ) a sin θ dθ dϕ

(C.38)

where ψν,µ corresponds to the ith condensation function, as defined in Eq. (3.26).

For the 2D gate functions as condensation function, the ith component of PM1
1+2 is given by
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PM1
1+2,i =

A
pM1

inc , φi
E
=

ωρ f k f

4π

+8̧

n=0

ņ

m=0

κm
(n�m)!
(n + m)!

(2n + 1)Pm
n (cos θ1) jn(k f a)hn(k f R1)

1?
Ωi

¼
Ωi

cos (m(ϕ� ϕ1)) Pm
n (cos θ) a2 sin θ dθ dϕ

(C.39)

where Ωi is the area of the patch associated with the condensation function φi, according to

the definition of the condensation function in Eq. (3.29).

The integrals that appear in these expressions are solved numerically by separating the

integrals. The integration over ϕ can be solved analytically, while the integration over θ is

evaluated numerically using a global adaptative quadrature and default error tolerances.

C.5.2 Condensed pressure induced by a plane wave

In order to calculate P1+2, the condensed pressure induced by an acoustic plane wave in

the infinite water domain 1+2, we consider the expression of the pressure induced by the

plane wave expanded in spherical harmonics given in Eq. (3.37). Then, using the definition

of the scalar product in spherical coordinates of Eq. (3.28), we project it on the condensation

functions. Considering the weighted spherical harmonics as condensation functions, the ith

component of the vector P1+2 is given by

P1+2,i =
@

pi, ψν,µ
D
= Pi

+8̧

n=0

(2n + 1) in jn
(
k f a
)d2ν + 1

4π

(ν� µ)!
(ν + µ)!¼

Ω

Pn (cos θ) Pµ
ν (cos θ) e�jµϕa sin θ dθ dϕ

(C.40)

where ψν,µ corresponds to the ith condensation function, as defined in Eq. (3.26).

For the 2D gate functions as condensation functions, the ith component of PM1
1+2 is given by

P1+2,i =
A

pi, φi
E
= Pi

+8̧

n=0

(2n + 1) in jn
(
k f a
) 1?

Ωi

¼
Ωi

Pn (cos θ) a2 sin θ dθ dϕ (C.41)

where Ωi is the area of the patch associated with the condensation function φi, according to

the definition of the condensation function in Eq. (3.29).
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Appendix D

Expression of the pressure radiated by a
fully coated cylindrical shell for different
kinds of excitations - Application to the
calculation of the CTFs, condensed
pressures and condensed radial velocities
of the fluid-loaded fully coated shell

In this appendix, the formulation to obtain the pressure radiated by a fully coated cylindrical

shell in the surrounding fluid medium is derived for three different kinds of excitations:

• A mechanical radial point force applied on the inner surface of the shell;

• A unitary monopole located inside the rubber thickness;

• A unitary monopole located in the surrounding fluid medium.

From the expressions obtained when developing these formulations, the CTFs, condensed

pressures and condensed radial velocities of the fluid-loaded fully coated cylindrical shell

(which is the global system 1+2 in chapter 5) will be explicited.

When solving the Flügge’s equations with heavy fluid loading, the spectral Euler relation

of Eq. (1.12), involving the spectral impedance of the fluid ˜̃Z f , is used. However, when the

shell is coated, the presence of the coating modifies the value of the spectral impedance. Thus,

as a preamble, we will begin by developing the formulation to obtain the effective spectral

impedance of the coating as well as the fluid medium.

D.1 Calculation of the effective spectral impedance of the
coating and the fluid medium

In order to compute the effective spectral impedance of the coating and the fluid medium, the

pressure inside and outside the rubber must be considered (see figure 107). R corresponds to
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Figure 107: Spectral effective impedance of the coating and the fluid medium.

the radius of the shell, while R1 denotes the exterior radius of the rubber coating. Ω1 is the

domain corresponding to the thickness of the coating, while Ω is the exterior fluid domain.

For a given point M of coordinates (r, θ, x), the pressure inside the rubber, p1, and outside

the rubber, p , satisfies the Helmholtz equation

∆p1(M) + k2
p p1(M) = 0 if M Ω1

∆p (M) + k2
f p (M) = 0 if M Ω

(D.1)

with kp = ω/cp and k f = ω/c f . This problem can be solved in the wavenumber domain

by the means of a Fourier series decomposition along coordinate θ and a Fourier transform

along coordinate x as described in Eq. (1.2). The pressures in Eq. (D.1) can then be written as

a linear combination of Bessel and Hankel functions. According to Ricks and Schmidt [50],

the most stable formulation reads

˜̃p1(r, n, kx) = Aimp
1

Hn(kprr)
Hn(kprR)

+ Bimp
1 Jn(kprr)Hn(kprR1) if r R1 (D.2a)

˜̃p (r, n, kx) = Aimp Hn(krr)
Hn(krR1)

+ Bimp Jn(krr)Hn(krR ) if r R1 (D.2b)

where Jn( ) denotes the Bessel function of the first kind, Hn( ) the Hankel function of the

first kind, k2
pr = k2

p k2
x, and k2

r = k2
f k2

x. The unknowns of this system, Aimp
1 , Bimp

1 , Aimp

and Bimp can be obtained from the boundary conditions and continuity relations at the

different interfaces. From the boundary conditions, as there is no wave reflection at infinity

(i.e. Sommerfeld condition, Eq. (1.11)), Bimp must necessarily be 0. The continuity of pressures

and velocities at the interface r = R1 yields

˜̃p1(r = R1, n, kx) = ˜̃p (r = R1, n, kx) (D.3a)

1
jωρp

˜̃p1

r
(r = R1, n, kx) =

1
jωρ f

˜̃p
r
(r = R1, n, kx) (D.3b)
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The kinematic condition B ˜̃p1

Br (r = R, n, kx) = ρpω2 (assumming unit displacement of the

shell to calculate the effective spectral impedance of the fluid loaded coating) at the interface

between the shell and the coating yields

B ˜̃p1

Br
(r = R, n, kx) = ρpω2 (D.4)

Taking into these relations, it is possible to obtain Aimp
1 , Bimp

1 , Aimp
8 by solving the following

system of equations


�1

Hn(kprR1)

Hn(kprR)
Jn(kprR1)Hn(kprR1)

� kr

ρ f

H1
n(krR1)

Hn(krR1)

kpr

ρp

H1
n(kprR1)

Hn(kprR)
kpr

ρp
J1n(kprR1)Hn(kprR1)

0 kpr
H1

n(kprR)
Hn(kprR)

kpr J1n(kprR)Hn(kprR1)


Aimp

8
Aimp

1
Bimp

1

 =

 0
0

ρpω2

 (D.5)

The effective spectral impedance of the coating and the fluid medium is then given by the

following expression

˜̃Z f (R, n, kx) = Aimp
1 + Bimp

1 Jn(kprR)Hn(kprR1) (D.6)

D.2 Radiated pressure for a mechanical radial point force

When the excitation is a radial point force applied on the inner surface of the shell, the

Flügge’s system that must be solved reads

L(x, θ)

U(x, θ)
V(x, θ)
W(x, θ)

 = γ

 0
0

F(x, θ)� p(x, θ)

 (D.7)

where γ = (1�ν2)R2

Eh and the elements of the Flügge’s operator L are given in Eq. (1.1). The

problem is solved in the wavenumber domain, leading to a spectral Flügge’s system

˜̃L(kx, n)

 ˜̃U(kx, n)
˜̃V(kx, n)
˜̃W(kx, n)

 = γ

 0
0

˜̃F(kx, n)� ˜̃p(kx, n)

 (D.8)

Using the spectral Euler relation of Eq. (1.12), the radial displacement of the shell can be

retrieved according to Eq. (A.3c)

˜̃WF(kx, n) =
γ ˜̃F(kx, n)

(
˜̃ZUU(kx, n) ˜̃ZVV(kx, n)� ˜̃Z2

UV(kx, n)
)

∆(kx, n)
(D.9)
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where ∆(kx, n) has been explicited in Eq. (A.4). Once the displacement of the shell has been

obtained, it is possible to derive the displacement of the exterior coating surface

˜̃Wcoat
F (kx, n) =

kpr

ρpω2

(
Aimp

1
H1

n(kprR1)

Hn(kprR)
+ Bimp

1 J1n(kprR1)Hn(kprR1)

)
˜̃WF(kx, n) (D.10)

The pressure radiated inside the rubber thickness and in the surrounding fluid can then

be obtained. For the former, it yields

˜̃pF(r, n, kx) =

(
Aimp

1
Hn(kprr)
Hn(kprR)

+ Bimp
1 Jn(kprr)Hn(kprR1)

)
˜̃WF(kx, n), if r ¤ R1 (D.11)

And in the surrounding fluid

˜̃pF(r, n, kx) =
ρ f ω2

kr

Hn(krr)
H1

n(krR1)
˜̃Wcoat

F (kx, n), if r ¥ R1 (D.12)

An example of the pressure radiated by the coated shell in the surrounding fluid medium,

when a mechanical radial point force is prescribed on its inner surface is illustrated in figure

108. The mechanical excitation and the two measurement points are the ones presented in

figure 79, while the characteristics of the shell, the coating and the fluid medium are presented

in table 6.

Figure 108: Pressure radiated by the coated shell at 2 points in the surrounding fluid.
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Figure 109: Monopole excitation inside the rubber thickness.

D.3 Radiated pressure for a unit monopole located inside the
rubber thickness

When the excitation is a unitary monopole source located inside the rubber thickness at

coordinates (rs, θs, xs) (see figure 109), the Flügge’s system reads

L(x, θ)




U(x, θ)
V(x, θ)
W(x, θ)


 = γ




0
0

pe(x, θ) p(x, θ)


 (D.13)

In Eq. (D.13), the total pressure into the fluid domain, pt, is split into the sum of the

monopole blocked pressure pe, which is the pressure generated by the monopole source on

the cylindrical shell, as if the shell was rigid, and the pressure p radiated outwards by the

shell’s vibrations (i.e. ptot = pe + p).

In order to compute the blocked pressure induced by the monopole source, the pressure

inside and outside the rubber must be considered. For a given point M of coordinates (r, θ, x),

they satisfy the Helmholtz equation

∆p1
e (M) + k2

p p1
e (M) = δs if M Ω1

∆pe (M) + k2
f pe (M) = 0 if M Ω

(D.14)

with kp = ω/cp, k f = ω/c f , and δs the Dirac distribution located at the source position.

As the monopole source is situated inside the rubber thickness, the pressure in Ω1 can

be decomposed into the sum of the incident pressure, pi, and the diffracted pressure, p1
d

(p1
e = pi + p1

d). In the exterior fluid domain, however, as there is no external source, the

pressure corresponds to the diffracted pressure: pe = pd . Eq. (D.14) can hence be rewritten

∆pi(M) + k2
p pi(M) = δs

∆p1
d(M) + k2

p p1
d(M) = 0

if M Ω1

∆pd (M) + k2
f pd (M) = 0 if M Ω

(D.15)
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The problem is once again solved in the wavenumber domain. Following the same

procedure as in section D.1, the pressures in Eq. (D.15) are written as a linear combination of

Bessel and Hankel functions

˜̃p1
d(r, n, kx) = A1

Hn(kprr)
Hn(kprR)

+ B1 Jn(kprr)Hn(kprR1) if r ¤ R1 (D.16a)

˜̃p8d (r, n, kx) = A8
Hn(krr)

Hn(krR1)
+ B8 Jn(krr)Hn(krR8) if r ¥ R1 (D.16b)

˜̃pi(r, n, kx) =

$&
%

jπ Jn(kprrs)Hn(kprr)e�j(nθs+kxxs) if rs ¤ r ¤ R1

jπ Jn(kprr)Hn(kprrs)e�j(nθs+kxxs) if r ¤ rs ¤ R1

(D.16c)

The procedure to obtain the expressions in Eq. (D.16c) is fully developed in [7]. The

unknowns of this system, A1, B1, A8 and B8 can be obtained from the boundary conditions

and continuity relations at the different interfaces. From the boundary conditions, as there

is not wave reflection at infinity (i.e. Sommerfeld condition), B8 must necessarily be 0. The

continuity of pressures and velocities at the interface r = R1 yields

˜̃p1
d(r = R1, n, kx) + ˜̃pi(r = R1, n, kx) = ˜̃p8d (r = R1, n, kx) (D.17a)

1
jωρp

(
B ˜̃p1

d
Br

(r = R1, n, kx) +
B ˜̃pi

Br
(r = R1, n, kx)

)
=

1
jωρ f

B ˜̃p8d
Br

(r = R1, n, kx) (D.17b)

The radial component of the Euler equation allows expressing the continuity of radial

velocities at the interface r = R

B ˜̃p1
d

Br
(r = R, n, kx) = �B ˜̃pi

Br
(r = R, n, kx) (D.18)

Finally, a system similar to the one in Eq. (D.5) is solved to derive A1, B1 and A8


�1

Hn(kprR1)

Hn(kprR)
Jn(kprR1)Hn(kprR1)

� kr

ρ f

H1
n(krR1)

Hn(krR1)

kpr

ρp

H1
n(kprR1)

Hn(kprR)
kpr

ρp
J1n(kprR1)Hn(kprR1)

0 kpr
H1

n(kprR)
Hn(kprR)

kpr J1n(kprR)Hn(kprR1)


A8

A1
B1



=


�jπ Jn(kprrs)Hn(kprR1)e�j(nθs+kxxs)

�jπ
kpr

ρp
Jn(kprrs)H1

n(kprR1)e�j(nθs+kxxs)

�jπkpr J1n(kprR)Hn(kprrs)e�j(nθs+kxxs)


(D.19)

The blocked pressure at the surface of the shell can be obtained with the following

expression
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˜̃pe(r = R, n, kx) = A1 + B1 Jn(kprR)Hn(kprR1) + jπ Jn(kprR)Hn(kprrs)e�j(nθs+kxxs) (D.20)

This expression can be injected in the spectral Flügge system recalled here

˜̃L(kx, n)

 ˜̃U(kx, n)
˜̃V(kx, n)
˜̃W(kx, n)

 = γ

 0
0

� ˜̃pe(kx, n)� ˜̃p(kx, n)

 (D.21)

In order to obtain the radiated pressure ˜̃p at the surface of the shell, the spectral Euler

relation introduced in Eq. (1.12) can be used, with ˜̃Z f being the effective spectral impedance

of the coating and the fluid medium explicited in Eq. (D.6). Following this, the spectral radial

displacement of the shell can be derived

˜̃We(kx, n) =
γ ˜̃pe(kx, n)

(
˜̃ZUU(kx, n) ˜̃ZVV(kx, n)� ˜̃Z2

UV(kx, n)
)

∆(kx, n)
(D.22)

where ∆(kx, n) is given in Eq. (A.4). The displacement of the exterior coating surface is then

obtained using the same expression as in Eq. (D.10)

˜̃Wcoat
e (kx, n) =

kpr

ρpω2

(
Aimp

1
H1

n(kprR1)

Hn(kprR)
+ Bimp

1 J1n(kprR1)Hn(kprR1)

)
˜̃We(kx, n) (D.23)

The spectral radiated pressure ˜̃p can then be obtained inside the rubber thickness

˜̃p(r, n, kx) =

(
Aimp

1
Hn(kprr)
Hn(kprR)

+ Bimp
1 Jn(kprr)Hn(kprR1)

)
˜̃We(kx, n), if r ¤ R1 (D.24)

And in the surrounding fluid

˜̃p(r, n, kx) =
ρ f ω2

kr

Hn(krr)
H1

n(krR1)
˜̃Wcoat

e (kx, n), if r ¥ R1 (D.25)

And finally, the total pressure inside the rubber thickness is the sum of the spectral blocked

pressure and the spectral radiated pressure inside the rubber thickness

˜̃ptot = ˜̃p + ˜̃pe =

(
Aimp

1
Hn(kprr)
Hn(kprR)

+ Bimp
1 Jn(kprr)Hn(kprR1)

)
˜̃We(kx, n) + A1

Hn(kprr)
Hn(kprR)

+ B1 Jn(kprr)Hn(kprR1) +

$&
%

jπ Jn(kprrs)Hn(kprr)e�j(nθs+kxxs) if rs ¤ r ¤ R1

jπ Jn(kprr)Hn(kprrs)e�j(nθs+kxxs) if r ¤ rs ¤ R1

(D.26)

And the total pressure in the surrounding fluid is the sum of the spectral blocked pressure

and the spectral radiated pressure in the surrounding fluid
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˜̃ptot = ˜̃p + ˜̃pe =
ρ f ω2

kr

Hn(krr)
Hn(krR1)

˜̃Wcoat
e (kx, n) + A

Hn(krr)
Hn(kprR1)

, if r R1 (D.27)

D.4 Radiated pressure for a unit monopole located in the
surrounding fluid

R R1

Ω1 Ω∞

Shell

Equivalent
fluid coating

Surrounding 
fluid

(rs,θs,xs)

Figure 110: Monopole excitation in the surrounding fluid.

When the excitation is a unitary monopole placed in the surrounding fluid (see figure 110),

the procedure is different than the one in section D.3. Indeed, the source is now placed in the

surrounding fluid instead of inside the rubber thickness, leading to a different formulation to

obtain the blocked pressure at the surface of the shell and in both domains. The Helmholtz

equation in both media now yields

∆p1
e (M) + k2

p p1
e (M) = 0 if M Ω1

∆pe (M) + k2
f pe (M) = δs if M Ω

(D.28)

As the monopole source is situated in the surrounding fluid, the pressure in Ω can

be decomposed into the sum of the incident pressure, pi, and the diffracted pressure, pd

(pe = pi + pd ). Inside the rubber thickness, however, as there is no external source, the

pressure corresponds to the diffracted pressure: p1
e = p1

d. Eq. (D.28) can hence be rewritten

∆p1
d(M) + k2

p p1
d(M) = 0 if M Ω1

∆pi(M) + k2
f pi(M) = δs

∆pd (M) + k2
f pd (M) = 0

if M Ω
(D.29)

The problem is once again solved in the wavenumber domain, and the spectral pressures

yield

˜̃p1
d(r, n, kx) = A1

Hn(kprr)
Hn(kprR)

+ B1 Jn(kprr)Hn(kprR1) if r R1 (D.30a)
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˜̃p8d (r, n, kx) = A8
Hn(krr)

Hn(krR1)
+ B8 Jn(krr)Hn(krR8) if r ¥ R1 (D.30b)

˜̃pi(r, n, kx) =

$&
%

jπ Jn(krr)Hn(krrs)e�j(nθs+kxxs) if R1 ¤ r ¤ rs

jπ Jn(krrs)Hn(krr)e�j(nθs+kxxs) if R1 ¤ rs ¤ r
(D.30c)

Using the continuity of pressures and velocities at the interface r = R1 and the kinematic

condition at the surface of the shell, the system to be solved now reads


�1

Hn(kprR1)

Hn(kprR)
Jn(kprR1)Hn(kprR1)

� kr

ρ f

H1
n(krR1)

Hn(krR1)

kpr

ρp

H1
n(kprR1)

Hn(kprR)
kpr

ρp
J1n(kprR1)Hn(kprR1)

0 kpr
H1

n(kprR)
Hn(kprR)

kpr J1n(kprR)Hn(kprR1)


A8

A1
B1



=


jπ Jn(krR1)Hn(krrs)e�j(nθs+kxxs)

jπ
kr

ρ f
J1n(krR1)Hn(krrs)e�j(nθs+kxxs)

0


(D.31)

The blocked pressure at the surface of the shell is then

˜̃pe(r = R, n, kx) = A1 + B1 Jn(kprR)Hn(kprR1) (D.32)

The displacements of the shell and of the exterior coating surface are the same than those

in Eqs. D.22 and D.23, while the radiated pressure inside the rubber thickness and in the

surrounding fluid are given by Eqs. D.26 and D.27. Hence, the total pressure inside the

rubber thickness is

˜̃ptot = ˜̃p + ˜̃pe =

(
Aimp

1
Hn(kprr)
Hn(kprR)

+ Bimp
1 Jn(kprr)Hn(kprR1)

)
˜̃We(kx, n) + A1

Hn(kprr)
Hn(kprR)

+ B1 Jn(kprr)Hn(kprR1)
(D.33)

While the total pressure in the surrounding fluid is

˜̃ptot = ˜̃p + ˜̃pe =
ρ f ω2

kr

Hn(krr)
H1

n(krR1)
˜̃Wcoat

e (kx, n) + A8
Hn(krr)

Hn(kprR1)

+

$&
%

jπ Jn(kprrs)Hn(kprr)e�j(nθs+kxxs) if R1 ¤ rs ¤ r

jπ Jn(kprr)Hn(kprrs)e�j(nθs+kxxs) if R1 ¤ r ¤ rs

(D.34)
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D.5 Calculation of the CTFs of the global system 1+2

In subsection 5.1.1, two decoupling boundaries Ω1 and Ω2 were considered to compute the

CTFs of the system 1+2. Ω1 exhibits a single acoustic interface, while Ω2 exhibits an acoustic

and a vibroacoustic interface, which means that the CTFs must be computed in different

ways whether Ω1 or Ω2 is considered.

D.5.1 Case of the decoupling boundary Ω1 - acoustic interface alone

In order to compute the condensed impedance between two patches of system 1+2 when

the decoupling boundary exhibits only acoustic interfaces, an acoustical excitation must be

considered on the incident patch (i.e. an array of monopole sources), and the total scattered

pressure at each point of the discretization of the receiving patch must be computed. To this

end, the formulation when a unit monopole is located inside the rubber thickness, developed

in Appendix D.3, must be considered. The total spectral pressure of Eq. (D.26) must be

computed for every point in the incident patch j and every point in the receiving patch i.

Then, for each spectral pressure obtained, corresponding to the spectral pressure at a single

point due to a single monopole excitation, the pressure is computed in the physical space, by

the means of a 2-D inverse Fourier transform

p
ninj
tot =

1
2π

n=+8¸
n=�8

ejnθni

» +8

�8
˜̃p

ninj
tot ejkxxni dkx (D.35)

where ˜̃p
ninj
tot is the total spectral pressure at the radius rni of point ni (for which the angular

and axial position are θni and xni , respectively) when the excitation is a unitary monopole

located at point nj, and p
ninj
tot is the associated physical quantity. The condensed impedance

between these two patches is then obtained according to the procedure in section 4.1.2 by

summing these values over the Nj points belonging to the incident patch j and the Ni points

belonging to the receiving patch i

Zij
1+2 =

Ni̧

ni=1

Nj̧

nj=1

p
ninj
tota
ΩjΩi

δξ jδξi (D.36)

where Ωj is the area of the incident patch, Ωi is the area of the receiving patch, and δξ j and

δξi represent the discretization step in the incident and receiving patches, respectively. These

last values depend on the plan in which the incident and receiving patches are placed (i.e.

(r, θ), (r, x) or (θ, x)).
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D.5.2 Case of the decoupling boundary Ω2 - including a vibroacoustic
interface

When the decoupling boundary Ω2 is considered, a distinction must be made between the

patches located on an acoustic interface and those located on a vibroacoustic interface. The

CTF matrix H1+2 will hence be divided into 4 sub-matrices according to Eq. (5.1). The CTFs

are then computed by considering an acoustical excitation when the incident patch is located

on an acoustic interface, and a mechanical excitation when the incident patch is located on a

vibroacoustic interface.

D.5.2.1 CTFs for an acoustical excitation

When the incident patch is located on an acoustic interface, the excitation is acoustical and

the CTFs that are computed are Huaδub
1+2 and Hpbδub

1+2 . The calculation of Hpbδub
1+2 is the same

than for Z1+2 in Appendix D.5.1, and the CTF is

Hpbδub,ij
1+2 =

Ni̧

ni=1

Nj̧

nj=1

p
ninj
tota
ΩjΩi

δξ jδξi (D.37)

As for Huaδub
1+2 , the spectral radial displacement of the shell must be obtained for each point

of the discretization of the receiving patch from Eq. (D.22), for all the monopoles placed on

the incident patch. Then, the radial displacement of the shell in the physical space is obtained

by the means of a 2-D inverse Fourier transform

W
ninj
e =

1
2π

n=+8¸
n=�8

ejnθni

» +8

�8
˜̃W

ninj
e ejkxxni dkx (D.38)

where ˜̃W
ninj
e is the shell’s spectral radial displacement at point ni when the excitation is a

unitary monopole located at point nj, and W
ninj
e is the associated physical quantity. The CTF

between the incident patch j and the receiving patch i is then obtained by summing these

values over the Nj points belonging to the incident patch j and the Ni points belonging to the

receiving patch i

Huaδub,ij
1+2 =

Ni̧

ni=1

Nj̧

nj=1

jωW
ninj
ea

ΩjΩi
δξ jδξi (D.39)

D.5.2.2 CTFs for a mechanical excitation

When the incident patch is located on a vibroacoustic interface, the excitation is mechanical

and the CTFs that are computed are Huaδpa
1+2 and Hpbδpa

1+2 . The formulation to derive the
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spectral radial displacement of the shell and the spectral radiated pressure is developed in

Appendix D.2.

To obtain Huaδpa
1+2 , the spectral radial displacement of the shell from a mechanical excitation

must be obtained for each point of the discretization of the receiving patch using Eq. (D.9), for

all the mechanical point forces placed on the incident patch. Then, the radial displacement of

the shell in the physical space is obtained by the means of a 2-D inverse Fourier transform

W
ninj
F =

1
2π

n=+8¸
n=�8

ejnθni

» +8

�8
˜̃W

ninj
F ejkxxni dkx (D.40)

where ˜̃W
ninj
F is the shell’s spectral radial displacement at point ni when the excitation is a

mechanical point force located at point nj, and W
ninj
F is the associated physical quantity. The

CTF between the incident patch j and the receiving patch i is then obtained by summing

these values over the Nj points belonging to the incident patch j and the Ni points belonging

to the receiving patch i

Huaδpa,ij
1+2 =

Ni̧

ni=1

Nj̧

nj=1

jωW
ninj
Fa

ΩjΩi
δξ jδξi (D.41)

As for Hpbδpa
1+2 , the spectral radiated pressure from a mechanical excitation must be ob-

tained for each point of the discretization of the receiving patch using Eq. (D.11), for all the

mechanical point forces placed on the incident patch. Then, the radiated pressure in the

physical space is obtained by the means of a 2-D inverse Fourier transform

p
ninj
F =

1
2π

n=+8¸
n=�8

ejnθni

» +8

�8
˜̃p

ninj
F ejkxxni dkx (D.42)

where ˜̃p
ninj
F is the spectral radiated pressure at point ni when the excitation is a mechanical

point force located at point nj, and p
ninj
F is the associated physical quantity. The CTF between

the incident patch j and the receiving patch i is then obtained by summing these values over

the Nj points belonging to the incident patch j and the Ni points belonging to the receiving

patch i

Hpbδpa,ij
1+2 =

Ni̧

ni=1

Nj̧

nj=1

p
ninj
Fa

ΩjΩi
δξ jδξi (D.43)

191
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI082/these.pdf 
© [F. Dumortier], [2021], INSA Lyon, tous droits réservés



D.6 Calculation of the condensed pressures and condensed
radial velocities of the global system 1+2

In order to compute the condensed pressures and condensed radial velocities of the system

1+2, it is necessary to develop the formulation when the external excitation (i.e. mechanical

point force) is considered (to compute Λ1+2) and when a monopole excitation is considered

(to compute ΛM
1+2).

D.6.1 Condensed pressures and radial velocities from a mechanical excita-
tion

When the excitation is the external mechanical force, the procedure to compute the condensed

pressures and condensed radial velocities is close to the one described in Appendix D.5.2.2.

The spectral radial displacement of the shell is hence given by Eq. (D.9). The radial displace-

ment of the shell in the physical space at each point of the receiving patch i is then obtained

by the means of a 2-D inverse Fourier transform

Wni
F =

1
2π

n=+8¸
n=�8

ejnθni

» +8

�8
˜̃Wni

F ejkxxni dkx (D.44)

where ˜̃Wni
F is the shell’s spectral radial displacement at point ni when the excitation is the

external mechanical point force, and Wni
F is the associated physical quantity. The condensed

radial velocity at the receiving patch i is then obtained by summing these values over the Ni

points belonging to that patch

U1+2(i) =
Ni̧

ni=1

jωWni
F?

Ωi
δξi (D.45)

As for the condensed pressures when the excitation is the external mechanical point

force, the spectral radiated pressure in Eq. (D.11) must be used. The radiated pressure in the

physical space at each point of the receiving patch i is then obtained by the means of a 2-D

inverse Fourier transform

pni
F =

1
2π

n=+8¸
n=�8

ejnθni

» +8

�8
˜̃pni

F ejkxxni dkx (D.46)

where ˜̃pni
F is the spectral radiated pressure at point ni when the excitation is the external

mechanical point force, and pni
F is the associated physical quantity. The condensed pressure at

the receiving patch i is then obtained by summing these values over the Ni points belonging

to that patch
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P1+2(i) =
Ni̧

ni=1

pni
F?
Ωi

δξi (D.47)

D.6.2 Condensed pressures and radial velocities from a monopole excita-
tion

When the excitation is a unit monopole located in the surrounding fluid at point M, the

condensed pressures and radial velocities will be calculated by using the developments in

Appendix D.4. The spectral radial displacement of the shell is obtained from Eq. (D.22) (when

considering a spectral blocked pressure at the surface of the shell induced by a monopole

located in the surrounding fluid). The radial displacement of the shell in the physical space

at each point of the receiving patch i is then obtained by the means of a 2-D inverse Fourier

transform

Wni
e =

1
2π

n=+8¸
n=�8

ejnθni

» +8

�8
˜̃Wni

e ejkxxni dkx (D.48)

where ˜̃Wni
e is the shell’s spectral radial displacement at point ni when the excitation is a unit

monopole located at point M, and Wni
e is the associated physical quantity. The condensed

radial velocity at the receiving patch i is then obtained by summing these values over the Ni

points belonging to that patch

UM
1+2(i) =

Ni̧

ni=1

jωWni
e?

Ωi
δξi (D.49)

As for the condensed pressures when the excitation is a unit monopole located in the

surrounding fluid at point M, the spectral radiated pressure in Eq. (D.33) must be used. The

radiated pressure in the physical space at each point of the receiving patch i is then obtained

by the means of a 2-D inverse Fourier transform

pni
tot =

1
2π

n=+8¸
n=�8

ejnθni

» +8

�8
˜̃pni

tote
jkxxni dkx (D.50)

where ˜̃pni
tot is the spectral radiated pressure at point ni when the excitation is a unit monopole

located at point M, and pni
tot is the associated physical quantity. The condensed pressure at

the receiving patch i is then obtained by summing these values over the Ni points belonging

to that patch

PM
1+2(i) =

Ni̧

ni=1

pni
tot?
Ωi

δξi (D.51)
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Appendix E

Résumé étendu en français

E.1 Contexte de l’étude

Le travail présenté dans cette thèse est le fruit d’une collaboration entre Naval Group,

industriel français spécialisé dans le naval de défense, et le Laboratoire Vibrations Acoustique

(LVA) de l’INSA de Lyon.

Dans un contexte industriel naval, il est primordial de maîtriser au mieux les performances

vibroacoustiques des coques de véhicules sous-marins, et ce dès les premières phases d’étude.

Dans le domaine militaire, limiter au maximum le bruit émis par ces véhicules constitue un

enjeu d’une importance capitale, et les performances des antennes sonar actuelles impliquent

de pouvoir étudier ces systèmes sur une large bande de fréquence. Cela se traduit en termes

de capacités opérationnelles par :

- la discrétion acoustique : lorsque la coque est soumise à une excitation mécanique ou

acoustique en son intérieur, le bruit émis dans le milieu environnant peut être capté par

des sonars passifs qui écoutent la mer grâce à une antenne d’hydrophones.

- l’index de cible : lorsque la coque est soumise à une excitation acoustique venant de

l’extérieur, les vibrations induites par cette excitation rayonnent et peuvent être captées

par des sonars actifs.

- les performances sonar : les coques de véhicules sous-marins sont généralement

équipées d’une antenne sonar, dont les performances dépendent d’un ratio signal

sur bruit, qui peut être perturbé par les turbulences générées par le déplacement du

véhicule, ou par les excitations internes à la coque (bruit propre).

Afin de maximiser ces performances opérationnelles, des matériaux viscoélastiques, dit

revêtements, peuvent être appliqués sur la surface de la coque. Il se séparent en deux grandes

catégories. D’un côté, les matériaux de masquage isolent la coque du milieu extérieur en

minimisant le bruit rayonné par la coque, permettant de se protéger contre les sonars passifs
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et de limiter le bruit propre. D’un autre côté, les matériaux anéchoïques ont pour fonction

d’absorder les ondes venant de l’extérieur afin de se protéger contre les sonars actifs. L’étude

de ces différents matériaux, ainsi que des coques revêtues, ont fait l’objet de nombreux

travaux dans la littérature depuis des décennies. En revanche, beaucoup moins d’attention a

été portée à l’étude de coques partiellement revêtues. Comparée à une coque intégralement

revêtue, la perte de l’axisymétrie induite par le revêtement partiel entraîne un couplage des

ordres circonférentiels de la coque immergée, ce qui empêche l’application des méthodes

semi-analytiques généralement utilisées pour étudier des coques cylindriques. En outre, les

méthodes numériques à éléments, pouvant en théorie être utilisée afin d’étudier des systèmes

à géométrie non-triviale, sont limitées en fréquences du fait de leur important coût numérique,

et ne sont par conséquent pas viables dans un contexte industriel au delà de quelques Hz.

Pourtant, pouvoir modéliser des coques cylindrique partiellement revêtues peut présenter un

grand intérêt pour étudier l’impact de tuiles manquantes, d’une configuration où plusieurs

types de revêtements sont appliqués simultanément sur la coque, ou bien d’un mauvais

jointement des tuiles, sur les différentes capacités opérationnelles du véhicule sous-marin.

Le but de cette thèse est donc de développer une méthode permettant, à terme, de mod-

éliser des coques cylindriques partiellement revêtues, sur une large gamme de fréquences,

tout en ayant un coût numérique raisonnable. En se basant sur la méthode des fonctions de

transfert condensées (Condensed Transfer Function, CTF), fruit d’une précédente collabora-

tion entre l’INSA de Lyon et Naval Group, une approche de modélisation vibroacoustique

soustractive est proposée : la méthode des fonctions de transfert condensées inversée (re-

verse Condensed Transfer Function, rCTF). Cette méthode a pour but de modéliser la coque

partiellement revêtue un partant d’un modèle de la coque intégralement revêtue, auquel est

retiré un modèle de la zone manquante du revêtement, qui est ensuite remplacé par de l’eau.

Après une première étude de la littérature concernant trois domaines en lien avec le sujet

de thèse (le rayonnement des coques cylindriques, la modélisation de matériaux acoustiques

pour des applications navales, et les méthodes numériques en vibroacoustique), une première

étude sur un cas de modélisation soustractive a été réalisée et sera décrite dans le prochain

paragraphe.

E.2 Modélisation soustractive sur un système mécanique en
une dimension

Dans un premier temps, une étude de modélisation soustractive est menée sur un cas test

académique : le découplage de poutres en traction-compression. Le but de cette étude

préliminaire est d’obtenir une vision initiale du potentiel de la modélisation soustractive, de

sa sensibilité numérique, et de la faisabilité de sa mise en œuvre sur des cas plus complexes.
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L’attention est ici portée sur l’estimation des réceptances (c’est-à-dire le déplacement en un

point i de la poutre lorsqu’elle est excitée par une force harmonique ponctuelle en un point j)

d’une poutre "cible", à partir des réceptances d’une grande poutre (la poutre "maîtresse") et

de celles d’une petite poutre que l’on retire (la poutre "soustraite"). Afin d’avoir une vision

nette du problème, le lecteur peut se référer aux figures 13 et 15.

Dans un premier temps, les investigations sont menées sur une approche "locale" du

problème, c’est-à-dire que la poutre maîtresse est désassemblée à l’une de ses extrémités

par la poutre soustraite, faisant ainsi apparaître un unique point de découplage. En partant

du problème direct, à savoir le couplage de la poutre soustraite et de la poutre cible, les

réceptances de la poutre maîtresse peuvent être obtenues. Elles sont ensuite inversées afin

d’obtenir les réceptances de la poutre cible à partir de celles de la poutre maîtresse et de la

poutre soustraite. Une fois le formalisme théorique établi, une étude numérique est menée

afin de mettre en application ce cas de modélisation soustractive. Afin de calculer les récep-

tances des 2 poutres initiales (à savoir la poutre maîtresse et la poutre soustraite), plusieurs

possibilités peuvent être envisagées : une formulation analytique (basée sur une méthode

de décomposition en ondes forcées), et une modélisation par éléments finis (FEM). Afin de

coller au mieux aux applications potentielles de la modélisation soustractive (consistant en la

perturbation d’un modèle semi-analytique par un modèle numérique dans le cas de la coque

partiellement revêtue), il a été choisi d’étudier ce système en considérant une formulation

analytique pour calculer les réceptances de la poutre maîtresse, et un calcul FEM pour les

réceptances de la poutre soustraite. La première comparaison entre les réceptances au point

de découplage de la poutre cible obtenue via la méthode de découplage et celles de la poutre

cible calculées par une formulation analytique montre des résultats globalement très bon

sur tout le domaine fréquentiel étudié (entre 100 et 10000 Hz), sauf au niveau de 3 tranches

fréquentielles. Après une analyse des erreurs par petites variations permettant d’estimer

les cas critiques pour lesquels des erreurs sont le plus susceptibles d’être commises lors

du procédé de découplage, il a apparaît que deux cas semblent particulièrement critiques

: lorsque les erreurs de modèle sur les réceptances de la poutre soustraite (estimées par

FEM) sont importantes, et lorsque les réceptances de la poutre soustraite sont proches de

celles de la poutre maîtresse. En traçant ces deux conditions, on observe qu’elles sont toutes

deux réunies aux fréquences d’anti-résonance de la poutre soustraite, et que c’est bien dans

ces domaines fréquentiels que les erreurs dues au découplage sont les plus importantes.

Des études supplémentaires ont ensuite montré que les erreurs peuvent être atténuées en

diminuant la taille de la poutre soustraite (car cela fera apparaître moins de résonances et

d’anti-résonances dans la gamme de fréquence, ce qui limitera les domaines où les deux

conditions critiques sont réunies), ainsi qu’en augmentant l’amortissement structurel du
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matériau composant les poutres (car cela a notamment pour effet de diminuer l’amplitude

des anti-résonances, et ainsi de limiter les croisements entre les réceptances des deux poutres

initiales).

Dans un deuxième temps, une approche de découplage "globale" est étudiée. Le désassem-

blage de la poutre maîtresse par la poutre soustraite se fait maintenant à une position inter-

médiaire de la poutre maîtresse, ce qui fait donc apparaître deux points de découplage (voir

figure 22). Il est important de souligner que l’on ne s’intéresse ici, en termes de découplage,

qu’au comportement de la poutre cible au même point que pour l’approche locale, et que

le comportement de la poutre supérieure restante suite au découplage ne fait pas partie du

domaine d’intérêt de cette étude. Cette poutre restante sera donc nommée poutre "résiduelle".

Contrairement à l’approche locale, où les équations faisaient apparaître une formulation

ponctuelle, les deux point de découplage de l’approche globale entraînent nécessairement

une formulation matricielle, avec des matrices de réceptances qui font apparaître le calcul des

réceptances aux deux points de découplage. Les résultats du découplage via cette approche

globale semblent meilleurs que pour l’approche locale, avec un seul domaine d’erreurs

(contre trois précédemment), qui semble cette fois-ci apparaître à l’unique résonance dans

la poutre soustraite dans le domaine fréquentiel considéré. Si l’on pourrait penser que cette

différence avec l’approche locale vient du fait que le découplage ne se fait pas à l’extrémité

de la poutre maîtresse (contrairement à ce qui avait été fait précédemment), il apparaît que

c’est la nature du problème qui différencie les deux méthodes. En effet, une étude asympto-

tique où la longueur de la poutre résiduelle est progressivement réduite jusqu’à atteindre

0 m montre que le comportement du découplage global reste le même, à savoir, les erreurs

suite au découplage apparaissent à la fréquence de résonance de la poutre soustraite. Le

découplage asymptotique de la méthode globale, qui correspond en théorie au même dé-

couplage que celui de l’approche locale, montre que les erreurs ont été grandement réduites

dans ce cas par rapport à l’approche locale, ce qui souligne une robustesse plus importante

de l’approche globale par rapport à l’approche locale. Suite à cette conclusion, il est donc

proposé un processus d’optimisation du découplage, où la taille de la poutre soustraite est

réduite (ce qui veut dire que le deuxième point de découplage est rapproché du premier

point de découplage), afin d’éliminer toute résonance de la poutre soustraite dans le domaine

fréquentiel. Le résultat obtenu suite à cette optimisation est excellent et montre aussi un

intérêt dans le fait que, la structure soustraite étant plus petite, une modélisation plus fine

de son modèle FEM est possible sans que cela n’ait un impact trop important sur le temps

de calcul. Les études menées dans ce chapitre ont donc permis de mettre en lumière les

potentiels avantages et inconvénients de la modélisation soustractive, et l’approche globale

de modélisation soustractive permet d’envisager avec optimisme l’application à des cas plus
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complexes.

E.3 Modélisation soustractive sur un système vibroacous-
tique complexe : principe de la méthode des fonctions de
transfert condensées inversée (rCTF)

Dans ce chapitre, le formalisme théorique de la méthode rCTF est développé pour le décou-

plage de deux systèmes acoustiques, en partant de la formulation de couplage de la méthode

CTF pour un problème acoustique. Le principe de la méthode CTF directe est illustré sur la

figure 29. Un set de fonction orthonormales, appelé fonctions de condensation, est défini

sur la surface de couplage Ω entre les sous-systèmes. Les pressions et vitesses normales à

la surface Ω pour les deux sous-systèmes sont ensuite décomposées en une combinaison

linaire des fonctions de condensations. On peut désigner comme quantité condensée (i.e.

pression ou vitesse normale) la projection de cette quantité sur une fonction de condensation

au niveau de la surface Ω. Les fonctions de transfert condensées (CTFs), qui seront dans

ce cas des impédances condensées, sont ensuite définies comme le rapport d’une pression

condensée sur une vitesse normale condensée, pour toutes les combinaisons possibles dans

l’ensemble des fonctions de condensation. Par la suite, l’utilisation d’un principe de superpo-

sition, de continuité des pression et d’équilibre des vitesses normales permet ensuite d’en

déduire les vitesses de couplage entre les deux sous-systèmes, puis de déduire la pression

en n’importe quel point du système couplé. Partant de cette équation, on peut alors étudier

le problème inverse de découplage décrit par la figure 30, qui consiste en l’obtention d’un

sous-système cible à partir d’un système global et d’un sous-système soustrait. A partir d’un

principe de réciprocité, on peut calculer le vecteur des impédances condensées ponctuelles

du sous-système cible. Ensuite, en considérant un saut de vitesse normale à la surface Ω

du système global, on peut obtenir les impédances condensées du système global à partir

de celles des sous-systèmes soustrait et cible, avant d’inverser l’équation pour déduire les

impédances condensées du sous-système cible via la formule suivante:

Z1 = Z2 (Z2 � Z1+2)
�1 Z1+2 (E.1)

La pression en n’importe quel point du sous-système cible 1 peut ensuite être obtenue à

partir d’informations concernant uniquement les systèmes connus, à savoir le système global

1+2 et le sous-système soustrait 2:

p̃1(M1) = p1+2(M1) +
(

I + Z2 (Z2 � Z1+2)
�1 Z1+2Z2

�1
)

PM1
1+2Z2

�1P1+2 (E.2)

Il est important de souligner que cette expression constitue le principal résultat théorique
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de la méthode rCTF.

La méthode rCTF est ensuite appliquée à un cas test qui consiste en la diffraction d’une

onde plane acoustique par une sphère rigide immergée dans un milieu fluide infini (figure

31). Le problème est étudié sous une forme locale puis sous une forme globale suite aux

investigations du chapitre précédent, en considérant un milieu fluide infini (système global)

auquel on enlève une sphère pleine (dans le cas de la forme locale) ou creuse (dans le cas

de la forme globale) qui correspond au sous-système soustrait. Deux types de fonctions

de condensation sont envisagés (pour lesquelles un critère de convergence est défini) :

les harmoniques sphériques pondérées, qui par leur propriétés découplent les différentes

fonctions de transfert condensées en présentant des matrices diagonales, et les pavés, qui

correspondent à des fonctions portes 2D. Les impédances condensées sont calculées à partir

de modèles analytiques afin d’avoir une première validation numérique de la méthode sur

un cas complexe. En étudiant dans un premier temps le découplage local des impédances

condensées (qui correspond à l’équation E.1), il apparaît que les résultats sont excellent

sauf à la fréquence d’anti-résonance du sous-système soustrait (la sphère d’eau), mais cet

écart peut être corrigé en ajoutant un faible amortissement dans le milieu. Concernant le

découplage global des impédances, les résultats sont bien moins bons que ce qui était attendu,

notamment à cause de la présence de résonances et d’anti-résonances dans la circonférence du

sous-système soustrait (la sphère d’eau creuse) qui n’avaient pas été anticipées. Cependant,

en considérant une sphère creuse où le second interface de découplage (i.e. la surface interne

de la sphère creuse) est rapproché du centre de la sphère, les résultats sont bien meilleurs

et se rapprochent des résultats obtenus avec la méthode globale. Ces impressions sont

ensuite confirmées lorsque l’on cherche à obtenir la pression en n’importe quel point du

sous-système cible (correspondant à l’équation E.2), en comparant les résultats de la méthode

rCTF à un calcul théorique basé sur une décomposition du champ de pression diffracté sur

les harmoniques sphériques. Les investigations menées dans ce chapitre ont donc permis

de valider la méthode rCTF d’un point du vue numérique en considérant des modèles

analytiques pour le calcul des impédances condensées, mais les études menées à ce stade

ne permettent pas encore de conclure sur l’intérêt de la méthode globale par rapport à la

méthode locale.

E.4 Sensibilité numérique de la méthode des fonctions de
transfert condensées inversée

Après avoir été validée, la méthode rCTF est soumise à des erreurs de modèle afin d’en

étudier la sensibilité. En effet, si dans le chapitre précédent, les impédances condensées ont

été calculées en considérant des modèles analytiques, l’application à des systèmes industriels
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requiert de pouvoir appliquer cette méthode en considérant des modèles numériques. Ainsi,

dans un premier temps, le processus pour calculer les fonctions de transfert condensées à

partir de modèles numériques est décrit en détails, en prenant les pavés décrits au chapitre

précédent comme fonctions de condensation.

Pour les systèmes bornés, une formulation FEM est considérée. A partir des matrices

de masse et de raideur du système, la matrice dynamique du système peut être obtenue.

En associant les nœuds du modèle FEM à leur pavé correspondant, on peut alors définir

des excitations correspondant aux fonctions de condensation en excitant seulement les

nœuds appartenant au pavé considéré. La matrice dynamique est ensuite inversée, ce qui

permet d’obtenir la pression résultante à tous les nœuds du modèle FEM, et de sommer les

pressions sur les nœuds du pavé récepteur afin de déduire l’impédance condensée considérée.

Concernant les systèmes non bornés, une formulation de Green dérivée de la formulation

BEM indirecte est considérée. La surface fictive de découplage est discrétisée en un certain

nombre de points qui sont, comme dans le cas du modèle FEM, associés au pavé auquel

ils appartiennent. L’excitation est ensuite définie par une couche de sources monopolaires

définissant le potentiel de simple couche (et représentant un saut de vitesse normale à la

traversée de la surface), placées aux points de discrétisation de la surface de découplage. Les

pavés sont donc excités tour à tour grâce aux monopoles les composant, et la réponse aux

pavés récepteurs est obtenue grâce à la fonction de Green du système entre les différents

points appartenant aux pavés incident et récepteur.

Ces formulations sont ainsi appliquée au cas test du chapitre précédent, à savoir la

diffraction de l’onde plane acoustique par une sphère rigide dans un milieu fluide infini. Les

impédances condensées du milieu infini sont donc calculées en utilisant la formulation de

Green pour les systèmes non bornés, tandis que les impédances condensées de la sphère

d’eau pleine (pour la forme locale) et de la sphère d’eau creuse (pour la forme globale) sont

calculées en utilisant la formulation FEM pour les systèmes bornés. Dans un premier temps,

les impédances condensées du système global et du sous-système soustrait obtenues grâce

aux modèles numériques sont comparées à celles obtenues avec une formulation analytique

au chapitre précédent. Il apparaît que les modèles FEM des 2 sous-systèmes soustraits doivent

être suffisamment précis afin de décrire correctement les résonances et anti-résonances du

système, ce qui est crucial dans la mesure où il avait été identifié que ces fréquences sont

moins bien conditionnées et plus à même d’être sujettes à des erreurs lorsque les calculs

de découplage seront menés. Pour le système global, les calculs sont également plus précis

lorsque la discrétisation est plus fine, et l’impact de ces différences de résultats entre une

discrétisation fine et une moins contraignante sera évalué lors des calculs de découplages,

tant en termes de précision des résultats que de coût numérique.
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Dans un premier temps, la sensibilité de la méthode rCTF est évaluée pour le cas du

découplage des impédances condensées de l’équation E.1, pour les formes locale et globale

du problème. Il apparaît que, pour la forme locale, des erreurs surviennent notamment

autour de la fréquence d’anti-résonance de la sphère d’eau, ce qui était anticipé suite aux

résultats observés dans les chapitres précédents. De plus, la discrétisation plus ou moins fine

de la surface de découplage pour le calcul des impédances condensées du système global ne

semble pas avoir un réel impact sur le résultat du découplage. Concernant la forme globale,

les erreurs ne sont pas localisées à des fréquences particulières mais sont plus constantes

dans le domaine fréquentiel. Là encore, une discrétisation plus fine pour le système global ne

semble pas réellement améliorer les résultats. Par la suite, la pression en un point quelconque

du sous-système cible est évaluée avec l’équation E.2. Les résultats pour la forme locale

du problème font apparaître des erreurs qui n’étaient pas présentes lorsque les modèles

analytiques étaient considérés, mais sont globalement largement acceptables dans la majorité

du domaine fréquentiel et du milieu fluide infini, dans la mesure où les maxima et minima de

pression sont correctement localisés, mêmes aux fréquences où les plus grosses erreurs sont

commises. De plus, la discrétisation plus fine pour le système global ne semble, là encore,

pas avoir un rôle prépondérant dans les résultats obtenus. Pour la forme globale en revanche,

cette discrétisation joue un rôle plus important, dans la mesure où une discrétisation plus fine

de la surface de découplage permet d’obtenir de bien meilleurs résultats. Cependant, ce gain

en précision est contrebalancé par une augmentation très conséquente des coûts de calcul, ce

qui est résumé dans le tableau 5. Par conséquent, et dans la mesure où les résultats obtenus

avec la forme locale sont satisfaisants, c’est cette dernière qui est choisi pour l’application

finale de la méthode rCTF sur la coque cylindrique partiellement revêtue.

E.5 Rayonnement acoustique d’une coque cylindrique par-
tiellement revêtue avec la méthode rCTF

Finalement, la méthode rCTF est appliquée dans le cas de la coque cylindrique partiellement

revêtue dans le dernier chapitre. Pour cela, un modèle de la coque intégralement revêtue

est considéré, dans lequel le revêtement est modélisé comme un fluide équivalent. Si les

calculs sont présentés dans un cas général 3D, ils sont menés sur des modèles 2D, ce qui

permet d’avoir un cas de référence grâce à un calcul FEM qui ne serait pas possible avec des

modèle 3D. Les fonctions de transfert condensées à la surface de découplage de la coque

intégralement revêtue sont calculées en utilisant une formulation semi-analytique qui est

menée dans le domaine spectral, c’est-à-dire après une transformée de Fourier suivant l’axe

de la coque, et une décomposition en séries de Fourier suivant la circonférence de la coque

(qui se réduit à une décomposition en séries de Fourier suivant la circonférence de la coque
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dans le cas 2D). Les équations sont ensuite résolues pour la composante radiale du problème.

Les fonctions de condensations considérées sont donc des fonctions portes, et l’interface de

découplage est divisée en segments. Contrairement aux cas d’étude précédent, cette interface

fait apparaître une frontière vibroacoustique, à la frontière entre la coque et le revêtement.

Afin de prendre en compte cette frontière, deux possibilités sont envisagées. La première est

de décaler très légèrement cette frontière à l’intérieur du revêtement, afin de ne garder qu’une

interface acoustique. La deuxième possibilité est de considérer cette interface vibroacoustique

telle quelle, ce qui fera apparaître différents types de fonctions de transfert condensées car

les excitations et inconnues à cette interface seront mécaniques. Ces fonctions de transfert

condensées sont calculées en considérant la formulation de Green développée au chapitre

précédent, en discrétisant l’interface de découplage pour définir des couches de monopoles

(ou de forces ponctuelles dans le cas de la frontière vibroacoustique). Les comparaisons entre

la formulation spectrale et le calcul FEM de référence montrent que les fonctions de transfert

condensées ont été correctement calculées. Les impédances condensées du sous-système

soustrait, à savoir la tuile de revêtement manquante, sont elles calculées à partir d’un modèle

FEM. Si la frontière vibroacoustique doit être prise en compte, ces impédances condensées

sont converties afin de faire correctement correspondre les différentes interfaces.

Les calculs de découplage de la méthode rCTF sont ensuite menés pour prédire le rayon-

nement acoustique de la coque cylindrique à laquelle une partie du revêtement a été retirée

et remplacée par un écran rigide, et les résultats sont comparés au calcul FEM de référence.

Une formulation vibroacoustique est également développée afin de prendre en compte la

frontière vibroacoustique. Les premiers résultats montrent que le découplage fait apparaître

de nombreuses erreurs, notamment dans le domaine des basses fréquences, et surtout lorsque

le point examiné est proche de la frontière de découplage. De plus les résultats avec la

formulation vibroacoustique semblent moins précis que ceux de la formulation acoustique.

Parmi les pistes envisagées afin d’améliorer les résultats du découplage, un test est dans

un premier temps réalisé en ne retirant qu’une moitié de l’épaisseur du revêtement, qui

n’est pas directement collée à la coque. Les résultats obtenus sont excellents et une étude

paramétrique sur la fraction d’épaisseur retirée est ainsi conduite. Il en résulte que, partic-

ulièrement lorsque l’on observe les résultats du découplage à un point proche de l’interface

de découplage, plus la surface interne de découplage se rapproche de la surface de la coque,

plus les erreurs sont importantes. Suite à ces observations, la taille des segments définissant

les fonctions de condensation est réduite afin d’évaluer l’impact du critère de définition de

la taille des segments en fonction de la longueur d’onde. Il est effectivement observé que,

jusqu’à un certain point, réduire la taille des segments a un effet bénéfique sur les résultats

du découplage, et un critère en λ/6 est ainsi retenu, au lieu du critère en λ/2 précédemment
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utilisé.

Si les résultats obtenus avec le découplage n’étaient pas parfaits, il est important de garder

à l’esprit qu’ils ne constituaient pas le résultat final de l’étude. En effet, afin de modéliser

correctement le comportement vibroacoustique de la coque partiellement revêtue, le système

obtenu après découplage doit être à nouveau couplé à un modèle FEM de l’eau occupant

l’espace du revêtement manquant. La formulation de ce processus, appelé "recouplage",

est développée et le résultat principal afin de décrire la pression rayonnée par la coque

partiellement revêtue est le suivant :

p1+21(M1) = p1+2(M1) +
(

I + Z2 (Z2 � Z1+2)
�1 Z1+2Z2

�1
)

PM1
1+2Z2

�1P1+2

� P̃M1
1 (Z1 + Z21)

�1 P̃1

(E.3)

Le recouplage est ainsi effectué en considérant une taille des segments définie par le

critère en λ/6, et les résultats obtenus sont très bons. Il est ainsi observé que le processus

de recouplage semble avoir tendance à limiter les erreurs commises lorsque les calculs de

découplage sont effectués, notamment en basses fréquences où le système recouplé fait

apparaître moins de résonances et anti-résonances que le système précédemment découplé.

Le comportement vibroacoustique de la coque partiellement revêtue est ensuite comparé à

celui de la coque intégralement revêtue. Il apparaît que le revêtement partiel est correctement

pris en compte dans la mesure où les cartographies tracées montrent un champ de pression

rayonné asymétrique, alors qu’il est symétrique dans le cas de la coque intégralement revêtue.

On peut également voir qu’en basses fréquences, les configurations de revêtement partiel ou

intégral expriment des résultats très similaires, ce qui veut dire que l’impact du revêtement

partiel est moindre à ces fréquences. Ces résultats très prometteurs permettent donc de

conduire une étude paramétrique sur la taille du revêtement enlevé, ainsi que l’influence de

la position de l’excitation mécanique sur la surface de la coque. Il en résulte que plus la zone

de revêtement manquante est importante, plus le comportement vibroacoustique du système

est différent de celui de la coque intégralement revêtue. De plus, si la force mécanique est

localisée proche de la zone non revêtue, l’impact du revêtement partiel sera plus grand. Ces

études constituent un premier exemple des possibilités d’application de la méthode rCTF.

E.6 Conclusion et perspectives

Dans cette thèse, une méthode de modélisation vibroacoustique soustractive, la méthode

rCTF, a été développée. Elle permet de découpler un sous-système d’un système global le

long d’interfaces linéiques ou surfaciques. La formulation théorique de la méthode a été

présentée pour un cas acoustique, mais elle peut s’appliquer à des systèmes acoustiques,

mécaniques ou vibroacoustiques.
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Dans un premier temps, le principe de modélisation soustractive a été appliqué à un cas

test mécanique 1D, ce qui a permis d’envisager deux différentes formes de découplage. Un

découplage local, qui ne fait apparaître qu’une interface de découplage, particulièrement

sensible aux fréquences d’anti-résonance du sous-système soustrait, et un découplage global,

faisant apparaître deux interfaces de découplage, et semblant plus robuste face aux erreurs

de modèle. Dans un second temps, suite à son développement théorique pour des systèmes

(vibro)acoustiques 3D, la méthode rCTF a été mise en application sur un cas test acoustique.

En calculant dans un premier temps les fonctions de transfert condensées des différents

systèmes avec des modèles analytiques, la méthode a pu être validée d’un point de vue

numérique, tant pour la forme locale que pour la forme globale du problème.

Par la suite, les formulations pour calculer les fonctions de transfert condensées à partir de

modèles numériques ont été présentées. Lorsque le système est borné, une formulation FEM

est utilisée, tandis que lorsque le système est non borné, une formulation de Green est utilisée.

L’introduction des erreurs de modèles par le calcul numérique des fonctions de transfert

condensées a permis de confirmer les observations effectuées sur le cas test mécanique

1D quant à la sensibilité de la forme locale autour des anti-résonances du sous-système

soustrait. La forme globale a, quant a elle, donné des résultats satisfaisants dans le cas où la

discrétisation de l’interface de découplage du système global est très fine. Cependant, ce gain

en précision étant contrebalancé par une augmentation drastique du temps de calcul, ce qui

la rend difficilement applicable dans un contexte industriel.

Ainsi, la méthode rCTF locale a été appliquée afin de prédire le rayonnement acoustique

d’une coque cylindrique partiellement revêtue. Les calculs ont été menés sur des modèles

2D mais peuvent être étendus à des modèles 3D. Deux types d’interfaces ont été considérés,

la première uniquement acoustique, et la deuxième vibroacoustique, et il est apparu que la

formulation contenant l’interface acoustique a montré de meilleurs résultats. Les résultats

du découplage se sont montrés intéressants, notamment après avoir réduit la taille des

segments définissant les fonctions de condensation, mais certaines erreurs ont subsisté,

notamment dans le domaine physique proche de la zone de revêtement manquant. Il a par

la suite été observé que recoupler le système obtenue avec un modèle de l’eau occupant la

zone manquante de revêtement, à partir de la méthode CTF directe, permet de limiter les

erreurs causées par le découplage. Les très bons résultats obtenus ont permis d’étudier le

comportement vibroacoustique d’une coque cylindrique partiellement revêtue, et d’observer

l’impact de la taille de la zone de revêtement manquante et de la position de l’excitation

mécanique sur le rayonnement du système, par rapport à une coque intégralement revêtue.

Les résultats obtenus dans cette thèse permettent d’envisager de nombreuses perspectives.

Premièrement, il a été observé que des erreurs subsistaient lorsque la méthode rCTF était
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appliquée au cas de la coque cylindrique partiellement revêtue. Afin de limiter ces erreurs,

une première possibilité à court terme serait d’envisager l’application de la forme globale

de la méthode rCTF, car elle permet d’obtenir des meilleurs résultats que la forme locale

dans le cas où les modèles numériques utilisés sont suffisamment précis. Ensuite, une

deuxième possibilité serait d’utiliser des fonctions exponentielles complexes comme fonctions

de condensation, dans la mesure où il a été observé dans certains travaux qu’elles permettent

d’améliorer la convergence de la méthode CTF par rapport aux fonctions portes.

A moyen terme, il sera également nécessaire d’appliquer la méthode rCTF sur des modèles

3D afin d’étudier les coques cylindriques partiellement revêtues. Ceci permettrait en outre

d’intégrer les travaux effectués durant cette thèse à un logiciel industriel, et donc d’appliquer

cette méthode dans une phase préliminaire de conception de systèmes industriels. La prise

en compte de revêtements solides 3D sera également à considérer dans un futur à plus

long terme, afin de coller au mieux au matériaux utilisés sur des systèmes industriels. En

outre, des études pourront être menées sur des matériaux aux propriétés différentes, ce

qui permettra à terme d’utiliser la méthode rCTF pour modéliser des coques cylindriques

présentant différents types de revêtements sur leur surface, comme illustré sur la figure 2b.

Enfin, il pourrait également être envisagé d’étudier des coques cylindriques partiellement

revêtues couplées à des structures internes axisymétriques (en utilisant la méthode CAA) et

non-axisymétriques (en utilisant la méthode CTF). Différentes sortes d’excitations pourront

également être considérées (excitation acoustique afin d’étudier la diffraction du système,

excitations aléatoire de type TBL), afin d’étendre le spectre d’application de la méthode.
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