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Abstract

This thesis tackles portfolio allocation problems in studying robust covariance matrix
estimators and the dynamic dependence between financial assets to improve the overall
performance of risk-based allocation strategies. Today, it is well-established that the
solution proposed by Markowitz leads to poor out-of-sample performance, due to esti-
mation errors on the input variables, especially for the expected return. Despite several
extensions to the mean-variance strategy over the last decades, most practitioners prefer
simpler and more robust models such as the Minimum Variance portfolio (MinVar), the
Equal Risk Contribution portfolio (ERC), and the Most Diversified portfolio (MDP),
where expected returns are put aside and the covariance matrix estimation is the sole
focus. However, two main issues remain: first, the Sample Covariance Matrix estimator
(SCM) is inaccurate under non-Gaussian assumptions (asymmetry and heavy tails) and
small sample sizes; second, the covariance matrix does not capture the dependency
structure among financial assets (spillover and feedback effects), leading to incomplete
risk assessments of investment universes.
In the first part of this thesis, we focus on the covariance matrix estimation and we
develop for it a robust and de-noised estimator adapted to more realistic assumptions on
financial asset returns. This estimator based on the Tyler-M estimator and the Random
Matrix Theory (RMT) is adapted to non-Gaussian distributions (elliptical distribution)
and we show that the assets should be preferably classified in homogeneous groups before
applying the proposed methodology.
The second part of this thesis is dedicated to assessing the dynamic dependence between
financial assets using the Generalized Partial Directed Coherence measure (GPDC) to
take into account both the direction and the strength of causal relationships among
financial assets. However, we show that a naive estimation of the Vector Autoregressive
model (VAR) leads to poor results for the GPDC measure. To accurately capture
diffusion patterns, we propose a parsimonious estimation (mBTS-TD) of the VAR model
(no estimation of non-significant coefficients) by combining two subset selection methods,
the modified Backward-in-Time Selection method (mBTS) and the Top-Down strategy
(TD).
Finally, in the last part, we derive from the local directed weighted clustering coefficient
an indicator adapted to the number of connections in the network in order to remove the
most unstable assets (systemic and influenced) before allocating portfolios. Moreover, an
empirical study is carried out that demonstrates that combining all of the results of the
different chapters significantly improves risk-based allocation strategies.

Keywords: Portfolio allocation, Multivariate time series, Covariance matrix, Random
matrix theory, Factor model, Elliptical distributions, Vector AutoRegressive model, Sub-
set selection methods, Causality measures, Frequency causality measures, Financial net-
works, Clustering coefficient
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Notations

Z Set of integer numbers
R Set of real numbers
R+ Set of positive real numbers
C Set of complex numbers
i

√
−1

z∗ The conjugate of z
|.| The absolute value or modulus for complex numbers

v Column vectors (bold lowercase letters)
vj The element j of v
L(.) Toeplitz operator (1.4.1)
0m The m× 1 vector of zeros
1m The m× 1 vector of ones
‖v‖1 The L1-norm ‖v‖1 =

∑
j |vj|

‖v‖2 The L2-norm ‖v‖2 =
√∑

j |vj|2

A Matrices (bold capital letters)
ajk The element j,k of A

Â Any estimate of matrix A
Im The m×m identity matrix
A′ The transpose of A
AH The Hermitian (conjugate transpose) of A
det(A) The determinant of A
Tr(A) The trace of A
‖A‖1 The L1-norm ‖A‖1 = max

k

∑
j |ajk|

‖A‖ The spectral norm (or L2-norm ‖.‖2) ‖A‖ =
√
λmax(AHA) where λmax

is the maximum eigenvalue of AHA

‖A‖F The Frobenius norm ‖A‖F =
√∑

j,k |ajk|2

T (.) Toeplitz rectification operator (1.4.1)
vec The column stacking operator
⊗ The Kronecker product

1(.) The indicator function (1 if the condition is fulfilled, 0 otherwise)
IE[.] Expected value
N (µ, σ2) Gaussian distribution
χ2(k) Chi-squared distribution

G Network of nodes and edges
V Set of nodes
E Set of edges (links)
Z The m×m adjacency matrix
Zu Unweighted network where zujk = 1 if (j, k) ∈ E and 0 otherwise
Zw Weighted network where zwjk ∈ R+ if (j, k) ∈ E and 0 otherwise
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Chapter 1

Introduction

1.1 Motivations

The main challenge in asset management has always been how to allocate financial assets
in order to maximize an investment’s net worth while efficiently managing the portfolio
risk. In 1952, Markowitz [1, 2] proposed a solution to the asset selection problem under
the mean-variance framework, supposing that investors only care about the expected
return (the mean) and the risk level (the variance) of their portfolio. The optimal weights
among assets are thus obtained by maximizing the expected return for a given risk level,
or minimizing the risk for a given expected return. All such portfolios form the efficient
frontier that gives the best expected return for a given risk level or vice versa. For an
investor, it represents the trade-off between risk and expected return when allocating
a portfolio. Moreover, the efficient frontier illustrates the benefits of diversification,
because a well-diversified portfolio can reduce the risk while preserving the same level of
expected return, or even increase the portfolio return without increasing risk. Despite its
powerful theoretical framework, the mean-variance strategy suffers from major pitfalls
in practice. First, the input parameters are not known a priori and must be estimated,
leading to estimation errors, especially for the expected return. For instance, Chopra and
Ziemba in [3] showed that estimation errors in the means are about ten times greater
than those in the variances, and twenty times greater than those in the covariances.
Second, the mean-variance solution is very sensitive to the input parameters, again
mainly for the expected returns [4, 5]. If these drawbacks are ignored, the traditional
mean-variance portfolio provides a highly concentrated portfolio with extreme weights,
unstable composition over time and poor out-of-sample performances [6, 7, 8].

To overcome these limitations, several extensions have emerged in the literature
over the last fifty years. These extensions can be divided in two classes. The first
class includes the Bayesian approach, to estimate unknown parameters reducing the
estimation errors such as predictive distribution of returns [9, 10], the Bayes-Stein
approach based on shrinkage estimators [11, 12, 13, 14], or asset pricing models providing
informative prior distributions of future returns [15, 16]. The second class includes
more heterogeneous approaches such as robust portfolio allocation rules using bounded
parameters or confident intervals [17, 18, 19], moment restrictions based on factor
models [20], covariance matrix estimation [21, 22, 23] or specific optimization constraints
[24, 25, 26]. Although these extensions reduce the portfolio sensitivity to the parameter
estimates, they also increase the computational complexity while not guaranteeing

1



Chapter 1 Introduction

out-of-sample performances [27, 28]. Furthermore, most practitioners prefer simpler and
more robust models where expected returns are put aside and the covariance matrix
estimation is the sole focus.

The most well-known alternative allocation strategies are the naive Equally Weighted
portfolio (EW) [28] and risk-based allocation strategies such as the Minimum Variance
portfolio (MinVar) [3], the Equal Risk Contribution portfolio (ERC) [29] and the Most
Diversified Portfolio1 (MDP) [30].

The naive EW portfolio is the simplest way to allocate portfolios, since assets
are allocated with the same weights without any parameter estimation nor complex
optimization. Under the mean-variance framework, this portfolio is optimal only if all
assets have the same expected returns, variances and covariances. However, if the risk
levels are very heterogeneous, this strategy leads to poor risk diversification since even
if the assets have the same weight in the portfolio, their contribution to the risk of
the portfolio is higher for a risky asset than for a low-risk asset. Nevertheless, despite
its shortcomings, the EW is widely used in practice by investors as documented in
[31, 32, 33] and can even outperforms various extensions of mean-variance strategies [28].

As suggested in [3], the easiest way to put aside the expected return of the mean-
variance strategy is to assume that all assets have the same expected return. Under this
assumption, the optimal portfolio is the MinVar portfolio. This strategy only minimizes
the variance of the final portfolio and the solution is unique. In [34, 35, 36, 37], the
authors showed that MinVar portfolios improve returns with lower volatilities when
compared to the natural cap-weighted2 strategy. Moreover, since the financial crisis of
2007-2008, MinVar portfolios have been widely used by investors while providing higher
performances than traditional factor strategies (e.g. dividend, growth, momentum,
value, etc.), reinforcing the low volatility anomaly concept3 [38, 39]. Nevertheless, in
practice, the MinVar strategy leads to highly concentrated portfolios, especially in highly
volatile and hence highly correlated markets requiring individual constraints for reducing
idiosyncratic risk.

The risk parity strategy was first used by the asset management company Bridgewater
in the 1990s. The original strategy allocated assets in proportion to their inverse volatility
without considering covariances. In [40, 41], the author introduced the concept of risk
budget considering both variances and covariances, thus extending the original risk
parity. This strategy, now more commonly known as the ERC portfolio thanks to [29]
is halfway between the EW and MinVar portfolios, allocating assets according to their
contribution to the risk of the portfolio. It preserves the benefits of investing in all
assets such as the EW portfolio while improving the risk diversification when risks are
heterogeneous in the investment universe. In addition, it is now well established that risk
diversification can improve portfolio returns [42, 43, 44]. Note that for high-dimensional
universes, the ERC algorithm is time-consuming and does not always converge [45].

1In the following chapters, the Most Diversified Portfolio (MDP) will be referred to as the Maximum
Variety portfolio (VarMax).

2The capitalization-weighted strategy allocates assets using market capitalizations (e.g. S&P 500,
CAC 40, etc.)

3The low-volatility anomaly is the observation that low-volatility stocks can provide higher returns
than high-volatility stocks, challenging assumptions about risk and return.
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1.1 Motivations

Since these works, different approaches to risk parity and/or ERC extensions have been
proposed based on the market exposure, value-at-risk, expected shortfall, systematic risk,
etc. [46, 47, 48, 49, 50, 51]

An alternative allocation strategy has been proposed by Choueifaty and Coignard
in [30], based directly on portfolio diversification to reduce common risk exposures,
providing an efficient alternative to cap-weighted portfolios [30, 37, 52, 53]. The Most
Diversified Portfolio (MDP) maximizes the ratio of the weighted arithmetic mean of
asset volatilities over the portfolio volatility. For long-only portfolios4, the purpose of
maximizing the Diversity Ratio (DR ) is to buy the most independent risks within a
universe to reduce the portfolio volatility. Indeed, if we consider two independent assets
with the same volatilities, the DR is equal to

√
2, thus reducing the portfolio’s volatility

by
√

2 and by
√
m for m independent assets. Note that if average asset returns increase

proportionally with volatility, then the MDP portfolio is the tangent portfolio on the
efficient frontier [35](it has the highest Sharpe ratio [54]). Moreover, the MDP portfolio
fulfills some interesting invariance properties [52]: duplication invariance, i.e. if an asset
is duplicated in the universe, then MDP will be unchanged giving half the weight to
each duplicated asset; leverage invariance, i.e the weighting remains unchanged whatever
the policy of the underlying company in terms of leverage; positive linear combination
invariance (po-li-co invariance), i.e. it stays unchanged if a positive linear combination
of the assets of the universe is added as a new asset. Unlike MDP, the EW portfolio
does not verify invariance properties, the MinVar portfolio only satisfies the duplication
invariance, and the ERC porfolio only the leverage invariance. Nevertheless, as with the
MinVar portfolio, the MDP strategy suffers from a high portfolio concentration requiring
individual constraints in practice [37]. In addition, these strategies have a natural order
of portfolio volatility, where the MinVar portfolio is unsurprisingly the least volatile, the
MDP portfolio is the second least, followed by the ERC portfolio, and finally the EW
portfolio [29].

Despite the fact that risk-based allocation strategies focus solely on the covariance
matrix estimation, this step plays a central role and should not be neglected to ensure
more stable portfolios and better out-of-sample performances [55, 56, 57, 58, 23, 59, 60, 61,
62, 63]. Estimating a parameter such as the covariance matrix using a given statistical
method is a multifaceted task. The value of the parameter is expected to be as close
as possible to its theoretical value. In financial modeling, the widely used estimator of
the covariance matrix is the Sample Covariance Matrix (SCM). The SCM is actually the
optimal estimator in the case of multivariate Gaussian samples and coincides in this case
with the maximum likelihood estimator (MLE). Let R = (r1, . . . , rT ) ∈ Rm×T be the
matrix of observations where ∀t ∈ [1, T ], rt is a m-vector of independent Gaussian with
zero-mean and covariance matrix Σ. Then, when T →∞ for a fixed m, the law of large
numbers ensures that: ∥∥∥∥ 1

T
R R′ −Σ

∥∥∥∥ a.s.−−→ 0 (1.1)

However, this biased estimator has two major drawbacks: first, the estimation
becomes inaccurate when the number of observations T is not too large relative to
the m variables (small sample sizes); second, the lack of robustness for non-Gaussian

4Long-only portolfio: all quantities invested in assets are necessarily greater than or equal to 0.
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distributions (asymmetry and heavy tails). These issues are now well-identified in many
areas such as signal processing and finance, which confirm the very poor performances of
the SCM estimator. Furthermore, it is well-known that asset returns are non-Gaussian
[64, 65, 66, 67, 68] usually exhibiting stylized facts such as asymmetry, fat tails, and tail
dependence, leading to large estimation errors. The assumption made on this distribution
plays a fundamental role in the estimation accuracy and should therefore question the
choice of the estimator.

Another key aspect to consider in portfolio allocation problems is the dynamic depen-
dence between financial assets, including spillover and feedback effects. Indeed, according
to their market importance, economic fragility, business activity and/or geographical po-
sition, assets will not react identically if a market shock occurs. Ignoring the systemic or
influenced nature of an asset leads to incomplete risk assessments on the investment uni-
verse. Therefore, it is essential to assess the causal relationships between assets, since the
covariance matrix used as a parameter in the risk-based allocation strategies only quan-
tifies the risk through volatilities and behavior similarities. Over the last two decades
and since the seminal work of Mantegna [69], the use of network theory to represent
the market dependency structure (financial network) has played an important role in the
literature on portfolio allocation problems [70, 71, 72, 73, 74, 75, 76]. Such approach
provides useful insights on the portfolio selection process to understand complex inter-
actions. Nevertheless, common approaches to recover the network topology such as the
sample correlation matrix or Granger non-causality tests [77] lead to partial information,
never providing indications of both the direction and strength of causal relationships.
Recovering an accurate network topology (directed weighted network) requires the use of
dependency measures that assess both the direction and strength of causal relationships.

1.2 Literature review

1.2.1 Covariance matrix estimators

Estimating covariance matrices is a classical problem in multivariate statistics. As
already stated, the covariance matrix estimation is conditioned by both the number of
variables m relative to the number of observations T and the underlying multivariate
distribution of the variables. When the variables are Gaussian and T >> m, the SCM
estimator Σ̂scm (1.1) converges almost surely to the theoretical covariance matrix Σ.
Nevertheless, in financial modeling, these assumptions are not fulfilled. In practice,
few historical observations are used (1 or 2 years of daily returns), in order to provide
only the most recent information in the optimization process, and the asset returns
are non-Gaussian (asymmetry, fat tails and tail dependence). Several approaches have
therefore been proposed to address these issues.
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According to several works [78, 79, 80], it has been shown that when m ≥ 3, there

exists a better estimator than Σ̂scm in terms of mean square error [80]. This estimator

uses external information to bias Σ̂scm and leads to the linear shrinkage first introduced
by Haff [81]. This estimator is simply a weighted average of the SCM and the identity
matrix Im

Σ̂LS(ξ) = ξ Σ̂scm + (1− ξ) Im

where ξ ∈ [0, 1] is the shrinkage parameter. If ξ = 1, this estimator coincides with the
SCM estimate. This estimator shows that incorporating external information improves
the estimate in terms of mean square error. The benefits of the linear shrinkage when
compared to the SCM have been precisely quantified in [82]. Note that this estimator is
also very useful for rank-deficient matrices (m > T ).

Following this approach, Ledoit & Wolf (LW) [58] introduced a shrinkage estimator
particularly adapted to financial asset returns and based on the single factor model of
Sharpe [83], where the factor is a market index. The LW estimate is a linear shrinkage of
the SCM and the covariance matrix containing the market information. This model can
be written as follows:

rj,t = αj + βj Ft + εj,t, ∀j ∈ [1,m] and ∀t ∈ [1, T ] (1.2)

where rj,t is the return of asset j at time t , αj is the active return of the asset j, βj is the
asset sensitivity to the market index return, Ft is the market index return at time t, and
εj,t is the idiosyncratic return for asset j at t assumed to follow independent Gaussian
with zero-mean and variance σ2. This latter term is assumed to be uncorrelated to the
market index. Under these assumptions, the covariance matrix writes:

Σr = σ2
F β β

′ + Ωε

where β = (β1, · · · , βm)′, σ2
F is the variance of the market returns and Ωε the covariance

matrix of the idiosyncratic error.

An estimator for Σr is given by:

Σ̂r = σ̂2
F β̂ β̂

′
+ Ω̂ε

where each β̂j is estimated individually using the Ordinary Least Squares (OLS)

estimator based on equation (1.2) and Ω̂ε is a diagonal matrix composed of the OLS
residual variances. Finally, σ̂2

F is the sample variance of the market returns.

The LW estimator is therefore equal to:

Σ̂LW (ξ) = ξ Σ̂scm + (1− ξ) Σ̂r (1.3)

where ξ is computed by minimizing the quadratic loss function∥∥∥ξ Σ̂scm + (1− ξ) Σ̂r −Σ
∥∥∥2
F

as in [58].

Nonetheless, it is now well established that several factors can better capture common
risks [84, 85, 86, 87, 88, 89], challenging the single market factor assumption of the Capital
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Asset Pricing Model (CAPM) [83]. Since these works, multi-factor models have emerged
based either on observable or statistical factors. Using this approach, the covariance
matrix can be estimated by imposing some factor structure (systematic part of the risk)
to reduce the number of parameters to be estimated [22, 90]. Let’s assume that the
investment universe contains m assets whose returns at each time t = 1, · · · , T are stored
in the m-vector rt. Suppose also that rt admits a K factors structure, where the K < m
common factors (known or unknown), and that the additive noise follows a multivariate
centered Gaussian distribution. The model for rt is as follows:

rt = Bt ft + εt (1.4)

where rt is the m-vector of returns at time t, Bt is the m×K-matrix of asset sensitivities
to each factor at time t, ft is the K-vector of factor values at t supposed to be common
to all assets, and εt is a m-vector of Gaussian white noises with variances σ2 uncorrelated
to the factors. Given equation (1.4) the covariance matrix is given at time t by:

Σt = Bt Σ
f
t B′t + Ωt

where Σf
t = IE[ft f

′
t] is the factor-related term and Ωt is the covariance matrix of εt. In

the case where the factors are known a priori, we deal only with the estimation of Bt

and εt. However, if the factors are unobservable and determined from the asset universe,
which is very frequent in practice, statistical methods must be used. Determining, the
number of factors is a tough task in all the model order selection problems. Subspace
methods such as the Random Matrix Theory (RMT) aim to identify the K highest
eigenvalues of Σt supposed to represent the K-factors, especially when the power of the
factors is greater than the noise power.

The Random Matrix Theory (RMT) was originally introduced in nuclear physics by
Eugène Wigner [91] to model the spectrum of heavy atoms and has now many applications
in several domains. In this framework, the first result on the behavior of Σ comes from
the paper by Marčenko and Pastur in 1967 [92]. This result allows one to quantify the
error committed by the analysis of the eigenvalue spectral density. The authors found
an equation for the eigenvalue density when T,m → ∞, and m/T → c ∈]0,∞[. More
precisely, they establish in this case that if the variables are independent and identically
distributed according to the centered Gaussian distribution with variance σ2, then the
eigenvalue spectral density of the SCM tends towards the Marčenko-Pastur’s law (MP):

fc(λ) =
1

2πσ2cλ

√
(λ+ − λ)(λ− λ−)1]λ−,λ+[(λ) (1.5)

where λ± = σ2(1 ±
√
c)2. Note when we consider the normalized-SCM Σ̂nscm, σ2 is

equal to 1. This result shows the influence of c on the covariance matrix estimation accu-
racy. The empirical eigenvalues are noisy estimators of the true eigenvalues independently
of T , because the eigenvalue spectral density diverges more and more from the Dirac delta
function at 1 (“perfect estimation”) as c becomes large (Fig. 1.1).
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1.2 Literature review

Figure 1.1: Histogram of the SCM eigenvalues computed from samples of reduced centered
multivariate Gaussian distribution N (0m, Im). Left side: the case of m/T = 0.01; Middle:
the case of m/T = 0.1; Right: the case of m/T = 0.5. In all cases, m = 1000, and T varies
in order to obtain the value of c = m/T . The theoretical distribution of Marčenko-Pastur’s
is shown in red.

According to the RMT, it is therefore shown that any eigenvalue above the Marčenko-
Pastur’s threshold λ+ = σ2(1 +

√
c)2 represents a dimension of the signal space and can

therefore be detected as a target (or factor) of interest for the current study. The number
of eigenvalues beyond this threshold determines the order of the model, and thus the
number of factors carrying information in the universe. Moreover, empirical studies have
confirmed the validity of MP law on financial data [55, 56, 57, 59]. These studies show
that RMT helps identifying a solution to filter noise by considering that all eigenvalues
within the MP theoretical distribution are only noise, and that those above the upper
bound λ+ distribution are signals (or factors) [55, 56]. In [56], Laloux et al proposed a

de-noising procedure of Σ̂nscm called “Eigenvalue clipping” and defined as follows:

Σ̂clip =
m∑
k=1

λclipk uku
′
k (1.6)

with uk the eigenvector associated to the eigenvalue λk of Σ̂nscm, and λclipk defined as
follows:

λclipk =

{
λk, if λk ≥ (1 +

√
c)2

λ̃, otherwise

where λ̃ is chosen such that Tr(Σ̂clip) = Tr(Σ̂nscm).

This method simply sets the noisy eigenvalues as a constant value such that the
trace of the matrix is preserved, thus creating a real difference between signal and noise
significantly reducing the values close to λ+. Although this method provides competitive
out-of-sample results [61], in practice it suffers from shortcomings. It appears that the
value of c is significantly different from the “effective” value [56] due to either small
temporal autocorrelation in the time series [93, 94, 95] and/or the underlying hypothesis
Σ = Im [96, 97], leading to detection in most cases of only the first component (market
factor) which is not completely satisfactory.

In recent works [63, 98, 99], the authors proposed an optimal and fully observable
estimator of the “true” covariance matrix, valid for large matrices. Using the theoretical
quantification of the relationship between sample and population eigenvectors provided
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in [100], they obtained an optimal rotational invariant estimator (RIE) for general covari-
ance matrices by computing the overlap between the true and sample eigenvectors. This
estimator also provides a tractable implementation when compared to [101, 102]. For

large m, the optimal RIE of Σ̂nscm is given by:

Σ̂RIE =
m∑
k=1

λRIEk uk u′k (1.7)

with uk the eigenvector associated to the eigenvalue λk of Σ̂nscm, and λRIEk defined as
follows:

λRIEk =
λk

|1− c+ c zk s(zk)|2

where zk = λk − i T−1/2 and s(z) denotes the discrete form of the limiting Stieltjes
transform

s(z) =
1

m

m∑
j=1

1

z − λj

where Tr(Σ̂RIE) = Tr(Σ̂nscm) is ensured by multiplying each λRIEk by η with

η =
m∑
k=1

λk/
m∑
k=1

λRIEk . The authors also observed that the optimal RIE systematically

underestimates the small eigenvalues and thereby proposed a regularization procedure
for small eigenvalues too close to 0 which attempts to correct the estimation error
(see chapter 9 in [99]). This estimator applied to portfolio allocation strategies gives
promising results providing lower volatility portfolios than those obtained when using
the SCM, Ledoit & Wolf (LW) and Eigenvalue clipping methods.

The methods defined above address the estimation accuracy, only focusing on the
sample size issue (m/T ). Nevertheless, the non-Gaussian distribution of asset returns
must also be considered. The field of robust estimation [103, 104, 105, 106] intends to
deal with this problem. The theory of robustness was first studied in the 1960s by Huber
and Tukey [105, 106, 103, 104, 107, 108]. Huber introduces M -estimators which are robust
estimators generalizing the concept of MLE. A M -estimator of Σ is defined as the solution
of the following equation:

Σ̂M =
1

T

T∑
t=1

u

(
1

m
r′t Σ̂

−1
M rt

)
rt r
′
t (1.8)

The existence and uniqueness of the solution of (1.8) has been shown by Maronna
in [107], provided that the function u(.) satisfies a set of general assumptions such as
for example, being non-negative, non-increasing, and continuous on R+ (the whole set of
assumptions can be found in [107]). Moreover, equation (1.8) admits a unique solution
and is a consistent estimate of Σ that can be obtained by a classical iterative procedure.
The Huber’s M -estimator is defined for the following u(.) function:

u(s) =
1

β
min
s∈R+

(
1,
a

s

)
=

1

β

(
1s≤a +

a

s
1s>a

)
(1.9)

Replacing (1.9) in (1.8) gives the complete expression of the Huber’s M -estimator of
Σ. Parameters a and β have to be set [103]. They control the percentage of attenuated
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data. As an example, the greater is a and the closest to Σ̂scm is the Huber’s estimator.
Figure 1.2 shows the shape of Huber’s u(.) function.

Figure 1.2: Huber’s u(.) function.

In [108], Tyler defines a special case of the above estimator (1.8) since instead of con-
sidering any u(.) function, he defines u(s) = s−1 satisfying Maronna’s general assumptions
[107] and providing more flexibility as it is a distribution-free estimator. Also known as the
Fixed-Point (FP) estimator, the Tyler-M estimator when estimated under non-Gaussian
assumptions (elliptical distributions with zero-mean [109, 110, 111, 112, 113]) is shown to
be the “most robust” covariance matrix estimator in the sense of minimizing the maxi-
mum asymptotic variance [108, 114]. This estimator is defined as the unique solution, up
to a scale factor, of the following equation:

Σ̂tyl =
m

T

T∑
t=1

rt r
′
t

r′t Σ̂
−1
tyl rt

(1.10)

This estimator can be normalized, for example, such that Tr(Σ̂tyl) = m. The solution
can be found using the following recursive algorithm [115]:

� Initialize Σ̂tyl,(1) with any full-rank matrix (e.g. m×m identity matrix),

� Iterate over k ≥ 1:

Σ̃
(k+1)

tyl =
m

T

T∑
t=1

rt r
′
t

r′t (Σ̂
(k)
tyl )
−1 r′t

Σ̂
(k+1)
tyl =

m

Tr(Σ̃
(k+1)

tyl )
Σ̃

(k+1)

tyl

until the relative Frobenius norm between two consecutive values becomes lower

than a fixed threshold ε ∈ IR+, i.e. until:
‖Σ̂(k+1)

tyl − Σ̂
(k)
tyl‖F

‖Σ̂(k)
tyl‖F

< ε
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To illustrate the efficiency of the Tyler-M estimator compared to the SCM under non-
Gaussian assumptions, we ran the following test: we simulate T = 256 observations of
a size m = 40 sampled from a highly correlated Student’s T distribution having shapes
parameter ν = [5, 7, 10], and a Toeplitz-structured covariance matrix whose coefficient
ρ = 0.95 (each element j, k of the Toeplitz matrix is defined by ρ|j−k|, j, k = 1, · · · ,m).
In Fig. 1.3, it appears clearly that the Tyler-M estimator is more robust than the SCM
under Student’s T distribution, having a significantly lower Frobenius norm between the
theoretical and the estimated covariance matrix.

(a) (b) (c)

Figure 1.3: Boxplot of Frobenius norm between the true covariance matrix and the co-
variance estimation using the sample covariance matrix estimator (SCM) or the Tyler-M
estimator (FP). The estimates are based on samples from a correlated multivariate Stu-
dent’s T distribution with sample size T = 256, m = 40, Toeplitz-structured covariance
matrix with ρ = 0.95 and three degrees of freedom ν = 5 (a), ν = 7 (b), and ν = 10 (c).

Note that classical robust covariance estimators require T >> m; otherwise, they do
not perform well or are not defined. In this way, recent works [116, 117, 118, 115, 119, 62]
based on the RMT have also considered robust estimation when T ' m. In [116, 117, 115],
the authors proposed a hybrid robust shrinkage covariance matrix estimator on Tyler’s
M -estimator [108] and LW’s shrinkage [82]. Moreover in [62], the authors show that
applying an adapted estimation methodology (Shrinkage Tyler-M estimator) leads to
achieving superior performance over many other competing methods under the MinVar
framework.

1.2.2 Dependency measures and indicators in financial networks

In recent years and since the seminal work of Mantegna [69], networks have become
a popular tool for representing financial markets due to their ability to describe the
interactions or relationships between assets in a simple model. A network G = (V,E)
is a set of objects with V the set of nodes (assets) and E the set of edges (links)
between nodes. The edge (j, k) connects a pair of nodes j and k. The mathematical
representation of a network is the m × m adjacency matrix Z = (zjk). Four types of
network can be considered to represent the topology of financial markets. Undirected
networks (symmetric matrix) which only describe the relationship between two assets,
can be either weighted (zwjk ∈ R+ if (j, k) ∈ E and 0 otherwise) or unweighted (zujk = 1 if
(j, k) ∈ E and 0 otherwise), i.e. whether the strength of the relationships is quantified or
not. Directed networks (non-symmetric matrix) where the relationship is characterized
by both its existence and direction, can also be weighted or not.
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The network approach provides useful information for understanding multiple inter-
actions and describing complex systems such as financial markets [120, 121, 122, 123].
In particular, portfolio allocation problems ideally involve modeling the relationships
among financial assets to capture diffusion schemes (spillover and feedback effects) to
efficiently identify and manage portfolio risk. Indeed, if a market event occurs, the
assets will react differently depending on their multiple connections, and neglecting these
complex relationships leads to a lack of information on the nature of assets (central,
peripheral, systemic or influenced) [124, 70, 71, 72, 125, 73, 74, 75, 76]. However, in
such an approach, the network topology relies on the choice of dependency measures to
accurately assess and quantify the system’s complex interactions.

The sample correlation matrix is the common measure to recover the dependencies
between assets through undirected networks [69, 120, 121, 122, 123, 124, 71, 72, 75, 76].
In [71], using correlation-based networks, Pozzi et al describe the highly connected
assets as “central” and the poorly connected ones as “peripheral”, combining several
centrality/peripherality measures. They find that investing in peripheral assets leads to
a more diversified portfolio and increases the return/volatility ratio relative to central
assets. In the continuation of this work [72], they theoretically prove a negative relation-
ship between the mean-variance optimal weights and the centrality of assets, showing
that central assets tend to have “value” characteristics, i.e. having rather large market
capitalizations, being undervalued and financially risky. Recent alternative works [75, 76]
propose to use, for risk-based allocation strategies, an interconnectedness matrix derived
from the clustering coefficient5 [126, 127] instead of the classical covariance matrix.
Such studies have confirmed the usefulness of correlation-based networks to improve the
portfolio selection processes. But, while this approach is easy to implement and give
interpretable results, several drawbacks exist. First, the sample correlation matrix is
likely to provide a complete network, i.e. that all nodes are connected to each other.
In this case, reduction dimension tools are required to keep only the most prominent
relationships such as statistical tests or filtering methods (Minimum Spanning Trees
[69] and Planar Maximally Filtered Graphs [128]). Second, the correlation coefficient
does not distinguish between direct and indirect correlations, i.e. the behavior similarity
between two assets may come from a third asset. To this end, the partial coefficient
correlation can be used to correct this shortcoming as in [129, 130, 131]. Finally, the
main limitation of correlation approaches remains that it cannot reflect cause-and-effect
relationships and capture diffusion patterns, resulting in a significant loss of information
on the network topology. Accordingly, causality measures are needed to distinguish
whether any two assets interact directly.

Since the seminal work of Sims [132] in macroeconomics, Granger’s non-causality tests
[77] are probably the most popular of the available causality measures [133, 134, 135].
The concept of non-causality defined by Granger [77] is based on the idea that, if a
time series xk(t) causes another time series xj(t), then the past of xk(t) will significantly
decrease the forecast error of xj(t). Such tests have become standard tools to assess
the direction of relationships and recover the network topology (directed network) in
neuroscience [136, 137, 138, 139, 140] and in finance [70, 125, 73, 74]. Since these
tests take into account causal relationships and can therefore capture diffusion patterns
between assets, several works have studied their behavior before, during, and after

5The clustering coefficient measures how a node is embedded in the network (1.21).
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market shocks (e.g. 2008 financial crisis, sovereign debt crisis, etc.). In [70], Billio et
al show that hedge funds, banks, brokers/dealers and insurance companies were highly
interdependent during the period 2000-2010 with a high level of systemic risk. They
also show that banks are the most systemic assets relative to the other three industries,
since they are more likely to transmit shocks. In the same way, the work in [125, 74]
aim to identify in the networks the nodes’ state change to anticipate phase transitions on
financial markets.

Granger’s non-causality tests first rely on the estimation of a Vector AutoRegres-
sive (VAR) model to capture temporal relationships between time series. Let x(t) =
(x1(t), . . . , xm(t))′ be a zero-mean m-dimensional stationary process admitting the follow-
ing VAR(p) representation:

x(t) = A1x(t− 1) + · · ·+ Apx(t− p) + ε(t), t ∈ Z (1.11)

where A1, . . . ,Ap are (m×m) coefficient matrices that describe the temporal relationships
between the m time series, p is the model order, and ε(t) = (ε1(t), . . . , εm(t))′ is a (m× 1)
vector of white noises with E[ε(t)ε′(s)] = 0 for t 6= s and ε(t) ∼ N (0, Σε). The matrix
Σε helps to test the VAR estimation accuracy or to determine the contemporaneous or
instantaneous effects between the time series. Moreover, the VAR(p) is said to be stable,
i.e. the VAR(p) is stationary with time-invariant means, variances, and autocovariances,
if the roots z1, . . . , zp of the equation det(Im − A1z

1 − . . . − Apz
p) = 0 have modulus

strictly greater than one.

A classical estimator of VAR coefficients6 is the Least Squares estimator (LS), either
in a multivariate (LS) or univariate (OLS) environment (equation by equation) [141]. The
LS estimation for the VAR(p) model defined in (1.11) is as follows:

β̂ = ((XX ′)−1X ⊗ Im)y (1.12)

where

� y = vec(x(1), . . . ,x(T )) is the (mT × 1) vector of observations,

� X is the (mp× T ) matrix with X(t) = vec(x(t− 1), . . . ,x(t− p)),

� β̂ is the (m2p× 1) vector of the estimated VAR coefficients vec(Â1, . . . , Âp)

For the univariate case, the OLS estimator is given by:

b̂j = (XX ′)−1Xyj (1.13)

where

� yj = (xj(1), . . . , xj(T ))′ is the (T × 1) vector of observations,

� X is the (mp× T ) matrix defined in (1.12),

� b̂j is the (mp× 1) vector of the estimated coefficients.

6Maximum Likelihood and Yule-Walker estimators [141] are also widely used to estimate VAR coeffi-
cients
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In addition to estimating VAR coefficients, the model order p is in most cases unknown
and must also be estimated. This step is crucial to accurately capture the full dynamics
of the system. The lag order p is often chosen to minimize an information criterion that
takes the following general form:

IC(p) = ln
(

det
(
Σ̂ε(p)

))
+ gT

pm2

T

where Σ̂ε(p) is either the unbiased or the maximum likelihood estimates of Σε(p) and
gT is the penalty factor which is a function of the sample size T . The most popular
information criteria are the Akaike information criterion (gAICT = 2) [142, 143], the
Hannan-Quinn information criterion (gHQT = ln lnT ) [144], and the Bayesian information
criterion (gBICT = lnT ) [145]. The main difference between those three information
criteria arises from the penalty factor strength. For a fixed T ≥ 16, the AIC criterion
tends to the largest order, BIC the smallest one and HQ is in between [141]. Moreover,
the use of the unbiased estimator of Σε(p), which increases the penalty factor, may play
an important role in model order selection.

Once the model order p and the VAR coefficients are estimated, Granger’s non-
causality can be assessed with a Wald multiple restrictions test [141] that tests whether
the coefficients are jointly significant, e.g. akj(1) = . . . = akj(p) = 0. The general null
hypothesis is given by H0 : Cβ = c, where C is a (q ×m2p) matrix called the restriction
matrix of the VAR coefficients (1 for tested coefficients and 0 otherwise), q denotes the
number of restrictions, β is a (m2p × 1) vector with β = vec(A1, . . . ,Ap), and c is a
(q × 1) vector with c = 0q for Granger non-causality. The Wald statistic is therefore

Γ = (Cβ̂ − c)′
[
C
(

(XX ′)−1 ⊗ Σ̃ε

)
C ′
]−1

(Cβ̂ − c)

where β̂ is the m2p-vector of the estimated VAR coefficients β, X is the (mp×T ) matrix

defined in (1.12) and Σ̃ε is the unbiased estimator of Σε(p) given by

Σ̃ε(p) =
ε(t)ε′(t)

T − pm− 1

Under the null hypothesis H0: Γ ∼ χ2(q). H0 is not rejected (non-causality) for a
given probability α if Γ ≤ χ2

α(q), where χ2
α(q) is the α quantile of the distribution. The

adjacency matrix ZGC = (zGCjk ) ∀j, k ∈ [1, . . . ,m] is therefore defined as follows:

zGCjk =


1, if Γk→j > χ2

α(q)

0, otherwise

(1.14)

Though Granger’s non-causality tests assess the existence and direction of interactions
whereas the sample correlation matrix does not, they also suffer from some limitations.
First the VAR estimation may fail for many well-known reasons: information criteria
often do not provide optimal lags [141, 146, 147, 148]; VAR dimensionality which requires
m2p parameters to be estimated, leading to estimation errors for either high-dimensional
system (large m) or for small sample size (small T ) [149, 150, 151, 140]; contemporaneous
or instantaneous effects between the time series creating spurious temporal relationships
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(structural VAR model) [132]. Moreover, if a causality is detected (rejection of non-
causality hypothesis), Granger’s non-causality tests do not give any information about
the causality strength, providing only directed unweighted networks, which inevitably
leads to a loss of key information to evaluate interactions.

Another possible approach to recover the network topology is to extend Granger’s
non-causality tests to nonlinear dependency measures such as Transfer Entropy (TE)
[152]. The TE quantifies the amount of time-delayed information between two dynamical
systems. Given an information set, the transfer entropy from the time series xk(t)
to the time series xj(t) is the amount of Shannon uncertainty [153] reduction in the
future values of xj(t) when including the knowledge of the past value of xk(t). In [154],
Barnett et al study the differences between Granger’s non-causality tests (autoregressive
model) and TE (information theory) measures and they point out that under Gaussian
assumptions, these two causality measures are entirely equivalent, up to a factor of 2.
However, the TE measure does not require any specific assumptions or models about the
underlying system. Although this measure appears attractive in theory with promising
results in many cases, TE has mostly been applied in bivariate cases, since become
problematic for high-dimensional systems due to the “curse of dimensionality” even
when appropriate estimators are used [135, 140]. To overcome this issue, dimension
reduction was implemented in TE for both the bivariate (mutual information on mixed
embedding (MIME) [155]) and the multivariate case (partial mutual information on
mixed embedding (PMIME) [156, 73]).

Once the network is built, the identification of specific nodes is a key issue in
network analysis and many indicators of interest exist for studying the network topol-
ogy. In the financial literature related to network theory, two classes of indicators
can be distinguished: first, indicators that assess the centrality/peripherality of a
node such as degree, betweenness centrality, eccentricity, closeness and eigenvector
centrality [157]; second, indicators that quantify to what extend a node is embedded
into the network such as the clustering coefficient [126, 127] or community structure [158].

Centrality measures characterize the importance and influence of a given node within
the network. Such measures are widely used in finance to classify each asset in terms
of its relative position in the network [70, 159, 160, 125, 73] and in portfolio allocation
problems to select the most central/peripheral assets before allocating portfolios as in
[124, 71, 72]. In the sequel, we briefly introduce the most common centralities such as
degree, betweenness centrality, eccentricity, closeness and eigenvector centrality [157].

For an unweighted network Zu, the degree centrality for a node j denoted by dj
measures its total number of edges. A high value indicates that the asset j is heavily
central in the network. It is defined as follows:

dj = (Zu ′ + Zu)j 1m (1.15)
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For a directed network, the degree includes the in-degree (number of edges pointing
toward a given node) and out-degree (number of edges starting from j) given by:

dinj = Zu ′
j 1m (1.16)

doutj = Zu
j1m (1.17)

In a weighted network Zw, the node strength can also be measured. For a node j, the
strength denoted by sj is the weighted sum of all edges

sj = (Zw ′ + Zw)j 1m (1.18)

For a directed weighted network, the strength also includes the in-strength (weighted
sum of edges pointing towards a given node) and out-strength (weighted sum of edges
starting from j) given by:

sinj = Zw ′
j 1m (1.19)

doutj = Zw
j 1m (1.20)

A node with a high degree/strength value is considered to be central in the network.

The betweenness centrality measures how a node relates to the other nodes and char-
acterizes its place in the information diffusion in the network. The betweenness centrality
of the node j is the number of shortest paths that pass through j divided by the total
number of shortest paths existing in the network. It is defined as follows:

BC(j) =
∑

j 6=k 6=n∈V

θ(k, n|j)
θ(k, n)

where θ(k, n|j) is the the number of shortest paths from k to n that contains j and
θ(k, n) is the number of shortest paths from k to n. A node that appears in many
shortest paths will have a high betweenness centrality value and will be considered as
central in the network.

The closeness centrality measures how close a node is to all other nodes in the network.
The closeness of a node j is the inverse of the total length of the shortest paths between
it and all others. It is as follows:

C(j) =
∑
k∈V

1

d(j, k)

where d(j, k) is the distance between nodes j and k. If the sum of the distances is
small, then the closeness centrality value is high and a node can be considered as central
in the network.

The eccentricity centrality of a node j is the greatest distance between this node and
the other nodes. A node with a low eccentricity centrality value can be considered as
central in the network. It is defined as follows:

E(j) = max
k∈V

(d(j, k))
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Finally, the eigenvectors centrality measures the importance of a node by also
considering the importance of its neighbors. The eigenvector centrality of the j-th node
is the j-th value of the first eigenvector, i.e. the eigenvector associated with the largest
eigenvalue λ1. The eigenvector centrality u is defined as follows:

Z u = λ1u

A node with a high eigenvector value centrality can be considered as central in the
network. Note that the eigenvector centrality value will be even more important if the
node is connected to other nodes that have high eigenvector centrality value.

The above indicators only indicate the relative position of a node with respect to its
neighbors (node-level measures) without taking into account how information is spreading
across the network (spillover and feedback effects). According to this idea, the clustering
coefficient was introduced in [161] and extended to directed networks in [126]. This
coefficient measures how a node is embedded into the network by quantifying its number
of triangles out of all of its possible triangles. In [127], this tool was extended to directed
and weighted networks (the local directed weighted clustering coefficient7). The local
directed weighted clustering coefficient takes into account the strength of a node in the
denominator, which ensures that the measure is always between 0 and 1 whatever the
network. A high value indicates that the asset j is heavily embedded in the network. For
an asset j, it is defined as follows:

hj =

1

2

[
(Zw + Zw ′) (Zu + Zu ′)2

]
jj

sj (dj − 1)− 2s↔j
(1.21)

where Zu is the unweighted version of Zw (zujk = 1 if zwjk 6= 0, and 0 otherwise), dj and sj
are respectively the total degree (1.15) and the total strength (1.18) of the asset j and

s↔j =
(Zw Zu + Zu Zw)jj

2
is the strength of bilateral edges between j and k.

Moreover, the local directed clustering coefficient can be divided into four types of
triangle patterns (cycle, middleman, out, and in) [126] giving rise to a completely different
interpretation. The four type of triangle patterns are defined as follows:

� cycle: a triangle in which every edge has the same direction

hcyclej =

1

2

[
Zw Zu 2 + Zw ′ (Zu ′)2

]
jj

1

2

(
sinj d

out
j + soutj dinj

)
− s↔j

(1.22)

7For directed unweighted networks, the local directed weighted clustering coefficient [127] is equivalent
to the Fagiolo coefficient [126].
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� middleman: a triangle such that j has two edges of different directions and with an
edge between k and l without forming a cycle

hmiddle
j =

1

2
[Zw ′ ZuZu ′ + Zw Zu ′Zu]jj

1

2

(
sinj d

out
j + soutj dinj

)
− s↔j

(1.23)

� in: a triangle in which there are two edges pointing toward j

hinj =

1

2
[Zw ′ (Zu + Zu ′) Zu]jj

sinj
(
dinj − 1

) (1.24)

� out: a triangle in which there are two edges starting from j

houtj =

1

2
[Zw (Zu + Zu ′) Zu ′]jj

soutj

(
doutj − 1

) (1.25)

where dinj , doutj , sinj and soutj are respectively the in-degree (1.16), the out-degree
(1.17), the in-strength (1.19) and the out-strength (1.20).

The cycle and the middleman coefficients represent the diffusion of information be-
tween assets (indirect diffusion), while the out coefficient can be directly assimilated to
systemic assets (influential assets) and the in coefficient to influenced assets. Note that
the local directed clustering coefficient hj is a weighted average of the four coefficients.
The weights are the denominator of each triangle pattern divided by the denominator of
hj.
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1.2.3 Main limitations

Risk-based allocation strategies require the covariance matrix estimation, where the num-
ber of observation T is not too large relative to the number of pre-selected assets m and
the distribution of asset returns is not Gaussian. In such a case, the SCM estimator is no
longer optimal and leads to noisy estimates. Several approaches have been addressed to
reduce the noise in the SCM dealing with sample size issues (m/T ) such as the LW esti-
mator [58], covariance matrix estimation based on factor models [22, 90], the Eigenvalue
clipping estimator [55, 56] and the optimal RIE [98, 63, 99]. All of these methods have
already shown good out-of-sample portfolio performances and offer some advantages, such
as:

� LW estimator: particularly suitable for asset returns as it uses market information
in the shrinkage process,

� Factor models: capturing common risk factors and using them to reduce dimension-
ality issue (K < m),

� Eigenvalue clipping method: identifying the signal part (or factor) thanks to the
upper bound of the MP law [92] to de-noise the covariance matrix,

� optimal RIE: using the overlap between the true and sample eigenvectors to correct
the estimate

However, since they operate on the SCM, they are not suitable for non-
Gaussian distributions. To deal with non-Gaussian distributions, the M -estimators
[105, 106, 103, 104, 107] and especially Tyler-M estimator [108] offer an interesting
alternative to the classical SCM, thanks to their robustness properties among elliptical
distributions. But, such estimators are not free from sample size issues and they
generally require m << T , which also leads to combining the methods presented above
to de-noise the estimate [116, 117, 118, 115, 119, 62]. Moreover, estimating a covariance
matrix assumes that the observations are sampled from a single multivariate distribution
(Gaussian or not), which seems too restrictive in financial modeling.

Modeling the structure and dynamics of financial markets through financial networks
requires recovering the network topology as accurately as possible. In order to obtain
exhaustive information on asset relationships and to accurately capture diffusion pat-
terns, the measures must take into account the existence, direction, and strength of the
interactions; otherwise, we can rightly suppose that we are missing information about
the dependency structure. Nevertheless, the most common measures used to recover
the network topology are not fully satisfactory. Correlation-based networks require
dimension reduction tools [69, 128], else they are not suitable in practice and the hierar-
chical structure cannot be specified. They also lead to undirected weighted/unweighted
networks and cannot capture spreading information across assets (spillover and feedback
effects). Indeed, if an asset fails, the contagion pattern will not be identifiable. To this
end, Granger’s non-causality tests can help for capturing information spread across assets
(directed networks). However, they are based on the VAR estimation which may fail for
many well-known reasons (incorrect model order p [141, 146, 147, 148], high-dimensional
systems [149, 150, 151, 140] and correlated white noises [132]) and therefore, if careful
attention is not paid to the estimation, the temporal relationships will not be captured
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with precision. Moreover, although they capture diffusion patterns, they do not quantify
the strength of the relationships, which is problematic to establishing the interaction
intensity and thus the systematic risk of assets. To this purpose, nonlinear causality
measures such as transfer entropy (TE) may be a possible alternative, but it remains a
tough task to obtain accurate estimations in high-dimensional systems and small sample
sizes [135, 140], requiring dimension reduction methods [156, 155, 73].

Finally, once the financial network is built, usually centrality measures or the clus-
tering coefficient are used to select a fixed number of assets (the most peripherical or
least systemic) independently of the connectivity level in the network [124, 71, 72]. The
indicator used must therefore adapt to the number of connections in the network and
removes only the most embedded assets for each period. Depending on market cycles,
assets are more or less connected to each other and according to such cycles it does not
make sense to always eliminate the same number of assets [70, 125, 73, 74]. If the network
is very disconnected, few or no assets should be removed; conversely, if the network is
very connected a much larger number should be removed.

1.3 Objectives

In this thesis, we address portfolio allocation issues through distinct but complementary
approaches to improve the overall performance of risk-based allocation strategies.

The first objective is to develop a robust and de-noised estimator of the covariance
matrix adapted to more realistic assumptions on financial asset returns. This estimator
must obviously be adapted to non-Gaussian distributions that play a fundamental
role in the estimation accuracy, but also must consider that asset returns might be
non-homogeneously distributed among themselves or over time.

The second objective is to assess the dynamic dependence between financial assets to
recover the network topology and identify the most embedded assets (systemic risk). The
dependency measures used must be suitable for high-dimensional systems, but must also
quantify the causal strength among the relationships to obtain exhaustive information
and thus to accurately capture diffusion patterns.

The third objective is to derive a network indicator adapted to the number of
connections in the network and remove only the most unstable assets (systemic and
influenced) for each period, to reduce systemic risk within the initial investment universe
before allocating portfolios.

Finally, the last objective of this thesis is to combine these different approaches to
propose a complete portfolio allocation methodology, where systemic risk has been reduced
from the initial investment universe and then the covariance matrix of the remaining assets
is estimated with a clean and robust estimate.
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1.4 Main contributions

1.4.1 Chapter 2: Robust covariance matrix estimation

In order to reflect the very specific behavior of asset returns, we model them using a
multi-factor model with a multivariate correlated non-Gaussian additive noise, assuming
that the number of unknown K-factors drives the undiversified part (common risks) of
asset returns and that the additive noise is part of elliptical distributions and is correlated
according to a Toeplitz structure.

The class of elliptical distributions introduced by Kelker [109] and well-studied in
[110, 111, 112] generalizes the multivariate Gaussian distribution. This class includes
many well-known distributions such as the multivariate Gaussian distribution, the
multivariate t-distribution, the multivariate symmetric α-stable distribution, and the
multivariate symmetric generalized hyperbolic distribution. Notice that the generalized
hyperbolic distribution also contains the hyperbolic, the normal-inverse Gaussian, and the
generalized Laplace distributions. This class of distributions reflects the key stylized facts
of asset returns, and the number of multivariate distributions covered makes it possible to
assume that the assets have different distributions among themselves or over time. Such
distributions are widely used in signal processing applications [162, 97, 163, 164, 165],
but also for modeling asset returns [166, 167, 168].

Let r ∈ Rm be a random vector with location parameter µ ∈ Rm and scatter matrix
C ∈ Rm×m. r follows an elliptical distribution if and only if there exists a random variable
τ ∈ R+, a matrix ∆ ∈ Rm×k with C = ∆∆′, a random vector x ∈ Rk independent of τ
and uniformly distributed in the k dimensional sphere, Sk−1, such that

r = µ+ τ∆x (1.26)

The elliptical distribution is denoted r ∼ ECm(µ,C, τ). From this definition, all
distributions are simply obtained by setting the distribution of τ . For example, the
multivariate Gaussian distribution (1.27) or the multivariate t-distribution (1.28) can be
defined as follows:

r = µ+
√
χ2
k∆x (1.27)

r = µ+
√
νχ2

k/χ
2
ν∆x (1.28)

where χ2
k is the Chi-squared distribution and ν the degrees of freedom. Note that for

ν →∞ the multivariate Gaussian distribution is obtained from (1.28).

Moreover, here C is assumed to be a nonnegative definite Toeplitz matrix and this
assumption made on C is required to use theoretical results found in [163, 164, 165]. A
Toeplitz matrix is a matrix with similar elements on the same diagonal. The symmetric
Toeplitz matrix also provides a flexible framework to generate a positive-definite covari-
ance matrix. Their properties have been widely studied and is generally used to describe
stationary processes [169].
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Thus, the proposed model for the asset returns at time t is given by:

rt = Bt ft +
√
τt C

1/2 xt (1.29)

where

• rt is the m-vector of returns at time t,

• Bt is the m × K-matrix of coefficients that define the assets sensitivities to each
factor at time t,

• ft is the K-vector of random factor values at t, supposed to be common to all of the
assets,

• xt is a m-vector of independent Gaussian whites noise with unit variance and non-
correlated with the factors, i.e. E[xt f

′
t] = 0m×K ,

• C is called the m×m scatter matrix that is supposed to be Toeplitz structured and
time invariant over the period of observation,

• τt is a family of i.i.d positive random variables with expectation τ that is independent
of the noise and the factors and drives the variance of the noise. These random
variables are time-dependent and generate the elliptical distribution of the noise.

Given equation (1.29), the covariance matrix writes at time t:

Σt = Bt Σ
f
t B′t + τ C

where Σf
t = IE[ft f

′
t] is the factor-related term and τ C is the covariance matrix of the

additive noise.

In this framework, we apply the robust Tyler-M estimator (1.10) and the RMT
results (1.6), in order to filter the noise part of the observations and thus to estimate
only the covariance matrix from the subspace generated by the K eigenvectors linked to
the K eigenvalues (K factors).

The Tyler-M estimator applied to model (1.29) turns out to be the “most robust”
covariance matrix estimator [108, 114] for the true scatter matrix C, and also independent
of the τt distribution. Moreover, the Consistency Theorem found in [163, 164, 165] shows
that if C admits a Toeplitz structure, then applying a Toeplitz rectification operator
T (.) on Ĉtyl provides an estimator of C that almost surely converges in spectral norm
under the RMT regime, i.e. when T,m → ∞, such as m/T → c ∈]0,∞[. This theorem
ensures the convergence of the covariance matrix of observation towards the covariance
matrix of additive noise, independently of the variance of the noise.

A Toeplitz operator L(.) is a linear operator that transforms any matrix A into a
matrix with a Toeplitz structure. There exist many Toeplitz operators since the operator
transforms the matrix in such a way to have a matrix with constant diagonals. Here, as
in [163, 164, 165], we use the Toeplitz rectification operator which replaces any element
aj,k from A of size (m,m) with the sum of the elements of its diagonal i divided by m.
For any vector x of size m, L : x 7→ L(x) is defined as the associated symmetric square
matrix of size m obtained through the Toeplitz operator: ([L(x)]j,k) = x|j−k|+1. For any
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square matrix A = [aj,k] of size m, T (A) represents the matrix L(ǎ) where ǎ fulfills
ǎj = (

∑m
k=j ak,k−j+1)/m.

Once the covariance matrix C̃tyl = T
(
Ĉtyl

)
is estimated, the observations can be

whitened and we can thus apply the RMT results under the same conditions stipulated
by the theory, i.e. multivariate non-correlated Gaussian distribution with unit variance.
Then, it is possible to identify the largest K eigenvalues of the estimated covariance
matrix thanks to the upper bound of the Marčenko-Pastur law [92], and thus obtain
a clean and robust estimator of the covariance matrix of observations (whitening process).

However, the whitening process proposed above is made under the implicit assump-
tion that the asset returns are drawn from a unique multivariate law and are therefore
homogeneous in law. Indeed, the Toeplitz structure characterizes a stationary process
that assumes that all asset returns come from the same process and are “spatially” sta-
tionary8. The temporal stationarity of returns is generally observable, but not the spatial
stationarity between assets. In the case where the assets are heterogeneous in distribu-
tion, the Toeplitz structure assumption on the covariance matrix C is difficult to verify.
Under the Toeplitz structure assumption, if the observation order of the assets changes,
the covariances between two assets should not change, whereas in practice this assump-
tion is not verified. Considering this phenomenon, we now assume that the asset returns
might be non-homogeneously distributed extending the results presented in [168] to no
longer be dependent on the observation order. We therefore propose to split the m assets
into p < m groups, each composed of {mq}pq=1 assets (with

∑p
q=1mq = m), and formed

to be composed of assets having similar distributions. Under this new assumption, the
model (1.29) applies for each group q as follows:

r
(q)
t = B

(q)
t ft +

√
τ
(q)
t C

1/2
(q) xt,

where the complete scatter matrix C is therefore block-constructed, and block-Toeplitz.

Under the assumption of non-homogeneous assets returns, we propose to form groups
of assets before applying the whitening process. The groups are built using the Ascending
Hierarchical Clustering (AHC) method that requires the number of groups to be fixed
a priori or determined using a predefined criterion (Caliński-Harabasz (CH) criterion
[170]), and the Affinity Propagation (AP) method [171] that self-determines the number
of groups.

Empirical tests are carried out on two different asset universes (European and US
equity universes) both allocated with the Maximum Variety9 or the Minimum Variance
strategy. The results are compared to those obtained with several classical estimators
such as Ledoit & Wolf (1.3), Eigenvalue clipping method (1.6), and RIE (1.7). These
tests extend our preliminary results and show that the way the assets are grouped might
improve the portfolio performance even more.

8By “spatially” stationary, we refer to the stationarity of the dependency structure of assets.
9The Maximum Variety portfolio (VarMax) refers to the Most Diversified Portfolio [30].
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1.4.2 Chapter 3: Frequency causality measures and parsimo-
nious VAR estimation

VAR representation (1.11) allows either in the time domain or in the frequency domain
to define the interactions between time series. Their use in many fields comes from their
straightforward theoretical framework for understanding the dynamical structure of sys-
tems by capturing complex temporal relationships among time series. However, in the
time domain, Granger’s tests provide partial information about interactions since they
only assess the existence and direction of causal relationships without any information
about the causal strength. In neuroscience, several measures of connectivity in the fre-
quency domain have been developed to deal with this point. Two types of connectivity
measures should be distinguished: first, coupling measures such as coherence and partial
coherence measures [172], respectively related to the cross-correlation or partial cross-
correlation; second, frequency causality measures able to quantify the strength of causal
relationships, extending the concept of Granger causality such as the Directed Coherence
(DC) [173], the Direct Transfer Function measure (DTF) [174, 175], the Partial Directed
Coherence measure (PDC) [176, 177], and the Generalized Partial Directed Coherence
measure (GPDC) [178]. However, such measures do not provide the same information
[172, 179, 180]. The PDC and GPDC are measures of direct causality while DC and DTF
measure both direct and indirect causality. The difference between direct and indirect
causality are illustrated in Fig. 1.4.

Figure 1.4: Causal structure of S in chapter 3: the time series x1 causes x2, x3, and x4,
while x4 and x5 are causing each other. The black lines represent the direct causalities
and the red ones represent the indirect causalities.

1.4.2.1 Frequency causality measures

The above causality measures first require the estimation of a VAR(p) model (1.11) and
then the estimated coefficients are shifted into the frequency domain via the Fourier
transform. The discrete Fourier transform of the coefficients ajk(1), . . . , ajk(p) at a given
frequency f is defined by:

ãjk(f) =



1−
p∑
l=1

ajk(l)e
−2iπfl, if j = k

−
p∑
l=1

ajk(l)e
−2iπfl, otherwise

(1.30)

where f are the discrete frequencies lying in

[
−1

2
;
1

2

]
. Note that for a discrete time series

sampled at frequency fe, its Fourier Transform will reveal information for frequencies
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lying in

[
−fe

2
;
fe
2

]
. In our case fe = 1, we can therefore choose the interval

[
−1

2
;
1

2

]
with a step of

1

F − 1
, where F is the number of frequencies.

From the Ã(f) matrix (1.30), the transfer matrix of the system at frequency f is given
by:

H(f) = Ã
−1

(f) (1.31)

Furthermore, from the transfer matrix (1.31), the coherence and partial coherence
measures can be defined using the cross-spectral power density matrix [181] given by:

S(f) = H(f)ΣεH(f)H

where the superscript H is the Hermitian transpose and Σε is the covariance matrix of
white noises (1.11).

Directed Coherence and Direct transfer function

The DC, introduced by Saito and Harashima [173] for bivariate cases, has been extended
for multivariate cases by Baccalá et al. [182]. The DC is based on the transfer matrix H
defined in (1.31). For two time series xj(t) and xk(t) the DC from k to j at each frequency
f is defined as follows:

ψjk(f) =
σkkhjk(f)√

m∑
n=1

σ2
nnhjn(f)h∗jn(f)

where σ2
kk is the k-th element of the diagonal of Σε and hjk(f) is the element j,k of

H(f). Moreover, the DC/DTF is represented as a power spectral density, i.e. |ψjk(f)|2
and has the following normalization properties:

0 6 |ψjk(f)|2 6 1 (1.32)

m∑
n=1

|ψjn(f)|2 = 1,∀j = 1, . . . ,m. (1.33)

The DTF [174, 175] is a version of the DC where σ2
kk = 1 ∀k ∈ [1,m]. The DC ψjk(f)

and the DTF at frequency f give causal influence between k and j, but even if the two
time series are not directly causal, an indirect causality may also emerge from a third
time series. In Fig. 1.5, we provide an example of the DC measure on the causal structure
defined in in Fig. 1.4.
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Figure 1.5: Theoretical DC of causal structure represented in Fig. 1.4 (column k causes
row j). The DC is computed using the true coefficients and the identity matrix for the
residual correlation matrix (Σε = I5). Interpreting the DC: x1 causes x2, x3, and x4. In
contrast, x1 causes x5 indirectly via x4.

Generalized Partial Directed Coherence measure (GPDC)

The GPDC [178] is an extended version of the PDC introduced by Baccalá and Sameshima
[176, 177]. It is a generalization of the multivariate case of the DC, based on the partial
coherence that describes the mutual interaction between two time series when the effects
of all others have been subtracted. Unlike DC/DTF measure, it quantifies only direct
connections. For two time series xj(t) and xk(t) the GPDC is defined from k to j at each
frequency f as follows:

ωjk(f) =

1

σjj
ãjk(f)√

m∑
n=1

1

σ2
nn

ãnk(f)ã∗nk(f)

As for the DC/DTF, the PDC is a version of the GPDC where σ2
kk = 1 ∀k ∈ [1,m].

The two normalization properties (1.32) and (1.33) defined for the DC/DTF hold for the
GPDC/PDC. However, the GPDC/PDC is normalized by the total outflows, then (1.33)
becomes:

m∑
n=1

|ωnk(f)|2 = 1,∀k = 1, . . . ,m. (1.34)
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The GPDC is a measure of direct causality representing the relative strength of an
interaction with respect to a given signal source (outflow to all the outflows) and is
therefore more suitable than DC/DTF for capturing spreading information between time
series. Indeed, the GPDC provides the multivariate relationships from a partial perspec-
tive. Moreover, the GPDC resolves the shortcomings of the PDC [183]: i) the GPDC is
not affected when multiple signals are emitted from a given source; ii) GPDC is a scale in-
variant measure; iii) GPDC allows to draw conclusions about the absolute causal strength.
In Fig. 1.6, we provide an example of the GPDC measure on the causal structure defined
in in Fig. 1.4.

Figure 1.6: Theoretical GPDC of causal structure represented in Fig. 1.4 (column k
causes row j). Interpreting the GPDC: x1 causes x2, x3, and x4. In contrast, x1 causes
x5 indirectly via x4, but as GPDC quantifies only direct interactions, the causality values
for all frequencies are equal to zero. If j = k, the GPDC represents the part that is
not explained by other signals. Since it is quite difficult to interpret, the diagonal is not
reported here.

Although GPDC is a powerful measure for detecting and quantifying causal influences
in multivariate systems with respect to Granger non-causality tests, it requires a precise
VAR estimation. Indeed, since the VAR coefficients are directly used to compute the
GPDC, the problem is intrinsically linked to the VAR estimation and it is obvious that a
flawed estimation of the VAR model will lead to both spurious causalities and inaccurate
causal strengths (cascading errors). A classical VAR model (unrestricted VAR model)
assumes that a time series depends on all lagged variables in the system. This is a
very strong assumption, in fact unreasonably so when modeling multivariate systems
which admit more parsimonious structures with only a few non-zero coefficients. This
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assumption is unrealistic, as in a multivariate system it is unusual for all time series to
be mutually dependent at each lag. The classical VAR estimation that focuses only on
determining the “optimal” lag order p leads to non-significant coefficient estimates and
strong biases on the GPDC measure. It is therefore essential to have a precise estimation
of the VAR coefficients, especially for those that are non-significant. Otherwise spurious
causalities will appear, biasing the true ones due to both the compensatory effect in VAR
estimation and the GPDC normalization property (1.34). The standard VAR estimation
is thus not well-suited to parsimonious models, inducing cascading errors in the GPDC,
which can be tenfold for high-dimensional system and/or small sample sizes [184]. To
this end, restricted VAR estimations (subset VAR models) can help to estimate only the
significant VAR coefficients to reduce the cascading errors in both causal and non-causal
parts.

1.4.2.2 Subset VAR models

Determining the best possible VAR estimate ideally involves testing all possible subset
VAR models and selecting the optimal one for a given criterion. In practice, this proce-
dure is hardly feasible because even for small m and p, the number of possible susbet
VAR models is huge (2m

2p possibilities). To deal with this “curse of dimensionality”,
alternative procedures have been developed.

In the literature on VAR models, three procedures can be considered to remove non-
significant coefficients: first, procedures based on an information criterion to add or delete
coefficients (Bottom-Up strategy, Top-Down strategy [141] and modified Backward-in-
Time Selection [151]); second, procedures using hypothesis testing, such as the t-test,
likelihood ratio and Wald test [141, 149, 150]; and finally, procedures based on shrinkage
methods such as Ridge Regression [185], Lasso Regression [186], and Elastic-Net [187].

Information-based subset selection methods

This type of subset selection methods will either remove (Top-Down strategy) or add
(Bottom-Up strategy) coefficients by comparing the restricted models to each other
according to an information criterion such as AIC, HQ or BIC.

The Top-Down strategy (TD) [141] starts from the full VAR(p) model defined in
(1.11). The significance of the VAR coefficients is tested separately in the m equations.
The goal is to eliminate the coefficients for each equation by evaluating the information
criterion. The order of the tested terms is arbitrary, but for example in [141], the
largest lag p is tested first for all variables from xm(t − p) to x1(t − p), then the
lag p − 1 with the same order of variables, and the process is iterated until p = 1.
An alternative approach to remove the variables is to first delete the one that leads
to the largest improvement in the information criterion. The advantage to the TD
strategy is that all coefficients in each equation are tested, but it is very sensitive to
the full VAR estimation which determines the model order. Indeed, if the model order
is under-fitted and coefficients were significant, then this strategy will not be able to
compensate for the estimation errors made. This strategy is precisely defined in chapter 3.

Unlike the TD strategy, the Bottom-Up strategy (BU) [141] starts from the null VAR
model (empty coefficients matrix) and adds the variables progressively. For the j-th
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equation, only the first variable (x1(t−1), . . . , x1(t−p)) is considered, and the optimal lag
p∗1 for that variable is selected by testing p ∈ {1, . . . , pmax} where pmax is fixed a priori.
As the TD strategy, the optimal lag p∗1 is determined with an information criterion and all
lagged terms up to p∗1 are included. Then, the same procedure is applied by adding one by
one the remaining m− 1 variables and thus determining for each variable its optimal lag.
Note that for one or more variables it is possible that the information criterion may not be
improved in which case the variables do not enter into the equation. The main advantage
of the BU strategy is that by starting from the null model and adding one by one the
variables, it makes it possible to work with high-dimensional systems. However, this
strategy has two drawbacks. First, the pmax is fixed a priori and can create estimation
biases. Indeed, if it is fixed too small, the model will be under-fitted; and on the other
hand, if it is too large, then all lagged variables up to this pmax can be included. Second,
by including all lagged variables up to the optimal lag, this strategy does not take into ac-
count possible non-significant lags. To overcome this last drawback, the TD strategy can
be applied either at the level of each variable inclusion or at the level of the final equation.

A more recent method has been developed by Vlachos and Kugiumtzis [151] called
the modified Backward-in-Time Selection (mBTS). This method is also a BU strategy
and it is based on Dynamic Regression models [188]. However, the mBTS method adds
progressively lagged variables, starting from the first lag for all variables and moving
backward in time. Contrary to the BU strategy which includes the variables one by one
by testing the lags, it tests all the variables at each lag which provides a better temporal
order of the variables. Moreover, it includes in the equations only significant lags for
each variable correcting the main drawback of the classical BU strategy. Nonetheless, it
still has the inconvenience of pmax fixed a priori. This strategy is also precisely defined
in chapter 3.

Such strategies are directly related to the choice of information criteria. The AIC
criterion tends to select more variables while the BIC criterion tends to choose the most
parsimonious model [149, 150].

Testing Procedure (TT)

Alternative procedures to information criteria are based on hypothesis testing. In
this approach, two types of tests have to be distinguished: individual tests (t-test) or
multivariate tests, i.e. that jointly test the variables (e.g. likelihood ratio and Wald
tests) [141, 149, 150]. In VAR models, the coefficients are directly related to the temporal
relationships. Thus, if the VAR has several lags, the use of multivariate tests can either
lead to removing all lags from a variable, or on the contrary, to keeping all of them,
which suffers from the same drawback as the classical BU strategy. In this section, we
therefore focus only on the individual t-test.

The significant coefficients can be chosen with the individual t-ratio, i.e. by excluding
all of the smallest absolute values of t-ratios until all absolute t-ratios are greater to
a threshold η. This procedure called Testing Procedure (TT) [149, 150] is a similar
approach to the TD strategy, but the coefficients are deleted using the individual
t-ratios. This strategy is much faster than the TD strategy because it immediately
identifies which variable is deleted in the next step, whereas in the TD strategy each
coefficient has to be retested. However, the threshold η has to be fixed a priori. In
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general, the value is fixed to 2 which corresponds roughly to the 5% significant level,
or alternatively using the quantile of the t-distribution T α/2

ν for a given probability α
and ν degrees of freedom. Moreover, Brüggemann and Lütkepohl [149] show that if
the critical value η is chosen as a function of the sample size T , the number of initial
variables, the information criterion, and the reduction step, then the TT and the TD strat-
egy (elimination by the greatest improvement in the information criterion) are equivalent.

For the j-th equation obtained from the full VAR model (1.11) estimated in a multi-
variate environment (LS), the TT procedure is applied as follows:

1. Compute the t-ratios associated to b̂j the (q×1) vector of the estimated coefficients
for the j-th equation, where q is the number of lagged variables (for the first step
q = mp). For the coefficient (b̂j)n, the t-ratio is defined as follows:

ϕn,j =
(b̂j)n(

ε̂′j ε̂j

T − q − 1
(XX ′)−1nn

)1/2
(1.35)

where n ∈ {1, . . . , q}, εj is the (T × 1) vector of residuals (yj − b̂
′
jX) with yj =

(xj(1), . . . , xj(T ))′ the (T×1) vector of observations defined in (1.13), X the (q×T )
matrix defined in (1.12) and (XX ′)−1nn the n-th element of the diagonal of (XX ′)−1.

2. Delete the coefficient n with the lowest absolute t-ratio, if and only if |ϕn,j| < T α/2
T−q.

3. Re-estimate the coefficients for the j-th equation by removing the n-th row from
the X matrix and recompute the t-ratios again from (1.35) with the new residuals
obtained and by decreasing the number of lagged variables q by one.

4. Repeat steps 2 and 3 until |ϕn,j| ≥ T α/2
T−q ∀n ∈ {1, . . . , q}.

The significance level chosen plays an important role, because if it is too severe, true
causalities can be removed and conversely if it is too low, spurious causalities will remain,
biasing the GPDC in both cases.
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Shrinkage methods

The Ridge Regression [185] or the Lasso method (Least Absolute Shrinkage and Selection
Operator) [186, 189] are Least Squares (LS) based methods with respectively a L2-norm
constraint or L1-norm constraint on the VAR coefficients. The Ridge Regression estimator
(1.36) and the Lasso estimator (1.37) for the VAR(p) model in (1.11) are defined as follows:

Â = argmin
A
||Y −AX||22 + ξ||A||22 (1.36)

Â = argmin
A
||Y −AX||22 + ξ||A||1 (1.37)

where

� Y = (x(1), . . . ,x(T )) is a (m× T ) matrix of observations,

� A = (A1, . . . ,Ap) is the (m×mp) matrix of VAR coefficients,

� X is the (mp× T ) matrix defined in (1.12),

� ξ ∈ R+ is the tuning parameter.

If ξ = 0, these estimators coincide with the LS estimate. If ξ > 0, the least
significant coefficients in Â are shrunk to zero. However, for the Ridge Regression,
the coefficients are never completely shrunk to zero. Indeed, the L2 penalty term only
limits the value of coefficients whereas the L1 penalty term imposes sparsity among
the coefficients. The Lasso method has the advantage of estimating coefficients and
selecting variables simultaneously. In typical cases, a cross-validation procedure may be
used, as Tibshirani [186] suggested, to choose both the lag p and the tuning parameter
ξ. In this thesis we only select ξ by considering that the lag p is predetermined by the
VAR(p) model order estimation as in [189]. Finally, an extension of these two methods
is the Elastic-Net method [187] that combines both of them. By adding the L2 penalty
term, this method allows one to correct some limitations of the Lasso method such as
the limitation on the number of selected variables when m × p > T , but also tends
to select several variables from a group. Nonetheless, it also adds complexity in the
estimation compared to the Lasso or Ridge Regression, with more parameters to calibrate.

The challenge here is obviously to use the most efficient subset method in terms of
VAR coefficient estimation accuracy, but also to work with high-dimensional systems for
assessing the structure and dynamics of financial markets. According to this idea, we
propose to combine the mBTS method with the TD strategy (mBTS-TD). We first use
the modified Backward-in-Time Selection (mBTS) to estimate the VAR coefficients as it
includes one by one only the terms that improve the prediction of the equation starting
from the null VAR model and thus makes it possible to work with high-dimensional
systems like K = 20 in [151]. Moreover, as already shown in [184], the mBTS method
dramatically improves GPDC accuracy. However, a maximum lag pmax must be fixed a
priori ; if it is too small this leads to an under-fitted model where the internal dynamics
of the system are not completely captured. On the other hand, if pmax is too large,
undesirable lagged variables may appear in the model, revealing spurious causalities.
Thus, to be less dependent on the choice of pmax, we use also the TD strategy. Despite
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the fact that the TD strategy is very sensitive to the initial estimation of the VAR, in our
case, it operates already on a parsimonious model and allows us to test the significance
of the variables in the opposite direction to produce if necessary a more parsimonious
model when pmax is set at a high value.

Using Monte Carlo simulations, our extended subset selection method (mBTS-TD) is
compared with classical subset selection methods (TD, Lasso, TT and mBTS) to quantify
the GPDC accuracy. All subset selection methods improve the accuracy compared to
standard VAR estimation and are therefore better suited. Nonetheless, the mBTS-TD
method stands out clearly from the other four methods by drastically reducing the
cascading errors in both causal and non-causal terms. What is more, we also show that
mBTS-TD outperforms mBTS and TT whatever value of pmax is chosen. Furthermore,
a recent work has shown [140] that linear measures (Granger non-causality and GPDC)
can provide competitive performance with respect to nonlinear measures (TE [152] and
PMIME [156]) also on nonlinear systems, especially when subset VAR methods are
applied first.

Finally, we make use of the GPDC measure, estimated with the mBTS-TD method
for modeling financial market dependency structures. This approach provides not only a
precise network topology taking into account both the direction and the strength of the
relationship between assets via the GPDC, but also solves the dimensionality puzzle via
the mBTS-TD estimation that produces a parsimonious causal structure. In addition, via
the local directed weighted clustering coefficient the most systemic assets are excluded
improving the EW portfolio performances. To the best of our knowledge, we are the first
to apply GPDC to financial networks, even though the PDC or the GPDC have already
been applied in the field of neuroscience [190, 191, 192].

1.4.3 Chapter 4: GPDC financial networks and asset selection

In this last chapter, in order to obtain a complete methodology for asset selection
problems, we propose a dynamic indicator to identify in the network the assets pre-
senting major risks due to their influence (systemic) or, on the contrary, those too
influenced to recover quickly from a market shock. Ignoring such assets in the selection
process inevitably leads to underestimating the portfolio’s risks, especially for world or
multi-asset strategies. Thus, identifying and removing unstable assets from the universe
before allocating portfolios improves risk diversification in the sense that the remaining
assets are less interconnected. Such pre-selection can also reduce asset allocation
errors from being complementary to the use of the covariance matrix which does not
quantify diffusion patterns. As an example, a diversified strategy will seek the least
correlated assets, but correlations do not reflect interconnectedness and an asset with
low correlation may turn out to be potentially highly systemic since it carries a new
risk premium (e.g. US subprime crisis, Italy/Spain sovereign debt crisis, etc.) or is
strongly influenced and overreacting to every market shock. Even though centrality
measures or clustering coefficients are useful tools in network theory to identify such
assets [124, 70, 71, 125, 72, 73, 74], they are not able to eliminate a variable number
of assets depending on the structure of the network. In portfolio allocation selection,
these measures are used to select/remove a fixed number of assets (the most peripheral
or the least systemic) and then allocate the portfolio regardless of the connectivity level
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within the network [124, 71, 72]. But, depending on economic/political events or market
cycles, assets are more or less connected to each other and according to such cycles it
does not make sense to always eliminate the same number of assets [70, 125, 73, 74]. If
the network is very disconnected, few or no assets should be removed; conversely, if the
network is very connected a much larger number should be removed.

From this, we propose to derive from the local directed weighted clustering coefficient
[127] a dynamic indicator essentially based on the out (1.25) and in (1.24) information
spreading patterns, neglecting the middleman and cycle ones (indirect diffusion). The out
triangle pattern identifies causal effects (houtj 6= 0) and thus can be directly assimilated to
systemic assets, while the in identifies the assets that are caused (hinj 6= 0) and therefore
influenced or that overreact if a market shock occurs. This asset selection procedure
has several advantages. First, it focuses essentially on unstable assets (systemic or
influenced) in order to reduce systemic risk within the universe. Second, by construction
it adapts itself to the number of connections in the network and therefore removes only
the most embedded assets for each period. Indeed, if the network is very disconnected,
no asset will be removed. Hence, it is not necessary to set either a number of excluded
assets or an exclusion threshold on the local directed weighted clustering coefficient.

The proposed dynamic asset selection process is applied on the GPDC financial
network (chapter 3) and examined on two equity universes. The first universe is
composed of national indices belonging to the MSCI ACWI (All Country World Index)
and the second is composed of GICS [193] sector indices within four geographical areas
(MSCI Emerging Markets, MSCI Europe, MSCI Japan, MSCI United States). These two
universes allow us to focus on different characteristics such as time delay between areas
(feedback effects) and global/regional macroeconomic effects for national universe and
economic activity issues within or between geographical areas for the sector universe.

The methodology is applied on the EW, ERC, MinVar and VarMax10 portfolios, using
the SCM estimate first for risk-based allocation strategies. Regarding the EW, ERC and
VarMax portfolios the dynamic pre-selection significantly improves portfolio performances
with respect to a Granger-based network or applied on the whole universe. As expected,
for both universes the most significant improvement is for the VarMax strategy. The
asset selection process succeeds in identifying the least correlated assets that are either
the least performing (influenced) or the riskiest (systemic) without significantly reducing
portfolio diversification. As for the MinVar portfolio, the results are more contrasted. The
methodology fails to improve return/volatility ratio on the country universe, increasing
the idiosyncratic risk even more and thus making it more complicated to manage drastic
market changes as in 2008, 2015 and 2018. Finally, when we associate the dynamic asset
selection with the whitening procedure (chapter 2), the results are even more improved
compared to the use of the SCM (5 times out of 6), the only failure is still on the MinVar
portfolio applied to the sector universe. This empirical study highlights that by combining
all of the results of the different chapters, we can significantly improve several classical
allocation strategies.

10The VarMax portfolio refers to the Most Diversified Portfolio [30].
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1.5 Outline of the thesis

The structure of the thesis is therefore as follows:

� In chapter 2, we propose a cleaned and robust covariance matrix estimation (whiten-
ing procedure). The asset returns are modeled as a multi-factor model embedded
in correlated elliptical and symmetric noise, extending the classical Gaussian as-
sumptions. We also consider that the asset returns might be non-homogeneously
distributed, extending the results presented in [168]. The whitening procedure com-
bines the robust Tyler-M estimator with the RMT results that are adapted to corre-
lated and non-Gaussian assumptions as suggested in [96, 163, 164, 165]. Nonetheless,
if the assets come from different distributions, other approaches should be consid-
ered. Thus, before applying the whitening procedure, we first classify the assets into
homogeneous groups using two classification methods: the Ascending Hierarchical
Clustering and the Affinity Propagation method [171]. Finally, the final covariance
estimate is obtained only using the de-noised part of the observations.

� In chapter 3, we focus on frequency causality measures. In particular, we use the
Generalized Partial Directed Coherence measure (GPDC) [178] to assess both the
direction and the strength of causal relationships among financial assets. Neverthe-
less, this measure is based on VAR models and it is obvious that a flawed estima-
tion of the VAR model will translate into inaccurate measure (cascading errors).
We quantify these errors and then propose a parsimonious estimation (mBTS-TD)
of the VAR model (no estimation of non-significant coefficients) by combining two
subset selection methods (modified Backward-in-Time Selection method (mBTS)
[188, 151] and Top-Down strategy (TD) [141]. Finally, we make use of the GPDC
measure, estimated with the proposed mBTS-TD method, to recover financial net-
work topology.

� Finally, in chapter 4, we carry out an empirical study based on four portfolio alloca-
tion strategies (EW, ERC, MinVar, VarMax), applying the results found in chapters
2 and 3. We first recover the financial network topology with the GPDC measure
estimated with the mBTS-TD method. Then, we propose a dynamic pre-selection
method based on the in and out triangle patterns of the local directed weighted clus-
tering coefficient [127]. This pre-selection method allows us to remove essentially
the most unstable assets (systemic and influenced) to reduce systemic risk and thus
obtain a well-diversified universe. What is more, this procedure adapts to the num-
ber of connections in the network and therefore removes only the most embedded
assets. Hence, it is not necessary to either set a number of excluded assets or to
set an exclusion threshold on the local directed weighted clustering coefficient as in
chapter 3. Finally, the covariance matrix of the remaining assets is estimated with
whitening procedure.
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Chapter 2

Improving portfolios global
performance using a cleaned and
robust covariance matrix estimate

This chapter is based on one poster session and two published articles in collaboration with Emmanuelle
Jay, Eugénie Terreaux, Jean-Philippe Ovarlez, Frédéric Pascal, Philippe De Peretti and Christophe
Chorro.

Improving portfolios global performance using a cleaned and robust covariance matrix
estimate,
E. Jay, T. Soler, E. Terreaux, J. P. Ovarlez, F. Pascal, P. De Peretti, C. Chorro,
Conference on Dynamics of Socio Economic Systems (DySES), October 2018, Paris, France

Improving portfolios global performance using a cleaned and robust covariance matrix
estimate,
E. Jay, T. Soler, E. Terreaux, J. P. Ovarlez, F. Pascal, P. De Peretti, C. Chorro,
Soft Computing, 24, 8643-8654, March 2020

Robust Covariance Matrix Estimation and Portfolio Allocation: the case of non-

homogeneous asset,

E. Jay, T. Soler, J. P. Ovarlez, P. De Peretti, C. Chorro,

2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020,

Barcelona, Spain

Abstract

This paper presents how the use of a cleaned and robust covariance matrix estimate can
improve significantly the overall performance of Maximum Variety and Minimum Variance
portfolios. We assume that the asset returns are modelled through a multi-factor model
where the error term is a multivariate and correlated elliptical symmetric noise extending
the classical Gaussian assumptions. The factors are supposed to be unobservable and we
focus on a recent method of model order selection, based on the robust Tyler M-estimator
and the Random Matrix Theory (RMT) to identify the most informative subspace and
then to obtain a cleaned (or de-noised) covariance matrix estimate to be used in the
Maximum Variety and Minimum Variance portfolio allocation processes. We focus on the
fact that the assets should preferably be classified in homogeneous groups before applying
the proposed methodology which is to whiten the data before estimating the covariance
matrix. We apply our methodology on real market data and show the improvements it
brings if compared with other techniques especially for non-homogeneous asset returns.
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2.1 Introduction

Modern portfolio theory introduced by Markowitz [1] lays the foundation for optimal
portfolio construction with the so-called mean-variance strategy. This optimization
problem maximizes the expected return for a given risk level in order to obtain the
optimal weights. Nevertheless, its practical implementation relies on the knowledge of
the empirical expected return, a quantity classically known to be very hard to estimate.
To overcome these drawbacks, allocation methods focusing solely on the covariance
matrix estimation have been developed, such as the Global Minimum Variance Portfolio
(GMVP) or the Equal Risk Contribution Portfolio [37], [29].

An alternative method has been proposed in [30, 52], based on portfolio diversification
and having only the covariance matrix as an input parameter. This method seeks the
most diversified portfolio by maximizing the variety (or diversification) ratio to reduce
common risk exposures.

In financial modeling, a widely used estimator of the covariance matrix is the Sample
Covariance Matrix (SCM), optimal under Gaussian assumptions. Nevertheless, it is
well-known that asset returns usually exhibit departures from the optimal framework as
asymmetry, fat tails, tail dependence, thus leading to large estimation errors. To deal
with this point, covariance matrix estimation has been extended under non-Gaussian
distributions [108, 107]. These robust estimators are generally adapted when T > m,
where T is the sample size and m is the number of assets. Indeed, for singular
covariance matrix estimate (T < m) regularization approaches are required and some
authors have therefore proposed an hybrid robust shrinkage covariance matrix estimators
[117, 115, 116] based on Tyler’s robust M-estimator [108] and Ledoit-Wolf’s shrinkage
approach [82].

Recent works [118, 117, 115, 62] based on Random Matrix Theory (RMT) have
therefore considered robust estimation when T < m. In [62], the covariance estimation
approach is based on the Shrinkage-Tyler M-estimator and the authors show that
applying an adapted estimation methodology leads to achieving superior performance
over many other competing methods under the GMVP framework. Another way to
lower the estimation errors of the covariance matrix is to distinguish the signal part
from the noisy part using filters. It is now well documented in financial literature that
the introduction of multiple sources of risks is a key factor to challenge the Capital
Asset Pricing Model (CAPM) single market factor assumption [83]. Multi-factor models
have therefore emerged based either on statistical factors or on observable factors
[88, 89, 84, 86], and are designed to capture common risk factors (systematic risks). In
this setup, the covariance matrix estimate of the assets depends solely of the systematic
part of the risk, as in [88]. Statistical multi-factor models are also very interesting
tools. Instead of choosing the factors among many others and from empirical studies,
the factors are determined from the assets universe, using statistical methods. Whereas
the principal component analysis may fail in distinguishing informative factors from
the noisy ones, RMT helps identifying a solution to filter noise as in [55, 56, 57, 59]
by correcting the eigenvalues of the covariance matrix, thanks to the upper bound
of the Marčenko-Pastur distribution [194]. This method called “Eigenvalue clipping”
provides competitive out-of-sample results [61], even though in most cases only the first
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component (market factor) is detected which is not completely satisfactory. Other recent
works [98, 63, 100] deal with the class of Rotational Invariant Estimators (RIE) that
use all of the information on both eigenvectors and eigenvalues of the covariance matrix.
The methodology proposed in [98] leads to portfolios having a lower volatility that those
obtained when using SCM, Ledoit & Wolf (LW) and Eigenvalue clipping methods.

In this paper, we extend the results presented in [168] by considering that the assets
returns might be non-homogeneously distributed. Indeed, as in [168], we assume that
the asset returns are still modelled through a multi-factor model where the error term
is a multivariate and correlated elliptical symmetric noise. However, in our approach
the whitening procedure is now applied by group of homogeneous assets and the final
covariance estimate obtained only using the de-noised part of the observations as
suggested in [96, 163, 164, 165]. This paper also focuses on assets classification to
determine the sub-groups of homogeneous assets and compares two different methods:
the Ascending Hierarchical Clustering (AHC) method that requires the number of
groups to be fixed a priori or determined using a predefined criterion (we choose here
the Caliński-Harabasz (CH) criterion [170]), and the Affinity Propagation (AP) method
[171] that self-determines the number of groups. Empirical tests are carried out on two
different assets universes: a set of European assets and a set of American assets, both
allocated with the Maximum Variety or the Minimum Variance process. These tests
extend our preliminary results and show that the way the assets are grouped might
improve again the portfolio performance.

This article is organized as follows: section 2.2 introduces the selected methods of
portfolio allocation for this paper: the Maximum Variety (or VarMax) portfolio and the
Minimum Variance (or MinVar) portfolio. Section 2.3 presents the classical model and the
related assumptions. Section 2.4 describes the covariance matrix estimation methodology
for the case of non-homogeneous asset returns. Section 2.5 provides empirical illustrations
ascertaining the efficiency of the proposed method compared to the conventional ones.
Section 2.6 concludes and discusses our results.

2.2 Portfolio allocation

Portfolio allocation is a widely studied problem. Depending on the investment objective,
the resulting portfolio allocation differs. In this section two allocation methods are
described: the Maximum Variety process and the Global Minimum Variance one. Both
of them depend on a single parameter that is the covariance matrix of the asset returns.
In practice, the Minimum Variance portfolio is known to lead to low-diversified but
performing portfolios over recent years reinforcing the low volatility anomaly concept,
whereas the Maximum Variety process leads to well-diversified (by construction) but less
performing portfolios.

Here, we focus only on “Long only” portfolios, i.e. all the quantities invested in assets
are necessarily greater than or equal to 0. This choice is motivated for two reasons. First,
when short selling the assets, borrowing costs have to be taken into account to compute
portfolio performances. What is more, these costs are not uniform among assets being
dependent on their liquidity. Second, when building a long/short portfolio the size of the
two legs must be defined as a constraint in the optimization process, otherwise the result
obtained will not be realistic with possible strong leverage effects.
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2.2.1 Maximum Variety (VarMax) Portfolio

We consider m financial assets used to build an investment portfolio perfectly charac-
terized by the allocation vector w = [w1, . . . , wm]′ where wj represents the proportion

invested in asset j. In particular, we have 0 ≤ wj ≤ 1 ∀j ∈ [1,m] and
m∑
j=1

wj = 1.

In [30], the authors provide a strong mathematical definition of portfolio diversification
introducing the Variety Ratio (VR ) associated with w that is none other than the ratio
of the weighted arithmetic mean of volatilities over the portfolio volatility:

VR (w,Σ) =
w′ σ

(w′Σ w)1/2
, (2.1)

where Σ is the variance covariance matrix of the m assets and σ = [
√

Σ11, . . . ,
√

Σmm, ]
′

the m-vector of corresponding volatilities. Thus, the Maximum Variety (or VarMax)
strategy, denoted by w∗vr, is obtained as the solution of the following optimization problem
under convex constraints on weights

w∗vr = argmax
w

VR (w,Σ) . (2.2)

The VarMax Portfolio verifies some interesting properties, as described in [52]:

• VarMax is invariant by duplication: if an asset is duplicated in the universe, then
VarMax will be unchanged giving half the weight to each duplicated asset,

• VarMax stays unchanged if a positive linear combination of the assets of the universe
is added as a new asset,

• any asset of the universe not held in VarMax is more correlated to the portfolio than
to any asset of the portfolio. Furthermore, the more diversified a long-only portfolio
is, the greater its correlation with VarMax.

VarMax portfolios are often considered as interesting diversifying investments with
respect to the other investments. The above last property would therefore suggest that
the other portfolios might then be weakly diversified portfolios.

2.2.2 Minimum Variance (MinVar) Portfolio

The Global Minimum Variance Portfolio (or GMVP) is obtained by computing the port-
folio whose m-vector of weights wgmvp minimizes the variance of the final portfolio. It can
be formulated as a quadratic optimization problem including the linear constraint that
the sum of the weights is equal to 1:

min
w

σ2(w,Σ) = min
w

w′Σ w, s.t. w′ 1m = 1 (2.3)

with 1m being a m-vector of ones.
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The solution to (2.3), when there is no other constraint on the weight values, is then:

wgmvp =
Σ−1 1m

1′m Σ−1 1m
, and the corresponding portfolio variance writes σ2(wgmvp,Σ) =

1

1′m Σ−1 1m
.

As for the VarMax portfolio, the covariance matrix needs to be estimated. If we denote
Σ̂ an estimate of Σ, then we have:

ŵgmvp =
Σ̂
−1

1m

1′m Σ̂
−1

1m
.

In [195], the authors derive an optimal optimization strategy in order to minimize
the realized portfolio variance, under an assumption of spiked structures1 of both Σ
and Σ−1. In our case, the weights have to be positive, so that the optimal minimum
variance portfolio weights cannot be obtained in a closed form expression, we therefore
use the optimization process. We will nevertheless compare several competing methods
of covariance matrix estimation in order to get the GMVP.

To get solutions for (2.2) and (2.3), the unknown covariance matrix Σ has to be
determined or estimated. This is a challenging problem in portfolio allocation due to the
strong sensitivity of the optimisation process to outliers and estimation errors. Apart from
the classical SCM or the Minimum Covariance Determinant (MCD, [196]) that is a method
robust to outliers, reside subspace methods that aim at separating the signal space from
the noise space, using the eigen-decomposition of the SCM. The noise and signal subspaces
are usually identified according to the eigenvalues magnitudes: the eigenvectors related
to the lowest ones represent the noise whereas those related to the highest eigenvalues
identify the signal. But the open question remains how to choose the separating threshold?
In this paper we propose a robust and original technique that applies the Random Matrix
Theory (RMT) results on the eigen-decomposition of a robust M -estimator leading to a
denoised and robust covariance matrix estimate.

2.3 Model and assumptions

Let us assume that the investment universe contains m assets whose returns at each time
t = 1, · · · , T are stored in the m-vector rt. We suppose also that rt admits a K factors
structure, where the K < m common factors are unknown, and that the additive noise
is a multivariate Elliptical Symmetric noise (1.26) [109, 113]. The assumed model for rt
writes as follows:

rt = Bt ft +
√
τt C

1/2 xt, (2.4)

where

• rt is the m-vector of returns at time t,

• Bt is the m × K-matrix of coefficients that define the assets sensitivities to each
factor at time t,

1A spiked structure denotes a covariance model where some eigenvalues are located out of the “bulk”,
like outliers.
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• ft is the K-vector of random factor values at t, supposed to be common to all the
assets,

• xt is a m-vector of independent Gaussian white noise with unit variance and non-
correlated with the factors, i.e. E[xt f

′
t] = 0m×K ,

• C is called the m × m scatter matrix that is supposed to be Toeplitz2 structured
[169] and time invariant over the period of observation,

• τt is a family of i.i.d positive random variables with expectation τ that is independent
of the noise and the factors and drives the variance of the noise. These random
variables are time-dependent and generate the Elliptical distribution [110] of the
noise.

The Toeplitz assumption made on C is a required assumption for the proposed
methodology described in section 2.4.1. This hypothesis imposes a particular structure
for the covariance matrix of the additive noise, and is generally used to describe stationary
processes [169]. In the case of model (2.4) this hypothesis is plausible as it states that
the additional white noise admits a Toeplitz-structured covariance matrix. In the case of
financial time series where we only observe one sample at each time, the stationarity of
the dependence structure of the assets is a statistical hypothesis really difficult to test
in practice. This motivates the extension we propose in this paper, described in section
2.4.4, to splitting the assets universe into groups composed of assets having similar
distributions, and being most probingly sampled from a stationary process representing
a unique distribution for each group.

Given equation (2.4) the covariance matrix writes for a fixed period of time t:

Σt = Bt Σ
f
t B′t + τ C, (2.5)

that is a m×m-matrix composed of two terms: the factor-related term with Σf
t = IE[ft f

′
t]

being of rank K, and the noise-related term being of rank m. Subspace methods aim
at identifying the K highest eigenvalues of Σt supposed to represent the K- factors
especially when the power of the factors is higher than the noise power.

Determining K, the number of factors is a tough task in all the model order selection
problems, like e.g. when estimating the number of emitting sources in any received signal
or when trying to unmix sources in hyperspectral images [197]. In financial applications,
the K factors serve in building portfolios and also to identify the main sources of risks
within the investment universe under study [198, 199, 200, 201], and is therefore of main
importance in such cases.

In the next section we give a detailed description of our methodology that combines
the robust Tyler M -estimator of the covariance matrix and the RMT results adapted to
the above non Gaussian and multivariate model.

2A Toeplitz matrix is a diagonal-constant matrix (defined in 1.4.1).
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2.4 Proposed Methodology

2.4.1 General framework

The Tyler M -estimator [108] of the covariance matrix for the m-vector rt is defined as
being the solution of the following fixed-point equation:

X =
m

T

T∑
t=1

rt r
′
t

r′t X
−1 rt

, (2.6)

where the trace of the resulting matrix is equal to m, and T is the number of observations
for rt. Applied to model (2.4) and under non-Gaussian assumptions, the resulting

Tyler-M estimate (that we denote Ĉtyl) is shown to be the most robust covariance

matrix estimator [108, 114] for the true scatter matrix C. Ĉtyl is also independent of the
distribution of the variable τ .

Under the white noise assumption, extracting information from the observed signal
using RMT is quite straightforward and has been proposed in many applications, like in
source detection [202], in radar detection [203], or signal subspace estimation using an
adapted MUSIC (MUltiple SIgnal Classification) detection algorithm [204]. Nevertheless,
when the noise is correlated, RMT results do not apply directly as the variance of the
Marčenko-Pastur threshold has to be estimated, and only numerical methods can help
in finding the resulting threshold [96, 97]. In some cases, secondary data that do not
contain any sources can be used to estimate the covariance matrix and then whiten the
observed data.

However, recent works [163, 164, 165] brought a solution that consists of applying a

biased Toeplitz operator on Ĉtyl (defined in 1.4.1), let us say C̃tyl = T
(
Ĉtyl

)
, which was

proven to spectrally converge towards the theoretical scatter matrix C. This result refers
to the Consistency Theorem in [163, 164, 165], and asserts that whenever the sources
are present in the observations, the resulting scatter matrix estimate is a consistent
estimation of its theoretical value.

Consistency Theorem [163, 164, 165]
Under the RMT regime assumption, i.e. that T,m → ∞, such as m/T → c ∈]0,∞[, we
have the following spectral convergence:∥∥∥T (Ĉtyl

)
−C

∥∥∥ a.s.−→ 0. (2.7)

The first step of our methodology consists therefore in estimating C̃tyl from T obser-
vations of rt in order to whiten the observations leading to the T whitened observations
rw,t = C̃

−1/2
tyl rt.

Given the whitened observations {rw,t} and their Tyler’s covariance matrix Σ̂tyl, it has

been shown in [165] that the eigenvalues distribution of Σ̂tyl fit the predicted bounded
distribution of Marčenko-Pastur [194] (1.5). As m,T → ∞ such that m/T → c ∈]0,∞[,
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if Rw = {rw,t}t∈[1,T ] does not contain any factor, then:∥∥∥∥Σ̂tyl −
1

T
X X′

∥∥∥∥ a.s.−−→ 0

However, if one or several sources are contained in the observations, being powerful
enough to be detected, then there will be as many eigenvalues as there are sources standing
outside the upper bound of the Marčenko-Pastur distribution, given in that case by λ̄ =
σ2 (1 +

√
c)

2
where c = m/T and σ2 = 1 (due to the preceding whitening process σ2 is

equal to one). Once the K largest eigenvalues larger than λ̄ are detected, we process
as for the Eigenvalue clipping in [56] to set the values of the remaining m − K lowest

eigenvalues to a unique value equal to

(
Tr
(
Σ̂tyl

)
−

m∑
k=K+1

λk

)
/(m−K). Using also the

corresponding eigenvectors, we then build back the de-noised assets covariance matrix to
be used in (2.2) and (2.3) or in any other objective function. The whitening procedure is
detailed more precisely in the next subsection.

2.4.2 Detailed whitening procedure

Given R the m× T matrix of observations, the de-noised covariance matrix estimate Σ̂w

is obtained through the following procedure steps:

1. Set Ĉtyl as the Tyler-M estimate of R, solution of (2.6),

2. Set C̃tyl = T
(
Ĉtyl

)
, the Toeplitz rectification matrix built from Ĉtyl for the Toeplitz

operator T (.) (defined in 1.4.1),

3. Set Rw = C̃
−1/2
tyl R, the m× T matrix of the whitened observations,

4. Set Σ̂tyl as the Tyler-M estimate of Rw, solution of (2.6),

5. Set Σ̂
clip

tyl = U Λclip U′ where U is the m ×m eigenvectors matrix of Σ̂tyl and Λclip

is the m × m diagonal matrix of the eigenvalues (λclipk )k∈[1,m] corrected using the
Eigenvalue clipping method [56] (1.6),

6. Finally, Σ̂w =
(
C̃

1/2
tyl

)
Σ̂
clip

tyl

(
C̃

1/2
tyl

)′
.

2.4.3 Simulation example

To illustrate the efficiency of the whitening process, we ran the following test: we simulate
T = 1000 observations of a m = 100 here, sampled from a highly correlated K-distributed
process [113] having a shape parameter ν = 0.5, and a Toeplitz-structured covariance
matrix whose coefficient ρ = 0.8 (each element j, k of the Toeplitz matrix is defined by
ρ|j−k|, j, k = 1, · · · ,m). We then embed K = 3 sources of information in the non-Gaussian
and correlated noise, and we compare the eigenvalues distribution of the observations with
the Marčenko-Pastur upper bound when the eigenvalues are computed from i) the SCM
(on the left), ii) the Tyler M -estimate matrix (in the middle), and iii) the Tyler M -
estimate matrix of the whitened observations. It appears clearly that the K = 3 factors
can be identified quite easily only in the case where the observations are firstly whitened.

41



Chapter 2 Improving portfolios global performance using a cleaned and robust
covariance matrix estimate

Figure 2.1: Distributions of the logarithm of the eigenvalues of three covariance matrix
estimates. Left side: Eigenvalues (log) of the SCM of the observations; Middle: Eigen-
values (log) of the Tyler covariance matrix of the observations; Right side: Eigenvalues
(log) of the Tyler covariance matrix of the whitened observations. Observations contain
K = 3 sources embedded in a multivariate K-distributed noise with shape parameter
ν = 0.5, and a Toeplitz coefficient ρ = 0.8. m = 100, T = 1000 (c = 0.1), and the (log)
Marčenko-Pastur upper bound is here: log(λ̄) = log(1.7325).

2.4.4 The case of non-homogeneous assets returns

The whitening process proposed above is made under the implicit assumption that the
assets returns are drawn from a unique multivariate law and are therefore homogeneous
in law. As described hereafter this assumption is unrealistic for financial time series of
returns. We therefore propose to split the m assets into p < m groups, each composed of
{mq}pq=1 assets (with

∑p
q=1mq = m), and formed to be composed of assets having similar

distributions. We set a fixed number of groups, and group the assets regarding their
returns distributions. Under this new assumption, model (2.4) applies for each group q
as follows:

r
(q)
t = B

(q)
t ft +

√
τ
(q)
t C

1/2
(q) xt, (2.8)

Then, the full model (2.4) rewrites:

r
(1)
t
...

r
(p)
t

 =

B
(1)
t
...

B
(p)
t

 ft +


τ
(1)
t C(1) 01,2 · · · 01,p

02,1 τ
(2)
t C(2)

. . .
...

...
. . . . . . 0p−1,p

0p,1 · · · 0p,p−1 τ
(p)
t C(p)


1/2

xt,

where 0j,k denotes the null matrix of size mj ×mk, j, k = 1, · · · , p, corresponding to the
additional hypothesis that the groups are uncorrelated each others. The complete scatter
matrix C is therefore block-constructed, and block-Toeplitz.

2.4.4.1 Assets classification

Under the assumption of non-homogeneous assets returns, we propose to form groups of
assets before applying the whitening process. There are many classification methods that
differ according to their mode of learning (supervised, unsupervised, hierarchical, etc.).
No matter the method chosen, a clustering algorithm will always be used in such a way
as to obtain a partition of assets in p groups. Usually, the main question is the choice of p
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that is in general unknown. To overcome the choice of p, we use the Affinity Propagation
algorithm (AP) [171] that does not require to specify the number of clusters. We also use
the classical Ascending Hierarchical Classification with Caliński-Harabasz [170] criterion
to set the number of groups.

2.4.4.1.1 Affinity Propagation algorithm (AP)

The Affinity Propagation algorithm (AP) [171] is an iterative partitioning method
similar to the K-means, but instead of regrouping individuals around central values, AP
algorithm regroups them around exemplar values and all individuals can be considered
as potential exemplars. The algorithm is based on a similarity matrix S, where
sj,k = −‖vj − vk‖2 for j 6= k, and with vj and vk the input variables vectors of the asset
j and k. The number of groups is influenced by the main diagonal of S (sj,j ∀j ∈ [1,m])
also called “preferences” parameters. In order to moderate the number of groups p, the
parameters are set to a common value using the median of pairwise similarities as in [171].

In the AP algorithm, data points exchange information by passing messages until a
set of exemplars are obtained. Two messages are used in the AP algorithm. The first one,
called “responsibility” yj,k quantities how the element k is suitable to serve as an exemplar
for the element j taking into account other potential exemplars. The “responsibility” yj,k
is updated as follows:

yj,k = sj,k −max
k′ 6=k
{aj,k′ + sj,k′},

The second one, called “availability” aj,k quantifies how appropriate it would be for the
element j to choose the element k as its exemplar, taking into account the consideration
from other elements that element k should be an exemplar. The “availability” yj,k is
updated as follows:

aj,k = min{0, y(k, k) +
∑

j′ /∈{j,k}

max{0, yj′,k}},

where the self-availability ak,k reflects accumulated evidence that element k is an
exemplar, based on the positive responsibilities of k towards other elements. The self-
availability ak,k is defined as follows:

ak,k =
∑
j′ 6=k

max{0, yj′,k},

Finally, after updating passing messages, exemplars can be identified as follows:

zj,k = yj,k + aj,k.

where if k = j, then the element j is selected as an exemplar, otherwise k is the
exemplar of the element j.
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2.4.4.1.2 Ascending Hierarchical Classification (AHC)

The classical Ascending Hierarchical Classification (AHC) is an iterative and unsuper-
vised method. The algorithm is based on the distances between the variables (vj)j∈[1,m]

used to represent individuals to be grouped and seeks at each step to build the groups
by aggregation. AHC ensures to get homogeneous groups for which the intra-group
variances are smaller than the inter-group variances. We use AHC with the Euclidean
distance and the Ward measure [205] to form the p groups. The number of groups p is
determined arbitrary or with Caliński-Harabasz (CH) criterion [170].

The algorithm can be described as follows:

� The initial classes are the m singletons (each individual represents a class). All
distances between the m individuals (m(m− 1)/2 distances) are computed and the
two nearest individuals are aggregated into a new element. A first partition of m−1
classes is thus obtained.

� The distances are computed between the new element and the individuals. The
other distances are unchanged. We again aggregate the two nearest elements and
we obtain a new partition with m− 2 classes. The process is repeated until there is
only one element that includes all the individuals and is the last one partition.

2.4.4.2 Detailed whitening procedure by group

Given R the m×T -matrix of observations, and R(q) the mq×T -matrix of observations for

group (q), the de-noised covariance matrix estimate Σ̂w is obtained through the following
procedure steps:

1. Compute the p groups using the methods described in 2.4.4.1 with (vj)j∈[1,m] com-
posed of the mean µj, the standard deviation σj and of several quantiles computed
from r̃j = (rj − µj 1T ) /σj the “standardized” returns, where 1T is the T -vector of
ones,

2. Set Ĉ
(q)
tyl the Tyler-M estimate of R(q), solution of (2.6),

3. Set C̃
(q)
tyl = T

(
Ĉ

(q)
tyl

)
, the Toeplitz rectification matrix built from Ĉ

(q)
tyl for the

Toeplitz operator T (.) (defined in 1.4.1),

4. Set R
(q)
w =

(
C̃

(q)
tyl

)−1/2
R(q), the mq×T matrix of the whitened observations of group

q,

5. Set Σ̂tyl as the Tyler-M estimate of Rw, solution of (2.6), where Rw =

[R
(1)′
w . . . R

(p)′
w ]′ of size m× T ,

6. Set Σ̂
clip

tyl = U Λclip U′ where U is the m ×m eigenvectors matrix and Λclip is the

m×m diagonal matrix of the eigenvalues (λclipk )k∈[1,m] corrected using the Eigenvalue
clipping method [56] (1.6),

7. Finally, Σ̂w =
(
C̃

1/2
tyl

)
Σ̂
clip

tyl

(
C̃

1/2
tyl

)′
.
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2.5 Application

In this section we apply our methodology to the Maximum Variety and Minimum Vari-
ance portfolios. Two investment universes are tested: the first one consists of European
equity indices (m = 43) and the second one to US equity indices (m = 30)3. These
indices represent industry sub-sectors (e.g. transportation or materials), factor-based
indices (e.g. momentum or growth), and also countries (e.g. Sweden or France) for
the European universe. Using a blend of equities instead of individual stock allows
capturing collective risks (systematic) rather than idiosyncratic ones and reinforce
portfolio diversification without having to impose constraints to reduce a stock-specific
and liquidity risk. Our daily track record spans from July 2000, the 27th to May 2019, the
20th. We use closing prices, i.e. the last traded price during stock exchange trading hours.

To build the portfolios, the weights are computed as follows: we estimate every
four weeks the covariance matrix of assets using the last year of daily returns (T =
260 weekdays) and we optimize the objective function of Maximum Variety (2.1) or
Minimum Variance (2.3) to obtain the vector of weights. Finally, the weights remain
constant between two rebalancing periods of four weeks. When applicable, assets are
classified either by the AP algorithm (”RMT-Tyler (AP)”) or by AHC where the number
of groups is set to p = 6 (”RMT-Tyler (AHC-6)”) or set according to the CH criterion
(”RMT-Tyler (AHC-CH)”). The quantiles used for the clustering algorithms are qθ and
q1−θ with θ ∈ {1%, 2.5%, 5%, 10%, 15%, 25%, 50%}.

We compare the results with those obtained using the whitening process applied on
the whole universe (”RMT-Tyler (all)”), the “SCM” and also with three other competing
methods: the first one, denoted as “RMT-SCM” uses the Eigenvalue clipping of [56]
(1.6), the second one, that we denote as “LW”, is the method that uses the Ledoit
& Wolf shrinkage of [58] (1.3), and finally the method using the Rotational Invariant
Estimator of [98, 63] (1.7), denoted as “RIE”. These methods are described in 1.2.1. We
also add for comparison the equally weighted portfolio and the respective benchmark for
each universe (MSCI® Europe Index or S&P® 500 Index)

We report several portfolios statistics computed over the whole period in order to
quantify the benefits of the proposed methodology: the annualized return, the annualized
volatility, the ratio between the annualized return and the annualized volatility, the value
of the maximum drawdown (that is the return between the highest and the lowest portfolio
levels observed during the whole period), and the average of the Variety Ratios computed
at each rebalancing date. The higher is the return/volatility ratio, the lower is the max-
imum drawdown and the higher is the variety ratio, and better performing is the portfolio.

Moreover, all portfolio performances are “net of transaction fees”, considering 0.07%
of fees (or 7 basis points denoted as “bp”) applied to any weight change from one time
to the next one. Measuring the total weights changes is referred as the turnover of the
portfolio. We assume that the turnover between two consecutive periods t and t + 1 is

measured by
m∑
j=1

|wj,t+1−wj,t|. If, for example, the turnover is equal to 0.15 for changing

3Data are available upon request.
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weights from t to t+ 1, then the portfolio performance computed between t and t+ 1 will
be decreased by 0.15 × 7 bp = 0.0105%. Turnover is an important number in portfolio
allocation. If you ever find an apparently well performing strategy that indicates you to
change the overall portfolio at each time, then the cost of changing the overall portfolio
will surely be equivalent or larger than would be the performance of the strategy itself.
Here, the proposed technique leads to increase the cumulated turnover, but reasonably
enough to let the improvement be a significant improvement that do not cost all the
benefits of the technique. Limiting the turnover is often added as an additional non linear
constraint to any optimization process like (2.2) or (2.3).

2.5.1 EU Variety Maximum (VarMax) portfolios results

Figure 2.2 shows the evolution of the VarMax portfolios wealth on the Europe (EU)
universe, starting at 100 at the beginning of the first period. The “SCM”, “RMT-SCM”,
“LW”, “RIE”, “RMT-Tyler (all)”, “RMT-Tyler (AHC-6)”, “RMT-Tyler (AHC)” and
“RMT-Tyler (AP)” VarMax portfolios are respectively in red, pink, cyan, blue, purple,
orange, brown and green. The naive equi-weighted portfolio is reported as the dotted grey
line, and the price of the benchmark, also rebased at 100 at the beginning of the period,
is the black line.

Figure 2.2: VarMax portfolios wealth from July 2001 to May 2019 on the EU universe.
The proposed “RMT-Tyler (AP)” (green line) leads to improved performances vs the
“RMT-Tyler (AHC)” (brown), the “RMT-Tyler (AHC-6)” (orange), the “RMT-SCM”
(pink), the “LW” (cyan), the “RIE” (blue) and the “SCM” (red). All whitening process
applied by group shown in Table 2.1, provide higher annualized returns, lower annualized
volatilities, lower maximum drawdowns and higher Diversification Ratios. But it results
in a twice higher turnover: we then have taken into account 7bp (or 0.07%) of transactions
fees to compare the portfolios wealth.
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The proposed “RMT-Tyler”-based techniques clearly outperform the conventional
ones. Moreover, whitening homogeneous groups of data instead of the whole data set
improves even more the results especially for the “RMT-Tyler (AP)”. Regarding the
other methods, “RMT-SCM” is the only one that outperforms significantly “SCM”, but
shows weaker performances than our proposed method does; “LW” and “RIE” are quite
similar to “SCM”.

Finally, we report on Table 2.1 some statistics on the overall portfolios performance:
we compare, for the whole period, the annualized return, the annualized volatility, the
ratio between the return and the volatility, the maximum drawdown and the average
value of the diversification ratio, for the portfolios and the benchmark. All the indicators
related to the proposed technique show a significant improvement with respect to the
other methods: a higher annualized return, a lower volatility (so a higher return/volatility
ratio), a lower maximum drawdown and a higher diversification ratio.

EU VarMax Ann. Ann. Ratio Max VR
Portfolios Ret. Vol. Ret/Vol Drawdown (avg)

RMT-Tyler (AP) 9.87% 12.14% 0.81 45.37% 1.46
RMT-Tyler (AHC-6) 9.65% 12.03% 0.80 46.84% 1.57

RMT-Tyler (AHC) 9.58% 12.45% 0.77 48.16% 1.51
RMT-Tyler (all) 8.90% 13.16% 0.68 51.18% 1.44

RMT-SCM 8.94% 13.79% 0.65 54.15% 1.27
RIE 8.65% 13.65% 0.63 54.44% 1.38
LW 8.59% 13.57% 0.63 54.28% 1.40

SCM 8.56% 13.68% 0.63 54.45% 1.38
Equi-Weighted 6.60% 15.37% 0.43 57.82% 1.19

MSCI Europe Index 4.71% 14.87% 0.32 58.54%

Table 2.1: Performance numbers for the EU VarMax portfolios with 0.07% of fees from
July 2001 to May 2019. The results are ranked in descending order according to the ratio
(Return / Volatility).

2.5.2 EU Minimum Variance (MinVar) portfolios results

Results obtained for the EU MinVar portfolios also show some improvements but less
important than for the VarMax portfolios. Figure 2.3 shows that whitening by group pro-
cess improves the performance whereas whitening the whole assets (“RMT-Tyler (all)”)
do not bring improvement with respect to all the other approaches, even if the variety
ratio is higher. “RMT-SCM”, “LW” and “RIE” provide lower or similar performances if
compared to “SCM”.
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Figure 2.3: MinVar portfolios wealth from July 2001 to May 2019 on the EU universe.
The proposed “RMT-Tyler (AP)” (green line) leads to improved performances vs the
“RMT-Tyler (AHC)” (brown), the “RMT-Tyler (AHC-6)” (orange), the “RMT-SCM”
(pink), the “LW” (cyan), the “RIE” (blue) and the “SCM” (red), as shown in Table 2.2.
MinVar portfolios are known to result in poorly diversified portfolios and to invest in the
lowest volatile assets. But surprisingly, the low-volatility anomaly applies in such cases.

As for the VarMax portfolios, Table 2.2 reports the EU MinVar portfolios statistics.
Again, the indicators related to the proposed technique show an improvement if compared
to the classical techniques.

EU MinVar Ann. Ann. Ratio Max VR
Portfolios Ret. Vol. Ret/Vol Drawdown (avg)

RMT-Tyler (AP) 9.39% 11.06% 0.85 41.76% 1.39
RMT-Tyler (AHC-6) 9.35% 11.08% 0.84 41.07% 1.52

LW 8.75% 10.75% 0.81 43.69% 1.21
RIE 8.76% 10.78% 0.81 43.24% 1.19

RMT-Tyler (AHC) 9.20% 11.32% 0.81 41.91% 1.44
SCM 8.74% 10.92% 0.80 43.78% 1.19

RMT-SCM 8.62% 10.80% 0.80 43.95% 1.14
RMT-Tyler (all) 8.72% 11.58% 0.75 46.50% 1.36

Equi-Weighted 6.60% 15.37% 0.43 57.82% 1.19
MSCI Europe Index 4.71% 14.87% 0.32 58.54%

Table 2.2: Performance numbers for the EU MinVar portfolios with 0.07% of fees from
July 2001 to May 2019. The results are ranked in descending order according to the ratio
(Return / Volatility).
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Moreover, we know that minimizing the portfolio variance leads to choosing the assets
having the lowest volatilities. Then, using a robust approach does flatten the volatility
differences between assets and then the ex-post portfolio volatility, computed classically,
will be higher than the ex-post portfolio volatility computed using the robust matrix.
Nevertheless, our process leads to higher performance that the classical SCM exhibiting
a higher diversification ratio, and also a lower maximum drawdown.

To illustrate this purpose, Figure 2.4 plots the standard deviations of the invested
assets versus the resulting weights obtained for MinVar/SCM weights (on the top graph)
the VarMax/SCM (on the bottom graph). The same conclusion arises for the whiten-
ing process applied by group. It shows explicitly which assets are preferred and when,
according to their volatility level.

Figure 2.4: VarMax and MinVar SCM weights versus the assets volatilities. As expected,
MinVar weights are mostly non-zeros for the assets having the lowest volatilities. VarMax
weights are more indifferent to the volatility levels.
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On a similar way, Figure 2.5 shows that VarMax assigns non-zeros weights to the less
correlated assets if compared to the non-zeros MinVar weights.

Figure 2.5: Average correlation of the invested assets for the VarMax and MinVar port-
folios combined with either SCM or RMT-Tyler (AHC-6) method. VarMax SCM weights
are assigned to the less correlated assets if compared to the SCM MinVar weights and the
difference is reduced in the RMT-Tyler(AHC-6) case. The same conclusion can be drawn
for the RMT-Tyler(AP) and RMT-Tyler(AHC) cases.

2.5.3 US Variety Maximum (VarMax) portfolios results

Figure 2.6 shows the evolution of the VarMax portfolios wealth on the US universe. As for
the EU VarMax portfolios, the “RMT-Tyler (AP)” clearly outperforms the conventional
ones. Moreover, whitening homogeneous groups of data instead of the whole data set
improves even more the results especially for the “RMT-Tyler (AP)”. Regarding the
other methods, “RMT-SCM” is the only one that outperform significantly “SCM”, but
shows weaker performances than our proposed method does; “LW” and “RIE” are quite
similar to “SCM”.
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Figure 2.6: VarMax portfolios wealth from July 2001 to May 2019 on the US universe.
The proposed “RMT-Tyler (AP)” (green line) leads to improved performances vs the
“RMT-Tyler (AHC)” (brown), the “RMT-Tyler (AHC-6)” (orange), the “RMT-SCM”
(pink), the “LW” (cyan), the “RIE” (blue) and the “SCM” (red), as shown in Table 2.4.

Table 2.3 reports the US VarMax portfolios statistics. Here again, the indicators
related to the proposed technique show an improvement if compared to the classical
techniques.

US VarMax Ann. Ann. Ratio Max VR
Portfolios Ret. Vol. Ret/Vol Drawdown (avg)

RMT-Tyler (AP) 8.76% 11.11% 0.79 42.82% 1.51
RMT-Tyler (AHC) 8.57% 11.53% 0.74 46.57% 1.55

RMT-Tyler (AHC-6) 7.98% 10.79% 0.74 41.5% 1.52
RMT-Tyler (all) 8.49% 12.09% 0.70 49.27% 1.53

Equi-Weighted 8.92% 13.83% 0.65 53.70% 1.25
RMT-SCM 8.03% 13.13% 0.61 56.53% 1.34

LW 7.85% 13.02% 0.60 54.32% 1.46
RIE 7.86% 13.23% 0.59 55.17% 1.47

SCM 7.80% 13.27% 0.59 55.47% 1.46
S&P 500 Index 7.21% 14.18% 0.51 55.71%

Table 2.3: Performance numbers for the US VarMax portfolios with 0.07% of fees from
July 2001 to May 2019. The results are ranked in descending order according to the ratio
(Return / Volatility).
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2.5.4 US Minimum Variance (MinVar) portfolios results

Figure 2.7 shows the evolution of the MinVar portfolios wealth on the US universe. In
this case, the classical method outperform the “RMT-Tyler”-based techniques, especially
the “RMT-SCM”. However, the whitening process applied by group improves the results
compared to the whitening process on the whole data and the “RMT-Tyler (AP)” still
clearly stands out from others.

Figure 2.7: MinVar portfolios wealth from July 2001 to May 2019 on the US universe. The
“RMT-SCM” (purple line) outperform the “RMT-Tyler (AP)” (green), the “RMT-Tyler
(AHC)” (brown), the “RMT-Tyler (AHC-6)” (orange), the “LW” (cyan), the “RIE” (blue)
and the “SCM” (red). However, the “RMT-Tyler (AP)” improves the results compared
to the others “RMT-Tyler”-based techniques, as shown in Table 2.4.
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Table 2.4 reports the US MinVar portfolios statistics. As previously stated, the classi-
cal method outperform the “RMT-Tyler”-based techniques, even if the indicators related
of the “RMT-Tyler (AP)” show an improvement if compared to the others “RMT-Tyler”-
based techniques.

US MinVar Ann. Ann. Ratio Max VR
Portfolios Ret. Vol. Ret/Vol Drawdown (avg)

RMT-SCM 9.28% 10.34% 0.90 38.81% 1.18
LW 8.96% 10.57% 0.85 39.73% 1.30
RIE 8.89% 10.61% 0.84 39.69% 1.27

SCM 8.89% 10.62% 0.84 39.78% 1.27
RMT-Tyler (AP) 8.65% 10.63% 0.81 39.35% 1.45

RMT-Tyler (AHC-6) 8.46% 10.58% 0.80 40.66% 1.45
RMT-Tyler (AHC) 8.18% 10.55% 0.78 40.60% 1.43

RMT-Tyler (all) 7.98% 10.62% 0.75 40.45% 1.46
Equi-Weighted 8.92% 13.83% 0.65 53.70% 1.25

S&P 500 Index 7.21% 14.18% 0.51 55.71%

Table 2.4: Performance numbers for the US MinVar portfolios with 0.07% of fees from
July 2001 to May 2019. The results are ranked in descending order according to the ratio
(Return / Volatility).

2.6 Conclusion

In this paper, we have shown that when the covariance matrix is estimated with the
Tyler M-estimator and RMT, the Maximum Variety and the Minimum Variance Portfolio
allocation processes lead to improved performances with respect to several classical
estimators. Moreover, we have proposed to extend the first results in [168] by considering
the case of non-homogeneous asset returns while keeping a multi-factor model where
the error term is a multivariate and correlated elliptical symmetric noise. Indeed, the
underlying assumption of the whitening process is that asset returns are homogeneous in
distribution, which is unrealistic for financial time series of returns.

To deal with this point, we have first grouped the assets within homogeneously
distributed classes before processing. Applying the whitening process on homogeneous
groups of data rather than the whole data set improves even more the results. Moreover,
we have also questioned the ability of classification methods (AP algorithm and AHC)
to improve the estimation of the covariance matrix of financial assets using the Tyler
M-estimator and the RMT. The withening process using the AP algorithm have been
tested on both the Maximum Variety and Minimum Variance portfolios and prove its su-
periority to produce higher performances compared to AHC for both EU and US universes.

This paper has focused on both the Maximum Variety and Minimum Variance portfo-
lios but can be applied on other allocation framework involving covariance matrix estima-
tion (and/or model order selection). Finally, the main factors identified by the whitening
process can also be used and offer many possible avenues for future research, such as cre-
ating dynamic factor portfolios or reducing the dimension of the covariance matrix when
T < m.
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Chapter 3

Frequency causality measures and
VAR models: an improved subset
selection method suited to
parsimonious systems

This chapter is based on two conferences and one submitted article in collaboration with Christophe
Chorro, Emmanuelle Jay and Philippe De Peretti.

VAR Estimation Impacts on Frequency Causality Measures,
C. Chorro, E. Jay, P. De Peretti, T. Soler,
2nd International Conference on Econometrics and Statistics (EcoSta), June 2018, Hong-Kong

VAR Estimation Impacts on Frequency Causality Measures,

C. Chorro, E. Jay, P. De Peretti, T. Soler,

12th International Conference on Computational and Financial Econometrics, December 2018, Pisa, Italy

Abstract

Finding causal relationships in large dimensional systems is of key importance in a
number of fields. Granger non-causality tests have become standard tools, but they only
detect the direction of the causality, not its strength. To overcome this point, in the
frequency domain, several measures have been introduced such as the Direct Transfer
Function (DTF), the Partial Directed Coherence measure (PDC) or the Generalized Par-
tial Directed Coherence measure (GPDC). Since these measures are based on a two-step
estimation, consisting in i) estimating a Vector AutoRegressive (VAR) in the time domain
and ii) using the VAR coefficients to compute measures in the frequency domain, they
may suffer from cascading errors. Indeed, a flawed VAR estimation will translate into
large biases in coherence measures. Our goal in this paper is twofold. First, using Monte
Carlo simulations, we quantify these biases. We show that the two-step procedure re-
sults in highly inaccurate coherence measures, mostly due to the fact that non-significant
coefficients are kept, especially in parsimonious systems. Based on this idea, we next
propose a new methodology (mBTS-TD) based on VAR reduction procedures, combining
the modified-Backward-in-Time selection method (mBTS) and the Top-Down strategy
(TD). We show that our mBTS-TD method outperforms the classical two-step proce-
dure. At last, we apply our new approach to recover the topology of a weighted financial
network in order to identify through the local directed weighted clustering coefficient the
most systemic assets and exclude them from the investment universe before allocating the
portfolio to improve the return/risk ratio.
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3.1 Introduction

Vector AutoRegressive (VAR) models are popular models used for analyzing multivariate
time series. They have been widely used in many fields, such as macroeconomics [132],
finance [146], or even neuroscience [206]. Their use comes from their simplicity and
straightforward theoretical framework for understanding the dynamical structure of
systems, capturing complex temporal relationships among time series. In dynamical
systems admitting a VAR representation, it is often of interest to capture and quantify
complex internal dynamics. These complex interactions can be estimated by Granger
non-causality tests [77]. Given an information set, non-causality tests check whether or
not adding past values of univariate or multivariate series significantly reduces the fore-
cast error variance. Nevertheless, if causality is detected (rejection of the non-causality
hypothesis), Granger’s tests do not give any information about the strength of this
causality. They only assess the existence and direction of causal relationships. But in
many applications such as weighted graphs or networks, the quantification of causal
strength is of great importance. To deal with this point, the concept of Granger causality
has been extended in the frequency domain by considering several indicators measuring
the causal strength or coupling similarities. The most popular measures are the Direct
Transfer Function measure (DTF) [174, 175], the Partial Directed Coherence measure
(PDC) [176, 177], and the Generalized Partial Directed Coherence measure (GPDC)
[178]. Such indicators are computed using a two-step approach: first estimate a VAR
model of lag p, then switching to the frequency domain using Fourier transform of the
estimated VAR coefficients to compute the indicator of interest. In such an approach,
it is obvious that a flawed estimation of the VAR model will translate into inaccurate
measures of the DTF, PDC, or GPDC. We will refer to this aspect as cascading errors.

A common way to estimate a VAR is to rely on a suitable estimation method,
and then to use information criteria such as the Akaike Information Criterion (AIC)
[142, 143, 207] or the Bayesian Information Criterion (BIC) [145] to select the correct
lag. This procedure raises two issues: the first concerns the ability of the information
criteria to correctly approximate the true lag p of the underlying data generating process
[146, 141], especially for small samples. The second one refers to the significance of
individual VAR parameters. By construction, in VAR models, time series depend on all
lagged variables in the system. This assumption is very strong and unrealistic in most
applications. Indeed, most systems will admit parsimonious structures with only a few
significant coefficients. Said differently, in a multivariate system, it is unusual for all time
series to be mutually dependent at each lag. Thus, if information criteria are used solely
to estimate p, then when computing coherence measures, non-significant coefficients are
likely to be used, thus biasing the causality measures.

Our contribution to the literature on coherence measures is twofold. First, we
estimate the impact of cascading errors on the accuracy of computed coherence measures
within a standard VAR estimation. We implement Monte Carlo simulations using a
system with five time series, with p = 3. This system has been analyzed with PDC
and DTF methods in [177, 208, 209]. It admits 12% non-zero coefficients with only
one on the third lag. This toy model is quite stringent, and likely to be found in real
systems such as macroeconomics [189] and finance [188, 210, 211]. Through simulations,
we also compute cascading errors for several sample sizes and residual correlation
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matrices (non-diagonal matrices) to present a realistic framework. We show that
standard VAR estimation leads to highly biased coherence measures, since non-significant
coefficients appear in the coherence measures, as mentioned above. Therefore, it is
straightforward to investigate if more advanced subset selection method can solve the
issue raised. Accordingly, our major second contribution checks whether or not more
advanced VAR model selection methods leading to more parsimonious representations
could lower or even suppress the cascading errors. In the literature, three types of
procedures may be considered. The first type reduces the number of VAR coefficients
by adding/deleting parameters using information criteria. These include Top-Down
(TD), Bottom-Up (BU) [141], or a more recent method based on the BU approach
called modified Backward-in-Time Selection (mBTS) [188, 151]. The second type of
procedures is based on hypothesis testing, either at an individual level, i.e. on each
coefficient taken separately such as t-test (hereafter TT) or for a group of coefficients
such as likelihood ratio and Wald tests [141, 149, 150]. Finally, the third procedure relies
on shrinkage methods, such as Lasso (Least Absolute Shrinkage and Selection Operator)
[186, 189]. In this latter, selection of variables and VAR coefficients estimation are
conducted simultaneously. We evaluate each approach and propose a new and extended
method by combining the mBTS method and the TD strategy (mBTS-TD). We show, in
the framework of coherence measures, that our approach outperforms the competing ones.

Based on this result, we apply our methodology combining mBTS-TD and GPDC
measure to build financial networks. This application emphasizes the advantages of
our methodology. Firstly, the mBTS-TD method inherently provides a parsimonious
structure without using network dimensionality reduction tools such as a significant
threshold, the Minimum Spanning Tree [69] or Planar Maximally Filtered Graphs
[128]. Secondly, the strength of the causal relationship allows us to recover the network
topology in a more precise way. In such a financial network, we propose a new portfolio
allocation method by excluding the most systemic assets, identified using the local
directed weighted clustering coefficient [127]. We therefore obtain financial portfolio
as performing as possible, where the non-systemic assets are equally allocated [212].
Related performance measures are compared with those obtained using a classical VAR
estimation to compute the GPDC or allocating the whole universe.

This paper is set out as follows: in section 3.2, we introduce the econometric method-
ology (VAR model and Granger non-causality tests) and coherence measures; in section
3.3, we estimate the cascading errors and show that the use of standard VAR estimation
leads to large errors in the coherence measures; in section 3.4, we begin by introduc-
ing advanced VAR estimation procedures and ascertaining their efficiency when used to
compute coherence measures; in section 3.5, we apply our methodology on financial time
series and finally, section 3.6 concludes and discusses our results.

3.2 Econometric methodology

In this section, we first introduce Vector AutoRegressive models (VAR) and model order
identification. Then we present the concept of Granger causality and coherence measures,
paying particular attention to Generalized Partial Directed Coherence (GPDC). Further-
more, we discuss the reasons why focusing on coherence measures rather than Granger
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causality can improve information about causal strength. Finally, we address the accuracy
of the coherence measure, since this may present cascading errors due to its first step in
the VAR estimation.

3.2.1 Non-causality test in Vector AutoRegressive Models

Let x(t) = (x1(t), . . . , xm(t))′ be a zero-mean m-dimensional stationary process admit-
ting the following VAR(p) representation (see [141] section 2 for classical stability and
stationarity conditions):

x(t) = A1x(t− 1) + · · ·+ Apx(t− p) + ε(t), t ∈ Z (3.1)

where A1, . . . ,Ap are (m × m) coefficient matrices, p is the model order, and
ε(t) = (ε1(t), . . . , εm(t))′ is a (m× 1) vector of white noises with E[ε(t)ε′(s)] = 0 for t 6= s
and ε(t) ∼ N (0, Σε).

The coefficient matrices A1, . . . ,Ap describe the temporal relationships within the
m time series in the system. The concept of causality is therefore directly related to
these coefficients. These coefficient matrices also play a fundamental role when making
forecasts. The structure of Σε reveals the contemporaneous or instantaneous effects
between the time series.

In this paper, the VAR coefficients are estimated using the Least Squares estimator
(LS), either in a multivariate (LS) or in univariate (OLS) environment (equation by equa-
tion) [141]. In addition to estimating the VAR coefficients, the model order p must also
be estimated. This step is crucial for the accuracy of the VAR estimate. The lag order
p is chosen to minimize an information criterion such as AIC [142, 143] or BIC [145]. In
this paper, we choose AIC and BIC by using the two estimators of Σε(p) to investigate
the role of the penalty factor in model order selection. For VAR(p) in (3.1), AIC and BIC
are defined as follows:

AIC(p) = ln
(

det
(
Σ̂ε(p)

))
+

2

T
pm2

BIC(p) = ln
(

det
(
Σ̂ε(p)

))
+

lnT

T
pm2

AICun(p) = ln
(

det
(
Σ̃ε(p)

))
+

2

T
pm2

BICun(p) = ln
(

det
(
Σ̃ε(p)

))
+

lnT

T
pm2

where T is the number of observations, Σ̃ε(p) and Σ̂ε(p) are the unbiased and the maxi-
mum likelihood estimates of Σε(p) for the VAR(p) in (3.1), given by

Σ̂ε(p) =
ε(t)ε′(t)

T
(3.2)

Σ̃ε(p) =
ε(t)ε′(t)

T − pm− 1
(3.3)

The main difference between AIC and BIC is the increase in the BIC penalty factor
compared to AIC.
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After estimating the VAR, the most common way to assess complex interactions is
to use Granger non-causality tests. The concept of non-causality defined by Granger
[77] is based on the idea that, if a time series xk(t) causes another time series xj(t),
then the past of xk(t) will significantly decrease the forecast error in xj(t). Let x(t)
be a m-dimensional stationary process admitting the VAR(p) representation defined in
(3.1). Granger non-causality can be tested by using a Wald multiple restrictions test
[141] on the VAR coefficients. This test, jointly tests whether a set of coefficients are
non-significant. For example, if a time series xk(t) does not Granger-cause xj(t), then
akj(1) = . . . = akj(p) = 0, where akj(1), . . . , akj(p) are the elements k, j of the matrices
A1, . . . ,Ap. The general null hypothesis is given by H0 : Cβ = c, where C is a (q×m2p)
matrix called the restriction matrix of the VAR coefficients (1 for tested coefficients and
0 otherwise). Moreover, q denotes the number of restrictions, β is a (m2p × 1) vector
with β = vec(A1, . . . ,Ap), and c is a (q×1) vector with c = 0q for Granger non-causality.

The Wald statistic is therefore

Γ = (Cβ̂ − c)′
[
C
(

(XX ′)−1 ⊗ Σ̃ε

)
C ′
]−1

(Cβ̂ − c) (3.4)

where

� β̂ is the (m2p× 1) vector of the estimated VAR coefficients β,

� X is the (mp× T ) matrix with X(t) = vec(x(t− 1), . . . ,x(t− p)),

� Σ̃ε is the unbiased estimator of Σε(p) defined in (3.3).

Under the null hypothesis H0: Γ ∼ χ2(q). This result is valid only asymptotically
and for the VAR model assumptions defined in (3.1) with Σε = σ2Im. H0 is not rejected
(non-causality) for a given probability α if Γ ≤ χ2

α(q), where χ2
α(q) is the quantile of

the distribution. Nevertheless, if the null hypothesis H0 is rejected, it means that a time
series xk(t) Granger-causes another time series xj(t). This test does not provide any
information about the causal strength. To deal with this aspect, several measures called
coherence measures have been proposed in the frequency domain.

3.2.2 Coherence measures

Coherence measures describe the connectivity between times series in the frequency
domain and are often used in the neurosciences to understand functional connectivity
patterns between different brain regions. The most popular coherence measures are the
Directed Coherence measure (DC) [173], the Partial Directed Coherence measure (PDC)
[176, 177], the Direct Transfer Function measure (DTF) [174, 175], and the Generalized
Partial Directed Coherence measure (GPDC) [178]. These measures are based on a
two-step approach: first the VAR coefficients are estimated, and then the measure is
computed using the transfer function matrix or its inverse matrix on the VAR coefficients.
The DC, introduced by Saito and Harashima [173] for bivariate cases, describes whether
and how two time series are functionally connected. The three other measures PDC,
GPDC, and DTF can be applied to multivariate cases. The PDC introduced by Baccalá
and Sameshima [176, 177] provides a frequency domain representation of Granger
Causality. It is a generalization to the multivariate case of the DC, based on the Partial
Coherence that describes the mutual interaction between two time series when the
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effects of all others have been subtracted. In other words, it quantifies only the direct
connections between time series. Baccalá and Sameshima [178] have extended their
measure, called GPDC, by taking into account the variance of white noise, so that it
is more accurate with finite time series samples and leads to a scale invariant measure.
Finally, the DTF was introduced by Kamiński and Blinowska [174, 175]. It describes the
causal influence, but it does not distinguish direct and indirect relationships, whereas
PDC and GPDC provide the multivariate relationships from a partial perspective.
In this paper we focus on PDC and GPDC measures because in a multivariate en-
vironment the distinction between indirect and direct relationships is of great importance.

For two time series xj(t) and xk(t) the GPDC is defined so as to exhibit the causality
from k to j at each frequency f as follows:

ωjk(f) =

1

σjj
ãjk(f)√

m∑
n=1

1

σ2
nn

ãnk(f)ã∗nk(f)

(3.5)

where

� f are the discrete frequencies1 lying in

[
−1

2
;
1

2

]
,

� ãjk(f) is the discrete Fourier transform of the coefficients ajk(1), . . . , ajk(p) defined
by

ãjk(f) =



1−
p∑
l=1

ajk(l)e
−2iπfl, if j = k

−
p∑
l=1

ajk(l)e
−2iπfl, otherwise

� σ2
jj is the j-th element of the diagonal of Σε.

The GPDC ωjk(f) at frequency f represents the relative strength of interaction with
respect to a given signal source. Note that the GPDC is represented as a power spectral
density, i.e., |ωjk(f)|2. Moreover, given that the VAR coefficients ajk(l) are real numbers,
their Discrete Transform Fourier has Hermitian symmetry ãjk(f) = ãjk(−f)∗. The spec-
trum is symmetric at the frequency f = 0, i.e., |ãjk(f)| = |ãjk(−f)|, so it is possible to

represent only a half-period of the spectrum (f ∈
[
0;

1

2

]
). Finally, the GPDC satisfies

the following properties :

0 6 |ωjk(f)|2 6 1 (3.6)

1For a discrete time series sampled at frequency fe, its Fourier Transform will reveal information for

frequencies lying in

[
−fe

2
;
fe
2

]
. In our case fe = 1, we can therefore choose the interval

[
−1

2
;

1

2

]
with a

step of
1

F − 1
, where F is the number of frequencies.
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m∑
n=1

|ωnk(f)|2 = 1,∀k = 1, . . . ,m. (3.7)

In such an approach, it is obvious that a flawed estimation of the VAR model will
translate into inaccurate measures of GPDC, but it is also true for all coherence measures
that directly use VAR coefficients in the transfer function matrix or its inverse.

The VAR estimation may be incorrectly performed for many well-known reasons, such
as incorrect model order selection, small sample size, or correlated residuals. Moreover,
an obvious error that is often omitted when computing coherence measures and also
generates cascading errors is the estimation of zero coefficients due to VAR estimation
in a multivariate environment. In other words, in a multivariate system it is unusual
for all time series to be mutually dependent (parsimonious model). Some coefficients are
therefore equal to zero, and the estimation of these zero coefficients (non-causal terms)
inevitably biases the non-zero ones (causal terms). This is particularly true for PDC and
GPDC, which compute only direct causality, and due to their normalization property
(3.7), the errors made in the non-causal terms have a direct impact on the accuracy of
the causal terms. Thus, in the presence of parsimonious VAR models and by combining
the well-known estimation errors, high cascading errors and spurious causalities become
likely.

3.3 Impacts of standard VAR estimation on GPDC

In this section, we use Monte Carlo simulations to illustrate the way estimation of VAR
model in a multivariate environment can impact GPDC accuracy when the underlying
system is parsimonious. The simulations are conducted by varying both the sample size
and the residual correlation matrix in order to cover more realistic examples, but also to
highlight standard VAR estimation errors on the GPDC. Firstly, the system and settings
are presented. Then we focus on the errors in the VAR coefficients, and finally on the
GPDC errors by separating the causal and non-causal terms to determine the part that
will be most impacted by cascading errors.

3.3.1 System and error measures

In the simulation study, we analyze five time series generated by the VAR(3) model
used in [177, 208, 209]. This system admits a parsimonious structure with 12% of the
m2p coefficients being non-zero. It has only one coefficient on the third lag. Hence,
this system is in principle not suitable for a standard VAR estimation where the m2p
coefficients are estimated.

The VAR model [177, 208, 209] is as follows:

x1(t) = 0.95
√

2x1(t− 1)− 0.9025x1(t− 2) + ε1(t)

x2(t) = 0.5x1(t− 2) + ε2(t)

x3(t) = −0.4x1(t− 3) + ε3(t) (S)

x4(t) = −0.5x1(t− 2) + 0.25
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + ε4(t)

x5(t) = −0.25
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + ε5(t)
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3.3 Impacts of standard VAR estimation on GPDC

The causal structure of S is shown in Fig. 3.1 and the theoretical GPDC in Fig. 3.2.

Figure 3.1: Causal structure of (S). In this system, the time series x1 causes x2, x3, and
x4, while x4 and x5 are causing each other.

Figure 3.2: Theoretical GPDC of (S) (column k causes row j). This is computed using
the true coefficients and the identity matrix for the residual correlation matrix (Σε = I5).
Interpreting the GPDC: x1 causes x2, x3, and x4. In contrast, x1 causes x5 indirectly via
x4, but as GPDC quantifies only direct interactions, the causality values for all frequencies
are equal to zero. If j = k, the GPDC represents the part that is not explained by other
signals. Since it is quite difficult to interpret, the diagonal is not reported here.
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The impacts of the different VAR models are evaluated through 1000 simulations of
(S). For each simulation, (S) is generated by using a sample size T and a multivariate
Gaussian distribution for the white noise with εt ∼ N (0, Σε). The initial values used
to generate (S) are set to zero. For T and Σε, we use the following settings:

� Four sample sizes: T = {128, 256, 512, 1024}

� Four Σε matrices, the identity and three symmetric Toeplitz matrices with ρ ∈
{0.25, 0.50, 0.75}. A (m×m) symmetric Toeplitz matrix (Tp) has the form (Tp)jk =
ρ|j−k| for j, k = 1, . . . ,m, with ρ ∈ R : |ρ| < 1. The four matrices are as follows:


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


(1) Id


1 0.25 0.06 0.02 0

0.25 1 0.25 0.06 0.02
0.06 0.25 1 0.25 0.06
0.02 0.06 0.25 1 0.25
0 0.02 0.06 0.25 1


(2) Tp1

1 0.50 0.25 0.13 0.06
0.50 1 0.50 0.25 0.13
0.25 0.50 1 0.50 0.25
0.13 0.25 0.50 1 0.50
0.06 0.13 0.25 0.50 1


(3) Tp2


1 0.75 0.56 0.42 0.32

0.75 1 0.75 0.56 0.42
0.56 0.75 1 0.75 0.56
0.42 0.56 0.75 1 0.75
0.32 0.42 0.56 0.75 1


(4) Tp3

The increase in ρ indicates that the error processes are more strongly correlated, and
allows us to see the estimation impacts when the system approaches a structural VAR
model. To build the covariance matrices, we use the symmetric Toeplitz matrix [213, 210]
because it provides a flexible framework to generate a positive-definite covariance
matrix. The symmetric Toeplitz matrix structure used depends on just one parameter ρ.
Moreover, it reflects the stationarity of auto-regressive systems (if |ρ| < 1).

To compare and quantify the cascading errors of the different VAR models, the relative
L2-norm error is used for the VAR coefficients, whereas the L2-norm error is computed
for GPDC. The L2-norm error is used instead of the relative one because, for non-causal
terms, the theoretical GPDC is null for all frequencies, resulting in a null denominator
for the relative error. The two error metrics are defined as follows:

� Relative L2-norm error of VAR coefficients: ‖Â − A‖2/‖A‖2 where A =
(A1, . . . ,Ap)

� L2-norm error of GPDC: ‖|ω̂jk|2 − |ωjk|2‖2 on each pair j 6= k, where ωjk is the
vector containing each value of ωjk(f) for all discrete frequencies f .

Finally, to assess the errors through the 1000 simulations, we report for the VAR
coefficients the median of the relative L2-norm error and for the GPDC the sum of the
median of the L2-norm error on both the causal terms and the non-causal terms.

62



3.3 Impacts of standard VAR estimation on GPDC

3.3.2 Estimation errors

Here, we evaluate the impact of standard VAR estimations through 1000 Monte Carlo
simulations of (S) on both the VAR coefficient and the GPDC errors. Fig. 3.4 shows the
first results for the simulated data, focusing on the estimation errors of the VAR coeffi-
cients. For this purpose, five VAR models are estimated in a multivariate environment,
either by setting the order of the model at p = 3 (true model order), or by determining
it using the four information criteria defined in section 3.2. Note that the Tp1 results are
not reported because they are quite similar to the identity matrix, but they are available
upon request.

Figure 3.4: Median over 1000 simulations of relative L2-norm error on the coefficients
estimated using the five standard VAR estimations. The increase in the median indicates
a deterioration in the estimation of coefficients.

On the basis of these first empirical results presented in Fig. 3.4, the following con-
clusions can be drawn:

� The accuracy of the estimated coefficients improves significantly when the sample
size increases, but this improvement is less prominent when using BIC criteria.
For the VAR-3 or the two VAR-AIC, the errors are almost reduced by a factor of
three between T = 128 and T = 1024. Moreover, the performance for all models
deteriorates when the residuals are strongly correlated.

� In VAR estimation the selection of the model order is crucial for accuracy. The
four information criteria rarely find the true model order for small sample sizes
(T = 128, 256) and correlated residuals (Tp2 and Tp3). For the smallest sample
sizes, they select the true lag order p = 3 in 7% of cases and otherwise they have a
lag order p = 2, except for BICun, which finds a model order p = 1 for Id 128 in 70%
of simulations. Thus, in these cases, VAR models using information criteria must
have higher errors than VAR-3. Nevertheless, for three cases Tp2 128, Tp3 128,
and Tp3 256 it is in fact VAR-3 that has the worst results. Indeed, as (S) has
only one non-zero coefficient on the third lag, the VAR-3 estimates twenty-four zero
coefficients, which significantly increases the error. For a parsimonious system like
(S), the true model order can become an over-fitted model, especially for small
sample sizes. However, the model order must not be too seriously undervalued, as
happens with VAR-BICun for Id128, otherwise a compensation effect will occur in
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the values of the coefficients, overestimating them by significantly increasing the
errors.

� On this system, the AIC criterion provides better results for the LS estimation,
because it is the least restricted and so can find the true model order for large
sample sizes (T = 512, 1024). However, it can also under-fit the model to yield
lower errors than VAR-3 for small sample sizes and correlated residuals.

The following two Figs. 3.5 and 3.6 show the GPDC errors on causal (Fig. 3.5) and
non-causal terms (Fig. 3.6), using the same models and settings as before.

Figure 3.5: Sum of medians over 1000 simulations of L2-norm error on the causal GPDC
(3.5) estimated using the five standard VAR estimations. The increase in the median
indicates a deterioration in the estimation of the causal GPDC.

Figure 3.6: Sum of medians over 1000 simulations of L2-norm error on the non-causal
GPDC (3.5) estimated using the five standard VAR estimations. The increase in the
median indicates a deterioration in the estimation of the non-causal GPDC.

For causal terms (Fig. 3.5), the same conclusions can be drawn as for the errors
in the coefficients, whereas for non-causal terms, the results are quite different (Fig.
3.6). For non-causal terms (zero coefficients), VAR-3 presents the worst errors for all
settings, except for T = 1024, where errors are similar to the other VAR models. These
errors in VAR-3 support the idea of an over-fitted model because non-causal terms are
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directly related to the estimation of zero coefficients. In contrast, VAR models using the
most restricted information criteria (AICun, BIC, and BICun) become the best models
for all cases, due to the non-estimation of the third lag. Nevertheless, if the model is
under-fitted (VAR-BICun), as noted with the errors in the coefficients, the errors will
also be very high (4.22 for Id128) due to compensation effects in the coefficients. We also
note that, in the case where the VAR model contains many zero coefficients (88% of zero
coefficients), the errors in non-causal terms can be higher than those in the causal terms.
Moreover, due to the normalization property defined in (3.7), the errors in the non-causal
terms have a direct impact on the accuracy of the causal strength. Thus, in the presence
of parsimonious VAR models, the standard VAR estimation with all possible information
criteria is in fact not well suited.

In this section, we have confirmed that standard VAR estimation provides high cas-
cading errors and reveals spurious causalities. Indeed, a VAR estimation in a multivariate
environment does not take into account the parsimonious structure of the underlying
model, and better suited methods are needed. Thus, in order to correct the cascading
errors in the GPDC and to adopt a more parsimonious structure, we use searching proce-
dures with parameter constraints, or shrinkage methods, called subset selection methods.

3.4 Improving GPDC estimation accuracy

Standard VAR estimation is therefore not well-suited to estimate parsimonious data gen-
erating processes, since such processes may have only a few non-zero coefficients. The
significance of individual coefficients must then be assessed prior to computing GPDC
functions. To deal with this point, it is possible to use subset selection methods. In
the literature, at least three procedures have been considered: first, procedures based
on information criteria to add or delete coefficients such as Bottom-Up strategy, Top-
Down strategy [141] and modified Backward-in-Time Selection [151]; second, procedures
based on hypothesis testing, such as t-test for individual coefficients and multivariate tests
[141, 149, 150], i.e. that jointly test the coefficients (e.g. likelihood ratio and Wald test);
finally, procedures based on shrinkage methods such as Lasso Regression [186]. However,
for the second family, the multivariate approach aims at testing the non-significance of a
set of coefficients, and is therefore not of particular interest in our setting (such a draw-
back is also found in the classical Bottom-Up strategy [141]) explaining why we only focus
on the individual t-test (TT) in our study. The results are assessed through VAR coeffi-
cients errors and GPDC accuracy as in the previous section by comparing our mBTS-TD
method to the mBTS method, the TD strategy, the TT procedure (described in 1.4.2.2),
and the Lasso method (described in 1.4.2.2). Finally, we check error distributions and the
identification of the true causal structure of (S).

3.4.1 Proposed method: mBTS-TD

The proposed method first uses the modified Backward-in-Time Selection (mBTS) to
estimate the VAR coefficients. The main advantage of the mBTS method is that only
terms that improve the prediction of the equation are included, and this allowing us to
work with high-dimensional systems like K = 20 in [151]. As already shown in [184],
the mBTS method dramatically improves GPDC accuracy. Nevertheless, a drawback
with the mBTS method is that the maximum lag pmax is fixed a priori. If it is too
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small, the internal dynamics of the system are not completely modeled and the model
is under-fitted. In this case, the coefficients are over-estimated due to the compensation
effects causing possibly large errors as remarked for example in the last line of Fig. 3.4.
On the other hand, if pmax is too large, undesirable lagged variables may appear in the
model by revealing spurious causalities. We therefore propose to combine the mBTS
method with the Top-Down strategy (TD). Indeed, the advantage of the TD strategy
is that all coefficients in each equation are tested, but it is very sensitive to the initial
VAR estimation which determines the model order and thus can amplify the errors if
the initial VAR estimation is not carried out properly. The two reasons to combine the
mBTS method and TD strategy are: firstly, to be less dependent on the choice of pmax so
that we may set its values high enough to capture all possible connections; and secondly,
as a further consequence, so that we may produce a more parsimonious model when pmax
is set at a high value. Hereafter, we define the mBTS method and the TD strategy.

The modified Backward-in-Time Selection (mBTS) is a Bottom-Up strategy (BU)
introduced by Vlachos and Kugiumtzis [151]. It is based on Dynamic Regression models
[188], which estimate each equation separately. Unlike the TD strategy, the mBTS
method adds progressively lagged variables, starting from the first lag for all variables,
and moving backward in time.

First, a maximum order pmax is fixed, and this provides the vector (1×mpmax) of all
lagged variables for the j-th equation of the VAR(p) model in (3.1):

v = (x1(t− 1), . . . , x1(t− pmax), . . . , xm(t− 1), . . . , xm(t− pmax))

An explanatory vector ϑ is built from v by progressively adding only the most
significant lagged variable at each step.

For the j-th equation of the VAR(p) model in (3.1), the mBTS algorithm is as follows:

1. Start with an empty vector ϑ = ∅, the information criterion ICold initialized to the
variance of the j-th series, and τ = (1, . . . , 1)′ the (m × 1) lag order vector of the
variables.

2. Compute ICnew
n relative to the m dynamic regression models formed by the m

candidate explanatory vectors ϑcand
n , where ϑcand

n = (ϑ, xn(t−τn)), ∀n ∈ {1, . . . ,m}.

3. Select the variable according to the IC value:

� If min{ICold, ICnew
1 , . . . , ICnew

m } = ICold, then τ = τ + 1m.

� If min{ICold, ICnew
1 , . . . , ICnew

m } = ICnew
n , then ICold = ICnew

n , xn(t − τn) is
added to the explanatory vector ϑ = (ϑ, xn(t − τn)) and only τn is increased
by one.

4. Repeat steps 2 and 3 until τ = (pmax, . . . , pmax)
′.
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Finally, the Top-Down strategy (TD) tests the VAR coefficients separately in the m
equations. The goal is to eliminate the non-significant coefficients for each equation by
evaluating the information criterion. The order of the tested terms is arbitrary, but as in
[141], the largest lag p is tested first for all variables from xm(t− p) to x1(t− p), then the
lag p− 1 with the same order of variables, and the process is iterated until p = 1.

For the j-th equation obtained with the mBTS algorithm, the TD strategy is applied
as follows:

1. Start with the vector ϑ and the information criterion ICold obtained with the mBTS
algorithm.

2. Sort the vector ϑ from the largest to the smallest lag p and for all series from xm
to x1.

3. Compute ICnew
n by deleting the n-th element in the vector ϑ, ϑcand

n = ϑ \ {ϑn}.

4. Delete the variable according to the ICnew
n value:

� If min{ICold, ICnew
n } = ICold, then ϑ = ϑ.

� If min{ICold, ICnew
n } = ICnew

n , then ICold = ICnew
n and ϑ = ϑcand

n .

5. Repeat steps 3 and 4 ∀(ϑn)n∈[1,|ϑ|], where |.| denotes the cardinality of the vector
in this case.

3.4.2 Comparison with standard VAR

In this part, subset selection methods are compared to each other, and also to the stan-
dard VAR estimation presented in the previous section. The impacts are evaluated on
the accuracy of both the VAR coefficients and the GPDC through 1000 Monte Carlo
simulations on (S). Twenty nine different VAR models are estimated. First, the five VAR
models presented in section 3.3, and then the six subset methods with the four informa-
tion criteria. For the mBTS and mBTS-TD methods we set pmax = 6, but in section
3.4.3 we will check the robustness of these methods by testing the stability with respect
to pmax. The t-test procedure (TT) is used for both a significance level of 5% and 1% (see
in 1.4.2.2). The Lasso tuning parameter is estimated using 5-fold cross-validation (see
in 1.4.2.2). Moreover, only the best information criterion is reported for each method,
and as previously, we do not report the Tp1 results. Fig. 3.7 shows the Monte Carlo
simulation results for the estimation errors in the VAR coefficients.
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Figure 3.7: Median over 1000 simulations of the relative L2-norm error on the coefficients
estimated using subset selection methods and standard VAR estimations. An increase in
the median implies a deterioration in the estimate of the coefficients.

For estimation errors on the VAR coefficients, all subset selection methods provide
better results than VAR-AIC for all the settings proposed, and they also behave better
than VAR-3 for almost all settings. However, the two methods using mBTS, and in
particular the combination of mBTS and TD, clearly stand out from the others. There
is a considerable gap between these methods and the others. The errors are at least
divided by two for small sample sizes and can be divided by five for the largest ones.
Moreover, by adding the TD strategy to a first suitable VAR estimation that respects the
parsimonious structure, such as mBTS, the improvement can be significant, especially
when residuals are correlated. Nevertheless, TD may also confirm its drawback of being
very sensitive to the first estimation (VAR-AIC), because it does not provide better
results than VAR-AIC, even if it is more stable in the presence of correlated residuals.
Lasso-AIC also provides good results compared to VAR-AIC or VAR-3, but its errors
are at least twice as great as with mBTS methods. The TT procedures (especially TT
1%) are better than TD and Lasso for T ≥ 512, but are quite similar for the two smaller
sample sizes with higher errors than the mBTS methods. mBTS-TD can ensure highly
stable errors across the different covariance matrices, in particular for sample sizes larger
than 256, where the errors are the same. For example, with T = 256 the errors are
equal to 0.07 whatever the covariance matrix. Finally, to conclude regarding these first
results, subset selection methods are better suited to modelling parsimonious structures
for the estimation of coefficients. When adding (mBTS) or deleting (TD) parameters
as in mBTS-TD, the information criterion with the highest penalty factor, viz., BICun,
provides better results than the less restricted ones.

Figs. 3.8 and 3.9 show GPDC errors in causal (Fig. 3.8) and non-causal terms (Fig.
3.9) of (S), confirming previous results for the VAR coefficients.

a a a a
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Figure 3.8: Sum of medians over 1000 simulations of the L2-norm error in the causal
GPDC (3.5), estimated using the subset selection methods and standard VAR estimations.
An increase in the median implies a deterioration in the estimate of the causal GPDC.

In Fig. 3.8, the results for the GPDC causal terms are similar to the errors in the
coefficients. This confirms the idea that subset selection methods are better suited than
standard VAR. mBTS-TD performs better than the others for all settings, and also pro-
vides stable errors.

Figure 3.9: Sum of medians over 1000 simulations of the L2-norm error in the non-causal
GPDC (3.5), estimated using the subset selection methods and standard VAR estimations.
An increase in the median implies a deterioration in the estimate of the non-causal GPDC.
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For the errors in the non-causal terms shown in Fig. 3.9, the results are clear. Each
subset selection method perfectly plays out its role in modelling only the most significant
coefficients (causal terms). The six subset selection methods greatly reduce errors com-
pared to VAR-AIC or VAR-3, and can provide a sum of medians of the L2-norm errors
close to zero for all non-causal terms. However, even in this case, the mBTS-TD method
provides the most interesting results. This is the only method that presents a sum of
medians close to zero for all settings, and it significantly improves on the mBTS method
for sample sizes T ≤ 256 and correlated residuals.

3.4.3 Robustness checks: error distributions and causal struc-
ture identification

Having used our preliminary analysis in section 3.4.2 to identify the three methods TT
1%, mBTS and mBTS-TD that seem most suitable for computing the GPDC, we extend
here the comparison. In contrast to in section 3.4.2, where medians of the L2-norm error
were used to compare the methods, in this section, we first evaluate the two methods
through the L2-norm error distributions for the causal and non-causal GPDC, then fo-
cus on identification of the true causal structure of (S) using the F-Measure (FM) and
Hamming Distance (HD) as in [184].

GPDC error distributions

In Table 3.1, we report the average value and standard deviation of the L2-norm error
distributions for the causal GPDC and in Fig. 3.10 we provide an example of the L2-norm
error distribution with T = 256 and Σε = Tp2. Table 3.2 and Fig. 3.11 exhibit the same
results for the non-causal terms.
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VAR-AIC VAR-AIC
TT 1%

mBTS
BICun 3

mBTS-TD
BICun 3

mBTS
BICun 6

mBTS-TD
BICun 6

mBTS
BICun 9

mBTS-TD
BICun 9

Id 128 0.687
(0.350 )

0.544
(0.356 )

0.449
(0.303 )

0.389
(0.293 )

0.480
(0.322 )

0.417
(0.312 )

0.492
(0.326 )

0.429+

(0.318 )

Id 256 0.546
(0.294 )

0.406
(0.294 )

0.302
(0.206 )

0.251
(0.187 )

0.317
(0.217 )

0.266
(0.199 )

0.327
(0.223 )

0.274+

(0.206 )

Id 512 0.378
(0.217 )

0.239
(0.216 )

0.203
(0.133 )

0.167
(0.123 )

0.212
(0.140 )

0.175
(0.131 )

0.218
(0.144 )

0.180+

(0.135 )

Id 1024 0.238
(0.122 )

0.123
(0.095 )

0.140
(0.094 )

0.113
(0.085 )

0.145
(0.098 )

0.117
(0.089 )

0.147
(0.099 )

0.119+

(0.091 )

Tp2 128 0.764
(0.404 )

0.575
(0.403 )

0.475
(0.348 )

0.407
(0.347 )

0.505
(0.364 )

0.439
(0.368 )

0.524
(0.371 )

0.457+

(0.375 )

Tp2 256 0.614
(0.334 )

0.423
(0.319 )

0.309
(0.216 )

0.247
(0.196 )

0.327
(0.229 )

0.262
(0.208 )

0.336
(0.233 )

0.271+

(0.214 )

Tp2 512 0.447
(0.253 )

0.242
(0.231 )

0.212
(0.151 )

0.168
(0.132 )

0.220
(0.156 )

0.175
(0.139 )

0.226
(0.160 )

0.181+

(0.143 )

Tp2 1024 0.291
(0.152 )

0.119
(0.097 )

0.143
(0.099 )

0.108
(0.084 )

0.147
(0.101 )

0.112
(0.088 )

0.149
(0.103 )

0.114+

(0.089 )

Tp3 128 0.882
(0.462 )

0.674
(0.480 )

0.631
(0.464 )

0.565
(0.486 )

0.652
(0.466 )

0.591
(0.490 )

0.665
(0.466 )

0.604+

(0.491 )

Tp3 256 0.721
(0.390 )

0.451
(0.360 )

0.370
(0.288 )

0.276
(0.273 )

0.386
(0.300 )

0.291
(0.286 )

0.394
(0.303 )

0.300+

(0.291 )

Tp3 512 0.561
(0.320 )

0.239
(0.245 )

0.245
(0.185 )

0.161
(0.142 )

0.254
(0.191 )

0.168
(0.149 )

0.259
(0.192 )

0.173+

(0.153 )

Tp3 1024 0.393
(0.223 )

0.127
(0.121 )

0.178
(0.133 )

0.108
(0.092 )

0.182
(0.137 )

0.111
(0.097 )

0.184
(0.138 )

0.114+

(0.100 )

Table 3.1: Causal GPDC: Average value and standard deviation in parentheses of the L2-
norm error distribution (1000 simulations) for the causal GPDC, estimated using VAR-
AIC, VAR-AIC-TT 1%, mBTS-BICun, and mBTS-TD-BICun with pmax = 3, 6, 9. The
lower average error is highlighted for each setting and pmax. The superscript symbol +

indicates the lowest average error among mBTS-TD-BICun 9, mBTS-BICun 3, VAR-AIC-
TT 1% to underline the efficiency of the mBTS-TD approach even for a large pmax.

Figure 3.10: Causal GPDC. L2-norm error distribution (1000 simulations) with T = 256
and Σε = Tp2 for the causal GPDC, estimated using VAR-AIC, VAR-AIC-TT 1%, mBTS-
BICun, and mBTS-TD-BICun with pmax = 3, 6, 9.
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VAR-AIC VAR-AIC
TT 1%

mBTS
BICun 3

mBTS-TD
BICun 3

mBTS
BICun 6

mBTS-TD
BICun 6

mBTS
BICun 9

mBTS-TD
BICun 9

Id 128 0.195
(0.202 )

0.055
(0.208 )

0.035+

(0.124 )
0.020

(0.115 )
0.048

(0.150 )
0.031

(0.137 )
0.058

(0.167 )
0.040

(0.156 )

Id 256 0.112
(0.115 )

0.031
(0.113 )

0.014
(0.052 )

0.005
(0.041 )

0.019
(0.063 )

0.009
(0.052 )

0.022
(0.069 )

0.012+

(0.059 )

Id 512 0.065
(0.063 )

0.011
(0.054 )

0.005
(0.022 )

0.001
(0.015 )

0.007
(0.026 )

0.003
(0.020 )

0.008
(0.029 )

0.004+

(0.023 )

Id 1024 0.033
(0.028 )

0.002
(0.013 )

0.002
(0.011 )

0
(0.007 )

0.003
(0.012 )

0.001
(0.008 )

0.003
(0.013 )

0.001+

(0.010 )

Tp2 128 0.266
(0.283 )

0.071
(0.249 )

0.042+

(0.156 )
0.026

(0.145 )
0.055

(0.177 )
0.037

(0.165 )
0.065

(0.190 )
0.045

(0.178 )

Tp2 256 0.156
(0.171 )

0.041
(0.149 )

0.016
(0.061 )

0.006
(0.048 )

0.020
(0.069 )

0.010
(0.056 )

0.023
(0.075 )

0.012+

(0.062 )

Tp2 512 0.096
(0.095 )

0.015
(0.075 )

0.008
(0.030 )

0.002
(0.019 )

0.009
(0.033 )

0.003
(0.023 )

0.011
(0.036 )

0.004+

(0.026 )

Tp2 1024 0.047
(0.040 )

0.002
(0.014 )

0.003
(0.013 )

0
(0.006 )

0.004
(0.015 )

0.001
(0.009 )

0.005
(0.016 )

0.001+

(0.010 )

Tp3 128 0.404
(0.417 )

0.113
(0.367 )

0.075
(0.253 )

0.050
(0.246 )

0.086
(0.265 )

0.061
(0.260 )

0.095
(0.274 )

0.069+

(0.269 )

Tp3 256 0.256
(0.267 )

0.059
(0.216 )

0.029
(0.112 )

0.012
(0.097 )

0.033
(0.116 )

0.015
(0.099 )

0.036
(0.120 )

0.018+

(0.104 )

Tp3 512 0.162
(0.158 )

0.019
(0.104 )

0.013
(0.046 )

0.002
(0.027 )

0.014
(0.049 )

0.003
(0.030 )

0.016
(0.051 )

0.004+

(0.033 )

Tp3 1024 0.084
(0.077 )

0.003
(0.028 )

0.008
(0.028 )

0
(0.012 )

0.009
(0.029 )

0.001
(0.013 )

0.009
(0.030 )

0.001+

(0.014 )

Table 3.2: Non-causal GPDC: Average value and standard deviation in parentheses of the
L2-norm error distribution (1000 simulations) for the non-causal GPDC, estimated using
VAR-AIC, VAR-AIC-TT 1%, mBTS-BICun, and mBTS-TD-BICun with pmax = 3, 6, 9.
The lower average error is highlighted for each setting and pmax. The superscript symbol
+ indicates the lowest average error among mBTS-TD-BICun 9, mBTS-BICun 3, VAR-
AIC-TT 1% to underline the efficiency of the mBTS-TD approach even for a large pmax.

Figure 3.11: Non-causal GPDC. L2-norm error distribution (1000 simulations) with T =
256 and Σε = Tp2 for the non-causal GPDC, estimated using VAR-AIC, VAR-AIC-TT
1%, mBTS-BICun, and mBTS-TD-BICun with pmax = 3, 6, 9.
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The following conclusions can be drawn regarding both causal (Table 3.1 and Fig.
3.10) and non-causal (Table 3.2 and Fig. 3.11) terms:

� By taking into account only the same pmax for the two methods, denoted in bold
in Tables 3.1 and 3.2, mBTS-TD clearly stands out from mBTS by providing lower
average errors for each setting.

� Whatever pmax is selected, the mBTS-TD error distributions are more concentrated,
with a lower fat tail.

� mBTS-TD-BICun9 always admits lower errors than mBTS-BICun3 and VAR-AIC-
TT 1% for the causal GPDC, and only in two cases exhibits higher errors than
mBTS-BICun3 for the non-causal terms denoted with a superscript symbol + in
Tables 3.1 and 3.2.

Causal structure identification

To identify the true causal structure, we use the F-Measure (FM) and the Hamming Dis-
tance (HD) discussed in [184]. FM focuses on the identification of pairs of true causality,
whereas HD focuses on the identification of all pairs. We consider the existence of causal-
ity between two time series xj(t) and xk(t) if |ω̂jk|2 > 0.01 at least at one frequency f .
FM and HD are defined as follows:

FM =
2TP

2TP + FN + FP

HD = FN + FP

where TP are the True Positives (causality correctly identified), FN are the False
Negatives (causality not identified), and FP are the False Positives (wrongly identified
causality). FM ranges from 0 to 1. If FM = 1, then there is a perfect identification of
the pairs of true causality, whereas if FM = 0, then no true causality is detected. HD
ranges from 0 to m(m− 1). If HD = 0, there is a perfect identification, whereas if HD =
m(m− 1), all pairs are misclassified.

Tables 3.3 and 3.4 report the average value of FM (Table 3.3) and HD (Table 3.4) for
each setting.
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VAR-AIC VAR-AIC
TT 1%

mBTS
BICun 3

mBTS-TD
BICun 3

mBTS
BICun 6

mBTS-TD
BICun 6

mBTS
BICun 9

mBTS-TD
BICun 9

Id 128 0.500 0.881 0.873 0.941 0.840 0.909 0.818 0.885+

Id 256 0.568 0.884 0.925 0.968 0.898 0.943 0.881 0.928+

Id 512 0.663 0.928 0.970 0.985 0.958 0.977 0.950 0.971+

Id 1024 0.851 0.991 0.994 0.997 0.992 0.996 0.990 0.995+

Tp2 128 0.475 0.863 0.861 0.929 0.830 0.897 0.808 0.874+

Tp2 256 0.530 0.878 0.916 0.965 0.894 0.945 0.879 0.930+

Tp2 512 0.581 0.924 0.952 0.980 0.941 0.971 0.930 0.965+

Tp2 1024 0.751 0.990 0.988 0.997 0.984 0.995 0.981 0.994+

Tp3 128 0.446 0.819 0.794 0.878 0.771 0.853 0.754 0.833+

Tp3 256 0.479 0.873 0.875 0.954 0.857 0.936 0.842 0.921+

Tp3 512 0.500 0.932 0.932 0.986 0.921 0.978 0.912 0.971+

Tp3 1024 0.596 0.977 0.958 0.995 0.953 0.993 0.950 0.992+

Table 3.3: Average value of the F-measure (FM) over 1000 simulations of the GPDC,
estimated using VAR-AIC, VAR-AIC-TT 1%, mBTS-BICun, and mBTS-TD-BICun with
pmax = 3, 6, 9. FM ranges from 0 to 1. If FM = 1 there is perfect identification of the
pairs of true causality, whereas if FM = 0 no true causality is detected. The lower average
value is highlighted for each setting and pmax. The superscript symbol + indicates the
lowest average error among mBTS-TD-BICun 9, mBTS-BICun 3, VAR-AIC-TT 1% to
underline the efficiency of the mBTS-TD approach even for a large pmax.

VAR-AIC VAR-AIC
TT 1%

mBTS
BICun 3

mBTS-TD
BICun 3

mBTS
BICun 6

mBTS-TD
BICun 6

mBTS
BICun 9

mBTS-TD
BICun 9

Id 128 10.014 1.325 1.451 0.626 1.893 0.997 2.215 1.291+

Id 256 7.596 1.311 0.808 0.333 1.134 0.605 1.351 0.779+

Id 512 5.076 0.774 0.306 0.150 0.439 0.237 0.529 0.302+

Id 1024 1.750 0.088 0.063 0.028 0.085 0.037 0.099 0.046+

Tp2 128 10.995 1.540 1.586 0.756 2.011 1.128 2.340 1.412+

Tp2 256 8.877 1.394 0.920 0.363 1.186 0.582 1.381 0.758+

Tp2 512 7.226 0.820 0.499 0.202 0.626 0.294 0.751 0.368+

Tp2 1024 3.320 0.106 0.118 0.033 0.165 0.050 0.194 0.063+

Tp3 128 12.309 2.070 2.392 1.279 2.740 1.579 3.018 1.846+

Tp3 256 10.877 1.444 1.406 0.472 1.643 0.678 1.852 0.848+

Tp3 512 9.989 0.727 0.729 0.146 0.861 0.229 0.968 0.300+

Tp3 1024 6.771 0.240 0.434 0.050 0.495 0.070 0.527 0.077+

Table 3.4: Average value of Hamming Distance (HD) over 1000 simulations of the GPDC,
estimated using VAR-AIC, VAR-AIC-TT 1%, mBTS-BICun, and mBTS-TD-BICun with
pmax = 3, 6, 9. HD ranges from 0 to m(m− 1), where m = 5. If HD = 0 there is perfect
identification, whereas if HD = 20 all pairs are misclassified. The lower average value
is highlighted for each setting and pmax. The superscript symbol + indicates the lowest
average error among mBTS-TD-BICun 9, mBTS-BICun 3, VAR-AIC-TT 1% to underline
the efficiency of the mBTS-TD approach even for a large pmax.

For the two measures FM (Table 3.3) and HD (Table 3.4), mBTS-TD provides on
average a better identification of the true causal structure than mBTS for each setting
by taking into account only the same pmax highlighted in boldface in Tables 3.3 and 3.4.
As previously for the error distributions, mBTS-TD-BICun9 outperforms mBTS-BICun3
and VAR-AIC-TT 1%, denoted with a superscript symbol + in Tables 3.3 and 3.4. Note
that VAR-AIC provides the worst results, whatever measure is taken into account.

We end this simulation study by comparing the computational efficiency of mBTS and
mBTS-TD on (S) across the different sample sizes. The computation times of the two
methods for one realization (T = 1024 and Tp3) are quite similar, with 0.166 seconds for
mBTS and 0.174 seconds for mBTS-TD. The computations are carried out using Python
3.7 with 2.70GHz CPU (Intel Xeon E-2176M) and 32Gb RAM.
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To conclude regarding the accuracy of the GPDC results, subset selection methods
are well suited when the underlying model admits a parsimonious structure. Each subset
method improves the GPDC accuracy, and when we combine mBTS and TD methods,
the cascading errors on GPDC are drastically reduced for both causal and non-causal
terms. We can also add that, with pmax = 9, for mBTS-TD the errors on the GPDC are
lower than for mBTS starting with the true lag pmax = 3. mBTS-TD therefore reduces
dependence on the choice of pmax and produces a more parsimonious model when pmax
is large. Fig. 3.12 compares examples of the GPDC estimated using mBTS-TD, VAR-3,
and VAR-AIC with the theoretical GPDC.

Figure 3.12: Relative GPDC compared to the theoretical GPDC of (S) for T = 256 and
Σε = Tp2: VAR-2 in red, VAR-3 in yellow, and mBTS-TD-BICun in green. Relative
GPDC: |ω̂jk|2 − |ωjk|2 for each pair j 6= k, where ωjk is the vector containing each value
of ωjk(f) for all discrete frequencies f .

As found with Monte Carlo simulations, the differences in the causal part between the
mBTS-TD method and the theoretical GPDC are very small. Moreover, in this example,
none of the zero-coefficients are estimated by mBTS-TD, which makes it possible to have
a GPDC equal to zero, like the theoretical GPDC for non-causal terms.
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In addition, in Appendix 3.7.1 & 3.7.2, we provide results on two other systems, a
VAR(4) model on m = 5 (model 1 in [214, 151]) and a high-dimensional parsimonious
VAR(4) model on m = 12 with only 4% of the m2p coefficients being non-zero (model
used in [215]).

3.5 Financial application

In the literature, several classical approaches exist to model the links between the assets
of a financial universe. The correlation matrix is often used [69, 71, 72, 216] to build
weighted or binary networks. Unfortunately, this methodology suffers from two major
drawbacks. First, these networks are undirected, only highlighting the existence of the
relationship between assets not their directions. Second, the network dimension must also
be reduced (using methods such as the Minimum Spanning Tree [69] or Planar Maximally
Filtered Graphs [128]) otherwise the network is complete and difficult to use in practice
for portfolio allocation. In a symmetric way, methods based on Granger non-causality
tests in VAR models as in [217, 73] allow to retrieve a directed but unweighted network,
remaining very sensitive to the underlying VAR processes. In [74], an alternative directed
causal network is built, beyond VAR modeling, but focuses only on very short-dynamics.

In this section, we make use of the GPDC measure, estimated with our mBTS-TD
method, to modeling financial markets dependency structures. This approach provides not
only a precise network topology (taking into account both the direction and the strength of
the relationship between assets via the GPDC) but also solve the dimensionality puzzle,
via the mBTS-TD estimation process that intrinsically produces parsimonious causal
structures. In a second step, we study on real data the empirical performances of financial
portfolios obtained excluding the most systemic nodes of the incomplete GPDC financial
network.

3.5.1 Building a GPDC financial network to identify systemic
assets

A network G = (V,E) is a set of objects with V the set of nodes and E the set of edges
between nodes. The edge (j, k) connects a pair of nodes j and k. The mathematical
representation of a directed weighted network is given by the m × m adjacency matrix
Z = (zjk) ,zjk ∈ R+ if (j, k) ∈ E and 0 otherwise. In the sequel, let Z(1) = (z

(1)
jk ) be

the adjacency matrix built using the GPDCs in which are plugged the VAR coefficients,
estimated using our mBTS-TD procedure, and Z(2,γ) = (z

(2,γ)
jk ) the adjacency matrix built

using the GPDCs based on VAR-AIC models. In this latter case, note that Z(2,γ) depends
on a threshold parameter γ, defined hereafter. Since our mBTS-TD procedure pre-filters
the VAR by removing unnecessary coefficients, z

(1)
jk can be directly defined as follows:

z
(1)
jk =


max | ωjk |2, if j 6= k

0, otherwise

(3.8)

where ωjk is the vector containing each value of ωjk(f) for all discrete frequencies f
(f ∈ [0, 1

2
]) as defined in (3.5). We use the maximal value in the ωjk vector in order to
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take into account the most relevant information between the two assets, i.e. based on
short (high-frequency) and long-term (low frequency) relationships.

When a classical VAR-AIC is used to compute the GPDCs, all VAR coefficients are
involved, returning, in general, non-null GPDCs. The resulting complete weighted net-
work is useless in practice. We thus apply a filter to each component of the associated
ωjk vector and compute the vector ωγjk whose coordinates are given by:

ωγjk(f) =


ωjk(f), if |ωjk(f)| ≥ γ

0, otherwise

with γ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}.

Thus, an element of the adjacency matrix Z(2,γ), is defined as:

z
(2,γ)
jk =


max | ωγjk |2, if j 6= k

0, otherwise

(3.9)

Once built, the previous incomplete financial networks can help us to improve asset
allocation strategies using the classical tools of network theory such as centrality measures
or clustering coefficients as in [71, 72, 218, 219, 75, 76]. In order to show the potential
of using both the mBTS-TD method and the GPDC to build a financial network, we
propose to identify the most systemic assets with the local directed weighted clustering
coefficient. Indeed, the local directed weighted clustering coefficient allows to identify
the most embedded assets in the network and thus the most systemic ones. This tool
introduced by Clemente et al. in [127] measures how a node is embedded into the network
by quantifying its number of triangles out of all its possible triangles. Furthermore, it takes
into account the strength of a node in the normalization factor (see also [126]). Starting
from a directed weighted network with adjacency matrix Z, we obtain the associated
directed unweighted network with adjacency matrix Zu defining zujk = 1 if zjk 6= 0, and 0
otherwise. Thus, the local directed weighted clustering coefficient for the asset (node) j
is defined as follows:

hj =

1

2

[
(Z + Z′) (Zu + Zu ′)2

]
jj

sj (dj − 1)− 2s↔j

where dj = (Zu ′ + Zu)j 1m and sj = (Z ′ + Z)j 1m are respectively the total degree
(total number of edges) and the total strength (case of weighted graph) of the asset j.

s↔j =
(Z Zu + Zu Z)jj

2
is the strength of bilateral edges between j and k. Note that

hj belongs to [0, 1], a high value indicating that the asset j is heavily embedded in the
network, and captures in particular in and out diffusion processes, and therefore spillover
and feedback effects.
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3.5.2 Building a diversified Equally Weighted portfolio

For a given investment universe, the above methodology allow us to identify the most
systemic nodes of the GPDC network as the one associated with the greatest local directed
weighted clustering coefficients computed from adjacency matrices Z(1) or Z(2,γ). To build
and compare financial portfolios we only base our financial strategy on m non-systemic

assets and we basically allocate all of them with the same weight
1

m
resulting in an Equally

Weighted (EW) portfolio. The interest of such an approach in our framework is to focus
solely on the improvement resulting from the asset selection process. It does not require
any additional estimation procedure (covariance matrix) nor complex optimization issues.
What is more, the authors in [212] have shown that this method can even provide higher
performances than more advanced ones.

3.5.3 Dataset description and Empirical performances

We consider national financial markets, each market (node) being represented by the
MSCI ACWI (All Country World Index). We first apply two filters. First we remove
the less liquid ones (Argentina, Czech Republic, Egypt, Greece, Hungary, Pakistan), and
then those with no quotes since 2001 (Qatar, Saudi Arabia, United Arab Emirates).
This universe of 40 assets (see Table 3.15 in Appendix 3.7.3) allows us to take both in
account the differences in time delay between areas (feedback effects) as well as local
discrepancy (e.g. macroeconomic differences). We use asset returns computed on a
daily basis from January 2001, the 18th to October 2019, the 25th to build, every four
weeks, a temporal network, using a rolling window of T = 256 working days, with a
rebalancing period of four weeks. Since financial assets returns exhibit heteroskedas-
ticity, we normalize each time series using a Generalized Auto-Regressive Condional
Heteroskedastic (GARCH) [220] filter (see Appendix 3.7.4) to estimate the corresponding
VAR process used to compute the GPDC measure and to identify the non-systemic assets.

The asset exclusion procedure using mBTS-TD for the VAR estimation and the GPDC
measure (“mBTS-TD GPDC”) is compared with those obtained using a classical VAR
estimation (“VAR-AIC GPDC”) with several thresholds γ ∈ {0.01, 0.02, 0.03, 0.04, 0.05}
and on the whole universe (“EW”), i.e. without any asset selection. In order to assess
the potential of our methodology, we report several portfolio statistics computed over
the whole period: the annualized return, the annualized volatility, the ratio between the
annualized return and the annualized volatility and the maximum drawdown (largest
decline in portfolio value). The portfolio generates better performances if it provides an
higher return/volatility ratio and a lower maximum drawdown. The (EW) portfolios’
performances are computed in USD currency, because if the asset returns are kept into
local currency, hedging costs (selling the currency forward) have to be considered.

In Table 3.5, we provide the portfolios’ results when ten assets are excluded represent-
ing 25% of the initial universe (we provide in Appendix 3.7.5 the results for 20%, 37%
and 50%) and we only report the best threshold γ for the classical VAR estimation. For
this case,“mBTS-TD GPDC” shows a significant improvement with respect to the other
methods. It provides significant higher annualized return, similar annualized volatility
(higher return/volatility ratio) and also a similar drawdown compared to (EW) without
exclusion.
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EW Portfolios Annualized Annualized Ratio Max
10 excluded assets Return Volatility Return/Volatility Drawdown

mBTS-TD GPDC 10.46% 16.63% 0.63 62.03%
VAR-AIC GPDC 0.03 9.51% 16.84% 0.56 62.11%

EW 9.35% 16.76% 0.56 61.90%
Non-selected assets (VAR-AIC GPDC 0.03) 8.70% 17.64% 0.49 61.48%

Non-selected assets (mBTS-TD GPDC) 5.89% 18.28% 0.32 61.63%

Table 3.5: Performance indicators for EW portfolios with 10 excluded assets from January
2002 to October 2019. The results are ranked in descending order according to the ratio
(Return / Volatility)

Given these results, we can consider that our methodology “mBTS-TD GPDC” suc-
ceeds in identifying the less performing/riskiest assets. To reinforce this aspect, Table
3.6 provides the first four order moments of systemic assets return distribution for our
proposed methodology and the “VAR-AIC GPDC 0.03”.

10 Non-Selected Assets mBTS-TD GPDC VAR-AIC GPDC 0.03
return distribution

Mean 0.0003 0.0004
Standard Deviation 0.0156 0.0159

Skewness -0.0180 -0.0114
Kurtosis 10.3154 10.8294

Table 3.6: Moments of out-of-sample asset return distribution for ten non-selected assets
for “mBTS-TD GPDC” and “VAR-AIC GPDC 0.03” from January 2002 to October 2019.

We observe that the assets return distribution in the non-selected universe obtained
using “mBTS-TD GPDC” provides better figures, in particular for the mean and the
skewness. Indeed, the assets non-selected by the “mBTS-TD GPDC” have a lower aver-
age return and more negative skewness than in the “VAR-AIC GPDC 0.03” case, which
confirms that ”mBTS-TD GPDC” better identifies the less performing/riskiest assets
than the standard VAR estimation. Regarding portfolios’ performances, the “mBTS-TD
GPDC” exclusion process takes full advantage of the related precise network topology
combined with an intrinsic parsimonious causal structure. This paves the way for inter-
esting results in the case of more complex assets allocation processes that will be the
objective of a forthcoming study.
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3.6 Conclusion

Retrieving complex interactions in multivariate systems admitting a VAR representation
is of key importance in a number of fields. To this end, coherence measures have been
introduced to quantify causal strength between variables. Nevertheless, we prove in this
paper, through careful Monte Carlo simulations, that applying a naive approach first
estimating a VAR model using LS, and then computing coherence measures, is highly
inefficient especially when the underlying data generating processes are parsimonious. To
overcome this problem, we apply classical subset selection methods, and show that they
do improve coherence measures but not sufficiently. We therefore introduce a new subset
selection method, namely the mBTS-TD one, and, still using Monte Carlo simulations,
prove that it clearly outperforms its natural competitors, and allows us to dramatically
reduce to so-called cascading errors in both the causal and non-causal structure of the
system. Last, we have implemented our procedure in the financial domain making use of
the GPDC measure estimated with the mBTS-TD strategy to model financial markets
dependency structures. This approach provides us not only with a precise network topol-
ogy (taking into account both the direction and the strength of the relationship between
assets) but also solves the network dimension puzzle producing a parsimonious causal
structure. We take advantage of this financial network identifying, via the local directed
weighted clustering coefficient, the most systemic assets to exclude them, with profit, from
our investment universe.
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3.7 Appendix Chapter 3

3.7.1 GPDC results on Winterhalder et al. system

We extend our first results obtained with the system (S) by analyzing 4 times series gen-
erated by the VAR(5) model used in [214, 151]. This system also admits a parsimonious
structure with 11% of the m2p coefficients being non-zero and has only one coefficient on
the fifth lag.

The VAR model [214] is as follows:

x1(t) = 0.8x1(t− 1) + 0.65x2(t− 4) + ε1(t)

x2(t) = 0.6x2(t− 1) + 0.6x4(t− 5) + ε2(t)

x3(t) = 0.5x3(t− 3)− 0.6x1(t− 1) + 0.4x2(t− 4) + ε3(t) (S2)

x4(t) = 1.2x4(t− 1) + 0.7x4(t− 2) + ε4(t)

3.7.1.1 S2: GPDC errors

Figs. 3.13 and 3.14 show GPDC errors in causal (Fig. 3.13) and non-causal terms (Fig.
3.14) for the (S2) system

Figure 3.13: (S2): Sum of medians over 1000 simulations of the L2-norm error in the
causal GPDC (3.5), estimated using the subset selection methods and standard VAR
estimations. An increase in the median implies a deterioration in the estimate of the
causal GPDC.

In Fig. 3.13, the results on the causal terms of (S2) are more contrasted. mBTS-TD
and TT 1% provide the best results with a slight advantage for mBTS-TD.
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Figure 3.14: (S2): Sum of medians over 1000 simulations of the L2-norm error in the
non-causal GPDC (3.5), estimated using the subset selection methods and standard VAR
estimations. An increase in the median implies a deterioration in the estimate of the
non-causal GPDC.

For the errors in the non-causal terms shown in Fig. 3.14, the results are clear.
Each subset selection method perfectly plays out its role in modelling only the most
significant coefficients (causal terms). The six subset selection methods greatly reduce
errors compared to VAR-AIC or VAR-5, and can provide a sum of medians of the L2-norm
errors close to zero for all non-causal terms. However, in this case, mBTS-TD, mBTS
and TT provide the most interesting results with a sum of medians equals to zero for all
settings.

3.7.1.2 S2: GPDC error distributions

In Table 3.7, we report for the system (S2) the average value and standard deviation of
the L2-norm error distributions for the causal GPDC and in Fig. 3.15 we provide an
example of the L2-norm error distribution with T = 256 and Σε = Tp2. Table 3.8 and
Fig. 3.16 exhibit the same results for the non-causal terms.
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VAR-AIC VAR-AIC
TT 1%

mBTS
BICun 5

mBTS-TD
BICun 5

mBTS
BICun 7

mBTS-TD
BICun 7

mBTS
BICun 9

mBTS-TD
BICun 9

Id 128 1.006
(0.472 )

0.528
(0.428 )

0.628
(0.350 )

0.457
(0.321 )

0.658
(0.373 )

0.483
(0.340 )

0.679
(0.386 )

0.499+

(0.352 )

Id 256 0.659
(0.266 )

0.309
(0.219 )

0.430
(0.226 )

0.290
(0.202 )

0.445
(0.238 )

0.299
(0.211 )

0.455
(0.243 )

0.305+

(0.216 )

Id 512 0.455
(0.176 )

0.212
(0.147 )

0.306
(0.156 )

0.196
(0.134 )

0.312
(0.162 )

0.199
(0.138 )

0.318
(0.164 )

0.203+

(0.141 )

Id 1024 0.319
(0.123 )

0.149
(0.101 )

0.224
(0.111 )

0.135
(0.091 )

0.228
(0.114 )

0.138
(0.094 )

0.230
(0.115 )

0.139+

(0.095 )

Tp2 128 1.085
(0.478 )

0.495
(0.395 )

0.627
(0.362 )

0.453
(0.332 )

0.649
(0.375 )

0.469
(0.343 )

0.666
(0.384 )

0.481+

(0.351 )

Tp2 256 0.740
(0.314 )

0.312
(0.230 )

0.441
(0.242 )

0.291
(0.209 )

0.453
(0.250 )

0.297
(0.214 )

0.462
(0.255 )

0.302+

(0.219 )

Tp2 512 0.511
(0.210 )

0.204
(0.147 )

0.303
(0.157 )

0.190
(0.133 )

0.310
(0.164 )

0.195
(0.138 )

0.315
(0.166 )

0.197+

(0.140 )

Tp2 1024 0.352
(0.140 )

0.140
(0.097 )

0.215
(0.106 )

0.127
(0.085 )

0.218
(0.109 )

0.129
(0.088 )

0.221
(0.111 )

0.130+

(0.090 )

Tp3 128 1.258
(0.571 )

0.509
(0.438 )

0.641
(0.380 )

0.446
(0.331 )

0.662
(0.396 )

0.463
(0.346 )

0.677
(0.406 )

0.476+

(0.355 )

Tp3 256 0.897
(0.401 )

0.306
(0.249 )

0.443
(0.255 )

0.273
(0.204 )

0.458
(0.267 )

0.282
(0.212 )

0.466
(0.272 )

0.288+

(0.218 )

Tp3 512 0.634
(0.280 )

0.203
(0.168 )

0.308
(0.166 )

0.177
(0.129 )

0.316
(0.174 )

0.180
(0.132 )

0.321
(0.177 )

0.183+

(0.134 )

Tp3 1024 0.444
(0.193 )

0.138
(0.111 )

0.218
(0.114 )

0.119
(0.083 )

0.221
(0.117 )

0.120
(0.084 )

0.223
(0.118 )

0.121+

(0.085 )

Table 3.7: (S2): Causal GPDC. Average value and standard deviation in parentheses of
the L2-norm error distribution (1000 simulations) for the causal GPDC, estimated using
VAR-AIC, VAR-AIC-TT 1%, mBTS-BICun, and mBTS-TD-BICun with pmax = 5, 7, 9.
The lower average error is highlighted for each setting and pmax. The superscript symbol
+ indicates the lowest average error among mBTS-TD-BICun 9, mBTS-BICun 5, VAR-
AIC-TT 1% to underline the efficiency of the mBTS-TD approach even for a large pmax.

Figure 3.15: (S2): Causal GPDC. L2-norm error distribution (1000 simulations) with
T = 256 and Σε = Tp2 for the causal GPDC, estimated using VAR-AIC, VAR-AIC-TT
1%, mBTS-BICun, and mBTS-TD-BICun with pmax = 5, 7, 9.
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VAR-AIC VAR-AIC
TT 1%

mBTS
BICun 5

mBTS-TD
BICun 5

mBTS
BICun 7

mBTS-TD
BICun 7

mBTS
BICun 9

mBTS-TD
BICun 9

Id 128 0.387
(0.289 )

0.023
(0.125 )

0.010+

(0.056 )
0.006

(0.046 )
0.014

(0.077 )
0.008

(0.061 )
0.020

(0.103 )
0.011

(0.082 )

Id 256 0.189
(0.135 )

0.011
(0.059 )

0.004
(0.023 )

0.002
(0.016 )

0.006
(0.035 )

0.003
(0.022 )

0.008
(0.044 )

0.004+

(0.030 )

Id 512 0.092
(0.066 )

0.004
(0.026 )

0.001
(0.011 )

0
(0.008 )

0.002
(0.014 )

0
(0.008 )

0.002
(0.018 )

0.001+

(0.010 )

Id 1024 0.045
(0.032 )

0.002
(0.013 )

0
(0.004 )

0
(0.002 )

0.001
(0.007 )

0
(0.004 )

0.001
(0.008 )

0+

(0.005 )

Tp2 128 0.510
(0.375 )

0.030
(0.156 )

0.009+

(0.053 )
0.004

(0.039 )
0.013

(0.068 )
0.007

(0.052 )
0.017

(0.091 )
0.009

(0.066 )

Tp2 256 0.258
(0.198 )

0.012
(0.066 )

0.003
(0.022 )

0.001
(0.017 )

0.004
(0.027 )

0.002
(0.019 )

0.006
(0.036 )

0.002+

(0.021 )

Tp2 512 0.128
(0.097 )

0.005
(0.033 )

0.002
(0.012 )

0
(0.005 )

0.002
(0.015 )

0
(0.007 )

0.003
(0.019 )

0.001+

(0.009 )

Tp2 1024 0.063
(0.047 )

0.002
(0.015 )

0.001
(0.009 )

0
(0.003 )

0.002
(0.011 )

0
(0.004 )

0.002
(0.012 )

0+

(0.004 )

Tp3 128 0.729
(0.515 )

0.043
(0.236 )

0.009
(0.059 )

0.004
(0.044 )

0.013
(0.074 )

0.006
(0.057 )

0.016
(0.095 )

0.009+

(0.075 )

Tp3 256 0.410
(0.314 )

0.018
(0.105 )

0.002
(0.020 )

0.001
(0.011 )

0.004
(0.029 )

0.001
(0.017 )

0.005
(0.039 )

0.002+

(0.023 )

Tp3 512 0.214
(0.167 )

0.008
(0.051 )

0.001
(0.013 )

0
(0.006 )

0.002
(0.016 )

0
(0.008 )

0.002
(0.020 )

0.001+

(0.010 )

Tp3 1024 0.107
(0.086 )

0.003
(0.021 )

0.001
(0.011 )

0
(0.002 )

0.001
(0.012 )

0
(0.003 )

0.001
(0.013 )

0+

(0.004 )

Table 3.8: (S2): Non-causal GPDC. Average value and standard deviation in parentheses
of the L2-norm error distribution (1000 simulations) for the non-causal GPDC, estimated
using VAR-AIC, VAR-AIC-TT 1%, mBTS-BICun, and mBTS-TD-BICun with pmax =
5, 7, 9. The lower average error is highlighted for each setting and pmax. The superscript
symbol + indicates the lowest average error among mBTS-TD-BICun 9, mBTS-BICun 5,
VAR-AIC-TT 1% to underline the efficiency of the mBTS-TD approach even for a large
pmax.

Figure 3.16: (S2): Non-causal GPDC. L2-norm error distribution (1000 simulations) with
T = 256 and Σε = Tp2 for the non-causal GPDC, estimated using VAR-AIC, VAR-AIC-
TT 1%, mBTS-BICun, and mBTS-TD-BICun with pmax = 5, 7, 9.
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For the system (S2), the same conclusions as for the system (S) can be drawn regarding
both causal (Table 3.7 and Fig. 3.15) and non-causal (Table 3.8 and Fig. 3.16) terms:

� By considering only the same pmax for the two methods, denoted in bold in Tables
3.7 and 3.8, mBTS-TD clearly outperforms from mBTS by providing lower average
errors for each setting.

� Whatever pmax is selected, the mBTS-TD error distributions are more concentrated,
with a lower fat tail.

� mBTS-TD-BICun9 only in two cases has higher errors than mBTS-BICun5 and VAR-
AIC-TT 1% for causal and non-causal terms, denoted with a superscript symbol +

in Tables 3.7 and 3.8.

3.7.1.3 S2: Causal structure identification

Tables 3.9 and 3.10 report the average value of FM (Table 3.9) and HD (Table 3.10) for
each setting.

VAR-AIC VAR-AIC
TT 1%

mBTS
BICun 5

mBTS-TD
BICun 5

mBTS
BICun 7

mBTS-TD
BICun 7

mBTS
BICun 9

mBTS-TD
BICun 9

Id 128 0.511 0.949 0.953 0.972 0.944 0.965 0.935 0.958+

Id 256 0.534 0.948 0.976 0.986 0.968 0.981 0.962 0.977+

Id 512 0.612 0.972 0.994 0.997 0.991 0.997 0.989 0.996+

Id 1024 0.776 0.988 0.999+ 1 0.997 0.999 0.995 0.998

Tp2 128 0.506 0.945 0.955 0.978 0.945 0.970 0.937 0.964+

Tp2 256 0.521 0.952 0.980 0.991 0.974 0.988 0.969 0.985+

Tp2 512 0.573 0.970 0.989 0.996 0.987 0.995 0.984 0.994+

Tp2 1024 0.699 0.985 0.991 1 0.990 0.999 0.988 0.999+

Tp3 128 0.503 0.942 0.958 0.980 0.950 0.973 0.943 0.967+

Tp3 256 0.509 0.950 0.981 0.992 0.977 0.990 0.973 0.987+

Tp3 512 0.533 0.965 0.989 0.997 0.986 0.996 0.984 0.995+

Tp3 1024 0.605 0.982 0.992 1 0.990 1 0.989 0.999+

Table 3.9: (S2): Average value of the F-measure (FM) over 1000 simulations of the GPDC,
estimated using VAR-AIC, VAR-AIC-TT 1%, mBTS-BICun, and mBTS-TD-BICun with
pmax = 5, 7, 9. FM ranges from 0 to 1. If FM = 1 there is perfect identification of the
pairs of true causality, whereas if FM = 0 no true causality is detected. The lower average
value is highlighted for each setting and pmax. The superscript symbol + indicates the
lowest average error among mBTS-TD-BICun 9, mBTS-BICun 5, VAR-AIC-TT 1% to
underline the efficiency of the mBTS-TD approach even for a large pmax.
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VAR-AIC VAR-AIC
TT 1%

mBTS
BICun 5

mBTS-TD
BICun 5

mBTS
BICun 7

mBTS-TD
BICun 7

mBTS
BICun 9

mBTS-TD
BICun 9

Id 128 7.669 0.427 0.393 0.229 0.477 0.287 0.558 0.350+

Id 256 6.977 0.435 0.199 0.110 0.261 0.152 0.314 0.192+

Id 512 5.075 0.228 0.050 0.021 0.069 0.026 0.089 0.034+

Id 1024 2.306 0.095 0.011+ 0.003 0.025 0.010 0.038 0.013

Tp2 128 7.822 0.463 0.379 0.184 0.465 0.249 0.540 0.303+

Tp2 256 7.362 0.403 0.166 0.075 0.210 0.096 0.255 0.121+

Tp2 512 5.964 0.251 0.087 0.034 0.104 0.042 0.127 0.050+

Tp2 1024 3.443 0.125 0.069 0.004 0.082 0.007 0.095 0.008+

Tp3 128 7.915 0.495 0.351 0.164 0.420 0.218 0.488 0.271+

Tp3 256 7.729 0.419 0.151 0.061 0.185 0.080 0.219 0.103+

Tp3 512 7.019 0.287 0.092 0.028 0.112 0.035 0.130 0.043+

Tp3 1024 5.224 0.147 0.068 0 0.077 0.001 0.090 0.007+

Table 3.10: (S2): Average value of Hamming Distance (HD) over 1000 simulations of
the GPDC, estimated using VAR-AIC, VAR-AIC-TT 1%, mBTS-BICun, and mBTS-TD-
BICun with pmax = 5, 7, 9. HD ranges from 0 to m(m − 1), where m = 4. If HD = 0
there is perfect identification, whereas if HD = 12 all pairs are misclassified. The lower
average value is highlighted for each setting and pmax. The superscript symbol + indicates
the lowest average error among mBTS-TD-BICun 9, mBTS-BICun 5, VAR-AIC-TT 1%
to underline the efficiency of the mBTS-TD approach even for a large pmax.

Here again, for the two measures FM (Table 3.9) and HD (Table 3.10), mBTS-TD
provides on average a better identification of the true causal structure than mBTS for each
setting by considering only the same pmax highlighted in boldface in Tables 3.9 and 3.10.
As previously for the error distributions, mBTS-TD-BICun9 outperforms mBTS-BICun5
and VAR-AIC-TT 1%, denoted with a superscript symbol + in Tables 3.9 and 3.10.

3.7.2 GPDC results on a high-dimensional parsimonious system

Finally, we extend the first results obtained with the systems (S) and (S2) by analyzing
a high-dimensional parsimonious VAR(4) model on m = 12 used in [215]. This system
(S3) is even more parsimonious than the two other ones by admitting only 4% of the
m2p coefficients being non-zero.

The VAR model [215] is as follows:

x1(t) = 0.95
√

2x1(t− 1)− 0.9025x1(t− 2) + ε1(t)

x2(t) = −0.5x1(t− 2) + ε2(t)

x3(t) = 0.8x1(t− 4)− 0.5x2(t− 2) + ε3(t)

x4(t) = −1.2x3(t− 1) + 0.25
√

2x4(t− 1) + 0.65
√

2x1(t− 1) + ε4(t)

x5(t) = −0.25
√

2x4(t− 1) + 0.5
√

6x6(t− 1) + ε5(t)

x6(t) = −0.6
√

2x4(t− 2) + 0.8x5(t− 1) + ε6(t) (S3)

x7(t) = 0.8x5(t− 3) + 0.7x6(t− 1) + 0.8x10(t− 2) + 0.7x1(t− 2) + ε7(t)

x8(t) = 0.85x6(t− 2) + ε8(t)

x9(t) = 1.15x1(t− 1)− 0.9025x6(t− 2) + 0.7x7(t− 2) + ε9(t)

x10(t) = 0.5x7(t− 2) + ε10(t)

x11(t) = 0.8x6(t− 2) + 0.6x9(t− 3) + ε11(t)

x12(t) = −0.5x7(t− 3) + ε12(t)
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3.7.2.1 S3: GPDC errors

Figs. 3.17 and 3.18 show GPDC errors in causal (Fig. 3.17) and non-causal terms (Fig.
3.18), confirming previous results for the VAR coefficients.

Figure 3.17: (S3): Sum of medians over 1000 simulations of the L2-norm error in the
causal GPDC (3.5), estimated using the subset selection methods and standard VAR
estimations. An increase in the median implies a deterioration in the estimate of the
causal GPDC.

In Fig. 3.17, the results for the GPDC causal terms are quite similar to S and S2
systems. This confirms the idea that subset selection methods are better suited than
standard VAR. However, for this high-dimensional system (S3) mBTS-TD performs better
than the others for all settings except Id 128 (TT procedure and Lasso).
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Figure 3.18: (S3): Sum of medians over 1000 simulations of the L2-norm error in the
non-causal GPDC (3.5), estimated using the subset selection methods and standard VAR
estimations. An increase in the median implies a deterioration in the estimate of the
non-causal GPDC.

For the errors in the non-causal terms shown in Fig. 3.18, the results are clear.
The six subset selection methods greatly reduce errors compared to VAR-AIC or VAR-3.
Moreover, even in this case, the mBTS-TD method provides the most interesting results.
Indeed, even if for some settings TT 1% has better results, it is too restrictive and therefore
also removes causal coefficients increasing the errors on causal terms (see Fig. 3.17).

3.7.2.2 S3: GPDC error distributions

In Table 3.11, we report for the system (S3) the average value and standard deviation
of the L2-norm error distributions for the causal GPDC and in Fig. 3.19 we provide an
example of the L2-norm error distribution with T = 256 and Σε = Tp2. Table 3.12 and
Fig. 3.20 exhibit the same results for the non-causal terms.
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VAR-AIC VAR-AIC
TT 1%

mBTS
BICun 4

mBTS-TD
BICun 4

mBTS
BICun 6

mBTS-TD
BICun 6

mBTS
BICun 9

mBTS-TD
BICun 9

Id 128 1.339
(0.892 )

1.196+

(0.917 )
1.266

(1.098 )
1.228

(1.099 )
1.272

(1.098 )
1.232

(1.099 )
1.277

(1.099 )
1.236

(1.099 )

Id 256 1.011
(0.691 )

0.934
(0.731 )

0.943
(0.862 )

0.908
(0.868 )

0.947
(0.861 )

0.909
(0.866 )

0.949
(0.862 )

0.910+

(0.867 )

Id 512 0.792
(0.553 )

0.724
(0.597 )

0.696
(0.672 )

0.665
(0.677 )

0.697
(0.671 )

0.666
(0.677 )

0.699
(0.671 )

0.667+

(0.677 )

Id 1024 0.582
(0.424 )

0.488
(0.468 )

0.492
(0.505 )

0.468
(0.509 )

0.493
(0.504 )

0.468
(0.507 )

0.494
(0.504 )

0.469+

(0.508 )

Tp2 128 1.331
(0.861 )

1.105
(0.862 )

1.130
(0.964 )

1.073
(0.968 )

1.137
(0.965 )

1.078
(0.970 )

1.142
(0.966 )

1.082+

(0.971 )

Tp2 256 1.021
(0.658 )

0.887
(0.686 )

0.870
(0.769 )

0.819
(0.770 )

0.875
(0.769 )

0.822
(0.769 )

0.877
(0.770 )

0.824+

(0.770 )

Tp2 512 0.790
(0.504 )

0.632
(0.544 )

0.613
(0.568 )

0.564
(0.573 )

0.616
(0.567 )

0.565
(0.573 )

0.617
(0.567 )

0.566+

(0.573 )

Tp2 1024 0.582
(0.372 )

0.426
(0.411 )

0.423
(0.406 )

0.380
(0.415 )

0.427
(0.407 )

0.382
(0.416 )

0.427
(0.407 )

0.382+

(0.416 )

Tp3 128 1.458
(0.935 )

1.152
(0.886 )

1.158
(0.961 )

1.087
(0.965 )

1.164
(0.962 )

1.093
(0.965 )

1.169
(0.964 )

1.097+

(0.967 )

Tp3 256 1.134
(0.710 )

0.890
(0.713 )

0.877
(0.756 )

0.796
(0.755 )

0.883
(0.756 )

0.800
(0.755 )

0.885
(0.756 )

0.801+

(0.755 )

Tp3 512 0.917
(0.544 )

0.644
(0.564 )

0.647
(0.567 )

0.576
(0.573 )

0.651
(0.567 )

0.578
(0.574 )

0.652
(0.567 )

0.579+

(0.574 )

Tp3 1024 0.706
(0.419 )

0.481
(0.447 )

0.470
(0.423 )

0.404
(0.430 )

0.474
(0.423 )

0.406
(0.433 )

0.475
(0.424 )

0.407+

(0.433 )

Table 3.11: (S3): Causal GPDC. Average value and standard deviation in parentheses of
the L2-norm error distribution (1000 simulations) for the causal GPDC, estimated using
VAR-AIC, VAR-AIC-TT 1%, mBTS-BICun, and mBTS-TD-BICun with pmax = 4, 6, 9.
The lower average error is highlighted for each setting and pmax. The superscript symbol
+ indicates the lowest average error among mBTS-TD-BICun 9, mBTS-BICun 4, VAR-
AIC-TT 1% to underline the efficiency of the mBTS-TD approach even for a large pmax.

Figure 3.19: (S3): Causal GPDC. L2-norm error distribution (1000 simulations) with
T = 256 and Σε = Tp2 for the causal GPDC, estimated using VAR-AIC, VAR-AIC-TT
1%, mBTS-BICun, and mBTS-TD-BICun with pmax = 4, 6, 9.
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VAR-AIC VAR-AIC
TT 1%

mBTS
BICun 4

mBTS-TD
BICun 4

mBTS
BICun 6

mBTS-TD
BICun 6

mBTS
BICun 9

mBTS-TD
BICun 9

Id 128 0.313
(0.409 )

0.125
(0.418 )

0.092
(0.466 )

0.088
(0.479 )

0.093
(0.466 )

0.088
(0.479 )

0.093
(0.467 )

0.089+

(0.480 )

Id 256 0.150
(0.189 )

0.077
(0.243 )

0.059
(0.318 )

0.056
(0.327 )

0.059
(0.318 )

0.056
(0.327 )

0.059
(0.318 )

0.057+

(0.327 )

Id 512 0.089
(0.118 )

0.048
(0.145 )

0.034
(0.178 )

0.033
(0.185 )

0.034
(0.178 )

0.033
(0.185 )

0.035
(0.178 )

0.033+

(0.184 )

Id 1024 0.059
(0.075 )

0.028
(0.087 )

0.019
(0.088 )

0.018
(0.092 )

0.019
(0.088 )

0.018
(0.092 )

0.019
(0.088 )

0.018+

(0.092 )

Tp2 128 0.367
(0.422 )

0.120
(0.408 )

0.077
(0.383 )

0.070
(0.390 )

0.078
(0.385 )

0.071
(0.391 )

0.079
(0.386 )

0.071+

(0.392 )

Tp2 256 0.190
(0.220 )

0.080
(0.251 )

0.051
(0.257 )

0.046
(0.263 )

0.051
(0.258 )

0.046
(0.264 )

0.052
(0.258 )

0.046+

(0.264 )

Tp2 512 0.130
(0.148 )

0.052
(0.161 )

0.027
(0.141 )

0.024
(0.147 )

0.028
(0.141 )

0.024
(0.147 )

0.028
(0.141 )

0.024+

(0.147 )

Tp2 1024 0.082
(0.096 )

0.032
(0.098 )

0.016
(0.078 )

0.013
(0.080 )

0.016
(0.078 )

0.013
(0.080 )

0.016
(0.078 )

0.013+

(0.080 )

Tp3 128 0.499
(0.508 )

0.163
(0.491 )

0.088
(0.398 )

0.078
(0.400 )

0.091
(0.402 )

0.080
(0.403 )

0.092
(0.403 )

0.081+

(0.404 )

Tp3 256 0.299
(0.307 )

0.114
(0.333 )

0.060
(0.272 )

0.052
(0.273 )

0.062
(0.275 )

0.053
(0.275 )

0.062
(0.276 )

0.053+

(0.275 )

Tp3 512 0.221
(0.215 )

0.081
(0.232 )

0.041
(0.183 )

0.034
(0.184 )

0.042
(0.184 )

0.035
(0.185 )

0.042
(0.185 )

0.035+

(0.185 )

Tp3 1024 0.137
(0.150 )

0.055
(0.158 )

0.028
(0.123 )

0.022
(0.127 )

0.028
(0.125 )

0.023
(0.128 )

0.028
(0.125 )

0.023+

(0.127 )

Table 3.12: (S3): Non-causal GPDC. Average value and standard deviation in parentheses
of the L2-norm error distribution (1000 simulations) for the causal GPDC, estimated using
VAR-AIC, VAR-AIC-TT 1%, mBTS-BICun, and mBTS-TD-BICun with pmax = 4, 6, 9.
The lower average error is highlighted for each setting and pmax. The superscript symbol
+ indicates the lowest average error among mBTS-TD-BICun 9, mBTS-BICun 4, VAR-
AIC-TT 1% to underline the efficiency of the mBTS-TD approach even for a large pmax.

Figure 3.20: (S3): Non-causal GPDC. L2-norm error distribution (1000 simulations) with
T = 256 and Σε = Tp2 for the non-causal GPDC, estimated using VAR-AIC, VAR-AIC-
TT 1%, mBTS-BICun, and mBTS-TD-BICun with pmax = 4, 6, 9.
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For the system (S3), the same conclusions as for the system (S) can be drawn regarding
both causal (Table 3.11 and Fig. 3.19) and non-causal (Table 3.12 and Fig. 3.20) terms:

� By taking into account only the same pmax for the two methods, denoted in bold in
Tables 3.11 and 3.12, mBTS-TD clearly stands out from mBTS by providing lower
average errors for each setting.

� Whatever pmax is selected, the mBTS-TD error distributions are more concentrated,
with a lower fat tail.

� mBTS-TD-BICun9 admits always lower errors than mBTS-BICun4 and VAR-AIC-
TT 1% for the causal and non-causal GPDC (except for Id 128), denoted with a
superscript symbol + in Tables 3.11 and 3.12.

3.7.2.3 S3: Causal structure identification

Tables 3.13 and 3.14 report the average value of FM (Table 3.13) and HD (Table 3.14)
for each setting.

VAR-AIC VAR-AIC
TT 1%

mBTS
BICun 4

mBTS-TD
BICun 4

mBTS
BICun 6

mBTS-TD
BICun 6

mBTS
BICun 9

mBTS-TD
BICun 9

Id 128 0.332 0.670 0.749 0.784 0.745 0.781 0.743 0.779+

Id 256 0.395 0.692 0.804 0.835 0.801 0.833 0.799 0.831+

Id 512 0.487 0.727 0.834 0.854 0.832 0.853 0.832 0.853+

Id 1024 0.576 0.798 0.870 0.878 0.869 0.877 0.868 0.877+

Tp2 128 0.314 0.680 0.769 0.816 0.765 0.813 0.762 0.811+

Tp2 256 0.361 0.693 0.814 0.854 0.810 0.852 0.809 0.851+

Tp2 512 0.394 0.724 0.856 0.887 0.852 0.885 0.851 0.885+

Tp2 1024 0.478 0.782 0.888 0.913 0.885 0.912 0.884 0.912+

Tp3 128 0.298 0.643 0.747 0.796 0.741 0.791 0.739 0.788+

Tp3 256 0.319 0.659 0.789 0.837 0.784 0.833 0.782 0.832+

Tp3 512 0.323 0.678 0.818 0.863 0.813 0.859 0.811 0.858+

Tp3 1024 0.377 0.710 0.840 0.882 0.837 0.880 0.836 0.881+

Table 3.13: (S3): Average value of the F-measure (FM) over 1000 simulations of the
GPDC, estimated using VAR-AIC, VAR-AIC-TT 1%, mBTS-BICun, and mBTS-TD-
BICun with pmax = 4, 6, 9. FM ranges from 0 to 1. If FM = 1 there is perfect identification
of the pairs of true causality, whereas if FM = 0 no true causality is detected. The lower
average value is highlighted for each setting and pmax. The superscript symbol + indicates
the lowest average error among mBTS-TD-BICun 9, mBTS-BICun 4, VAR-AIC-TT 1%
to underline the efficiency of the mBTS-TD approach even for a large pmax.
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VAR-AIC VAR-AIC
TT 1%

mBTS
BICun 4

mBTS-TD
BICun 4

mBTS
BICun 6

mBTS-TD
BICun 6

mBTS
BICun 9

mBTS-TD
BICun 9

Id 128 83.038 19.508 12.421 10.164 12.680 10.351 12.849 10.473+

Id 256 63.810 18.365 9.794 7.931 9.951 8.051 10.053 8.124+

Id 512 44.219 15.695 8.227 7.072 8.348 7.137 8.397 7.155+

Id 1024 30.943 10.646 6.242 5.827 6.334 5.890 6.360 5.897+

Tp2 128 90.667 18.788 11.653 8.717 11.953 8.890 12.129 9.033+

Tp2 256 73.893 18.233 9.349 6.955 9.568 7.108 9.690 7.167+

Tp2 512 64.573 15.962 7.034 5.292 7.239 5.406 7.308 5.419+

Tp2 1024 45.914 11.714 5.286 4.020 5.439 4.040 5.502 4.052+

Tp3 128 98.307 21.922 13.062 9.814 13.426 10.097 13.610 10.242+

Tp3 256 89.386 21.190 10.911 7.889 11.238 8.116 11.379 8.191+

Tp3 512 87.870 19.868 9.265 6.604 9.554 6.807 9.663 6.855+

Tp3 1024 69.402 17.108 7.958 5.587 8.189 5.693 8.231 5.683+

Table 3.14: (S3): Average value of Hamming Distance (HD) over 1000 simulations of
the GPDC, estimated using VAR-AIC, VAR-AIC-TT 1%, mBTS-BICun, and mBTS-TD-
BICun with pmax = 4, 6, 9. HD ranges from 0 to m(m − 1), where m = 12. If HD = 0
there is perfect identification, whereas if HD = 132 all pairs are misclassified. The lower
average value is highlighted for each setting and pmax. The superscript symbol + indicates
the lowest average error among mBTS-TD-BICun 9, mBTS-BICun 4, VAR-AIC-TT 1%
to underline the efficiency of the mBTS-TD approach even for a large pmax.

Here again for the two measures FM (Table 3.13) and HD (Table 3.14), mBTS-TD
provides on average a better identification of the true causal structure than mBTS for
each setting by taking into account only the same pmax highlighted in boldface in Tables
3.13 and 3.14. As previously for the error distributions, mBTS-TD-BICun9 outperforms
mBTS-BICun4 and VAR-AIC-TT 1%, denoted with a superscript symbol + in Tables 3.13
and 3.14.
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3.7.3 Country indices dataset

Index Currency
Australia AUD

Austria EUR
Belgium EUR

Brazil BRL
Canada CAD

Chile CLP
China HKD

Colombia COP
Denmark DKK

Finland EUR
France EUR

Germany EUR
Hong Kong HKD

India INR
Indonesia IDR

Ireland EUR
Israel ILS
Italy EUR

Japan JPY
Korea KRW

Malaysia MYR
Mexico MXN

Netherlands EUR
New Zealand NZD

Norway NOK
Peru PEN

Philippines PHP
Poland PLN

Portugal EUR
Russia RUB

Singapore SGD
South Africa ZAR

Spain EUR
Sweden SEK

Switzerland CHF
Taiwan TWD

Thailand THB
Turkey TRY

United Kingdom GBP
United States USD

Table 3.15: Country equity indices in the MSCI ACWI (All Country World Index)
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3.7.4 GARCH model

Let x(t) be a zero-mean stationary process admitting the following GARCH(1,1) repre-
sentation:

x(t) =
√
h(t) ε(t)

h(t) = β0 + β1 x
2(t− 1) + β2 h(t− 1)

where h(t) is the conditional variance, β0, β1 and β2 are the coefficients and ε(t) is the
white noise with ε(t) ∼ N (0, 1). Moreover, the parameters are estimated by maximizing
the conditional log-likelihood.

In order to remove the heteroskedasticity, x(t) is standardized as follows:

x̃(t) =
x(t)√
h(t)

3.7.5 EW portfolio results with additional exclusion levels

In Table 3.16, Table 3.17 and Table 3.18, we provide the performance indicators when
eight, fifteen and twenty assets are excluded respectively. For all exclusion levels tested,
our proposed methodology outperforms either the classical VAR estimation or when the
allocation is applied on the whole universe.

EW Portfolios Annualized Annualized Ratio Max
8 excluded assets Return Volatility Return/Volatility Drawdown

mBTS-TD GPDC 9.99% 16.68% 0.60 62.65%
VAR-AIC GPDC 0.02 9.56% 16.70% 0.57 61.74%

EW 9.35% 16.76% 0.56 61.90%
Non-selected assets (VAR-AIC GPDC 0.02) 8.28% 18.32% 0.45 63.12%

Non-selected assets (mBTS-TD GPDC) 6.61% 18.45% 0.36 58.99%

Table 3.16: Performance indicators for EW portfolios with 8 excluded assets from January
2002 to October 2019. The results are ranked in descending order according to the ratio
(Return / Volatility)

EW Portfolios Annualized Annualized Ratio Max
15 excluded assets Return Volatility Return/Volatility Drawdown

mBTS-TD GPDC 10.12% 16.78% 0.60 61.62%
VAR-AIC GPDC 0.04 9.39% 16.63% 0.56 60.16%

EW 9.35% 16.76% 0.56 61.90%
Non-selected assets (mBTS-TD GPDC) 7.96% 17.59% 0.45 62.47%

Non-selected assets (VAR-AIC GPDC 0.04) 7.35% 18.43% 0.40 66.32%

Table 3.17: Performance indicators for EW portfolios with 15 excluded assets from Jan-
uary 2002 to October 2019. The results are ranked in descending order according to the
ratio (Return / Volatility)
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EW Portfolios Annualized Annualized Ratio Max
20 excluded assets Return Volatility Return/Volatility Drawdown

mBTS-TD GPDC 10.44% 17.13% 0.61 61.49%
VAR-AIC GPDC 0.03 9.86% 16.71% 0.59 60.82%

EW 9.35% 16.76% 0.56 61.90%
Non-selected assets (VAR-AIC GPDC 0.03) 8.69% 17.47% 0.50 63.02%

Non-selected assets (mBTS-TD GPDC) 8.20% 17.14% 0.48 62.50%

Table 3.18: Performance indicators for EW portfolios with 20 excluded assets from Jan-
uary 2002 to October 2019. The results are ranked in descending order according to the
ratio (Return / Volatility)
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Chapter 4

Asset selection process: A new
perspective from frequency causality
measure and clustering coefficient

This chapter is based on a working paper in collaboration with Christophe Chorro, Emmanuelle Jay and

Philippe De Peretti.

Abstract

Modeling the structure and dynamics of financial markets is of major importance for
handling the asset allocation problem. In classical portfolio allocation strategies (Mean-
Variance, Equal Risk Contribution, Minimum Variance, Maximum Variety, etc.) the
dependency structure among financial assets is not taken into account, leading to incom-
plete risk assessments on the investment universe. To overcome this point, the network
approach allows to identify the relationships between assets and make it possible to remove
systemic/influenced assets before allocating portfolios. However, common approaches to
recover the network topology (e.g. the sample correlation matrix or Granger non-causality
tests) lead to partial information never providing a directed weighted network. The goal
of this paper is twofold. First, we recover the financial network topology using the GPDC
measure (Generalized Partial Directed Coherence) in which are plugged the Vector Au-
toregressive (VAR) coefficients estimated combining the modified-Backward-in-Time se-
lection method and the Top-Down strategy (mBTS-TD strategy). This approach leads to
parsimonious estimation of the VAR model (no estimation of non-significant coefficients)
reducing by construction the network dimension and the GPDC measure assesses the
direction and the strength of causal relationships providing a precise network topology.
Then, from this network we exclude the most systemic/influenced assets in order to re-
duce the systemic risk and thus obtain a well-diversified universe. To this end, we use
the local directed weighted clustering coefficient, based on the in and the out information
spreading patterns, neglecting the middleman and cycle ones. We show that our dynamic
pre-selection procedure significantly contributes to improving portfolio performances of
classical allocation strategies when compared to a network based on the Granger non-
causality or applied on the whole universe.
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4.1 Introduction

Since the seminal paper by Markowitz [1] which introduced optimal portfolio construction
with the so-called mean-variance strategy, portfolio allocation has been a widely studied
problem. The mean-variance strategy allocates assets by maximizing the expected return
for a given risk level to obtain the optimal weights. Nevertheless, due to the estimation
errors on the input variables, especially for the expected return, this strategy can lead to
poor out-of-sample performances [6, 7, 5, 8]. To overcome these drawbacks, risk-based
allocation strategies have been introduced because they focus solely on the covariance
matrix estimation. The most well-known risk-based allocation methodologies are the
Equal Risk Contribution portfolio (ERC) [29], the Minimum Variance portfolio (MinVar)
[37] and the Maximum Variety portfolio (VarMax) [30]. Another alternative to the mean-
variance strategy is the naive Equally Weighted portfolio (EW) that does not require
any estimation procedure and that can provide higher performances than more advanced
approaches as remarked in[28]. However, whatever their allocation characteristics, these
strategies do not captured the dependency structure among financial assets, leading to
incomplete risk assessments of investment universes. They must be applied to initial
universes as diversified as possible to reduce the interconnectedness and improve the
return/risk profile.

Over the last decades the asset allocation problem has been tackled form a new
perspective, using network theory to represent the dependence among financial assets.
This new approach provides useful insights in the portfolio selection process. Indeed,
following the seminal work of Mantegna [69] which modelled financial markets as complex
systems using network theory, many works have emerged. In particular, the work of Pozzi
et al [71] shows that a network approach can be used in order to build a well-diversified
portfolio and thus control the risk. They start from the correlation matrix computed
between all pairs of assets and use the Minimum Spanning Trees [69] or Planar Maximally
Filtered Graphs [128] to reduce the network dimension. Then, they identify the central
(highly connected) and peripheral (poorly connected) assets of the network through
hybrid centrality indices combining the most common centrality/peripherality measures
(degree, betweenness centrality, eccentricity, closeness and eigenvector centrality).
Finally, the authors find that investing in peripheral assets leads to a more diversified
portfolio and increases the return/volatility ratio relative to central assets. In the same
way, the work of Peralta et al [72] theoretically proves a negative relationship between
the mean-variance optimal weights and the centrality of assets, i.e. optimal portfolios
overweight low-central assets. Next, they empirically show that central assets tend to
have “value” characteristics (large market capitalization, undervalued, financially risky).
As in [71], the authors find that investing in assets with low-centrality improves portfolio
performances. Moreover, recent alternative works [75, 76] use the clustering coefficient
[126, 127] that allows to measure how much a node is embedded into the network
and thus assess the systemic risk of an asset. They propose an optimization problem
directly based on the network structure. Instead of using the covariance matrix to obtain
the optimal weights of the Global Minimum Variance portfolio, they derive, from the
clustering coefficients an interconnectedness matrix taking into account for each asset
both systemic risk and individual volatility. Each of these works confirmed the usefulness
of using a network approach to improve the portfolio selection process.
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However, in most cases, the correlation matrix of assets is used to build the network
leading to two major drawbacks. First, it leads to undirected networks (weighted or
unweighted), i.e. only the relationship existence is known but the relationship direction
is unknown. By considering this kind of networks, we can easily assume that we are
missing information on the dependency structure. Second, it leads to complete networks
where dimension reduction tools must be used such as the Minimum Spanning Tree [69]
or the Planar Maximally Filtered Graphs [128], otherwise the most common centrality
measures cannot be applied. An alternative way to build the network is to use Granger
non-causality tests [77] as in [70, 73, 74] to identify significant causal relations among
assets. In contrast to networks based on sample correlation matrix, networks based on
Granger-non causality tests provide directed networks. However, here again, the Granger
non-causality tests have two drawbacks. First, even if causality is detected (rejection
of non-causality hypothesis), Granger’s tests do not give any information about the
strength of this causality and therefore do not allow to build a weighted network. Second,
the Vector AutoRegressive (VAR) models estimation may fail for many well-known
reasons, such as incorrect model order selection, small sample size, or correlated residuals
[146, 141].

This paper contributes to the literature on asset allocation problems in the sense
that it brings a precise estimate of the financial market dependency structure and
then a dynamic pre-selection of assets is applied to obtain a well-diversified universe
(without systemic or influenced assets) before allocating portfolios (EW, ERC, MinVar
and VarMax).
To recover the network topology, we use both a parsimonious VAR estimation (mBTS-TD
strategy) and the Generalized Partial Directed Coherence measure (GPDC) [178] as in
[221]. The mBTS-TD strategy combines two subset selection methods (the modified
Backward-in-Time Selection (mBTS) [151] and the Top Down strategy (TD) [141])
to estimate the VAR and has two advantages: first, by not estimating non-significant
coefficients of the underlying VAR model, it reduces or even suppresses cascading
errors on the GPDC; second, by providing a parsimonious structure, the use of network
dimension reduction tools is not necessary. Then, the GPDC measure is used to identify
the causal relationship and to quantify the causal strength leading to a precise network
topology (directed-weighted network).
The dynamic pre-selection of assets excludes from the initial universe, the assets that
interact too much, hence contributing to a possible contagion. Such assets are then
seen as risky in the network sense. In order to identify these assets, we use the in and
out triangle patterns of the local directed weighted clustering coefficient [127]. The
local directed weighted clustering can be divided into four types of triangles in, out,
cycle and middleman [126] giving rise to completely different interpretations. The out
triangle pattern allows to identify the assets that strongly cause the other ones. They
can therefore be considered as systemic assets because they are too influential within the
network. The in triangle pattern identifies the assets that are strongly caused within
the network and therefore easily influenced if a market shock occurs. This pre-selection
reduces asset allocation errors being complementary to the use of the covariance matrix
that does not quantify if an asset is too systemic or too influenced.
To examine the performances of our dynamic pre-selection method, we consider a global
equity universe composed of 40 country indices within the MSCI ACWI (MSCI All
Country World Index). This universe allows us to take both in account the differences
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in time delay between areas and global/regional macroeconomic issues. Our proposed
methodology is compared to asset selections based on Granger causality networks and to
strategies allocating the whole universe, i.e. without applying any selection. Finally, we
conclude the empirical analysis, using a cleaned and robust covariance matrix estimation
(whitening procedure) [222, 223] instead of the classical Sample Covariance Matrix
(SCM) in the allocation optimization problem to see if we can improve even more the
results.

This paper is set out as follows: in section 4.2, we briefly describe the portfolio allo-
cation strategies and the covariance matrix estimation; in section 4.3, we define the asset
selection procedure (mBTS-TD strategy, GPDC measure and the local directed weighted
clustering coefficient); in section 4.4, we present the empirical results; in section 4.5 we
draw some conclusions.

4.2 Portfolio allocation

Portfolio allocation is a widely studied problem since the seminal work of Markowitz
[1]. In this section, we detail the allocation strategies used for the empirical investiga-
tion. We first introduce the Equally Weighted portfolio (EW) [28] and then the most
well-known risk-based allocation methodologies that depend solely on the covariance
matrix of asset returns: the Equal Risk Contribution portfolio (ERC) [29], the Mini-
mum Variance portfolio (MinVar) [37] and the Maximum Variety portfolio (VarMax) [30].

Here, we focus only on “Long only” portfolios, i.e. all the quantities invested in assets
are necessarily greater than or equal to 0. This choice is motivated for two reasons. First,
when short selling the assets, borrowing costs have to be taken into account to compute
portfolio performances. What is more, these costs are not uniform among assets being
dependent on their liquidity. Second, when building a long/short portfolio the size of the
two legs must be defined as a constraint in the optimization process, otherwise the result
obtained will not be realistic with possible strong leverage effects.

4.2.1 Equally Weighted portfolio (EW)

The Equally Weighted process aims to allocate all assets with the same weight
1

m
where

m is the number of assets in the investment universe. It does not require estimation of
the covariance matrix nor complex optimization issues. What is more, this method can
even provide higher performances than more advanced ones as remarked in [28].

4.2.2 Equal Risk Contribution portfolio (ERC)

The Equal Risk Contribution portfolio (ERC) [29] allocates assets according to their

contribution to the risk of the portfolio. Let σp = (w′Σ w)1/2 be the risk of the portfolio,
where w is the m-vector of weights and Σ is the m×m covariance matrix of the m assets
returns. Then the marginal contribution of asset j associated to σp is defined as follows:

∂wj
σp =

∂σp
∂wj

=
(Σ w)j
σp
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According to [29], the risk of the portfolio can be expressed as the sum of the total
risk contribution:

σp =
m∑
j=1

σj(w)

where σj(w) = wj ∂wj
σp is the risk contribution of asset j.

The final portfolio is obtained equalizing all risk contributions (σj(w) = σk(w) ∀ j, k)
by minimizing the total squared differences between the risk contributions of all pairs of
assets with respect to the weight vector w to get the solution w∗erc:

w∗erc = argmin
w

m∑
j=1

m∑
k=1

(
wj (Σ w)j − wk (Σ w)k

)2
, s.t. w′ 1m = 1 and w ≥ 0m (4.1)

where the constraints w′ 1m = 1 and w ≥ 0m denote respectively no leverage effect and
long-only strategies.

4.2.3 Minimum Variance portfolio (MinVar)

The Minimum Variance portfolio (MinVar) [37] is obtained by minimizing the variance
of the final portfolio with respect to the weight vector w to get the solution w∗mv. The
optimization problem is defined as follows:

w∗mv = argmin
w

w′Σ w , s.t. w′ 1m = 1 and w ≥ 0m (4.2)

In this paper, we use an optimization algorithm to obtain the weights because we
focus solely on long-only strategies. Nevertheless, for unconstrained weights, a closed
form expression is available (see 2.3).

4.2.4 Maximum Variety portfolio (VarMax)

The Maximum Variety (VarMax) process, also called the Maximum Diversified Portfolio
in [30] allocates assets by maximizing the Variety Ratio (VR ) of the portfolio. The Variety
Ratio (VR ) quantifies the degree of diversification of a portfolio and is directly related to
the number of independent factors within a portfolio [30, 52]. The Variety Ratio (VR ) of
the portfolio is defined as follows:

VR (w,Σ) =
w′ σ

(w′Σ w)1/2
, (4.3)

where σ is the m-vector of the square roots of the diagonal element of Σ, i.e. σj =
√

Σjj,
representing the standard deviation of the returns of the m assets.

The final portfolio is obtained by maximizing the above diversification ratio with
respect to the weight vector w to get the solution w∗vm:

w∗vm = argmax
w

VR (w,Σ) , s.t. w′ 1m = 1 and w ≥ 0m (4.4)

100



4.3 Financial networks and asset selection

4.2.5 Covariance matrix estimation

In order to get solutions for (4.1), (4.2) and (4.4) the covariance matrix Σ has to be esti-
mated. The covariance matrix estimation is also a largely studied problem in many fields
and several estimators exist to reduce estimation errors such as Ledoit-Wolf’s shrinkage
[58], Eigenvalue clipping [55], Rotational Invariant Estimators [63] or hybrid robust meth-
ods [118, 117, 222, 223, 115, 62]. In this paper, we estimate the covariance matrix with
the Sample Covariance Matrix (SCM) and with a more recent method using a cleaned and
robust covariance matrix estimation (whitening procedure) [222, 223], precisely described
and studied in chapter 2.

4.3 Financial networks and asset selection

The use of financial networks has been widely studied over the last two decades and
can help to deal with the asset allocation problem. The knowledge of the dependency
structure of the market allows to characterize the interactions between assets and thus
determine their position within the network (e.g. central, peripheral, systemic, etc.). In-
deed, with centrality/peripherality measures or clustering coefficients, we can distinguish
the peripheral or least systemic assets in the network as in [71, 72, 75, 76]. Identifying
these assets and excluding them from the investment universe reduces portfolio risk and
results, in general, to a more diversified portfolio [71, 72].

In this section, we propose to modeling financial markets dependency structures
with the Generalized Partial Directed Coherence measure (GPDC) [176, 177, 178],
estimated with our mBTS-TD strategy (modified Backward-in-Time Selection [151] and
the Top-Down strategy (TD) [141]) as in [221]. This methodology has several advantages
when compared to networks based on the sample correlation matrix [71, 72, 75, 76] or the
Granger non-causality test [217, 73, 74]. First, it provides a parsimonious structure via
the mBTS-TD strategy solving the network dimensionality, contrary to the correlation
matrix approach which requires dimension reduction (the Minimum Spanning Tree [69]
or Planar Maximally Filtered Graphs [128]). Second, it provides a precise network
topology taking into account both the direction and the strength of the relationship
between assets via the GPDC.

Once the financial network is built, we propose a dynamic method to select the
assets in the universe before allocating the portfolio. We exclude from the universe
the assets that present major risks due to their systemic position or those that are
already too influenced to withstand a regional/global crisis. In order to identify these
assets, we define an indicator based on the in and out triangle patterns of the local
directed weighted clustering coefficient [127]. By construction, these two measures iden-
tify either the most influential (out) or the most influenced (in) assets within the network.

In the following section, we define how the financial network is obtained from the
GPDC measure and we describe our asset selection methodology.
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4.3.1 GPDC financial network

As in chapter 3, the temporal relationships among financial time series are captured
through a VAR model. Let x(t) = (x1(t), . . . , xm(t))′ be a zero-mean m-dimensional
stationary process admitting the following VAR(p) representation (see 1.11 for classical
stability and stationarity conditions):

x(t) = A1x(t− 1) + · · ·+ Apx(t− p) + ε(t), t ∈ Z (4.5)

where A1, . . . ,Ap are m × m coefficient matrices, p is the model order, and
ε(t) = (ε1(t), . . . , εm(t))′ is the m-vector of white noises with E[ε(t)ε′(s)] = 0 for
t 6= s and ε(t) ∼ N (0, Σε).

We estimate the VAR coefficients A1, . . . ,Ap with our proposed mBTS-TD strategy
described and studied in chapter 3. This estimation provides a parsimonious VAR (no
estimation of non-significant coefficients) by taking into account that a time series xj
does not depend on all lagged variables in the system. The mBTS method and the TD
strategy are complementary methods. Indeed, the mBTS includes only the coefficients
that improve the prediction of the equation and allows to work with high-dimensional
systems [151]. For the TD strategy, it allows to be less dependent on the choice of the
maximal lag pmax when initializing mBTS method so that we may set its values high
enough to capture all possible connections preserving at the same time the tractability of
the model when pmax is set at a high value. Hereafter, we define the mBTS-TD strategy
that solves the precision/parsimony dilemma.

First, a maximum order pmax is fixed, and this provides the mpmax-vector of all lagged
variables for the j-th equation of the VAR(p) model (4.5):

v = (x1(t− 1), . . . , x1(t− pmax), . . . , xm(t− 1), . . . , xm(t− pmax))′

An explanatory vector ϑ is built from v by progressively adding only the most
significant lagged variable at each step.

For the j-th equation of the VAR(p) model (4.5), the mBTS-TD algorithm is as follows:

1. Start with an empty vector ϑ = ∅, the unbiased BIC criterion [145] (ICold) initialized
to the variance of the j-th series, and τ = (1, . . . , 1)′ the m× 1 lag order vector of
the variables.

2. Compute ICnew
n relative to the m dynamic regression models formed by the m can-

didate explanatory vectors ϑcand
n , where ϑcand

n = (ϑ, xn(t− τn)) ∀n ∈ {1, . . . ,m}.

3. Select the variable according to the IC value:

� If min{ICold, ICnew
1 , . . . , ICnew

m } = ICold, then τ = τ + 1m.

� If min{ICold, ICnew
1 , . . . , ICnew

m } = ICnew
n , then ICold = ICnew

n , xn(t − τn) is
added to the explanatory vector ϑ = (ϑ, xn(t − τn)) and only τn is increased
by one.

4. Repeat steps 2 and 3 until τ = (pmax, . . . , pmax)
′.
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Then, the TD strategy (TD) tests the VAR coefficients separately in the m equations.
For the j-th equation obtained with the mBTS algorithm, the TD strategy is applied as
follows:

1. Start with the vector ϑ and the information criterion ICold obtained with the mBTS
algorithm.

2. Sort the vector ϑ from the largest to the smallest lag p and for all series from xm
to x1.

3. Compute ICnew
n by deleting the n-th element in the vector ϑ, ϑcand

n = ϑ \ {ϑn}.

4. Delete the variable according to the ICnew
n value:

� If min{ICold, ICnew
n } = ICold, then ϑ = ϑ.

� If min{ICold, ICnew
n } = ICnew

n , then ICold = ICnew
n and ϑ = ϑcand

n .

5. Repeat steps 3 and 4 ∀(ϑn)n∈[1,|ϑ|], where |.| denotes the cardinality of the vector in
this case.

Once the VAR coefficients are estimated, we compute the GPDC measure. It provides
a frequency domain representation of Granger Causality [77] and quantifies only the direct
connections between time series. For two time series xj(t) and xk(t) the GPDC is defined
so as to exhibit the causality from k to j at each frequency f as follows:

ωjk(f) =

1

σjj
ãjk(f)√

m∑
n=1

1

σ2
nn

ãnk(f)ã∗nk(f)

where

� f are the discrete frequencies1 lying in

[
−1

2
;
1

2

]
,

� ãjk(f) is the discrete Fourier transform of the coefficients ajk(1), . . . , ajk(p) defined
by

ãjk(f) =



1−
p∑
l=1

ajk(l)e
−2iπfl, if j = k

−
p∑
l=1

ajk(l)e
−2iπfl, otherwise

� σ2
jj is the j-th element of the diagonal of Σε.

1For a discrete time series sampled at frequency fe, its Fourier Transform will reveal information for

frequencies lying in

[
−fe

2
;
fe
2

]
. In our case fe = 1, we can therefore choose the interval

[
−1

2
;

1

2

]
with a

step of
1

F − 1
, where F is the number of frequencies.
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Finally, we recover the financial network topology. A network G = (V,E) is a set of
objects with V the set of nodes and E the set of edges between nodes. The edge (j, k)
connects a pair of node j and k. The mathematical representation of a directed weighted
network is given by the m ×m adjacency matrix Zw = (zwjk), z

w
jk ∈ R+ if (j, k) ∈ E and

0 otherwise. For two assets j and k, the adjacency matrix ZGPDC based on the GPDC
measure is defined as follows:

zGPDCjk =


max |ωjk|2, if j 6= k

0, otherwise

where ωjk is the vector containing each value of ωjk(f) for all discrete frequencies f .
We use the maximum value in the ωjk vector in order to take into account the most
relevant information between the two assets, i.e. whether the relationship is short term
(high-frequency) or long term (low-frequency).

4.3.2 Asset selection methodology

After recovering the financial network topology, we propose a dynamic pre-selection of
financial assets from an initial investment universe. This dynamic pre-selection is based on
the local directed weighted clustering coefficient [127]. This tool introduced by Clemente
et al. in [127] measures how a node is embedded into the network by quantifying its
number of triangles out of all its possible triangles (see also Fagiolo [126]). Furthermore,
this tool takes into account the strength of a node in the normalization factor unlike
Fagiolo [126]. For an asset j, it is defined as follows:

hj =

1

2

[
(Zw + Zw ′) (Zu + Zu ′)2

]
jj

sj (dj − 1)− 2s↔j

where Zu is the unweighted version of Zw (zujk = 1 if zwjk 6= 0, and 0 otherwise),
dj = (Zu ′ + Zu)j 1m and sj = (Zw ′ + Zw)j 1m are respectively the total degree (total
number of edges) and the total strength (for the case of weighted network) of the asset

j. s↔j =
(Zw Zu + Zu Zw)jj

2
is the strength of bilateral edges between j and k. Note that

hj ∈ [0, 1], a high value indicating that the asset j is heavily embedded in the network.
Moreover, in the case of a directed unweighted network, the local directed weighted
clustering coefficient [127] is equivalent to the Fagiolo coefficient [126].

Moreover, the local directed clustering coefficient can be classically divided into four
types of triangles (in2, out3, cycle4 and middleman5) [126] giving rise to different financial
interpretations. Having in mind to reduce the risk and improve portfolio performances,
we want to identify the assets that present major risks due to their systemic position or
those that are too influenced. Hence, we only focus on the in and out triangle patterns.
The out triangle pattern allows to identify the assets that strongly cause the other ones.

2In: a triangle in which there are two edges pointing toward j.
3Out: a triangle in which there are two edges starting from j.
4Cycle: a triangle in which every edge has the same direction.
5Middleman: a triangle in which j has two edges of different directions and with an edge between k

and l without forming a cycle.
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They can therefore be considered as systemic assets because they are highly influential
within the network. The in triangle pattern identifies the assets that are strongly caused
within the network and therefore easily influenced if a market shock occurs. The two
specific triangle patterns are:

houtj =

1

2
[Zw (Zu + Zu ′) Zu ′]jj

soutj

(
doutj − 1

)
hinj =

1

2
[Zw ′ (Zu + Zu ′) Zu]jj

sinj
(
dinj − 1

)
where doutj = Zu

j 1m and soutj = Zw
j 1m are respectively the out-degree (number of

edges starting from j) and the out-total strength. dinj = Zu ′
j 1m and sinj = Zw ′

j 1m are
respectively the in-degree (number of edges pointing towards j) and the in-strength.

In this paper, we propose to build an indicator essentially based on the out and in
triangle patterns in order to select only the assets that have an out equals to 0 (the least
systemic assets) or an in also equals to 0 (the least influenced assets). By combining these
two triangle patterns, we remove from the universe both systemic and influenced assets,
which are therefore more unstable and risky. We also exclude assets with both an out
and an out-total strength equal to 0, as they are highly influenced and assets with a local
directed clustering coefficient equals to 1, whatever their level for the out and in because
they are too embedded in the network. Thus, the selected universe V∗ is given by:

V∗ = {vj |hinj = 0 and hj < 1} ∪ {vj |houtj = 0 and soutj > 0 and hj < 1}
where vj ∈ V is the node of the network and representing the asset j.

To summarize, our investment universe V∗ reflects the following financial choices:

� houtj = 0 : the least influential asset is probably the least systemic asset and therefore
the one with the least chance of triggering a crisis. However, an asset with soutj = 0
is not retained because it is too much influenced (hinj >> 0 or sinj >> 0), unless
it fulfills hinj = 0 being thus considered as a fairly detached asset when problems
occur,

� hinj = 0 : the least influenced asset is probably the one that is the most detached
from current financial market problems and can therefore quickly become detached
from a regional/global problem due to its economic characteristics,

� An asset with hj = 1 is excluded because it is too embedded in the network and
thus too systemic.

This asset selection procedure has several advantages. First, it focuses essentially to
unstable assets (systemic or influenced) in order to reduce the portfolio risk. Second, by
construction it adapts itself to the number of connections in the network and therefore
removes only the most embedded assets for each period. Indeed, if the network is very
disconnected, no asset will be removed. Hence, it is not necessary to either set a number
of excluded assets or set an exclusion threshold on the local directed weighted clustering
coefficient as in chapter 3.
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4.4 Empirical Analysis

In this section, we apply the above methodology to exclude systemic and influenced
assets from the initial investment universe. From this selected universe, the performances
of our dynamic pre-selection are tested on four portfolio allocation strategies: EW, ERC,
MinVar and VarMax, described in 4.2. The portfolio performances are also compared
to alternative strategies, where the assets are selected using a financial network based
on Granger non-causality tests6 (GC) defined in (1.14), or where the whole universe is
allocated without any selection.

4.4.1 Dataset description

The investment universe is composed of the m = 40 most liquid and still alive since 2001
national indices (network nodes) belonging to the MSCI All Country World Index (MSCI
ACWI) already used in the last chapter and summarized in Table 4.16a. This universe
allows us to take in account both the differences in time delay between areas (feedback
effects) and global/regional macroeconomic issues. The asset returns are computed on a
daily basis from January 18th, 2001 to October 25th, 2019. Every four weeks, we build a
temporal network using a rolling window of T = 256 working days. Before computing the
GPDCs into which the VAR coefficients are plugged, we normalize each time series using
a Generalized Auto-Regressive Condional Heteroskedastic (GARCH) [220] (described in
the last chapter 3.7.3) to remove the heteroskedasticity in asset returns. Then, we apply
the asset pre-selection on temporal networks. Finally, for risk-based allocation strategies
(ERC (4.1), MinVar (4.2) or VarMax (4.2)), we estimate the covariance matrix on the
asset returns converted into USD currency, to take into account the risk exposure of
foreign currency investments. The portfolios’ performances are therefore computed in
USD currency7.

For all allocation strategies stated in section 4.2, the asset selection procedure using
mBTS-TD for the VAR estimation and the GPDC measure (“GPDC”) is compared with
those obtained using a classical VAR estimation and the GC test (1.14) with a probability
α = 1% or α = 5% (“GC 1%” or “GC 5%”) and on the whole universe, i.e. without any
selection. In order to assess the potential of our methodology, we report several portfolio
statistics computed over the whole period: the annualized return, the annualized volatility,
the ratio between the annualized return and the annualized volatility and the maximum
drawdown (largest decline in portfolio value). The portfolio generates better performances
if it provides an higher return/volatility ratio and a lower maximum drawdown. Moreover,
to be as realistic as possible in the investment process, the portfolio performances are “net
of transactions fees”, i.e. we consider 0.07% of fees for any change in weighting at each
rebalancing date. Indeed, the portfolio turnover is important in portfolio allocation and
has to be integrated into the performance computation, as a very high level of turnover
can significantly reduce it: for a given rebalancing date t the portfolio turnover at time
t is κt =

∑m
j=1 |wj,t − wj,t−1| and the portfolio performance is therefore decreased by

κt × 0.07%.

6The VAR coefficients are estimated using the Least Squares (LS) (1.12) and the model order p is
estimated with the AIC criterion (1.2.2) [142, 143].

7If the asset returns are kept in local currency to compute the portfolios’ performances, hedging costs
(selling the currency forward) have to be considered.

106



4.4 Empirical Analysis

4.4.2 EW portfolios

Here, we examine the potential of our proposed methodology for the Equally Weighted
portfolio (EW). This allocation strategy invests in all assets and does not require any
estimation procedure for the covariance matrix nor complex optimization issues. It
therefore allows us to focus solely on the improvement resulting from the asset selection
process. We first report the portfolio performances for the three asset selection procedures
(“GPDC”, “GC 1%” and “GC 5%”). Then, we focus on the asset return distribution
between rebalancing dates (i.e. selected or non-selected asset returns) to understand
where the out-performance of our methodology is coming from. We also provide the
intertemporal number of non-selected assets in our selection process. Finally, as an
example of asset selection, we depict in Fig. 4.3 the network based on the GPDC method
obtained for the national indices in the window covering the period of November 7th,
2014 to October 30th, 2015 (commodity crisis).

Fig. 4.1 and Table 4.1 show the evolution of the EW portfolios and some statistics
on the overall portfolios’ performances respectively. For this purpose, we have added to
the three methods (“GPDC”, “GC 1%” and “GC 5%”), the EW portfolio allocated to
the assets not selected by the “GPDC” method, in order to see whether these assets are
indeed both less performing and riskier.

Figure 4.1: EW portfolios’ performances on national indices with 0.07% of fees from
January 2002 to October 2019. The proposed “EW GPDC” (green line) leads to improved
performances vs the “EW GC 1%” (grey), the “EW GC 5%” (blue) and the “EW” (black).
Moreover, the “EW GPDC Non-selected assets” (red) provides the worst performances
by far.
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EW Portfolios Ann. Ann. Ratio Max
National indices Return Volatilty Return/Volatilty Drawdown

EW GPDC 9.75% 16.95% 0.58 61.05%
EW GC 1% 9.34% 16.76% 0.56 61.21%

EW 9.31% 16.76% 0.56 61.92%
EW GC 5% 9.37% 16.93% 0.55 61.24%

EW GPDC Non-selected assets 5.18% 17.49% 0.30 65.50%

Table 4.1: Performance indicators for EW portfolios on national indices with 0.07% of
fees from January 2002 to October 2019. The results are ranked in descending order
according to the ratio (Return / Volatility).

The proposed GPDC asset selection method shows an improvement with respect
to the other methods, especially for the annualized return, the return/volatility ratio
and the maximum drawdown. The other methods “GC 1%” and “GC 5%” do not
provide a significant improvement compared to EW applied to all assets. Furthermore,
when focusing on the non-selected assets by the GPDC process, we see clearly that all
indicators are deteriorated with a return/volatility ratio less than at least 0.25 and a
maximum drawdown more than 3.58% compared to the other methods. The annual
returns between “EW GPDC” and “EW” may seem close (9.75% vs 9.31%), but note
that this gap (0.40%) can absorb the management fees for the less expensive fund shares.

Given these results, we can consider that the GPDC asset selection process succeeds
in identifying the less risky assets. To illustrate this purpose, Table 4.2 provides the four
moments of asset return distribution for the selected and non-selected assets. Looking
at Table 4.2, the asset return distribution of the selected assets provides better figures,
in particular for the skewness which is positive (0.0065 vs -0.1683), i.e. the returns of
the selected assets are more positive than those of the non-selected assets. However, the
kurtosis is a little higher for selected assets, although extreme values are more concentrated
in the right tail (positive returns).

GPDC Selected Assets Non-Selected Assets All Assets
Asset return distribution

Mean 0.0005 0.0002 0.0004
Standard Deviation 0.0156 0.0164 0.0158

Skewness 0.0065 -0.1683 -0.0393
Kurtosis 10.3942 9.7714 10.2511

Table 4.2: Moments of asset return distribution for the selected and non-selected assets
by the GPDC process based on national indices from January 2002 to October 2019.

Fig. 4.2 plots the number of non-selected assets for the three asset selection procedures.
The “GC 1%” process is the most stable with a standard deviation of the number of assets
selected equal to 2.95. However, it does not eliminate more than two assets on average
except during the 2008 crisis where it eliminates 20. As we have seen in Table 4.1, the
“GC 1%” process is very close to the EW portfolio without selection. The other two
methods very actively select assets by removing on average 10 assets. Again, even if “GC
5%” removes 10 assets on average, the performance is similar to the EW portfolio without
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selection. Regarding the “GPDC” procedure, as we have seen in Table 4.1, it significantly
improves the results while removing the same number of assets as “GC 5%”. Moreover,
when we look at the standard deviation of the number of assets selected, the “GPDC”
procedure appears more stable over time than “GC 5%” (3.86 vs 5.16).

Figure 4.2: Number of non-selected assets for the three asset selection procedures on the
national indices (m = 40) from January 2002 to October 2019.

Finally in Fig. 4.3, we depict a network based on the GPDC method obtained during
the commodity crisis in the window covering the period of November 7th, 2014 to October
30th, 2015. As previously explained, the nodes here represent national indices (Table
4.16a) and the weighted edge (j,k) measures the relationship intensity (causal strength)
between indices j and k. The nodes in green are the selected assets while those in white are
not selected because they are considered too risky. This example perfectly illustrates our
proposed methodology, i.e. estimating the GPDC measure with a parsimonious estimation
of the VAR (mBTS-TD strategy), then selecting the assets that are the least nested in
the network in order to reduce the systemic risk present in the portfolio and thus improve
performances. In this Fig. 4.3, we clearly see that most of the non-selected assets have
economic activities directly related to the production of commodities and/or the use of
these commodities. Indeed, our procedure removes the main countries most dependent
on raw material exports both in South America (Chile, Colombia and Peru) and Mexico,
but also in Australia and Europe (Poland and Russia). Furthermore, it also removes
the countries dependent on raw material imports especially in Asia (South Korea, India,
Hong Kong and Taiwan). Comparing these two portfolios over the next four weeks, the
portfolio of non-selected assets underperforms by 0.70% the portfolio with the selected
assets.
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Figure 4.3: Directed weighted network of national indices based on the GPDC measure
and estimated from November 7th, 2014 to October 30th, 2015 (commodity crisis). In
green are the selected assets according to the method described in section 4.2 using essen-
tially the triangle patterns (in and out) of the local directed weighted clustering coefficient.
Conversely, the assets in white are not retained. The width of the directed edge represents
the causal strength. Asset abbreviations are in Table 4.16a.

In this section, we have confirmed that our methodology using both a parsimonious es-
timation of the VAR to compute the GPDC measure and a selection process based on the
in/out clustering coefficient significantly improves the performances of the EW portfolio.
Indeed, our methodology succeeds in identifying the worst performing/riskiest assets in
order to remove them from the investment universe. After these promising results, a nat-
ural question arises: is it possible to confirm these improvements for more sophisticated
allocation processes, namely the ERC strategy that also invests in all assets but allocates
them according to their risk contribution, or the MinVar/VarMax strategies that both
select and weight the assets?
In what follows, we first answer this question in the naive case where the Sample Co-
variance Matrix (SCM) is plugged in the optimization algorithm at work in these three
approaches.

4.4.3 ERC SCM portfolios

Now, we examine our proposed methodology for the ERC portfolio. In focusing on this
strategy, we first seek to determine whether our asset selection is also consistent with risk-
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based approaches. We then investigate if being systemic or influenced inevitably leads to
high-volatility asset exclusions that further bias this type of strategies on the low-volatility
anomaly. Note that in this universe the volatility levels are very heterogeneous, ranging
from 15% for Malaysia to 42% for Russia over the whole observation period (January 2002
to October 2019). In Fig. 4.4 and Table 4.3, we provide the ERC portfolios’ performances
and performance indicators on the whole period.

Figure 4.4: ERC portfolios’ performances on national indices with 0.07% of fees from
January 2002 to October 2019. The proposed “ERC SCM GPDC” (green line) leads
to improved performances vs the “ERC SCM GC 1%” (grey), the “ERC SCM GC 5%”
(blue) and the “ERC SCM” (black). Moreover, the “ERC SCM GPDC Non-selected
assets” (red) provides the worst performances by far.

ERC Portfolios Ann. Ann. Ratio Max
National Indices Return Volatilty Return/Volatilty Drawdown

ERC SCM GPDC 10.13% 15.26% 0.66 59.21%
ERC SCM GC 1% 9.70% 15.07% 0.64 58.85%

ERC SCM 9.68% 15.08% 0.64 59.65%
ERC SCM GC 5% 9.36% 15.32% 0.61 59.26%

ERC SCM GPDC Non-selected assets 5.04% 16.21% 0.31 62.68%

Table 4.3: Performance indicators for ERC portfolios on national indices with 0.07% of
fees from January 2002 to October 2019. The results are ranked in descending order
according to the ratio (Return / Volatility).

Based on these results, our approach appears to be perfectly suited to the ERC strat-
egy. The proposed GPDC asset selection method shows an improvement with respect
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to the other methods providing a higher annualized return, higher return/volatility ratio
and the second maximum drawdown. Moreover, the annualized volatility has slightly
increased confirming that our approach removes both low-volatility and high-volatility
assets without creating a low-volatility bias. To illustrate this purpose, Fig. 4.5 plots the
standard deviations of the invested assets versus the resulting weights obtained for “ERC
SCM GPDC” (on the top graph) and “ERC SCM” (on the bottom graph). Considering
all periods, the asset selection removes on average 24% of the 1st quartile of volatility
(low) and 20% of the 4th quartile (high).

Figure 4.5: “ERC SCM GPDC” and “ERC SCM” weights versus asset volatilities.

4.4.4 MinVar SCM portfolios

After testing our methodology on the ERC strategy, we focus on the MinVar portfolio.
This strategy selects and weights the assets in order to obtain the portfolio with minimum
volatility. However, we know that minimizing the portfolio volatility leads to choosing the
assets having the lowest volatilities, with a small number of assets in the portfolio. For this
strategy, we want to see if removing some low-volatility assets that are highly embedded
in the network improves performances. We provide in Fig. 4.6 and Table 4.4 the evolution
of the MinVar portfolios and some statistics on the overall portfolio performances.
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Figure 4.6: MinVar portfolios’ performances on national indices with 0.07% of fees from
January 2002 to October 2019. The proposed “MinVar SCM GPDC” (green line) leads to
improved performances vs the “MinVar SCM GC 1%” (grey), the “MinVar SCM GC 5%”
(blue) and the “MinVar SCM” (black). Moreover, the “MinVar SCM GPDC Non-selected
assets” (red) provides the worst performances by far.

MinVar Portfolios Ann. Ann. Ratio Max
National Indices Return Volatilty Return/Volatilty Drawdown

MinVar SCM 9.67% 10.73% 0.90 47.36%
MinVar SCM GPDC 9.92% 11.24% 0.88 52.33%

MinVar SCM GC 1% 8.98% 10.82% 0.83 49.61%
MinVar SCM GC 5% 8.12% 11.72% 0.69 48.63%

MinVar SCM GPDC Non-selected assets 5.21% 14.06% 0.37 48.39%

Table 4.4: Performance indicators for MinVar portfolios on national indices with 0.07%
of fees from January 2002 to October 2019. The results are ranked in descending order
according to the ratio (Return / Volatility).

For the MinVar portfolio, our methodology provides a higher annualized return, but
also a higher annualized volatility compared to “MinVar SCM” and therefore a lower
return/volatility ratio. It also has the highest maximum drawdown (52%). When we
look at the annual performances of the different methods, we see that our method has an
annual return that is equivalent or higher for 13 out of 18 years compared to “MinVar
SCM”. However, it completely misses the 2008 financial crisis by losing 10% more than
the “MinVar SCM” (-44% vs -38%). The method especially misses the big rebounds that
occurred after the strong declines. We know that the MinVar strategy leads to highly
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concentrated portfolios, especially in highly volatile and hence highly correlated markets.
Moreover, we also know that our asset selection procedure removes on average 24% of low-
volatility assets (1st quartile) leading to even more concentrated portfolios for “MinVar
SCM GPDC”. To highlight this point, we plot in Fig. 4.7 the Herfindahl-Hirschman8 index
(HHI) for “MinVar SCM GPDC” and “MinVar SCM”. We clearly notice that the HHI
for the “MinVar SCM GPDC” is lower than “MinVar SCM”, increasing the idiosyncratic
risk and thus making it more complicated to manage drastic market changes as in 2008,
2015 and 2018.

Figure 4.7: Herfindahl-Hirschman index for “MinVar SCM GPDC” (green line) and “Min-
Var SCM” (black line). “MinVar SCM GPDC” has on average one less asset in the
portfolio than “MinVar SCM” (5.35 vs 6.36)

4.4.5 VarMax SCM portfolios

Finally, we test our asset selection methodology on the VarMax portfolio. It is probably
the allocation strategy that requires the most asset selection before building the portfolio.
Indeed, to obtain the most diversified portfolio, it will search for the least correlated assets
but the correlation does not reflect the interconnectedness. An asset with low correla-
tion may turn out to be potentially highly systemic since it carries a new risk premium
(e.g. US subprime crisis, Italy/Spain sovereign debt crisis, etc.) or strongly influenced
and overreacting to every market shock. The purpose of testing our methodology on the
VarMax portfolio is to see if the asset selection improves portfolio performances by not
proposing some low correlated assets that are highly nested in the network and low per-
forming without drastically reducing the Variety ratio (VR ) defined in 4.3. In Fig. 4.8
and Table 4.5, we provide VarMax portfolios’ performances and performance indicators
over the whole period.

8The Herfindahl-Hirschman index (HHI) is the sum of the square of portfolio weights. Here, we use
the inverse of the HHI where 1 represents the minimum value (only one asset in the portfolio) and m the
maximum value (EW portfolio).
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Figure 4.8: VarMax portfolios’ performances on national indices with 0.07% of fees from
January 2002 to October 2019. The proposed “VarMax SCM GPDC” (green line) leads
to improved performances vs the “VarMax SCM GC 1%” (grey), the “VarMax SCM
GC 5%” (blue) and the “VarMax SCM” (black). Moreover, the “VarMax SCM GPDC
Non-selected assets” (red) provides the worst performances by far.

VarMax Portfolios Ann. Ann. Ratio Max
National Indices Return Volatilty Return/Volatilty Drawdown

VarMax SCM GPDC 12.02% 12.78% 0.94 53.61%
VarMax SCM 10.98% 12.20% 0.90 52.87%

VarMax SCM GC 1% 10.86% 12.35% 0.88 52.83%
VarMax SCM GC 5% 10.37% 13.11% 0.79 52.60%

VarMax SCM GPDC Non-selected assets 5.00% 15.41% 0.32 58.40%

Table 4.5: Performance indicators for VarMax portfolios on national indices with 0.07%
of fees from January 2002 to October 2019. The results are ranked in descending order
according to the ratio (Return / Volatility).

As expected, our methodology applied on the VarMax portfolio significantly improves
the annualized return (more than 1%) and the the return/volatility ratio (0.94 vs 0.90)
compared to “VarMax SCM”. To confirm that our methodology does not significantly
reduce portfolio diversification, we plot in Fig. 4.9 the VR for “VarMax SCM GPDC”
and “VarMax SCM”. Given these results, our approach does not distort the ratio profile,
remaining relatively close to “VarMax SCM” but sometimes decreasing sharply as in 2002,
2004, 2006-2008, 2010 and 2016. For these different years, our method provides a higher
annual return for 5 out of 7 years (2002, 2006, 2007, 2010 and 2016) compared to “VarMax
SCM”.
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Figure 4.9: Variety ratio (VR ) defined in 4.3 for “VarMax SCM GPDC” (green line) and
“VarMax SCM” (black line). “VarMax SCM GPDC” has on average a slightly lower ratio
than “VarMax SCM” (1.91 vs 1.97)

To conclude, regarding the portfolio performances, our proposed asset selection
method has improved annualized returns for all allocation strategies. The most significant
improvement is for the VarMax strategy with a increase on the ratio return/volatility of
0.04. The only time that our methodology fails in terms of return/volatility ratio is on
the MinVar portfolio mainly due to a high portfolio concentration. For ERC, MinVar
and VarMax portfolios, the covariance matrix has been estimated using the SCM that
is optimal under Normal assumptions. However, most of financial time series of returns
exhibit fat tails and asymmetry that are hardly compatible with the Gaussian hypothesis.
In order to reduce covariance matrix estimation errors, we use our cleaned and robust co-
variance matrix estimation (whitening procedure). The whitening procedure has already
confirmed good results on VarMax and MinVar strategies in chapter 2.
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4.4.6 Whitening procedure

In this section, we conclude the empirical analysis by using a cleaned and robust covariance
matrix estimation (whitening procedure) [222, 223] instead of the Sample Covariance
Matrix (SCM) in order to see if we can improve even more the results. We compare our
proposed asset selection procedure “GPDC” with a robust covariance matrix estimation
“WH”. For this purpose, we only compare “GPDC WH” and “GPDC SCM” with those
obtained on the whole universe, i.e. without applying any selection “WH” nor “SCM”. We
provide in Table 4.6 performance indicators computing over the whole period (January
2002 to October 2019) for ERC, MinVar, VarMax portfolios.

Portfolios Ann. Ann. Ratio Max
National Indices Return Volatilty Return/Volatilty Drawdown

ERC WH GPDC 10.32% 15.32% 0.67 59.28%
ERC SCM GPDC 10.13% 15.26% 0.66 59.21%

ERC WH 9.81% 15.14% 0.65 59.75%
ERC SCM 9.68% 15.08% 0.64 59.65%

MinVar WH GPDC 11.23% 11.88% 0.95 52.68%
MinVar WH 10.65% 11.38% 0.94 49.78%

MinVar SCM 9.67% 10.73% 0.90 47.36%
MinVar SCM GPDC 9.92% 11.24% 0.88 52.33%

VarMax WH GPDC 11.98% 12.52% 0.96 53.00%
VarMax SCM GPDC 12.02% 12.78% 0.94 53.61%

VarMax SCM 10.98% 12.20% 0.90 52.87%
VarMax WH 10.83% 12.10% 0.90 52.15%

Table 4.6: GPDC asset selection and whitening procedure. Performance indicators for
ERC, MinVar and VarMax portfolios on national indices combining with 0.07% of fees
from January 2002 to October 2019. For each portfolio, the results are ranked in descend-
ing order according to the ratio (Return / Volatility).

When combining our proposed asset selection method and a robust covariance matrix,
the portfolio performances improve even more. Indeed, for all allocation strategies the
return/volatility ratio is higher than “GPDC SCM”. When we used the MinVar portfolio
with the SCM, our asset selection method had a lower return/volatility ratio than the
portfolio applied on all assets. Now, using both our proposed asset selection method
and the whitening procedure for the covariance matrix estimation, the portfolio “MinVar
GPDC WH” provides the highest return/volatility ratio. As seen in chapter 2, using a
robust approach does flatten the volatility differences between assets, allowing to improve
the diversification ratio and reduce the portfolio concentration. The HHI of “MinVar
GPDC WH” is now equal to 8.29.

Furthermore, in Appendix 4.6.1, to check the robustness of our methodology, we pro-
vide results on another universe composed of m = 44 GICS [193] sector indices. In this
universe as well, the results are promising in improving portfolio performances for all
allocation strategies.
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4.5 Conclusion

In asset allocation problems, assessing the dependency structure among financial assets
is of major importance to control the risk within investment universes and improve
portfolio performances. For this purpose, the network approach provides useful insights to
characterize the interactions between assets and thus determine their position (systemic
or influenced). However, common approaches (the sample correlation matrix or Granger
non-causality tests) to modeling the interactions lead to incomplete information never
providing a directed weighted network. In this paper, to recover the topology, we use the
GPDC measure in which are plugged the VAR coefficients estimated via the mBTS-TD
strategy. This approach has two advantages: first, the mBTS-TD strategy solves the
network dimensionality issue; second, the GPDC measure assesses both the direction
and the strength of the relationships providing a precise network topology. Then, to
characterize the relationships and reduce asset connections within the initial universe,
we propose a dynamic pre-selection method based on the in and out triangle patterns of
the local directed weighted clustering coefficient. This method allows to remove the most
unstable assets (systemic and influenced) and adapts to the numbers of connections in
the network removing only the most embedded assets without setting a number of asset
exclusions or a threshold on the local directed weighted clustering coefficient.

Our dynamic pre-selection method applied on classical allocation strategies such as
Equally Weighted, Equal Risk Contribution, Minimum Variance and Maximum Variety
leads to significantly improve portfolio performances with respect to a network based on
Granger non-causality or on the whole universe. Indeed, on 40 national equity indices
the pre-selection process succeeds in identifying the worst performing/riskiest assets to
remove them before allocating portfolios. Finally, we have associated our process with
our whitening procedure [222, 223] to estimate the covariance matrix and again, the
results are improved compared to the use of the classical Sample Covariance Matrix.
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4.6 Appendix Chapter 4

4.6.1 Sector universe portfolio results

The second universe consists of m = 44 GICS [193] sector indices representing four ge-
ographical areas (MSCI Emerging Markets, MSCI Europe, MSCI Japan, MSCI United
States) summarized in Table 4.16b. The sector indices universe allows us to focus more
on economic activity interactions within or between the geographical areas.

EW portfolios - Sector indices

We examine our proposed methodology for the EW portfolio. As for the national indices
universe, we report the portfolios’ performances. Then, we focus on the asset return
distribution between rebalancing dates and on the number of non-selected assets. Finally,
we depict in Fig. 4.12 the networks based on GPDC method obtained for the sector
indices in the window covering the period of November 16th, 2007 to November 7th, 2008
(financial crisis). In Fig. 4.10 and Table 4.7, we provide the evolution of the EW portfolios
and some statistics on the overall portfolio performances.

Figure 4.10: EW portfolios’ performances on sector indices with 0.07% of fees from Jan-
uary 2002 to October 2019. The proposed “EW GPDC” (green line) leads to improved
performances vs the “EW GC 1%” (grey), the “EW GC 5%” (blue) and the “EW” (black).
Moreover, the “EW GPDC Non-selected assets” (red) provides the worst performances
by far.
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EW Portfolios Ann. Ann. Ratio Max
Sector Indices Return Volatilty Return/Volatilty Drawdown

EW GPDC 8.85% 13.76% 0.64 54.03%
EW 8.42% 13.86% 0.61 55.06%

EW GC 1% 8.34% 13.81% 0.60 55.07%
EW GC 5% 7.92% 13.74% 0.58 54.33%

EW GPDC Non-selected assets 4.73% 16.10% 0.29 59.34%

Table 4.7: Performance indicators for EW portfolios on sector indices with 0.07% of fees
from January 2002 to October 2019. The results are ranked in descending order according
to the ratio (Return / Volatility).

As for the national indices, the proposed GPDC asset selection method shows an
improvement with respect to the other methods. The other two methods “GC 1%” and
“GC 5%” do not improve the EW portfolio, especially with the procedure using “GC
5%” where the return/volatility ratio is lower. When we focus on the non-selected assets
by the GPDC process, here again we see clearly that all indicators are deteriorated with
a return/volatility ratio less than at least 0.29 and a maximum drawdown more than 4%
compared to the other methods.

Once again, we can consider that the GPDC asset selection process succeeds in identi-
fying the less risky and less performing assets. The Table 4.8 provides the four moments
of asset return distribution for the selected and non-selected assets. The asset return
distribution of the selected assets (Table 4.8) provides better figures for all moments,
especially for the skewness and the kurtosis.

GPDC Selected Assets Non-Selected Assets All Assets
Asset return distribution

Mean 0.0004 0.0003 0.0004
Standard Deviation 0.0138 0.0156 0.0141

Skewness 0.0356 0.0094 0.0281
Kurtosis 8.4141 9.3456 8.8036

Table 4.8: Moments of asset return distribution for the selected and non-selected assets
by the GPDC process based on sector indices from January 2002 to October 2019.
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The number of non-selected assets for the three asset selection procedures is plotted
in Fig. 4.11. The “GC 1%” deletes only one asset on average and only six during the 2008
crisis with similar results compared to the EW portfolio without selection. The other two
methods are more actives in selecting assets with an average of more than 10 non-selected
assets. Based on Table 4.7 and Fig. 4.11, it is clear that for sector indices, the “CG
5%” method fails to identify the worst performing/riskiest assets. On the contrary, the
GPDC procedure not only improves portfolio results, but also, as in the previous universe,
provides greater stability in terms of the number of assets selected. The standard deviation
of the number of assets selected for the “GPDC” procedure is 3.6 vs 5.2 for “GC 5%”.

Figure 4.11: Number of non-selected assets for the three asset selection procedure in the
sector indices universe (m = 44) from January 2002 to October 2019.

In Fig. 4.12, we depict a network based on the GPDC method obtained for the finan-
cial crisis in the window covering the period of November 16th, 2007 to November 7th,
2008. Here, the nodes represent sector indices (Table 4.16b). This example also perfectly
illustrates our proposed methodology. In this Fig. 4.12, we see that the non-selected as-
sets are for the most part sectors directly involved in the financial crisis (financial and real
estate sectors) or suffering the consequences of an economic crisis, such as the consumer
discretionary (automobile, restaurants, etc.), industrial and materials sectors. Indeed,
our procedure removes the financial and real estate sectors in the US. It also removes
consumer discretionary in three areas (EM, JP and US), industrial for EM and JP, and
finally materials for EU, JP and US. During the December 1, 2008 trading session, which
was one of the largest daily percentage losses, our methodology was successful in remov-
ing the U.S. financial and real estate sectors, which fell 15% and 18% respectively. In
comparing these two portfolios over the next four weeks, we note that the portfolio of
non-selected assets underperforms by 1% the portfolio with the selected assets.
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Figure 4.12: Directed weighted network of sector indices based on the GPDC measure and
estimated from November 16th, 2007 to November 7th, 2008 (financial crisis). In green
are the selected assets according to the method described in section 4.2 using essentially
the triangle patterns (in and out) of the local directed weighted clustering coefficient.
Conversely, the assets in white are not retained. The width of the directed edge represents
the causal strength. Asset abbreviations are in Table 4.16b.

In this section, we have confirmed that our methodology improves the performances
of the EW portfolio. Here again, our methodology succeeds in identifying the worst
performing/riskiest assets in order to remove them from the portfolio. In the next three
sections, we test our methodology on ERC, MinVar and VarMax strategies using the
SCM.

4.6.1.1 ERC SCM portfolios - Sector indices

We provide in Fig. 4.13 and Table 4.9 the evolution of the ERC portfolios and performance
indicators on the overall period.
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Figure 4.13: ERC portfolios’ performances on sector indices with 0.07% of fees from
January 2002 to October 2019. The proposed “ERC SCM GPDC” (green line) leads
to improved performances vs the “ERC SCM GC 1%” (grey), the “ERC SCM GC 5%”
(blue) and the “ERC SCM” (black). Moreover, the “ERC SCM GPDC Non-selected
assets” (red) provides the worst performances by far.

ERC Portfolios Ann. Ann. Ratio Max
Sector Indices Return Volatilty Return/Volatilty Drawdown

ERC SCM GPDC 8.64% 12.29% 0.70 49.10%
ERC SCM 8.29% 12.44% 0.67 50.17%

ERC SCM GC 1% 8.26% 12.41% 0.67 50.08%
ERC SCM GC 5% 7.93% 12.41% 0.64 49.97%

ERC SCM GPDC Non-selected assets 5.60% 15.03% 0.37 54.89%

Table 4.9: Performance indicators for ERC portfolios on sector indices with 0.07% of fees
from January 2002 to October 2019. The results are ranked in descending order according
to the ratio (Return / Volatility).

For ERC strategy, the dynamic pre-selection shows an improvement with respect to
the other methods. For this universe, all indicators related to the “GPDC” are improved
(higher annualized return, lower annualized volatility, higher return/volatility ratio and
a lower maximum drawdown). Considering all periods, the asset selection removes on
average 16% of the 1st quartile of volatility (low) and 21% of the 4th quartile (high).
In this universe, the method tends to remove more high volatility assets, slightly biasing
the universe on the low-volatility anomaly. However, in this type of universe the most
systemic or influenced assets are more related to cyclical sectors assimilated to the value
factor with generally higher betas and higher volatilities.
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4.6.1.2 MinVar SCM portfolios - Sector indices

In Fig. 4.14 and Table 4.10, we provide the MinVar portfolio performances and perfor-
mance indicators on the whole period.

Figure 4.14: MinVar portfolios’ performances on sector indices with 0.07% of fees from
January 2002 to October 2019. The proposed “MinVar SCM GPDC” (green line) leads to
improved performances vs the “MinVar SCM GC 1%” (grey), the “MinVar SCM GC 5%”
(blue) and the “MinVar SCM” (black). Moreover, the “MinVar SCM GPDC Non-selected
assets” (red) provides the worst performances by far.

MinVar Portfolios Ann. Ann. Ratio Max
Sector Indices Return Volatilty Return/Volatilty Drawdown

MinVar SCM GPDC 9.29% 9.52% 0.97 32.48%
MinVar SCM GC 1% 9.03% 9.48% 0.95 33.34%

MinVar SCM 8.89% 9.49% 0.94 32.82%
MinVar SCM GC 5% 8.50% 9.67% 0.88 34.13%

MinVar SCM GPDC Non-selected assets 6.72% 13.19% 0.51 42.00%

Table 4.10: Performance indicators for MinVar portfolios on sector indices with 0.07%
of fees from January 2002 to October 2019. The results are ranked in descending order
according to the ratio (Return / Volatility).

Unlike national indices, the proposed asset selection shows a significant improvement
for MinVar strategy where all indicators are similar or improved (higher annualized re-
turn, similar annualized volatility, higher return/volatility ratio and a lower maximum
drawdown) when compared to other methods. In this universe, MinVar portfolios appear
less concentrated with an HHI equal to 7.80 for “MinVar SCM GPDC” against 9.41 for
“MinVar SCM”.
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4.6.1.3 VarMax SCM portfolios - Sector indices

We provide in Fig. 4.15 and Table 4.11 the evolution of the MinVar portfolios and some
statistics on the overall portfolio performances for the case of sector indices.

Figure 4.15: VarMax portfolios’ performances on sector indices with 0.07% of fees from
January 2002 to October 2019. The proposed “VarMax SCM GPDC” (green line) leads
to improved performances vs the “VarMax SCM GC 1%” (grey), the “VarMax SCM
GC 5%” (blue) and the “VarMax SCM” (black). Moreover, the “VarMax SCM GPDC
Non-selected assets” (red) provides the worst performances by far.

VarMax Portfolios Ann. Ann. Ratio Max
Sector Indices Return Volatilty Return/Volatilty Drawdown

VarMax SCM GPDC 7.93% 11.10% 0.71 39.88%
VarMax SCM GC 1% 7.45% 11.34% 0.66 41.31%

VarMax SCM 7.32% 11.37% 0.64 41.65%
VarMax SCM GC 5% 7.18% 11.32% 0.63 40.22%

VarMax SCM GPDC Non-selected assets 5.63% 15.01% 0.38 54.67%

Table 4.11: Performance indicators for VarMax portfolios on sector indices with 0.07%
of fees from January 2002 to October 2019. The results are ranked in descending order
according to the ratio (Return / Volatility).

As for national indices universe, the asset selection applied on VarMax strategy shows
a significant improvement with respect to the other methods. Indeed, all indicators are
improved (higher annualized return, lower annualized volatility, higher return/volatility
ratio and a lower maximum drawdown). Note that the dynamic pre-selection does not
distort the VR ratio. “VarMax SCM GPDC” has on average a VR ratio of 1.97 vs 2.02
for “VarMax SCM”.
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For sector indices universe, our proposed asset selection method has improved portfolio
performances for all allocation strategies. Here again, the most significant improvement
is for the VarMax strategy with a increase on the ratio return/volatility of 0.05.

4.6.1.4 Whitening procedure - Sector indices

We provide in Table 4.12 performance indicators for ERC, MinVar and VarMax portfolios
where the covariance matrix is estimated using the whitening procedure.

Portfolios Ann. Ann. Ratio Max
Sector Indices Return Volatilty Return/Volatilty Drawdown

ERC WH GPDC 8.76% 12.20% 0.72 48.62%
ERC SCM GPDC 8.64% 12.29% 0.70 49.10%

ERC WH 8.42% 12.32% 0.68 49.22%
ERC SCM 8.29% 12.44% 0.67 50.17%

MinVar SCM GPDC 9.29% 9.52% 0.97 32.48%
MinVar SCM 8.89% 9.49% 0.94 32.82%

MinVar WH GPDC 8.63% 9.95% 0.87 35.09%
MinVar WH 8.18% 9.93% 0.82 31.98%

VarMax WH GPDC 8.04% 10.53% 0.76 38.84%
VarMax WH 7.68% 10.57% 0.73 36.74%

VarMax SCM GPDC 7.93% 11.10% 0.71 39.88%
VarMax SCM 7.32% 11.37% 0.64 41.65%

Table 4.12: GPDC asset selection and whitening procedure. Performance indicators for
ERC, MinVar and VarMax portfolios on sector indices with 0.07% of fees from January
2002 to October 2019. For each portfolio, the results are ranked in descending order
according to the ratio (Return / Volatility).

For this universe, by combining our proposed methodology and the whitening proce-
dure to estimate the covariance matrix, we improve even more the portfolio performances
for ERC and VarMax portfolios. Nevertheless, the whitening procedure applied on Min-
Var portfolio fails to improve the performances, even if the selection asset process “MinVar
GPDC WH” improves the indicators when compared to “MinVar WH”.
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4.6.2 Country and sector dataset

Index Currency Abr.

Australia AUD AU

Austria EUR AT

Belgium EUR BE

Brazil BRL BR

Canada CAD CA

Chile CLP CL

China HKD CN

Colombia COP CO

Denmark DKK DK

Finland EUR FI

France EUR FR

Germany EUR DE

Hong Kong HKD HK

India INR IN

Indonesia IDR ID

Ireland EUR IR

Israel ILS IL

Italy EUR IT

Japan JPY JP

Korea KRW KO

Malaysia MYR MA

Mexico MXN MX

Netherlands EUR NL

New Zealand NZD NZ

Norway NOK NO

Peru PEN PR

Philippines PHP PL

Poland PLN PO

Portugal EUR PT

Russia RUB RU

Singapore SGD SG

South Africa ZAR SA

Spain EUR SP

Sweden SEK SW

Switzerland CHF CH

Taiwan TWD TW

Thailand THB TH

Turkey TRY TR

United Kingdom GBP UK

United States USD US

(a) Country equity indices
representing 40 countries of
the MSCI ACWI (All Coun-
try World Index).

Index Currency Abr.

EM Communication Services USD EM CM

EM Consumer Discretionary USD EM CD

EM Consumer Staples USD EM CS

EM Energy USD EM EN

EM Financials USD EM FI

EM Health Care USD EM HC

EM Industrials USD EM IN

EM Information Technology USD EM IT

EM Materials USD EM MA

EM Real Estate USD EM RE

EM Utilities USD EM UT

EU Communication Services EUR EU CM

EU Consumer Discretionary EUR EU CD

EU Consumer Staples EUR EU CS

EU Energy EUR EU EN

EU Financials EUR EU FI

EU Health Care EUR EU HC

EU Industrials EUR EU IN

EU Information Technology EUR EU IT

EU Materials EUR EU MA

EU Real Estate EUR EU RE

EU Utilities EUR EU UT

JP Communication Services JPY JP CM

JP Consumer Discretionary JPY JP CD

JP Consumer Staples JPY JP CS

JP Energy JPY JP EN

JP Financials JPY JP FI

JP Health Care JPY JP HC

JP Industrials JPY JP IN

JP Information Technology JPY JP IT

JP Materials JPY JP MA

JP Real Estate JPY JP RE

JP Utilities JPY JP UT

US Communication Services USD US CM

US Consumer Discretionary USD US CD

US Consumer Staples USD US CS

US Energy USD US EN

US Financials USD US FI

US Health Care USD US HC

US Industrials USD US IN

US Information Technology USD US IT

US Materials USD US MA

US Real Estate USD US RE

US Utilities USD US UT

(b) Sector equity indices rep-
resenting Emerging Markets
(EM), Europe (EU), Japan
(JP) and United States (US)
sectors.

Figure 4.16: List of assets for both universes (currency and abbreviation).
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Conclusion

In this thesis, we addressed different aspects of portfolio allocation issues allowing the
improvement of the covariance matrix estimation, proposing a method to identify more
precisely the dependency structure among financial assets and finally defining a dynamic
network indicator to detect unstable assets (systemic/influenced). The join use of these
approaches provides a complete asset selection methodology with promising results on
the performances of risk-based allocation strategies such as the Equal Risk Contribution
(ERC), Minimum Variance (MinVar) and Variety Maximum (VarMax) portfolios.

In the following we summarize the main results of this thesis and suggest several
research avenues or extensions.

Chapter 2 contributes to the literature of covariance matrix estimation in the sense
that it extends recent works to asset returns that are globally non-homogeneously
distributed but grouped into homogeneous distributed classes. Under this hypothesis,
although asset returns are still modelled according to a multi-factor model embedded in
correlated elliptical and symmetric noise, we propose to distinguish p groups of assets
that are homogeneous in law. The whitening procedure proposed in [163, 164, 165] which
combines the robust Tyler-M estimator and the RMT results is then applied at the level
of each group. For determining the number of groups p, two classification methods are
investigated: the Ascending Hierarchical Clustering (AHC) method that requires the
number of groups to be either fixed a priori or determined using a predefined criterion,
and the Affinity Propagation (AP) method that self-determines the number of groups.
Applying such covariance matrix estimation on the MinVar and VarMax portfolios
improved the overall performances with respect to several classical estimators such as
the Ledoit & Wolf (LW) shrinkage estimator, the Eigenvalue clipping method, and the
optimal Rotational Invariant Estimator (RIE). In addition, we show the superiority
of the AP algorithm to produce higher performances for both the European universe
(composed of 43 industrial sub-sector, factor and country equity indices) and the US
universe (composed of 30 industrial sub-sector and factor equity indices).

Chapter 3 focuses on complex interactions in multivariate systems to recover accurate
financial network topology. To this end, the Generalized Partial Directed Coherence
measure (GPDC) is used since it assesses both the direction and strength of relationships.
However, as it is closely related to the estimation of the VAR coefficients, it cannot be used
if the VAR model is not estimated in a parsimonious way, i.e. excluding non-significant
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coefficients. To overcome this issue, we proposed an extended subset selection method
(mBTS-TD) combining the modified Backward-in-Time Selection method (mBTS) and
the Top-Down strategy (TD) that aims at removing non-significant coefficients even for
high-dimensional systems. Through Monte Carlo simulations on different classical toy
systems, we prove that the mBTS-TD method clearly outperforms the classical ones
(Lasso method, t-test procedure, TD strategy, and mBTS method) in identifying causal
and non-causal interactions. Then, the GPDC measure is applied to build financial causal
network providing not only a precise network topology (directed weighted network), but
also solving the network dimension puzzle (mBTS-TD method). And finally, computing
the local directed weighted clustering coefficient of such networks allow us to remove
the most systemic assets and improve the Equally Weighted (EW) portfolio performances.

In chapter 4, we proposed a dynamic pre-selection method based on the out and
in triangle patterns of the local directed weighted clustering coefficient to identify and
exclude the most unstable assets (systemic and influenced) to reduce systemic risk in
the initial investment universe. Such an adaptive asset selection process follows the
number of connections in the network and therefore removes the most embedded assets
without imposing any exclusion threshold (chapter 3). The empirical study carried out
on the EW, ERC, MinVar and VarMax portfolios shows that this dynamic asset selection
strategy implemented on the GPDC financial network improves the overall financial
performances when compared to Granger-based approaches or when allocating the whole
universe. Indeed, the asset selection process succeeds in identifying for two universes
(national or sector indices belonging to the MSCI All Country World Index) the worst
performing/riskiest assets before allocating portfolios. What is more, when we associate
our dynamic pre-selection method and the whitening procedure presented in chapter 2,
the results are even improved.

As a continuation of this thesis, several extensions could be considered. In chapter
2, we used a straightforward extension of the consistency theorem (2.7) [163, 164, 165]
in the case where the scatter matrix C is block-Toeplitz structured. In fact, we based
our approach on homogeneous groups of assets with a strong independence hypothesis
between groups. In this case, the almost sure convergence in spectral norm of the
Tyler-M estimate, under the RMT regime, can be simply obtained using arguments
at a group level. A natural question is to see if the consistency theorem still holds if
we impose a complex covariance structure between groups to cope with more realistic
financial situations. Another interesting way is to generalize this whitening procedure
in the case m > T , by using either the main factors identified by the whitening process
on a similar sub-universe or hybrid robust shrinkage covariance matrix estimators
[116, 117, 115, 62, 224]. It would also be interesting to focus on other clustering methods
for identifying homogeneous groups (spectral clustering [225]) and also to examine
recent covariance matrix estimation methods (lassoing eigenvalues [226] and linear
pooling [227]). From a more practical viewpoint, the main factors identified can also
be used to create dynamic factor portfolios, and what is more, such a whitening proce-
dure can be very useful to other finance applications (risk measures, correlation-based
network, clustering methods, etc.) or in other fields such as radar and hyperspectral fields.
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Concerning the parsimonious VAR model and the GPDC estimation accuracy, there
are also several research avenues to be pursued. The case of non-Gaussian noises should
be addressed for subset VAR models. In [211], Qiu et al proposed an elliptical VAR
model based on the Yule-Walker equation [210] and where scatter matrices are estimated
with the Qn estimator [228]. We believe that robust matrix covariance estimators such as
the Tyler-M estimator can provide promising results, even if matrix inversion problems
will arise due to the “pure” collinearity between the lagged variables. In addition,
although the mBTS-TD method behaves rather well for correlated noises (instantaneous
interactions), we are interested in studying both parsimonious estimates in the case of
structural VAR and/or examining more carefully the iGPDC (instantaneous GPDC)
[229]. The case of non-stationary data should also be addressed in future research, which
could be useful for trends in time series such as in macroeconomics. Furthermore, the
mBTS-TD method and the GPDC network-based approach can also be very useful for
the field of neuroscience to understand functional connectivity patterns between different
brain regions.

Finally, based on the last chapter, it would also be interesting to apply this dynamic
pre-selection procedure on nonlinear measures such as the PMIME [73]. We also believe
that our methodology can be used to track market indices by only identifying the most
central assets, which can be very useful for passive strategies. The current method can
be widely extended to different asset classes, such as foreign exchange markets, sovereign
bonds, but also multi-asset portfolios.
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[170] T. Caliński and J. Harabasz. A dendrite method for cluster analysis. Communica-
tions in Statistics, 3(1):1–27, 1974.

[171] B. J. Frey and D. Dueck. Clustering by passing messages between data points.
Science, 315(5814):972–976, 2007.

141



Bibliography

[172] E. Pereda, R. Q. Quiroga, and J. Bhattacharya. Nonlinear multivariate analysis of
neurophysiological signals. Progress in Neurobiology, 77(1-2):1–37, 2005.

[173] Y. Saito and H. Harashima. Tracking of information within multichannel EEG
record - causal analysis in EEG. In N. Yamaguchi and K. Fujisawa, editors, Recent
Advances in EEG and EMG Data Processing, pages 133–146. Elsevier, New York,
1981.
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Résumé

Cette thèse aborde les problèmes d’allocation de portefeuille en étudiant les estimateurs
robustes de la matrice de covariance et la dépendance dynamique entre les actifs financiers
afin d’améliorer la performance globale des stratégies d’allocation basées sur le risque. De
nos jours, il est bien établi que la solution proposée par Markowitz conduit à de mauvaises
performances, en raison des erreurs d’estimation sur les paramètres, notamment pour le
rendement espéré. Malgré plusieurs extensions de la stratégie moyenne-variance au cours
des dernières décennies, la plupart des praticiens préfèrent des modèles plus simples et
plus robustes tels que le portefeuille à variance minimale (MinVar), le portefeuille de
contribution à risque égal (ERC) et le portefeuille de diversification maximale (MDP),
où la matrice de covariance est le seul paramètre. Cependant, deux problèmes principaux
demeurent : premièrement, l’estimateur empirique “classique” (Sample Covariance
Matrix ou SCM) n’est pas optimal dans un cadre non gaussien et sur des échantillons
de petite taille ; deuxièmement, la matrice de covariance ne capture pas la structure
de dépendance entre actifs (effets de contagion et de rétroaction), conduisant à des
évaluations incomplètes des risques de l’univers d’investissement.
La première partie de cette thèse porte sur l’estimation de la matrice de covariance.
Nous développons un estimateur robuste et non bruité adapté à des hypothèses plus
réalistes sur les rendements des actifs, basé sur le M -estimateur de Tyler et la théorie des
matrices aléatoires (RMT). Cet estimateur est adapté aux distributions non gaussiennes
(distributions elliptiques) et montrons que les actifs doivent être de préférence classés en
groupes homogènes avant d’appliquer la méthodologie proposée.
La deuxième partie est consacrée à l’évaluation de la dépendance dynamique entre les
actifs en utilisant la mesure généralisée de cohérence partielle dirigée (GPDC) pour
prendre en compte à la fois la direction et la force des relations causales entre les actifs.
Néanmoins, une estimation näıve du modèle vecteur autorégressif (VAR) conduit à de
mauvais résultats pour la GPDC. Pour capturer avec précision les schémas de diffusion,
nous proposons une estimation parcimonieuse (mBTS-TD) du VAR (suppression des
coefficients non significatifs) en combinant deux méthodes de sous-sélection, la méthode
modified Backward-in-Time Selection (mBTS) et la stratégie Top-Down (TD).
Enfin, dans la dernière partie, nous dérivons du coefficient de clustering un indicateur
adapté au nombre de connexions dans le réseau afin d’éliminer les actifs les plus instables
(systémiques et influencés) avant d’allouer les portefeuilles. De plus, une étude empirique
est réalisée qui montre qu’en combinant les différents résultats des chapitres, nous
arrivons à améliorer significativement les performances des stratégies d’allocation.

Mots-clés: Allocation de portefeuille, Séries temporelles multivariées, Matrice de co-
variance, Matrices aléatoires, Modèle à facteurs, Distributions elliptiques, Vecteur au-
torégressif, Méthodes de sous-sélection, Mesures de causalité, Mesures de causalité
fréquentielle, Réseaux financiers, Coefficient de clustering
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Chapter I

Introduction

I.1 Motivations

Le principal défi de la gestion d’actifs a toujours été de déterminer les allocations
entre actifs financiers afin de maximiser la valeur d’un investissement tout en gérant
efficacement les risques du portefeuille. En 1952, Markowitz [1, 2] a proposé une solution
au problème de sélection d’actifs dans un cadre moyenne-variance, en supposant que
les investisseurs ne se soucient que du rendement espéré (la moyenne) et du niveau de
risque (la variance) de leur portefeuille. Les pondérations optimales entre les actifs sont
donc obtenues en maximisant le rendement espéré pour un niveau de risque donné, ou en
minimisant le risque pour un rendement espéré donné. Tous ces différents portefeuilles
forment la frontière efficiente qui représente le meilleur rendement espéré pour un niveau
de risque donné ou vice versa. Pour un investisseur, elle représente le compromis entre
le risque et le rendement espéré lors de l’allocation du portefeuille. De plus, la frontière
efficiente illustre aussi les avantages de la diversification, car un portefeuille bien diversifié
peut réduire le risque tout en préservant le même niveau de rendement espéré, voire
augmenter le rendement du portefeuille sans en augmenter le risque. Malgré son cadre
théorique puissant, cette stratégie souffre d’importants problèmes en pratique. Tout
d’abord, les paramètres ne sont pas connus a priori et doivent être estimés, entrâınant
des erreurs d’estimation, surtout pour le rendement espéré. Par exemple, Chopra et
Ziemba dans [3] ont montré que les erreurs d’estimation sur la moyenne sont environ dix
fois supérieures à celles sur la variance, et vingt fois supérieures pour les covariances.
Deuxièmement, la solution moyenne-variance est très sensible aux paramètres, là encore,
principalement pour les rendements espérés [4, 5]. Si ces limitations sont ignorées, le
portefeuille moyenne-variance obtenu sera très concentré avec des pondérations extrêmes,
une composition instable dans le temps et de mauvaises performances [6, 7, 8].

Pour remédier à ces limites, plusieurs extensions sont apparues dans la littérature
au cours des cinquante dernières années. Ces extensions peuvent être divisées en deux
classes. La première classe comprend l’approche bayésienne, qui permet d’estimer
des paramètres inconnus en réduisant les erreurs d’estimation, comme la distribution
prédictive des rendements [9, 10], l’approche Bayes-Stein basée sur des estimateurs
de rétrécissement (shrinkage) [11, 12, 13, 14], ou des modèles d’évaluation d’actifs
fournissant des distributions antérieures informatives pour les rendements futurs [15, 16].
La seconde classe comprend des approches plus hétérogènes, telles que des règles robustes
d’allocation de portefeuille utilisant des paramètres bornés ou des intervalles de confiance
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[17, 18, 19], des restrictions sur les moments basées sur des modèles à facteurs [20],
l’estimation de la matrice de covariance [21, 22, 23], ou des contraintes d’optimisation
spécifiques [24, 25, 26]. Bien que ces extensions réduisent la sensibilité du portefeuille à
l’estimation des paramètres, elles augmentent cependant la complexité de calcul tout en
ne garantissant pas de meilleurs performances [27, 28]. De plus, la plupart des praticiens
préfèrent des modèles plus simples et plus robustes dans lesquels les rendements espérés
sont mis de côté et où l’estimation de la matrice de covariance est le seul objectif.

Les stratégies d’allocation alternatives les plus connues sont le portefeuille équipondéré
(EW) [28] et les stratégies d’allocation basées sur le risque telles que le portefeuille à
variance minimale (MinVar) [3], le portefeuille de contribution à risque égal (ERC) [29]
et le portefeuille de diversification maximale 1 (MDP) [30].

Le portefeuille EW est la manière la plus simple d’allouer des portefeuilles, puisque
les actifs sont alloués avec les mêmes poids sans aucune estimation de paramètres ni
d’optimisation complexe. Dans le cadre moyenne-variance, ce portefeuille est optimal
seulement si les actifs ont les mêmes rendements espérés, variances et covariances.
Cependant, si les niveaux de risque sont très hétérogènes, cette stratégie conduit à une
mauvaise diversification des risques, puisque même si les actifs ont le même poids dans
le portefeuille, la contribution au risque total du portefeuille est plus élevée pour les
actifs risqués que pour les actifs faiblement risqués. Néanmoins, malgré ses défauts, le
portefeuille EW est largement utilisé en pratique par les investisseurs, comme le montrent
[31, 32, 33] et peut même surpasser en termes de performance diverses extensions de la
stratégie moyenne-variance [28].

Comme suggéré dans [3], la façon la plus simple de mettre de côté le rendement
espéré de la stratégie moyenne-variance est de supposer que tous les actifs ont le même
rendement espéré. Sous cette hypothèse, le portefeuille optimal est le portefeuille MinVar.
Cette stratégie minimise la variance du portefeuille final et sa solution est unique. Dans
[34, 35, 36, 37], les auteurs ont montré que les portefeuilles MinVar améliorent les
rendements avec des volatilités plus faibles par rapport aux stratégies pondérées par les
capitalisations boursières, comme par exemple le S&P 500 ou le CAC 40. Depuis la crise
financière de 2007-2008, les portefeuilles MinVar ont été largement utilisés par les in-
vestisseurs offrant des performances supérieures aux stratégies factorielles traditionnelles
(dividende, croissance, momentum, value, etc.), et renforçant ainsi le concept d’anomalie
de faible volatilité2 sur les marchés [38, 39]. Cependant, dans la pratique, la stratégie
MinVar conduit à des portefeuilles très concentrés, en particulier, quand les marchés sont
très volatils et donc fortement corrélés, ce qui nécessitent l’intégration de contraintes
individuelles afin de réduire le risque idiosyncratique.

La stratégie de parité des risques a été utilisée pour la première fois par la société
de gestion d’actifs Bridgewater dans les années 1990. La stratégie initiale allouait les
actifs en proportion de l’inverse de leur volatilité, sans tenir compte des covariances.

1Dans les chapitres suivants, le portefeuille le MDP sera appelé portefeuille “variété maximale” (Var-
Max).

2L’anomalie de faible volatilité est l’observation que les actions à faible volatilité peuvent offrir des
rendements plus élevés que les actions à forte volatilité, ce qui remet en question les hypothèses sur le
risque et le rendement.
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I.1 Motivations

Dans [40, 41], l’auteur a introduit le concept de budget de risque en utilisant à la fois les
variances et covariances, étendant ainsi la stratégie initiale. Cette stratégie, désormais
plus connue sous le nom de portefeuille ERC grâce à [29], se situe à mi-chemin entre
les portefeuilles EW et MinVar, répartissant les actifs en fonction de leur contribution
au risque du portefeuille. Elle préserve les avantages du portefeuille EW en investissant
dans tous les actifs, mais améliore la diversification des risques lorsque ceux-ci sont
hétérogènes dans l’univers d’investissement. De plus, il est maintenant bien établi que
la diversification des risques peut améliorer le rendement des portefeuilles [42, 43, 44].
Cependant, il convient de noter que pour des univers en grande dimension, l’algorithme
ERC est coûteux en temps de calcul et ne converge pas toujours [45]. Depuis ces travaux,
différentes approches de la parité des risques et/ou extensions de l’ERC ont été proposées
en tenant compte soit de l’exposition au marché, de la “value-at-risk”, de “l’expected
shortfall”, ou encore du risque systématique, etc. [46, 47, 48, 49, 50, 51].

Choueifaty et Coignard dans [30] ont proposé une stratégie alternative, basée
directement sur la diversification de portefeuille afin de réduire les expositions aux
risques communs, offrant une alternative efficiente aux portefeuilles pondérés par les
capitalisations boursières [30, 37, 52, 53]. Le portefeuille de diversification maximale
(MDP) maximise le ratio de la moyenne pondérée des volatilités des actifs sur la volatilité
totale du portefeuille. Pour des portefeuilles “long-only”3, l’objectif de la maximisation
du ratio de diversité (DR ) est d’acheter les risques les plus indépendants possibles au
sein d’un univers pour réduire la volatilité du portefeuille. En effet, si l’on considère
deux actifs indépendants avec les mêmes volatilités, le DR est égal à

√
2, réduisant ainsi

la volatilité du portefeuille de
√

2 et de
√
m pour m actifs indépendants. De plus, si

le rendement moyen des actifs augmente proportionnellement avec la volatilité, alors le
portefeuille MDP est le portefeuille tangent à la frontière efficiente [35], présentant le
ratio de Sharpe le plus élevé [54]. Le portefeuille MDP posséde aussi plusieurs propriétés
d’invariance intéressantes [52] : invariant par duplication, c’est-à-dire que si un actif
est dupliqué dans l’univers, alors l’allocation MDP sera inchangée ; invariant au levier,
c’est-à-dire que la pondération reste inchangée quelle que soit la politique de l’entreprise
en matière de levier ; invariant par combinaison linéaire positive (invariance po-li-co),
c’est-à-dire que le MDP reste inchangé si une combinaison linéaire positive d’actifs de
l’univers est ajoutée en tant que nouvel actif. Contrairement au MDP, le portefeuille
EW ne vérifie pas ces propriétés d’invariance, le portefeuille MinVar satisfait uniquement
l’invariance par duplication, et l’ERC uniquement l’invariance au levier. Cependant,
comme pour le portefeuille MinVar, la stratégie MDP souffre d’une forte concentration
de portefeuille nécessitant des contraintes individuelles [37]. De plus, ces stratégies
présentent un ordre naturel de volatilité de portefeuille, où le portefeuille MinVar est
sans surprise le moins volatil, le portefeuille MDP est le deuxième moins volatil, suivi du
portefeuille ERC, et enfin le portefeuille EW [29].

Malgré le fait que ces stratégies d’allocation se concentrent uniquement sur l’estimation
de la matrice de covariance, cette étape est cruciale et ne doit pas être négligée afin
d’obtenir des portefeuilles stables avec de meilleures performances [55, 56, 57, 58, 23, 59,
60, 61, 62, 63]. L’estimation d’un paramètre tel que la matrice de covariance à l’aide d’une
méthode statistique donnée est une tâche complexe. La valeur du paramètre doit être
aussi proche que possible de sa valeur théorique. En modélisation financière, l’estimateur

3Portefeuille “long-only” : toutes les quantités investies sont nécessairement supérieures ou égales à 0.
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de la matrice de covariance le plus largement utilisé est la “Sample Covariance Matrix”
(SCM). La SCM est l’estimateur optimal dans le cas où les échantillons multivariés sont
gaussiens, cöıncidant dans ce cas avec l’estimateur du maximum de vraisemblance (MLE).
Soit R = (r1, . . . , rT ) ∈ Rm×T la matrice des observations où ∀t ∈ [1, T ], rt est un vecteur
de m variables gaussiennes indépendantes de moyenne nulle et de matrice de covariance
Σ. Alors, lorsque T →∞ pour un m fixé, la loi des grands nombres garantit :∥∥∥∥ 1

T
R R′ −Σ

∥∥∥∥ a.s.−−→ 0

Toutefois, cet estimateur biaisé présente deux inconvénients majeurs : premièrement,
l’estimation devient inexacte lorsque le nombre d’observations T n’est pas trop grand
par rapport aux variables m (échantillons de petite taille) ; deuxièmement, le manque
de robustesse pour les distributions non gaussiennes (asymétrie et queues de distribution
épaisses). Ces problèmes sont maintenant bien identifiés dans de nombreux domaines
tels que le traitement du signal et la finance, confirmant les très mauvaises performances
de l’estimateur SCM. De plus, il est aussi bien connu que les rendements des actifs ne
sont pas gaussiens [64, 65, 66, 67, 68] présentant généralement des faits stylisés tels que
de l’asymétrie, des queues de distribution épaisses et de la dépendance dans les queues
de distribution, entrâınant donc de grandes erreurs d’estimation. L’hypothèse faite sur
la distribution sous-jacente joue un rôle fondamental dans la précision de l’estimation et
doit donc conditionner le choix de l’estimateur.

Un autre aspect essentiel à prendre en compte dans les problèmes d’allocation de
portefeuille est la dépendance dynamique entre les actifs financiers, y compris les effets
de contagion et de rétroaction. En effet, selon leur importance dans le marché, leur
fragilité économique, leur activité commerciale et/ou leur position géographique, les ac-
tifs ne réagiront pas de manière identique à un choc de marché. Ignorer le caractère
systémique ou influencé d’un actif conduit nécessairement à des évaluations incomplètes
des risques sur l’univers d’investissement. Il est donc essentiel d’évaluer les relations
de cause à effet entre les actifs, puisque la matrice de covariance utilisée comme seul
paramètre dans les stratégies d’allocation mentionnées ci-dessus, ne quantifie le risque
qu’en fonction des volatilités et des similitudes de comportement. Au cours des deux
dernières décennies et depuis les travaux fondateurs de Mantegna [69], l’utilisation de
la théorie des réseaux pour représenter la structure de dépendance des marchés (réseau
financier) a joué un rôle important dans la littérature sur les problèmes d’allocation de
portefeuille [70, 71, 72, 73, 74, 75, 76]. Cette approche fournit des indications utiles pour
la sélection d’actifs permettant de comprendre les interactions complexes. Cependant,
les approches couramment utilisées pour récupérer la topologie du réseau, telles que la
matrice de corrélation ou les tests de non-causalité à la Granger [77], conduisent à des
informations partielles, ne fournissant jamais d’indications à la fois sur la direction et la
force des relations causales. Afin de déterminer une topologie de réseau précise, il est
nécessaire d’utiliser des mesures de dépendance qui évaluent à la fois la direction et la
force des relations causales.

160



I.2 Limites des approches existantes

I.2 Limites des approches existantes

L’estimation des matrices de covariance est un problème classique en statistiques multi-
variées. Comme nous l’avons déjà mentionné, l’estimation des matrices de covariance est
conditionnée à la fois par le nombre de variables m par rapport au nombre d’observations
T , et par la distribution multivariée sous-jacente des variables. Lorsque les variables sont
gaussiennes et que T >> m, l’estimateur SCM Σ̂scm (1.1) converge presque sûrement
vers la matrice de covariance théorique Σ. Cependant, en modélisation financière, ces hy-
pothèses ne sont pas remplies. En pratique, peu d’observations historiques sont utilisées
(1 ou 2 ans de rendements quotidiens), afin de ne conserver que les informations les
plus récentes dans le processus d’optimisation, et les rendements des actifs ne sont pas
gaussiens (asymétrie, queues de distribution épaisses, et dépendance dans les queues de
distribution). Par conséquent, plusieurs approches ont été proposées pour traiter ces
problèmes, telles que l’estimateur de Ledoit & Wolf (LW) [58], l’estimation de la ma-
trice de covariance basée sur les modèles à facteurs [22, 90], la méthode de découpage
des valeurs propres (“Eigenvalue clipping”) [55, 56] utilisant la distribution des valeurs
propres de Marčenko-Pastur [92], et l’estimateur invariant par rotation (RIE) [98, 63, 99].

� estimateur de LW (1.3) : particulièrement adapté aux rendements des actifs car il
utilise les informations du marché (MEDAF [83]) dans le processus de rétrécissement
(shrinkage),

� modèles à facteurs (1.4) : capturer les facteurs de risque communs et les utiliser
pour réduire les problèmes de dimension (K < m),

� découpage des valeurs propres (“Eigenvalue clipping”) (1.6) : identifier la partie
signale (ou facteur) de la matrice de covariance grâce à la borne supérieure de la loi
de Marčenko-Pastur [92], et ainsi obtenir un estimateur débruité de la matrice de
covariance des observations.

� estimateur invariant par rotation (RIE) (1.7) : utilisation du chevauchement entre
les vecteurs propres théoriques et de l’échantillon pour corriger l’estimation.

Néanmoins, comme ces estimateurs opèrent sur la SCM, ils ne sont pas adaptés
aux distributions non gaussiennes. Pour gérer les distributions non gaussiennes, les M -
estimateurs [105, 106, 103, 104, 107] et notamment le M -estimateur de Tyler[108] offrent
des alternatives intéressantes à la SCM, grâce à leurs propriétés de robustesse pour les
distributions elliptiques. Cependant, ces estimateurs ne sont pas exempts des problèmes
liés à la taille de l’échantillon et nécessitent généralement que m << T , conduisant
également à combiner les méthodes présentées ci-dessus pour débruiter l’estimation
[116, 117, 118, 115, 119, 62]. De plus, l’estimation d’une matrice de covariance suppose
que les observations proviennent d’une seule distribution multivariée (gaussienne ou
non), ce qui semble assez restrictif pour la modélisation des rendements.

Afin de modéliser la structure et la dynamique des marchés financiers par le biais des
réseaux financiers, il est nécessaire de retrouver la topologie du réseau le plus précisément
possible. Pour obtenir des informations exhaustives sur les relations entre actifs et pour
capturer avec précision les schémas de diffusion, les mesures utilisées doivent prendre
en compte l’existence, la direction et la force des interactions, sinon il est légitime de
supposer qu’il manque des informations sur la structure de dépendance. Portant, les
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mesures les plus fréquemment utilisées pour récupérer la topologie du réseau ne sont pas
pleinement satisfaisantes. Les réseaux basés sur la corrélation nécessitent des outils de
réduction de dimension [69, 128], sinon ils ne sont pas adaptés en pratique et la structure
hiérarchique ne peut être retrouvée. Ils conduisent également à des réseaux non dirigés
(pondérés/non pondérés) et ne permettent pas de capturer les diffusions d’informations
entre actifs (effets de contagion et de rétroaction). En effet, si par exemple un actif
fait défaut, le schéma de contagion ne sera pas identifiable. À cette fin, les tests de
non-causalité à la Granger peuvent aider à capturer les schémas de diffusion entre les
actifs (réseaux dirigés). Ils sont cependant basés sur l’estimation d’un modèle VAR qui
peut échouer pour de nombreuses raisons bien connues (ordre du modèle p incorrect
[141, 146, 147, 148], systèmes en grande dimension [149, 150, 151, 140] et des bruits blancs
corrélés [132]). Donc, si une attention toute particulière n’est portée à l’estimation du
VAR, les relations temporelles ne seront pas capturées avec précision. Qui plus est, bien
qu’ils saisissent les schémas de diffusion, ils ne quantifient pas la force des relations, ce qui
est problématique pour établir l’intensité des interactions et donc le risque systématique
des actifs. À cet effet, des mesures de causalité non linéaires telles que le transfert
d’entropie (TE) peuvent être une alternative possible, mais il est difficile d’obtenir des
estimations précises avec des systèmes en grande dimension et des échantillons de petite
taille [135, 140], nécessitant là aussi des méthodes de réduction de dimension [156, 155, 73].

Enfin, une fois le réseau financier construit, les mesures de centralité ou le coefficient
de clustering sont généralement utilisés pour sélectionner un nombre fixe d’actifs (les plus
périphériques ou les moins systémiques) indépendamment du niveau de connectivité dans
le réseau [124, 71, 72]. L’indicateur utilisé doit donc s’adapter au nombre de connexions
dans le réseau et ne retirer que les actifs les plus imbriqués à chaque période, car selon
les cycles de marché, les actifs sont plus ou moins connectés les uns aux autres, et il n’est
donc pas pertinent de toujours éliminer le même nombre d’actifs [70, 125, 73, 74]. Si
le réseau est très déconnecté, peu ou pas d’actifs devront être éliminés, à l’inverse, si le
réseau est très connecté, un nombre beaucoup plus important devra être éliminé.

I.3 Objectifs

Dans cette thèse, nous abordons les questions d’allocation de portefeuille à travers des
approches distinctes mais complémentaires visant à améliorer la performance globale des
stratégies d’allocation basées sur le risque.

Le premier objectif est de développer un estimateur robuste et débruité de la matrice
de covariance adapté à des hypothèses plus réalistes sur le rendements des actifs. Cet
estimateur doit évidemment être adapté aux distributions non gaussiennes qui jouent un
rôle fondamental dans la précision de l’estimation, mais doit également tenir compte du
fait que les rendements des actifs ne sont pas homogènes en distribution.

Le second objectif est d’évaluer la dépendance dynamique entre les actifs financiers afin
de retrouver la topologie du réseau et identifier les actifs les plus imbriqués/systémiques.
Les mesures de dépendance utilisées doivent être adaptées aux systèmes en grande di-
mension, mais doivent également quantifier la force causale pour capturer avec précision
les schémas de diffusion.

162



I.4 Contributions principales

Le troisième objectif est de développer un indicateur de réseau adapté au nombre
de connexions du réseau et de ne retirer que les actifs les plus instables (systémiques et
influencés) à chaque période, afin de réduire le risque systémique au sein de l’univers
d’investissement avant d’allouer les portefeuilles.

Enfin, le dernier objectif de cette thèse est de combiner ces différentes approches pour
proposer une méthodologie complète d’allocation de portefeuille, où le risque systémique
a été réduit par rapport à l’univers d’investissement initial et où la matrice de covariance
des actifs restants est estimée avec un estimateur robuste et débruité.

I.4 Contributions principales

I.4.1 Chapitre 2 : Estimation robuste de la matrice de covari-
ance

Afin de refléter le comportement très spécifique des rendements, nous les modélisons à
l’aide d’un modèle multi-facteurs avec un bruit additif multivarié corrélé et non-Gaussien,
en supposant que le nombre de facteurs inconnus K détermine la partie non diversifiable
(risques communs) des rendements et que le bruit additif appartient aux distributions
elliptiques et est corrélé selon une structure de Toeplitz. Dans ce cadre, nous appliquons
le M -estimateur de Tyler (1.10) et les résultats de la RMT (1.6), de manière à filtrer
la partie bruit des observations et donc d’estimer la matrice de covariance engendrée
par le sous-espace des K vecteurs propres liés aux K plus fortes valeurs propres (facteurs).

Le M -estimateur de Tyler appliqué au modèle (1.29) s’avère être l’estimateur “le plus
robuste” [108, 114] pour la “vraie” matrice de covariance C, et également indépendant
de la distribution τt. De plus, le Théorème de consistance trouvé dans [163, 164, 165]
montre que si C admet une structure de Toeplitz, alors l’application d’un opérateur de
rectification de Toeplitz T (.) sur Ĉtyl fournit un estimateur de C qui converge presque
sûrement en norme spectrale sous le régime RMT, c’est-à-dire lorsque T,m → ∞ et
que m/T → c ∈]0,∞[. Ce théorème assure la convergence de la matrice de covariance
des observations vers la matrice de covariance du bruit additif, indépendamment de la

variance du bruit. Une fois que la matrice de covariance C̃tyl = T
(
Ĉtyl

)
est estimée,

les observations peuvent être débruitées et nous pouvons ainsi appliquer les résultats de
la RMT dans les mêmes conditions que celles stipulées par la théorie, c’est-à-dire une
distribution gaussienne multivariée non corrélée avec une variance unitaire. Ensuite, il
est possible d’identifier les K plus grandes valeurs propres de la matrice de covariance
déterminées grâce à la borne supérieure de la loi de Marčenko-Pastur [92], et ainsi obtenir
un estimateur robuste et débruité de la matrice de covariance des observations (processus
de débruitage).

Toutefois, le processus de débruitage proposé ci-dessus est réalisé en supposant
implicitement que les rendements des actifs sont tirés d’une loi multivariée unique et
sont donc homogènes en distribution. En effet, la structure de Toeplitz caractérise un
processus stationnaire, qui, dans notre cas, signifierait que les rendements des actifs
seraient tous issus d’un même processus et qui plus est spatialement stationnaire4. La

4Par spatialement stationnaire, nous entendons la stationnarité de la structure de dépendance des
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stationnarité temporelle des rendements est généralement observable, mais pas la station-
narité spatiale entre les actifs. Dans le cas où les actifs ont une distribution hétérogène,
l’hypothèse de structure de Toeplitz sur la matrice de covariance C est difficile à vérifier.
Sous cette hypothèse, si l’ordre d’observation des actifs change, les covariances entre deux
actifs ne devraient pas changer, alors qu’en pratique cette hypothèse n’est pas vérifiée.
Compte tenu de ce phénomène, nous supposons maintenant que les rendements des actifs
peuvent être distribués de manière non homogène, ce qui étend les résultats présentés
dans [168] pour ne plus être dépendant de l’ordre d’observation. Nous proposons donc
de diviser les m actifs en p < m groupes, chacun composé d’actifs {mq}pq=1 (avec∑p

q=1mq = m), et formé pour être composé d’actifs ayant des distributions similaires.
Sous cette hypothèse de rendements non homogènes, nous proposons de former des
groupes d’actifs avant d’appliquer le processus de débruitage. Les groupes sont construits
à l’aide de la méthode de classification hiérarchique ascendante (AHC) qui exige que le
nombre de groupes soit fixé a priori ou déterminé à l’aide d’un critère prédéfini (critère
de Caliński-Harabasz (CH) [170]), et de la méthode “Affinity Propagation” (AP) [171]
qui détermine elle-même le nombre de groupes.

Des tests empiriques sont effectués sur deux univers d’actifs (univers d’actions eu-
ropéennes et américaines), tous deux alloués soit en Variété Maximale5 (VarMax) ou en
Minimum Variance (MinVar). Les résultats sont comparés à ceux obtenus avec plusieurs
estimateurs classiques tels que Ledoit & Wolf (1.3), méthode “Eigenvalue clipping” (1.6),
et RIE (1.7).

I.4.2 Chapitre 3 : Mesures de causalité dans le domaine
fréquenciel et estimation parcimonieuse du VAR

La représentation VAR (1.11) permet, soit dans le domaine temporel, soit dans le domaine
fréquentiel, de définir les interactions entre les séries temporelles. Son utilisation dans
de nombreux domaines vient de son cadre théorique simple qui permet de comprendre
la structure dynamique des systèmes en capturant les relations complexes des séries
temporelles. Cependant, dans le domaine temporel, les tests de non-causalité à la
Granger ne fournissent que des informations partielles sur ces interactions, puisqu’ils
n’évaluent que l’existence et la direction des relations causales sans information sur la
force causale. En neurosciences, plusieurs mesures de connectivité dans le domaine des
fréquences ont été développées pour résoudre ce problème. Il convient de distinguer
deux types de mesures de connectivité : premièrement, les mesures de couplage telles
que les mesures de cohérence et de cohérence partielle [172], respectivement liées à la
corrélation croisée ou à la corrélation croisée partielle ; deuxièmement, les mesures de
causalité fréquentielle capables de quantifier la force des relations causales, étendant
ainsi le concept de causalité à la Granger, comme la mesure de cohérence dirigée (DC)
[173], la mesure de fonction de transfert direct (DTF) [174, 175], la mesure de cohérence
partielle dirigée (PDC) [176, 177], et la mesure généralisée de la cohérence partielle
dirigée (GPDC) [178]. Toutefois, ces mesures ne fournissent pas les mêmes informations
[172, 179, 180]. La PDC et la GPDC sont des mesures de causalité directe, tandis que la
DC et la DTF mesurent à la fois les causalités directes et indirectes. La différence entre
la causalité directe et indirecte est illustrée sur la Fig. 1.4.

actifs.
5Variété Maximale (VarMax) faisant référence au portefeuille de diversification maximale [30].
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Ici, nous nous focalisons seulement sur la mesure GPDC, car contrairement à la
DC/DTF, elle représente la force relative d’une interaction par rapport à une source de
signal donnée et est donc plus adapté pour capturer les schémas de diffusion entre les
séries temporelles. Qui plus est, la GPDC résout les défauts principaux de la PDC [183]
: i) elle n’est pas affectée lorsque plusieurs signaux sont émis par une source donnée ;
ii) elle est invariante à la variance du bruit blanc ; iii) elle permet d’interpréter la force
causale absolue. Sur la Fig. 1.6, nous donnons un exemple de la mesure GPDC pour la
structure causale définie à la Fig. 1.4.

Cependant, bien que la GPDC soit une mesure puissante pour détecter et quantifier
les relations causales dans les systèmes multivariés par rapport aux tests de non-causalité
à la Granger, elle nécessite une estimation précise du modèle VAR. En effet, comme les
coefficients du VAR sont directement utilisés pour calculer la GPDC, le problème est
intrinsèquement lié à l’estimation du VAR et il est évident qu’une estimation incorrecte
entrâınera à la fois des causalités fallacieuses et des forces causales imprécises (erreurs en
cascade). Un modèle VAR classique (modèle VAR non restreint) suppose qu’une série
temporelle dépend de toutes les variables retardées du système. Cette hypothèse est
très forte, voire déraisonnable dans le cas de modélisation de systèmes multivariés qui
admettent des structures plus parcimonieuses avec seulement quelques coefficients non
nuls, car dans un système multivarié, il est inhabituel que toutes les séries temporelles
soient mutuellement dépendantes à chaque retard. L’estimation classique du VAR
qui se limite à déterminer l’ordre du modèle “optimal” p, conduit à l’estimation de
coefficients non significatifs et à de forts biais sur la mesure GPDC. Il est donc essentiel
de procéder à une estimation précise des coefficients VAR, en particulier pour ceux qui
sont non significatifs, sinon, des causalités fallacieuses apparâıtront, biaisant les “vraies”
causalités, en raison à la fois de l’effet de compensation dans l’estimation du VAR, mais
aussi de la propriété de normalisation de la GPDC (1.34). L’estimation classique du
VAR n’est donc pas adaptée aux modèles parcimonieux, induisant des erreurs en cascade
dans la GPDC, qui peuvent être décuplées pour des systèmes en grande dimension
et/ou des échantillons de petite taille [184]. À cette fin, des estimations restrictives des
VAR (méthodes de sous-sélection) peuvent aider à estimer uniquement les coefficients
significatifs afin de réduire les erreurs en cascade tant sur la partie causale que non causale.

Pour déterminer la meilleure estimation possible du VAR, il faut idéalement tester
tous les sous-ensembles possibles du VAR et sélectionner le modèle optimal pour un
critère donné. En pratique, cette procédure est difficilement réalisable, car même pour
de petits m et p, le nombre de possibilités est énorme (2m

2p possibilités). Pour faire
face à ce “fléau de la dimension”, des procédures alternatives ont été développées. Dans
la littérature relative aux modèles VAR, trois procédures peuvent être envisagées pour
supprimer les coefficients non significatifs : premièrement, des procédures basées sur un
critère d’information pour ajouter ou supprimer des coefficients (stratégie Bottom-Up
(BU), stratégie Top-Down (TD) [141] et la méthode modified Backward-in-Time Selection
(mBTS) [151]) ; ensuite, des procédures utilisant des tests d’hypothèses, comme le t-test
(TT), le rapport de vraisemblance et le test de Wald [141, 149, 150] ; et enfin, des
procédures basées sur des méthodes de rétrécissement (shrinkage) comme la régression
Ridge [185], Lasso [186], et Elastic-Net [187].
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Le problème ici est évidemment d’utiliser la méthode de sous-ensemble la plus
efficace en termes de précision de l’estimation des coefficients VAR, mais aussi de
pouvoir travailler sur des systèmes en grande dimension, afin d’évaluer la structure et
la dynamique des marchés financiers. Selon cette idée, nous proposons de combiner la
méthode mBTS avec la stratégie TD (mBTS-TD). Nous utilisons d’abord la méthode
mBTS pour estimer les coefficients VAR, car elle inclut un à un seulement les termes
qui améliorent la prédiction de l’équation à partir du modèle VAR “nul”, et permet
ainsi de travailler avec des systèmes en grande dimension comme K = 20 dans [151].
De plus, comme cela a déjà été montré dans [184], la méthode mBTS améliore con-
sidérablement la précision de la GPDC. Toutefois, un retard maximal pmax doit être fixé
a priori, conduisant s’il est trop faible à un modèle sous-dimensionné où la dynamique
interne du système n’est pas complètement capturée, et inversement si pmax est trop
grand, des variables retardées indésirables apparâıtront probablement dans le modèle,
révélant des causalités fallacieuses. Ainsi, pour être moins dépendant du choix de pmax,
nous utilisons également la stratégie TD. Bien qu’elle soit très sensible à l’estimation
initiale du VAR, dans notre cas, elle est déjà appliquée à un modèle parcimonieux,
nous permettant seulement de tester la significativité des variables dans la direction
opposée afin de produire si nécessaire un modèle plus parcimonieux lorsque pmax est élevé.

En utilisant des simulations de Monte Carlo, nous comparons notre méthode de
sélection de sous-ensemble étendue (mBTS-TD) aux méthodes de sous-ensemble clas-
siques (TD, Lasso, TT et mBTS). Toutes les méthodes de sous-ensemble améliorent la
précision par rapport à l’estimation classique du VAR et sont donc mieux adaptées.
Néanmoins, la méthode mBTS-TD se distingue clairement des quatre autres méthodes
en réduisant considérablement les erreurs en cascade, tant sur la partie causale que non
causale. Qui plus est, nous montrons également que la méthode mBTS-TD offre une
plus grande précision sur la GPDC que les méthodes mBTS et TT, quelle que soit la
valeur de pmax choisie. Par ailleurs, un travail récent a aussi montré [140] que les mesures
linéaires (non-causalité à la Granger et GPDC) pouvaient offrir de bonnes performances
par rapport aux mesures non linéaires (TE [152] et PMIME [156]) sur des systèmes non
linéaires, en particulier lorsque les VAR sont estimés avec des méthodes de sous-ensemble.

Enfin, nous utilisons la mesure GPDC, estimée avec la méthode mBTS-TD pour
modéliser la structure de dépendance des marchés financiers. Cette approche nous per-
met non seulement d’obtenir une topologie de réseau précise tenant compte à la fois de la
direction et de la force des relations entre actifs via la GPDC, mais résout également le
problème de la dimension via mBTS-TD, qui produit une structure causale parcimonieuse.
Pour finir, nous appliquons sur le réseau financier obtenu le coefficient de clustering [127]
afin d’exclure les actifs les plus systémiques, améliorant ainsi les performances du porte-
feuille EW. À notre connaissance, nous sommes les premiers à appliquer la GPDC aux
réseaux financiers, même si la PDC ou la GPDC ont déjà été appliquées dans le domaine
des neurosciences [190, 191, 192].
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I.4.3 Chapitre 4 : Réseaux financiers basés sur la GPDC et
sélection d’actifs

Dans ce dernier chapitre, afin d’obtenir une méthodologie complète pour les problèmes
de sélection d’actifs, nous proposons un indicateur dynamique pour identifier dans les
réseaux les actifs présentant des risques majeurs en raison de leur influence (systémique),
ou au contraire, ceux trop influencés pour se détacher rapidement d’un choc de marché.
Ignorer ces actifs dans le processus de sélection conduit inévitablement à sous-estimer les
risques du portefeuille, en particulier pour les stratégies internationales ou multi-actifs.
Ainsi, le fait d’identifier et de retirer les actifs instables de l’univers avant d’allouer les
portefeuilles améliore la diversification des risques dans le sens où les actifs restants
sont moins interconnectés. Une telle présélection peut également réduire les erreurs
d’allocation d’actifs puisqu’elle est complémentaire à l’utilisation de la matrice de
covariance qui ne quantifie pas les schémas de diffusion. Par exemple, une stratégie
diversifiée recherchera les actifs les moins corrélés, mais les corrélations ne reflètent
pas les interconnexions et un actif faiblement corrélé peut s’avérer potentiellement
très systémique comportant une nouvelle prime de risque (la crise des subprimes aux
états-Unis, la crise des dettes souveraines en Italie et en Espagne, etc.). Même si les
mesures de centralité ou le coefficient de clustering sont des outils utiles pour identifier
ces actifs dans la théorie des réseaux [124, 70, 71, 125, 72, 73, 74], ils ne permettent pas
d’éliminer un nombre variable d’actifs selon la structure du réseau. Dans la sélection
de portefeuille, ces mesures sont utilisées pour sélectionner/supprimer un nombre fixe
d’actifs (les plus périphériques ou les moins systémiques) et ensuite allouer le portefeuille
quel que soit le niveau de connectivité dans le réseau [124, 71, 72]. Mais, en fonction
des événements économiques/politiques ou des cycles de marché, les actifs sont plus
ou moins connectés entre eux et, selon ces cycles, il n’est pas raisonnable de toujours
éliminer le même nombre d’actifs [70, 125, 73, 74]. Si le réseau est faiblement connecté,
peu ou pas d’actifs devront être éliminés, à l’inverse, si le réseau est très connecté, un
nombre beaucoup plus important devra être éliminé.

À partir du coefficient de clustering pondéré et dirigé [127], nous proposons de
développer un indicateur dynamique essentiellement basé sur les schémas de diffusion
sortants (1.25) et entrants (1.24), en négligeant les schémas indirects (cycles ou mid-
dleman). Le schéma sortant identifie les effets causaux (houtj 6= 0) et peut donc être
directement assimilé à des actifs systémiques, tandis que le schéma entrant identifie
les actifs causés (hinj 6= 0) et donc influencés ou qui réagiront fortement si un choc de
marché se produit. Cette procédure de sélection d’actifs présente plusieurs avantages.
Premièrement, elle se concentre essentiellement sur les actifs instables (systémiques ou
influencés) afin de réduire le risque systémique au sein de l’univers. Deuxièmement,
par construction, elle s’adapte au nombre de connexions dans le réseau et ne retire
donc que les actifs les plus imbriqués à chaque période. En effet, si le réseau est très
déconnecté, aucun actif ne sera retiré. Par conséquent, il n’est pas nécessaire de fixer
un nombre d’actifs à exclure ou de fixer un seuil d’exclusion sur le coefficient de clustering.

Le processus de sélection dynamique d’actifs proposé est appliqué aux réseaux
financiers basés sur la GPDC (chapitre 3) et examiné sur deux univers d’actions. Le
premier univers est composé d’indices nationaux appartenant au MSCI ACWI (Indice
mondial) et le second est composé d’indices sectoriels GICS [193] au sein de quatre
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zones géographiques (MSCI Marchés émergents, MSCI Europe, MSCI Japon, MSCI
États-Unis). Ces deux univers nous permettent de nous pencher sur des caractéristiques
différentes telles que le temps de propagation entre les zones (effets de rétroaction) et
les effets macroéconomiques mondiaux/régionaux pour l’univers national et les questions
d’activité économique au sein ou entre les zones géographiques pour l’univers sectoriel.

La méthodologie est appliquée sur les portefeuilles EW, ERC, MinVar et VarMax6,
en utilisant d’abord l’estimation SCM pour les stratégies d’allocation basées sur la
matrice de covariance. En ce qui concerne les portefeuilles EW, ERC et VarMax, la
présélection dynamique améliore sensiblement les performances des portefeuilles par
rapport à un réseau basé sur la non-causalité à la Granger ou appliqué sur l’ensemble
de l’univers. Comme attendu, pour les deux univers, l’amélioration la plus signi-
ficative concerne la stratégie VarMax. Le processus de sélection d’actifs réussit à
identifier les actifs les moins corrélés qui sont soit les moins performants (influencés),
soit les plus risqués (systémiques) sans réduire significativement la diversification du
portefeuille. Quant au portefeuille MinVar, les résultats sont plus contrastés. La
méthodologie ne parvient pas à améliorer le ratio rendement/volatilité sur l’univers des
pays, augmentant encore plus le risque idiosyncratique et compliquant donc la gestion
des changements brutaux du marché comme en 2008, 2015 et 2018. Enfin, lorsque
l’on associe la sélection dynamique d’actifs à la procédure de débruitage (chapitre 2),
les résultats sont encore meilleurs que la simple utilisation de la SCM (5 fois sur 6),
le seul échec étant pour le portefeuille MinVar appliqué à l’univers sectoriel. Cette
étude empirique souligne qu’en combinant tous les résultats des différents chapitres, nous
pouvons améliorer de manière significative plusieurs stratégies d’allocation de portefeuille.

6Le portefeuille VarMax faisant référence au portefeuille de diversification maximale [30].
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