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Abstract
Machine learning (ML) and deep learning (DL) have been widely used for the computer-

aided diagnosis (CAD) of neurodegenerative diseases The main limitation of these tools is
that they have been mostly validated using research data sets that are very different from
clinical routine ones: strict image acquisition protocols ensure good quality and homoge-
neous data, and well-defined diagnostic criteria guarantee unambiguous classification tasks.
The validation on large clinical data sets is necessary to understand the performance of
these tools in a real setting. Clinical data warehouses (CDW), gathering data of hundred
of thousands of patients from different hospitals, allow access to such clinical data.

This PhD work consisted in applying ML/DL algorithms to data originating from the
CDW of the Greater Paris area (Assistance Publique-Hôpitaux de Paris [AP-HP]) to val-
idate CAD of neurodegenerative diseases. In particular, we aimed to address some of the
challenges posed by the use of this type of data.

In the first work we developed, thanks to the manual annotation of 5500 images, an
automatic approach for the quality control (QC) of T1-weighted (T1w) brain magnetic
resonance images (MRI) from a clinical data set. QC is fundamental as insufficient image
quality can prevent CAD systems from working properly. The automatic QC was able to
identify images that are not proper T1w brain MRIs, to identify acquisitions for which
gadolinium was injected and to rate the overall image quality.

In the second work, we focused on the homogenization of T1w brain MRIs from a CDW:
heterogeneity must be reduced to avoid potential biases in downstream tasks. We proposed
to homogenize such large clinical data set by converting images acquired after the injection
of gadolinium into non-contrast-enhanced images using 3D U-Net models and conditional
generative adversarial networks.

Lastly, we assessed whether ML/DL algorithms could detect dementia in a CDW using
T1w brain MRI. We identified the population of interest using ICD-10 codes assigned during
hospitalization. We compared the ability of ML/DL algorithms to detect dementia patients
in a research data set and in the AP-HP CDW set. We then studied how the imbalance of
the training sets, in terms of contrast injection and image quality, may bias the results and
we proposed strategies to attenuate these biases.

CDW offer fantastic opportunities for the translation of CAD systems from research to
clinical practice, but they still pose considerable challenges.
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Résumé

L’apprentissage automatique et l’apprentissage profond ont été largement utilisés pour
le diagnostic assisté par ordinateur des maladies neurodégénératives. La principale limite de
ces outils est qu’ils ont été validés en utilisant des données de recherche qui sont très différents
des données de routine clinique: les protocoles stricts d’acquisition d’images garantissent des
données de bonne qualité et homogènes, et les critères de diagnostic bien définis garantissent
des tâches de classification sans ambiguïté. La validation sur de grands ensembles de données
cliniques est nécessaire pour comprendre la performance de ces outils dans un contexte réel.
Les entrepôts de données de santé (EDS), qui rassemblent les données de centaines de
milliers de patients de différents hôpitaux, permettent d’accéder à de telles données. Ce
travail de thèse a consisté à appliquer des algorithmes d’apprentissage automatique à des
données provenant de l’EDS de l’Assistance Publique-Hôpitaux de Paris (AP-HP) pour
valider les outils pour le diagnostic assisté par ordinateur de maladies neurodégénératives.
En particulier, nous avons cherché à relever certains des défis posés par l’utilisation de ce
type de données.

Dans le premier travail, nous avons développé, grâce à l’annotation manuelle de 5500
images, une approche automatique pour le contrôle qualité des images par résonance mag-
nétique (IRM) cérébrales pondérées en T1 provenant d’un EDS. Le contrôle qualité est
fondamental car une qualité d’image insuffisante peut empêcher les systèmes de fonction-
ner correctement. Le contrôle qualité automatique a permis d’identifier les images qui ne
sont pas de véritables IRM cérébrales pondérées en T1, d’identifier les acquisitions pour les
quelles du gadolinium a été injecté et d’évaluer la qualité globale de l’image.

Dans le second travail, nous nous sommes concentrés sur l’homogénéisation des IRM
cérébrales pondérées en T1 provenant d’un EDS : l’hétérogénéité doit être réduite pour
éviter les biais potentiels dans les tâches en aval. Nous avons proposé d’homogénéiser ce
grand ensemble de données cliniques en convertissant les images acquises après l’injection de
gadolinium en images sans contraste à l’aide de modèles U-Net 3D et de réseaux antagonistes
génératifs conditionnels.

Enfin, nous avons évalué si les algorithmes d’apprentissage automatique pouvaient dé-
tecter la démence dans un EDS en utilisant l’IRM cérébrale pondérées en T1. Nous avons
identifié la population d’intérêt grace aux codes CIM-10 attribués pendant l’hospitalisation.
Nous avons comparé la capacité des algorithmes à détecter les patients atteints de dé-
mence dans un ensemble de données de recherche et dans l’ensemble de l’EDS de l’AP-HP.
Nous avons ensuite étudié comment le déséquilibre des ensembles d’entraînement, en termes
d’injection de produit de contraste et de qualité d’image, peuvent biaiser les résultats et
nous avons proposé des stratégies pour atténuer ces biais.

Les EDS offrent des possibilités fantastiques pour faire passer les systèmes d’aide au di-
agnostic de la recherche à la pratique clinique, mais ils posent encore des défis considérables.
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Introduction

Machine learning (ML) is a field of artificial intelligence that allows computers to perform
tasks learning by themselves the relevant decision rules by analysing training data sets.
Classical ML models, such as support vector machines or random forests, are based on
features pre-extracted from the training data thanks to expert’s knowledge, while more
recent deep learning (DL) models are able to extract suitable features by themselves. ML
and DL models have been applied to medical images to perform many tasks, including
computer-aided diagnosis (CAD). Such tools can assist doctors in the study of various
diseases as they can extract patterns of the diseases for their detection.

This thesis focuses on the CAD of neurological diseases, and more particularly neurode-
generative dementias, using ML and DL models. In this introduction, we will first give an
overview of recent works that have been published on the CAD of brain disorders using
DL and we will then focus on the CAD of neurodegenerative diseases and its limitations.
A major limitation is that most of the existing studies were performed on research data,
which can largely differ from data acquired in clinical routine. We will introduce in the
third section of the introduction how clinical data warehouses (CDW) could help translate
CAD tools to clinical practice. The introduction will end with a brief summary of the thesis
contributions and with the outline of the manuscript.

Computer-aided diagnosis of brain disorders

Machine learning has been used for many years for the CAD of brain disorders (Rathore
et al., 2017; Pellegrini et al., 2018; De Filippis et al., 2019; Moon et al., 2019; Burgos and
Colliot, 2020). The use of DL is more recent and was analyzed in a review paper published
in Briefings in Bioinformatics (Burgos et al., 2021). The following section was extracted
from this review, to which I contributed as joint first author.

Most of the studies on disease detection have dealt with Alzheimer’s and Parkinson’s
diseases (Noor et al., 2019; Gautam and Sharma, 2020). This is partly due to the public
availability of large data sets such as from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and the Parkinson’s Progression Markers Initiative (PPMI) cohorts. The aim of
disease detection and diagnosis can be to differentiate healthy controls from subjects with
a disease or to distinguish between different diseases (disease recognition), but also, once a
disease has been singled out, to quantify its severity or to differentiate between subtypes.

Many studies focusing on Alzheimer’s disease aim to differentiate healthy controls from
subjects with dementia, a relatively easy task, that is useful for assessing and benchmark-
ing classification methods but with little clinical relevance (Wen et al., 2020). The most
commonly used approach is an end-to-end CNN for classification (Gautam and Sharma,
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2020; Noor et al., 2019; Wen et al., 2020). Wen et al., 2020 provided a review on the use
of CNN for Alzheimer’s disease classification showing that results obtained with CNN are
comparable to those obtained with traditional machine learning techniques. Nevertheless,
other approaches exist. Silva et al., 2019 used a CNN for feature extraction only and not
classification. A variational autoencoder was used by Choi et al., 2019 to detect anomalies in
positron emission tomography (PET) images, thereby providing a score of abnormality used
to identify Alzheimer’s disease patients. The main imaging modalities used for Alzheimer’s
disease classification are T1w MRI and 18F-fluorodeoxyglucose PET (Gautam and Sharma,
2020), but others, for example amyloid PET, have been used (Punjabi et al., 2019). Other
types of data, such as speech data (Chien et al., 2019), also bring meaningful information.

Several studies have dealt with classification of Parkinson’s disease patients vs controls.
This can be achieved using single photon computed tomography (Choi et al., 2017), neu-
romelanin sensitive MRI (Shinde et al., 2019), connectivity graphs computed from diffusion
MRI (Zhang et al., 2019b) or handwriting images (Afonso et al., 2019; Naseer et al., 2020).

Differentiating healthy controls from subjects with a psychiatric disease is also a research
question widely addressed. Depression was studied using electroencephalograms as input
(Acharya et al., 2018; Yang et al., 2018; Yang et al., 2020). To overcome the lack of
patient data, transfer learning was used in the work of Banerjee et al., 2019, where they
classified patients with post-traumatic stress disorder using a deep belief network model.
Classification of schizophrenia versus healthy control is performed in several studies with
a sparse multilayer perceptron (Zeng et al., 2018), or a CNN combined with a pre-trained
convolutional autoencoder (Oh et al., 2019), and classification of bipolar disorders versus
healthy controls is studied in (Campese et al., 2019) with a 3D CNN. The public availability
of the Autism Brain Imaging Data Exchange data set has propelled research on autism
spectrum disorder. For example, functional MRI data were used in (Eslami et al., 2019;
Xiao et al., 2018) to distinguish patients with an autism spectrum disorder from controls
using a CNN. Other works used genomic data with a neural network (Ghafouri-Fard et al.,
2019) or eye tracking data with a long short-term memory (LSTM) (Li et al., 2019b). A
multimodal approach for the integration of functional and structural MRI was proposed
by Zou et al., 2017 for the classification of attention deficit hyperactivity disorder versus
healthy children using a 3D CNN. Finally, Zhang et al., 2019a identified patients with
conduct disorder using T1w MRI and a 3D variation of AlexNet.

The control vs disease task is not limited to neurodegenerative and psychiatric disorders.
Classification of epileptic subjects vs HC has been addressed by Aoe et al., 2019 who built a
CNN called M-Net from magnetoencephalography signals. Fu et al., 2019 performed natural
language processing by using a CNN to detect individuals with silent brain infarction using
radiological reports, as early detection can be useful for stroke prevention. Using different
features extracted from functional MRI data, Yang et al., 2018 proposed to distinguish
between migraine patients and healthy controls (but also between two subtypes of migraine)
using an Inception CNN. Finally, MR angiography was used to detect cerebral aneurysms
(Nakao et al., 2018; Ueda et al., 2019) using a custom CNN (Nakao et al., 2018) or a
ResNet-18 (Ueda et al., 2019).

Few studies have explored differential diagnosis with DL. Wada et al., 2019 classified



Computer-aided diagnosis of brain disorders 3

Alzheimer’s disease versus Lewy body dementia using a 2D CNN while Huang, Wu, and Su,
2019 classified bipolar disorder and unipolar depression using a CNN followed by an LSTM,
both with attention mechanisms.

Neurological disorders can be complex and several works aim to identify known disease
subtypes or quantify their severity. This is particularly the case in oncology. In the brain
cancer domain, most of the studies (Akkus et al., 2017; Ge et al., 2018; Li et al., 2017)
focused on low-grade gliomas. Low-grade gliomas are less aggressive tumors with better
prognosis compared to high-grade gliomas. In low-grade gliomas, the genetics of the tumor
can provide prognostic information, but this analysis requires biopsy, which is an invasive
procedure. To rely only on non-invasive examinations, these studies proposed DL methods
to distinguish between different genetic classes based on different structural MRI modalities.
Ge et al., 2018 performed two classification tasks: low-grade vs high-grade gliomas (tumor
grading) and low-grade gliomas with or without 1p19q codeletion, a biomarker predictive
of chances of survival (tumor subtyping). They used a 2D CNN on T1w, T2w and FLAIR
MRI slices. Akkus et al., 2017 also performed the same tumor subtyping task using 2D CNN
on T2w and post-contrast T1w MRI and Li et al., 2017 predicted the mutation status of
isocitrate dehydrogenase 1 in low-grade gliomas, using a 2D CNN associated with a support
vector machine applied to post-contrast T1w and FLAIR MRI. Additionally, Hollon et
al., 2020 classified images of biopsies (stimulated Raman histology) between 13 common
subtypes covering 90% of the diversity of brain tumors with a 2D CNN. They compared
their workflow with pathologists interpreting conventional histologic images and achieved a
similar diagnostic accuracy for a large gain in diagnostic time (less than 2.5 minutes versus
30 minutes). They also successfully identified rare phenotypes as they did not belong to
any of their predefined classes, though they could not distinguish between them.

The distinction of disease subtypes has also been explored for other neurological disor-
ders. Choi et al., 2020 aimed to differentiate Parkinson’s disease patients with dementia
from those without dementia following a transfer learning strategy using a CNN initially
trained to distinguish controls vs Alzheimer’s disease patients. In (Zhang et al., 2019b) the
objective was to identify subtypes of Parkinson’s disease progression using a LSTM with
clinical and imaging data. Kiryu et al., 2019 aimed to differentiate Parkinsonian syndromes.
Different clinical profiles of patients with multiple sclerosis were identified in (Marzullo et al.,
2019) using graphs extracted from diffusion MRI and graph CNN. Non-contrast head CT
scanners were used by Ye et al., 2019 for the detection of intracranial hemorrhage and its five
subtypes. They used a CNN to identify the presence or absence of intracranial hemorrhage
and a recurrent neural network for the classification of intracranial hemorrhage subtypes.
In the context of epilepsy, Acharya et al., 2018 used a CNN to distinguish three classes
of electroencephalography signal: normal, preictal and seizure. San-Segundo et al., 2019
studied two different tasks using a CNN applied to electroencephalography: classification
of epileptic vs non-epileptic brain areas and detection of epileptic seizures.
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Figure 1: Number of articles presenting computer-aided diagnosis approaches based on
machine learning and deep learning applied to neurodegenerative diseases published over

the years according to PubMed (queries are available in Appendix A).

Computer-aided diagnosis of neurodegenerative diseases: cur-
rent challenges

Among the brain disorders, this thesis focuses on neurodegenerative diseases. Neurodegen-
erative diseases are characterized by a progressive degeneration of brain tissues, mainly of
gray matter, leading to cognitive deficits. They are mainly diagnosed following a neurologi-
cal examination including neuropsychological tests, but imaging can also play an important
role, in particular T1-weighted (T1w) brain magnetic resonance imaging (MRI) that enables
the assessment of atrophy.

As highlighted in Figure 1, the number of papers presenting CAD systems for neu-
rodegenerative diseases has been rising for the past fifteen years. This increase can be
associated with the appearance of public data sets, as already mentioned in the previous
section, and in advances in ML/DL research. Among the public data sets the most impor-
tant are ADNI (Alzheimer’s Disease Neuroimaging Initiative) 1, AIBL (Australian Imaging,
Biomarker & Lifestyle Flagship Study of Ageing) 2 including participants with Alzheimer’s
disease and mild cognitive impairment, OASIS (Open Access Series Of Imaging Studies)
3 with Alzheimer’s disease patients, PPMI (Parkinson’s Progression Markers Initiative) 4

including Parkinson’s disease patients and NIFD (Frontotemporal lobar degeneration neu-
roimaging initiative) 5 with fronto-temporal dementia subjects. Public research data sets
are easy to access (data can be downloaded directly from the study websites) and use (data
are homogenized and of good quality).

Most of the works in the literature share the same limitations: they are developed using
only research data sets (e.g. (Wen et al., 2020; Samper-González et al., 2018; Gautam
and Sharma, 2020; Koikkalainen et al., 2016)) and they are rarely based on clinical data.

1http://adni.loni.usc.edu/
2https://aibl.csiro.au/
3https://www.oasis-brains.org/
4https://www.ppmi-info.org/
5https://ida.loni.usc.edu/home/projectPage.jsp?project=NIFD

http://adni.loni.usc.edu/
https://aibl.csiro.au/
https://www.oasis-brains.org/
https://www.ppmi-info.org/
 https://ida.loni.usc.edu/home/projectPage.jsp?project=NIFD
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Furthermore the few works based on clinical data (Morin et al., 2020; Chagué et al., 2021)
use data sets with a small sample size and which often come from one or a few highly
specialized medical centers, thus not reflecting the reality of clinical routine in general. The
generalization of the ML/DL models in a real clinical setting is not straightforward if they
are trained using small clinical data sets or research data sets. In fact, the size of the data set
must be large in order to ensure the generalization of the ML/DL models and research data
are very different from clinical data. Indeed the quality of the images coming from research
data sets is guaranteed by strict research protocols, where the acquisition parameters are
harmonized among the different sites, the number of scanners employed is limited and the
classes of the diseases are homogeneous. Images of clinical data sets are heterogeneous,
they have different qualities, acquisition parameters are not harmonized, there is a larger
number of scanners and they are acquired during a long time span. All these factors affect
the images used as input for the ML/DL models. Accordingly, performance of the classifiers
can greatly vary.

Research in the use of CAD for neurodegenerative diseases must undertake a step forward
and focus on the validation of the ML/DL models using clinical routine data sets in order to
prove their utility in a clinical setting. Nowadays challenge is the translation of the research
work to the clinical environment. The principal limitation is the difficult access to clinical
data. Due to privacy reasons and to confidentiality among the patients and the clinicians,
they are very hard to access and they cannot be shared.

Use of clinical data warehouse for the development of CAD in
a clinical setting

Thanks to the technology advancement in the domain of big data and the awareness of the
need for more clinical data to validate the algorithms, clinical data warehouses (CDW) have
been developed. CDW gather electronic health records, which can assemble demographics
data, results from biological tests, prescribed medications and images acquired in clinical
routine, sometimes for millions of patients from multiple sites. CDW allow for large-scale
epidemiological studies and they offer unique data sets to validate ML and DL algorithms
in a clinical context.

CDW offer a great opportunity for researchers to validate their algorithms but the use
of this type of data is not straightforward. As mentioned above, the images can be very
heterogeneous because of various acquisition setups. This heterogeneity may not be evenly
represented among the diagnostic classes, which could bias the results of CAD systems. In
addition, clinical data are not systematically checked by a neurologist.

In this PhD work, we aimed to address some of the challenges posed by CDW for
developing and validating ML/DL algorithms for neurological diseases from neuroimaging
data. More specifically, we worked with T1w brain MRI data originating from the CDW of
the greater Paris area (Assistance Publique-Hôpitaux de Paris [AP-HP]). Our contributions
concern image quality control, image harmonization as well as validation of CAD systems.
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Contributions

This thesis includes three main contributions.
The quality of images coming from clinical data warehouses can greatly vary, which can

prevent classification algorithms from working properly. Quality control is thus a fundamen-
tal step before training and evaluating machine learning approaches on clinical routine data.
We proposed a framework for the automatic quality control of brain T1w MRI. Thanks to
the manual annotation of 5500 images, we trained and validated convolutional neural net-
works that are able to discard images that are of no interest, recognise the injection of a
gadolinium-based contrast agent and rate the overall image quality. It is, to our knowledge,
the first brain imaging paper from the AP-HP CDW.

The heterogeneity of the T1w brain MRI must be reduced to avoid potential biases. In
the second contribution, we proposed to homogenize such large clinical data set by converting
images acquired after the injection of gadolinium into non-contrast-enhanced images using
3D U-Net models and conditional generative adversarial networks.

The third contribution consists in an experimental study that aimed to assess whether
machine learning algorithms could detect dementia in a clinical data warehouse using
anatomical brain magnetic resonance imaging. At first we identified the population of
interest by exploiting the diagnostic codes from the 10th revision of the International Clas-
sification of Diseases that are assigned to each patient. Then we assessed the ability of
machine and deep learning classification algorithms to detect neurodegenerative dementia
in a research data set and in the CDW set. We studied how the imbalance of the training
sets, in terms of contrast injection and image quality, may bias the results and we proposed
strategies to attenuate these biases.

Outline of the manuscript

The manuscript has the following structure:

• In Chapter 1 we describe the clinical data warehouse of the Paris Greater Area
(AP-HP). After an overview of their structure and how data (imaging and clinical)
are collected, we focus on the project called APPRIMAGE within which the present
thesis work was carried out.

• In Chapter 2 we present the automatic quality control framework developed to clas-
sify images which are not proper 3D T1w brain MRI, images injected with gadolinium
and to rate the overall image quality.

• In Chapter 3 we demonstrate how image translation models, such as U-Net or con-
ditional generative adversarial networks, may be used to homogenize MRI sequences,
in particular to transform images with gadolinium into images without gadolinium.

• In Chapter 4 we evaluate computer-aided diagnosis tools to classify patients with
dementia from the CDW: we compare the performance on the CDW with the per-
formance obtained on a research data set and we show how the characteristics of a
training data set could bias the analysis.



Outline of the manuscript 7

• Finally, in the Conclusion and Perspectives chapter, we discuss our results and provide
potential future research directions.
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Chapter 1

Clinical data warehouse of the
Greater Paris university hospitals

In this PhD thesis, we relied on data from the clinical data warehouse (CDW), in French
Entrepôt de Données de Santé (EDS), of the AP-HP (Assistance Publique – Hôpitaux de
Paris). This CDW gathers data from millions of patients across 39 hospitals of the Greater
Paris area.

In this chapter, we first provide some general information about the AP-HP CDW
(Section 1.1). We then describe the APPRIMAGE project, within which this PhD was
carried out (Section 1.2). We finally describe the different data management procedures
that were carried out as part of the present PhD thesis as well as the resulting dataset
(Section 1.3).

1.1 Clinical data warehouse of the Greater Paris area

One of the first CDW in France was launched in 2017 by the AP-HP, which gathers 39
hospitals of the Greater Paris area (Daniel and Salamanca, 2020). AP-HP obtained the
authorization of the CNIL in 2017 (Commission Nationale de l’informatique et des Libertés,
the French regulatory body for data collection and management) to share data for research
purposes in compliance with the MR004 reference methodology (Daniel and Salamanca,
2020). The MR004 reference controls data processing for the purpose of studying, evaluat-
ing and/or researching that does not involve human patients (in the sense of not involving
an intervention or a prospective collection of research data in patients that would not be nec-
essary for clinical evaluation, but which allows retrospective use of data previously acquired
in patients). The goals of the CDW are the development of decision support algorithms,
the support of clinical trials and the promotion of multi-centre studies.

According to French regulation, and as authorised by the CNIL, patients’ consent to
use their data in the projects of the CDW can be waived as these data were acquired as
part of the clinical routine care of the patients. At the same time, AP-HP committed to
keep patients updated about the different research projects of the CDW through a portal
on the internet (https://eds.aphp.fr/recherches-en-cours) and individual information
is systematically provided to all the patients admitted to the AP-HP. In addition, a retro-
spective information campaign was conducted by the AP-HP in 2017: it involved around

https://eds.aphp.fr/recherches-en-cours
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500,000 patients who were contacted by e-mail and by postal mail to be informed of the
development of the CDW.

Accessing the data is possible with the following procedure. A detailed project must be
submitted to the Scientific and Ethics Board of the AP-HP. If the project participants are
external to AP-HP, they have to sign a contract with the Clinical Research and Innovation
Board (Direction de la Recherche Clinique et de l’Innovation). The project must include
the goals of the research, the different steps that will be pursued, a detailed description of
the data needed, of the software tools necessary for the processing, and a clear statement
of the public health benefits.

Once the project is approved, the research team is granted access to the Big Data
Platform (BDP), which was created by a sub-department of the IT of the AP-HP, called
Innovation and Data Division - I&D- (in French Pôle Innovation et Données). The BDP
is a platform internal to the AP-HP where data are collected and that external users can
access to perform all their analyses, in accordance with the CNIL regulation. It is strictly
forbidden to export any kind of data and each user can access only a workspace that is
specific to their project. Each person of the research team can access the BDP with an
AP-HP account after two-factor authentication. If the research team includes people that
are not employed by the AP-HP, a temporary account associated to the project is activated.

1.1.1 Data organization within the Big Data Platform

The CDW is composed of electronic health records (EHR) gathered using different software
tools installed in the hospitals (i.e. PACS for imaging data and ORBIS for clinical data).
The role of the I&D is to gather all the data of the projects from the hospitals’ software
tools and to make them available for the users in the BDP. The I&D department of the
AP-HP created an internal PACS (called “research PACS”) where they copied data from
each hospital’s software tools.

Once the data are gathered in the research PACS, they are stored, for long-term use, in
the BDP after having been pseudonymized by the AP-HP I&D department.

Technology-wise, the BDP runs under a Hadoop big data framework1. As such, data
are stored on HDFS which is the Hadoop Distributed File System. Data on HDFS can be
queried/processed using only Hadoop tools, such as HiveQL2 or Spark3, which were installed
in the cluster machines of the BDP. The BDP cluster includes machines with CPUs and/or
GPUs, where programming languages such as Python/R are available. Research teams can
access the cluster machines and these tools through a JupyterLab environment. All the
elements described and their interactions are presented in Figure 1.1.

1.2 The APPRIMAGE project

The APPRIMAGE project, led by the ARAMIS team (current AP-HP PI: Didier Dormont;
initial AP-HP PI: Anne Bertrand, deceased March 2nd 2018) at the Paris Brain Institute, was

1https://hadoop.apache.org
2https://hive.apache.org
3https://spark.apache.org

https://hadoop.apache.org
https://hive.apache.org
https://spark.apache.org
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Figure 1.1: Workflow illustrating how data from the AP-HP hospitals are accessed by
research teams passing through the Big Data Platform administered by the AP-HP I&D
department. Data are gathered from hospital software tools such as ORBIS (clinical data)
or PACS (imaging data), and copied to the “research PACS”. Data are stored in a HDFS
disk accessible through Hadoop tools in the cluster machines. Research teams can connect

to cluster machines and access data through a JupyterLab.

approved by the Scientific and Ethics Board of the AP-HP in 2018. It aims at developing and
validating algorithms that predict neurodegenerative diseases from structural brain magnetic
resonance images (MRI), using a very large clinical data set. The project inclusion criteria
were: patients aged more than 18 years and having at least one T1-weighted (T1w) brain
MRI. For these different patients, the project required access to T1w and fluid-attenuated
inversion recovery (FLAIR) MRI data, socio-demographic and clinical data, biological data
when available, radiological and hospital reports.

In order to define the population of the project, the first step was the identification
of all the images of interest. The I&D department listed all the DICOM attributes from
the hospital PACS referring to MRI data. A neuroradiologist part of the APPRIMAGE
project manually selected the DICOM attributes limited to those referring to 3D T1w brain
MRI. More details are provided in Chapter 2. In this way a first selection of the cohort
was created, which consisted of around 130,000 patients and 200,000 3D T1w brain MRIs
acquired from 1980 to nowadays in the 39 hospitals of the AP-HP.

1.3 Data set and data management for the present PhD project

Data available in the cluster machines are stored in HDFS and accessible through Hadoop
tools. We used HiveQL in order to collect data of interest and we saved them locally on the
NAS (i.e. network-attached storage, a file-level data storage server connected to a network).
HiveQL is a Hadoop tool designed to process data in HDFS in a structured form. Data in
HDFS can be seen in the form of Hive tables. Once data were in the NAS, we could process
them on CPUs and GPUs using Python and the software tools installed.
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1.3.1 Software installation

The project was based on Python and we installed several specific libraries, the most impor-
tant ones being: pytorch (Paszke et al., 2019), scikit-learn (Pedregosa et al., 2011), nilearn
(Abraham et al., 2014), pydicom (Mason, 2011), ipywidgets4. Regarding the neuroimaging
software tools, we installed in the BDP the following: Clinica5 (Routier et al., 2021), ANTs
(Avants et al., 2014), SPM standalone (Ashburner and Friston, 2005) and dcm2niix (Li
et al., 2016).

1.3.2 Imaging data

Imaging data are stored in the medical PACS of the different hospitals of the AP-HP. The
creation of the research PACS was necessary to preserve the medical PACS and ensure that
the original images do not become corrupted. To avoid overloading the medical PACS,
I&D could copy a limited number of images per day into the research PACS. Images of the
APPRIMAGE project were made available by batch while stored in HDFS. They can be
seen as Hive tables. In Hive tables, each line represents a single DICOM file. The columns
of the Hive table are the following: series uid (unique id of the series representing a single
image), study uid (unique id representing the whole study during which the sequence was
acquired; for a single study one can have several series/images), patient num (unique id of
the patient), visit num (unique code of the visit during which the study was undertaken),
dicom data (binary file with all the DICOM data). DICOM in the research PACS are
pseudonymized: information about the patient such as name, age, sex, weight as well as
information about the physicians who requested and analysed the results of the examination
are erased, and the examination date is shifted of a random amount of time (from 1 to 10
years). Note that the same shifting is applied to all the dates of the clinical data.

1.3.2.1 Difficulties encountered in obtaining exploitable data

For about a year and half, we worked closely with the I&D department in order to obtain
exploitable 3D T1w brain MRI. We encountered two different types of problems: the conver-
sion from DICOM to NIfTI format was not possible with dcm2niix (Li et al., 2016), nor the
previous version of the software called dcm2nii, because the information about the position
of the patient had been erased in the DICOM header, or the conversion to NIfTI worked but
a large part of the brain was always missing because of missing DICOM slices (detected also
by the software tools used for the conversion). The I&D department released two versions
of their research PACS and three versions of the pseudonymization procedure in 18 months.
Every time they did a modification, we converted and visually checked around 1,000 images
to give them a feedback.

1.3.2.2 Images currently available

Once the two main problems described above were solved, two batches of images were made
available.

4https://ipywidgets.readthedocs.io
5www.clinica.run

https://ipywidgets.readthedocs.io
www.clinica.run
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• Batch 1 contains around 11,000 3D T1W brain MRI. Images were randomly sampled
from all the hospitals of the AP-HP and the different MRI machines. They were
used for the study presented in Chapter 2 about quality control and for the study in
Chapter 3 about feature homogenization.

• Batch 2 contains the 3D T1w brain MRI of the patients hospitalized and registered
in ORBIS (more details in the next section). They were used for the study presented
in Chapter 4 about the detection of patients with dementia.

1.3.2.3 Visualization of the images

One of the main limitations of the BDP is the absence of a viewer for medical images.
We used the tools available in Jupyter Notebooks for the visualization. Nilearn (Abraham
et al., 2014) is a popular Python package for the statistical analysis and visualization of
brain imaging data: we used the function called “plot_anat” to visualize the slices of the
brain in the notebooks. Nilearn allows choosing the position of the slices, so it could be
adapted to our needs: we chose to visualize the central slices of the brain after the spatial
normalization to the MNI space. The output was saved in PNG format to speed up the
uploading of later views. Visualization of the images is essential for the project: at first, it
allowed us to detect the problems in the DICOM files and to adjust the pipeline of the I&D
department and then to evaluate the quality of the images or to find outliers in our data
set.

To this aim, we developed a graphical interface through the Python package ipywidgets:
while PNG files appear on the notebook, a text widget allows annotating the displayed
PNG. The file name and the corresponding notes are saved in a text file. The interface also
allows going back to the previous image in case a change in the note is needed. Figure 1.2
displays an example of the graphical interface (available on the github: https://github.

com/SimonaBottani/Quality_Control_Interface).

1.3.3 Access to the clinical data

While DICOM files have been stored since 1980 in the medical PACS of the hospitals,
following always the same structure, clinical data are stored in software tools that may vary
across sites. In 2009, AP-HP decided to adopt a single software (called ORBIS) in order
to store a unique electronic file for patients hospitalized at all sites. This solution has two
main advantages: at first, if a patient is hospitalized in hospital A and then in hospital B,
all information can be found in the electronic file, and secondly it ensures a consistency of
the information that can be entered. The latter reason led to an easier extraction of the
data of the research.

Thanks to this homogenization, the I&D department was able to start querying clinical
data to make them available for research purposes. All clinical data are saved in a HDFS disk
and they can be queried through HiveQL. They are organised as a relational database. The
unique key is represented by the number identifying the patient and the number identifying
the visit. Demographic data (i.e. age and sex), stored in the tables called “i2b2_visit” and
“i2b2_patient”, are available for all the patients registered in ORBIS (even if missing data

https://github.com/SimonaBottani/Quality_Control_Interface
https://github.com/SimonaBottani/Quality_Control_Interface
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Code insered for labelisation

Count of images and previous label

Current label

Figure 1.2: Example of the graphical interface for the annotation of the images in the
BDP. The central slices along the coronal, sagittal and axial planes extracted from the
NIfTI file were previously saved as a single PNG file to speed up download during the
annotation phase. In the text box at the top the user can type the code for the labelization
(a specific dictionary was created for the annotation in order to write only the essential).
At the same location, the user can see their progression in the batch they are annotating,
as well as the previous label. Looking at the previous label is useful to detect potential
mistakes, which can be corrected by deleting the last code and going back to the previous
image. At the bottom the current label is displayed. Using the space bar allows moving

to the next image. Annotations are saved in a text file for further analysis.

are common), while other data (such as ICD-10 codes and list of medications) are stored
in corresponding tables (such as “i2b2_observation_cim10” and “i2b2_observation_ccam”)
and are available only for patients registered in ORBIS and hospitalized. For outpatients
(i.e. patients having a consultation at the hospital), only a fraction of the information that
is stored for inpatients (i.e. hospitalized patients) are available.

For our study, we were interested only in three sociodemographic and clinical data: sex,
age at the time of the visit and the ICD-10 codes to know the diagnosis related to the
image. They were respectively stored in the tables called “i2b2_patient”, “i2b2_visit” and
“i2b2_observation_cim10”. The age was calculated as the difference between the start date
of the visit and the date of birth. The visit is defined as a period between the start date and
the end date present in the table “i2b2_visit” and it indicates the period of hospitalization.
The I&D department extracted from ORBIS all the information of the patients of the cohort.
Patients were identified with the manual selection of the series corresponding to 3D T1w
brain MRI.

1.3.3.1 Analysis of clinical data

Among all the patients of the cohort, clinical data were available only for 30,490 patients
out of about 130,000 (i.e. 23% of the cohort). This is due to the fact that ORBIS has
started being installed only since 2009 (e.g. in 2016 for the Pitié-Salpêtrière hospital) while
DICOM data have been available since 1980. This fact has to be kept in mind since it
represents one of the main limitations of the project.
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Figure 1.3: Left: number of patients registered in ORBIS, of hospitalized patients and of
patients having at least one ICD-10 codes referring to a “brain” disease. Right: distribution

of sex and age at the time of the first visit registered in ORBIS.

The right part of Figure 1.3 displays the distribution of sex and age among the patients
registered in ORBIS part of our project. Each patient could have more than one visit, we
thus decided to calculate the age at the first visit for this figure. Despite all the limitations
in studying only this subset of data (i.e. a lot of data are lost because patients were not
hospitalized in hospitals where ORBIS was installed), we can note that there are more
women than men (W: 16404, M: 14126), we have more patients between 55 and 65 years
old (which is consistent with the growth of neurological diseases since we calculated the
age according to the first registration in ORBIS) and for 4308 of them we do not have the
corresponding age because of missing data (missing date of birth or registration of the visit).

Among the 30,490 patients registered in ORBIS, 23,688 were hospitalized while the
remaining went to the AP-HP hospitals just for a consultation. For the 23,688 inpatients,
additional information is available, in particular the ICD-10 codes. Since our project is
based on T1w MR images, with the aid of a neurologist, we made a list of the diagnoses of
interest in the ICD-10 nomenclature. The purpose was to consider all the diagnoses that
may lead to a T1w MRI examination. In the following, we refer to these diagnoses as the
“brain” codes. Since ICD-10 is a hierarchical classification, in this part of the work we are
focusing on the first letter and the first two numbers of the codes. We merged the diagnoses
that are present in more than one category: F00 with G30 (Alzheimer’s disease and also all
the sub-categories related), and I6* and G46 (cerebrovascular disease). Among the 23,688
hospitalized patients, 13,805 patients had at least one ICD-10 code in the list of “brain”
codes. The different number of patients are reported in the left of Figure 1.3.

The description of the “brain diseases”, the corresponding ICD-10 codes and the number
of occurrences of the diagnoses among the 13,805 patients with are reported in Table 1.1.
We note that the most frequent diagnosis is vascular syndromes of brain in cerebrovascular
diseases, followed by cerebral palsy, epilepsy and migraine.

These diagnoses will be in part used in the last part of our work about the classification
of dementia patients in Chapter 4.
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Description ICD-10 codes N

Vascular syndromes of brain in cerebrovascular dis-
eases

G46 3758

Cerebral palsy and other paralytic syndromes G80, G81, G82, G83 2266

Epilepsy G40 2128
Migraine, other headache syndromes, transient cere-
bral iscahemic attacks and related syndromes

G43, G44, G45, G47 1608

Other mental disorders due to brain damage and dys-
function and to physical disease

F06 1418

Malignant neoplasm of brain C71 1244

Inflammatory disease of the central nervous system
G01, G02, G03, G04,
G05, G06, G07, G08,
G09

1171

Secondary parkinsonism G21, G22 1015

Alzheimer’s disease F00 948

Multiple sclerosis G35 728

Unspecified dementia F03 716

Delirium F05 711

Injuries to the head
S01, S02, S03, S04, S05,
S06, S07, S08, S09

589

Personality and behavioural disorders due to brain dis-
ease, damage and dysfunction

F07 580

Benign neoplasm of meninges D32 568

Vascular dementia F01 546

Status epilepticus G41 527
Benign neoplasm of brain and other parts of central
nervous system

D33 419

Other degenerative diseases of nervous system, not
elsewhere classified

G31 405

Neoplasm of uncertain or unknown behaviour of brain
and central nervous system

D43 405

Organic amnesic syndrome, not induced by alcohol and
other psycoactive substances

F04 379

Hydrocephalus G91 352

Sarcoidosis D86 280

Dementia in other diseases classified elsewhere F02 250
Hereditary ataxia, spinal muscular atrophy and related
syndromes, systemic atrophies primarly afftecting cen-
tral nervous system in diseases classified elsewhere,
postpolio syndrome

G10, G11, G13, G14 190
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Demyelinating diseases of the central nervous system G36, G37 155

Congenital malformations of the nervous system Q01, Q02, Q03, Q0 154

Metabolic disorders
E75, E76, E77, E78,
E79, E87

141

Glaucoma, disorders of optical nerves H46, H47, H48 130

Toxic encaphalopathy G92 125
Neoplasm of uncertain or unknown behavior of
meninges

D42 119

Human immunodeficiency virus [HIV] disease resulting
in other specified diseases

B22 101

Malignant neoplasm of spinal cord, cranial nerves and
other parts of central nervous system

C72 99

Malignant neoplasm of meninges C70 93

Secondary parkinsonism G21 90

Thiamine deficiency E51 72

Disorders ft the automatic nervous system G90 53

Parkinsonism in diseases classified elsewhere G22 38

Huntington disease G10 23
Other degenerative disorders of nervous system in dis-
eases classified elsewhere

G32 20

Eclampsia O15 19

Unspecified organic or symptomatic mental disorder F09 5

Table 1.1: List and description of the ICD-10 codes related to “brain disease”. For each
of them we report the number of occurrences among the 13805 patients.
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Chapter 2

Automatic quality control of brain
T1-weighted magnetic resonance
images for a clinical data warehouse

This chapter has been published in Medical Image Analysis:

• Title: Automatic Quality Control of Brain T1-Weighted Magnetic Resonance Images
for a Clinical Data Warehouse

• Authors: Simona Bottani, Ninon Burgos, Aurélien Maire, Adam Wild, Sebastian
Ströer, Didier Dormont, Olivier Colliot, APPRIMAGE Study Group

• DOI: doi:10.1016/j.media.2021.102219

2.1 Introduction

Structural T1-weighted (T1w) magnetic resonance imaging (MRI) is useful for diagnosis of
various brain disorders, in particular neurodegenerative diseases (Frisoni et al., 2010; Harper
et al., 2016). They have thus often been used as inputs of machine learning (ML) algorithms
for computer-aided diagnosis (CAD) (Falahati, Westman, and Simmons, 2014; Koikkalainen
et al., 2016; Rathore et al., 2017; Burgos and Colliot, 2020).

Most ML methods are trained and validated on high-quality research data (Noor et al.,
2019; Choi et al., 2019; Punjabi et al., 2019): protocols for image acquisition are stan-
dardized and a strict quality control is applied (Jack et al., 2008; Littlejohns et al., 2020).
However, to be applied in the clinic, ML methods need to be validated on clinical routine
images. In recent years, hospitals have constituted clinical data warehouses that can contain
medical images from 100,000-1,000,000 patients (Daniel and Salamanca, 2020; Amara, Lam-
ouchi, and Gattoufi, 2020). The quality of such images can greatly vary (see Figure 2.1),
since the acquisition protocols are not standardized, scanners may not be recent and pa-
tients may have moved during the acquisition. All these factors can prevent algorithms from
working properly (Reuter et al., 2015; Gilmore, Buser, and Hanson, 2019). Quality control

https://doi.org/10.1016/j.media.2021.102219
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Figure 2.1: Examples of T1w brain images from the clinical data warehouse and the
corresponding labels. A1: Image of good quality (tier 1), without gadolinium; A2: Good
quality (tier 1), with gadolinium; B1: Medium quality (tier 2), without gadolinium (noise
grade 1); B2: Medium quality (tier 2), with gadolinium (contrast grade 1); C1: Bad quality
(tier 3), without gadolinium (contrast grade 2, motion grade 2); C2: Bad quality (tier 3),
with gadolinium (contrast grade 2, motion grade 1); D1: Straight rejection (segmented);

D2: Straight rejection (cropped).

(QC) is thus a fundamental step before training and evaluating ML approaches on clinical
routine data.

Manual QC takes time and is thus not always doable, especially in the context of ML-
based CAD, where a large number of training samples is needed. Typically, clinical data
warehouses can contain hundreds of thousands of samples. Even if web-based systems
facilitate annotation (Kim et al., 2019; Keshavan et al., 2018), the task remains unfeasible
for very large datasets. In this context, automatic QC is needed.

Several works have been proposed to enable automatic QC of cerebral MR images. The
Preprocessed Connectomes Project developed a Quality Assessment Protocol1. The package
enables the extraction of several image quality metrics (IQMs) such as the signal-to-noise
ratio, the contrast-to-noise ratio or the volume of the gray and white matter. IQMs are
then compared to a normative distribution obtained from three research datasets, ABIDE
(Di Martino et al., 2014), CoRR2 and NFB3. In the same spirit, we find (Esteban et al.,
2017; Alfaro-Almagro et al., 2018; Raamana et al., 2020). These approaches propose to use
the IQMs as input of a classifier for automatic QC. Esteban et al., 2017 and Alfaro-Almagro
et al., 2018 developed a pipeline for the automatic QC of 3D brain T1w MRI, the first
has the advantage to be an open source software (called MRIQC). Raamana et al., 2020
developed another open source software called VisualQC whose aim is the visualisation and
the rating of the Freesurfer cortical segmentation output. The pipelines proposed by these
works are very extensive as they require registration and segmentation steps to extract

1http://preprocessed-connectomes-project.org/quality-assessment-protocol
2http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html
3http://fcon_1000.projects.nitrc.org/indi/enhanced/

http://preprocessed-connectomes-project.org/quality-assessment-protocol
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html
http://fcon_1000.projects.nitrc.org/indi/enhanced/
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features. It is not possible to assume a priori that these steps will perform well with a
new unseen clinical dataset. On the contrary, it is likely that the segmentation will fail for
the lowest quality images, thus making it impossible to apply the QC tool. Moreover, the
extracted features may not be representative of the problems affecting clinical routine data.
As proposed by Sujit et al., 2019, convolutional neural networks (CNNs) are a good option
for automatic QC because they can learn features without knowing a priori which are the
most adapted. A further limitation of these works is that they rely on images acquired
following a well-defined research protocol. The pipeline presented in (Alfaro-Almagro et al.,
2018) was developed for the large, but well-standardized, UK Biobank dataset containing
mostly healthy volunteers. Esteban et al., 2017 and Sujit et al., 2019 trained their algorithms
on ABIDE, a research multicenter study including patients with autism and control subjects
and used another research dataset for testing. These datasets are both smaller and less
realistic than a clinical dataset. In particular, Sujit et al., 2019 used 2D slices as input for
the model and they classified their images only in two classes: acceptable or not acceptable.

More studies can be found if we enlarge the scope to other body parts or imaging
sequences. Deep learning models have been developed for different modalities, different
organs and different QC tasks: for the QC of mammograms (Kretz et al., 2020), fetal
ultrasound cardiac images (Dong et al., 2019), and brain diffusion MRI (Graham, Drobnjak,
and Zhang, 2018), for the detection of artefacts on cardiac MRI (Oksuz et al., 2019) and
blurring on histological images (Campanella et al., 2018). Several works used a classifier
trained on image quality metrics (IQM) extracted from the images: Küstner et al., 2018;
Sadri et al., 2020 used this approach with a research dataset composed of different body
parts and MRI sequences, Tayari et al., 2019 applied it to 3D 1H MR spectroscopy of
the prostate and (Janowczyk et al., 2019) developed a tool called HistoQC for the QC
of histological images. Finally, some works focused on the QC of post-processing results,
mainly segmentation results. It can be done extracting IQMs from the segmented images,
as proposed by Alba et al., 2018 for cardiac images, or using deep learning models as done
by Robinson et al., 2018; Robinson et al., 2019 for cardiac images from the UK Biobank
dataset, which contains more than 10,000 samples, and Sunoqrot et al., 2020 for prostate
images.

To the best of our knowledge, there is currently no automatic QC approach dedicated
to large clinical datasets of brain MRI. Our work was done using a clinical data warehouse
that assembles all MRI data from all hospitals of the greater Paris area. Images come from
different sites and different machines with no homogenization on the parameters, and their
acquisition cover several decades. The patient may have any disease for which a brain MRI
exam is required. All these factors are not present in the approaches already proposed
in the literature: even when images come from different sites, the acquisition protocol is
harmonized, the number of machines is limited and they are usually acquired within a
few years, avoiding intrinsic problems of quality due to the progress in the technology.
Additionally, the presence of different diseases such as neurodegenerative diseases, stroke,
multiple sclerosis, or brain tumours, is typical of clinical datasets: they can strongly alter the
structure of the brain and it may be difficult to use a specific set of features to characterize
the quality of the images independently of the disease. In addition, due to security reasons,
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Figure 2.2: General workflow of the proposed QC framework. Images were acquired as
part of the routine clinical care in different hospital sites and gathered in a central hospital
PACS. Images relevant to our research project were copied to the research PACS and
anonymized. They always remain within the hospital network that we accessed remotely.
Thanks to the connection to the hospital IT network, we manually labeled the images

before training and testing our deep learning models.

images from the data warehouse cannot be uploaded to a web server and we had to work in
a restricted IT environment (Daniel and Salamanca, 2020).

The objective of our work was to develop a method for the automatic QC of T1w brain
MRI in large clinical data warehouses. The specific objectives were to: 1) discard images
which are not proper T1w brain MRI; 2) identify images with gadolinium; 3) recognise
images of bad, medium and good quality. We used 5000 images for training/validation and
500 for testing. To train/validate the models, the data were annotated by two trained raters.
To that purpose, we introduced an original visual QC protocol that is applicable to clinical
data warehouses. Figure 2.2 presents an overview of our work.

2.2 Material and Methods

2.2.1 Dataset description

This work relies on a large clinical routine dataset containing all the T1w brain MR images of
adult patients scanned in hospitals of the Greater Paris area (Assistance Publique-Hôpitaux
de Paris [AP-HP]). The data were made available by the data warehouse of the AP-HP and
the study was approved by the Ethical and Scientific Board of the AP-HP. According to
French regulation, consent was waived as these images were acquired as part of the routine
clinical care of the patients.

All the images were already stored in a single central clinical PACS. Then, the data
warehouse team of the AP-HP made a query on the central clinical PACS and copied the
images to the so-called “research PACS”. Note that, in spite of its name, the research PACS
is also within the hospital network. The images were then pseudonymized: the DICOM
fields that contained information about the patient or the physician who performed the
exam, such as their name or identifier were erased. For further anonymization, the date
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of the exam and the date of birth were also erased from the DICOM fields. Nevertheless,
as mentioned below, this information was available from another database (but not for all
patients). In this other database, to increase anonymization, the date of the exam and the
date of birth were also changed (they were shifted by a constant in order to keep the age
information accurate). Note that data were accessed remotely and that all the analyses
(including training and inference of deep learning models on GPUs) were performed within
the hospital network, as exporting data outside of this network is not allowed. This is
summarized in Figure 2.2.

The images were selected according to DICOM attributes. A first query on the PACS
was performed to list the DICOM attributes corresponding to MRI. For all the MR images,
we listed the “series descriptions", “body parts examined", and “study descriptions" DICOM
attributes. A neuroradiologist manually selected all the attribute values that may refer to
3D T1w brain MRI (e.g. “T1 EG 3D MPR", “SAG 3D BRAVO", “3D T1 EG MPRAGE",
“IRM cranio", “Brain T1W/FFEGADO"). He selected 3736 relevant attribute values. In
case of a doubt, the neuroradiologist kept the value to avoid discarding potential images
of interest. Relevant attribute values were manually selected since some of the information
present in the DICOM fields is filled manually by the radiology department or even by the
radiographer who is performing the exam. Standardization exists within a given hospital
but our data came from 39 different hospitals, which all have different conventions. Even
within a hospital, there was still a large variability, probably because different MRI protocols
for a head/brain examination exist and there was no specific effort to name the body part
in a consistent way across them. It could also be that these had spelling errors or that they
were not changed during an exam (resulting in the annotation of gadolinium injection even
when it is not present or the opposite).

Among all the 3D T1w brain MRI of the AP-HP, a first batch of about 11,000 images
was delivered by the data warehouse. We excluded all the images having less than 40 slices
because they correspond to 2D brain images even if the corresponding DICOM attribute
refer to 3D. For the present study, we randomly selected 5500 images, corresponding to 4177
patients. The images were acquired on various scanners from four manufacturers: Siemens
Healthineers (n = 3752), GE Healthcare (n = 1710), Philips (n = 33) and Toshiba (n = 5).
Among all the images, 3229 images were acquired with 3 Tesla machines and 2271 with
1.5 Tesla. From the 5500 images, age and gender information was known only for 4274
images, corresponding to 3169 patients. This is explained by the fact that, while images are
stored on the PACS, socio-demographic and clinical data are stored using another software
system that had been installed later in the different hospitals. Furthermore, age and sex
in the DICOM header were erased during the pseudonymization process. Among the 4274
images, we have 2297 women, 1968 men and 9 patients with unknown sex, with an average
age of 55.15 ± 7.89 (min: 18, max: 95). Table 2.1 reports all the scanner models present
in our dataset with the corresponding magnetic field strength for the 5500 images and the
corresponding age range and sex for the images for which this information is available.



24 Chapter 2. Automatic quality control of brain T1-weighted MRI

Table 2.1: Model name of all the scanners, grouped by manufacturer, with the corre-
sponding magnetic field strength (T) and the number of images. Age (mean ± std[range])
and sex (number of females [F] / males [M]) are reported when available for each model.
As indicated in the text, from the 5500 images, age and gender information were available
only for 4274 images. Thus, this information was left blank when it was available for none

of the images of a given scanner model.

Model Name T N
images

Age (mean ± std
[range])

Sex
(F/M)

S
ie

m
en

s

Aera 1.5 489 53.53 ± 18.00 [18, 95] 223 / 142
Amira 1.5 29 47.81 ± 13.57 [19, 68] 6 / 10
Avanto 1.5 603 52.79 ± 15.39 [18, 88] 164 / 125

Avanto_fit 1.5 81 56.06 ± 16.64 [19, 88] 34 / 28
Biograph mMR 3 12 - -

Espree 1.5 1 - -
Magnetom Vida 3 3 - -

Magnetom Essenza 1.5 11 37.2 ± 15.93 [22, 69] 1 / 9
Sempra 1.5 3 45 ± 0 [45] 1 / 0
Skyra 3 1851 54.31 ± 17.56 [18, 95] 708 / 692

Spectra 3 23 55.13 ± 18.87 [22, 66] 2 / 6
Symphony 1.5 3 - -

Verio 3 643 55.65 ± 17.75 [18, 92] 310 / 294

G
E

H
ea

lt
h
ca

re

Discovery MR450 1.5 4 40.67 ± 23.57 [24, 74] 1 / 2
Discovery MR750(w) 3 675 55.52 ± 17.49 [18, 93] 240 / 256

Optima MR360 1.5 2 63 ± 0 [63] 0 / 1
Optima MR450w 1.5 284 59.80 ± 18.0 [18, 95] 160 / 97
Signa Architect 1.5 243 52.14 ± 18.63 [19, 92] 128 / 99

Signa Artist 1.5 4 88.0 ± 1.41 [86, 89] 2 / 2
Signa Excite 1.5 3 30.5 ± 4.5 [26, 35] 2 / 0

Signa Explorer 1.5 1 76 ±0 [76] 1 / 0
Signa HDx(t) 1.5 489 61.53 ±18.34 18, 94 250 / 166
Signa Pioneer 3 1 76 ±0 [76] 0 / 1
Signa Voyager 1.5 1 - -

Unknown 1.5 3 - -

P
h
il
ip

s

Achieva 3 21 51.0 ± 14.0 [27, 70] 5 / 2
Ingenia 1.5 5 81.13 ± 12.20 [64, 92] 1 / 2
Intera 1.5 7 61 ± 0 [61] 2 / 0

T
os

h
ib

a

Titan 1.5 2 54.5 ± 1.5 [53, 56] 2 / 0
Vantage Elan 1.5 3 55.5 ± 3.5 [52, 59] 1 / 1
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2.2.2 Image preprocessing

The T1w MR images were converted from DICOM to NIfTI using the software dicom2niix
(Li et al., 2016) and organized using the Brain Imaging Data Structure (BIDS) standard
(Gorgolewski et al., 2016). Images with a voxel dimension smaller than 0.9 mm were resam-
pled using a 3rd-order spline interpolation to obtain 1 mm isotropic voxels. To facilitate
annotations, we applied the following pre-processing using the ‘t1-linear’ pipeline of Clinica
(Routier et al., 2021), which is a wrapper of the ANTs software (Avants et al., 2014). Bias
field correction was applied using the N4ITK method (Tustison et al., 2010). An affine
registration to MNI space was performed using the SyN algorithm (Avants et al., 2008).
The registered images were further rescaled based on the min and max intensity values
(y = (x −min(x))/(max(x) −min(x)), where x is the T1w brain MRI in the MNI space).
Images were then cropped to remove background resulting in images of size 169×208×179,
with 1 mm isotropic voxels (Wen et al., 2020). One should note that we only aimed to
obtain a rough alignment and intensity rescaling to facilitate annotation.

2.2.3 Manual labeling of the dataset

In this section, we introduce the visual QC protocol. We describe the different characteristics
noted on the images and how we created the final label for the automatic QC. Images were
labeled by two trained raters and the annotation protocol was designed with the help of a
radiologist.

2.2.3.1 Quality criteria

Five characteristics were manually annotated. The first two (straight rejection and gadolin-
ium) are binary flags, while the other three (motion, contrast and noise) are assessed with
a three-level grade.

• Straight rejection (SR): images not containing a T1w MRI of the whole brain (for
instance images of segmented tissues or truncated images). Note that these images still
have DICOM attributes corresponding to T1w brain MRI and thus were not removed
through the selection step based on DICOM attributes.

• Gadolinium: presence of gadolinium-based contrast agent.

• Motion 0: no motion, 1: some motion but the structures of the brain are still dis-
tinguishable, 2: severe motion, the cortical and subcortical structures are difficult to
distinguish.

• Contrast 0: good contrast, 1: medium contrast (gray matter and white matter are
difficult to distinguish in some parts of the image), 2: bad contrast (gray matter and
white matter are difficult to distinguish everywhere in the brain).

• Noise 0: no noise, 1: presence of noise that does not prevent identifying structures,
2: severe noise that does prevent identifying structures.
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Gadolinium injection, motion, contrast and noise were noted for all the images which were
not defined as SR. According to the grades given to the motion, contrast and noise char-
acteristics, we determined three tiers corresponding to images of good, medium and bad
quality. The tiers, along with the rules used to defined them, are described in Table 2.2.

Tier Description Determination rule

Tier 1 3D T1w brain MRI of
good quality

Grade 0 for motion, contrast and
noise

Tier 2 3D T1w brain MRI of
medium quality

At least one characteristic among
motion, contrast and noise with
grade 1 and none with grade 2

Tier 3 3D T1w brain MRI of
bad quality

At least one characteristic among
motion, contrast and noise with
grade 2

Table 2.2: Description and determination rules of the proposed quality control tiers.

2.2.3.2 Annotation set-up

Our aim was to annotate the largest possible number of images in an efficient manner while
being restricted to the environment of the data warehouse which only included a Jupyter
notebook and a command-line interface. We thus implemented a graphical interface in a
Jupyter notebook. This interface displayed only the central axial, sagittal and coronal slices
of the brain. Indeed, loading the whole 3D volume for inspecting all the slices in the data
warehouse environment was unfeasible due to the above mentioned restrictions. Specifically,
from the NIfTI format, we saved a screenshot of the central slice of each view (sagittal,
coronal, axial) in PNG format. This allowed a fast loading of the image to annotate.
Each image was labeled by two trained raters. The interface was flexible: it was possible
to go back and label again an image, and after the labelling all the characteristics noted
were displayed. The procedure was optimized to reduce the workload of the raters to a
minimum. The implementation is available on a GitHub repository: https://github.com/
SimonaBottani/Quality_Control_Interface.

2.2.3.3 Consensus label

The final label used to train and validate the automatic QC is a consensus between the two
raters. If the users labeled different image characteristics, we determined a procedure to
define a consensus label. We distinguished two types of disagreement: one regarding the
SR status and the other one regarding the other characteristics based on which the tiers are
assigned. When the two raters disagreed on the SR status, we manually set the consensus
label: the two raters reviewed the images and decided together to keep the SR label or
assign the alternative label. In case of disagreement regarding the other characteristics, the
consensus was chosen as follows. The objective was to be as conservative as possible: we
wanted to retain all the imperfections that may have been seen by one annotator and not

https://github.com/SimonaBottani/Quality_Control_Interface
https://github.com/SimonaBottani/Quality_Control_Interface
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Figure 2.3: Architecture of the 3D CNN called Conv5_FC3. Five convolutional blocks
(composed sequentially of a convolutional layer, a batch normalization layer, a ReLU and

a max pooling layer) are followed by a dropout and three fully connected layers.

by the other. For a given characteristic, the consensus grade was chosen as the maximum
of the two grades of the observers. The tier was recomputed accordingly.

2.2.4 Automatic quality control method

We developed an automatic QC method based on CNNs trained to perform several classi-
fication tasks: 1) discard images which were not proper T1w brain MRI (SR: yes vs no));
2) identify images with gadolinium (gadolinium: yes vs no); 3) differentiate images of bad
quality from images of medium and good quality (tier 3 vs tiers 2-1); 4) differentiate images
of medium quality from images of good quality (tier 2 vs tier 1).

2.2.4.1 Network architecture

The network proposed was composed of five convolutional blocks and of three fully con-
nected layers. The convolutional blocks were made of one convolutional layer, one batch
normalization layer, one ReLU and one max pooling. Details about architecture are repre-
sented on Figure 2.3. All the details about the parameters of the layers, i.e. the filter size,
the number of filters/neurons, the stride and the padding size and the dropout rate are in
the Supplementary Materials in table 2.8. In the following, we refer to this architecture as
Conv5_FC3. The models were trained using the cross entropy loss, which was weighted
according to the proportion of images per class for each task. We used the Adam optimizer
with a learning rate of 1e-4. We implemented early stopping and all the models were evalu-
ated with a maximum of 50 epochs. The batch size was set to 2. The model with the lowest
loss was saved as final model. Implementation was done using Pytorch. This architecture
has previously been used and validated in (Wen et al., 2020). It is available through the
ClinicaDL software available on GitHub: https://github.com/aramis-lab/ClinicaDL.

We compared this network to more sophisticated CNN architectures. In particular, we
implemented a modified 3D version of Google’s incarnation of the Inception architecture
(Szegedy et al., 2016). In addition we also implemented a 3D ResNet (CNN with residual

https://github.com/aramis-lab/ClinicaDL
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Characteristics Weighted Cohen’s kappa

SR (yes vs no) 0.88

Gadolinium injection (yes vs no) 0.89

Contrast (0 vs 1 vs 2) 0.79

Motion (0 vs 1 vs 2) 0.68

Noise (0 vs 1 vs 2) 0.70

Table 2.3: Weighted Cohen’s kappa between the two annotators

blocks) inspired from (Jónsson et al., 2019). More details about the architectures are given
Figures 2.6 and 2.7. Both the Inception and the ResNet models were trained using the cross
entropy loss weighted according to the proportion of images per class, the Adam optimizer
with a learning rate of 1e-4 and the batch size was set to 2. These two models have been used
in (Couvy-Duchesne et al., 2020) to predict brain age from 3D T1w MRI. For that specific
task, they achieved a higher performance than the 5-layer CNN mentioned above. Their
implementation is openly available on GitHub https://github.com/aramis-lab/pac2019

and all the parameters of the CNNs are listed in the supplementary materials of (Couvy-
Duchesne et al., 2020).

2.2.4.2 Experiments

Before starting the experiments, we defined a test set by randomly selecting 500 images
which respected the same distribution of tiers as the images in the training/validation set.
We also verified that the distribution of the manufacturers and the different scanner models
was respected. The remaining 5000 images were split into training and validation using a
5-fold cross validation (CV). The separation between training, validation and test sets was
made at the patient level to avoid data leakage. For each of the four tasks considered (SR,
gadolinium, tier 3 vs 2-1, tier 2 vs 1), the five models trained in the CV were evaluated on
the test set. We also studied the influence of the size of the training set on the performance
by computing learning curves. We compared the output of each classifier with the consensus
label. To set the automatic QC results in perspective, we computed the balanced accuracy
(BA) for the raters (defined as the average of the BAs between each rater and the consensus).

2.3 Results

2.3.1 Manual quality control

The inter-rater agreement was evaluated using the weighted Cohen’s kappa (Watson and
Petrie, 2010) between the two annotators for each of the characteristics. Results are pre-
sented in Table 2.3. The agreement is strong for the SR label and the gadolinium injection
(0.88 and 0.89) and moderate for the other characteristics (from 0.68 to 0.79).

The distribution of the consensus labels for the 5500 patients is shown in Figure 2.4. 26%
of the images are labeled as SR, 16% as tier 1, 28% as tier 2, and 30% as tier 3. Table 2.7

https://github.com/aramis-lab/pac2019
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Figure 2.4: Distribution of the consensus labels for the whole dataset of 5500 images.
Outermost circle: images in SR and in the different tiers. For every tier, we divide between
images with and without gadolinium injection. For each injection status we see the grade

distribution of the contrast, motion and noise characteristics.

reports the exact number of images for each category. Figure 2.1 shows some representative
examples of T1w brain images with the corresponding labels.

As expected, the proportion of images with gadolinium increased when the quality de-
creased (proportion of images with gadolinium: 41% in Tier 1, 53% in tier 2, 76% in tier 3;
p < 2.13e−8; χ2 test). A vast majority of tier 3 images had a contrast of 2 (90%) and were
with gadolinium (70%).

If we analyse the relationships between characteristics, we note that 73% of images with
a grade 2 for motion have also a grade 2 for contrast. Unsurprisingly, a strong motion has
a severe impact on contrast. On the other hand, images with a grade 2 for contrast present
a closer distribution of grade 0, 1 and 2 for motion (40%, 34%, and 26%, respectively).

We studied the influence of the age, sex, manufacturer and field strength for the SR
images or the different tiers for which demographic information was available (4274 out
of 5500). In Table 2.4, we report the percentage of each manufacturer, field strength
and sex, and the mean, standard deviation and range for the age according to the QC
grading performed by the human raters (SR, tier 1, tier 2 or tier 3). We compared the
distribution of the four overall quality classes to the overall population using a χ2 test for the
manufacturer, field strength and sex, and with a t-test for the age. P-values were corrected
for multiple comparisons using Bonferroni correction. We found statistically significant
differences (corrected p-value <0.05) for the manufacturer for tier 1, tier 2 and tier 3 and
for the field strength for tier 1, tier 3 and SR. Specifically, in tier 1 and tier 2, there was
a majority of Siemens machines (especially of 3T for tier 1), while in tier 3 there was a
majority of GE Healthcare machines. In addition, the SR category contained many 3T
images that are actually segmented images, as such processed images are usually available
with the most recent machines (that come equipped with segmentation software). For age
and sex, there was no significant difference.

DICOM attributes often contain information regarding the injection of gadolinium. How-
ever, it is well-known to radiologists that such information is often unreliable because it is
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Manufacturer
(%Siemens,

%GE,
% Philips,
% Toshiba)

Field strength
(%1.5T, %3T)

Age
(mean ± std

[range])

Sex
(%F, %M)

(Tier 1
(n=702)

90%, 10%,
0%, 0%** 9%, 91% ** 47.51 ± 16.27

[18 - 88] 52%, 48%

Tier 2
(n=117)

78%, 22%,
0.2%, 0.01% ** 44%, 56% 54.42 ± 17.79

[18 - 95] 59%, 41%

Tier 3
(n=1323)

38%, 62%,
0%, 0.2%** 60%, 40% ** 59.97 ± 17.13

[18 - 85] 57%, 43%

SR
(n=1132)

67%, 32%,
1%, 0% 28%, 72% ** 54.95 ± 18.01

[18 - 93] 47%, 53%

Total
(n=4274)

65%, 35%,
0.2%, 0% 39%, 61% 55.15 ± 17.89

[18 - 95] 53%, 46%

Table 2.4: Distribution of the manufacturers, field strength, sex and age according to
QC grading (performed by the human raters) and on the overall population. We report
the percentage of each manufacturer, field strength and sex, and the mean ± standard
deviation with the range for age. The analysis was restricted to the sub-population for
which demographic information was available (4274 of 5500 images). Results with **
mean that the distributions between the overall population and a specific QC class were

statistically significantly different (corrected p <0.05).

manually entered by the MRI radiographer. We aimed to assess the extent to which such
information was unreliable. We thus analysed the “study description” and “series descrip-
tion” DICOM attributes of the images to check if the presence of gadolinium injection was
noted. We considered that it was noted if at least one of the words ‘gado’, ‘inj’ or ‘iv’ was
present in the value of one of the attributes. Among the 2416 images that were manually
annotated as with gadolinium, 2033 images had the information in the DICOM attributes.
Among the 1629 images that were manually annotated as without gadolinium, 987 were
noted as images with gadolinium injection according to the DICOM attributes. Since our
manual annotation of gadolinium injection is highly reproducible and was designed with
the guidance of an experienced neuroradiologist, we conclude that, as expected, DICOM
attributes do not provide reliable information regarding the presence of gadolinium. This
highlights the importance of being able to detect it using an automatic QC tool.

2.3.2 Automatic quality control

Results obtained for the four tasks of interest by the proposed Conv5_FC3 classifier are
presented in Table 2.5. We report the BA of the annotators for comparison. For the
recognition of SR images, we used all the images available in the training/validation set
(n = 5000); for the gadolinium and tier 3 vs tiers 2-1 tasks, the training/validation set does
not include SR images (n = 3770); and for the tier 2 vs tier 1 task, the training/validation
set does not include SR and tier 3 images (n = 2182).

Balanced accuracy for SR and gadolinium is excellent (94% and 97%). For SR, the CNN
is slightly less good than the annotators. For gadolinium, the CNN is as good as the raters.
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Metric SR
(yes vs no)

Gadolinium injection
(yes vs no)

Tier 3 vs
tiers 2-1

Tier 2 vs
tier 1

BA annotators 97.13 96.10 91.56 88.27

BA classifiers 93.76 ± 0.57 97.14 ± 0.34 83.51 ± 0.93 71.65 ± 2.15

F1 score 94.85 ± 0.41 97.04 ± 0.31 84.07 ± 1.02 74.10 ± 1.35

MCC 85.71 ± 1.11 94.00 ± 0.64 67.38 ± 2.13 42.10 ± 3.25

Sensitivity 91.83 ± 1.18 96.45 ± 0.34 79.88 ± 3.06 77.39 ± 4.29

Specificity 95.69 ± 0.53 97.82 ± 0.62 87.14 ± 3.14 65.92 ± 7.47

PPV 86.44 ± 1.43 98.33 ± 0.46 81.93 ± 3.36 83.20 ± 2.31

NPV 97.51 ± 0.35 95.39 ± 0.42 85.83 ± 1.49 57.78 ± 2.63

Table 2.5: Results of the CNN classifier for all the tasks. We report the BA of the
annotators and for every metric of the CNN we report the mean and the empirical stan-
dard deviation across the five folds. BA: balanced accuracy; MCC: Matthews correlation

coefficient; PPV: positive predictive values; NPV: negative predictive values

Figure 2.5: Learning curves for the SR (yes vs no), gadolinium injection (yes vs no), tier
3 vs tier 2-1 and tier 2 vs tier 1 tasks. Blue: balanced accuracy of the classifier across the

five folds. Violet: balanced accuracy of the annotators on the testing set.

For tier 3 vs 2-1, the classifier BA is good but lower than that of the annotators. For tier 2
vs 1, CNN BA is low (71%) and much lower than that of the raters (88%).

The influence of the size of the training set on the performance is shown in Figure 2.5.
For SR, the performance increases with sample size, even if it is also good with few examples
(90% for 500 images) because of the easiness of the task. For gadolinium, performance is
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very high regardless of the sample size. For tier 3 vs tiers 2-1, adding more training samples
helps the classifier while this is not the case for tier 2 vs 1.

For tier 3 vs tiers 2-1 and tier 2 vs tier 1, we compared the proposed architecture,
Conv5_FC3, with the Inception and ResNet architectures. For both tasks, the balanced
accuracy obtained with the different networks is comparable: while for tier 3 vs tiers 2-1 it
is slightly higher with the ResNet (85.82 ± 0.95) than the Conv5_FC3 (83.51 ± 0.93) and
the Inception (82.40 ± 1.2 ), for tier 2 vs 1 it is slightly higher with the Conv5_FC3 (71.65
± 2.15) than the ResNet (68.08 ± 1.6) or Inception (69.27 ± 2.05) architectures. For both
tasks, the performance of the different classifiers were not statistically different (for tier 3
vs tiers 2-1: p>0.21, McNemar’s test; for tier 2 vs tier 1: p>0.12, McNemar’s test). All the
metrics are reported in Table 2.6.

A. Tier 3 vs tiers 2-1

Metric Conv5_FC3 Inception ResNet

BA 83.51 ± 0.93 82.41 ± 1.28 85.82 ± 0.95

Sensitivity 79.88 ± 3.06 75.53 ± 2.68 80.75 ± 3.24

Specificity 87.14 ± 3.14 89.29 ± 3.45 90.89 ± 2.22

F1 score 84.07 ± 1.02 83.38 ± 1.44 86.57 ± 0.81

MCC 67.38 ± 2.13 66.08 ± 3.02 72.52 ± 1.70

PPV 81.93 ± 3.36 83.80 ± 3.93 86.58 ± 2.43

NPV 85.83 ± 1.49 83.58 ± 1.20 86.85 ± 1.76

B. Tier 2 vs tier 1

Metric Conv5_FC3 Inception ResNet

BA 71.65 ± 2.15 69.28 ± 2.81 68.08 ± 1.63

Sensitivity 77.39 ± 4.29 76.86 ± 4.76 82.35 ± 2.90

Specificity 65.92 ± 7.47 61.69 ± 10.01 53.80 ± 4.99

F1 score 74.10 ± 1.35 72.28 ± 1.13 72.94 ± 1.18

MCC 42.10 ± 3.25 37.74 ± 4.10 37.13 ± 2.73

PPV 83.20 ± 2.32 81.51 ± 3.08 79.40 ± 1.34

NPV 57.78 ± 2.63 55.49 ± 1.70 58.77 ± 2.40

Table 2.6: Results of three 3D CNN architectures (Conv5_FC3, Inception and ResNet)
for the rating of the overall image quality. We report the mean and the empirical standard
deviation across the five folds for all the metrics. BA: balanced accuracy; MCC: Matthews
correlation coefficient; PPV: positive predictive values; NPV: negative predictive values
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2.4 Discussion

In this work, we developed a method for the automatic QC of T1w brain MRI for a large
clinical data warehouse. Our approach allows: i) discarding images which are of no interest
(SR), ii) recognizing gadolinium injection , iii) rating the overall image quality. To this aim,
different CNN were trained and evaluated thanks to the manual annotation of 5500 images
by two raters.

In the last decades, many computer-aided diagnosis systems using machine learning
methods have been proposed for the detection of lesions or tumours, or for the classification
of neurodegenerative or psychiatric diseases (Rathore et al., 2017; Işın, Direkoğlu, and Şah,
2016; Burgos et al., 2021). Algorithms were mainly developed and tested using research
images (Samper-González et al., 2018; Noor et al., 2019; Cuingnet et al., 2011), or clinical
datasets of limited size (Morin et al., 2020; Zhang et al., 2019a; Campese et al., 2019;
Oh et al., 2019). Their validation on large realistic clinical datasets is crucial. To that
aim, clinical data warehouses, which may gather millions of clinical routine images, offer
fantastic opportunities. They also provide considerable challenges. In particular, selecting
adequate images for a given analysis task can be very difficult: DICOM attributes may
be unreliable, images may be of the wrong type, truncated and their quality is extremely
variable. Therefore, automatic curation and QC methods are needed to fully exploit the
potential of clinical data warehouses. Important efforts and achievements have been made by
the scientific community to propose protocols and automatic tools for QC. MRIQC (Esteban
et al., 2017) and VisualQC (Raamana et al., 2020) are two tools developed for the QC of T1w
brain MRI data: they propose the extraction of image quality metrics for the detection of
outliers, and a graphical interface to check the images. Alfaro-Almagro et al., 2018 proposed
a pipeline for the UK Biobank dataset. Sujit et al., 2019 trained a CNN using the research
dataset ABIDE. Other works focused on QC of processing results (segmentation) rather
than raw data (Keshavan et al., 2018; Klapwijk et al., 2019). However, all these tools were
designed for research data. Even if the data came from multiple sites, they do not cover
all the images existing in a clinical PACS: they did not cover images with gadolinium and
the patients presented with a limited number of diseases. Indeed, research datasets do not
contain SR or tier 3 images and they may have very few tier 2 images. Protocols for the
acquisition of research data are often different (in particular, scanning time is often longer)
and a systematic visual QC is often performed. If the quality of an image is poor, a second
scan can be acquired and information about the image quality is provided. In addition,
DICOM fields are standardized among a research dataset, meaning that from the modality
name it is possible to recognise whether a gadolinium-based contrast agent has been injected
or not. On the contrary, in a clinical data warehouse, we may find images with or without
gadolinium injection, “research quality" images, and images segmented, cropped or with so
much motion that it is impossible to distinguish the brain. This heterogeneity makes it
impossible to use other QC tools present in the literature. In particular, software tools such
as MRIQC Esteban et al., 2017 propose an extensive image pre-processing pipeline before the
calculation of image quality metrics. Classical neuroimaging software tools, such as SPM,
ANTS or FSL, are typically validated only on T1w brain MRI of a good quality and without
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gadolinium. The quality of our data, in particular of SR images that represent 25% of our
dataset and the fact that we have about 44% of images with gadolinium injection, does not
allow us to trust the metrics extracted from segmentations. To the best of our knowledge,
we are the first to propose an automatic QC framework for clinical data warehouses.

To train our automatic QC algorithm, we had to manually annotate a large sample
of images from the data warehouse. It was not possible to use existing protocols and
software tools. In addition to the limitations mentioned above, we were also constrained
by the environment of the data warehouse which only included a Jupyter notebook and a
command-line interface. While constraints may vary from a data warehouse to another, it is
very common that the data cannot be downloaded and thus have to be used within a specific
informatics set-up (Daniel and Salamanca, 2020). We thus developed a dedicated visual
QC protocol, with the assistance of a resident radiologist. We compared the annotation
using 3D images and 2D slices, and we concluded that three 2D slices were sufficient and
could represent a good compromise to fulfil our objectives: one being the exclusion of bad
quality images that would compromise further analyses. Manual annotation results showed
that our protocol is reproducible across all tasks, even though agreement was weaker for
more challenging characteristics. Inter-rater agreement was strong for the SR label and
the gadolinium injection and moderate for other characteristics. Manual annotation also
provides interesting information on the variability of image quality in a clinical routine
data warehouse. As much as 25% are totally unusable (SR), and almost a third has a
very low quality (Tier 3). We also confirmed that gadolinium has a strong impact on image
quality, hence the critical importance of detecting it accurately, the DICOM attributes being
unreliable in that regard.

For detecting straight reject, our CNN had excellent performance (BA greater than 90%).
Even though the task is relatively easy, this is very important in order to automatically
discard images in a very large scale study. This was also the case for detection of gadolinium,
an important characteristic that strongly impacts the behavior of many image analysis
methods. For the rating of image quality, the situation was different for identifying Tier 3
(low quality) images and for separating Tier 2 (medium quality) and Tier 1 (high quality).
The proposed CNN classifier identified low quality images (Tier 3) with a high accuracy
(83%). This is important because these are typically the images on which image processing
algorithms could fail. Differentiating images of high and medium quality could also be useful
but is less important as both categories can likely lead to reliable diagnostic predictions. We
thus believe that these tools can be reliably used on the rest of this large data warehouse and
already have an important practical impact. We compared several more sophisticated CNN
architectures to our simple network based on five convolutional and three fully connected
layers. However, these more complex networks (3D Inception and 3D ResNet) did not
provide any significant improvement in performance. We could not compare our approach
with the more standard ones based on the extraction of the image quality metrics since the
software tools are not adapted to our data: we can trust the results of a classifier based on
these types of features only if we trust the segmentation results. Our aim was to propose
a framework for the QC that can be re-used on a clinical platform and so must be adapted
to different tasks and have a preprocessing as light as possible. This is the reason why we
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developed a CNN for all the tasks.
Thanks to the large number of hospitals in the AP-HP consortium (39 hospitals) and

to the huge amount of images collected over the years (1980–now), we strongly believe that
this dataset is representative of 3D T1w brain MRI that may be acquired in other hospitals.
Consequently, the use of our QC framework could be generalized and it represents a first
important step for the use of clinical data warehouses for the design of computer-aided diag-
nosis systems. Indeed, this work on quality control can help researchers to conduct studies,
from observational studies that include MRI-based measurements to the development of
CAD systems. First, obviously, the system will help save time by excluding SR images since
they are not usable at all, both for training and testing. Even a neuroradiologist would not
rely on these images for diagnostic purposes. Thereafter, the graded quality is also useful:
either by controlling this confounding factor that can impact classification results or results
of correlative studies, or by excluding images of bad quality (i.e. tier 3) when training the
CAD. The quality grade could also contribute to building a confidence score for a classifier:
when performing inference on a bad quality image we could lower the confidence in the
classifier’s result. Our study is going to be useful when performing research studies of dif-
ferent kinds (from training machine learning models to observational clinical retrospective
studies). It is true that, beyond research, it could potentially be useful in a clinical routine
setting. However, several steps would be needed towards that aim. First, it would obviously
need to be approved as a medical device (e.g. FDA or CE approval). The most natural
way to integrate it would probably be within the software provided by the MRI vendor.
The computer hardware associated with the MRI machine is certainly powerful enough to
perform the inference steps of our models. In a clinical routine setting, there are several
potential usages of the approach. The most natural may be to associate it to automatic
quantification algorithms which are more and more commonly available within the radiol-
ogist console. This would help flag exams for which, due to image quality, quantification
cannot be considered reliable.

The main limitations of our study concern the annotation process. With the analysis of
only three slices, we limit the chances to notice localised artefacts. Another consequence is
that it may be difficult to properly distinguish the characteristics when an image is degraded:
in particular the motion and the noise may be confused. This is also reflected by moderate
values of the weighted Cohen’s kappa obtained for these two characteristics. Additionally,
even if we believe that the CNN models that were trained on data from the AP-HP data
warehouse can be applied to other clinical datasets due to the large numbers of hospitals and
scanner models involved in study and to the extended period of time, it would be beneficial
to apply them on a public dataset for benchmarking. Furthermore, it would be interesting
to study the potential association between the diagnoses of the patients and the quality
of the images and the performance of the automatic QC. However, such a study is not
straightforward to conduct due to the multiplicity of diagnostic codes for a given inpatient
and the absence of any diagnostic information for outpatients. This is left for future work.
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2.5 Conclusion

In this work, we proposed a framework for the automatic quality control of 3D brain T1w
MRI for a large clinical data warehouse. Thanks to the manual annotation of 5500 images,
we trained and validated different convolutional neural networks on 5000 images with a
5-fold CV and we tested them on an independent test set of 500 images. The classifier was
as efficient as manual rating for the classification of images which are not proper 3D T1w
brain MRI (i.e. truncated or segmented images) and for the images for which gadolinium
was injected. In addition, the classifier was able to recognise low quality images with good
accuracy.
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Supplementary Material

QC
grading N Gadolinium

injection N Contrast
Grade N Motion

Grade N Noise
Grade N

Tier 1 873
With gado 358 - - - - - -

Without gado 515 - - - - - -

Tier 2 1533

With gado 812
0 342 0 409 0 431

1 470 1 403 1 381

Without gado 721
0 237 0 441 0 445

1 484 1 280 1 276

Tier 3 1639

With gado 1246

0 40 0 451 0 683

1 56 1 425 1 549

2 1150 2 370 2 14

Without gado 393

0 27 0 147 0 271

1 43 1 86 1 120

2 323 2 160 2 2

SR 1455 - - - - - - - -

Table 2.7: For each QC grading, we report the total number of images, the number of
images with or without gadolinium injection and the number of images per grade for the

contrast, motion and noise characteristics.
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Chapter 3

Homogenization of brain MRI from a
clinical data warehouse using
contrast-enhanced to
non-contrast-enhanced image
translation

This chapter has been submitted to the Journal of Medical Imaging. A short version has
been published in the Proceedings of the SPIE Medical Imaging 2022 conference.

• Title: Homogenization of brain MRI from a clinical data warehouse using contrast-
enhanced to non-contrast-enhanced image translation

• Authors: Simona Bottani, Elina Thibeau-Sutre, Aurélien Maire, Sebastian Ströer,
Didier Dormont, Olivier Colliot, Ninon Burgos

3.1 Introduction

Clinical data warehouses, gathering hundreds of thousands of medical images from numerous
hospitals, offer unprecedented opportunities for research. They can for example be used to
develop and validate machine learning and deep learning algorithms for the computer-aided
diagnosis of neurological diseases. However, they also pose important challenges, a major
challenge being their heterogeneity. Neurological diseases can result in a variety of brain
lesions that are each studied with specific magnetic resonance imaging (MRI) sequences. For
example, T1-weighted (T1w) brain MR images enhanced with a gadolinium-based contrast
agent are used to study lesions such as tumors, and T1w images without gadolinium are
used to study neurodegenerative diseases.

To perform differential diagnosis using classification algorithms, homogeneous features
must be extracted from the images, no matter the disease, otherwise a link could be estab-
lished between MRI sequence and pathology, which would create bias. This is critical as
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differential diagnosis in a clinical setting can be more challenging than in a research set-
ting as different diseases may co-exist. Software tools such as SPM (Penny et al., 2011),
ANTs (Avants et al., 2014) or FSL (Mark et al., 2012) have been widely used for feature
extraction but they were largely validated using structural T1w MRI without gadolinium,
to the best of our knowledge, and their good performance on images with gadolinium is thus
not guaranteed. A solution could then be to convert contrast-enhanced T1w (T1w-ce) into
non-contrast-enhanced T1w (T1w-nce) brain MRI before using such tools.

Deep learning has been widely used in the image translation domain. The U-Net and
conditional generative adversarial networks (GANs) appear as the two most popular options.
The U-Net was originally proposed for image segmentation (Ronneberger, Fischer, and Brox,
2015): an encoder with convolutional and downsampling blocks is followed by a decoder with
upsampling and convolutional layers. The skip connections linking the encoder and decoder
blocks at the same level enable the reconstruction of fine-grained details, explaining the
popularity of this architecture for image translation (Han, 2017; Shiri et al., 2019; Gong et
al., 2018; Ladefoged et al., 2019; Spuhler et al., 2019; Yang et al., 2019; Neppl et al., 2019;
Wolterink et al., 2017). Conditional GANs consist of a generator, which may adopt the
U-Net architecture, followed by a discriminator in charge of distinguishing synthetic from
real images and challenging the generator so that it improves the quality of the generated
images. The good results obtained with conditional GANs explain their wide use for image
translation (Chen et al., 2018; Gu et al., 2019; Kim, Do, and Park, 2018; Dinkla et al.,
2018; Emami et al., 2018; Nie et al., 2018; Dar et al., 2019; Yu et al., 2019; Li et al., 2019a;
Sharma and Hamarneh, 2019).

Both U-Net like models and conditional GANs have been proposed for diverse appli-
cations. Some aim to enhance the quality of the input images, for example by reducing
noise in MRI (Benou et al., 2017; Jiang et al., 2018; Ran et al., 2019) or positron emission
tomography (Hashimoto et al., 2019) images or by performing super-resolution (Chen et al.,
2018; Du et al., 2020; Kim, Do, and Park, 2018; Pham et al., 2017; Zeng et al., 2018). Other
works aim to translate an image of a particular modality into another modality, such as an
MRI into an X-ray computed tomography (CT) (Han, 2017; Wolterink et al., 2017; Emami
et al., 2018; Nie et al., 2018; Gong et al., 2018; Ladefoged et al., 2019) or a particular MRI
sequence into another sequence (Dar et al., 2019; Yu et al., 2019; Li et al., 2019a; Sharma
and Hamarneh, 2019). The U-Net architecture has also been used for the data harmoniza-
tion: Dewey et al., 2019 built Deep-Harmony that aims to homogenize the contrast between
images coming from different sites.

Closer to our application, various deep learning models have been developed for the
synthesis of images with gadolinium from images without gadolinium: they include rein-
forcement learning for liver MRI (Xu et al., 2021), or Gaussian mixture modeling for CT
images (Seo et al., 2021). As for the other image translation tasks, 3D U-Net like models
have also been used to convert T1w-nce into T1w-ce images (Bône et al., 2021; Kleesiek
et al., 2019; Sun et al., 2020). In two studies (Bône et al., 2021; Kleesiek et al., 2019),
multimodal MRI sequences were used as input of the 3D U-Net that was trained and tested
on patients with brain cancers. More specifically, the 3D U-Net proposed by Kleesiek et al.,
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2019 predicts patches of T1w-ce, while the one proposed by Bône et al., 2021 directly pre-
dicts the full 3D T1w-ce image. The residual attention U-Net described in the last work (Sun
et al., 2020) outputs synthetic T1w-ce that are used for the evaluation of cerebral blood
volume in mice, instead of the real T1w-ce.

Our objective in this work was to obtain a homogeneous data set of T1w-nce images from
very heterogeneous images coming from a clinical data warehouse. This homogenization step
should enable a consistent extraction of features that would later be used for computer-aided
diagnosis in a clinical setting. We thus developed and compared different deep learning
models that rely on typical architectures used in the medical image translation domain to
convert T1w-ce into T1w-nce images. In particular, we implemented 3D U-Net like models
with the addition of residual connections, attention modules or transformer layers. We also
used these 3D U-Net like models in a conditional GAN setting. We trained and tested our
models using 307 pairs of T1w-nce and T1w-ce images coming from a very large clinical data
warehouse (39 different hospitals of the Greater Paris area). We first assessed synthesis
accuracy by comparing real and synthetic T1w-nce images using standard metrics. We
tested our models both on images of good or medium quality and on images of bad quality
to ensure that deep learning models could generate accurate T1w-nce images no matter the
quality of the input T1w-ce images. We then compared the volumes of gray matter, white
matter and cerebrospinal fluid obtained by segmenting the real T1w-nce, real T1w-ce and
synthetic T1w-nce images using SPM (Ashburner and Friston, 2005) in order to verify that
features extracted from synthetic T1w-nce were reliable. Preliminary work is accepted for
publication in the proceedings of the SPIE Medical Imaging 2022 conference (Bottani et al.,
2022b). Contributions specific to this paper include the development of additional models
(a 3D U-Net like model with the addition of transformer layers, and three conditional GAN
models using 3D U-Net like models as generators and a patch-based discriminator) and
an extended validation of the segmentation task with a deeper analysis the tissue volume
differences.

3.2 Materials and methods

3.2.1 Data set description

This work relies on a large clinical data set containing all the T1w brain MR images of adult
patients scanned in one of the 39 hospitals of the Greater Paris area (Assistance Publique-
Hôpitaux de Paris [AP-HP]). The data were made available by the AP-HP data warehouse
and the study was approved by the Ethical and Scientific Board of the AP-HP. According to
French regulation, consent was waived as these images were acquired as part of the routine
clinical care of the patients.

Images were acquired as part of the routine clinical care in the different hospital sites
and gathered in a central hospital PACS. Images relevant to the research project were
copied to the research PACS and pseudonymized. They always remain within the hospital
network that we accessed remotely. Images from this clinical data warehouse are very
heterogeneous (Bottani et al., 2022a): they include images of patients with a wide range
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of ages (from 18 to more than 90 years old) and diseases, acquired with different scanners
(more than 30 different models) from 1980 up to now.

In a previous work (Bottani et al., 2022a), we developed a quality control framework
to identify images that are not proper T1w brain MRIs, to identify acquisitions for which
gadolinium was injected, and to rate the overall image quality defined based on three char-
acteristics: motion, contrast and noise. We did so by manually annotating 5500 images
(out of a batch of 9941 images that were available) to train and test convolutional neural
network (CNN) classifiers. The graphical interface used to manually annotate the images is
publicly available (https://github.com/SimonaBottani/Quality_Control_Interface).

The data set used in this work is composed of 307 pairs of T1w-ce and T1w-nce images
that were extracted from the batch of 9941 images made available by the AP-HP data
warehouse. We first selected all the images of low, medium and good quality, excluding
images that were not proper T1w brain MRI (Bottani et al., 2022a), resulting in 7397 images.
This selection was based on manual quality control for 5500 images and on automatic quality
control for the remaining 4441 images (Bottani et al., 2022a). In the same way, the presence
or absence of gadolinium-based contrast agent was manually noted for 5500 images, while
it was obtained through the application of a CNN classifier for the remaining 4441 images.
We then considered only patients having both a T1w-ce and a T1w-nce image at the same
session, with a T1w-nce image of medium or good quality. Finally, to limit heterogeneity
in the training data set, we visually checked all the images and excluded 52 image pairs
that were potential outliers because of extremely large lesions. Among the selected images,
256 image pairs were of medium and good quality, and 51 image pairs had a T1w-ce of
low quality and a T1w-nce of good or medium quality. In total the data set comprises 614
images: 534 images were acquired at 3 T and 80 at 1.5 T, 556 images were acquired with a
Siemens machine (with seven different models) and 58 with a GE Healthcare machine (with
five different models).

3.2.2 Image preprocessing

All the images were organised using the Brain Imaging Data Structure (BIDS) (Gorgolewski
et al., 2016). We applied the following pre-processing using the ‘t1-linear’ pipeline of Clin-
ica (Routier et al., 2021), which is a wrapper of the ANTs software (Avants et al., 2014).
Bias field correction was applied using the N4ITK method (Tustison et al., 2010). An affine
registration to MNI space was performed using the SyN algorithm (Avants et al., 2008).
The registered images were further rescaled based on the min and max intensity values,
and cropped to remove background resulting in images of size 169×208×179, with 1 mm
isotropic voxels (Wen et al., 2020). Finally all the images were resampled to have a size of
128×128×128 using trilinear interpolation in Pytorch.

3.2.3 Network architecture

To generate T1w-nce from T1w-ce images, both 3D U-Net like models and conditional
GANs were developed and compared. The code used to implement all the architectures and

https://github.com/SimonaBottani/Quality_Control_Interface
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perform the experiments is openly available (https://github.com/SimonaBottani/image_
synthesis).

3.2.3.1 3D U-Net like structures

We implemented three models derived from the 3D U-Net (Ronneberger, Fischer, and Brox,
2015): a 3D U-Net with the addition of residual connections (called Res-U-Net), a 3D U-
Net with the addition of attention mechanisms (called Att-U-Net), a 3D U-Net with both
transformer and convolutional layers (called Trans-U-net). The U-Net structure allows
preserving the details present in the original images thanks to the skip connections (Ron-
neberger, Fischer, and Brox, 2015) and has shown good performance for image-to-image
translation (Han, 2017; Shiri et al., 2019; Gong et al., 2018; Ladefoged et al., 2019; Spuhler
et al., 2019; Yang et al., 2019; Neppl et al., 2019; Wolterink et al., 2017). Here we detail
the three architectures, which are also shown in Figure 3.1.

• Res-U-Net: The Res-U-Net we implemented is based on the architecture first proposed
by Milletari, Navab, and Ahmadi, 2016 and later used in (Bône et al., 2021). The five
descending blocks are composed of 3D convolutional layers followed by an instance
normalization block and a LeakyReLU (negative slope coefficient α = 0.2). The four
ascending blocks are composed of transposed convolutional layers followed by a ReLU.
The final layer is composed of an upsample module (factor of 2), a 3D convolutional
block and a hyperbolic tangent module. Each descending or ascending block is followed
by a residual module, which can vary from one to three blocks composed of a 3D
convolutional layer and a LeakyReLU (α = 0.2). Residual blocks were introduced to
avoid the problem of the vanishing gradients in the training of deep neural network
(He et al., 2016): they ease the training since they improve the flow of the information
within the network.

• Att-U-Net: We implemented the Att-U-Net relying on the work of Oktay et al., 2018.
In this architecture, the five descending blocks are composed of two blocks with a 3D
convolutional layer followed by a batch normalization layer and a ReLU. They are
followed by four ascending blocks. Each ascending block is composed of an upsample
module (factor of 2), a 3D convolutional layer followed by a ReLU, an attention gate
and two 3D convolutional layers followed by a ReLU. The attention gate is composed
of two 3D convolutional layers, a ReLU, a convolutional layer and a sigmoid layer. Its
objective is to identify only salient image regions: the input of the attention gate is
multiplied (element-wise multiplication) by a factor (in the range 0–1) resulting from
the training of all the blocks of the networks. In this way it discards parts of the
images that are not relevant to the task at hand.

• Trans-U-Net: The Trans-U-Net was implemented by Wang et al., 2021 (who called
the model TransBTS ). They proposed a 3D U-Net like structure composed of both
a CNN and a transformer. The CNN is used to produce an embedding of the input
images in order not to loose local information across depth and space. The features
extracted by the CNN are the input of the transformer whose aim is to model the

https://github.com/SimonaBottani/image_synthesis
https://github.com/SimonaBottani/image_synthesis
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Figure 3.1: Architectures of the proposed 3D U-Net like models. The models take as
input a real T1w-nce image of size 128×128×128 and generate a synthetic T1w-nce of size
128×128×128. Res-U-Net : images pass through five descending blocks, each one followed
by a residual module, and then through four ascending blocks and one final layer. Att-U-
Net : images pass through five descending blocks and then through four ascending blocks
and one final layer. One of the input of each ascending block is the result of the attention
gate. Trans-U-Net : images pass through four descending blocks, four transformer layers
and four ascending layers. All the parameters such as kernel size, stride, padding, size of

each feature map (N) are reported.
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global features. The descending blocks are composed of four different blocks, each
being composed of a 3D convolutional layer and one, two or three blocks composed of
a batch normalization layer, a ReLU and another 3D convolutional layer. The model
is then composed of four transformer layers, after a linear projection of the features.
Each transformer layer is itself composed of a multi-head attention block and a feed
forward network. The four ascending blocks are composed of a 3D convolutional layer
and one or two blocks with a batch normalization layer, a ReLU, a 3D convolutional
layer followed by a 3D deconvolutional layer. The final layer is composed of a 3D
convolutional layer and a soft-max layer.

For the three 3D U-Net like models we used the same training parameters. We used the
Adam optimizer, the L1 loss, a batch size of 2 and trained during 300 epochs. The model
with the best loss, determined using the training set, was saved as final model. We relied
on Pytorch for the implementation.

3.2.3.2 Conditional GANs

Generative adversarial networks (GANs) were firstly introduced by Goodfellow et al., 2014.
They are generative deep learning models composed of two elements: a generator for synthe-
sizing new examples and a discriminator for classifying whether examples are real, i.e. the
original ones, or fake, i.e. synthesized by the generator. Conditional GANs (cGANs) (Mirza
and Osindero, 2014) are a variant of GANs where the generator and the discriminator are
conditioned by the true samples. They can only be used with paired data sets.

We propose three different cGAN models that differ in the architecture of the generators,
which correspond to the three architectures presented above. The discriminator is the same
for all the cGANs: it is a 3D patch CNN, first proposed by Isola et al., 2017 and used in
the medical image translation domain (Wei et al., 2019; Choi and Lee, 2018). Its aim is to
classify if each pair of patches contains two real images or a real and a fake image. The
advantages of working with patches is that the discriminator focuses on the details of the
images and the generator must improve them to fool the discriminator.

Our discriminator is composed of four blocks: the first three blocks are composed of a
3D convolutional layer followed by a LeakyReLU (negative slope coefficient α = 0.2), and
the last block is composed of a 3D convolutional layer and a 3D average pooling layer. From
images of size 128×128×128, we created eight patches of size 64×64×64 with a stride of 50.

For the training of the discriminator we used the least-square-loss as proposed in (Mao et
al., 2017) in order to increase the stability, thus avoiding the problem of vanishing gradients
that occurs with the usual cross-entropy loss. Stability of the training was also improved
using soft labels: random numbers between 0 and 0.3 represented real images and random
numbers between 0.7 and 1 represented fake images.

The total loss of the cGANs combines

• the loss of the generator composed of the sum of the L1 loss (i.e. pixel-wise absolute
error) computed between the generated and true images, and the least-square loss
computed between the predicted probabilities of the generated images and positive
labels.
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• the loss of the discriminator composed of the mean of the least-square loss computed
between the predicted probabilities of the true images and positive labels and the least-
square loss computed between the predicted probabilities of the generated images and
negative labels.

At first, both the generators and discriminators were pretrained separately. Regarding
each generator, we reused the best model obtained previously. The discriminators were
pretrained for the recognition of real and fake patches (fake images were obtained from each
pretrained generator). The generators and discriminators were then trained together. The
generator models with the best loss, determined using the training set, were saved as final
models. Note that the batch size was set to 1 due to limited computing resources.

3.2.4 Experiments and validation measures

The experiments relied on 307 pairs of T1w-ce and T1w-nce images. We randomly selected
10% of the 256 image pairs of medium and good quality for testing (data set called Testgood),
the other 230 image pairs being used for training. Only images of good and medium quality
were used for training to ensure that the model focuses on the differences related to the
presence or absence of gadolinium, and not to other factors. The remaining 51 image pairs
with a T1w-ce of low quality and a T1w-nce of good or medium quality were used only for
testing (data set called Testlow).

3.2.4.1 Synthesis accuracy

Image similarity was evaluated using the mean absolute error (MAE), peak signal-to-noise
ratio (PNSR) and structural similarity (SSIM) (Wang et al., 2004). The MAE is the mean
of each absolute value of the difference between the true pixel and the generated pixel and
PSNR is a function of the mean squared error: these two metrics allows a direct comparison
between the synthetic image and the real one. The SSIM aims to measure quality by
capturing the similarity of images, it is a weighted combination of the luminance, contrast
and structure. For the MAE, the minimum value is 0 (the lower, the better), for PSNR the
maximum value is infinite (the higher, the better) and for SSIM the maximum value is 1
(the higher, the better). We calculated these metrics both between the real and synthetic
T1w-nce images and between the real T1w-nce and T1w-ce images (as reference). These
metrics were calculated within the brain region. A brain mask was obtained for each subject
by skull-stripping the T1w-nce and T1w-ce images using HD-BET (Isensee et al., 2019) and
computing the union of the two resulting brain masks.

3.2.4.2 Segmentation fidelity

Our goal is to obtain gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF)
segmentations from T1w-ce images using widely-used software tools that are consistent with
segmentations obtained from T1w-nce images. We thus assessed segmentation consistency
by analyzing the tissue volumes resulting from the segmentations, which are important
features when studying atrophy in the context of neurodegenerative diseases.
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The volumes of the different tissues were obtained as follows. At first, synthetic T1w-
nce images were resampled back to a size of 169×208×179 using trilinear interpolation in
Pytorch so that real and synthetic images have the same grid size. We processed the images
using the ‘t1-volume-tissue-segmentation’ pipeline of Clinica (Routier et al., 2021; Samper-
González et al., 2018). This wrapper of the Unified Segmentation procedure implemented
in SPM (Ashburner and Friston, 2005) simultaneously performs tissue segmentation, bias
correction and spatial normalization. Once the probability maps were obtained for each
tissue, we computed the maximum probability to generate binary masks and we multiplied
the number of voxels by the voxel dimension to obtain the volume of each tissue. We
calculated both the relative absolute difference (rAD) and the relative difference (rD) for
each tissue between the real T1w-ce or synthetic T1w-nce and the real T1w-nce as follows:

rAD =
|V I

t − V J
t |

TIV I
× TIV , (3.1a)

rD =
V I
t − V J

t

TIV I
× TIV , (3.1b)

where V I
t is the volume of tissue t extracted from the real T1w-nce image I, V J

t is the
volume of tissue t extracted from image J , J being the synthetic T1w-nce or real T1w-ce
image. TIV I corresponds to the total intracranial volume obtained from the real T1w-nce
image I and TIV corresponds to the average total intracranial volume computed across the
two test sets. The multiplication by the average total intracranial volume (TIV) aims at
obtaining volumes (in cm3) rather than fractions of the TIV of each subject, which is easier
to interpret. Since this is a multiplication by a constant, it has not impact on the results.
To assess whether the tissue volumes presented a statistically significant difference in terms
of rAD depending on the images they were obtained from, we performed paired t-tests using
Bonferroni correction for multiple comparisons.

In addition, we compared the binary tissue maps extracted from the real T1w-ce or
synthetic T1w-nce image to those extracted from the real T1w-nce using the Dice score.

3.3 Results

We report results for the proposed 3D U-Net like models and cGANs trained on 230 image
pairs of good and medium quality, and tested on Testgood and Testlow obtained from a
clinical data set.

Examples of synthetic T1w-nce images obtained with the cGAN Att-U-Net model to-
gether with the real T1w-ce and T1w-nce images are displayed in Figure 3.2. Images of
patients A and B belong to Testgood while images of patients C and D belong to Testlow.
We note the absence of contrast agent in the synthetic T1w-nce, while it is clearly visible
in the sagittal slice of the T1w-ce (particularly visible for patients A and C) and that the
anatomical structures are preserved between the synthetic and real T1w-nce, even in the
case of a disease (as for patient B). We also note that contrast between gray and white
matter is preserved in the synthetic T1w-nce (particularly visible for patients B and D). For
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Figure 3.2: Examples of real T1w-ce (top), real T1w-nce (middle) and synthetic T1w-
nce obtained with the cGAN Att-U-Net model (bottom) images in the sagittal and axial
planes. Images of patients A and B belong to Testgood (left) while images of patients C

and D belong to Testlow (right).

Testlow, the contrast seems improved in the synthetic compared with the real T1w-ce image
(especially for patient D).

3.3.1 Synthesis accuracy

Table 3.1 reports the image similarity metrics obtained for the two test sets within the brain
region. We computed these metrics to assess the similarity between real and synthetic T1w-
nce images, but also between T1w-nce and T1w-ce images to set a baseline. We observe
that, for all models, the similarity is higher between real and synthetic T1w-nce images
than between T1w-nce and T1w-ce images according to all three metrics on both test sets.
The differences observed in terms of MAE, PSNR and SSIM between the baseline and each
image translation approach are statistically significant (corrected p-value <0.05 according
to a paired t-test corrected for multiple comparisons using the Bonferroni correction).

Among the generators composed of 3D U-Net like models, the Att-U-Net performed
slightly better than the others, both for Testgood (mean MAE: 2.73%, PSNR: 29.07 dB,
SSIM: 0.96) and Testlow (mean MAE: 2.89%, PSNR: 27.18 dB, SSIM: 0.95). The perfor-
mance of the cGANs were comparable to their counterparts composed only of the generator.
cGAN Att-U-Net had a lower MAE for both test sets (mean MAE: 2.69% for Testgood and
mean MAE: 2.86% for Testlow). There was no statistically significant difference observed,
no matter the synthesis accuracy measure, between cGAN Att-U-Net, the best performing
model according to the MAE, and the other approaches for both test sets (corrected p-value
> 0.05). For further validation we kept only Att-U-Net and cGAN Att-U-Net.

3.3.2 Segmentation fidelity

Absolute volume differences (rAD) obtained between T1w-nce and T1w-ce images and be-
tween T1w-nce and synthetic T1w-nce images (obtained with the Att-U-Net model and the
cGAN Att-U-Net) for GM, WM and CSF are reported in Table 3.2. For both test sets
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Table 3.1: MAE, PSNR and SSIM obtained on the two independent test sets with various
image quality. For each metric, we report the average and standard deviation across the
corresponding test set. We compute the metrics for both T1w-ce and synthetic T1w-nce

in relation to the real T1w-nce, and so within the brain region.

Test set Compared images Model MAE (%) PSNR (dB) SSIM

Testgood

T1w-nce / T1w-ce - 4.14 ± 1.59 23.03 ± 2.83 0.90 ± 0.05
Res-U-Net 3.06 ± 1.50 26.89 ± 4.30 0.95 ± 0.04
Att-U-Net 2.73 ± 1.69 29.07 ± 4.53 0.96 ± 0.05

T1w-nce / Trans-U-Net 2.80 ± 1.42 28.00 ± 4.13 0.96 ±0.04
Synthetic T1w-nce cGAN Res-U-Net 3.47 ± 1.59 23.89 ± 4.30 0.95 ± 0.04

cGAN Att-U-Net 2.69 ± 1.68 28.89 ± 4.44 0.97 ± 0.05
cGAN Trans-U-Net 2.86±1.59 28.00 ±4.32 0.96 ± 0.04

Testlow

T1w-nce / T1w-ce - 3.71 ± 1.99 24.20 ± 3.85 0.91 ± 0.06
Res-U-Net 2.93 ± 1.77 26.71 ± 4.32 0.95 ± 0.05
Att-U-Net 2.89 ± 1.85 27.15 ± 4.57 0.95 ± 0.05

T1w-nce / Trans-U-Net 2.98 ± 1.89 26.71 ± 4.38 0.94 ± 0.05
Synthetic T1w-nce cGAN Res-U-Net 3.20 ± 1.96 26.20 ± 4.42 0.93 ± 0.05

cGAN Att-U-Net 2.86 ± 1.83 27.12 ± 4.50 0.95 ± 0.05
cGAN Trans-U-Net 2.97 ± 1.83 26.68 ± 4.40 0.94 ± 0.05

Table 3.2: Absolute volume difference (mean ± standard deviation in cm3) between T1w-
nce and T1w-ce images and between T1w-nce and synthetic T1w-nce images (obtained
with the Att-U-Net and cGAN Att-U-Net models) for the gray matter, white matter and
cerebrospinal fluid (CSF). * indicates that the absolute volume difference between T1w-nce
and synthetic T1w-nce images is statistically significantly different from that of the baseline
(corrected p-value <0.01) according to a paired t-test corrected for multiple comparisons

using the Bonferroni correction.

Compared images Model Testgood [cm3] Testlow [cm3]

Gray matter
T1w-nce / T1w-ce - 26.68 ± 15.92 49.63 ± 49.38

T1w-nce / Att-U-Net 10.36 ± 6.98 * 19.61 ± 29.54 *
Synthetic T1w-ce cGAN Att-U-Net 9.24 ± 6.10 * 19.67 ± 28.32 *

White matter
T1w-nce / T1w-ce - 10.81 ± 3.71 25.36 ± 27.73

T1w-nce / Att-U-Net 7.79 ± 5.87 13.95 ± 24.74 *
Synthetic T1w-ce cGAN Att-U-Net 6.40 ± 4.43 * 14.49 ± 21.06 *

CSF
T1w-nce / T1w-ce - 61.62 ± 34.61 69.55 ± 37.77

T1w-nce / Att-U-Net 13.37 ± 10.18 * 12.25 ± 7.72 *
Synthetic T1w-ce cGAN Att-U-Net 18.27 ± 17.20 * 17.10 ± 18.45 *

and all tissues, the absolute volume differences are smaller between T1w-nce and synthetic
T1w-nce images than between T1w-nce and T1w-ce images for the two models. Using the
Att-U-Net on Testgood, absolute volume differences of GM and CSF between T1w-nce/T1w-
ce and T1-nce/Synthetic T1w-nce are statistically significantly different (corrected p-value
<0.01 according to a paired t-test corrected for multiple comparisons using the Bonferroni
correction), while on Testlow absolute volume differences of all the tissues are statistically
significantly different (corrected p-value <0.01). Using the cGAN Att-U-Net model, abso-
lute volume differences of all the tissues are statistically significantly different (corrected
p-value <0.01) for both test sets. This means that there is an advantage in using synthetic
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Figure 3.3: Volume differences (rD) in cm3 between T1w-nce and T1w-ce images and
between T1w-nce and synthetic T1w-nce images (obtained with the Att-U-Net and the
cGAN Att-U-Net models) for gray matter (left), white matter (middle) and cerebrospinal

fluid (CSF, right) for both Testgood (top) and Testlow (bottom).

Table 3.3: Dice scores obtained when comparing the gray matter, white matter and
cerebrospinal fluid (CSF) segmentations between T1w-nce and T1w-ce images and between
T1w-nce and synthetic T1w-nce images (obtained with the Att-U-Net and the cGAN Att-

U-Net)

Compared images Model Testgood Testlow

Gray matter
T1w-nce / T1w-ce - 0.88 ± 0.02 0.77 ± 0.12

T1w-nce / Synthetic T1w-ce
Att-U-Net 0.87 ± 0.02 0.81 ± 0.07

cGAN Att-U-Net 0.87 ± 0.02 0.81 ± 0.07

White matter
T1w-nce / T1w-ce - 0.93 ± 0.01 0.85 ± 0.10

T1w-nce / Synthetic T1w-ce
Att-U-Net 0.90 ± 0.02 0.86 ± 0.04

cGAN Att-U-Net 0.91 ± 0.02 0.86 ± 0.03

CSF
T1w-nce / T1w-ce - 0.63 ± 0.10 0.62 ± 0.10

T1w-nce / Synthetic T1w-ce
Att-U-Net 0.80 ± 0.05 0.78 ± 0.07

cGAN Att-U-Net 0.80 ± 0.05 0.78 ± 0.07

T1w-nce images rather than T1w-ce images, no matter the model used for the synthesis:
segmentation of GM, CSF and WM is more reliable since closer to the segmentation of the
tissues in the real T1w-nce.

Volume differences (rD) computed between T1w-nce and T1w-ce images and between
T1w-nce and synthetic T1w-nce images (obtained with the Att-U-Net and cGAN Att-U-
Net) for GM, WM and CSF are reported in Figure 3.3. We observe that volumes extracted
from T1w-ce images tend to be over-estimated (GM) or under-estimated (CSF) and that
most of these biases disappear when tissues are extracted from synthetic T1w-nce images
(mean rD closer to 0).

The Dice scores obtained when comparing the GM, WM and CSF segmentations between
T1w-nce and T1w-ce images and between T1w-nce and synthetic T1w-nce images (obtained
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with the Att-U-Net and the cGAN Att-U-Net) are displayed in Table 3.3. We observe that
for both gray and white matter, the Dice scores are similar between T1w-nce and T1w-ce
or synthetic T1w-nce images, while for CSF higher Dice scores are obtained using synthetic
T1w-nce images.

3.4 Discussion

The use of clinical images for the validation of computer-aided diagnosis (CAD) systems is
still largely unexplored. One of the obstacles lies in the heterogeneity of the data acquired
in the context of routine clinical practice. Post-acquisition homogenization is crucial be-
cause, contrary to research data, no strict acquisition protocols, that would ensure a certain
homogeneity among the images, exist for clinical data. Heterogeneity originates from the
fact that images are acquired with different scanners at different field strengths during a
large period of time and because patients may suffer from a large variety of diseases. Ho-
mogenization of clinical data sets of 3D T1w brain MRI, and consequently of the features
extracted from them, is an important step for the development of reliable CAD systems.
Indeed, when training a CAD system, the algorithms must not be affected by the data set
variations even though clinical images may greatly vary.

A source of heterogeneity among clinical data sets is the fact that they contain a mix
of images acquired with and without gadolinium-based contrast agent. In our case, among
the 7397 proper T1w brain images made available by the AP-HP data warehouse out of a
batch of 9941 images, 59% of the images were contrast-enhanced (Bottani et al., 2022a).
To homogenize this data set, we thus proposed a framework to convert T1w-ce images into
T1w-nce images using deep learning models. The choice to synthesize T1w-nce images from
T1w-nce images was constrained by the fact that software tools for feature extraction in the
neuroimaging community were developed for T1w-nce MRI. To the best of our knowledge,
none of these tools has largely been applied to the extraction of features from T1w-ce MRI
data and their performance in this scenario is thus mostly unknown.

The contribution of our work consists in the development and validation of deep learn-
ing models (U-Net models and conditional GANs) for the translation of T1w-ce to T1w-nce
images coming from a clinical data warehouse. We compared three 3D U-net models differ-
entiated by the addition of residual modules, of attention modules or of transformer layers,
used as simple generators and also within a conditional GAN setting with the addition of a
patch-based discriminator. These models have widely been used for the image translation
of medical images (Yi, Walia, and Babyn, 2019; Burgos et al., 2021), but their application
to clinical data has not been proven yet. The proposed models were trained using 230 image
pairs and tested on two different test sets: 26 image pairs had both a T1w-nce and T1w-ce
of good or medium quality and 51 image pairs had a T1w-nce of good or medium quality
and a T1w-ce of bad quality. Having two test sets of different qualities is a key point since
we are dealing with a real clinical heterogeneous data set where images of low quality, corre-
sponding in majority to T1w-ce images with a low contrast, may represent 30% of the data
(Bottani et al., 2022a).
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We first assessed the similarity between real and synthetic T1w-nce images and between
real T1w-nce and T1w-ce images using three similarity metrics, MAE, PSNR and SSIM. We
showed that the similarity between real and synthetic T1w-nce images was higher than the
similarity between real T1w-nce and T1w-ce images according to all the metrics, no matter
the models used nor the quality of the input image. The synthesis accuracy obtained with
the models evaluated was of the same order as the one reached in recent works on non-
contrast-enhanced to contrast-enhanced image translation (Bône et al., 2021; Kleesiek et
al., 2019). The performance of all the models was equivalent (no statistically significant
difference observed), meaning that all were able to synthesize T1w-nce images. Slightly
better performance was reached with the addition of attention modules (Att-U-Net and
cGAN Att-U-Net models), these models were thus further evaluated.

In the second step of the validation, we assessed the similarity of features extracted from
the different images available using a widely adopted segmentation framework, SPM (Penny
et al., 2011). We showed that the absolute volume differences of GM, WM and CSF were
larger between real T1w-nce and Tw-ce images than between real and synthetic T1w-nce
images (statistically significant difference most of the times). This confirms the hypothesis
that gadolinium-based contrast agent may alter the contrast between the different brain
tissues, making features extracted from such images with standard segmentation tools, here
SPM (Penny et al., 2011), unreliable. At the same time, we validated the suitability of
the synthetic images since their segmentation was consistent with those obtained from real
T1w-nce images as the volume differences were small. In particular we see that for both
test sets, volume differences are statistically significantly different (corrected p-value<0.01
according to a paired t-test corrected for multiple comparisons using the Bonferroni cor-
rection) for GM which is the main feature when studying atrophy in neurodegenerative
diseases. The fact that the relative differences between the volumes extracted from the
real and synthetic T1w-nce images are relatively close to zero show that the tissue volumes
are not systematically under- or over-estimated when extracted from the synthetic images.
Even though the synthetic T1w-nce images enable the extraction of reliable features, their
quality could still be improved. Many constraints exist when working with data from a
clinical data warehouse. One is the fact that these data are accessible only through a closed
environment provided by the IT department of the AP-HP as described in (Daniel and
Salamanca, 2020). Limitations in computational resources and storage space make training
deep learning models difficult and thus limits the experiments that can be performed to
find the optimal model. The proposed models could be improved by better optimizing the
hyperparameters (such as the learning rate or the size of the kernels), adding a perceptual
loss when training the conditional GANs (Zhao et al., 2016) or adding more layers in the
patch-based discriminator. Other architectures could also be explored. We have restricted
our work to conditional GANs, which need paired data to be trained, but we could exploit
more data working with cycle GANs (Zhu et al., 2017) as they can deal with unpaired data.

Several steps remain to be performed before using synthetic T1w-nce images for the
differential diagnosis of neurological diseases. First, the performance of CAD systems trained
with a mix of real T1w-nce and T1w-ce images should be compared with the performance
of CAD systems trained with a mix of real and synthetic T1w-nce images. To prevent
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introducing a correlation between image properties (e.g. smoothness) and pathology, which
would bias the classification performance, it may be necessary to also feed the real T1w-nce
images to the neural network and use the resulting images as inputs of the CAD system, as
suggested in (Dewey et al., 2019).

3.5 Conclusion

Clinical data warehouses offer fantastic opportunities for computer-aided diagnosis of neu-
rological diseases but their heterogeneity must be reduced to avoid biases. In this work we
proposed to homogenize such a large clinical data set by converting images acquired after
the injection of gadolinium into non-contrast-enhanced images using 3D U-Net models and
conditional GANs. Validation using standard image similarity measures demonstrated that
the similarity between real and synthetic T1w-nce images was higher than between real
T1w-nce and T1w-ce images for all the models compared. We also showed that features
extracted from the synthetic images (GM, WM, CSF volumes) were closer to those obtained
from the T1w-nce brain MR images (considered as reference) than the original T1w-ce im-
ages. These results demonstrate the ability of deep learning methods to homogenize a data
set coming from a clinical data warehouse.
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Chapter 4

Detection of patients with dementia
using T1w brain MRI in a clinical
data warehouse

4.1 Introduction

Dementia is a world-wide disease that is becoming more and more important due to pop-
ulation aging. T1-weighted (T1w) brain magnetic resonance imaging (MRI) contributes to
the positive diagnosis of dementia by displaying typical spatial patterns of brain atrophy.
Computer-aided diagnosis (CAD) systems using T1w brain MRI data have been arising in
the last years thanks to the development of machine learning (ML) and deep learning (DL)
model: they could help doctors to better understand the disease and detect it early thanks
to their ability to automatically extract relevant features.

CAD systems have been mainly developed using research data sets due to their ease
of access ( they can directly be downloaded from websites) and their ease of use: they
are acquired following a research protocol whose aim is to guarantee data quality and ho-
mogenization. Several data sets originating from research studies such as the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)1, the Open Access Series Of Imaging Studies (OA-
SIS)2, the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL)3,
the Frontotemporal lobar degeneration neuroimaging initiative (NIFD)4 and the Parkinson’s
Progression Markers Initiative (PPMI)5 are publicly available and contain various clinical
and imaging data, including T1w MRI brain data. They have pushed the research on ML
and DL for CAD using T1w brain MRI: in the literature we can find works focusing on
Alzheimer’s disease using ADNI, OASIS or AIBL data sets (Punjabi et al., 2019; Bidani,
Gouider, and Travieso-González, 2019; Spasov et al., 2019; Böhle et al., 2019; Farooq et al.,
2017; Wegmayr, Aitharaju, and Buhmann, 2018; Samper-González et al., 2018; Wen et al.,
2020; Bron et al., 2021), or on fronto-temporal dementia using NIFD (Ma et al., 2020).

Even if all these data sets have proven extremely useful to propel methodological research
on ML/DL applied to neurological diseases, they are far from the everyday clinical routine

1http://adni.loni.usc.edu/
2https://www.oasis-brains.org/
3https://aibl.csiro.au/
4https://ida.loni.usc.edu/home/projectPage.jsp?project=NIFD
5https://www.ppmi-info.org/

http://adni.loni.usc.edu/
https://www.oasis-brains.org/
https://aibl.csiro.au/
 https://ida.loni.usc.edu/home/projectPage.jsp?project=NIFD
https://www.ppmi-info.org/
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for two main reasons. First, they use only research images where quality of the data is
guaranteed, which cannot be the case in clinical practice. Second, many of them aim to
differentiate patients with a particular, well-characterised, disease, from healthy controls.
Such homogeneous diagnostic classes are difficult to obtain in a clinical context, as well as
totally healthy subjects.

In order to bring research advances to the clinic life, some works have developed CAD
systems using clinical data sets (Morin et al., 2020; Chagué et al., 2021). Nevertheless,
they involve small data sets. Moreover, the data comes from highly specialized centers
which are not representative of the overall clinical practice (for instance rare dementias and
early-onset cases are overrepresented). Finally, they often restrict themselves to diagnosis
of patients with dementia. It is thus unclear what is their specificity when dealing with
MRI from patients with other diagnoses. Some works focused on the differential diagnosis,
which is closer to the clinical routine, but they still use a research data set. Ma et al., 2020
classified patients with Alzheimer’s disease and fronto-temporal dementia using ADNI and
NIFD, Koikkalainen et al., 2016 trained a model for the classification among patients with
Alzheimer’s disease, fronto-temporal dementia, Lewy bodies disease and vascular dementia
using the Amsterdam Dementia Cohort, a research data set.

In this context, images from clinical data warehouses (CDW) may be used to train and
evaluate ML and DL models for the CAD of dementia systems. Representing best the
everyday clinic life of a hospital, they are an important tool for the translation of research
to the clinic. Images of a CDW are heterogeneous (i.e. different sites, MRI sequences not
harmonized) and they include a very wide range of diagnoses (including not only patients
with dementia but also patients with other neurological or psychiatric diseases, as well as
patients who received a brain MRI for another indication).

The aim of this work is to experimentally study the performance of ML methods to
classify dementia patients in a CDW using T1w brain MRI. Patients with dementia were
defined using ICD-10 codes assigned during the hospitalization period. The ML model was
a linear SVM using gray matter maps as features. It was then compared to several deep
learning models. We compared performance obtained on a research data set to that obtained
on the present clinical dataset. We studied how results in a clinical data set may be biased
by the characteristics of the training data set (in particular by the injection of gadolinium
and the presence of images of different quality). In order to improve the classification, three
different solutions were assessed: applying an image translation approach to change the
appearance of images for which gadolinium was injected, using images of good quality or
training the models using only research data.

4.2 Materials

4.2.1 Research data set

The research data set used in this work was composed of subjects from the ADNI database
(in particular ADNI 1,2, Go). We considered subjects diagnosed as cognitive normal (CN) or
Alzheimer’s disease (AD) at baseline and only kept subjects whose diagnosis did not change
over time. We selected 800 T1w MRI corresponding to 800 subjects matching these criteria
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(CN: 410 subjects, 54.87 % F, age 73.20 ± 6.15 in range [55.1, 89.6]; AD: 390 subjects, 44.0
% F, age 74.88 ± 7.76 in range [55.1, 90.1]). 200 subjects (100 CN and 100 AD) composed
the independent test set and the remaining subjects (310 CN and 290 CN) were used for
the training/validation of the models using a 5-fold cross-validation (CV).

4.2.2 Clinical routine data set

The clinical data set comes from a large clinical database containing all the T1w brain MR
images of adult patients scanned in hospitals of the Greater Paris area (Assistance Publique-
Hôpitaux de Paris [AP-HP]). The data were made available by the data warehouse of the
AP-HP and the study was approved by the Ethical and Scientific Board of the AP-HP.
According to French regulation, consent was waived as these images were acquired as part
of the routine clinical care of the patients. All the data, both imaging and clinical, were
pseudonymized by the AP-HP data warehouse and they always remained within the hospital
network. We accessed it remotely for our study.

4.2.2.1 Imaging and clinical data collection

Images from this clinical data warehouse are very heterogeneous (Bottani et al., 2022a):
they include T1w brain MR images of patients with a wide range of ages (from 18 to more
than 90 years old) and diseases, acquired with different scanners (more than 30 different
models). Imaging data were gathered in a central hospital PACS and images relevant to our
research projects (i.e. 3D T1w brain MR images of patients aged more than 18 years old)
were copied to the research PACS where they were pseudonymized. The selection process
to obtain images of interest is described in (Bottani et al., 2022a).

At the same time, clinical data corresponding to the patients of our query are stored in a
database based on the ORBIS software which is installed in the different hospitals. Clinical
data gather all the information connected to the patients, i.e. date of birth, sex, ICD-10
codes, medications, biological tests, electronic health reports. As explained in (Daniel and
Salamanca, 2020), ORBIS has been installed progressively in the AP-HP hospitals since
2009. Among all the patients aged more than 18 years old who undertook a 3D T1w brain
MRI exam at AP-HP (∼130.000 patients), only ∼25% were registered in ORBIS. Among
them, 23,688 patients were hospitalized. This is important because for non-hospitalized
patients only sociodemographic data (sex and age) are available and not clinical data. As
for the imaging data, the data warehouse was in charge to query ORBIS to provide the
pseudonymized clinical data.

For our work we were interested in two sociodemographic items (age and sex) as well
as one clinical item (ICD-10 codes). ICD-10 codes, from the 10th revision of international
classification of diseases (World Health Organization et al., 2007), were used to associate a
diagnosis to each 3D T1w brain MRI. Images were labeled according to the ICD-10 codes
assigned to the visit corresponding to the acquisition of the image. We defined a visit as
a period of plus or minus three months from the acquisition date of the image. As clinical
data can be entered by the medical staff at different moments of the hospitalization, this
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time window ensures that all information regarding brain disorders related to the need of a
brain MRI exam are collected.

In conclusion, the starting data set of interest was composed of 23,688 patients, which
corresponds to 32,348 visits and 43,418 3D T1w brain MR images.

4.2.2.2 Definition of the different classes from ICD-10 codes

On average, 60 ICD-10 codes were assigned to each visit. Since we did not know the
reason of a patient’s hospitalization (which may be different from the reason why they were
prescribed an MRI examination), we considered principal diagnoses, secondary diagnoses
and comorbidities at the same level.

Firstly, we identified all the ICD-10 codes that could refer to dementia (denoted as D).
Note that we use the term “dementia” in a broad sense, i.e. we consider mild cognitive
impairment as belonging to this category. Thereafter, we divided the remaining codes into
two groups: ICD-10 codes referring to diseases that lead to lesions altering T1w brain MRI
(referred to as “no dementia but with lesions” - NDL) and ICD-10 codes corresponding to
diseases that do not lead to lesions altering T1w brain MRI (referred to as “no dementia
and no lesions” - NDNL). We considered two different classification tasks in which dementia
patients had to be differentiated from these two classes (NDL and NDNL), which have very
different characteristics.

In Table 4.1, we list the three classes mentioned above (D, NDL, NDNL). For each of
them, we provide a brief description and a list of all the associated ICD-10 codes. Sixteen
diseases were associated to the category dementia. Four families of diseases were associated
to the NDL category (which are defined by grouping different ICD-10 codes). The NDNL
category corresponded to all the other codes. According to the standard structure of the
ICD-10 codes we considered just the first letter and the first two numbers, indicating the
category, to identify the diseases belonging to the NDL category. The third number, indi-
cating the etiology, was used to identify the diseases corresponding to the dementia category
as we wanted to be more specific.

4.2.2.3 Selection of patients belonging to the dementia category

Dementia is the principal category we consider since the aim of our work is to study, using
clinical routine data, how well this category can be distinguished from the others using
machine learning models. We thus started by selecting patients labeled as dementia. In
the workflow displayed in Figure 4.1 we report the different choices made to create this
population. For each step, we report the number of patients, visits and images.

Starting from 2441 patients with at least one ICD-10 code in the dementia category,
corresponding to 2671 visits and 3633 images (considering only 3D T1w brain MRI), the final
population is composed of 1255 patients, corresponding to 1255 visits and 1415 images. We
first excluded patients that had multiple ICD-10 codes belonging to the dementia category
at the same visit to have a unique label per visit. We then excluded patients with an ICD-10
code belonging to the NDL category with the aim that lesions visible on T1w brain MRI
originate only from dementia. Patients were further excluded if the ICD-10 code in the
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Category ICD-10 codes

D: Dementia associated to a neu-
rodegenerative disease or a vas-
cular disease that causes atrophy
visible on T1w MRI.

• Dementia in AD with early onset (F000/G300)
• Dementia in AD with late onset (F001/G301)
• Dementia in AD, atypical or mixed type (F002/G308)
• Dementia in AD, unspecified (F009/G309)
• Dementia in Pick disease (F020/G310)
• Dementia in Creutzfeldt-Jakob disease (F021/A810)
• Dementia in Huntington disease (F022 + G10)
• Vascular dementia of acute onset (F010)
• Multi-infarct dementia (F011)
• Subcortical vascular dementia (F012)
• Mixed cortical & subcortical vascular dementia (F013)
• Other vascular dementia (F018)
• Vascular dementia, unspecified (F019)
• Mild cognitive disorder (F067)
• Dementia in Parkinson’s disease (F023 + G20)
• Lewy bodies dementia (G028 + G318)

NDL: No dementia but diagno-
sis that suggests presence of le-
sions that modify the anatomical
structure of the brain visible on
T1w MRI.

• Cancer (C70, C71, C72, D32, D33, D42)
• Demyelination (G35, G36, G37)
• Stroke (G45, G46)
• Hydrocephalus (G91)

NDNL: No dementia and no di-
agnosis suggesting the presence
of lesions on T1w brain MRI.

All the other codes

Table 4.1: Description of the three categories of interest with the corresponding ICD-10
codes. Details about dementia codes: “/” indicates that the two codes refer to the same
diagnosis, “+” means that the diagnosis of dementia is defined by the presence of both

codes.

dementia category was changing over the time (i.e. over the different visits) as this may be
due to an error in coding. Patients aged more than 90 years old were excluded because their
brain could appear as presenting atrophy but this would simply be due to aging and not
to a disease. Patients labeled F067 (mild cognitive disorder) aged less than 45 years were
excluded because the diagnosis could correspond to a transient mild cognitive impairment
and not to a prodromal stage of dementia. Some images were also excluded after the pre-
processing step: if they had less than 40 DICOM slices or if they were labeled as straight
reject by the quality control step.

4.2.2.4 Selection of the patients belonging to the no dementia with lesions
(NDL) and no dementia no lesions (NDNL) categories

The aim of this work is to assess whether patients with dementia can be distinguished
from patients with other brain diseases, no matter if these diseases result in the presence
(NDL category) or absence (NDNL category) of lesions visible on T1w brain MRI. To define
the cohorts for the NDL and NDNL categories, we matched each patient belonging to the
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Figure 4.1: Workflow describing the selection of patients with belonging to the dementia
category. For each selection step we report the corresponding number of patients, visits

and images.

dementia category with a patient in the NDL category and with a patient in the NDNL
category that had the same age and sex.

We first created the NDL cohort, which is composed of patients with one of the four
diseases leading to brain lesions visible on the T1w MRI (cancer, stroke, demyelination and
hydrocephalus, see Table 4.1). We selected all the patients having at least one ICD-10 code
in this category, resulting in 3843 patients corresponding to 6598 visits and 9615 images. We
then matched these patients with the one composing the dementia cohort following several
criteria.

For each patient with dementia:

• We selected all the patients with the same age and the same sex having at least one
code in the NDL category.

• We excluded all the patients having different NDL codes at the same session to be
able to study the classification performance per disease.

• We considered only one visit for each patient when there were multiple visits available
with the same diagnosis. The visit was selected randomly.



4.2. Materials 63

• Among all the patients with one visit matching these criteria, we randomly selected
one of them.

We iterated twice this selection process since some images were discarded after the pre-
processing steps (i.e. images with fewer than 40 DICOM slices or flagged as straight reject
at the quality control step). In total we matched 808 patients (corresponding to 808 visits
and 978 images).

The NDNL class is composed of all the patients having no code in the dementia nor
NDL categories. Here we describe the criteria to match a patient with dementia.

For each patient with dementia:

• We selected all the patients with the same age and the same sex having no ICD-10
code in the dementia or NDL categories.

• In case of multiple visits for a patient, we randomly selected one of them.

• Among all the patients with one visit matching these criteria, we randomly selected
one of them.

We iterated twice this selection process since some images were discarded after the pre-
processing steps. In total we matched 1144 patients (corresponding to 1144 visits and 1343
images).

4.2.2.5 Final cohorts

The final cohorts were created by taking the intersection of the NDL patients matching with
dementia patients and of the NDNL patients matching with dementia patients. This resulted
in three cohorts each of 756 patients for a total number of 2268 patients (corresponding to
2268 visits and 2823 images). In the Table 4.2 we report the number of subjects, visits
and images for each category. In addition, we report the percentage of females and the
average age of the patients as well as the percentage of images with and without injection of
gadolinium, and of images of medium or good quality (tier 2-1). The presence of gadolinium
and the quality of the images were determined through the automatic approach described
in (Bottani et al., 2022a), which will be detailed in the Methods section.

4.2.2.6 Training subsets

In order to study potential biases related to the presence of gadolinium or the quality of the
images, we created different training subsets:

• T 172
no gado includes only matching dementia, NDL and NDNL patients with images ac-

quired without gadolinium injection. This results in a training subset of 172 patients
per class.

• T 181
tier 1/2 includes only matching dementia, NDL and NDNL patients with images of

medium or good quality (tier 2-1). This results in a training subset of 181 patients
per class.
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Category N
patients

N
images

Age
(mean ± std [range])

Sex
(%F)

%Tier
2-1

With
gadolinium

D 756 887 71.17 ± 11.58 [18,90] 50.34% 57.72%** 24.80%**

NDL 756 997 71.17 ± 11.58 [18,90] 50.34% 52.25% 63.59%**

NDNL 756 939 71.17 ± 11.58 [18,90] 50.34% 36.42%** 66.13%**

Total 2268 2823 71.17 ± 11.58 [18,90] 50.34% 48.71% 52.24%

Table 4.2: For each category, we report the number of patients and images, the age, the
percentage of females, of images in Tier 2-1 (i.e. images of medium and good quality) and
the percentage of images with gadolinium-based contrast agent. Results with ** mean that
the distributions between the overall population and a specific category were statistically
significantly different (Student’s T test corrected for multiple comparisons using the Bon-
ferroni procedure, corrected p-value <0.05). Age and sex were computed at the patient

level, while the tiers and the gadolinium injection were computed at image level

• T 172 includes 172 patients per class respecting the same distribution of image quality
and gadolinium injection than the overall data set.

• T 88
no gado, tier 1/2 includes only matching dementia, NDL and NDNL patients with im-

ages of medium or good quality acquired without gadolinium injection. This results
in a training subset of 88 patients per class.

• T 88
tier 1/2 includes 88 patients per class of only images of good or medium quality.

• T 88 includes 88 subjects per class respecting the same distribution of image quality
and gadolinium injection than the overall data set.

4.3 Methods

4.3.1 Image pre-processing

The T1w MR images were converted from DICOM to NIfTI using the software dicom2niix
(Li et al., 2016) and organized following the Brain Imaging Data Structure (BIDS) stan-
dard (Gorgolewski et al., 2016). Images with a voxel dimension smaller than 0.9 mm were
resampled using a 3rd-order spline interpolation to obtain 1 mm isotropic voxels.

A first pre-processing consisted in applying the ‘t1-linear’ pipeline of Clinica (Routier et
al., 2021), which is a wrapper of the ANTs software (Avants et al., 2014). Bias field correction
was applied using the N4ITK method (Tustison et al., 2010). An affine registration to MNI
space was performed using the SyN algorithm (Avants et al., 2008). The registered images
were further rescaled based on the min and max intensity values. Images were then cropped
to remove background resulting in images of size 169×208×179, with 1 mm isotropic voxels
(Wen et al., 2020) using trilinear interpolation.

This pre-processing was used to assess the quality of the images with an automatic
approach proposed in (Bottani et al., 2022a). The automatic quality control (QC) approach
first identified if a given image was or not a straight reject (i.e. segmented or cropped
image). If it was not a straight reject, it was further labeled by the automatic QC tool
according to the tiers of quality, i.e. tier 1 (good quality), tier 2 (medium quality) or tier 3
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(bad quality). In addition, the automatic QC tool determined the presence or the absence
of gadolinium-based contrast agent.

A second pre-processing consisted in applying the ‘t1-volume-tissue-segmentation’ pipeline
of Clinica (Routier et al., 2021; Samper-González et al., 2018) in order to obtain probabil-
ity gray matter maps. This wrapper of the Unified Segmentation procedure implemented
in SPM (Ashburner and Friston, 2005) simultaneously performs tissue segmentation, bias
correction and spatial normalization. This results in probability gray matter maps in the
MNI space that have a size of 121×145×121 voxels.

4.3.2 Synthesis of images without gadolinium

In order to attenuate a potential bias due to the presence or absence of gadolinium, all the
images pre-processed with the ‘t1-linear’ pipeline went through the Att-U-Net described in
(Bottani et al., 2022b) that translates contrast-enhanced images into non-contrast-enhanced
images. To prevent introducing a potential bias because of differences in smoothness between
the real and synthetic images, all the images were fed to the network no matter the initial
presence or absence of gadolinium. The synthetic images were then pre-processed with the
‘t1-volume-tissue-segmentation’ pipeline.

4.3.3 Machine learning models used for classification

4.3.3.1 Linear SVM

A linear SVM using probability gray matter maps as features was used for the binary
classification tasks. We followed the implementation of (Samper-González et al., 2018)
using Scikit-learn (Pedregosa et al., 2011). The Gram matrix K = (k(xi,xj))i,j was pre-
calculated using a linear kernel k for each pair of images (xi,xj) for the provided subjects
and was used as input for the generic SVM. When using a pre-computed Gram matrix,
computing time depends on the number of subjects, and not on the number of features
and it can speed up the calculations. We optimized the penalty parameter C of the error
term. The optimal value of C was chosen using nested cross-validation, with an inner k-fold
(k=10). For each fold of the outer CV, the value of C that led to the highest balanced
accuracy in the inner k-fold was selected.

4.3.3.2 CNN architectures

We used three different 3D CNN models for the binary classification tasks to have a com-
parison with the linear SVM model. Note that the input of the CNN models are the images
pre-processed with ‘t1-linear’ as this procedure was validated in (Wen et al., 2020).

The three 3D CNN models considered in the paper are denominated as follows: Conv5_FC3,
ResNet, InceptionNet. The first is composed of five convolutional layers and three fully con-
nected layers implemented in (Wen et al., 2020), the ResNet contains residual blocks inspired
from (Jónsson et al., 2019) and the InceptionNet is a modified version of the Inception ar-
chitecture implemented by (Szegedy et al., 2016). The ResNet and the InceptionNet were
implemented and used for the work of (Couvy-Duchesne et al., 2020). All the details of the
architectures can be found in (Bottani et al., 2022a).
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The models were trained using the cross entropy loss. We used the Adam optimizer
with a learning rate of 10−5 for the ResNet model and of 10−4 for the InceptionNet and
the Conv5_FC3 models. We implemented early stopping and all the models were evaluated
with a maximum of 50 epochs. The batch size was set to 2. The model with the lowest loss,
determined on the validation set, was saved as final model. Implementation was done using
Pytorch.

4.3.4 Experimental setting

We performed two tasks: dementia vs no dementia with lesions (D vs NDL) and dementia
vs no dementia no lesions (D vs NDNL).

4.3.4.1 Training framework

These tasks were performed using three different set ups:

• training on research data (ADNI: CN vs AD) and tested on clinical data using the
linear SVM and the CNN models;

• pretraining on research data (ADNI: CN vs AD) and fine-tuning on clinical data using
the CNN models;

• training from scratch on clinical data using the linear SVM and the CNN models.

4.3.4.2 Evaluation setting

Before starting the experiments for the two tasks of interest, we defined a test set by ran-
domly selecting 20% of the patients of the dementia class and the corresponding matched
patients of the other two classes (NDL and NDNL). While for the training/validation set if
there were several images at the same visit all were kept to increase the number of training
samples, for the test set we selected only one image per visit. In case several images were
available per visit, the selection was made randomly. This resulted in a test set composed of
152 patients/images for the D class, 152 patients/images for NDL and 152 patients/images
for NDNL. The training/validation was composed of 604 patients and 719 images for D, 604
patients and 799 images for NDL, 604 patients and 756 images for NDNL.

We respected the same distribution of image quality and presence of gadolinium between
the test and the training/validation sets. We also checked that the distribution of the ICD-
10 codes between the test and the training/validation sets among the dementia and NDL
categories was the same.

For each task, the images of the training/validation set were further split using a 5-fold
CV. The splits were the same for all the experiments and the distribution of image quality
and presence of gadolinium respected the overall distribution.
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CN vs AD

Metric SVM Conv5_FC3 ResNet InceptionNet

BA 86.80 ± 0.40 84.10 ± 1.59 85.30 ± 1.03 82.10 ± 1.77

Sensitivity 82.80 ± 0.40 79.80 ± 4.45 83.00 ± 4.52 75.80 ± 8.68

Specificity 90.80 ± 0.40 88.40 ± 7.26 87.60 ± 4.67 88.40 ± 5.16

Table 4.3: Dementia classification performance (AD vs CN) in a research data set
(ADNI). Results were obtained with different ML models: a linear SVM using as input
gray matter maps and three CNN models (Conv5_FC3, ResNet and InceptionNet) using

as input minimally pre-processed T1w MR images). BA: balanced accuracy.

4.4 Results

4.4.1 Performance in a research data set

To set a baseline, we first studied the ability of ML and DL classification algorithms to
identify patients with dementia in a research data set. Participants from ADNI were used
to derive the training/validation and test sets. The training for all the models was done using
a 5-fold CV and tested on an independent test set. Results are reported in Table 4.3. Results
obtained with the SVM classifier and the best performing DL models were comparable (SVM
balanced accuracy 86.40 ± 0.40; ResNet balanced accuracy 85.30 ± 1.03). This is in line
with performances reported in the litterature (Samper-González et al., 2018; Wen et al.,
2020).

4.4.2 Performance in the clinical data set

We then studied the ability of ML and DL classification algorithms to identify patients with
dementia in the clinical data set.

Results obtained for the two tasks of interest (D vs NDNL and D vs NDL) are reported
in Table 4.4. Best results were obtained with the ResNet for both tasks (D vs NDNL,
balanced accuracy 73.95 ± 0.96; D vs NDL: 75.07 ± 1.64) even if all the scores are very
close. For the D vs NDNL task, we note that the linear SVM with T1w gray matter maps
as input has a lower performance than the CNN models. Sensitivity and specificity are
balanced and performance across the two tasks is similar.

In general we note a lower classification score in the detection of dementia in a clinical
data set compared to research data: this may due to the heterogeneity of the classes in the
clinical data set, where many diagnoses coexist.

4.4.2.1 Influence of gadolinium injection and image quality on the classification
performance

As shown in Table 4.2, the proportion of images with and without gadolinium injection and
of medium/good and low quality in the dementia, NDL and NDNL categories are different.
In the dementia class, there are 25% of images with gadolinium. In NDL and in NDNL, this
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A. D vs NDNL

Metric SVM Conv5_FC3 ResNet InceptionNet

BA 68.75 ± 0.36 73.62 ± 1.58 73.95 ± 0.96 72.24 ± 2.18

Sensitivity 66.97 ± 0.64 73.29 ± 3.02 74.21 ± 3.59 72.24 ± 4.97

Specificity 70.53 ± 0.49 73.95 ± 2.06 73.68 ± 2.32 72.24 ± 3.44

B. D vs NDL

Metric SVM Conv5_FC3 ResNet InceptionNet

BA 73.09 ± 0.32 72.24 ± 1.82 75.07 ± 1.64 72.76 ± 1.99

Sensitivity 75.92 ± 0.89 74.34 ± 7.66 74.08 ± 3.85 73.82 ± 6.53

Specificity 70.26 ± 0.49 70.13 ± 8.98 76.05 ± 2.62 71.71 ± 5.39

Table 4.4: Dementia classification performance (D vs NDNL and D vs NDL) in a clinical
data set. Results were obtained with different ML models: a linear SVM using as input
gray matter maps and three CNN models (Conv5_FC3, ResNet and InceptionNet) using

as input minimally pre-processed T1w MR images). BA: balanced accuracy.

proportion is around 65%. In the dementia and NDL categories, the majority of the images
are of medium/good quality (58% and 52%, respectively), while in the NDNL category only
36% of images are of medium/good quality.

We used the training subsets T 172
no gado, T 181

tier 1/2 and T 172 to evaluate the existence of
a potential bias resulting from such imbalance. The order of magnitude of patients per
class among the training subsets is equivalent, meaning that differences observed in the
classification score can not depend on the training sample size but on the characteristics
of the training subset. We assume that if the presence or absence of gadolinium, or the
presence of different quality of images in the training set, does not have an impact, the
performance will not vary when using the different training subsets, while if the composition
of the training subsets leads to an improvement of the classification score, it means that the
results are actually biased.

We used SVM with probability gray matter maps as input since it is faster to train than
the different CNN models and it has fewer hyper-parameters to optimize. In Table 4.5 we
report the results of the classification for the two tasks using the different training subsets.
Note that the test set never changed across all the experiments of the work: it is composed
of 152 patients/images per class.

The balanced accuracy when using a subset with the same proportion of images with
and without gadolinium and of images of medium/good quality as in the original data
set (i.e.T 172) is higher than when using T 172

no gado or T 181
tier 1/2: for D vs NDNL, the balanced

accuracy is 68.16 ± 0.38 with T 172, 60.33 ± 0.26 with T 172
no gado and with 61.32 ± 2.83 T 181

tier 1/2

. The same trend is present for D vs NDL. This means that results are biased by the presence
of gadolinium or the differences in image quality: results increase when the bias is present.
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A. D vs NDNL

Metric T 172
no gado T 181

tier 1/2 T 172

BA 60.33 ± 0.26 61.32 ± 2.83 68.16 ± 0.38

Sensitivity 52.76 ± 0.26 79.87 ± 2.72 73.95 ± 2.41

Specificity 67.89 ± 0.26 42.76 ± 12.70 62.37 ± 2.18

B. D vs NDL

Metric T 172
no gado T 181

tier 1/2 T 172

BA 69.74 ± 0.55 64.61 ± 1.74 72.30 ± 0.48

Sensitivity 85.13 ± 0.79 45.53 ± 4.62 66.45 ± 1.32

Specificity 54.34 ± 1.84 83.68 ± 1.47 78.16 ± 1.92

Table 4.5: Influence of gadolinium injection and image quality on the classification per-
formance. Results were obtained for the D vs NDNL and D vs NDL classification tasks
with a linear SVM using as input gray matter maps and trained on different clinical data

subsets (T 172
no gado, T

181
tier 1/2 and T 172). BA: balanced accuracy.

Classification is not based on the detection of the disease but on the different characteristics
of the training data set.

The training subset T 172
no gado still contains images of different quality and T 181

tier 1/2 images
with and without gadolinium. The classifier may thus still be exploiting biases in the image
characteristics. At this step, we want to evaluate the performance of the classifier using a
training dataset without the bias of the gadolinium and of the quality of the images. This is
why we used the training subset called T 88

no gado, tier 1/2 comparing it with the training subset
T 88: having the same training size. The difference in performance should thus depend only
on the different proportions of gadolinium and quality in the training subset. In Table 4.6 we
report the results of the two classification tasks using the two different subsets as training.

For both tasks, if we delete the bias of both gadolinium and image quality, the balanced
accuracy hardly reaches 50%, meaning joint influence of these two characteristics increase
performance by about 20%. In fact, balanced accuracy obtained with T 88 is 69.47 ± 2.37
for D vs NDNL and 73.03 ± 1.13 for D vs NDL, which is almost equivalent to the perfor-
mance for both tasks obtained with T 172: both training subsets contain the same biases.
Therefore, when it cannot exploit biases in image characteristics, the classifier is not better
than random.

4.4.2.2 Classification performance obtained after gadolinium removal using im-
age translation

We showed in the previous chapter (Chapter 3) that gadolinium could be removed from
contrast-enhanced T1w MR images using a DL-based image translation approach. We cre-
ated a training subset composed of 88 synthetic images obtained from images of medium/good
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A. D vs NDNL

Metric T 88
no gado, tier 1/2 T 88

BA 51.51 ± 2.54 69.47 ± 2.37

Sensitivity 6.71 ± 12.44 71.97 ± 2.26

Specificity 96.32 ± 7.37 66.97 ± 2.51

B. D vs NDL

Metric T 88
no gado, tier 1/2 T 88

BA 50.00 ± 0.00 73.03 ± 1.79

Sensitivity 40.00 ± 48.99 66.58 ± 4.51

Specificity 60.00 ± 48.99 79.47 ± 1.13

Table 4.6: Joint influence of gadolinium injection and image quality on the classification
performance. Results were obtained for the D vs NDNL and D vs NDL classification tasks
with a linear SVM using as input gray matter maps and trained on two clinical data subsets

(T 88
no gado, tier 1/2 and T 88). BA: balanced accuracy.

quality acquired with and without gadolinium injection as described in section 4.3.2. If the
gadolinium is successfully removed, training with this subset should be equivalent to train-
ing with the T 88

no gado, tier 1/2 subset that includes only images without gadolinium. This is
what we study in this section.

Results of these experiments are reported in Table 4.7. Balanced accuracy scores are
equivalent when using the training subset Synthetic T 88

tier 1/2 and T 88
no gado, tier 1/2: it means

that the effect of gadolinium has been deleted using synthetic images since the performance
is the same when there are no images with gadolinium.

4.4.2.3 Classification performance when training on a research data set or on
an unbiased clinical data set

We demonstrated that the characteristics of the training set can bias the performance of
the classifier. In order to obtain unbiased results, there must be no correlation between the
output and the characteristics of the images such as image quality or presence of gadolinium.
One way to reach this situation is to make the training data set must be homogeneous,
i.e. containing only images of the similar quality and without constrast agent. In our
work, this can be obtained using either the research data set (ADNI contains only images
without gadolinium and of good quality) or a clinical data set composed only of images
of medium/good quality without gadolinium injection (meaning the so called Synthetic
T 181

tier 1/2). In the previous section we demonstrated that synthetic images can suppress the
effect of the gadolinium injection. We studied the performance of the classifier when using
these training sets and in addition we evaluated if a CNN pre-trained on research data and
fine-tuned on Synthetic T 181

tier 1/2 could lead to a better classification performance.
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A. D vs NDNL

Metric T 88
tier 1/2 Synthetic T 88

tier 1/2 T 88
no gado, tier 1/2

BA 60.26 ± 5.41 51.71 ± 1.15 51.51 ± 2.54

Sensitivity 58.68 ± 30.44 75.66 ± 34.75 6.71 ± 12.44

Specificity 61.84 ± 22.63 27.76 ± 34.98 96.32 ± 7.37

B. D vs NDL

Metric T 88
tier 1/2 Synthetic T 88

tier 1/2 T 88
no gado, tier 1/2

BA 68.29 ± 3.55 54.08 ± 5.19 50.00 ± 0.00

Sensitivity 69.34 ± 7.71 52.50 ± 41.55 40.00 ± 48.99

Specificity 67.24 ± 14.43 55.66 ± 45.67 60.00 ± 48.99

Table 4.7: Classification performance obtained after gadolinium removal using image
translation. Results were obtained for the D vs NDNL and D vs NDL classification tasks
with a linear SVM using as input gray matter maps and trained on three clinical data

subsets (T 88
tier 1/2, T

88
tier 1/2, T

88
no gado, tier 1/2). BA: balanced accuracy.

In Table 4.8, we report the results when using the two training sets for the two classifi-
cation tasks, using a SVM with probability gray matter maps or a ResNet with minimally
pre-processed T1w MRI. In the ResNet case, we also report the results with pre-training on
research data. The best results with the ResNet were obtained using the clinical data set
Synthetic T 181

tier 1/2 trained from scratch for D vs NDNL (balanced accuracy 63.22 ± 3.47)
and pre-trained on research data for D vs NDL (balanced accuracy 68.03 ± 2.44). There
was no substantial advantage in pre-training the CNN models on research data compared
to training from scratch using clinical data. When using the linear SVM combined with
probability gray matter maps, models trained on research data performed slightly better
than models trained on the clinical data set Synthetic T 181

tier 1/2. For both tasks the highest
balanced accuracy was reached with the linear SVM.

These results are more reliable than those in Table 4.4 since unbiased: we can conclude
that balanced accuracy scores are lower than those obtained using research data in Table 4.3.

4.5 Discussion

Research on computer vision applied to the detection of neurodegenerative diseases has
been propelled by the availability of T1w brain MRI from public research data sets. In
the literature, we can find several works that show promising results in the field (Samper-
González et al., 2018; Falahati, Westman, and Simmons, 2014; Manera et al., 2021; Bron
et al., 2021). All these studies share the same limitation: they only develop and validate
machine learning and deep learning models using research data.
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A. D vs NDNL

SVM ResNet

Metric Training on
research data

Synthetic
T 181
tier 1/2

Training on
research data

Pre-training on
research data

Synthetic
T 181
tier 1/2

BA 64.08 ± 0.82 61.91 ± 1.34 61.84 ± 4.07 62.96 ± 2.40 63.22 ± 3.47

Sensitivity 62.76 ± 0.53 81.32 ± 2.45 60.92 ± 8.28 55.58 ± 13.93 52.24 ± 10.65

Specificity 65.39 ± 1.29 42.50 ± 4.59 62.76 ± 6.55 59.34 ± 13.18 74.21 ± 7.22

B. D vs NDL

SVM ResNet

Metric Training on
research data

Synthetic
T 181
tier 1/2

Training on
research data

Pre-training on
research data

Synthetic
T 181
tier 1/2

BA 69.47 ± 0.32 64.61 ± 1.74 61.78 ± 4.35 68.03 ± 2.44 67.50 ± 0.98

Sensitivity 62.76 ± 0.53 45.53 ± 4.62 60.92 ± 8.28 59.61 ± 4.83 64.47 ± 10.47

Specificity 76.18 ± 0.49 83.68 ± 1.47 62.63 ± 4.43 76.45 ± 6.02 70.53 ± 10.05

Table 4.8: Classification performance when training on a research data set or on an
unbiased clinical data set. Results were obtained for the D vs NDNL and D vs NDL
classification tasks using a linear SVM with probability gray matter maps or a ResNet with
minimally pre-processed T1w MR images. Three training setups are compared: training on
research data (ADNI), training from scratch on unbiased clinical data, i.e. synthetic images
without gadolinium obtained from images of medium/good quality (synthetic T 181

tier 1/2), and
pre-training on ADNI with a fine-tuning on synthetic T 181

tier 1/2 (ResNet only). BA: balanced
accuracy.

While translation to the clinic may seem straightforward when data are available, the
difficulties are numerous. They mainly concern the definition of the different classes of
interest that will represent the classification tasks, and the heterogeneity of the images.
The aim of our work is to show how the translation to the clinic can be pursued and what
are the main results when applying machine learning and deep learning models to images
of a clinical data set.

The first part of our work consisted in defining the cohorts that would allow us to identify
patients with dementia from the other patients included in the CDW database. While in a
research data set, they must be distinguished from cognitive normal subjects, in a clinical
data set they had to be differentiated from patients having lesions visible in the T1w MR
images and patients without any lesions. The three classes of interest (D, NDL, NDNL)
were defined according to the ICD-10 codes assigned during the patients’ hospitalization.
When defining the criteria used to determine the D and NDL categories, we decided to be
very precise in order to avoid errors in coding, so we excluded all the patients whose codes
changed over the visits. Despite this, there may be some remaining errors and biases in
the diagnosis as defined by the ICD-10 codes. For instance, ICD-10 codes are used for the
billing of the expenses by the hospitals which may lead to biases. Assessing to which extent
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the diagnostic codes are biased would require to have a neurologist check the medical record
of each individual patient, which is beyond the scope of our study.

The second part of our work consisted in training and applying several ML and DL
classification algorithms to both research and clinical data for various scenarios.

Performance of the classifiers on research data for the detection of AD subjects were
useful to set a baseline: best results for the task AD vs CN were obtained using SVM with
probability gray matter maps (balanced accuracy: 86.80 ± 0.40). When the same model
was applied to clinical data, the balanced accuracy decreased by about 15 percent points.
Thus, ML/DL models that lead to high classification performance in a research framework,
do not necessarily generalize to clinical data set. More analyses were performed in order to
dissect these results.

There is a clear correlation between the diagnostic groups and the different proportions
of images of bad quality and of images with gadolinium in the three classes ( 65% of images
with gadolinium in NDL and NDNL and 25% in D, 37% of images of medium or good
quality in NDNL, and 55% in D and NDL). We hypothesized that models trained on
such data could exploit this bias. To assess this, we trained different models changing the
characteristics of the training subsets: we used training subsets having only images without
gadolinium (T 172

no gado) or images of medium/good quality (T 181
tier 1/2) and we compared their

performance with a training subset of the same sample size but having the same proportions
of images with gadolinium and of low quality than the whole data set (T 172). Thanks to these
comparisons, we showed that when we used unbiased training subsets the balanced accuracy
score was lower, meaning that improvements when using T 172 was not due to the features
characterising the diseases, but more to the different quality scores or the presence/absence
of gadolinium.

Biased results are due to the bias in the training data set. We proposed two different
solutions in order to overcome this problem. The fist was to create an unbiased training
set using the clinical routine dataset: we included only images of medium/good quality
and without gadolinium injection. In order to pass from images with gadolinium to images
without gadolinium we applied the models proposed in (Bottani et al., 2022b): we validated
it verifying if the balanced accuracy obtained with a training subset with only images of
medium/good quality without gadolinium (T 88

no gado, tier 1/2) was the same as that obtained
with a training subset with synthetic images of medium/good quality (Synthetic T 88

tier 1/2).
The use of synthetic images allowed us to delete the bias of gadolinium while keeping a
larger number of images in the training sample.

The second solution was to use as training set the research data of ADNI: they do not
contain any of the biases described above. No matter the solution implemented, balanced
accuracy scores were lower than those obtained with the research data set for AD vs CN:
best balanced accuracy for D vs NDNL was 64.08 ± 0.82 and for D vs NDL 69.47 ± 0.32.

These results show that translation from research to clinical routine data is not straight-
forward. First of all, we demonstrated the importance of having a proper training set at
the expense of reducing the number of samples. Future works on images of CDW should
focus more on the quality control and homogenization of the images: this could allow to
obtain larger usable training set. Thereafter, the quality control should not be limited to
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the images, but it should include also clinical data in order to make them reliable for the
labelling.

This experimental study presents some limitations. Unlike research studies, the diagnosis
may not be trustworthy as it is assigned using ICD-10 codes, which could be a source of
bias. Indeed, in the French healthcare system, they are assigned during hospitalization
by the clinical department for the billing of the expenses. In addition, ICD-10 codes do
not undergo quality control and it is likely that mistakes occur when entering the codes.
Other limitations concern the training data set we have used: due to the choices done we
have reduced the sample size. Further evaluations should be done in order to assess if the
performance of the classifiers could improve according to the present work by adding more
subjects in the training. Finally, we have limited our experimental settings to the use of a
linear SVM or CNN models, but more improvements could be done using other models or
other CNN architectures with different hyper-parameters.

4.6 Conclusion

Computer-aided diagnosis systems for the detection of patients with dementia using T1w
brain MRI data have not been validated yet using large clinical data sets. In this experimen-
tal work, we have evaluated the performance of ML/DL models in the detection of patients
with dementia in a large clinical data set coming from a clinical data warehouse including 39
hospitals. In particular, we used different CNN models with minimally pre-processed T1w
MRI and linear SVM with probability gray matter maps. At first we defined the classes of
interest using ICD-10 codes. Then we compared the performance of the models with that
obtained using a research data set. We found out that the balanced accuracy is 15 percent
point lower with models trained with clinical data set if compared to that obtained with re-
search data. Furthermore, we demonstrated that the difference in the proportions of images
with gadolinium and of images of medium/good quality among the classes of the training
set could bias the results. We proposed two solutions to overcome this problem: training
the models using only a research data set, which does not present these biases, rather than
clinical data set, or using only images of good/medium quality without gadolinium in the
training set. The latter could be deleted using a deep learning model of that translates
contrast-enhanced into non-contrast-enhanced images.
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Conclusion

Availability of research data set, ease of access and use, have propelled the development
of CAD for the detection of neurodegenerative diseases using T1w brain MRI in the last
years. The results are promising but these approaches have only been developed using
research data or small clinical data sets: the usefulness of these CAD tools has yet not been
demonstrated in a real clinical setting. This PhD work is a step towards the validation of
ML/DL models to assist diagnosis using a very large clinical data set.

Translation from research to clinical practice is possible only if enough data are available.
The development of a CDW for the Paris Greater Area Hospitals allowed the birth of the
APPRIMAGE project whose final aim is to validate algorithms developed in a research
context in a clinical environment. This PhD work aimed at showing how one can deal with
such data, at describing the challenges and proposing methods to overcome them in order
to assess the performance of ML and DL algorithms for the classification of dementia in a
clinical context.

Before the classification of patients, we worked on the usability of T1w brain MRI coming
from a CDW which includes 39 different hospitals (in Chapters 2 and 3). What distinguishes
them from images acquired in a research context is their heterogeneity in terms of quality
and sequences.

The development of an automatic quality control of the images was an essential step to
continue the project. Indeed, we found out that more than 25% of the images were not proper
3D T1w brain MRI, that the DICOM header describing the sequences was not reliable and
that about 30% of the images had a very low quality score. All the approaches described in
the literature were not adequate for our data: they are all based on the extraction of features
that are only reliable if the quality of data is good enough. The experimental approach that
we developed satisfied our needs and its good performance shows that DL models can be
useful in this field. Indeed the CNN models trained were able to identify images which are
not proper T1w brain MRI, images of low quality and acquisitions for which gadolinium
was injected with a performance score compared to that of the manual raters.

Once images had been classified according to their quality, the other problem we faced
was the heterogeneity of the MRI sequences. Unlike a research data set where the acquisition
protocol is well defined, CDW include images acquired using a wide range of parameters. In
particular, among the T1w brain MRI of the AP-HP CDW we found images acquired both
with and without gadolinium injection. These MRI sequences are used for different purposes:
T1w brain MRI enhanced with gadolinium may highlight lesions such as brain tumors, while
non-contrast enhanced T1w brain MRI may be useful to study the atrophy characteristic of
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neurodegenerative diseases. Sequences must be homogenized in order to ensure consistency
among the features extracted which could allow a CAD system to correctly recognise all the
diagnoses. We developed 3D U-Net and conditional GAN models that are able to correctly
synthesize images without gadolinium from contrast-enhanced images part of the AP-HP
CDW. In addition, we showed that the presence of gadolinium could lead to errors when
processing the images with classical neuro-imaging software tools.

The first two contributions of this PhD can already shed light on the difficulties of
creating a proper training data set for the development of ML/DL models using images
of a CDW. Besides, we ran into another obstacle for the development of a CAD system
able to detect patients with dementia among the other patients included in the CDW: the
definition of the diagnostic classes. In fact, unlike research data sets where diagnoses are
defined following strict criteria identical for all the sites, in our work we used ICD-10 codes
to label patients. Several choices were made in order to limit possible coding errors: this
resulted in the exclusion of a large number of patients with the purpose of creating as clean
a training set as possible.

The last contribution was an experimental study of the performance of CAD tools on the
clinical routine dataset. We highlighted that, inhomogeneities between the classes due to
differences in image quality or in the proportion of images with gadolinium were still present.
We showed that such imbalances can greatly bias classification results. To overcome such
bias, the training set must be homogeneous across the diagnostic classes. This is possible
using images of a research data set or using clinical images only of medium/good quality
passed in the image translation model to delete gadolinium. In any case, the balanced
accuracy of the classifiers applied to clinical data is lower by at least 15 percent points
compared to that obtained in a research framework.

Overall, our work has demonstrated the challenges posed by the design and validation of
CAD algorithms on clinical routine datasets. We developed approaches for automatic quality
control and image homogeneization that were critical for the rest of the project and which
shall be useful for other studies using CDWs. Our experimental study of CAD algorithms
demonstrated that their performance can be biased upwards by exploiting heterogeneities
in the dataset. Furthermore, we demonstrated a huge drop in performance when moving
from a research context to that of clinical routine datasets. This highlights the remaining
challenges for bringing CAD tools to the clinic in the domain of neuroimaging of dementia.

Perspectives

This PhD is the first work, to the best of our knowledge, based on the study of T1w
brain MRI from a CDW to validate ML/DL models for the computer-assisted diagnosis of
neurodegenerative dementias. Despite all the difficulties encountered, it opens the way to
several research directions that could be pursued in the future in order to succeed in the
development of CAD in a real life environment.

Translation from research to clinical practice is not straightforward. More work should
be done to improve the automatic quality control and feature homogenization frameworks.
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In particular, we should improve the classification among images of good and medium
quality in order to keep just the first category when training CAD systems. To this end
we could work on the detection of the different artefacts that characterise the quality tiers.
According to our results, motion artefact is the most difficult to detect, but its presence
may also degrade the contrast of the images and it can make them appear noisy. Automatic
approaches have been proposed to detect motion artefacts (Mohebbian et al., 2021; Fantini
et al., 2021; Oksuz, 2021; Zhao et al., 2020; Godenschweger et al., 2016). Once detected, the
quality of these images could be improved with models for image enhancement. We refer
for instance to models developed for image denoising (Tamada, 2020; Manjón and Coupe,
2018) or motion artefact reduction (Higaki et al., 2019; Pawar et al., 2018; Parkes et al.,
2018; Oksuz, 2021).

Image translation from contrast-enhanced to non-contrast-enhanced MRI is necessary,
but it does not represent the only homogenization step that could be performed. Data
set inhomogeneities can have multiple origins: images acquired with scanners of different
magnetic fields (1.5 or 3 Tesla), scanners coming from different sites, different scanner models
or different sequence parameters. Some strategies have been proposed in the literature for
these types of homogenization (Zuo et al., 2021; Cackowski et al., 2021) and could be applied
to our data. An analysis similar to that proposed in Chapter 4 could also be done to study
the effects of the inhomogeneities of these characteristics.

Images are not the only data whose quality should be controlled. As mentioned in
Chapter 4, the ICD-10 codes used to define the diagnostic labels may not be trustworthy.
To systematically evaluate the potential biases of the ICD-10 codes, a possibility would be
to systematically review the medical record by neurologists as well as the imaging data by
radiologists. We could not only study the potential biases present in the ICD-10 codes as
well as the inter-rater reliability of the diagnoses of the neurologists and radiologists. This
is beyond the scope of the present thesis but is definitely an important avenue to assess
and potentially control for biases in ICD-10 codes and thus make CDWs more reliable for
computer-aided diagnosis.

Another interesting avenue is to develop an automated labelization using natural lan-
guage processing models, as done also in (Wood et al., 2020; Wood et al., 2022b; Sorin
et al., 2020; Senders et al., 2019). For the training of this automatic approach, we will need
a training data sets where each report (i.e. the inputs of the model) correspond to a disease
(i.e. the target of the model). At this aim, we should work with one or two neuro-radiologist
taking into account a representative sample of the reports.

In order to be closer to clinical practice, multiple imaging modalities could be used
as input of the CAD system. T2-weighted fluid-attenuated inversion recovery MR images
would be particularly relevant to assess white matter hyperintensities that are characteristic
of certain diseases such as vascular dementia. The addition of this MRI sequence could help
the ML/DL models to be more specific towards these diseases (Wood et al., 2022a).

In conclusion, in the era of big data, there are high expectations for the development of
tools that will help in diagnosing certain diseases. A lot of work is still needed to develop
them in a clinical setting. While clinical data warehouses offer fantastic opportunities, they
also pose considerable challenge to their use for the design and validation of computer-aided
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diagnosis systems.
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Appendix A

Computer-aided diagnosis of
neurodegenerative diseases using
machine learning and deep learning –
PubMed query

This appendix provides the two PubMed queries used to obtain the graph displayed in
Figure 1.

A.1 Machine learning query

("neurodegenerative" [Title] OR "dementia" [Title] OR alzheimer [Title] OR "Cognitive
Impairment" [Title] OR "MCI" [Title] OR "Parkinson" [Title] OR "Huntington" OR "Pos-
terior cortical atrophy" [Title] OR Pick [Title] OR "frontotemporal dementia" [Title] OR
"Frontotemporal lobar degeneration" [Title] OR "Primary Progressive Aphasia" [Title] OR
PPA [Title] OR "semantic dementia" [Title] OR "Lewy Body Dementia" [Title] OR LBD
[Title] OR "vascular dementia" [Title] OR "Progressive supranuclear palsy" [Title] OR
"Amyotrophic lateral sclerosis" [Title])

AND ("classif*" [Title] OR "diagnos*" [Title] OR "identif*" [Title] OR "detect*" [Title]
OR "recogni*" [Title] OR "prognos*" [Title] OR "predict*" [Title] )

AND (mri OR "Magnetic Resonance Imaging" OR neuroimaging OR (brain AND imaging)
OR positron OR PET)

AND ("Matrix completion" [Title/Abstract] OR "Support vector machine$" [Title/Abstract]
OR "linear mixed-effect$" [Title/Abstract] OR "Machine Learning" [Title/Abstract] OR
"logistic regression" [Title/Abstract] OR "Random Forest" [Title/Abstract] OR "kernel$"
[Title/Abstract] OR "decision tree$" [Title/Abstract] OR "least-squares" [Title/Abstract])

NOT ("cnn$" [Title] OR "Convolutional Network$" [Title] OR "Convolutional neural Net-
work$" [Title] OR "Deep Learning" [Title] OR "Neural Network$" [Title] OR "autoen-
coder$" [Title] OR gan [Title] OR adversarial [Title] OR "deep belief network$"[Title])
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A.2 Deep learning query

("neurodegenerative" [Title] OR "dementia" [Title] OR alzheimer [Title] OR "Cognitive
Impairment" [Title] OR "MCI" [Title] OR "Parkinson" [Title] OR "Huntington" OR "Pos-
terior cortical atrophy" [Title] OR Pick [Title] OR "frontotemporal dementia" [Title] OR
"Frontotemporal lobar degeneration" [Title] OR "Primary Progressive Aphasia" [Title] OR
PPA [Title] OR "semantic dementia" [Title] OR "Lewy Body Dementia" [Title] OR LBD
[Title] OR "vascular dementia" [Title] OR "Progressive supranuclear palsy" [Title] OR
"Amyotrophic lateral sclerosis" [Title])

AND ("classif*" [Title] OR "diagnos*" [Title] OR "identif*" [Title] OR "detect*" [Title]
OR "recogni*" [Title] OR "prognos*" [Title] OR "predict*" [Title] )

AND (mri OR "Magnetic Resonance Imaging" OR neuroimaging OR (brain AND imaging)
OR positron OR PET)

AND ("cnn$" [Title/Abstract] OR "Convolutional Network$" [Title/Abstract] OR "Convo-
lutional neural Network$" [Title/Abstract] OR "Deep Learning" [Title/Abstract] OR "Neu-
ral Network$" [Title/Abstract] OR "autoencoder$" [Title/Abstract] OR gan [Title/Abstract]
OR adversarial [Title/Abstract] OR "deep belief network$"[Title/Abstract])

NOT ("Matrix completion" [Title] OR "Support vector machine" [Title] OR "linear mixed-
effect" [Title] OR "Machine Learning" [Title] OR "logistic regression" [Title] OR "Random
Forest" [Title] OR "kernel" [Title] OR "decision tree" [Title] OR " decision trees" [Title]
OR "least-squares" [Title])



81

Bibliography

Abraham, A. et al. (2014). “Machine learning for neuroimaging with scikit-learn”. In: Fron-
tiers in neuroinformatics 8, p. 14.

Acharya, U. R. et al. (2018). “Deep Convolutional Neural Network for the Automated De-
tection and Diagnosis of Seizure Using EEG Signals”. In: Computers in Biology and
Medicine 100, pp. 270–278. doi: 10.1016/j.compbiomed.2017.09.017.

Afonso, L. et al. (2019). “A Recurrence Plot-Based Approach for Parkinson’s Disease Iden-
tification”. In: Future Generation Computer Systems 94, pp. 282–292. doi: 10.1016/j.
future.2018.11.054.

Akkus, Z. et al. (2017). “Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade
Gliomas from MR Images Using Machine Intelligence”. In: Journal of Digital Imaging
30.4, pp. 469–476. doi: 10.1007/s10278-017-9984-3.

Alba, X. et al. (2018). “Automatic initialization and quality control of large-scale cardiac
MRI segmentations”. In: Medical image analysis 43, pp. 129–141.

Alfaro-Almagro, F. et al. (2018). “Image Processing and Quality Control for the First 10,000
Brain Imaging Datasets from UK Biobank”. In: Neuroimage 166, pp. 400–424.

Amara, N., O. Lamouchi, and S. Gattoufi (2020). “Design of a Breast Image Data Warehouse
Framework”. In: 2020 International Multi-Conference on:“Organization of Knowledge
and Advanced Technologies”(OCTA). IEEE, pp. 1–13.

Aoe, J. et al. (2019). “Automatic Diagnosis of Neurological Diseases Using MEG Signals with
a Deep Neural Network”. In: Scientific Reports 9.1. doi: 10.1038/s41598-019-41500-x.

Ashburner, J. and K. J. Friston (2005). “Unified segmentation”. In: NeuroImage 26.3, pp. 839–
851.

Avants, B. B. et al. (2008). “Symmetric diffeomorphic image registration with cross-correlation:
evaluating automated labeling of elderly and neurodegenerative brain”. In: Medical Image
Analysis 12.1, pp. 26–41.

Avants, B. B. et al. (2014). “The Insight ToolKit image registration framework”. In: Frontiers
in Neuroinformatics 8, p. 44.

Banerjee, D. et al. (2019). “A Deep Transfer Learning Approach for Improved Post-Traumatic
Stress Disorder Diagnosis”. In: Knowledge and Information Systems 60.3, pp. 1693–1724.
doi: 10.1007/s10115-019-01337-2.

Benou, A. et al. (2017). “Ensemble of expert deep neural networks for spatio-temporal
denoising of contrast-enhanced MRI sequences”. In: Medical Image Analysis 42, pp. 145–
159.

Bidani, A., M. S. Gouider, and C. M. Travieso-González (2019). “Dementia detection and
classification from MRI images using deep neural networks and transfer learning”. In:
International Work-Conference on Artificial Neural Networks. Springer, pp. 925–933.

https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1016/j.future.2018.11.054
https://doi.org/10.1016/j.future.2018.11.054
https://doi.org/10.1007/s10278-017-9984-3
https://doi.org/10.1038/s41598-019-41500-x
https://doi.org/10.1007/s10115-019-01337-2


82 Bibliography

Böhle, M. et al. (2019). “Layer-wise relevance propagation for explaining deep neural net-
work decisions in MRI-based Alzheimer’s disease classification”. In: Frontiers in aging
neuroscience 11, p. 194.

Bône, A. et al. (2021). “Contrast-enhanced brain MRI synthesis with deep learning: key
input modalities and asymptotic performance”. In: 2021 IEEE ISBI.

Bottani, S. et al. (2022a). “Automatic Quality Control of Brain T1-weighted Magnetic Reso-
nance Images for a Clinical Data Warehouse”. In: Medical Image Analysis 75, p. 102219.

Bottani, S. et al. (2022b). “Homogenization of brain MRI from a clinical data warehouse
using contrast-enhanced to non-contrast-enhanced image translation with U-Net derived
models”. In: SPIE Medical Imaging 2022.

Bron, E. E. et al. (2021). “Cross-cohort generalizability of deep and conventional machine
learning for MRI-based diagnosis and prediction of Alzheimer’s disease”. In: NeuroImage:
Clinical 31, p. 102712.

Burgos, N. and O. Colliot (2020). “Machine learning for classification and prediction of brain
diseases: recent advances and upcoming challenges”. In: Current Opinion in Neurology
33.4, pp. 439–450.

Burgos, N. et al. (2021). “Deep learning for brain disorders: from data processing to disease
treatment”. In: Briefings in Bioinformatics 22.2, pp. 1560–1576.

Cackowski, S. et al. (2021). “ImUnity: a generalizable VAE-GAN solution for multicenter
MR image harmonization”. In: arXiv preprint arXiv:2109.06756.

Campanella, G. et al. (2018). “Towards machine learned quality control: A benchmark for
sharpness quantification in digital pathology”. In: Computerized Medical Imaging and
Graphics 65, pp. 142–151.

Campese, S. et al. (2019). “Psychiatric Disorders Classification with 3D Convolutional Neu-
ral Networks.” In: INNSBDDL, pp. 48–57.

Chagué, P. et al. (2021). “Radiological classification of dementia from anatomical MRI
assisted by machine learning-derived maps”. In: Journal of Neuroradiology 48.6, pp. 412–
418.

Chen, Y. et al. (2018). “Efficient and accurate MRI super-resolution using a generative
adversarial network and 3D multi-level densely connected network”. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. Springer,
pp. 91–99.

Chien, Y.-W. et al. (2019). “An Automatic Assessment System for Alzheimer’s Disease
Based on Speech Using Feature Sequence Generator and Recurrent Neural Network”.
In: Scientific Reports 9.1. doi: 10.1038/s41598-019-56020-x.

Choi, H. and D. S. Lee (2018). “Generation of structural MR images from amyloid PET:
application to MR-less quantification”. In: Journal of Nuclear Medicine 59.7, pp. 1111–
1117.

Choi, H. et al. (2017). “Refining Diagnosis of Parkinson’s Disease with Deep Learning-Based
Interpretation of Dopamine Transporter Imaging”. In: NeuroImage. Clinical 16, pp. 586–
594. doi: 10.1016/j.nicl.2017.09.010.

Choi, H. et al. (2019). “Deep learning only by normal brain PET identify unheralded brain
anomalies”. In: EBioMedicine 43, pp. 447–453.

https://doi.org/10.1038/s41598-019-56020-x
https://doi.org/10.1016/j.nicl.2017.09.010


Bibliography 83

Choi, H. et al. (2020). “Cognitive Signature of Brain FDG PET Based on Deep Learning:
Domain Transfer from Alzheimer’s Disease to Parkinson’s Disease”. In: European Journal
of Nuclear Medicine and Molecular Imaging 47.2, pp. 403–412. doi: 10.1007/s00259-
019-04538-7.

Couvy-Duchesne, B. et al. (2020). “Ensemble Learning of Convolutional Neural Network,
Support Vector Machine, and Best Linear Unbiased Predictor for Brain Age Prediction:
ARAMIS Contribution to the Predictive Analytics Competition 2019 Challenge”. In:
Frontiers in Psychiatry 11.

Cuingnet, R. et al. (2011). “Automatic classification of patients with Alzheimer’s disease
from structural MRI: a comparison of ten methods using the ADNI database”. In: Neu-
roImage 56.2, pp. 766–781.

Daniel, C. and E. Salamanca (2020). “Hospital Databases”. In: Healthcare and Artificial
Intelligence. Springer, pp. 57–67.

Dar, S. U. et al. (2019). “Image synthesis in multi-contrast MRI with conditional generative
adversarial networks”. In: IEEE Transactions on Medical Imaging 38.10, pp. 2375–2388.

De Filippis, R. et al. (2019). “Machine Learning Techniques in a Structural and Functional
MRI Diagnostic Approach in Schizophrenia: A Systematic Review”. In: Neuropsychiatric
Disease and Treatment 15, pp. 1605–1627. doi: 10.2147/NDT.S202418.

Dewey, B. E. et al. (2019). “DeepHarmony: a deep learning approach to contrast harmo-
nization across scanner changes”. In: Magnetic Resonance Imaging 64, pp. 160–170.

Di Martino, A. et al. (2014). “The autism brain imaging data exchange: towards a large-scale
evaluation of the intrinsic brain architecture in autism”. In: Molecular Psychiatry 19.6,
pp. 659–667.

Dinkla, A. M. et al. (2018). “MR-only brain radiation therapy: dosimetric evaluation of
synthetic CTs generated by a dilated convolutional neural network”. In: International
Journal of Radiation Oncology* Biology* Physics 102.4, pp. 801–812.

Dong, J. et al. (2019). “A generic quality control framework for fetal ultrasound cardiac four-
chamber planes”. In: IEEE journal of biomedical and health informatics 24.4, pp. 931–
942.

Du, J. et al. (2020). “Brain mri super-resolution using 3d dilated convolutional encoder–
decoder network”. In: IEEE Access 8, pp. 18938–18950.

Emami, H. et al. (2018). “Generating synthetic CTs from magnetic resonance images using
generative adversarial networks”. In: Medical physics 45.8, pp. 3627–3636.

Eslami, T. et al. (2019). “ASD-DiagNet: A Hybrid Learning Approach for Detection of
Autism Spectrum Disorder Using fMRI Data”. In: Frontiers in Neuroinformatics 13.
doi: 10.3389/fninf.2019.00070.

Esteban, O. et al. (2017). “MRIQC: Advancing the automatic prediction of image quality
in MRI from unseen sites”. In: PLOS One 12.9, e0184661.

Falahati, F., E. Westman, and A. Simmons (2014). “Multivariate data analysis and machine
learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging”.
In: Journal of Alzheimer’s disease 41.3, pp. 685–708.

https://doi.org/10.1007/s00259-019-04538-7
https://doi.org/10.1007/s00259-019-04538-7
https://doi.org/10.2147/NDT.S202418
https://doi.org/10.3389/fninf.2019.00070


84 Bibliography

Fantini, I. et al. (2021). “Automatic MR image quality evaluation using a Deep CNN:
A reference-free method to rate motion artifacts in neuroimaging”. In: Computerized
Medical Imaging and Graphics 90, p. 101897.

Farooq, A. et al. (2017). “A deep CNN based multi-class classification of Alzheimer’s disease
using MRI”. In: 2017 IEEE International Conference on Imaging systems and techniques
(IST). IEEE, pp. 1–6.

Frisoni, G. B. et al. (2010). “The clinical use of structural MRI in Alzheimer disease”. In:
Nature Reviews Neurology 6.2, pp. 67–77. doi: 10.1038/nrneurol.2009.215.

Fu, S. et al. (2019). “Natural Language Processing for the Identification of Silent Brain
Infarcts from Neuroimaging Reports”. In: Journal of Medical Internet Research 21.5.
doi: 10.2196/12109.

Gautam, R. and M. Sharma (2020). “Prevalence and diagnosis of neurological disorders using
different deep learning techniques: a meta-analysis”. In: Journal of medical systems 44.2,
pp. 1–24.

Ge, C. et al. (2018). “Deep Learning and Multi-Sensor Fusion for Glioma Classification Using
Multistream 2D Convolutional Networks”. In: 2018 40th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu, HI:
IEEE, pp. 5894–5897. doi: 10.1109/EMBC.2018.8513556.

Ghafouri-Fard, S. et al. (2019). “Application of Single-Nucleotide Polymorphisms in the
Diagnosis of Autism Spectrum Disorders: A Preliminary Study with Artificial Neural
Networks”. In: Journal of Molecular Neuroscience 68.4, pp. 515–521. doi: 10.1007/
s12031-019-01311-1.

Gilmore, A., N. Buser, and J. L. Hanson (2019). “Variations in structural MRI quality impact
measures of brain anatomy: Relations with age and other sociodemographic variables”.
In: Biorxiv, p. 581876.

Godenschweger, F. et al. (2016). “Motion correction in MRI of the brain”. In: Physics in
Medicine & Biology 61.5, R32.

Gong, K. et al. (2018). “Attenuation correction for brain PET imaging using deep neural
network based on Dixon and ZTE MR images”. In: Physics in Medicine & Biology 63.12,
p. 125011.

Goodfellow, I. et al. (2014). “Generative adversarial nets”. In: Advances in neural information
processing systems 27.

Gorgolewski, K. J. et al. (2016). “The brain imaging data structure, a format for organizing
and describing outputs of neuroimaging experiments”. In: Scientific data 3.1, pp. 1–9.

Graham, M. S., I. Drobnjak, and H. Zhang (2018). “A supervised learning approach for
diffusion MRI quality control with minimal training data”. In: NeuroImage 178, pp. 668–
676.

Gu, J. et al. (2019). “Deep generative adversarial networks for thin-section infant MR image
reconstruction”. In: IEEE Access 7, pp. 68290–68304.

Han, X. (2017). “MR-Based Synthetic CT Generation Using a Deep Convolutional Neural
Network Method”. In: Medical Physics 44.4, pp. 1408–1419.

Harper, L. et al. (2016). “MRI visual rating scales in the diagnosis of dementia: evaluation
in 184 post-mortem confirmed cases”. In: Brain 139.4, pp. 1211–1225.

https://doi.org/10.1038/nrneurol.2009.215
https://doi.org/10.2196/12109
https://doi.org/10.1109/EMBC.2018.8513556
https://doi.org/10.1007/s12031-019-01311-1
https://doi.org/10.1007/s12031-019-01311-1


Bibliography 85

Hashimoto, F. et al. (2019). “Dynamic PET image denoising using deep convolutional neural
networks without prior training datasets”. In: IEEE Access 7, pp. 96594–96603.

He, K. et al. (2016). “Identity mappings in deep residual networks”. In: European conference
on computer vision. Springer, pp. 630–645.

Higaki, T. et al. (2019). “Improvement of image quality at CT and MRI using deep learning”.
In: Japanese journal of radiology 37.1, pp. 73–80.

Hollon, T. et al. (2020). “Near Real-Time Intraoperative Brain Tumor Diagnosis Using
Stimulated Raman Histology and Deep Neural Networks”. In: Nature Medicine 26.1,
pp. 52–58. doi: 10.1038/s41591-019-0715-9.

Huang, K.-Y., C.-H. Wu, and M.-H. Su (2019). “Attention-Based Convolutional Neural
Network and Long Short-term Memory for Short-term Detection of Mood Disorders
Based on Elicited Speech Responses”. In: Pattern Recognition 88, pp. 668–678. doi:
10.1016/j.patcog.2018.12.016.

Isensee, F. et al. (2019). “Automated brain extraction of multisequence MRI using artificial
neural networks”. In: Human Brain Mapping 40.17, pp. 4952–4964.

Işın, A., C. Direkoğlu, and M. Şah (2016). “Review of MRI-based brain tumor image seg-
mentation using deep learning methods”. In: Procedia Computer Science 102, pp. 317–
324.

Isola, P. et al. (2017). “Image-to-image translation with conditional adversarial networks”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1125–
1134.

Jack, C. R. et al. (2008). “The Alzheimer’s disease neuroimaging initiative (ADNI): MRI
methods”. In: Journal of Magnetic Resonance Imaging 27.4, pp. 685–691.

Janowczyk, A. et al. (2019). “HistoQC: an open-source quality control tool for digital pathol-
ogy slides”. In: JCO clinical cancer informatics 3, pp. 1–7.

Jiang, D. et al. (2018). “Denoising of 3D magnetic resonance images with multi-channel
residual learning of convolutional neural network”. In: Japanese journal of radiology
36.9, pp. 566–574.

Jónsson, B. A. et al. (2019). “Brain age prediction using deep learning uncovers associated
sequence variants”. In: Nature Communications 10.1, pp. 1–10.

Keshavan, A. et al. (2018). “Mindcontrol: A web application for brain segmentation quality
control”. In: NeuroImage 170, pp. 365–372.

Kim, H. et al. (2019). “LONI QC system: a semi-automated, web-based and freely-available
environment for the comprehensive quality control of neuroimaging data”. In: Frontiers
in Neuroinformatics 13, p. 60.

Kim, K. H., W.-J. Do, and S.-H. Park (2018). “Improving resolution of MR images with an
adversarial network incorporating images with different contrast”. In: Medical Physics
45.7, pp. 3120–3131.

Kiryu, S. et al. (2019). “Deep learning to differentiate parkinsonian disorders separately
using single midsagittal MR imaging: a proof of concept study”. In: European radiology
29.12, pp. 6891–6899.

Klapwijk, E. T. et al. (2019). “Qoala-T: A supervised-learning tool for quality control of
FreeSurfer segmented MRI data”. In: NeuroImage 189, pp. 116–129.

https://doi.org/10.1038/s41591-019-0715-9
https://doi.org/10.1016/j.patcog.2018.12.016


86 Bibliography

Kleesiek, J. et al. (2019). “Can virtual contrast enhancement in brain MRI replace gadolin-
ium?: a feasibility study”. In: Investigative Radiology 54.10, pp. 653–660.

Koikkalainen, J. et al. (2016). “Differential diagnosis of neurodegenerative diseases using
structural MRI data”. In: NeuroImage: Clinical 11, pp. 435–449.

Kretz, T. et al. (2020). “Mammography image quality assurance using deep learning”. In:
IEEE Transactions on Biomedical Engineering 67.12, pp. 3317–3326.

Küstner, T. et al. (2018). “A machine-learning framework for automatic reference-free qual-
ity assessment in MRI”. In: Magnetic resonance imaging 53, pp. 134–147.

Ladefoged, C. N. et al. (2019). “Deep learning based attenuation correction of PET/MRI in
pediatric brain tumor patients: evaluation in a clinical setting”. In: Frontiers in neuro-
science 12, p. 1005.

Li, H. et al. (2019a). “DiamondGAN: unified multi-modal generative adversarial networks
for MRI sequences synthesis”. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer, pp. 795–803.

Li, J. et al. (2019b). “Classifying ASD Children with LSTM Based on Raw Videos”. In:
Neurocomputing. doi: 10.1016/j.neucom.2019.05.106.

Li, X. et al. (2016). “The first step for neuroimaging data analysis: DICOM to NIfTI con-
version”. In: Journal of Neuroscience Methods 264, pp. 47–56.

Li, Z. et al. (2017). “Deep Learning Based Radiomics (DLR) and Its Usage in Noninvasive
IDH1 Prediction for Low Grade Glioma”. In: Scientific Reports 7.1, pp. 1–11. doi: 10.
1038/s41598-017-05848-2.

Littlejohns, T. J. et al. (2020). “The UK Biobank imaging enhancement of 100,000 partic-
ipants: rationale, data collection, management and future directions”. In: Nature Com-
munications 11.1, pp. 1–12.

Ma, D. et al. (2020). “Differential Diagnosis of Frontotemporal Dementia, Alzheimer’s Dis-
ease, and Normal Aging Using a Multi-Scale Multi-Type Feature Generative Adversarial
Deep Neural Network on Structural Magnetic Resonance Images”. In: Frontiers in Neu-
roscience 14, p. 853.

Manera, A. L. et al. (2021). “MRI data-driven algorithm for the diagnosis of behavioural
variant frontotemporal dementia”. In: Journal of Neurology, Neurosurgery & Psychiatry
92.6, pp. 608–616.

Manjón, J. V. and P. Coupe (2018). “MRI denoising using deep learning”. In: International
Workshop on Patch-based Techniques in Medical Imaging. Springer, pp. 12–19.

Mao, X. et al. (2017). “Least squares generative adversarial networks”. In: Proceedings of
the IEEE international conference on computer vision, pp. 2794–2802.

Mark, J. et al. (2012). “FSL”. In: NeuroImage 62.2, pp. 782–790.
Marzullo, A. et al. (2019). “Classification of Multiple Sclerosis Clinical Profiles via Graph

Convolutional Neural Networks”. In: Frontiers in Neuroscience 13.JUN. doi: 10.3389/
fnins.2019.00594.

Mason, D. (2011). “SU-E-T-33: pydicom: an open source DICOM library”. In: Medical
Physics 38.6Part10, pp. 3493–3493.

https://doi.org/10.1016/j.neucom.2019.05.106
https://doi.org/10.1038/s41598-017-05848-2
https://doi.org/10.1038/s41598-017-05848-2
https://doi.org/10.3389/fnins.2019.00594
https://doi.org/10.3389/fnins.2019.00594


Bibliography 87

Milletari, F., N. Navab, and S.-A. Ahmadi (2016). “V-net: Fully convolutional neural net-
works for volumetric medical image segmentation”. In: 2016 fourth international confer-
ence on 3D vision (3DV). IEEE, pp. 565–571.

Mirza, M. and S. Osindero (2014). “Conditional generative adversarial nets”. In: arXiv:1411.1784.
Mohebbian, M. et al. (2021). “Classifying MRI motion severity using a stacked ensemble

approach”. In: Magnetic Resonance Imaging 75, pp. 107–115.
Moon, S. et al. (2019). “Accuracy of Machine Learning Algorithms for the Diagnosis of

Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Brain Magnetic
Resonance Imaging Studies”. In: Journal of Medical Internet Research 21.12. doi: 10.
2196/14108.

Morin, A. et al. (2020). “Accuracy of MRI classification algorithms in a tertiary memory
center clinical routine cohort”. In: Journal of Alzheimer’s Disease 74.4, pp. 1157–1166.

Nakao, T. et al. (2018). “Deep Neural Network-Based Computer-Assisted Detection of Cere-
bral Aneurysms in MR Angiography”. In: Journal of Magnetic Resonance Imaging 47.4,
pp. 948–953. doi: 10.1002/jmri.25842.

Naseer, A. et al. (2020). “Refining Parkinson’s Neurological Disorder Identification through
Deep Transfer Learning”. In: Neural Computing and Applications 32.3, pp. 839–854. doi:
10.1007/s00521-019-04069-0.

Neppl, S. et al. (2019). “Evaluation of proton and photon dose distributions recalculated
on 2D and 3D Unet-generated pseudoCTs from T1-weighted MR head scans”. In: Acta
Oncologica 58.10, pp. 1429–1434.

Nie, D. et al. (2018). “Medical image synthesis with deep convolutional adversarial networks”.
In: IEEE Transactions on Biomedical Engineering 65.12, pp. 2720–2730.

Noor, M. B. T. et al. (2019). “Detecting neurodegenerative disease from MRI: A brief re-
view on a deep learning perspective”. In: International Conference on Brain Informatics.
Springer, pp. 115–125.

Oh, K. et al. (2019). “Classification of schizophrenia and normal controls using 3D con-
volutional neural network and outcome visualization”. In: Schizophrenia Research 212,
pp. 186–195.

Oksuz, I. (2021). “Brain MRI artefact detection and correction using convolutional neural
networks”. In: Computer Methods and Programs in Biomedicine 199, p. 105909.

Oksuz, I. et al. (2019). “Automatic CNN-based detection of cardiac MR motion artefacts
using k-space data augmentation and curriculum learning”. In: Medical image analysis
55, pp. 136–147.

Oktay, O. et al. (2018). “Attention u-net: Learning where to look for the pancreas”. In: arXiv
preprint arXiv:1804.03999.

Parkes, L. et al. (2018). “An evaluation of the efficacy, reliability, and sensitivity of motion
correction strategies for resting-state functional MRI”. In: Neuroimage 171, pp. 415–436.

Paszke, A. et al. (2019). “Pytorch: An imperative style, high-performance deep learning
library”. In: Advances in neural information processing systems 32.

Pawar, K. et al. (2018). “Motion correction in MRI using deep convolutional neural network”.
In: Proceedings of the ISMRM Scientific Meeting & Exhibition, Paris. Vol. 1174.

https://doi.org/10.2196/14108
https://doi.org/10.2196/14108
https://doi.org/10.1002/jmri.25842
https://doi.org/10.1007/s00521-019-04069-0


88 Bibliography

Pedregosa, F. et al. (2011). “Scikit-learn: Machine learning in Python”. In: the Journal of
machine Learning research 12, pp. 2825–2830.

Pellegrini, E. et al. (2018). “Machine Learning of Neuroimaging for Assisted Diagnosis of
Cognitive Impairment and Dementia: A Systematic Review”. In: Alzheimer’s and De-
mentia: Diagnosis, Assessment and Disease Monitoring 10, pp. 519–535. doi: 10.1016/
j.dadm.2018.07.004.

Penny, W. D. et al. (2011). Statistical parametric mapping: the analysis of functional brain
images. Elsevier.

Pham, C.-H. et al. (2017). “Brain MRI super-resolution using deep 3D convolutional net-
works”. In: 2017 IEEE ISBI, pp. 197–200.

Punjabi, A. et al. (2019). “Neuroimaging modality fusion in Alzheimer’s classification using
convolutional neural networks”. In: PloS one 14.12, e0225759.

Raamana, P. R. et al. (2020). “Visual QC Protocol for FreeSurfer Cortical Parcellations
from Anatomical MRI”. In: bioRxiv.

Ran, M. et al. (2019). “Denoising of 3D magnetic resonance images using a residual encoder–
decoder Wasserstein generative adversarial network”. In: Medical image analysis 55,
pp. 165–180.

Rathore, S. et al. (2017). “A review on neuroimaging-based classification studies and asso-
ciated feature extraction methods for Alzheimer’s disease and its prodromal stages”. In:
NeuroImage 155, pp. 530–548.

Reuter, M. et al. (2015). “Head motion during MRI acquisition reduces gray matter volume
and thickness estimates”. In: NeuroImage 107, pp. 107–115.

Robinson, R. et al. (2018). “Real-time prediction of segmentation quality”. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. Springer,
pp. 578–585.

Robinson, R. et al. (2019). “Automated quality control in image segmentation: application
to the UK Biobank cardiovascular magnetic resonance imaging study”. In: Journal of
Cardiovascular Magnetic Resonance 21.1, pp. 1–14.

Ronneberger, O., P. Fischer, and T. Brox (2015). “U-net: Convolutional networks for biomed-
ical image segmentation”. In: International Conference on Medical image computing and
computer-assisted intervention. Springer, pp. 234–241.

Routier, A. et al. (2021). “Clinica: An Open Source Software Platform for Reproducible
Clinical Neuroscience Studies”. In: hal-02308126.

Sadri, A. R. et al. (2020). “MRQy—An open-source tool for quality control of MR imaging
data”. In: Medical Physics 47.12, pp. 6029–6038.

Samper-González, J. et al. (2018). “Reproducible evaluation of classification methods in
Alzheimer’s disease: Framework and application to MRI and PET data”. In: NeuroImage
183, pp. 504–521.

San-Segundo, R. et al. (2019). “Classification of Epileptic EEG Recordings Using Signal
Transforms and Convolutional Neural Networks”. In: Computers in Biology and Medicine
109, pp. 148–158. doi: 10.1016/j.compbiomed.2019.04.031.

https://doi.org/10.1016/j.dadm.2018.07.004
https://doi.org/10.1016/j.dadm.2018.07.004
https://doi.org/10.1016/j.compbiomed.2019.04.031


Bibliography 89

Senders, J. T. et al. (2019). “Natural language processing for automated quantification
of brain metastases reported in free-text radiology reports”. In: JCO Clinical Cancer
Informatics 3, pp. 1–9.

Seo, M. et al. (2021). “Neural Contrast Enhancement of CT Image”. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3973–3982.

Sharma, A. and G. Hamarneh (2019). “Missing MRI pulse sequence synthesis using multi-
modal generative adversarial network”. In: IEEE transactions on medical imaging 39.4,
pp. 1170–1183.

Shinde, S. et al. (2019). “Predictive Markers for Parkinson’s Disease Using Deep Neural
Nets on Neuromelanin Sensitive MRI”. In: NeuroImage. Clinical 22, p. 101748. doi:
10.1016/j.nicl.2019.101748.

Shiri, I. et al. (2019). “Direct attenuation correction of brain PET images using only emission
data via a deep convolutional encoder-decoder (Deep-DAC)”. In: European Radiology
29.12, pp. 6867–6879.

Silva, I. R. et al. (2019). “Model based on deep feature extraction for diagnosis of Alzheimer’s
disease”. In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE,
pp. 1–7.

Sorin, V. et al. (2020). “Deep learning for natural language processing in radiology—fundamentals
and a systematic review”. In: Journal of the American College of Radiology 17.5, pp. 639–
648.

Spasov, S. et al. (2019). “A parameter-efficient deep learning approach to predict conversion
from mild cognitive impairment to Alzheimer’s disease”. In: Neuroimage 189, pp. 276–
287.

Spuhler, K. D. et al. (2019). “Synthesis of patient-specific transmission data for PET at-
tenuation correction for PET/MRI neuroimaging using a convolutional neural network”.
In: Journal of nuclear medicine 60.4, pp. 555–560.

Sujit, S. J. et al. (2019). “Automated image quality evaluation of structural brain MRI using
an ensemble of deep learning networks”. In: Journal of Magnetic Resonance Imaging 50.4,
pp. 1260–1267.

Sun, H. et al. (2020). “Substituting Gadolinium in Brain MRI Using DeepContrast”. In:
2020 IEEE ISBI, pp. 908–912.

Sunoqrot, M. R. et al. (2020). “A quality control system for automated prostate segmentation
on T2-weighted MRI”. In: Diagnostics 10.9, p. 714.

Szegedy, C. et al. (2016). “Rethinking the inception architecture for computer vision”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2818–2826.

Tamada, D. (2020). “Noise and artifact reduction for MRI using deep learning”. In: arXiv
preprint arXiv:2002.12889.

Tayari, N. et al. (2019). “Simple and broadly applicable automatic quality control for 3D
1H MR spectroscopic imaging data of the prostate”. In: Magnetic resonance in medicine
81.5, pp. 2887–2895.

Tustison, N. J. et al. (2010). “N4ITK: improved N3 bias correction”. In: IEEE Transactions
on Medical Imaging 29.6, pp. 1310–1320.

https://doi.org/10.1016/j.nicl.2019.101748


90 Bibliography

Ueda, D. et al. (2019). “Deep Learning for MR Angiography: Automated Detection of Cere-
bral Aneurysms”. In: Radiology 290.1, pp. 187–194. doi: 10.1148/radiol.2018180901.

Wada, A. et al. (2019). “Differentiating Alzheimer’s Disease from Dementia with Lewy
Bodies Using a Deep Learning Technique Based on Structural Brain Connectivity”. In:
Magnetic Resonance in Medical Sciences 18.3, pp. 219–224. doi: 10.2463/mrms.mp.
2018-0091.

Wang, W. et al. (2021). “Transbts: Multimodal brain tumor segmentation using trans-
former”. In: International Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, pp. 109–119.

Wang, Z. et al. (2004). “Image quality assessment: from error visibility to structural simi-
larity”. In: IEEE Transactions on Image Processing 13.4, pp. 600–612.

Watson, P. and A Petrie (2010). “Method agreement analysis: a review of correct method-
ology”. In: Theriogenology 73.9, pp. 1167–1179.

Wegmayr, V., S. Aitharaju, and J. Buhmann (2018). “Classification of brain MRI with big
data and deep 3D convolutional neural networks”. In: Medical Imaging 2018: Computer-
Aided Diagnosis. Vol. 10575. International Society for Optics and Photonics, 105751S.

Wei, W. et al. (2019). “Predicting PET-derived demyelination from multimodal MRI using
sketcher-refiner adversarial training for multiple sclerosis”. In: Medical image analysis
58, p. 101546.

Wen, J. et al. (2020). “Convolutional Neural Networks for Classification of Alzheimer’s
Disease: Overview and Reproducible Evaluation”. In: Medical Image Analysis, p. 101694.

Wolterink, J. M. et al. (2017). “Deep MR to CT synthesis using unpaired data”. In: In-
ternational workshop on simulation and synthesis in medical imaging. Springer, pp. 14–
23.

Wood, D. A. et al. (2020). “Automated Labelling using an Attention model for Radiol-
ogy reports of MRI scans (ALARM)”. In: Medical Imaging with Deep Learning. PMLR,
pp. 811–826.

Wood, D. A. et al. (2022a). “Accurate brain-age models for routine clinical MRI examina-
tions”. In: NeuroImage, p. 118871.

Wood, D. A. et al. (2022b). “Deep learning to automate the labelling of head MRI datasets
for computer vision applications”. In: European Radiology 32.1, pp. 725–736.

World Health Organization et al. (2007). “International classification of diseases and related
health problems, 10th revision”. In: http://www. who. int/classifications/apps/icd/icd10online.

Xiao, Z. et al. (2018). “SAE-based Classification of School-Aged Children with Autism
Spectrum Disorders Using Functional Magnetic Resonance Imaging”. In: Multimedia
Tools and Applications 77.17, pp. 22809–22820. doi: 10.1007/s11042-018-5625-1.

Xu, C. et al. (2021). “Synthesis of gadolinium-enhanced liver tumors on nonenhanced liver
MR images using pixel-level graph reinforcement learning”. In: Medical Image Analysis
69, p. 101976.

Yang, J. et al. (2019). “Joint correction of attenuation and scatter in image space using
deep convolutional neural networks for dedicated brain 18F-FDG PET”. In: Physics in
medicine & biology 64.7, p. 075019.

https://doi.org/10.1148/radiol.2018180901
https://doi.org/10.2463/mrms.mp.2018-0091
https://doi.org/10.2463/mrms.mp.2018-0091
https://doi.org/10.1007/s11042-018-5625-1


Bibliography 91

Yang, Q. et al. (2018). “MRI cross-modality neuroimage-to-neuroimage translation”. In:
arXiv:1801.06940.

Yang, Z. et al. (2020). “A robust deep neural network for denoising task-based fMRI data:
An application to working memory and episodic memory”. In: Medical Image Analysis
60, p. 101622.

Ye, H. et al. (2019). “Precise Diagnosis of Intracranial Hemorrhage and Subtypes Using a
Three-Dimensional Joint Convolutional and Recurrent Neural Network”. In: European
Radiology 29.11, pp. 6191–6201. doi: 10.1007/s00330-019-06163-2.

Yi, X., E. Walia, and P. Babyn (2019). “Generative adversarial network in medical imaging:
A review”. In: Medical image analysis 58, p. 101552.

Yu, B. et al. (2019). “Ea-GANs: edge-aware generative adversarial networks for cross-
modality MR image synthesis”. In: IEEE transactions on medical imaging 38.7, pp. 1750–
1762.

Zeng, K. et al. (2018). “Simultaneous single-and multi-contrast super-resolution for brain
MRI images based on a convolutional neural network”. In: Computers in Biology and
Medicine 99, pp. 133–141.

Zhang, J. et al. (2019a). “Three dimensional convolutional neural network-based classifica-
tion of conduct disorder with structural MRI”. In: Brain imaging and behavior, pp. 1–
8.

Zhang, X. et al. (2019b). “Data-Driven Subtyping of Parkinson’s Disease Using Longitudinal
Clinical Records: A Cohort Study”. In: Scientific Reports 9.1, p. 797. doi: 10.1038/
s41598-018-37545-z.

Zhao, H. et al. (2016). “Loss functions for image restoration with neural networks”. In: IEEE
Transactions on computational imaging 3.1, pp. 47–57.

Zhao, Y. et al. (2020). “Localized motion artifact reduction on brain MRI using deep learning
with effective data augmentation techniques”. In: arXiv preprint arXiv:2007.05149.

Zhu, J.-Y. et al. (2017). “Unpaired image-to-image translation using cycle-consistent ad-
versarial networks”. In: Proceedings of the IEEE international conference on computer
vision, pp. 2223–2232.

Zou, L. et al. (2017). “3D CNN Based Automatic Diagnosis of Attention Deficit Hyperactiv-
ity Disorder Using Functional and Structural MRI”. In: IEEE Access 5, pp. 23626–23636.
doi: 10.1109/ACCESS.2017.2762703.

Zuo, L. et al. (2021). “Information-Based Disentangled Representation Learning for Unsu-
pervised MR Harmonization”. In: International Conference on Information Processing
in Medical Imaging. Springer, pp. 346–359.

https://doi.org/10.1007/s00330-019-06163-2
https://doi.org/10.1038/s41598-018-37545-z
https://doi.org/10.1038/s41598-018-37545-z
https://doi.org/10.1109/ACCESS.2017.2762703

	Abstract
	Résumé
	Scientific production
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Computer-aided diagnosis of brain disorders
	Computer-aided diagnosis of neurodegenerative diseases: current challenges
	Use of clinical data warehouse for the development of CAD in a clinical setting
	Contributions
	Outline of the manuscript

	Clinical data warehouse of the Greater Paris university hospitals
	Clinical data warehouse of the Greater Paris area
	Data organization within the Big Data Platform

	The APPRIMAGE project
	Data set and data management for the present PhD project
	Software installation
	Imaging data
	Difficulties encountered in obtaining exploitable data
	Images currently available
	Visualization of the images

	Access to the clinical data
	Analysis of clinical data



	Automatic quality control of brain T1-weighted magnetic resonance images for a clinical data warehouse
	Introduction
	Material and Methods
	Dataset description
	Image preprocessing
	Manual labeling of the dataset
	Quality criteria
	Annotation set-up
	Consensus label

	Automatic quality control method
	Network architecture
	Experiments


	Results
	Manual quality control
	Automatic quality control

	Discussion
	Conclusion

	Homogenization of brain MRI from a clinical data warehouse using contrast-enhanced to non-contrast-enhanced image translation
	Introduction
	Materials and methods
	Data set description
	Image preprocessing
	Network architecture
	3D U-Net like structures
	Conditional GANs

	Experiments and validation measures
	Synthesis accuracy
	Segmentation fidelity


	Results
	Synthesis accuracy
	Segmentation fidelity

	Discussion
	Conclusion

	Detection of patients with dementia using T1w brain MRI in a clinical data warehouse
	Introduction
	Materials
	Research data set
	Clinical routine data set
	Imaging and clinical data collection
	Definition of the different classes from ICD-10 codes
	Selection of patients belonging to the dementia category
	Selection of the patients belonging to the no dementia with lesions (NDL) and no dementia no lesions (NDNL) categories
	Final cohorts
	Training subsets


	Methods
	Image pre-processing
	Synthesis of images without gadolinium
	Machine learning models used for classification
	Linear SVM
	CNN architectures

	Experimental setting
	Training framework
	Evaluation setting


	Results
	Performance in a research data set
	Performance in the clinical data set
	Influence of gadolinium injection and image quality on the classification performance
	Classification performance obtained after gadolinium removal using image translation
	Classification performance when training on a research data set or on an unbiased clinical data set


	Discussion
	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives

	Computer-aided diagnosis of neurodegenerative diseases using machine learning and deep learning – PubMed query
	Machine learning query
	Deep learning query

	Bibliography

