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ABSTRACT

The assessment of the durability of cement-based materials, which can be employed in
underground structures for nuclear waste disposal, requires accounting for deterioration
factors, such as chemical attacks and damage, and for the interactions between these
phenomena. The resistance of cement-based materials to these degradations is strongly
conditioned by their mechanical and diffusive macroscopic properties. The first purpose of
the thesis consists in building a multi-scale approach and an orthotropic damage model to
estimate these properties and their evolution during chemical deterioration processes. The
second objective is to perform simulations of chemo-mechanical degradations of leached
cementitious materials to predict their long-term behavior. Starting from a non-exhaustive
review of analytical homogenization techniques, new models, like the mixed composite
spheres assemblage estimate, are proposed by revisiting the theories of Hashin and Shtrikman
(1962) and of double-inclusion type schemes. A realistic multi-scale homogenization
approach is then developed and validated for cement pastes and mortars. Simulations of
chemo-mechanical degradations of leached cementitious materials are subsequently carried
out by implementing these models into the platform ALLIANCES. The numerical results
confronted with experimental tests give valuable information in terms of the material
durability.

Keywords: cement-based materials; mechanical and diffusive properties; multi-scale
homogenization; damage; leaching; coupled chemo-mechanical degradations.

RESUME

L’évaluation de la durabilité des matériaux cimentaires utilisables dans les structures
d’entreposage de déchets nucléaires nécessite la prise en compte de facteurs de détérioration,
tels que les attaques chimiques ou la fissuration, ainsi que des interactions entre ces
phénomeénes. La résistance des matériaux cimentaires a ces dégradations est fortement
conditionnée par leurs propriétés mécaniques et diffusives macroscopiques. Le premier
objectif de la thése vise & construire une approche multi-échelle et un modéle
d’endommagement orthotrope pour estimer ces propriétés ainsi que leurs évolutions au cours
de processus de détériorations chimiques. Le second est de réaliser des simulations de
dégradations couplées chimie-mécanique de matérianx cimentaires lixiviés afin d'étudier leur
comportement a long terme. Aprés une synthése non exhaustive consacrée aux techniques
d’homogénéisation analytique, de nouveaux modéles, tels que I'estimation par assemblage
mixte de sphéres composites, sont proposés en revisitant les théories d'Hashin et Shtrikman
(1962) ct les méthodes de type double-inclusion. Une approche d’homogéncisation multi-
échelle est ensuite développée pour les pites de ciment et les mortiers et validée. Des
simulations de dégradations couplées chimie-mécanique de matériaux cimentaires lixiviés
sont enfin effectuées en implémentant les modéles développés précédemment au sein de la
plateforme numérique ALLIANCES. Les résultats numériques confrontés avec des essais
expérimentaux donnent des informations utiles concernant la durabilité de ces matériaux.
Mots clés: matériaux cimentaires; propriétés mécaniques et diffusives; homogénéisation
multi- échelle; endommagement; lixiviation; dégradations couplées chimie-mécanique.
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damage scalar of the family 7 of microcracks

intrinsic dissipation
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damage threshold function

ratio of the compressive strength on the tensile one
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shear modulus
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thermodynamic force associated with the damage variable 4
initial damage threshold in terms of elastic energy density
Poisson ratio of inclusion r

damage softening variables

equivalent strain

initial damage threshold in terms of strain

damage multiplier

thermodynamic potential or Helmhotz free energy
dissipation potential

morphological parameter of a particulate phase r

stress localization tensor
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U average velocity vector

Greek symbols
f  polarizibility of phase i with respect to phase j

& hydration rate
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Y, activity coefficient

p,,  density of mineral phase r
i tortuosity
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{ GENERAL INTRODUCTION

Due to the pluridisciplinary nature of the subject treated, the present manuscript is concerned
with well separated physical problems in cementitious materials, such as chemistry, diffusion
or mechanics. For conciseness, this introduction gives only a general overview of the thesis, a
more specific introduction being associated with each main Part of the document.

1.1 Industrial and scientific context

The durability of concrete materials employed in many kinds of infrastructures, such as
bridges, dams, or nuclear reactors, is an acute issue in Civil Engineering because they involve
important security aspects. The cost of maintenance of these concrete structures is
tremendously high. This economical factor consequently motivates scientific research
allowing for better assessing how cement-based materials behave with time. Some of the
primary mechanisms of deterioration of concrete facilities include cracking due to external
loadings and chemical attacks. The loss of performance and sometimes the complete rupture
of these infrastructures can consequently be originated by mechanical and/or chemical
deteriorations of concrete.

It appears therefore a necessity to adopt multi-physical coupled approaches to deal with
material durability. Besides its importance for previously mentioned concrete facilities, this
topic is also of current concern in the context of nuclear waste storage. As is already the case
in the experimental site of Bures in the east of France, concrete is very likely to be employed
for different applications in future underground structures devoted to the storage of nuclear
waste. It should be used as engineering barrier but also as outside coating in the waste
containers in which vitrified waste may be stored. The life time service of these underground
facilities should be about tens or hundreds of thousand of years, since the radioactivity of
nuclear waste can last such a long time scale. The present manuscript is more specifically
situated in this context of long-term durability of cement-based materials.

The scope of the thesis is however not only purely industrial but also scientific.
Homogenization techniques have known an increasing success among rescarchers and their
application to cement-based composites appears promising in particular for predicting with
accuracy the evolutions of their propertics with time. These methods indeed allow for
estimating the macroscopic physical propertics of a heterogencous material from the
knowledge of the microstructure and the physical characteristics of the elementary phases. In
that sense, they constitute deductive approaches, since they may a priori be applied to any
material provided that its composition and phase physical propertics are known. These
approaches that are focused on in the present manuscript furthermore represent an outstanding
tool to link the microscopic phenomena, like the dissolution of a phase, to the macroscopic
behaviour of the material and even of the structure.
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1.2  Research objectives

The objective of the present manuscript is mainly two-fold. In the context of durability, two of
the most essential factors that determine the service life of concrete facilities are the diffusive
and mechanical characteristics of the construction material for the following reasons. The
resistance of a structure to loadings is of course conditioned by the mechanical behavior of
concrete and its opposition to chemical deterioration largely depends on the opportunity
offered to ions to diffuse through the material.

The first objective of the thesis thus consists in building an analytical approach, based on
homogenization techniques and on a multi-scale description of cement-based materials,
allowing for estimating both their mechanical and diffusive properties and for predicting their
evolution with time. Many empirical laws already exist for computing these quantities but
they suffer some limitations. For instance, their validity range is quite restricted or they
require many experimental data. To circumvent this difficulty, homogenization models have
recently been proposed (e.g. Bernard et al. 2003; Constantinides and Ulm 2004; Pivonka et al.
2004). However, these models are generally only designed for determining one specific
physical property of cement-based materials, such as their elastic moduli or their macroscopic
diffusivity. It is consequently of high interest to develop a unified homogenization approach
that is capable of predicting both the mechanical and transport properties of concrete materials
on the basis of a realistic microgeometry. Furthermore, progress in experimental analysis
techniques (e.g. Scrivener 2004; Garboczi and Bullard 2004) has lead to a more accurate
knowledge of the microstructure of these materials, which is valuable for developing a precise
modelling. A damage model also gaining profit from homogenization techniques is proposed
to predict the rather brittle behavior of concrete.

The second and final goal of the present manuscript is to model and carry out simulations of
degradations coupling chemistry, transport and mechanics of cement-based composites. These
simulations are performed with the help of a numerical integration platform ALLIANCES
that allows for coupling different physical problems (Montarnal et al. 2006; 2007) developed
by the French Atomic Energy Commission (CEA) in collaboration with ANDRA and EDF.
The study of such deteriorations is crucial in the context of nuclear waste storage. The
concrete material, assumed to be saturated in the nominal storage phase, undergoes chemical
deteriorations in contact with ground water. This degradation process is ruled by the
macroscopic diffusion coefficients of chemical species through the saturated cementitious
material. Therefore a coupled chemical-transport approach is necessary to predict the
alteration with time of its microstructure. The engineering barrier made of concrete of the
underground structures serving for the disposal of nuclear wastes should also act against the
propagation of radionuclide. The impact of chemical alteration of the construction material on
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the global diffusive propertics of this structure element is a key point for assessing its capacity
to work as a radionuclide barrier.

mMoreover, the chemical degradation process generating a strong augmentation of porosity
inside the cementitious material affects the overall mechanical behaviour of the underground
facility. Damage of the structure may then occur because of the combined solicitations due to
external loadings and to chemical deterioration. This nucleation and growth of cracks in the
concrete can in turn accelerate the transport phenomena and then enhance the chemical
alteration process. Nevertheless, the simulations give some useful insights for other thematics,
such as COs storage or tunnels construction. But in such fields of applications, it is necessary
to consider unsaturated conditions, which generally lead to particularly complicated
computations. The assumption of saturated conditions is presently retained, since the
degradations of concrete underground structures for the storage of nuclear waste may be
envisaged at a long-term. The thermal effects are not taken into account, even though nuclear
waste can induce very significant elevations of temperatures.

1.3 Outline of the thesis

The manuscript is composed of five Parts. The first one is dedicated to the presentation of
cement-based materials and of the degradations of these materials subjected to leaching. In
Parts 11 and 111 devoted to homogenization techniques. a multi-scale modeling approach based
on a realistic representation of cementitious materials is developed to estimate the evolution
with time of their elastic and diffusive macroscopic properties, respectively. In Part IV, a
micromechanical damage model based on some simplifying assumptions is developed to
predict the quasi-brittle behavior of concrete and integrated in the FE code CAST3M. Part V
is finally dedicated to the modelling and the numerical simulations of chemical and of
coupled chemo-mechanical degradations of leached cement-based materials. These
simulations are performed by incorporating the models proposed in the previous Parts to
predict the macroscopic properties of cement-based materials into the ALLIANCES platform.
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Part1
PRESENTATION OF CEMENT-BASED MATERIALS

Cement-based materials are massively employed in the domain of construction. A country
like China consumes more than one hundred millions of tons of concrete per year. Three types
of cementitious materials are studied in the present manuscript: hardened or hydrated cement
paste (HCP), mortar and concrete. A particular emphasis is put on the cement pastes that
constitute the matrix in mortars and concretes and that are very sensitive to degradations.
Reinforced concretes are also commonly used in constructions but phenomena like corrosion
are out of our scope.

A good knowledge of the microstructure of cementitious materials and of its impact on their
macroscopic properties is a prerequisite for properly predicting their physical deteriorations.
A detailed investigation of HCP microstructure is fundamental to better understand the
mechanisms of degradation of cement-based materials and explain the differences of
properties from one material to another. This investigation constitutes furthermore the
cornerstone for the construction of the homogenization model treated in the following Parts of
the thesis. The present Part gathers experimental results and observations that are useful for
understanding the microstructure of cementitious materials, for knowing its basic properties
and assessing the material durability.

2  MICROSTRUCTURE AND PHYSICAL PROPERTIES OF CEMENT-BASED
MATERIALS

2.1 Presentation of the multi-scale microstructure of cement-based materials
2.1.1  Microstructure of cement pastes

2.1.1.1 Hydration of cement pastes

Cement pastes are complex, multiphase, porous materials, which microstructure evolves with
time. The material primarily consists in anhydrous cement grains mixed with water. These
grains called clinker are fabricated from a mix of limestone and clay transformed by heating
them at about 1450°C and by crushing. Their diameter can vary from | to 100 pm. A basic
Portland clinker is generally composed of four dominant compounds: tricalcium silicate
(C;38), dicalcium silicate (C;S), tricalcium aluminate (C;A) and calcium aluminoferrite
(C4AF). For simplicity, the following cement chemists’ notations are used: C = Ca0; § =
Si0y; A = ALO;; F = Fe;05; H = H20). Some additives, such as Gypsum, fly ash or slag, may
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be also adjoined to this clinker, base of the standard Portland cement, to modify the paste
microstructure and thus its macroscopic properties.
A complex microstructure then forms due to hydration of cement grains, the reaction of
cement particles with water initially taking place at the particle surface. The microstructure
obtained is usually described as a complex mixture of pores (P), calcium-silicate-hydrates
(CSH), unhydrated clinker (UC), portlandite or calcium hydroxide (CH) and aluminates (AF),
such as ettringite or alumino-ferrite (AFt), monosulfoaluminates (AFm). The chemical
composition of these mineral phases is given at the end of the page'. The relative proportions
of these phases in HCP may significantly vary from one paste to another and strongly depend
from the mineral composition of the cement grains and on the water/cement (w/c) ratio.
Tennis and Jennings (2000) proposed the following equations to model the hydration of the
cement grains and compute the resulting volume fractions of the hydrated phases:
2C,S+ 10.6H — 2CSH + 2.6CH,
2C,S+86H —— 2CSH+0.6CH,
C,A + 3Gypsum + 26H —— AFt,
2C,A+ AFt+4H —— AFm,
C,A+CH+ 12H — C,AH,,,
C,AF+2CH+ |0H —— Hydrogarnet.
Other hydration models exist in the literature such as CEMHYD3D developed by the NIST
(Bentz 1997) but the Tennis and Jennings model (2000) is adopted in the ensuing to estimate

(L.1)

the volume fractions of the mineral phases composing the microstructure of HCP.

During hydration of cement particles, it is generally asserted (Richardson 2000) that two
diffusive layers presently defined as inner and outer layers form successively from cement
grains surface. The inner layer is less porous than the outer one, since the first one results
from higher confinement conditions and from poorer water accessibility during hydration
process. An image provided by scanning electronic microscopy (SEM) is proposed to
illustrate the HCP heterogeneous microstructure (see Fig. 1.1).

———

'CSH=x Ca0 - Si0,(aq) — x H,0, where x varies between 0 and 2.3; CH = Ca(OH);;
AFt = 6 Ca0O - ALO, - 3 SO, — 24 H,0; AFm = 4 Ca0 — ALO; — S0, - 12 H,0;
Hydrogarnet = 3 CaO - ALO; — 6 H;0; Gypsum = Ca(S04) — 2 H;0.
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1: UC, 2: CSH™, 3: CH, 4: Outer Product Zone (CSH, AF, CH, Capillary Porosity appearing
in black)

1: UC, 2: CSH™, 3: CH, 4: CSH®™, 5: Capillary Porosity

Figure I.1: Images of a CEM I 52.5 cement paste with a water to cement ratio (w/c) equal
to 0.43 obtained by SEM: A/ representative arca of the sample, B/ detailed image of an
Quter Product Zone (taken from Béjaoui et al. 2006).

Depending on the initial sizes of cement grains, an anhydrous part of the cement particles
remains after hydration has stopped and constitutes an impermeable core surrounded by these
two heterogeneous layers. It is commonly accepted that two different types of porous CSH are
associated with each layer. High-density CSH are present inside the inner layer and low-
density CSH form inside the outer layer (e.g. Richardson 2000; Tennis and Jennings 2000).
Tennis and Jennings (2000) classified them as high-density and low-density, whereas
Richardson preferred to call them inner and outer products. In the ensuing, these two types of
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CSH are respectively called as internal and external products, denoted CSH™ and CSH®™.

More precisely, in the inner layer, the CSH™

behave as a matrix phase embedding non-
diffusive inclusions of CH and AF. Similarly, the external layer has matrix-inclusion type
morphology, where CH, AF and some pores play the role of inclusions enclosed in the
CSH™. It is noteworthy that many mineral phases (AF, CH, CSH™, CSI

in the microstructure of HCP and a closer look is given in the next subsection to each one

1!, ...) are involved

separately.

2.1.1.2 Information on the HCP mineral phases

Many phases appear in the mineral composition of HCP and their characteristic sizes can
range from the nanomeier to micrometer scales. The main solid phases, which volume
fractions displayed on Table 1.1 in CEM I cement pastes can be estimated by means of the
Tennis and Jennings model (2000), are presented in depth below. A particular emphasis is put
on the morphology inside the HCP microstructure that is an important aspect for the models
developed subsequently.

—_ Anhydrous CSH™  CSH™ CH AFt- AFm Hydrngar_n:;
residuals Ci;AH Ci(A.F)YH,
025 195 384 8.7 14.3 Tz 73
0.30 13.7 374 12.0 15.2 74 1.2
0.35 9.4 339 6.8 15.6 1.5 1.2
0.38 1.5 30.7 20.2 15.6 7.3 7.3
0.40 6.4 283 22.6 15.5 72 1.3
042 - 54 257 25.1 154 7.1 1.3
0.45 4.3 21.6 288 15.1 6.9 13
0.50 3.0 14.6 348 14.4 0.5 1.5
0.60 1.4 1.0 47.0 13.1 5.8 6.8

0.65 1.0 0.0 47.0 12.5 3. 6.4

Table 1.1: Mineral composition in terms of volume fractions of standard CEM I hydrated
pastes obtained by the model of Tennis and Jennings (2000).

CSH: they are formed by hydration of the silicates C3S and C;S and represent about half of
the paste in terms of volume fractions. The quantity of calcium in the CSH is variable. They
are thus characterized by their Calcium over Silicon (C/S) ratio, which can vary from 0.7 in
very degraded states to generally about 1.7 in a sound state. At the beginning of the hydration
process, a nucleation phase followed by a growing phase of CSH occurs at the surface of
cement grains. CSH™ first form a layer around the clinker and hydration process is controlled
by diffusion through it. The denser type of CSH, namely CSH™, is then formed inside this
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coating. The CSH™ and the CSH®™ have a characteristic size of 10 to 100 nanometres, which
makes it very difficult to gain precise information about their geometrical shape. Taylor
(1997) describes the CSH™ as a honeycomb or reticular network, while the CSH®™ rather
have a foliated structure (Béjaoui et al. 2006), as may be seen on Fig. 1.2.

The relative volume fractions of the two types of CSH are computed in this work by means of
the Tennis and Jennings model (2000):

M, =3.017(w/c)é —1.347& +0.538,

M —M_M
Costtin = L (1.2)
.IgCSHl'nr
L M.ﬁ" Mr
Cosienr =~ »

CHRHexr
Where €y s Coswenrs Pessm s Posney AT respectively the volume fractions and densities of
CSH™ and CSH™, M, is the total mass of CSH, M, is the ratio of the mass of CSH"™ to the
total mass of CSH, ¢ the hydration rate.

a) CSH™ ina CEM I paste b) CSH™ in a CEM I paste
with w/c = 0.25 with w/c = 0.50

¢) CSH™ ina CEM 1 paste d) CSH™ ina CEM [ paste e) CSH®™ in a CEM I paste
with wic =0.32 with wic = 0.43 with wic =070

Figure 1.2: Images of the microstructure of CSH™ and CSH™ in CEM I 52.5 cement
pastes with diverse w/e ratios obtained by Transmission electron microscopy (TEM) (taken
Sfrom Béjaoui et al. 2006).
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CH: This phase is very important for leaching cases, since it dissolves before any other
hydration products. The ordinary Portland cement pastes contain about 15 % in volume of CH
but the cement pastes using additives, such as slag of fly ash, generally enclose much less
pnnlandite. CH forms massive crystals, which are often described as platelets or flakes when
embedded in HCP (Richardson 2000). Otherwise in non-confined environment, portlandite
crystallizes mnto massive hexagonal plates. Consequently, they are far from being spherical,
although information on CH crystals in HCP 1s insufficient to quantitatively characterize their

real shapes inside the microstructure of cement-based materials.

Aluminates: The hardened ordinary Portland cement paste contains, in addition to CSH and
CH, other major hydration products, produced from reactions involving CiA, CsAF and
Gypsum: Hydrogarnet, AFm, AFt and Calcium aluminate hydrate (C4AH;3). According to Eq.
(L1), AFt, AFm and C4AH; are produced by the hydration of C3A, whereas Hydrogamet is
produced by the reaction of C4AF with portlandite. Though their volume fraction can be
rather scarce (about 7 % in volume), those phases have to be accounted for in leaching cases
or in sulfatic attacks, since they can be partially or totally dissolved (Adenot 1992). AFt and
AFm are usually more abundant in standard cement pastes than Hydrogarnet and CsAH 5 and
have received a closer attention from experimentalists. According to Richardson (2000), AFm
is present in mature pastes as large irregular plates similar to those of CH and AFt occurs as
thin hexagonal prism needles of up to 10 pm in length. AFt is quite easy to observe on the
Environmental Scanning Electron Microscopy (ESEM) since they are characterized by long
rods when crystallized in non-confined environment. However, according to Tennis and
Jennings model, AFt that forms rapidly during the hydration process then react with C3A to

form AFm and therefore hardly exists in mature cement pastes.

Unhydrated clinker: it corresponds to the portion of cement grains that has not reacted with
water. The amount of anhydrous residuals present in HCP depends on the w/c ratio and time
of hydration. Cement paste micrographs generally tend to show that cement particles do not
have spherical shapes. Thanks to very advanced techniques such as X-ray microtomography,
cement particles morphology has been rigorously investigated. Garboczi and Bullard (2004),
performing recently a spherical harmonic coefficient analysis on microtomographic images of
Portland cement grains, managed to characterize quantitatively their real shape (see Fig. 1.3).
They analyzed about 1200 particles with volume ranging from | um’ to 120000 p:n3 and
concluded that these particles were definitely non-spherical by plotting their surface area
versus their volume. The curve of surface area versus their volume for cement particles was
indeed clearly above the spherical one. By fitting their experimental curve, the following

result was obtained for the volume V over surface area A ratio:
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The knowledge of the volume over surface area ratio of real cement particle is a precious
picce of information for the modelling of this phase that is further exploited in Part II.

Figure 1.3: Views of cement particles generated from the spherical harmonic expansion
(taken from Garboczi and Bullard 2004).

The previous discussions highlight the complex morphology of all the mineral phases
composing HCP. Hence, it is natural to pose the following question: what is the best way to
model in a simple and realistic manner these phases? An answer to this question will be
provided in Part I1.

2.1.1.3 The complex multiscale porosity of HCP

The HCP described previously (Figs. 1.1 and 1.2) are complex multi-scale porous media,
where the pore size distribution varies by several orders of magnitude (from 1 nm to more
than 10 pm). At the micrometer scale, capillary pores are defined as the remaining space
situated between hydrated cement grains. They are originated from the chemical shrinkage of
the hydration products or stem from the interstitial space left by water in excess. The CSH,
representing about half of the paste in terms of volume fractions, furthermore contain a finer
are more porous than CSH®™, the CSH™
resulting mainly from higher confinement conditions during hydration reactions. According to

(i1

porosity, defined as gel porosity. The CSH

the Jennings and Tennis model, the gel porosity comprised in CSH™ is about 26 % and the

exl

one contained in CSH™ around 36 % in terms of volume fractions. In the present work, the
gel pores sizes are assumed to be situated between a few nm and 0.2 um and the capillary
pores ones to range from 0.2 pm and a few pm, though the definition of these two domains
significantly varies in the different classifications for the pore structure of HCP proposed in
literature (e.g. Baroghel-Bouny 1994; Daimon et al. 1977; Igarashi et al. 2004; Powers 1948).
For example, according to Mindess and Young (1981), the size of the capillary pores may

vary from several orders of magnitude (from 10 nm to 10 pm) and the gel pores from a few



Part I: Presentation of cement-based materials Page 11

i

PR

angstréms to 10 nm. It is also noteworthy that some authors differentiate more than two
categories of pores in cement pastes (e.g. Daimon et al. 1977) but we limit for simplicity to

rwo main classes of pores.

The pore structure of HCP, especially the capillary porosity, is the subject of many
g;gperimental investigations (Taylor 1997). To measure the total porosity of HCP, the simplest
technique consists in performing total free water porosity measurements (Gallé 2001). The
porosity is practically obtained by measuring the total amount of water removed from
saturated pastes after drying them. Other techniques exist but, in the present dissertation, the
total porosity is considered to be the value measured by water porosimetry. Two techniques
are commonly used to measure the pore size distribution: mercury intrusion porosimetry
(MIP) and image analysis on SEM results. In addition, the breakthrough of microtomography
and nanotomography could lead to more precise measurements in the oncoming years (Bentz
et al. 2002; Burlion ¢t al. 2006; Holzer et al. 2003).

MIP is used to measure the pore size distributions by quantifying mercury able to penetrate
the dried material under successively increased pressures. The ability of mercury to pass
through pores of a given size depends on the pressure applied. The volume intruded per
change in pressure provides the data for calculating the pore size distribution (Gallé 2001).
However, Diamond (2000) evidenced the fact that MIP is an inappropriate method for the
correct measurement of the pore size distribution in cement-based materials. In particular, he
argued that the amount of large pores is underestimated, since most of them are inaccessible
to mercury injected at low pressure. In order to attain certain large pores, mercury may indeed
be constrained to penetrate through smaller pores. As a consequence, the quantity of small
pores 1s overestimated. Despite these shortcomings, this experimental method gives some
insights on the material pore structure in terms of connectivity. Indeed, the measurement of
the critical pore or threshold diameter by mercury porosimetry allows for evaluating the
largest scale at which percolation, i.e. the formation of a pore cluster connecting one
extremity of the material to another, occurs (Diamond 2000). The critical pore diameter is
defined as the pore width corresponding to the highest intrusion of mercury per change in
pressure, practically determined the maximum of the dV/dP versus pore diameter curve as
plotted in Fig. 1.4 (or by the inflection point on the volume intrusion).



Part I: Prescntation of cement-based materials Page 12

0.16 —_—
644 e CEM | paste —CEM V paste - wic 0.40
" '|'| H 1 1

= 0.12 . ‘ l’i H ”' :
0.1 =+ttt i
-4

0.08 T Hiiae
0.06 +| ! 1 1 |
0.04 i+t 101 iy 3 M
0.02 Tt HERRE

dVidiogD (mlg

10 1 0.1 0.01 0.001
Pore access diameter (pm)

Figure 1.4: Differential intruded pore volume versus pore diameter curve measured by MIP
(taken from Gallé 2001).

According to Katz and Thompson (1987), the threshold diameter permits to identify the less
constricted percolating grouping of pores, since this length corresponds to the size of the
smallest pore belonging to the percolating ones. It is thus possible to identify the less
constricted percolating path in the paste that should logically influence its transport properties
(Katz and Thompson 1987). For example, according to the experiments of Gallé et al. (2004),
this diameter is about 20 nm for an ordinary CEM 1 paste with a w/c ratio equal to 0.45. This
result shows that the gel pores can percolate through the paste. On the contrary, the larger
capillary pores, that are mostly inaccessible to mercury injected at low pressure, may be
isolated or connected to each other by a network of gel pores. Values for the threshold
diameter can easily be found in the very large data collection of MIP tests available in the
open literature (see Table 1.2).

Furthermore, other experimental observations confirm the fact that the gel pores should
percolate through the paste. Recently, Holzer et al. (2005) asserted that the skeletonization of
porosity on 3D-images obtained with the help of nanotomography at resolutions of 20 nm
indicated that the pore network is almost completely connected. Béjaoui et al. (2006) also
performed an accurate investigation of the pores entrapped in the CSH in CEM [ pastes. Their
TEM images of CSH™ show that they keep an invariant morphology characterized by a very
finely divided porosity at the nanometre scale. On the contrary, it appears clearly on their
TEM observations (see Fig. 1.3) that CSH*™ present diverse morphology depending on the w/c
ratio. In particular, the characteristic length of the porosity on their images varies from 10 nm
for low w/c pastes to a hundred of nm for high w/c ones. As may be observed on the
micrographics of Béjaoui et al. (2006), the gel pores in CSH™ are strongly connected for the
pastes of medium or high w/c ratios.
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The capillary pores can be investigated by image analysis. These techniques have an
increasing success in the field of cement-based materials but they arc limited by their
resolution, generally about 0.2 pm (Scrivener 2004). Nevertheless, they offer the opportunity
to measure the size distribution of capillary pores larger than 0.2 pm. Igarashi et al. (2004)
measured the volume fraction of capillary pores in different types of cement pastes and
mortars by image analysis. The morphology of the capillary pores is very difficult to
characterize, though the recent microtomographic images of Rattanasak and Kendall (2005)
and of the Visible Cement Data Set (Bentz et al. 2002) could give some insights on their

three-dimensional shapes.

_HT}'pe of - .
Filais e rfa::glt?u“ Critical pore dmmctcn: . i
paste _ | f P ~ | Sound Le_a_c_hg_d .
" 0.2 pm
CEMT g5 | OVen-¥ed | 20 nm | (30 weeks with | (Gallé et al. 2004)
NHNO»)

ASTM

: Vacuum- (Delagrave et al.

['ypel 0.45 Fr 40 nm 1998)

cement

CEM1 |o030| Yoowum- |4 4 (Richet t al. 1997)
dried

CEMI |o40| Yécuum- [35-40 (Richet et al. 1997)

. dried nm

CEMI |o6o| Yecwum- ||70-80 (Richet et al. 1997)
dried nim

CEMI |040]| VUMM~ | ohom : (Gallé 2001)
dried

. Oven-dryed | 170 h
CEMI [040| " "ocse | o (Gallé 2001)

Table 1.2: Critical pore diameter values measured by MIP tests for various types of cements
pastes in sound or leached states issued from diverse sources.

To summarize, the present subsection pulling together qualitative but also quantitative results
obtained on the cement paste porosity with diverse techniques (MIP, SEM, ...) indicates that
the percolation of porosity occurs at a scale of several tens of nanometers and that the pore
structure of HCP is highly connected at the nanometre scale. It is useful to keep in mind these
remarkable insights gained on porosity by experimentalists in the ensuing Parts dedicated to
modelling so as to correctly represent the pore structure.
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2.1.2 Microstructure of mortars and concretes

Mortars consist in a mixture of cement pastes and of sand particles, which size ranges from
0.1 mm to 5 mm, in order to improve the packing of these grains. Concretes are obtained by
further adding aggregates with sizes varying between | mm and about 25 cm. Many studies
have evidenced that an interfacial transition zone (ITZ), which thickness ranges from 15 to 40
um (Hashin and Monteiro 2002), forms between the aggregate particles and the cement. It has
been noted that the thickness of the ITZ layers is quite independent from the size of the
particle. The ITZ 15 generally more porous than the cement paste (Lutz and Zimmerman 2005)
but is also likely to contain more portlandite and aluminates (Sun et al. 2007) because of the
wall effect. The volume fractions occupied by the ITZ is difficult to gain experimentally,
because the diverse ITZ layers tend to overlap. But Lu and Torquato (1992) developed a
statistical model based on a representation of porosity by a polydispersed system of spheres,
which may be employed for estimating the latter quantity. Due to these overlaps, the ITZ is
furthermore prone to percolate through the microstructure of mortars or concretes (Scrivener
and Nemati 1996) and strongly influences their effective properties (Wang et al. 1988).

2.2 Microscopic and macroscopic properties of cement-based materials

For their practical use as a construction material, it is necessary to know some basic properties
of concrete materials, such as their Young modulus, strength, permeability or diffusivity.
These properties may significantly vary from one material to another as will be shown
subsquently. Modelling approaches aiming at estimating these characteristics are thus useful
to avoid measuring them for each type of cement or concrete. But the development of model
for predicting their properties is often constrained by the lack of data concerning the transport
and mechanical features of the residual clinker, hydrated phases or aggregates. Therefore this
subchapter gathers useful experimental results for the properties of both the cementitious

materials and their main constituents at different scales.

2.2.1 Information on the elastic properties of the HCP elementary phases

At the microscopic scale, the measurements of the elastic properties of the phases composing
the microstructure of HCP are mainly carried out by nanoindentation and, at the macroscopic
scale, by diverse techniques, such as resonance frequency measurements or by dynamic tests.
The nanoindentation tests consist in pushing an indenter with a diamond tip into the
specimen. The characteristic length of the indentation area is on the order of 10 m, and the
indentation depth varies in the range of 300-500 nm (Velez et al. 2001). The complete FF -h
response is recorded during the test, where h 15 the depth of penetration into the specimen and
F is the load applied. The Young modulus can be extracted by analyzing the unloading part of
the I —h curve according to a model for the clastic contact problem. From the measurement of
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the effective modulus E, of the test area, the elastic modulus E, of the phase r is obtained

using the equation (Damidot et al. 2003 ).
.- 3

2
L:"E"d +‘E"= . (14)
EJ. il fr

‘where v, and E, are the Poisson ratio and the elastic properties of the diamond indenter and

By is the Poisson ratio of the measured phase. One of the shortcomings from nanoindentation
technique is that the Poisson ratio of the matenal tested is not accessible. The errors of the
‘measures by indentation thus mainly come from the fact that the Poisson ratio elevated to
square in the previous formula has to be estimated. Nevertheless, the Young moduli of the
HCP clementary phases (sce Table 1.3) measured by nanoindentation represent crucial pieces

of information for the prediction of the mechanical behaviour of cementitious materials.

Different nanoindentation tests measuring the Young moduli of clinker and CH have been
performed (e.g. Boumiz et al. 1997, Damidot et al. 2003; Velez et al. 2001) and are
furthermore in quite good agreement with each others. The values displayed on Table 1.3 are
retained as reference values for the micromechanical computations in Part II. The
measurements performed on cement pastes exposed to a leaching process, explained in the
ensuing chapter, are also displayed. Nevertheless, it is useful to recall that these measures are
made by indenting on surfaces representative of the CSH with a minimal area of 1 pm® and
therefore enclose not only the CSH but also some porosity (< 1 pum) and probably a certain
volume fraction of other hydration products, such as CH or AF phases, that is very difficult to
quantify. These two phases of CSH are however considered as homogeneous materials with
elastic properties, which may be identified by nanoindentation technique, and aluminates,
such as AFt or hydrogarnct, are thus assumed to have similar elastic propertics to the ones
measured for the two types of CSH (Table 1.3). In the ensuing, it is supposed that the entire
gel porosity is comprised in the measurements of the CSH™ and CSH
properties.

mi

mechanical
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SOUND LEACHED
Phases HCP HCP References
E (GPa) v E (GPa) v
CH 42.3 0.324 | 0 0 Monteiro and Chang
(1995)
iR 0.31 Constantinides and
Ulm (2004)
Unhydrated 117.6 0.314 | 117.6 0.314 | Boumiz et al. (1997)
clhinker
Capillary 0 0 0 0
Porosity
AFt, 22.4 0.25 | 0 0 Assumed by Kamali
Hydrogamet, (2003)
CsAHs 25 0.25 Haecker et al. (2005)
AFm 42.3 0.324 | 0 0 Assumed by Kamali
(2003)
CSH gel (CSH™ | 22.4 0.25 | 224 0.25 | Damidot et al. (2003)
+ CSH™)
CSH™ 21.7 0.24 |3 0.24 | Constantinides and
Ulm (2004)
CSH™ 29.4 0.24 |3 0.24 | Constantinides and
Ulm (2004)

* The numerical values used for the calculations are in bold.

Table I.3: Elastic properties of the main phases in a sound state present in HCP
microstructure, taken from diverse sources in the literature.

2.2.2 Elastic properties of HCP

Diverse experiments have been performed for measuring the macroscopic elastic moduli of
HCP, for instance by resonance frequencies techniques (see e.g. Wang et al. 1988; Gall¢ et al.
2004). This type of measurement is also used for testing mortar and concrete (Sun et al. 2007
Wang et al. 1988). In the resonance method, the test specimen is made to vibrate as a whole in
one of its natural frequency modes (transverse, longitudinal, or torsional). The resonance
frequency depends on the geometry of the sample, on its density, its pores distribution and on
its elastic properties. As an illustration, the Young moduli of different HCP gained by diverse
resonance frequency tests are gathered against their total water porosity on Table 1.4, The
Young moduli are shown to strongly depend on the HCP porosity: the value obtained for HCP
with a low porosity paste is about 50 % higher than for a high porosity HCP (w/c = 0.50).
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Total water

Material E (GPa) i References
porosity
CEM I 52.5 paste
(wic =0.50) 15.6 0.405 Carde (1996)
OPC type I paste Constantinides
(wic = 0.50) 22.8 0.328 and Ulm (2004)
CEM 152.5 HTS

23 0.326 Gallé et al. (2004)

paste (w/c = 0.45)

Table 1.4: Young moduli measured experimentally of standard cement pastes, taken from
diverse sources in the literature.

A way to increase the stiffness of the cement pastes consists in adding rigid sand particles or
aggregates to these materials thus forming mortars and concretes.

2.2.3 Elastic properties of mortars and concretes

The sand particles, which Young modulus is measured as 86.7 GPa by Wang et al. (1988), are
much stiffer than the cement pastes. One would thus expect that the Young modulus should
significantly increase as the volume fractions of sand aggregates augment. But the
experiments of Wang et al. (1988) showed only a 25 % increase of the overall Young
modulus of the mortars with 40 % of sand aggregates compared to the plain cement paste.
This result may be due to a weakening effect of the ITZ that is more porous than the bulk
cement paste (Sun et al. 2007). Unfortunately, the elastic moduli of the ITZ layers are very
difficult to measure experimentally, since they do not really appear as a homogeneous
interface but rather as a graded one. To address this lack of data, many micromechanical
approaches modelling the ITZ as a homogenecous phase have been developed to estimate their
effective eclastic moduli from an inverse approach (see e.g. Hashin and Monteiro 2002).
However, Sun et al. (2007) noticed a strong dispersion between the Young modulus of ITZ
proposed in literature as the following expression:
Epz=aEye, (I.5)

where a is a constant with a value that is identified between 0.2 and 0.8 depending on the
model and on the thickness of the ITZ retained by the authors transition (Hashin and Monteiro
2002; Ramesh et al. 1996; Yang 1998) and E,, ., is the Young modulus of the corresponding

plain paste. It is however emphasized that, even though the ITZ is generally modelled as a
homogeneous interphase, it would be more realistic to model it as an inhomogeneous one
(Lutz and Zimmerman 2005). In the case of concrete, porous ITZ layers still exist but their
influence on the physical behaviour of concrete seems less important than in mortars probably
because the volume fraction of ITZ is more important in the case of mortars, since the
aggregates have much smaller size. That’s why these interphases are generally not taken into
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account in the models developed to predict the physical properties of concrete (Constantinides
and Ulm 2004).

2.2.4 Transport properties of cement-based materials

The main transport processes in concrete include diffusion, permeation, and convection.
Diffusion describes the transport for instance of a particular gas (e.g. CO; vapor) in the
gaseous phase or dissolved ions as a result of a concentration gradient (Dullien 1992),
Permeation describes the flow of a fluid (e.g. water or air) as a result of gravity or a pressure
gradient. Convection (or advection) is the process that describes the transport of a solute (e.g.
chloride or sulfate ions) as a result of the bulk moving fluid. The transport processes in most
concrete structures can be complex and may involve more than one of the referred transport
mechanisms. In most of these processes, water is the principal medium by which aggressive
agents (such as chloride or sulfate ions) are transported into the concrete.

However, in the context of the long-term behavior of underground concrete facilities, the
material is generally assumed to be in saturated conditions in the nominal storage phase so
that the chemical species in pore solution are transported by diffusion through the concrete.
Convection is neglected, since it is assumed that there is no pressure gradient in water. As
may be observed in Fig. 1.5, the macroscopic diffusion coefficients of cement pastes strongly
vary from one paste to another, with sudden variations occurring for certain w/c ratios. The
causes of these variations are discussed in details in Part [IL

Concerning the transport properties of mortars and concretes, some authors (Nguyen et al.
2006) argue that the presence of aggregates in a hydrated cement paste matrix probably has
two opposite effects that compensate each other. On the one hand, it increases the tortuosity
of the matrix and reduces the total space available to diffusion and, on the other hand, the high
porosity of ITZ enhances the diffusion process.

As a result of the strong variations between the diffusivities of cement-based material,
aggressive agents diffuse more or less rapidly through the material, which is a key issue that
influences the long-term degradation of concrete facilities.
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Figure 1.5 (semi-logarithmic scale): Evolution of the macroscopic diffusion coefficients
measured experimentally for both sound CEM I and CEM V pastes with their w/c ratio,
taken from diverse sources in the literature (adapted from Richet et al. 1997).

The present chapter has presented some basic features of cementitious materials in a sound
state. However, these materials are sensitive to many degradation factors and therefore the
evolution with time of their microstructure is strongly conditioned by their environment. The
next chapter focuses on some of these deterioration sources that influence the behavior of

cementitious materials.

3 DEGRADATIONS OF CEMENT-BASED MATERIALS SUBJECTED TO
LEACHING

Various degradation mechanisms may affect the concrete materials under service life. They
may be altered for instance by: (i) chemical reactions caused by ionic migration between the
Interstitial solution and ground water; (ii) damage due to external mechanical loadings and to
possible precipitation of secondary solid phases generating internal pressures; (1) thermal
expansion due to strong temperature variations; (iv) creep and shrinkage phenomena. The
present dissertation only treats the first two deterioration factors that may strongly impact the
durability of concrete underground infrastructures, such as the ones for the disposal of long-
lerm nuclear wastes. In these facilities, concrete is for instance employed in the engineering
barrier that serves as one of the protections against the propagation of radionucleides. In this
context, the chemical degradation mechanisms due to leaching and then the damage
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processes, which may alter the diffusive propertics of the material, are presented. In both
cases, their effects on the microstructure and the overall behaviour of the concrete are pointed

out. Finally, the possible interactions between these two degradation processes are
investigated.

3.1 Chemical deterioration of cementitious materials caused by leaching

The chemical alteration of concrete is a phenomenon that has to be carefully taken intg
account for predicting the long-term durability of underground structures. In contact with
ground water, the material is subjected to chemical reactions originated by the migration of
ions, such as calcium or sulfates, caused by concentration gradients between the pore solution
and the ground water. The material composed of a solid skeleton and the interstitial solution is
intially in a chemical equilibrium state. The concentration of ions in the pore solution is
consequently imposed by the mineral composition of the solid part. The movement of ions
towards the exterior and inside the material disturbs this equilibrium state and causes
dissolution-precipitation reactions in the material to compensate the variation of ions
concentrations in the pore solution. This chemical degradation process by contact with pure
water is generally called leaching or decalcification, since it principally concemns the calcium
ions and the mineral phases containing calcium. However, ground water may contain
aggressive chemical species. If the water in contact with the concrete is rich in sulfates or
chlorides, we rather speak about external sulfate or chloride attacks but these attacks are out
of our scope.

The propagation of the zones affected by leaching is usually very low, since pure water
leaches only 4 cm of a concrete structure in roughly 300 years (Adenot 1992), but may reveal
detrimental for long-term industrial applications. The development of an accelerating method
using ammonium nitrate as aggressive solution (Carde 1996) has significantly enhanced the
knowledge about the long-term leaching of cement-based materials. The effects of leaching
on the microstructure of HCP are investigated below.

The solid phases containing calcium are the most sensitive to leaching. The CH crystals
dissolve before any other hydration products during decalcification process according to the
following reaction:

Ca(OH), - Ca®+2 OH". (1.6)

The CSH are then progressively degraded but do not totally dissolve. More precisely, their
/S ratio gradually diminishes from around 1.65 for the intact product to approximately 0.8
during this attack (Heukamp 2002). As the leaching proceeds, the aluminous phases are
decalcified and partially dissolved. A picture taken from Adenot (1992) is propusﬂd to
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illustrate the progressive degradation of HCP by the stepwise dissolution of its hydration
products (see Fig. 1.6).

1.4 mm

Sound core
CH, AFm, AFt
CSH

AFt, AFm, CSH

AFt, CSH

CSH

Zone rich in aluminium and
silicium gels

Figure 1.6: Photo of a CEM I 42.5 paste sample with w/c = 0.40 leached during 3 months
by pure water (taken from Adenot 1992).

A convenient variable to describe in good approximation the leaching process is the calcium
concentration in the pore solution Cg,. Fig. 1.7, adapted from Bary and Béjaoui (2006), who
performed numerical simulations with the chemical equilibrium code CHESS (van der Lee
and de Windt 2002), shows the progressive decrease of the calcium concentration in the solid
phase S¢, as a function of C¢, with the hypothesis that there is no alkalis in solution and that
CSH dissolution is discretized by using 3 CSH of diverse C/S ratios. A multi-linear
simplification of the CHESS results is also plotted on Fig. 1.7 to approximate the progressive
decalcification of the hydration products. More precisely, the degradation is supposed to be,
in terms of the volume of solid phase replaced by porosity, lincarly related to the calcium
concentration in pore solution Ce,: CH dissolves between Cr,=21.54 and Cey=20.31
mol/m’, CSH between Cea=20.31 and Cep = 1.09 mol/m’, and AF between Cc, = 20.31 and
Cew = 3.08 mol/m’,

The porosity measurements with water and MIP for both asymptotically leached and intact
Pastes allow for a quantitive analysis of the microstructural changes with leaching (see Table
L.5). To obtain a homogeneously degraded paste, the latter is exposed to a very aggressive
ammonium nitrate solution during a number of weeks that depends on the size of the sample
(see eg. Heukamp 2002). On Table 1.5, the total porosity in the material appears almost
doubled in the uniformly leached state.
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Figure 1.7: Degradation process of the main hydrated phases in terms of calcium
concentration in solid phase S¢, as a function of calcium concentration in solution Ce,
(line = results obtained with the chemical equilibrium code CHESS; dotted line = simplified
curve) (adapted from Bary and Béjaoui 20006).

CEM I 52.5 paste | Lafarge CEM I CEM 1 42.5 OPC type 1

Phases of Origny 52.5 HTS paste | paste of Origny paste

(wic = 0.40) {wic = 0.45) (wic =0.50) (wic=0.50)
References Moranville et al. Gallé et al. s Heukamp

(2004) (2004) G 105h) (2002)

Estimated
hydration rate o ik 0F 8
Initial _porosity 0.39 0326 0.405 0397
measured by water
Leaching tests 19 days with 6M 16 weeks with | 1 day with 5.46M

of NH;NO, oM of NH,NO, of NHyNOy
Porosity measured
by water on the - 0.612 0.5098 0.632
lcached specimen
Accelerated 1.56 mm d™"” .74 mmd™’ 1.31 mmd™ 525 mm d
leaching rate* (0.140 mm d™) | (0.190 mm d**) | (0.125 mm d*™) ‘

*Pure water feaching rares are in parenifiesis fo give a comparison

Table I.5: Table summarizing some important experimental results of accelerated leaching
tests of HCP, taken from diverse sources in the literature.

Concerning the totally decalcified state, Bary and Béjaoui (2006) assumed that all the CH,
half of the AF phases and 5 % of the CSH are dissolved and replaced by additional capillary
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pores. Moreover, the internal porosity of CSH is likely to increase because of its degradation
(Heukamp 2002). To quantify this porosity, it is proposed to compare the measure of total
porosity by MIP with the sum of the initial capillary porosity and the additional one issued
from the complete leaching of CH. The difference obtained is then assumed to be attributable
to the CSH degradation and the partial one of AF. This empirical method is applied to a CEM
| paste with w/c = 0.45 and the values of porosity comprised in the CSH collected in Table 1.5
before and after leaching indicate that a total volume fraction of supplementary percolating
fine gel porosity of 0.04 appears in the CSH during the decalcification process. In the case of
mortar and concrete, the degradation mainly takes place in the cementitous matrix, the
aggregates being more resistant to leaching. The kinetics of degradation of mortars is however
quite similar to the ones of HCP (Bourdette 1994).

The leaching experiments presented on Table 1.5 (e.g. Gallé et al. 2004) reveal that the
resistance of cement-based materials to chemical degradation can vary a lot of a material to
another. Therefore, modelling approaches aiming at estimating the physical properties of
these materials are of high interest to avoid performing degradation tests for cach type of
cement or concrete. The models existing in literature (Adenot and Buil 1992; Gérard 1996)
are treated more in depth in Part V and our own numerical tool will be developed to
accurately reproduce the leaching of cementitious materials.

3.2 Experimental insights on the chemo-mechanical degradation of leached cement-

based materials

3.2.1 Impact of leaching on the residual mechanical behaviour

Different experimental works (e.g. Carde 1996; Constantinides and Ulm 2004; Galle et al.
2004; Heukamp et al. 2005; Le Bellégo 2001; Nguyen 2005) have been focused on the effects
of decalcification of cementitious materials on their residual mechanical properties. They
generally consist in carrying out mechanical tests, such as a uniaxial compression or traction
test (e.g. Carde 1996; Heukamp et al. 2005; Nguyen 2005) or 3 points flexion tests (e.g. Le
Bellégo 2001), on samples previously subjected to an accelerated leaching process. These
experiments, qualified as « residual resistance », systematically evidence a detrimental effect
of leaching on the Young modulus and the residual strength of the material.

For instance, a sharp diminution of the HCP elastic properties was measured by Carde (1996),
where total dissolution of CH caused a reduction of 63 % in the Young modulus of a CEM 1
42.5 wie = 0.50 cylindrical sample with a 30 mm diameter. Gallé et al. (2004) measured a
decrease from 23 GPa to 7 GPa {a 71 % reduction) on the dynamic elastic modulus of a
cylindrical sample with a 40 mm diameter of a CEM 1 52.5 HTS w/c = 0.45 paste subjected to
4 complete degradation during 30 weeks. Constantinides and Ulm (2004) further measured
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that the stiffness modulus of an asymptotically leached OPC type 1 paste decreased to about 3
GPa representing a 84 % decay. To obtain a uniformly degraded paste, the sample with a
diameter of 11.5 mm was attacked by an ammonium nitrate solution during 5 months. The
differences between these measurements (Carde 1996; Gallé et al. 2004; Constantinides and
Ulm 2004) may be explained by the fact that the pastes are more or less chemically altered,
given that the diameters of the samples and the leaching time considered vary from one author
to another. However these experiments do not account for the possible effects of damage on
the chemical degradation processes that are investigated below.

3.2.2  Influence of damage on the leaching process

Chemical degradations are potentially influenced by the presence of microcracks because they
may provide preferential pathways for fluid or ions to pass through. Many studies have
reported that cracks can dramatically influence the transport properties of concrete, in
particular its permeability (e.g. Wang et al. 1997). For example, Wang et al. (1997) studied
the permeability of cracked concrete and concluded that cracks generally accelerated water
permeation in concrete. Jacobsen et al. (1996) investigated the effects of cracking on chloride
transport in concrete and found that internal cracking increased the chloride penetration rate
2.5 to 8 times when compared with undamaged specimens.

Tognazzi (1998) carried out an experimental campaign to investigate the effects of damage
induced by compressive or tensile loads on mortar effective diffusivity. First, displacement-
controlled mechanical tests were performed on mortar specimens so as to generate different
states of cracking. A visible impact of the damage created inside the material on its diffusivity
increasing by 150-200 % was noticed for samples having attained the .pﬂst-p(:ak regime of the
mechanical test. This influence may be attributed to the coalescence of cracks. On the
contrary, load induced damage doecs not appear to influence the diffusion properties
substantially at the peak load due to the discontinuous and localized nature of the crack
pattern. Further experimental works confirm the visible effect of damage on the material
degradation by putting in evidence the existence of chemically deteriorated zones around
artificial cracks (Tognazzi 1998). It is also noteworthy that Yang et al. (2006) draw the same
type of conclusions in their work on water absorption and electrical conductivity of concrete
damaged by tensile loading and freeze and thaw cycling.

The material diffusivity therefore depends on the characteristics of the crack system, like its
connectivity and its distribution. However, it must be emphasized that the influence of cracks
on the diffusivity may be less important than the effects of the dissolution due to leaching that
may augment the effective diffusivity by a few orders of magnitude (Tognazzi 1998).
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3.2.3 Fully coupled experiments

The experiments entirely coupling damage and chemical degradation are rare, even though
{hey are useful for assessing the material durability. Le Bellego (2001) and Schneider and
Chen (1998; 2005) have conducted such tests, called « life-time » experiments, where a
mortar or concrete beam is simultancously subjected to mechanical solicitations and to a
chemical attack by an aggressive solution of ammonium nitrate. More precisely, the inferior
part of the beam is simultaneously sollicitated in traction because of the flexural load
{Schnf:ider and Chen 1998; 2005) or displacement (Le Bellégo 2001) imposed at the center of
the upper face and immerged in an ammonium nitrate solution. These tests present the
advantage of sollicitating in traction the most chemically degraded part of the beam and
generate in that zone open cracks that are susceptible to enhance the leaching process.

In Schneider and Chen (2005), mortar and concrete samples are subjected to a flexural load
such as the macroscopic stress supported by the material varies by 30 to 50 % of its ultimate
strength. For a stress equal to 30% of the maximal one, they showed that the influence of
creep was low enough to be neglected. These experiments lead to the complete rupture after
only a few months.

In Le Bellégo (2001), a displacement is imposed on the center of the upper face of a mortar
beam, the lower face being in contact with a 6M NH4NO; solution. This flexural displacement
is small enough so that no damage should occur in a beam that has not undergone any
chemical attack. However, the maximal stresses inside the beam in flexion attain about 80 %
of the maximal ultimate strength and, at this level, the creep effects are not negligible. They
noticed that a lower strength value of the mortar was obtained in this fully coupled
experiments compared with residual mechanical tests. Nevertheless, it is difficult to judge if

this decrease is due to the influence of damage on the chemical alteration or rather caused by
creep.

CONCLUSIONS OF PART |

The present Part has collected experimental insights of various types on cement-based
materials, First, it was shown that these materials have a complex multi-scale heterogencous
microstructure, The latter is an intricate mixture of different solid phases and porosity. The
relative volume fractions of these different components can significantly change from one
Cement-based material ‘to another, depending for instance on its w/c ratio or its hydration
degree. Furthermore, it has been highlighted that strong contrasts may exist between the
Properties of these diverse phases. As a result, the macroscopic features of the concrete
Materials vary a lot depending on its composition and its microstructure. Homogenization
Models based on a simplified representation of the microstructure of cementitious materials
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will therefore be developed in Parts IT and III to predict their effective elastic and diffusive
properties.

Some important aspects of the long-term deterioration factors, such as chemical alteration and
damage, of HCP have been presented. In particular, their consequences on the microstructure
and the material physical properties have been underlined. All the experimental results issued
from residual resistance tests (Carde 1996; Gallé et al. 2004; Le Bellégo 2001) and from life-
time experiments (Le Bellégo 2001; Schneider and Chen 1998; 2005) evidence the
detrimental interactions between chemical deterioration and damage. It shows the importance
to thoroughly account for the couplings between these degradation factors to predict the
durability of cement-based materials. These experiments will be discussed more in depth in
Part V that is devoted to the chemo-mechanical simulations.
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part Il
pREDICTION OF THE EFFECTIVE ELASTIC PROPERTIES OF

CEMENT-BASED MATERIALS

The purpose of the present Part is to elaborate a realistic homogenization model to predict the
effective elastic properties of cement-based materials and their evolution with time. In
particular, the model proposed should be capable of correctly estimating the stiffness
reduction of these materials due to leaching. The interest of using homogenization techniques
is to develop an approach applicable to any cementitious material, provided its composition
and the properties of elementary phases are accurately known.

In the first chapter of Part II, diverse analytical homogenization schemes are reviewed so as fo
find the best suited one for predicting the elastic propertics of cementitious materials.
Micromechanical models aim at estimating the effective macroscopic properties of a
heterogeneous material from the knowledge of the geometric and physical characteristics of
its various microstructural components. Due to the plethora of existing micromechanical
schemes (e.g. Ma et al. 2004; Milton 2002; Torquato 2001), the review is only limited to
matrix-inclusion type schemes with a particular emphasis on the double-inclusion type models
that have been the subject of some interesting developments in the last decade. The respective
advantages and drawbacks of these homogenization methods presented in a concise way are
discussed and the probable connections existing between these different theories are
highlighted. Some improvements for the scheme developed by Hor and Nemat-Nasser (1993)
are also proposed. The validity range of the reviewed schemes is tested by comparing their
predictions with numerical results on well-defined cases. On the basis of this comparative
study, the Interaction Direct Derivative (IDD) model due to Zheng and Du (2001) is chosen
for it is versatile and simple of use. The Generalized Self-Consistent Scheme (GSCS) is also

found to be of interest for composites with coated inclusions.

The second chapter focuses on the effects of particle phase shapes on the effective isotropic
linear elastic moduli of hardened cement pastes (HCP). In most micromechanical models
applied to cement pastes (c.g. Constantinides and Ulm 2004, Neubauer et al. 1996),
Particulate phases are modeled as spheres. However, experimental observations clearly show
that certain of them are far from being spherical. An attempt to develop a more realistic
micromechanical model is proposed by using spheroidal inclusions and including a novel
morphological parameter. The latter is identified on the basis of experimental results issued
for example from microtomographic images of Portland cement grains and HCP.
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In the first Part of the thesis dedicated to the microstructure and the properties of cement-
based materials, the main phases composing the microstructure of cement and concrete have
been identified as well as their mechanical and diffusive characteristics. On the basis of these
results and of the microstructural observations of Part 1, the third chapter of the present Part
aims at building a multi-scale description with a matrix-inclusion morphology of the
microstructure of cement-based materials for predicting the elastic properties of HCP, mortars
and concretes, respectively.

4 INTRODUCTION TO EFFECTIVE-MEDIUM THEORIES (EMTs)
4.1 Fundamental principles of homogenization methods

4.1.1 General principles of homogenization methods

The first step of these methods consists in representing the microstructure of the concerned
material by a representative volume element (RVE) composed of a matrix phase, indexed by
M, and of P particulate phases, which are assumed to be individually homogeneous. Their
compliance tensors are respectively denoted by 8,, and §_ (r=1, ..., P). Fig. 111 illustrates
schematically a RVE.

Figure I1.1: Schematic illustrating the replacement of the heterogeneous RVE by an
egquivalent homogeneous medium.

Each particulate phase r consists of inclusion particles ¥/ (j = 1, ..., n,) that are of same
shape but can be of different sizes or orientations. Let V' be the domain occupied by the RVE
of the heterogencous material and let V" correspond to the sub-domain of inclusion phase r.
In what follows, we designate the boundary surface of V' by dV and the volume fraction of
phase rbyec, .

The RVE is subjected to uniform boundary tractions over its surface V-

t,=a”.nondl, (11.1)
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here ¢, denotes the traction vector, n designates the outward normal unit vector to the

surface gy and 67 is a constant stress tensor. At the scale of the heterogeneities of the RVE,

-ﬁw equilibrium law and Hooke’s constitutive one are written in the following manner:
: dive(x)=0, VxeV, (11.2)
e(x)=8(x):0(x) , VxeV, (11.3)

here  S(X), o(x) and £(x) are respectively the microscopic compliance, stress and strain
;tensurs at a given point x of the RVE. The operator ‘:” indicates a double contraction. The
:Pacmsmpic stress tensor @ is defined as the volume average <o >, of the microscopic one
@ over ¥ and can be shown to be equal to 6™ (e.g. Zaoui 1997):

;% !u(x}dV=u". (11.4)

The ensuing relation is also obtained from Eq. (I1.3) by performing averaging operations on
the entire volume of the RVE:
{E}r=5' =6 Ey, (I11.5)

where <a >, and <g >, are respectively the averages of the microscopic stress and strain
tensors on the volume of the RVE and where 8" is the compliance tensor of the equivalent
effective medium (Fig. IL.1). In the case of a macroscopically isotropic matenial, the latter
tensor may be written in terms of the macroscopic bulk and shear moduli of the heterogeneous
material, respectively denoted as K ' and G':

$'=(3k")"'J+(26") 'K, with J+K=I and Jﬁ,=%§u5u, (1L6)

where J and K are the hydrostatic and the deviatoric operators and where 1 is the fourth-
order identity tensor. The effective Young modulus E* and Poisson ratio v" can simply be
deduced from these macroscopic bulk and shear moduli by the intermediary of:
E = 9{1’0‘ and v',—_SK__ZG‘.
3K +G 6K +2G

It is easy to show that the macroscopic strain tensor & can be expressed in terms of the phase

(IL.7)

Strain averages, £ and £ as:

E=(1=-) c)em + .08 (11.8)

The latter relation may be rewritten as a function of the phase stress averages by the
- Intermediary of ooke's law:

§'0=8, 5+ ¢S, -8, )5, (11.9)

Where ¢, =<0 >, denotes the volume average of ¢ over a particulate phase V.. In lincar
Clasticity, this volume average o, over phase r and the macroscopic stress tensor ¢ are
related by a fourth-order tensor B, called stress “localization tensor™:

A (11.10)
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The effective compliance tensor can then be expressed in terms of the compliance tensors of
the various phases and of the localization tensors defined by Eq. (11.10) (Hill 1963):

§'=8,+).c(5,-5,):B,. (IL11)

It appears from the latter equation that the knowledge of the localization tensors of inclusion

phases B, allows for determining the effective compliance tensor of the heterogeneous

material. In the case of random heterogeneous materials, these localization tensors are very

difficult to determine and approximations for B_ are required. Estimations of these tensors are

provided by means of diverse homogenization techniques, some of the widely used ones
being presented later. These micromechanical schemes thus permit to predict the effective
compliance tensor of the material. The previous equation can be further simplified by
introducing the compliance increment tensor H and inclusion compliance fluctuations tensor

H, defined as:

H=8-§,,H =§ -8, (11.12)
so that the relation written in Eq. (I1.9) results in:
H=)cH,:B,. (11.13)

In order to derive the localization tensors B_, most of the homogenization methods use as a

starting point the Eshelby problem (1957) presented below.

4.1.2  Presentation of the Eshelby problem

4.1.2.1 Presentation of the Eshelby theorem

In linear elasticity, the Eshelby theorem constitutes the comerstone of most of the effective
medium theories (EMTs) studied in the present dissertation and is therefore briefly recalled
below. A homogeneous elastic ellipsoidal inclusion /, occupying a domain F}, is enclosed in
an infinite linear elastic matrix medium, which stiffness tensor is €, . This single inclusion is
further subjected to a stress-free strain, or “eigenstrain™ £ that is uniform inside the inclusion
and vanishes outside, undergoes a uniform deformation zf -

g =0, (I1.15)

where Ef" is called the Eshelby tensor expressed as:
G
M _ e oalk] =
(E’ }rf“ = 2 I:I-[ru (F x)]dyr 2 [[il{‘}}

where the operator I'; (y —x) is related to the Green function G, . (y—x) by:

r'-n"(}r_x}zalm.ﬂf [T_x]-’-G{mﬂr’{}r—x]‘ ([I,I?}
The Eshelby tensor thus links the strain inside the homogeneous ellipsoidal inclusion

surrounded by an infinite lincar elastic medium to its stress-free strain. The main limit of this
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-.. samental theorem is that it is restricted to ellipsoidal inclusions in its original form
Eshelby 1957). The Eshelby tensor is generally quite difficult to determine analytically but
hac a very simple expression in the case of spherical homogeneous inclusion embedded in an
-nite isotropic matrix (Mura 1987):

53K, +4G,))’
where the subscript ‘Sph’ refers to the fact that the inclusion is spherical. The Eshelby tensor

M = ag, I+ B K, (I1.18)
3K 6(K,, +2G,,)

= M —-——” 11.19

% = 3K, +4G,,) 4 Pa= B

jented along the e; axis, 1s:

Ly =P :4(111;}[2(:3;11]+tlﬂzv_4(;-njq}

- E(I'_V}[l—zw?g—:ll;'i[tazw (;_]Jq},

X, =3, = 4{1]_”[2{5_1}-(1—2v+-4{a3_]} qf,
[' 2D '{l "zp_ﬁ]q] -

1 o 3 i
Zy=E,= =1+2v - +(1- v+ ]
= 2{1—::){ e : 2Aa-1)*

b7

3 7
EH :Eﬂ =;|:|-F2p_m__l.[l_2p_.M]q
) (x=1) 2 (ex—1)

_ | a -
z""_zu—u}[z(a-n{] i 4{&—[}qu"
e I}m[ rJa—1-cosh” {r]] rzl
W[—J‘\”-ﬂ' +w5'1{r]} rSI

here v is the Poisson ratio of the infinite matrix medium.

T 41-v)

‘Where o= r* and g =

4.1.2.2 Extension of the Eshelby tensor to spherical inhomogeneities

—Ha0 et al. (2006) recently derived a generalization of the Eshelby tensor for a spherical
':. Mogeneity with a graded shell embedded in an infinite matrix. In particular, they gave the

®llowing closed-form solution for the volume average of the Eshelby tensor denoted as L}’



Part II: Prediction of the elastic propertics of cement-based materials Page 32

of a spherical inclusion with a homogeneous interphase enclosed in an infinite matrix, as
depicted in Fig. 11.2:

E =(1+3FI}J+['+% A, +3H.}1K, (11.21)
with
,F=':_2“_ziaf}l-p](l'gm}“-"vr}'43;.1-i“';+2§m‘
3 3 3H,
4= 20-21)P (gn)
H, ’
ZpiHl_, 2 ?-51)‘.

e I5H, (-8-7g,, +5(2+g,,)v) 45-45v,

H,=3(1-v,)(1+2g,, +(1-4g,, )v, ),

H, =3(1-v,)(7(1+4g,,, ) +5(1-8g,,)v,),
H,, =(200v," -300v, -63p” +175)(7-5v) g,," +

(11.22)

3gm[?sv[?-9v,}-zsv 13-15v)-7(25+3p° -5(5+3p )v ]]
(4-5v)(25v +126p° -175),

where p=»/r, and g, =G, /G,. The quantitiecs G, and G,, respectively denote the shear
moduli of the inclusion and of the matrix, v, and v respectively the Poisson ratio of the
inclusion and of the matrix, r; and r. respectively designate the radii of the inclusion and of
the domain occupied by the inclusion and the homogencous interphase. The latter formula is
of great utility, since it allows for determining the average strain inside the domain occupied
by the spherical inclusion and its hnm{}gc':ncous interphase in response to a prescribed uniform
eigenstrain in the inclusion (Fig. 11.2):
=T¥:e", (11.23)

where the average Eshelby tensor i;” for the spherical inclusion with its homogeneous
interphase will be referred to as inhomogeneous Eshelby tensor in the ensuing.

Figure I1.2: Schematic of a spherical inclusion with a homogeneous interphase enclosed in
an infinite matrix.
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4.1.2.3 Presentation of the eguivalent homogeneous inclusion method

. ¢ of all, let us consider the situation in which no heterogeneous inclusion is inserted in the
‘ﬁnifﬂ linear elastic medium with compliance tensor denoted by §,,, which is subjected to a

far-field stress &~ . In such case, the stress field is everywhere equal to ¢” and the

<weain field is such as:
g, =S, 16" (11.24)
A heterogeneous elastic inclusion I occupying a volume ¥} with elasticity tensor C, is now

neerted in this virgin medium and we are interested in calculating the average €, of the strain
J"¢|d over V. The microscopic strain tensor decomposes itself into two parts:
g, (x)=¢,+¢,'(x). Vx, (11.25)

o

where €,"(x) corresponds to the perturbation strain tensor caused by the insertion of the
heterogeneity. [n order to apply the Eshelby theorem, the heterogeneous inclusion is assumed
to be substituted by a homogeneous fictive inclusion with a stiffness tensor denoted by C,,
that is subjected to an appropriate uniform eigenstrain £°, as illustrated in Fig. 11.3. The latter
~ must be chosen in such a way that the same average stress and strain fields are obtained in the
"hnmﬂgenenus fictive inclusion and in the heterogeneous one:

0, =C,:&,=C,:(e.-¢') and & =g, +L):¢, (11.26)
t =c¢".n
Gy il
I
Heterogeneous I
Inclusion I
I
I

e e

a) tn:u“'“
|
|

C, |
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Inclusion | |
| I

| I

b) e s

Figure 11.3: Schematic picture of the equivalent homogeneous inclusion.
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By solving £ from Eq. (I.26)) and substituting its expression in (I1.26,), the following
solution is obtained for € (Benveniste 1987):

& =[1+2):8,:(C,~-C,)] 2. (11.27)
The volume average @, of the microscopic stress tensor @ over the ellipsoidal inclusion is
found as:

o, =C, :[]I+E;" :8,,:(C, —EH}]_' J R (11.28)

which can also be expressed as:
— =1
o =[1+C,, :(1-2}):(8,-8,,)] :0™. (11.29)
The average stress tensor over the inclusion can then be written in a compact way (Zheng and

Du 2001):
o, =[1+Q) :H,]" :a", (11.30)

with Q@Y =C,:(I-E}Y), (11.31)

where Q) is called eigenstiffness tensor of the single inclusion / embedded in the matrix
(Zheng and Du 2001) and where S, and H, are respectively the compliance and the
compliance increment tensors of the inclusion, which can be expressed by means of Egs.
(IL6) and (11.12). The eigenstiffness tensor €' used by Zheng and Du (2001) has the
following mechanical interpretation: the average stress tensor &, induced by the uniform
cigenstrain £ prescribed over the homogeneous fictive inclusion is linearly related to this
cigenstrain by ). This tensor can be determined in the case of spheroidal inclusions by
means of the expressions of the Eshelby tensor given in Egs. (11.20). For more c-:fnmp]icated
cases, the Eshelby tensor usually has to be estimated numerically. The equivalent inclusion
method is also particularly difficult to extend to the case of non ellipsoidal inclusions (e.g.
Zheng et al. 2006). The ensuing derivations are therefore limited to the case of ellipsoidal
inclusions. Owing to fundamental basis of micromechanics collected in the present section,
the next one is dedicated to the presentation of EMTs that are of interest for predicting the

properties of cement-based materials.

4.2 Presentation of some classical matrix-inclusion type EMTs

This presentation does not intend to be exhaustive, since there exist many good monographs
on the subject (e.g. Milton 2002; Nemat-Nasser and Hori 1993; Torquato 2001). It aims at
providing sufficient theoretical basis for a correct understanding of the homogenization
methods that will be applied to cementitious materials subsequently.
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4.2.1 Dilute approximation

The dilute model provides a simple expression for the localization tensors defined in Eg.
(1L 10). It considers the ideal situation already illustrated on Fig. IL3 where a single inclusion
denoted as ¥, , having the same shape as phase 7, is embedded in an infinite matrix medium
subjected to a uniform far-field stress. The determination of these dilute localization tensors is
thus directly achieved by means of the equivalent homogeneous inclusion method described
prcviuusly (Eshelby 1957; Mura 1987). According to Eq. (I1.30), these tensors can be
expressed as follows:
BY =[1+0) :H,]". (11.32)

By injecting this expression of the localization tensor in Eq. (IL13), an estimation designated
by H"' is derived for the compliance increment tensor:

HY =) H", (I1.33)

with H¥ =cH :[I+Q" . H 1". (11.34)

The validity range of the dilute estimation is very limited, since all the particles are required
to be far enough from each other, so as to be regarded as isolated. In other words, the
inclusions are supposed to be dispersed in such a dilute manner that there is no interaction
with the other inclusions and that they are only subjected to the imposed far-field stress ¢ .
In addition, it is highlighted that if instead of imposing a uniform stress at infinity, a far-field
displacement is applied to the infinite medium, a different estimation is then derived for the
compliance increment tensor (Hori and Nemat-Nasser 1993). Consequently, the dilute model
is considered as inconsistent by some authors (e.g. Berryman and Berge 1996). More
consistent schemes trying to reflect the interaction effects between inclusions are required.
Mori-Tanaka (MT) effective medium approximation may be used for this purpose.

4.2.2  MT approximation
This scheme was primarily proposed by Mori and Tanaka in 1973. Benveniste (1987) has
Proposed an elegant reformulation of this estimate, where it can be seen as an improved dilute
model. More precisely, the stress applied at infinity is no longer ¢~ but is replaced by the
average @, of the microscopic stress o inside the matrix so that:

¢, =B :q,, (11.35)
Which allows for taking into account the stress perturbation inside the matrix phase due to the

Presence of the other inclusions. The average of the microscopic stress tensor ¢ on the entire

Volume of the RVE can be decomposed as a function of microscopic stress tensor on each
Phase:

§=(1-Ye)a, +Yc6. (11.36)
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By combining Egs. (11.4) and (11.35-36), the localization tensors estimated by the MT model
are expressed as (Benveniste 1987):

-

BM =Bf’”:[[l— X0 ]I+Zc,'ﬂf”-‘ ; (IL37)
which may also be expressed as follows:

: g

B =B* :\_I- > :H,: n:’*’} ; (I11.38)

The effective compliance increment tensor predicted by MT model is then expressed as:
=i
HM =H* :[I-ZQ," :H:""} : (11.39)
]

The MT localization tensors are also more realistic than the dilute ones, since they account in
a certain manner for the interactions between the inclusions and the matrix. However,
Berryman and Berge (1996) asserted by confronting the MT estimations for porous media to
experimental data that MT should not be used for inclusion volume fraction superior than 20-
30 %. This discrepancy may be due to the fact that the MT localization tensors are not able to

accurately take into account the interactions between the inclusions themseclves and to
incorporate the influence of inclusion spatial distribution.

4.2.3 Generalized self-consistent scheme (GSCS)

The GSCS was originally developed by Christensen and Lo (1979) for estimating the
effective elastic properties of a two-phase composite with a matrix-inclusion microstructure.
This implicit homogenization method is based on the three-phase model illustrated on Fig.
I1.4. A spherical core of radius r; representing the particle phase and a coating of thickness (r.
- r;) occupied by the matrix arec immerged in the yet unknown cffective medium so as to
account for the interactions between inclusions. The radii ; and r, are chosen so that each
coated-sphere has the same composition as the original two-phase material. The rather lengthy
derivation of the GSCS is not presently recalled, since it may be found in many articles or
manuscripts (e.g. Hervé and Zaoui 1993). The effective bulk modulus predicted by this
method for a two-phase isotropic composite reads (¢.g. Hashin and Monteiro 2002):

K =K,+ <
YUK, - K, ) +3(1-¢,)/ (3K, +4G,, ) (11.40)

and coincides with the bulk modulus estimated by the MT scheme. The effective shear
modulus is obtained by solving a second order equation:

AG” +BG +C=0, (IL.41)
where the expressions of the coefficients 4, B and C can be found in Christensen and Lo
(1979). The GSCS was extended to the case of composites with multicoated inclusions by
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Figure I1.4: Two-dimensional representation illustrating the three-phase model on which is
based the GSCS.

The GSCS in its original form (Christensen and Lo 1979; Hervé and Zaoui 1993) cannot be
computed in the case of composites containing multi dispersed particulate phases, cven
though an empirical method was proposed by Huang et al. (1994) for extending the GSCS to
this case. Some attempts have also been proposed in literature to extend the GSCS to the case
of non-spherical inlusions (Riccardi and Montheillet 1999) but they appear far too difficult to
~ handle. In the next subsection, another type of models that is more suited for these limiting
cases is presented.

4.3 Presentation of double-inclusion type models

The basic idea used in the homogenization methods presented below is to model the inclusion
spatial distribution by an ellipsoidal cell, called double-inclusion, surrounding the inclusion
{e.g. Hori and Nemat-Nasser 1993; Zheng and Du 2001). Its geometry depends on how the
inclusions are dispersed through the matrix and thus is representative of the spatial
distributions of the particulate phases. As a proof of the popularity of the double-inclusion
- Concept, we have found at least five models using more or less explicitly this idea, such as the
ones proposed by Kiister-Tiksoz (1974), Nemat-Nasser and Hori (1993), Ponte-Castafieda
and Willis (1995), Shen and Yi (2001) and Zheng and Du (2001). Hu and Weng (2000)
Tevealed that strong connections exist between the schemes developed by Kiister-Toksoz
(1974), Nemat-Nasser and Hori (1993) and Ponte-Castaneda and Willis (1995), even though
'!hcir derivation may radically differ. That’s why the notion of double-inclusion type models is
Miroduced in this section to deal with the estimates mentioned. For conciseness, only two of
these models, namely the ones of Nemat-Nasser and Hori (1993) and Zheng and Du (2001),
4r¢ presented in details below.
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4.3.1 Interaction Direct Derivative (1DD) model

The localization tensors B/’ for the IDD estimate due to Zheng and Du (2001) can b

obtained easily by introducing the ecigenstiffness tensors of all double-inclusions and by
modifying B in Eq. (I1.38) as follows:

njw'mf:[hzc.ﬂ.:B:’”:n:;'. with @Y =C,:A-Z¥),  (142)

where €} denotes the cigenstiffness tensor of the double-inclusion of a given phase i. The
subscript D" is used here, since the inclusion distribution is involved in these eigenstiffness
tensors. Eqs. (11.38) and (11.42) reveal that MT and IDD estimates coincide whenever all
inclusion phases J7 have the same ecigenstiffness tensors QY =QYas their surrounding
double-inclusion. It means that every inclusion ¥, and its enclosing cell designated by ¥
are similar in shape and coaxial in orientation.

In the case of a macroscopically isotropic material, the spatial distribution of inclusions is
identical in all directions. A spherical double-inclusion is thus usually adopted to model this
distribution (Ponte Castaneda and Willis 1995), since no particular direction in space is then
privileged. It implics in particular that IDD and MT models coincide for macroscopically
isotropic heterogencous materials containing only spherical inclusions. However, if the
inclusions are spheroids and are isotropically distributed inside the effective material, IDD

and MT schemes do not coincide. The substitution of B, in Eq. (I1.13) by its expression in

Eq. (11.42) yields the following IDD estimate provided that H' is commutative:

where H*' and H* are expressed in Egs. (11.33-34), respectively. The tensor H* is

r ]
H =| - ZH"” ,,f} s HT . (11.43)

generally commutative in the case of a macroscopically isotropic material. The effective
stiffness tensor of the material can then be deduced from the knowlegde of this increment
tensor:

Cloo=Cy ! [1+Hﬁm EM] (11.44)

The demonstration proposed here shows that the IDD scheme can be seen as an improved
dilute model (see Fig. 11.5) with unbounded matrix material subjected to a modified effective

stress o, defined as:

.
(L =i 1-) cH": Q)

The original deductions of IDD estimate by Zheng and Du (2001) consist in consecutive
applications of superposition principles. For more information, the reader should refer to their

4 . Y (11.45)

-
I [
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E
original paper. In the present dissertation, we have adopted the philosophy of Benveniste
(1931) in order to present the I_L‘ID estimate in a simple manner and to put in evidence the
strong connection existing between IDD and MT models.

1 1
“}:[I'Zﬂf:HfII:”- u';.,=|:1rﬂ21:lf"':ﬂ§]:u"
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Figure I1.5: Derivation of the MT (left) and IDD (right) models for a multi-phase
composite from the dilute configuration by modifying the far-field stresses.

Another model derived by Hori and Nemat-Nasser (1993) using the concept of double-
inclusion is now presented. Its demonstration is a bit more sophisticated but is useful to
understand the physical meaning of the double-inclusion.

4.3.2 The Hori and Nemat-Nasser double-inclusion model (DIM)

4.3.2.1 General framework

The DIM developed by Hori and Nemat-Nasser (1993) basically consists in the following
three-phase configuration: an ellipsoidal inclusion domain denoted as Vi that contains an
ellipsoidal heterogeneity ¥; is immersed in an infinite homogencous medium. The latter
model is very flexible, since the shape and the orientation of the double-inclusion and of the
heterogencity as well as the clastic properties of the three phases may be chosen. The stiffness
tensors of the inclusion, its coating and the embedding infinite medium composing the three-
Phase representation considered by Hori and Nemat-Nasser (1993) are arbitrary and are
Tespectively designated by C,, C,, and C, (see Fig. 11.6). Two parameters are important in
this model:

the double-inclusion geometry that should be representative of the distribution of the
inclusions inside the composite;

" the choice of the reference medium that should be representative of the immediate
Surroundings of the particulate phases.
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However, the choice of the reference medium is in reality quite limited, since the threc~pha“-

configuration should have a physical interpretation. The most usual choices consist in tﬂkiug'

the matrix of the material with stiffness tensor C,, or the yet unkown effective material With

stiffness tensor C" as the reference medium (Hu and Weng 2000). The main steps necessary
for deriving this model are recapitulated below. The detailed demonstration can be foung in
Hori and Nemat-Nasser (1993). These authors practically apply the concept of the equivalen; 1
homogeneous inclusion method (Fig. 11.3) to the case of a double-inclusion. Two cigenstraing

respectively denoted ¢, and g, are then necessary, as represented in Fig. 1L6. As in Eq.

(11.26), the averages of the latter eigenstrains have be taken in such a way that the same
average stress and strain fields are obtained in the homogeneous fictive double-inclusion ang
in the heterogeneous one:

0:=C,:e=C,: (& ~&), (11.46)
60 =C,, 18 =C, : (B —Ecr), (11.47)
£ =2,+8' and Ec =g, +Ec, (11.48)

where &' and o' respectively denote the strain perturbation tensors of the inclusion and of
its coating. The next step consists in computing respectively the volume averages of the strain
tensor £ and €c over the inclusion and its coating. For this purpose, the problem of the
homogeneous lictive double-inclusion corresponding to the situation b) depicted in Fig. 116 is
decomposed in three subproblems referred to as ¢), d) and ¢) (Shodja and Sarvestani 2001),



a) Original configuration
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b) Homogeneous equivalent
double-inclusion
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Figure 11.6: Schematic of the original three-phase configuration a) used for the derivation
&\ of DIM and representation of the different steps b), ¢), d) and e) employed for its
derivation.

1 the situation b), the volume average of the perturbation strain tensor €' may be written as:

o 11 l -
& =}-j [Cy:P(x-y):€' (y)av,av,, (11.49)

PV by

ich can be decomposed as:

I " # . .
‘V‘I Iﬂﬁzr(x-y}dl’r :z;dlf,+—!ff ICﬂ:r[x-y]:ﬂﬂ_ cgadV,
F vy, Vi ¥ A Vo

»(11.50)

.HI}‘ F:{Cn g l‘(!—}']dl{r]:a—sdl" +_—;— I J-*El, :I"(x——y}:(s'(y}—-ﬁ};)dl’rdﬂ

'
& P ¥ ¥y
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where the operator ['(x—y) is defined in Eq. (I1.17). The first term of the right-hand side of

the expression above corresponds to the situation ¢) represented in Fig. I1.6, the second one to
the situation d) and the third one is issued from the resolution of the situation e) (see Fig. [1.6).
The last double-integral accounts for the fluctuations between the uniform eigenstrain applied
in the situations d) and e) and the actual one in situation b) that is not necessarily uniform. It
is pointed out that the integrals between parenthesis correspond either to the Eshelby tensor of
the inclusion or of the double-inclusion. Consequently, the expression of the average strain
tensor inside the inclusion can be obtained with the aid of these tensors in a compact form:

& =g, + L) & +(E}, - ):za +7, (I1.51)
with
3= Vl [ [Cy:rex-y):(e'(y)-2cr v, av,. (11.52)
IV ¥y

By taking advantage of these simple relations:

e (1 —i]ém'-i-f—’éf, (11.53)
v Cmy Chy
o' = I, (o, (I1.54)

the volume average of the strain tensor £o over the inclusion coating can be deduced from
Eq. (IL51):

= ; — c S C
£cr =, + £, 8 +—L—(B5, ~E}):(& —8a ) -—1—7. (I1L55)
€y — € Cm — €

Hori and Nemat-Nasser (1993) then make the following approximation: the integral term in
Eq. (I1.55) is neglected to simplify the ensuing derivations. The relations proposed in Egs.
(11.51) and (I1.55) then simply become:

& =g, +L) & +(L}, —E):zar, (I1.56)
£ =8, + 0, 180 +—L— (B3, ~E0): A, with Ae =gi-ga.  (I157)
Cor —

The effects of this approximation made by Hori and Nemat-Nasser (1993) will be carefully
discussed later. The consistency conditions in Egs. (11.46-48) then imply that (e.g. Hu and
Weng 2000):
-[25 +(€,-C) i€, |-z - [ Bl +(C, - €)' 1€, -4 =, (I1.58)
—{E‘;, +(Cy-C,)" :C,,}:E}; --r"’jcw(xﬁy £0):az =¢,, (I1.59)
] !

which can be re-arranged by using the fact that X{=1-§,:Q] and

(C,-C,)" :C,=-8,:H,” into:
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F, " :2c+F A8 =07, (I1.60)
Fo 18 ——1—(00 -, ): 42 =6, (IL61)
Cpr — €
where

i =1 -
7/ =ﬁ[zf +(C,-C,)" :cu] :S,=[H,"+Q |, with j=[,CI]and k=[1,DI]. (162)

By solving this system of two equations, the averages of the two eigenstrains can be related to
the far field-stress by:

ta=U,:6" and Az =U,:0", with (I1.63)

-1
U=Bl: I—F{":[F{, ;F,"'+“—*.F;r:(n§-ng)} :(Fj, —Fy ) [ (11.64)

{cw"—c;]

I
U,=F.,: 1-[1:-';_.:F,’-':(nﬁ—n';”}"'-r—i——ﬁ‘m”] :(F, -FZ)|. ares)
(e —¢;)

By combining these expressions of the eigenstrains with Eqs. (I1.56-57) and the consistency
conditions written in Egs. (11.46-48), the average strain and stress inside the inclusion and its
coating can then be related to the applied far-field stress as:

& =[8,+E,: Uy +L:U, ]:07, (11.66)

Eci ={s{,+r.5;, ‘U, +c—:f_-;:(z; -Ef):UI}:u“, (1L67)

o =[1-9Q),:U,-9]:U, |:0", (IL.68)

oo =[I—n‘;,, 4 i —-—"—’_ﬂ—(n‘},, -*ﬂ?):U,:|:tr". (11.69)
ot €

From the knowledge of these average strains and stresses inside the inclusion and its coating,

the volume averages of the strain and stress tensors inside the double-inclusion can finally be
Computed:

£ =[S, +Eh, :(Ug +¢,U,) 107, (11.70)
6o =[1-0, :(Uy, +¢U, ) |:0™ (IL71)
fNOW that the average strain and stress inside the double-inclusion are known, different
‘Slimates can be developed by making particular choices of the elastic properties of the
C0atings and of the shapes of the ellipsoids. In the case of a two-phase composite with a

Particulate phase / with a volume fraction designated by c,, the double-inclusion is

“Onsidered as a RVE so that ¢, =1. In such occurrence, the effective compliance tensor of

Material can be estimated by climinating 6™ in the last two equations:
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=1
]

8" =[8,-2 :(Ug +¢,U,)]:[1-95 :(Ug +¢,U, ) ] (1L.72)

where the tensors S, and X, may be chosen in diverse ways (Hu and Weng 2000), Given
the different possibilities offered by DIM, we only focus below on its application to
composites having matrix-inclusion morphology. The simplest choice to obtain an estimatigy
for such materials then consists in letting the reference infinite medium in the three-phage

configuration represented in Fig. 11.7 be the matrix of the material, i.e. C,=C,,.

a) Case coinciding with other b) Case coinciding with MT
double-inclusion type models

Figure I1.7: Schematic illustrating the link between the Hori and Nemat-Nasser DIM and
other micromechanical schemes (Hu and Weng 2000).

4.3.2.2 Application of DIM to two-phase composites
In the case of a two-phase composite, let the coating of the inclusion be filled by the matrix of
the material so that C, =C, and ¢, =1. Noticing that H' =¢F/ for a two-phase

composite, Eqgs. (11.63) and (I1.70-71) respectively reduce to:

AT =F and %, =0, (11.73)
E:[SM +Ey :IHI‘}“"]:::“, (11.74)
o=[1-Q} :H"):a". (11.75)

It is interesting to observe from the last equation that, if the modified far-field stress written in
Eq. (11.45) is applied instead of &~ , the average of the stress tensor inside the double-
inclusion is then simply equal to ¢™. By combining the last two equations, the following
estimation can be obtained for the effective compliance tensor:

s =[s,, + i H{ |:[1-0f 1T, (I1L76)
which is recast in the simplified form:

H ™ =H¢Iﬁr :[E— ﬂf-:,. : ]I'H:.m]_! 1 (1.77)
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, expression of the DIM estimate for the effective increment compliance tensor is very
close to the one given by the [DD estimate in Eq. (11.43). More precisely, the two estimates

cide whenever Hj" is invertible, which is true in the case of a macroscopically isotropic

mposite. Hu and Weng (2000) have investigated DIM in some special cases and shown
ih peoretical connections  with  other micromechanical schemes. They have already
;.,, onstrated that, in the case of two-phase composites, DIM leads to the same results as the
wiister-Toksoz (KT), and Ponte-Castafieda and Willis (PCW) models but, to our knowledge,
_'f, i connection between DIM and the IDD model has not yet been evidenced. It also appears
by comparing Egs. (11.38) and (11.77) that, if the inclusion and its enclosing cell have the same
shape and orientation, DIM vyields exactly the same predictions as the MT model, as
illustrated in Fig. 11.7 (Hu and Weng 2000). Hori and Nemat-Nasser (1993) generalized thewr
DIM to composites containing inclusions with # layers. In the next subsection, the extension
of DIM to inclustons with one layer is treated.

4.3.2.3 Application of DIM to coated inclusions

its estimation for the particular pattern illustrated on the right-hand side of Fig. 11.8. On this
figure, DIM is constituted of four regions: the ellipsoidal inclusion / with a volume fraction

‘-} representing a particulate phase with a stiffness tensor denoted as C, is enclosed in a
‘confocal ellipsoidal coating with a volume fraction ¢, occupied by a phase having its
stiffness tensor designated by C,, . The double-inclusion thus obtained is in turn embedded in
another confocal ellipsoidal coating with a volume fraction ¢, =1-¢, —¢,, filled by the

matrix phase having for stiffness tensor C,, immersed in an infinitely Jarge matrix medium

With stiffness tensor C,,

DIM MT

Figure 11, Schematic illustrating the discrepancies of the Hori and Nemat-Nasser DIM.
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The latter representation is of great interest for mortars for example, where an ITZ formg
between the sand aggregates and the cement paste. In order to derive an estimate for thig
configuration, it is necessary to compute the averages of the strain and stress fields inside the
domain occupied by the double-inclusion and its matrix coating that may be decomposed ag
follows:

e=(l-cp )em +cyeor and 6=(l-c,, )Ou +cp 00, (11.78)
where £ and 6o are given by Egs. (I1.70-71) and the averages of the strain £y and stress

o inside the matrix outer layer are still to be determined. Hori and Nemat-Nasser (1993)
showed that in the case of layered inclusions:

' .Y

— " [ — C —

E’-‘zg”"’{}‘r"'"zg‘):tl..; g+ at,,J, (11.79)
[l il

where L), designates the Eshelby tensor of the coating of the double-inclusion and where
¢ and £ are provided by Eq. (11.63). The coating of the double-inclusion having the same
shape and orientation of the double-inclusion, the latter equation reduces to &x =g,.
Furthermore, the coating of the double-inclusion having the same properties as the unbounded
matrix medium, the average stress inside the coating of the double-inclusion simply writes as:
g, =C,:g,. (11.80)
By combining the last three equations, it comes that:
o=[1-Qy (B4 +H")|:e~ and =[S, I} :(HY+H")]:0™. (18D
By climinating ¢ in the equations just above and using the fact that Q) =QJ, the

following expression can be obtained for the effective increment compliance tensor:
. . : -1
HY =(H +HY ):[1-@F (1" +HY)] (11.82)

which coincides with the MT estimate written in Eq. (I11.38) for three-phase composites. To
our knowledge, this connection with the MT scheme has not yet been noticed. It is however
unexpected that, in the present case, DIM leads to the same results as the classical MT model
for three-phase composites, the microgeometry considered for the derivation of the DIM
being very different from the simple one employed by MT (see Fig. IL5). It would mean that
whether one inclusion phase is enclosed in the other one or on the contrary dispersed far away
one from another does not change the elastic properties. This result appears contradictory by
considering the following example. A stiff inclusion is supposed to be completely trapped in
water constituting a coating layer due for instance to a partial dissolution. In such case, the
stiff inclusion should logically not be able to reinforce the material, whereas according to the
DIM estimate it does.

This discrepancy is symptomatic of the fact that DIM as proposed by Hori and Nemat-Nasser
(1993) fails to accurately account for the interactions between the inclusion and its coating.
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Hu and Weng (2000) furthermore noticed other shortcomings of DIM for the cases in which

the infinite reference medium is chosen as the yet unknown effective material, i.e. C, =C.

¢ only approximation used for the derivation of DIM (Hori and Nemat-Nasser 1993)
-nsists in disregarding the integral term in Eq. (IL.52) and is thus likely to be the cause to
hese anomalies. This integral term neglected practically means that the eigenstrain is
posed uniform inside the coating of the inclusion. This approximation of a uniform

.=. pstrain field inside the coating is strong, whenever the coating and the infinite reference
:_. dium do not have the same elastic properties, and may lead to significant shortcomings
such as the ones described on Fig. I1.8. Nevertheless, this integral term vanishes whenever the
eigenstrain is uniform inside the coating of the inclusion. This practically means that, for the
T nniﬂuiar case represented in Fig. 11.7 for which the coating has the same stiffness tensor as
» infinite matrix, the DIM of Hori and Nemat-Nasser is exact, since the eigenstrain is equal

. s zero everywhere inside the coating of the inclusion.

4.3.3  Other double-inclusion type models

4.3.3.1 The Kuster-Toksoz (1974) model

¢ latter model is popular among geophysicians. Berryman and Berge (1996) have
confronted this method with different experimental data and concluded that it should not be
used for volume fractions of inclusions higher than 30 %. Analogously to the Hori and
Nemat-Nasser DIM, the starting point of the Kuster-Tokstéz (KT) model consists in
© mbedding the different inclusions modelling the P particulate phases inside a matrix coating
With ellipsoidal form and in turn in inserting this pattern, designated as composite inclusion
-':.g. Hu and Weng 2000), inside an infinite matrix medium. The external geometry of this
composite inclusion depends on the spatial distribution of the particulate phases. In the case of
_ wo-phase composites, the KT model is based on the same pattern as DIM (Fig. I1.7 left) and,
shown by Hu and Weng (2000), the two estimates coincide.

The KT model was developed by comparing two situations illustrated in Fig. 119 and
Asserting that the average strain field is identical inside the composite inclusion represented at
ﬂ © top of Fig. 11.9 and inside the homogeneous effective inclusion depicted at the bottom of
figure (e.g. Hu and Weng 2000). Recently, Shen and Yi (2001) derived an estimate
" ing to the same results as KT by using the same philosophy. The only difference is that
they assume that the elastic strain energy changes in the infinite matrix due to the respective
ion of the two previous types of double-inclusion are identical in both ::3-159:5 (Fig. 1L.9).
¢ demonstration proposed by Shen and Yi (2001) seems more rigorous than the KT original
€ and is briefly recalled below.

C Fjlastlc strain energy perturbations of the infinite matrix, caused respectively by the
“Tion of the composite inclusion and of the equivalent homogeneous inclusion (Fig. 11.9),
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are denoted AU and AU . It is assumed that these two elastic strain energy changes are

identical (Shen and Yi 2001). The quantity AU can be determined from the results of the
Eshelby problem (1957):

AU' =_% V6™ :[Cy :(C'~C,):C, +C, s Ely |10, (I1.83)
where the subscript p; designates the homogeneous effective inclusion (Fig. 11.9) that is
analogous to a double-inclusion. The elastic strain energy AU can be directly related to
the average eigenstrains over the different particulate phases, denoted as & (re[LP]) (e.g.
Mura 1987):

=
AU =~y u':[ E::]. (11.84)
I

i i
fe=

where €, can be expressed by means of Eq. (IL73) if the interactions between the particulate
phases are neglected.

— o o o e o e e e e S e S e e e

a) Composite inclusion

c N

b) Homogeneous effective
inclusion

Figure 11.9: Schematic illustrating the effective inclusion concept employed by Kuster-
Toksiz (1974) and Shen and Yi (2001).

An estimation for the effective stiffness tensor can then be derived by assuming the equality
between the last two equations (Shen and Y1 2001 ):

4

C -lﬂ- [5” +HY:C, :E% S, | :H*[:C,, (11.85)
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Loy leads to the following expression for the compliance increment tensor after a few
.;f_ jpulations:
o B =1
H:[CM -Cy :(I+H"" g L5 E;) i LCM] -8y
; (11.86)
3[:1:” (1+H”:C, : L} ):S, -H*:C, | (1+H¥:C, :X}):8, -8,,
=[1-84:(-c, :E% +C, )] :(1+H*.C, :E}):S, -S,,

n—ur“ 041" :(m”:c, :EX +H¥ .0¥):S,,,

=11r"’n] “HY,

4.3.3.2 The Ponte-Castafeda and Willis (PCW) model

.. demonstration of the PCW model (1995) based on the Hashin and Shtrikman (1962)
jational principles is not recalled here, since their rigorous derivation is quite lengthy and
-Him!.; notions of statistics. Nonetheless, the comparison of the previous double-inclusion
.' e models with the PCW approach is instructive because it enables us to understand better
the double inclusion role. In fact, it geometrically characterizes the cumulative density

s defined from a conditional probability density function that represents the probability
sity for finding an inclusion centred at one point given that there is an inclusion centred at
nother point x. Imagine that we randomly toss a segment from the centre x of length R with a
pecified orientation and count the fraction of times the end point coincides with the centre of
another inclusion. With the above interpretation, it becomes obvious that for macroscopically
Isotropic composites, such as cement-based materials, this probability is the same in all the
_bl'ﬂﬂ'liﬂl'lli. Consequently, the double-inclusion will be taken as spherical for these matenals.

ulative density function is enough for characterizing the distribution of all the inclusions,
PCW estimate coincides with the formula of the KT model and with the predictions of
and IDD. Another consequence of the similarities of these double-inclusion type models
ith PCW is that these estimates may be interpreted as rigorous bounds, provided that the
4 lusion distribution is accurately known.

" the next subsection, a new estimate based on the recent works of Duan et al. (2006) is
' sed to remedy the shortcomings of DIM for composites with coated inclusions.
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4.3.4 Development of a modified DIM for composites with coated spherical inclusiong

The scope of this subsection is to develop a double-inclusion type estimate that remejag
some of the shortcomings of DIM noticed previously. Several attempts (Shodja and Rg
2005; Shodja and Sarvestani 2001) to improve the scheme of Hori and Nemat-Nasser (1993)
exist in the literature but most of these models requires numerical computations. For instam;el_
Shodja and Sarvestani (2001) applied polynomial eigenstrains instead of uniform ones to ﬂu
Hori and Nemat-Nasser DIM. However, closed-form solutions are difficult to reach with thejp
theory. It is now proposed to derive differently DIM by employing the inhomogeneoyg
Eshelby tensor in Eq. (11.21) derived by Duan et al. (2006). The configuration considered for
the present derivation consists in a composite pattern embedded in an infinite matrix mediury
and subjected to a far-field stress o~ . This composite pattern comprises various double.
inclusions denoted as D, , withre [I,PI, enclosed in a matrix region, each of them being
constituted of a spherical inclusion with stiffness tensor C, surrounded by a spherical coating
with elasticity tensor C. . DIM was proved to lead to unexpected results for this type of
microgeometry that is commonly encountered in cement-based materials, as will be shown in
chapter 6.

The present derivation comprises two main steps. The effective stiffness tensors of the
different double-inclusions are first estimated with the aid of the work of Duan et al. (2006).
The particular configuration described on Fig. I1.10a) is thus approximated by a simpler one
described on Fig. 11.10b). The effective elastic properties of the multiphase composite are then
computed using the energy balance employed by Shen and Yi (2001). To achieve the
computation of the effective stiffness of the double-inclusions, eigenstrain fields are
introduced inside the inclusion domain so that each inclusion has the same elastic properties

as its coating.

Figure I1.10: Schematic illustrating the main steps employed to derive the modified DIM.
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.~ gverage perturbation strain tensor inside an inclusion representing phase r and having the
e stiffness tensor as its coating can be related to the volume average g of the prescribed

.nstrain by means of the inhomogeneous Eshelby tensor defined by Duan et al. (2006):
T=E¥ %, (IL.87)
the expression of i" is given in Eq. (IL21). By neglecting the interactions between

the double-inclusions, the average strain tensor inside the inclusion corresponding to a given

=WY:§,:6"+¢', (T1.88)

e o |
W ;[H+zg,:s‘,:(cc,-c,,} '} , (I1.8Y)
re W, designates the dilute strain localization tensor, also called the Wu tensor (Wu

56) of the double-inclusion D,, with #&[1,P], and X}/ denotes its Eshelby tensor. The

Wu tensor practically links the volume average of the strain tensor inside an ellipsoidal
| lusion to the far-field strain. The consistency condition written in an average scnse:

C. & =C.:(5 -8) (11.90)
provides the following relation for the average eigenstrain €, in the inclusion:

. - 1
_[[cr—cc,_) ':CCr+E:"] ‘WY .8, 0. (1L.91)

\C average perturbatmn strain tensor inside the inclusion €' can then be deduced from Eq.

_ lusmi coating &' is obtained as:

o= [z“ _EH)[([: R Cc,+2"’] WY :S, 16", (1192)

ble-inclusion both have a spherical shape, their inhomogeneous Eshelby tensors are not
htical, since their expressions given in Eq. (I1.21) also depend on their relative size
;;f.‘"f facterized by the parameter p. The mean strain and stress tensors inside the double-
“clusion are further expressed with the help of Egs. (I1.53-54):

Enﬁ[ :* ig;[[c,—cﬁ]":c{#if' } ] WY .S, 0", (11.93)
D
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s, =C.. {W; L8 S0

(C,+Ec,]":¢:m.+if*] W”] w107, (1194)

where flﬁr =C,, :{I—i}ﬂ_) is called the inhomogeneous eigenstiffness of the double.
inclusion D,. By eliminating ¢~ in the last two relations, the following expression can be
obtained for the effective stiffness tensor of this double-inclusion:

3 - o - B & S | 1
38 :lﬂ+i5” < ¥ il :[[CJ -Ce, ) ':IIZE.F+£,',“J ‘:

or

C,, =+ (11.95)

3
i-

I:"'I.".i'r

£2:[(c,-Co ) iCe v

By carrying out exactly the same reasoning as in Eqs. (11.83-85) (see subsection 4.3.3.1), an
explicit estimation can then be achieved for the effective stiffness tensor of the composite
with coated inclusions:

c {1 [s +Z]H*:E: .C,, :Z¥ :S, ] LZ]I-I ]

where L is the Eshelby tensor of the equivalent composite pattern depicted on Fig. 11.10¢)

(11.96)

and the stiffness tensor €, can be predicted by Eq. (I1.95). In the ensuing, this estimation
will be referred to as the modified DIM.

4.4 Accuracy of EMTs

The actual capacity of predictions of the different schemes in literature has been a subject of
extensive debate (Christensen 1990). The precise ]jcmttw'ledge of the accuracy of cach scheme
is a crucial issue of micromechanics, since it would allow for determining the cases for which
an EMT can be preferentially employed or not.

4.4.1 Review on the accuracy of EMTs

Testing the accuracy of an EMT is not a trivial matter, since their predictions highly depend
on the way the microstructure is represented. The two best methods for performing such tests
consist in comparing estimations of micromechanical schemes with FE simulations of simple
microgeometries (Segurado and Llorca 2002; Zheng and Du 2001) or in confronting them
with experimental data on materials having a simple and well-defined microstructure (e.g
Berryman and Berge 1996). Cement-based materials with their complex microstructure aré
not suited for performing such experimental comparisons.

For instance, Segurado and Llorca (2002) performed 3D numerical simulations of materials
reinforced by rigid spheres or weakened by spherical voids. The simulated materials contain
different volume fractions (up to 50 %) of spherical inclusions that are monodisperse and
randomly distributed. They concluded that GSCS provided estimations close to the FE results
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 for 50 % of spheres, while the MT estimate visibly differs from the elastic and shear
__juli obtained numerically for volume fractions higher than 30 %. Another instructive
.“ sarative study has been carried out by Zheng and Du (2001) on a 2D matrix weakened by
> :mpicaily distributed circular voids. On the contrary to Segurado and Llorca (2002), they
. .4 that the MT and double-inclusion type shemes provide better estimations than the

k- lmu and Berge (1996) have compared both KT and MT estimates with experimental
'L on porous materials, such as sintered glass beads, and have noticed that the prediction of
¢ KT or MT estimate with spherical inclusions was only in acceptable agreement with the
nerimental measurements for volume fractions of pores less than 20 %. Berryman and
s¢ (1996) managed to obtain some slight improvement by using needled-shaped inclusions

. a (2002). These errors may be due to the fact that over a certain volume fraction of
sclusions, MT and double-inclusion type estimates do not manage to accurately take into

4.4.2 Comparison with numerical simulations on cement-based materials

Wwing to progress in the computer modelling of cement microstructure, many three-
mensional numerical simulations have been carried out for computing the macroscopic
ic properties of cement-based materials and constitute good comparison points. By
nfronting the predictions of the different EMTs presented previously with different types of
mulations, we try to determine which scheme is the best suited for three well-defined cases:
a concrete composed of a mortar matrix and aggregates modeled as spherical
inclusions (Wriggers and Moftah 2006);

@ mortar consisting in a cement matrix rigidified by spherical coated inclusions
representing the sand grains surrounding by ITZ (Garboczi and Berryman 2001);

a porous medium that can be assimilated to a cement paste comprising a rigid solid
: phase and spheroidal porous inclusions (Roberts and Garboczi 2000).

mput elastic parameters for the different simulations and micromechanical estimations
Bathered in Appendix ILA. The threc materials treated arc simulated as macroscopically
Pic and the inclusions are supposed to be isotropically distributed. Therefore, a spherical
le-inclusiun i5 adopted for the computations of the double-inclusion type schemes.
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4.4.2.1 Comparison with the simulations of Wriggers and Moftah (2006)

Wriggers and Moftah (2006) performed advanced FE simulations on geometrical models of
concrete generated with the Monte-Carlo’s method to compute its mechanical properties. The
aggregates are modeled as spheres of different sizes, so as to accurately reproduce the
material granulometry.

40 - : , - 35 : . ; - :
A

10
in
*  Simulations * Simulations
5 —GSCS 5 — G5CS
= = = MT, DI type inodels = = =MT, DI type models

“u 0.1 0.2 0.3 0.4 0.5 ﬂn 0.1 0.2 0.3 0.4 0.5 0.6

Sand Volume Fractions Sand Volume Fraclions

a) With aggregates type | b) With aggregates type 11

Figure 11.11: Evolutions of the effective Young moduli estimated by different
micromechanical schemes and by FE simulations (Wriggers and Moftah 2006) for two
types of concretes as functions of the volume fractions of aggregates a) type I and b) type
I

All the micromechanical estimations appear to be relatively close the numerical results plotted
on Fig. Il.11, the GSCS of Christensen and Lo (1979) giving slightly better predictions than
the other models. For spherical cases, the GSCS should thus be preferred to MT and double-
inclusion type models. If all the inclusions are approximated by spheres, the other matrix-
inclusion type estimates (see Eqgs. (I1.38) and (I1.43)) lead exactly to the same results for a
macroscopically isotropic material. A frequent problem with using spherical inclusions is that
too many EMTs give exactly the same result even if certain ones may be much more evolved
and efficient. The case of non-spherical inclusions will therefore be treated later. The mortar
matrix considered as a homogeneous phase in the Wriggers and Moftah (2006) is in fact a
heterogeneous material that has been the subject of advanced numerical simulations by
Garboczi and Berryman (2001).

4.4.2.2 Comparison with the simulations of Garboczi and Berryman (2001)

Garboczi and Berryman (2001) performed simulations on a material model composed of a
matrix reinforced by spherical coated inclusions. They made the elastic properties of the
inclusion coating vary and investigated numerically the effects on the material effective
elastic properties. Their tests are very instructive for the case of mortars, where the
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aracteristics of ITZ forming a layer around the sand grains strongly influence their
E hanical behaviour, as already explained in Part [, It has been asserted by diverse authors

Hashin and Monteiro 2002) that ITZ that is more porous than HCP (Lutz and

T )). The numerical results obtained by Garboczi and Berryman (2001) for diverse values of
; parameter € characterizing the ratio of the Young modulus of ITZ on the one of HCP are
Totted in Fig. IL12 and serve as comparison points for the predictions of different EMTs. The
. estimations are provided as previously by GSCS, even though the modified DIM is
<o in good agreement with the numerical results. However, despite its good accuracy on the
:E amples treated, the GSCS is more complicated to compute than the other schemes and may

appear less suited for the case presented below of an elastic body containing non-spherical

* FE results *  FE results
- - =ModificdDIM || O] - = = Modified DIM
— G5CS — G505
<=« MT, DI type models e MT, DI type models
0.2 0.4 LX) 08 | GD 0.2 0.4 0.6 0E I
e e

Figure 11.12: Evolutions of the effective elastic bulk (left) and shear (right) moduli
estimated by different EMTs and by FE simulations (Garboczi and Berryman 2001) for

both sound and degraded HCP as a functionof e = E,, | E, ...

4.4.2.3 Comparison with the simulations of Roberts and Garboczi (2000)

¢ case of an elastic body weakened by spheroidal voids is now studied, in order to further

Umpare the concerned EMTs. The GSCS and modified DIM presently developed are not
Considered for this study, since closed-form expressions are too difficult to reach for such
¢s. Roberts and Garboezi (2000) conducted series of simulations with porous inclusions of
erse shapes. The elastic moduli of pores are considered to vanish. In particular, numerical
“68IS were performed with oblate spheroidal- voids that are randomly distributed in a rigid
30lid marix and are allowed to overlap. The model of microstructure thus obtained is well
.itad for representing a porous material such as a HCP and is furthermore very similar to the
.. Cromechanical model of Zimmerman (1986), in which HCP is represented by a solid matrix
5 kened by spheroidal pores. The FE results of Roberts and Garboczi (2000) for the
Simulageg porous material are plotted on Fig. 11.13 and compared with the predictions of
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EMTs, even though the latter are not capable to account for the overlappings betweep, e
cavities. The double-inclusion type estimates arc seen to give the closest estimationg
should consequently be preferentially used in the case of non-spherical inclusions,

- . . = ;
Vi * FE results
09F %, = = = DI type models |
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Figure I1.13: Evolutions of the effective Young moduli estimated by different EMTs and
FE simulations (Roberts and Garboczi 2000) for an elastic body weakened by oblate
spheroidal voids with aspect ratio v = 0.235, as a function of porosity.

4.5 Conclusion of chapter 4

Different analytical homogenization schemes from literature have been presented and
examined in a critical way. The respective benefits and drawbacks of these methods are now
recapitulated on the basis of well-defined criteria. In order to choose the best suited sche
for the estimations of the elastic properties of cement-based materials, the following criteria
are adopted:

(1) simplicity of computation and versatility;

(11) respect of the rigorous bounds;

(1)  accuracy. J

By versatility, it is intended that we assess if the model can be extended to the cases Uf:
multiphase composites, non-spherical inclusions or diverse distributions of inclusion. 1'11=
IDD scheme is the most versatile one, since it is the only model that is valid for multiphase.
composites with various inclusion geometries and that can properly take into account the
influence of various inclusion distributions. It should furthermore be theoretically EPP!icamef
for non-ellipsoidal inclusions, according to Zheng and Du (2001). In addition, it has a simple.
and explicit structure, as well as MT and other double-inclusion type models. .
Many authors (e.g. Berryman 2006) argue that a consistent EMT should respect rigoroly
bounds such as the Hashin-Shtrikman (HS) or the Willis bounds that have been pmvcd to be
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ous. Noris (1989) found a simple three-phase example with disk-shaped particles for
.-.. the effective thermal conductivity estimated by MT violates HS bounds. It may thus be
tous to apply MT to multiphase composites containing more than two phases.
ersely, Ponte-Castaneda and Willis (1995) proved that their estimate may be interpreted
< orous bounds. The other double-inclusion type schemes that coincide in most cases with
w model are also likely to respect rigorous bounds.

: _ﬁnfmntatiun of the different schemes with diverse numerical simulations has revealed
+ the GSCS is generally more accurate than MT and double-inclusion type estimates in the
_._:; spherical inclusions. In addition, the GSCS and modified DIM are the only two
els that do not lead to unexpected results for the case of coated spherical inclusions that 1s
wctical importance for cement-based materials. However, the double-inclusion type
# s provide the closest estimations to the FE results of Roberts and Garboczi (2000) for
i portant case of an elastic body weakened by spheroidal voids. The accuracy of an EMT
strongly conditioned by the way in which the phase interactions are accounted for. For
stance, the dilute scheme does not take into consideration any interaction between
Jusions and frequently appears to be inaccurate in the present study. As already mentioned,
I and double-inclusion type estimates can also be seen as dilute models improved by
s ifying the far-field stress (see Eq. (11.45)). They only incorporate indirectly the interaction
tween inclusions and their immediately surrounding region. The GSCS integrates more
‘scly these interactions by embedding matrix and inclusions in the yet unknown effective
; ite medium. Table I1.1 aims at weighing the pros and the cons of the various theories in
) informal way.
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Micromechanical | Simplicity of use HERDRie Acﬂurx:;y ‘furl Aucuracﬂ for
g Ty and versatility rigorous non-spherica coate
g bounds inclusions inclusions
Dilute ok * * *
(e.g. Eshelby 1957)
MT (Mori and Tanaka o - _— -
1973)
IDD ke e e dedkek *
(Zheng and Du 2001)
Nasser 1993)
Modified DIM %k kR % *kk
GSCS (Christensen * pag—— * Bk
and Lo 1979)

*: [nsufficient, **: Moderate, ***: Good

Table I1.1: Table confronting the merits of the different EMTs presently reviewed.

Even though, the GSCS and modifed DIM are more appropriate for materials with coated
spherical inclusions, the IDD scheme seems to present the best compromise otherwise. It is
emphasized that this approach is more accessible and versatile than other double-inclusior
type models (Ponte-Castaftieda and Willis 1995). The IDD estimate shows in particular its
efficiency in the cases of macroscopically isotropic materials containing non-spherical
inclusions and therefore constitutes a suitable tool for the next chapter dedicated to the
influence of inclusion shape on the elastic effective properties of cement pastes.

5 INFLUENCE OF INCLUSION SHAPE ON THE LINEAR ELASTIC EFFECTIVE
PROPERTIES OF HCP (STORA ET AL. 2006a)

In most micromechanical models applied to HCP in Iiterature, all inclusion phases are
approximated by spheres for simplicity, though cement paste micrographs indicate that none
of these phases is really spherical. The present chapter assesses how the predictions of the
effective linear elastic properties of HCP change with the inclusion geometry. In particular, i
1s useful to detect the cases, for which these properties vary significantly and for which more
realistic geometric forms should be applied. The determination of the Eshelby tensor £ of
the inclusion phases is usually quite complicated for non-spherical inclusions and it generally
has to be estimated numerically except for some simple cases. In particular, the Eshelby
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e sor of spheroids presents the benefit of being analytically calculable (sec Eq. (I1.20)).
ar's why all inclusion phases are approximated by spheroids with different aspect ratios in
e to scrutinize the influence of inclusion shapes on the linear elastic effective properties of
ent pastes. The IDD scheme that has been previously identified to be suited for
.mting for the effects of non-spherical morphologies of inclusions is chosen for

ting these macroscopic properties.

he chapter is organized as follows. First, a dimensionless morphological parameter is
roduced to characterize the inclusion shape. Then, the cases for which this parameter
y .;ﬂly plays a significant role on HCP elastic macroscopic properties are investigated by
uccessively modeling each particulate phase as spheroids, which shape ranges from needle-
_ : to disk-like. Finally, an attempt is made to approximate the morphological parameter on
basis of experimental results. The spheroids representing the particulate phases in the
.icrnmcchﬂniczlt approach are then determined through this parameter. The estimations thus
ained for the effective Young modulus are compared with the results respectively
redicted by a homogenization model with spherical inclusions and by FE simulations.

--: Definition of a shape parameter for the inclusions

In the micromechanical schemes presented in the previous chapter, none of the basic input
parameters, i.e. the phase volume fractions and elastic properties, takes into consideration the
hology of the particulate phases. The aim of this section is to introduce a relevant
parameter approximating the real shapes of inclusions,

' to analyze the geometry of an inclusion / by considering the ratio of its volume V;
ver surface area A;. For example, this ratio for an arbitrary spheroid can be written as:

=f(£]a, (11.97)
a

1C @ is the radius of the circular base of the spheroid and & is either the minor axis for
-.5-- spheroids or the major one for prolate ones. The aspect ratio of the spheroid is
designated by r, = b / a. The most natural way to normalize ¥/ 4, is to divide this ratio by one

ird of the radius R,, of the equivalent sphere having the same volume V.

v, [
¢=—1_ with | G ' (11.98)
chq _Em =gn¢rc.n'r =0

18 shape or morphological parameter ¢ has the interesting property that it varies between 0

nner volume for a given surface area according to an isoperimetric theorem (Pélya and
“€E0 1951). The less spherical the inclusion is the lower ¢ becomes. Therefore the value of ¢
&1

ows for quantifying the asphericity of a particle.
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In order to assess the reliability of ¢, it is interesting to study if oblate and prolate spheroidal
inclusions with the same shape parameter and volume fraction actually have similar effects on
macroscopic elastic moduli. Hence, computations are performed in which an arbitrary
particulate phase » of HCP is approximated respectively by prolate and oblate spheroids,
while the other inclusion phases are represented by spheres. The evolution of the effective
elastic moduli is examined with these two types of spheroids as their parameter ¢ decreases
from 1 to 0. Fig. 11.14 schematically represents the randomly oriented spheroids
corresponding to an identical particulate phase r and their surrounding double-inclusions
inside the RVE. For simplicity these spheroids are assumed to have the same size. The
number of spheroids per unit volume is denoted by N,. The volume fraction ¢, of phase r can
thus be written as:

= N a'r, for oblate spheroids
3 : (11.99)

N, — for prolate ones
3 gt

¢, =NV

r apheroid T

According to this equation, the variation of the aspect ratio r;, and consequently of the shape
parameter ¢, of the spheroids can be performed in two different ways:
e The maximum axis of the spheroid (= a for an oblate one and b for a prolate onc)
varies and ¢, is kept constant, as illustrated on Fig. 11. 14 (bottom left).
e The maximum axis of the spheroid remains constant and ¢, changes, as illustrated on
Fig. I1.14 (bottom right).
For the present application, the first possibility seems more appropriate because it keeps a
constant volume fraction. But it presents the following deficiency: the spheroid maximum
axis appearing on the equation just above has to augment, as ¢ decreases, and in particular
tends to infinity, as ¢ goes to 0. The second possibility is more adapted for inclusion forms
tending to cracks, but we prefer the first option, since the inclusion phases present inside the
HCP are far from being crack-like.

Two examples on ordinary Portland cement pastes (CEM 1) are considered to verify the
efficiency of the shape parameter ¢. These CEM I pastes with w/c = 0.25, 0.40 and 0.50 used
for this study are defined in Tables 11.2 and 1.3 in terms of volume fractions and mechanical
properties of their constituent phases.. The following representation of the microstructure 1s
adopted to compute the HCP effective elastic properties: the CSH gel acts as a matrix in
which the main particulate phases presented in Part I, namely AFt, AFm, CH, CP and UC, are
embedded and play the role of inclusion (Fig. 11.15). This representation is close to the one of
the Constantinides and Ulm model (2004), except that a homogenized CSH gel is used instead
of the two CSH considered in their description.
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ccloseto 1

\W/

a) ¢, constant and b depending on ¢ b) b constant and ¢, depending on ¢
Figure 11.14: schematic representation of the evolution of the dimensions of prolate

Spheroids corresponding to an inclusion phase r with the shape parameter ¢:
a) ¢, constant; b) b constant (Stora et al. 2006a).
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a) Micromechanical representation b) Micromechanical representation
with spheroidal inclusions with spherical inclusions
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Figure I1.15: a) Two-dimensional representation of HCP with spheroidal inclusions based

on MT and double-inclusion type schemes (left); b) Two-dimensional representation of

HCP with spherical inclusions based on MT and double-inclusion type schemes (Stora et
al. 2006a).

The effective elastic properties of HCP arc estimated by means of the IDD estimate. The
cement pastes are considered as macroscopically isotropic. Consequently, for each particulate
phase of HCP, the corresponding double-inclusion should be taken as spherical. Nevertheless,
for a spherical distribution of randomly oriented spheroids, highly-concentrated inclusions
may overlap. The maximum volume fraction for which these spheroidal inclusions do not
overlap is calculated in Appendix IL.B. For higher volume fractions, a non-spherical double-
inclusion must be adopted and a volume average over all possible orientations must be
performed. Once its exact shape has been determined for each particulate phase r, the
eigenstiffness tensors of the various double-inclusions denoted by € enclosing the
inclusions V" are calculated from Eq. (11.30). The IDD estimate of the compliance increment
tensor H'2, applied to this representation of HCP microstructure with spheroidal inclusions
(Fig. 11.15) then results in:
HyS =[1-{Hi, 05| {m, ], (11.100)

with
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[Hi ) = tr (3, :J}J%ﬁ(ﬂﬂj-:ﬁ)l& (IL101)

where the curly brackets denote the average over all possible orientations, where tr denotes

_-I:.,.. rrace operator and where r = CH, CP, UC, AFt or AFm. The tensors Q" and Hj., are

seduced from the latter expression by using Egs. (11.6-7) and (I1.12-13).

k. input data required for the micromechanical estimations are the volume fractions ¢, and
... of each phase that can be found respectively on Table I1.2 for the six HCP samples and the
Ik and shear moduli, respectively denoted as K; and G, reading as follows:

K,=—L1 — and G, =—2i— with ie{AFt, AFm,CP,CH,CSH,UC}, (IL102)
C3(1-2v) 2(1+v)

vhere the Young modulus E, and the Poisson ratio v, of each phases are given in Table 1.3.

or sound and degraded HCP. The present input values are the same as those employed by
Kamali (2003) in her simulations.

Volume fractions in %

CEM I paste CEM II/A paste
wic = 0.5 0.4 | 0.25 0.5 0.4 0.25
CH 164 | 169 | 157 | 105 | 10.8 8.5
CSH 473 | 474 | 42,1 | 494 | 49.7 | 451
uc 10.04 | 1446 | 28 13 184 | 314
AFt 24 2.8 2.9 2.7 Z.3 29
AFm 0.16 | 0.14 | 03 0.4 0.4 1
Porosity (%) | 23.7 | 183 | 11.0 | 24.0 | 184 11.1

Table I1.2: Input volume fractions of principal hydrates, unhydrated clinker and
capillary porosity for six different HCP (Kamali 2003).

first example consists in approximating the initial capillary porosity respectively as
. late and oblate spheroids with varying shapes, while the other particulate phases are
u led as spherical inclusions. The different volume fractions of these initial capillary pores
C‘f_“p =11 %, 18.3 % and 23.7 % in the CEM 1 pastes with w/c = 0.25, 0.40 and 0.50,
ively. The effects of both types of porous spheroids on the effective Young modulus
;:Pintted en Fig. 11.16 for the three CEM [ pastes. It is worth noting that for this case of
; U8 inclusions the spherical shape optimizes the Young modulus. This can be understood
~. ively considering the fact that for a given area the spherical surface maximizes the inner
M (eg. Polya and Szego 1951). The curves on Fig. 11.16 show that prolate and oblate
5 Spheroids with an identical value for the morphological parameter do not have the
€ effects op Young modulus except for ¢ close to 1. The weakening effects of prolate
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porous spheroids compared to the spherical case are quite negligible, whereas oblage on
have a much more pronounced impact. These tendencies are even more marked for hi
volume fractions of initial capillary pores. In this condition, the parameter seems not tq |,
well appropriate except for values higher than 0.80. But it should be underlined that ¢
example corresponds to an extreme case, since the contrast between the elastic propertieg '
matrix and inclusion is infinite.
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Figure 11.16: Evolutions of the normalized effective Young modulus for sound CEM [
pastes with capillary pores as a function of the shape parameter ¢ for different volume
fractions. Solid lines: wic = 0.50 (ccp = 23.7%), dashed lines: w/c = 0.40 (ccp = 18.3%),
dotted lines: w/c = 0.25 (ccp = 11%) (Stora et al. 2006a). The subscript Sph means that
the modulus has been estimated using the spherical particle approximation.

The second example illustrates the case of finite contrast by focusing on unhydrated clinker
inclusions, which are stiffer than the CSH matrix. Their volume fractions in the three CEM 1 |
pastes are cyc = 10.04 %, 14.46 % and 28 % respectively. The curves obtained when g varies
from 0 to | for both types of spheroids are presented on Fig. 11.17; they are relatively close
and, for ¢ higher than 0.5, the Young moduli estimated with oblate and prolate spheroids aré
almost confounded. For lower values, oblate spheroids produce a stronger stiffening effect-
This result is not surprising in view of the evolution of the spheroids with ¢: as the latter 20€S
to 0, oblate spheroids tend to infinite disks whereas prolate ones tend to infinite needles, a3
may be observed on Fig. 11.14. Both types of spheroids thus tend to radically ditferent
geometries. For this particular example, ¢ turns out to be relevant on a limited range, where it
is useful for approaching real inclusion shapes. For inclusions whose geometrical shape 15
very far from spherical, ¢ is small and other parameters are required to precisely characteriz€
the effects of morphology on elastic moduli. This remark applies particularly when the
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_atrast between matrix and inclusion elastic properties is high, as in the first example

ted above.
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Figure 11.17: Evolutions of normalized effective Young modulus for sound CEM I pastes
with unhydrated clinker respectively represented by oblate and prolate spheroids, as a
function of the shape parameter ¢. Solid lines: w/c = 0.50; dashed lines: w/c = 0.40;
dotted lines: w/c = 0.25 (Stora et al. 2006a).

.2 Significance of the shape parameter for HCP elastic properties

h purpose of this section is to determine the particulate phases whose shape parameter may
e significant for the estimation of HCP elastic propertics. We now make the shape
parameter vary individually for each inclusion phase, while ¢ is kept fixed and equal to 1 for
ihe other particulate phases. The dependence of the elastic properties on g is thus investigated
ticcessively for all inclusion phases composing HCP in both sound and degraded pastes
defined in Table 11,2,

the microstructural description detailed in Part 1, it appears that needle-like ettringite
ould rather be characterized by prolate shapes and disk-like portlandite by oblate
hologies. Concerning unhydrated clinker, AFm and initial capillary pores, no evidence
Micates whether to preferentially use oblate or prolate spheroids for characterizing their
Mpe. Thys, they are represented by 50 % of both.oblate and prolate spheroids in this work.

influence of the shape of aluminates and portlandite on effective elastic properties of
1 HCP is negligible as shown on Fig. I1.18. On the contrary, the morphology of
la.l Capillary pores clearly plays a significant role due to the infinite contrast between
I and porous inclusions, as already highlighted in the preceding subsection. The relative
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significance of this porous phase depends on its volume fraction (ccp= 11 %, 18.3 % and 23 7
% for wic = 0.25, 0.40 and 0.50 respectively). The shape of unhydrated clinker may also have
a non negligible effect, since an increase of 25 % can be obtained as ¢ goes to 0 (see Fig,

1L.17).
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Figure 11.18: Evolutions of the normalized effective Young modulus for sound CEM I
pastes, as a function of the morphological parameter . Selid lines: w/c = 0.50; dashed
lines: w/c = 0.40; dotted lines: w/c = 0.25 (Stora et al. 2006a).

We now focus on the degraded state. On Fig. 11.19 are presented the evolutions of the Young
modulus as a function of ¢ for the three CEM 1 pastes when CH, AFt and AFm are degraded
successively. For ¢ higher than 0.1, the influence of dissolved ettringite and AFm shapes
remains negligible because of their scarce volume fractions (see Table 11.2). Conversely, the
influence of leached portlandite morphology increases considerably compared to the sound
state. This is partly due to its high volume fractions (> 15 %) but it should also be emphasized
that its effects are even more significant than the initial capillary pores one, although some of
their concentrations are higher (ecp = 11 %, 18.3 % and 23.7 %). As may be observed on Fig.
IL19, the decrease of the effective Young modulus is much more pronounced for oblate
spheroids than for prolate ones. Consequently, the elastic properties are more sensitive to the
flattened morphology of CH than to the initial capillary pores one, represented not only by
oblate spheroids but also by prolate ones (see Fig. 11.19).
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Figure I1.19: Evolutions of the normalized effective Young modulus for leached CEM 1
pastes, as a function of the morphological parameter g. Solid lines: w/c = 0.50; dashed
' lines: wie = 0.40: dotted lines: wic = 0,25 (Stora et al. 2006a).

Because of the straightforward calculation of the Eshelby tensor for spherical inclusions (see
Eq. (I1.18)), the spherical assumption is easy to use provided that morphology has a negligible
fect. In this section, the influence of inclusion shapes on the effective mechanical properties
8 shown to highly depend on the contrast between matrix and inclusion elastic parameters, on
he volume fractions and on the flattening of the particles. In particular, the morphology of a
ompletely dissolved phase such as portlandite can severely affect the effective properties of
eached HCP. Consequently, it is quite natural to wonder if the sphere really constitutes a
Teasonable approximation. The next section assesses the validity range of this spherical shape
Sumption and investigates the possibility of improving the micromechanical predictions by
Integrating some significant information about the shapes of HCP particulate phases.

Approximation of the particulate phases by spheroidal inclusions

¢ discussions on the morphology of the phase composing HCP microstructure in Part 1
f8ve highlighted the asphericity of all the hydrated phases and unhydrated clinker. Hence, it is
Naturg| 1 pose the following questions: what is the error induced by the spherical shape
SPProximation of the inclusions of HCP with respect to the homogenized isotropic elastic
P"‘-"P'—‘m&s'? Is it possible to improve the micromechanical predictions by adopting non-

pheric

cal inclusions?
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5.3.1 Assessment of the spherical particle assumption
All the particulate phases are approximated as spherical inclusions for simplicity, as depicteq
on the right-hand side of Fig. IL.15. By combining Eqs. (IL.6), (I1.12), (IL.18) and (I1.43-44),
the estimations of the effective bulk and shear moduli by the IDD model thus take the
following form:

ll-Zq[-—K'-a,—I] 1+):c,[--6r-,&,—1]
r K{'.TH Eln.d G:':I = {; r GI:'..';”

|+Zc, (e, -1) o 1+Zc,(ﬂr ~1)

where rE{AF.r,AFm,CPJ?H,UC}‘ where @ and £ are given in Eq. (I1.19), K and G,

K = Kes , (I1.103)

respectively denote the bulk and shear moduli of inclusion phase r and where K, and G,

respectively designate the bulk and shear moduli of CSH matrix. To check the validity range
of the spherical shape approximation, the micromechanical estimations given by the previous
equation are compared with the simulations of Kamali (2003) applied to a representative
panel of sound and degraded HCP. Two NIST models are used for the FE simulations:
CEMHYD3D and ELAS3D (Bentz 1997; Bohn and Garboczi 2003; Garboczi 1998). The first
one is a three-dimensional cement hydration and microstructure development modeling
package. The second one is a linear elastic FE program developed for computing the linear
elastic properties of random materials whose microstructure has been stored in a 2D or 3D
digital image. CEMHYD3D is probably the most well-known and efficient hydration model.
A unit cell of 100 pm in size was used for all the simulations. The limitations of these
simulations come from the size of the voxels being only of 1 pm’. For further details, the
reader should refer to the article of Haecker et al. (2005). Three CEM 1 and three blended
Portland cement pastes with 7.7 % silica fume content (CEM [I/A) with various wi/c ratios
(0.25, 0.40, 0.50) are considered. The estimations provided by Eq. (I1.103) are plotted on Fig.
I1.20 as a function of capillary porosity and are compared to the FE results of Kamali (2003).

For all sound pastes, the results of the micromechanical model are in good agreement with the
FE values, since the deviation compared to numerical simulations is always lower than 12 %.
In view of the fact that FE simulations are more difficult to perform than the present
homogenization method, the latter provides an efficient analytical tool for the prediction of
sound HCP elastic properties.
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Figure 11.20: Evolutions of the effective Young moduli estimated respectively by the IDD
model with spherical and spheroidal inclusions and by FE simulations (Kamali 2003)
for both a) sound and b) partially degraded HCP as a function of capillary porosity
volume fraction (Stora et al. 2006a).

ifz'-‘"‘lt:v::ming the partially degraded pastes, the FE simulations of Kamali (2003) assume the
mplete leaching of CH and aluminates but do not incorporate the degradation of CSH; we
Ve then adopted the same leaching scenario to be able to compare the different results. The
ifference between the results in the sound and the degraded pastes suggest a few general
““Mments. The detrimental effect of leaching on Young modulus is significant, though the
Clastic properties of CSH are kept constant during the degradation process. Kamali (2003)
Predicted a reduction of 58 % for the CEM 1 42.5 paste with w/c = (.50 and obtained good
:‘iuﬂfﬂtment with experimental results (Carde 1996), where total dissolution of CH caused a
Teduction of 63 % in the Young modulus of this cement paste. The numerical results of
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Kamali (2003) agree quite well with their measures considering the fact that the paste appearg
more degraded in the experiments than in the simulations. The decrease of the Young
modulus is lower for CEM II/A pastes, varying between 25 % and 40 %. The blended cement
pastes show better mechanical properties after degradation process than CEM [ because of
their smaller content of portlandite. This phase appears then to be predominant for leaching
problems.

For the leached HCP, the IDD estimations computed with spherical inclusions diverge
significantly from the numerical results for volume fractions of capillary porosity higher than
35 %. It 1s striking to notice that the predictions follow the same trend as in Berryman and
Berge (1996) and in Segurado and Llorca (2002): the more porous the material becomes, the
more the homogenization models overestimates the elastic properties.

Though volume fractions and mechanical data of the main phases composing HCP can be
determined in a relatively precise way, less is known concerning their morphology. Based on
relevant experimental results, an attempt to approach the components real shapes by means of
a morphological parameter 1s made. Although the breakthrough of three-dimensional analysis
techniques provides some interesting data, the introduction of realistic particle shapes in
homogenization models is still a difficult task. Due to the difficulty of computing the Eshelby
problem in the case of non-ellipsoidal shapes, it is gencrally impossible to incorporate the
phase real morphologies directly in micromechanical methods and approximations of these
shapes by simpler geometrical forms are necessary. The dilemma is to integrate the most
realistic shapes possible and at the same time conserve a calculable model. An analytical
solution is proposed in the present homogenization approach by introducing spheroids
adequately chosen with the help of the previously mentioned morphological parameter.
Therefore this section aims at finding some approximate values for ¢ on the basis of
experimental observations.

As an example, the morphological parameter ¢ of Portland cement particles is calculated with
the aid of the results of Garboczi and Bullard (2004). If use is made of their fit function

A= 8V"™ ¢ is not dimensionless. Consequently, we perform a new fitting of their results
with a fixed exponent of 2/3 and obtain:
A =5951%", (11.104)

The dimensionless morphological parameter ¢ is easily calculable from this new fit function:
=().81. (11.105)

& cement particles
This value agrees with the analysis of Garboczi and Bullard (2004) concluding that cement
grains are not spherical. By approximating the particle shape, ¢ introduces some important
information on material microstructure in the elastic moduli estimate, and may be regarded as
the most significant microstructural parameter after volume fractions.
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aue of ¢ for unhydrated clinker can be proposed by assuming that these clinker residuals

- fmm a shape similar to the initial cement particle one. The argumem for such an

L Eﬂ morphology issued from the Visual Cement Database (Bentz ct al. 2002) during
tration permit to properly assess this assumption and show that the latter may be too
alistic. Nevertheless, this approximation is maintained, since the residual clinker seems to
verit from a shape closer to unhydrated cement particles than spheres. Under this
sthesis, the unhydrated clinker keeps the same shape parameter value as the initial cement

0S: CUC = §coment portictes = 081. As illustrated on Fig. 11.21, this particulate phase is then

sproximated by equivalent oblate and prolate spheroids of respective aspect ratios of ryc =
and ruc = 3.5. However, the difference between HCP effective Young moduli estimated
means of clinker spheroidal inclusions having a shape parameter of ¢ = 0.81 with respect
the spherical case remains quite negligible except for high volume fractions of clinker. This
atement leads to the remarkable consequence that, though the shape of anhydrous residuals

noticeably non-spherical, it may not affect importantly the elastic properties.

hermore, some approximate values may be found for CH and AFt shape parameters. By
nining carefully micrographs of Brown and Hooton (2002), ettringite is characterized by
_f‘». g cylinders, whose height is at least ten times bigger than its diameter, as represented in
Fig. 11.21. These rather empirical dimensions provide a morphological parameter ¢ = 0.69,
having an insignificant influence according to Fig. IL18. portlandite is further assumed to
inherit from a similar shape inside the HCP as in non-confined environments, where it
crystallizes in massive hexagonal plates (Richardson 2000). Considering such a plate, whose
bicknl:ss is four times smaller than the maximum length of the regular hexagonal base, goy =
0.70 is obtained (see Fig. I1.21). This value leads to a relative variation of Young modulus
£omprised between 0.75 and 0.90 for the three HCP, which is not negligible.
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Figure 11.21: Approximation of realistic HCP particulate phases shapes by equivalent
spheroids (Stora et al. 2006a).

The spheroids (see Fig. 11.21) chosen from experimentally based approximate values for the
shape parameter of clinker, ettringite and portlandite (respectively with ¢ = 0.81, 0.69 and
0.70) may improve on the spherical assumption. The first value is based on the hypothesis that
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cidual clinker inherits from a shape similar to the unhydrated cement particles and the
.. , shape parameter values are equivalent to considering the shape of CH and AFt inside
'. CP identical to their well-crystallized geometry in non-confined environment. These
. imations appear quite idealized in comparison with the images of Bentz et al. (2002)
e}’ are probably more realistic than the spherical hypothesis. For the remaining phases,
mely initial capillary pores and AFm, the default value taken for ¢ is the spherical one: Cspy,
. The schematic micromechanical representation obtained with the equivalent spheroids
' -l from these novel approximations is illusirated on the left-hand side of Fig. 11.15.

. 11.20 recapitulates the different results obtained by the micromechanical models and
serical simulations. In the sound case, the model with spheroidal inclusions does only

und HCP. The present estimate becomes of higher interest for early-age cement pastes
_- the amount of clinker is particularly high. Otherwise, it is perhaps not worthy to take
heroidal shapes for clinker, ettringite and portlandite, the spherical assumption already
iving satisfactory results.

o the leached cases, the present estimations with spheroidal inclusions are closer to the FE
imulations than the ones with the spherical particle approximation except for the CEM II/A
e = (.25 paste but both diverge significantly from the numerical results for volume
fctions of capillary porosity higher than 35%. This improvement tends to prove that the
oposed approximations constitute a better alternative to the spherical assumption. More
eciscly, in the micromechanical representation illustrated on Fig. 11.15a), portlandite,
iringite and clinker are no longer idealized by spheres but are presently approximated by
pheroids with an estimated shape parameter. Compared to the spherical case, the elongated
_:f eroids of ettringite and the flattened ones of portlandite weaken the leached cement pastes,
¥hile those of unhydrated clinker tend to stiffen the effective material. Fig. 11.19 reveals that
HIE detrimental impact due to the oblate shape of portlandite prevails on the stiffening effects
e to the asphericity of unhydrated clinker and leached AFt. Therefore the variations
L Veen the two micromechanical estimations are mainly due to the strong influence of
Sached portlandite shape. It should be underlined that, though its shape is negligible in sound
.. ", it becomes a significant data for leached ones.

Vever, ‘the present model is still insufficient to predict correctly the effective elastic

I left by dissolved hydrates such as CH and AFt, whose shapes inside the HCP
3 | "Ostructure are difficult to describe. The shape parameter may not incorporate sufficient
~“Mation on the inclusion morphology. In addition, the values of ¢ estimated for UC, CH
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and AFt in the previous section are perhaps too approximate, even though they provide bettep

results than the spherical one. The latter values were introduced in order to give an €Xampla
illustrating the limits of the spherical particulate assumption and more precise u:|u=?.11ti'g.=_ug1,|,.‘.,,_1
data for the morphological parameter are necessary to build a sound homogenization mode] |
There is presently a lack of quantitative data concerning the hydrate shapes but better
estimations could be obtained by charactenizing more accurately their morphologies, fop

example with the help of the Visual Cement Database and the shape analysis techniqueg

developed recently (Bentz et al. 2002; Garboczi 2002). It constitutes a promising field of

mvestigation for future improvement of the homogenization processes.

Nevertheless, even if it were ideally possible to directly integrate the exact shapes of g

elementary phases in the homogenization process, it is not guaranteed that micromechanica]

estimations of the effective elastic properties would be fully accurate. Indeed, the DD

effective medium approximations may fail to adequately account for interactions between

highly-concentrated porous inclusions (e.g. Berryman and Berge 1996).

5.4 Conclusions of chapter 5

In the present chapter, the influence of inclusion shapes on the effective elastic properties of
HCP has been examined by successively modeling each particulate phase as spheroids, whose
shape ranges from needle-like to disk-like. The wvalidity range of the spherical inclusion
approximation in the homogenization process applied to both sound and leached HCP has also
been assessed. For this purpose, the estimations obtained with both spherical and spheroidal
inclusions are compared to the results of Kamali (2003) by FE simulations. On the one hand,
the spherical particle simplification turns out to be suitable for sound pastes. On the other
hand, our work evidences the limits of the spherical assumption for leached pastes. The
significant effects observed for the additional capillary porosity formed by leaching of
hydrated products shows the necessity of better approaching the morphologies of dissolved
phases such as portlandite.

Furthermore, an analytical way has been proposed to integrate more realistic inclusion
morphologies in homogenization estimates. The key point of this method is the introduction
of the morphological parameter ¢, which corresponds to the normalized characterizations of
the ratios between the volume and surface of inclusions. This parameter appears as the most
important one after volume fractions. Approximate values of ¢ for particulate phases such as
clinker, portlandite and ettringite are proposed on the basis of experimental results. These
phases are then represented by equivalent spheroids. This procedure allows for conveniently
coupling experimental observations and micromechanical modeling. The explicit
micromechanical estimations thus obtained for the effective elastic properties of HCP arc¢
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shown to give better results than those performed with the spherical approximation. However,
they are still insufficient for degraded cement pastes with capillary porosity higher than 40%.
Three reasons arc possible for these shortcomings. It could first be due to intrinsic
insufficiencies of the IDD micromechanical estimate. The latter might fail to properly account
for interactions between highly-concentrated inclusions. The application of a generally more
accurate scheme, like GSCS, may be of interest. Secondly, the convenient use of spheroids
determined by means of the morphological parameter presents the considerable advantage of
providing an analytical model but it may have its limits to approach fairly complex shapes.
Moreover, the values proposed for this parameter are very approximate due to the lack of
complete morphological information on hydration products. The further development of
three-dimensional image analysis methods (Garboczi 2002) should give the opportunity to
better characterize the morphology of inclusion phases, in particular for portlandite, and might
lead to improvement of homogenization methods in the field of cementitious materials
durability.

The third reason is that the one-scale representations depicted in Fig. I1.15 may be too simple
to correctly describe the complex microstructure of HCP, which heterogeneitics manifest
themselves at different scales. Therefore, the next chapter aims at building a more realistic
multi-scale homogenization model for cement-based materials and in particular for HCP.

6 CONSTRUCTION OF A MULTI-SCALE HOMOGENIZATION MODEL FOR
ESTIMATING THE ELASTIC PROPERTIES OF CEMENT-BASED MATERIALS

As already pointed out in Part I, the characteristic sizes of the phases composing HCP range
from the nanometer to micrometer scales. The scope of the present chapter is to investigate
the possibility of improving the micromechanical estimations of elastic properties of HCP by
ntegrating some significant information about the different sizes of its particulate phases. For
this purpose, the different micromechanical descriptions of cement pastes proposed in
literature are first reviewed.

6.1 A multi-scale approach for estimating the elastic effective properties of HCP

6.1.1  Review of the existing micromechanical models for cement pastes
To our knowledge, the application of micromechanics for estimating the isotropic linear
tlastic effective properties of cement pastes dates back to Zimmerman (1986). They modeled
HCP 45 4 two-phase composite consisting in a solid matrix weakened by spheroidal pores and
“Mployed the KT estimate to compute its elastic properties. A homogenization attempt for
G5 Pastes was also performed by Neubauer et al. (1997) using the differential scheme (e.g.
Norris 1989) but mechanical input values for the CSH phase were lacking. Owing to progress
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in experimental mechanics, elastic properties of all the main phases present in HCP are
nowadays measurable by nanoindentation techniques and many data may be found in the
literature (see Table [.3). Benefiting from these recent nanoindentation measures, a two-step
homogenization procedure for HCP on the basis of the MT model has been developed by
Constantinides and Ulm (2004). Their Young modulus estimations for both sound and leached
OPC type I pastes with w/c = 0.50 showed good agreement with experimental results. Bernard
et al. (2003) used the same two-scale description of microstructure and the self-consistent
scheme to study carly-age cement pastes and predict the solid phase percolation during
hydration process. They also obtained results consistent with experimental values.
Constantinides and Ulm (2004) distinguish two microstructural levels respecting the scales
separation condition: the first one denoted as | and ranging from 10 nanometers to 0.1
micrometer is characteristic of the two types of CSH, while the second designated by II and
varying from | micrometer to 100 micrometers corresponds to the scale where CSH can be
regarded as a homogeneous matrix with CH crystals, capillary pores, anhydrous residuals and
aluminates as inclusions. The first step consists in calculating CSH matrix effective propertics
from CSH™ and CSH®™ intrinsic values and the second one is to determine HCP effective
propertics with the aid of the previous result for CSH matrix.

At level I, the CSH matrix behaves as a heterogeneous material with an inclusion-matrix type

cxk

microstructure. The CSH®™ play the role of a matrix phase, surrounding the CSH™ as
inclusion. According to Constantinides and Ulm (2004), the latter phase modeled as spherical
inclusions has a characteristic size of 10® to 107 m. However, according to some authors
(Taylor 1997; Richardson 2000; Bary and Béjaoui 2006), the distinction between C SH™ and
CSH™ should be done only at a higher scale since these phases form successively from
cement grain surfaces, the CSH™ resulting mainly from higher confinement conditions and
from water accessibility during hydration reactions. At level II, the main phases are the
homogenized CSH, capillary pores, clinker residuals, and hydrated phases such as CH
crystals, AFt and AFm. Precisely, the CSH act as a matrix phase in which the other phases are
embedded and play the role of inclusion. The next section is devoted to the construction of
another multi-scale model that aims at representing more faithfully the microstructure of

cement pastes.

6.1.2 Construction of a multi-scale homogenization model for HCP

The proposed two-scale descrigtion of HCP is inspired by the one developed by Bary and
Béjaoui (2006) for diffusion. Two microstructural levels respecting the scales separation
condition are presently distinguished: the first ranging from a few tens of pm to about 100 pm
is typical of the sizes of hydrated cement grains, while the second one ranging from 0.2 pm to
a few tens of pm corresponds to the scale of hydration products, such as CH or AF, and of
capillary pores. These two scales are respectively denoted as [ and 1.
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The level I corresponding to the biggest scale of HCP is described first. This level depicted in
Fig. 11.22 represents the hydrated cement grains. During the hydration of cement particles,
two layers presently defined as inner and outer layers form successively from cement grains
surface. The inner layer is less porous than the outer one, since the first one results from
higher confinement conditions and from poorer water accessibility during hydration process.
Generally, an anhydrous part of the cement particles remains after hydration has stopped and
constitutes a rigid core surrounded by these two heterogeneous layers. The GSCS and
modified DIM derived in the present manuscript are the two most suited effective medium
schemes for estimating the eclastic properties of composite with layered inclusions, as
evidenced in subsection 4.4.2.2, and are thus employed to compute such a model of
microstructure. The present description is based on the assumption that the cement grains
supposed initially spherical hydrate forming doubly-coated spheres that fill the HCP
microstructure. The spherical particle approximation was shown to be reasonable for
modelling unhydrated clinker in the previous chapter.

The level 11 also depicted in Fig. 11.22 corresponds to the scale of the heterogeneities of the
two layers. It is commonly accepted that two different types of porous CSH are associated
with each layer. In the inner layer, the CSH™ behave as a matrix phase embedding inclusions
of CH and aluminates. Similarly, the external layer has matrix-inclusion type morphology,
where CH, the aluminates and the capillary pores play the role of inclusions enclosed in the
CSH™. During hydration, the outer coatings of the hydrated cement grains expand so that
they get in contact with each other and we can assume that the capillary pores get entrapped in
the outer coatings. The two layers, schematically illustrated on Fig. 11.22, are estimated by
means of the IDD estimate that is appropriate for materials with matrix-inclusion morphology.
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Figure I1.22: Schematic of the levels I and Il of the two-scale representation used for the
estimation of the effective elastic properties of HCP.

6.1.3  Predictions of the elastic properties of sound and leached HCP

The estimations of the elastic moduli of HCP by the present multi-scale homogenization
model are validated by respectively comparing with the numerical results from Kamali
(2003), two experimental results on sound pastes (Constantinides and Ulm 2004; Gall¢é et al.
2004) and one on uniformly leached ones (Constantinides and Ulm 2004). Other experiments
conducted by Carde (1996) and Gallé et al. (2004) have mcasured the stiffness reduction of
HCP due to leaching. However, their results are not used for the present validation, because
the degradation state of the CSH inside their chemically altered samples may not be uniform.
The volume fractions of the HCP elementary phases collected in Table I1.3 are computed by
means of the Jennings model (see Eq. (I.1)), the total porosity being adjusted with the total
water porosity measured experimentally. The volume fraction of capillary porosity is taken
from the experimental results of lgarashi et al. (2004).
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.
Volume fractions in %
CEM 1 52.5 OPC type | paste
(Gallé et al, 2004) (Constantinides and Ulm 2004)
wlc = 0.45 0.50
Hydration rate 0.87 0.77
CH 15.1 11.3
CSH™ 21.6 15.6
CSH™ 28.8 42.8
ucC 4.3 5.0
Aluminates 14.2 6.3
CP 3.6 6.0
Porosity (%) 31.9 385
Water porosity (%) 326 39.7

Table I1.3: Input volume fractions of principal hydrates, unhydrated clinker and
capillary porosity for two different HCP.

tantinides and Ulm (2004) measured that the stiffness modulus of a uniformly leached
' type 1 paste decreased to about 3 GPa representing a 84 % decay. To obtain a uniformly
degraded paste, the sample with a diameter of 11.5 mm was attacked by an ammonium nitrate
'.lutinn during 5 months. Inside this leached sample, Constantinides and Ulm (2004)
furthermore asserted that even the CSH™ and CSH®™ reach a uniform degraded state and
measured by nanoindentation that their Young moduli diminish from 21.7 GPa to 3 GPa and
irom 29.4 GPa to 12 GPa, respectively. Their bulk and shear moduli, designated by Kcsgin,
desuim for CSH™ and by Kesgews Gesuen for CSH™, are immediately deduced from Eq.

U .102). The input elastic parameters for the two sound phases are then equal to K, = 18.8
csim = 11.9 GPaand K., = 13.9 GPa, G, = 8.8 GPa, while their degraded elastic
Properties decrease to K, = 7.7 GPa, Glyy,, = 4.8 GPa and Ky, = 1.9 GPa, Gly,., = 1.2

_ a (the subscript / stands for leached state). All these moduli are calculated supposing that
._;.'1 Poisson ratio of both phases is not sensitive to leaching and remains equal to 0.24
Constantinides and Ulm 2004). This approximation is made due to the lack of experimental
4k on the Poisson ratio.

8 1123 displays the effective Young moduli estimated for sound pastes and a uniformly
hed one and shows that they are in good agreement with the experimental data from
P Santinides and Ulm (2004) and from Gallé et al. (2004). It is worth noting that the
n-,ﬂli,}ns of the multi-scale model computed respectively with modified DIM and GSCS at
1 (Fig. 11.23) are presently almost confonded due to the scarce volume fractions of
ket reg;dyals. Experimental data on elastic properties of uniformly degraded pastes are
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difficult to find, since these experiments cost a lot of time. To further validate the multi-scale
homogenization model, it is now proposed to confront its predictions with the numerica]
results of Kamali (2003).
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Figure I1.23: Comparison between the effective Young moduli estimated by the multi-scale
model with experimental measurements (Constantinides and Ulm 2004; Gallé et al.
2004) on both sound and degraded HCP.

The input mechanical data required for computing the multi-scale model are the same as those
employed by Kamali (see Table 1.3) except that in the micromechanical model the CSH gel is
modelled as two phases, CSH™ and CSH®™, which elastic moduli are given just above. In
addition, the relative volume fractions of these two types of CSH are computed by means of
Eq. (1.2) with a hydration rate assumed equal to 0.60. The predictions of the multi-scale model
for the macroscopic Young modulus of undecalcified pastes are plotted in Fig. 11.24 and are
very close to the numerical results. Two different schemes, namely modified DIM and GSCS,
have been employed to compute the elastic properties of level 11 of the model. The GSCS
provides the closest estimations to the FE results. The mean deviation between the results
obtained with the modified DIM and with the GSCS and the numerical ones are about 3 %
and 7 %, respectively.

In order to compute the multi-scale model for the case of partially leached pastes simulated by
Kamali (2003), it is necessary to know the volume fractions and the elastic properties of
degraded CSH™ and CSH™. It has been observed that the relative amount of both CSH types
seems not to change when leaching occurs (Constantinides and Ulm 2004; Thomas et al.
2004). It is furthermore assumed that the CSH elastic moduli are not affected by
decalcification as in the simulations of Kamali (2003). This approximation may be justified
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A
by the fact that the progressive evolution of their elastic properties during the leaching process
. difficult to characterize experimentally. Velez et al. (2001) showed by means of
m:indcntatiun tests that the Young moduli of the partially decalcified CSH do not
3 gniﬁﬂﬂ““f change especially if their C/S ratio is superior to 1.
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~and by FE simulations (Kamali 2003) for both a) sound and b) partially degraded HCP
as a function of capillary porosity volume fraction.

€ mean deviation with respect to the pumerical simulations is about 12 % for both
estimates. However, the estimations computed with the modified DIM can deviate by more
30 %, whereas those computed with GSCS do not. Therefore GSCS that is a little more
iccurate than the modified DIM is chosen in the ensuing computations of the multi-scale
lomogenization model.

1|

490Ut 7 % for the estimations obtained with GSCS. By confronting Figs. 11.20, 11.24 and 11.25,
it seems that the shape of the inclusion modelling portlandite has a moderate influence on the
echanical predictions except in the particular case of leached pastes with a capillary
' T0sity higher than 30 %. The use of oblate spheroidal inclusions instead of spherical ones in
Multi-scale homogenization model then leads to a visible improvement of the estimations
the Young moduli of such porous pastes. However, CH will be modeled in the ensuing as
SPhicrical inclusion for simplicity but also because of the difficulty to characterize the real
of portlandite crystals present in HCP microstructure.
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Figure IL.25: Evolutions of the effective Young moduli estimated by the Constantinides and
Ulm model, by the present multi-scale one and by FE simulations (Kamali 2003) for
both a) sound and b) partially degraded HCP as a function of capillary porosity volume
Sfraction.

By further comparing Figs. 11.24 and [1.25, the estimations of the proposed multi-scale models
obtained ecither with spherical or spheroidal CH inclusions can both be seen to significantly
improve on the predictions of the Constantinides and Ulm model (Fig. 11.25). Two main
reasons may explain these improvements achieved with the present multi-scale model in
comparison with the Constantinides and Ulm one. First, the effective elastic properties are
computed with GSCS at level I and the IDD estimate at level 11, which have both been shown
precedently to be more accurate than the MT model usually employed (see Figs. 11.13).
Second, the present two-scale description of HCP microstructure may be more realistic than
the representation proposed by Constantinides and Ulm (2004).

6.2 A multi-scale approach for estimating the macroscopic elastic properties of mortars

The application of homogenization methods to mortars is complicated by the lack of
experimental data on ITZ elastic properties. To circumvent this difficulty, many authors have
estimated these characteristics of ITZ from experimental values of mortars by inverse analysis
employing for instance GSCS (e.g. Ramesh et al. 1996; Hashin and Monteiro 2002) or DIM
(Yang 1998) as upscaling methods. Unfortunately, very different values have been identified
for the Young modulus of ITZ from one author to another, as pointed out in Eq. (1.5). An
alternative multi-scale homogenization approach based on the modified DIM presented
previously is proposed to predict the elastic properties of mortars without having to estimate
the elastic moduli of ITZ by inverse analysis.

In addition, the total volume fraction occupied by this zone is also difficult to gain
experimentally and also has to be estimated. The predictions for the volume fraction of ITZ
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fluctuate from one author to another depending for instance on the method employed and on
the thickness retained for ITZ. As an illustration, the values estimated can vary from about 8§
g (Sun et al. 2007) to 30 % (Heukamp 2002). The use of statistical models (e.g. Lu and
Torquato 1992) taking into account the overlapping between these transition zones is
gcnel"ﬂ“!!' required to compute accurately this volume fraction. The multi-scale model
' geveloped below furthermore presents the salient feature to be computable without having to
Jook after the volume fraction of ITZ.

‘The use of GSCS represented in Fig. 11.4 is widespread to predict the elastic properties of
mortars (e.g. Ramesh et al. 1996; Hashin and Monteiro 2002). In the present work, mortars
are represented as a more detailed multi-scale microgeometry depicted on Fig. 11.26. Diverse
coated spheres having different sizes are nested inside a matrix region filled by the bulk
cement paste. The coated-spheres are defined as follows: the core and the outer layer are
espectively occupied by sand particles and ITZ. A few representative grains of different sizes
¢ chosen to discretize the wide size distribution of sand particles with the aid of
experimental data on the mortar grading. The grading curve of the mortar characterizing the
.i'-_a nulometry of its sand particles is generally provided by the producer. As an example, the
mortar with fine Nevada sand particles employed by Heukamp (2002) is chosen for the
present study. Three representative sizes of sand particles, with radii R, = 0.085 mm, R,= 0.20
mm and Ry = 0.315 mm, are adopted to represent the sand aggregates of this mortar, on the
'. asis of the grading data of Heukamp (2002) collected in Table I1.4. The total volume fraction
occupicd by sand is about 50 % (Heukamp 2002).

Size of sand Relative
particles proportion
0-0.17 mm 30 %
0.17-0.23 mm 30 %
0.23 - 0.50 mm 40 %

Table I1.4: Grading of the fine Nevada sand used for mortars by Heukamp (2002).
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Figure I1.26: Schematic of the representation used for the estimation of the effective elastic
properties of mortars.

The thickness of ITZ inside a given mortar is generally observed to remain constant
regardless of the aggregate sizes, according to diverse experimental observations (Heukamp
2002: Monteiro and Ostertag 1989). In the present description, this thickness is consequently
assumed to be constant and equal to 20 pm (Heukamp 2002). The volume fractions occupied
by ITZ obtained with the present representation is 21.7 %.

The Young modulus and Poisson ratio of sand aggregates are respectively equal to 62.5 GPa
and 0.21 (Heukamp 2002). The elastic properties of 1TZ and HCP can be computed by means
of the previous two-scale model depicted in Fig. 11.22. However, a few assumptions on how
the diverse phases are dispersed in ITZ and HCP are necessary. Heukamp (2002) measured
that the water porosities of plain cement paste and mortar were equal to 39.7 % and 27.5%,
respectively. For simplicity, the cement matrix in mortar is supposed to have exactly the same
composition as the plain cement paste, which composition is given in Table 11.4. As a
consequence, only 11.2 % of the mortar porosity is entrapped inside the cement matrix
representing 28.7 % of the mortar in terms of volume fractions, the rest of the porosity being
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gcattered in ITZ. The porosity thus obtained inside ITZ is about 75 %. Because of this high
porosity, dense phases like CSH™ and UC are not likely to be present in ITZ. Therefore, the
only solid phases inside ITZ are assumed to be CH, aluminates and CSH™ that act as a matrix
(Fig. 11.26) and contain about 36 % of gel pores (Jennings et al. 2007). The respective volume
fractions of CH and aluminates in ITZ are considered to be identical to the ones in HCP. The
respective volume fractions of capillary pores, CSH™, CH and aluminates inside ITZ are thus
equal to 70.7 %, 11.6 %, 11.3 % and 6.3 %. The elastic properties of ITZ are computed by
means of the IDD estimate in Eqgs. (11.43-44) and the HCP elastic moduli are estimated by the
multi-scale model developed in the precedent section. The elastic properties of the mortar are
then predicted from Egs. (11.95-96) with the aid of the previous results for ITZ and HCP. For
the sake of comparison between GSCS and modified DIM, the GSCS with one size of
aggregates is also employed to compute the elastic propertics of the mortar. The different
estimations thus obtained for the Young modulus of these different composites are collected
in Table I1.5 and compared with experimental data (Heukamp 2002).

Phases Young modulus Young modulus
predicted (GPa) predicted (GPa) Experimental
with 3 sizes of with 1 size of Measures (GPa)
aggregates aggregates
Sound | Leached | Sound | Leached | Sound | Leached
ITZ 4.6 2.8 4.6 2.8 - -
HCP 23.1 3.0 23.1 3.0 22.8 i)
Mortar 25.1 X7 274 33 25.1 4.8

Table 11.5: Comparison of the micromechanical estimations with experimental data on
cement pastes and mortars (Heukamp 2002).

Good agreement is found for the different micromechanical predictions with the experimental
measurements but the Young modulus of the uniformly leached mortar is somchow
Undercstimated by the various models. This may be due to an excessive porosity inside ITZ
Waining more than 90 % in the present representation. The modified DIM with three different
Wpes of aggregates gives the closest estimation to the experimental result on sound mortar,
hile GSCS is the most accurate in the case of uniformly leached mortar. Despite the fact that
¢ modified DIM with three diverse sizes of aggregates provides the best predictions of the
*OUnd modulus of the sound mortar, the GSCS will be employed in the ensuing Parts for
Puting the elastic moduli of mortars for two motives. First, it is more coherent to adopt
 Same scheme for estimating both the effective properties of HCP and mortars. Second, the
i"'H of the involved mortars may not always known precisely, so that it is not possible to
the modified DIM with diverse sizes of sand grains.
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CONCLUSIONS OF PART 11

The first goal of the present Part is to exposec some of the fundamental aspects of
homogenization techniques and review in a non exhaustive manner some EMTs that may be
of interest for predicting the linear elastic properties of cement-based materials. By assessing
these methods using different criteria and by testing their accuracy on particular cases that
have computed numerically, a small set of EMTs, like IDD, GSCS and the modifed DIM, are
outlined to present valuable features for estimating with a good precision the elastic moduli of
cement-based materials and are retained for the construction of a homogenization model
specifically suited for these composites. According to the authors’ knowledge, the modifed
DIM proposed in the present manuscript by revisiting the double-inclusion scheme of Hori
and Nemat-Nasser (1993) has not been derived elsewhere.

The influence of inclusion shapes on the micromechanical estimations of the effective elastic
properties of HCP has then been investigated. This study puts in evidence the fact that the
inclusion shapes of phases such as portlandite have a visible impact on the predictions of the
macroscopic Young moduli of leached pastes. However, it also appears possible in most cases
to approximate the particle phases of HCP as spherical inclusions, even though their real
shape inside the microstructure of cement pastes (see Figs. 1.2 and 1.3) are far from being
spherical.

On the basis of the set of EMTs retained from the preceding review, a two-step
homogenization model is finally developed for the prediction of the macroscopic elastic
properties of HCP and mortars and validated by confronting with experimental measurements
performed on standard pastes and mortars. The developed model is furthermore applied to

cement pastes and mortars submitted to leaching.
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Appendix A: Input data for the comparison between EMTs and numerical simulations

The basic input data of the simulations of Garboczi and Berryman (2001) and of Wriggers and
Moftah (2006) are gathered below.

Phases Elastic properties
E (GPa) v
Typel |62.0 0.2
|_aggregate
Typell |74.5 0.2
| _aggregate
Mortar 11.6 0.2

Table I1.A.1: Basic input data for the simulations of Wriggers and Moftah (2006).

Phases Volume fractions | Elastic properties
E (GPa) v
Sand 0.091 5 0.2
aggregates
ITZ 0.392 - 0.3
HCP 0.517 1 0.3

Table 11.A.2: Basic input data for the simulations of Garboczi and Berryman (2001).
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Appendix IL.B: Non-overlapping condition and determination of the duuhle-inclusiun
geometry for highly concentrated spheroidal inclusions

If an inclusion overlaps its double-inclusion, the homogenization calculations fail to work
The inclusion volume fraction ¢, is represented by the ratio of inclusion volume on the
double-inclusion one. When »# #1, the condition on volume fractions which has to be
respected in order to avoid overlapping of inclusions reads (Ponte-Castaneda and Willis
1995):

(ILB1)
(r; >1)

These equations express the condition for the spheroidal inclusion not to overlap the double-
inclusion (see Fig. ILB.1). The use of a spherical double-inclusion enclosing spheroids has the

consequence that ¢, <¢,, . Note that this condition is even more restrictive for prolate

spheroids than for oblate ones due to the presence of the square in the expression (ILB1;) of
i
For concentrations higher thanc,, , the double-inclusion can no longer be taken as spherical.
To avoid any risk of overlap, it is sufficient to adapt its geometry to the inclusion one (see
Fig. ILB.1). Its aspect ratio ryy is suitably chosen so that the IDD remains valid for any
concentration as illustrated on Fig. [1.B.1.

In other words, the determination of the double-inclusion geometry is now linked to the
choice of inclusion shape. The IDD estimate taken with such a shape for the double-inclusion
works for any concentration and is called the full-range IDD (Zheng and Du 2001).
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Part 111
PREDICTION OF THE MACROSCOPIC DIFFUSIVITIES Qpf
CEMENTITIOUS MATERIALS

The macroscopic diffusion coefficients of dissolved chemical species such as chlorides of
sulfates in saturated cementitious materials control the degradation process of these materials,
Therefore they represent important data for predicting the service life of cement-based
materials, which can serve as engineering barriers for the disposal of nuclear waste,
Homogenization models aim at estimating the macroscopic diffusion coefficients of
cementitious materials from their microstructure and their phase diffusive properties. The
present Part is concerned with the construction of a homogenization model for predicting the
effective diffusivities of cement-based materials. As already mentioned in Part I, these
materials are complex multi-scale porous media, where the pore size distribution varies by
several orders of magnitude (from | nm to more than 10 pm). On the basis of these
observations, a multi-scale approach is adopted to deal with such a porous medium as in
linear elasticity (e.g. Constantinides and Ulm 2004).

Some theoretical connections exist between elasticity and diffusivity. An elasticity problem
can be decomposed in three diffusion problems (Milton 2002). Hence, the derivations
exhibited in the present Part are generally much simpler than the ones presented in the
previous Part. Nevertheless, it does not mean that the development of a homogenization
model for predicting the effective diffusive properties of cement-based materials is a simple
task, since the fact that the derivations in diffusion are easier than in linear elasticity is
compensated by other difficulties. Indeed, much less information seems to be available on the
phase diffusivities than on their elastic properties in particular for the CSH. Another difficulty
for building a suited homogenization model for concrete materials consists in reproducing the
highly non linear changes of their transport propertics measured experimentally as their total
porosity varies (e.g. Oh and Jang 2004).

The present Part is organized as follows. The first chapter assesses the capacity of matrix-
inclusion type methods that have been focused on in linear elasticity to face this aspect. In the
second one, other theories (Bergman 1976; Bruggeman 1935; Kirkpatrick 1971; 1973) more
adequate for predicting these non-linear effects are discussed. A novel estimate for the
transport properties of random heterogencous media, such as conductivity and diffusivity, is
then proposed by exploiting the main ideas underlying a celebrated exactly solvable
assemblage of Hashin and Shtrikman (1962). For random heterogeneous media consisting of
high contrast phases, the derived estimate is apt to capture the sudden variations of the
effective diffusivity of HCP generally observed experimentally (Fig. 1.5). The third chapter
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sents the multi-scale homogenization approach incorporating the latter estimate developed
predicting the macroscopic diffusion coefficients of HCP and mortars. The model
'ﬂcwh*P‘:d will then be implemented into the ALLIANCES platform (Montamal et al. 2006;
7) so as to perform simulations of chemical degradations of cement-based materials
sresented in Part V.

diffusion, we mean mass transfer generated by concentration gradients of aqueous species
.'mugh saturated materials. The results obtained for diffusion are directly transposable to

her transport properties such as electrical or thermal conductivity.

REVIEW OF MATRIX-INCLUSION TYPE EMTs FOR PREDICTING THE
DIFFUSIVITIES OF POROUS MEDIA

This chapter aims at assessing if the matrix-inclusion type EMTs, already presented in Part 11,
arc suited for estimating the macroscopic diffusive properties of porous media. The equations
necessary for deriving these EMTs in the case of diffusion are quite alike the ones presented
in the previous Part except that second-order tensors are now involved instead of fourth-order
ones (Milton 2002), so that only the most basic or important ones are presently recalled.

7.1 Fundamental principles of matrix-inclusion type EMTs

The computations presented are analogous to the one performed in linear elasticity. However,
the basic formulae necessary for applying homogenization methods are recalled for clarity.

72.L.1 General principles of fmmnlrgenizaﬁan methods

The first step of these methods consists in representing the microstructure of the concerned
Material by a RVE, such as the one depicted in Fig. 11.1, composed of a matrix phase, indexed
by M, and of P particulate phases, which are assumed to be individually homogeneous (Fig.
IL1). Their diffusion tensors are respectively denoted as D, (»= 1, ..., P). The same notations
are used as in the previous Part.

The RVE is subjected to uniform ions flux vector over its surface 8V;

J.(x)=J".n, VxedV, (1L 1)

Where J,(x) denotes the ions flux vector at a given p.uint x of the surface and J™ is a uniform

flux vector, The operator *." indicates a simple contraction. At the scale of the heterogeneities
of the RVE, the equilibrium law and Fick’s constitutive one take the form:

div(J(x)) =0, VxeV, (111.2)

J(x) = —D(x). g(x), VxeV, (111.3)
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where J(x), D(x) and g(x) designate the microscopic flux vector, diffusivity tensor ang

concentration gradient of ions at a given point x of the RVE, respectively. The macroscopic
flux tensor J is defined as the volume average <J >, of the microscopic one J over ¥ ang

can be shown to be equal to J™:

= 1 .
I=— IJ(x}dV =J", (11L.4)

¥
The ensuing relation is also obtained from Eq. (I11.3) by performing averaging operations on
the entire volume of the RVE:

g=-D""'J, (111.5)
where J and g are respectively the averages of the microscopic flux and concentration

gradient tensors on the total volume of the RVE. Estimations of these averages by means of
the diverse homogenization techniques presented before then allows for predicting the

effective diffusivity tensor D" of the material. In the case of a macroscopically isotropic
composite, the latter tensor may be written as:

p'=1lp, (11L.6)
3

where 1 is recalled to be the second order identity tensor and D’ is a scalar.

7.1.2 Presentation of the Eshelby problem

7.1.2.1 Presentation of the Eshelby theorem

The Eshelby theorem presented in subsection 4.1.2 is also applicable in diffusion and is
therefore briefly recalled below. A homogeneous ellipsoidal inclusion /, occupying a domain

Vyand having for diffusivity tensor D,, is enclosed in an infinite matrix, which diffusivity
tensor is denoted as D, . The concentration gradient through this single inclusion subjected to
a fictive concentration gradient g, which is uniform inside the inclusion and vanishes
outside, is uniform:

g/ =A.g, (11.7)
where A, is called the Eshelby or the depolarization tensor (e.g. Torquato 2001) of the
inclusion / expressed as:

(A/), = [rly-x)av,, (11L.8)
¥

where the operator I', (y—x) is related to the Green function G, (y—x) by:

F(y-x)=G,(y-x). (111.9)
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The Eshelby tensor thus links the concentration gradient inside the homogeneous ellipsoidal
. jusion surrounded by an infinite medium to its fictive concentration gradient. The main

;r.. 1 (Eshelby 1957). The Eshelby tensor is generally quite difficult to determine analytically
.':I‘.-u has a very simple expression in the spherical homogeneous inclusion immersed in an
.' initely large isotropic matrix (e.g. Torquato 2001; Milton 2002):

A, =11, (111.10)
3
he Eshelby tensor of a spheroidal homogeneous inclusion also presents the benefit of being

analytically calculable (e.g. Torquato 2001) and its expression for a spheroid with aspect ratio
r, which revolution axis is oriented along the e; axis, is:

0 0 0
-lo 0 0 | (IIL11)
0 0 1-20
Llo b by Bl redi \
7] ) Y [

with Q=1 - -
1 r 1

+ 1
-yr =1
LI Jes tan 3
2 -1 - -~

. rz2l
, r=l.

7.1.2.2 Extension of the Eshelby tensor to spherical isotropic inhomaogeneities

On the basis of the work of Duan et al. (2006) in linear elasticity, the Eshelby tensor in
diffusion for a spherical isotropic inhomogeneity with a homogeneous shell (see Fig 11.2)
embedded in an infinite matrix is derived in Appendix IILA. By introducing the quantity j’
called “polarizibility” by analogy with dipoles in electricity defined as (c.g. Torquato 2001):
D.-D

b 1112
A D,+2D,’ [ )

a simple closed-form solution is found for the Eshelby tensor denoted as A} of a spherical

l“I'H|:ri=: inhomogeneity with a homogeneous interphase enclosed in an infinite matrix, as
Gepicted in Fig, I1.2:

%+2ﬂf’p’]l, (I1L.13)

With P=rlr,, where the radii », and r, have been defined in Part II (see Fig. 11.2). The
¥ 'ﬂri?:ibilit}r [/ practically links the perturbation of the concentration gradient due to the

ion of a fictive concentration gradient. Its use will be very practical to lighten the diverse
E]
Ts presented in the ensuing. The latter formula is of great utility, since it allows for
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determining the average concentration gradient inside the domain occupied by the spherjgy)
inhomogeneity and its homogeneous interphase in response to a prescribed uniform fictive
concentration gradient in the inclusion (Fig. [1.2):

g =A't, (111.14)
where the Eshelby tensor A) for the spherical inhomogeneity with its homogeneoyg

interphase will be referred to as inhomogeneous Eshelby tensor in the ensuing (Duan et 4]
2006).

7.1.2.3  Presentation of the equivalent homogeneous inclusion method
First of all, let us consider the situation in which no heterogeneous inclusion is inserted in the
infinite matrix with diffusivity tensor D,,, which is subjected to a uniform far-field flux J=.
In such case, the flux field is everywhere equal to J* and the concentration gradient field is
such as:
g, =D, J". (111.15)

A heterogencous inclusion / occupying a volume V) with diffusivity tensor D, is now inserted
in this virgin medium and we are interested in calculating the average g , of the concentration

gradient field over V;. The microscopic concentration gradient decomposes itself into two
parts:

g/(x)=go+g/(x), Vx, (IIL.16)
where g,'(x) corresponds to the perturbation of the concentration gradient caused by the

insertion of the heterogeneity. In order to apply the Eshelby theorem, the heterogeneous
inclusion is assumed to be substituted by a homogeneous fictive inclusion with a diffusivity

tensor denoted as D,, that is subjected to an appropriate uniform fictive concentration

gradient g . The latter must be chosen in such a way that the same average flux and

concentration gradient fields are obtained in the homogeneous fictive inclusion and in the
heterogeneous one:

-J;=D,.g,=D,.(g, g )and g =g, +A.g" (I11.17)
By solving g" in (I11.17;) and substituting its expression in (111.17,) the following solution is
obtained for g, :

— =1

g =[1+A,.D, ".(D,-D,)] .g,. (11.18)

By carrying out an analogous reasoning as in Eqgs. (11.28-30), the volume average J; of the
microscopic flux can be expressed as:

J,=[1+0).H,]".J", with ©} =D,,.(1-A,) and H, =D, -D,,”", (IIL19)
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where @) is called the eigendiffusivity tensor of the single inclusion I embedded in the

infinite reference medium by analogy with the eigenstiffness tensor in linear elasticity (Zheng

and Du 2001) and where H, is the resistivity increment tensor of the inclusion. The

eigendiffusivity tensor @' can be determined in the case of spheroidal inclusions by means

of the expressions of the Eshelby tensor given in Eq. (IIL.11). For more complicated cases, the
Eshelby tensor usually has to be estimated numerically (Douglas and Garboczi 1995). The
ensuing derivations are therefore limited to the case of spheroidal inclusions. The next section
gathers the basic expressions for the effective diffusive properties predicted by the EMTs
prese.nt&d in Part I[.

7.2 Basic expressions of EMTs for estimating macroscopic diffusivities

Various EMTs have been presented in depth in the previous section. The derivations of these
methods for predicting the material effective diffusivity that are very similar to the ones
written previously are not recalled for conciness. However, their final expressions are enlisted

below.

7.2.1 Classical matrix-inclusion type estimates
In such type of EMTs, a matrix phase designated by the letter M is supposed to enclose the
other phases modelled as inclusions. As in Part [I, the effective resistivity increment tensor H
of the heterogeneous material defined as follows is introduced:

00 W (111.20)
The effective diffusivity tensor of the material can be immediately deduced from the

knowlegde of this resistivity increment tensor:

D' =[1+D,.H].D,,. (.21

By performing the same reasoning as in Eqgs. (11.32-34), the dilute model provides a simple
Expression for estimating this effective resistivity increment tensor:

HY =Y H", with H"=cH [1+0".H,] . (111.22)

"

It is recalled that the validity range of the dilute estimation is very limited, since all the
Particles are required to be far enough from each other, so as to be regarded as isolated. More
Consistent schemes trying to reflect the interaction effects between inclusions are required.
MT effective medium approximation may be used for this purpose. Following the same path

8 in Eqs, (11.35-39), the MT estimate of the resistivity increment tensor takes the form:
1

H' =HT‘.[I—ZB§".H?"] ; (111.23)
i
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However, as pointed out in the previous Part, the latter equation leads exactly to the samg
predictions as Eq. (111.22) derived with the dilute model and yields the following expressiop
for the effective diffusivity of a macroscopically isotropic material:

14+2) ¢, B

D.=D,|———1|.
MT M lhz"‘rﬁ:f

(111.24)

The GSCS has been applied previously to estimate with a good accuracy the linear effective
elastic properties of HCP and mortars modeled as composites with coated spherical inclusiong
such as the one depicted in Fig. IIL1. On this figure, a spherical inclusion / with a volume

fraction ¢, and with a diffusion tensor denoted as D, is enclosed in a coating with a volume
fraction ¢, occupied by a phase having its diffusion tensor designated by D, . The double-

inclusion thus obtained is in turn embedded in another coating with a volume fraction

ey =l-c, —c,, filled by the matrix phase having for diffusion tensor D,, immersed in an

infinitely large effective medium with diffusion tensor D",

7 WWWW/

g2

7

Figure I11.1: Two-dimensional represeniation illustrating the application of the GSCS for
computing the diffusive properties of a composite with coated spherical inclusions.

d

If all these phases are assumed to be isotropic, the estimation of the effective diffusivity by
GSCS can then be computed by means of this formula (e.g. Hervé 2002):

.M . 1
D::'.‘-‘I'.'.S' = I_Jm [M;A] , with [_}m = D: ‘ M}!iﬁ.é_. y (111.25)
I_{'n.rﬁm ] _"Jﬂ: J

The MT estimate and GSCS are seen by comparing the last two equations to provide identical

expressions for the effective diffusivity of an isotropic two-phase composite with spherical
inclusions. It was shown in section 4.4. that GSCS is more accurate than MT in linear
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elasticity, even though the first one is more intricate to compute. Nevertheless, these two
models appear to be quite similar in the case of diffusion.

7.2.2 Double-inclusion type schemes
These methods have been preferred to compute the linear elastic properties of cement-based
composites to the classical MT scheme, because of their better accuracy, versatility and their
capacity of accounting for the spatial distributions of particulate phases (e.g. Hori and Nemat-
‘Nasser 1993; Shen and Yi 2001; Zheng and Du 2001). Since the derivations are very similar
a5 in Part 11 (Egs. (11.42-80)), only the final expressions of these different estimates are
recalled below. For a multiphase composite, the estimations provided by IDD and KT

schemes are respectively:
-]
H° =Hf‘.[1 -y H:"”.Bﬂ} ; (111.26)

-

pe =" [1-efu"| , (111.27)
where ©) designates the eigendiffusivity tensor of the double-inclusion embedding the

sinclusion phase r and @} denotes the eigendiffusivity tensor of the homogeneous effective
"ctus’mn (Fig. 11.9). In the case of macroscopically isotropic materials with spherical
inclusions, the tensors H?' are invertible provided that the phase diffusivities are not infinite.
, These last two cquations then exactly coincide and furthermore yield a simple expression for
: e effective diffusivity of such materials:

142 ¢, BY
g (111.28)

Dipp ser = Dy _IE__-Z;'E._:H:‘ '

Which exactly coincides with the MT predictions in Eq. (111.24). The expression of DIM was
derived in Part 11 for the particular cases of a two-phase material (Eq. ([1.77)) and of a
Lomposite with coated inclusions (Eq. (11.82)) depicted respectively on the left-hand sides of

Figs. 11.7 and 11.8. The two respective Egs. (11.77) and (11.82) take an analogous form in
diffusion:

B =g [1-0%.H* ], (I11.29)

H."H.u =[H.,:,-i +[_I¢(ﬁ:).[l_ﬂ:f'(l_!:m + Hg ):| I_ (]"3{')

S 1n linear elasticity, the last formula leads to the same estimations as the MT scheme (Eq.
:;' -23) for g composite with dispersed inclusions, as illustrated in Fig. I11.8. To avoid this
“eXpected result, a modified version of DIM has been proposed in Part I1. Its derivation in
"= tase of diffusjon is proposed below by employing the inhomogeneous Eshelby tensor in

[]1]~i3) derived in Appendix IILA. The configuration considered for the present
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derivation consists in a composite pattern embedded in an infinite matrix medium ang
subjected to a far-field flux J™. This composite pattern comprises various double-inclusiong

denoted as D, (re[1,P]) enclosed in a matrix region, each of them being constituted of 4

spherical inclusion with diffusivity tensor D_ surrounded by a spherical coating with
diffusivity tensor D .

The effective diffusion tensors of the different double-inclusions are first estimated with the
aid of the work of Duan et al. (2006). The particular configuration described on Fig. 111.2a) is
thus approximated by a simpler one described on Fig. 1IL.2b). The effective diffusive
properties of the multiphase composite are then computed using the energy balance employed

by Shen and Yi (2001). To achieve the computation of the effective diffusion tensor of the
double-inclusions, fictive concentration gradients are introduced inside the inclusion domain

so that each inclusion has the same diffusive properties as its coating.

Figure I11.2: Schematic illustrating the main steps employed to derive the modified DIM.

The average perturbation of the concentration gradient inside an inclusion representing phase

r and having the same diffusion tensor as its coating can be related to the volume average g

of the prescribed fictive concentration gradient by means of the inhomogeneous Eshelby
tensor defined by Duan et al. (2006):

g'=Alg, (I11.31)
where the expression of if’ is given in Eq. (I11.13) for the particular configuration of a -

spherical isotropic inhomogeneity embedded in an infinite isotropic matrix. By neglecting the
interactions between the double-inclusions, the average concentration gradient inside the
inclusion corresponding to a given particulate phase r takes the form:

Er = [DM +Aﬂr'{]}r -D, }] | J7 4 Erl * (II1.32)
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where A, denotes the homogeneous Eshelby tensor (Eq. (ITI.11)) of the spherical double-
inclusion [, (r e[L,P n The consistency condition written in an average sense:
D gr D(.r {gr r [III'SB]
provides the following relation for the fictive concentration gradient g’ in the inclusion:
. =1 == - a
g = _[(D, =D} D, + Aj_“] .[n“ +A,,.(D,-D, )} g (111.34)

The average perturbation of the concentration gradient inside the inclusion g,' can then be

deduced from Eq. (I11.31). Using the fact that:

EI};=L|—C—*JEC,'+ = e} (I11.35)
CDJ' cDr

8o/ =Ap, B> (I11.36)
the mean perturbation of the concentration gradient inside the inclusion coating g is
obtained as:

~ - - =1 -

e (Ag,—,q:‘].[{n,—uc,.] '.Dc,+n:’] [D, +A,,.(D,-D,)]" I

Cpr = Cr

(I11.37)
where .ifjr is the inhomogeneous Eshelby tensor of the double-inclusion D, expressed in Eq.

(II1.13). The mean concentration gradients and flux inside the double-inclusion are further
expressed with the help of Eqs. (111.35-36):

8= [1 P [{n,—nf,]‘.DF,+if}_l].[nﬁ+A,},.[D,_-DM}]" J7, (I11.38)

cﬂr

—_

JDF:'_D

Cre®

: , _ _ 5 _
1+c—‘:;:(1-.a.g,).[(n, <Y D +:\f"] ]-[Du +A,,(D,-D,)] I

(111.39)

By eliminating J~ in the last two relations, the following expression can finally be obtained
for the effective diffusion tensor of this double-inclusion:

D,, 1:1+-——[I An,) [(n -p,) D, +if]" ‘
D, = . 2’ (111.40)
- = e =1
[ImELAE,:[{Dr—*Df*]I.D(-,“i'ﬁf] ]
|

By Carrying out exactly the same reasoning as in Egs. (I1.83-85) (see subsection 4.3.3.1), an

Xplicit estimation can then be achieved for the effective diffusion tensor of the composite
With coated inclusions:
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=1

D'=D,, -[(Zc,[a,,,ﬂ A ) .D“]_I}- +agm} Dys (I1L.41)

where Afm 1s the Eshelby tensor of the equivalent composite pattern (see Fig. II1.2¢) ang
where the diffusion tensor D, can be predicted by the preceding equation. In the ensuing,

this estimation will be referred to as the modified DIM.
If all the involved phases are assumed to be isotropic, simple expressions are provided for the
homogeneous and inhomogenous Eshelby tensors by Eqs. (II1.10) and (1I1.13), respectively.
In the particular case where only one double-inclusion is considered, the effective diffusion
coefficients for this double-inclusion and the composite respectively simplify into:

I+ 25‘.-;;45;'3: ¢

M |®
l—epil |

(o 49 B
i e +2¢, 5
o =y | = o

T .

which exactly coincide with GSCS formula written in Eq. (I11.25). A good number of

and D' = Dm[ (111.42)

homogenization methods have been presented in this section but it is now necessary to test
their relevance for predicting the macroscopic diffusivities of porous media. For this purpose,
attention should be primarily focused on the principal effects acting on the material effective
transport properties. It is pointed out in the next section that these properties are strongly
dependent on certain microstructural factors that have to be taken into consideration in the
computation by homogenization.

7.3 Significant microstructural parameters from the viewpoint of diffusion
Porous media are generally regarded as a mixture of a solid phase, denoted as D, considered
non-diffusive and a diffusive porous phase designated by D,. A very strong contrast exists

between the transport properties of these two phases so that it is frequently assumed that

D,/ Dy — 0 in porous media.

7.3.1 Importance of the percolation of the diffusive phase
In cases of infinite contrasts such as D, /D, — 0, many authors (e.g. Kirkpatrick 1971;

Torquato 2001) assert by means of numerical simulations that the effective diffusivity or
conductivity of the medium tends to obey the scaling law:

g — 0, for Cy Eﬁ?ih,

D, )

i (I11.43)
= fe,~c"), for c,2c,

‘ D, { = ) o

where ¢ is called percolation threshold and ¢ varies between | and 2 (e.g. Torquato 2001).

This percolation threshold physically corresponds to the critical volume fraction at which a
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cluster of the diffusive phase first connects one extremity of the microstructure to another.
According to the scaling law above, the formation of this cluster spanning the entire
microstructure induces sudden variations of diffusivity, which may be denominated as
Fcrcalatiﬁn effects.

As was already observed in Fig. .5, the macroscopic diffusivities of HCP strongly vary from
one paste to another. Many authors attribute these significant changes to the geometrical
percolation of capillary porosity, defined as the remaining space situated between hydrated
cement grains (e.g. Richardson 2000). It physically corresponds to the formation of a cluster
composed of pores that first spans the material. It appears consequently necessary to assess
the ability of the homogenization schemes introduced previously to account for such
phenomenon.

At this point, an important clarification is necessary about the differences between linear
elasticity and diffusion in cement-based materials. According to the previous remarks, the
percolation of pores is suspected to have a very strong impact on the macroscopic diffusive
properties of porous materials. This phenomenon has not been discussed in the previous Part
dedicated to linear elasticity but it seems to have less influence on the material effective
elastic properties as illustrated by the subsequent example. Let a standard CEM 1 paste with
wic = 0.45, which effective elastic properties and diffusivity have both been measured
experimentally (Richet et al. 1997; Gallé et al. 2004), be perforated by infinitely long
cylindrical water-filled tunnels isotropically distributed. The diffusivity of these idealistic
porous percolating paths is assumed to be equal to the diffusion coefficient

Dy = 2.2x10 " m?/s of tritiated water in bulk water at 23°C (Bary and Béjaoui 2006), while
their bulk and shear moduli are respectively equal to 2.2 GPa and 0GPa. The size of the
RVE of the perforated paste is taken large enough so that the original cement paste can be
regarded as homogeneous. Its macroscopic diffusivity is measured to be
D}yep(Wic =0.45) = 5.21x10"" m*/s (Richet et al. 1997), whereas its effective Young modulus

and its Poisson ratio are taken equal to 23 GPa and 0.25 (Gallé et al. 2004), respectively. The
total volume fraction of these tunnels spanning over the whole paste is assumed to vary
between 0 and 0.25 and we are interested in estimating their effects on the material elastic and
diffusive propertics by means of the full-range IDD scheme (Zheng and Du 2001). On Fig.
IL3, the material effective diffusivity appears to be much more affected by the tunnels than
its effective elastic moduli. A major difference between diffusion-and clasticity is that the
Macroscopic elastic properties of a material such as concrete may be more influenced by the
formation of the solid skeleton (Bernard et al. 2003) than by the percolation of pores, whercas
this percolation of porosity 1s crucial for the effective diffusive properties. According to this
Example, the pore percolation has to be carefully taken into consideration in diffusion, despite

the fact that it has a secondary importance in linear elasticity.
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Figure 111.3: Evolution of the normalized effective elastic properties a) and of the
diffusivity b) of the perforated cement paste with the volume fraction of porous cylindrical
tunnels.

7.3.2 Importance of other microstructural indicators
In linear isotropic porous media, the following equation is generally employed to compute the
macroscopic diffusion coefficient denoted as D° (e.g. Bear and Bachmat 1991; Dullien
1992):
D" =tcyDs, (111.44)
where 7 is called the tortuosity and ¢, corresponds to the volume fraction of porous phase.

The tortuosity can geometrically be interpreted in terms of the ratio of the length of the
material over the distance covered by the ions or the fluid to get through the sample (Dullien
1992). Practically, the closer to 1 the tortuosity is, the straighter the percolating paths are. It
also gives some information in terms of pore connectivity and percolation. For the extreme
case where 7 =0, the distance that the ions should cover to get through the sample becomes
infinite, which means that the porous phase does not percolate. In addition, the material
effective diffusion 1" goes to 0, since the porous phase remains occluded. This shows the
primary importance of the percolation of the porous phase on the diffusive properties of
porous media.

The macroscopic diffusivity can also be related to the formation factors, which constitute

precious microstructural indicators and are defined as (Berryman 2005):
g e ]~ v P (111.45)
== II.:.r f'| ”.‘ i .{)_'. FI

The formation factors are usvally measured from electrical resistance data (Dullien 1992).

Geometrical properties of the constituent phases, such as their tortuosity (e.g. Bear and
Bachmat 1991), are closely related to these formation factors. Given the fact that
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o' (D D,)! D, = D'(D,/D,,1) (Milton 2002), a comparison of the two previous equations
3 s the relation 7¢, =1/F, for such materials. The latter indicates that the formation factor
a given phase incorporates information on both the tortuosity and the volume fraction of

'l i.S pha'w

Review of matrix-inclusion type EMTs from the viewpoint of connectivity and
permlatiun

A brief review of the capacity of the main existing analytical homogenization schemes to
~curately model actual percolating paths of pores and capture strong variations due to the
creation or annihilation of percolating paths in random heterogeneous media is proposed.

The matrix-inclusion type EMTs, such as GSCS, DIM, MT, KT and IDD, studied in this
manuscript all present the considerable advantage of being explicit in diffusion. However, all
approaches except the GSCS are obtained by embedding one single isolate

Ma et al. (2004). They consequently fail to take into account the connectivity of the
particulate phase and appear hardly compatible with the percolation theory, since a single
inhomogeneity cannot percolate except if it degenerates into an infinite disk or cylinder.
owever, though appearing inadequate to percolation problems, these models have up to now
‘not been shown to be unable to mimic the effects due to the transition from a microstructure
comprising no or few tortuous percolating clusters of a high-diffusive phase to one where
significant paths of this phase have formed.

The 3D simulations of Garboczi et al. (1995) demonstrated that the aspect ratio of spheroidal
inclusions denoted by r = b / a (where a designates the radius of the circular basis of the
spheroid and b corresponds to its revolution axis) influences significantly their percolation
threshold and consequently their connectivity. For example, the percolation threshold of

spherical inclusions corresponds to a critical volume fraction ¢} = 0.29 (Rintoul and

Torquato 1997), whereas for spheroidal inclusions with r = 100 this threshold decreases to ¢’

= 0.01 (Garboczi et al. 1995). The shape of the spheroidal inclusion should be in average
Tepresentative of the diverse pore clusters, since the pore structure is simultancously
Composed of isolated pores assumed quasi-spherical and of very connected pores forming
€longated clusters. In other words, the better the pores connect to each other, the more the
’.*Pheruids representing the porous phase should be elongated. Thus the connectivity could
directly be taken into account by using adequately chosen spheroids.
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As an example, an attempt is now made to reproduce percolation effects in a macroscopicaly
isotropic material composed of two isotropic phases by modelling the most diffusive phase,
called 2, as a randomly oriented prolate spheroid embedded in the other phase, called 1. In the
ensuing, the number 1 will always refer to the phase less diffusive and 2 to the most diffusjye

one so that Dz = Dy. The volume fractions of the two phases are respectively denoted by ¢,

and ¢, with ¢, +¢, =1. Two cases, one of high contrast and another one of infinite contrast
can be considered in order to test the reliability of EMTs for predicting percolation effects.
The diffusion coefficients, Dy and D;, are supposed to be respectively such as D, /Dy = 107 ip

the high-contrast case and D, /D, — 0 in the infinite contrast one. The overall shape of the

curves presented on Fig. [11.4 in the case of high-contrast is not adapted to correctly predict
the effects due to changes in the volume fraction of a high-diffusive phase percolating through
the microstructure. Indeed, these variations generally have a sigmoidal shape for the curve of
the effective transport coefficients plotted against the volume fractions of the high-diffusive
phase, reflecting the transition from a macroscopically low-diffusive material to a high-

diffusive one.

10°¢
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Figure 1114 (logarithmic scale): Evolution of the effective diffusion coefficient of a
macroscopically isotropic two-phase material with D, | 1), = 10" respectively estimated by
the MT (Mori and Tanaka 1973) and the IDD (Zheng and Du 2001) schemes as a function

of the volume fraction of the diffusive phase. The latter phase is modeled as prolate
spheroids with diverse aspect ratios r.



Part 111: Prediction of the macroscopic diffusivities of cementitious materials Page 105

The Hashin and Shtrikman (HS) bounds that are presented in the chapter just after are also
Slptted on Fig. 111.4 for the sake of comparison. In the infinite contrast case, the effective
*ﬂ'usivitin:s predicted by MT and IDD schemes both go to zero except for the case of an
infinite cylinder. Matrix-inclusion type schemes, such as MT or IDD, are consequently not
I suited for physically reproducing percolation effects and should not be employed
never the particulate phase percolates in the real microstructure. Besides, the GSCS
Hervé 2002) used for estimating the diffusion properties of mortars by Caré and Hervé
';'!’- 004) does not seem to be adequate either, since only the outer matrix shell can percolate
_iﬂ: this method (see Fig. I1L.1). Recently, Mélé et al. (2005) proposed quite an empirical
.[hm:IE involving numerous parameters so as to artificially incorporate the percolation effects
into the GSCS. However, more reliable EMTs from the percolation viewpoint exist in

literature and are discussed in the next chapter.

8 REVIEW AND DEVELOPMENT OF OTHER HOMOGENIZATION THEORIES
- FOR PREDICTING THE DIFFUSIVITIES OF POROUS MEDIA

It was shown in the previous chapter that matrix-inclusion type EMTs are not suited for
predicting percolation phenomena and reproduce the rapid variations of diffusivity observed
experimentally on cement-based materials (Fig. 1.5). Still, other theories of homogenization
have been developed to address this issue. Some of them deriving from the self-consistency
principles (Bruggeman 1935; Landauer 1952) or from the variational ones (Hashin and
trikman 1962) are therefore presently reviewed. By focusing on some classical exactly
solvable microstructures (Hashin and Shirikman 1962), a novel estimate based on a simple
exactly solvable assemblage is also proposed to predict the macroscopic diffusivities of
Porous media.

In the present chapter, only macroscopically isotropic two-phase materials are considered,
The volume fractions of the two phases respectively called 1 and 2 are denoted by ¢, and ¢,.

The diffusion coefficients of the two isotropic phases, Dy and s, are taken such as s = Dy,

81 Review of bounding approaches

HS bounds for a macroscopically isotropic two-phase material are given by:

. 3 3p°
Dy =D.[i+c1—i], b =D,_[1+c, A ) (111.46)

lﬂczﬁ:: ]_':'l.ﬁl2
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with 8/ defined in Eq. (I11.12). The latter formula was derived by means of variationg)

principles (Hashin and Shtrikman 1962) that are explained in many monographs (e.g. Miltop
2002; Torquato 2001) and are thus not presently recalled. The application of the HS bounds tq
composite materials with high contrasts is problematic, since the bounds are not tight enough
to bind the effective transport coefficients, as may be seen on Fig. [IL.4. It is possible tg
improve the HS bounds if more information, in the form of correlation functions (Berap
1965), formation factors (Berryman 2005) or experimental measurements (Bergman 1976), is
available for the composite. On the basis of these pieces of information, a good number of
tighter bounds (e.g. Beran 1965; Bergman 1976; Torquato 2001; Milton 2002) have been
derived from the variational principles of Hashin and Shtrikman (1962).

The form and the derivation of these bounds (Beran 1965) in their original form can be quite
complex but Berryman introduced a convenient canonical function that enables to express the
main bounds within a unified framework:

<1
c, c
Aly)= — 2 -2y, [11.47
W) [Dﬁ!y D1+2y} x ( )

This function depends monotonically on y, which has the dimension of diffusivity and is

referred to as a transformation parameter. Berryman (2005) evidenced that most of the known
bounds, such as Reuss and Voigt, HS or Beran bounds, can be gained from the latter equation

for simple values of y. If the parameter y is equal to [ or D,, the lower and upper HS

bounds are respectively retrieved. If the parameter y is equal to D +{.D, or
(& /D, +¢,1D,) ', the lower and upper Beran bounds are respectively retrieved (Berryman

2005). The microstructural parameters ¢, and &, =1-{¢, are known as three-point parameters

and are related to the three-point spatial correlation functions (e.g. Torquato 2001) of the
composite microstructure.

Let us assume that an experimental value for the material effective diffusivity, denoted as D',
is available at a given volume fraction of porosity. Bergman (1976) then derived improved
bounds incorporating this piece of information and taking the following form:

Dg_ = A(vg.) and Dy, = A(yg.), (111.48)
where

Fa v=I| i .
=] =|
Yy = u + L-_'H i With U= (ﬂ'_{_"_'}:lu:_ ’ and

D D, ) D™ - D,
vgs = (v +(1=v), ) with v:[m. (111.49)
Dy - D,

These Bergman bounds have been recently argued as being adequate to deal with the cases of
high contrasts (Berryman 2005). To give an example of the curves predicted by Bergman
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.
pounds, it is presently supposed that D' D, =0.1. The HS, Beran and Bergman bounds for
the effective diffusivity of random heterogeneous media with phase diffusivities such as
D,/ D, —0 and Dy / Dy = 10° are plotted in Figs. IIL5 and IIL6, respectively. The bounds

:ptuﬂgd on Fig. 1IL.5 appear to have similar shape as the curves on Fig. I11.4, which may not be
guited for capturing percolation effects.

n the case of infinite contrasts (Fig. 111.6), the lower bounds all tend to zero and are therefore

{ represented. Moreover, no percolation threshold appears on the upper bounds. None of the

hounds reviewed consequently seems to be apt to account for percolation effects. That’s why
If-consistent (SC) EMTs that present valuable features for the prediction of the diffusivity

’ f porous media are discussed hereafter.

3
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Figure 1115 (semi-logarithmic scale): Evolutions of HS, Beran and Bergman bounds for a
macroscopically isotropic two-phase material with D, | D, = 10° as a function of the
volume fraction of the high diffusive phase.
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Figure 11.6: Evolutions of HS, Beran and Bergman bounds for a macroscopically
isotropic two-phase material with D,/ D, — 0 as a function of the velume fraction of the

ligh diffusive phase.

8.2 Review of SC type schemes

The SC scheme (Bruggeman 1935 Landauer 1952) counts among the most popular
homogenization models in diffusion (e.g. Oh and Jang 2004; Bary and Béjaou 2006) because
of its capacity of capturing sudden vanation of diffusivity. That’s why many commonly used
EMTs (Kirkpatrick 1971; 1973; McLachlan 1987) for dealing with homogenization problems
in diffusion or conduction directly derivate from the SC scheme. On the contrary to matrix-
inclusion type models where the particulate phases are represented as inclusions embedded in
a supposed infinite matrix phase, in the SC ones all the phases are modelled as inclusions
enclosed in a yet unknown effective medium supposed infinite. The SC estimate in three
dimensions can be obtained by solving the following equation (Torquato 2001 ):

af e =0, (I11.50)
where # and §, are defined in Eq. (111.12). The SC predictions for the effective diffusivity
of random heterogeneous media with phase diffusivities such as D /D, =0 and D; /Dy =

107 are plotted in Figs. 111.7 and 1118, respectively. The two curves on these figures provided
by the SC estimate exhibit drastic changes of curvatures. These effects are induced by the
percolation of the high-diffusive phase, i.e. the formation of a cluster of this phase spanning
the entire microstructure.
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Figure I11.7 (semi-logarithmic scale): Evolutions of the effective diffusion coefficient of a
macroscopically isotropic two-phase material with D, | D, = 10" estimated by SC type
schemes as a function of the volume fraction of the high diffusive phase.
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Figure 111.8: Evolutions of the effective diffusion coefficient of a macroscopically isotropic
Mwo-phase material with D,/ D, — 0 estimated by SC type schemes as a function of the

volume fraction of the diffusive phase.

M“"e“"’ﬂt', these jumps observed for the SC estimations on the figures just above occur at a
Particular volume fraction or percolation threshold of the high-diffusive phase. The SC model
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thus presents the notorious advantage compared to the matrix-inclusion type EMTs to Predios
a nontrivial percolation threshold but it occurs systematically at a volume fraction of ¢ < |,

for a two-phase composite composed of spherical inclusions, where d is the space dim&nsion.:
regardless of the microstructure. However, it is clear that the microstructure strongly affecys
the percolation threshold. For example, if a matrix encloses monodisperse m’ﬂflﬂppina-
spherical inclusions (Fig. II1.9), a volume fraction of 0.03 is sufficient to ensure that it
percolates (Torquato 2001), whereas (.29 are required for the particulate phase. Acmrdingly’
the two phases composing the latter material percolate at volume fractions different from
those predicted by the SC model. The choice of spheroidal particles instead of spherical oneg
may partly overcome this shortcoming, since with the percolation threshold then given by the
SC scheme changes with the aspect ratio of the spheroid, but the SC predictions generally
violate the HS bounds for non negligible range of volume fractions of the high-diffusive
phase.

" =0.03 & =029

Figure I11.9: Two-dimensional representations of monodisperse overlapping spherical
inclusions that are randomly distributed in space. The percolation thresholds of the clusters
Jormed by these spherical inclusions and of the remaining space differ significantly.

Kirkpatrick (1971; 1973) developed an EMT combining the discrete percolation theory (e.g
Shante and Kirkpatrick 1971) and the self-consistency principle. For more information
concerning the discrete or lattice percolation one, which dates back to the fifties (Broadbent
and Hammersley 1957), the reader should refer to Shante and Kirkpatrick (1971). The
microstructure in the Kirkpatrick model is represented as a resistor network and the
percolation threshold predicted by the latter scheme no longer depends on the dimensionality
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.-4-"---_

put 0N the coordination number designated by z. This quantity is defined as the number of
ponds connected at the same node and thus allows for taking into account the connectivity of
.Particles. The second-order equation provided by the Kirkpatrick estimate (1971; 1973) is
gtrongly similar to the one given by the SC scheme:

o B +e,B()=0, with F)=r—=Dl)
(Q+[;—|]Dj]

is straightforward that Eq. (I11.50) obtained with the classical SC scheme is a particular case

(TIL51)

Eq. (I11.51) for z = 6. Supposing that [, is infinitely bigger than D, in the equation above,
he percolation threshold appears to be inversely proportional to the coordination number:
c; =2/z. The latter equation has only one positive root corresponding to the Kirkpatrick

gstimate:

E. Q+Jaz+2{z—2}ﬂlﬂz : (2 i \
E-—— with a-D{(E 1}:? lJ Dﬁ\(z [Jc, 1J. (I11.52)

he Kirkpatrick model uses the concept of coordination number that allows for taking into

‘account the connectivity of particles. This scheme is based upon resistor networks constituting
an idealistic discrete representation of the microstructure of ordered heterogeneous materials.
They are very practical of use in the case of crystalline materials, where the coordination
number is exactly known. Nevertheless, this number is very difficult to estimate in random
leterogeneous materials containing particles that can be of very different sizes and the
discrete resistor network on which the SC estimates of Kirkpatrick (1971; 1973) are based
ems quite far from the actual continuous microstructures of disordered materials. In
dddition, though the Kirkpatrick estimate may provide more realistic thresholds than the
ariginal SC model, they violate HS bounds for non negligible ranges of volume fractions, as
1y be seen in Fig. 111.7. More precisely, it is seen on this figure that the Kirkpatrick estimate
Obtained for z = 4 violates them for the ranges of volume fractions ¢, <0.25. On the contrary,

i_."f classical SC estimate, corresponding to a coordination number of z = 6 (Kirkpatrick 1971;
t913), always satisfies HS bounds.

Model called the general effective media (GEM), used for instance by Oh and Jang (2004)
Y Predict the diffusion coefficients of HCP, has been proposed by McLachlan (1987):

(DI.”F _nﬂ"h'p) (Dzl.n‘p mﬂ'”p)

o ] +C; |
[D.”"+[c;; —1]1::"“'] [D;’F +[c;-,-_ -1]&‘”"]

€)' is recalled to be the percolation threshold and p is a parameter identified as the

=0, " (II1.53)

€

| exponent. The McLachlan model is quite similar to the Kirkpatrick one but involves
= Parameters instead of one. It is noteworthy that for p = 1, GEM coincides with the



Part 11: Prediction of the macroscopic diffusivities of cementitions materials Page 112

Kirkpatrick estimate. Consequently, the McLachlan scheme can also violate HS bounds for
certain values of the parameter p. Another method that is capable to predict different
percolation thresholds consists in deriving the SC scheme by adopting spheroidal inclusions
instead of spherical ones, as is generally the case. The percolation threshold estimated with
this approach then varies with the aspect ratio of the spheroid. Nevertheless, the respect of HS
bounds is not necessarily guaranteed with this methodology.

To summarize the discussions made in this section, a comparative table recapitulating the
merits of the presently reviewed EMTs is proposed (Table 111 1). It appears that none of them
is really capable of both reproducing percolation effects in random heterogencous materials
and respecting HS bounds. The next section is therefore devoted to the presentation of a
recent estimate based on a well-defined continuous microgeometry satisfying these two
conditions.

acity to Number of extra
g y Y Respect of HS ;
capture sudden parameters
sl bounds ; References
variations of involved

diffusivity

Maxwell (1873), Mori-
No Yes 0 Tanaka (1973), Kiister-
Toksoz (1974), ...

Matrix-inclusion
type models

Only for
il
i ¢, = 1/3 for Yes Bruggeman (1935),
SC scheme spherical 0 Landauer (1952), ...
inclusions
Kirkpatrick Kirkpatrick (1971;
scheme T o I 1973)
GEM Yes No 2 McLachlan (1987)
GSCS No Yes 0 Hervé (2002)

Table I11.1: Comparative table aiming at testing homogenization models on three simple
criteria.

8.3 Mixed composite spheres assemblage (MCSA) estimate (Stora et al. 2006b)

8.3.1 Presentation of the estimate

Hashin and Shtrikman (1962) proved that their bounds written in Eq. (II1.46) are realized by
two composite spheres assemblages (CSAs) corresponding to idealized microstructures,
where the space is entirely filled by coated-spheres of sizes ranging from finite down to
infinitesimal. Neither the size nor the spatial distribution of the coated-spheres is specified in
CSA. However, all the composite spheres are homothetic and consist of a spherical core of
radius »; and a coating of thickness (r; - r;). The radii r; and r. are chosen so that each coated-

sphere has the same composition as the original two-phase material. Though the opportunities
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offered by the self-consistency principles (Bruggeman 1935; Landauer 1952) or the
variational ones (Hashin and Shtrikman 1962) for estimating the transport properties of
random heterogeneous media with high contrasts have been thoroughly investigated, the
possibilities given by the celebrated CSA of Hashin and Shtrikman (1962) may conversely not
have been studied sufficiently for such media. This exactly solvable microstructure was
initially established to materialize HS bounds and thus prove their optimality. In the present
section, by exploiting the idea underlying the original CSA, an assemblage mixing two types
of composite sphere is proposed to obtain an estimation model capable of remedying the
shortcomings of HS bounds.

The construction of Hashin and Shtrikman (1962) relies on the fact that the concentration
field in a homogeneous medium characterized by a diffusion coefficient D,, subjected to a

uniform concentration gradient on its boundary, is not disturbed by the insertion of a spherical

composite inclusion which overall diffusion coefficient is equal to D,. In particular, any
previously defined coated-sphere, which core and shell are respectively occupied by phases 2
and 1, embedded in a homogeneous medium with D, =D,. does not perturb the

concentration field outside the composite element in question. Consequently, an assemblage
exclusively composed of these particular composite spheres realizes the lower bound. The
upper one can in turn be attained by a similar construction, where the roles of the two phases

inside the composite sphere are switched and the radii are taken such as (r,/ r,)’ =c,.

CSAs are widely used, because they provide exact and straightforward analytical results.
Nevertheless, the two CSAs materializing HS bounds correspond to extreme matrix/inclusion
morphology (Fig. I11.10). In the assemblage achieving the HS lower bound, the low-diffusive
phase 1 is fully connected and plays the role of matrix, while the high-diffusive phase 2
occupying the cores of the coated-spheres is entirely disconnected and distant from each other
due to the systematic presence of coatings made of phase 1. The exact opposite situation
occurs in the assemblage attaining the HS upper bound. As a matter of fact, this characteristic
Can even be regarded as an advantage for some special design problems (Torguato et al.
2005). Nevertheless, actual microstructures having such an extreme morphology do not
abound in Nature. To obtain a more realistic and more versatile microstructure, it would be
desirable to use for instance different types of composite spheres. That’s why another
Microgeometry, called MCSA, is presented below.
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Figure L. 10: Two-dimensional representation of the CSA developed by Hashin and
Shtrikman (1962).

The MCSA follows the same construction rule as CSA but two types of composite spheres are
involved in MCSA instead of one type in CSA. The idea of using assemblages mixing two
types of composite spheres is not new. Pham (1997) proposed an estimate on the basis of a
MCSA, where the volume fractions of the phases in the composite spheres are fixed but the
embedding orders of the two phases can be interchanged. However, this assemblage is not
exactly solvable, since the two types of coated-spheres generally do not have the same
effective diffusivity and the diverse perturbations they induce on the concentration fields are
tremendously difficult to calculate. Gilormini (2001) evidenced that a simple MCSA can be
constructed so as to realize any compressibility or conductivity of isotropic two-phase
materials comprised between HS bounds. Analogously, it is possible to build a MCSA that
achicves any macroscopic diffusion coefficient D' of an isotropic two-phase material

verifying the condition D, £ D" < D, , as shown below.

The macroscopic diffusion coefficient D° of the material and the phase volume fractions ¢,
and ¢, are assumed given; the particular example of the diffusion through a porous material
with high constrast between the phase diffusivities 1s considered for the present
demonstration: ¢; = 0.56, c; = 0.44, D,/D, = 10" and D" /D, =20, where D, and D, are

recalled to designate the diffusivities of the solid and porous phases, respectively. The lower
and upper HS bounds for this material are plotted on Fig, 11L.11.
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Figure I1.11 (semi-logarithmic scale): Evolution of HS bounds as a function of the porous
phase volume fraction and graphical representation of the geometric parameter f of MCSA
(Stora et al. 2006b).

The condition D, <D’ <D} ensures that two CSAs corresponding to the lower and upper
HS bounds, with the respective porous phase volume fractions ¢; (2¢,) and ¢; (S¢,), can
realize the effective coefficient D", In the coated-sphere with the volume fraction ¢, the
core is occupied by phase 1 and the shell by phase 2, whereas the roles of the two phases are
exchanged in the coated-sphere with the volume fraction ¢;. These volume fractions are
deduced from Eq. (111.46):

q:ﬁi, c;=1-ﬂ_;. (IIL54)

In the present assemblages, the macroscopic diffusion coefficients of the two types of coated-
spheres, whose compositions defined by the equation just above may be very different, are
both equal to D'. No perturbation in the concentration fields is then induced if any of these
two types of composite spheres is inserted in the homogeneous material whose effective
diffusion coefficient is D". It is consequently feasible to establish an exactly solvable
Microstructure as a hybrid assemblage of these two types of composite spheres, filling
together the entire space (Fig. 111.12). An interesting characteristic of the MCSA thus obtained
is that both phases are simultaneously present in the cores and shells. In the ensuing, the
Coated-spheres with phase 2 as external coating are denoted by C1, and those which core is
OCcupied by phase 2 are designated by C2. The density f of C1 spheres in MCSA is chosen so

that the total volume fraction of phase 2 in this assemblage 1s equal to ¢, :
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—
e, =fc; +(1-S)e3. (I11.55)
This condition permits to determine the geometric parameter f as a function of ¢, and D',
-1{1 1
=) ———c, |. (111.56)
a7 (ﬂ:‘ : ]

The resulting microstructure illustrated on Fig. I11.12, that can materialize any MAacroscopie

diffusion coefficient D* of an isotropic two-phase material verifying HS bounds, does not
seem to correspond to any known EMT but can give rise to physically sound estimates, ag
shown below.

(a)ea<(1-f) (b)er=(1-f)

00 ©O

(-
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Figure I11.12: Two-dimensional representation of an assemblage mixing two types of
composite spheres (Stora et al. 2006b).

The MCSA with a given effective diffusion coefficient D is determined through a unique
parameter f specified in Eq. (I11.56). Inversely, by considering the macroscopic diffusion
coefficient D° as unknown and the parameter f as given, we can establish the quadratic
equation:

aD"" +bD" +c =0, (1L.57)
where

a=1+(2f~c,)p,,

b=2D,[i-(f +e)B|-D+2(s +)8,),

c=2D,D,\(f - 2¢,)8:-1].
The solution of this equation provides only one positive root that constitutes an estimate for
the effective diffusion coefficient of the material:

* -.IB h‘z _ ]
P 2T "‘2 - (I11.58)
a
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e

According as /= 0 or 1, the previous equation yields the HS” or HS" bound. Furthermore, D’
given above varies monotonically with £ The MCSA estimate can consequently attain any
value comprised between HS bounds.

The derivation of a MCSA estimate for the effective elastic moduli could also be of interest
but is not a simple matter. Whereas the effective diffusivity and bulk modulus of CSA
presents the benefit of being exactly solvable, the effective shear modulus of this
microgeometry is not exactly computable (e.g. Milton 2002). Consequently, an exactly
realizable MCSA estimate can be obtained in lincar elasticity for the cffective bulk modulus,
but not for the shear modulus.

It is insightful to see how the MCSA estimate in Eq. (I11.58) can be recast by means of the
canonical function proposed by Berryman (2006) in Eq. (I11.47). In two-phase materials, the
relation linking f to the transformation parameter y can be derived from Eqs. (111.47) and
(I11.56-57) (Stora et al. 2006b):
f:[iz+2c1[ oy }J[ D-y ] (I11.59)
A D, +2y D +2y

s

The inverse relation requires solving a quadratic equation with only one positive root which
takes the form:

2
e+ -4
W o, e (I11.60)

2d

¥y

where
d=2+22f -¢,)8},
e=-2D + D, +28}(f +c, XD, + D,),
g =DD,|(f -2¢,)8 -1

This function providing the transformation parameter y is also monotonic with respect to f.

Egs. (I11.59-60) show that a one-to-one correspondence exists between f and y. So, the
geometric parameter f in the MCSA model can be taken as equivalent to the transformation
Parameter entering the canonical function defined in Eq. (I11.47). At the same time, since the
Properties of the canonical function are such that it leads to excellent estimates even with
Tough estimates of the transformation parameter (Berryman 2006), we can expect that Eq.
(IIL58) produces good estimates when f is evaluated from relevant experimental data, It is
®mphasized that, by construction, these estimates always comply with HS bounds. Besides,
the parameter /has a simple geometric signification and can easily be related to physical
factors that are primordial for transport phenomena, as will be shown in the next section.
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8.3.2 Signification and interpretation of the MCSA parameter
Given the phase volume fractions of a random heterogeneous material, the estimate deriveq
from MCSA for the effective diffusivity depends only on one geometric parameter f l‘eﬂf:cting
the relative proportion of the two types of composite spheres in the assemblage. The PUrpose
of the present section is to highlight the connections existing between the parameter f
characterizing MCSA and important physical concepts, such as connectivity and tortuosity,

8.3.2.1 A parameter for connectedness

The estimate given by Eq. (IIL.58) is mathematically quite similar to the SC model of
Kirkpatrick (1971; 1973). They are both analytical and each of them only depends on one
clearly identified parameter, respectively the coordination number z in the Kirkpatrick
approach and the geometric parameter /in the MCSA model. In the Kirkpatrick theory (197],
1973), the microstructure is considered as a resistor network and the coordination number z is
defined as the number of bonds connected at the same node. In the actual microstructure, this
quantity is practically identified to the number of contacting neighbors to a given particle,
This parameter thus allows for taking into account the connectedness of the diverse phases,
Analogously, the geometric parameter f'can be interpreted as a parameter for connectedness in
the MCSA model. As illustrated in Figs. 111.12, each phase inside the assemblage can be
broken into two parts: the first one contained in the cores of the composite spheres is
completely isolated, while the second one present in the coatings is well connected, since a
given coated-sphere is in contact with infinity of neighbors. In practice, the volume fraction of

the phase 2 dispersed in the outer layers of the C1 spheres, denoted by ¢;”, can be identified

to the experimental measurement of the connected volume fraction of phase 2, once such
measure is available. After some calculations detailed in Appendix 11I.B, the geometric

parameter f can be expressed as a function of this volume fraction ;" :
# kY
f-=cnw ]+2}6I2ﬁ,'__lf(c2 "'L';M]
" le+2B8 Bl )

According to this equation, it is possible in the case of porous media to gain information for /

(I11.61)

from the knowledge of the percentage of connected pores, which may be accessible via
various experimental procedures such as MIP. On the opposite, the coordination number z is
far more difficult to estimate for such materials generally containing pores that can be of very
different sizes.

8.3.2.2 Link with the formation factors
The measurement of one of these formation factors allows for calculating the value of the
geometric parameter / when the volume fractions arc also known. Indeed, the parameter /15

related to the formation factors F and F, in the following manner:
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= Ci

2F2+[] 2F +1 I (1L62)

f“‘[zf-;-z, 2F. 32 )
Nevertheless, the demonstration detailed in Appendix ITI.C of the previous equation is valid
only if both formation factors are finite. This fact clearly defines the situations for which
MCSA are of interest: they are useful provided that both formation factors are finite, i.e. the
two phases percolate. When one of the formation factors is infinite, MCSA degenerates into a
simple CSA.
In this section, some connections have been established between the geometric parameter

.

characterizing MCSA and crucial microstructural parameters, such as the connected volume
fractions and the formation factors. A detailed comparison with the SC type estimates is
carried out in the subsequent section to show the original features of the MCSA estimate and
discuss its potential application fields.

8.3.3 Comparisons with other EMTs
The predictions by the MCSA of the effective diffusivity of a porous medium, with phase
diffusivities such as D,/D,= 10" and D,/D—— 0, are plotted against the volume

fraction ¢, of the pore phase on Figs. I11.13 and II1.14. On these figures, the MCSA model is

seen to always satisfy HS bounds. As illustrated on Fig. II1.13, the latter model is even able to
sweep all the values comprised between these rigorous bounds, as f varies from 0 to 1, which
is not the case of the classical SC estimate. On Fig. [11.14, the lower HS bound tends to zero
and is consequently not represented.

The consistency of the MCSA and classical SC estimates with HS bounds is a direct
consequence of their realizability (Gilormini 2001; Milton 1985). The realizability conditions
are necessary for testing the merits of EMTs but may reveal insufficient, since it is also
desirable to ensure that the microstructures materializing EMTs are realistic from the point of
view of connectivity. The real connectedness of the diverse phases cannot be correctly
modeled by the CSA realizing HS bounds except if they are fully connected or disconnected.
Conversely, as pointed out previously, both the SC estimate of Kirkpatrick and the MCSA
Model provide quite simple means to approach the actual connectivity of the different phases.
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Figure 111.13: Evolutions of the effective diffusion coefficient of a macroscopically
isotropic two-phase material with D, | D, = 10" estimated by the MCSA scheme as
Sfunctions of the high-diffusive phase volume fraction for diverse values of the parameter f.

== =pg*

097! —— MCSA (7=0.25)

0.8} | —=—MCSA (7= 0.50)
—— MCSA (f= 0.75)

0.7

et 0.6
— 05
0.4
0.3
02t |
0.1}

o

Figure 111.14: Evolutions of the effective diffusion coefficient of a macroscopically

isotropic two-phase material with ST estimated by the MCSA scheme as functions

of the high-diffusive phase volume fraction for diverse values of the parameter f.

All the MCSA curves on Fig. 1I1.13 exhibit strong changes of curvatures for ¢, =(1- /) that

are quite similar to those observed on the SC curves. A natural question thus arises: are these
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significant changes of the effective diffusivity of the MCSA also provoked by the percolation
- of the high-diffusive phase? The following reasoning could help in answering to this

interrogation. The volume fraction of the high-diffusive phase 2 is taken initially small so that
the effective diffusivity D” of MCSA is low and is then assumed to increase progressively,
while the parameter f remains fixed. Thus, in order to conserve a low effective diffusivity, the
coating of C1 spheres occupied by phase 2 1s maintained as thin as possible, as can be seen in
Fig. 1IL.15a, and the major part of phase 2 is dispersed in the cores of C2 spheres (see Fig.
JI1.15b). The effective diffusion coefficient of such an assemblage is low, since the high
diffusive phase present in the cores of C2 spheres is isolated due to the coatings made of the
low-diffusive phase (see Fig. 1lI.12a). However, when the volume fraction of the high-
diffusive phase exceeds the density (1- /) of C2 spheres, this phase can no longer be

massively trapped in C2 spheres (see Fig. I11.15b) and the connected part distributed in the
coatings of C1 spheres inevitably augments, as may be seen on the right-hand half part of Fig.
I11.15. The apparently similar radical changes of the macroscopic diffusivities estimated
respectively by SC and MCSA models are consequently originated by two different physical
transitions: the jumps of SC estimations are provoked by the percolation of the high-diffusive
phase, while the changes of the effective diffusivity of MCSA arc caused by a transition from
tortuous percolating clusters only composed of a small part of the high-diffusive phase to less
sinuous paths gathering the major part of this phase, as illustrated on Figs. I11.12.

The latter transition may be quite alike the ones inducing the pronounced increase of
diffusivity observed in cementitious materials (Fig. 1.5) as the porosity augments (e.g. Cui and
:_' ahyadi 2001; Oh and Jang 2004), since percolating paths of pores can systematically be
found regardless of their volume fraction in the material by considering, very fine scales. This
assertion is experimentally sustained by numerous MIP tests (e.g. Gallé¢ 2001), where the
iquid injected at high pressure manages to pass through any cement paste, mortar or concrete
'Y porous paths less constricted than 3 nm. It is worth saying that there are a large number of
‘_mhc:r materials, such as for example porous media having a multi-scale pore structure like
focks or sandstones, where this highly diffusive phase always percolates.
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Figure HI1.15: Evolution of the volume fractions of the high-diffusive phase respectively
dispersed in the shells of CI spheres (a) and in the cores of C2 spheres (b) as functions of
the total volume fraction of the high-diffusive phase for diverse contrasts between phase
diffusivities, the geometric parameter f being equal to 0.5.

8.4 Conclusions of chapter 8

The success of models developed for enginecring applications depends to a large extent on
their simplicity and, in particular, on the easiness with which the parameters involved in the
models can be physically interpreted. Based on simple space filling assemblages composed of
two types of composite spheres, the MCSA estimate presently developed needs only one
geometric parameter, in addition to the phase volume fractions and diffusivities. This
parameter can take into account the phase connectivity and is in direct relation with the
formation factors (Eq. (111.62)).

Original features of the MCSA, such as its capacity to describe tortuous percolating paths,
have been outlined and could be of particular interest for multi-scale random porous media.
The MCSA estimate is also capable of capturing pronounced variations of the material
diffusivity, while respecting rigorous bounds. It thus appears suited for predicting the
macroscopic diffusive properties of porous media or more generally of random heterogencous
media with high contrasts. Therefore the multi-scale homogenization approach developed in
the ensuing chapter to predict the macroscopic diffusion coefficients of cementitious materials
incorporates the MCSA model.




Part [1I: Prediction of the macroscopic diffusivities of cementitious materials Page 123

e

9 CONSTRUCTION OF A MULTI-SCALE HOMOGENIZATION MODEL FOR
ESTIMATING THE EFFECTIVE DIFFUSIVITIES OF CEMENT-BASED
MATERIALS

As already argued previously, cement-based materials have complex microstructure with a
multi-scale porosity. It is consequently quite natural to adopt multi-scale approaches to deal
with such media. In the present chapter, a multi-scale homogenization model is first
developed for HCP that constitutes the matrix of concrete materials, and is then extended to
mortars. The main difficulty for building a suited homogenization model for HCP consists in
correctly representing their multifaceted porosity and in reproducing the highly non linear
changes of their diffusive propertics measured experimentally (Fig. L5). Several
homogenization models developed for predicting the transport propertics of cement-based
materials (e.g. Oh and Jang 2004; Bary and Béjaoui 2006) attribute these significant changes
to the geometrical percolation of capillary porosity. However, this explanation may not really
be in accordance with the critical pore diameters measured by MIP, as shown below.

As already mentioned in Part I, gel pores sizes are assumed to be situated between a few nm
and 0.2 pm and capillary pores ones to range from 0.2 pm and a few pm, even though the size
range of capillary pores varies in the different classifications for the pore structure of HCP
proposed in literature (e.g. Powers and Brownyard 1948). Diamond (2000) evidenced that the
critical pore diameter, defined as the pore width corresponding to the highest rate of mercury
intrusion per change in pressure, allows for assessing the largest scale at which pores
percolate. The values obtained from diverse MIP tests reported in the literature (see Table 1.5)
‘are much smaller than the capillary porosity size range (> 0.2 pm). This means that the
capillary pores, that are mostly inaccessible to mercury injected at low pressure, should not
percolate through the paste. Conversely, it is possible to find percolating paths of gel pores
Tegardless of the volume fraction of total porosity in HCP, as already asserted previously.

‘On the basis of these indications given by MIP results, the present chapter proposes an
Approach focusing on the percolating gel pores located in the CSH. The strategy adopted for
building a multi-scale homogenization model capable of reproducing strong variations of the
diffusivities of HCP is thus the following;:

#} Development of an appropriate description of HCP, where percolation occurs in the porous
CSH in accordance with experimental results from MIP;

1} Prediction of the effective diffusivity of CSH by a suited homogenization scheme;

E“i) Validation of the multi-scale homogenization model on cement pastes with different

"¢ validated, the developed model is applied to predict the evolutions of the macroscopic
fMusivities of degraded pastes subjected to a chemical degradation. In the previous chapter
tora et g, 2006a), a simple estimate has been developed for modeling sudden variations of
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diffusivities of heterogeneous materials with high contrasts. In the present one, a realisg
three-scale homogenization model based on the latter estimate is proposed for HCp a"ﬂ'
mortars in order to provide accurate predictions of their effective diffusivities. '
The chapter is organized as follows. The first section presents the multi-scale description of
HCP based on the investigation of its microstructure proposed in Part [. The second one
details the three-step homogenization process specifically developed for HCP and the
estimations thus obtained are compared to experimental results obtained on diverse cemept
pastes. The approach is then applied to leached pastes in the third section by adopting 5
simplified scenario of the decalcification process. In the fourth one, the homogenizatioy
model is extended to mortars.

9.1 Multi-scale description of HCP microstructure

The experimental results collected in Part 1 about the eritical pore diameter indicate that the
highest scale at which porosity percolates through HCP 1s about tens of nanometres depending
on the type of pastes. Benefiting from this precious information, a three-scale representation
of HCP microstructure is now proposed for estimating the material diffusive properties
focusing on the highest scale at which percolation of porosity occurs. This three-scale
description is similar to the one exposed previously in linear elasticity. Indeed, the first two
microstructural levels respecting the scales separation condition are identical to the ones
depicted in Fig. 11.22: the first level varying from 0.2 pm to a few tens of pm corresponds to
the scale of the non-diffusive hydration products and of capillary pores, while the second one
ranging from a few tens of pm to about 100 pm is typical of the sizes of hydrated cement
grains. These two scales are respectively denoted as I and II.

The level I corresponding to the biggest scale of HCP is described first. This level depicted in
Fig. I1.22 represents the hydrated cement grains. During the hydration of cement particles,
two diffusive layers presently defined as inner and outer layers form successively from
cement grains surface. The inner layer is less porous than the outer one, since the first one
results from higher confinement conditions and from poorer water accessibility during
hydration process. Generally, an anhydrous part of the cement particles remains after
hydration has stopped and constitutes an impermeable core surrounded by these two
heterogeneous layers. As in linear clasticity, the GSCS is employed to model such a
microstructure at the micrometer scale.

The level 11 also depicted in Fig. 11.22 corresponds to the scale of the heterogeneities of the
two layers. It is commonly accepted that two different types of porous CSH are associated
with each layer. In the inner layer, the CSH™ behave as a matrix phase embedding non-
diffusive inclusions of CH and AF. Similarly, the external layer has matrix-inclusion type
morphology, where CH, AF and capillary pores play the role of inclusions enclosed in the
CSH®™. Furthermore, according to the critical pore diameters measured by MIP (Table 1.5),
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the capillary pores should not percolate and it is consequently appropriate to model them as
isolated inclusions. The two layers can then be estimated by means of matrix-inclusion type
schemes, such as the IDD one (Zheng and Du 2001).

Nevertheless, the macroscopic diffusivities of porous CSH™ and CSH™ also have to be
estimated by homogenization techniques for example, since they are difficult to gain
experimentally and have not yet been measured to the authors® knowledge. In the case of
clasticity, it is not necessary to estimate the effective properties of CSH™ and CSH®™, since
their macroscopic Young moduli have been measured by nanoindentation (Constantinides and
Ulm 2004).

As already emphasized in Part I, CSH are generally described as an intricate mixture of a
solid compound and gel porosity. In the present representation, both CSH™ and CSH™ are
supposed to be only composed of gel pores and of an impermeable solid phase. A detailed
assessment of the connectivity of their gel pores constitutes a key point for estimating their
effective diffusion properties. It appears in Table L5, gathering some values of the critical
pore diameter of CEM 1 cement pastes taken from the large data collection of MIP tests
available in literature, that these diameters vary from a few tens of nm to less than one
hundred of nms for CEM I pastes depending on the w/c ratio and on the sample preparation. It
signifies that a significant amount of gel pores can percolate through the paste. The insulating
solid phase and the gel pores composing the microstructure of CSH™ and CSH™ are assumed
in both cases to form together a MCSA, as depicted in Fig. I1L 16, in order to account for the
fact that gel pores which size can go down to | nm are very likely to percolate. Using the
latter scheme to estimate the effective diffusivities of the CSH, the stepwise homogenization
process based on the three-scale description of HCP proposed above is presented in the
following section and applied to predict the macroscopic diffusion coefficients of sound and
leached HCP.

9.2 Three-step homogenization process

Cement pastes are assumed to be macroscopically isotropic so that the effective diffusion
tensor D}, of HCP is simplified into D, .1, where D, is a scalar diffusion coefficient.
All the main phases constituting HCP microstructure, namely CH, AF, CSH™, CSH™, UC,
Capillary pores (CP) and gel pores (GP), are all supposed to be isotropic and their total volume

fractions and diffusivities are respectively designated by ¢ and D, , with
ic {CH, AF,CSH™, CSH™, UC, CP, GP} .

The first step of the process consists in estimating the effective diffusivities of CSH™ and
CSH™ represented by means of a MCSA (see Fig. 111.16). The effective diffusivity of the

Solid phase denoted D, is taken such as D, /D, — 0. The diffusion coefficients D, and

Dfsuu, of the two types of CSH are then obtained from Eq. (I11.58) that simplifies into:
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where ¢, and cf, designate the relative volume fractions of the gel pores in CSH™ 4,

CSH®™, respectively.
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Figure I11.16: Two-dimensional representation of the assemblages mixing two types of
composite spheres used for representing the microstructures of CSH™ and CSH™.

At the second step, the inner and outer layers composing the assemblage of doubly-coated
spheres have matrix-inclusion type morphology, as already mentioned in Part I1. More
precisely, the impermeable mineral phases CH, AF and/or the capillary pores play the role of
inclusion enclosed in a matrix of CSH™ or CSH™. Each layer is supposed isotropic so that
the diffusion coefficients of the inner and external layers are simply denoted by the scalars

L‘-W and DM . respectively. In the micromechanical model developed to estimate the elastic

propertics of cement pastes by Zimmerman et al. (1986) and Stora et al. (2006b), spheroidal
shapes arc used to model certain particulate phases but it 1s presently preferred for simplicity
to adopt spherical inclusions for representing all these phases. The effective diffusion

coefficients L};m and IJJN of the inner and outer layers are estimated by the IDD scheme (Eqg.

111.28):
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where the superscripts ‘inn’ and ‘out’ indicate that the volume fractions are relative to the
total volume fraction of the inner and outer layers in the doubly coated spheres model
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ﬂgpecliwh"- The IDD estimate was outlined to be valid provided that the most diffusive
phase does not percolate but it can be applied for the outer layer, since the capillary pores
should not percolate or only through a network of smaller gel pores, according to the MIP
tests performed on sound pastes.

The third and last step of the homogenization process consists in computing the effective
Jiffusivity of HCP represented by a doubly coated spheres model, which can be computed
ith Eq. (111.26). The anhydrous core being impermeable to diffusion, the effective diffusivity
of HCP can thus be simply expressed as follows:

D (ITL.65)

) =2.{J;[ 3 il |
i Yeg,. =2, mﬁ:' |

.

9,3 Estimations of the effective diffusivities of HCP

9.3.1.1 Evaluation of the macroscopic diffusion coefficients of sound HCP

The three-step homogenization model described in the previous section is now applied to
diverse CEM 1 standard pastes, which total porosity vary from about 20 % to 45 %. The basic
input parameters required for the calculations of the effective diffusivity of these pastes are
the diffusion coefficient and total volume fraction of every phase. The numerical values

retained for the diffusivities of the gel and capillary pores are: D, =2.2x107m’/s and
D, =2x10""m"/s (Bary and Béjaoui 2006). More precisely, D, is obtained by simply
assuming it equal to the diffusion coefficient D, of tritiated water in bulk water at 23 °C
and D.. is supposed to be one order of magnitude lower than D, because of the

constrictivity effects. The mineral compositions in terms of volume fractions, evaluated from
the hydration model developed in Jennings (2000) and Tennis and Jennings (2000) of
ordinary (CEM 1) cement pastes with different w/c ratios, are taken from Béjaoui and Bary
{20'3?]. The volume fractions of total porosity obtained with the Jennings and Tennis model
are in very good agreement with total water porosity measured on the same cement pastes
(Bejaoui and Bary 2007). The volume fraction of capillary porosity is difficult to quantify
Precisely due to the fact that they are mostly inaccessible by mercury injected at low pressure.

For the present work, the latter quantity is supposed to be equal to the value ¢, =0.036

Measured with the help of BSE by Igarashi et al. (2004) in ordinary Portland cement pastes of
Wie = 025 and w/c = 0.40 with the help of image analysis. Still, this approximation
1-““ﬁlﬂ\i{hu.:f::d because of a lack of experimental results may require further investigation. The
Ftul amount of gel pores are then calculated by subtracting the volume fractions of capillary
Pores to the total porosity ones. The repartition of the gel porosity between the two types of
CSH s performed in the following manner: the CSH
h‘mrphulugy on the micrographies of Béjaoui et al. (2006) always contain about 20% of gel

i

that appear to keep an invariant



:

Page |
—

porosity ( Tennis and Jennings 2000), while the gel porosity comprised in the CSH* irlCrea,

with the w/c ratio of the paste. The volume fractions of the mineral phases and of the diffey,
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types of porosity present inside CEM [ pastes are listed in Table 111.2.

CcSH™ CSH Capillary porosity S
w/ AR (percentage (percentage of (ascurtied from CH :
© residuals GFQ :lc nri} P i arfq} [garashi et al. FAF
SR & BT 2004)
0.30 0.137 0.374 (20 %)  0.135 (46.6 %) 0.036 []‘,-2_1‘}_3__"‘
0.35 0.094 0.339 (-*-) 0.229 (49.4 %) 0.036 0.303
038 0075  0307(~) 0281 (50.4 %) 0.036 0.302
0.40 0.064 0.283 (--) 0.317 (50.8 %) 0.036 0.300
0.42 0.054 0.257 (<) 0.361 (50.9 %) 0.036 0.298
0.45 0.043 0.216 (-%-) 0411 (51.7 %) 0.036 0.293
0.50 0.03 0.146 (-*-) 0.504 (52.4 %) 0.036 0.284
0.60 0D.014 0010 (-"- 0.684 (52.6 %) 0.036 0.257

0.65  0.010 0.000 0.711 (54.4 %) 0.036 0.244

Table 111.2: Composition in terms of volume fractions of hydrated CEM I pastes obtaine
by combining the mineral compositions given in Béjaoui and Bary (2007} computed witl
the hydration model of Jennings (2000) and Tennis and Jennings (2000) and the
experimental measurements of capillary pores (Igarashi et al. 2004).

Two additional parameters, namely the densities /™ and /" of composite spheres with I
porosity in the MCSA representing the CSH™ and CSH™ respectively, still need to

determined. Bary and Bejaow (2006) assumed that only a very small volume fraction of 0.0
percolates through the CSH™. Using this value, Eq. (111.56) yields f™ = 0.805. The effecti
diffusivity of CSH™ is then estimated from Eq. (II1.63): Dl =8.30x10 "m%s. T

ll:?:l

geometric parameter of the MCSA representing CSH™ is identified from an experimen

value of the macroscopic diffusion coefficient of tritiated water in CEM I paste with w/c
0.50 (Richet et al. 1997): D, ..(w/c=0.50)=891x10""m"/s. The value thus obtained f
the density [ of low-porosity composite spheres is /™ = 0.546. Eq. (II1.63) provid
estimations of D/, that vary from D, (w/c=0.30)=7.17x10"m?/s

D:._wc__"[w.f c=10.65)=1.04x10"m"/s depending on its gel porosity. It is noteworthy that t

high-density CSH™ that are much less diffusive than CSH®' could be approximated as a no
diffusive phase without strongly influencing the final results. However, it seems mo
consistent to model this porous phase as diffusive, since the CSH™ contain a significa
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amount of gel pores. Then, Eqgs. (111.64-65) are computed, the relative volume fractions of CH
and AF distributed in the inner and outer layers being taken proportional to the relative
percentage of CSH™ and CSH™ in CSH.

The predictions, resulting from the threc-step homogenization process, of the effective
diffusivitics of tritiated water in sound CEM 1 pastes with diverse w/c ratios are plotted on
Fig. 1I1.17 and are confronted to experimental results issued from Richet et al. (1997). It is
recalled that a HCP becomes more porous as its w/c ratio increases, They are in quite good
agreement with the values measured, since the mean relative error is about 16 %. It is outlined
that the results can be notably improved by taking f as a lincar function instead of a constant.
Furthermore, using the identical three-step homogenization model, the predictions obtained
by employing MT with the gel pores embedding solid spherical inclusions instead of the
MCSA for the effective diffusivities of the CSH®™ are provided in Fig. II1.17 and highly
overestimate the experimental results thus confirming the inadequacy of this matrix-inclusion
type scheme in the particular mentioned configuration for predicting their effective
diffusivities.

1 ﬂ: L] L ¥ L L T
10 L] | 4
—
L]
N""-.
g
-
10 H
= = = Mulii-scale model (= 0.546)
* Experimental (Richet et al. 1997)
= Simplificd model (Stora et al. 2006b)
- v = Mulli-scale model with MT instead of MCSA
167 — 7 I I I 1

02 025 03 035 04 045 05
Total porosity

Figure 111,17 (semi-logarithmic scale): Evolutions of the diffusivities of CEM I pastes
measured experimentally (Richet et al. 1997) and predicted respectively by the multi-scale
model with = 0.546 and by the simplified model in Stora et al. (2006b), as a function of

their total porosity.

For the sake of comparison, the results obtained with the two-step representation proposed in
Stora et al. (2006b) and briefly recalled below are also displayed in Fig. 111.17. At the first
step, by taking all the little or non diffusive phases as spherical inclusions embedded in a solid
diffusive CSH™ matrix, we obtain a two-phase material composed of a low diffusive
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homogenized solid phase, which diffusivity results from the first step, and of porosity (Fig.
[11.18). At the second step, this two-phase material representing HCP is modelled as a MCsa_
According to Fig. IIL.17, the three-step homogenization model leads to a significang

improvement compared to this two-scale approach, since it proposes a more preciga

description of HCP microstructure and of its porosity.

Porosity Spherical inclusions of non-

diffusive and little diffusive phases
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Figure II1.18: Two-dimensional representation of HCP using two scales: at the first scale,

non-diffusive and livtle diffusive phases are modeled as spherical inclusions embedded in a

solid diffusive phase; at the second scale, the homogenized solid phase and the porous one
are modeled as a MCSA (Stora et al, 2006b).

The present multi-scale representation of the pore structure is still very simplified in
comparison with the real pore network. Nevertheless, it reproduces some of its important
characteristics. First, the proposed description represents in a simple manner the percolating
gel pores, which is consistent with the critical pore diameters measured by MIP. Furthermore,
the gel porosity of CSH™ in the present model augments with the w/c ratio, while f'is kept
constant. Under these conditions, it can be seen from Eq. (111.56) that the quantity of
percolating gel pores also increases in the MCSA. This is in good agreement with the
micrographies of Béjaoui et al. (2006), in which the gel porosity of CSH™ appears to be of

greater size and to be more connected in high w/c pastes than in low w/c ones (Fig 1.2).

The present homogenization model is quite similar to the one proposed by Bary and Béjaoui
(2006). The main difference lies in the modeling of the external coating, since in the present
representation gel pores percolate instead of capillary ones. It should be emphasized that most
of the homogenization methods existing in literature focus on the percolation of capillary
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porosity and require the knowledge of its percolation threshold. But as outlined by Béjaoui
and Bary (2007), no consensus exists concerning its actual value because the definition of
capillary porosity and the method for computing its percolation threshold vary from one
author to another. The percolation thresholds of capillary pores in HCP are often estimated
with the help of advanced cement simulation tools (Garboczi and Bentz 2001; Ye 2005).
Nevertheless, the diverse values proposed by these simulation tools, globally ranging from
0.03 to 0.2, vary significantly from one author to the other (Garboczi and Bentz 2001; Ye
2005) and some of these estimations appear to be in contradiction with the critical pore
thresholds measured by MIP. The present model proposes an alternative approach rather
focusing on the percolating gel pores located in CSH. In the present description, the capillary
pores only percolate through a network of smaller pores and the sudden variations of HCP
diffusivity are caused by the change in connectivity of gel porosity.

9.3.2 Evaluation of the macroscopic diffusion coefficients of leached HCP

The model is now applied to the case of a hydrated CEM [ paste subjected to leaching by pure
water. The degradation scenario retained here is exactly the same as in Bary and Béjaoui
(2006). The reader should refer to this paper for more details. The decalcification is supposed
to be, in term of the volume of solid phase replaced by porosity, linearly related to the
decreasing calcium concentration in the pore solution C,: CH totally dissolves before any
other hydration products between €, = 21.54 and C, = 20.31 mol/m’, then half of AF dissolve
between C, = 20.31 and C, =3.08 mol/m’ and the CSH are progressively degraded between
C,=20.31 and C,= 1.09 mol/m’. More precisely, only 5 % of the CSH are dissolved and
replaced by additional capillary pores in the most decalcified state but their mternal porosity
significantly increases during degradation (Gallé et al. 2004; Heukamp 2002). Their gel
porosity is quantified by subtracting the sum of the initial capillary pores and the additional
ones, issued from the dissolution of hydration products, from the measure of total porosity by
MIP. This method is applied to a CEM [ paste with w/c = 0.45 and the values of porosity
comprised in the CSH before and after leaching indicate that a total volume fraction of
supplementary percolating gel porosity of 0.04 appears in the CSH during degradation. The
effective diffusivities of CSH™ and CSH™, which are updated from Eq. (I11.63) and from
these higher values of gel porosity, significantly increase when decalcification occurs.

An important issue for the application of the present model to the case of degraded cement
pastes is the possible formation of percolating paths composed of capillary pores due to the
dissolution of hydration products. Nevertheless, the critical pore diameter measured by MIP
for leached pastes (Gallé et al. 2004) remains inferior to the typical sizes of dissolved
hydration products (CH, AF) situated at the micrometer scale, though it increases by an order
of magnitude (Table 1.4). This result suggests that the additional capillary pores formed
during the leaching process do not percolate or only through smaller pores. It is consequently
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sound to use a matrix-inclusion type scheme for estimating the effective properties of the
layers of the doubly coated spheres during leaching. The effective diffusion coefficients thus
obtained versus calcium concentration for CEM 1 pastes with different w/c ratios are shoyy,
on Figure I11.19. Two principal domains are observed on the curves displayed on this figyre
Looking at these curves from the right to the left, the macroscopic diffusivities of the pages
appear to first increase suddenly. This augmentation is caused by the dissolution of al| t,
portlandite, while the other hydration products (AF, CSH) are still intact. These solid phases
then progressively dissolve as the calcium concentration decreases and the effective
diffusivities continue to augment but less rapidly. At the end of the leaching process, the
increase of the effective diffusion coefficient is about one order of magnitude for the totally,
leached cement pastes with low w/c ratio (0.30 - 0.40) and a factor of 6 to 9 for the ones witt
higher w/c. Both iitial and final values obtained for w/c = 0.40 are consistent with the ones
reported by Planel (2002) for a similar material.
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Figure II1.19: Evolutions of the effective diffusion coefficients of CEM I pastes with
different w/c ratios as a function of calcium concentration in pore solution (Stora et al.
20065).

The present predictions are also close to the results of Bary and Béjaoui (2006) obtained with
a comparable assemblage, where the same degradation scenario was adopted. But the
advantage of the present model compared to the previous one is that the MCSA allows fo
representing in a more simple and convenient manner the percolating porosity than the SC
scheme, that can be realized only by a complex microgeometry (Milton 1985).
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9.4 Estimations of the macroscopic diffusive properties of mortars

Many models already exist to deal with such applications (e.g. Caré and Hervé 2004;
Garboczi and Bentz 1997). It is worth saying that the effective diffusivity of a mortar is
approximatively of the same order as the diffusivity of its cement matrix. Some authors
(Nguyen 2005) argue that it is due to the fact that the presence of aggregates in a hydrate
cement paste matrix probably has two opposite cffects on the transport properties that
compensate each other. On the one hand, it increases the tortuosity of the matrix and reduces
the total space available to diffusion and, on the other hand, the presence of porous ITZ
enhances the diffusion process.

The homogenization model presented below is based on a few assumptions. First, the
macroscopic diffusion coefficient of the cement matrix of mortar will be supposed equal to
the one of the bulk cement paste. In addition, the ITZ is supposed to be a homogeneous
interphase, even though it would be more realistic to model it as an inhomogeneous one (Lutz
and Zimmerman 2005). A doubly coated-spheres model is adopted to represent mortars (Fig.
11L.20). Precisely, the core, the intermediary layer and the external one are respectively
occupied by sand particles, ITZ and HCP, which diffusive properties result from the previous
step. The sand aggregates are non-diffusive and, as in linear elasticity, the diffusivity of ITZ is
computed by means of a simplified model (Caré and Hervé 2004). The macroscopic
diffusivity of mortar can then be estimated by the GSCS or modified DIM (Eq. (111.25)). This
homogenization approach for computing the diffusivity of mortars will be applied and
validated in Part V, which proposes simulations of the chemical degradation of mortar
samples.
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Figure II1.20: Schematic of the representation used for the estimation of the effective
diffusive and elastic properties of mortars.

CONCLUSIONS OF PART III

The contributions of this Part are both theoretical and practical. The estimations of the
macroscopic transport properties of porous media such as concrete matenials represent a
challenging issue for homogenization theories because of the difficulty of reproducing the
highly non linear changes of these properties observed experimentally (e.g. Oh and Jang
2004). The brief review performed reveals that only a small group of commonly used EMTs,
like GEM or Kirkpatrick models, exhibits the ¢apacity to model the sudden variation of the
effective diffusion coefficient of porous media due to a critical microstructure change. It is n
particular pointed out that commonly used matrix-inclusion type EMTs are to be excluded for
predicting such rapid changes of diffusivity, since they are inadequate for modelling

percolating pores.
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A novel estimate associated to a MCSA apt to account for pore connectivity has thus been
developed. By construction, this MCSA scheme automatically respects the HS rigorous
bounds. Another salient feature of this estimate is its capacity to model connected phases
forming tortuous paths in a geometrically simple and clear way, which is essential for the
prediction of effective diffusion properties of porous media. In this sense, as an estimation
model, it provides a real improvement on HS bounds and other EMTs and it is expected to be
applicable for a large class of porous materials, such as cementitious ones, granular media and
rocks.

From a practical standpoint, a three-step homogenization model, where the two types of CSH
containing connected gel porosity are modelled as a MCSA, is specifically developed for the
prediction of the macroscopic diffusivities of HCP and wvalidated by confronting with
experimental measurements performed on CEM 1 pastes. But the success of models developed
for engineering applications also depends on their simplicity of use and on the number of
parameters it involves. The present model well complies with these criteria. Apart from the
usual intrinsic parameters, such as phase volume fractions and diffusivities, it depends only on
two geometrical parameters that allow for characterizing the connectivity of gel pores in the
CSH™ and in the CSH™. The model distinguishes itself from already existing approaches in
the sense that it does not require the knowledge of the percolation threshold of capillary
porosity. The multi-scale homogenization model is furthermore applicd to cement pastes
submitted to leaching. The significant increase of cement paste diffusivities predicted
highlights the highly detrimental influence of the dissolution of hydration products.
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Appendix [1LA: Derivation of the inhomogeneous Eshelby tensor for a spherical
isotropic inclusion

We are presently interested in solving the boundary value problem depicted below (Fig.
L.A.1) so as to derive an analytic expression for the inhomogeneous Eshelby tensor of a
spherical isotropic inclusion. All phases are supposed isotropic so that it is possible formulate
the reasoning with scalars instead of second-order tensors.

Figure IIILA.1: Schematic of a spherical isotropic inclusion with a homogeneous
interphase enclosed in an infinite matrix.

The general solution for this problem can be expressed in the following way:

Clr = Hif"" —B-z'!
2
d 5 - (IILA1)
Jp= “'Dt.‘:tﬂl __2'_&'.1
" ,.
Cop = B]!" +B—:,
4 3 553 (IILA2)
Joy = —DE'{ 5.1 = —1}
. r
Cy = Br+ —Bzﬁ
! F ; (IILA3)
2
Ju = _D.H'[ ——fjﬁ}
! r

where B, (i€ [1,6]) are constants that can be determined from the interfaces and boundary
conditions. It is straightforward that B, = B; = 0. It furthermore comes from the definition of
the inhomogeneous Eshelby tensor in Eq. (I11.13) that B1=A,g'1 (Duan et al. 2006). The

interfaces conditions at » =, and r =r, respectively read:

{‘a:r —-I}._f:" — B.Irl_ +%,

' ’ ( 2B
(a1 -, 528,
s

(11LA4)
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B, B
B -+.-_" = _6 i
e . rf
p 5 2B (IIL.AS)
oo(5-)-0 %
From the interface conditions written in Eq. (II1.A4), it comes that:
O gr’
B, =[3, ~3)8 and B, =3 (111.A6)
The unknown constant B, is then gained from Eqgs. (IILAS-A6):
B, =[(A; ——lj}f+~;-rf} g . (I1LA7)

By injecting the expressions of Eqgs. (IILA6-A7) into (IILAS), the following expression is
finally obtained for A4,":

Af' = [% +2ﬁf"p3] : (ILAS)
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Appendix IILB: Derivation of Eq. (I111.61)
This Appendix details the calculations required to obtain Eq. (IIL61). To begin w;j t, Eq
(111.54) is rewritten as: i

B =Py, Bi=F-c;). (ILB1)

Using Eq. (I11.55), £ can also be expressed as a function of ¢} :

:cz fcz
II1.
B =B, -/ (1I1.B2)

By recalling that the connected volume fraction ¢ of phase 2 verifies ¢ = fe; , Egs.
(ITI.B1-B2) become:

r

. B =,8.‘[

R
(21
Cs

I

il
166

B. =5, fif

(111.B3)

Substituting the expressions (IIL.B3) of S and £ in Eq. (I11.56) yields Eq. (111.61).
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Appendix IIL.C: Link between fand the formation factors

This Appendix aims at establishing the links between the geometric parameter f of MCSA and
the formation factors defined in Eq. (II1.45). For this purpose, the quadratic equation (I11.57)

ig first divided by D :

' - 1 #
a| - B (ILC1)
\.Dz D? DI

We next consider the limit of (IILC1) when D, —» =, in order to make the formation factor

F, appear. Noticing that /3] tends to one when D, — =, Eq. (IIL.C1) simplifies into:

—;T![(1+2f—-r:,}Fi1+2{l-f-r:z)]zﬁ. (111.C2)
Two cases are to be treated. If F, — e (i.e. D'/D,—0), no relation can be established
between f and F,. This case corresponds to the situation in which the phase 2 does not
percolate. Consequently the lower HS bound, also obtained by taking /= 0 in the MCSA
estimate, should be applied. If F, is finite, Eq. (I11.C2) yields:

el
Analogously, it is possible to express f as a function of F, by inverting the indexes | and 2
- and substituting /by (1 - /)

(IT1.C3)

"
#

2F, +1
=]- : o I1.C4
) “*[?-F. —2] e
Conversely, the formations factors can be expressed in terms of f:
Biw YO oy g, BA-TYHE (11LC5)
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Part IV
MODELLING OF DAMAGE OF CEMENTITIOUS MATERIALS

The damage of heterogeneous materials such as concrete is a complex nonlinear dissipative
phenomenon, which has been the subject of extensive researches (e.g. Krajcinovic 1996),
Damage in cement-based materials is generally qualified as quasi-brittle and is caused by the
nucleation, growth and coalescence of microcracks. These cracks grow preferentially in
certain directions depending on the loads applied thus inducing an anisotropy of the damaged
material. Many models, which are more or less phenomenological, have been proposed for
treating damage in concrete (e.g. Mazars 1984; 1985). But some phenomena such as the
unilateral effects of the opening and closing of microcracks represent challenging issues for
rescarchers (e.g. Cormery and Welemane 2002). Aiming at proposing a damage model that
can be incorporated into a FE code, the present Part adopts a hybrid approach using
homogenization techniques to determine the number and nature of damage variables and the
free energy for a given damage state but also revisit the main ideas underlying the most
popular models in concrete (e.g. Mazars 1984; 1985).

The framework of continuum damage mechanics presently employed to develop a physically
sound model is usually associated with the thermodynamics of irreversible processes with
internal variables (e.g. Nguyen 2000). As noticed by He and Curnier (1995), a damage model
within this framework is generally composed of three parts. First, the damage variables are
adequately chosen to characterize as accurately as possible the damaged state of the
concerned material. Second, the material behaviour is formulated for a given damage state.
For this purpose, homogenization techniques are employed to remedy the lack of uniformity
and rigor in formulating the free energy function. The evolution laws of the damage variables
for a loading history are then established. The damage model presently developed does not
claim to tackle complicated issues of damage, such as unilateral effects or complex loading.
In the manuscript, the model is only applied in tension but could be extended to the case of
compression with the aid of the work of Deudé et al. (2002).

The present work first assesses the capacity of prominent homogenization schemes to predict
the mechanical effective properties for a given damage state. Then different evolution laws
for the damage variables are discussed and a strain-based criterion 1s established. The damage
model developed is then applied in uniaxial and biaxial tension tests. It is outlined that we aim
at building a relatively simple model based on the ensuing simplifying assumptions. The
undamaged material is considered to be isotropic. The assumptions of small strains and of
isothermal conditions are adopted. Damage in cement-based materials being quasi-brittle,
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plasticity may be neglected for simplicity at least in tension. In addition, the unilateral effects
due to the opening or closure of microcracks and the frictional effects are neglected.

10 DEFINITION OF STATE VARIABLES

The state variables are defined as the group of variables which current values characterize the
physical statc of a system at equilibrium. Only mechanical state variables are presently
considered. The state variables are constituted of the macroscopic strain £ associated with the
stress ¢ and of parameters chosen to characterize the damaged state of the material. Two
main categories of damage models based on different definitions of the damage parameters
may be distinguished: the phenomenological models (e.g. Ladevéze 1983) focusing on the
damage effects at the macroscopic level and micromechanical approaches (e.g. Dormiecux et
al. 2006; Pensée and Kondo 2003) linking the macro-response of the material to microscopic
parameters characterizing its microdefects (Budiansky and OConnell 1976).

Many amisotropic damage models use a second-order damage tensor (e.g. Ladeveze 1983),
although such choice may lead to strong shortcomings (Krajcinovic 1996). Among them,
Cormery and Welemane (2002) evidenced that the spectral decompositions of these second-
order damage tensors may lead to certain inconsistencies, for example the non unigueness of
the thermodynamic potential. Micromechanical approaches (e.g. Kachanov 1992) are more
recent than phenomenological models but may reveal very difficult to implement in a FE
code.

The basic idea used by the micromechanical models for dealing with damage consists in
representing the microcracks as degenerated ellipsoidal voids. By degenerated it is meant that
the lengths of one or two of its axis are reduced to zero. In the present part, only penny-
shaped spheroids are considered. Damage variables that characterize material microdefects are
the crack density parameters o characterizing a family i of cracks having the same normal
vector e, associated with the driving forces Yy defined in the ensuing. More precisely, these

crack density parameters introduced by Budiansky and O’Connel (1976) are defined as
di=Na;’, where Ni is the volume density of the family i of microcracks and where 4; is the
Maximum axis of the degenecrated spheroid representing the microcracks of type i. The
damaged material is then viewed as a homogeneous matrix of cement-based material in which
the microcracks are distributed. The idea of modelling these cracks as penny-shaped spheroids
Permits to account in an intuitive manner for the anisotropy caused by loads. In the ensuing,
the Presently defined crack density parameters 4 are chosen as damage parameters. The total

Number . of families of cracks necessary to correctly model the damaged material is
discussed Jater.
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11 MICROMECHANICAL ESTIMATIONS OF THE DAMAGED MATERIAL

BEHAVIOR

In the case of a strain formulation, the Helmhotz free energy practically corresponding to the
energy stocked by elastic strains is written as:

ﬂb:%i:ﬂ'(i]:i, (IV.1)

where the effective damaged stiffness tensor C° depends on the homogenization scheme
adopted. The scope of the next part consists in finding a relevant one providing accurate

estimations for the effective damaged stiffness tensor €. Different micromechanical schemes
are presently reviewed to find which ones provide the best estimations. However, the present
review is only focused on explicit schemes, that can easily be implemented in a FE code and

do not require any numerical resolution to obtain the effective damaged stiffness tensor C'.

11.1 General presentation

A brief review of the micromechanical schemes, that cannot pretend in any case as being
exhaustive, is presented, starting obviously from the rudimentary dilute model (e.g. Eshelby
1957) to more recent ones. To simplify the ensuing calculations, the following two tensors,

which are both linked to the Eshelby tensor ¥ of the penny-shaped inclusion representing

the type i family of cracks embedded in the sound matenal, are introduced:

: = .
T, =limr (I- ) kﬂfrr:%;rdltzgw (IV.2)

.rﬂ-}'l:l

where r;is the aspect ratio of the penny-shaped inclusion representing the type i family of
cracks and H" defined in Eq. (I1.34) is called the dilute compliance increment tensor of type
i microcracks. It is recalled that I and §,, designate the fourth order identity tensor and the
compliance tensor of the undamaged material behaving as a matrix entrapping the penny-
shaped crack, respectively. The tensor ]]*]Ij“ has got a simple expression, since the only non

vanishing terms are (Mura 1987):

ar _ 16(1-v") ar __8(1-v") -
e g H¥ = g (j2i), V.3
(1] 35“. i i 3(2-[2}5” {J f} { }

where E,, and v respectively designate the Young modulus and the Poisson ratio of the
undamaged material. Using the tensorial operators, the tensor H'"' can also be written as:

]]-]I:’““=2Mdr[l®ﬁr+s\rél—vﬁf®ﬁ, , (IV.4)
3E, (2-v) ¥ :
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where A, =e ®@e and where it is recalled that 1 is the second order identity tensor. It is
noteworthy that, if all the cracks are aligned, the tensor H is then singular.

The estimation for the effective stiffness tensor in Eq. (IV.1) by the dilute model computed
with homogeneous displacements applied at infinity (e.g. Eshelby 1957) varies linearly with
the crack density parameters:

C,=C, :(I-p,T,), with p,.=§-;'mﬂ. (IV.5)

It is however well-known that the dilute model does not account for the interactions between
microcracks. The MT model capable of accounting for interactions in a certain manner
between the cracks and the matrix, gives the following expression of the damaged effective
stiffness tensor (e.g. Benveniste 1987):

4

C,r =(S, +H"")" with H”:H"‘“:LI-ZH“-:H:”]_- (1V.6)

(7]

where H"' defined in Eq. (11.33) is the dilute compliance increment tensor of the damaged

body. As already mentioned in Part II, different double-inclusion schemes providing quite
similar predictions have been developed to account for the cracks spatial distribution (e.g.
Kiister-Toksdz 1974; Hort and Nemat-Nasser 1993; Ponte-Castaneda Willis 1995; Shen and
Yi 2001; Zheng and Du 2001). In the case of an isotropic distribution of cracks, identical
estimations can thus be obtained from the IDD model (Zheng and Du 2001), PCW one
(Ponte-Castaneda Willis 1995) or DIM (e.g. Hori and Nemat-Nasser 1993):

I =]
=C:m=[SH+H‘”"]_' with n—n”*“:[n—ZHf”:u;J ‘HY, (IV.7)

/

c

PCW

where Q) =C,, :[I-EE) denotes the eigenstiffness tensor of the double-inclusions

surrounding the family 7 of cracks. These double-inclusions practically characterize the spatial
distribution of cracks. Recalling that spherical double-inclusions are generally adopted for
isotropically distributed cracks, the non-overlapping condition is respected provided that

Crack densities d, remain inferior to 3/4x (see Appendix IL.B). For higher crack densities,

the full-range IDD proposed by Zheng and Du (2001) employs spheroidal double-inclusions
1o fulfill this non-overlapping condition but leads to complex computations. It is noteworthy

that, even with spherical double-inclusions, a simple analytical expression for H'® such as
the one in Eq. (IV.4) for the dilute scheme is difficult to reach for materials with at least two
families of cracks having different orientations. The matrix representation of H™ then
_'“'“hrises extra-diagonal terms and as a result the expression of C),, may be tedious for

slic bodies weakened by many families of cracks. A slightly simplified version of the IDD
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model is proposed to circumvent this difficulty. By expanding the expression of H™ i g

previous equation, the following relation is obtained:

Cpp = (S, +H™) " with B =):[1+ZH:’” :ﬂ;]:H:’” : (IV.8)

The matrix representation of the compliance increment tensor H™ estimated by thjs

simplified IDD model does not contain any extra-diagonal term and simply reads in the case
of spherical double-inclusions:

%[I+%]&,®ﬁ,+
ﬂﬂ&z% c c . (V.Y
i T ,.__d.r_z[(z—v]+%][l®ﬁ‘.+ﬁf®]—zﬂ,@ﬁ,)
_df (2-v) L . _ |

As the MT and original IDD model, this simplified IDD scheme can be considered as an
improved dilute model (see Fig. 11.5), where each family of cracks modeled as a single penny-
shaped inclusion is immersed in the unbounded matrix material subjected to a modified far-
field stress.

It is worth noting that implicit schemes such as the SC (Budiansky and O’Connell 1976), the
GSCS (Huang et al. 1994) and the differential scheme (Hashin 1988) may also be applied but
the expressions of these estimates can become very complex even if only one family of cracks
is involved. However, with the explicit schemes presented above, the analytical expressions of
the effective damaged stiffness tensor may also be quite tedious when many families of cracks
are involved. Therefore, three particular cases are treated in the next subsection to draw a
comparison between the different explicit schemes: aligned, isotropic and orthotropic.

11.2 Comparison of the homogenization schemes in simple cases
1L21 Comparison for a material with aligned cracks

All the cracks are assumed to be aligned with their normal vectors parallel to the same axis e;.
The subscripts can thus be disregarded, since only one family of parallel cracks is involved.
The effective damaged material is transversely isotropic, since the undamaged one is assumed
to be isotropic. In such case, simple analytical expressions are available for most of the
studied schemes (Nemat-Nasser and Hori 1993). A general expression including IDD and MT
schemes as particular cases is proposed below.
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11.2.1.1 A general expression for explicit schemes

By taking benefits of similarities between the compliance increment tensors of MT and IDD
schemes written in Egs. (IV.4) and (IV.9), a general expression denoted H for the latter
tensor has been found to cast IDD and MT schemes in an identical framework:

H:ﬁi{m@a+h(1@¢+ﬁ®1—2¢®aﬂ,

M
r -] =
!—i] and b=}%~[[2— v)— L ] ;

il
. Lo c *Qm:dr

(IV.10)

where Q. is the deviatoric part of the eigenstiffness tensor ) of the double-inclusion
characterizing the distribution of cracks, d,. denotes a critical crack density parameter and
where dZ corresponds to the critical crack density for which the dilute estimation of the
Young modulus goes to zero. The IDD and MT estimates may be retrieved for particular
values of d. and Q,.. For ﬂm——-EM{?uSV]I[IS(I-V?)] and d.=d"™ =45/128, the

previous equation coincides with the expression of the compliance increment tensor in Eq.
(IV.9) provided by the IDD scheme. Observe that d°° corresponds to the crack density for
which the IDD estimation of the Young modulus goes to zero. Similarly, Eq. (IV.10)
coincides with the MT estimate in Eq. (IV.4) for Q,,=E, /[2(1+v)] and d,. going to

infinity.

It is furthermore pointed out that simple general expressions can be obtained from the
previous equation for the effective axial Young modulus £/, the longitudinal Poisson ratio
v, =v,, and the longitudinal shear modulus G, =G|, =G, of the damaged material allowing
for retrieving IDD, MT and dilute homogenization schemes for particular values of the critical

crack density parameter d.:

5 AT
E v, v, d d(
L=Ys I-=[ [E—— 1-=£ } A (IV.11)
E” ¥ ¥ C.J dﬂ‘ \ di' A

If Q, .=<E,/ [E{Iﬂr}] and d. tends to infinity, the expressions of the Young and shear

moduli given in the previous equation coincide with the estimation of the MT model written

below:

MT
Bl 1 |, with d;‘.*’=——3—r,
i 16(1—v?)

(IV.12)
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and if d. =d", they coincide with the dilute estimation:
g i 16(1-v)d
f-_=1-iﬂ and S| [-t) +0(d*), (Iv.13)
E, d? G, 3(2-v)

where " appears clearly to be the critical crack density for which the dilute estimation of
the Young modulus goes to zero. Finally, the IDD predictions are also retrieved for

Q,=E, (1-5v)/[15(1-v*) | and d, =d*":

DD T -3
E, ={|_128d][1_|28d[| 45 “ . 60p(i-v?) (V.14)

E, L 45 45 ‘izﬁd;*f’, 15z+4p(T-15v%)
T
g . 5y 15(1-v7)d | it 60p(1—-v)
G, | (1+v)d¥ (7-5 u]d;f’J 152(2—v)+8p(4—-5v)’

with p=4xd/3. The effective Young and shear moduli of the damaged material along e,

axis predicted by the simplified IDD can be written as:

SDD 1 ” d \. =1
1 =[1+ o I ‘dr] _ (IV.15)
A

il D
i dﬁ‘ LY f'.tf

In the ensuing, these estimations of the elastic moduli obtained with the dilute, IDD, MT and
simplified IDD homogenization models are compared to each other and confronted to

numerical results.

11.2.1.2 Evolution of the explicit estimates with crack density

For the sake of comparison, the respective predictions of the previously mentioned schemes
for the effective axial Young modulus, the longitudinal Poisson ratio and shear modulus of a
damaged material with aligned cracks are plotted on Fig. IV.1 as functions of the crack
density parameter p. This crack density parameter used by Ponte-Castaneda and Willis (1995)
has a very clear geometrical signification. 1t corresponds to the volume fraction occupied by
spheres circumscribing each penny-shaped crack.
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Figure IV.1: Evolutions of the effective axial Young modulus, the longitudinal Poisson

ratio and the longitudinal shear modulus of an elastic body with v = 0.25 weakened by

aligned penny-shaped cracks on the (es, e) plane estimated by diverse homogenization
schemes as functions of the crack density parameter p =4xd/3 (3D).

Clear-cut differences may be observed on Fig. IV.] between the curves respectively estimated
by the dilute, IDD and MT schemes. The elastic properties predicted by MT estimate evolve
very slowly when the crack density is high, while the elastic moduli predicted by the dilute
model vanish rapidly. By the way, that is why the dilute scheme is considered as a lower
bound by Krajcinovic (1996). The curves computed with the IDD method are situated
between the dilute and MT ones and go to zero for certain values of the crack density
parameter. It is recalled that the interaction effects between cracks are neglected in the dilute
estimate and that they are only integrated in an indirect way in IDD and MT schemes, since
they can be interpreted as dilute models where the stress applied at infinity is modified to
account for the presence of other microcracks, as is shown in Part 11 (Fig. 11.5). Most of the
Papers dedicated to the calculation of cracks interactions are numerical, since it is a
remendously difficult task to calculate the exact stress intensity factors of a given
Microcrack, which interacts with all the other microcracks. Thorough numerical simulations
taking into account interactions between cracks have been performed by Shen and Yi (2001),
Feng and yu (2003a,b) and Shen and Li (2004) in 2D to predict the damaged mechanical
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properties. It is consequently interesting to compare the present estimates with these advanceq

simulations to gauge which one is the most accurate.

The different results obtained in the case of aligned cracks for the evolution of the Young
modulus with crack density are gathered in Fig. IV.2 and compared with the predictions giyey
by micromechanical schemes. It is pointed out that numerical results (Feng ct al. 2003a; Shey
and Li 2004) are systematically situated between MT and IDD or PCW estimates. These
simulations are performed with the Kachanov’s method (Kachanov 1987) to account for the
interactions between cracks and consider an isotropic distribution of cracks. It is complicated
to determine which model between MT and IDD ones is best suited for estimating the
damaged cffective properties. The IDD scheme seems to be in better agreement with the
numerical results for low and moderate crack densities (p < 1), whereas the MT predictions
lay closer to the simulations for very high density of microcracks.

It would consequently be valuable to find a model capable of scanning all the values
comprised between IDD and MT predictions. The full-range IDD defined in Part II, which
predictions are situated between the ones of IDD and MT schemes, is thus clearly better than
IDD, which suffers from the fact that the effective Young modulus becomes zero for a
moderate value of p on Fig. 1V.2. However, even though the full-range IDD is explicit, it is

quite difficult to use it in practice, since the expression of the cigenstiffness tensors Q) of

the double-inclusions characterizing the distribution of cracks changes for different values of
the crack density parameters (see Appendix I1.B). The simplified version of IDD proposed in
Eq. (IV.8) yields surprisingly good results. It then represents a good compromise, since it is
both simple of use and accurate. It is however worth noting that the differential method
(Hashin 1988) also provides accurate predictions, according to Feng and Yu (2003a; b) and
Shen and Li (2004). But a decisive argument in favour of the different IDD schemes
presented is their simplicity compared to implicit models such as the SC, GSCS and the
differential one, while providing results close to the differential one.
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Figure IV.2: Evolutions of the effective axial Young modulus of an elastic body with v =

0.25 weakened by aligned penny-shaped cracks on the (e, e3) plane estimated by diverse

homogenization schemes and by numerical simulations as functions of the crack density
parameter p=xd (2D).

The differences between IDD and MT models lie on the respective distribution of
inhomogeneities considered. While the distribution of cracks is necessarily flat in the MT
model (Stora et al. 2006a), this distribution in the PCW or IDD model depends on the aspect
ratio of the double-inclusion that could thus constitute an interesting parameter. The choice of
a spheroidal double-inclusion may somehow account for the anisotropy induced in the
distribution by the mechanical loads. It may thus introduce a further anisotropy aspect due to
the distribution of cracks, in addition to the classical anisotropic behaviour of the damaged
material, but it leads to complicated calculations. This is the reason for which spherical
double-inclusions are adopted in the ensuing for the computations of these models.

11.2.2 Comparison for an isotropic damaged material

The analytical expressions for an isotropic damaged material can easily be deduced from the
relations derived for the case of aligned cracks by performing the following average operation
On all the possible orientations denoted by curly brackets (¢.g. Benveniste 1987):

1 1{
Q={T}=3 T 45| T -

%ﬂw]K, (IV.16)

The followin g relations are thus obtained for the concemed schemes:
C,, =C, :(I- pQ), (IV.17)

C,, =C,:(I+pQ)", (IV.18)
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Ciop=Cy: [ (I'{H‘M ﬂg PQ| (IV.19)

& =C, :[I +HI+{HY :0¥)): pQ]" , (IV.20)

with Q=— 4 09 5, 8 Q-H6- e
3x(l-2v) 15w (2-v)

The curves proposed on Fig. IV.3 for the evolutions of the effective mechanical properties of
an isotropic damaged material are quite similar to the ones obtained for a body containing
only aligned cracks. Nevertheless, the decrease of the Young modulus in the ¢; direction for
the case of aligned cracks (see Fig. IV.1) is more marked than for randomly oriented ones. [t
may be explained by the fact that, at a given crack density parameter value, the aligned cracks
mainly affects the material properties in one direction, while randomly oriented ones
influence equally on all the possible orientations. The curves on Fig. 1V.3 predicted by the
full-range IDD and the simplified one are very close. This observation further justifies the

interest of the simplified IDD that is much easier to compute than the full-range 1DD.
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Figure 1V.3: Evolutions of the effective Young modulus (up left), the Poisson ratio (up
right), the bulk (down left) and shear moduli (down right) of an elastic body with v =0.25
weakened by randomly oriented penny-shaped cracks predicted by various homogenization
schemes as functions of the crack density parameter p (3D).
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11.2.3 Cﬂm;mri.s'an Sfor an orthotropic damaged material

The case of a material containing three families of cracks, which normal vectors are
respectively oriented following e, e; and e3, is now considered. The resulting material is thus
orthotropic:

HY =Z pT:S,, (Iv.21)

where i denotes the family of microcracks which normal is oriented following e (i = 1,2,3). In
the present case, the tensor H™ has got a simple expression and is not singular if 4, &> and ds

are not equal to zero, on the contrary of the case where all the microcracks are parallel:

. 16(1=v?) . 8(1-v?) o B1-vY
Hy =———d;; Hfj;=————(d\+d,); Hin=——""—(d;+d;);
3E” 1313 B(Z—V}E"(1 3} 132 S{E—V)EM{ 2 :l]
a __8(1=v?)
1212 S(Z—V}Eu{l 1]
or written in tensorial form:
16(1-v") |« [ -
HY =———| Y d [ 1®A +A, ®1-vA, ®A, ||. Iv.22
3EM{2-—-'V}[‘ZL‘: I £ L} & (] { }

The compliance increment tensor H” and H™” predicted by the original and simplified
IDD models are provided by Eqgs. (IV.7-8), respectively. The evolutions of the Young moduli
E; and of the shear moduli G} ({i,j}€ [1,3]and i) along the three principal directions are
presented in Fig. IV.4 as functions of the total crack density parameter in the case where d, =
dh=d /2 and dy = 0 and in the cubic one recovered for d) = d» = d5 = d / 3. The cubic
damaged state does not coincide with the isotropic one, though the curves in Figs. IV.3 and

IV .4 are quite close. One of the main questions now consists in finding how many families of
cracks should be employed to accurately represent any damaged state of concrete.
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Figure IV.4: Evolutions of the effective Young moduli and shear moduli along the three
principal axis e; = ¢; = e; of an elastic body with v = 0.25 weakened by three families of
penny-shaped cracks oriented according to the principal directions with identical crack
densities py = p> = py = p/ 3 (up) and with crack densities py = p, = p/ 2 and py = 0 (down)
as functions of the crack density parameter p.

11.3 Link between the macroscopic behavior and the number of microcracks

The number of families of cracks chosen to represent the microdefects of a damaged material
is an aspect of primary importance for the use of homogenization procedures detailed before.
A compromise needs to be found so that the model developed accurately represents the actual
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microdefects and is at the same time tractable analytically. To answer to this problem, the
directional dependence of the Young modulus predicted by the IDD model for different
pumbers of families of cracks is therefore investigated.

Let a damaged material be represented by an elastic body weakened by nc families of cracks.
The estimation of the effective compliance tensor of the latter material by the IDD model is

denoted as 8,55 - The predicted effective Young modulus of the damaged composite along an

arbitrary direction of the space can be deduced from this compliance tensor with the help of
the subsequent relation:
I

—=A:S,,, A, V.23

where A=n®n and E™ (A) is the Young modulus of the damaged material predicted by

IDD along the direction n. As pointed out by many authors (e.g. Cazzani and Rovati 2003),
the dependence of the Young modulus on the direction n reflects in a certain manner the
anisotropy of a given material.

Rosettes representing the relative decrease of the Young modulus with the orientation are
proposed on Figs. IV.5 and IV.6 for two and four families, respectively. The damaged
material is considered in plane stress conditions. Concerning Fig. IV.5, the two families of
cracks numbered 1 and 2 respectively correspond to cracks with normal vectors along e; and
¢;. Remark that the cracks, which normal direction is for instance e, do not influence the
Young modulus in the directions perpendicular to e;. In the case of four families of cracks

respectively numbered from 1 to 4, their normal vectors are e, es, (ez+e|] /2 and

{ez-—-e,]fﬁ, respectively. According to Fig. IV.6, the isotropy can already be well

reproduced with four families of cracks, which 1s in good agreement with the observations of
Pensée (2003). It appears from Figs. IV.5 and IV.6 that the developed micromechanical model
is all the more accurate to reproduce the damage induced anisotropy as many families of
microcracks are involved.
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270

Figure IV.5: Rosette representing the relative decrease of the effective Young modulus
predicted by the IDD scheme for two families of cracks aligned with the e, and e, directions
which crack densities are d, = d, > = 0 with d = 0.1 (dash-dotted), d, = d d; = d/2
(dashed) and dy = dy = d (plain), respectively.

e

o

Figure IV.6: Rosette representing the relative decrease of the effective Young modulus
predicted by the IDD scheme for four families of cracks aligned with the e, and e,
directions which crack densities are d, = d» = d/2 and d, = d, = V with d = 0. ] {dashed) and
d, = dy = dy = dy = d/4 (plain), respectively.

270

11.4 Conclusion of chapter 11

The recent application of micromechanics for modelling damage is a promising way to relate
the damaged material behaviour to its microstructure. However, relatively few
micromechanically-based models have been incorporated in FE codes (e.g. Bary et al. 2007;
Zhu et al. 2007), because they are usually more difficult to handle than phenomenological

models especially in anisotropic cases.
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In order to build a micromechanically-based damage model incorporable in FE codes,
different explicit homogenization schemes have been reviewed. Their predictions of the
effective mechanical properties of an elastic body weakened by aligned microcracks have
been confronted with 2D numerical simulations accounting for interactions between
microcracks. The rather good agreement of the 1DD scheme, providing identical predictions
as the PCW and DI type models, with these numerical results constitutes an argument in its
favour. A simplified version of this cstimate that secems better suited for dealing with
materials weakened by diverse families of cracks has also been proposed (see Eq. (IV.22))
and is employed in the ensuing to formulate the damaged material behavior,

The crucial question of the number of families of cracks necessary to represent the anisotropy
of the damaged material is also addressed. In plane stress conditions, four families seem to be
adequate for such representation. Nevertheless, since the damage model developed will only
be applied to quite simple cases of loadings, only two families of perpendicular cracks are
adopted in the ensuing for simplicity reasons. The model should however not be applied for
anisotropic cases that are more complex than orthotropy. The next chapter aims at developing
evolution laws for the crack density of these two families.

12 ESTABLISHMENT OF THE EVOLUTION LAWS

The establishment of the evolution laws is generally performed in the framework of the
thermodynamics of irreversible processes. According to the second principle of
thermodynamics, the intrinsic dissipation [is has to be non-negative (e.g. Nguyen 2000):

-a{b

Dis = d=Yd(0), V.24
is ad, wd(z 0) ( )

where Y, are the driving forces associated with the micromechanical damage variables d,.

The present chapter aims at building suitable evolution laws for these damage variables while
taking care that they respect the second principle of thermodynamics, i.e. the Clausius-Duhem
inequality written just above.

12.1 Criteria based on the generalized standard materials (GSM) formalism

The evolution law of the damage variables are established adopting the GSM formalism
. detailed below. The framework of GSM constitutes a convenient method to automatically
guarantee the fulfillment of the second principle of thermodynamics. The grounding paper of
this approach was written by Halphen and Nguyen in 1975 and the underlying mathematics,
the theory of convex analysis, can be found in details in several books, for instance Nguyen
{(2000).
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12.1.1 Presentation of the GSM formalism
12 1.1.1 Basic definition

The basic definition proposed by Nguyen (2000) for the GSM formalism (e.g. Halphen apg
Nguyen 1975; Marigo 1985; Nguyen 2000) stipulates that the constitutive laws of a givey
material are generalized standard if they are associated with a free energy and a dissipatiop
potential having the following characteristics: they depend on the current values of the state
variables and the dissipation potential is convex with respect to the flux. According to the
GSM model, the constitutive relations are thus fully defined through the choice of a specifie
internal energy functional @ and of a specific dissipation functional ¥, which depend on the
local values of the state variables. A simple illustrative example is now given to show the
philosophy of the GSM formalism, the mathematical basis of this theory being presented later,

12.1.1.2 Simple illustrative example

To automatically guarantee the fulfillment of the Clausius-Duhem inequality (I1V.24), the
basic idea carried out by the GSM models consists in finding a convex dissipation potential ¥
that is minimal in zero and depends only on the internal variables so that:
y )
od,

if ¥ is differentiable, the case for which ¥ is not differentiable being treated later. For

: (IV.25)

instance, if the following convex dissipation potential is employed:

Y(d,.B)= Yd}, (IV.26)

where ¥ is the damage threshold in terms of elastic energy density. The positiveness of the

intrinsic dissipation is then immediate:

Dis=Y,d’ (20). (IV.27)
However, the driving forces thus obtained depend on the rate of damage:
Y, =2%d,. (IV 28)

Usually, the evolution laws proposed in literature for brittle or quasi-brittle materials are rate-
independent (e.g. Marigo 1985). The utilisation of the GSM theory for the case of rate-
independent materials treated subsequently requires some more efforts, even though the basic
ideas remain the same.

12.1.2 Application of the GSM formalism for quasi-brittle materials

In the case of rate-independent materials such as brittle materials considered here, the
dissipation potential ¥ is not necessarily differentiable. Therefore the notion of sub-gradient
of ¥ is introduced to apply the GSM formalism to non differentiable dissipation potentials
(e.g. Nguyen 2000):
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Vi € 0¥(d;) & Yy(d; —d) + ¥(d) S¥(d), Vd,, (1v.29)
where d¥ denotes the sub-gradient of ¥. This concept generalizes the definition of
denivative and can still apply even if ¥ is not differentiable. The following equivalency is
useful to relate the dissipation potential ¥ to damage threshold function f; (e.g. Nguyen 2000):

Yy€0¥(d) < Y, realises max (¥,d,). (IV.30)

Yaif (¥ )s0 ’
Once that the damage threshold functions have been determined, the consistency conditions
and the normal associated flow rules, classically used in plasticity, can be expressed by means
of Kuhn-Tucker theorem:

; Y
, d =4
Y, realises max [}’ﬂ.,d')ﬁ d¥, (IV.31)
Yyif (¥y)S0
lfii'[l' A,20 Af=0.

where 4 designate the damage multipliers, that may be expressed from the consistency

condition. The following convex dissipation potential may for instance be employed (e.g.
Lorentz and Andrieux 2003):

fY,e kK

wqa,g):z[naﬂf@)] with nx{fd,.]:{i FY.eK (IV.32)

where the indicator function 7. (d) enforces the positivity of the damage rates and where K

15 a convex domain. By setting a?, =0 in Eq. (IV.29), the intrinsic dissipation appears clearly
to be non-negative:

Dis = Y,d zV¥(d)-¥(0)20. (IV.33)
In addition, simple damage threshold functions are derived from the dissipation potential, the
details of the demonstration being provided in Appendix IV A:

fi=Ya— (IV.34)
The latter fmcture—type criterion may be too simple to faithfully represent the evolution of

damage. Indeed, if ¥, does not depend on the damage variables, the damage surface does not

evolve during the damage process. More versatile evolution laws adopting the GSM

formalism are proposed in the next part.

12.1.3 Development of evolution laws adopting the GSM formalism

In order to develop more advanced criteria than the one given in the previous equation, the
following form is used for the Helmhotz free energy:

w:%izﬂ'{d,];fw(ﬂ], (IV.35)

Where f are called damage softening variables and the function @ characterizes this damage

softening. These softening damage variables are introduced as additional internal variables
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and characterize the evolution of the damage surface threshold. They are associated wiy,
driving forces denoted X;. By analogy with the concept of hardening in plasticity, the
function @ corresponds to the free energy stored by damage softening. Practically,
represents the effect of the damage state on the further development of damage. It is
noteworthy that, the damage softening parameter f being considered as internal variables,

the intrinsic dissipation reads as follows:

Dis=- g‘f‘ d.-9L g =y, d+ X, Bz 0). (IV.36)
el

i aﬁrfi
Lorentz and Andrieux (2003) showed that by adopting the following expressions for the
dissipation potential and the free energy:

v(d,B)=[%d+7,.(d)+ (B -d)), (IV.37)

A
¢[d,.,£}=%E:C'(c{}:E+ZI[ma[sj-l’u}dc, (1V.38)

LI 1]
the following threshold functions expressed with respect to the thermodynamic forces

associated to the internal variables 4, and £ are derived:

L=Y-%(B), (IV.39)
where the function R, represents the evolution of the damage threshold surface. The
convexity of the proposed dissipation potential taking its minimal value for
B =d =0,withie[1,2], guarantees the fulfilment of the second principle of
thermodynamies. Furthermore, the indicator function J, (/i —d,) enforces that the internal
damage variables 4, and £ remain equal to each other.

Concerning the damage threshold functions, the forces ¥, are obtained by homogenization,
while the expressions of R, are unknown and may be identified in different manners (e.g.

Marigo 1985) so as to find an adequate evolution law. In particular, it is sufficient to adopt the
dissipation potential in Eq. (IV.37) and to rewrite the Helmhotz free potential as:

¢=%E:C'{df}:i+%};w[z,ﬁl?—Zﬂr]. (IV.40)
where @ is a damage parameter, to retrieve the ensuing Marigo criterion (1985):
f,=Y, =Y, (1+w)d,. (1V.41)

The latter evolution law is further investigated in a simple case.
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12.1.4 Application in the case of multi-axial tension tests
The Marigo criterion (1985) introduced in the previous subsection is presently employed to
define the evolution laws of a mortar subjected to uniaxial and biaxial tension tests. The
purpose of this part consists in testing if the Marigo criterion provides an adequate damage
evolution law so that the stress-strain curve of a mortar subjected to uniaxial tension predicted
by the micromechanically-based damage model shows good accordance with the
experimental curve measured by Le Bellégo (2001). The case of biaxial tension tests is also
treated to observe how the crack densities of the different families of cracks evolve during
non uniaxial tests. The mortar is initially assumed to be linear isotropic and is supposed to be
in a plane stress state:
Ci=0n=0un=0. (IV.42)

In the ensuing, the macroscopic stresses or strains are denoted without any superscript. The
stress tensor ¢ estimated by the present damage model is expressed as:

u:[ Mj C'(d)e. (IV.43)
og

In the case of two families of perpendicular cracks, two damage threshold functions for the
two crack density parameters are involved and their derivatives read:

. B . Bl kW s X
_ i ] a g BA
]f' g

; V.44
j-" za}:rz aj’;.ld arﬁa] _aXz ﬁ { ]
T oe od, g © A"
The consistency condition imposes that:
Y, . [aY, ax,)|, a¥,
e+ - A, =0
% L&d 3B, JA‘ adz _—
.43 ar:u 1 |
A,=0
de ;L l a4, ,

In the case of a uniaxial tension f'c:-ilnwmg the e; axis, the tension applied merely affects the
family of cracks with normal vectors oriented along the e axis so that we can consider that &,

=0and A, = 0. The set of equatinns just above then simplifies into:

a}’;‘i - a ]| c.l'l
A - o
de d E}d . aﬁ

With the Marigo criterion, the derivative of the driving force X with respect to-f is simply

ﬂ. (IV.46)

equal to @ (sec Eq. (IV.41)). Moreover, given the fact that & = 0, the latter equation yields:

T H a},.d'l_ ] a}:\ll
%=l 2

X (IV.47)
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The evolution of the internal variable o, and the stress-strain curve predicted by different
homogenization schemes, namely MT, [DD and simplified IDD, with the Marigo criterion are
plotted in Fig. IV.7. The Young modulus and Poisson ratio of the sound mortar are
respectively equal to £y = 44 GPa and v = 0.25 (Le Bellégo 2001). By default, the initia]
damage threshold is taken as Y5 = 8000 Im™ and the value of the parameter @ in the Marigo

criterion is set to zero by default. The influence of the parameter @ on the stress-strain curve
predicted by IDD is illustrated in Fig. 1V.8 for information. On Fig. IV.7, the results obtained
with the three micromechanically-based models are confronted with the experimental
measurements from Le Bellégo (2001) on mortar samples. The stress-strain curve predicted
by the IDD or PCW model appears to reproduce quite well the post-peak part of the stress-
strain curve but goes to zero quite rapidly. Visible differences between the curves obtained
with MT, IDD and simplified 1DD schemes may be observed on Figs. IV.7, even though the
evolutions of damage variables are computed with Marigo criterion using the same
parameters (¥,= 8000 Jm” and @=0) for the three models. The MT and simplified IDD

models are seen to be far from Le Bellégo's results for this set of parameters but it is difficult

to improve their predictions even by changing the values of ¥, and @. To obtain a better

agreement with the experimental results, it would be preferable to adopt a stress formulation
for the Helmhotz free energy in Eq (IV.1) (Pensée 2003).

6 == Rimp.1DD
W Exp.
g 4 i a1
E '...."" ''''' o
e -
-2 *
© *

-4

g x 10

Figure IV.7: Comparison of the siress-strain curves predicted of a mortar subjected to
uniaxial tension along the e, axis by different micromechanically based damage models
with Marigoe criterion with the one experimentally recorded by Le Bellégo (2001) (up);
evelution for the crack density parameter d, predicted by the latter models (down).
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Figure IV.8: Comparison of the stress-strain curves predicted of a mortar subjected to
uniaxial tension along the e, axis by the IDD damage model with Marigo criterion with the
one experimentally recorded by Le Bellégo (2001) (up); evolution for the crack density
parameter d, predicted by the latter model (down).

In more general cases, the system of differential equations in Eq. (IV.45) can be written in a

matrix form in order to find the damage amplitudes A, and A,:

L, 3 a}:,. 3

#, [ ' ER (IV.48)
¥, alfn A) |, I '
dd, dd, 32

When the simplified IDD model is used to estimate the free energy, the forces ¥y do not
depend on d, (j #1) so that no coupling exists between the two criteria. The system can then

be solved using for instance the basic explicit Runge-Kutta algorithms incorporated in
MATLAB, since the matrix above is diagonal and the system reduces into two decoupled
equations. It should be emphasized that the complexity of computations of the evolution laws
further increases if many families of cracks are involved. The main difficulty concerning the
Use of the IDD estimate arises from the fact that the effective stiffness tensor does not vary
linearly with the crack density parameters. A hint used by Zhu et al. (2007) to avoid this
Problem is to consider a Taylor development at the first order of the driving forces, so that the
EXtra diagonal terms in the previous matrix are annihilated. However, such an assumption
Might not be fully satisfactory, since the accuracy of the homogenization scheme is lost in this
Taylor development at the first order. The stress-strain curves predicted by the
miﬂl’ﬂrncc:hanical]}r-hased damage model with the Marigo criterion for mortar samples
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B
subjected to biaxial tensions along the two axis e; and e; with ¢, =&, is plotted on Fig. [V 9,

The plotted curves clearly differ from the uniaxial case (Fig. IV.7). This is due to the fact that
the stiffness tensors predicted by the MT, IDD and simplified schemes do not vary lincarly
with damage variables and thus the driving forces ¥, depend from the two involved crack

damage variables. This dependence practically results in different stress-strain curves ip
uniaxial and in biaxial tests. It is furthermore pointed out that the extra diagonal terms of the
square matrix in the previous equation do not vanish and the system of ordinary differential
equations has to be solved numerically, using preferentially an implicit Runge-Kutta
algorithm. As in the uniaxial case, strong differences between the stress-strain curves obtained
with MT, IDD and simplified IDD schemes are visible on Fig. IV.9, when the same
parameters the evolutions of damage variables are adopted for the three models
(Y,=8000Jm™ and @=0).
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Figure IV.9: Stress-strain curves along the two principal axis of a mortar subjected to
biaxial tension along the two axis e, and e; with ¢, = ¢,, predicted by different

homogenization models with Marigo criterion (up); evolution for the crack density
parameters d, and d; predicted by the latter model (down).

The application of Marigo evolution law to the micromechanical damage model appears to be
rather complicated to implement in a FE code without making simplifying assumptions. The
next subchapter is devoted to strain-based criteria that are frequently employed in concrete in
order to find a simpler method to establish the evolution laws.
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2.2 Strain-based criteria
12.2.1 Review of strain-based criteria

The damage loading function f'can be expressed using an equivalent strain denoted Z :
f=E-g, (IV.49)

where &, designates the initial damage threshold. One of the great interests of having a strain-

pased criterion is that it accounts for the sensitivity of the material to extension. Two forms
pmposod for the equivalent strain respectively by Mazars (1984) and De Vree et al. (1995)
present valuable features for dealing with damage in concrete. In particular, they account for
the differences of behavior of cement-based materials in traction and in compression. It is
therefore of interest to thoroughly assess and compare these two theories of equivalent strains.
The following strain invariants are introduced:

s ff]=%[{tm]z“tmz]’ I = dete,

1 (IV.50)

2
1
S =—trl e——(tre)l | ,
o = s=3(wo)1
where tr denotes the trace of a tensor and det its determinant. Identical invariants, obtained
by substituting & by ¢ in the previous equation, may be used for the stress tensor. The
criteria proposed by Mazars (1984) and De Vree et al. (1995) are respectively recalled below:
> £ +|&
B =(&),, with (g) = —EU (IV.51)

+ 2

I il L L~ iy e (1V.52)
2k(1-2v) (1 Zv] (1+v)

where & (i = 1,11 1II) are the principal strains, &, is the strain threshold corresponding to the

initiation of damage in traction and k denotes the ratio of the compressive strength over the
tensile one. These two equations are very different at first sight, since the first one is
expressed in terms of principal strains and the second uses the first two invariants of the strain
tensor.

The surfaces representing these two threshold functions are plotted in Figs. IV.10 and 1V.11
for v = 0.25 and £ =10, A sound criterion should respect some important conditions: (i) to

be systematically non negative; (ii) to be closed convex. The Mazars criterion fulfills the first
Condition but not the second one (Fig. IV.11). The De Vree criterion respects both conditions
(De Vree et al. 1995). In addition, the strong connections existing between the De Vree
Criterion and the one recently proposed by Christensen (2005) are evidenced in Appendix
IVB. The damage threshold surface evolves during the damage process so that a suited law is
Tequired to account for this evolution.
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Figure IV.10: Damage yield surfaces respectively representing the Mazars criterion and the
De Vree one for k = | and k = 3 in the space of principal stresses.

Figure IV.11: Damage yield surfaces respectively representing the Mazars criterion and the
De Vree one for k = | and k = 3 in the space of principal strains.

12.2.2 Review of the Mazars model

The Mazars model is without contest the most popular damage model for concrete. Its success
seems mainly due to its simplicity of use in a FE code and to its capacity of accounting in a
simple and relatively efficient manner for the differences of behavior of concrete in tension
and in compression. It has been extended to fatigue (Papa 1993) and recently to anisotropic
damage (Desmorat et al. 2007). A non-local version of the Mazars model was furthermore
proposed by Pijaudier-Cabot and Bazant (1987) in order to improve the numerical results and

.
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[imit the mesh dependency. Basically, the Mazars model (1984) consists in defining the
following criterion:

f=éy—x(D), (IvV.53)
where D is a scalar macroscopic damage variable expressed as:

ﬂzl—g—;, (IV.54)
and where the function x(2) rules the evolution of the damage surface. This function x (D)

is chosen so as to obtain the following evolution law:

)= I—M—Aexp{aﬂ{ﬁmasu}}, (IV.55)

£ M

where £, is the Mazars equivalent strain defined in Eq. (IV.52) and where 4 and B are
parameters that are identified with different values in traction and in compression. The stress-
strain behavior is then given by:

e=(1—D)C, :&. (1V.56)
Desmorat et al. (2007) proposed a convenient extension of the Mazars evolution to
anisotropic cases by adopting a non-associated evolution law deriving from the latter
dissipation potential:

=2, (IV.57)
where Y is the driving force associated with the second order damage tensor @ and where
£, is the tensor of the principal strains. This tensor admits the following representation:

g, =£e De +£,e,Be, +£,¢ Oe¢,, (IV.58)
where ® is recalled to stand for the tensor product and e, (i=1,2,3) are the orthonormal

vectors defining the principal strain directions. The derivation of the dissipation potential thus
yields the following evolution law:

v

D=2 o =g, ). (IV.59)

In other words, the damage tensor rate is proportional to the square of the positive part of the
Principal strain tensor. The Mazars criterion is reused by substituting the previous isotropic
damage variable © by the trace of the second order damage tensor @ presently considered:

f=8&,-x(trD), (IV.60)
Where different expressions were proposed for k(trD) by Desmorat ct al. (2007) to provide a

8ood fitting with the experimental stress-strain curves in tension and in compression. The
damage multiplier is then determined from the consistency condition and the damage
€Volution law takes the general form:
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e —

. At B 2
e (IV.61
dé,, tr(z,); el :

In the next subsection, a similar reasoning is carried out to establish an adequate evolution
law for the crack densities parameters that are very different from the macroscopic damage
variables employed by Mazars (1984) and Desmorat et al. (2007).

12.2.3 Definition of a strain-based evolution law for the micromechanically-based
damage model
On the view of the previous considerations, the ensuing type of strain-based criterion is
proposed as a starting point:
f=&p -rf[tn‘!], (IV.62)
where d is a second-order micromechanical damage tensor that reads in the (e, e, e;)
orthonormal basis:

d 0 0
d=|0 4, 0], (IV.63)
0 0 0,

since the normal vectors of the two families of perpendicular cracks retained in the
micromechanical model are respectively oriented along e and e;. The next stage consists in

identifying a suitable function x(trd). To perform such task, only one family of aligned

cracks with normal vectors parallel to e, is first considered for simplicity. It is pointed out
from Eqs. (IV.52-53) that the elastic stiffness deterioration along the direction e; with the
Mazars model follows the evolution: |

E  g(l-4)
B E

oM

+ Aexp(—B(E,, —&,))- (IV.64)

£ My

In the ensuing computations, the parameter A is taken equal to 1. It is furthermore recalled
that MT, IDD and simplified IDD estimations of the effective Young modulus E; of the
damaged material along the normal direction e to aligned cracks are expressed analytically as
functions of the crack density parameters in Eqs. (IV.11), (IV.14) and (IV.15), respectively.
By combining these equations with Eq. (IV.64) where the Mazars equivalent strain is
substituted by the one of De Vree et al. (1995), the following damage loading functions fcan
be established for MT, IDD and simplified IDD damage models, respectively:

i df:fd-!-:' {":-nr)

Janr = R (TV.65)
” |-g{£‘,,1-} :
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fioo = 8(Ey) ~d, (IV.66)

8(0 )+ %55 (1-8(E))

o

s =b+rB -dac

LYoo= > ~d,, with g(£&,, )=1-exp(-B(&, —¢&,)) and
1-g(&,) 1-g (&) ~

These damage loading functions can be extended to the case of two families by using the trace
of the damage tensor d:

f=x"(, )—1trd, (IV.67)
where the expression of x depends on the homogenization scheme employed to compute the
effective mechanical properties of the damaged material. By analogy with Desmorat et al.
(2007), a simple expression is proposed for the dissipation potential:

P =Y, :{Re.), (IV.68)
where Y, is the driving force associated with the micromechanical damage tensor d and R is

a projection operator that projects the principal strain tensor on the (e, €3, e3) reference basis.
The derivation of the dissipation potential yields the damage evolution law:

ap’
dY,

An essential difference of the present approach with phenomenological models, such as the

d=4A

=A(Re,).. (IV.69)

one of Desmorat et al. (2007), is that the principal directions of the damage tensor are now
fixed. The damage multiplier is then determined from the consistency condition and the
damage evolution law takes the general form:

dx £ 2
d= = R . IV.70
dé,, tr{R.EP}i{ . S

It was observed that, with the Marigo theory, two criteria are required in the case of two
families of perpendicular cracks and that the two damage multipliers have to be solved
numerically. In the present case, only one simple criterion given in Eq. (IV.68) provides
explicitly the evolutions of the diverse crack density parameters. This characteristic is of high
interest in view of an implementation in a FE code. However, on the contrary to the Marigo
criterion that systematically respects the Clausius-Duhem inequality, the positivity of the
intrinsic dissipation with the present strain-based criterion is not guaranteed and has to be
carefully verified. The next subchapter is therefore devoted to the assessment of the

thermodynamic admissibility of the damage evolution obtained by means of strain-based
Criteria.
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12.2.4 Positivity of the intrinsic dissipation
For the strain-based criterion presented before, the fulfilment of the Clausius-Duhem
inequality is not automatically guaranteed, since the GSM formalism was not employed. 1t is
consequently necessary to verify that the second principle of thermodynamics is respected. Tt
is recalled that in the presently developed damage model the intrinsic dissipation reads:

Dis = Y,d, with x,,:és:[ af;wj (ie[12]). (IvV.71)

i
To show the thermodynamic admissibility of the different micromechanically-based damage
model with the strain-based criteria defined in Eq. (IV.66), the respective positivities of the
thermodynamic forces ¥, and of the damage rates d, are verified. To prove that ¥, 20, it is
sufficient to show that the derivatives of € with respect to the crack density parameters are
semi-definite positive, for example by computing its determinant or by looking at the signs of
its eigenvalues. For this purpose, it is convenient to rewrite the stiffness tensor predicted by
the different homogenization schemes in a matricial form. Using the fact that:
oC’ 35

_g_c W with ie[1,2], (1V.72)

the opposite of the derivatives of the stiffness tensor estimated by MT, IDD and simplified

IDD with respect to the crack density parameter d, (or similarly &, ) read respectively:

aC,,, 4 .
,—Td;w--—c (EII‘I:SM}I‘{:HF’
. i
_Chpp _ o+ OHT (1V.73)

3 r;f.r 0 a—ﬂ', et 411 £
oy _ e OH
a_ﬂ;l o " adl
The three derivatives above all admit three non-vanishing eigenvalues designated by

¢ (i€ [1,3]) and obtained with the help of the symbolic toolbox of MATLAB:

=l
: CHJU’

MT _ E”df"(|~2v+3vz) ur__;-m = Euds”{z"’}
[(+v)(2v)d? +(1-v)d] 7 [(4v)(2-v)d +d]
81(1-v*) E, d¢" (1-2v+3v?)

é'lﬂ'ﬂf?z ;
[90=v)(12v)(1+v)dd +(6(1-v) (1-2v ) (1+V) Qg ~13v* +16v=7)d |

E,d (2-v)

g’n’l’iﬂ - rrr:J —_
[(14v)(2-v)de" + (1= Qs (1+V))d |
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g0 - 9OF, di™ (1-2v+3v7)[9(1-v)dd +(12(1-v)Q,, +4)d |

' (l—u}[(ﬁ{l—v}ﬂm +2)d® +9d2 (14 v)d +9(1-2 V)[I+P]]? ;
E,dd (2-v) (d (2-v)+2Q,,d)

[ﬂmdz +d(2-v)d +(1+v]{z-v)*T ‘

mz;-__f-'m_
§ =g

(IV.74)
It is straightforward that all these eigenvalues are positive. The eigenvalues of the opposite of
the derivatives of the effective stiffness tensor being all positive or null, the thermodynamic
forces are consequently not negative. The form of the damage evolution law written in Eq.

(IV.70) furthermore ensures that c},EI} (1‘ E[I,ZE), so that the second principle of

thermodynamics is respected for the three homogenization schemes considered.

12.2.5 Application in the case of multi-axial tension tests

The strain-based criterion introduced just above is presently employed to define the evolution
laws of a mortar subjected to uniaxial and biaxial tension tests. As done previously with the
Marigo criterion, the predictive capacity of the micromechanically-based damage model with
the strain-based criterion is tested in the case of a mortar subjected to uniaxial tension (Le
Bellégo 2001). The case of biaxial tension tests is also treated to observe how the crack
densities of the different families of cracks evolve during non uniaxial tests. For conciness,
the different micromechanically-based approaches will be referred to as MT, IDD or
simplified IDD damage models depending on the homogenization scheme chosen to compute
the elastic properties of the damaged material. The mortar is initially assumed to be lincar
isotropic and is supposed to be in a plane stress state,

The consistency condition applied to the criterion defined in Eq. (IV.67) takes the form:

A =0 (IV.75)

providing the evolution of the crack density parameter plotted in Fig. IV.12. The post-peak
behaviour is ruled by the rate form of the constitutive equation reading;

# = %

¢=c'(4]:t+[3c—déjJ:s, | (IV.76)

and is also plotted in Fig. IV.12. The values adopted for the damage parameters are
respectively £, =7x10™ and B = 7000 providing a good fitting of the experimental stress-
strain curve from Le Bellégo (2001). In particular, the typical damage softening effect

observed in uniaxial tension is well reproduced.



Part IV: Modelling of damage of cementitious materials Page 179

. T e ——
5 *
Exp.
< 3t — DD
B
= e Simp. [DD
o PR
o 1}
u =
0 | 2 3 4
4 E” x 10
3
-l.. .f.
2 A
| I1___,"“ ...I-I..-"...
T it
ﬂ_‘lﬁh—-=
0 1 2 3 4
€ x10™"

Figure IV.12: Comparison of the stress-strain curves predicted of a mortar subjected to
uniaxial tension by the damage model with a strain-based criterion with the one
experimentally recorded by Le Bellégo (2001) (up); evolution for the crack density
parameters dy and dy predicted by the latter model (down).

The stress-strain curves predicted by the micromechanically-based damage models with the
strain-based criterion in Eq. (IV.67) for mortar samples subjected to biaxial tensions along the

two axis e; and e; with ¢, =¢,, and &, =3¢,, are also plotted on Figs. IV.13 and IV.14,

respectively. The IDD damage model leads to unexpected results. This shortcoming is due to
the evolution law in Eqs. (IV.67-70) failing to work correctly when crack density parameters
are not allowed to trespass a critical value. Nonetheless, the stress-strain curves estimated by
MT and simplified IDD damage models, which account relatively well for the orthotropy
induced by loadings, seem to be more consistent. However, a more involved damage model
(c.g. Pensée 2003) would be necessary to reproduce correctly the induced anisotropy by more
complex loadings, such as the Willam test.
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Figure IV.13: Stress-strain curves along the two principal axis of a mortar subjected to
biaxial tension along the two axis e, and e; with &, = &,, predicted by the damage model

with Marigo criterion (up); evolutions for the crack density parameters d, and d, predicted
by the latter model (down).
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Figure 1V.14: Stress-strain curves along the two principal axis of a mortar subjected to
biaxial tension along the two axis e, and e; with & =3¢,, predicted by the damage model

with Marigo criterion (up); evolutions for the crack density parameters d, and d- predicted
by the latter model (down).
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12.3 Conclusions of chapter 12

The evolution law has been established within the framework of thermodynamicg
irreversible processes. Two theories, Marigo's one based on the GSM formalism and the 0%
one using the concept of cquivalent strain, have been assessed and applied tq ﬂ'll
micromechanically-based damage model. Their thermodynamical admissibility has alsg been
investigated, showing the coherence of both theories. For our particular orthotropic mode|
comprising two internal damage variables, the strain-based evolution law that seems easier g
implement in a FE code is adopted. The criterion proposed by Marigo is attractive by
requires some simplifications and perhaps more efforts (Zhu et al. 2007) for its use iy
numerical computations.

CONCLUSIONS OF PART IV

An orthotropic damage model based on both micromechanics and thermodynamics of
irreversible processes has been developed. The model comprises two damage variables,
representing the density of cracks in two perpendicular directions, which is suited to deal with
orthotropic damage under plane stress conditions. Different homogenization schemes have
been tested for estimating the Helmhotz free energy. The IDD or PCW methods are shown to
be of interest provided the damage variables do not trespass a certain critical crack density
value. A simplified version of the IDD model has been developed to circumvent this
difficulty. However, the original IDD or PCW scheme that is more standard is chosen for
computing the damaged material behavior for a given damage state in the ensuing FE
simulations.

A strain-based evolution law is established for the two micromechanical damage variables
and the thermodynamical admissibility of the developed damage model has been verified. An
application to the case of mortar samples subjected to uniaxial and biaxial tension tests has
been proposed. In the subsequent Part, the IDD damage model is implemented in the FE code
CAST3M and more complicated mechanical problems, such as flexion tests, are addressed.
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Appendix IV.A: Link between the dissipation potential and the damage threshold
functions

As an example, we look after the dissipation potential providing the classical fracture-type
criterion f written in Eq. (IV.34). For simplicity only one damage variable is considered.
Using the definition of Legendre-Fenchel transform, the following equivalence can be
established (e.g. Nguyen 2000):

Y,e dP(d) & P (Y,)+¥P(d)=Y,d, (IV.AD)
where ¥ is the Legendre-Fenchel transform of ¥, For the particular case of a dissipation
potential ¥ positive homogeneous of degree one, 1.e. Yd, Vk=0, !F(kz?)=k¥"’{c;’}., its
Legendre-Fenchel transform ¥" is immediate:

() -spl-v(d) =3, 1)=[2, K

: IV.A2
o ifY,eK (a2

where K is a convex domain defined by a threshold function /. It appears by employing the
properties of the Legendre-Fenchel transform and the threshold function f'given in Eq. (IV.34)
that:

¥ (d)= sup (Y,d) =sup(¥,d). (IV.A3)

¥.fs0 rsl

More precisely, the following dissipation potential homogeneous of degree one is deduced
(Lorentz and Andrieux 2003):

¥(d)=Y,d + T, (d). (IV.A4)
where Y, is the damage threshold in terms of elastic energy density and where the indicator

function .?*, (d) enforces the positivity of the damage rates.
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Appendix I'V.B: Links between the De Vree and the Christensen criteria

In order to draw a comparison between the Christensen and the De Vree criteria, the latter g
written in terms of stress invariants:
2 k l ay { 1] [ 2 12"’{ a
L o — 1! +2{ =3 -1 + s JE -], (IV.B1)
using those relations:
(e} (o) (3 {mh
L O A (A s kEz] . (IV.B2)
(l+vy  E*'(1-2v) E

It is easy to demonstrate that, when the De Vree criterion is verified f,,. =0, the Christensen

one 1s then automatically verified. The previous equation is first elevated to power square:

k- 1 f(k=1) 12 oo |
‘rta} J___ ‘;HTIE Jrhﬂ =l- WB3
2C 2y & 5z ¢ )
and is then expanded yielding the following relation:
l[-‘i-'_'f:”“ goi s 1‘“"!“‘ e 2 o g avse)
AN C c2? T
By factorizing the terms with the first invariant of the stress tensor, we notice that:
k=1 ., k=] -1y 12 3
.lr“” -.'rf'l'l.l‘ ffn',l J‘I"DF J-r’n'] -t I IV.BS
oty [ Tl ot 1 c* ( )
which simplifies into the form proposed by Christensen (2005):
k-1 Ek :
—I{"+=J =1. i IV.B6
& 2 : )
Conversely, supposing the latter equation verified, it can be recast in the following form:
k-1 3k k=1 0\
oAl Iﬂ'ﬂ) qu} (l sl P"u.l] . 1IV.B7
( o - J e : )
The left-hand member is then expanded:
2 2
k- 3k k-1 3k k-1
I + =4 —1" + J"”] [l-— .”“] IV.B8
( 2C ) [ R 2C { )
leading to:
’ 1 2
3 jf’—lf:’“] pe Jg‘” [1--*—_—11,"”] g 7 (IV.BY)
4\ C C* 5

i
If l[kgl g J fk II - ;'2—;11 fl’”] 2 0, the De Vree criterion is retrieved.
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partV
SIMULATIONS OF THE CHEMO-MECHANICAL DEGRADATIONS
BY LEACHING OF CEMENT-BASED MATERIALS

The service life of cement-based materials, which can serve as engineering barriers for the
disposal of long-term nuclear wastes, is affected by the deterioration factors due to chemical
attacks and mechanical damage, but also by the detrimental interactions between these
phenomena. Precisely, the concrete underground structures can be both altered by: (i)
dissolution — precipitation reactions caused by ionic migration, governed by the material
transport properties, between the interstitial solution and ground water; (i1) damage due to
external mechanical loadings and possibly precipitation of secondary solid phases generating
internal pressures (e.g. sulfate attack).

Various experimental studies evidence significant negative interactions between these
deterioration factors. For example, some authors (Tognazzi 1998) showed the existence of
highly degraded areas around artificial cracks similar to those originated by mechanical
damage. Hence, the nucleation and growth of cracks in the concrete may accelerate the
transport phenomena and then enhance the chemical degradation process, which in turn
creates an additional porosity that affects its overall mechanical behaviour. In addition,
numerous investigations on the influence of calcium leaching on the residual mechanical
behaviour of cement-based materials (e.g. Carde 1996; Gallé et al. 2004; Heukamp et al.
2005; Le Bellégo et al. 2003; Nguyen 2005) have concluded on the significant reduction of
their elastic moduli and of their residual strength. They generally consist in performing
mechanical tests such as uniaxial compression or traction tests (e.g. Carde 1996; Le Bellégo
2001; Nguyen 2005; Heukamp et al. 2005) or 3 points flexion tests (e.g. Le Bellégo 2001), on
samples previously submitted to an accelerated leaching. Unfortunately, these experiments,
designated as « residual resistance » tests, do not account for the effects of damage on the
chemical degradation process. Nevertheless, some fully coupled experiments, designated as
“life-time”, have been performed among others by Le Bellégo (2001) and Schneider and Chen
(2005), where the material is submitted to a mechanical sollicitation and undergoes
simultaneously a chemical attack by an aggressive solution of ammonium nitrate. These
experiments may lead to the complete rupture after a few months.

Some approaches to model chemo-mechanical degradations of cement-based materials have
been developed by the CEA/LECBA (Bary 2006) but also elsewhere (e.g. Gérard 1996;
chkamp 2002; Kuhl et al. 2004a; b; Le Bellégo et al. 2003; Nguyen 2005). They are
however mostly based on simplifying assumptions, since it is generally supposed that only
Calcium ions governs the chemical equilibrium and/or that the influence of damage on
diffusion is not accounted for.
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The French Atomic Energy Commission (CEA) has developed in collaboration with ANDR 5
and EDF a numerical integration platform ALLIANCES capable of simulating problems thg
couple chemistry, transport and mechanics (Montarnal et al. 2006; 2007). This platform May
allow for a more thorough modelling of chemo-mechanical degradations compared to eXisting
approaches (e.g. Gérard 1996; Kuhl et al. 2004a; Bary 2006) by gathering within the same
simulation environment a code resolving chemical equilibrium and a finite volume or element
software dealing with transport and mechanical problems. The aim of the present work is to
implement a comprehensive multi-physical model in this platform that:
e allows for predicting the effects of coupled chemo-mechanical deteriorations on
cementitions materials:
+ may be applied to any cement-based material, provided its initial composition and the
physical properties of its elementary phases are known.
For this purpose, the multi-scale homogenization model developed in Parts II and III and the
micromechanical damage model proposed in Part IV are implemented into the numerical
platform to estimate the material mechanical behavior as well as its diffusive properties. One
of the interests of these homogenization theories is to propose a deductive approach that may
apply to diverse cementitious materials, provided the elastic and diffusive properties of their
clementary phases are known. The integration in the ALLIANCES platform of a
comprehensive homogenization model could thus permit to develop an advanced prediction
tool of the degradation of real concrete structures. Furthermore, these upscaling methods help
for a better comprehension of the influence of the microstructure and its evolution with time
on the chemical and mechanical behaviors of these materials.
The scope of the present Part is two-fold. The first chapter is specifically devoted to the
simulations of chemical degradations. After a brief presentation of how to model chemical
degradations with the ALLIANCES platform, one-dimensional simulations of pure water and
accelerated leaching of cement-based materials are thus proposed and validated. In the second
chapter dedicated to the interactions between damage and chemical deteriorations, coupled
chemo-mechanical simulations of simple structures subjected to decalcification and solicitated
in flexion are performed; confrontation of the numerical results with available experimental
data (Le Bellégo 2001) 1s carried out and analyzed.

13 MODELLING AND SIMULATIONS OF THE CHEMICAL DEGRADATION
WITH ALLIANCES PLATFORM

13.1 Presentation of ALLIANCES

The scope of this part is to detail the main steps for modelling chemo-mechanical
degradations of cement-based materials with the ALLIANCES platform that is briefly
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presented below. For more details concemning the latter platform, the reader should refer to

Montarnal et al. (2006; 2007). The ALLIANCES platform allows for combining and

connecting together diverse numerical codes dealing with different physical problems. This

platform is developed in collaboration between CEA, ANDRA and EDF for the simulation of

puclear waste disposal. This tool programmed in Python is presently employed to couple

chemistry, with the code CHESS (van der Lee and de Windt 2002), transport and mechanics,

with the finite elements software CAST3M (CEA), so as to perform numerical simulations of

the multi-physical degradation of cement-based materials. In the present context of long-term

deterioration of concrete underground structures in nominal phase of waste storage, the

following simplifying assumptions are made:

s the material is in saturated and isothermal conditions;

e clectro-diffusive phenomena are neglected, ionic transfers being only due to molecular
diffusion;

» the effects of creep are disregarded;

¢ the same diffusion coefficient is affected to all aqueous species;

¢ the chemical reactions are instantaneous compared to the diffusion process.

13.1.1 Coupled chemical-transport problem solved by ALLIANCES

The chemical degradation of cement-based materials is a chemical-transport coupled problem.
For example, in the case of the concrete underground structures in contact with ground water,
the existence of concentrations gradients of ions between the interstitial solution and ground
water provokes ionic migration inside the interstitial solution, governed by the material
transport properties. This movement of ions disturbs the chemical equilibrium state between
the solid skeleton and the pore solution of the material and causes dissolution-precipitation
reactions in the material. Therefore, the evolutions of the diffusion coefficients of ions in the
material are important data for predicting its chemical alteration, as already mentioned in Part
Hl.

Different types of chemical-transport coupled simulations have been performed on concrete
materials. Some authors (e.g. Adenot 1992; Gérard 1996) proposed simplified approaches,
where only calcium ions are supposed to govern the main chemical reactions. More complete
simulations are recently available (e.g. Moranville et al. 2004; Planel 2002), where the current
cthemical equilibrium state is obtained by means of a chemical equilibrium code. Planel
[EI]GE} thus modelled the sulfate attack of HCP with HYTECH (van der Lee et al. 2003),
based on both geochemistry and transport codes. Moranville et al. (2004) ran with the help of
the CEMHYD3D model of NIST (Bentz et al. 2002) simulations of pure water degradations
that are quite comparable to the ones presently realized. It is pointed out that the
ALLIANCES platform is capable of treating multi-species reactive transport problems on the
Contrary to many simplified coupled approaches developed for cement-based materials (e.g.
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e

Gérard 1996). This is important in the case of decalcification for modelling for instance the
migration of alkalis or simulating accelerated leachings by NHyNO; because of the
penetration of NOs'.

13.1. 1.1 Transport equations solved by CASTIM

To present in a simple manner the transport equations solved by CAST3M, transport is first
supposed to occur in a non reactive porous medium representing the cement-based material.,
Inside this medium, the species that may move are the fluid filling the porosity and the
chemical specics concentrated in the fluid. The finite volume method is used for the
computations. The medium is thus represented by a number w of subvolumes V¥, each
comprising Mi mineral phases supposed homogencous. The interstitial solution in cach
subvolume contains N aqueous species, most of them being ions. For simplicity, the cinematic
dispersion is neglected. Under such conditions, the conservation law imposes that the

divergence of the sum of the average diffusive flux vector of ions j denoted 3 through a

given subvolume ¥} and of the average velocity vector denoted U is equal to the variation of

concentration designated by C, of ions j in V.
= - aC .
—dfv[JI+CFU}=cJ.,&—', (V.1)
1

where ¢, is the average porosity inside the subvolume ¥y In the present case, the velocity

vector U of the fluid is null because it is assumed that no pressure gradient provokes water
transport by permeation and the previous equation simplifies into:

- dJC
~divid))=cp =t . (V.2)

The ions flux vectors depend on gradients of ions concentration and/or on electric gradients.
However, the possible influence of the electric charges of ions on diffusion being presently
neglected, the ions flux vectors are expressed by Fick’s law.
At the scale of the heterogencities of the material, Fick’s law, stipulating that the microscopic
flux of ions j is proportional to the microscopic gradient of concentration, reads:

J,(x)=-D (x).gradC (x), Vxe V, (V.5
where grad C (x) is the gradient of concentration of ions j and the operator °." indicates a

simple contraction. The ensuing relations are obtained by averaging in each subvolume Fj:

J,=-D’ grad C,(x). (V.4)
The diverse homogenization techniques (e.g. Torquato 2001) can provide estimations for the
effective second order diffusion tensors D’ of the diverse ionic species through the material.

In the ALLIANCES platform, all these tensors are supposed to be identical for all the species,
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so that only one effective tensor D’ is involved. Furthermore, the cementitious materials are
considered to be macroscopically isotropic so that this effective second order diffusion tensor

D
transport equations solved by CAST3M are written in the following way:

simplifies into D'1, where D’ is a scalar. By combining Egs. (V.2) and (V.4), the

LP%=div[D' gradC,).vie{l,..N}, (V.5)

where N refers to the total number of aqueous species. In addition to the transport process, the
effects of chemical reactions in the case of concrete have to be accounted for. The cement-
based material is initially taken in a stable chemical state. The possible leak of aqueous
species such as Ca®" precised by the transport equations may disturb this equilibrium state.
The new equilibrium state of the perturbed system can be computed by means of the chemical
equilibrium code CHESS (van der Lee and de Windt 2002), assuming that the chemical
reactions are instantaneous in comparison with the transport process.

13.1.1.2 Chemical reactions computed by CHESS
The dissolution reaction of a mineral specie denoted e, in contact with an aggressive ionic
specie, designated by e with z being an integer, forms aqueous species e in the interstitial
solution:

N
e +e, = ) xme’ (V.6)

=l
where y, designates the stoechiometric coefficients of the dissolution reaction. This reaction

is controlled h}r the following mass action law:

[L] le.]' [ ]". (V.7)

where K¢ is the equilibrium constant of the dissolution reaction and the brackets surrounding

a given specie designates its activity. The activity of a component is generally related to its
concentration by:

[e]=p:, (V.8)
where y, is the activity coefficient that can be considered equal to one for dilute solutions and
p; designates the concentration in mol per liter of solution of the component or specie i. For

higher concentrations, diverse methods accounting for example for ion interactions exist to
relate the concentrations and activities of the species. The CHESS software proposes several
models for computing the activity coefficient, and in the following we retain the modified
Davies method. It must be borne in mind that the dissolution of a mineral, such as portlandite
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in the case of leaching (sce Eq (1.6)), can also occur by itself without requiring a reaction with
aggressive lonic specie.

The precipitation reaction of a mineral specie e, from aqueous species over the saturatiop
limit inside the interstitial solution reads:

N
DA e, (V.9)
il

with the following action mass law:

Kl =Ij[e,r|[ef*:|_h. (V.10)

13.1.1.3 Coupled chemical-transport equations solved by ALLIANCES

The ALLIANCES platform solves the chemical-transport problem by coupling the chemical
equilibrium code (CHESS) with transport (finite volume, CAST3M) in the following manner:

d(e,.C)) i
—a‘"r-"— =Tr(cp,c,.C))
1(C,,p,) =Ch,,(C)), (V.11)

i -
c,.=[|+ZV,_p”] Vie{l,...N},Vme {1,.., Mi},
=l

where ¢, ¢, respectively denote the volume fractions of the mineral phase m and of
porosity, ¥ designates the molar volume (L/mol) of the mineral m, Mi is the total number of
mineral species and the concentration ', of ions j is expressed in mol per liter of solution.
The operators Tr and Ch, respectively computed by CAST3IM and CHESS, are such as:

Tt (cpsc,, C;) = div(D’(c,,c,) grad(C))), (V.12)

[prccipitatiun K =ﬁ|cﬂ][£j'] o
i=|
N

[I[e] el 6T

i=

Ch,(C,) =
dissolution K

where K, K and y, have been defined previously. The effective diffusion coefficient D’

depends of the porosity and of the volume fractions of minerals. Eq. (V.11) presents how
these quantities are computed with ALLIANCES. It is noteworthy that diverse empirical
diffusion laws, such as the ones of Winsauer and Tognazzi, are already implemented in
ALLIANCES (Nozourtier-Mazauric 2004). In order to show the importance of the evolution
law chosen for the macroscopic diffusion coefficient, different types of laws, such as
Tognazzi's one (1998), are tested in the first simulations of leaching on cement pastes.
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13.1.1.4 Computations of the chemical-transport loop with ALLIANCES

A schematic description of the modelling of chemo-mechanical degradations is presented in
Fig. V.1. The first step consists in implementing a homogenization model in order to estimate
the material effective diffusive properties from its composition. By communicating with a
chemical equilibrium code (CHESS), ALLIANCES in a second step updates at each time step
the mineral composition and the porosity of the cement and computes the evolution of the
diffusivity inside the material from its current composition. This practically corresponds to the
chemical-transport loop depicted on the left-hand side of Fig. V.1. The coupling algorithm is
sequential iterative (Yeh and Tripathi 1989) and has been validated on different tests
(Montarnal et al. 2007). The fixed point algorithm used to solve the transport equations is
implicit in time (Nozourtier-Mazauric 2004), but the scheme employed to solve the chemical
part is explicit. The precision concerning the chemical resolution is fixed by the user and is
defined at a given time step ¢ + | from the total concentrations of the constituting species as

follows:

||Fl+ﬂl:'::+:f||mlil{ Pr, with " :Z,,,,Z.Lm!’ ("E {Lors e ) (¥.13)

where Pr designates the precision, / is the iteration index and [/ is the maximal number of

max

iterations desired. ALLIANCES then adapts the time steps so that convergence is obtained
within this number of steps. It is often necessary to impose a precision less than 10 resulting
in small time steps, practically a few hundreds of seconds, to ensure convergence of the

computations.

n 11 s Use of a chemical code

E‘Jff;fEHESS] coupled with transport
: ) (CAST3IM)

[ | L

Figure V.1: Schematic of the modelling of chemo-mechanical degradations of cement-
based materials with ALLIANCES.
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13.2 Simulations of the decalcification of cement pastes
13.2.1 System considered

The following one-dimensional system (Fig. V.2) is adopted for the simulations of leaching
process. A hydrated cement paste sample, simply modelled as a rectangle with 3 mm of length
and 1 mm of height, is in contact on its left extremity with pure water (pH = 7), while a zerg
flux condition is imposed on the other one. The mesh used is composed of 30 rectangular
subvolumes. The computations of the chemistry - transport loop are then performed with the
finite volume method and provide the mineral composition at each center of the subvolumes,
For simplicity, alkalis are not taken into account in the interstitial solution, since they rapidly
disappear during the leaching process as observed in the leaching simulations of Moranville et
al. (2004). Consequently, the pH of the interstitial solution is fixed by the equilibrium with
portlandite and is initially about 12.5. The temperature considered constant i1s 25°C.

i

pure water :
i (DH =T IRCE S . _ »

<= s
~ ions migraﬁhﬁ X
W (Ea2, SOS):!

” Zero flux imposed ﬁ I ﬁ

Figure V.2: Schematic of the one-dimensional system employed for the simulations of pure
water leaching of HCP.

13.2.2 Input data

The input data necessary for the chemistry - transport - mechanics (CTM) simulations are
listed in Table V.1. In order to obtain reasonable computations times, non altered HCP is
assumed to be composed only of four or five main phases; [UC, CH, AFm, C, 4SH, AFt or
hydrogarnet]. During the leaching simulations, the chemical code CHESS searches for the
new mineral phases that precipitate using its huge database. To further decrease the time
computation, the database is reduced to the following system for altered HCP: [CH, AFt,
AFm, C, 4sSH, C, 5s5H, Cq9SH, Si0; (am), diaspore, gypsum, hydrogarnet|, where 5103 (am)

refers to the amorphous silicon gel. The chemical formulae and the equilibrium constants of
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these mineral phases are given in Appendix V.A. On the contrary to portlandite that can
totally dissolve during the degradation of a cement paste, the decalcification of CSH rather
implies a progressive decrease of their C/S ratio. As a consequence, their diffusive and elastic
properties are gradually diminished. To model this degradation in a simplified way, three
types of CSH with diverse C/S ratios (C/S = 1.65, 1.25, 0.90) corresponding to more or less
decalcified states, are introduced in CHESS. Silicon gel SiOs:(am) is furthermore introduced
in the chemical system to represent the most decalcified state of CSH. The anhydrous
residuals are supposed to be unreactive, since they only represent a few percent in terms of
volume fractions and modelling their hydration would require very long computation times.
With this system, the following chemical species mainly appear in the interstitial solution:

[Ca®, 802, Al"", 8i0,(aq)]. Alkalis (Na*, K") and ions such as Fe’ or Mg®’ are not taken

into account, even though they are usually present in the interstitial solution.

Chemistry Mechanics

¢ Concentrations of the initial mineral species:
p.,,me [CH,AFm,CSH, .., AFt or Hydrogamet];
* pH and composition of the external solution .
» Elastic properties of mineral species:
E_,v_,with me[CH, AFt, AFm,

Transport b ud
C, sSH, C, ;5SH, Cy,SH, SiO; (am),
+  Diffusivities of all the mineral species: diaspore, gypsum, hydrogarnet];
E_,v, . with me [CH, AFt, AFm, C,45H, C, 35SH, e Parameters of the damage model;
Co90SH, Si0s (am), diaspore, gypsum, hydrogarnet]; » Initial and boundary conditions.
» Diffusivities of gel and capillary pores: [, D,...

MCSA parameters: /™ and £ (Part 11T)

Coupling Chemistry —transport Coupling CTM

Frequency of the computations of the

Parameters of the coupling algorithm. damage state with CASTIM.

Table V.1: Table summarizing the main input data for performing CTM coupled
simulations using the homogenization model with ALLIANCES.

The CSH™ and CSH™ are not distinguished in the chemical computations, since their relative
proportions inside the paste are not affected by leaching (Constantinides and Ulm 2004). 1t is
however necessary to differentiate them in the homogenization model, because they have
different elastic and diffusive properties, as shown previously in the manuscript. Their relative
volume fractions are given by Tennis and Jennings (2000). Constantinides and Ulm (2004)
have measured the Young moduli of CSH™ and CSH®™ both for sound and asymptotically
leached states, their C/S ratio decreasing to 0.8 (Heukamp 2002). By asymptotically leached,
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it is intended that the sample has been so severely attacked that it reaches a uniform degrageq
state. It is supposed that the effective diffusivities and Young moduli of the ty,
heterogencous CSH evolve as a function of their C/S ratios comprised between 0 and 1.65 iy
the following manner:

1 CI5=0.8Y ., CIS-08
£CIS>08, E, sl put B MR TUE
_' CSHintor e [ I_ﬁj—ﬂ_ﬂ] Cstimorew "o o st
lf C/ S S UE‘ Ei St or ext = H:‘I::.Hmrw exi 3
f /18§=08Y,., CI5-08
lf {" / S > {}H’ IJ{'THF.-H'M Xl = [ ] = C—_ ] :-:.:'Hr'nrm ext CEHinron ex :
. ‘ 1.65—0.8 1.65—0.8 (V.14)

i C/5s08, D

—
= CSHintos ext T Df SHinror

where the superscripts S and UL mean sound and uniformly leached, respectively. The values

of the Young moduli £y, and Eg are taken from Constantinides and Ulm (2004)

~CEHinrorext

and the diffusivities 12

S e And DEL - are estimated by means of the MCSA model
developed in Part 111. The Poisson ratio is assumed to remain constant during leaching (Stora

et al. 2006a).

The reference cement paste used for the simulations is the Origny CEM I 42.5 paste with w/c
= (.40, since it corresponds to the one used by Le Bellégo (2001) in her experiments.
Furthermore, this type of cement paste is well characterized (e.g. Adenot 1992; Baroghel-
Bouny 1994) and its mechanical behavior has also been studied (Carde 1996; Le Bellégo
2001). The CEM 1 42.5 paste is presently assumed to be initially composed only of five
phases (Le Bellégo 2001): UC, C,4SH, CH, AFm and AFt. The initial composition of the
material (in mol/L), computed by Le Bellégo (2001) by means of the simplified model from
Adenot (1992), is given in Table V.2. The hydration rate is estimated in the calculations of
phase volume fractions so as to retrieve the same value for total porosity as the water porosity
measured experimentally (Le Bellégo 2001). The composition of the paste is a little particular
because of its high concentration in AFm.
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{:]r:ir; F{‘fﬁt[ é :S}S Lafarge CEM I 52.5
Phases : % HTS paste (w/c = 0.45)
(Lo Bellego 2001, (Gallé et al. 2004)
Adenot 1992) '
Estimated hydration 0.80 0.88
rate
CH (mol/L) 3.54 4.56
AFL (mol1.) 0.0873 0.00
AFm imol/L) 0.45 0159
Hydrogarnet (mol/L) 0.00 0.478
CSH (moliL) 3.86 4.44
uc 0.074 0.043
Water porosity 0.27 0.319
0 2.80 107" 5.21 1077
Dy (m’fs) (Tognazzi 1998) (Richet et al, 1997)

Table V.2: Initial composition of the two CEM I pastes used for the simulations.

13.2.3 Influence of the diffusion law on the chemical degradation

Simulations with three different diffusion laws enlisted below are performed on the CEM I
42.5 paste to put in evidence the influence of the evolution of diffusivity on the leaching
process. The first simulation is thus made employing a simple proportional law designated by

D, =D}t (V.15)
Cp

the second one adopts Tognazzi’s law denoted as D, for predicting the evolution of the

Togn
diffusion coefficients:
D}y = Dy expl0.95(c, — '),

X (V.16)
while the third one uses the multi-scale homogenization model defined in Part II for

estimating the diffusivities. In the equations above, D, refers to the effective diffusivity of

the non altered paste, ¢, and ¢, denote the current and initial total porosities of the paste,

respectively. The mineral compositions of the CEM 142.5 paste with w/c = 0.40 degraded by
pure water after 50 days, computed at each center of the subvolumes (see Fig. V.3) with
ALLIANCES using respectively the three types of laws, as a function of the depth of the
simulated samples are plotted on Fig. V.3. As a complement, Fig. V.4 shows the evolutions of
the diffusion coefficient inside the CEM | paste for the three simulations.
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Figure V.3: Mineral compositions in terms of volume fractions inside a sample of CEM 1
42.5 paste with w/c = 0.40 subjected to a 50 days attack by pure water simulated with
ALLIANCES using a) a proportional law, b) Tognazzi's law and ¢) the multi-scale
homogenization model, respectively.



Part V: Simulations of the chemo-mechanical degradations by leaching of cement-based materials Page 187

o 10
® Proportional law
15 Tognazzi's law ]
X = = = Multi-scale homogenization model

I LS 2
Depth (m) x 107

Figure V.4: Evolutions of the macroscopic diffusivity inside a sample of CEM I 42.5 paste
(w/c = 0.40) subjected to a 50 days attack by pure water simulated with ALLIANCES
using a proportional law (red), Tognazzi’s law (blue) and our homogenization model

(dashed), respectively.

On Fig. V.3, the volume fractions of the different mineral phases inside the HCP strongly
evolve near the left-hand zone in contact with pure water but these evolutions are different for
the three simulations computed with diverse diffusion laws. In parallel, the ionic diffusivities
are seen to increase on Fig. V.4 in this alterated zone due to the additional porosity created by
the dissolution of certain mineral phases. These augmentations in the deteriorated zone are
much more significant with Tognazzi’s law and the homogenization model than with the
proportional law, It thus appears clearly by comparing Figs. V.3 and V.4 that the evolution of
the diffusion coefficient inside the paste significantly impacts the degradation process.

In the three simulations, portlandite is the phase that is most affected by leaching, since its
complete dissolution may be observed on the left-hand sides of Fig. V.3 in good accordance
with the experimental observations (e.g. Adenot 1992). The two aluminous phases, AFt and
AFm, dissolve at a lower calcium concentration in pore solution. It should also be noted on
Fig. V.3b) that with Tognazzi’s law AFt reprecipitates in the zone where AFm has dissolved,
as is habitually viewed experimentally. Conservely, no reprecipitation of AFt is observed with
the proportional law and furthermore AFt starts to dissolve before AFm. This is contradictory
with the dissolution sequences evidenced by Adenot (1992). According to his work, CH
dissolves before AFm that should themselves dissolve before AFt. On the contrary, the
decalcification of CSH should occur in a progressive manner, as already mentioned. On the
three figures, the CSH are thus progressively decalcified: as the C, ¢sSH dissolve (where the
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subscript 1.65 refers to the C/S ratio), CSH with a lower C/S ratio, C, 2s8H, simultaneouﬂ},
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Figure V.5: Evolutions of the pH of the interstitial solution and of the calcium
concentrations in solid phase and in solution inside a CEM I 42.5 paste with w/e = (.40
subjected to a 50 days attack by pure water simulated with ALLIANCES using a
proportional law (red), Tognazzi’s law (blue) and the multi-scale homogenization model
(dashed), respectively.

The calcium concentration profiles in solution and in solid phase and the pH curve plotted on
Fig. V.5 are quite comparable with those from Moranville et al. (2004). As expected, these
profiles strongly depend on the presence of CH. Indeed, the calcium concentration in solid
phase decreases as soon as CH starts to dissolve. Furthermore, its presence controls the pH
and the calcium concentration in solution and both decrease whenever CH is totally dissolved.
The dissolution of CH usually occurs very rapidly so that the degradation depths on Fig. V.5
can be estimated by quoting the beginning of the decrease in the profile of calcium either in
solution or in solid phase. This dissolution front is represented by vertical bars on Fig. V.5 for
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the calcium profiles obtained with the homogenization model. The two bars logically coincide
and thus allow for determining the leaching front propagation. For Tognazzi’s law and for the
proportional one, it is difficult to make such a determination, since the beginnings of the
decrease in the two different calcium profiles are far one from another. This discrepancy may
be caused by the poor increase of the diffusivity when CH starts to dissolve (see Fig. V.4).

The depths predicted with the simulations done with Tognazzi’s law and the homogenization
model are bigger than those obtained with the proportional law. This may be explained easily:
the higher the diffusivity of the paste (see Fig. V.4), the faster the concentration of aqueous
species, such as Ca™, diminishes in the interstitial solution, thus enhancing the dissolution
process. Experimentally, the degradation depth can be measured by different ways, for
example from electronic microprobe or by phenolphtalein (Le Bellégo 2001). The dissolution
front propagations provided by the numerical tries with the homogenization model are quite
close from the degradation front propagation experimentally measured by SEM (Adenot and
Buil 1992) on a similar paste that is about 0.15 mm / days”” (see Table V.3).

The results obtained with Tognazzi’s law and with our model are far better than those
provided with a proportional law. This shows the importance of using a realistic diffusion
law. The multi-scale homogenization model presents the benefit to be more general than the
empirical Tognazzi's law that has been specifically developed for CEM I pastes on the basis
of diffusion experiments on several pastes with different porosity (Tognazzi 1998). This law
that was proved to be reliable for the standard pastes chosen for our simulations is not
necessarily applicable for other types of cement pastes, such as CEM V. The multi-scale
homogenization model is therefore adopted for the subéeq uent simulations.
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Figure V.6: Evolution of the concentrations in solution of the main agueous species
compared with the initial ones as a function of the depth of the sample of CEM I 42.5
with w/c = 0.40 paste after 50 days of pure water degradation simulated with
ALLIANCES using a proportional law (up), Tognazzi's law (middle) and the multi-scale
homogenization model (down), respectively.

The variations of the concentration of the main aqueous species in the interstitial solutior
depend on the diffusion law chosen, as is shown on Fig. V.6. One of the shortcomings ol
ALLIANCES is that it is presently not possible to affect different diffusion coefficients tc
each aqueous species, which might lead to unrealistic results. For example, we observe or
Fig. V.6 that 8i0;(aq) move inside the interstitial solution towards the exterior of the paste.
while they should hardly move in theory because of the big size of the Si0:(aq) molecules.
Since there is a large number of factors that affect the chemical degradation of cement, it is of
practical significance to identify factors that strongly affect the deterioration. For this purpose.
the respective effects of the composition of the cement paste, of the aggressive solution, of the
inclusion shape of CH and of the CSH percolating porosity on the leaching of HCP are
investigated below. The last two factors are parameters of the multi-scale homogenization
model that significantly modify the macroscopic diffusive and mechanical properties ol
cement pastes (Stora et al. 2006a; b).
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13.2.4 Influence of the composition of cement pastes on the chemical degradation

In order to perform a rigorous validation of the simulations and investigate the influence of
the composition of the cement pastes on their chemical degradations, two CEM 1 pastes, that
are well characterized (Adenot and Buil 1992; Baroghel-Bouny 1994; Gallé 2001) and which
mechanical behavior has also been studied (Carde 1996; Le Bellégo 2001; Gallé et al. 2004;
Moranville et al. 2004) are employed: a CEM 1 42.5 of Origny with w/c = 0.40 (Tognazzi
1998; Le Bellégo 2001) and a CEM 1 52.5 HTS from Lafarge (Gallé 2001; Gallé et al. 2004;
Moranville et al. 2004). The comparison between the two cement pastes provides furthermore
some insights about the effect of the hydration rate and of the w/c ratio on the chemical
degradation. The CEM 1 52.5 HTS paste with w/c = 0.45 (Gallé et al. 2004) has a quite
different composition from the other one with five phases supposed present initially (Béjaou
and Bary 2007). UC, C,gSH, CH, AFm and hydrogarnet (Table V.2). This initial
composition is obtained by means of the Jennings model (Béjaoui and Bary 2007). The
simulations of chemical degradations of the CEM 1 HTS paste are confronted with
experimental results from pure water leaching tests (Gallé et al. 2004) but also with other
results from recent simulations (Moranville et al. 2004).
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Figure V.7: Mineral compositions in terms of volume fractions inside a sample of CEM I
52.5 HTS paste with w/c = 0.45 subjected to a 50 days attack by pure water simulated
with ALLIANCES.

The figure above presents the mineral profile in a CEM [ HTS paste with w/c = 0.45 leached
with pure water during 50 days. The complete dissolution of phases, such as CH, hydrogarnet
and AFm, may be observed on the left-hand side of the top of Fig. V.7, corresponding to the
alterated zone. It is noteworthy that there is a reprecipitation of AFm in the zone where



Part V: Simulations of the chemo-mechanical degradations by leaching of cement-based materials Page 192

—

hydrogarnet starts to dissolve and low C/S ratio CSH, CysSH, precipitate near the interface
with pure water.

The dissolution front of portlandite propagates faster in a CEM [ HTS paste than in a CEM |
42.5, since the CEM 1 52.5 HTS is much more porous and has a higher diffusivity (sce Tables
V.2 and V.3). An additional possible reason why the CEM 1 42.5 paste resists better to
leaching than the CEM 1 52.5 HTS one is that it contains less portlandite and more aluminates
showing a better resistance to pure water. Fig. V.8 confirms that the degradation propagates
faster in the CEM 1 HTS paste. The decrease of the pH and of the concentration of calcium in
solid phase 1s much more significant than inside the CEM [ 42.5 paste due to the
decalcification of the C, 2sSH.

The calcium fluxes are furthermore underestimated in both simulations (see Table V.3) and
appear to be much smaller than the values measured experimentally by Adenot (1992) and
Bourdette (1994) on a CEM 1 42.5 paste with w/c = 0.40. It is consequently nccessary to
adjust the MCSA parameter of the multi-scale homogenization model in order to obtain a
better agreement with the experimental results.

¥andhian fioit T o Origny CEM I 42.5 paste Lafarge CEM 1 52.5
-caching propagatio (wic = 0.40) HTS paste (w/c = 0.45)
Experimental decalcification 0.15mmd™ 0.19 mm d™
front propagation (Adenot 1992) (Gallé et al. 2002)
Decalcification front .
pmpag&ltﬂll (afier 50 days of 0.10 mm d-n'j 012 mmd™
simulated pure water leaching)
Calcium Flux measured 1.4 mol m™d"™* (Adenot 1992) 1.75 mol m* d™*
experimentaly 1.1 mol m™ d™ (Bourdette 1994) (Gallé et al. 2002)
(__ancium Flux {after 50 d1y< of 0.55 mol m?2 4 0.82 mol m2d™
simulated pure water leaching)

Table V.3: Comparison of the decalcification front propagations obtained in the
simulations performed with ALLIANCES of pure water leaching with experimental
values.
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Figure V.8: Evolutions of the pH of the interstitial solution and of the concentrations of
calcium ions in solid phase and in solution inside 42.5 (w/c = 0.40) and 52.5 HTS (w/c =
0.45) CEM I pastes subjected to a 50 days attack by pure water.

13.2.5 Influence of the aggressive solution on the chemical degradation

Although the degradation of the small cement samples in the previous subsection is
significant, the effect of leaching by water at the scale of a real concrete structure are only
observable for very long times, since it roughly takes 300 years to leach 4 cm of a concrete
structure by extrapolating results from leaching experiments (Adenot 1992). More agressive
solutions, such as ammonium nitrate (NHyNOs), are consequently commonly used by
experimentalists to enhance the degradation process (Carde 1996). In particular, a very
concentrated solution containing 6 mol/L (6M) of NHsNO; is generally employed for the
coupled chemo-mechanical degradation experiments (see e.g. Le Bellégo 2001). It is therefore
necessary to be able to simulate accelerated leaching by this 6M NHyNO; solution to
reproduce the available chemo-mechanical degradation experiments. The rectangle with 3 mm
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of length used for pure water leaching simulations (see Fig. V.2) 1s not adapted for the gp
NH;NO; attack due to the very fast propagation of the dissolution front. A bigger rectangle
with 1 cm of length and 1| mm of height and a bigger mesh composed of 20 rectangular
subvolumes are consequently employed to obtain reasonable computation times. The minera]
profiles obtained for a CEM [ 42.5 paste with w/c = 0.40 respectively attacked by pure water
and by a 6M NH4NO; solution during 10 days is plotted on Fig. V.9. The dissolution front s
at least one order of magnitude deeper for the accelerated attack. The decalcification front
propagations obtained for different cement pastes are presented in Table V.4 and appear to be
at least one hundred times faster than for pure water leaching. However, the simulated
dissolution front propagations are clearly underestimated compared to those measured
experimentally. This shortcoming may be caused by a too low diffusion coefficient in the
degraded zone. It is furthermore pointed out that the calculations of ion activities by the Davis
modified are inaccurate and probably overestimated, which should rather enhance the
simulated propagation of the dissolution front. According to Heukamp (2002), the Dawvis
modified law used by default in ALLIANCES does not suffice for computing the right
activities and equilibrium concentrations in the case of a 6M NHyNO; solution and other laws
such as Pitzer equations should be used. Indeed, the equilibrium concentrations of the
hydration products are strongly modified in the presence of a 6M NH4NO: solution.

Accelerated leaching front | Origny CEMI Lafarge CEM 1

propagation (6M NHyNO;) 42.5 52.5 HTS
wic = 040 wic =045

{Galle et al. 2004)
Experimental measure y P 1.74 mm d°°
i 5 H t. - t"
?ftcr Iﬂ_da}ra of simulations o o {5 A8
egradation
Acceleration factor
{compared to pure water degradation) 111 104

Table V.4: Comparison of the decalcification front propagations obtained in the
different simulations performed with ALLIANCES of accelerated leaching by a 6M
NHNO; solution with experimental values (Gallé et al. 2004).
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Figure V.9: Mineral compositions in terms of volume fractions inside a sample of CEM 1
42.5 paste with a w/c = (.40 (Le Bellego 2001) subjected to a 10 days attack on its left
side by pure water (left) and by a 6M NH NO; solution (right).

Even though the simulations of chemical degradations of HCP obtained with ALLIANCES
using the multi-scale homogenization model are quite conform to leaching experiments (see
Tables V.3 and V.4), they tend to underestimate the degradation depths. Nevertheless, the
results may be further improved by modelling portlandite as spheroidal inclusions instead of
spherical ones (Stora et al. 2006a) or by increasing the volume fractions of percolating gel
pores (Stora et al. 2006b).

13.2.6 Improving the leaching simulations by adjusting the parameters of the
homogenization model
13.2.6.1 Influence of the inclusion shapes

To investigate the impact of the inclusion shapes used in the homogenization model on the
chemical degradation of HCP, a simulation of 50 days pure water leaching is performed using
an oblate spheroid with an aspect ratio » = 0.1 to model portlandite in the multi-scale
representation of HCP. The influence of the CH inclusion shape on the evolutions of
diffusivity being quite modest (Figs. V.10 and V.11), the depth of the CH dissolution front
remains practically unchanged for a 50 days pure water leaching simulation. In the ensuing
part devoted to the chemo-mechanical couplings, the chemical deteriorations are exclusively
simulated adopting the multi-scale homogenization model with CH represented for simplicity
as a sphere for estimating the diffusivity evolutions.
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Figure V.10: Evolutions of the macroscopic diffusivity inside a sample of CEM I 42.5 paste
(w/c = 0.40) subjected to a 50 days attack by pure water simulated with the multi-scale
homogenization model with CH modelled as a sphere (blue) and as oblate spheroids
(dashed), respectively.
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Figure V.11: Mineral compositions in terms of voelume fractions inside a sample of CEM [
42.5 paste with w/c = 0.40 subjected to a 50 days artack by pure water simulated with the
multi-scale homogenization model with CH modelled as a sphere (left) and as an oblate

spheroid (right), respectively.

13.2.6.2 Influence of the percolating gel porosity

In absence of experimental values for the diffusivitics of uniformly leached CSH and HCP,
these quantities have to be estimated by the homogenization model based on assumptions of

the quantities of additional percolating gel and capillary porosity, designated as Ac'?) and
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é-.cif‘;} respectively, appearing during the decalcification. These suppositions formulated in

Part III are now revised so as to obtain a higher diffusivity for the totally leached zone.
Instead of supposing that, in the uniformly leached state, 5 % of the CSH are dissolved and
replaced by capillary pores (Bary and Béjaoui 2006), it is presently assumed that they are
substituted by additional percolating gel pores. As a consequence, an additional volume

fraction Ac,’ =0.065 of gel porosity is supposed to percolate through the uniformly leached

paste. By summing these additional percolating gel pores and capillary ones replacing the
dissolved hydration products (CH, AFt), the total quantity of additional porosity measured by
mercury porosimetry (Gallé et al. 2004) is retrieved. As may be seen in Fig. V.12, the
diffusivity obtained with this new hypothesis augments by a factor three in the most leached
zone and the depth of the CH dissolution front is increased by about 0.1 mm for a 50 days
pure water leaching simulation (see Fig. V.13) thus leading to a better agreement with the
experimental decalcification front propagation.

In addition, the calcium flux computed that is about 1.0 mol m™ d* (Fig. V.14) 1s almost
doubled in comparison with the previous simulations and appears to be closer to the
experimental measure (Adenot 1992; Bourdette 1994), even though the calcium flux is still
underestimated. In the case of the HTS cement paste, the calcium flux and leaching front
propagation are also much higher thus significantly improving the agreement with
experimental data (see Table V.5).

1]

p— Additional percolating gel porosity [m-‘;."; = 0.04)

= = = Additional percolating gel porosiry [.-.‘.r';f:, = (L065)

o 0.5

Deplhl {(mm)

Figure V.12: Evolutions of the macroscopic diffusivity inside a sample of CEM I 42.5 paste
(w/e = 0.40) subjected to a 50 days attack by pure water simulated with the multi-scale
homogenization maodel by considering different quantities of additional percolating gel

pores (Actt! =0.04 and Ac'?) =0.065).
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SRS
Decalcification front Origny CEM 1 42.5 paste Lafarge CEM I 52.5
propagation wic =040 HTS paste wic = 0.45
Experimental decalcification 0.15 mm d'* 0.19 mm &'
[ront propagation (Adenot 1992) (Gallé et al. 2002)
Decalcification front s =
propagation (afler 50 days of Q12mmd™ 0.15mmd™
simulated pure water leaching)

'LTaIL‘iLIJ,m Flux ~ measured | 1.4 mol m*d™ (Adenot 1992) 1.75 mol m*d**
experimentaly 1.1 mol m*d™ (Bourdette 1994) (Gallé et al. 2002)
Calcium Flux (afier 50 duys of ; EA
simulated pure water leaching) 1.0 mol m? ¢’ 1.7 mol m*d**

Table V.5: Comparison of the decalcification front propagations obtained in the new
simulations performed with ALLIANCES of pure water leaching with experimental
values.
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Figure V.13: Mineral compositions in terms of volume fractions inside a sample of CEM I
42.5 paste with w/c = 0.40 subjected to a 50 days attack by pure water simulated with the
multi-scale homogenization model by considering an increased quantity of additional

percolating gel pores ( &i‘;,] =0.065).
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Figure V.14: Evolutions with square root of time of the total amount of released caleinm
from a CEM I 42.5 paste with w/c = 0.40 subjected to an attack by pure water simulated
with the multi-scale homogenization model.

These results highlight the importance of the amount of the percolating porosity in the MCSA
model (Stora et al. 2006b). In the ensuing chapter devoted to the chemo-mechanical
couplings, the chemical deteriorations are exclusively simulated adopting this increased
quantity of percolating gel pores for the homogenization computations.

13.3 Conclusions of chapter 13 _

The multi-scale homogenization model developed in Part 1T has been implemented within the
ALLIANCES platform to compute the evolutions of the diffusive properties of concrete
materials. Simulations of both pure water and accelerated leaching of these materials have
been run and confronted to both experiments (e.g. Adenot 1992) and recent numerical results
(Moranville et al. 2004). The concentration profiles of the aqueous and mineral species inside
the paste predicted by the simulations are quite close from what is generally observed
experimentally. The results obtained with the latter model are better than those obtained with
empirical laws (c.g. Tognazzi 1998). However, the dissolution front propagation and the
calcium flux tend to be underestimated in comparison with the experimental measures but the
results have been improved by increasing the quantity of percolating gel pores in the multi-
scale representation of HCP. After this presentation of the coupled chemical-transport
problem solved by ALLIANCES, the next chapter is specifically devoted to the couplings

between chemistry and mechanics.
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14 SIMULATIONS OF THE CHEMO-MECHANICAL DEGRADATIONS BY
LEACHING OF CEMENT-BASED MATERIALS

The next step of modelling consists in estimating the material effective elastic properties by
means of homogenization techniques. The non-linear mechanical behaviour of the sample is
then evaluated by FE with CAST3M using a micromechanically based damage model detailed
in Part IV, The present chapter focuses on the influence of the chemical deterioration on the
residual mechanical behaviour. The impact of damage on the leaching process has been
treated at the very end of the PhD thesis. Some results have been obtained after the defense of
my thesis and are not presented in this manuscript. They are however gathered in a paper
submitted to Cement and Concrete Research (Stora et al. 2008).

Residual mechanical resistance tests on cement pastes have been performed both in
compression (e.g. Carde 1996; Heukamp 2002) and in traction or flexion (e.g. Le Bellégo
2001). For simplicity, the chemo-mechanical simulations are limited to traction or flexion
tests. The present chapter aims at simulating the different flexion tests performed by Le
Bellégo (2001) on mortars that constitute a very good example of chemo-mechanical coupled

experiments.

14.1 Stiffness reduction of cement-based materials after leaching

The multi-scale homogenization approach developed in Part 111 to estimate the evolutions of
the diffusivity of cement-based materials is also applied to predict their elastic properties in
both sound and leached states. The Young moduli of each subvolume of the simulated
cement-based material can be estimated by implementing this model into ALLIANCES. The
volume fractions of each mineral phase necessary for applying the homogenization model are
provided by the previous simulations of the chemical deterioration performed with the multi-
scale homogenization model for diffusion. The volume fractions given on Fig. V.3 and the
measurements by nanoindentation of the elastic properties of each mineral phase (see Table
1.3) then serve as input parameters for the estimations of the elastic properties.

The doubly-coated spheres model, representing the microstructure of HCP and mortars, is
computed with the aid of the GSCS and provides the estimations plotted on Fig. V.15 for the
Young modulus of the HCP inside the degraded sample. The latter modulus is sigmificantly
reduced in the alterated zone because of the dissolution of rigid phases, such as CH and AF. It
may be seen on Fig. V.15 that the decrease occurs in two steps: the first one is attributed to
the dissolution of CH and the second one is caused by the decalcification of the CSH. This
sharp diminution due to leaching is in good agreement with the experimental works of Carde
(1996), Constantinides and Ulm (2004) and Gallé et al. (2004) that evidence a significant
effect of leaching on the macroscopic Young modulus of cement pastes. Constantinides and
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Ulm (2004) further measured that the stiffness modulus of an asymptotically leached paste
decreased to about 3 GPa. The homogenized Young modulus of the most decalcified
subvolume on the left-hand side of Fig. V.15 is of the same order.
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Figure V.15: Evolution of the Young modulus inside a sample of CEM I 42.5 paste with
w/c = (.40 (Le Bellégo 2001) subjected to a 50 days pure water attack.

14.2 Simulations of the mechanical residual resistance tests on cement-based materials

14.2.1 Tensile tests on uniformly leached specimens

Heukamp (2002) performed interesting types of experiments testing in traction or
compression both sound and asymptotically leached samples of cement or mortar. By
asymptotically leached, it is intended that the sample has been so severely attacked that it
reaches a uniform degraded state with much lower elastic properties and strength. To simulate
such deterioration, the previous one-dimensional system in Fig. V.2 is reused except that a
6M NH;NO; solution is now employed instead of pure water. The initial mineral composition
of the OPC type I cement paste with w/c = 0.50 is computed by means of the Tennis and
Jennings model and displayed in Appendix V.B. After 50 days, the sample is already entirely
leached and a uniaxial tensile test along the e, axis is simulated on this specimen.

The eventual cracks inside the paste solicitated in traction along the vertical axis on the beam
should mainly appear oriented along the horizontal axis. For simplicity, the normal vectors of
all the cracks in the present damage model are thus assumed to be parallel to the horizontal
axis e;. The subscripts can thus be disregarded, since only one family of parallel cracks is
involved. The undamaged material being isotropic, the effective damaged one is consequently

transversely isotropic, according to our model.
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The damage parameters such as tensile strength in the sound and uniformly leached
specimens are obtained from Heukamp et al. (2005) and enlisted on Table V.6. After
simulating a 100 days attack by a 6M NH4NO; solution, the sample is uniformly leached. The
stress-strain curves of these two samples obtained by FE are plotted in Fig. V.16, illustrating
the strong degradation of the mechanical properties of chemically deteriorated cements. The
relative decrease obtained for the Young moduli are quite close to the ones measured by
Heukamp et al. (2005). Unfortunately these tests did not record the post-peak behavior,
Therefore, the developed tool, and in particular the micromechanically based damage model,
needs to be further validated by comparing with the more detailed experiments from Le
Bellégo (2001).

Parameters of the OPC type I paste Mortar

damage model (wic = 0.50) {w/c =10.40)

£, 8.6x10™ 5x107

A | !

B 10000 3000
28.9 0

k {Heukamp et al. 2005) P

Table V.6: Mechanical input data adopted for the micromechanically-based damage
madel in the cases of a HCP sample (Heukamp et al. 2005) submitted to a uniaxial
traction and of the mortar beam tested in flexion (Le Bellégo 2001).

T T

= = = Sound paste (Experimental)
— Sound paste (Simulations)
2.5 = = = Asymptotically leached paste (Experimental)
h}.}mptulr_ca_l!}r leached paste (Simulations)

S, (MPa)

€y x10°

Figure V.16: Stress-strain curves of a sound and an asymptotically leached cement paste
with a w/c ratio equal to 0.50 (Heukamp et al. 2005) submitted to a uniaxial traction
Sfollowing the e; axis.
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14.2.2 Three-points flexion tests
14.2.2.1 System considered
For testing the mechanical residual resistance of cement-based materials, the case of a beam
in flexion is now simulated so0 as to reproduce existing experiments (e.g. Le Bellégo 2001;
Schneider and Chen 2005). Le Bellégo (2001) in particular conducted a large series of three-
point bending tests of partially leached mortars and recorded the whole curve linking the
displacement imposed and the reaction force. It is emphasized that their results are more
detailed than the ones of Schneider and Chen (2005), who performed the same kind of tests
but have only recorded the ultimate strength. In the present simulations, the smallest beam
tested by Le Bellégo (2001) is used. Its total length and height are 320 mm and 80 mm,
respectively. The lateral surfaces and the 60 mm long sections at the corners of the beam are
insulated by an epoxy coating (see Fig. V.17). Therefore only the central part of the lower
face, which will be subsequently subjected to tensile stresses, is in contact with a 6M NH4NO;
solution. The 2D mesh depicted on Fig. V.17 is employed for the chemical and mechanical
computations on the beam. The chemical attack of the beam by this aggressive solution lasts
114 days. Le Bellégo measured with phenolphthalein that the degradation depth reached 18.2
mm from the bottom of the beam. After this attack, the deteriorated beam is further subjected
to a three-point flexion test schematically represented in Fig. V.17, The following mechanical
boundary conditions are imposed:
u,(x=0,y=008r=114d)=uy; u (x=0,p,0)=0; u (x=0.12,y=0,)=0.(V.17)

After 114 days of leaching, an increasing displacement u, is thus imposed on the center of the

upper face (Fig. V.17). The non-linear mechanical behaviour of the leached sample is then
evaluated by FE using the micromechanically based damage model detailed in Section 2. The
beam is assumed to be in plane stress conditions. In the present system, eventual cracks inside
the chemically degraded zone presently solicitated in traction along the horizontal axis
because of the flexural displacement imposed on the beam should mainly appear oriented

along the vertical axis.

A rather coarse 2D mesh comprising 1600 elements is employed for the chemical and
mechanical computations on the mortar beam, since the smallest element of the mesh should
be bigger than the typical size of the RVE. It is recalled that this size is about 10-100 pm for
cement pastes and about 1-10 mm for mortars. According to the work of Pensée and He
(2007) accounting for the effects of the size of the RVE, the latter should be significantly
bigger than the typical sizes of the particulate phases. Lutz et al. (1997) for example

considered an average equivalent diameter of 700 pm for sand aggregates. Consequently, the
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average size of a mesh element should be at least superior to 2 mm in the case of mortars. In a
first attempt, a coarse mesh composed of 200 elements was used to ensure reasonable
calculations times (about one hour) but a 2D mesh with 1600 elements (more than two hours)
was finally preferred to examine more precisely the dissolution front propagation. This
propagation was observed to be independent of the mesh adopted. The area of a mesh element
is 8 mm* for the mesh with 1600 elements and its dimensions are 2 mmx4 mm . This choice
15 a compromise between the RVE size condition (= 2 mm) and the computation precision for

damage, for which it is generally recommended to avoid too big elements.
Displacement imposed

i )

= ™| 80 mm

Lero flux
o & NHNO; (6M) P F

- -
- L

160 mm

Figure V.17: Schematic of the two-dimensional mesh employed for the simulations of
mechanical resistance tests (up); meshes of 200 elements (down left) and of 1600
elements (down right) used for the computations.

Concerning the representation of cracks, strong assumptions are made in the

micromechanically-based damage model. They may grow in the bulk cement paste, through
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the interface between sand aggregates and paste and through the sand aggregates themselves.
The micromechanical damage model consequently assumes that the cracks are embedded in
an effective medium having the same properties as undamaged mortars, according to the fact
that the cracks may grow anywhere. Another argument for representing the cracks inside the
already homogenized undamaged mortars is that they may be very extended and have a
correlation length that is much longer than the particulate phase such as sand or clinker grains.
In the case of concrete, cracks are also likely to grow inside and span over the coarse
aggregates.

The chemical-transport input data are collected in Appendix V.B. It is necessary to pay
attention to the fact that the mineral composition of the cement paste inside mortar is different
from the plain HCP. Indeed, the total water porosity inside the mortar presently considered
with 50 % of sand grains is measured to be equal to 0.18, whereas the total water porosity of
the plain HCP is 0.27 (Le Bellégo 2001). Assuming that the sand aggregates are impermeable,
the total water porosity of the cement paste inside mortar that is more porous than the plain
HCP 1s then about 0.36.

The mechanical input data for the damage model (sec Table V.6) are computed or fitted from
the results of Le Bellégo (2001) in the case of mortars and of Heukamp et al. (2005) in the
case of cement pastes. The ratio of the compressive strength over the tensile one k is for
example determined from the uniaxial compressive and tensile strengths provided by Le
Bellégo (2001), equal to 44.3 MPa and 4.5 MPa, respectively. The possible evolutions of the
damage parameters are discussed in the next subsection.

14.2.2.2 Evolutions of the damage threshold with leaching

As already mentioned previously, the experiments performed on both sound and
asymptotically leached cement-based materials (e.g. Heukamp et al. 2005) clearly evidence
the fact that the compressive or tensile strengths are strongly modified in the leached state. It
raises an important question: how does the stress or strain damage threshold evolve during the
decalcification process? Unfortunately, the decrease of strength for intermediate leached
states is very difficult to measure because of the inhomogeneous degradation of the samples
in the typical degradation tests. That’s why the following assumption is made: damage occurs
when the right line corresponding to the elastic part of the stress-strain curve of the
decalcified material intersects the stress-strain curve of the damaged unleached material, as
may be seen on Fig. V.18. These curves are obtained by applying the IDD damage model both
to the asymptotically degraded and sound cement pastes tested in tension by Heukamp et al.

(2005). The strain damage threshold a:,”' =237x10™ provided by this quite empirical method
appears to be quite close from the one &' =2.72x10" measured by Heukamp for the

uniformly leached cement paste.
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Figure V.18: Identification of the strain damage threshold of a leached OPC type I paste
(Heukamp et al. 2005) from the stress-sirain curve of the damaged unleached one.

14.2.2.3 Results and comments

Before testing the residual mechanical resistance of the mortar beam, it is indispensable to
first correctly reproduce the chemical deterioration of the leached material. The computation
time for the numerical test of the accelerated leaching is about three hours on a standard PC-
Linux machine depending on the precision defined in Eq. (V.13), presently 10°. The CH
dissolution front reaches about 17 mm (Fig. V.19) on mortar beams after 114 days of
accelerated leaching. This depth is in quite good agreement with the one obtained
experimentally by Le Bellégo despite the fact that the ion activities evaluated with the Davis
modified method should be computed more accurately in the case of NH4NO; attack.

[t appears on Fig. V.20 that the liquid calcium concentration in contact with the 6M NH4NO;
solution goes up to about 2 mol/L near the portlandite dissolution front. This value is not far
from the one considered by Tognazzi (1998) and Heukamp (2002), who assert that the CH
dissolution front in presence of a 6M NH3;NO; solution occurs for a liquid calcium
concentration inferior to 2.7 mol/L. In addition, the diffusivity in the leached zone of the
beam (Fig. V.20) augments by more than two orders of magnitude compared with the sound
part.
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Figure V.19: Profile of the portlandite concentration (mol/L) in a mortar beam after a 114
days attack by a NH;NO; solution (up); crack density parameter dy predicted by the 1DD
damage model in the leached beam submitted to a flexural displacement of 39 um
fdaown).
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Figure V.20: Profiles of the diffusion coefficients (down) and of the liguid calcium

concentration (mol/L) (up) in a mortar beam after a 114 days attack by a 6M NHNO;
solution.

The evolution of the mineral profile of mortar in the leached zone of the beam is plotted on
Fig. V.21. The sequences of dissolution are similar to the ones observed in Adenot (1992) on
a CEM 1 42.5 paste after a pure water leaching. The degradation induced by a 6M NHsNO;
solution being yet more severe than the one with pure water, the presence of a completely
decalcified zone only composed with S10:(am) and diaspore may be seen on the left-hand
side of Fig. V.21.
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Figure V.21: Evolutions of the mineral compositions in terms of volume fractions inside a
mortar beam after a 114 days attack by a NHNO; solution along the vertical symmetry axis
beam.

Before simulating the residual mechanical tests of Le Bellégo (2001), it is necessary to first
try to reproduce the results of her flexion tests performed on sound mortar beams. The post-
peak part of the simulated curve poorly fits with the experimental data, according to Fig. V.22
(left). This 1s mainly due to the fact that only a local version of the micromechamically-based
model has been implemented in the platform. A non-local version of the model based on the
work of Pijaudier-Cabot and Bazant (1987) should however be incorporated in the future.

In a first attempt, simulations of flexion tests on the leached mortar have been run using
exactly the same values for the damage parameters as for the sound specimen (see Table V.6).
The results obtained appear on Fig. V.22 (right) to be unsatisfactory thus confirming the fact
that the damage threshold is modified by the leaching process. The empirical method
described in previously has therefore been employed to have the strain damage threshold g,

cvolved. The pre-peak part of the numerical curve then agrees relatively well with the
experimental curve on Fig. V.22 (right) but the forces predicted by the simulations tend to be
overestimated. There are diverse reasons to explain this difference. The first explanation
could be that the Young modulus in the most leached zone, which is estimated to be equal to
about 4.9 GPa by the multi-scale homogenization model, is overestimated, even though this
value already seems to be quite low. For instance, Heukamp (2002) measured that the
effective Young modulus on a uniformly leached mortar is equal to 4.3 GPa. Another reason
may be that the dissolution front propagation, that affects the material residual mechanical
behavior, is slightly underestimated in comparison with the one gained experimentally, as
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already asserted previously. Moreover, it could be also useful to adopt other values for the
damage parameters 4, B and k in order to better predict the residual resistance on leached
Mortars.
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Figure V.22: Comparison of the simulations results with the experimental curve of the
vertical forces plotted against the imposed flexural displacement recorded during a three-
point flexion test on a sound mortar beam (left) and another one leached during 114 days
by NHNO; (right).

Fig. V.19 also reveals the presence of a main damaged domain at the interface between the
degraded and chemically sound parts of the beam. Conversely, the chemically leached zone is
only slightly damaged, since the strain damage threshold in the decalcified region is assumed
to increase rapidly with leaching (see Fig. V.18). Further investigations concerning this
evolution of the damage threshold with leaching would however be desirable to confirm this
observation.

CONCLUSIONS OF PART YV

The present Part is devoted to the development of a tool incorporated in the ALLIANCES
numerical platform that allows for predicting the long-term evolutions of the mineral

composition of leached cementitious materials and of their mechanical and diffusive
1 properties. This numerical instrument is built up by incorporating the multi-scale
homogenization approach proposed in Parts 1T and 111 to predict respectively the evolutions of
the diffusivity and of the elastic behavior of cement-based materials into ALLIANCES. The
micromechanical damage model developed in Part IV has also been integrated to estimate the
damage propagation in these materials.
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Owing to the numerical device developed, simulations of the chemical behavior of decalcified
cement-based materials have been carried out. The good agreement of the simulated
dissolution front propagation and stiffness reduction with experimental data constitute a
further validation of the multi-scale homogenization approach proposed in the manuscript.
Residual resistance experiments illustrating the couplings between damage and leaching have
also been simulated. The numerical results confronted with experimental tests are
encouraging but may require some further refinement for the predictions of damage inside the
material. Nevertheless, they give some interesting interpretations summarized below for the
measures gained from these tests that are particularly useful for assessing the durability of
cement-based materials. The simulated behaviour of sound and leached mortar beams in
flexion has underlined the necessity to have the damage threshold presently expressed in
deformations evolved with decalcification. An empirical method that assimilates the decrease
of the Young modulus due to leaching to the one caused by damage 1s then employed to
predict more accurately the maximum load that the deteriorated material can sustain.
According to this method, the formation of cracks is then influenced by decaleification, the
leached zones being less damaged than the chemically sound ones.

Appendix V.A: Chemical formulae and equilibrium constants of the mineral phases in
the reduced database.

Minoral Equilibrium
Chemical formula q : References
phases constant
CH Ca(OH), s Bary (2005)
AFt 6 Ca0 - .f'LLzU} -35803- ]n-ﬂi‘.‘-{l afla
24 H,0
AFm 4 CaO - ALO, - SO3 - 1g7025 A
12 H,0
Hydrogarnet 3 Ca0 — AlLOy— 6 H,0 J - -
- SH 1.65 CaQ = SiOs(aq) - (0203 =
1.65 H.O
C .ISSH 1.25 Ca( - 51l :':‘rl:EIL].II - 1{]_2{;25 <
i 1.25 H,O )
CoonSH 0.90 Ca0 - 5i0,{aq) - 101308 S
0.90 H,0
Si0x(am) 104 316 van der Lee and
Sr(a) 5 de Windt (2002)
Diaspore AIOH 107 -4 -
Gypsum Ca(S0,) -2 H-0 [ g - /i -
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Appendix V.B: Chemical-transport input data used for the simulations of chapter 14.

OPC type | paste
Phases wic=0.50
(Heukamp et al. 2005)
Estimated hydration rate 0.90
CH (mol/L) 3.78
AFt (mol/L) (.00
AFm (mol/L) 0.18
Hydrogarnet (mol/L) 0.00
CSH (mol/L) 5.26
uc 0.012
Total water porosity 0.328
parameter [ of the MCSA 0.64
representing CSH®™
. R 7.6 107
D,-m {m7/s) (value estimated by the multi-scale
thnEcni?ation model)

Table V.B.2: Mineral composition of the OPC type I paste with w/c = 0.50 (Heukamp et

al. 2005).
Mortar (w/c = 0.40)

Eles (Le H:'.:I{Iégu zmn)}
CH (mol/L) 1.37
AFt (mol/L) 0.034
AFm (mol/L) 0.17
Hydrogarnet (mol/L) 0.00
CSH (mol/L) 1.49
UC volume fraction (.068
Water porosity 0.18
Volume fraction of sand 0.50
aggregates
ITZ volume fraction 0103
Parameter /" of the | 0.78
MCSA representing CSH™ )
D, estimated 't:},rthc.T {8 (o2
multi-scale model (m°/s)
Diffusivity measured 1.7 1072
experimentally (Bourdette 1994)

Table V.B.2: Initial composition of the mortar and input data used for the simulations of
Mexion tests.
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15 GENERAL CONCLUSIONS AND PERSPECTIVES

The present chapter recapitulates the main findings and conclusions of the :
leEsy

discussions and proposals for future research are also formulated

15.1 Main conclusions

The findings or achievements of the thesis concern different domains that can be separated in
the subsequent categories:
(1) homogenization theories;
(i)  modelling and prediction of the macroscopic properties of cement-based materials:
(ni)  numerical simulations of coupled chemo-transport-mechanical degradations of
cement-based materials.

In the first Parts of the manuscript, diverse homogenization technigues have been assessed
using different criteria and tested on particular cases that have been solved numerically.
Among the reviewed schemes, double-inclusion type models and GSCS exhibit the most
suited attributes for estimating the lincar elastic properties of cement-based matenals. By
revisiting the DIM of Hori and Nemat-Nasser (1993), a modified version of this model
overcoming some of its original shoricomings in the case of coated inclusions has becn
derived.

The merits of homogenization theories for predicting the effective diffusive properties of
porous media presenting high contrast between phase diffusivities have also been examined.
Many models such as the matrix-inclusion type schemes are pointed out to be inappropriate,
since they are inadequate for modelling percolating or connected pores. A novel estimate
associated to a space-filling assemblage mixing two types of composite spheres pertinent to
account for pore connectivity has thus been developed. By construction, this MCSA scheme
automatically respects HS rigorous bounds and depends only on one geometric parameter
which variation allows the realization of any diffusivity ranging within these bounds.

By taking benefit of EMTs retained from the preceding review, a two-step homogenization
model is developed for the prediction of the macroscopic linear elastic properties of HCP and
mortars and validated by comparison with experimental measurements. The developed model
is also validated in the case of cement pastes and mortars submitted to severe leaching. The
influence of incluston shape on the micromechanical estimations of the effective elastic
properties of HCP has also been investigated. The spherical particle phase approximation that
is generally adopted for simplicity is shown to be valid in most cases, except for very porous
leached pastes. Using the same framework as the two-scale approach developed in elasticity, a
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more sophisticated model surmounting the lack of knowledge on CSH diffusivities is
proposed for predicting the macroscopic diffusivities of cement pastes and mortars. In this
multi-scale model, the two types of CSH containing connected gel porosity are estimated with
the help of the MCSA scheme presently developed.

An orthotropic damage model has been developed for concrete materials by combining the
Mazars model (1984) and micromechanical concepts. It comprises two damage variables,
representing the density of cracks in two perpendicular directions, which is suited to deal with
orthotropic damage under plane stress conditions. It is less involved than other similar
approaches in the literature (e.g. Pensée and Kondo 2003) but presents the advantage to be
relatively simple to implement numerically.

Simulations of chemical and of coupled chemo-mechanical degradations of leached cement-
based materials have been performed by integrating into ALLIANCES the different models
developed in the rest of the thesis to predict the evolutions of the diffusivity and of the
mechanical behavior of cement-based materials. The numerical results obtained have been
confronted with experimental tests and are encouraging.

The possible benefits of the present work are multiple. First, the homogenization schemes
proposed, such as the MCSA estimate, appear well suited for cementitious materials but are
also of potential interest for other kinds of composites (e.g. porous media, granular materials).
Second, the analytical multi-scale approach can be employed for computing the elastic and
diffusive properties of any cement paste or mortar, which composition 1s accurately known,
and their evolution with time. It furthermore requires very few parameters and is therefore
useful for engineering applications. Finally, the chemo-mechanical simulations performed
with the aid of this deductive model can be easily applied to other cement pastes and mortars.
Moreover, the numerical results are instructive and help for better understanding the
mechanisms of degradation. For instance, they clearly show the detrimental impact of
Portlandite dissolution and of the progressive CSH decalcification on the elastic and diffusive
properties of HCP.

15.2 Proposals for future research

The models and simulations proposed in the manuscript may obviously be further improved.
Many interesting paths for future ameliorations can be envisaged. Double-inclusion type
models have been shown to be of interest for their simplicity and versatility but they could be
further developed as proved by the proposed derivation of a modified DIM. Recent progress
in analytical techniques of homogenization (e.g. Berryman 2006; Duan et al. 2006) may for
instance be very promising for predicting with better accuracy the effective properties of
cement-based materials.
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The prediction of the non-linear mechanical behavior of cement-based materials needs to be
improved. For this purpose, it would be desirable to develop and implement a more advanced
damage model, including phenomena such as plasticity or creep. The integration of a non-
local formulation is also central to get better estimations of the post-peak behavior of the
damaged material.

The chemo-mechanical simulations presented in the thesis are promising. 5till, some more
work should be done. Important aspects of the chemical degradation process, such as the
progressive CSH decalcification, could be described more thoroughly. The retroactive effects
of cracks on the chemical degradation have also to be taken into account in order to reproduce
fully coupled chemo-mechanical experiments (Le Bellégo 2003; Schneider and Chen 2005).
This numerical work should then be extended to chemical attacks generating internal
pressures and possibly microcracks, such as sulphatic attacks. It is also possible to extend the
simulations to concrete and eventually to real underground structures.

15.3 Perspectives

The present manuscript provides results that are particularly interesting in the context of
nuclear waste disposal. But the present work is more generally justified by the increasing
necessity of adopting coupled multi-physical approaches for the assessment of the lifetime of
existing structures. In the perspective of concrete durability, more and more investigations are
dedicated to coupled multi-physical problems, like the present one or thermo-hydro-
mechanical ones (e.g. Gawin et al. 1999). This study put together with other approaches (e.g.
Bary et al. 2007) could lead at term to the development of powerful prediction tools for the
durability of concrete facilities. It constitutes a huge task because of the necessity of solving
thorny issues, such as unsaturated conditions. These tools would then find very wide
industrial applications, from nuclear reactors to CO; storage.
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