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ABSTRACT 

The assessment of the durabi lity of cement-based materials, which can be employed in 

underground structures for nuclear waste disposal, requires accounting for deterioration 

factors, such as chemical attacks and damage, and for the interactions between these 

phenomena. The resistance of cement-based materials to these degradations is strongly 

conditioned by their mechanical and diffusive macroscopic prope11ies. The first purpose of 

the thesis consists in building a multi-scale approach and a11 orthotropic damage model to 

estimate these properties and their evolution during chemical deterioration processes. The 

second objective is to perform simulations of chemo-mechanical degradations of leached 

cementitious materials to predict their long-term behavior. Starting from a non-exhaustive 

review of analytical homogen ization techniques, new models, like the mixed composite 

spheres assemblage estimate, are proposed by revisiting the theories of Hashin and Shtrikman 

( 1962) and of double- inclusion type schemes. A real istic multi-scale homogenization 

approach is then developed and validated for cement pastes and mortars. Simulations of 

chemo-mechanical degradations of leached cementitious materials are subsequently carried 

out by implementing these models into the platfonn ALLIANCES. The numerical resu lts 

confronted with experimental tests give valuable information in tem1s of the material 

durabi lity. 

Keywords: cement-based materials; mechanical and diffusive properties; mu lti -scale 
homogenization; damage; leaching; coupled chemo-mechanical degradations. 

RESUME 

L'evaluation de la durabili te des materiaux cimcntaires utilisables dans les structures 

d'entreposage de dechets nucleaires necessite la prise en compte de facteurs .de d~terioration, 
tels que lcs attaques chimiqucs ou la fissuration, ainsi quc des interactions cntre ces 
phenomenes. La resistance des materiaux cimentaires a ces degradations est fortement 

conditionnee par leurs proprietes mecaniques et diffusives macroscopiques. Le premier 
objectif de Ia these vise a construire unc approche mu lti -echelle et un modele 

d'endommagement ortl1otrope pour estimer ces proprietes ainsi que leurs evolutions au cours 
de processus de deteriorations chimiques. Le second est de realiser des simulations de 
degradat ions couplees ch imie-mecanique de matcriaux cimentaires Iixivics afin d'ctudier leur 

comportement a long termc. Apres une synthese non exhaustive consacree aux techniques 
d ' homogeneisation analytique, de nouveaux modclcs, tels que !'estimation par assemblage 

111ixte de spheres composites, sont proposes en revisitant les theories d ' Hashin ct Shtrikman 
( 1962) ct lcs methodes de type double-inclusion. Unc approche d'homogeneisation multi­
echelle est ensuite developpee pour les pates de ciment et lcs mortiers et validcc. Des 

simulations de degradations couplecs chimie-mecanique de materiaux cimentaires li xivics 
sont enfin effectuees en implementant les modeles dcvcloppes precedemment au sein de la 
plateforme numerique ALLIANCES. Les rcsultats numcriques confrontes avcc des essais 
experimentaux donnent des infom1ations uti les concemant la durabil itc de ccs matcriaux. 

Mots des: materiaux cimentaires; proprietcs mecaniques et diffusives; homogcneisation 
multi- echelle; cndommagcment; lixiviation; degradations couplccs ch imie-rnecanique. 
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J GENERAL INTRODUCTION 

Due to the pluridisciplinary nature of the subject treated, the present manuscript is concerned 

with well separated physical problems in cementitious materials, such as chemistry, diffusion 

or mechanics. for conciseness, this introduction gives only a general overview of the thesis, a 

more specific introduction being associated with each main Part of the document. 

J.l Industrial and scientific context 

The durability of concrete materials employed in many kinds of infrastructures, such as 

bridges, dams, or nuclear reactors, is an acute issue in Civ il Engineering because they involve 

important security aspects. The cost of maintenance of these concrete structures is 

tremendously high. This economical factor consequently motivates scientific research 

allowing for better assessing how cement-based materials behave with time. Some of the 

primary mechanisms of deterioration of concrete faci lities include cracking due to external 

loadings and chemical attacks. The loss of performance and sometimes the complete rnpture 

of these infrastructures can consequently be originated by mechanical and/or chemical 

deteriorations of concrete. 

It appears therefore a necessity to adopt multi-physical coupled approaches to deal with 

material durability. Besides its importance for previously mentioned concrete facilities, this 

topic is also of current concern in the context of nuclear waste storage. As is already the case 

in the experimental site of Bures in the east of France, concrete is very likely to be employed 

for different applications in future underground strnctures devoted to the storage of nuclear 

waste. It should be used as engineering barrier but also as outside coating in the waste 

containers in which vitrified waste may be stored. The life time service of these underground 

facil ities should be about tens or hundreds of thousand of years, since the radioactivity of 

nuclear waste can last such a long time scale. The present manuscript is more specifically 

situated in this context of long-terrn durability of cement-based materials. 

The scope of the thesis is however not only purely industrial but also scientific. 

Homogenization techniques have known an increasing success among researchers and their 

application to cement-based composites appears promising in particular for predicting with 

accuracy the evolutions of their properties with time. These methods indeed allow for 

estimating the macroscopic physical properties of a heterogeneous material from the 

knowledge of the microstructure and the physical characteristics of the elementary phases. In 

that sense, they constitute deductive approaches, since they may a priori be applied to any 

material provided that its composition and phase physical properties are known. These 

approaches that are focused on in the present manuscript furthem1ore represent an outstanding 

tool to link the microscopic phenomena, like the disso lution of a phase, to the macroscopic 

behaviour of the materia l and even of the structure. 
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l.2 Research objectives 

The objective of the present manuscript is mainly two-fold. In the context of durability, two of 

the most essential factors that detennine the service life of concrete facilities are the diffusive 

and mechanical characteristics of the construction material for the following reasons. The 

resistance of a structure to loadings is of course conditioned by the mechanical behavior of 

concrete and its opposition to chemical deterioration largely depends on the opportunity 

offered to ions to diffuse through the material. 

The first objective of the thesis thus consists in building an analytical approach, based on 

homogenization techniques and on a multi-scale description of cement-based materials, 

allowing for estimating both their mechanical and diffusive properties and for predicting their 

evolution with time. Many empirical laws already exist for computing these quantities but 

they suffer some limitations. For instance, their validity range is quite restricted or they 

require many experimental data. To circumvent this difficulty, homogenization models have 

recently been proposed (e.g. Bernard et al. 2003; Constantinides and Ulm 2004; Pivonka et al. 

2004). However, these models are generally only designed for determining one specific 

physical property of cement-based materials, such as their elastic moduli or their macroscopic 

diffusivity. It is consequently of high interest to develop a unified homogenization approach 

that is capable of predicting both the mechanical and transport properties of concrete materials 

on the basis of a real istic microgeomctry. Furthennore, progress in experimental analysis 

techniques (e.g. Scrivener 2004; Garboczi and Bullard 2004) has lead to a more accurate 

knowledge of the microstructure of these materials, which is valuable for developing a precise 

modelling. A damage model also gaining profit from homogenization techniques is proposed 

to predict the rather brittle behavior of concrete. 

The second and final goal of the present manuscript is to model and carry out simulations of 

degradations coupling chemistry, transport and mechanics of cement-based composites. These 

simulations are performed with the help of a numerical integration platfonn ALLIANCES 

that allows for coupl ing different phys ical problems (Montamal ct al. 2006; 2007) developed 

by the French Atomic Energy Commission (CEA) in collaboration with ANDRA and EDF. 

The study of such deteriorations is crucial in the context of nuclear waste storage. The 

concrete material, assumed to be saturated in the nominal storage phase, undergoes chemical 

deteriorations in contact with ground water. This degradation process is ruled by the 

macroscopic diffusion coefficients of chemical species through the saturated cementitious 

material. Therefore a coupled chemical-transport approach is necessary to predict the 

alteration with time of its microstructure. The engineering barrier made of concrete of the 

underground structures serving for the disposal of nuclear wastes should also act against the 

propagation of radionuclide. The impact of chemical alteration of the constrnction material on 
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the global diffusive properties of th is structure element is a key point for assessing its capacity 

to work as a radionucl ide barrier. 

Moreover, the chemica l degradation process generating a strong augmentation of porosity 

inside the ccmentitious material affects the overall mechanical behaviour of the underground 

faci lity. Damage of the structure may then occur because of the combined sol icitations due to 

external loadings and to chemical deterioration. This nucleation and growth of cracks in the 

concrete can in turn accelerate the transport phenomena and then enhance the chemical 

alteration process. Nevertheless, the simulations give some usetill insights for other thematics, 

such as C02 storage or tunnels construction. But in such fields of applications, it is necessary 

to consider unsaturated conditions, which generally lead to particularly complicated 

computations. The assumption of saturated conditions is presently retained, since the 

degradations of concrete underground structures for the storage of nuclear waste may be 

envisaged at a long-term. The thc1mal effects are not taken into account, even though nuclear 

waste can induce very significant elevations of temperatures. 

I .3 Outline of the thesis 

The manuscript is composed of five Parts. The first one is dedicated to the presentation of 

cement-based materials and of the degradations of these materials subjected to leaching. In 

Parts II and Ill devoted to homogen ization techniques . a multi -scale mode ling approach based 

on a realistic representation of cementitious materials is developed to estimate the evolution 

with time of their elastic and diffusive macroscopic properties, respectively. Jn Part JV, a 

micromcchanical damage model based on some simplifying assumptions is developed lo 

predict the quasi-brittle behavior of concrete and integrated in the FE code CAST3M. Part V 

is fi nally dedicated to the modelling and the numerical simulations of chemica l and of 

coupled chemo-mcchanical degradations of leached cement-based materia ls. These 

simulations are perfonncd by incorporating the models proposed in the previous Parts to 

predict the macroscopic properties of cement-based materials into the ALLIANCES platfonn. 
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Part I 
PRESENTATION OF CEMENT-BASED MATERIALS 

Cement-based materials are massively employed in the domain of construction. A country 

like China consumes more than one hundred millions of tons of concrete per year. Three types 

of cementitious materials are studied in the present manuscript: hardened or hydrated cement 

paste (HCP), mortar and concrete. A particular emphasis is put on the cement pastes that 

constitute the matrix in mortars and concretes and that are very sensitive to degradations. 

Reinforced concretes are also commonly used in constructions but phenomena like corrosion 

are out of our scope. 

A good knowledge of the microstrucn1re of cementitious materials and of its impact on tbeir 

macroscopic properties is a prerequisite for properly predicting their physical deteriorations. 

A detailed investigation of HCP microstructurc is fundamental to better understand the 

mechanisms of degradation of cement-based materials and explain the differences of 

properties from one material to another. This investigation constitutes forthem1ore the 

cornerstone for the construction of the homogenization model treated in the following Parts of 

the thesis. The present Part gathers experimental results and observations that are useful for 

understanding the microstructurc of ccmcntitious mntcrinls, for knowing its basic properties 

and assessing the material durabil ity. 

2 MICROSTRUCTURE AND PHYSICAL PROPERTIES OF CEMENT-BASED 

MATERIALS 

2.1 Presentation of the multi-scale microstructure of cement-based materials 

2.1.1 Microstructure of cement pastes 

2.1.1.I Hydration of cement pastes 

Cement pastes are complex, multiphase, porous materials, which microstructurc evolves with 

time. The material primarily consists in anhydrous cement grains mixed with water. These 

grains called clinker are fabricated from a mix of limestone an~ clay transfom1cd by heating 

them at about I 450°C and by crushing. Their diameter can vary from I to I 00 µm. A basic 

Portland clinker is generally composed of four dominant compounds: tricalcium si licate 

(C3S), dicalcium silicate (~S), tricalcium aluminate (C3A) and calcium aluminoferrite 

(C4AF). For s implicity, the following cement chemists ' notations are used: C = CaO; S = 

Si~; A = Al20 3; F = Fe20 , ; H = HiO). Some additives, such as Gypsum, fly ash or slag, may 
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be also adjoined to this clinker. base of the standard Portland cement, to modify the paste 

microsirucnire and thus its macroscopic properties. 

A complex microstructure then forms due to hydration of cement grains, the reaction of 

cement particles with water initially taking place at the particle surface. The microstructure 

obtained is usually described as a complex mixture of pores (P), calcium-silicate-hydrates 

(CSH), unhydrated clinker (UC), portlanditc or calcium hydroxide (CH) and aluminates (AF), 

such as etrringitc or alumino-ferritc (AFt), monosulfoaluminates (AFm). The chemical 

composition of these mineral phases is given at the end of the page1
• The relative proportions 

of these phases in HCP may significantly vary from one paste to another and strongly depend 

from the minera l composition of 1he cement grains and on 1he water/cement (w/c) ratio. 

Tennis and Jennings (2000) proposed the following equations to model the hydration of the 

cement grains and compute the resulting volume fractions of tbe hydrated phases: 

2C3S + I0.6H ----? 2CSJI + 2.6CH, 

2c,s + 8.6 11 ----? 2CSH + 0.6CH, 

C3A + 3Gypsum + 26 H ----? AFt, 

2C3A + Aft+ 4 H ----? AFm, 

C3A + CH+ 12 H----? C.AH,3, 

C,AF + 2 Cl! + 10 H ----? Hydrogarnet. 

(I. I) 

Other hydration models exist in the literature such as CEMHYD3D developed by the NIST 

(Bentz 1997) but the Tennis and Jennings model (2000) is adopted in the ensuing to estimate 

the volume fractions of the mineral phases composing the microstructure of HCP. 

During hydration of cement pa1ticles, it is generally asserted (Richardson 2000) that two 

diffusive layers presently defined as inner and outer layers form successively from cement 

grains surface. Tbe inner layer is less porous than the outer one, since the first one results 

from higher confinemem conditions and from poorer water accessibility during hydration 

process. An image provided by scanning electronic microscopy (SEM) is proposed to 

illustrate the HCP heterogeneous microstructure (sec Fig. I. I). 

1 
CSH = x CaO - Si0 2(aq)-x H20 , where x varies between 0 and 2.3; CH = Ca(OH)2; 

A Ft 0 6 CaO - Al20i - 3 S03 - 24 H20; A Fm = 4 Ca0 - Al20 3 - SO, - 12 H20; 

Bydrogarnet = 3 CaO- Al20J - 6 1120; Gypsum = Ca(S04) - 2 H20. 
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I : UC, 2: CSH;0
', 3: CH, 4: Outer Product Zone (CSH, AF, CH, Capillary Porosity appearing 

in black) 

I: UC, 2: CSHint, 3: CH, 4: CSH"', 5: Capillary Porosity 

Figure I. I: Images of a CEM I 52.5 cement paste witli a water to cement ratio (wlc) equal 
to 0.43 obtained by SEM: Al representative area oftlie sample, Bl detai/e1/ image of an 

Outer Product Zone (taken from Bejaoui et al. 2006). 

Depending on the in itial sizes of cement grains, an anhydrous part of the cement particles 

remains after hydration has stopped and constitutes an impermeable core surrounded by these 

two heterogeneous layers. It is commonly accepted that two different types of porous CSH arc 

associated with each layer. lligh-density CSH are present inside che inner layer and low­

density CSH fonn inside che outer layer (e.g. Richardson 2000; Tennis and Jennings 2000). 

Tennis and Jennings (2000) classified them as high-density and low-density, whereas 

Richardson preferred to call them inner and outer products. IJ1 the ensuing, these two types of 
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CSH are respectively called as internal and external products, denoted CSHin• and CSHc.c. 

More precisely, in the inner layer, the CS!lin• behave as a matrix phase embedding non· 

diffusive inclusions of C H and AF. Similarly, the external layer has matrix-inclusion type 

morphology, where Cll, AF and some pores play the role of inclusions enclosed in the 

CSH""'. It is notewonhy that many mineral phases (AF, CH, CSl-li••, CSH'"", ... ) are involved 

in the microstrucrure of HCP and a closer look is given in the next subsection to each one 

separately. 

2.1.J.2 information on the HCP mineral phases 

Many phases appear in the mineral composition of HCP and their characteristic sizes can 

range from the nanometer to micrometer scales. The main solid phases, wh ich volume 

fractions displayed on Table I.I in CEM I cement pastes can be estimated by means of the 

Tennis and Jennings model (2000), are presented in depth below. A particular emphasis is put 

on the morphology inside the HCP microstructure that is an important aspect for the models 

developed subsequent ly. 

Anhydrous CSH;., CSH"' 
AFt - AFm Hydrog:1rnet 

W/c CH 
residuals C,AHu C3(A.F)H, 

0.25 19.5 38.4 8.7 14.3 7.2 7.3 

0.30 13.7 37.4 12.0 15.2 7.4 7.2 

0.35 9.4 33.9 16.8 15.6 7.5 7.2 

0.38 7.5 30.7 20.2 15.6 7.3 7.3 

0.40 6..4 28.3 22.6 15.5 7.2 7.3 

0.42 5.4 25.7 25. I 15.4 7. 1 7.3 

0.45 4.3 2 1.6 28.8 15.1 6.9 7.3 

0.50 3.0 14.6 34.8 14.4 6.5 7.5 

0.60 1.4 1.0 47.0 13.J 5.8 6.8 

0.65 1.0 0.0 47.0 12.5 5.5 6.4 

Table I.I: Mineral comp"sition in terms ofvol11111efractions ofsta11dard CEM I hytlrated 
pastes obtained by the model of Tennis a11d J e1111ings (2000). 

CSH: they are formed by hydration of the si licates C3S and C2S and represent about half of 

the paste in 1cm1s of volume fractions. The quantity of calcium in the CSH is variable. They 

are thus characterized by their Calcium over Si licon (C/S) rati o, which can vary from 0. 7 in 

very degraded states to generally about l.7 in a sound state. At the beginning of tl1e hydration 

process, a nucleation phase followed by a growing phase of CSH occurs at the surface of 

cement grains. cs11•" first fonn a layer around the clinker and hydration process is controlled 

by diffusion through it. The denser type of CSH, namely CSH;"', is then fonned inside this 
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coating. The CSH1
"' and the CSH''" have a characteristic size of I 0 to I 00 nanometres, which 

makes it very difficult to gain precise information about their geometrica l shape. Taylor 

(1997) describes the CSI-11
" ' as a honeycomb or reticular network, while the CSH"' rather 

have a foliated structure (Bejaoui et al. 2006), as may be seen on Fig. 1.2. 

The relative volume fractions of the two types of CSH arc computed in this work by means of 

the Tennis and Jennings model (2000): 

M • = 3.0 I 7(w/cg- J .347~ + 0.538, 

M, -M,M, 
c:CSJ/1111 = , 

PcsHrnr 
(1.2) 

M,M, 

PcsHm 

where cCSH1,,,, CcsHm, PcsH'"', Pcs11..,, are respectively the volume fractions and densities of 

CSil1
"' and CSHex', M, is the total mass of CSH, M • is the ratio of the mass of CSH'"' to the 

total mass of CSH, c; the hydration rate. 

a) CSH"'' in a CEM I paste 

with w/c = 0.25 

b) CSH1
" ' in a CEM I paste 

with w/c = 0.50 

c) CSH'xt in a CEM I paste d) CSH''" in a CEM I paste e) CSH"'" in a CEM J paste 

with w/c = 0.32 with w/c = 0.43 with w/c = 0.70 

Fig ure f.2: Images oftlt e 111icrostruct11re ofCSH1
"' and CSH'".' i11 CEM T 52.5 cement 

pastes tvitlt diverse w/c ratios obtained by Tramm1issio11 electron microscopy (TEM) (take11 
fmm Bejaoui et al. 2006). 
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CH: This phase is very important for leach ing cases, s ince it dissolves before any other 

hydration products. The ordinary Portland cement pastes contain about I 5 % in volume of CH 

but the cement pastes using additives, such as slag of fly ash, generall y enclose much less 

portlandite. CH forms massive crystals, wh ich are often described as platelets or flakes when 

embedded in HCP (Richardson 2000). Otherwise in non-confined environment, portlanditc 

crystallizes into mass ive hexagonal plates. Consequently, they arc far from being spherical, 

although information on CH crystals in HC P is insuffi cient to quancitatively characterize cheir 

real shapes ins ide the microstructure of cement-based materials. 

Aluminatcs: The hardened ordinary Po1tland cement paste contains, in addition to CSH and 

CH, other major hydration products, produced from reacti ons involving C3A, C. AF and 

Gypsum: llydrogamec, Afm, Aft and Calcium aluminate hydrate (C.AH13). Accord ing to Eq. 

(I.I), A Ft, A Fm and C4AH13 are produced by the hydration o f Ci A, whereas Hydroga111et is 

produced by the reaction of c . AF with portlandite. Though thei r volume fraction can be 

rather scarce (about 7 % in volume), those phases have to be accounted for in leach ing cases 

or in sulfatic attacks, since they can be partially or totally dissolved (Adcnot 1992). AFt and 

A Fm arc usually more abundant in standard cement pastes than Hydrogamet and c . AH 13 and 

have received a closer attention from experimentalists. According to Richardson (2000), AFm 

is present in mature pastes as large irregu lar plates simi lar to those of CH and Aft occurs as 

thin hexagonal prism need les of up to JO run in length. Aft is quite easy to observe on the 

Environmental Scanning Electron Microscopy (ESEM) since they are characterized by long 

rods when crystallized in non-confined environment. However, according to Tennis and 

Jenn ings model, AFI that forms rapidly during the hydration process then react with C3A to 

form i\Fm and therefore hardly exists in marure cement pastes. 

Unhydrated clinker: it corresponds to the ponion of cement grains that has not reacted with 

water. The amount of anhydrous residuals present in HCP depends on the w/c ratio and time 

of hydration. Cement paste micrographs generall y tend to show that cement particles do not 

have spherical shapes. Thanks to very advanced techniques such as X-ray microtomography, 

cement particles morphology has been rigorously in vestigated. Garboczi and Bullard (2004), 

performing rccemly a spherical harmonic coefficient analysis on microtomograph ic images of 

Portland cement grains, managed to characterize quanti tatively their real shape (sec Fig. I.3). 

They ana lyzed about I 200 patticles with volume ranging from I ftm3 to I 20000 µ111
3 and 

concluded that these pa1t icles were definitely non-spherical by plotting their surface area 

versus their volume. T he curve of surface area versus their volume for cement pa1ticles was 

indeed clearl y above the spherical one. By filling their experimental curve, the following 

resu lt was obtained for the volume V over surface area A ratio: 



!:_ =-1 - V"~ . 
A 5.95 
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(1.3) 

The knowledge of the volume over surface area ratio of real cement particle is a precious 

piece of information for the modell ing of this phase that is further exploited in Part II. 

Figure /.3: Views of ceme11t particles generated from tlte splteric:ul harmonic expansion 
(taken from Garboczi u11d Bullard 2004). 

The previous discussions high light the complex morphology of all the mineral phases 

composing HCP. Hence, it is natural to pose the following question: what is the best way to 

model in a simple and realistic manner these phases? An answer to this question will be 

prov ided in Part II. 

2.1 .1.3 The complex multiscale porosity of HCP 

The HCP described previously (Figs. I. I and 1.2) are complex multi-scale porous media, 

where the pore size distribution varies by several orders of magnitude (from I nm to more 

than I 0 µm). At the micrometer scale, capillary pores are defined as the remaining space 

situated between hydrated cement grains. They are originated from the chemical shrinkage of 

the hydration products or stem from the interstitial space left by water in excess. The CSH, 

representing about half of the paste in tenns of volume fractions, furthermore contain a finer 

porosity, defined as gel poros ity. The CSH"'' are more porous than CSH'"", the CSH;"' 

resu lting main ly from higher confinement conditions during hydration reactions. According to 

the Jennings and Tennis model, the gel porosity comprised in CSH1
" ' is about 26 % and the 

one contained in CSH" ' arou11d 36 % in tenns of volume fractions. In the present work, the 

gel pores sizes are assumed to be situated between a few nm and 0.2 µrn and the capi llary 

pores ones to range from 0.2 µm and a few µm , thoug)l the defin ition of these two domains 

significantl y varies in the different classifications for the pore structure of HCP proposed in 

literature (e.g. Baroghel-Bouny 1994; Daimon et al. 1977; lgarashi et al. 2004; Powers I 948). 

For example, according to Mindess and Young (198 1), the size of the cap illary pores may 

vary from several orders of magni tude (from I 0 nm to I 0 µm) and the gel pores from a few 
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angstrljms to I 0 nm. It is also noteworthy that some authors differentiate more than two 

categories of pores in cement pastes (e.g. Daimon et al. 1977) but we limit for simplicity to 

two main classes of pores. 

The pore structure of HCP, especially the capillary porosity, is the subject of many 

experimental investigations (Taylor 1997). To measure the total porosity of HCP, the simplest 

technique consists in performing total free water porosity measurements (Galle 200 I). The 

porosity is practically obtained by measuring the total amount of water removed from 

saturated pastes after drying them. Other techniques exist but, in the present dissertation, the 

total porosity is considered to be the value measured by water porosimetry. Two techniques 

are commonly used to measure the pore size distribution: mercury intrusion porosimetry 

(MIP) and image analysis on SEM results. In add ition, the breakthrough of microtomography 

and nanotomography could lead to more precise measurements in the oncoming years (Bentz 

et al. 2002; Burlion ct al. 2006; llolzer et al. 2003). 

MIP is used to measure the pore size distributions by quantifying mercury ab le to penetrate 

the dried material under successively increased pressures. The abi lity of mercury to pass 

througJ1 pores of a given size depends on the pressure applied. The volume intrnded per 

change in pressure provides the data for calculating the pore size distrib\ltion (Galle 2001). 

However, Diamond (2000) evidenced the fact that MIP is an inappropriate method for the 

correct measurement of the pore size distribution in cement-based materials. In particular, he 

argued that the amount of large pores is underestimated, s ince most of them are inaccessible 

to mercury injected at low pressure. In order to attain certain large pores, mercury may indeed 

be constrained to penetrate through smaller pores. As a consequence, the quantity of small 

pores is overestimated. Despite these shortcomings, this experimental method gives some 

insights on the material pore stnictme in terms of connectiv ity. Indeed, the measurement of 

the critical pore or threshold diameter by mercury porosimetry allows for evaluating the 

largest scale at which percolation, i.e. the formation of a pore cluster connecting one 

extremity of the material to another, occurs (Diamond 2000). The critical pore diameter is 

defined as the pore width corresponding to the highest intrusion of mercury per change in 

pressure, practically determined the maximum of the dV/dP versus pore diameter curve as 

plotted in Fig. J.4 (or by the inflection point on the volume intrusion). 
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Figure 1.4: Differential intruded P"re volume versus pore diameter curve measured by MIP 
(takenjr(lm Galle 2001). 

According to Katz and Thompson ( 1987), the threshold diameter pcnnits to identify the less 

constri cted percolating grouping of pores, since this length corresponds to the size of the 

smallest pore belonging to the percolating ones. It is thus possible to identi fy the less 

constricted percolating path in the paste that should logicall y inn uence its transport properties 

(Katz and Thompson 1987). For example, accordi ng to the experiments of Galle et al. (2004), 

this diameter is about 20 nm for an ordinary CEM I paste with a w/e ratio equal to 0.45. This 

result shows that the gel pores can percolate through the paste. On tbc contrary, the larger 

capillary pores, that are mostly inaccessible to mercury injected at low pressure, may be 

isolated or c9nnccted to each other by a network of gel pores. Values for the threshold 

diameter can eas ily be found in the very large data collection of MIP tests ava ilable in the 

open literature (sec Table 1.2). 

Furthermore, other experimental observations confirm the fact that the gel pores should 

percolate through the paste. Recently, Holzer et al. (2005) asserted that the skeleton ization of 

porosi ty on 30-images obtained wi th the help of nanotomography at resolutions of 20 nm 

indicated that the pore network is almost completely connected. Bejaoui et al. (2006) also 

performed an accurate investigation of the pores entrapped in the CSH in CEM I pastes. Their 

TEM images of CSHin• show that they keep an invariant morphology characterized by a very 

finely divided porosity at the nanometre sca le. On the contrary, it appears clearly on their 

TEM observations (see Fig. 1.3) thaJ CSI I"' present diverse morphology depending on the w/c 

ratio. In pa1ticular, the characteristic length of the porosity on their images varies from 10 nm 

for low w/c pastes to a hu ndred of nm for high w/c ones. As may be observed on the 

micrographics of Bejaoui et al. (2006), the gel pores in CSH' " arc strongly connected for the 

pastes of medium or high w/c rat ios. 
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The capillary pores can be investigated by image analysis. These techniques have an 

increasing success in the field of cement-based materials but they arc limited by their 

resolution, generally about 0.2 µm (Scrivener 2004). Nevertheless, they offer the opportunity 

10 measure the size distribution of capillary pores larger than 0.2 µm. lgarashi et al. (2004) 

measured the volume fraction of capillary pores in different types of cement pastes and 

mortars by image analysis. The morphology of the capillary pores is very difficult to 

characterize, thoug)l the recent microtomographic images of Rattanasak and Kendall (2005) 

and of the Visible Cement Data Set (Bentz et al. 2002) could give some insights on their 

three-d imensional shapes. 

Type of Sample Critical p ore diameter 
cement w/c Sources 
paste 

preparation 
Sound Leached -

CEM I Oven-dryed 
0.2 11m 

0.45 20 run (30 weeks with (Galle et al. 2004) 
at60°C 

NH,N03) 
ASTM 

Vacuum- (Delagrave et al. 
Type I 0.45 40nm 
cement 

dried 1998) 

CEM I 0.30 
Vacuum-

30 nm (Richel et al. 1997) 
dried 

CEM I 0.40 
Vacuum- 35 - 40 (Richel et al. 1997) 

dried nm 

CEM I 0.60 
Vacuum- 70 - 80 (Richet et al. 1997) 

dried nm 

CEM I 0.40 
Vacuum-

60 nm (Galle 200 I) 
dried 

. 

CEM I 0.40 
Oven-dryed 170 

(Galle 200 I) 
at 105°C 

-
nm 

Table 1.2: Critical pore diameter values measured by MIP tests/or various types of cements 
pastes i11 sound or leached states issued from diverse sources. 

To summarize, the present subsection pulling together qualitative but also quantitative results 

obtained on the cement paste porosity with diverse techniques (MIP, SEM, ... ) indicates that 

the percolation of poros ity occurs at a scale of several tens of nanometers and that the pore 

structure of 1 lCP is highly connected at the nanometre scale. It is useful to keep in mind these 

remarkable insights gained on porosity by experimentalists in the ensuing Pa1ts ded icated to 

modelling so as to correctly represent the pore structure. 
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2.J.2 Microstructure of mortars and concretes 

Mortars consist in a mixrure of cement pas1es and of sand particles, which size ranges from 

O. l mm to 5 mm, in order to improve the packing of these grains. Concretes are obtained by 

further adding aggregates with sizes varying between I mm and about 25 cm. Many srudics 

have evidenced that an interfacial transition zone (TTZ), which thickness ranges from 15 to 40 

iun (Hashin and Monteiro 2002), fom1s between the aggregate particles and the cement. It has 

been noted that the thickness of the ITZ layers is qu ite independent from the size of the 

pa1ticle. The !TZ is generally more porous than the cement paste (Lutz and Zimmerman 2005) 

but is also likely to contain more portlandite and al uminates (Sun et al. 2007) because of the 

wall effect. The volume fractions occupied by the JTZ is difficult to gain experimentall y, 

because the diverse ITZ layers tend to overlap. But Lu and Torquato ( 1992) developed a 

statistical model based on a representation of porosity by a polydisperscd system of spheres, 

which may be employed for estimating the latter quantity. Due to these overlaps, the ITZ is 

furthermore prone to percolate through the microstrucn1re of mortars or concretes (Scrivener 

and Nemati 1996) and strongly influences their effective properties (Wang et al. 1988). 

2.2 Microscopic and macroscopic properties of cement-based materials 

For their practical use as a construction material, it is necessary to know some basic properties 

of concrete materials, such as their Young modulus, strength, permeability or diffusivity. 

These properties may s ignificantly vary from one material to another as will be shown 

subsquently. Modelling approaches aiming at estimating these characteristics are thus usefu l 

to avoid measuring them for each type of cement or concrete. But the development of model 

for predicting their properties is often constrained by the lack of data concerning the transport 

and mechanical features of the residual cl inker, hydrated phases or aggregates. Therefore th is 

subchapter gathers useful experimental results for the properties of both the cementitious 

materials and their main constituents at different scales. 

2.2.J l11formatio11 011 the elastic properties of the HCP elementary phases 

At the microscopic scale, the measurements of the elastic properties of the phases composing 

the microstructure of HCP are ma inly carried out by nanoindentation and, at the macroscopic 

scale, by diverse techn iques, such as resonance frequency measurements or by dynamic tests. 

The nanoindentat ion tests consist in pushing an indenter with a diamond· tip into the 

specimen. The characteristic length of the indentation area is on the order of I o·6 m, and the 

indentation depth varies in the range of 300- 500 nm (Velez et al. 200 l ). The complete F - h 

response is recorded during the test, where h is the depth of penetration into the specimen and 

F is the load applied. The Young modulus can be extracted by analyzing the unloading part of 

the F - h curve according to a model for the elastic contact problem. From the measurement of 
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the effective modulus E, of the test area, the elas1ic modulus E,. of the phase r is obtained 

using ihe equation (Damidot et al. 2003): 

1 l 1 2 - v, 1 - V, 

E, Ed +~, (l.4) 

where v, and £" are the Poisson ratio and the elastic properties of the diamond indenter and 

~ is the Poisson ratio of the measured phase. One of the shortcomings from nanoindentation 
' 

technique is that the Poisson ratio of the material 1ested is not accessible. The en-ors of the 

measures by indentation thus mainly come from the fact that the Poisson ratio elevated to 

square in the previous fonnu la has to be estimated. Nevertheless, the Young modu li of the 

HCP elementary phases (see Table 1.3) measured by nanoindentation represent crucial pieces 

of infom1ation for tbe prediction of the mechanical behaviour of cementitious materials. 

Different nanoindentation tests measuring the Young moduli of cl inker and CH have been 

pcrfom1cd (e.g. Boumiz et al. 1997; Damidot et al. 2003; Velez et al. 2001) and arc 

furthennore in quite good agreement with each others. The values displayed on Table 1.3 arc 

retained as reference values for the micromechanical computations in Pai1 II. The 

measurements performed on cement pastes exposed to a leaching process, explained in the 

ensuing chapter, arc also displayed. Nevertheless, it is usefu l to recall that these measures arc 

made by indenting on surfaces representative of the CSl-I with a minimal area of 1 µm 2 and 

therefore enclose not only the CSH but also some porosity (< 1 iim) and probably a certain 

volume fraction of other hydration products, such as CH or AF phases , that is very difficu lt to 

quantify. These two phases of CSH arc however considered as homogeneous materials with 

elastic properties, which may be ident ified by nanoindentation technique, and aluminatcs, 

such as AFt or hydrogarnet, are thus assumed to have similar elastic properties to the ones 

measured for the 1wo types of CSl-I (Table 1.3). In the ensuing, it is supposed that the entire 

gel porosity is comprised in the measurements of the CSH" ' and CSJ-ii"' mechanical 

properties. 
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SOUND LEACHED 

Phases HC P HCP References 

E (GPa) v E (GPa) v 

CH 42.3 0.324 0 0 Monteiro and Chang 
( 1995) 

38 0.3 1 Constantin ides and 
Ulm (2004) 

Unhydrated 11 7.6 0.3 14 117.6 0.314 Boumiz et al. ( 1997) 
clinker 
Capillary 0 0 0 0 
Porosity 
A Ft, 22.4 0.25 0 0 Assumed by Karna Ii 
Hydrogamet, (2003) 
C. AHn 25 0.25 Haecker et al. (2005) 
A Fm 42.3 0.324 0 0 Assumed by Kama Ii 

(2003) 
CSII gel (CSHex' 22.4 0.25 
+ CSH;"') 

22.4 0.25 Damidot ct al. (2003) 

csu<'" 2 1.7 0.24 3 0.24 Constantinidcs and 
Ulm (2004) 

CSH'"' 29.4 0.24 3 0.24 Constantinides and 
Ulm (2004) 

* T he n umerical values used for the calculations are in bold. 

Table 1.3: Elastic properties of the mai11 phases i11" sound state present in HCP 
microstr11ct11re, tllke11 from diverse sources in the literllture. 

2.2.2 Elastic properties o/llCP 

Diverse experiments have been performed for measuring the macroscopic e lastic moduli of 

HCP, for instance by resonance frequencies techniques (see e.g. Wang ct al. 1988; Galle et a l. 

2004). Th is type of measurement is also used for testing mortar and concrete (Sun et al. 2007; 

Wang et al. 1988). In the resonance method, the test specimen is made to vibrate as a whole in 

one of its natura l frequency modes (transverse, longitudina l, or torsional). The resonance 

frequency depends on the geometry of the sample, on its density, its pores distribution and on 

its elastic properties. As an illustration, the Young modul i of different HCP gained by diverse 

resonance frequency tests are gathered against their total water porosity on Table 1.4. The 

Young modul i are shown to strongly depend on the HCP porosity: the value obtained for HCP 

with a low porosity paste is about 50 % higher than for a high porosity I ICP (w/c = 0.50). 
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Material E (GPa) 
T otal water 

References 
porosity 

CEM I 52.5 paste 
J 5.6 0.405 Carde ( 1996) 

(w/c = 0.50) 
OPC type I paste 

22.8 0.328 
Constantinides 

(wfc = 0.50) and Ulm (2004) 

CEM I 52.5 HTS 23 0.326 Galic et al. (2004) 
paste (w/c ~ 0.45) 

Table 1.4: Young moduli measured experi111e11tally of sta11dard ce111e11t pastes, take11 from 
diverse source.~ i11 the literat11re. 

A way to increase the stiffness of the cement pastes consists in add ing rigid sand particles or 

aggregates to these materials thus forming mortars and concretes. 

2.2.3 Elastic properties of mortars amt co11cretes 

The sand particles, which Young modu lus is measured as 86.7 GPa by Wang et al. (1988), are 

much stiffer than the cement pastes. One would thus expect that the Young modu lus should 

significantly increase as the volume fractions of sand aggregates augment. But the 

experiments of Wang et al. ( 1988) showed only a 25 % increase of the overall Young 

modu lus of the mortars with 40 % of sand aggregates compared to the plain cement paste. 

This result may be due to a weakening effect of the JTZ that is more porous than the bulk 

cement paste (Sun et al. 2007). Unfortunately, the elastic moduli of the ITZ layers are very 

difficu lt to measure experimentally, since they do not really appear as a homogeneous 

interface but rather as a graded one. To address this lack of data, many micromechanical 

approaches modelling the ITZ as a homogeneous phase have been developed to estimate their 

effective elastic moduli from an inverse approach (sec e.g. Hashin and Monteiro 2002). 

However, Sun et al. (2007) noticed a strong dispersion between the Young modulus of ITZ 

proposed in literature as the following expression: 

E,rz:a E11c•• (1.5) 

where a is a constant with a value that is identified between 0.2 and 0.8 depending on the 

model and on the thickness of the JTZ retained by the authors transition (Hash in and Monteiro 

2002; Ramesh et al. 1996; Yang 1998) and E11c p is the Young modulus of the corresponding 

plain paste. It is however emphasized that, even though the JTZ is generally modelled as a 

homogeneous interphase, it would be more realistic to model it as an inhomogeneous one 

(Lutz and Zimmerman 2005). Jn the case of concrete, porous rrz layers still exist but their 

influence on the physic.al behaviour of concrete seems less important than in mortars probably 

because the volume fraction of JTZ is more important in the case of mo11ars, since the 

aggregates have much smaller size. That's why these interphases are generally not taken into 



Part J: Presentation of cement·based materials Pago 18 

account in the models developed to predict the physical properties of concrete (Constantin ides 

and Ulm 2004). 

2.2.4 Tra11.~port properties of cement-based materials 

The main transport processes in concrete include diffusion, permeation, and convection. 

Diffusion describes the transport for instance of a particular gas (e.g. C~ vapor) in the 

gaseous phase or dissolved ions as a result of a concentration gradient (Dullien 1992). 

Penneation describes the flow of a fluid (e.g. water or air) as a result of gravity or a pressure 

gradient. Convection (or advection) is the process that describes the transport of a solute (e.g. 

chloride or sulfate ions) as a result of the bulk moving fluid. The transport processes in most 

concrete structures can be complex and may involve more tban one of the referred transport 

mechanisms. In most of these processes, water is the principal medium by which aggressive 

agents (such as chloride or sulfate ions) are transported into the concrete. 

However, in the context of the long-tem1 behavior of underground concrete facilities, the 

material is generally assumed to be in saturated conditions in the nominal storage phase so 

that the chemical species in pore solution are transported by diffusion through the concrete. 

Convection is neglected, since it is assumed that there is no pressure gradient in water. As 

may be observed in Fig. 1.5, the macroscopic diffusion coefficients of cement pastes strongly 

vary from one paste to another, with sudden variations occurring for certain w/c ratios. The 

causes of these variatioos are discussed in details in Part 111. 

Concerning the transport properties of mortars and concretes, some authors (Nguyen et al. 

2006) argue that the presence of aggregates in a hydrated cement paste matrix probably bas 

two opposite effects that compensate each other. On the ooe hand, it increases the tortuosity 

of the matrix and reduces tbe total space available to diffusion and, on the other hand, the high 

porosity of ITZ enhances the diffusion process. 

As a result of the strong variations between the difTusivities of cement-based material, 

aggressive agents diffuse more or less rapid ly through the material, which is a key issue that 

influences the long-tem1 degradation of concrete facilities. 
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Figure /. 5 (semi-logarithmic sctlle): E volutio11 of the macroscopic dijji1sio11 coefjicie11ts 
measured experimentally f or both so1111d CEM I a11d CEM V pastes with their w/c ratio, 

taken from diverse sources in the literature (utlapted from Richel et al. 1997). 

The present chapter bas presented some basic features of cementitious materials in a sound 

state. However, these materials are sensitive to many degradation factors and therefore the 

evolution with time of their microstructure is strongly conditioned by their environment. The 

next chapter focuses on some of these deterioration sources that influence the behavior of 

cementitious materials. 

3 DEGRADATIONS OF CEMENT-BASED MATERIALS SUB.IECTED TO 

LEACHING 

Various degradation mechan isms may affect the concrete materials under service life. They 

may be altered for instance by: (i) chemical reactions caused by ionic migration between the 

interstitial solution and ground water; (ii) damage due to external mechanical loadings and to 

possible precipitation of secondary solid phases generating internal pressures; (i ii) thennal 

expansion due to strong temperature variations; (iv) creep and shrinkage phenomena. The 

present dissertation only treats the first two deterioration factors that may strongly impact the 

durabi lity of concrete underground iofrastrnctures, such as the ones for the disposal of long­

term nuclear wastes. Jn these facilities, concrete is for instance employed in the engineering 

ban:ier that serves as one of the protections against the propagation of radionucleides. In this 

context, the chemical degradation mechanisms due to leach ing and then the damage 
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processes, which may alter the diffusive properties of the material, are presented. In both 

cases, their effects on the microstruct\1re and the overall behaviour of the concrete are pointed 

out. Finally, the possible interactions between these two degradation processes are 

investigated. 

3.1 C hemical deterioration of cementitious materials caused by leaching 

The chemical alteration of concrete is a phenomenon that has to be carefully taken into 

account for pred icting the long-tenn durability of underground structures. In contact with 

ground water, the material is subjected to chemica l reactions originated by the migration of 

ions, such as calcium or sulfates, caused by concentration grad ients between the pore solution 

and the ground water. The materia l composed of a solid skeleton and the interstitial solution is 

intially in a chemical equilibrium state. The concentration of ions in the pore solution is 

consequently imposed by the mineral composition of the solid part. The movement of ions 

towards the exterior and inside the material di sturbs thi s equilibrium state and causes 

dissolution-precipitation reactions in the material to compensate the variation of ions 

concentrations in the pore solution. This chemical degradation process by contact with pure 

water is generally called leaching or decalcification, since it principally concems the calcium 

ions and the minera l phases containing calcium. However, ground water may contai n 

aggressive chcm1cal species. If the water in contact with the concrete is rich in sulfates or 

chlorides, we rather speak about extemal sulfate or chloride attacks but these attacks are out 

of our scope. 

The propagation of the zones affected by leaching is usual ly very low, since pure water 

leaches only 4 cm of a concrete structure in roughly 300 years (Adenot 1992), but may reveal 

detrimental for long-term industrial applications. The development of an accelerating method 

using ammonium nitrate as aggressive solution (Cardc 1996) has s ignificantly enhanced the 

loiowledge about the long-term leaching o f cement-based materials. The effects of leaching 

on the microstructure of HCP are investigated below. 

The solid phases containing ca lcium are the most sensitive to leaching. The CH crystals 

dissolve before any other hydration products during decalcification process according to the 

follow ing reaction: 

Ca{OH)
2

-4 Ca 2•+2ow. (l.6) 

The CSll are then progressively degraded but do not totally disso lve. More precisely, their 

CIS ratio gradually diminishes from around 1.65 for the intact product to approximately 0.8 

during this attack (Heukamr 2002). As the leaching proceeds, the aluminous phases are 

decalcified and partially dissolved. A picture taken from Adcnot ( 1992) is proposed to 
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illustrate the progressive degradation of HCP by the stepwise dissolution of its hydration 

products (see Fig. 1.6). 

1.4mm 
Sound core 

CH,AFm, AFt 

CSH 

--------o1 Aft, AFm, CSH 

AFt, CSH 

Zone rich in aluminium and 

silicium gels 

Figure J.6: Photo "fa CEM J 42.5 paste sample with wlc = 0.40 leached during 3 months 
by pure water (taken from A1/enot 1992). 

A convenient variable to describe in good approximation the leaching process is the calcium 

concentration in the pore solution Cea· Fig. 1.7, adapted from Bary and Bejaoui (2006), who 

perfonned numerical simulations with the chemical equilibrium code CII ESS (van der Lee 

and de Windt 2002), shows the progressive decrease of the calcium concentration in the solid 

phase Sc. as a function of Cc;, with the hypothesis that there is no alkalis in solution and that 

CSH dissolution is discreti:r.ed by using 3 CSH of diverse C/S ratios. A multi-linear 

simplificat ion of the CHESS results is also plotted on Fig. I. 7 to approximate the progressive 

decalcification of the hydration products. More precisely, the degradation is supposed to be, 

in terms of the volume of solid phase replaced by porosity, linearly related to the calcium 

concentration in pore solution Cea: CH dissolves between Cc.= 21.54 and Cea= 20.3 1 

mollm3, CSJ-1 between Cea= 20.3 1 and Cea= 1.09 mol/m3, and AF between Ceo= 20.31 and 

Cc,, m 3.08 mol/m3
. 

The porosi ty measurements with water and MlP for both asymptotically leached and intact 

pastes allow for a quantitive analysis of the microstruetural changes with leaching (see Table 

1.5). To obtain a homogeneously degraded paste, the latter is exposed to a very aggressive 

ammonium nitrate solution during a number of weeks that depends on the size of the sample 

(see e.g. llcukamp 2002). On Table 1.5, the total porosity in the material appears almost 

doubled in the uniformly leached state. 
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Figure I. 7: Degradation process of the main hydrated phases in terms of calcium 
concentration in solid phase Sc. as a f 1111ctio11 of calcium conce11tratio11 in solution Cc. 

(line= re.mlt1· obtained with the chemical equilibrium code CHESS; dotted line = simplified 
curve) (adapted from Bary and Bejaoui 2006). 

CEM J 52.S paste Lafarge CEM I CEM J 42.5 OPC type I 
Phases of Or igny 52.S HTS paste paste of Origny paste 

(w/c = 0.40) (w/c = 0.45) (w/c = 0.50) (w/c = 0.50) 

References Moranvil le ct al. Galle et al. Cardc ( 1996) 
Heukamp 

(2004) (2004) (2002) 
Estimated 

0 76 0.88 0.8 0.8 
hydration rate 
Initial porosity 0.39 0.326 0.405 0.397 
measured by water 
Leaching tests 19 days with 6M 16 weeks with I day wich 5.46M 

ofNH, NQ3 6M ofNH,NO, ofNH, NO, 

Porosity measured 
by water on the . 0.6 12 0.5098 0.632 
leached soccimen 
Accelerated 1.56 mm d·"·' 1.74 mm d"'" I .3 I mm d'0" 2.25 mm d"05 

leaching rate• (0.1 40 mm d·0" ) (0.190 nun d'0" ) (0.125 nun d"'") 

*P11rt 1110ltr leochinJl rates are;,, parentlre.s;s to give a cn1nparison 

Table 1.5: Table summarizi11g some important experi111e11tal results of accelerated leaching 
tests a/ HCP, take11 from diverse sources in the literature. 

Concerning the totally decalcificd state, Bary and Bejaoui (2006) assumed that all the CH, 

half of the AF phases and 5 % of the CSI I are dissolved and replaced by additional capillary 
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pores. Moreover, the internal porosity of CSH is likely to increase because of its degradation 

(Heukamp 2002). To qua11tify this porosity, it is proposed to compare the measure of total 

porosity by MlP with the sum of the initial capillary porosity and the additional one issued 

from the complete leaching of CH. The difference obtained is then assumed to be attributable 

to the CSH degradation and the partia l one of AF. This empirical method is appl ied to a CEM 

I paste with w/c ~ 0.45 and the values of porosity comprised in the CSH collected in Table 1.5 

before and aficr leaching indicate that a total volume fraction of supplementary percolating 

fine gel porosity of 0.04 appears in the CSH during the decalcification process. In the case of 

mortar and concrete, the degradation main ly takes place in the cemcntitous matrix, the 

aggregates being more resistant to leaching. The kinetics of degradation of mortars is however 

quite simi lar to the ones of HCP (Bourdctte 1994). 

The leaching experiments presented on Table l.5 (e.g. Galle et al. 2004) reveal that the 

resistance of cement-based materials to chemical degradation can vary a lot of a material to 

another. Therefore, modell ing approaches aiming at estimating the physical properties of 

these materials are of high interest to avoid performing degradation tests for each type of 

cement or concrete. The models existing in literature (Adenot and Bui I I 992; Gerard I 996) 

arc treated more in depth in Part V and our own numerical too l wi ll be developed to 

accurately reproduce the leaching of cementitious materials. 

3.2 Experimental insights on the chem o-mechanical degradation of leached cemcnt­

basccl materi als 

3.2. 1 Impact ofleachillg 011 the residual mecha11ical behaviour 

Different experimental works (e.g. Carde 1996; Constantinides and Ulm 2004; Galle et al. 

2004; Meukamp et al. 2005; Le Bellego 2001; Nguyen 2005) have been focused on the effects 

of decalcification of cementitious materials on their residual mechan ical properties. They 

generally consist in canying out mechanical tests, such as a uniaxial compression or traction 

test (e.g. Carde 1996; lleukamp et al. 2005; Nguyen 2005) or 3 points flexion tests (e.g. Le 

Bellego 200 I), on samples previously subjected to an accelerated leach ing process. These 

experiments, qualified as «residual resistance», systematical ly evidence a detrimental effect 

of leaching on the Young modulus and the residual strength of the material. 

For instance, a sharp diminution of the HCP elastic properties was measured by Carde (1996), 

where total dissolution ofCJI caused a reduction of63 % in the Young modulus ofa CEM I 

42.5 w/c = 0.50 cylindrical sa111ple wi th a 30 mm diameter. Galle et al. (2004) measured a 

decrease from 23 GPa to 7 GPa (a 7 1 % reduction) on the dynamic elastic modulus of a 

cylindrical sample with a 40 mm diameter of a CEM I 52.5 J ITS w/c = 0.45 paste subjected to 

a complete degradation during 30 weeks. Constantinides and Ulm (2004) further measured 
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that the stiffness modulus of an asymptotically leached OPC type I paste decreased to about 3 

GPa representing a 84 % decay. To obtain a uniformly degraded paste. the sample with a 

diameter of 11.5 mm was attacked by an ammonium nitrate solution during 5 months. The 

differences between these measurements (Carde 1996; Galle ct al. 2004; Constantinides and 

Ulm 2004) may be explained by the fact that the pastes are more or less chemically altered, 

given that the diameters of the samples and the leaching time considered vary from one author 

to another. I lowever these experiments do not account for the possible effects of damage on 

the chemical degradation processes that arc investigated below. 

3.2.2 I11fl11e11ce of damage on the leaching process 

Chemical degradations are potentially influenced by the presence of microcracks because they 

may provide preferential pathways for fluid or ions to pass through. Many studies have 

reported that cracks can dramatically influence the transport properties of concrete, in 

particular its permeability (e.g. Wang et al. 1997). For example, Wang et al. ( 1997) studied 

the permeability of cracked concrete and concluded that cracks generally accelerated water 

penneation in concrete. Jacobsen et al. (1996) investigated the effects of cracking on chloride 

transport in concrete and found that internal cracking increased the chloride penetration rate 

2.5 to 8 times when compared with undamaged specimens. 

Tognazzi ( 1998) carried out an experimental campaign to investigate the effects of damage 

induced by compressive or tensile loads on mortar effective diffusivity. First, displacement­

controlled mechanical tests were perfonncd on mortar specimens so as to generate different 

states of cracking. A visible impact of the damage created inside the material on its diffusivity 

increasing by 150-200 % was noticed for samples having attained the post-peak regime of the 

mechanical test. This influence may be attributed to the coalescence of cracks. On the 

contrary, load induced damage docs not appear to influence the diffusion properties 

substantially at the peak load due to the discontinuous and localized nature of the crack 

pattern. Further experimental works confinn the visible effect of damage on the material 

degradation by putting in evidence the existence of chemically deteriorated zones around 

artificial cracks (Tognazzi 1998). It is also noteworthy that Yang ct al. (2006) draw the same 

type of conclusions in their work on water absorption and electrical conductivity of concrete 

damaged by tensile loading and freeze and thaw cycling. 

The material diffusivity therefore depends on the characteristics of the crack system, like _its 

connect ivity and its distribution. However, it must be emphas ized that the influence of cracks 

on the diffusivity may be less important than the effects of the dissolution due to leaching that 

may augment the effective diffusivity by a few orders of magnitude (Tognazzi 1998). 
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3.2.3 Fulfy C()llpled experime11ts 

The experiments entire ly coupling damage and chemical degradation are rare, even though 

they arc usefu l for assessing the material durability. Le Bellego (2001) and Schneider and 

CJicn ( 1998; 2005) have conducted such tests, called «l ife-time» experiments, where a 

mortar or concrete beam is simultaneously subjected to mechanical solicitations and to a 

chemical attack by an aggressive solution of ammonium nitrate. More precisely, the inferior 

part of the beam is simultaneously sollicitated in traction because of the flexural load 

(Schneider and Chen 1998; 2005) or displacement (Le Bellego 200 I) imposed at the center of 

the upper face and immcrged in an ammonium nitrate solution. These tests rresent the 

advantage of sollicitating in traction the most chemical ly degraded part of the beam and 

generate in that zone open cracks that are susceptible to enhance the leaching process. 

In Schneider and Chen (2005), mortar and concrete samples are sub_icctcd to a flexural load 

such as the macroscopic stress supported by the material varies by 30 to 50 % of its ultimate 

strength. For a stress equal to 30% of the maximal one, they showed that the influence of 

creep was low enough to be neglected. These experiments lead to the complete rnpture after 

on ly a few months. 

In Le Bellego (200 I), a displacement is imposed on the center of the upper face of a mortar 

beam, the lower face being in contact with a 6M NH4N03 solu1ion. This flexural displacement 

is small enough so lhal 110 da111age should occur i11 a beam that has not undergone any 

chemical attack. However, the maximal stresses inside the beam in flexion attain about 80 % 

of 1he maximal ultimate strength and, at this level, the creep effects are not negligible. They 

noticed that a lower streng1h value of the mortar was obtained in this fully coupled 

e~pcriments compared with residual mechanical tests. Neve11heless, it is difficult to judge if 

th is· decrease is due to the influence of damage oo the chemical alteration or rather caused by 

creep. 

CONCLUSIONS OF PART J 

The present Part has collected experimental insights of various types on cement-based 

materials. First, it was shown that these materials have a complex multi-scale heterogeneous 

microstructure. The latter is an intricate mixture of different sol id phases and porosity. The 

relative volume fractions of these different components can significantly change from one 

cement-based materia l ·to another, depending for instance on its w/c ratio or its hydration 

degree. Furthermore, it has been highlighted that strong contrasts may ex ist between the 

prorerties of these diverse phases. As a result. the macroscopic features of the concrete 

materials vary a lot depending on its composi tion and its rnicrostructure. I lomogenization 

models based on a simplified representation of the microstructurc of cementitious materi als 
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will therefore be developed in Parts I1 and TU to predict their effective elastic and diffusive 

properties. 

Some important aspects of the long-tenn deterioration factors, such as chemical alteration and 

damage, of HCP have been presented. In particular, their consequences on the microstructure 

and the material physical properties have been underlined. All the experimental results issued 

from residual resistance tests (Cardc 1996; Galle et al. 2004; Le Bellego 2001) and from life­

time experiments (Le Bellego 2001; Schneider and Chen 1998; 2005) evidence the 

detrimental interactions between chemical deterioration and damage. It shows the importance 

to thorough ly account for the couplings between these degradation factors to predict the 

durability of cement-based materials. These experiments will be discussed more in depth in 

Part V that is devoted to the chcmo-mechanical simulations. 
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The purpose of the present Part is to elaborate a realistic homogenization model to predict the 

effective elastic properties of cement-based materials and their evolution with time. In 

particular, the model proposed should be capable of correctly estimating the stiffness 

reduction of these materials due to leaching. The interest of using homogenization techniques 

is to develop an approach appl icable to any cemcntitious material, provided its composition 

and the properties of elementary phases are accurately known. 

Jn the first chapter of Part U, diverse analytical homogenization schemes are reviewed so as to 

find the best suited one for predicting the elastic properti es of cementitioos materials. 

Micromechanical models aim at estimating the effective macroscopic properties of a 

heterogeneous material from the knowledge of the geometric and physical characteristics of 

its various microstructural components. Due to the plethora of ex isting micromechanical 

schemes (e.g. Ma ct al. 2004; Milton 2002; Torquato 2001), the review is onl y limited to 

matrix-inclusion type schemes with a particular emphasis on the double-inclusion type models 

that have been the subject of some interesting developments in the last decade. The respecti ve 

advantages and drawbacks of these homogen ization methods presented in a concise way are 

discussed and the probable connections existing between these different theories arc 

highl ighted. Some improvements for the scheme developed by Hori and Nemat-Nasser (1993) 

are also proposed. The validity range of tlfe reviewed schemes is tested by comparing their 

predictions with numerical resu lts on well-defined cases. On the basis of this comparative 

study, the Interaction Direct Derivative (JOO) model due to Zheng and Ou (200 1) is chosen 

for it is versati le and simple of use. The Generalized Self-Consistent Scheme (GSCS) is also 

found to be of interest for composites with coated inclusions. 

The second chapter focuses on tl1e effects of pa1ticle phase shapes on the effective isotropic 

linear elastic modu li of hardened cement pastes (HCP). Jn most micromechanical models 

applied to cement pastes (e.g. Constantinidcs and Ulm 2004; Neubauer ct al. 1996), 

particulate phases are modeled as spheres. However, experimental observations clearly show 

that certain of them are far from being spherical. An attempt ·to develop a more realistic 

micromechanical model is proposed by using spheroidal inclusions and including a novel 

morpbological parameter. The latter is identified on the basis of experimental results issued 

for example from microtomographic images of Portland cement grains and HCP. 



Pa11 JI: Prcdic1ion of the elastic propcnics of cement-based materials Pase 28 

In the first Part of the thesis dedicated to the microstructure and the properties of cement­

based materials, the main phases cornposing the microstructure of cement and concrete have 

been identified as well as their mechanical and diffusive characteristics. On the bas is of these 

results and of the microstructural observations of Part I, the third chapter of the present Part 

aims at building a multi-scale description with a matrix-inclusion morphology of the 

microstructure of cement-based materials for predicting the elastic properties of HCP, mortars 

and concretes, respectively. 

4 JNTRODUCTION TO EFFECTIVE-MEDIUM T HEORIES (EMTs) 

4. 1 Fundamental pr inciples of homogenization methods 

4.1. J General principles of ltomogenizution metltods 

The first step of these methods consists io representing the microstructure of the concerned 

material by a representative volume element (RYE) composed of a matrix phase, indexed by 

M, and of P particulate phases, which are assumed to be individually homogeneous. Their 

compliance tensors are respectively denoted by S,, and S, (r = I , .. . , P). Fig. II.I illustrntes 

schematically a RV E. 

t,. = a""'".n t 

Figure //. I: Sc!tematic illustrating the replace111e11t of the heterogeneous RVE by an 
equivalent lto111oge11eo11s m edium. 

Each particulate phase r consists of inclusion particles v; O = I, .. ., 11, ) that are of same 

shape but can be of different sizes or orientations. Let V be the domain occupied by the RYE 

of the heterogeneous material and let V' correspond to the sub-domain of inclusion phase r. 

Jn what follows, we designate the boundary surface of V by ()V and the volume fraction of 

phaser bye,. . 

The RYE is subjected to uniform boundary tractions over its surface oV: 

(II. I) 
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where t . denotes the traction vector, n designates the outward normal unit vector to the 

surface (JV and a· is a constant stress tensor. At the scale of the heterogeneities of the RYE, 

the equilibrium law and Hooke's constitutive one are written in the following manner: 

divo{x) = 0, 'Vx e V, (11.2) 

s(x) = S(x):a(x), 'Vxe V, (11.3) 

where S(x), o(x) and t(x) are respectively the microscopic compliance, stress and strain 

tensors at a given point x of the RYE. The operator ':' indicates a double contraction. The 

macroscopic stress tensor (j is defined as the volume average <a>, of the microscopic one 

0 over Vand can be shown to be equal to o- (e.g. Zaoui 1997): 

a:: _!_ f o( x )dV =a- (ll.4) 
v. 

The ensuing relation is also obtained from Eq. (II.3) by perfom1ing averaging operations on 

the entire volume of the R VE: 

< 6 >, = s· :< (J >v' (TI.5) 

where < o >v and < t >v are respectively the averages of the microscopic stress and strain 

tensors on the volume of the RYE and where §' is the compliance tensor of the equivalent 

effective medium (Fig. 11.1). In the case of a macroscopically isotropic material, the latter 

tensor may be written in tcnns of the macroscopic bu lk and shear moduli of the heterogeneous 

material, respectively denoted as K• and c· : 
s· = ( 3K' f' J + ( 2G' f' IK, with .D' + IK = n and J,", = .!_ 0,18,,, (11.6) 

3 

where JI and OC are the hydrostatic and the deviatoric operators and where n is the f9m'1h: 

order identity tensor. The effective Young modulus £' and Poisson ratio v' can simply be 

deduced from these macroscopic bulk and shear moduli by the intennediary of: 
•. 9K" c· • 3K' -2c· 

/:. = and v = (II 7) 
3K' + G' 6K" + 2c· . . 

It is easy to show that the macroscopic strain tensor t can be expressed in tem1s of the phase 

strain averages, tr and tM as: 

{I 1.8) 
" r 

The latter relation may be rewritten as a function of the phase stress averages by the 

intennediary of I looke's law: 

s· a= s,, :<i + I;t,cs. - s.., ):<i., (11.9) 

' 
where o, =<a >r denotes the volume average of o over a particulate phase V, .. In linear 

elasticity, this volume average (j, over phase r alld the macroscopic stress tensor a arc 

related by a fourth-order tensor B called stress "localization tensor": 
" 

(i,. = B,. :0. (JI.I 0) 
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The effective compliance tensor can then be expressed in tenns of the compliance tensors of 

the various phases and of the localization tensors defined by Eq. (11. l 0) (Hill 1963): 

s· =S., + l::c,(S, -S..,) : B,. (Ill I) 
' 

lt appears from the latter equation that the knowledge of the localization tensors of inclusion 

phases I,. allows for determining the effective compliance tensor of the heterogeneous 

material. Jn the case of random heterogeneous materials, these localization tensors are very 

difficult to determine and approximations for JIJ, are required. Estimations of these tensors are 

provided by means of diverse homogenization techniques, some of the widely used ones 

being presented later. These micromechanical schemes thus permit to predict the effective 

compl iance tensor of the material. The previoos equation can be further simplified by 

introducing the compliance increment tensor IBI and inclusion compliance fluctuations tensor 

IHI , defined as: 

IHI=S· -S..,, lli, =S,-S.,, (11.12) 

so that the relation written in Eq. (11.9) results in: 

IHI = l::c,IHI, : B, . (11.13) 
r 

In order to derive the localization tensors B, , most of the homogenization methods use as a 

scaning point the Eshelby problem (t957) presented below. 

4./.2 Presentation of the Eshelby problem 

· 4.1.2.1 Presentation of the Eshelby theorem 

In linear elasticity, the Eshelby theorem constitutes the comerstone of most of the effective 

medium theories (EMTs) studied in the present dissertation and is therefore briefly recalled 

below. A homogeneous elastic ell ipsoidal inclusion 1, occupying a domain Vi, is enclosed in 

an infinite li11ear elastic matrix medium, which stiffness tensor is C.,. This single inclusion is 

further subjected to a stress-free strain, or "eigenstrain" r.· that is un iform inside the inclusion 

and vanishes outside, undergoes a unifonn deformation ~~ : 
r.U - I:" · t. (11.15) I - J • , 

where I::' is called the Eshclby tensor expressed as: 

(:!:" ) = - CM,;., J[r .. (y - x)]dv 
I IJJ.I 2 I/ , , 

v, 

where the operator f q (y- x) is related to the Green function G;.,J'' (y - x} by: 

r ,, (y- x} = G,.,,,. (y-x }+ G;.,,,, (y-x}. 

(IJ.16) 

(11.17) 

The Eshelby tensor thus links the strain inside the homogeneous ell ipsoidal inclusion 

surrounded by an infinite linear elastic medium to its stress-free strain. The main limit of this 



Pan II: Prediction of the elastic propenies of cement-based materials Page 31 

1iJ!!damental theorem is 1hat it is restricted to ellipsoidal inclusions in its original form 

(Eshelby 1957). Tbe Eshelby tensor is generally quite difficult to detennine analytically but 

haS a very simple expression in the case of spherical homogeneous inclusion embedded in an 

infinite isotropic matrix (Mura 1987): 

t.:1 = a.l)>l>J + Ps,mlK, (II.18) 

with 

a,,,,,,, - (3K., + 4G.,) and Ps"' 
6(KM +2G.,) 

5(3KM + 4G.,)' 
(fl.19) 

where the subscript 'Sph' refers to the fact that the inclus ion is spherica l. The Eshelby tensor 

of a spheroidal inclusion also presents the benefit of being analytically calculable (e.g. 

Torquato 2001) and its expression for a spheroid with aspect ratio r, which revolution axis is 

oriented along the e3 ax is, is: 

I [ 3a ' 9 J ] I: - I: - +ll-2v q 
" - 22 - 4(1 -v) 2(a-I) 4(a- 1) / ' 

:E - 1 
[1 - 2v+ (Ja-I) l' l-2v+ 

3 'J ] 
33 - 2(1- v) (a - 1) (a- 1) q' 

I:,, =:E,, = 4(1 ~v)[ 2(:- 1) -(t-2v+ ·4(:-1) ) ql 

I: = I: = 
1 

[ a ( 1-2v-
3 

\,] (1120) 
" " 4(1- v) 2(a-1) (a - 1) ) ' ' · 

I:2l = I,, 
1 

[-1+2v a +(l - 2v+ 
3 

l q]. 
2(1-v) (a-1) 2(a- 1)) 

I = :E = 1 [ 1-2v - (a+ I) _!_l' l-2v- J(a + l)) ] 
" ss 2(1-v) (a- 1) 2 (a-1) q ' 

I:.14 = 1 
[ a +(l- 2v -

3 )q] 
2(1-v) 2(a-I) 4(a-I) ' 

r 
312 

[ rJa- 1-cosh- '(r)J. r <: I 
where a = r ' and q = (a- 1) 

r m[-rJi - a+cos- '(r)] , rSI 
(I-a) 

Where v is the Poisson ratio of the infinite matrix medium. 

4.1.2.2 Extension of the Eshe/by tensor to spherical inhomogeneities 

~uan ct al. (2006) recently derived a generalization of the Eshelby tensor for a spherical 

lllhornogeneity with a graded shell embedded in an infinite matrix. In particular, they gave !he 

lbllowing closed-form solution for the volume average of the Eshelby tensor denoted as t:' 
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of a spherica l inclusion with a homogeneous interphase enclosed in an infiJJite matrix, a5 
depicted in Fig. ll.2: 

with 

- ., ( ) ( 63 ) 1:1 = 1+31'; Jr+ l+5A1 +3B, !K, 

( )
1-p) {l-g,.,}(l+v,)-4g,"v'+2g"' 

F. = -2 l -2v 
I • '· 3H , 

I 

B, 
2p3 H,, 7 -5v1 

15H2 (-8-7g,., +5(2+g1.,)v)- 45 - 45v1 ' 

//1 = 3( 1- 11, }(I+ 2g,,, +{I -4g"') v1 ). 

H 2 = 3(1- v1 ) ( 7 (I+ 4g,.,) + 5 ( 1 -8g,.,) v1 ), 

H,2 = ( 200v,2 -300v1 -63p2 + 175}(7 - Sv)g,.,2 + 

3g," [ 75v(7 -9v1 ) - 25v/ (l 3-15v)- 7 ( 25+3p2 -5( 5+3p2 }v )]+ 

{4-5v}(25v2 +126p2 -175), 

(1 1.2 1) 

(11.22) 

where p = 'i Ir, ond g/M a G., I G1 • The quantities G1 nnd G" respectively denote the shear 

moduli of the inclus ion and of the matrix, v1 and v respectively the Poisson ratio of the 

inclusion and of the matrix, r; and "• respectively designate the radii of the inclusion and of 

the domain occupied by the inclusion and the homogeneous interphase. The latter formula is 

of great uti lity, since it allows for determin ing tile average strain inside tile domain occupied 

by the spherical inclusion and its homogeneous intcrpllase in response to a prescribed uniform 

eigenstrain in the inclus ion (Fig. Jl.2): 
- -,., . 
t, =I:, :t, (11.23) 

where the average Eshelby tensor t:1 for the spherica l inclusion with its homogeneous 

interphase will be referred to as inhomogeneous fahelby tensor in the ensuing. 

Figure ll.2: Schematic of a spherical inclusion with a homoge11eo11s interphase enclosed in 
an infinite matrix . 
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4.J.2.3 Presentation of the equivalent homogeneous inclusion method 

first of all, let us consider the situation in which no heterogeneous inclusion is inserted in the 

infinite linear elastic medium with compliance tensor denoted by S.,, which is subjected to a 

unifonn far-field stress G- . In such case, the stress field is everywhere equal to G- and the 

strain field is such as: 

(11.24) 

A heterogeneous elastic inclusion T occupying a volume v, with elasticity tensor C, is now 

inserted in this virgin medium and we are interested in calculating the average &1 of the strai11 

field over V1• The microscopic strain tensor decomposes itself into two parts: 

t
1
(x) = t 0 + t,'(x), ':/x, (ll.25) 

where t,'(x) corresponds to the perturbation strain tensor caused by the insertion of the 

heterogeneity. In order to apply the Eshelby theorem, the heterogeneous inclusion is assumed 

to be substituted by a homogeneous fictive inclusion with a stiffness tensor denoted by C., 

that is subjected to an appropriate uniform eigenstrain e· , as illustrated in Fig. 11.3. The latter 

must be chosen in such a way that the same average stress and strain fields are obtained in the 

homogeneous fictive inclusion and in the heterogeneous one: 
- - - • - M• G1=C,:e1=C., :(e1-e) and t1=t0+ I:,:&. (11.26) 

Heterogeneous 
Inclusion 

Equivalent 
Homogeneous 

Inclusion 

t = .. - n 6 n v . 

r-- --'"'---..., 
I CM I 
I I 

8 -_.....,- G) : 
I I 
L _______ I 

...1 t. = o- .n ,...-- - ---, a) 

I CM I 
I I 

~c· ---1-~ ~c· I 
~ I ~ I 

I I 

b) 
l ________ I 

Figure 11.3: Schematic picture oftl1e equivalent ltomoge11eo11s i11cl11sion. 
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By solving c' fr~m Eq. (ff.261) and substituting its expression in (JJ.262), the following 

solution is obtained for &, (Benveniste 1987): 

£, =[I +I:~ :S., :(C, -C.,>T' :1:0 • (11.27) 

The volume average ll, of the microscopic stress tensor o over the ell ipsoidal inclusion is 

found as: 

(j, =C, :[ I+i::' :S..,:(C, -c.,)r' :S., :a" , 

which can also be expressed as : 

; , =[K+C., :(1 - i:7): (s, -s.,)J
1 

:o". 

(Il.28) 

(l l.29) 

The average stress tensor over the inclusion can then be written in a co01pact way (Zheng and 

Du 2001): 

(11.30) 

with fl "' - C ·(K-I:") (1131) I - M · I ' 

where n:' is ca!Jed eigenstiffuess tensor of the single inclusion 1 embedded in the matrix 

(Zheng and Du 2001) and where S, and JHl, arc respectively the compliance and the 

compliance increment tensors of the inclusion, which can be expressed by means of Eqs. 

(11.6) and (11.12). The eigcnstiffncss tensor n:' used by Zheng and Du (200 I) has the 

following mechanical interpretation: the average stress tensor (11 induced by the uniform 

eigenstrain t ' prescribed over the homogeneous fictive inclusion is linearly related to this 

cigenstrain by n7 . This tensor can be determined in the case of spheroidal inclusions by 

means of the expressions of the Eshelby tensor given in Eqs. (11.20). For more complicated 

cases, the Eshclby tensor usually has to be estimated numerically. The equivalent inclusion 

method is also particularly difficult to extend to tbe case of non ellipsoidal inclusions (e.g. 

Zheng et al. 2006). The ensuing derivations are therefore limited to the case of ellipsoidal 

inclusions. Owing to fundamental basis of micromechanics collected in the present section, 

the next one is ded icated to the presentation of EMTs that are of interest for predicting the 

properties of cement-based materials. 

4.2 Presentation of some classical matrix-inclusion type EMTs 

This presentation does not intend to be exhaustive, since there exist many good monoi,>-raphs 

on the subject (e.g. Milton 2002; Nemat-Nasser and Hori 1993; Torquato 200 1). It aims at 

providing sufficient theoretical basis for a correct understanding of the homogenization 

methods that will be applied to cemcntitious materials subsequently. 
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4.2.l Dilute approximation 

The dilute model provides a simple expression for the localii.ation tensors defined in Eq. 

(!LIO). It considers the ideal situation already illustrated on Fig. 11.3 where a single inclusion 

denoted as V,', having the same shape as phase r, is embedded in an infinite matrix medium 

subjected to a uniform far-field stress. The detennination of these di lute localization tensors is 

thus directly achieved by means of the equivalent homogeneous inclusion method described 

previously (Eshelby 1957; Mura 1987). According to Eq. (ll.30), these tensors can be 

expressed as follows: 

B;'" = [I + Q~ : 111,r'. (11.32) 

By injecting this expression of the localization tensor in Eq. (1Ll3), an estimation designated 

by H'" is derived for the compliance increment tensor: 

lll"" = L H;" ' (11.33) 
' 

with H~' = c,Ill, : [I+ n; : IHI, r' . (fl.34) 

The validity range of the dilute estimation is very limited, since all the particles are required 

to be far enough from each other, so as to be regarded as isolated. In other words, the 

inclusioos are supposed to be dispersed in such a dilute manner that there is no interaction 

with the other inclusions and that they are only subjected to the imposed far-field stress <JM. 

In addition, it is highlighted that if instead of imposing a unifonn stress at infinity, a far-field 

displacement is appl ied to the infinite medium, a different estimation is then derived for the 

compliance increment tensor (Hori and Nemat-Nasscr 1993). Cooscquently, the di lute model 

is considered as inconsistent by some authors (e.g. Berryman and Berge J 996). More 

consistent sche!Tles trying to reflect the interaction effects between inclusions are required. 

Mori-Tanaka (MT) effective medium approximation may be used for this purpose. 

4.2.2 MT approximation 

This scheme was primarily proposed by Mori and Tanaka in 1973. Benveniste (1987) has 

proposed an elegant reformulation of this estimate, where it can be seen as an improved dilute 

model. More precisely, the stress applied at infinity is no longer <J~ but is replaced by the 

average o., of the microscopic stress <J inside the matrix so that: 

(IJ.35} 

wh ich allows for taking into accou~t the stress perturbation inside the matrix phase due to the 

presence of the other inclusions. The average of the microscopic stress tensnr (j on the entire 

volume of the RYE can be decomposed a.5 a function of microscopic stress tensor 011 each 
Phase: 

(ll.36) 
' r 
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By combining Eqs. (11.4) and (11.35-36), the localization tensors estimated by the MT model 

are expressed as (Bcnveniste 1987): 

BMT = BdU ·[(1-"c )1 + "c !Rd
11J0 

I' ,. L.J r L..J ,, ' 
' ' -

(CT.37) 

which may also be expressed as follows: 

B',,. = JB'"' · [1-°" c n"' ·Ill. · B"'1 ] - ' ,. r• ~ ~ 1 ·1·1 
i 

(11.38) 

The effective compliance increment tensor predicted by MT model is then expressed as: 

l!lm = 111"'1 
: [I-~ !lj11 

: lll1'' r• (11.39) 

The MT localization tensors arc also more realistic than the dilute ones, since they account in 

a certain manner for the interactions between the inclusions and the matrix. However, 

Berryman and Berge ( 1996) asserted by confronting the MT estimations for porous media to 

experimental data that MT should not be used for inclusion volume fraction superior than 20-

30 %. This discrepancy may be due to the fact that the MT localization tensors arc not able to 

accurately take into account the interactions between the inclusions themselves and to 

incorporate the influence of inclus ion spatial distribution. 

4.2.3 Generalized self-com·iste111 scheme (GSCS) 

The GSCS was originally developed by Christensen and Lo ( 1979) for estimating the 

effective elastic properties of a two-phase composite with a matrix-inclusion microstructurc. 

This implicit homogenization method is based on the three-phase model illustrated on Fig. 

11.4. A spherical core of radius r1 represent ing the particle phase and a coating of thickness (r, 

- r;) occupied by the matrix arc immerged in the yet unknown effective medium so as to 

account for the interactions between inc.lusions. The radii r; and re are chosen so that each 

coated-sphere has the same composition as the original two-phase material. The rather lengthy 

derivation of the GSCS is not presently recalled, since it may be found in many articles or 

manuscripts (e.g. Herve and Zaoui 1993). The effective bulk modulus predicted by this 

method for a two-phase isotropic composite reads (e.g. Hashin and Monteiro 2002): 

K• - K c, - u+ • . 
1/ ( K, - K") + 3( I -c2 )!(3K" + 4G.,) (11.40) 

and coincides with the bulk modulus estimated by the MT scheme. The effective shear 

modulus is obtained by solving a second order equation: 

Ac·2 +ao·+c=o, (fl.41) 

where the expressions of the coefficients A, B and C can be found in Christensen and Lo 

( 1979). The GSCS was extended to the case of composites with multicoa1ed inclusions by 
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(-!erve and Zaoui (1993). The expressions of the shear modulus then become lengthy and 1he 

symbolic toolbox of MATLAB has been used to perform the compulations of 1he GSCS. 

Figure Jl. 4: Two-1/ime11sioll(i/ represe11wtio11 i/111slrati11g tire three-phase model on which is 
basetl the GSCS. 

The GSCS in its original form (Christensen and Lo 1979; Herve and Zaoui 1993) cannot be 

compulcd in 1he case of composites contai ning multi dispersed particulate phases, even 

though an empirical method was proposed by Huang ct al. (1994) for extending the GSCS to 

this case. Some attempts have also been proposed in literature to extend the GSCS to the case 

of non-spherical inlusions (Riccard i and Mo111heillet 1999) but they appear far too difficult to 

handle. In the next subsection, another type of models that is more suited for these limiting 

cases is presented. 

4.3 Presentation of dou ble-inclusion typ e models 

The basic idea used in the homogenization methods presented below is to model the inclusion 

spatial distribution by an ellipsoidal cell, called double-inclusion, surrounding the inclusion 

(e.g. Hori and Nemat-Nasscr 1993; Zheng and Du 200 1). Its geometry depends on how the 

inclusions are dispersed through the matrix and thus is representative of the spatial 

distributions of the particu late phases. As a pr<>of of the p<>pu larity of the double-inclusion 

concept, we have found at least five models using more or less expl icitly this idea, such as the 

ones proposed by Kiister-Toksoz ( 1974), Nemat-Nasser and Hori ( l 993), Ponte-Castaneda 

and Wi llis (1995). Sheu and Yi (2001) and Zheng and Du (2001). Hu and Weng (2000) 

revealed that st rong connections exist between the schemes developed by Kiister-Toksoz 

(1974), Ncmat-Nasser and llori ( 1993) and Ponte-Castaneda and Will is { 1995), even though 

'.heir derivation may radical ly differ. That's why the notion of double-inclusion type models is 

•ntroduccd in this section to deal with the estimates ment ioned. For conciseness, only two of 

these models, namely the ones of Ncmat-Nasser and Hori ( 1993) and Zheng and Ou (200 I), 

are presented in details below. 
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4.3.J /llteractio11 Direct Derivative (TDD) model 

The localization tensors 8~00 for the !DD estimate due to Zheng and Du (200 I) can be 

obtained easi ly by introducing the eigenstiffness tensors of all double-inclusions and by 

modifying s:" in Eq. (IJ.38) as follows: 

8'00 =Bd'' · [ •- " c H ·B'''' ·n"] I wi th n" =C · (ll-I:") r r • L..J 11 · 1·Dt ' Di M · Di ' 

' 
(11.42) 

where n~, denotes the cigenstiffness tensor of the double-inclusion of a given phase i. The 

subscript 'D' is used here, since the inclusion distribution is involved in these eigenstiffi1ess 

tensors. Eqs. (11.38) and (U.42) reveal that MT and !DD estimates coincide whenever all 

inclusion phases v; have the same eigenst ifTness tensors n.~ = n:' as their surrounding 

double-inclusion. It means that every inclusion v; and its enclosing cell designated by v; 
are similar in shape and coaxial in orientation. 

Jn the case of a macroscopically isotropic material, the spatial distribution of inclusions is 

identical in all directions. A spherical double-inclusion is thus usually adopted to model this 

distribution (Ponte Castaneda and Willis I 995), since no particular direction in space is then 

privileged. lt implies in particu lar that TDD and MT models coincide for macroscopically 

isotropic heterogeneous materials containing only spherical inclusions. However, if the 

inclusions arc spheroids and are isotropically distributed inside the effective material, IDD 

and MT schemes do not coincide. The substitution of B,. in Eq. (U.13) by its expression in 

Eq. (11.42) yields the following TDD estimate provided that IHI'"' is commutative: 

ll[ IDD = [ ll-~ ilf:;i : fi~, r·: 111"'', (11.43) 

where IHl"'' and H~' arc expressed in Eqs. {IJ.33-34), respectively. The tensor H '" is 

generally commutative in the case of a macroscopical ly isotropic material. The effective 

stiffness tensor of the material can then be deduced from the knowlegde of this increment 

tensor: 

(11.44) 

The demonstration proposed here shows that the !DD scheme can be seen as an improved 

dilute model (see Fig. 11.5) with unbounded matrix material subjected to a modified effective 

stress a';,,, defined as: 

<T:O = [I -~ c,H;" : n~,: 
1 

: <T~. (ll.45) 

The original deductions of !DD estimate by Zheng and Du (200 I) consist in consecutive 

applications of superposition principles. For more info1rnation, the reader s hould refer to their 
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original paper. ln the present dissertation, we have adopted the philosophy of Benveniste 

(t987) in order to present the IDD estimate in a simple manner and to put in evidence the 

strong connection existiJ1g between IDD and MT models. 

a;,,.= [I -~ n:' : lll~' J': a" a';,.=[•-~ll!~' :n~ J1

:a" 

L L 
r------,. r-------. 

I c I I CM I 
I M eJ I I ® 

I 
o, I I I 

: I I I 
L------J L------J 

Figure /1.5: Derivatio11 of the MT (left) and /DD (right) models/or a multi-plrase 
composite from the dilute configuration by modifying tire far-field stresses. 

Another model derived by Hori and Ncmat-Nasscr (1993) using the concept of double­

inclusion is now presented. Its demonstration is a bit more sophisticated but is useful to 

understand the physical meaning of the double-inclusion. 

4.3.2 Tire Hori and Nemat-Nasser doubfe-inclu~·ion model (DIM) 

4.3.2. I General framework 

The DIM developed by Hori and Nemat-Nasser (1993) basically consists in the following 

three-phase configuration: an ellipsoidal inclusion domain denoted as Vm that contains an 

ellipsoidal heterogeneity V1 is immersed in an infinite homogeneous medium. The latter 

model is very flexible, since the shape and the orientation of the double-inclusion and of the 

heterogeneity as well as the elastic properties of the three phases may be chosen. The stiffness 

tensors of the inclusion, its coatiug and the embedding infinite medium composing the three­

phase representation considered by Jlori and Nemat-Nasser ( 1993) are arbitrary and arc 

respecti vely designated by C,, C ci and C 0 (see Fig. 11.6). Two parameters are important in 

this model: 

- the double-inclusion geometry that should be representative of the distribution of the 

inclusions inside the composite; 

- the choice of the reference medium that should be representative of the immediate 

surroundings of the particulate phases. 
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However, the choice of the reference medium is in reality quite limited, since the three-phase 

configuration should have a physical interpretation. The most usual choices consist in taking 

the matrix of the material with stiffness tensor C,, or the yet unkown effective material With 

stiffness tensor c· as the reference medium (Hu and Weng 2000). The main steps necessary 

for deriving this model are recapitulated below. The detailed demonstration can be found in 

Hori and Nemat-Nasser (1993). These authors practically apply the concept of the equivalent 

homogeneous inclusion method (Fig. 11.3) to the case of a double-inclusion. Two eigenstrains 

respectively denoted f; and t~, are then necessary, as represented in Fig. ll.6 . As in Eq. 

(11.26), the averages of the latter eigenstrains have be taken in such a way that the same 

average stress and strain fields arc obtained in the homogeneous fictive double-inclusion and 

in the heterogeneous one: 

(1, ==Ct : tt == C0 : \tt -£: ), 
Get == C0 : f. ct = C0 : (tc1 -f.~t ), 

£1 = t 0 + E/ and Cc,= t 0 + ~c1 ', 

(11.46) 

(11.47) 

(11.48) 

where tt' and En' respectively denote the strain perturbation tensors of the inclusion and of 

its coating. The next step consists in computing respectively the volume averages of the strain 

tensor t t and eci over the inclusion and its coating. For this purpose, the problem of the 

homogeneous fictive double-inclusion corresponding to the situation b) depicted in Fig. 11.6 is 

decomposed in three subproblems referred to as c), d) and e) (Shodja and Sarvcstani 2001). 
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a) Original configuration 

D 

b) Homogeneous equivalent 
double-inclusion 

...- -------

'-----------' 
c) 

+ 

..-.-------
Co 

. () . . . . . . ·-· . - . - . . . :s~' ::. . :~ .. : . . . . . . . .. . . . . - . 

.._ ______ ~ 
d) 

..--------

.__ ______ _, 
e) 

l'igure 11.6: Sclrematic oft/re origi11af tltree-pltase co11figuratio11 a) used/or the derivation 
of DIM 011d representation of tire different steps b), c), d) a11d e) employed for its 

derfration. 

In the situation b), the volume average of the perturbation strain tensor t,' may be written as: 

-, I ff . CJ = v Co: r (x- y): t (y)dV,dV,, (II.49) 
I v, t'°' 

Which can be decomposed as: 

I ( ) 
/ 

' v J Jc.: rcx - y)dV, :i:;dv,+-
1 

Jl Jc0 : r(x- y)dV,.J :E;;,dv, 
t 1':: I tJ t', v, ~ Yt.11 

R 
,(11.50) 

- : Jc0 : r(x - y)dv,): r.~., dv, +-1 J f C0 : f(x -y):(e"(y)-£~, )dv,dv, 
I t' y JI 

I I / I', ~f 
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where the operator r(x-y) is defined in Eq. (ll.17). The first term of the right-hand side of 

the expression above corresponds to the situation c) represented in Fig. II.6, the second one to 

the situation d) and the third one is issued from the resolution of the situation e) (see Fig. n.6). 

The last double-integral accounts for the fluctuations between the uniform eigenstrain applied 

in the situations d) and e) and tl1e actual one in situation b) that is not necessarily uniform. lt 

is pointed out that the integrals between parenthesis correspond either to the Eshelby tensor of 

the inclusion or of the double-inclusion. Consequently, the expression of the average strain 

tensor inside the inclusion can be obtained with the aid of these tensors in a compact fonn: 

(11.5 1) 

with 

'J =: f f C0 : r(x - y) :{ t'(y) - ii~, )dV,dV,. 
I V1 Yo 

(11.52) 

By taking advantage of tl1ese s imple relations: 

- ' (1 c, J-. c, - . £D1= -- f. c1+-t1, 

' Co1 Co1 

(n.53) 

(lf.54) 

the volume average of the strain tensor t c1 

Eq. ( U.51): 

over the inclusion coating can be deduced from 

- 0 - · c ( 0 0) ( - · - · ) c r.c1 =t0 + EDI : f.o + / l:.01 - r.1 : t i- to - / 'J. 
CD/ -c1 CJ)I - <:1 

(11.55) 

Hori and Nemat-Nasser ( 1993) then make the following approximation: the integral tenn in 

Eq. (lJ.55) is neglected to simplify the ensuing derivations. The relations proposed in Eqs. 

01.51) and (fl.55) then simply become: 

(IT.56) 

- 0 - · c ( 0 ") - · t c1 = t 0 + EDI : t c1+ 1 Em- I:1 :t>r,, 
C01 - c1 

with (11.57) 

The effects of this approximation made by Hori and Nemat-Nasser ( 1993) will be carefully 

discussed later. The consistency conditions in Eqs. (11.46-48) then imply that (e.g. Hu and 

Weng 2000): 

(1 158) 

-( I:~ +(Cc, - C0r' :C0 J: &~, - c ( E~ - r.~ ): t.&' = t 0 , 
Co1 - c, 

(11.59) 

which can be re-ammged by using the fact that I:~ = n -S0 : Q~ and 

(C, -c0r' :C0 = -s, : ll!,-• into: 



where 

Part II: Prediction of the elasric properties of cement-based materials 

F/ _, . - · IF'-' . A - - -01 .£c1+ I . L18 -0'' 

.,c1-1 . - c, ("'o n O ) . A - _ -
1£01 .S.CJ :,,e,.1- :,,'D1 .ut - 0' t 

CD/ -C1 
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(II.60) 

(11.61) 

Ff = -[ r.: + (Ci -c0r' C 0 J' : S 0 = [Ill!/+ n~T' , with) = (1 ,Cl) and k = (1 ,Dl ] . (JI.62) 

By solving this system of two equations, the averages of the two eigenstrains can be re lated to 

the far field-stress by: 

. -£,, = U ci : .,- and 6.f = 1I.J 1 : .,- , with (fl.63) 

Uc, =IFf,, :[n-IF:-· :[IF:,, :IF:-'+ c, . F:;f :(n~-n~,)r
1 

: (F~,-IFi:)] .(11.64) 
(c01 - c1) 

- F' . [ · [IF' . .,,_, . ( 0 0 ) - I c, IFCJ J I . (IF' IF0 )] (Il.65) UJ , - DI · - DI ·"'1 • fi,-fi,,, + (cDl-cl) DI · DI- DI . 

By combining these expressions of the eigenstrains witb Eqs. (11.56-57) and the consistency 

conditions written in Eqs. (11.46-48), the average strain and stress inside the inclusion and its 

coating can then be related to the applied far-field stress as: 

t1 : [SO + :!::~/ : UJ Cl +I;~ : 1[J I]: o•' (11.66) 

£c, =[so + :i;~, : u c1 + c ( r.~, - i:n : u, J : .,-, 
CIJI -C1 

(II.67) 

-a -[n- "'0 
• U - "'0 ·U J ·a-' - :i.e.DI • CJ J.e. I · I · ' (11.68) 

nc1=[n -n~1 : Uc,- c, (n~ -nn:u,] :o- . 
CIJI -c1 

(11 .69) 

From the knowledge of these average strains and stresses inside the inclusion and its coating, 

the volume averages of the strain and stress tensors inside the double-inclusion can finally be 

computed: 

(JI. 70) 

ooi =(1-n~, :(Uc1+c1U1)]: 0· . (11.71) 

Now that the average stra in and stress inside the double-inclusion are known, different 

estimates can be developed by making particular choices of the elastic properties of the 

coatings and of the shapes of the ellipsoids. In the case of a two-phase composite with a 

Particulate phase I with a volume fraction designated by c, , the double-inclusion is 

considered as a RVE so that c01 = l. ln such occurrence, the effective compliance tensor of 

the material can be estimated by eliminating .,- in the last two equations: 
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(II. 72) 

where the tensors § 0 and I:~, may be chosen in diverse ways (Hu and Weng 2000). Given 

the different possibilities offered by DIM, we only focus below on its application to 

composites having matrix-inclusion morphology. The simplest choice to obtain an estimation 

for such materials then consists in letting the reference infinite medium in the three-phase 

configuration represented in Fig. 11.7 be the matrix of the material, i.e. C0 = C., . 

---------, 
I I 
: CM I 
I ~ I 
I CM~ I 
I I 
I I _________ .J 

a) Case coinciding with other 
double-inclusion type models 

1---------, 
I C I 
I M I 
I I 
I I 
I I 
I I _______ __ .J 

h) Case coinciding with MT 

Figure 11.7: Schematic illustrating the li11k betwee11 the Hori a11d Nemat-Nasser VIM a11d 
other micromecha11ical schemes (Hu amt Weng 2000). 

4.3.2.2 Applica1ion of DIM to two-phase composites 

In the case of a two-phase composite, let the coating of the inclusion be filled by the matrix of 

the material so that Cc, =C., and c01 = l. Noticing that !Hl~'1 =c1!F: for a two-phase 

composite, Eqs. (11.63) and (U.70-7 1) respectively reduce to: 

L\&' = r: and &~, = 0 ' 

- - (S + "'" ·IHI""] · -t - M L. l)f · I • (f ' 

(l L73) 

(JJ.74) 

<J = [ n-n~;, : IEl1"] ()'-. (l l.75} 

It is interesting to observe from the last equation that, if the modified far-field stress written in 

Eq. (11.45) is applied instead of O'- , the average of the stress tensor inside the double­

inclusion is then simply equal to a- . By combining the last two equations, the following 

estimation can be obtained for the effective compliance tensor: 

<> WM =[S + "'M ·Jll"'' ]· [ll-" " .ur•"']-1 i::I f.t L.DI ' I ' :."I)/ '"1 > 

which is recast in the simplified fonn: 

lll m" = IHI'.'u : [ 1-n~, : 1HI~1 J' . 

(I l.76) 

(I I 77) 
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The expression of the DIM estimate for the effective increment compliance tensor is very 

close to the one given by the IDD estimate in Eq. (rl.43). More precisely, the two estimates 

coiocide whenever 1!11' is invert ible, which is true in the case of a macroscopica lly isotropic 

composite. Hu and Weng (2000) have investigated DIM in some special cases and shown 

theoretical connections with other micromechan ica l schemes. They have already 

demonstrated that, in the case of two-phase composites, DIM leads to the same results as the 

Kiister-Toksoz (KT), and Ponte-Castaf'ieda and Willis (PCW) models but, to our k11owledge, 

this connection between OJM and the !OD model has not yet been evidenced. It also appears 

by comparing Eqs. (ll.38) and (ll.77) that, if the inclusion and its enclosing cell have the same 

shape aod orientation, D IM yields exactly the same predictions as the MT mode l, as 

illustrated in Fig. 11.7 (Hu and Weng 2000). Hori and Ncmat-Nasser (1993) general ized their 

DIM to composites conta ining inclusions with n layers. In the next subsection, the ex tension 

of DIM to inclusions with one layer is treated. 

4.3.2.3 App/ica1ion o.fDJM to coated inclusions 

For the onc.oming appl ication of DIM to cement-based materials, we are interested in finding 

its estimation for the parti cular pattern illustrated on the right-hand side of fig. IJ.8. On this 

figure, DIM is constituted of four regions: the ellipsoidal inclusion J w ith a volume fraction 

c, representing a particulate phase with a stiffness tensor denoted as IC, is enclosed in a 

confocal ellipsoidal coating with a volume fraction cn occupied by a phase having its 

stiffness tensor designated by ICn. The double-inclusion thus obtained is in turn embedded in 

another confoc!l l el!ipsoidal coating with a vol ume fraction c., = l-c1 -cc1 fi lled by the 

matrix phase lia~ing for sti ffness tensor IC., immersed in an infinitely large matrix medi um 

with stiffness tensor IC., . 

DIM MT 

Figure 11.8: Schematic i//11stmti11g the discrepancies t~ft/ie H ori 1111tl Ne11wt-Nasser DIM. 
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The latter representation is of great interest for mortars for example, where an ITZ forms 

between the sand aggregates and the cement paste. In order to derive an estimate for this 

configuration, it is necessary to compute the averages of the strain and stress fields inside the 

domain occupied by the double-inclusion and its matrix coating that may be decomposed as 

follows: 

t=(l-cDl)tM+CDltDt and o=(l -cDl )"OM+Co10m, (11.78) 

where (,,, and 001 arc given by Eqs. (Il.70-71) and the averages of the strain £., and stress 

(j., inside tl1c matrix outer layer are still to be determined. Hori and Nemat-Nasscr ( 1993) 

showed that in the case of layered inclusions: 

- ( M "')·l/ c, - · Cc1 - • ) &., = &o + :ECOi - I:l)I · --t, + F'CI > 
1-c01 1-cDI 

(1179) 

where I:~Dt designates the Eshelby tensor of the coating of the double-inclusion and where 

;:; and £~, are provided by Eq. (I I.63). The coating of the double-inclusion havi11g the same 

shape and orientation of the double-inclusion, the latter equation reduces to EM = 1:0 • 

Furthermore, the coati ng of the double-inclusion having the same properties as the unbounded 

matrix medium, the average stress inside the coating of the double-inclusion simply writes as: 

(11.80) 

By combining the last three equations, it comes that: 

a=[ I-n~, : (at:+ llll1'')] : a* and i: = [ s.., - r.~, : (1!1~: + JHI1") J: a· . (Jl.81) 

By eliminating a" in the equations just above and using the fact that n~, = n:', the 

following expression can be obta ined for the effective increment compl iance tensor: 

( 11 .82) 

which coincides w ith the MT estimate written in Eq. (ll.38) for three-phase composites. To 

our knowledge, this connection with the MT scheme has not yet been noticed. It is however 

unexpected that, in the present case, DIM leads to the same results as the class ical MT model 

for tliree-phase composites, the microgeometry considered for the derivation of the DIM 

being very different from the simple one employed by MT (see Fig. 11.5). It would mean that 

whether one inclusion phase is enclosed in the other one or on the contrary d ispersed far away 

one from another does not change the elastic properties. Th is result appears contradictory by 

considering the following example. A stiff inclusion is supposed to be completely trapped in 

water constituting a coating layer due for instance to a partia l dissolution. Tn such case, the 

stiff inclusion should logically not be able to reinforce the material, whereas according to the 

DIM estimate it does. 

This discrepancy is symptomatic of the fact that DTM as proposed by Hori and Ncmat-Nasser 

( J 993) fails to accurately account for the interactions between the inclusion and its coating. 
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Hu and Weng (2000) furthennore noticed other shortcomings of DIM for the ca5es in which 

the infinite reference medium is chosen as the yet unknown effective material, i.e. C0 = c· . 
The only approximation used for the derivation of DIM (Hori and Nemat-Nasser 1993) 

consists in disregarding the integral term in Eq. (Il.52) and is thus likely to be the cause to 

these anomalies. This integral term neglected practically means that the eigenstrain is 

supposed unifonn inside the coating of the inclusion. This approximation of a uniform 

eigcnstrnin field inside the coating is strong, whenever the coating and tbe infinite reference 

medium do not have the same elastic properties, and may lead to significant shortcomings 

such as the ones described on Fig. ll.8. Nevertheless, this integral tenn vanishes whenever the 

eigenstrain is uniform inside the coating of the inclusion. This practically means that, for the 

particular case represented in Fig. 11.7 for which the coating has the same stiffness tensor as 

the infinite matrix, the DIM of Hori and Necnat-Nasser is exact, since the eigcnstrain is equal 

to zero everywhere inside the coating of the inclusion. 

4.3.3 Other double-inc/11sion type models 

4.3.3. l The Kuster-Toksoz (1974) model 

The latter model is popular among geophysicians. Berryman and Berge (1996) have 

confronted this method with different experimental data and concluded that it should not be 

used for volume fractions of inclusions higher than 30 %. Analogously to the Hori and 

Nemat-Nasser DIM, the starting point of the Kuster-Tokstiz (KT) model consists in 

embedding the different inclusions modelling the P particulate phases inside a matrix coating 

with ellipsoidal form and in tum in inserting this pattern, designated as composite inclusion 

(e.g. Hu and Weng 2000), inside an infinite matrix medium. The external geometry of this 

composite inclusion depends on the spatial distribution of the particulate phases. In the case of 

two-phase composites, the KT model is based on the same pattern as DIM (Fig. ll.7 left) and, 

as shown by Hu and Weng (2000), the two estimates coincide. 

The KT model was developed by comparing two situations illustrated in Fig. Il.9 and 

asserting that the average strain field is identical inside the composite inclusion represented at 

the top of Fig. 11.9 and inside the homogeneous elTective inclusion depicted at the bottom of 

the figure (e.g. Hu and Weng 2000). Recently, Shen and Yi (2001) derived a11 estimate 

leading to the same results as KT by using the same philosophy. The only difference is that 

they assume that the elastic strain energy changes in the infinite matrix due to the respective 

insertion of the two previous types of double-inclusion are identical in both c~ses (Fig. 11.9). 

The demonstration proposed by Shen and Yi (200 I) seems more rigorous than the KT original 

one and is briefly recalled below. 

:1'c elastic strain energy perturbations of the infinite matrix, caused respectively by the 

insertion of the composite inclusion and of the equivalent homogeneous inclusion (Fig. 11.9), 
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are denoted tJ.U m•= and ti.U' . It is assumed that these two elastic strain energy changes are 

identical (Shen and Yi 2001). Tbe quantity ti.U' can be determined from the results of the 

Eshelby problem ( 1957): 

(11.83) 

where the subscript DJ designates the homogeneous effective inclusion (Fig. 11.9) that 1s 

analogous to a double-inclusion. Tbe elastic strain energy tJ.U mkro can be directly related to 

the average eigenstrains over the different particulate phases, denoted as &; (re (t,PJ) (e.g. 

Mura J 987): 

1 ~ (f-·) llU 
111

;,.r'f) =-V01 a : L.J Er 1 2 ,,, 
(II.84) 

where&:. can be expressed by means ofE4. (II.73) if the interactions between the particulate 

phases are neglected. 

M 

a) Composite inclusion 

b) Homogeneous effective 
inclusion 

M 
I 
I 

M I 
2 I 

I 
I 
I 
I 

--------------------' 
t G-

,-------------------~ 
1 M I 
I I 
I I 
I I 

I 
I 
I 
I 

I I 

~-------------------

Figure ll.9: Schematic illustrating the effective inclusion concept employed by Kmter­
Toksiiz (1974) and Shen a11d Yi (2001). 

An estimation for the effective stiffness censor can then be derived by assuming the equality 

between the last two equations (Shen and Yi 200 I): 

• •hi • • •I-I • • ilil , 

[ 

' ' I J C = i-l S., + ~ Ill, .IC.,. !:DI .§., J .Dl! .C.,, (ll.85) 
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which Jeads to the following expression for the compliance increment tensor after a few 

11130 ipu lations: 

[ 
( 

dil M )-I d!f ]-I $ ff= C.,-C..,: 1+111 :C., :Em :IH! :CM - ,,, 

=[c., :(l+lll"' :C,, : l:~,) :S.,-!H!di/ :c.,J1
(1+l!:l'111 :C,, : E~,) :S.., - S..,, 

(ll.86) 

=[ll-H'"' :(-C,, :r.~ +c..,)J' :(n+lHl'111 :C.., :r.~, ):S,,-S..,, 

-[n-llJIJ,/ .n MJ-' ·(IH!"'' ·C .~ .. +IH!d" ·""') ·S 
- lf1I ' ~'DI · · Al · J.. DI ·~'OJ · M' 

: [ J - Jlidl/ : n::, J I : JH[di/. 

The latter combinations are valid provided that lll"' is commutative with C" , which is true 

in the case of a macroscopically isotropic composite. The last equation coincides witb the 

!DD fonnu la in Eq. (11.43), whenever al l double-inclusions have an identical shape. 

4.3.3.2 The Ponte-Castaneda and Willis (PCW) model 

The demonstration of the PCW model ( I 995) based on the Hashin and Shtrikman (I 962) 

variational principles is not recalled here, since their rigorous derivation is quite lengthy and 

requires notions of statistics. Nonetheless, the comparison of the previous double-inclusion 

type models with the PCW approach is instructive because it enables us to understand better 

the double inclusion role. In fact, it geometrically characterizes the cumulative density 

limction for the distribution of inclusions introduced by Ponte-Castaneda and Willis (1995). It 

is defined from a conditional probability density function that represents the probability 

density for finding an inclusion centred at one point given that there is an inclusion centred at 

another point x. Imagine that we randomly toss a segment from the centre x of length R with a 

specified orientation and count the fract ion of times the end point coincides with the centre of 

another inclusion. With the above interpretation, it becomes obvious that for macroscopically 

isotropic composites, such as cement-based materials, this probability is the same in all the 

directions. Consequently, the double-inclusion will be taken as spherical for these materials. 

According to Zheng and Du (2001), explicit expressions are difficult to obtain with the PCW 

scheme if the different particulate phases do not have the same distribution. When one 

cumulative density function is enough for characterizing the distribution of all the inclusions, 

the PCW estimate coincides with the formula of the KT model and with the predictions of 

DIM and 100. Another consequence of the similarities of these double-inclusion type models 

~ith PCW is that these estimates may be interpreted as rigorous bounds, provided that the 

inclusion distribution is accurately known. 

In the next subsection, a new estimate based on the re.cent works of Duan et al. (2006) is 

Pfoposcd to remedy the shortcomings of DIM for composites with coated inclusions. 
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4.3.4 Development of a modified DIM for composites with coated spherical iliclusions 

The scope of thi s subsection is to develop a double-inclusion type estimate that remedies 

some of the shortcomings of DIM noticed previous ly. Several attempts (Shodja and Roullli 

2005; Shodja and Sarvestani 2001) to improve the scheme of Hori and Ncmat-Nasser (1993) 

exist in the literature but most of these models requires numerical computations. For instance 
' Shodja and Sarvestani (2001) applied polynomial eigenstrains instead of uniform ones to the 

Hori and Nemat-Nasser DIM. However, closcd-fonn solutions are difficult to reach with their 

theory. It is now proposed to derive differently DIM by employing the inhomogeneous 

Eshelby tensor in Eq. (11.21) derived by Duan et al. (2006). The configuration considered for 

the present derivation consists in a composite pattern embedded in an infinite matrix mediurn 

and subjected to a far-field stress o' .. . This composite pattern comprises various double. 

inclusions denoted as D,, with re [1,P] , enclosed in a matrix region, each of them being 

constituted of a spherical inclusion with stiffness tensor C, surrounded by a spherical coating 

with elasticity tensor Cc, . DIM was proved to lead to unexpected results for this type of 

microgcometry that is commonly encountered in cement-based materials, as wi ll be shown in 

chapter 6. 

The present derivation comprises two main steps. The effective stiffness tensors of the 

different double-inclusions are first estimated with the aid of the work of Duan ct al. (2006}. 

The particular configuration described on Fig. 11. I Oa) is thus approximated by a simpler one 

described on Fig. II.I Ob). The effective elastic properties of the multiphase composite are then 

computed using the energy balance employed by Shen and Yi (2001). To achieve the 

com~utation of the effective stiffness of the double-inclusions, eigenstrain fields are 

introduced inside the inclusion domain so that each inclusion has the same elastic properties 

as its coating. 

- - - - - _t_ ~.._ - - - - - - - ___ t_ ~.._ - - - -

c@ CM CM 

~@J' 
a) b) 

- ----_ J_ ~-- ---
I 
I 
I 
I 
I 

¢::>: 
I 

L------------
c) 

Figure JI.JO: Sche111<11ic ilf11strati11g the main steps employed to derive the modified f)lM. 
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The average perturbation strain tensor inside an inclusion representing phaser and baving the 

Ill
e stiffness tensor as its coating can be related to the volume average "t; of the prescribed sn 

eigenstn1in by means of the inhomogeneous Eshelby tensor defined by DuaJJ et al. (2006): 

-"' -· £'::1: : t,, (I f. 87) , , 

where the expression of E:' is given in Eq. (11.21 ). By neglecting the interactions between 

the double-inclusions, the average strain tensor inside the inclusion corresponding to a given 

particulate phaser takes the form: 

- W"' S - - , t .. = Or : ltt : <J +t,., (IL88) 

with 

(11.89) 

where W~~ designates the di lute strain local ization tensor, also called the Wu tensor (Wu 

1966) of the double-inclusion D,, with re (1,P], and 2:~, denotes its Eshelby tensor. The 

Wu tensor practically links the volume average of the strain tensor inside an ellipsoidal 

inclusion to the far-field strain. The consistency condition written in an average sense: 

C,. : t, =Cc, : ("ii,. - t; ), (11.90) 

provides the following relation for the average eigenstrain £,: in the inclusion: 

(IL.91) 

The average perturbation strain tensor inside the inclusion "t; can then be deduced from Eq. 

(11.87). Using Eqs. (lf.53-54) and (II. 91 ), the mean perturbation strain tensor inside the 

inclusion coating i c; is obtained as: 

(IJ.92) 

Where !:~, is the inhomogeneous Eshelby tensor of the double-inclusion D, derived by Duan 

et al. (2006) and expressed in Eq. (11.21). It is emphasized that even though the inclusion and 

double-inclusion both have a spherical shape, their inhomogeneous Eshclby tensors are not 

identical, since their expressions given in Eq. (n.21) also depend on their relative size 

characterized by the parameter p. The mean strain and stress tensors inside the double­

inctusion are further expressed with the help of Eqs. (11.53-54): 

F.n,= [ 1-:;, i:;;_ : [ ( C, -Cc,J': Cc, + E:' T' l W~~: S.,: o- . (11.93) 
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00 , = Cc, : [ w~: + :;, S ,, : Q~, :[(c, - Cc, f' :Cc.· + i:~' r• : w:;, } s,, :a- , (ll.94) 

where Q~, =CM : ( n - i:~, ) is called the inhomogeneous eigenstiffness of the double. 

inclusion D,. By eliminating a· in the last two relations, the following expression can be 

obtained for the effective stiffness tensor of this double-inclusion: 

Jee, :[ 1 + :;, s,, : n~, :[(c, - Cc,f' :Cc, +i:'.' J' J 
Co, = l[ I-:;, E~,: [ ( C, - Cc.) 

1 
: Cc, + E~' T'] 1 

' 

(ll.95) 

By carrying out exactly the same reasoning as in Eqs. (11.83-85) (see subsection 4.3.3.1), an 

expl icit estimation can then be ach ieved for the effective stiffness tensor of the composite 

with coated inclusions: 

c· =[ 1-( s,, + ~111~~ :c., : E~D/ :s,,) ':( ~111~~ )Jc.,, (ll.96) 

where E~DI is the Eshelby tensor of the equivalent composite pauem depicted on Fig. Il.IOc) 

and the stiffness tensor C 0 , can be predicted by Eq. (ll.95). Tn the ensuing, this estimation 

will be referred to as the modified DIM. 

4.4 Accuracy of EMT s 

The actua l capacity of predictions of the different schemes in literanirc has been a subject of 

extensive debate (Christensen 1990). The precise knowledge of the accuracy of each scheme 

is a crucial issue of micromcehanics, since it would allow for determin ing the cases for which 

an EMT can be preferentially employed or not. 

4.4.J Review on the accuracy of £MTs 

Testing the accuracy of an EMT is not a trivial matter, since their predict ions highly depend 

on the way the microstructure is represented. The two best methods for perfom1ing such tests 

consist in comparing estimations of micromeehanical schemes with FE simulations of simple 

mierogeometries (Segurado and Llorca 2002; Zheng and Du 200 I) or in confronting them 

with experimental data on materials having a simple and well-defined microstructure (e.g. 

Berryman and Berge 1996). Cement-based materials with their complex microstructure are 

not su ited for performing such experimental comparisons. 

For instance, Segurado and Llorca (2002) performed 30 numerica l simulations of materials 

reinforced by rigid spheres or weakened by spherical voids. The simulated materials contain 

different volume fractions (up 10 50 %) of spherical inclusions that are monodispersc and 

randomly di stributed. They concluded that GSCS provided estimations close to the FE results 
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en for 50 % of spheres, while the MT estimate visibly differs from the elastic and shear 

:,duli obtained numerically for volume fractions higher than 30 %. Another instructive 

coinparative study has been carried out by Zheng and Du (2001) on a 20 matrix weakened by 

jsOtropically distributed circular voids. On the contrary to Segurado and Llorca (2002), they 

ooticed that the MT and double-inclusion type shemes provide better estimations than the 

oscs. 
Betr)'lnan and Berge ( 1996) have compared both KT and MT estimates with experimental •ia 00 porous materials, such as siutere<l glass beads, and have noticed that the prediction of 

rhc KT or MT estimate with spherical inclusions was only in acceptable agreement with the 

citperimcntnl measurements for volume fractions of pores less than 20 %. Berryman and 

Berge (1996) managed to obtain some slight improvement by using needled-shaped inclusions 

but concluded that KT or MT schemes should not be used wheu the inclusion volume fraction 

is greater than 20-30 %. These results seem to be coherent with the analysis of Segurado and 

Llorca (2002). These errors may be due to the fact that over a certain volume fraction of 

inclusions, MT and double-inclusion type estimates do not manage to accur-dtely take into 

account the interactions between inclusions. It appears however intricate from these diverse 

results found in literature to affirm which one of the presently reviewed models is the most 

1ecurate. Therefore, it is useful to further compare these estimations with recent numerical 

simulations performed on cementitious materials. 

4.4.2 Comparison with 1111merical simulations on cement-based materials 

Owing to progress in the computer modelling of cement microstructure, many three­

dimensional numerical simulations have been carried out for computing the macroscopic 

elastic properties of cement-based materials and constitute good comparison points. By 

confronting the predictions of the different EMTs presented previously with different types of 

simulations, we try to determine which scheme is the best suited for three well-defined cases: 

• a concrete composed of a mortar matrix and aggregates modeled as spherical 

inclusions (Wriggers and Moftah 2006); 

a mortar consisting in a cement matrix rigidified by spherical coated inclusions 

representing the sand grains surrounding by ITZ (Garboczi and Berryman 200 I); 

• a porous medium that can be assimi lated to a cement paste comprising a rigid solid 

phase and spheroidal porous inclusions (Roberts and Garboczi 2000) . 

. lhe input elastic parameters for the difTerent simulations and micromechanical estimations 

~gathered in Appendix II.A. The three materials treated arc simulated as macroscopically 

lllOtropic and the inclusions are supposed to be isotropically distributed. Therefore, a spherical 

double-inclusion is adopted for the computations of the double-inclusion type schemes. 
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4.4.2. I Comparison with the simulations of Wriggers and Moftah (2006) 

Wriggers and Moftah (2006) perfonned advanced FE simulations on geometrical models of 

concrete generated with the Monte-Carlo's method to compute its mechanical properties. The 

aggregates are modeled as spheres of different sizes, so as to accurately reproduce the 

material granulometry. 
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Figure 11 . .11: Evolutions of the effective Yo1111g moduli estimated by different 
micromechanical schemes and by FE simulations (Wriggers and Mo/fall 2006) for two 

types of concretes as functions of the volllme fractions of aggregates a) type I a11d b) type 
II. 

All the micromechanical estimations appear to be relatively close the numerical results plotted 

on Fig. II.I I, the GSCS of Christensen and Lo ( I 979) giving slightly better predictions than 

the other models. For spherical cases, the GSCS should thus be preferred to MT and dou
0

ble­

inclusion type models. If all the inclusions are approx imated by spheres, the other matrix­

inclusion type estimates (see Eqs. (JI.38) and (Tl.43)) lead exactly to the same results for a 

macroscopically isotropic material. A frequent problem with using spherical inclusions is that 

too many EMTs give exactly the same result even if certain ones may be much more evolved 

and efficient. The case of non-spherical inclusions will therefore be treated later. The mortar 

matrix considered as a homogeneous phase in the Wriggers and Moftah (2006) is in fact a 

heterogeneous material that bas been the subject of advanced numerical simulations by 

Garboczi and Berryman (200 I). 

4.4.2.2 Comparison with the simulations ofGarboczi and Benyman (2001) 

Garboczi and Berryman (200 I) performed simulations on a material model composed of a 

matrix reinforced by spherical coated inclusions. They made the elastic properties of the 

inclusion coating vary and investigated numerically the effects on the materia l effective 

elastic properties. Their tests are very instructive for the ease of mortars, where the 
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c:1tnracteristics of ITZ forming a layer around the sand grains strongly influence their 

uieclurnical behaviour, as already explained in Part L It has been asserted by diverse authors 

(e.g. H:ashin and Monteiro 2002) that ITZ that is more porous than HCP (Lutz and 

zjnHncrman 2005) should have a lower Young modulus than the cement matrix (see Eq. 

(l.5)). The numerical results obtained by Garboczi and Berryman (2001} for diverse values of 

the parameter e characterizing the ratio of the Young modulus oflTZ on the one of HCP are 

plotted in Fig. fl. 12 and serve as comparison points for the predictions of different EM Ts. The 

closest estimations arc provided as previously by GSCS, even though the modified DIM is 

also in good agreement with U1e numerical results . However, despite its good accuracy on the 

c~mnples treated, the GSCS is more complicated to compute than the other schemes and may 

appc:ir less suited for the case presented below of an elastic body containing non-spherical 

inclusions. 
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Figure 11.12: Evolutions oft/ie eff ective elastic bulk (left) and shear (right) moduli 
estimated by differe11iEM1'.\· and by FE simulations (Garboczi an d Berryman 2001) for 

both sound and degraded HCP us a function of e = Ern I E11cr · 

4.4.2.3 Comparison with the simulations of Roberts and Garboczi (2000) 

Tiie case of an elastic body weakened by spheroidal voids is now studied, in order to further 

co111pare the concerned EMTs. The GSCS and modified D IM presently developed are not 

considered for this study, since closed-form expressions are too difficult to reach for such 

cases. Roberts and Garboczi (2000) conducted series of simulations with porous inclusions of 

diverse shapes. The elastic modu li of pores are considered to vanish. In particular, numerical 

tests were performed with oblate spheroidal· voids that are randomly distributed in a rigid 

solid matrix and are allowed to overlap. The model of microstructure thus obtained is well 

suited for representing a porous material such as a HCP and is furthermore very similar to U1e 

rnicroincchanical model of Zimmerman ( 1986), in which HCP is represented by a solid matrix 

~akcncd by spheroidal pores. The FE results of Roberts and Garboczi (2000) for the 
S1111ulat d . e porous material arc plotted on Fig. 11.13 and compared wit h the predictions of 
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EMTs, even though the latter are not capable to account for the overlappings between lh 

cavities. The double-inclusion type estimates arc seen to give the closest estimations : 

should consequently be preferentially used in the case of non-spherical inclusions. 
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Figure ll.13: £vol11tio11s of the effective Yo1111g moduli esti11111ted by different EMTs 11nd by 
FE si11111liltio11s (Roberts 11f1d Garboczi 200<1) for an elastic body weakened by oblate 

spheroidal voids with aspect ratio r = 0.25, as 11f1111ction of porosity. 

4.5 Conclusion of chapter 4 

Different analytical homogeni1~ition schemes from literature have been presented and 

examined in a critical way. The respective benefits and drawbacks of these methods are now 

recapitulated on the basis of well-defined criteria. In order to choose the best suited scheme 

for the estimations of the elastic properties of cement-based materials, the following criteria 

are adopted: 

(i) simplicity of computation and versati lity; 

(ii) respect of the rigorous bounds; 

(i ii) accuracy. 

By versatil ity, it is intended that we assess if the model can be extended to the cases of 

multi phase composites, non-spherical inclusions or diverse distributions of inclusion. The 

IDD scheme is the most versati le one, since it is the only model that is valid for multiphase 

composites with various inclusion geometries and that can properly take into account the 

influence of various inclusion distributions. It should furthermore be theoretically applicable 

for non-elli psoida l inclusions, according to Zheng and Du (2001). Jn addition, it has a simple 

and explicit structure, as well as MT and other double-inclusion type models. 

Many authors (e.g. Berryman 2006) argue that a consistent EMT shou ld respect rigorous 

bounds such as the Hashin-Shtrikman (HS) or the Willis bounds tha1 have been proved to be 
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S 
Norris (J 989) found a simple three-phase example with disk-shaped particles for 

rou . 
. h the effective thermal conductivity estimated by MT violates HS bounds. It may thus be 

~lous to apply MT to multiphase composites containing more than two phases. 

verscly, Ponte-Castaneda and Willis (1995) proved that their estimate may be interpreted 

i:o;:gorous bounds. The other double-inclusion type schemes that coincide in most cases with 

the pCW model are also likely to respect rigorous bounds. 

c confrontation of the different schemes with diverse numerical simulations has revealed 

t the GSCS is generally more accurate than MT and double-inclusion type estimates in the 

case of spherical inclusions. ln addition, the GSCS and modified DJM are the only two 

1110
dds that do not lead to unexpected results for the case of coated spherical inclusions that is 

of practical importance for cement-based materials. However, the double-inclusion type 

nioclels provide the closest estimations to the FE results of Roberts and Garboczi (2000) for 

the important case of an elastic body weakened by spheroidal voids. The accuracy of an EMT 

is strongly conditioned by the way in which the phase interactions are accounted for. For 

instance. the di lute scheme does not take into consideration any interaction between 

inclusions and frequently appears to be inaccurate in the present study. As already mentioned, 

MT and double-inclusion type estimates can also be seen as dilute models improved by 

modifying the far-field stress (see Eq. (11.45)). They only incorporate indirectly the interaction 

bctwc~n inclusions and their immediately surrounding region. The GSCS integrates more 

precisely these interactions by embedding matrix and inclusions in the yet unknown effective 

infin ite medium. Table Tl. I aims at weighing the pros and the cons of the various theories in 

an infonnal way. 
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Micromechanical Simplicity of use 
Respects Accuracy for Accuracy for 

scheme and versatility 
rigorous non-spherical coated 
bounds inclusions inclusions 

Dilute ** * * * (e.g. Eshelby 1957) 

MT (Mori and Tanaka ** * ** * 
1973) 

IDD *** *** *** * 
(Zheng and Du 2001) 

DIM (Hori and Nemat- ** *** *** * Nasser 1993) 

Modi lied DIM ** *** * *** 
GSCS (Christensen * *** * *** and Lo 1979) 

•: lnsu flicient, • • : Moderate, • ••: Good 

T11ble ll.J: T11ble co11fro11ti11g the merits of the di[fere11t EMn presently reviewed. 

Even though, the GSCS and modifed DIM are more appropriate for materi als with coated 

spherica l inclusions, the IDD scheme seems to present the best compromise otherwise. It i~ 

emphasized that this approach is more accessib le and versatile than other double-inclusioll 

type models (Ponte-Castaneda and Willis 1995). The IDD estimate shows in particular i t~ 

eflicicncy in the cases of macroscopically isotropic materials containing non-spheri cal 

inclusions and therefore constitutes a suitable tool for the next chapter dedicated to the 

influence of inclusion shape on the elastic effective properties of cement pastes. 

5 INFLUENCE OF INCLUSION S.HAPE ON THE LINEAR ELASTIC EFFECTIVE 

PROPERTl ES OF HCP (STORA ET AL. 2006a) 

In most micromechanical models applied to HCP in literature, all inclusion phases arc 

appruximated by spheres for simplicity, though cement paste micrographs indicate that none 

'of these phases is really spherical. The present chapter assesses how the predictions of the 

effective linear elastic properties of HCP change with the inclusion geometry. In particular, i1 

is usefu l to detect the cases, for wh ich these properti es vary significantly and for which more 

rea list ic geometric fonns should be applied . The determination of the Eshclby tensor :r.~1 ol 

the inclusion phases is usuall y qui te complicated for non-spherical inclusions and it general!> 

has to be estimated numerically except for some s imple cases. In particu lar, the Eshelb> 
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r of spheroids presents the benefit of being analytically calculable (sec Eq. (11.20)). 

::~s why all inclusion phases are approximated by spheroids with different aspect ratios in 

order to scrutinize the influence of inclusion shapes on the linear elastic effective propenies of 

c:csnent pastes. The IDD scheme that has been previously identified to be suited for 

iiccounting for the effects of non-spherical morphologies of inclus ions is chosen for 

computing these macroscopic propenies. 

The chapter is organized as follows. First, a dimensionless morphological parameter is 

introdm;ed to characterize the inclusion shape. Then, the cases for which this parameter 

actua lly plays a significant role on HCP elastic macroscopic properties are investigated by 

successively modeling each particulate phase as spheroids, which shape ranges from needle­

like to disk-like. Finally, an attempt is made to approximate the morphological parameter on 

the basis of experimental results. The spheroids representing the particulate phases in the 

micromechanical approach are then detcnnincd through this parameter. The estimations thus 

obiaincd for the effective Young modulus are compared with the results respectively 

predicted by a homogenization model with spherical inclusions and by FE simulations. 

5.1 Definition of a shape parameter for the inclusions 

In the micromcchanical schemes presented in tbe previous chapter, none of the basic input 

parameters, i.e. the phase volume fractions and elastic properties, takes into consideration the 

morphology of the particulate phases. The aim of this section is to introduce a relevant 

parameter approximating the real shapes of inclusions. 

We propose to analyze the geometry of an inclusion I by considering the ratio of its volume v, 
over surface area A1. For example, this ratio for an arbitrary spheroid can be wrillen as: 

!:J_= 1(b)a, (11.97) 
A, a 

where a is the radius of the circular base of the spheroid and b is either the minor axis for 

oblate spheroids or the major one for prolate ones. The aspect ratio of the spheroid is 

designated by r1 = b I a. The most natural way to nonnal ize V1 I A1 is to divide this ratio by one 

third of the radius R,. of the equivalent sphere having the same volume V,: 

3V 1· ~, = I 
~=--L with "" . (11.98) 

A,R,. l q,,,,, = ~_,,, = 0 

This shape or morphological parameter c; bas tl1e interesting property that it varies between 0 

alld I. This comes from the fact that, among all shapes, the sphere is the one that maximizes 

the inner volume for a given surface area according to an isoperimetric theorem (P61ya and 

Szegii 1951 ). The less spherical the inclusion is the lower c; becomes. Therefore the value of c; 
allows for quantifying the asphericity of a panicle. 
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1n order to assess the reliability of<;, it is interesting to study if oblate and prolate spheroidal 

inclusions with the same shape parameter and volume fraction actually have simi lar effects on 

macroscopic elastic moduli. Hence, computations are performed in which an arbitrary 

particulate phase r of HCP is approximated respectively by prolate and oblate spheroids, 

while the other inclusion phases are represented by spheres. The evolution of tbe effective 

elastic moduli is examined with these two types of spheroids as their parameter <; decreases 

from l to 0. Fig. lT.14 schematically represents the randomly oriented spheroids 

corresponding to an identical particulate phase r and their surrounding double-inclusions 

inside the RVE. For simplicity these spheroids are assumed to have the same size. The 

number of spheroids per unit volume is denoted by N, . The volume fraction c, of phase r can 

thus be writteo as: 

! N .fr a3 r1 for oblate spheroids 
3 ' 

er = N,.Vs.1,1~""" = 3 
4 b 

N,7r -
2 

for prolate ones 
3 r1 

(11.99) 

According to this equation, the variation of the aspect ratio r1, and consequently of the shape 

parameter c;, of the spheroids can be performed in two different ways: 

• The maximum axis of the spheroid (= a for an oblate one and b for a prolate one) 

varies and c,. is kept constant, as il lustrated on Fig. 11.14 (bottom left). 

• The maximum axis of the spheroid remains constant and c,. changes, as illustrated on 

Fig. 11.14 (bottom right). 

For the present l!PPli~ation, the first possibility seems more appropriate because it keeps a 

constant volume fraction. But it presents the fo llowing deficiency: the spheroid maximum 

axis appearing on the equation just above has to augment, as i; decreases, and in particular 

tends to infinity, as <; goes to 0. The second possibi lity is more adapted for inclusion forms 

tending to cracks, but we prefer the first option, since the inclusion phases present inside the 

HCP are far from being crack-like. 

Two examples on ord inary Portland cement pastes (CEM I) are considered to verify the 

efficiency of the shape parameter<;. These CEM I pastes wi th w/c = 0.25, 0.40 and 0.50 used 

for this study are defined in Tables 11.2 and 1.3 in terms of volume fractions and mechanical 

properties of their constituent phases .. The follow ing representation of the microstructure is 

adopted to compute the HCP effective elastic properties: the CSH gel acts as a matrix in 

which the main particulate phases presented in Part I, namely AFt, A Fm, Cl-I, CP and UC, are 

embedded and play the role of inclusion (Fig. 11.15). This representation is close to the one of 

the Constantinidcs and Ulm model (2004), except that a homogenized CSH gel is used instead 

of the two CSl-1 considered in their descript ion. 
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c; close to 1 
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I 
c; << 1 \ 

I 8 
® § 7 

a) c,constant and b depending on c; b) b constant and c, depending on c; 

Figure 11.14: schematic representation oft/le e1•olution of the dimensions of prolate 
spheroids corresponding to an i11clusio11 phase r with the shape parameler ~: 

a) c, cunstant; b) b co11stant (Stora et al. 2006a). 
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Figure 11.15: a) Two-dime11sio11al represe11tatio11 of HCP with spheroidal i11c/11sio11s based 
011 MT and d1111ble-i11c/11sio11 type schemes (le.ft); b) Two-dime11sio11al representation of 

HCP with spherical i11c/11sio11s based 011 MT and do11ble-i11c/11sio11 type schemes (Stora et 
al 2006a). 

The effective elastic properties of HCP arc estimated by means of the IDD estimate. The 

cement pastes are considered as macroscopically isotropic. Consequently, for each particulate 

phase of HCP, the corresponding double-inclusion should be taken as spherical. Nevertheless, 

for a spherical distribution of randomly oriented spheroids, highl y-concentrated inclusions 

may overlap. The maximum volume fraction for which these spheroidal inclusions do not 

overlap is calculated in Append ix H.B. For higher volume fractions, a non-spherical double­

inclusion must be adopted and a volume average over all possible orientations must be 

perfom1ed. Once its exact shape has been detennined for each particulate phase r, the 

eigenstiffness tensors of tl1e various double-inclusions denoted by Q~, enclosing the 

inclus ions V1" are calculated from Eq. (Jl.30). The IDD estimate of the compliance increment 

tensor n;~ applied to this representation of HCP microstnicture with spheroidal inclusions 

(Fig. ll.15) then results in: 

111 100 [ • {ud•f . r.CSll } ]-I. {udll } 
UCJ) :::: .a. - llll 11cP . ~ "'/),• • Ill ncP ' (i i.I 00) 

with 
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(II.101) 

where the curly brackets denote the average over all possible orientations, where tr denotes 

we trace operator and where r = CH, CP, UC, APt or AFm. The tensors n<:,1 and Ill~;,, are 

defined in Eqs. (11.31) and (II.33). The macroscopic Young modul i of the HCP can be 

deduced from the latter expression by using I.lqs. (U.6-7) and (11. 12-13). 

The input data required for the micromechanical estimations are the volume fractions c, and 

CM of each phase that can be found respectively on Table 11.2 for the six HCP samples and the 

bulk and shear moduli, respectively denoted as K1 and G;, reading as follows: 

K.= E, andG, E, withie{AFt,AFm,CP,CH, CSH,UC} , (ll.102) 
' 3(1-2v,) 2(1+ v1) 

where the Young modulus E, and the Poisson ratio v, of each phases arc given in Table 1.3. 

for sound and degraded HCP. The present input values are the same as those employed by 

Kamali (2003) in her simulations. 

Volu me fractions in % 

CEM I paste CEM 11/A paste 

w/c = 0.5 0.4 0.25 0.5 0.4 0.25 

CH 16.4 16.9 15.7 10.5 10.8 8.5 

CSH 47.3 47.4 42. 1 49.4 49.7 45.I 

UC 10.04 14.46 28 13 18.4 31.4 

A Ft 2.4 2.8 2.9 2.7 2.3 2.9 

A Fm 0.16 0. 14 0.3 0.4 0.4 I 

Porosity(%) 23.7 18.3 11.0 24.0 18.4 11. l 

Table 11.2: Input volume fractions of principal hydrates, 1mhydrllted clinker a11d 
capillary porosity for six different HCP (Kamali 2003). 

The first example consists in approx imating the initial capillary porosity respectively as 

prolate and oblate spheroids with varying shapes, while the other pa11icu late phases are 

modeled as spherical inclusions. The different volume fractions of these initial capi llary pores 

•re Ccp = 11 %, 18.3 % and 23.7 % in the CEM I pastes with w/c = 0.25, 0.40 and 0.50, 

ltspcctively. The effects of both types of porous spheroids on the effective Young modulus 

Ire plotted on Pig. 11.l 6 for the three CEM I pastes. It is worth noting that for this case of 

~rous inclusions the spherical shape optimizes the Young modulus. This can be understood 

llltuitively considering the fact that for a given area the spherical surface maximizes the inner 
tl>lun1c (e p 1 .. . g. o ya and Szego 1951 ). The curves on F 1g. 11.16 show 1hat prolate and oblate 

Porous Spheroids with an identical value for the morphologica l parameter do not have the 

llllle effects on Young modulus except for c; close to I. The weakening effects of prolate 
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porous spheroids compared to the spherical case are quite negligible, whereas oblate 
0 nci 

have a much more pronounce<! impact. These tendencies are even more marked for high 

volume fractions of initial capil lary pores. In this condition, the parameter seems not to be 
well appropriate except for values higher than 0.80. But it should be underlined that this 

example corresponds to an extreme case, since the contrast between the elastic properties of 

matrix and inclusion is infinite . 
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Figure 1/.16: Evolutions of the 11ormalhed effective Young modulus for sound CEM 1 
pastes with capillary pores as afunctio11 of the shape parameter <;for different volume 
fractions. Solid lines: wlc = 0.50 (cCP = 23. 7%), dashed lines: w/c = 0.40 (ccp = 18.3%). 
dotted lines: w/c = 0.25(cCP = 11%) (Storti et al. 2006a). The subscript Spit means that , 

the modulus has been estimated using the .spherical particle approximation. 

The second example illustrates the case of finite contrast by focusing on unhydrated clinker 

inclusions, which are stiffer than the CSH matrix. Their volume Ii-actions in the three CEM I 

pastes arc cue= 10.04 %, 14.46 % and 28 % respectively. The curves obtained when<; varies 

from O to J for both types of spheroids are presented on Fig. 11. 17; they are relatively close 

and, for <; higher than 0.5, the Young moduli estimated with oblate and prolate spheroids are 

almost confounded. For lower va lues, oblate spheroids produce a stronger stiffening effect. 

Th is result is not surprising hi view of the evolution of the spheroids with i;: as the latter goes 

to 0, oblate spheroids tend to infinite disks whereas prolate ones tend to infinite needles, as 

may be observed on Fig. II.I 4. Both types of spheroids thus tend to radically different 

geometries. For this particular example,<; turns out to be relevant on a limited range, where it 

is usefu l for approaching re;1J inclusion shapes. For inclusions whose geometrical shape is 

very far from spherical, <; is small and other parameters are required to precisely characterize 

the effects of morphology on elasti c moduli . This remark applies particularly when the 



Part fl: Prediction of the. clas1ic propctties of cement·ba. .. cd materials Pagc6S 

contrnst between matrix and inclusion elastic properties 1s high, as in the first example 

presented above. 
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Fig11re JJ.1 7: Evo/11tio11s of normalized eff ective Young mod11/11s for sound CEM I pastes 
with 1111hydrated ,·/inker respeclively represented by oblate and prolate spheroids, as a 
function oftltc shape parameter ~· Solid lines: ><Ve - 0.50; dashed lines: wlc = 0.40; 

dolled lines: w/c = 0.25 (Stora et al. 2006a). 

S.2 Significance of the shape param eter for HCP elastic properties 

The purpose of this section is to Qetermine the particulate phases whose shape parameter may 

become significant for the estimation of HCP elastic properties . We now 1J1ake the shape 

parameter vary individually for each inclusion phase, while<; is kept fixed and equal to I for 

the other particulate phases. The dependence of the elastic properties on <; is thus investigated 

successively for all inclusion phases composing HCP in both sound and degraded pastes 

defined in Table U.2. 

From the microstrnctural description detailed in Part I, it appears that needle-like ettringite 

•hould rather be cbaracterized by prolate shapes and disk-like portlandite by oblate 

hlor(lhologies. Concerning unhydrated clinker, AFm and initial capillary pores, no evidence 

indicates whether to preferentially use oblate or prolate spheroids for characterizing thei r 

llbapc, Thus, they are represented by 50 % of both.oblate and prolate spheroids in this work. 

l'he influence of the shape of aluminates and portlandite on effective elastic properties of 

~l~achcd HCP is negligible as shown on Fig. 11.18. On tile contrary, the morphology of 

hllhal capillary pores clearly plays a s ign ificant role due to the infinite contrast between 

lllatri)( and porous inclusions, as already high lighted in the preceding subsection. The relative 
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significance of this porous phase depends on its volume fraction (cep = 11 %, 18.3 % and 23.7 

% for w/c = 0.25, 0.40 and 0.50 respectively). The shape ofunhydrated clinker may also have 

a non negligible effect, since an increase of 25 % can be obtained as <; goes to 0 (see Fig. 

IJ.17). 

1.2 .... , .. , .. . • . .. . . . Unhydra1ed 
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Figure 11.18: Evolutions oftlte normalized effective Young 11101/ulusfor sound CEM I 
p11stes, 11s a function of tlte morphological parameter <;. Solid lines: wlc = 0.50; daslted 

lines: wlc = 0.40; dotted lines: wlc = 0.25 (Stora et al. 2006a). 

We now focus on the degraded state. On Fig. 11.19 are presented the evolutions of the Young 

modulus as a function of<; for the three CEM I pastes when CH, A Ft and A Fm are degraded 

successively. For <; higher than 0.1, the influence of dissolved ettringite and AFm shapes 

remains negligible because of their scarce volume fractions (see Table !1.2). Conversely, the 

influence of leached portlandite morphology increase~ considerably compared to the sound 

state. This is partly due to its high volume fract ions(> 15 %) but it should also be emphasized 

that its effects are even more significant than the initia l capi llary pores one, although some of 

thei r concentrations arc higher (CC/' = 11 %, 18.3 % and 23.7 %). As may be observed on Fig. 

ll.1 9, tl1e decrease of the effective Young modulus is much more pronounced for oblate 

spheroids than for prolate ones. Consequently, the e lastic properties are more sensitive to the 

fl attened morphology of CI I than 10 the in itial capillary pores one, represented not only by 

oblate spheroids but also by prolate ones (see Fig. II .1 9). 
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Figure 11.19: Evolutions of the 11ormalized effective Young modulus/or leached CEM I 
pastes, as afwu:tion of the morphological parameter <;. Solid lines: w/c = 0.50; dashed 

linel·: w/c = 0.40; dotted lines: wlc = 0.25 (Stora et al. 2006a). 

Because of the straightforward calculation of the Eshelby tensor for spherical inclusions (see 

Eq. (!1.18)), the spherical assumption is easy to use provided tl1at morphology has a negligible 

effect. In this section, the influence of inclusion shapes 011 the effectiv.e mechanical prope1ties 

is shown to highly depend on the contrast between matrix and inclllsion elastic parameters, on 

the volume fractions and on the flatteni11g of the particles. In particular, the morphology of a 

completely dissolved phase such as portlandite can severely affect the effective properties of 

leached HCP. Consequently, it is quite natural to wonder if the sphere really constitutes a 

reasonable approximation. The next section assesses the validity range of this spherical shape 

assul\\plion and investigates the possibil ity of improving the micromechanical pred ictions by 

integrating some significant information about the shapes of HCP particulate phases. 

S.3 Approximation of the par ticulate phases by spheroidal inclusions 

The discussions 011 the morphology of the phase composing HCP microstnicture i1; Part I 

have highl ighted the asphericity of all the hydrated phases and unhydrated clinker. Hence, it is 

natura l to pose the foll owi11g questions: what is the error induced by the spherical shape 

approximation of the inclusions of HCP with respect to the homogenized isotropic elastic 

Properties? Is it possible to improve the micromechanical predicti ons by adopting non­
S[>hcrical inclusions? 
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5.3.J Assessment of the spherical particle assumptio11 

All the particulate phases are approximated as spherical inclusioos for simpl icity, as depicted 

on the right-hand side of Fig. ll.15. By combining Eqs. (Il.6), (11.12), (U. l8) and (11.43-44), 

the estimations of the effective bulk and shear moduli by the IDD model thus take the 

following form: 

I + :~:::c, (a, - I) 
and Gt:[ = GCSJ, 

I+'°' c (.2.'-/3. -1) L, r G r 

' CS/I , (IJ. I 03) I+ Lc,(/J, - t) 
r r 

where re {AFt,AFm,CP,CH ,UC), where a, and fl,. are given in Eq. (IT.19),K, and G, 

respectively denote the bulk and shear moduli of inclusion phaser and where Kc.,, and GcsH 

respectively designate the bulk and shear moduli of CSH matrix. To check the validity range 

of the spherical shape approximation , the micromechanical estimations given by the previous 

equation are compared with the simulations of Kamali (2003) applied to a representative 

panel of sound and degraded HCP. Two NIST models are used for the FE simulations: 

CEMHYD3D and ELAS3D (Bentz 1997; Bohn and Garboczi 2003; Garboczi 1998). The first 

one is a three-dimensional cement hydration and microstrucn1re development modeling 

package. The second one is a linear elastic FE program developed for computing the li near 

elastic properties of random materials whose microstrncture has been stored in a 2D or 30 

digital image. CEMHYD3D is probably the most well-known and efficient hydration model. 

A unit cell of JOO µ m in size was used for all the simulations. The limitat ions of these 

simulations come from the size of the voxels being only of l µm3• For further details, the 

reader should refer to the m1icle of ll aecker et al. (2005). Three CEM I and three blended 

Po11land cement pastes with 7.7 % silica fome content (CEM lllA) with various w/c ratios 

(0.25, 0.40, 0.50) are considered. The estimations provided by Eq. (II . l 03) arc plotted on Fig. 

11.20 as a function of capillary porosity and are compared to the FE results of Kamali (2003). 

For all sound pastes, the results of the micromechanical model are in good agreement wi th the 

FE values, since the deviation compared to numerical simulations is always lower than 12 %. 

In view of the fact that FE simulat ions arc more difficult to perfonn than the present 

homogenization method, the latter provides an efficient analytical tool for the prediction of 

sound I ICP elastic properties. 
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Fig11re JJ.20: E110/11tio11s of the effective Yo1111g moduli estimated respectively by the JDD 
niode/ witfl .;pflel'ict1/ m1d spfleroidal i11c/usio11s and by FE simulations (Kamali 2003) 
for both a) so1111d and b) partially degraded HCP as a function of capillary porosity 

vo/11111e fraction (Stora et al. 2006a). 

Concerning the partially degraded pastes, the FE simulations of Kamali (2003) assume the 

complete leaching of CH and aluminates but do not incorporate the degradation of CSH; we 

have then adopted the same leaching scenario to be able to compare the different results. The 

difference between the results in the sound and the degraded pastes suggest a few general 

comments. The detrimental effect of leaching on Young modulus is sign ificant, though the 

elastic properties of CSH are kept constant during the degradation process. Karnali (2003) 

Predicted a reduction of 58 % for the CEM I 42.5 paste with w/c = 0.50 and obtained good 

agreement with experimental results (Cardc 1996), where total dissolution of CH caused a 

reduction of 63 % in the Young modu lus of rhis cement paste. The numerical resu lts of 
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Kamali (2003) agree quite well with their measures considering the fact that the paste appears 

more degraded in the experiments than in the simulations. The decrease of the Young 

modulus is lower for CEM ll/A pastes, varying between 25 % and 40 %. The blended cement 

pastes sbow better mechanical properties after degradation process than CEM I because of 

their smaller content of portlandite. This phase appears then to be predominant for leaching 

problems. 

For the leached HCP, the IDD estimations computed with spherical inclusions diverge 

significant ly from the numerical results for volume fractions of capillary porosity higher than 

35 %. It is striking to notice that the predictions follow the same trend as in Berryman and 

Berge ( 1996) and in Segurado and Llorca (2002): the more porous the material becomes, the 

more the homogeni7.ation models overestimates the elastic properties. 

Though volume fractions and mechanical data of the main phases composing IJCP can be 

determined in a relatively precise way, less is known concerning their morphology. Based on 

relevant experimental results, an attempt to approach the components real shapes by means of 

a morphological parameter is made. Although the breakthrough of three-dimensional analysis 

techniques provides some interesting data, the introduction of realistic particle shapes in 

homogenization models is still a difficult task. Due to the difficulty of computing the Eshelby 

problem in the case of non-ellipsoidal shapes, it is generally impossible to incorporate the 

phase real morphologies directly in micromechanical methods and approximations of these 

shapes by simpler geometrical forms are necessary. The dilemma is to integrate the most 

realistic shapes possible and at the same time conserve a calculable model. An analytical 

solution is proposed in the present homogenization approach by introducing sph~roids 

adequately chosen with the help of the previously mentioned morphological parameter. 

Therefore this section aims at finding some approximate values for i; on the basis of 

experimental observations. 

As an example, the morphological parameter i; of Portland cement particles is calculated with 

the aid of the results of Garboczi and Bullard (2004). If use is made of their fit fonction 

A= 8 vo.114 , <; is not dimensionless. Consequent ly, we perform a new fitting of their resu lts 

with a fixed exponent of2/3 and obtain: 

A = 5.95V 2n . {CT. I 04) 

The dimensionless morphological parameter<; is easily calculable from this new fit function: 

(11.105) 

This value agrees with the analysis of Garboczi and Bullard (2004) concluding that cement 

grains are not spherical. By approximating the particle shape, <; introduces some important 

infonnation on material microstructure in the elastic moduli estimate, and may be regarded as 

the most significant microstructural parameter after volume fractions. 
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l C 
of r for unhydrated clinker can be proposed by assuming that these clinker residuals va u ., 

•
1 

from a shape similar to the initial cement particle one. The argument for such an 
n . 
mpiion is that the reaction of cement particles with water initially taking place at the 

idc surface, the morphology of their unhydrated core should not change significantly 

ing the hydration process. The microtomographic pictures of the evolutiou of cement 

ides morphology issued from the Visual Cement Database (Bentz ct al. 2002) during 

]lydllllion permit to properly assess this assumption and show that 1he latter may be too 

jdcnlistic. Nevertheless, th is approximation is maintained, since the res idual clinker seems to 

jnlieril from a shape closer to unhydrated cement particles than spheres. Under this 

hypothesis, the unhydrated clinker keeps the same shape parameter value as the initial cement 

grains: <;uc = ~""'"",..,_ : 0.81. As illustrated on Fig. 11.21, this particulate phase is then 

IPProximated by equivalent oblate and prolate spheroids of respective aspect ratios of rue= 
o.35 and rue = 3.5. However, the difference between HCP effective Young moduli estimated 

by means of clinker spheroidal inclusions having a shape parameter of <;uc = 0.81 with respect 

to the spherical case remains quite negligible except for high volume fractions of clinker. This 

lllltement leads to the remarkable consequence that, though the shape of anhydrous residua ls 

is noticeably non-spherical, it may not affect importan1ly the elasric properties. 

Furthennore, some approximate val u~5 may be found for CH and AFI shape parameters. By 

examining carefully micrographs of Brown and Hooton (2002), ettringite is charac1erized by 

long cylinders, whose height is at leasl ten limes bigger than ils diameter, as represented in 

Fig. 11.21. These rather empirical dimensions provide a morphologica l parameter <;A~1 = 0.69, 
having an insignificant influence according to Fig. II.18. portlandite is further assumed to 

inheri1 from a similar shape inside the HCP as in non-confined environments, where it 

crys1all izes in massive hexagonal plates (Richardson 2000). Considering such a plate, whose 

thickness is four times smaller 1han the maximum length of the regular hexagonal base, c,c11 = 

0.70 is obtained (see Fig. fl.21). This value leads to a relative variation of Young modulus 

con111riscd between 0.75 and 0.90 for the three HCP, which is not negligible. 
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c;uc= 0.81 

Unhydratcd clinker 

Portlandite 

c; AFt= 0.69 

Ettringite 

50 % of both equivalent prolate 
and oblate spheroid 

Equivalent oblate spheroid 

Equi valent prolate spheroid 

Figure 11.21: Appro:.:i111atio11 of realistic HCP particulate pita.ms shapes by equivalent 
~plteroids (Stora et al. 2006a). 

The spheroids (see Fig. 11.2 1) chosen from experimental ly based approximate va lues for the 

shape parameter of cl inker. ettringite and portlandite (respectively with <; = 0.81, 0.69 and 

0. 70) may improve on the spherical assumption. The first value is based on the hypothesis that 
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residual clinker inherits from a shape similar to the unhydrated cement particles and the 

''"° shape parameter values are equivalent to considering the shape of CH and AFt inside 

HCP identical to their well-crystallized geometry in non-confined environment. These 

roxiniations appear quite idealized in comparison with the images of Bentz et al. (2002) 

they are probably more realistic than the spherical hypothesis. For the remaining phases, 

iely initial capillary pores and AFm, the defau lt value taken for c; is the spherical one: C,Sph 

J. The schematic micromecbanieal representation obtained with the equivalent spheroids 

uccd from these novel approximations is illustrated on the left-hand side of Fig. IL 15. 

ig. U.20 recapindates the different results obtained by tbe micromecbanical models and 

1erical simulations. In the sound case, the model with spheroidal inclusions does only 

improve modestly on the model with spherica l ones except when the concentration of 

!lnhydrated clinker is high. These results confirm the previous curve on Fig. U.18 showing 

t the morphologies of UC, CH and AFt do not strongly affect the effective properties of 

111und HCP. The present estimate becomes of higher interest for early-age cement pastes 

where the amount of clinker is particularly high. Otherwise, it is perhaps not worthy to take 

IPhcroidal shapes for clinker, ettringite and portlandite, the spherical assumption already 

l'or the leached cases, the present estimations with spheroidal inclusions arc closer to the FE 

simulations than the ones with the spherical particle approximation except for the CEM [I/A 

w/c ~ 0.25 paste but both diverge significantly from the numerical results for volume 

fractions of capillary porosity higher than 35%. This improvement tends to prove that the 

proposed approximations constitute a better alternative to the spherical assumption. More 

precisely, in the micromechanical representation illustrated on Fig. 11.l 5a), portlandite, 

cttringite and clinker are no longer idealized by spheres but are presently approximated by 

spheroids with an estimated shape parameter. Compared to the spherical case, the elongated 

spheroids of ettringite and the flattened ones of portlandite weaken the leached cement pastes, 

While those of unhydratcd clinker tend to stiffen the effective material. Fig. JI. I 9 reveals that 

the detrimental impact due to the oblate shape of portlandite prevails on the stiffening effects 

due to the asphericity of unhydrated clinker and leached Aft. Therefore the variations 

between the two micromechanica l estimations are mainly due to the strong influence of 

k:achccJ ponlanditc shape. It should be underlined that, though its shape is negligible in sound 

HCP, it becomes a significant data for leached ones. 

However, 'the present model is still insufficient to predict correctly the effective elastic 

Pl'op.,:rties of leached HCP with high volume fractions of capillary porosity. As the material 

degrades, this porous phase is not only composed of the initial capillary pores but also of the 

'P~ce left by dissolved hydrates such as CH and AFt, whose shapes inside the HCP 

~cro~1n1cturc arc difficult to describe. The shape parameter may not incorporate sufficient 

tnfonnation on the inclusion morphology. In addition, the values of c; estimated for UC, CH 
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and AFt in the previous section are perhaps too approximate, even though they provide better 

results than the spherical one. The latter values were introduced in order to give an example 

illustrating the limits of the spherical particulate assumption and more precise quantitative 

data for the morphological parameter are necessary to build a sound homogenization model 

There is presently a lack of quantitative data cooceming the hydrate shapes but better 

estimations could be obtained by characterizing more accurately their morphologies, for 

example with the help of the Visual Cement Database and the shape analysis techniques 

developed recently (Bentz et al. 2002; Garboczi 2002). It constitutes a promising field of 

investigation for future improvement of the homogenization processes. 

Nevertheless, even if it were ideally possible to directly integrate the exact shapes of all 

elementary phases in the homogenization process, it is not guaranteed that micromcchanicat 

estimations of the effective elast ic properties would be fu lly accurate. Indeed, the fOD 

effective medium approx imations may fa il to adequately account for interactions between 

high ly-concentrated porous inclusions (e.g. Berryman and Berge 1996). 

5.4 Conclusions of ch apter S 

In the present chapter, the influence of inclusion shapes oo the effective elastic properties of 

HCP has been examined by successively modeling each particulate phase as spheroids, whose 

shape ranges from needle-like to disk- like. The validity range of the spherical inclusion 

approximat ion in the homogenization process applied to both sound and leached HCP has also 

been assessed. For this purpose, the estimations obtained with both spherical and spheroidal 

inclusions are compared to the results of Kama Ii (2003) by FE simulations. On the one hand, 

the spherical particle simplification tums out to be suitable for sound pastes. On the other 

hand, our work evidences the limits of the spherical assumption for leached pastes. The 

significant e!Tects observed for the add itional capillary porosity formed by leaching of 

hydrated products shows the necess ity of better approaching the morphologies of dissolved 

phases such as portlandite. 

Furthermore, an analytical way has been proposed to integrate more realistic inclusion 

morphologies in homogenization estimates. The key point of this method is the introduction 

of the morphological pa rameter c;, wh ich corresponds to the nomializcd characterizations of 

the ratios between the volume and surface of inclusions. This parameter appears as the most 

important one after volume fractions. Approx imate values of<; for particulate phases such as 

clinker, portlandite and ettringite are proposed on the basis of experimental results. These 

phases are then represented by equivalent spheroids. This procedure allows for conveniently 

coupling experimental observations and micromechanical modeling. The explicit 

micromechanical estimations thus obtained for the effective elastic properties of MCP are 
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shown to give better results than those performed with the spherical approximation. However, 

they are still insufficient for degraded cement pastes with capillary porosity higher than 40%. 

Three reasons arc possible for these shortcomings. [t could first be due to intrinsic 

insufftciencies of the IDD micromechanical estimate. The latter might fail to properly account 

for interactions between highly-concentrated inclusions. The application of a generally more 

accurate scheme, like GSCS, may be of interest. Secondly, tbe convenient use of spheroids 

detennined by means of the morphological parameter presents the considerable advantage of 

providing an analytical model but it may have its limits to approach fairly complex shapes. 

Moreover, the values proposed for this parameter are very approximate due to the lack of 

complete morphological information on hydration products. The further development of 

three-dimensional image analysis methods (Garboczi 2002) should give the opportunity to 

better characterize the morphology of inclusion phases, in particular for portlandite, and might 

lead to improvement of homogenization methods in the field of cementitious materials 

durability. 

The third reason is that the one-scale representations depicted in ~·ig. 11.15 may be too simple 

to correctly describe the complex microstructure of HCP, which heterogeneities manifest 

themselves at different scales. Therefore, the next chapter aims at building a more real istic 

multi-scale homogenization model for cement-based materials and in particular for HCP. 

6 CONSTRUCTION OF A MULTI-SCALE HOMOGENIZATION MODEL FOR 

ESTJMATJNG T HE ELASTIC PROPERTJES OF CEMENT-BASED MA TERJALS 

As already pointed out in Part I, the characteristic sizes of the phases composing HCP range 

from the nanometer to micrometer scales. The scope of the present chapter is to investigate 

the possibility of improving the micromechanical estimations of elastic properties of HCP by 

integrating some significant information about the different sizes of its particu late phases. for 

this purpose, the different micromechanical descriptions of cement pastes proposed in 

literature are first reviewed. 

6.1 A mult i-scale approach for estimating t he elastic effective properties of HCP 

6. J. / Review of tlte existi11g micro111ec/1a11icul models for ceme11t pastes 

To our knowledge, the application of micromcchanics for estimating the isotropic linear 

elastic effective properties of cement pastes dates back to Zimmerman ( 1986). They modeled 

liCP as a two-phase composite consisting in a solid matrix weakened by spheroidal pores and 

employed the KT estimate to compute its elastic properties. A homogen ization attempt for 

Cis Pastes was also performed by Neubauer et al. (1997) using the differential scheme (e.g. 

Norris 1989) but mechanical input values for the CSl-l phase were lacking. Owing to progress 
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in experimental mechanics, elastic properties of all the main phases present in HCP are 

nowadays measurable by nanoindentation techniques and many data may be found in the 

literature (see Table 1.3). Benefiting from these recent nanoindentation measures, a two-step 

homogenization procedure for HCP cm the basis of the MT model has been developed by 

Constantin ides and Ulm (2004). Their Young modulus estimations for both sound and leached 

OPC type I pastes with w/c = 0.50 showed good agreement with experimental results. Bernard 

et al. (2003) used the same two-scale description of microstructure and the self-consistent 

scheme to study early-age cement pastes and predict the solid phase percolat ion during 

hydration process. They also obtained resu lts consistent with experimental values. 

Constantinides and Ulm (2004) distinguish two microstructural levels respecting the scales 

separation condition: the first one denoted as l and ranging from I 0 nanometers to 0.1 

micrometer is characteristic of the two types of CSH, while the second designated by JI and 

varying from I micrometer to 100 micrometers corresponds to the scale where CSH can be 

regarded as a homogeneous matrix with Cl I crystals, capillary pores, anhydrous residuals and 

aluminates as inclusions. The first step consists in calcu lating CSH matrix effective properties 

from CSU'"' and CSHcx' intrinsic values and the second one is to determine HCP effect ive 

properties wi th the aid of the previous result for CSH matrix. 

At level I, the CSI I matrix behaves as a heterogeneous material with an inclusion-matrix type 

microstructure. The CSllex1 play the role of a matrix phase, surrounding the CSH;"' as 

inclusion. According to Constantinides and Ulm (2004), the latter phase modeled as spherical 

inclusions has a characteristic size of I o·8 to 10·7 m. However, according to some authors 

(Taylor 1997; Richardson 2000; Bary and Bejaoui 2006), the distinction between CSH'"' and 

CSH'" sh?uld be done only at a higher scale since these phases fom1 successively from 

cement grain surfaces, the CSH"" resulting main ly from higher confinement conditions and 

from water accessibility during hydration reactions. At level U, the main phases are the 

homogenized CSH, capillary pores, clinker residuals, and hydrated phases such as CH 

crysta ls, A Ft and AFm. Precisely, the CSH act as a matrix phase in which the other phases are 

embedded and play the role of inclusion. The next section is devoted to the construction of 

another multi-scale model that aims at representing more faithfu ll y the microstructure of 

cement pastes. 

6.1.2 Co11structio11ofa11111lli-scale lro111oge11izatio11 mode/f(}r HCP 

The proposed two-scale descrif1tion of HCP is inspired by the one developed by Bary and 

Bcjaoui (2006) for diffusion. Two microstructura l levels respecting the scales separation 

condition arc presently distinguished: the first ranging from a few tens of µm to about I 00 ~nn 

is typical of the sizes of hydrated cement grains, while the second one ranging from 0.2 µm to 

a few tens of µm corresponds to the scale of hydration products, such as CH or AF, and of 

capillary pores. These two sca les arc respectively denoted as I and II. 
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The level I corresponding to the biggest scale of HCP is described first. This level depicted in 

Fig. JI.22 represents the hydrated cement grains. During the hydration of cement particles, 

two layers presently defined as inner and outer layers form successively from cement grains 

surface. The inner layer is less porous than the outer one, since the first one results from 

higher confinement conditions and from poorer water accessibility during hydration process. 

Generally, an anhydrous part of the cement particles remains after hydration has stopped and 

constitutes a rigid core surrounded by these two heterogeneous layers. The GSCS and 

modified DIM derived in the present manuscript are the two most suited effective medium 

schemes for estimating the elastic properties of composite with layered inclusions, as 

evidenced in subsection 4.4.2.2, and are thus employed to compute such a model of 

microstrucrure. The present description is based on the assumption that the cement grains 

supposed initially spherical hydrate forming doubly-coated spheres that fill tbe HCP 

microstrncture. The spherical particle approximation was shown to be reasonable for 

modelling unhydrated clinker in the previous chapter. 

The level II also depicted in Fig. 11.22 corresponds to the scale of the heterogeneities of the 

two layers. (t is commonly accepted that two different types of porous CSH are associated 

with each layer. ln the inner layer, the CSH;"' behave as a matrix phase embedding inclusions 

of CH and aluminatcs. Similarly, the external layer has matrix-inclusion type morphology, 

where CH, the aluminates and the capillary pores play the role of inclusions enclosed in the 

CSH""'. During hydration, the outer coatings of the hydrated cement grains expand so that 

they get in contact with each other and we can assume that the capillary pores get entrapped in 

the outer coatings. The two layers, schematically illustrated on Fig. Jl.22, are estimated hy 

means of the IDD estimate that is appropriate for materials with matrix-inclusion morphology. 
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Figure Il.22: Schematic of the levels I and JJ oftlte two-scale representation used for the 
estimation of tlte effective elastic properties of HCP. 

6.1.3 Predictions oftlte elastic properties of.wmntf anti leacltetf HCP 

The estimations of the elastic moduli of HCP by the present multi-scale homogenization 

model arc validated by respectively comparing wi th the numerical results from Kamali 

(2003), two experimental results on sound pastes (Constantin ides and Ulm 2004; Galle ct al. 

2004) and one on uniformly leached ones (Constantinidcs and Ulm 2004). Other experiments 

conducted by Cardc (I 996) and Galic ct al. (2004) have measured the st.iffness reduction of 

HCP due to leaching. However, their results are not used for the present validation, because 

the degradation state of the CSH inside their chemically altered samples may not be uni form. 

The volume fractions of the HCP elementary phases collected in Table J 1.3 arc computed by 

means of the Jennings model (sec Eq. (1. l)}, the total porosity being adjusted with the total 

water porosity measured experimentally. The volume fraction of capil lary porosity is taken 

from the experimental results of Jgarashi et al. (2004}. 
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Volume fractions in % 

CEM I 52.5 OPC type I p aste 
(Galle et al. 2004) (Constantinides and Ulm 2004) 

w/c = 0.45 0.50 

Hydration rate 0.87 0.77 

CH 15. l 11.3 
CS Hin• 21.6 15.6 

CSH""' 28.8 42.8 

UC 4.3 5.0 

Aluminates 14.2 6.3 

CP 3.6 6.0 

Porosity(%) 3 1.9 38.5 

Water porosity(%) 32.6 39.7 

Table JJ.3: /11p11t volum e fractiom; of principal hydrates, 1111/iydrated clinker a11d 
capillary porosity for hvo differe111 H CP. 

Constantinidcs and Ulm (2004) measured that the stiffness modulus of a un iformly leached 

OPC type I paste decreased to about 3 GPa representing a 84 % decay. To obtain a unifonnly 

degraded paste, the sample with a diameter of I 1.5 mm was attacked by an ammoni um nitrate 

solution during 5 months. Inside this leached sample, Constantinides and Ulm (2004) 

furthermore asserted that even the CSH;.,, and CSHcxi reach a unifonn degraded state and 

measured by nanoindentation that their Young moduli dimin ish from 21.7 GPa to 3 GPa and 

from 29.4 GPa to 12 GPa, respectively. Their bu lk and shear moduli, designated by KcsH;,,,, 

Gcsm.,, for CSH1
"' and by KcsHw. GcsH.,1 for CSHc", arc immediately deduced from Eq. 

(11.102). The input elastic parameters for the two sound phases are then equal to Kc5111., = 18.8 

GPa, GCS111., = 11 .9 GPa and Kcsum = 13.9 GPa, Gcsum = 8.8 GPa, while their degraded elastic 

properties decrease to K~111., = 7. 7 GPa, G::S,"'" = 4.8 GPa and K~11 ..... = 1.9 GPa, G~s11,,, = 1.2 

GPa (the subscript I stands for leached state). All these modu li arc calculated supposing that 

the Poisson ratio of both phases is not sensitive to leaching and remains equal to 0.24 

(Cons1antilliclc.5 and Ulm 2004). This approximation is made due to the lack of experimental 

data on the Poisson ratio. 

Fig. ll.23 displays the effective Young moduli estimated for sound pastes and a unifom1ly 

leached one and shows that they are in good agreement with the experimental data from 

Constantillides and Ulm (2004) and from Galic et al. (2004). It is worth noting that the 

:tiniations of the multi-scale model computed respectively with modified DlM and GSCS at 

~cl ll (Fig. 11.23) are presently almost confonded due to the scarce volume fractions of 
ehnker · 

residuals. Experimental data on elastic properties of uniformly degraded pastes are 
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difficult to find, since these experiments cost a Jot of time. To further validate the multi-scale 

homogenization model, it is now proposed to confront its predictions with the numerical 

resuhs ofKamali (2003). 
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Figure Jl.23: Comparison between the effective Young moduli estimated by the m ulti-scale 
model with experimental measurements (Consta11tiflides and Ulm 2004; Galle et al. 

2004) on both sound and degraded H CP. 

The input mechanical data required for compuling the multi -scale model are the same as those 

employed by Kamali (see Table 1.3) except that in the micromechanical model the CSH gel is 

modelled as two phases, CSHint and CSH""', which elastic moduli are given just above. ln 

addition, the relative volume fractions of these two types of CSH are computed by means of 

Eq. (1.2) with a hydration rate assumed equal to 0.60. The predictions of the multi-scale model 

for the macroscopic Young modulus of undecalcified pastes are plotted in Fig. ll.24 and are 

very close to the numerical results. Two different schemes, namely modified DIM and GSCS, 

have been employed to compute the elastic properties of level 11 of the model. The GSCS 

provides the closest estimations to the FE results. The mean deviation between the results 

obtained with the modified DIM and with the GSCS and the numerical ones are about 3 % 

and 7 %, respectively. 

In order to compute the multi-scale model for the case of partially leached pastes simulated by 

Kamali (2003), it is necessary to know the volume fractions and the elastic properties of 

degraded CSH'"' and CsH•''. It has been observed that the relative amount of both CSH types 

seems not to change when leaching occurs (Constantinides and Ulm 2004; Thomas et al. 

2004). It is furthennore assumed that the CSH elastic moduli are not affected by 

dccalcification as in the simulations of Kamali (2003). This approximation may be j ustified 
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by the fact that the progressive evolution of their elastic properties during the leaching process 

. difficult to characterize experimentally. Velez ct al. (2001) showed by means of 
IS 
panoindcntation tests that the Young moduli of the partially decalcified CSH do not 

significantly change especially if their C/S ratio is superior to I. 
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Figure 11.24: Evolutions of the effective Young moduli estimated by the multi-scale model 
and by FE simulations (Kamali 2003) for both a) sound and b) partially degraded HCP 

as a function of capillary porosity volume fraction. 

The mean deviation with respect to the numerical simulations is about 12 % for both 

estimates. However, the estimations computed with the modified DIM can deviate by more 

than 30 %. whereas those c~mputed with GSCS do not. Therefore GSCS that is a little more 

accurate than the modified DIM is chosen in the ensuing computations of the multi-scale 

homogenization model. 

Better predictions plotted in Fig. Jl.25 can forthennore be obtained by adopting spheroidal 

inclusions with aspect ratio r = 0.25 to represent CH phase, the mean deviation then becomes 

about 7 % for the estimations obtained with GSCS. By confronting Figs. ll.20, 11.24and11.25, 

it seems that the shape of the inclusion modell ing portlandite has a moderate influence on the 

micro1nechanical predictions except in the particular case of leached pastes with a capillary 

porosity higher than 30 %. The use of oblate spheroidal inclusions instead of spheri cal ones in 

lbc multi-scale homogenization model then leads to a visible improvement of the estimations 

for the Young modu li of such porous pastes. Ho\vever, CH will be modeled in the ensuing as 

a Spherical inclusion for simplicity but also because of the difficulty to characterize the real 

lhapc of Portlandite crystals present in HCP microstructure. 
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By further comparing Figs. 11.24 and 11.25, the estimations of the proposed multi-sca le models 

obtained either with spherical or spheroidal Cl I incl usions can both be seen to significantly 

improve on the predictions of the Constantinides and Ulm model (Fig. 11.25). Two main 

reasons may explain these improvements achie ved with the present multi-scale model in 

comparison with the Constantinidcs and Ulm one. First, the effecti ve elastic properties are 

computed with OSCS at level I and the 100 estimate at level II, wh ich have both been shown 

prcccdcntl y to be more accurate than the MT model usually employed (see Figs. 11.13). 

Second, the present two-scale description of HCP microstructure may be more realistic than 

the representation proposed by Constantinidcs and Ulm (2004). 

6.2 A multi-scale approach for estimating the macroscopic elastic prop er ties of mortars 

T he app lication of homogen ization methods to mortars is complicated by the lack of 

experimental data on rrz elastic properties. To circumvent this difficu lty, many authors have 

estimated these characteristi cs of ITZ from experimental values or mortars by inverse analysis 

employing for instance GSCS (e.g. Ramesh ct a l. 1996; Hashin and Monteiro 2002) or DIM 

(Yang 1998) as upscaling methods. Unfortunately, very different values have been identified 

for t)1e Young modulus of ITZ from one author 10 another, as pointed out in Eq. ( 1.5). An 

altemati ve multi-sca le homogenization approach based on the modified DIM presented 

previously is proposed to pred ict the elastic propert ies of mortars without having to estimate 

the elastic modu li of ITZ by inverse analysis. 

In addi tion, the total volume fract ion occupied by this zone is also difficult to gain 

experimentally and also has to be estimated. The predicti ons for the volume fraction of ITZ 



Part IJ: Prediction of the elastic properties of cemcnl-bilSOO materials Page 83 

fluctuate from one author to another depending for instance on the method employed and on 

the thickness retained for ITZ. As an illustration, the values estimated can vary from about 8 

o/o (Sun et al. 2007) to 30 % (Heukamp 2002). The use of statistical models (e.g. Lu and 

Torquato 1992) taking into account the overlapping between these transition zones is 

generally required to compute accurately this volume fraction. The multi-scale model 

developed below furthermore presents the salient feature to be computable without having to 

look after the volume fraction of rrz. 

The use of GSCS represented in Fig. 11.4 is widespread to predict the elastic properties of 

mortars (e.g. Ramesh ct al. 1996; Hashin and Monteiro 2002). In the present work, mortars 

are represented as a more detailed multi-scale microgeometry depicted on Fig. 11 .26. Diverse 

coated spheres having different sizes are nested inside a matrix region filled by the bulk 

cement paste. The coated-spheres are defined as follows: the core and the outer layer are 

respectively occupied by sand particles and lTZ. A few representative grains of different sizes 

are chosen to discretize the wide size distribution of sand particles with the aid of 

experimental data on the mortar grad ing. The grading curve of the mortar characterizing the 

granulometry of its sand particles is generally provided by the producer. As an example, the 

mo11ar with fine Nevada sand particles employed by Heukamp (2002) is chosen for the 

present study. Three representative sizes of sand particles, with radii R, = 0.085 mm, R2= 0.20 

mm and R3 = 0.315 mm, are adopted to represent the sand aggregates of this mortar, on the 

basis of the grading data of Heukamp (2002) collected in Table 11.4. The total volu me fraction 

occupied by sand is about 50 % (Heukamp 2002). 

Size of sand Relative 
particles proportion 

0-0.17 mm 30% 
0.17 - 0.23 mm 30% 
0.23 - 0.50 mm 40 % 

Table 11.4: Grading of the fine Nevada sand used for mortars by Heukamp (2002). 
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Figure ll. 26: Schematic of the representation used/or the estimation of the effective elastic 
properties of mortars. 

The thickness of ITZ inside a given mortar is genera II y observed to remain constant 

regardless of the aggregate sizes, according to diverse experimental observations (Heukamp 

2002; Monteiro and Ostertag 1989). In the present description, this thickness is consequently 

assumed to be constant and equal to 20 µm (Heukamp 2002). The volume fractions occupied 

by JTZ obtained with the present representation is 21. 7 %. 

The Young modulus and Poisson ratio of sand aggregates are respectively equal to 62.5 GPa 

and 0.21 (l-l eukamp 2002). The elastic properties of ITZ and I lCP can be computed by means 

of the previous two-scale model depicted in Fig. 11.22. However, a few assumptions on how 

the diverse phases arc dispersed in ITZ and HCP are necessary. 1 leukamp (2002) measured 

that the water porosities of plain cement paste and mortar were equal to 39.7 % and 27.5%, 

respectively. For simplicity, the cement matrix in mortar is supposed to have exactly the same 

composition as the plain cement paste, wh ich composition is given in Table IJ.4. As a 

consequence, only 11.2 % of the mortar porosity is entrapped ins ide the cement matrix 

representing 28.7 % of the mortar in terms of volume fractions, the rest of the porosity being 
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scattered in ITZ. The porosity thus obtained inside JTZ is about 75 %. Because of this high 

porosity, dense phases like CSH;., and UC are not likely to be present in ITZ. Therefore, the 

only solid phases inside ITZ are assumed to be CH, aluminates and CS Hex' that act as a matrix 

(Fig. JI.26) and contain about 36 % of gel pores (Jennings et al. 2007). The respective volume 

fractions of CH and aluminates in ITZ are considered to be identical to the ones in HCP. The 

respective volume fractions of capillary pores, CSHex', CH and aluminates inside ITZ are thus 

equal to 70.7 %, 11.6 %, l 1.3 % and 6.3 %. The elastic properties of lTZ are computed by 

means of the IDD estimate in Eqs. (U.43-44) and the HCP elastic moduli are estimated by the 

multi-scale model developed in the precedent section. The elastic properties of the mortar are 

then predicted from Eqs. (II.95-96) with the aid of the previous results for ITZ and HCP. For 

the sake of comparison between GSCS and modified DIM, the GSCS with one size of 

aggregates is also employed to compute the elastic properties of the mortar. The different 

estimations thus obtained for the Young modulus of these difforent composites are collected 

in Table 11.5 and compared with experimental data (Heukamp 2002). 

Phases Young modulus Young modulus 
predicted (GPa) predicted (GPa) Experimental 
with 3 sizes of with 1 size of Measures (GPa) 

a!!gre!!atcs av<>rc!!ates 
Sound Leached Sound Leached Sound Leached 

ITZ 4.6 2.8 4.6 2.8 - -
HCP 23. 1 3.0 23.1 3.0 22.8 3.5 

Mortar 25. I 3.7 27.4 5.3 25.1 4.8 

Table 1/.5: Comparison of the micromechan ical estimations with experimental data 011 

cement pastes a11d mortars (Heukamp 2002). 

Good agreement is found for the different micromechanical predictions with the experimental 

mcasuremems but the Young modulus of the uniformly leached mortar is somehow 

underestimated by the various models. This may be due to an excessive porosity inside ITZ 

auaining more than 90 % in the present representation. The modified DIM with three different 

types of aggregates gives the closest estimation to the experimental result on sound mortar, 

While GSCS is the most accurate in the case of uniformly leached mortar. Despite the fact that 

the modified DIM with three diverse sizes of aggregates provides the best predictions of the 

Yound modulus of the sound mortar, the GSCS will be employed in the ensuing Parts for 

cornlluting the elastic moduli of mortars for two motives. First, it is more coherent to adopt 

the same scheme for estimating both the effective properties of HCP and mortars. Second, the 

llnllling of the involved mortars may not always known precisely, so that it is not possible to 

use the modified DIM with diverse sizes of sand gra ins. 
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CO NCL USIONS O F PART II 

The first goal of the present Part is to expose some of the fundamental aspects of 

homogenization techniques and review in a non exhaustive manner some EMTs that may be 
of interest for predicting the linear elastic properties of cement-based materials. By assessing 

these methods using different criteria and by testing their accuracy on particular cases that 

have computed numerically, a small set of EMTs, like JOO, GSCS and the modi fed DIM, are 

outlined to present valuable features for estimating with a good precision the elastic moduli of 

cement-based materia ls and arc reta ined for the construction of a homogenization model 

specifically suited for these composites. According to the authors' knowledge, the modifed 

DIM proposed in the present manuscript by revisiting the double-inclusion scheme of Hori 

and Nemat-Nasser ( 1993) has not been derived elsewhere. 

The influence of inclusion shapes on the micromcchanical estimations of the effect ive elastic 

properties of' I ICP has then been investigated. This study puts in evidence the fact that the 

inclusion shapes of phases such as portlanditc have a visible impact on the predictions of the 

macroscopic Young moduli of leached pastes. However, it also appears possible in most cases 

to approximate the particle phases of HCP as spherical inclus ions, even though their real 

shape inside the microstrucn1re of cement pastes (see Figs. 1.2 and 1.3) are far from being 

spherical. 

On the basis of the set of EMTs retained from the preced ing review, a two-step 

homogenization model is finally developed for tl1c prediction of the macroscopic elastic 

properties of HCP ancj mortars and validated by confronting with experimental measurements 

perfonned on standard pastes and mortars. The developed model is forthcnnore applied to 

cement pastes and mortars submitted to leaching. 
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Appendix A: Input data for the comparison between EMTs and numerical simulations 

'fhe basic input data of the simulations ofGarboczi and Berryman (2001) and ofWriggers and 

]IJoftah (2006) are gathered below. 

Phases E lastic properties 

E (GPa) v 

Type I 62.0 0.2 
aggregate 

Type II 74.5 0.2 
aQl!regatc 

Mortar 11.6 0.2 

Table II.A. I: Basic input data for the sim11/atio11s of Wriggers and Moftah (2006). 

Phases Volume fraction s Elastic properties 

E (GPa) v 

Sand 0.09 1 5 0.2 
aggregates 

ITZ 0.392 - 0.3 
HCP 0.5 17 I 0.3 

Table lJ.A.2: Basic input data/or the simulations o/Garboczi and Berryman (2001). 
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Appendix Jl .B: Non-overlapping condUion and dete r mination of t he double.inclusion 
geometry for highly concent rated spheroidal inclusions 

If an inclusion overlaps its double-inclusion, the homogeni7.ation calculations fail to Worf<. 
The inclusion volume fraction c1 is represented by the ratio of inclusion vol ume on the 

double-inclusion one. When r, '# I, the condition on volume fractions which has to be 
respected in order to avoid overlapping of inclusions reads (Ponce-Castaneda and Willis 

1995): 

Jc,.=;~ =r1 (r1 < 1) 

V l' I ) ' c - I - (1; >I) ,. - Vo, - -;:; 

(11.B I) 

T hese equations express 1he condition for tl1c spheroidal inclusion not to overlap lhe double­
inclusion (see Fig. JI.B.I). The use ofa spherical double-inclusion enclosing spheroids has lhe 

consequence that c, Sc,, . Note that this condition is even more restrictive for prolate 

spheroids than for oblate ones due to the presence of the square in the expression (11.B 12) of 

c, • . 

For concentrations higher than c1, , lhc double-inclusion can no longer be iakcn as spherical. 

To avoid any risk of overlap, it is sufficient to adupt its geometry to the inclusion one (see 

Fig. 11.B.I). Its aspect ra1io rm is suitably chosen so that the !DD remains valid for any 
concentration as illustrated on Fig. !J.B. I. 
In other words, the determination of the double-inclusion geometry is now linked to the 

choice of inclusion shape. 111c IDD estimale taken with such a shape for the double-inclusion 
works for any concentration and is called the full-range IDD (Zheng and Du 2001). 
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• Oblate spheroids: 

c1 <!: r1 

• Prolate spheroids: 

rDI = I 

Figure /J.B. I: Schematic illustrating tire 11011-01•erlapping co11dition and the variatio11 of 
tltt! do11hle-i11c/11sion geometry with tire volume fraction of a particulate phase represe11ted 

respectively by oblate u11d prolate spheroids. 
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Part Ill 
PREDICTION OF THE MACROSCOPIC DI FFUSIVITI ES OF 
CEMENTITIOUS MATERIALS 

The macroscopic diffusion coefficients of dissolved chemical species such as chlorides or 

sulfates in saturated cementitious materials control the degradation process of these materials. 

Therefore U1ey represent important data for predicting the serv ice life of cement-based 

materials, wh ich can serve as engineering barriers for the disposal of nuclear waste. 

Homogenization models aim at estimating the macroscopic diffusion coefficients of 

cementi tious materials from their microstructure and their phase diffusive properties. The 

present Part is concerned with the construction of a homogenization model for predict ing the 

effective diffusivities of cement-based materials. As already mentioned in Part I, these 

materials are complex multi-scale porous media, where the pore size distribution varies by 

several orders of magnitude (from I nm to more than IO µm). On the basis of these 

observations, a multi-sca le approach is adopted to deal wi th such a porous medium as in 

linear elasticity (e.g. Constantinidcs and Ulm 2004). 

Some theoretical connections ex ist between elasticity and diffusivity. An elasticity problem 

can be decomposed in three diffusion problems (Milton 2002). Hence, the derivations 

exhibited in the present Part are generally much simpler than the ones presented in the 

previous Part. Nevertheless, it does not mean that the development of a homogenization 

model for predict ing the effective diffusive properties of cement-based materials is a simple 

task, s ince the fact that the derivations in diffus ion arc easier than in linear elasticity is 

compensated by other difficulties. Indeed, much less information seems to be available on the 

phase diffusivities than on their elastic properties in particular for the CSH. Another difficulty 

for building a suited homogenization rnodel for concrete materials consists in reproducing the 

highly non linear changes of their transport propert ies measured experimentally as their total 

porosity varies (e.g. Oh and Jang 2004). 

The present Part is organized as follows. The first chapter assesses the capacity of matrix­

inclusion type methods tbat have been focused on in linear elast icity to face th is aspect. ln the 

second one, other theories (Bergman 1976; Bnaggeman 1935; Kirkpatrick 1971; 1973) more 

adequate for predicting these non-linear effects arc discussed. A novel estimate for the 

transport properties of random heterogeneous media, such as conductivity and diffusivity, is 

then proposed by exploiting the main ideas underlying a ce lebrated exactly solvable 

assemblage of I .lash in and Shtrikman ( 1962). For random heterogeneous media consisting of 

high contrast phases, the derived estimate is apt to capture the sudden variations of the 

effective diffusivity of HCP generally observed experimentally (Fig. 1.5). The third chapter 



Part 111: Prediction of 1he macroscopic diffu~ivities of cementitious materials Page 91 

presents the multi-scale homogenization approach incorporating the latter estimate developed 

for predicting tbe macroscopic diffusion coefficients of HCP and mortars. The model 

developed will then be implemented into the ALLIANCES platform (Montarnal et al. 2006; 

z001) so as to perform simulations of chemical degradations of cement-based materials 

presented in Part V. 
By diffusion, we mean mass transfer generated by concentration gradients of aqueous species 

through saturated materials. The resu lts obtained for diffusion are directly transposable to 

ocher transport properties such as electrical or thermal conductivity. 

7 REVIEW OF MATRIX-INCL USION T YPE EMTs FOR PREDICTING TH E 

OJFFUSIVITIES OF POROUS MEDJA 

This chapter aims at assessing if the matrix-inclusion type EM Ts, already presented in Part 11, 

arc suited for estimating the macroscopic diffusive properties of porous media. The equations 

necessary for deriving these EMTs in the case of diffusion are quite alike the ones presented 

in the previous Part except that second-order tensors are now involved instead of fourth-order 

ones (Milton 2002), so that only the most basic or important ones are presently recalled. 

7.1 Fundamenta l principles of matr ix-inclusion type EMTs 

The computations presented are analogous to the one performed in linear elasticity. However, 

the basic formulae necessary for applying homogenization methods are recalled for clarity. 

7.1. I Ge11er11l principles of homoge11izatio11111etlrods 

The first seep of these methods consists in representing the microstructure of the concerned 

material by a R VE, such as the one depicted in Fig. JI. I, composed of a matrix phase, indexed 

by M, and of P particulate phases, wh ich are assumed to be individually homogeneous (Fig. 

11. i). Their diffi.1sion tensors are respectively denoted as 0 , (r = I, .. ., /'). The same notations 

are used as in the previous Part. 

The RVE is subjected to unifonn ions flux vector over its surface oV: 

J.(x) = .r.n, 'efxe av, (Ill . I) 

Where J.(x) denotes the ions flux vector at a given point x of the surface and J~ is a uniform 

flux vector. The operator ' .' indicates a simple contr~ction. At the scale of the heterogeneities 

ofche RVE, the equilibrium Jaw and Fick's constitut ive one take the fonn: 

div(J(x)) = O, 'ifxe V, 

J(x) = - D(x). g(x), 'ifx e V, 

(1112) 

(lll.3) 
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where J (x), D(x) and g(x) designate the microscopic flux vector, diffusivity tensor and 

concentration gradient of ions at a given point x of the RVE, respectively. The macroscopic 

flux tensor J is defined as the volume average < J >v of the microscopic one J over V and 

can be shown to be equal to J - : 

J =_!_ f J ( x)dV = J·. 
Vv 

(111.4) 

The ensuing relation is also obtained from Eq. (Jn.3) by performing averaging operations on 

the entire volume of the RVE: 

g=-D· ' .J ' (111.5) 

where J and g arc respectively the averages of the microscopic flux and concentration 

gradient tensors on the total volume of the RVE. Estimations of these averages by means of 
the diverse homogenization techniques presented before then allows for predicting the 

effective diffusivity tensor o· of the material. In the ca~e of a macroscopically isotropic 

composite, the latter tensor may be written as: 

o· =10· 1 
' (111.6) 

3 

where I is recalled to be the second order identity tensor and D' is a sca lar. 

7. 1.2 Prese11tatio11 of the Es/le/by problem 

7.1. 2. I Presentatio11 of the Eshelby theorem 

The Eshelby theorem presented in subsection 4. 1.2 is also applicable in diffusion and is 
therefore briefly recalled below. A homogeneous ellipsoidal inclusion /, occupying a domain 

VJ and having for diffusivity tensor D,, is enclosed in an infin ite matri x, which diffusivity 

tensor is denoted as 0 ,.,. The concentration grad ient through this single inclusion subjected to 

a fictive concentration gradient g·, which is unifonn inside the inclusion and vanishes 

outside, is unifonn: 

(Ill. 7) 

where A 1 is called the Eshclby or the depolarization tensor (e.g. Torquato 200 I ) of the 

inclusion I expressed as: 

(A1 l, = J r ,,(y - x )dV,. , (111.8) ., 
where the operator r • (y - x) is related to the Green function G _. (y - x) by: 

r. (y - x)=G. (y - ~ ) . ( 111. 9) 
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'Jbe Eshelby tensor thus links the concentration gradient inside the homogeneous ellipsoidal 

joclusion surro.unded by an infinite medium to its fictive concentration gradient. The main 

Jintit of this fundamental theorem is that it is restricted to ell ipsoidal inclusions in its original 

form (Esbelby 1957). The Eshelby tensor is generally quite difficult to determine analytically 

but has a very simple expression in the spherical homogeneous inclusion immersed in an 

infinitely large isotropic matrix (e.g. Torquato 2001; Milton 2002): 

A, ==l t. (111.1 0) 
3 

Tue Eshelby tensor of a spheroidal homogeneous inclusion also presents the benefit of being 

analytically calculable (e.g. Torquato 200 I) and its expression for a spheroid with aspect ratio 

r which revolution axis is oriented along the e3 axis, is: 
' 

A,=[~ ~ ~ ], 
0 0 l-2Q 

(Ill.II) 

~[I+ ,.2

1_,[1- 2~ 1n(:~~)Jl 
with Q = 

ptan·•(J, : r , )Jl 
r;::: l ; 

.!.[1+-1 [1 
2 r' - I 

r ;S; I. 

7.1.2.2 Extension of the Eshelby tensor to spherical isotropic inhomogeneities 

On the basis of the work of Duan et al. (2006) in linear elasticity, the Eshelby tensor in 

diffusion for a spherical isotropic inhomogeneity with a homogeneous sl)elr (see Fig ll.2) 

embedded in an infinite matrix is derived in Appendix III.A. By introducing the quantity Pf 
called "polarizibility" by analogy wi th dipoles in electricity defined as (e.g. Torquato 200 I) : 

a1 _ D1 -D1 
µ, - , 

D,+2D1 

(l[l.J2) 

. -u 
a simple closed-form solution is found for the Eshelby tensor denoted as A, of a spherical 

isotropic inhomogeneity with a homogeneous interphase enclosed in an infinite matrix, as 

depicted in Fig. 11.2: 

(Jll.13) 

With P == r, Ir,, where the radii 'i and r, have been defined in Part II (see Fig. 11.2). The 

Polarizibility Pf practically Jinks the perturbation of the concentration gradient due to the 

insertion of a fictive concentration gradient. lts use will be very pract ical to lighten the diverse 

EMTs presented in the ensuing. The latter formula is of great utility, since it allows for 



Pan Ill: Prcdic1ion of the rnacroscopic diffusivi1ies or cementitious materilll~ 

determining the average concentration gradient inside the domain occupied by the spherical 

inhomogeneity and its homogeneous interphase in response to a prescribed uniform fictive 

concentration gradient in the inclusion (Fig. II.2): 

- -"' . g, = A, .g' (lll.14) 

where the Eshelby tensor A.:' for the spherical inhomogeneity with its homogeneous 

interphase will be referred to as inhomogeneous Eshelby tensor in the ensuing (Duan et al. 

2006). 

7.1.2.3 Presentation of the equivalent homogeneous inclusion method 

First of all, let us consider the situation in which no heterogeneous inclusion is inserted in the 

infinite matrix with diffusivity tensor D.., , which is subjected to a uniform far-field flux J• . 

In such case, the flux field is everywhere equal to J- and the concentration gradient field is 

such as: 

0 _, J~ 
~ = .., . . (ID. 15) 

A heterogeneous inclusion I occupying a volume V1 with diffusivity tensor 0 1 is now inserted 

in this virgin medium and we are interested in calculating the average ii, of the concentration 

gradient field over V1• The microscopic concentration grad ient decomposes itself into two 

parts: 

gi{x) =g0 +g/{x), "Ix, (Jll.16) 

where g/{x) corresponds to the perturbation of the concentration gradient caused by the 

insertion of the heterogeneity. In order to apply the Eshelby theorem, the heterogeneous 

inclusion is assumed to be substituted by a homogeneous ficti ve inclusion with a diffusivity 

tensor denoted as O., that is subjected to an appropriate unifonn fictive concentration 

gradient g • . The latter must be chosen in such a way that the same average flux and 

concentration grad ient fields are obtained in the homogeneous fictive inclus ion and in the 

heterogeneous one: 

-J, = O,.g, = Ow(g, - g') and (Ill. l 7) 

By solving g· in (111.172) and substituting its expression in (llI.l 71) the following solution is 

obtained for ii, : 

g, =[1+A,.o,,, '.(o,- o.,)r' .g0 • (lll.l 8) 

By carrying out an analogous reasoning as in Eqs. (II.28-30), the vo lume average J , of the 

microscopic flux can be expressed as: 

- [ I J I = J + 0:1
• HI r . J ~' with 0:1 = 0 .,.(I - A I ) and HI = 0 ,-· - 0 " _, ' {111.19) 
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where 0~ is called the eigendiffusivity tensor of the single inclusion I embedded in the 

infinite reference medium by analogy with the eigenstiffness tensor in linear elasticity (Zheng 

and Du 2001) and where H, is the resistivity increment tensor of the inclusion. The 

eigcndiffusivity tensor 07 can be determined in the case of spheroidal inclusions by means 

of the expressions of the Eshelby tensor given in Eq. (TIT. I I). For more complicated cases, the 

Eshelby tensor usuall y has to be estimated numerically (Douglas and Garboczi 1995). The 

ensuing derivations are therefore limited to the case of spheroidal inclusions. The next section 

gathers the basic expressions for the effective diffusive properties predicted by the EMTs 

presented in Part II. 

1.2 Basic expressions of EMTs for estimating macroscopic diffusivities 

Various EMTs have been presented in depth in the previous section. The derivations of these 

methods for predicting the material effective diffusivity that are very simi lar to the ones 

written previously are not recalled for conciness. However, their final expressions are enlisted 

below. 

7.2.1 Classical matrix-inclusion type estimates 

In such type of EMTs, a matrix phase designated by the letter Mis supposed to enclose the 

other phases modelled as inclusions. As in Part II, the effective resistivity increment tensor H 

oftl1c heterogeneous material defined as follows is introduced: 

lJ = D.- I - D M -I . (ITl.20) 

The effective diffusivity tensor of the material can be immediately deduced from the 

knowlegde of this resistivity increment tensor: 

(Jll.2 1) 

By perfonning the same reasoning as in Eqs. ( II.32-34), the dilute model provides a s imple 

expression for estimating this effective resistivity increment tensor: 

H"' =" H JH with H"" = c H (t + 0 "' H ]-' ,L., r1 r rt" r " r • (lll.22) 
r 

It is recalled that the validity range of the dilute estimation is very limited, since all the 

particles arc required to be far enough from each other, so as to be regarded as isolated. More 

consistent schemes trying to reflect the interaction effects between inclusions are required. 

MT effective medium approximation may be used for this purpose. Following the same path 

as in Eqs. (11.35-39), the MT estimate of the resistivity increment tensor takes the fonn: 

H'" =H~' .[ 1 -~0;" . H ;"'] I (11 1.23) 
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However, as pointed out in the previous Part, the latter equation leads exactly to the sarne 

predictions as Eq. (IJJ.22) derived with the dilute model and yields the following expression 

for the effective diffusivity of a macroscopically isotropic material: 

[
1+2.l::c,.P:' l 

o;"=D., l -~c,/3:' . (JlT.24) 

The GSCS has been applied previously to estimate with a good accuracy the linear effective 

elastic prope11ies of HCP and mortars modeled as composites w ith coated spherical inclusions 

such as the one depicted in Fig. III. I. On this figure, a spherical inclusion I with a volume 

fraction c, and with a diffusion tensor denoted as O, is enclosed in a coating with a volume 

fraction cCt occupied by a phase having its diffusion tensor designated by Der · The double­

inclusion thus obtained is in tum embedded in another coating with a volume fraction 

c.., =l-c1 -cc1 fi lled by the matri x phase hav ing for d iffusion tensor D., immersed in an 

infinitely large effective medium w ith diffusion tensor o·. 

Figure II /.J: Two-dimensional represe11tatio11 illustrating the application of the GSCS for 
computing the tlij]i1sive properties of a composite with coated spherical inclusions. 

If al l these phases are assumed to be isotropic, the estimation of the effective diffusivity by 

GSCS can then be computed by means of th is formula (e.g. Herve 2002): 

D. _ D (I+ 2cm/J:/,) . I D _ D l' cm+ 2cJf,'' ,, 
GSCS - ()t flOI > Wit l DI - I nCI • 

) -C()lfJt)I Cf)/ -Ct f'I I 

(111.25) 

The MT estimate and GSCS are seen by comparing the last two equations to provide identica l 

express ions for the effective diffus ivity of an isotropic two-phase composite with spherical 

inclusions. It was shown in section 4.4. that GSCS is more accurate than MT in linear 
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elasticity, even though the first one is more intricate to compute. Nevertheless, these two 

rnodels appear to be quite simi lar in the case of diffusion. 

7.2.2 Double-inc/11sio11 type schemes 

These methods have been preferred to compute the linear elastic properties of cement-based 

composites to the classica l MT scheme, because of their better accuracy, versatility and their 

capacity of accounting for the spatial distributions of particulate phases (e.g. Hori and Nemat­

Nasser 1993; Shen and Yi 2001; Zheng and Du 2001). Since the derivations are very similar 

as in Part U (Eqs. (11.42-80)), only the final expressions of these different estimates are 

recalled below. For a multiphase composite, the estimations provided by !DD and KT 

schemes are respectively: 

H
100 = H~'.[1 -~ H~' .e:;, T', (111.26) 

(111.27) 

where 0~, designates the eigendiffusivity tensor of the double-inclusion embedding the 

1 inclusion phase r and 0~ denotes the eigendiffusivity tensor of the homogeneous effective 
I 

ioclusion (Fig. 11.9). In the case of macroscopically isotropic materials with spherical 

inclusions, the tensors H~' are invertible provided that the phase diffusivi ti es are not infinite. 

, These last two equations then exactly coincide and furthermore yield a simple expression for 

the effective diffusivity of such materials: 

[

1+22:c,/i,"'] 
o;ol).KT = D., 1 _ ~ c,/i,"' , (Hl.28) 

which exactly coincides with the MT predictions in Eq. (111.24). Tbe expression of DfM was 

derived in Part n for the particular cases of a two-phase material (Eq. (11.77)) and of a 

composite with coated inclusions (Eq. (11.82)) depicted respectively on the left-hand sides of 

Figs. 11 .7 and 11.8. The two respective Eqs. (ll.77) and (11.82) take an analogous form in 

diffusion: 

H0w = H"" [ 1- o M H""]-' 
I • '='01 • I ' 

(111.29) 

H0
"' =(H;"' +H~:) .[ 1- 0:' . (H~11 + H~)r'. (111.30) 

As in linear elasticity, the last formula leads to the same estimations as the MT scheme (Eq. 

lll.23) for a composite with dispersed inclusions, as illustrated in Fig. 11.8. To avoid this 

UJicxpcct~d result, a modified version of DIM has been proposed in Part JI. Jts deri vation in 

~ case of diffusion is proposed below by employing the inhomogeneous Eshclby tensor in 

· (1 11. 13) derived in Appendix Ill.A. The configuration considered for the present 
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derivation consists in a composite pattem embedded in an infinite matrix medium and 

subjected to a far-field flux J- . This composite pattern comprises various double-inclusions 

denoted as D, (re {I, P]) enclosed in a matrix region, each of them being constituted of a 

spherical inclusion with diffusivity tensor D, surrounded by a spherical coating with 

diffusivity tensor De,. 

The effective diffusion tensors of the different double-inclusions are first estimated with the 

aid of the work of Duan ct al. (2006). TI1e particular configuration described on Fig. l 11.2a) is 

thus approx imated by a simpler one described on Fig. lll.2b). The effective diffusive 

properties of the multiphase composite are then computed using the energy balance employed 

by Shen and Yi (2001). To achieve the computation of the effective diffusion tensor of the 

double-inclusions, fictive concentration gradients are introduced inside the inclusion domain 

so that each inclusion has the same diffusive properties as its coating. 

t J~ -------------

~@J" i 
I I 

L _ - ---- - - - - - -' 
a) 

t J~ -------------

b) 

- - - - - - _t _ ~~- - - -
I 
I 
I 
I 
I 

¢:;: 
I 

I 
I 
I 
I 
I 

L - - ·- - - - - - - - - -
c) . 

Figure Jll.2: Schematic i/111strating tlte main steps employed to derive the modified DIM. 

The average perturbation of the concentration gradient inside an inclusion representing phase 

rand having the same diffusion tensor as its coating can be related to the volume average g; 
of the prescribed fictive concentration gradient by means of the inhomogeneous Eshelby 

tensor defined by Ouan et al. (2006): -. -,./ . ( ) g, =A, .g, , Ill.31 

where the expression of A.;1 is given in Eq. (111.13) for the particular configuration of a· 

spherical isotropic inhomogeneity embedded in an infinite isotropic matrix. By neglecting the 

interactions between the double-inclusions, the average concentration gradient inside the 

inclusion corresponding to a given particulate phaser takes the form: 

(111.32) 
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where A,,, denotes the homogeneous Eshelby tensor (Eq. (ill. I I)) of the spherical double­

inclusion D,. (re [1, Pl). The consistency condition written in an average sense: 

(TTT.33) 

provides che following relation for the fictive concentration gradient g; in the inclusion: 

(IIl.34) 

The average perturbation of the concentration gradient inside che inclusion i,' can then be 

deduced from Eq. (lll.31 ). Using the fact that: 

- l' c 'J- c -go,.'= 1--r lk,.'+- r gr', 
Cor Co,. 

(111.35) 

(IIl.36) 

the mean perturbation of the concentration gradient inside the inclusion coat ing ic: is 

obtained as: 

gc,'= - c~ (A~, -A~).[(o, - De,. ) ' .De, + A:']_, .[ D,, + A0 , .(D, - o., )T' .J-, 
Cvr C,. 

(111.37) 

where A~, is the inhomogeneous Eshelby tensor of the double-inclusion D,. expressed in Eq. 

(111.13). The mean concentration gradients and flux inside the double-inclusion are further 

expressed with the help ofEqs. (111.35-36): 

g0,=[1 ~ :,:, ·1\:::_.[ (o, - De, ) '.De, + .&.:1 J' J.[o., + A,,, .(D,. - o., )T' .J-, (Ill.38) 

Jo,=Dc,• I + : ;, ( t -A~, ).[(o, - De, r' .De, +A~ J' l[ D., + Ao,.(D, - D,, )r ' .J -, 

(11 1.39) 

By eliminating J~ in the last two relations, tbe following expression can finally be obtained 

for the effective diffusion tensor of this double-inclusion: 

De,·[ • +S...( I -A~, ) .[(o, - De, r' .De, + A~']"' -
c"r 

[ 

C - [ -1 . ]-I J I 
I - c;, A~,. : (D,-Dc,) . Dc, + A~ 

o,,, = (111.40) 

By carrying out exactly the same reasoning as in Eqs. (Jl.83-85) (see subsection 4.3.3.1 ), an 

expl icit estimation can then be achieved for the effective diffusion tensor of the composite 

"'ith coated inclusioos: 
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D' =D., -[ ( ~c, ( A 0 , +(D, - 0 .., f' .D., r' r• + A~01 r• .OM, (III.41) 

where A~01 is the Eshelby tensor of the equivalent composite pattern (see Fig. III.2c) and 

where the diffusion tensor D 0 ,. can be predicted by the preceding equation. Jn the ensuing, 

this estimation will be referred to as the modified DIM. 

If all tbe involved phases are assumed to be isotropic, simple expressions are provided for the 

homogeneous and iJJhomogenous Eshelby tensors by Eqs. (lll. l 0) aJJd (111.13), respectively. 

In the particular case where only one double-inclusion is considered, the effective diffusion 

coefficients for this double-inclusion and the compos ite respectively simplify into: 

D =DI Cm +2c, ,.,, d D' =D 1+2c,,,/J,,, ] , (JC/ I ( .,, 
m 1 nc1 an 01 fl." ' 

' c,)/ -CJ JJJ / l -Cv1 VI / 
(Jll.42) 

which exactly coincide with GSCS fonnula written in Eq. (lll.25). A good number of 

homogenization methods have been presented in this section but it is now necessary to test 

their relevance for predicting the macroscopic diffusivities of porous media. For this purpose, 

attention should be primari ly focused on the principal effects acting on the material effective 

transport properties. It is pointed out in the next section that these properties are strongly 

dependent on certain microstrucnJTal factors that have to be taken into consideration in the 

computation by homogenization. 

7.3 Significant microstructu ral para meters from the viewpoint of diffusion 

Porous media are generally regarded as a mixture of a solid phase, denoted as Di, considered 

non-diffusive and a diffusive porous phase designated by Di. A very strong contrast exists 

between the transport properties of these two phases so that it is frequently assumed that 

D, I D1 ~ 0 in porous media. 

7.3.J Importance of the percolation oftlte diffusive phase 

ln cases of infinite contrasts such as D, I D1 ~ 0 , many authors (e.g. Kirkpatrick 197 1; 

Torquato 200 I) assert by means of numerical simulations that the effective diffusivity or 

conductivity of the medium tends to obey the scaling law: 

r ~~ ~ 0, for c, $ c;h , 

lr>' --(c -c1
• )' f.or c >c''' D 2 2 , 2- 2 , 

l 

(111.43) 

where e; is called percolation threshold and 1 varies between 1 and 2 (e.g. Torquato 2001). 

This percolat ion threshold physica lly corresponds to the critical volume fraction at which a 
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cluster of the diffusive phase first connects one extremity of the microstructure to another. 

According to the scaling law above, the formation of this cluster spanning the entire 

microstructure induces sudden variations of diffusivity, which may be denominated as 

percolation effects. 

As was already observed io Fig. l.5, the macroscopic diffusivities of HCP strongly vary from 

one paste to another. Many authors attribute these sign ificant changes to the geometrical 

percolation of capillary porosity, defined as the remaining space situated between hydrated 

cement grains (e.g. Richardson 2000). It physically corresponds to the fonnation of a cluster 

composed of pores that first spans the material. It appears consequently necessary co assess 

the ability of the homogenization schemes introduced previously to account for such 

phenomenon. 

At this point, an important clarification is necessary about the difforcnces between linear 

elasticity and diffusion in cement-based materials. According to the previous remarks, the 

percolation of pores is suspected to have a very strong impact on the macroscopic diffusive 

properties of porous materials. This phenomenon has not been discussed in the previous Part 

dedicated to linear elasticity but it seems to have less innuence on the material effective 

elastic properties as illustrated by the subsequent example. Let a standard CEM I paste with 

w/e = 0.45, which effective elastic prope1ties and diffusivity have both been measured 

experimentally (Richet et al. 1997; Galle et al. 2004), be perforated by infinitely long 

cylindrical water-filled tunnels isotropically distributed. The diffusivity of these idealistic 

porous percolating paths is assumed to be equal to the diffusion coefficient 

D,rro = 2.2x 10 9 m21s of tritiated water io bulk water at 23°C (Bary and Bejaoui 2006), while 

their bulk and shear moduli are respectively equal to 2.2 GPa and 0 GPa. The size of the 

RVE of the perforated paste is taken large enough so that the original cement paste can be 

regarded as homogeneous. Its macroscopic diffusivity is measured to be 

o;,cp(wlc = 0.45) = 5.21 x10-12 m2/s (Ricbet et al . 1997), whereas its effective Young modulus 

and its Poisson ratio are taken equal to 23 GPa and 0.25 (Ga lle et al. 2004), respectively. The 

total volume fraction of these runnels spanning over the whole paste is assumed to vary 

between 0 and 0.25 and we are interested in estimating their effects on the material elastic and 

diffusive properties by means of the full -range !DD scheme (Zheng and Du 200 1 ). On Fig. 

Ill.3, the material effecti ve diffusivity appears to be much more affected by the tunnels than 

its effective elast ic moduli. A major difference between di !Tusion· and elasticity is that the 

macroscopic elastic properties of a material such as concrete may be more innucnced by the 

fonnation of the solid skeleton (Bernard ct al. 2003) than by the percolation of pores, whereas 

this percolation of porosity is crucial for the effective diffusive properties. According to this 

example, the pore percolation has to be carefully taken into consideration in diffusion, despite 

the fact that it has a secondary importance in linear elasticity. 



••• 
:.g o." 
~ 0.7 

.g 0.6 
~ 

"iS o.s 
] 0 ,4 

o; e o.3 
0 ;z 0.2 

0.1 

•• 

Part JI I: Prediction of th-e 1nacroscopic diffusivi(ies of OC1tl(:n1i1ious 1naterials Page 102 

- x·1x,I(.,. 
- - - a·1c,""' 

--- --

~~~--~~~~~~--~~ 
0.05 0.1 0.15 0.2 0.2S 
Volu1nc fraction of porous 1unnels 

100,-~~~~~~~~~~~~~---.. 
80 

O.OS 0.1 O l.S 0.2. 
Volunle rraction of porous IUnnels 

OlS 

Figure 111.3: l!:l'ofutio11 of the 11omw/izetl ej]e£·tive efa.l'tic propertie.~ a) flllli oftl1e 
tl(f/11.l'ivity b) of the pe1for111ed ce111e111 pa.l'te wit ft the volume ji·actio11 of porom cylimlricaf 

t 111111 e I.<. 

7.3.2 Importance of otfter 111icro.l'lr11ct11ral indicators 

In linear isotropic porous media, the following equation is generally employed to compute the 

macroscopic diffusion coefficiem denoted as o· (e.g. Bear and Bachmat 1991; Dullien 

1992): 

(111.44) 

where -r is called the tortuosity and c2 corresponds to the volume fraction of porous phase. 

The tortuosity can geometrically be interpreted in tenus of the ratio of the length of the 

material over the distance covered by the ions or the fluid to get through the sample (Dull ien 

1992). Practically, the closer to I the tortuosity is, the straighter the percolating paths arc. It 

also gives some information in terms of pore connectivity and percolation. For the extreme 

case where r = 0, the distance that the ions should cover to get through the sample becomes 

infinite, which means that the porous phase does not perco late. In addition, the material 

effective diffusion D' goes to 0, since the porous phase remains occluded. This shows the 

primary imponance of the percolation of the porous phase on the diffusive propenies of 

porous media. 

The macroscopic diffusivity can also be related to the formation factors, which constitute 

precious rnicrostructural indicators and arc defined as (Be1Tyman 2005): 

I. o· l ' o· ' (111 s) rm - = -- 1111 - = - .4 n.-- D, F, ' o,- 0 2 F, 

The formation factors arc usually measured from electrical resistance data (Dullien 1992). 

Geometrical prope1ties of the constituent phases, such as their tortuosity (e.g. Bear and 

Bachmat 1991 ), are closely related to these formation factors. Given the fact that 



Pan 01: Prediction of the macroscopic diffusivities of ccmcntitious materials rage 103 

f)'(D, ,D, )I D2 = D" (D, I D2 , !) (Milton 2002), a comparison of the two previous equations 

gives the relation -i: c2 = II F2 for such materials. The latter indicates that the formation factor 

of a given phase incorporates information on both the tortuosity and the volume fraction of 

diis phase. 

4 Review of matrix-inclusion type EMTs from the viewp oint of connectivity and 1. 
percolation 

A brief review of the capacity of the main existing analytical homogenization schemes to 

accurately model actual percolating paths of pores and capture strong variations due to the 

creation or annihilation of percolati ng paths in random heterogeneous media is proposed. 

The matrix -inclusion type EMTs, such as GSCS, DIM, MT, KT and !DD, studied in this 

manuscript all present the considerable advantage of being explicit in diffusion. However, ail 

these approaches except the GSCS are obtained by embedding one single isolate 

homogeneous or composite inclusion into a supposed infini te matrix phase. as pointed out by 

Ma et al. (2004). They consequently fail to take into account the connectivity of the 

particulate phase and appear hardly compatible with the percolation theory, since a single 

inhomogeneity cannot percolate except if it degenerates into an infinite disk or cylinder. 

However, though appearing inadequate to percolation problems, these models have up to now 

not been shown to be unable to mimic the effects due to the transition from a microstructure 

comprising no or few tortuous percolating clusters of a high-diffusive phase to one where 

significant paths of this phase have formed. 

The 3D simulations of Garboczi et al. ( 1995) demonstrated that the aspect ratio of spheroidal 

inclusions denoted by r = b I a (where a designates the radius of the circular basis of the 

spheroid and b corresponds to its revolution axis) influences s ignificantly their percolation 

threshold and consequently their connectivity. For example, the percolation threshold of 

spherical inclusions corresponds to a critica l vo lume fraction c: :::: 0.29 (Rintoul and 

Torquato 1997), whereas for spheroidal inclusions with r = I 00 this threshold decreases to c: 
~ 0.01 (Garboczi et al. 1995). The shape of the spheroidal inclusion should be in average 

representative of the diverse pore clusters, since the pore stnicture is simultaneously 

composed of isolated pores assumed quasi-spherical and of very connected pores forming 

elongated clusters. In other words, the better the pores connect to each other, the more the 

Spheroids representing the porous phase shou ld be elongated. Thus the connectivity could 

indirectly be taken into account by using adequately chosen spheroids. 
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As an example, an attempc is now made to reproduce percolation effects in a macroscopieaUy 

isotropic material composed of two isotropic phases by modelling the most diffusive phase, 

called 2, as a randomly oriented prolate spheroid embedded in the other phase, cal led I . In the 

ensuing, the number I will always refer to the phase less diffusive and 2 to the most diffusive 

one so that D2 > 0 1• The volume fractions of chc two phases arc respectively denoted by c, 

and c2 with c, + c, = l . Two cases, one of high contrast and another one of infinite contras1, 

can be considered in order to 1est the reliability of EMTs for predicting percolation effects. 

The diffusion coefficients, O, and D2, arc supposed to be respectively such as 0 2 I 0 1 = 103 in 

the high-contrast case and D, I D2 ~ 0 in the infinite contrast one. The overall shape of the 

curves presented on Fig. 111.4 in the case of high-contrast is not adapccd to correctly predict 

the efTccts due to changes in the volume fraction of a high-diffusive phase percolating through 

the microstruccure. [ndeed, these variations general ly have a sigmoidal shape for the curve of 

the effective transpo11 coefficients plotted against the volume fractions of the high-diffusive 

phase, renecting the transition from a macroscopically low-di ffusivc material to a high­

diffusive one. 
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Figure 111.4 (logaritltmic scale): Evol11tio11 of tl1e effecti11e diffusion coefjicie111 of a 

macroscopically isotropic two-phase 11wterial with D2 I D, = I 03 respectil'ely estimated by 

the MT (Mori and Tanaka 1973) a11d tlte /DD (Zheng anti Du 2001) scheme.5 as afr111ctio11 
of Ille volume fraction of the diffusive phase. The latter phase is model et/ 11s proltzte 

spheroids with diverse aspect ratios r. 
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'fhC Hasbin and Shtrikmao (HS) bounds that are presented in the chapter just after are also 

pfot1cd on Fig. III.4 for the sake of comparison. In the infinite contrast case, the effective 

diffusivi1ies predicted by MT and IDD schemes both go to zero except for the case of an 

infinite cylinder. Matrix-inclusion type schemes, such as MT or JDD, are consequently not 

well suited for physically reproducing percolation effects and should not be employed 

whenever the particulate phase percolates in the real microstructure. Besides, the GSCS 

(llerve 2002) used for estimating the diffusion properties of mortars by Care and Herve 

(2004) does not seem to be adequate either, since only the outer matrix shell can percolate 

with this method (see Fig. 11. l). Recently, Mele ct al. (2005) proposed quite an empirical 

method involv ing numerous parameters so as to artificially incorporate the percolation effects 

into the GSCS. However, more reliable EMTs from the percolation viewpoint ex ist in 

literature and are discussed in the next chapter. 

8 REVIEW AND DEVELOPMENT OF OTHER HOMOGENIZATION THEORIES 

FOR PREDICTING THE Dt.FFUSIVIT IES OF POROUS MEDIA 

It was shown in the previous chapter that matrix-inclusion type EMTs are not suited for 

predic1ing percolation phenomena and reproduce the rapid variations of diffusivity obse1ved 

experimentally on cement-based materials (Fig. 1.5). Still , other theories of homogenization 

have been developed to address this issue. Some of them deriving from the self-consistency 

principles (Bruggeman 1935; Landauer 1952) or from 1he variational ones (Hashin and 

Shtrikman 1962) are therefore presently reviewed. By focusing on some classical exactly 

solvable microstructures (Hashin and Shtrikman 1962), a novel estimate based on a simple 

exactly solvable assemblage is also proposed to predict the macroscopic diffusivities of 

porous media. 

111 the present chapter, on ly macroscopically isotropic two-phase materials are considered. 

The volume fractions of the two phases respectively called I and 2 are denoted by c, and c2 . 

The diffusion coefficients of the two isotropic phases, 0 1 and D2, arc taken such as D2 > D1 . 

8.1 Review of b ounding approaches 

The HS bounds for a macroscopically isotropic two-phase material are given by: 

o- - 0(1 3/J; ) • - ( . 3/J.
1 

) 11s- ' +c, - a1 ' D,,s- D2 l+c, - /3,2 ' 
I C2JJ2 I c, I 

(111.46) 
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with /3/ defined in Eq. (In. 12). The lat1er formula was derived by means of variational 

principles (Hashin and Shtrikman 1962) that arc explained in many monographs (e.g. Mi lton 

2002; Torquato 2001) and are thus not presently recalled. The applicat ion of the HS bounds to 

composite materials w ith high contrasts is problematic, since the bounds arc not tight enough 

to bind the effective transport coefficients, as may be seen on Fig. 111.4. rt is possible to 

improve the HS bounds if more infonnation, in the form of con-elat ion ftinctions (Beran 

1965), formation factors (Berryman 2005) or experimental measurements (Bergman 1976), is 

avai lable for the composite. On the basis of these pieces of information, a good number of 

tighter bounds (e.g. Beran 1965; Bergman 1976; Torquato 200 1; Milton 2002) have been 

derived from the variational principles of Hash in and Sh1rikman ( 1962). 

The form and the derivation of these bounds (Beran 1965) in their origina l form can be quite 

complex but Berryman introduced a convenient canonical function that enables to express the 

mai n bounds within a unified framework: 

A(y) !!!:[ c, + C2 ]-'-2y. 
D1+2y D2 +2y 

(111.47) 

This function depends monotonically on y , which has the dimension of diffusivity and is 

referred to as a transfonnation parameter. Berryman (2005) evidenced that most of the kJlown 

bounds, such as Reuss and Voigt, HS or Beran bounds, can be gained from the latter equation 

for simple values of y. rr the parameter y is equa l to Di or D2 , the lower and upper HS 

bounds arc respectively retrieved. If the parameter y is equal to ( ,D, + ( ,D, or 

((11 D1 +(2 10 2 ) ' , the lower and upper Beran bounds are respectively retrieved (Berryman 

2005). The microstructura.l parameters (, a1;d ( ; = l - ( 1 are known as three-point parameters 

and are related to the three-point spatial correlation functions (e.g. Torquato 2001) of the 

compos ite microstrucn1re. 

Let us assume that an experimental value for the material effective diffusivity, denoted as D' , 

is available at a given volume fraction of porosity. Bergman (l 976) then derived improved 

bounds incorporating this piece of information and taking the fo llowing form: 

Do- = A(yo_) and Do+ = A(y11+) , (111.48) 

where 

( 
'J_, (A-1(D') J1 D _, 

y 8 _ = ...!I...+ 1=..IL , with 11 = 
1 

-
1 

2 , and 
D, D2 Di- - D2-

Yo+ = ( vD
1 
+ (1 - v )o2 i with v = (A- '(D') )- Di . 

D1 - D2 
(11149) 

These Bergman bounds have been recentl y argued as being adequate to deal with 1he cases of 

high con trasts (Berryman 2005). To give an example of the curves pred icted by Bergman 
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1><>unds, it is presently supposed that D'I D2 == 0.1. The HS, Beran and Bergman bounds for 

the effective diffusivity of random heterogeneous media with phase diffusivities such as 

D I D ~ 0 and D2 I Di = I 03 are plotted in Figs. Hl.5 and IIl.6, respectively. The bounds 
I 2 

plotted on Fig. UI.5 appear to have simi lar shape as the curves on Fig. 111.4, which may not be 

suited for capturing percolation effects. 

111 the case of infinite contrasts (Fig. 111.6), the lower bounds all tend to zero and are therefore 

1101 represented . Moreover, no percolation thresho ld appears on the upper bounds. None of the 

bounds reviewed consequently seems to be apt to account for percolation effects. That's why 

self~consistent (SC) EMTs that present valuable features for the prediction of the diffus ivity 

of porous media arc discussed hereafter. 
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1"'ig11re 111.5 (semi-logarithmic scale): Evolutions of HS, Beran a11d Berg111a11 bou11dsfor a 
11tacroscfJpically isotropic two-pha.w material with D2 I D, = I 03 as a f11nctio11 of the 

vol11111e.fractio11 of tire high diffusive phase. 
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Figure 111.6: Evo/11tio11s of HS, Beran and Bergmtm bo1111ds for a 11111croscopically 
isotropic two-phase material with D, I D,~ 0 as afi111ctio11 of the vo/11111efractio11 of the 

high diffusive phase. 

8.2 Review of SC type schemes 

The SC scheme (Bruggeman 1935; Landauer 1952) counts among the most popular 

homogenization models in diffusion (e.g. Oh and Jang 2004; Bary and flejaoui 2006) because 

of its capacity of capturing sudden variation of diffusivity. That's why many commonly used 

EMTs (Kirkpatrick 197 1; 1973; Mclachlan 1987) for dealing with homogenization problems 

in diffusion or conduction directly derivate from the SC scheme. On the contrary 'to matrix­

inclusion type models where the particulate phases are represented as inclusions embedded in 

a supposed infinite matrix phase, in the SC ones all the phases are modelled as inclusions 

enclosed in a yet unknown effective medium supposed infini te. The SC estimate in three 

dimensions can be obtained by solvi ng the following equation (Torquato 200 1): 

c, /},' + c,fJ; = 0, (111 .50) 

where /J: and p; are defined in Eq. (111.12). The SC pred ictions for the effecti ve diffusivity 

of random heterogeneous med ia with phase diffusivities such as D, I D, ~ 0 and Di I D1 = 

I 03 are plotted in Figs. II L 7 and llJ.8, respectively. The two curves on these figures provided 

by the SC estimate exhibit drastic changes of curvatures. These effects arc induced by the 

percolation of the high-diffusive phase. i.e. the formation of a cluster of this phase spanning 

the entire microstructure. 
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Figure Ill. 7 (semi-logarithmic scale): Evollltions of the effective diffusion coefficient of a 
macroscopically isotropic hvo-phase material with D2 I D, = I Ol estimated by SC type 

schemes as a function of the volllme fraction of the high diffusive phase. 
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Figure 111.8: Evollltions of the effective diffusion coefficient of a macroscopically isotropic 
two-phase material with D, I D1 ~ 0 estimated by SC type schemes as a function of the 

volume fraction of the tliffusive phase. 

Moreover, these jumps observed for the SC estimations on the figures just above occur at a 

Panicular volume fraction or percolation th reshold of the high-diffusive phase. The SC model 
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thus presents the notorious advantage compared to the matrix-inclusion type EMTs to ))l'Cdict 

a nontrivial percolation threshold but it occurs systematically at a volume fraction of c;h ~ lf.1 

for a two-phase composite composed of spherical inclusions, wbere d is the space dimension, 

regardless of the microstructure. However, it is clear that the microstructure strongly affects 

the percolation threshold. For example, if a matrix encloses monodispersc overlapping 

spherical inclusions (Fig. lll.9), a volume fraction of 0.03 is sufficient to ensure that it 

percolates (Torquato 2001), whereas 0.29 are required for the particulate phase. Accordingly, 

the two phases composing the latter material percolate at volume fractions different from 

those predicted by the SC model. The choice of spheroidal particles instead of spherical ones 

may partly overcome this shortcoming, since with the percolation threshold then given by tbe 

SC scheme changes with the aspect ratio of the spheroid, but the SC predictions generally 

violate the HS bounds for non negligible range of volume fractions of the high-diffusive 

phase. 

c~ = 0.29 

Figure 11/.9: Two-dimensional representations ofmonodisperse overlapping spherical 
inclusions that are randomly distributed i11 space. Tire percolation thresholds of the clusters 

formed by these spherical inclusions and of the remaining space differ significantly. 

Kirkpatrick (I 97 1; 1973) developed an EMT combining the discrete percolation theory (e.g. 

Shante and Kirkpatrick 1971) and the self-consistency principle. For more information 

concerning the discrete or lattice percolation one, which dates back to the fifties (Broadbent 

and Hammersley 1957), the reader should refer to Shante and Kirkpatrick ( 197 1 ). The 

microstructure in the Kirkpatrick model is represented as a resistor network and the 

percolation threshold predicted by the latter scheme no longer depends on the dimensionality 
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but on the coordination number designated by z. This quantity is defined as the number of 

b<Jnds connected at the same node and thus allows for taking into account the connectivity of 

particles. The second-order equation provided by the Kirkpatrick estimate ( 1971; 1973) is 

strongly simi lar to the one given by the SC scheme: 

• A'<'l +<,JJ; (<) = 0, w;<b PM- ( ((: D,) r (Ul.51) 

Di+ 2 -I D; 

It is straightforward that Eq. (Ill.50) obtained with the classical SC scheme is a particular case 

of Eq. (ITI.51) for z = 6. Supposing that 0 2 is infin itely bigger than 0 1 in the equation above, 

the percolation threshold appears to be inversely proportional co the coordination number: 

c~ ::2/z . The latter equation has only one positive root corresponding to the Kirkpatrick 

estimate: 

0 · = a+.Ja
2

~z2~~)2)D,D2 with a=o2 ((~- 1}:, -1)-o, ((~- 1)c,-1). (111.52) 

111e Kirkpatrick model uses the concept of coordination number that allows for taking into 

account the connectivity of particles. This scheme is based upon resistor networks constituting 

an idealistic discrete representation of the microshucture of ordered heterogeneous materials. 

They are very practical of use in the case of crystall ine materials, where the coord ination 

number is exactly known. Nevertheless, this number is very difficult to estimate in random 

heterogeneous materials containing particles that can be of very different sizes and the 

discrete resistor network on which the SC estimates of Kirkpatrick (1971; 1973) are based 

seems quite far from the actual continuous microstnictures of disordered materials. In 

addition, though the Kirkpatrick estimate may provid~ nrore realistic thresholds than the 

original SC model, they violate HS bounds for non negligible ranges of volume fractions, as 

may be seen in Fig. lll.7. More precisely, it is seen on this figure that the Kirkpatrick estimate 

obtained for z = 4 violates them for the ranges of volume fractions c2 < 0.25. On the contrary, 

lhe classical SC estimate, corresponding to a coordination number of z = 6 (Kirkpatrick 1971; 
1973), always satisfies I IS bounds. 

A model called the general effective media (GEM), used for instance by Oh and Jang (2004) 

lo predict the diffilsion coefficients of!ICP, has been proposed by McLachlan (1987): 

. ( D,11
• -D'"• ) (Di"' -D'"• ) 

c, ( D,"• +( c~• - I) D'"•) + c, ( D,"• +( c~• - I) D'"•) = 0. (Tll.53) 

'tihcrc c't is recal led to be the percolation threshold and p is a parameter identified as the 
e .. 
~cal exponent. The Mclachlan model is quite similar to the Kirkpatrick one but involves 

Para111eters instead of one. It is noteworthy that for p ~ I, GEM coincides with the 
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Kirkpatrick est imate. Consequently, the McLachlan scheme can also violate HS bounds for 

certain values of the parameter p . Another method that is capable to predict different 

percolation thresholds consists in deriving the SC scheme by adopting spheroida l incl usions 

instead of spherical ones, as is generally the case. The percolation threshold estimated with 

this approach then varies with the aspect ratio of the spheroid. Nevertheless, the respect of HS 

bounds is not necessarily guaranteed with this methodology. 

To summarize the discussions made in this section, a comparati ve table recapitulating the 

merits of the presently reviewed EMTs is proposed (Table 111.1 ). It appears that none of them 

is reall y capable of both reproducing percolation effects in random heterogeocous materials 

and respecting JlS bow1ds. The next section is therefore devoted to the presentation of a 

recent estimate based on a well-defined continuous microgeometry satisfying these two 

conditions. 

Capacity to R t fHS Nmnber of extra 
capture sudden 

espec o 
b d parameters References 

variations of 
oun s . 

mvolved 
diffusivity 

Matrix-inclusion 
Maxwel l (1873), Mori-

type models 
No Yes 0 Tanaka ( L 973), Klistcr-

Toksoz ( 1974), .. . 
Only for 

SC scheme 
c:• ~ L/3 for Yes 

0 
Bruggeman ( 1935), 

spherical Landauer ( L 952), ... 
inclusions 

Kirkpatrick 
Yes No 

Kirkpatrick ( 1971; 
scheme 1973) 

GEM Yes No 2 MeLachlan ( 1987) 

GSCS No Yes 0 Herve (2002) 

Table Ill.I: Comparative table aiming at testiflg hom ogeuizario11111odels 011 three simple 
criteria. 

8.3 Mixed composite spheres assemblage (MCSA) estimate (Stora et al. 2006b) 

8.3. I Prese11ratio11 of the estimate 

Jlashin and Shtrikman (1962) proved that their bounds written in Eq. (111.46) are realized by 

two composite spheres assemblages (CSAs) corresponding to idea lized microstructures, 

where the space is entirely fil led by coated-spheres of sizes ranging from fi nite down to 

infinitesimal. Neither the s ize nor the spatial distribu1i on of the coated-spheres is specified in 

CSA. However, all the composite spheres are homothetic and consist of a spherical core of 

radius '" and a coating of thickness (re - r;). The radi i r; and re are chosen so that each coated­

sphere has the same composi tion as the original two-phase materia l. Though the opportunities 
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offered by the self-consistency principles (Bruggeman 1935; Landauer 1952) or the 

variational ones (Hashin and Shtrikman 1962) for estimating the transport properties of 

random heterogeneous media with high contrasts have been thoroughly investigated, the 

possibilities given by the celebrated CSA ofHashin and Shtrikman (1962) may conversely not 

have been studied sufficiently for such media. This exactly solvable microstructure was 

initially established to materialize HS bounds and thus prove their optimality. In the present 

section, by exploiting the idea underlying the original CSA, an assemblage mixing two types 

of composite sphere is proposed to obtain an estimation model capable of remedying the 

shortcomings of HS bounds. 

The construction of Hashin and Sbtrikman (1962) relies on the fact that the concentration 

field in a homogeneous medium characterized by a diffusion coefficient D0 , subjected to a 

unifom1 concentration gradient on its boundary, is not disturbed by the insertion of a spherical 

composite inclusion which overall diffusion coefficient is equal to D0 . In particular, any 

previously defined coated-sphere, which core and shell are respectively occupied by phases 2 

and l, embedded in a homogeneous medium with D0 = D~s does not perturb the 

concentration field outside the composite element in question. Consequently, an assemblage 

exclusively composed of these particular composite spheres realizes the lower bound. The 

upper one can in tum be attained by a similar construction, where the roles of the two phases 

inside the composite sphere arc switched and the radi i are taken such as (r,/r, )3 =c,. 

CSAs are widely used, because they provide exact and straightforward analytical results. 

Nevertheless, the two CSAs materializing HS bounds correspond to extreme matrix/ inclusion 

morphology (Fig. 111.10). In the assemblage achieving the HS lower bound, the low-diffusive 

phase l is fully connected and plays the role of matrix, whi le the high-diffusive phase 2 

occupying the cores of the coated-spheres is entirely disconnected and distant from each other 

due 10 the systematic presence of coatings made of phase I. The exact opposite situation 

occurs in the assemblage attaining the HS upper bound. As a matter of fact, this characteristic 

can even be regarded as an advantage for some special design problems (Torquato ct al. 

2005). Nevertheless, actual microstmctures having such an extreme morphology do not 

abound in Nature. To obtain a more real istic and more versatile microstructurc, it would be 

desirable to use for instance different types of composite spheres. That's why another 

microgeometry, called MCSA, is presented below. 
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Figure Ill.JO: Two-di111ensio11a/ represe11tatio11 of the CSA developed by Has/tin and 
Slttrikma11 (1962). 

The MCSA follows the same constrnction rule as CSA but two types of composite spheres are 

involved in MCSA instead of one type in CSA. The idea of us ing assemblages mix ing two 

types of composite spheres is not new. Pham (1997) proposed an estimate on the basis of a 

MCSA, where the volume fractions of the phases in the composite spheres are fixed but the 

embedding orders of the two phases can be interchanged. However, this assemblage is not 

exactly solvable, s ince the two types of c-0ated-spheres generally do not have the same 

effective diffusivity and the diverse perturbations they induce on the concentration fields are 

tremendously difficult to calculate. G ilom1ini (2001) evidenced that a simple MCSA can be 

constructed so as to realize any compressibility or conductivity of isotropic two-phase 

materia ls comprised between HS bounds. Analogously, it is possib le to build a MCSA that 

achieves any macroscopic diffusion coefficient D' of an isotropic two-phase material 

verifying the condition D;,5 $ D' $ o;,s, as shown below. 

The macroscopic diffusion coefficient D' of the material and the phase volume fractions c, 

and c, are assumed given; the particular example of the diffusion through a porous material 

with high constrast between the phase diffusivities is considered for the present 
. . l • 

demonstration: c1 = 0.56, c2 ~ 0.44, D2 I D, = I 0 and D ID, = 20 , where D, and D, are 

recalled to designate the diffusivities of the solid and porous phases, respectively. The lower 

and upper HS bounds for this maccrial are plotted on Fig. 111. 11 . 
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Figure 111.11 (semi-logarithmic scale): Evolution of HS bounds as a/unction of the porous 
phase volume fraction and graphical represe11tatio11 of the geometric parameter f of MCSA 

(Stora et al. 2006b). 

The condition D;,s :5 o· :5 DZs ensures that two CSAs corresponding to the lower and upper 

HS bounds, with the respective porous phase volume fractions c; (2 c, ) and c, (S c,), can 

realize the effective coefficient o·. In the coated-sphere with the volume fraction c;, the 

core is occupied by phase 1 and the shell by phase 2, whereas the roles of the two phases are 

exchanged in the coated-sphere with the volume fraction c;. These volume fractions are 

deduced from Eq. (lll.46): 

c; =l- /J.: . 
/J, 

( lll.54) 

In the present assemblages, the macroscopic diffusion coefficients of the two types of coated­

sphercs, whose compositions defined by the equation just above may be very different, are 

both equal to D' . No perturbation in the concentration fields is then induced if any of these 

two types of composite spheres is inserted in the homogeneous material whose effective 

diffusion coefficient is o· . It is consequently feasible to establ ish an exactly solvable 

microstructure as a hybrid assemblage of these two types of composite spheres, filling 

together the entire space (Fig. II L 12). An interesting characteristic of the MCSA thus obtained 

is that both phases are simultaneously present in the cores and shells. In the ensuing, the 

coated-spheres with phase 2 as external coating are denoted by CI, and those which core is 

Occupied by phase 2 are designated by C2. The density f of CI spheres in MCSA is chosen so 

that the total volume fraction of phase 2 in this assemblage is equal to c2 : 
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c, = f c; +(I - f)c; . (111.55) 

This condition permits to determine the geometric parameter I as a function of c2 and o·: 

-I ( I I ) I = 2p.' p; - P! c, . (111.56) 

TI1e resulting microstructure illustrated on Fig. 111.12, that can materialize any macroscopic 

diffusion cocmcient o· of an isotropic two-phase material verifying HS bounds, docs not 

seem to correspond to any known EMT but can give rise to physicall y sound esti mates, as 

shown below. 

(a) c2 < ( 1 - /) (b)c2>(l -f) 

eo @O 

Figure lll.J 2: Two-dimensional representation of an assemblage mix i11g two types of 
composite spheres (Stora et al. 2006b). 

The MCSA with a given effective diffusion coefficient D' is determined through a unique 

parameter f specified in Eq. {Tll .56). Inversely, by considering the macroscopic diffusion 

coefficient o· as unknown and the parameter fas given, we can establish the quadratic 

equation: 

where 

·' . oD +bD +c=O. 

a = I +(2/-c,)/J;, 

b = 201[1-(/ + c,)p; )- D, [1+2(/ +c, )fl; ], 
c- 2D,D, [cf - 2c2)/J; -I] . 

(Ill.57) 

The solution of this equation provides only one positive root that constitutes an estimate for 

the effective diffusion coefficient of the material: 

o· = - b+ .Jb
2 
-4oc . 

2a 
(111.58) 
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According as/= 0 or I, the previous equation yields the HS. or HS+ bound. Furthermore, D' 

given above varies monotonically with f. The MCSA estimate can consequently attain any 

value comprised between HS bounds. 

The derivation of a MCSA estimate for the effective elastic modul i could also be of interest 

but is not a simple matter. Whereas the effective diffusivity and bulk modulus of CSA 

presents the benefit of being exactly solvable, the effective shear modulus of this 

microgeometry is not exactly computable (e.g. Milton 2002). Consequently, an exactly 

realizable MCSA estimate can be obtained in linear elasticity for the effective bulk modulus, 

but not for the shear modulus. 

It is insightful to see how the MCSA estimate in Eq. (lll.58) can be recast by means of the 

canonical function proposed by Berryman (2006) in Eq. (Ul.47). In two-phase materials, the 

relation linking/to the transformation parameter y can be derived from Eqs. (JU.47) and 

(lll.56-57) (Stora et al. 2006b): 

f [ I 2 ( D, - Y ' ]( D, - y) = /3,2 + ·C2 D2+2y) D1+2y . 
(lII.59) 

The inverse relation requ ires solving a quadratic equation with only one positive root which 

takes the form: 

where 

-e+~e2 - 4dg 
y= 2d . 

d = 2 + 2(2/ - c2)/3,', 

e = -2D, + D, + 2/3,2(/ + c2)(D, + D2 ), 

g = D, oi[(J - 2c2)/3,2 
- d. 

(III .60) 

This function providing the transfonnation parameter y is also monotonic with respect to f 
Eqs. (Ill.59-60) show that a one-to-one correspondence exists between j and y. So, the 

geometric parameter j in the MCSA model can be taken as equivalent to the transfonnation 

parameter entering the canonical function defined in Eq. (lll .47). At the same time, since the 

Properties of the canonical function are such that it leads to excellent estimates even with 

rough estimates of the transformation parameter (Berryman 2006), we can expect that Eq. 

(Ill.58) produces good estimates when f is evaluated from relevant experimental data. It is 

emphasized that, by construction, these estimates always comply with HS bounds. Besides, 

lhe parameter j has a simple geometric signification and can easily be related to physica l 

fac1ors that arc primordial for transport phenomena, as wi ll be shown in the next section. 
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8.3.2 Signification and interpretation oftlte MCSA parameter 

Given the phase volume fractions of a random heterogeneous material, the estimate derived 

from MCSA for the effective diffusivity depends only on one geometric parameter/reflecting 

the relative proportion of the two types of composite spheres in the assemblage. The purpose 

of the present section is to highlight the com1ections existing between the parameter f 
characterizing MCSA and important physical concepts, such as connectivity and tortuosity. 

8.3.2. I A parameter for connectedness 

The estimate given by Eq. (lll.58) is mathematically quite similar to the SC model of 

Kirkpatrick (1971; 1973). They are both analytical and each of them only depends on one 

clearly identified parameter, respectively the coordination number z in the Kirkpatrick 

approach and the geometric parameter / in the MCSA model. In the Kirkpatrick theory ( 1971, 

1973), the microstructure is considered as a resistor network and the coordination number z is 

defined as the number of bonds connected at the same node. Jn the actual microstructure, this 

quantity is practically identified to the number of contacting neighbors to a given particle. 

This parameter thus allows for taking into account the conuectedness of the diverse phases. 

Analogously, the geometric parameter/can be interpreted as a parameter for connectedness in 

the MCSA model. As illustrated in Figs. lll.12, each phase inside the assemblage can be 

broken into two parts: the first one contained in the cores of the composite spheres is 

completely isolated, whi le the second one present in the coatings is well connected, since a 

given coated-sphere is in contact with infinity of neighbors. In practice, the volume fraction of 

the phase 2 dispersed in the outer layers of the Cl spheres, denoted by c;"', can be identified 

to the experimental measurement of the connected volume fraction of phase 2, once such 

measure is available. After some calculations detailed in Appendix 111.8, the geometric 

parameter/can be expressed as a function oftbis volume fraction c;"' : 

! - •"' ( 1+2P1
2
/J)(c1 -cj ) J' - C2 . 

c2 + 2P1
2 p; (c2 - c;"') 

(Ill.61) 

According to this equation, it is possible in the case of porous media to gain infonnation for f 
from the knowledge of the percentage of connected pores, which may be accessible via 

various experimental procedures such as MIP. On the opposite, the coordination number z is 

far more difficult to estimate for such materials generally containing pores that can be of very 

different sizes. 

8.3.2.2 link with the formation/actors 

The measurement of one of these fonnation factors allows for calculating tbe value of the 

geometric parameter/ when the volume fractions arc also lrnown. Indeed, the parameter f is 

related to the formation factors /~ and F
2 

in the following manner: 
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/ =c (2F,+ l ) =l-c l'2F, + 1'1 . (111.62) 
I 2F - 2 2 2F. - 2 

2 / ; / 

Nevertheless, the demonstration detailed in Appendix III.C of the previous equation is valid 

only if both fonnation factors are finite. This fact clearly defines the situations for which 

MCSA are of interest: they are useful provided that both formation factors are finite, i.e. the 

two phases percolate. When one of the fonnation factors is infinite, MCSA degenerates into a 

simple CSA. 

In this section, some connections have been established between the geometric parameter 

characterizing MCSA and crucial microstructura l parameters, such as the connected volume 

fractions and the fonnation factors. A detailed comparison with the SC type estimates is 

carried out in the subsequent section to sbow the original features of the MCSA estimate and 

discuss its potential application fields. 

8.3.3 Compariso11s with other EMTs 

The predictions by the MCSA of the effecti ve diffusivity of a porous medium, with phase 

diffusivities such as 0 2 1 O, = IO' and 02 1 O, ----4 0 , are plotted against the volume 

fraction c, of the pore phase on Figs. 111.13 and IJJ.14. Oo these figures, the MCSA model is 

seen to always satisfy HS bounds. As illustrated on Fig. TU.13, the latter model is even able to 

sweep all the values comprised between these rigorous bounds, as f varies from 0 to 1, which 

is not the case of the classical SC estimate. On Fig. IIl.14, the lower HS bound tends to zero 

and is consequently not represented. 

The consistency of the MCSA and classical SC estimates with HS bounds is a direct 

consequence of their realizabi lity (Gilorrnin i 2001; Milton 1985). The real izability conditions 

are necessary for testing the merits of EMTs but may reveal insufficient, since it is also 

desirable to ensure that the microstructures materia lizing EMTs are realistic from the point of 

view of connectivity. The real connectedness of the diverse phases cannot be correctly 

modeled by the CSA realizing HS bounds except if they are fully connected or disconnected. 

Conversely, as pointed out previously, both the SC estimate of Kirkpatrick and the MCSA 

model provide qu ite simple means to approach the actual connectivity of the different phases. 
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Fig11re J/l.13: Evo/111io11s of the effective diff11sio11 coefficient of u macroscopically 
isotropic two-phase material with D2 ID, = IO' estimated by the MCSA scheme as 

fi111ctio11s of the higli-d(f/usive phase volume fractio11 for diverse values of the parameter j: 
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Figure Ill . I 4: Evolutions of the effective 1iiffi1sio11 coefficient of a macroscopically 

isotropic two-phase material with D, 1 D2 ~ O estimated by the MCSA scheme as fi111ctio11s 
of the high-tiiffi1sive plruse volume.fr11ctio11 for diverse vafues of the parameter f 

All the MCSA curves on Fig. 111.13 exhibit strong changes of curvatures for c2 = (I -/) that 

are qu i1e simi lar to those observed on the SC curves. A natura l question thus arises: arc Jhese 
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significant changes of the effective diffusivity of the MCSA also provoked by the percolation 

of the high-diffusive phase? The following reasoning could help in answering to this 

interrogation. The volume fraction of the high-diffusive phase 2 is taken initially small so that 

the effective diffusivity n· of MCSA is low and is then assumed to increase progressively, 

while the parameter f remains fixed. Thus, in order to conserve a low effective diffusivity, the 

coating of CI spheres occupied by phase 2 is maintained as thin as possible, as can be seen in 

fig. Jll.15a, and the major part of phase 2 is dispersed in the cores of C2 spheres (see Fig. 

JU. !Sb). The effective diffusion coefficient of such an assemblage is low, since the high 

diffusive phase present in the cores of C2 spheres is isolated due to the coatings made of the 

low-diffusive phase (see Fig. ll1. I 2a). However, when the volume fraction of the high­

diffusive phase exceeds the density (I - /) of C2 spheres, this phase can no longer be 

massively trapped in C2 spheres (see Fig. IJJ. I Sb) and the connected part distributed in the 

coatings of C l spheres inevitably augments, as may be seen on the right-hand half part of Fig. 

JIJ.15. The apparently similar radical changes of the macroscopic diffusivities estimated 

respectively by SC and MCSA models are consequently originated by two different physical 

transitions: the jumps of SC estimations are provoked by the percolation of the high-diffusive 

phase, while the changes of the effective diffusivity ofMCSA arc caused by a transition from 

tortuous percolating clusters only composed of a small part of tl1e high-diffusive phase to less 

sinuous paths gathering the major part of this phase, as illustrated on Figs. IJI.12. 

The latter transition may be quite alike the ones inducing the pronounced increase of 

diffusivity observed in cementitious materials (Fig. l.5) as the porosity augments (e.g. Cui and 

Cahyadi 2001; Oh and Jang 2004), since percolating paths of pores can systematically be 

found regardless of their volume fraction in the material by consideri~g. very fine scales. This 

assertion is experimentally sustained by numerous MIP tests (e.g. Galle 200 1), where the 

liquid injected at high pressure manages to pass through any cement paste, mortar or concrete 

by porous paths Jess constricted than 3 nm. It is worth saying that there are a large number of 

Olhcr materials, such as for example porous media having a multi-scale pore structure like 

rocks or sandstones, where this highly diffusive phase always percolates. 
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Figure JJI.15: Evolution of the volume fractions of the high-diffusive phase respectively 
dispersed in the shells of Cl spheres (a) and in the cores o/C2 spheres (b) as functions of 
the total volume fraction of the high-diffusive phase for diverse contrasts behveen phase 

diffusivities, the geometric parameter f being equal to 0.5. 

R.4 Conclusions of chapter R 

The success of models developed for engineering applications depends to a large extent on 

their simplicity and, in particular, on the easiness with which the parameters involved in the 

models can be physically interpreted. Based on simple space filling assemblages composed of 

two types of composite spheres, the MCSA estimate presently developed needs only one 

geometric parameter, in addi ti on to the phase volume fractions and diffusivities. This 

parameter can take into account the phase connectivity and is in direct relation with the 

formation factors (Eq. (11 1.62)). 

Original features of the MCSA, such as its capacity to describe tortuous percolating paths, 

have been outlined and could be of particular interest for multi-scale random porous media. 

The MCSA estimate is also capable of capturing pronounced variations of the material 

diffusivity, while respecting rigorous bounds. It thus appears suited for predicting the 

macroscopic diffusive properties of porous media or more genera lly of random heterogeneous 

media with high contrasts. Therefore the multi -sca le homogenizati on approach developed in 

the ensuing chapter to predict the macroscopic diffusion coefficients of cementitious materials 

'incorporates the MCSA model. 
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9 CONSTRUCTION OF A MULTI-SCALE HOMOGENIZATION MODEL FOR 

ESTIMATING THE EFFECTIVE DIFFUSIVITIES OF CEMENT-BASED 

MATERIALS 

As already argued previously, cement-based malerials have complex microstructure with a 

multi-scale porosity. It is consequently quite natural to adopt multi-scale approaches to deal 

with such media. In the present chapter, a multi-scale homogenization model is first 

developed for HCP that constitutes the matrix of concrete materials, and is then extended to 

mortars. The main difficulty for building a su ited homogenization model for HCP consists in 

correctly representing their multifaceted porosity and in reproducing the highly non linear 

changes of their diffusive properties measured experimentally (Fig. l.5). Several 

homogenization models developed for predict ing the transport properties of cement-based 

materials (e.g. Oh and Jang 2004; Bary and Bejaoui 2006) attribute these significant changes 

to the geometrical percolation of capil lary porosity. However, this explanation may not really 

be in accordance with the cri tical pore diameters measured by MIP, as shown below. 

As already mentioned in Part I, gel pores sizes are assumed to be situated between a few nm 

and 0.2 µm and capillary pores ones to range from 0.2 µm and a few 11m, even though the size 

range of capillary pores varies in the different classifications for the pore stnicture of HCP 

proposed in literature (e.g. Powers and Brownyard l 948). Diamond (2000) evidenced that tbe 

critical pore diameter, defined as 1he pore width corresponding to the highest rate of mercury 

intrusion per change in pressure, allows for assessing the largest scale at which pores 

percolate. The values obtained from diverse MTP tests reported in the literature (see Table 1.5) 

are much smaller than the capillary porosity size range (> 0.2 µm). This means that the 

capillary pores, that are mostly inaccessible to mercury injected at low pressure, shou ld not 

percolate through the paste. Conversely, it is possible to find percolating paths of gel pores 

regardless of the volume fraction of total porosity in HCP, as already asserted previously. 

Oo the basis of these indications given by MIP results, the present chapter proposes an 

approach focusing on the percolating gel pores located in the CSH. The strategy adopted for 

building a multi-scale homogenization model capable of reproducing strong variations of the 

diffusivities of HCP is thus the following: 

(i) Development of an appropriate description of HCP, where percolation occurs in the porous 

CSH in accordance with experimental resu hs from MTP; 

(ii} Prediction of the effective diffusivity ofCSH by a suited homogenization scheme; 

(iii) Validation of tbe multi-scale homogenization model on cement pastes with different 
Porosities. 

Once validated, the developed model is applied to predict the evolutions of the macroscopic 

diffusivities of degraded pastes subjected to a chemical degradation. Jn the previous chapter 

(Stora et al. 2006a), a simple estimate has been developed for modeling sudden variations of 
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diffusivities of heterogeneous materials with high contrasts. ln the present one, a realistic 

three-scale homogenization model based on the latter estimate is proposed for HCP 311d 

mortars in order to provide accurate predictions of their effective diffusivities. 

The chapter is organized as follows. The first section presents the multi-scale description of 

HCP based on the investigation of its microstructure proposed in Part I. The second one 

details the three-step homogenization process specifically developed for l!CP and the 

estimations thus obtained are compared to experimental results obtained on diverse cement 

pastes. The approach is then applied to leached pastes in the third section by adopting a 

simplified scenario of the decalcification process. In the fourth one, the homogenization 

model is extended to mortars. 

9.1 Multi-scale description of HCP microstructure 

The experimental results collected in Pa11 J about the critical pore diameter indicate that the 

highest scale at which porosity percolates through HCP is about tens of nanometres depending 

on the type of pastes. Benefiting from th is precious infonnation, a three-scale representation 

of HCP microstructure is now proposed for estimating the material diffusive properties 

focusing on the highest scale at which percolation of porosity occurs. This three-scale 

description is similar to the one exposed previously in linear elasticity. Indeed, tl1e first two 

microstructural levels respecting the scales separation condition are identical to the ones 

depicted in Fig. 11.22: the first level varying from 0.2 µm to a few tens of µm corresponds to 

the scale of the non-diffusive hydration products and of capillary pores, whi le the second one 

ranging from a few tens of µm to about I 00 µm is typical of the sizes of hydrated cement 

grains. These two scales arc respectively denoted as l and II. 

The level I corresponding to the biggest scale of HCP is described first. This level depicted in 

Fig. IT.22 represents the hydrated cement grains. During the hydration of cement particles, 

two diffusive layers presently defined as inner and outer layers fonn successively from 

cement grains surface. The inner layer is less porous than the outer one, since tbe first one 

results from higher confinement conditions and from poorer water accessibi lity during 

hydration process. Generally, an anhydrous part of the cement particles remains after 

hydration has stopped and constitutes an impcnneable core surrounded by these two 

heterogeneous layers. As in linear elasticity, the GSCS is employed to model such a 

microstructure at the micrometer scale. 

The level 11 also depicted in Fig. Il.22 corresponds to the scale of the heterogeneities of the 

two layers. It is commonly accepted that two different types of porous CSH are associated 

with each layer. In the inner layer, the CSI-1"" behave as a matrix phase embedding non­

diffusive inclusions of CH and AF. Similarly, the external layer has matrix-inclusion type 

morphology, where CH, AF and capillary pores play the role of inclusions enclosed in the 

CSH"'. Funhennore, according to the critical pore diameters measured by M IP (Table I.5), 
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the capi llary pores should not percolate and it is consequently appropriate to model them as 

isolated inclusions. The two layers can then be estimated by means of matrix-inclusion type 

schemes, such as the !DD one (Zheng and Du 200 I). 

Nevertheless, the macroscopic diffusivities of porous CSH;.,, and CSH""' also have to be 

estimated by homogenization techniques for example, since they are difficult to gain 

experimentally and have not yet been measured to the authors' knowledge. In the case of 

elasticity, it is not necessary to estimate the effecti ve properties of CSH;"' and CSHcxi, since 

their macroscopic Young moduli have been measured by nanoindentation (Constantinidcs and 

Ulm2004). 

As already emphasized in Part I, CSH are generally described as an intricate mixture of a 

solid compound and gel porosity. In the present representation, both CSH;.,, and CSI J""' are 

supposed to be only composed of gel pores and of an impenneable solid phase. A detailed 

assessment of the connectivity of their gel pores constitutes a key point for estimating their 

effective diffusion properties. lt appears in Table l.5, gathering some values of the critical 

pore diameter of CEM I cemenl pas1es taken from the large data collection of MIP tests 

available in literature, that these diameters vary from a few tens of nm to less than one 

hundred of nms for CEM T pastes depending on the w/c ratio and on the sample preparation. It 

signifies that a s ign ificant amount of gel pores can percolate through the paste. The insu lating 

solid phase and the gel pores composing the mi"crostruct11re of CSH;"' and CS He" are assumed 

in both cases to form together a MCSA, as depicted in Fig. lll.16, in order to account for the 

fact that gel pores which size can go down to I nm are very likely to percolate. Using the 

laner scheme to estimate the effective diffusivities of the CSH, the stepwise homogenization 

process based on the three-scale description of HCP proposed above is presented in the 

following section and applied to predict the macroscopic diffusion coefficients of sound and 

leached HCP. 

9.2 T hree-step homogenization process 

Cement pastes are assumed to be macroscopically isotropic so that the effective diffusion 

tensor D~ct• of I ICP is simpli fied into o;ICPl , where o;,CP is a scalar diffusion coefficient. 

All the main phases constituting HCP microstructure, namely CH, AF, CSH;"', CSH""', UC, 

capillary pores (CP) and gel pores (GP), are all supposed to be isotropic and their total volume 

fractions and diffus ivities are respectively designated by c, and D1 , with 

ie {CH, AF, CSI I"'', CSH' " , UC,CP, GP}. 

The first step of the process consists in estimating the effective diffusivitics of CSH;., and 

CSW" represented by means of a MCSA (see Fig. 111.16). The effective diffusivity of the 

solid phase denoted Ds is taken such as Ds/ DcP ~ 0. The diffusion coefficients D~S111 .. and 

D~s11..., of the two types ofCSH are then obta ined from Eq. (JIJ.58) that simplifies into: 
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- I+ (r + c'.' )+ 11 - I , + c1. ~ 
D.' = Cl v er ~ i E 1csH"" CSI !'" } (111 ' 1+(21-<r ) ' t , , .63) 

where c~~ and c~ designate tbe relative volume fractions of the gel pores in CSH;., and 

cs1-1•", respectively. 

Gel Pores 
(< 0.2 ~lm) 

Level I: CSH 
(0.0 I - 0.2 ~tm) 

Figure 111.16: Two-dimensional representation ()/the assemblages mixing two types of 
composite spheres 11sedfor represe111i11g the microstruct11res ofCSH1

"' and CSH"". 

At the second step, the inner and outer layers composing the assemblage of doubly-coated 

spheres have matrix-inclusion type morphology, as already mentioned in Part II. More 

precisely, the impenneable mineral phases CH, AF and/or th_c cajl illary pores play the role of 

inclusion enclosed in a matrix of CSHin• or CSHci<'. Each layer is supposed isotropic so that 

the diffusion coefficients of the inner and cxtcmal layers arc simply denoted by the scalars 

D~ and o· , respectively. In the micromechanical model developed to estimate the elastic 
.,.,, <WI 

propc11ics of cement pastes by Zimmerman et al. ( 1986) and Stora et al. (2006b), spheroidal 

shapes arc used to model ee11ain particulate phases but it is presently preferred for simpl icity 

to adopt spherical inclus ions for representing all these phases. The effective diffusion 

coefficients o' and o· of the inner and outer layers are estimated by the IDD scheme (Eq. 
hm !)Ht 

IIJ .28): 

(lll.64) 

where the superscripts ' inn ' and ' out' ind icate that the volume fractions are relative to the 

tota l volume fraction of the inner and outer layers in the doubly coated spheres model 
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respectively. The IDD estimate was outlined to be valid provided that the most diffusive 

phase does not percolate but it can be applied for the outer layer, since the capillary pores 

should not percolate or only through a network of smaller gel pores, according to the MIP 

tests perfonned on sound pastes. 

The third and last step of the homogenization process consists in computing the effective 

diffusivity of HCP represented by a doubly coated spheres model, which can be computed 

with Eq. (Jll.26). The anhydrous core being impermeable to diffusion, the effective diffusivity 

of HCP can thus be simply expressed as follows: 

D. = 20· ( 3 fl:: I 'I· (111.65) 
HCP .. ~ 2+c -2c 

\ UC ;,,,,inn / 

9.3 Estimations of the effective diffusivities of HCP 

9.3. I . I Evaluation of the macroscopic diffusion coefficients of sound HCP 

The three-step homogenization model described in the previous section is now applied to 

diverse CEM I standard pastes, which total porosity vary from about 20 % to 45 %. The basic 

input parameters required for the calcu lations of the effective diffusivity of these pastes are 

the diffusion coefficient and total volume fraction of every phase. The numerical values 

retained for the diffusivities of the gel and capillary pores are: Der = 2.2xl0_. m'/s and 

Dar =2x10-10m2/s (Bary and Bejaoui 2006). More precisely, Der is obtained by simply 

assuming it equal to the diffusion coefficient D1110 of tritiated water in bulk water at 23 °C 

and Dar is supposed to be one order of magnitude lower than Dci• because of the 

constrictivity effects. The mineral compositions in tenns of volume fractions, evaluated from 

the hydration model developed in Jennings (2000) and Tennis and Jennings (2000) of 

ordinary (CEM I) cement pastes with different w/c ratios, are taken from Bejaoui and Bary 

(2007). The volume fractions of total porosity obtained with the Jennings and Tennis model 

are in very good agreement with total water porosity measured on the same cement pastes 

(Bcjaoui and Bary 2007). The volume fraction of capillary porosity is difficult to quantify 

precisely due to the fact that they are mostly inaccessible by mercury injected at low pressure. 

For the present work, the latter quantity is supposed to be equal to the value ccr = 0.036 

measured with the help of BSE by Igarashi et al. (2004) in ordinary Portland cement pastes of 

W/c = 0.25 and w/c = 0.40 with the help of image analysis. Still, this approximation 

introduced because of a lack of experimental results may require further investigation. The 

total amount of gel pores are then calculated by subtracting the volume fractions of capillary 

Pores to the total porosity ones. The repartition of the gel porosity between the two types of 

CSH is perfonned in the following manner: the CSH;"' that appear to keep an invariant 

Olorphology on the micrographies of Bcjaoui et al. (2006) always contain about 20% of gel 
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porosity (Tennis and Jenn ings 2000), wh ile the gel porosity comprised in the CSH•'" iii 
crea: 

with the w/c ratio of the paste. The volume fractions of the mineral phases and of the di f"' 
<er1 

types of porosity present inside CEM I pastes are listed in Table 111.2. 

CSH;,,, cs1-1•" Capi llary porosity 

w/c 
An hydrous 

(percentage (percentage of 
(assumed from 

CIJ + AF residua ls lgarashi et al. of gel pores) gel pores) 
2004) 

0.30 0. 137 0.374 (20 %) 0.155 (46.6 %) 0.036 0.298-

0.35 0.094 0.339 (-"-) 0.229 (49.4 %) 0.036 0.303 

0.38 0.075 0.307 (-"-) 0 28 l (50.4 %) 0.036 0.302 

0.40 0.064 0 283 (-"-) 0.317 (50.8 %) 0.036 0.300 

0.42 0.054 0.257 (-"-) 0.361 (50.9 %) 0.036 0.298 

0.45 0.043 0.2 16 (-"-) 0.411 (5 1.7 %) 0.036 0.293 

0.50 0.03 0.146 (-"-) 0.504 (52.4 %) 0.036 0.284 

0.60 0.0 14 00 10(-" -) 0.684 (52.6 %) 0.036 0.257 

0.65 0.0 10 0.000 0.71 l (54.4 %) 0.036 0.244 

Table 11/.2: Composition in terms of volume fractions of hy rlraterl CEM I pastes o/Jtaine 
by combining tire mineral compositions given in Bejtw11i and Bary (2007) computed witi 

the hydrntion morlel of Je1111i11gs (2000) aud Tennis and J en11i11gs (2000) am/ tire 
experime11tlll 11tells 111·em e11ts of capillary pores (lg11raslti et al. 2004). 

Two additional parameters, namely the densities f "'' and/"·" of composite spheres with le 

porosity in the MCSA representing the CSH;,,, and CSH""' respectively, still need to 

detennined. Bary and Bejaoui (2006) assumed that only a very small volume fraction ofO.O 

percolates through the CSH;.'. Using this value, Eq. (Jll.56) yields /"'= 0.805. The effecti 

diffusi vity of CSIJ;., is then estimated from Eq. (HJ.63): D~.S""•• = 8.30xl0 13 m2/s . T 

geometric parameter of the MCSA representing csu•XI is identified from an experimcn 

value of the macroscopic diffusion coefficien t of tritiated water in CEM I paste with w/c 

0.50 (Richel ct al. 1997): D;,criwl c = 0.50) = 8.9 l x Io-" m'ls . The value thus obtained f 

the density .f of low-porosity composite spheres is .f ""'' ~ 0.546. Eq. (111.63) provid 

esti mations of o;.5,,,., that vary from 0~11..,,( wl c = 0.30) = 7. 17 x IO ·11 m2 /s 

D~'S11._,, (w/ c = 0.65) = J.04x I0- '0 m'/s depend ing on its gel porosity. Jt is noteworthy that t' 

high-density CSI I;.,, that are much less diffusive than CSUcxi could be approximated as a no 

diffusive phase without strongly in fluencing the fina l results. However, it seems mo 

consistent to model this porous phase as diffus ive, s ince the CSl-11
"' contain a signi fica 
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amount of gel pores. Then, Eqs. (lll.64-65) arc computed, the relative volume fractions of CH 

and AF distributed in the inner and outer layers being taken proportional to the relative 

percentage of CSH''" and CS! 1•" in CS!!. 

The predictions, resulting from the three-step homogenization process, of the effective 

diffusivities of tritiated water in sound CEM I pastes with diverse w/c ratios are plotted on 

Fig. ITI.17 and arc confronted to experimental resu lts issued from Richel et al. ( 1997). lt is 

recalled that a HCP becomes more porous as its w/c ratio increases. They are in quite good 

agreement with the values measured, since the mean relative error is about 16 %. It is outl ined 

that the results can be notably improved by taking/as a linear function instead ofa constant. 

Furthcm1ore, using the identica l three-step homogenization model, the predictions obtained 

by employing MT with the gel pores embedding sol id spherical inclusions instead of the 

MCSA for the effective di ffusivities of the CSHcxo are provided in Fig. 111.1 7 and highly 

overestimate the experimental results thus confirming the inadeq uacy of this matrix-inclusion 

type scheme in the particular mentioned configuration for predicting their effective 

diffusivities. 

,.-.., 
V> ,.. ...... 
E 
'-' 

• 
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- - - Mulli scale model (/~ 0.546) * Expcrimcnlnl (Richet et al. 1997) 
--Simplified model (Slora el a l. 2006b) 
· - • - Mulli scale model wilh MT ins1cad of MCSA 

to""L..-~--================~ 
0.25 0.3 0.35 0.4 0.45 05 0.2 

Total poros ity 

Figure I ll.17 (.5e111i-logaritlrmic scale): Evolutio1ts of tire dijfttl'ivities of CEM I pastes 
measured experimentally (Ric/ref et al. 1997) a1td predicted respectively by the m11/ti-scale 
model with f= 0.546 and by the simplified model in Stora et al. (2006b), as <1 function of 

their total porosity. 

For the sake of comparison, the results obtained with the two-step representation proposed in 

Stora et al. (2006b) and briefl y recalled below are also displayed in Fig. 111. 17. At the first 

step, by taking all the litt le or non diffusive phases as spherical inclusions embedded in a solid 

diffusive CSH<>' matrix , we obtain a two-phase material composed of a low diffusive 
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homogenized solid phase, which diffusivity results from the first step, and of porosity (Fig. 

111. 18). At the second step, this two-phase material representing HCP is modelled as a MCSA.. 

According to Fig. III.17, the three-step homogenization model leads to a significant 

improvement compared to this two-scale approach, s ince it proposes a more precise 

description of HCP microstructure and of its porosity. 

Porosity 

,, , __ .,, 

Figure 111.18: Two-dimensional representation of HCP u~·i11g two scale.~: at the first scale, 
11on-tliffusive a11d little diffusive phases are modeled as S/Jlterical i11cl11sio11s embedded in a 
solid diffusive phase; at tlte second scale, the homogenized solid phase and tlte porous 011e 

are modeled as a MCSA (Stora et al. 2006b). 

The presenl multi-scale representation of the pore structure is sti ll very simplified in 

comparison with the real pore network. Nevertheless, it reproduces some of its important 

characteristics. First, the proposed description represents in a simple manner the percolating 

gel pores, which is cons istent with the critical pore diameters measured by M IP. Furthermore, 

the gel porosity ofCSll0
" in the present model augments with the w/c ratio, while/is kept 

constant. Under these conditions, it can be seen from Eq. (111.56) tbat the quantity of 

percolating gel pores also increases in the MCSA. This is in good agreement wi th the 

micrographies of Bcjaoui ct al. (2006), in which the gel porosity of CSH"' appears to be of 

greater size and to be more connected in high w/c pastes tha11 in low w/c ones (Fig 1.2). 

The present homogenization model is quite similar to the one proposed by Bary and Bcjaoui 

(2006). The main difference lies in the modeling of the external coating, since in the present 

representation gel pores percolate instead of capi llary ones. It should be emphasized that most 

of the homogenization methods ex isting in literature focus on the percolation of capi llary 



Pnrl Ill: Prediction of the macroscopic diffusivities of cemcn1itiot1s 111!\tcriids Page 131 

porosity and require tbe knowledge of its percolation threshold. But as outlined by Bcjaoui 

and Bary (2007), no consensus exists concerning its actual val ue because the defin ition of 

capillary porosity and the method for computing its percolation threshold vary from one 

author to another. The perco lation thresholds of capillary pores in HC P are often estimated 

with 1he help of advanced cement simulation tools (Garboczi and Bentz 200 1; Ye 2005). 

Nevertheless, the diverse values proposed by these simulalion tools, globall y ra nging from 

0.03 to 0.2, vary significanlly from one author to the other (Garboczi and Bentz 200 I; Y c 

2005) and some of these estimations appear to be in contradiction with the cri1ical pore 

thresho lds measured by MIP. The present model proposes an alternative approach rather 

focusing on the percolating gel pores located in CSll. !Ji the present descrip1ion, the capillary 

pores only percolate through a network of smaller pores and the sudden varia1ions of HCP 

diffusivi ty are caused by the change in connectivity of gel porosity. 

9.3.2 Eva/11utio11 of the macroscopic diffusion coefficiems of leached HCP 

The model is now applied to 1he case of a hydralcd CEM I paste subjected to leaching by pure 

water. The degradation scenario retained here is exactly the same as in Bary and Bejaoui 

(2006). T he reader should refer to 1his paper for more details. The decalci fication is supposed 

to be, in term of the volume of solid phase replaced by porosity, linearly related lo the 

decreasing calcium concen1ra1ion in 1he pore solution Cn: CH torn ll y dissolves before any 

other hydra1ion producls between c. = 21.54 and c. = 20.3 1 mol/m3
, then half of AF dissolve 

bc1ween c. = 20.3 1 and c. = 3.08 mol/m3 and the CSI I are progress ively degraded between 

c. ~ 20.3 I and c. = 1.09 mol/m3• More precisely, on ly 5 % of the CSH arc di ssolved and 

replaced by add i1i onal capillary pores in the mosl decalcified slate bul their internal porosity 

sign ifica111ly increases during degradation (Galle et al. 2004; lleukamp 2002). Their gel 

porosity is quan1i ficd by subtracting the sum of the initial capillary pores and the additional 

ones, issued from the dissolution of hydration producls, from the measure of total porosi1y by 

M rP. Th is method is applied to a CEM I paste with w/c = 0.45 and the values of porosity 

comprised in the CSH before and after leaching indicate 1hat a to tal volume frac1ion of 

supplemeniary percolating gel porosity of 0.04 appears in the CSll during degradation. The 

effeclive diffusivi1ies of CSH;,,, and CSHc", wh ich arc updated from Eq. (llI.63) and from 

1hese higher values of gel poros i1y, sign ificantly increase when decalci ficalion occurs. 

An important issue for the application o f the present model 10 the case of degraded cement 

pastes is the possible format ion of percolating paths composed of capillary pores due to the 

disso lution of hydra1ion products. Neve1thclcss, lhc critical pore diameler measured by MJP 

for leached pastes (Galle ct al. 2004) remains in ferior to the typical sizes o f dissolved 

hydrati on producls (CH, AF) situated at 1he micromc1er sca le, though ii increases by an order 

of magni tude (Table 1.4). Th is result suggests 1ha1 the add itional capillary pores fonned 

during 1he leach ing process do not percolate or only through smaller pores. ii is consequently 
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sound to use a matrix-inclusion type scheme for estimati ng the effective properties of the 

layers of the doubly coated spheres during leaching. The effective diffusion coefficients thus 

obtained versus calcium concentration for CBM I pastes with different w/c ratios are shoWn 

on Figure 111. 19. Two principal domains are observed on the curves displayed on this figure. 

Look ing at these curves from the right to the left, the macroscopic diffusivities of the pastes 

appear to first increase sudden ly. This augmentation is caused by the dissolution of all the 

po1tland ite, whi le the other hyd ration products (AF, CSIJ) are still intact. These solid phases 

then progressively dissolve as the calcium concentration decreases and the effective 

diffusivities continue to augment but less rapid ly. At the end or the leaching process, the 

increase of the effective diffusion coefficient is about one order of magnitude for the totali> 

leached cement pastes with low w/c ratio (0.30 - 0.40) and a factor of 6 to 9 for the ones witt 

higher w/c. Both initi al and final values obtained for w/c = 0.40 are consistent with the ones 

reported by Plane! (2002) for a similar materia l. 

~ 
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Figure 111.19: Evolutions of the eff ective tfijf11sio11 coejjicie11ts t>fCEM I pastes with 

different w/c ratios as af1111ctitm of calcium co11ce11tratio11 in pore sol11tio11 (Storti et tll. 
2006b). 

The present predictions are also close to the results of Bary and Bejaoui (2006) obtained wit!· 

a comparable assemblage, where the same degradation scenario was adopted. But th~ 

advan tage of the present model compared to the previous one is that the MCSA allows fo1 

representing in a more simple and convenient manner the percolat ing porosity than the SC 

scheme, that can be real ized only by a complex microgeometry (Milton 1985). 
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9.4 Estimations of the macroscopic diffusive properties of mortars 

Many models already exist to deal with such applications (e.g. Care and Herve 2004; 

Garboczi and Bentz 1997). It is worth saying that the effective diffusivity of a mortar is 

approximatively of the same order as the diffusivity of its cement matrix. Some authors 

(Nguyen 2005) argue that it is due to the fact that the presence of aggregates in a hydrate 

cement paste matrix probably has two opposite effects on the transport properties that 

compensate each other. On the one hand, it increases the tortuosity of the matrix and reduces 

the total space available to diffusion and, on the other hand, the presence of porous ITZ 

enhances the diffusion process. 

The homogenization model presented below is based on a few assumptions. First, the 

macroscopic diffusion coefficient of the cement matrix of mortar will be supposed equal to 

the one of the bulk cement paste. In addition, the ITZ is supposed to be a homogeneous 

intcrphase, even though it would be more realistic to model it as an inhomogeneous one (Lutz 

and Zimmennan 2005). A doubly coated-spheres model is adopted to represent mortars (Fig. 

llL20). Precisely, the core, the intermediary layer and the external one are respectively 

occupied by sand particles, ITZ and HCP, which diffusive properties result from the previous 

step. The sand aggregates are non-diffusive and, as in linear elasticity, the diffusivity of ITZ is 

computed by means of a simplified model (Care and Herve 2004). The macroscopic 

diffusivity of mortar can then be estimated by the GSCS or modified DIM (Eq. (111.25)). This 

homogenization approach for computing the diffusivity of mortars will be applied and 

va lidated in Part V, which proposes simulations of the chemical degradation of mortar 

samples. 
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Figure 111.20: Schem(ltic of the represe11tatio11 used/or the estimation of the effecti11e 
diffusive am/ elastic properties of mortars. 

CONCLUSJONS OF PART Ill 

The contributions of this Part are both theoretical and practical. The estimations of the 

macroscopic transport properties of porous med ia such as concrete materials represent a 

challenging issue for homogenization theories because of che difficulty of reproducing tJ1e 

highly non linear changes of these properties observed experimencally (e.g. Oh and Jang 

2004). The brief review performed reveals that only a small group of commonly used EMTs, 

like GEM or Kirkpatrick models, exh ibits che capacity co model the sudden variation of che 

effective diffusion coefficient of porous med ia due to a critical microstructure change. lt is in 

particular po inted out that commonly used matrix-inclusion type EMTs are to be excluded for 

predicting such rapid changes of diffusiv ity, since they are inadequate for modelling 

percolating pores. 
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A novel estimate associated to a MCSA apt to account for pore connectivity has thus been 

developed. By construction, this MCSA scheme automatically respects the HS rigorous 

bounds. Another salient feanire of this estimate is its capacity to model connected phases 

formi ng tortuous paths in a geometrically simple and clear way, which is essential for the 

prediction of effective diffusion properties of porous media. In this sense, as an estimation 

model, it provides a real improvement on HS bounds and other EMTs and it is expected to be 

applicable for a large class of porous materials, such as cementitious ones, granular media and 

rocks. 

From a practical standpoint, a three-step homogenization model, wbere the two types of CSH 

containing connected gel porosity are modelled as a MCSA, is specifically developed for tbe 

prediction of the macroscopic diffusivities of HCP and validated by confronting with 

experimental measurements performed on CEM I pastes. But the success of models developed 

for engineering applications also depends on their simplicity of use and on the number of 

parameters it involves. The present model well complies with these criteria. Apart from the 

usual intrinsic parameters, such as phase volume fractions and diffusivities, it depends only on 

two geometri cal parameters that allow for characterizing the connectivity of gel pores i11 the 

CSH'"' and in the CSH"''. The model distinguishes itself from already existing approaches in 

the sense that it does not require the knowledge of the percolation threshold of capi llary 

porosity. The multi-scale homogenization model is furthermore applied to cement pastes 

submitted to leaching. The significant increase of cement paste diffusivities predicted 

highlights the highly detrimental influence of the dissolution of hydration products. 
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Appendix Ill.A: Derivation of the inhomogeneous Eshelby tensor for a spherical 
isotropic inclusion 

We are presently interested in solving the boundary value problem depicted below (Fig. 

III.A. I) so as to derive an analytic expression for the inhomogeneous Eshelby tensor of a 

spherical isotropic inclusion. All phases are supposed isotropic so that it is possible fonnulate 

the reasoning with scalars instead of second-order tensors. 

Figure Ill.A.I: Schematic of a splterica/ isotropic i11c/11sio11 witlz a ltomoge11eo11s 
interpltase enclosed i11 an infinite matrix. 

The genera l so lution for this problem can be expressed in the following way: 

c, = B,r+~. 
r 
/ 28 .1 

J, =-Dcil B, -~-g ~ 

B 
Cc1 = 83r +~, 

r 

r' J 

l ei = -De{ B, - 2~•} 

ICM= Bsr+.!1, 
,.1 

l J M = -D~{ 85-
2,.~} 

(I ll.Al) 

(lll.A2) 

(ll l.A3) 

where B; (i e (1 ,6]) arc constants tliat can be detcnnined from the interfaces and boundary 

conditions. It is straightforward that 8,_ = 85 = 0. It furthennorc comes from the definition of 

the inhomogeneous Eshelby tensor in Eq. (111.13) that 811 = .A1.g•1 (Duan et al. 2006). The 

interfaces conditions at r = r; and r = r, respectively read: 

(Ul.A4) 
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(III.AS) 

from the interface conditions written in Eq. (lll.A4), it comes chat 

8>=(-·l;"-j)g' and B, = 8 ;;' (IJl.A6) 

The unknown constant 86 is lhen gained from Eqs. (111.A5-A6): 

B, =[( J, -i)r,' +jr,' ]g·. (lll.A7) 

By injecting the expressions of Eqs. (lll.A6-A7) into (111.AS), the following expression is 

finally obtained for ii;": 

A:' =(1+2p:1 p'). (Ill.AS) 



Part Ill: Prediclion of the macroscopic diffusivities of ccrnentirious materials 
Page 131 

Appendb: 111.B: Derivation of Eq. (J il .61) 

This Appendix details the calcu lations required to obtain Eq. (lll.61). To begin with, Eq. 
(111.54) is rewritten as: 

fl ' - {J' • fl' - n2 (1 -) • - 2C2 t • - 1-'1 - C2 · (Il l.BJ) 

Using Eq. (11 1.55), /J! can also be expressed as a function of c; : 

fl' _ /J' c, - Jc; 
• - 2 . 

1-/ 
(ITI.82) 

By recall ing that the connected volume fraction er"' of phase 2 vcri fies er'' =Jc;, Eqs. 

(TII.81 -B2) become: 
o.t I Owl'\ 

p: =fl; c, -c, ' fl.' = fl.2ll -1-J. 
1-f f 

(Ill.83) 

Substituting the expressions (Jll.B3) of /J} and /J.2 in Eq. (ITI.56) yields Eq. (Il l.61 ). 
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Appendix Jll .C: Link between f and the formation factors 

This Appendix aims at establishing the links between the geometric paramcter/ofMCSA and 

the fo1mation factors defined in Eq. (111.45). For this purpose, the quadratic equation (Ill.57) 

is first divided by Di : 
r 0·)2 

bD. c al- +-2-+-, = 0. 
' Dz D2 Dz 

(III.Cl) 

We next cons ider the limit of (III.Cl) when 0 2 ~ oo, in order to make the formation factor 

F, appear. Noticing tl1at /J~ tends to one when D2 ~co, Eq. (111.CI) simpl ifies into: 

-
1 

[(1+2/-c,)-
1 

+2(l - /-c2))=0. (lll.C2) 
F, F2 

Two cases are to be treated. If F2 ~oo (i.e. D
0

/ D2 ~O), no relation can be established 

between f and F2 . This case corresponds to the situation in which the phase 2 does not 

percolate. Consequently the lower HS bound, also obtained by taking f = 0 in the MCSA 

estimate, should be applied. If F2 is finite, Eq. (JI l.C2) yields: 

f =c (2F2 +11_ 
I 2F -2J 2 • 

(llI.C3) 

Analogously, it is possible to express fas a function of F, by inverting the indexes 1 and 2 

and substituting/by (1 - /): 

f =l -c (2F1 +l )· 2 
2

F. _ 
2 

(Ill.C4) 
I 

Conversely, the fonnations factors can be
0 

expressed in terms off 

2/ +c, 2(1 - /) +c2 F., and F, 
2/-2c1 2(1-/)-2c2 

(III.CS) 
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Part IV 
MODELLING OF DAMAGE OF CEMENTITTOUS MATERIALS 

The damage of heterogeneous materials such as concrete is a complex nonlinear dissipative 

phenomenon, which has been the subject of extens ive researches (e.g. Krajcinovic 1996). 

Damage in cement-based materials is generall y qual ified as quasi-brittle and is caused by tbe 

nucleat ion, growth and coalescence of microcracks. These cracks grow preferentially in 

certain directions depending on the loads app lied thus inducing an an isotropy of the damaged 

material. Many models, which are more or less phenomenological, have been proposed for 

treating damage in concrete (e.g. Mazars 1984; 1985). But some phenomena such as the 

unilatera l effects of the opening and closing of microcracks represen t challenging issues for 

researchers (e.g. Connery and Wclemanc 2002). Aiming at proposing a damage model that 

can be iJJcorporated into a FE code, the present Pait adopts a hybrid approach using 

homogenization techniques to determine the number and nature of damage variables and t11e 

free energy for a given damage state but also revisit the main ideas underlying the most 

popular models in concrete (e.g. Mazars 1984; 1985). 

The framework of continuum damage mechanics presently employed 10 develop a physically 

sound model is usually associated with the thermodynamics of irreversible processes with 

internal variables (e.g. Nguyen 2000). As noticed by He and Curnicr (I 995), a damage model 

within this framework is generally composed of three parts. First, the damage variab les are 

adequate ly chosen to characterize as accurately as possible the damaged state of the 

concerned material. Second, the material behaviour is formulated for a given damage state. 

For this purpose, homogenization techniques are employed to remedy the lack of uniformity 

and rigor in formulating the free energy function. The evolution laws of the damage variables 

for a loading history are then established. The damage model presently developed docs not 

clai11J to tackle complicated issues of damage, such as unilateral effects or complex loading. 

In lhe manuscript, the model is only app lied in tension but could be extended to the case of 

compression with the aid of the work of Dcudc ct al. (2002). 

The present work first assesses the capacity of prominent homogenizat ion schemes to predict 

the mechanical effecti ve properties for a given damage state. Then different evolution laws 

for the damage variables arc discussed and a strain-based criterion is established. The damage 

model developed is then applied in uniaxial and biaxial tension tests. It is outl ined that we aim 

at bui lding a relatively simple model based on the ensuing s implifying assumptions. The 

undamaged material is considered to be isotropic. The assumptions of small strains and of 

isothermal conditions arc adopted. Damage in cement-based materials being quasi-brittle, 
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plasticity may be neglected for simplicity at least in tension. In addition, the unilateral effects 

due to the opening or closure of microcracks and the frictional effects are neglected. 

10 DEFINITION OF STATE VARIABLES 

The state variables are defined as the group of variables which current values characterize the 

physical state of a system at equilibrium. Only mechanical state variables are presently 

considered. The state variables are constituted of the macroscopic strain t associated with the 

stress o and of parameters chosen to characterize the damaged state of the material. Two 

main categories of damage models based on different definitions of the damage parameters 

may be distinguished: the phenomenological models (e.g. L1deveze 1983) focusing on the 

damage effects at the macroscopic level and micromechanical approaches (e.g. Oonnieux et 

al. 2006; Pensee and Kondo 2003) linking the macro-response of the material to microscopic 

parameters characterizing its microdefects (Budiansky and O'Connell 1976). 

Many anisotropic damage models use a second-order damage tensor (e.g. Ladeveze 1983), 

although such choice may lead to strong shortcomings (Krajcinovic 1996). Among them, 

Connery and Welemane (2002) evidenced that the spectral decomposi tions of these second­

order damage tensors may lead to certain inconsistencies, for example the non uniqueness of 

the thennodynamic potential. Micromechanical approaches (e.g. Kachanov 1992) are more 

recent than phenomenological models but may reveal very difficult to implement in a FE 

code. 

The basic idea used by the micromechanical models for dealing with damage consists in 

representing the microcracks as degenerated ellipsoidal voids. By degenerateo it is meant that 

the lengths of one or two of its axis are reduced to zero. In the present part, only penny­

shaped spheroids are considered. Damage variables that characterize material mierodefects are 

the crack density parameters d1 characterizing a family i of cracks having the same nonnal 

vector e, associated with the driving forces Ydi defined in the ensuing. More precisely, these 

crack densi ty parameters introduced by Budiansky and O 'Connel (1976) are defined as 

d,~N,a/, where N1 is the volume density of the family i of microcracks and where a1 is the 

maximum axis of the degenerated spheroid represent ing the microcracks of type i. The 

damaged material is then viewed as a homogeneous matrix of cement-based material in which 

the microcracks arc distributed. The idea of modelling these cracks as penny-shaped spheroids 

Permits to account in an intuitive manner for the anisotropy caused by loads. In the ensuing, 

the presently defined crack density parameters d1 are chosen as damage parameters. The total 

number n, of families of cracks necessary to correctly model the damaged material is 
discussed later. 
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11 MlCROMECHANICAL ESTIMATIONS OF T HE DAMAGED MATEIUAL 

BEHAVIOR 

In the case of a stra in formulation, the Helmhotz free energy practically corresponding to the 

energy stocked by elastic strains is written as : 

(TY. I) 

where the effective damaged stiffiiess tensor c· depends on the homogenization scheme 

adopted. The scope of the next part consists in finding a relevant one providing accurate 

estimations for the effective damaged stiffi1css tensor c·. Different micromcehanical schemes 

arc presently reviewed to find which ones provide the best estimations. However, the present 

review is only focused on explicit schemes, that can easi ly be implemented in a FE code and 

do not require any numerical resolution to obtain the effective damaged stiffness tensor c·. 

11 .J General presentation 

A brief review of the micromechanica l schemes, that cannot pretend in any case as being 

exhaustive, is presented, starting obviously from the n1dimcntary dilute model (e.g. Eshelby 

1957) to more recent ones. To simplify the ensuing calculations, the following two tensors, 

wh ich are both linked to the Eshelby tensor r.:' of the penny-shaped inclusion representing 

the type i fami ly of cracks embedded in the sound material, are introduced: 

1f, = lim 'I (I - :i:::' )-1
, lFI~'' ='!._tr d, T, : s.,, 

11->0 3 
(IV.2) 

where r1 is the aspect ratio of the penny-shaped inclusion representing the type i fami ly of 

cracks and lFI~' defined in Eq. (11 .34) is called the dilute compliance increment tensor of type 

i microcracks. It is recal led that I and S., designate the fourth order identity tensor and the 

compliance tensor of the undamaged material behaving as a matrix entrapping the penny­

shaped crack, respectively. The tensor llll;" has got a simple expression, since the only non 

vanishing tenns are (Mura 1987): 

H,~: 16(1-v
2

) d · H '., 
3£ ,, i/lj 

" 
8(1 - v2

) d .. 
3(2 - v)E"' ' (.1 ;t 1

) ' 
(IV.3) 

where £., and v respectively designate the Young modulus and the Poisson ratio of the 

undamaged material. Using the tensorial operators, the tensor IHI;"' can also be written as: 

llll",' =" 16(1 - v?) d [t®L\ + L\ ® 1-vL\ .® L\ .] 
I ~ 3/!i/ (2- v) I - , 

1 
- I I ~ 

{IV.4) 
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where 11, = e. ® e, and where it is recalled that 1 is the second order identity tensor. It is 

noteworthy that, if all the cracks are aligned, the tensor Jl[~' is then singular. 

The estimation for the effective stiffness tensor in Eq. (IV.I) by the dilute model computed 

with homogeneous displacements applied at infinity (e.g. Eshelby 1957) varies linearly with 

the crack density parameters: 

4 
C~, = C,,:(I-p, T,), with p1 =37rd,. (IV.5) 

Jt is however well-lmown that the dilute model does not account for the interactions between 

microcracks. The MT model capable of accounting for interactions in a certain manner 

between the cracks and the matrix, gives tbe following expression of the damaged effective 

stiffness tensor (e.g. Bcnveniste 1987): 

. ( "')-' c.,,. = s,, +llll (JV.6) 

where IHl"'' defined in Eq. (11.33) is the dilute compliance increment tensor of the damaged 

body. As already mentioned in Part TI, different double- inclusion schemes providing quite 

simi lar predictions have been developed to account for the cracks spatial distribution (e.g. 

KOstcr-Toksoz 1974; Hori and Nemat-Nasscr 1993; Ponte-Castaneda Willis 1995; Shen and 

Yi 200 I; Zheng and Du 200 I). In the case of an isotropic distribution of cracks, identical 

estimations can thus be obtained from the IDD model (Zheng and Du 2001 ), PCW one 

(Ponte-Castaneda Willis 1995) or DIM (e.g. Hori and Nemat-Nasser 1993): 

C• • ( 10/) )"' 
PCW =C100 = s., +lll with 1H1 11"> =(n-~Ht' : n~1J

1 

:lHI"'' , (IV.7) 

where n~, = c., : (1 - .r.::,) denotes the eigenstiffness tensor of the double-inclusions 

surrounding the family i of cracks. These double-inclusions practically characterize the spatial 

distribution of cracks. Recalling that spherical double-inclusions are generally adopted for 

isotropically distributed cracks, the non-overlapping condition is respected provided that 

crack densities d, remain interior to 3/47r (sec Appendix 11.B). For higher crack densities , 

the full -range !DD proposed by Zheng and Du (200 I) employs spheroidal double-inclusions 

to fulfill this non-overlapping condition but leads to complex computations. It is noteworthy 

that, even with spherical double-inclusions, a simple analytical expression for lll'"0 such as 

the one in Eq. (IV.4) for the di lute scheme is difficult to reach for materials with at least two 

families of cracks having different orientations. The matrix representation of lll'00 then 

cornprises extra-diag(lnal terms and as a result the expression of c;0 ,, may be tedious for 

elastic bodies weakened by many families of cracks. A slightly simplified version of the IDD 
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model is proposed to circumvent this difficulty. By expanding the expression of Ill'00 in the 

previous equation, the following relation is obtained: 

t;00 = (s.., + n1!
100f' with lli100 = ~(I+ ~l!ll:11 : !l~} IHl1" . (JV.8) 

The matrix representation of the compliance increment tensor ilr'00 estimated by this 

simplified IDD model docs not contain any extra-diagonal term and simply reads in the case 

of spherical double-inclusions: 

d, ( d, ) "" -;;; l+- A,""A, + 
· " I de de Ill/DD= £... -

; £.., d, ( ( ) £/J d, )( - ,;. ) _d_t_(_z"'"--v-)~' 2-v + 0.!Xidt' l ~A1 +A1 -:l -2t\, ®A1 

(JV.9) 

As the MT and original JOO model, this simplified IDD scheme can be cons idered as an 

improved dilute model (see Fig. 11.5), where each family of cracks modeled as a single penny­

shaped inclusion is immersed in the unbounded matrix material subjected to a modified far­

field stress. 

It is worth noting that implicit schemes such as the SC (Budiansky and O'Connell 1976), the 

GSCS (Huang et al. 1994) and the differentia l scheme (Hashin 1988) may also be applied but 

the expressions of these estimates can become very complex even if only one fami ly of cracks 

is involved. However, with the explicit schemes presented above, the analytical expressions of 

the effective damaged stiffness tenso; may also be quite tedious when many fam ilies of cracks 

are involved. Therefore, three particular cases are treated in the next subsection to draw a 

comparison between the different explicit schemes: al igned, isotropic and orthotropic. 

11.2 Comparison of the homogenization schemes in simple cases 

11.2.1 Comparison for a material with aligned cracks 

All tbe cracks are assumed to be aligned with their nonnal vectors parallel to the same ax is e 1• 

The subscripts can thus be disregarded, since only one family of parallel cracks is involved. 

Tbe effective damaged material is transversely isotropic, since the undamaged one is assumed 

to be isotropic. In such case, simple analytica l expressions are available for most of the 

studied schemes (Nemat-Nasser and Hori 1993). A general expression including lDD and MT 

schemes as particular cases is proposed below. 
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11.2.1.1 A general expression/or explicit schemes 

By taking benefits of similarities between the compliance increment tensors of MT and IDD 

schemes written in Eqs. (IV.4) and (fV.9), a general expression denoted Ill for the latter 

tensor bas been found to cast IDD and MT schemes in an identical framework: 

Ill = £~, [aL\©L\+b(t~L\+L\~1 -21.\©L\ ) ]. 

( )
_, 

. d d 
with a=- 1--

d~"', de 

(IV.IO) 

where Q DG is the deviatoriC part Of the eigenstiffneSS tensor Q~ Of the double-inCIUSiOn 

characterizing the distribution of cracks, de denotes a critical crack density parameter and 

where d;' corresponds to the critical crack density for which the dilute estimation of the 

Young modulus goes to zero. Tbe IDD and MT estimates may be retrieved for particular 

values of de and n,.oc;. For n oc;=E.,(7-5v)t[ts( t -v2
)] and dc= d:J'° = 45/128 , the 

previous equation coincides with the expression of the compliance increment tensor in Eq. 

(IV.9) provided by the IDD scheme. Observe that d:;'0 corresponds to the crack dens ity for 

which the 100 estimation of the Young modulus goes to zero. Similarly, Eq. (IV.10) 

coincides witl1 the MT esti mate in Eq. ( IV.4) for D.00=E" t[2(1 +v)] ~nd de going to 

infinity. 

It is furthermore pointed out that simple general expressions can be obtained from the 

previous equation for the effective axial Young modulus £,', the longitudinal Poisson ratio 

v;, = v;2 and the longitudinal shear modulus o; = 0:2 = o;, of the damaged material allowing 

for retrieving IDD, MT and di lute homogenization schemes for particular values of the critical 

crack density parameter de: 

(IV. I I) 

If Qoc=E., t [2(1+v)] and de tends to infinity, the expressions of the Young and shear 

moduli given in the previous equation coincide with the estimation of the MT model written 

below: 

E,'" rt d J,_, 
--= +-;;J 
E,., , de 

with (IV.12) 
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G,"" ( d 'J_, ( 16( 1- v)d)_, 
G,11 = ,

1
+ ( l+v)(2-v)dt' = I+ 3(2-v) ' 

and if de= d~', they coincide with the dilute estimation: 

G'"' 
and -'-= I 

c ... 
16{1 - v)d ( 1 ) 

( ) 
+O d , 

3 2 - v 
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(IV.13) 

where d~' appears clearly to be U1e critical crack density for which the di lute estimation of 

the Young modulus goes to zero. Finally, the JOO predictions are also retrieved for 

Q oc""E.,(7-5v)t[t5(1- vl )] and de =d~oo 

E,'00 
=(1_ l28d ) [i-128d(I 45 J]-' = I - 60p( l - v' ) (JV. l4) 

E,, \ 45 45 12Rdt ' 15JT+4p(7 - I Sv2
)' 

.::L-- I+ 2-v Gmo [ d ( 
G"' - ( l +v)d~., ( ) 

15(1-v' )d J'-' ] -'= I 

(7-5 v)d~' 

60p(l - v) 

15JT(2 - v)+8p(4-5v)' 

with p = 4JTd/3. The effective Young and shear moduli of the damaged material along c 1 

axis predicted by the simplified IDO can be written as: 

E:'.
00 =[I+ ~' l' I+ ~;0 )d,]_, 

E.., de de 
(IY.1 5) 

ln the ensu ing, these estimations of the elastic moduli obta ined with tl1e dilute, !DD, MT and 

simplified IDD homogenization models are compared to each other and confronted to 

numerical results. 

11.2. 1.2 Evolution of the e.rp/icit estimates with crack density 

For the sake of comparison, the respective predictions of the previously mentioned schemes 

for the effective axial Young modulus, the longitudinal Poisson ratio and shear modulus of a 

damaged material with aligned cracks are plotted on Fig. IV. I as functions of the crack 

density parameter p. This crack density parameter used by Ponte-Castaneda and Willis (1995) 

has a very clear geometrical signification. It corresponds to the volume fraction occupied by 

spheres circumscribing each penny-shaped crack. 
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Figure I V.I: Evolutions oflfte effective axial J'o1111g modullls, tfte 1011gifudi11al l'oiss<m 
ratio and the /011git11dinal shear modulus of an elastic body with v = 0.25 weakened by 
aligned penny-shaped cracks 011 the (e2, eJ) plane estimated by diverse homogenization 

scheme.I' us functions of the crack density parameter p = 4n:d/3 (3D). 

Clear:c11t differences may be observed on Fig. IV .1 between the curves respectively estimated 

by the dilute, !DD and MT schemes. The elastic properties predicted by MT estimate evolve 

very slowly when the crack density is high, while the elastic moduli predicted by the dilute 

model vanish rapidly. By the way, that is why the dilute scheme is considered as a lower 

bound by K.rajcinovic ( 1996). The curves computed with the IDD method are situated 

between the dilute and MT ones and go to zero for certain values of the crack dens ity 

parameter. It is recalled that the interaction effects between cracks are neglected in the dilute 

estimate and that they are only integrated in an indirect way io JOO and MT schemes, since 

they can be interpreted as dilute models where the stress applied at infinity is modified to 

account for the presence of other microcracks, as is shown in Part I I (Fig. U.5). Most of the 

Papers dedicated to the calculation of cracks interactions are numerical, since it is a 

tremendously difficult task to calculate the exact stress intensity factors of a given 

rnicrocrack, which interacts with all the other microcracks. Thorough numerical s imulations 

taking into account interactions between cracks have been pcrfom1ed by Shen and Yi (200 1), 

Feng and Yu (2003a,b) and Shen and Li (2004) in 20 to predict the damaged mechanical 
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properties. Tt is consequentl y interesting to compare the present estimates with these advanced 

simulations to gauge which one is the most accurate. 

The different results obtained in the case of al igned cracks for the evolution of the Young 

modulus with crack density are gathered in Fig. IV.2 and compared with the predictions given 

by micromechanical schemes. lt is pointed out that numerical resu lts (Feng ct al. 2003a; Shen 

and Li 2004} are systematically situated between MT and IDD or PCW estimates. These 

simulations arc performed with the Kachanov's method (Kachanov 1987) to account for the 

interactions between cracks and consider an isotropic distribution of cracks. It is complicated 

to determine wh ich model between MT and lDD ones is best suited for estimating the 

damaged effective properties. The IDD scheme seems to be in better agreement with the 

numerical results for low and moderate crack densities (p < I), whereas the MT predictions 

lay closer to the simulations for very high density of microcracks. 

It would consequently be va luable to find a model capable of scanning all the values 

comprised between TDD and MT predictions. The full-range lDD defined in Part II , which 

predictions arc situated between the ones of IDD and MT schemes, is thus clearly better than 

IDD, which suffers from the fact that the effective Young modulus becomes zero for a 

moderate value of p on Fig. JV.2. However, even though the full-range IDD is explicit, it is 

quite difficult to use it in practice, since the expression of the cigensti ffness tensors n.;;, of 

the double-inclusions characteri zing the distribution of cracks changes for different values of 

the crack density parameters (see Appendix 11.B}. The simplified version of IDD proposed in 

Eq. (lV.8} yields surprisingly good results. It then represents a good compromise, since it is 

both simple of use and accurate. It is however worth noting that the differential method 

(l lashin 1988) also provides accurate predictions, according to Feng and Yu (2003a; b) and 

Shen and Li (2004). But a decisive argument in favour of the different IDD schemes 

presented is thei r simplicity compared to impl icit models such as tlic SC, GSCS a11d the 

differential one, wh ile providing results close to the differential one. 
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Figure JV.2: Evolutions of the effective axial Young modulus of an elastic body with v = 
0.25 weakened by aligned penny-shaped cracks on t!te (e1, eJ) plane e.<timated by diverse 
homogenization ~·cl1emes and by numerical simulations as functions of the crack density 

parameter p = 1t d (2D). 

The differences between IDD and MT models lie on the respective distribution of 

inhomogeneities considered. While the distribution of cracks is necessari ly flat in the MT 

model (Stora et al. 2006a), this distribution in the PCW or lDD model depends on the aspect 

ratio of tbe double-inclusion that could thus constitute an interesting parameter. The choice of 

a spheroidal double-inclusion may somehow accoljnt f9r the anisotropy induced in the 

distribution by the mechanical loads. It may thus introduce a further anisotropy aspect due to 

the distribution of cracks, i11 addition to the classical anisotropic behaviour of the damaged 

material, but it leads to complicated calculations. This is the reason for which spherical 

double-inclusions are adopted in the ensuing for the computations of these models. 

li.2.2 Comparison for an isotropic damaged material 

The analytical expressions for an isotropic damaged material can easi ly be deduced from the 

relations derived for the case of al igned cracks by performing the following average operation 

on all the possible orientations denoted by curly brackets (e.g. Benveniste 1987): 

I 1 ' I ) Q= {T}= - T J+-lT --T DC. 
3 """ 5 ,,.. 3 """ 

The following relations are thus.obtained for the concerned schemes: 

c:" =C., : (n - pQ), 

(IV. 16) 

(IV. I 7) 

(JV.18) 
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c;00 =C., :(1+(1-{l!I" :il~}f' :pQJ1

, 

c;00 =C" :[I +(l+{H'.,: il~}): pQ T', 
QI= 4 ( I - v) ] + 8 ( I - v)( 5- v) lK . 

37r( l-2 v) 151' (2 - v) 

Page ISO 

(lV. 19) 

(IV.20) 

The curves proposed on Fig. IV.3 for the evolutions of the effective mechanical properties of 

an isotropic damaged material are quite similar to the ones obtained for a body containing 

only aligned cracks. Nevertheless. the decrease of the Young modulus in the c 1 direction for 

1he case of aligned cracks (see Fig. JV. I) is more marked than for randomly oriented ones. It 

may be explained by the fact that, at a given crack density parameter value, the aligned cracks 

mainly affects the material prope1ties in one direction, whi le randomly oriented ones 

influence equally on all the possible orientations. The curves on Fig. IV.3 predicted by the 

full-range IDD and the simplified one are very close. This observation further justi fies the 

interest of the s implified !DD that is much easier to compute than the full-range 100. 
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Figure JV.3: Evolutions oftlte effective Young m odu/11s (up le/I), the Poisson ratio (up 
rig/ti), the bulk (down leji) a11d shear moduli (down right) of an elastic body with v = 0.25 
weakened by ra11do111/y oriented pe1111y-slwped cracks predicted by >arious ho111oge11izatio11 

schemes as fi111ctio11s of the crack density parameter p (JD). 
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. 
J/.2.3 Comparison for a11 ortl1otropic damaged material 

The case of a material containing three families of cracks, which nonnal vectors are 

respectively oriented following e., e2 and e3, is now considered. The resulting material is thus 

orthotropic: 

H"" = L P1T. :S.,, 
I 

(lV.21) 

where i denotes the family of microcracks which normal is oriented following e, (i = l ,2,3). In 

the present case, the tensor Ill'"' has got a simple expression and is not singular if di. d1 and d3 

are not equal to zero, on the contrary of the case where all the microcracks are parallel: 

,.1 16(1 - v' )d· H '"' = 8(1 - v' ) (d +d)· Hail = 8(l -v
2

) (d +d )· 
H ;;;, 3£., " " " 3(2-v)E., 1 

l ' mi 3(2- v)E., 2 
' ' 

H"" - 8(1 - v' ) (d +d) 
1212 - 3(2- v)E., 1 2 , 

or written in tensorial form: 

111•111 = 16(1-v' ) [~ d ( t ®i.\ +i.\ © t -vA ®11.)]· 
3£M(2 - V) ~ ' . f I • I ' 

(IV.22) 

The compliance increment tensor JHI'0 " and H'00 predicted by the original and simplified 

IDD models are provided by Eqs. ( lV.7-8), respectively. The evolutions of the Young moduli 

E,· and of the shear moduli G~ ({i,j}e [1,3 J and i ;e J) along the three principal directions are 

presented in Fig. JV.4 as functions of the total crack densi ty parameter in the case where d, = 

d2 = d I 2 and d3 = 0 and in the cubic one recovered for d 1 = d2 = dJ = d I 3. The cubic 

damaged state does not coincide with the isotropic one, though the curves in Figs. IV.3 and 

IV.4 are quite close. One of tbe main questions now consists in finding how many families of 

cracks should be employed to accurately represent any damaged state of concrete. 
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Figure IV.4: Evolutions of the effective Young moduli and shear moduli a/011g the three 
principal axis e1 = c2 = e3 of an elastic body with v = 0.25 weakened by three families of 
pen11y-shaped cracks orie11ted according to the principal directio11s with ide11tical crack 

densities Pi = p2 = P:• = p I 3 (up) and with crack de11sities p i = p 2 = p I 2 a11d fJ3 = 0 (dow11) 
as jimctions of the crack density parameter p. 

11.3 Link between the macroscopic behavior and the nu mber of microcracks 

The number of fam ilies of cracks chosen to represent the microdetects of a damaged material 

is an aspect of primary importance for the use of homogenizat ion procedures detailed before. 

A compromise needs to be found so that the model developed accurately represents the actual 
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roicrodefects and is at the same time tractable analytically. To answer to this problem, the 

directional dependence of the Young modulus predicted by the IDD model for different 

numbers of fami lies of cracks is therefore investigated. 

Let a damaged material be represented by an elastic body weakened by nc families of cracks. 

The estimation of the effective compliance tensor of the latter material by the IDD model is 

denoted as s;00 . The predicted effective Young modulus of the damaged composite along an 

arbitrary direction of the space can be deduced from this compliance tensor with the help of 

the subsequent relation: 

I 
E'DD (L\) L\:S;oo: L\ , (IV.23) 

where /\ = n ® n and Ewo ( L\) is the Young modu lus of the damaged material predicted by 

JDD along the direction n. As pointed out by many authors (e.g. Cazzani and Rovati 2003), 

the dependence of the Young modulus on the direction n reflects in a certain manner the 

anisotropy of a given material. 

Rosettes representing the relative decrease of the Young modulus with the orientation are 

proposed on Figs. IY.5 and IY.6 for two and four families, respectively. The damaged 

material is considered in plane stress conditions. Concerning Fig. IY.5, the two families of 

cracks numbered I and 2 respectively correspond to cracks with normal vectors along e1 and 

C2· Rcn1ark that the cracks, which norrnal di rection i:> for instance e1, do not influence the 

Young modulus in the directions perpendicular to e1. In the case of four fami lies of cracks 

respectively numbered from 1 to 4, their normal vectors are e1, e2, (e
2
+e,) / .J2 and 

(e2 - e1)1.J2, respectively. According to Fig. lY.6, the isotropy can already be well 

reproduced with four families of cracks, which is in good agreement with the observations of 

Pensee (2003). It appears from Figs. JV.5 and !V.6 that the developed micromechanical model 

is all the more accurate to reproduce the damage induced anisotropy as many families of 

microcracks are involved. 
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Figure JV.5: Rosette represe11ti11g the relative decrease of the effective Young modulus 
predicted by the !DD scheme for hvo families of cracks alig11e1/ with the e1 a11d e2 directions 

which cr11ck densities are d i = </, d2 = 0 with d = 0.1 (dash-dotted), d1 = d, d2 = d/2 
(dashed) a11d d1 = d2 = d (plain), respectively. 
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Figure JV.6: Rosette representing the re/11tive decre11se oftlte effective Young modulus 
predicted by the !DD scheme for four families of cracks aligned with the e 1 and e2 

directions which crack densities are di = d2 = d/2 and d3 = di = 0 with d = 0.1 (dashed) and 
di = d2 = d3 = d4 = d/4 (plai11), respectively. 

I 1.4 Conclusion of chapter 11 

The rcccDt application of micromechanics for modelling damage is a promising way to relate 

the damaged materia l behaviour to its microstructure. However, relatively few 

micromechanically-based models have been incorporated in FE codes (e.g. Bary et al. 2007; 

Zhu et al. 2007), because they are usually more difficult to handle than phenomenological 

models especially in anisotropic cases. 
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In order to build a micromechanically-bascd damage model i11corporable in FE codes, 

different explicit homogenization schemes have been reviewed. Their predictions of the 

effective mechanical properties of an elastic body weakened by aligned microcracks have 

been confronted with 20 numerical simulations accounting for interactions between 

microcracks. The rather good agreement of the IDD scheme, providing identical predictions 

as the PCW and DI type models, with these numerical results constitutes an argument in its 

favour. A simplified version of this estimate that seems better su ited for dea ling with 

materials weakened by diverse families of cracks has also been proposed (see Eq. (lV.22)) 

and is employed in the ensuing to formulate the damaged material behavior. 

The crucial question of the number of fam ilies of cracks necessary to represent the an isotropy 

of the damaged material is also addressed. In plane stress conditions, four families seem to be 

adequate for such representation. Nevertheless, si11ce the damage model developed will only 

be applied to quite simple cases of loadings, only two families of perpendicular cracks are 

adopted in the ensu ing for simpl icity reasons. The model should however not be applied for 

anisotropic cases that are more complex than orthotropy. The next chapter aims at developing 

evolution laws for the crack dens ity of these two families. 

J2 ESTABLISHMENT OF T HE EVOLUTION LA \.VS 

The establishment of the evolution laws is generally performed m the framework of the 

thcm1odynamics of irreversible processes. According to the second principle of 

thermodynamics, the intrinsic dissipation Dis has to be non-negative (e.g. Ngu yen 2000): 

. (Jcp . . 
Dis = -- d = Y" d (~ 0) (IY.24) dd. f I J J 

' 
where .Y,11 are the driving forces associated w ith the micromcchanica l damage variab les d,. 

The present chapter aims at bui lding suitable evolution laws for these damage variables while 

taking care that they respect the second principle of thermodynamics, i.e. the Claus ius-Du hem 

inequality wdtten just above. 

12.J Criteria based on the generalized standa rd materials (GSM) formalism 

The evolution law of the damage variables are established adopting the GSM formalism 

. detai led below. The framework of GSM constitutes a convenient method to automatica lly 

guarantee 1he fulfillment of the second principle of thermodynamics. The grounding paper of 

this approach was written by Halphen and Nguyen in 1975 and the underlying mathematics, 

the theory of convex analysis, can be found in detai ls in severa l books, for instance Nguyen 

(2000) . 
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12.J.J Prese11tatio11 of the GSM formalism 

12.1.1. I Basic definition 

The basic definition proposed by Nguyen (2000) for the GSM fo1malism (e.g. Halphen and 

Nguyen 1975; Marigo 1985; Nguyen 2000) stipulates that the constitutive laws of a given 

material arc generalized standard if they are associated with a free energy and a dissipation 

potential having the following characteristics: they depend on the current va lues of the state 

variables and the dissipation potential is convex with respect to the .flux. According to the 

GSM model , the constituti ve relations arc thus fully defined through the choice of a specific 

internal energy functional <I> and of a specific dissipation functional '11, w hich depend on the 

local values of the state variables. A simple illustrative example is now given to show the 

philosophy of the GSM formal ism, the mathematical basis of this theory being presented later. 

12.1.1.2 Simple illustrative example 

To automatically guarantee the fu lfillment of the Clausius-Duhem inequality (IV.24), the 

basic idea ca1Tied out by the GSM models consists in finding a convex dissipation potentia l 'fl 

that is minimal in zero and depends on ly on the internal variab les so that: 

r _ a•.pcJ,) 
.,, - ()(J • , 

( JV.25) 

if 'I' is differentiable, the case for which Y' is not differentiable being treated later. For 

instance, if the following convex dissipation potential is employed: 

(IV.26) 

where Y0 is the damage thresho ld in terms of elastic energy density. The positiveness .of ihe 

intrinsic dissipation is then immediate: 

Dis= Yod/ (?:. 0) . 

However, the driving forces thus obtained depend on the rate of damage: 

ydi = 2 r.,ci, . 

(lV.27) 

(IV.28) 

Usually, t11e evolution laws proposed in literature for brittle or quasi-brillle materials arc rate­

independent (e.g. Marigo 1985). The utili sation of the GSM theory for the case of rate­

indcpendent materials treated subsequently requires some more efforts, even though the basic 

ideas remain the same. 

12.J.2 Application of the GSM formalism for quasi-brillle materials 

Jn the case of rate- independent materials such as brittle materials considered here, the 

dissipation potential 'fl is not necessarily differentiable. Therefore the notion of sub-gradient 

of 'fl is introduced to apply the GSM fom1al ism to non differentiable dissipation potentials 

(e.g. Nguyen 2000): 
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(IV.29) 

where iJtp denotes the sub-gradient of 'fl. This concept generalizes the definition of 

derivative and can still apply even if 'P is not differentiable. The fol lowing equivalency is 

useful to relate the dissipation potential 'P to damage threshold function/; (e.g. Nguyen 2000): 

Y., e o'f'(d1) ~ Y., realises max (Y.,d,). 
r .. ;/(Y.t)SO 

(IV.30) 

Once that the damage threshold functions have been determined, the consistency conditions 

and the normal associated flow rules, classical ly used in plasticity, can be expressed by means 

of Kuhn-Tucker theorem: 

. Id = ,t of, 
~i; realises max (Y"'d,) ~ ' oY"' 

Y,.if(Y.,a)S:O 

/,~ O A,:2: 0 A-1/, =0. 

(lV.3 l} 

where ~ designate the damage multipliers, that may be expressed from the consistency 

condition. The following convex diss ipation potential may for instance be employed (e.g. 

Lorentz and Andrieux 2003): 

· · °"'[ · · ] . {0 if Y"' E K '11(d1,fJ,) =Lt >;.di + .7~. (d,) with 'JK (Yd, )= . , 
, ~ if~eK 

(fV.32) 

where the indicator function .7~, (d) enforces the positivity of the damage rates and where K 

is a convex domain. By setting d, = 0 in Eq. (rY.29), the intrins ic dissipation appears clearly 

to be non-negative: 

(IV.33) 

In addition, simple.damage threshold functions are derived from the dissipation potentia l, the 

details of the demonstration being provided in Appendix TV.A: 

.Ii= Y,1; -Yo. (IV.34) 

The latter fracture-type criterion may be too simple to faithfully represent the evolution of 

damage. Indeed, if Y,. does not depend on the damage variables, the damage surface does not 

evolve during the damage process. More versati le evolution laws adopting the GSM 

fonnalism are proposed in the next part. 

12./.3 Development of evolution laws adopting the GSM formalism 

In order to develop more advanced criteria than the one given in the previous equation, tlle 

following form is used for the Helmhotz free energy: 

<J> = _!_ t: C'(d,): t + q:i(,8,), (IV.35) 
2 

where f3, are called damage softening variables and the function q:i characterizes this damage 

softening. These sotlening damage variables are introduced as additional internal variables 



Part IV: Modelling of da1nage of ce1nentitious materials Pagc 1sg 

and characterize the evolution of the damage s urface threshold . They are associated with 

driving forces denoted X1• By analogy with the concept of hardening in plasticity, the 

function <p corresponds to the free energy stored by damage sof!ening. Practicall y, it 

represents the effect of the damage state on the further development of damage. It is 

noteworthy that, 1he damage sof!ening parameter /J; being considered as internal variables • 
the intrinsic dissipation reads as follows: 

Dis = -il<ILJ, _ il!JL fJ, = Y,11d1 + X1 (J;('2 0) . 
'dd, o/J; 

(fV.36) 

Lorentz and Andrieux (2003) showed that by adopting the following expressions for the 

dissipa1ion potential and the free energy: 

'P(d,,iJ,) = L:[ Y0d1 + ~· (d,)+ 1<oi (jJ, -d,)] , 
' 

(lV.37) 

I /~ 
<P(d,,/l,) = 2e:C'(d,) :e + Z:: f(!Yl, (s)-Y0 )ds , 

I 0 

(IV.38) 

the following thresho ld functions expressed with respect to the thermodynamic forces 

associated to the internal variables d1 and /); are derived: 

/, = Y.,,-!H,(/J, ) , (IV.39) 

where the function !n1 represents the evo lution of the damage threshold surface. The 

convexity of the proposed diss ipation potential taking its min imal value for 

/J, = d, = 0, with i e [I, 2], guarantees the ful lllment of the second principle of 

thennodynamics. Furthermore, the i11dicator function ioi (.lJ, - d,) enforces that the interna l 

damage variables d1 and /}; remain equa l to each other. 

Concerning the damage threshold functions, the forces .!';11 are obtained by homogenization, 

wh ile the expressions of !n, arc unknown and may be identified in different manners (e.g. 

Mari go l 985) so as to find an adequate evolution law. In particular, it is sufficient 10 adopt the 

dissipation potential in Eq. (JV.37) and to rewrite the Hclmhotz free potential as: 

<P = .!. e :C' (d,): & +.!. r0w(Z::A ~ -L:JJ, ). 
2 2 I I 

(lV.40) 

where (I) is a damage parameter, to retrieve the ensuing Mari go criterion ( 1985): 

J.= Y,.- Y,,(l+{J))d, . ( IV.41) 

The lauer evolution law is further investigated in a simple case. 
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12.1.4 Application in the case of multi-axial tension tests 

The Mari go criterion ( 1985) iJltroduced in the previous subsection is presentl y employed to 

define the evolution laws of a mortar subjected to uniaxial and biaxial tension tests. The 

purpose of this part consists in testiL1g if the Marigo criterion provides an adequate damage 

evolution law so that the stress-strain curve of a mortar subjected 10 uniaxial tension predicted 

by the micromechanically-based damage model shows gond accordance with the 

experimental curve measured by Le Bellego {2001). The case of biaxial tension tests is also 

treated to observe how the crack densities of the different fami lies of cracks evolve during 

non uniaxial tests. The mortar is initially assumed to be linear isotrop ic and is supposed to be 

io a plane stress state: 

;:;:., = O:n = a-n = 0 . {lV.42) 

Ln t11e ensuing, the macroscopic stresses or strains are denoted without any superscript. The 

stress tensor G estimated by the present damage model is expressed as: 

( 
d<P ) . 

G = - ac = C (d1):e. (IV.43) 

Jo the case of two famil ies of perpendicular cracks, two damage threshold functions for the 

two crack density parameters are involved and their derivatives read: 

Jf,. = ard, .. + arJ, d + ar., (J _ax, R 
I ac . C ad, I ad2 2 ap, 1-'I 

lj; = at;11 • £+ ard, (J + ar.2 (J _ax, P 
2 0£ . dd

1 
I iJd

2 
l 0/3

2 
l 

The consistency condition imposes that : 

()rd, :i:+( ar., _ iJx, ) ..i,+ ar., A, =O 
iJc ild, ap, i)d, 

iJrd, :i:+ ard, ..t, +(ard, - iJx, )4, = o 
iJc od, ' i)d, iJ/32 , 

(IV.44) 

(JV.45) 

In the case of a uniaxial tension following the e1 axis, the tension applied merely affects the 

fami ly of cracks with normal vectors oriented along the e1 axis so that we can consider that d2 

= 0 and 4 2 = 0. The set of equations just above then simplifies into: 

iJr., . . iJY," d. iJY" d. ax, a - o --.&+-- I +-- , - - ,.,, - . a.: iJd, ad2 ap, (IV.46) 

With the Marigo criterion, tbe derivative of the driving force X1 with respect to ·/3, is simply 

equa l to (J) (sec Eq. (IV.41 )). Moreover, g iven the fact that d2 = 0, the latter equation yields: 

d. -(iJYd, _ )-' il.l'.,, . · ( IV.47) 
I - dd (JJ d& . f. . 

I 
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The evolution of the intemal variable d1 and the stress-strain curve predicted by different 

homogenization schemes, namely MT, IDD and simplified IDD, with the Marigo criterion are 

plotted in Fig. JV.7. The Young modulus and Poisson ratio of the sound mortar are 

respectively equal to EM = 44 GPa and v = 0.25 (Le Bellego 200 I). By default, the initial 

damage threshold is taken as Yo= 8000 J ni'' and the value of the parameter (J) in the Mari go 

criterion is set to zero by default. The influence of the parameter (J) on the stress-strain curve 

predicted by JDD is illustrated in Fig. IV.8 for information. On Fig. !V.7, the results obtained 

with the three micromechanically-bascd models are confronted with the experimental 

measurements from Le Bellego (200 I) on mortar samples. The stress-strain curve predicted 

by the IDD or PCW model appears to reproduce quite well the post-peak part of the strcss­

strain curve but goes to zero quite rapidly. Visible differences between the curves obtained 

with MT, IDD and simplified !DD schemes may be observed on Figs. !V.7, even though the 

evolutions of damage variables are computed with Marigo criterion using the same 

parameters ( Y0 = 8000 J m·' and (J) = 0) for the three models. The MT and simplified !DD 

models are seen to be far from Le Bellego's results for this set of parameters but it is difficult 

to improve their predictions even by changing the values of Y0 and {JJ. To obtain a better 

agreement with the experimental resu lts, it would be preferable to adopt a stress formulation 

for the Helmhotz free energy in cq (IV.I) (Pensee 2003). 

6.-------~-----_,., · - · - ·Simp. IDD * Exp. 
--------MT 

- - - · - · - · - · --JOO 
.... ~- · - · - · 

2 3 

x 10°" 
0.4.-------~-----~-----~ 

0.3 

""'- 0.2 

0.1 

.- ·- ·::.·; ·: · -·- ... -.... . -.,::.:- --... . -·:- .­.-· --.,_-... .,., 

2 

Fig ure IV. 7: Compariso11 of the stress-strai11 curves pre<ficted of a mortar subjectetl to 
1111iaxia/ te11sio11 along the e1 axis by differe11t micromecha11ically based damage models 
with Marir:o criterion with the one experim e11tally recorded by Le Bel/ego (2001) (up); 

evolutio11 for the cmck density parameter d1 predicted by the latter models (dow11). 
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Figure IV.8: Comparison of the stress-strai11 curvel· predicted of a mortar subjected to 
u11iaxial tension along the e1 axis by the 1DD damage model with Marigo criterio11 with the 

one experime11tally recorded by Le Bel/ego (2001) (up); evolutio11 for the crack de11sity 
parameter d1 predicted by the latter model (down). 

In more genera l cases, the system of differential equations in Eq. (IV.45) can be written in a 

matrix form io order to find the damage amplitudes A.1 and Ai: 

i)ydl 
---(J) 

i)d, 

i)Yd2 

ad, 

(IV.48) 

When the simplified TDD model is used to estimate the free energy, the forces Y,1; do not 

depend on dj U"' I) so that no coupling exists between the two criteria. The system can then 

be solved using for instance the basic expl icit Runge-Kutta algorithms incorporated in 

MATLAB, since the matrix above is diagonal and the system reduces into two decoupled 

equations. It should be emphasized that the complexity of computations of the evolution laws 

further increases if many families of cracks are involved. The main difficulty concerning the 

use of the TDD estimate arises from the fact that the effective stiffness tensor does not vary 

linearly with the crack density parameters. A hint used by Zhu ct al. (2007) to avoid this 

Problem is to consider a Taylor development at the first order of the driving forces, so that the 

extra diagonal terms in the previous matrix are annihilated. However, such an assumption 

tnight not be fully satisfactory, since the accuracy of the homogenization scheme is lost in thi s 

Taylor development at the first order. The stress-strain curves predicted by the 

tnicromechanically-based damage model with the Marigo criterion for mortar samples 
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subjected to biaxial tensions along the two axis e1 and e2 with &11 =1122 is plotted on Fig. IV.9. 

The plotted curves clearly differ from the uniaxial case (Fig. TV.7). This is due to the fact that 

the stiffness tensors predicted by the MT, 100 and simplified schemes do not vary linearly 

with damage variables and thus the driving forces Ya; depend from tlie two i.nvolved crack 

damage variables. This dependence practically results in different stress-strain curves in 

uniaxial and in biaxial tests. It is fu11henn ore pointed out that the extra diagonal tenns of the 

square matrix in the previous equation do not vanish and the system of ordinary differential 

equations has to be solved numerically, using preferenti ally an implicit Runge-Kuna 

algorithm. As in the un iax ial case, strong differences between the stress-strain curves obtained 

with MT, IDD and simplified TDD schemes arc visible on Fig. IV.9, when the same 

parameters the evolutions 

(Y
0
=8000Jm·l and cv=O). 

.... 0.3 
"13 s 0.2 
"13-

0.1 

of damage variables are adopted for the three models 

···-·-·-·-·-·- .. -·-·-·--·-· .~;.-...,:.;;;;.._~ · - · - · Simp. !DD 
·--·-·-·-·-· 

-- IDD 
- - - MT 

2 

2 

Figure IV.9: Stress-strain curves along the two principal a..:is of a mortar subjected to 
biaxial tension along the two axis e1 and e2 with c,, = c22 predicted by different 

homogenization models with Marigo criterion (up); evolution for the crack density 
parameters d1 and d2 predicted by the latter model (down). 

The application of'Marigo evolution law to the micromechanical damage model appears to be 

rather complicated to implement in a FE code without making simplifying assumptions. The 

next subchapter is devoted to strain-based criteria that are frequent ly employed in concrete in 

order to find a simpler method to establish the evolution laws. 
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12.z Strain-based criter ia 

/1.2.I Review ofstrain-based criteria 

The damage loading function/can be expressed using an equivalent strain denoted c: 
l = &- e0 , (fV.49) 

where e0 designates the in itial damage threshold. One of the great interests of having a strain­

based criterion is that it accounts for the sensitivity of the material to extension. Two forms 

proposed for the equivalent strain respectively by Ma7.ars (1984) and De Vree et al. ( l 99S) 

present valuable features for dealing with damage in concrete. In particular, they account for 

the differences of behavior of cement-based materials in traction and in compression. It is 

therefore of interest to thorough ly assess and compare these two theories of equivalent strains. 

The following strain invariants are introduced: 

11
1'> = tr£, 1~•l = ~[ ( trn )

2 
- trt2 

] . Iy> = dett , 

l j•> =~tr(&- ~( trt)l J, (IV.SO) 

where tr denotes the trace of a tensor and det its determinant. Identical invariants, obtained 

by substituting r. by a in the previous equation, may be used for the stress tensor. The 

criteria proposed by Mazars (1984) and De Vree et al. ( l99S) are respectively recalled below: 

e,., = J(e,)'. , with (e,). = e, :ie,I, (JV.SI) 

_ k - 1 J<<l I ( k - I )
2 

t «ll I 2k l <<l 
Evv = 2k(l -2v) 1 +-2k l-{'--l-- 2-'v"7)' 1 + {l +v)2 2 ' 

(IV.52) 

where e1 (i = J,ll,111) are the principal strains, e0 is the strain threshold corresponding to the 

initiation of damage in traction and k denotes the ratio of the compressive strength over the 

tensile one. These two equations are very different at first sight, since the first one is 

expressed in terms of principal strains and tbe second uses the first two invariants of the strain 

tensor. 

The surfaces representing these two threshold functions arc plotted in Figs. JV.IO and IV.I I 

for v = 0.2S and Eo = I 0 .. . A sound criterion should respect some important conditions: (i) to 

be systematically non negative; (ii) to be closed co11vcx. The Mazars criterion fulfills the first 

condition but not the second one (Fig. IV. I I). The De Vrce criterion respects both conditions 

(De Vree ct al. I 99S). In addition, the strong connections ex isting between the De Vree 

criterion and the one recently proposed by Cbristensc11 (200S) are evidenced in Append ix 

IV.B. The damage threshold surface evolves during the damage process so that a suited law is 

required to account for this evolution. 
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Figure IV.JO: Damage yield surfaces respectively representing the Mazars criterion and the 
De Vree one for k = I and k = 3 in the space of principal stresses. 
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Figure IV. I I: Damage yield surfaces respectively representing the Maza rs criterion and the 
De Vree one for k = I and k = 3 in the space of principal strains. 

12.2.2 Review of the Mazars model 

The Mazars model is without contest the most popular dall'lagc model for concrete. Its success 

seems mainly due to its simplicity of use in a FE code and to its capacity of accounting in a 

simple and relatively cfficienr 111anner for the differences of behavior of concrc1e in tension 

and in co111pression. It has been extended to fatigue (Papa I 993) and recently to anisotropic 

damage (Desmorat et al. 2007). A non-local version of the Mazars model was furthennore 

proposed by Pijaudier-Cabot and Bazant ( 1987) in order to improve !he numerical results and 
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limit the mesh dependency. Basically, the Mazars model (1984) consists in defining the 

following criterion: 

where '.D is a scalar macroscopic damage variable expressed as: 

E' 
'.D = l - -, 

E,, 

(IV.53) 

(IV.54) 

and where the function K(.V) rules the evolution of the damage surface. This function ic(.V) 

is chosen so as to obtain the following evolution law: 

'.D = I •o(~- A) Aexp(- 8(&,.. - r.
0
)), 

c ~"' 
(!V.55) 

where £.,. is the Mazars equivalent strain de fined in Eq. (IV.52) and where A and 8 are 

parameters that are identified with different values in traction and in compression. The stress­

strain behavior is then given by: 

(JV.56) 

Desmorat et al. (2007) proposed a convenient extension of the Mazars evolution to 

anisotropic cases by adopting a non-associated evolution law deriving from the latter 

dissipation potential: 

'fl. = Y :(r.,, ):, (IV.'.>7) 

where Y is the dri ving force associated with the second order damage tensor '.D and where 

tp is the tensor of the principal strains. This tensor admits the following representation: 

(TV.58) 

where ® is recalled to stand for the tensor product and e, (i = 1,2,3) are the orthonormal 

vectors defining the principal strain directions. The derivation of the dissipation potential thus 

yields the following evolution law: 

(IV.59) 

In other words, the damage tensor rate is proportional to the square of the positive part of the 

principal strain tensor. The Mazars criterion is reused by substituting the previous isotropic 

damage variable '.D by the trace of the second order damage tensor :D presently considered: 

f= c.., -K(tr'.D), (IV.60) 

Where different expressions were proposed for K(tr:D) by Desmorat et al. (2007) to provide a 

&ood fitting with the experimental stress-strain curves in tensio11 and in compression. The 

damage multiplier is then determined from the consistency condition and the damage 

evolution law takes the general form: 
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(IV.61) 

Jn the next subsection, a similar reasoning is carried out to establish an adequate evolution 

law for the crack densities parameters that are very different from the macroscopic damage 

variables employed by Ma7.ars ( 1984) and Oesmorat et al. (2007). 

12.2.3 Deji11itio11 of a strain-based evolution la,., for the 111icro111ecl1anic11fly-base<I 

damage model 

On the view of the previous considerations, the ensuing type of strain-based cri terion 1s 

proposed as a starting point 

f =60 , - "( trd ), (JV.62) 

where d is a second-order micromcchanical damage tensor that reads in the (e1, e2, e3) 

orthononnal basis: 

[

d, 

d = ~ 

o o' 
( JV.63) 

since the nonnal vectors of tl1e two families of perpendicular cracks retained in the 

micromcchanical model arc respectively oriented along e1 and e2• The next stage consists in 

identifying a suitable function "(trd ). To perform such task, on ly one fami ly of aligned 

cracks with normal vectors parallel to e1 is first considered for simplicity. It is pointed out 

from Eqs. (IV.52-53) that the elastic stiffness deterioration along the direc.tion e1 with the 

Mazars model follows the evolution: 

E' -' 
E., 

c0 (1-A) ( B(- , )) _ + Acxp - e,,., -c0 • 

t: Al.1 

(JV.64) 

In the ensuing computations, the parameter A is taken equal to I . It is furthermore recalled 

that MT, IDD and simpl ified IDD estimations of the effective Young modu lus £~ of the 

damaged material along the nonnal direction e 1 to aligned cracks are expressed analytica ll y as 

functions of the crack density parameters in Eqs. (IV. I I), (IV. 14) and (IV.15), respectively. 

By combining these equations with Eq. ( !V.64) where the Mazars equivalent strain is 

substituted by the one of De Vree et al. ( 1995), the following damage load ing functions f can 

be establ ished for MT, lDD and simplified IDD damage models, respectively: 

d~"'g(fm, ) _d 
!,,, 1-g(Eor) " 

(IV.65) 
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(fV.66) 

f,. - -b+ .Jb,-4ac d . h (- ) I ( B(- )) d ioo - " wit g E:ov = -exp - E:ov - E:o an 
2a 

a = 1- g(l,,,. ) b= l -g(l0 v) { ) 
d""d 'oo ' d "' ' and c=-g t ov . 
c c c 

These damage loading functions can be extended to the case of two families by using the trace 

of the damage tensor d : 

I= K _, (e
0

, )- trd , (IV.67) 

where the expression of K depends on the homogenization scheme employed to compute the 

effective mechanical properties of the damaged material. By analogy with Desmorat et al. 

(2007), a simple expression is proposed for the dissipation potential: 

tp' = Y,: (Rt,,):, (IV.68) 

where Y, is the driving force associated with the micromechanical damage tensor d and R is 

a projection operator that projects the principal strain tensor on the (ei, ei, e3) reference basis. 

The derivation of the dissipation potential yields the damage evolution law: 

. ()'!' ' ( )2 
d = .it i)Y =4 R.c,,,. 

• 
(IV.69) 

An essential difference of the present approach with phenomenological models, such as the 

one of Desmorat et al. (2007), is that the principal directions of the damage tensor are now 

fixed. The damage multiplier is then determined from the consistency condition and the 

damage evolution law takes the general form: 

ci = d~-• ( iov )
2 

(Rt,)~ . (JV.70) 
dl:ov tr R .c,, + 

It was observed that, with the Marigo theory, two criteria are required in the case of two 

families of perpendicular cracks and that the two damage multipliers have to be solved 

numerically. In the present case, on ly one simple criterion given in Eq. (JV.68) provides 

explicitly the evolutions of the diverse crack dens ity parameters. This characteristic is of high 

interest in view of an implementation in a FE code. However, on the contrary to the Marigo 

criterion that systematically respects the Clausius-Duhem inequality, the positivity of the 

intrinsic dissipation with the present strain-based criterion is not guaranteed and has to be 

carefully verified. The next subchapter is therefore devoted to the assessment of the 

thermodynamic admissibi lity of the damage evolution obta ined by means of strain -based 

criteria. 
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12.2.4 Positivity of the intrinsic 1/issipati<m 

For the strain-based criterion presented before, the fu lfilment of the Clausius-Ouhem 

inequality is not automatically guaranteed, since the GSM formalism was not employed. 1t is 

consequently necessary to verify that the second principle of thermodynamics is respected. It 

is recal led that in the presently developed damage model the intrinsic dissipation reads: 

1 ( ac· ' 
Dis= Y,,d;o with YJ1 = - t: -~J:& (ie [l ,21). (IV.7 1) 

2 dd, 

To show the thermodynamic admissibility of the difforent micromechanically-based damage 

model with the stra in-based criteria defined in Eq. (IV.66), the respective positivities of the 

thennodynamic forces YJ1 and of the damage rates d, are verified. To prove that Ydt ;,: 0 , it is 

sufficient to show that the derivatives of c· with respect to the crack density parameters are 

semi-definite positive, for example by computing its detenninant or by looking at the signs of 

its eigenvalues. For this purpose, it is convenient to rewrite the stiffness tensor predicted by 

the different homogenization schemes in a matricial form . Using the fact that: 

_ac· = C··()~;° c· with i e (l, 2), 
iJd, °(Jd, . , 

(IV.72) 

the opposite of the derivati ves of the stiffness tensor estimated by MT, roo and simpl ified 

IDD with respect to the crack density parameter d, (or similarly d, ) read respectively: 

ac:,,. - c· ·(4 . s ) . c· - (}d, - ;rr • 3 .11-'f. . ,, . ;rr, 

- ac;OD = c• . dRl! /00 . C' 
':\ /IJ/) • • llJD> 
od, od, 
• • • /DD ac mr, - c· . . alill . c" 
-~ - I/JO . (}d, • ttJtJ> 

(IV.73) 

The three derivatives above all admit three non-vanishing eigenvalues designated by 

( , (ie (1 ,3]) and obtained with the help of the symbolic toolbox ofMATLAB: 

rtD(J _ 
~. -

E.,d;' (1-2v + 3v2
) ;rr _ .,, £.,dt' (2-v) 

[ ]
2' ( , - ( , [ ]2 , 

(l +v)( l-2v)dr.' +(1 - v)d (1 +v)(2-v)dc"' +d 

81 (I- v2
) E.,dt 1 (1-2v +3v2

) 

[9(1 - v)( l-2 v }(I + v)dc"' + ( 6(1 - v )(1-2 v ){I+ v)n DG - \3v2 + 16v - 7)d r' 
rwtJ _ rlDD _ E.,d;' (2-v) 
?2 - '> l - 2, 

[(1+v)(2-v)dt' + (1 - n DG (l + v))d] 
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(IV.74) 

ft is straightforward that all these eigenvalues are positive. The eigenvalues of the opposite of 

the derivatives of the effective stiffness tensor being all positive or null, the them1odynamic 

forces are consequently not negative. The fonn of the damage evolution law written in Eq. 

(JV.70) furthcnnore ensures that d, :<: 0 (ie (1,2]) , so that the second principle of 

thermodynamics is respected for the three homogenization schemes considered. 

12.2.5 Application ill the case of 11111/ti-axial te11sio11 tests 

The strain-based criterion introduced just above is presently employed to define the evolution 

Jaws of a mortar subjected to uniaxial and biaxial tension tests. As done previously with the 

Mari go criterion, the predictive capacity of the micromechanically-based damage model with 

the strain-based criterion is tested in the case of a mortar subjected to uniaxial tension (Le 

Bellego 200 I). The case of biaxial tension tests is also treated to observe how the crack 

densities of the different fami lies of cracks evolve during non uniax ial tests. For conciness, 

the different micromechanically-based approaches will be referred to as MT, !DD or 

simplified IDD damage models depending on the homogenization scheme chosen to compute 

the elastic properties of the damaged material. The mortar is initially assumed to be linear 

isotropic and is supposed to be in a plane stress state. 

The consistency condition applied to the criterion defined in Eq. (IV.67) takes the form: 

of . < ;r-·tv,, 
~ = t,,, 

~r 
ad, 

(JY.75) 

providing the evolution of the crack density parameter plotted iJJ Fig. IV.12. The post-peak 

behaviour is ru led by the rate fonn of the constitutive equation reading: 

a= C'(d,):t+(~: d1 }t. (IV.76) 

and is also plotted in Fig. N.12. The values adopted for the damage parameters are 

respectively t:0 = 7 x I o-s and B = 7000 providing a good fitting of the experimental stress-

strain curve from Le Bellego (2001). In particular, the typical damage softening effect 

observed in uniax ial tension is well reproduced. 
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Fig ure IV.12: Comparison of the stress-strt1in curves predicted of a 111ortt1r subjected to 
uniaxiill tension by the da111age 111odel with "strain-based criterion with the one 

experi111e11tt1//y recorded by Le Bel/ego (200 I) (11p); evo/11tio11 for the crack density 
pt1rt1111eter.~ d1 and di predicted by the latter model (down). 

The stress-strain curves predicted by the micromechanically-based damage models with the 

strain-based criterion in Eq. ( IY.67) for mortar samples subjected to biaxial tensions along the 

two axis e1 and e2 with c11 = c22 and l'11 = 31:,, are also plotted on ~·igs. IV. 13 and IY. 14, 

respectively. The 100 damage model leads to unexpected resu lts. Thi s shortcoming is due to 

the evolution law in Eqs. (IY.67-70) fa iling to work correctly when crack density parameters 

are not allowed to trespass a critical value. Nonetheless, the stress-strain curves estimated by 

MT and simplified IDD damage models, wh ich account relatively wel l for the orthotropy 

induced by loadings, seem to be more consistent. However, a more involved damage mode l 

(e.g. Pensee 2003) would be necessary to reproduce co1Tectly the induced anisotropy by more 

complex loadings, such as the Willam test. 



Part IV : ~1odelling of dantage of cementitious materials 

I 
I 

I 
I , 

I ,, -.­
~- · -· -· 

--JOO 
· - · - ·Simp. IDD 
- - - MT 

3 

3 

4 

• 10. 

Page 171 

Figllre IV.I 3: Stress-strain curves along tlie hvo principal axis of a mortar Sllhjected to 
biaxial tension along tlie two axis e1 and ei with e,, = c22 predicted by tlie damage model 

with Marigo criterion (up); evolutions for the crack density parameters d1 and d2 predicted 
by tire latter model (down). 
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Figure IV.14: Stress-~·train Cllrves along tlie hvo principal axis of a mortar s11bjected to 
biaxial tension along tire hvo ax is e1 and ei with c, 1 = 3t:12 predicted by tlie damage model 

tvitlr Marigo criterion (11p); evollltions for Ifie crack density parameters d1 and d2 predicted 
by the latter model (down). 
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12.3 Conclusions of chapter 12 

The evolution law has been established within the framework of thennodynamics Of 

irreversible processes. Two theories, Marigo's one based on the GSM formalism and the other 

one using the concept of equivalent strain, have been assessed and applied to the 

micromechanically-hased damage model. Their tbennodynamical admissibi lity has also been 

investigated, showing the coherence of both theories. For our particular ortbotropic model 

comprising two internal damage variables, the strain-based evolution law that seems easier to 

implement in a FE code is adopted. The criterion proposed by Marigo is attractive but 

requires some simplifications and perhaps more efforts (Zhu ct al. 2007) for its use in 

numerical computations. 

CONCLUSIONS OF PART I V 

An orthotropic damage model based on both micromcchanics and thennodynamics of 

irreversible processes has been developed. The model comprises two damage variables, 

representing the density of cracks in two perpendicular directions, which is suited to deal with 

01thotropic damage under plane stress conditions. Different homogenization schemes have 

been tested for estimating the Helmhotz free energy. The IDD or PCW methods are shown to 

be of interest provided the damage variables do not trespass a certain critical crack density 

value. A simplified version of the !DD model has been developed to circumvent this 

difficulty. However, the original lDD or PCW scbeme that is more standard is chosen for 

computing the damaged material behavior for a given damage state in the ensuing FE 

simulations. 

A strain-based evolution law is established for the two micromechanical damage variables 

and the them1odynamical admissibility of the developed damage model has been verified. An 

application to the case of mortar samples subjected to uniaxial and biaxial tension tests bas 

been proposed. Jn the subsequent Part, the !DD damage model is implemented in the FE code 

CAST3M and more complicated mechanical problems, such as flex ion tests, arc addressed. 
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Appendix IV.A: Link between the dissipation potential and the damage thresh old 
functions 

As an example, we look after the dissipation potential providing the classical fracture-type 

criterion f written in Eq. (IV.34). For simplicity only one damage variable is considered. 

Using the definition of Legendre-Fenchel transform, the following equivalence can be 

established (e.g. Nguyen 2000): 

Y,, E Cl'//(d) (::) '11 ' (Y4)+'f/(d) = Y,,d , (IV.A l) 

where 'P' is the Legendre-Fenchel transform of 'f/. for the particular case of a dissipation 

potential 'fl positive homogeneous of degree one, i.e. \;;/d, \;;/k ?. 0, 'l'(kd) = k'l'(d) , its 

Legendre-Fenchel transfonn 'P' is immediate: 

. (. (')) {0 ifY4 E K '11 ( Y,,) = sup Y,,d - 'f/ d = J K ( Y4 ) = . ' 
J . oo ifY.,EK 

(IV.A2) 

where K is a convex domain defined by a threshold function f . It appears by etllploying the 

properties of the Legendre-Fenchel transform and the threshold function/given in Eq. (IV.34) 

that: 

(IV.A3) 

More precisely, the following dissipation potential homogeneous of degree one is deduced 

(Lorentz and Andrieux 2003): 

'l'(d) = fod + .7'l, (d) , (IV.A4) 

where Yo is the damage threshold in tenns of elastic energy density and where the indicator 

fonction .7oc.' (d) enforces the positivity of the damage rates. 
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Appendix I V.B: Links between the De Vrce and the Christensen criteria 

In order to draw a comparison between the Christensen and the De Vree criteria, the latter is 

written in terms of stress invariants: 

j
. _ k-1 11. , _!_ 
DV - l + 

2C 2 
(IV.Bl) 

using those relations: 

1 "1 l") 1«> 1<-1 

2 =-2_. ' =-'-· C : kF.r' 
(l + v)2 E2 '(1-2v) £ ' -· "·o · 

(IV.B2) 

It is easy to demonstrate that, when the De Vrcc criterion is verified fDv = 0, the Christensen 

one is then automatically verified. The previous equat ion is first elevated to power square: 

(
k-11<•1+_!_ (k - 1)211u>2+ 12k .1«•l)2 =I (IV.83) 
2c , 2 c, ' c2 2 , 

and is then expanded yielding the following relation: 

_!_( k - 11'"')
2 

+.!. k-111•1 (k-1)
2

1<• >'+ 12k .J'<I +~.J'•! = I. 
2 l c ' 2 c ' c2 ' c> , c, 2 (fV.B4) 

By factorizing the terms with the first invariant of the stress tensor, we notice that: 

k-1 1101l'k-1 1101+_!_ (!c - 1)' 11•11+ 12k.J'•>l +3k .J'•l= I (IV.BS) 
c I 2C I 2 c2 I c2 2 c> 2 • , 

which simplifies into the fom1 proposed by Christensen (2005): 

k - 1, l•I 3k 1(•1- 1 
I + ., 2 - • c c -

(JV.B6) 

Conversely, supposing the latter equation verified, it can be recast in the following form: 

(k - I 1«1 + 3k .J'•>)2 = (1- k - I 1<•1)2 - (JV.B7) 
2c ' c 2 2 2c ' 

The left-hand member is then expanded: 

(
k - I 1101 )

2 

+ 3k J'•>(k - I 110, + 3k 11. ,) = (t -k - I 11.,)' 
2c ' c2 

' c ' c' 2 2c ' · 
(IV.BS) 

leading to: 

_!_[l' ~11•1)
2 

+~l(U)] =(1.':.::J.1(Ul)l 
4 c I C' 2 2C I 

(IV.B9) 
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part V 
SIMULATIONS OF THE CHEMO-MECHANICAL DEGRADATIONS 
:SY LEACHING OF CEMENT-BASED MATERIALS 

Tlte service life of cement-based materials, wlticlt can serve as engineering barriers for the 

disposal of long-term nuclear wastes, is affected by the deterioration factors due to chemical 

attacks and mechanica l damage, but also by the detrimental interactions between these 

phenomena. Precisely, the concrete underground structures can be both altered by: (i) 

dissolution - precipitation reactions caused by ionic migration, governed by the material 

transpo1t properties, between the interstitial solution and grow1d water; (ii) damage due to 

external mechanical loadings and possibly precipitation of secondary solid phases generating 

internal pressures (e.g. sulfate attack). 

Various experimental studies evidence significant negative interactions between these 

deterioration factors. For example, some authors (Tognazzi 1998) showed the existence of 

highly degraded areas around artificial cracks simi lar to those originated by mechanical 

damage. Hence, the nucleation and growth of cracks in the concrete may accelerate the 

transport phenomena and then enhance the chemical degradation process, which in tum 

creates an additional porosity that affects its overall mechanical behaviour. Jn addition, 

numerous investigations on the influence of calcium leaching on the residual mechanical 

behaviour of cement-based materia ls (e.g. Carde l 996; Galle et al. 2004; Heukamp ct al. 

2005; Le Bellego et al. 2003; Nguyen 2005) have concluded on the significant reduction of 

their elastic moduli and of their residual strength. They generally consist in performing 

mechanical tests such as uniaxial compression or traction tests (e.g. Carde 1996; Le Bellego 

2001; Nguyen 2005; Heukamp et al. 2005) or 3 points flexion tests (e.g. Le Bellego 2001). on 

samples previously submitted to an accelerated leaching. Unfortunately, these experiments, 

designated as « residual resistance» tests, do not account for the effects of damage on the 

chemical degradation process. Nevertheless, some fully coupled experiments, designated as 

"life-time", have been performed among others by Le Bellego (2001) and Schneider and Chen 

(2005), where the material is submitted to a mechanical sollicitation and undergoes 

simultaneously a chemical attack by an aggressive solution of ammonium nitrate. These 

experiments may lead to tbe complete rupture after a few months. 

Some approaches to model chemo-mcchanica l degradations of cement-based materials have 

been developed by the CEA/LECBA (Bary 2006) but also elsewhere (e.g. Gerard 1996; 

Heukamp 2002; Kuhl et al. 2004a; b; Le Bellego et al. 2003; Nguyen 2005). They are 

however mostly based on simplifying assumptions, since it is generally supposed that only 

calcium ions governs the chemical equ il ibrium and/or that the influence of damage on 

diffusion is not accounted for. 
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The French Atomic Energy Commission (CEA) has developed io collaboration with ANDRA 

and EDF a numerical integration platfonn ALLIANCES capable of simulating problems that 

couple chemistry, transport and mechanics (Montamal et al. 2006; 2007). This platform may 

allow for a more thorough modelling of chemo-rnecbanical degradations compared to existing 

approaches (e.g. Gerard 1996; Kuhl et al. 2004a; Bary 2006) by gathering within rhc same 

simulation environment a code resolving chemical equ ilibrium and a finite volume or element 

software dealing with transport and mechanical problems. The aim of the present work is to 

implement a comprehensive multi-physical model in this platform that: 

• allows for predicting the effects of coupled chemo-mcchanical deteriora tions on 

cerncntitious materials; 

• may be applied to any cement-based material , provided its initial composition and the 

physical properties of its elementary phases arc known. 

For this purpose, the multi-scale homogenization model developed in Parts II and 111 and the 

micromechanical damage model proposed in Part IV are implemented into the numerical 

platform to estimate tbe material mechanical behavior as well as its diffitsive properties. One 

of the interests of these homogenization theories is to propose a deductive approach that may 

apply to diverse cementitious materials, provided the elastic and diffi.1sivc properties of their 

elementary phases are known. The integration in the ALLIANCES platfonn of a 

comprehensive homogenization model could thus pennit to develop an advanced prediction 

tool of the degradation of real concrete structures. Furthe1more, these upscaling methods help 

for a better comprehension of the influence of the 111icrostn1cture and its evolution with time 

on the chemical and mechanical behaviors of these materials. 

The scope of the present Part is two-fold. The first chapter is specifically devoted to the 

simulat ions of chemical degradations. After a brief presentation of how to model chemical 

degradations with the ALLIANCES platfonn, one-dimensional simulations of pure water and 

accelerated leaching of cement-based materials a.re thus proposed and validated. In the second 

chapter dedicated to the in teractions between damage and chemical deteriorations, coupled 

chemo-mcchanical simulations of simple structures subjected to dccalcification and sol icitated 

in flex ion are performed; confrontation of the numerical resu lts with available experimental 

data (Le Bcllego 2001) is carried out and analyzed. 

13 MODELLI NG AND SIMULATIONS OF THE C HEMICAL DEGRADATIO N 

W ITH ALLIANCES PLATFORM 

13.1 Presenta tion of ALLIANCES 

The scope of this part is to detai l the main steps for 1nodelli1Jg chemo-mechanical 

degradations of cement-based materials with the ALLJANCES platfonn that is briefly 
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presented below. For more details concerning the laner platform, the reader should refer to 

t;tontamal et al. (2006; 2007). The ALLIANCES platform allows for combining and 

connecting together diverse numerical codes dealing with different physical problems. This 

platform is developed in collaboration between CEA, ANDRA and EDF for the simulation of 

ouclear waste disposal. This tool programmed in Python is presently employed to couple 

chemistry, with the code CHESS (van der Lee and de Windt 2002), transport and mechanics, 

with the finite clements software CAST3M (CcA), so as to perform numerical simulations of 

the multi-physica l degradation of cement-based materials. In the present context of long-tcnn 

deterioration of concrete underground structures in nominal phase of waste storage, the 

following simpli fying assumptions are made: 

• the material is in saturated and isothcnnal conditions; 

• electro-difTusivc phenomena are neglected, ionic transfers being only due lo molecular 

difTusion; 

• the effects of creep are djsregarded; 

• the same diffusion coefficient is affected to all aqueous species; 

• the chemical reactions arc instantaneous compared to the diffusion process. 

13. 1. I Coupled chemical-transport problem solved by ALLIA NCES 

The chemical degradation of cement-based materia ls is a chemical-transport coupled problem. 

For example, in the case of the concrete underground structures in contact with ground waler, 

the existence of concentrations gradients of ions between the interstitial solution and ground 

water provokes ionic migration inside the interstitial solution, governed by the material 

transpon propenies. This movement of ions disturbs the chemical equilibrium state between 

the solid skeleton and the pore solution of the material and causes dissolution-precipitation 

reactions in the material. Therefore, the evolutions of the diffusion coefficients of ions in the 

material are imponant data for predicting its chemical alteration, as already mentioned in Part 

Ill. 

Different types of chemical-transport coupled simulations have been performed on concrete 

materials. Some authors (e.g. Adenot 1992; Gerard 1996) proposed simplified approaches, 

where only ca lcium ions are supposed to govern the main chemical reactions. More complete 

simula1ions arc recently avai lable (e.g. Moranville et al. 2004; Plane! 2002), where the current 

chemical equilibrium state is obtained by means of a chemical equilibrium code. Plane! 

(2002) thus modelled the sulfate ~ttack of HCP with HYTECH (van der Lee et al. 2003), 

based on both geochemistry and transport codes. Moranvi lle ct al. (2004) ran with the help of 

the CEMHYD3D model of NIST (Bentz et al. 2002) simulations of pure water degradations 

that are quite comparable to the ones presently realized. It is pointed out that the 

ALLIANCES platfonn is capable of treating multi-species reactive transport problems on the 

COnirary to many simplified coupled approaches developed for cement-based materials (e.g. 
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Gerard 1996). This is important in the case of dccalcilication for modelling for instance the 

migration of alkalis or simulating accelerated lcachings by NH.N03 because of the 

penetration ofN03-. 

J 3.1.1.J Transport equations solved by CASTJM 

To present in a simple manner the transport equations solved by CAST3M, transport is first 

supposed to occur in a non reactive porous medium representing the cement-based material . 

Inside this medium, the species that may move arc the fluid lilling the porosity and the 

chemical species concentrated in the flu id. The fin ite volume method is used for the 

computations. The medium is thus represented by a number w of subvolumes V1 each 

comprising Mi mineral phases supposed homogeneous. The intersti tial solution in each 

subvolume contains N aqueous species, most of them being ions. For simplici ty, the cinematic 

dispersion is neglected. Under such conditio11s, the conservation law imposes that the 

divergence of the sum of the average diff11sive flux vector of ions j denoted J; through a 

given subvolume Vi and of the average velocity vector denoted U is equal to the variation of 

concentration designated by C
1 

of ionsj in V,: 

- - ()C 
- div(J1 +C1 U)= cp 

0
/, (V.I) 

where Cp is the average porosity inside the subvolumc Vi. Jn the present case, the velocity 

vector U of the fluid is null because it is assumed that no pressure gradient provokes water 

transport by pemieation and the previous equation s impl ifies into: 

- ac 
-div(J 1) = c,-,!- . 

Of 
(V.2) 

T he ions flux vectors depend on f,>Tadients of ions concentration and/or on electric gradients. 

However, the possible influence of the electric charges of ions on diffusion being presently 

neglected, the ions nux vectors are expressed by Fick's law. 

At the scale of the heterogeneities of the materia l, Fick's law, stipulating that the m icroscopic 

nux of ions j is proportional to the microscopic gradient of concentration, reads: 

(V.3) 

where grad C, (x) is the gradient of concentration of ions j and tlie operator '.' indicates a 

simple contraction. The ensuing relations are obtained by averaging in each subvolu me V,: 

J / : -o; .grad C1(x). (V.4) 

The diverse homogenizati on techniques (e.g. Torquato 200 1) can provide estimations for the 

effective second order diffusion tensors o; of the d iverse ionic species through the material. 

In the ALLIANCES plat fonn, all these tensors are supposed to be identical for a ll the species, 
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so that only one effective tensor o· is involved. Furthennore, tbe cementitious materials are 

coDsidered to be macroscopically isotropic so that this effective second order diffusion tensor 

o· simpli fies into D't , where D' is a scalar. By combining Eqs. (V.2) and (V.4), tbe 

1ransport equations solved by CAST3M are written in the following way: 

c" aa~' =div(o' .grad C, ),V'ie{ l, ... ,N}, (V.5) 

where N refers to lbe total number of aqueous species. In addition to the transport process, the 

effects of chemical reactions in lhe case of concrete have to be accounted for. The ccment­

based material is initially taken in a stable chemical stale. The possible leak of aqueous 

species such as Ca2
' precised by the transport equations may disturb this equilibrium state. 

The new equilibrium state of the perturbed system can be computed by means of the chemical 

equilibrium code CHESS (van der Lee and de Wind! 2002), assuming that lhe chemical 

reactions are instantaneous in comparison with the transport process. 

13.1.1.2 Chemical reactions computed by CHESS 

The dissolution reaction of a mineral specie denoted em in contact wilh an aggressive ionic 

specie, designated by e~· with z being an integer, fonns aqueous species e;' in the interstitial 

solution: 
N 

z+ ~ :+ e,. + e,,, ~ L..J x .. e, ' 
;.1 

(V.6) 

where x,,,. designates tbe stoechiometric coefficients of the dissolution reaction. This reaction 

is controlled by the following mass action law: 
N 

K~ =TI [e~'T1

!e .. f'[e;•J1
", (V.7) ,., 

where K~ is the equilibrium constant of the dissolution reaction and the brackets surrounding 

a given specie designates its activity. The activity of a component is generally related to its 

concentration by: 

{V.8) 

where y, is the activity coefficient that can be considered equal to one for dilute solutions and 

p, designates the concentration in mol per liter of solution of the compone_nt or specie i. For 

higher concentrations, diverse melhods accounting for example for ion interactions exist to 

relate the concentrations and activities of the species. The CHESS software proposes several 

models for computing the activity coefficient, and in the following we retain the modified 

Davies melhod. It must be borne in mind that the dissolution of a mineral, such as portlandite 



Pan V: Sirnulations of the chemc>-mechanical dcgrada1ions by leaching of cemtnt-based 1natt:riats p 
age ISO 

in the case ofleaching (see Eq (1.6)), can also occur by itself without requiring a reaction With 

aggressive ionic specie. 

The precipitation reaction of a minera l specie e .. from aqueous species over the saturation 

limit inside the interstitial solution reads: 

(V.9) 

with the following action mass law: 
N 

K~ = Tif e .. I[ e;' r·-. (V.10) ,,, 

13. 1. 1.3 Coupled chemical-transporr equations solved by ALLIANCES 

The ALLIANCES platform solves the chemical-transport problem by coupling the chemical 

equ ilibrium code (CHESS) with transport (finite volume, CAST3M) in the following manner: 

(V. l l) 

( 
•• J_, 

c,. = J+L:v .. Pm ,'Vj e {l, ... ,N}, 'v'me {l, ... , Mi}, .... 
where c., , c,. respectively denote the volume fractions of the mineral phase m and of 

porosity, v;. designates the molar volume (Umol) of the minera l m, Mi is the tota l number of 

mineral species and the concentration C1 of ions j is expressed in 11101 per liter of solution. 

The operators Tr and Ch, respectively computed by CAST3M and CHESS, are such as: 

Tr(c1.,cm,C1) = div(D
0 

(c,.,cm).gn1d( C)) , (V. 12) 

N 

precipitation x; = Tiie., l[ e;·] .r.,. ' , .. , 
dissolution 

N I ,,,, -n [ "J t 1-' [ ,. J.r,. /\. "' - e,., e,,, e1 , ,., 
where K;, K~ and Zim have been defined previously. The effective diffusion coefficient o· 
depends of the porosity and of the volume fractions of minerals. Eq. (V. l J) presents how 

these quantities arc computed with ALLIANCES. It is noteworthy that diverse empirica l 

diffusion laws, such as the ones of Winsauer and Tognazzi , are already implemented in 

ALLJANCES (Nozourtier-Mazauric 2004). In order to show the importance of the evolution 

law chosen for the macroscopic diffus ion coefficient, difTcrcnt types of laws, such as 

Tognazzi's one ( 1998), are tested in the first simulations of leaching on cement pastes. 
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13.1.1.4 Computations of the chemical-transport loop with ALLIANCES 

A schematic de-5cription of the modelling of chemo-mechanica l degradations is presented in 

Fig. V.I. The first step consists in implementing a homogenization model in order to estimate 

the material effective diffusive properties from its composition. By communicating with a 
chemic<•I equilibrium code (CHESS), ALLIANCES in a second step updates at eacb time step 

1he mineral composition and the porosity of the cement and c.omputcs the evolution of the 

diffusivity inside the material from its current composition. This practically corresponds to the 

chemical-transport loop depicted on the !en-hand s ide of Fig. V . I. The coupling algorithm is 

sequent ial iterative (Yeh and Triparhi 1989) and has been validated on different tests 

(Monlarnal et al. 2007). The fixed point algorithm used to so lve the transport e<1uations is 

implicit in time (Nozourticr-Mazauric 2004), but the scheme employed to solve the chemical 

parl is explicit. The precis ion concerning the chemical resolution is fixed by the user and is 

defined at a given time step t + I from the total concentrations of the constituting species as 

follows: 

·'"' llF,.'''' -F'""ll <Pr 

~F"".' II , 
with F" " = LLXi~P .. (le {1, ... , l ,.0 ,1), (V. 13) 

J ~I 

where Pr designates the precision, I is the iteration index and I ,.,,, is the maximal number of 

iterations desired. ALLJANCES then adapts the time steps so that convergence is obtained 

within this number of steps. It is oflen necessary to impose a precision less than I o·6 resulting 

in small time steps, practically a few hundreds of seconds, to ensure convergence of the 

computations. 

Chemistry - Transport 
r-+ ........... _ .. r- - -.... 

Step I: Estimations of the material 
effective diffusive propcnics 

Step II: us!1-a chemical code 
(CH.ESS) coupled with transpon 

(CAST 3M) 

D 

I 
I 
I 
I 
I 

Step Ill: Estimations of the material 
effective elastic propcnies n . . 

<.,? 

Step IV: Prediction of the non linear 
mechanical behaviour of the 

stnicturc}j.AST3M) 

mage variables 
of the material 

L_ __ I 
Figure V.l: Scltematic of the 111otlelli11g of che1110-111ecl1t111ical degradatio11s of ce111e11f­

based 1110/erials 111itl1 ALLIANCES. 
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13.2 Simulations of the decalcification of cement pastes 

13.2.1 System considered 

The follow ing one-dimensional system (Fig. V.2) is adopted for the simulations of leaching 

process. A hydrated cement paste sample, simply modelled as a rectangle with 3 mm of length 

and I mm of height, is in contact on its lcfi extremity with pure water (pH = 7), while a zero 

flux condition is imposed on tbc other one. The mesh used is composed of 30 rectangular 

subvolumes. The computations of the chemistry • transport loop are then perfonned with the 

finite volume method and provide the mineral compos ition at each center of the subvolwnes. 

For simplicity, alkalis are not taken into account in the interstitia l solution, since they rapidly 

disappear during the leaching process as observed in the leaching simulations of Moranvil le et 

al. (2004). Consequently, the pll of the interstitial solu ti on is fixed by the equi librium with 

portlandite and is in itial ly about 12.5. The temperature considered constant is 25°C. 

pure water 
(pH = 7) 

ions migration 
(Ca2

+, sol·) 

... Zero nux imposed 

I 

• 

: 

0 

"" ' I. • I. I ,, 

' 
I 

" 

. ,, 
I I' 

• ,,, ...... 
// 

Figure V.2: Schematic of the 011e-dimensio11al system employed.for the s i11111/atio11s of pure 
waler leaching of H CP. 

13.2.2 l np111 t/11111 

The input data necessary for the chemistry • transport • mechanics (CTM) simulations are 

listed in Table V. I. In order to obtain reasonable computations times, non altered HCP is 

assumed to be composed only of four or five main phases: [UC, CH, AFm, C1.6sSll , AFt or 

hydrogarnet]. During the leaching simulations, the chemical code CHESS searches for the 

new mineral phases that precipitate using its huge database. To fi1rthcr decrease the time 

computation, the database is reduced to the following system for altered llCP: [CH, AFt, 

A Fm, C1.~sSH , Cu;SH, Co.\lOS H, Si02 (am). diaspore, gypsum, hydrogarnctj, where Si02 (am) 

refers to the amorphous silicon gel. The chemica l formulae and the equi librium constants of 
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these mineral phases are g iven in Appendix V .A. On the contrary to portlandite that can 

totally dissolve during the degradation of a cement paste, the decalcification of CSH rather 

implies a progressive decrease of their C/S ratio. As a consequence, theiJ diffusive and elastic 

properties are gradually diminished. To model this degradation in a simplified way, three 

types of CSH with diverse C/S ratios (C/S = 1.65, 1.25, 0.90) corresponding to more or less 

decalcified states, are introduced in CHESS. Silicon gel Si02(am) is fmthermore introduced 

in the chemical system to represent the most decalcified state of CSH. The anhydrous 

residuals are supposed to be unreactive, since they only represent a few percent in terms of 

volume fractions and modelling their hydration would require very long computation times. 

With this system, the following chemical species mainly appear in the interstitia l solution: 

[Ca 2', so; , Al'', Si02(aq)]. Alkalis (Na+, K ') and ions such as Fc3' or Mg2
+ are not taken 

into account, even though they arc usually present in the interstitial solut ion. 

Chemistry Mechanics 

• Concentrations of the initial mineral species: 
Pm,me [CH,AFm,CSH, .. ,, AFt or Hydrogarnet]; 

• pH and composition of 1he external solution . 

• Elast ic properties of mineral species: 

Transport 
/:,",.., v,,,, \Vi th me (CH, A Ft, AFm, 

C, 6,SH, C, ,,SI I, C0.90SH, Si02 (am), 

• Diffusivities of all the mineral species: diasporc, gypsum, hydrogarnc1]; 
£,,.,v., , with me ICH, AF1, AFm, C1.6sSH, C, ,,SH, • Parameters of the damage model; 

4-~H. Si0 2 (am), diaspore, gypsum, hydrogarnetj; • Initial and boundary conditions. 

• DifTusivi1ies of gel and capillary pores: Dw., Dcp; 
MCSA parameters:/ '"' :ind /"' (Pa11 Jll) 

Coupling Chcmistry - ,transport Coupling CT M 

Parameters of the coupling algorithm. 
Frequency of the computations of the 

dama~e state with CAST3M. 

Table V.1: T<1ble s1111111111rizillg the main i11p11t data for perfor111i11t: CTM co11p/etf 
si11111/atio11s 11si11g the ho111oge11izatio11 111odel with ALLIANCES. 

The CSll"'' and CSH'" arc not distinguished in the chemical computat ions, since their relative 

proportions inside the paste are not affected by leaching (Constantinides and Ulm 2004). It is 

however necessary to differentiate them in the homogeni zation model, because they have 

different e lastic and diffusive properties, as shown previously in the manuscript. Their relati ve 

volume fractions are g iven by Tennis and Jennings (2000). Constantin ides and Ulm (2004) 

have measured the Young modul i of CSH1
"' and CSH"' both for sound and asymptotically 

leached stales, their C/S ratio decreasing to 0.8 (1-leukamp 2002). By asymplo tical ly leached, 



Part V: Simulations of the chemo-.n1echanicnl degradations by leaching of cement.based materials J>age 184 

it is intended that the sample has been so severely attacked that it reaches a unifonn degraded 

state. It is supposed tbat the effective diffusivities and Young moduli of the two 

heterogeneous CSH evolve as a function of their C/S ratios comprised between 0 and 1.65 in 

the fol lowing manner: 

rifC / S>08, 

lifC/ S S 0.8, 

Ji f CI S > 0.8, 

l if C / SS0.8, 

F. -(I CIS-0.8)Eut C / S-0.8 ,.s . 
•'(..'SJl"'r0tl!n - I .GS- 0.8 C$Jlin1(11 '·"' + I .6S- (),g c.,CSllb1t0te.xt' 

D -(I-C IS-0.8)ou1 C / S - 0.8 0 $ . 
CS/II"'""" - 1.65 - 0.8 C$Hi"'0

""' + 1.65- 0.8 l'$1fw.,n" (V.14) 

D DUI. 
<.S.Jli11t@!l v:1 = CSIJ111HJ# ,;;1 • 

where the superscripts S and UL mean sound and unifonnly leached, respectively. The values 

of the Young moduli Ef'SHm•«m and E~J111.,,.,, .. , are taken from Constantin ides and Ulm (2004) 

and the diffusivitics Dt511..,,., .,,, and D:!;""'•"" are estimated by means of the MCSA model 

developed in Part Ill. The Poisson ratio is assumed to remain constant during leaching (Stora 

et al. 2006a). 

The reference cement paste used for the simulat ions is the Origny CEM I 42.5 paste with w/c 

= 0.40, since it corresponds to the one used by Le Bellcgo (200 I) in her experiments. 

l'urthennore, this type of cement paste is well characterized (e.g. Adenot 1992; Baroghel­

Bouny 1994) and its mechanical behavior has also been studied (Carde 1996; Le Bellego 

200 I). The CEM I 42.5 paste is presently assumed to be initially composed only of five 

phases (Le Bellego 2001): UC, C1.65SH, CH, Afm and Aft. The initial composition of the 

material (in mol/L), computed by Le Bellego (2001) by means of the simplified model from 

Adenot ( 1992), is given in Table V.2. The hydration rate is estimated in the calculations of 

phase volume fractions so as to retrieve the same value for total porosity as the water porosity 

measured experimentally (Le Bellego 2001). The composition of the paste is a little particular 

because of its high concentration in A Fm. 
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Origny CEM I 42.S Lafarge CEM I 52.S 
Phases 

paste (w/c = 0.40) HTS paste (w/c = 0.45) 
(Le Bell ego 200 I; 

Adenot I 992) 
(Galle et al. 2004) 

Estimated hydration 
rate 

0.80 0.88 

CH (moVL) 3.54 4.56 
Aft (mol/L} 0.0873 0.00 
AFm(moVL) 0.45 0.199 

Hydrogarnct (mol/L) 0.00 0.478 

CSH (mol/L) 3.86 4.44 

UC 0.074 0.043 
Warcr nnrositv 0.27 0.319 

• 2 2.80 to•12 5.21 10·12 

D1, 1 (m /s) (Tognazzi 1998) (Richer ct al 1997) 

Table V.2: Initial composition of the hvo CEM I pastes used for the simulations. 

13.2.3 Influence of the dif/11sio11 law on the chemical degradation 

Simulations with three different diffusion laws enlisted below are performed on the CEM I 

42.5 paste to put in evidence the influence of the evolution of diffusivity on the leaching 

process. The first simulation is thus made employing a simple proportional law designated by 

D~Qf': 

(V. 15) 

the second one adopts Tognazzi's law denoted as D;.,,. for predicting the evolution of the 

diffusion coefficients: 

D;.W> = D~1 exp(9. 95{c. -c~'J), (V.16) 

whi le the third one uses the multi-scale homogenization model defined in Part fl for 

estimating the diffusivities. In the equations above, o;.1 refers to the eOective diffusivity of 

the non altered paste, Cp a11d c;'' denote the current and initial total porosities of the paste, 

respectively. The mineral compositions of the CEM I 42.5 paste with w/c = 0.40 degraded by 

pure water after 50 days, computed at each center of the subvolumes (see Fig. V.3) with 

ALLIANCES using respectively the three types of laws, as a function of the depth of the 

simulated samples are plotted on Fig. V.3. As a complement, Fig. V.4 shows the evolut ions of 

the diffusion coefficient inside the CEM I paste for the three simulations. 
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Figure V. 3: Mineral compositions in terms of volume fractions insi<le a sample ofCEM I 
42.5 paste with wlc = 0.40 subjected to a 50 days attack by pure water simulated with 
ALLIANCES using") a proportional law, b) Togn"zzi's law and c) the multi-scale 

homogenization motfel, respectively. 
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Figure V.4: Evolutions oft!te macroscopic diffusivity inside" Slllnple o/CEM 1 42.5 pllSle 
(111/c = 0.40) subjected to a 50 days attack by pure water si11111/ated with ALLIANCES 
using a proportional law (red), Tog11azzi'.1· /aw (blue) and our lwmogenization model 

(dashed), respectively. 

On Fig. V .3, the volume fractions of the different mineral phases inside the HCP strongly 

evolve near the left-hand zone in contact with pure water but these evolutions are different for 

the three simulations computed with diverse diffusion laws. In parallel, the ionic diffusivities 

are seen to increase on Fig. V.4 in this alterated zone due to the additional porosity created by 

the dissolution of certain mineral phases. These augmentations in the deteriorated zone are 

much more significant with Tognazzi's law and the homogenization model than with the 

proportional law. It thus appears clearly by comparing Figs. V.3 and V.4 that the evolution of 

the diffusion coefficient inside the paste sign ificantly impacts the degradation process. 

In the three simulations, portlandite is the phase that is most affected by leaching, since its 

complete dissolution may be observed on the left-hand sides of Fig. V.3 in good accordance 

with the experimental observations (e.g. Adenot 1992). The two aluminous phases, AFt and 

AFm, dissolve at a lower calcium concentration in pore solution. It should also be noted on 

Fig. V.3b) that with Tognazzi 's law Aft rcprceipitates in the zone where AFm has dissolved, 

as is habitually viewed experimentally. Conservely, no reprecipitation of Aft is observed with 

the proportional law and furthermore Aft starts to dissolve before Afm. This is contradictory 

with the dissolution sequences evidenced by Adenot (1992). According to his work, CH 

dissolves before Afm that should themselves dissolve before AFt. On the contrary, the 

dccalcification of CSH should occur in a progressive manner, as already mentioned. On the 

three figures, the CSH arc thus progressively dccalcificd: as the C1.6sSll dissolve (where the 
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subscript 1.65 refers to the C/S ratio), CSII with a lower C/S ratio, C1.2sSH, simultaneously 

precipitate. 
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Figure V.5: Evolutions of the pH of the interstitial solution and of the calcium 
concentrations i11 solid phase and i11 solution inside a CEM 142.5 paste with wlc = 0.40 

subjected to a 50 days auack by pure water simulated with ALLIANCES 11.~ing a 
proportional law (red), Tognazzi's law (blue) and the multi-scale ho111oge11izatio11 model 

(dashed), respectively. 

The calcium concentration profiles in solution and in solid phase and the pH curve ploued on 

Fig. V.5 are quite comparable with those from Moranvi lle et al. (2004). As expected, these 

profiles strongly depend on the presence of CH. Indeed. the calcium concentration in solid 

phase decreases as soon as CH starts to dissolve. Futthermore, its presence controls the pH 

and the ca lcium concentration in solution and both decrease whenever Cl I is totally dissolved. 

The dissolut ion of CH usually occurs very rapidly so that tile degradation depths on Fig. V.5 

can be estimated by quoting the beginning of the decrease in the profile of calcium either in 

solution or in so lid phase. This dissolution front is represented by vertical bars on Fig. V.5 for 
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the calcium profiles obtained with the homogenization model. The two bars logically coiJJcide 

and thus allow for determin ing the leachillg front propagation. For Tognazzi's law and for the 

proportional one, it is difficult to make such a detennination, since the beginnings of the 

decrease in the two different ca lcium profiles are far one from another. This discrepancy may 

be caused by the poor increase oftbe diffusivity when CH starts to dissolve (see Fig. V.4). 

The depths predicted with the simulations done with Tognazzi's law and the homogenization 

model are bigger than those obtained with the proportional law. This may be explained easily: 

the higher the diffusivity of the paste (see Fig. V.4), the faster the concentration of aqueous 

species, such as Ca2
+, diminishes in the interstitial solution, thus enhancing the dissolution 

process. Experimentally, the degradation depth can be measured by different ways, for 

example from electronic microprobe or by phenolphtalein (Le Bellego 2001). The dissolution 

front propagations provided by the numerical tries with the homogenization model are quite 

close from the degradation front propagation experimentally measured by SEM (Adenot and 

Bui I 1992) on a similar paste that is about 0.15 mm I days05 (see Table V.3). 

The results obtained with Tognazzi's law and with our model are far better than those 

provided with a proport ional law. This shows the importance of using a realistic diffusion 

law. The multi -scale homogenization model presents the benefit to be more general than the 

empirical Tognazzi 's law that has been specifically developed for CEM I pastes on the basis 

of diffusion experiments on several pastes with different porosity (Tognazzi 1998). This law 

that was proved to be reliable for the standard pastes chosen for our simulations is not 

necessari ly applicable for other types of cement pastes,. such as CEM V. The multi-scale 

homogeni7.ation model is therefore adopted for the subsequent simulations. 
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Figure V.6: Evolution of the co11ce11trati<ms i11 solution of the main aqueous species 
compared with the i11itial ones as af11nctio11 of the depth of the s"mple ofCE1W 142.5 

wit!t w/c = 0.40 f'"Ste after 50 d"ys of pure w"ter degrad"tion simulated with 
ALLIANCES 11s i11g a proporti()lwl fow (up), Togn"u,i's law (middle) a11d the m1tfti-sc"fe 

/l()moge11hation model (down), respectively. 

The variations of tbe concentration of the main aqueous species in the interstitial solutior; 

depend on the diffusion law chosen, as is shown on Fig. V.6. One of the shortcomings ol 

ALLIANCES is that it is prescotly not possible to affect different diffusion coefficients tc 

each aqueous specic.s, which might lead to unreal istic resu lts. For example, we observe 011 

Fig. V.6 that Si02(aq) move inside the interstitial solution towards the exterior of the paste, 

whi le they should hardly move in theory because of the big size of the Si02(aq) molecules. 

Since there is a large number of factors that affect the chemical degradation of cement, it is ol 

practical sign ificance to identify factors that strongly affect the deterioration. For this purpose. 

the respective effects of the composition of the cement paste, of the aggressive solution, of the 

inclusion shape of Cl-1 and of the CSH percolating porosity on the leach ing of I ICP are 

investigated below. The last two factors are parameters of the mu lti -scale homogeni7.ation 

model that significantly modify the macroscopic diffusive and mechanical prope11ies ol 

cement pastes (Stora ct al. 2006a; b) . 
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13.2.4 Influence of tlte composition of cement pastes on tlte cltemica/ degradation 

In order to perform a rigorous validation of the simulations and investigate the influence of 

the composition of the cement pastes on their chemical degradations, two CEM I pastes, that 

are well characterized (Adenot and Bui! 1992; Baroghel-Bouny 1994; Galle 200 1) and which 

mechanical behavior has also been studied (Carde 1996; Le Bellego 2001; Galle et al. 2004; 

Moranvi lle et al. 2004) are employed: a CEM l 42.5 of Origny with w/c = 0.40 (Tognazzi 

1998; Le Bellego 200 1) and a CEM 1 52.5 HTS from Lafarge (Galle 2001; Galic ct al. 2004; 

Moranvi lle et al. 2004). The comparison between the two cement pastes provides furthermore 

some insights about the effect of the hydration rate and of the w/c ratio on the chemical 

degradation. The CEM I 52.5 IJTS paste with w/c = 0.45 (Galle et al. 2004) has a qu ite 

di fferent composi tion from the other one with five phases supposed present init ially (Bejaoui 

and Bary 2007): UC, C1.6sSH, CH, AFm and hydrogarnet (Table V.2). This ini tial 

composition is obtained by means of the Jennings model (Bejaoui and Bary 2007). The 

simulations of chemical degradations of the CEM 1 HTS paste are confronted with 

experi mental results from pure water leaching tests (Galic et al. 2004) but also with other 

results from recent simulat ions (Moranvi lle ct al. 2004). 
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Fig ure V. 7: Mineral co111positio11s i11 terms of1•0/11111efraction.~ inside " .mmple o/CEM I 
52 . .5 HTS paste with w/c = 0.45 subjected to a 50 day.1· attack by pure water si11111/ated 

witlt ALLIANCES. 

The figure above presents the mineral profile in a CEM I IJTS paste wi th w/c ~ 0.45 leached 

wi th pure water during 50 days. The complete dissolu tion of phases, such as Cl I, hydrogarnet 

and A Fm. may be observed on the left-hand side of the top of Fig. V.7, corresponding to the 

alterated zone. It is noteworthy that there is a reprecipitation of /\Fm in the zone where 
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hydrogamet starts to dissolve and low C/S ratio CSH, Co.90SH, precipitate near the interface 

with pure water. 

The dissolution front of portlandite propagates faster in a CEM I HTS paste than in a CEM l 

42.5, since the CEM I 52.5 HTS is much more porous and has a higher diffi.tsivity (see Tables 

V.2 and V.3). An additional possible reasou why the CEM I 42.5 paste resists better to 

leaching than the CEM I 52.5 HTS one is that it contains less portlanditc and more alumiuatcs 

showing a better resistance to pure water. Fig. V .8 eonfinns that the degradation propagates 

faster in the CEM I HTS paste. The decrease of the pl I and of the concentration of calcium in 

solid phase is much more significant than inside the CEM I 42.5 paste due to the 

dccalcification of the C12sSH. 

The calcium fluxes are funhennore underestimated in both simulations (see Table V .3) and 

appear to be much smaller than the values measured experimentally by Adcnot ( 1992) and 

Bourdette ( 1994) on a CEM I 42.5 paste with w/c = 0.40. It is consequently necessary to 

adjust the MCSA parameter of the multi-scale homogeni7.ation model in order to obtain a 

better agreement with the experimental results. 

Leaching fronl propagation 
Origny CEM I 42.5 paslc Lafarge CEM I 52.5 

(w/c = 0.40) HTS pasle (w/c = 0.45) 

Expcrimcn1al decalcification 0.15 mm ct·•-> 0. 19 mm d"'°' 
front propagalion (Adeno1 1992) (Galic c1 al. 2002) 
Decalcification fron1 
propagation (after 50 d:iys of 0. 10 mm d·o.> 0.12 mm d.O.> 
sitnulatcd pufe \vater lcachin~) 

Calci11m Flux measured 1.4 mol 111·2 d·05 (Adenot 1992) 1.75 11101111" ct•O.> 
experimentaly I. I mol m·2 d-0.5 (Bourdcttc 1994) (Galle el al. 2002) 

Calcium Flux (ofter 50 days of 0.55 mol m·2 d·<l.> 0.82 mol 111·2d.o.> 
sin1ulatc<I pure waler leaching) 

Table V.3: Comparison of the decalcijicatio11 front propagations obtained i11 tire 
simulations performed tVith ALLIANCES of1mre water leaching with experimental 

values. 
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Figure V.8: E1,o/11tions oftlte /1H oftlte interstitial solution and oftlte concentrations of 
cafci11111 ifms in solid pf1t1se and in solution inside 42.5 (w/c = 0.40) and 52.5 HTS (w/c = 

0.45) CEM f pastes subjected to a 50 days a/lack by pure water. 

13.2.5 lnfl11ence of the aggressive sof11tio11 on the cltemicaf ilegradatio11 

Although the degradation of the small cement samples in the previous subsection is 

significant, the effect of leaching by water at the scale of a rea l concrete structure are only 

observable for very long times, since it roughly takes 300 years to leach 4 cm of a concrete 

structure by extrapolating results from leaching experiments (Adenot 1992). More agressivc 

solutions, such as ammonium nitrate (NH4N03), arc consequently commonly used by 

experimentalists to enhance the degradation process (Cal'de 1996). ln particular, a very 

concencratcd solution containing 6 mol/L (6M) of H.N03 is generally employed for the 

coupled chemo-mechanical degradation experiments (sec e.g. Le Bcllcgo 200 I). II is therefore 

necessary to be able to simulate accelerated leaching by this 6M NII4N03 solution to 

reproduce the available chemo-mechanical degradati on experiments. The rectangle with 3 mm 
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of length used for pure water leacbing simulations (see Fig. V.2) is not adapted for the 6M 

NH4N03 attack due to tbe very fast propagation of the dissolution front. A bigger rectangle 

with I cm of length and I mm of height and a bigger mesh composed of 20 rectangular 

subvolumes are consequently employed to obtain reasonable computation times. The mineral 

profiles obtained for a CEM 1 42.5 paste with w/c = 0.40 respectively auacked by pure water 

and by a 6M NH4N03 solution during I 0 days is plotted on Fig. V .9. The dissolution front is 

at least one order of magnitude deeper for the accelerated attack. The decalcification front 

propagations obtained for different cement pastes are presented in Table V.4 and appear to be 

at least one hundred times faster than for pure water Jeacbing. However, the simulated 

dissolution front propagations are clearly underest imated compared to those 1J1easured 

experimentally. This shortcoming may be caused by a too low diffusion coefficient in the 

degraded zone. It is furthermore pointed out that the calculations of ion activities by the Davis 

modified arc inaccurate and probably overestimated, which should rather enhance the 

simulated propagation of the dissolution front. According to Heukamp (2002), the Davis 

modified law used by default in ALLJANCES does not suffice for computing the right 

activities and equilibrium concentrations in the case of a 6M NH4N01 solution and other laws 

such as Pitzer equations should be used. Indeed, the equilibrium concentrations of the 

hydration products are strongly modified in the presence of a 6M NH4N01 solution. 

Accelerated leaching front Origny CEM I Lafarge CEM I 
propagation (6M NH4N0 1) 42 .5 52.5 HTS 

w/c ~ 0.40 w/c = 0.45 
(Galle et al. 2004) 

Experimental measure - I. 74 nun d.o.s 

After 10 days of simulations of I.I I mm d.o' 1.27 nun d.._, 
degradation 
Acceleration factor 
(compared 10 pure w-.itcrdegradalion) 111 104 

Table V.4: Comparison of tire decalcijicatio11/ront propagatio11s obtai11ed i11 tire 
dijf erell/ simulations performed with ALLIANCES of accelerated leaching by a 6M 

N H4N03 solution with exp erime11tal values (Galle et al. 2004). 
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Figure V. 9: Mineral co111positio11s i11 terms of volume fractions im·ide a sample of CEM I 
42.5 paste with a w/c = 0.40(le1Jellego 2001) subjected to a JO days a/lack 011 its left 

side by pure water (left) and by a 6M NH 4N 0 3 solu1io11 (right). 

Even though the simulations of chemical degradations of HCJ> obtained with ALLIANCES 

using the multi-scale homogenizati on model are quite contemn to leaching experiments (sec 

Tables Y.3 and Y.4), they tend to underestimate the degradation depths. Neve1theless, the 

results may be further improved by modell ing portlandite as spheroida l inclusions instead of 

spherical ones (Stora ct al. 2006a) or by increasing the volume fractions of percolating gel 

pores (Stora et al. 2006b). 

13.2.6 Improving the leaching si111ufotio11s by adjusting the parameters of the 

homoge11izatio11 11uulel 

13.2.6. I Influence of the incl11sio11 shapes 

To investigate the impact of the inclusion shapes used in the homogenization model on the 

chemical degradation of I ICP, a simu lati on of 50 days pure water leach ing is performed using 

an oblate spheroid with an aspect ratio r = 0. 1 to model porllandite in the multi-scale 

representation of IJC P. T he influence of the CH inclusion shape on the evolutions of 

diffusivity being quite modest (Figs. Y. l 0 and Y. 11 ), the depth of the Cl l disso lution front 

remains practically unchanged for a 50 days pure water leaching simulation. IJ1 the ensuing 

part devoted to the chemo-mcchanical couplings, the chemica l deteriorations are exclusively 

simulated adopting the multi-sca le homogenizati on model with CI I represented for simplicity 

as a sphere for est imating the diffusivity evolutions. 
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Figure V.11: Mi11eral compositions in terms t>f volume fr11cti1111s inside a s11111ple <if CEM I 
42.5 paste with wlc = 0.40 subjected to" 50 days attack by pure water simulated with tire 
multi-scale lro11wge11izatio11 model with CH modelled as a sphere (left) and a.y a11 oblllte 

spheroid (right), re.5pectively. 

13.2.6.2 Jnj/11ence of the percolating gel porosity 

In absence of experimental values for the diffus ivitics of unifonnly leached CSJ-l and HCP, 

these quantities have to be est imated by the homogenization model based on assumptions of 

the quantiti es of additional percolating gel and capillary porosity, des ignated as lie~) and 
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t.cl!;! respectively, appearing during the dccalcification. These suppositions formulated in 

Part Ill are now revised so as to obtain a higher diffusivity for the totally leached zone. 

Instead of suppos ing that, in the uniformly leached state, 5 % of the CSH are dissolved and 

replaced by capil lary pores (Bary and Bejaoui 2006), it is presently assumed that they are 

substituted by additional percolating gel pores. As a consequence, an add itiona l volume 

fraction f!.c~ = 0.065 of gel porosity is supposed to percolate through the uniformly leached 

paste. By summing these additional percolating gel pores and capillary ones replacing the 

dissolved hydration products (CH, A Ft), the total quantity of additional porosity measured by 

mercury porosimetry (Galle et al. 2004) is retrieved. As may be seen in Fig. V. 12, the 

diffusivity obtained with this new hypothesis augments by a foctor three in the most leached 

zone and the depth of the Cl I dissolution front is increased by about 0.1 mm for a 50 days 

pure water leaching simulation (see F ig. V.13) thus leading to a better agreement with the 

experimental decalcification front propagation. 

In addition, the calcium flux computed that is about 1.0 mol m·2 d.o.s (Fig. V. 14) is almost 

doubled in comparison with the prev ious simulations and appears to be closer to the 

experimental measure (Adcnot 1992; Bourdette 1994), even though lhe calcium tlux is still 

underestimated . Jn the case of the HTS cement paste, the calcium tlux and leaching front 

propagation are also much higher thus sign ificantly improving the agreement with 

experimental data (see Table V.5). 
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Figure V.12: Evol11tio11s of the macroscopic diffusivity inside a sample <JfCEM I 42.5 fJllSte 
(w/c "' 0.40) subjected to a 50 days attack by pure water simulate1l with the multi-scale 
homogenization model by co11sideri11g different quantities of additional percolllting gel 

pores ( f!.c~) = 0.04 and f!.c~~ = 0.065 ). 
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Dccalcification 
propagation 

front 

Experimental dccalcification 
front propagation 

Decalcification front 
propagation (after 50 days of 
simulated pure \Valer leaehinu) 

Calcium Flux measured 
experimcntaly 

Calcium Flux (after 50 d:.ys of 
simulated pure \vttlCf leaching) 

Origny CEM l 42.S paste 
w/c= 0.40 

0.15 mm d.o..s 
(Adcnot 1992) 

0.12 mm d.o..s 

1.4 mol ni"2 d.o.s (Adcnot 1992) 
I. I rnol rn·2 d-0.s (Bourdcllc 1994) 

Lafarge CEM I 52.5 
HTS paste w/c = 0.45 

0 . . 19 mm d·o.5 
(Galle ct <II. 2002) 

0.15 mm d·o.5 

1.75 mol rn'2 d·0.S 

(Galle ct al. 2002) 

Table V.5: Comparison of the decalcijicationfro11t propagations obtai11e1/ i11 the new 
s imulations performed with ALLIANCES of pure water leaching with experimental 

values. 
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Fig ure V.13: Mineral compositions i11 terms of volume fractio11s inside a sample of CEM I 
42.5 paste with w!c = 0.40 subjected to a 50 days a/lack by pure water simulated with the 

multi-scale l111moge11izati<m model by considering an increased quantity of additio11al 

p ercolating gel pores ( t.c!,',! = 0.065 ). 
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Figure V.14: Evolutions with square root of time of the tot11I t11no1111t of released c11lci11111 
from a CEM 1 42.5 p11ste with wlc = 0.40 subjected to an a/lack by pure water simulated 

witlt tlte multi-scale ltomoge11izatio11 model. 

These results high light the importance of the amount of the percolating porosity in the MCSA 

model (Stora et al. 2006b). ln the ensu ing chapter devoted to the chemo-mechanical 

couplings, the chemical deteriorations are exclusively simulated adopting this increased 

quantity of percolating gel pores for the homogenization computations. 

13.3 Conclusions of chapter 13 

The multi-scale homogenization model developed in Part Ill has been· implemented within the 

ALLIANCES platform to compute the evolutions of the diffusive properties of concrete 

materials. S imulations of both pure water and accelerated leaching of these materials have 

been run and confronted to both experiments (e.g. Adenot 1992) and recent numerical results 

(Moranville et al. 2004). The concentration profi les of the aqueous and mineral species inside 

the paste predicted by the simulations are qu ite close from what is generally observed 

experimentally. Tbc resu lts obtained with the latter model are better than those ob1ained with 

empirical laws (e.g. Tognazzi 1998). However, the dissolution front propagation and the 

calcium flux tend to be underestimated in comparison with the experimental measu res but the 

results have been improved by increasing the quantity of percolating gel pores in the multi­

scale representation of llCP. After this presentation of the coupled chemical-transport 

problem solved by ALLIANCES, the next chapter is specifical ly devoted to the couplings 

between chemistry and mechanics. 
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14 SIMULATIONS OF TUE CHEMO-MECHANICAL DEGRADATIONS BY 

LEACHING OF CEMENT-BASED MATERJALS 

The next step of modelling consists in estimating the material effective elastic properties by 

means of homogenization techniques. The non-linear mechanical behaviour of the sample is 

then evaluated by FE with CAST3M using a micromcchanically based damage model deta iled 

in Part lV. The present chapter focuses on the influence of the chemical deterioration on the 

residua l mechanical behaviour. The impact of damage on the leaching process has been 

treated at the very end of the PhD thesis. Some results have been obtained after the defense of 

my thesis and arc not presented in this manuscript. They are however gathered in a paper 

submitted to Cement and Concrete Research (Stora et al. 2008). 

Residual mechan ical resistance tests on cement pastes have been perfonned both in 

compress ion (e.g. Carde 1996; Heukamp 2002) and in traction or flexion (e.g. Le Bellego 

200 1). For s implicity, the chemo-mechanical simulations are limited to traction or flexion 

tests. The present chapter aims at simulating the different fl exion tests performed by Le 

Bellego (200 1) on mortars that constitute a ve1y good example of chemo-111echanical coupled 

experiments. 

14.1 Stiffness reduction of cement-based materi als after leaching 

The multi-scale homogenization approach developed in Part Ill to estimate the evolutions of 

the diffusivity of cement-based materials is also applied to predict their elasti c properties in 

both sound and leached states. The Young moduli of each subvolume of tbe simulated 

cement-based material can be estimated by implementing this model into ALLIANCES. The 

volume fractions of each mineral phase necessary for applying the homogenization model are 

provided by the previous simulations o f the chemical deteriorat ion perfonned with the multi­

scale homogenization model for diffusion. The vo lume fractions given on Fig. V.3 and the 

measurements by nanoindentation of the elastic properties of each mineral phase (sec Table 

1.3) then serve as input parameters for the estimations of the elastic properties. 

The doubly-coated spheres model, representing the microstructure of HCP and mortars, is 

computed wi th the aid of the GSCS and provides the estimations plotted on Fig. V.15 for tl1c 

Young modu lus of the llCP inside the degraded sample. The latter modulus is s ignificantly 

reduced in the alterated zone because of the dissolution o f rigid phases, such as CH and AF. It 

may be seen on Fig. V.15 that tl1c decrease occurs in two steps: the first one is attributed to 

the dissolution of Cl l and the second one is caused by the decalcification of the CSH. This 

sharp diminution due to leaching is in good agreement w ith the experimental works of Carde 

(1996), Constantinides and Ulm (2004) and Galle et al. (2004) that evidence a sign ificant 

effect of leaching on the macroscopic Young modulus of cement pastes. Constantinides and 
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Ulm (2004) funhcr measured that the stiffness modulus of an asymptorically leached paste 

decreased to about 3 GPa. The homogenized Young modulus of the most dccalcified 

subvolumc on the lefi-hand side of Fig. V.15 is of the same order. 
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Fi1:11re V. 15: Evnl11tif111 of tlte Young 11wtf11f11s insitle a s11111ple of CEM I 42.5 paste witlt 

wlc • 0.40 (Le Bellego 2001) s11bjec1etf '"" 50 tfflys pure w11ter allflck. 

14.2 S imulations of the mechanical residual resistance t~sts on cement-based m aterials 

14.2. I Tensile tests 011 1111iformly leacltetf specimens 

I lcukamp (2002) performed interesting types of experiments testing m traction or 

compression both sound and asymptotically leached samples of cement or monar. By 

asymptotically leached, it is intended that the sample has been so severely attacked that it 

reaches a unifonn degraded state with much lower elastic propenies and strength. To simulate 

such deterioration, the prev ious one-dimensiona l system in Fig. Y.2 is reused except that a 

6M NI r.N03 solution is now employed instead of pure water. The initial mineral composition 

of the OPC type I cement paste with w/c , 0.50 is computed by means of the Tenn is and 

Jennings model and displayed in Appendix V.B. After 50 days, the sample is already entirely 

leached and a uniaxial tensile test along the e1 axis is simulated on tbis specimen. 

The eventual cracks inside the paste solicitated in traction along the venical axis on the beam 

should mainly appear oriented along the hori7.0ntal axis. For simplicity, the normal vectors of 

all the cracks in the present damage model arc thus assumed to be parallel to the horiwntal 

axis e1• The subscripts can thus be disregarded, since only one family of parallel cracks is 

involved. The undamaged material being isotropic, the effective damaged one is consequently 

transversely isotropic, according to our model. 
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The damage parameters such as tensile strength in the sound and uniformly leached 

specimens are obtained from Heukamp et al. (2005) and enlisted on Table V.6. After 

simulating a 100 days attack by a 6M NH4N03 solution, the sample is uni formly leached. The 

stress-strain curves of these two samples obtained by FE arc plotted in Fig. V .I 6, illustrating 

the strong degradation of the mechanical properties of chemically deteriorated cements. The 

relative decrease obtained for the Young modul i are qu ite close to the ones measured by 

I lcukamp et al. (2005). Unfortunately these tests did not record the post-peak behavior. 

Therefore, the developed tool, and in particular the micromcehanically based damage model, 

needs to be further val idated by comparing w ith the more detailed experiments from Le 

Bellego (200 I). 

Par:11nctcrs of the OPC type I paste Mortar 
damage model (w/c; 0.50) (w/c ; 0.40) 

Co 8.6x10-• 5x l o-s 
A I I 

B 10000 3000 

k 
28.9 

9.84 
(Hcukamp ct al. 2005) 

Table V. 6: Meclt1111ic11l input data adopted for tlte micromecl11111ically-b11setl tl1111111ge 
model in the cases of a HCP sample (He11kamp et al. 2005) s11hmittetl to " 1111i11Xi11l 

traction and of the mortar beam tested i11 jlexion (le Bellego 200.1). 
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Figure V.16: Stress-str11i11 curves of a so1111d and a11 asymptotically leached cement paste 
with 11 w/c mtio equal to 0.50 (He11kt1111p et 11/. 2005) submitted to a 1111iaxial tn1ctio11 

followi11g tlte e, flxis. 
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14.2.2 Three-points jlexio11 tests 

14.2.2.1 System considered 

For testing the mechanical residual resistance of cement-based materia ls, the case of a beam 

in flex ion is now s imulated so as to reproduce existing experiments (e.g. Le Bcllcgo 200 l ; 

Schneider and Chen 2005). Le Bcllego (200 I) in particu lar cond11ctc.d a large series of three. 

point bending tests of partially leached mortars and recorded the whole curve linking the 

displacement imposed and the reaction force. It is emphasized that their results are more 

detai led than the ones of Schneider and Chen (2005), who perlo nned the same kind of tests 

but have on ly recorded the ultimate strength. In the present simulations, the smallest beam 

tested by Le Bellego (2001) is used. Its total length and height are 320 mm and 80 mm, 

respective ly. The lateral surfaces and the 60 mm long sections at the corners of the beam are 

insulated by an epoxy coating (see Fig. Y.17). Therefore on ly the central pa11 of the lower 

face, which wi ll be subsequently subjected to tensile stresses, is in contact w ith a 6M NH4N03 

so lution. The 20 mesh depicted on Fig. Y. l 7 is employed for the chemical and mechanical 

computations on the beam. The chemical attack of the beam by this aggressive solution lasts 

114 days. Le Bcllcgo measured with phenolphthalein that the degradation depth reached 18.2 

mm from the bottom of the beam. After this attack, the deteriorated beam is fu lthcr subjected 

to a three-point flex ion test schematicall y represented in Fig. Y.17. The following mechanical 

boundary conditions arc imposed: 

u,,(x = 0,y = 0.08.t = I l 4d) = 110 ; u ,(x = O,y,t) = O; u,.(x = 0.12,y = 0,t )= 0. (V.17) 

After I 14 days of leaching, an increasing displacement 110 is thus imposed on the center of the 

upper face (rig. Y. 17). The non-l inear mechanical behaviour of the leached sample is then 

evaluated by FE using the micromechanically based damage model detail ed in Section 2. The 

beam is assumed to be in plane stress conditions. In the present system, eventual cracks inside 

the chemica lly degraded zone presently solicitated in traction along the horizontal axis 

because of the flexural disp lacement imposed on the beam should main ly appear oriented 

along the vertica l ax is. 

A rather coarse 20 mesh comprising 1600 elements is employed for the chemical and 

mechanical computations on the 111011ar beam, since the smallest element of the mesh should 

be bigger than the typical size of the RYE. It is recalled that this size is about I 0-100 ~lm for 

cement pastes and about I· l 0 mm for mortars. According to the work of Pensee and He 

(2007) accou nting for the effects of the size of the RYE, the laller should be sign ificantly 

bigger than the typical si:les of the particu late phases. Lutz et a l. ( 1997) for example 

considered an average equivalent diameter of 700 ~1 111 for sand aggregates. Consequently, the 
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average size of a mesh element should be at least superior to 2 mm in the case of mortars. In a 

first attempt, a coarse mesh composed of 200 elements was used to ensure reasonable 

calculations times (about one hour) but a 20 mesh with I 600 elements (more than two hours) 

was finally preferred to examine more precisely the di ssolution front propagation. Th is 

propagation was observed to be indepeudeut of tl1e mesh adopted. The area of a mesh element 

is 8 mm2 for the mesh with 1600 elements and its dimensions are 2 111111x4 mm . This choice 

is a compromise between the R VE size condition (> 2 mm) and the computation precision for 

damage, for wh ich it is generally recommended to avoid too big clements. 

Displacement imposed 

' 
fl+ 80mm 

flt Zt:ro nux 

I60mm 

Figure V.J 7: Schematic of the two-dime11sio11al mesh employed for the sim11/atio11s of 
mecha11ical resista11ce tests (up); meshes of200 elements (dow11 lefl) tmd of1600 

elements (down right) used/or the computatio11s. 

Concerning the representation of cracks, strong assumptions are made in the 

micromechanical ly-based damage model. They may grow in the bu lk cement paste, through 
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the interface between sand aggregates and paste and through the sand aggregates themselves. 

The micromechanical damage model consequently assumes that the cracks are embedded in 

an effective medium having the same properties as undamaged mortars, accord ing to the fact 

that the cracks may grow anywhere. Another argument for representing the cracks inside the 

already homogenized undamaged mortars is that they may be very extended and have a 

correlation length that is much longer than the particulate phase such as sand or clinker grains. 

In the case of concrete, cracks are also likely to grow inside and span over the coarse 

aggregates. 

The chemical-transpo1t input data are collected in Appendix V.B. It is necessary to pay 

attention to the fact that the mineral composition of the cement paste inside mortar is different 

from the plain HCP. Indeed, the total water porosity inside the mo1tar presentl y considered 

with 50 % of sand grains is measured to be equal to 0. 18, whereas the total water porosity of 

the plain HCP is 0.27 (Le Bellego 2001). Assuming that the sand aggregates are impermeable, 

the total water pllrosity of the cement paste inside mortar that is more porous than the plain 

HCP is then about 0.36. 

The mechanical input data for the damage model (sec Table V.6) arc computed or fitted from 

the results of Le Bellego (2001} in the case of mortars and of Heukamp et al. (2005) in the 

case of cement pastes. The ratio of the C·Ompressivc strength over the tensi le one k is for 

example determined from the uniaxial compressive and tensile strengtl1s provided by Le 

Bellcgo (200 I), equal to 44.3 MPa and 4.5 MPa, respectively. The possible evolutions of the 

damage parameters are discussed in the next subsection. 

14.2.2.2 Evolutions of the damage threshold with leaching 

As already mentioned previously, the experiments performed on both sound and 

asymptotically leached cement-based materials (e.g. Heukamp et al. 2005) clearly evidence 

the fact that the compressive or tensile strengths are strongly modified in the leached state. It 

raises an important question: how does the stress or strain damage threshold evolve during the 

decalcification process? Unfo1tunately, the decrease of strength for intermediate leached 

states is very difficu lt to measure because of the inhomogeneous degradation of the samples 

in the typical degradation tests. That's why the following assumption is made: damage occurs 

when the right line corresponding to the elastic part of the stress-strain curve of the 

decalcified material intersects the stress-strain curve of the damaged unleachcd material, as 

may be S'een on Fig. V .18. These curves arc obtained by applying the TDD damage model both 

to the asymptotically degraded and sound cement pastes tested in tension by Heukamp ct al. 

(2005). The strain damage threshold c~'· = 2.37x Io-• provided by this quite empirical method 

appears to be quite close from the one ci' = 2.72xIO"" measured by lleukamp for the 

uni fonnly leached cement paste. 



Par1 V: Simu1a1ions of the chenlO•n1cchnnical degradations by lei1ching of ccmcnl·basod materials Page 206 

J,-~~~~~-r-;::====::::c:====::::r::====::::;i 
--Sound paste 
--As 1. totic11ll leached 

2.5 

4 5 
x 10'"'" 

Figure V.18: Identification of the stmin damage threshold ofa leached OPC type I paste 
(Heukamp el al. 2005) from the stress-strain curve of the damaged u11leaclted one. 

14.2.2.3 Results and comments 

Before testing the residual mechan ica l resisl• nee of the ml.ll"t'1r he111n, it is irul ispens~hle to 

first correctly reproduce the chemical deterioration of the leached material. T he computation 

time for the numerical test of the accelerated leaching is about three hours on a standard PC­
Linux machine depending on the precision defined in Eq. (V. 13), presentl y I 0-8. The CH 

dissolution front reaches about 17 mm (Fig. V. 19) on mortar beams after 114 days of 

accelerated leaching. This depth is in quite good agreement with the one obtained 

experimentally by Le Bellego despite the fact that the ion activities evaluated with the Davis 

modified method should be computed more accurately in tl1e case of Nl LiN03 attack. 

II appears on Fig. V.20 that the liquid ca lcium concentration in contact with tl1c 6M Nll4N03 

solution goes up to about 2 mol/L near the portland itc dissolution front. This value is not far 

from the one considered by Tognazzi ( 1998) and Hcukamp (2002), who assert that the CH 

dissolution front in presence of a 6M NH.N03 solution occurs for a liquid calcium 

concentration inferior 10 2.7 mol/L. In addition, !he diffusivity in the leached zone of the 

beam (Fig. V.20) augments by more than two orders of magnitude compared with the sound 

part. 
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Crack density 
parameter d, 
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..... 

Figure V.19: Profile oftlte portla11dite co11ce11tratio11 (moVL) i11 11 mortar be11111 after a 114 

days attack by a NH,N01 .m/11tio11 (11p); crack de11sity partmieter d 1 predicted by tlte /DD 
damage model in tlte leaclted beam s11bmitte1l 111 a j lex11ra/ displaceme11t of 39 11111 

(dow11). 
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Figure V.20: Profiles of the dijful·io11 coefficients (down) and oftlte liquid calcium 
co11ce11tratio11 (11101/L) (up) ill a mortar beam after a 114 days attack by a 6M NH4N01 

solutio11. 

The evolution o f the mineral profile of mortar in the leached zone of the beam is plotted on 

Fig. V.2 1. The sequences of dissolution are similar to the ones observed in Adenot (1992) on 

a CEM I 42.5 paste after a pure water leaching. The degradation induced by a 6M NH.N03 

solution being yet more severe than the one with pure water, the presence of a completely 

decalcified zone only composed with Si02(am) and diaspore may be seen on the left-hand 

side of Fig. V .21. 
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Figure V.21: Evolutions of the mineral compositions in terms of volume fractions inside a 
mortar beam after a 114 days attack by a Nl/4N01 solution afong the vertical symmetry axis 

beam. 

Before simulating the residual mechanical tests of Le Bellego (200 I), it is necessary to first 

try to repro<lnc.e the results of her Oexion tests performed on sonncl mortar he.ams. The post. 

peak part of the simulated curve poorly fits with the experimental data, according to Fig. V.22 

(left). This is mainly due to the fact that only a local version of the micromechanically-based 

model has been implemented in the platfonn. A non-local version of the model based on the 

work of Pijaudier-Cabot and Bazant ( 1987) should however be incqrporated in the future. 

ln a first attempt, simulations of flex ion tests on the leached mortar have been run using 

exactly the same values for tbe damage parameters as for the sound specimen (see Table V .6). 

The results obtained appear on Fig. V.22 (right) to be unsatisfactory thus confinning the fact 

that the damage threshold is modified by the leaching process. The empirical method 

described in previously has therefore been employed to have the strain damage threshold co 

evolved. The pre-peak part of the numerical curve then agrees relatively well with the 

experimenta l curve on Fig. V.22 (right) but the forces predicted by the simulations tend to be 

overestimated. There are diverse reasons to explain this difference. The first explanation 

could be that the Young modulus in the most leached zone, which is estimated to be equal to 

about 4.9 GPa by the multi-scale homogenization model, is overestimated, even though th is 

va lue already seems to be qu ite low. For instance, Hcukamp (2002) measured that the 

effective Young modulus on a unifonn ly leached mortar is equal to 4.3 GPa. Another reason 

may be that the dissolution front propagation, tliat affects the material residua l mechanical 

behavior, is slightly underestimated in comparison with the one gained experimentally, as 
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already asserted previously. Moreover, it could be also useful to adopt other values for the 

damage parameters A, B and k in order to better predict the residual resistance on leached 

moitars. 

<.o<lO'.---~----:====== 

5000 

<000 

,, 
' 

' ' 

- Sim. (1i1nmtohcd) 
• - • - S11n. (no•ct11:d) 
.... .. Exp. (\1M01dtcd) 
· · ·· · · · It'~ - ,·• 

" \ , I 

,',·'i \ ¢ ," .. • .. 
I 1 ' \ ' ' 6 )000 , ',,,. .. \ '\ 

• '.:.<: .. •·· .. ~.·········... ... .. ~ u. ,.~ .. ,, ' 
, ~ ,,._, -; ' · 

·.. ........... .. ... .. / ;""' ' 

'·\ ................ : .: .. 1000 ././·/' 
I 

' ; 

- - - 1:..'(p 
....... Si41t • 

·- ·- St1n. • • 

' / -·-·- - -·-·-.•. ..____ / · ........... . 
0.01 0.02 0.01 o.o- 0,05 o.06 0.01 °'o"' =---.~ .• ,--.~.01--o~o.i ..... ;~~.. -. _.->6 -'001 

Disp1ncc.nent (n11n) Dis:placc1nco1 (1nn1) 

• with the same strain damage thresho ld as for the sound material 
•• with a different strain damage threshold in the sound and leached cases 

Figure V.22: Compariso11 of the sim11latio11s results with the experimental curve of the 
vertical forces ploffed agai11st the imposed jlex11ral displacement recorded duri11g a three­
poi11t jlexio11 test 011 a so1111d mortar beam (left) and another 011e leached d11ri11g 114 days 

by NH4NOJ (right). 

Fig. V. 19 also reveals the presence of a main damaged domain at the interface between the 

degraded and chemical ly sound pai1s of the beam. Conversely, the chemica lly leached zone is 

on ly sl ightly damaged, since the strain damage threshold in the decalcified region is assumed 

to increase rapidly with leaching (see Fig. V.18). Further investigations concerning this 

evolution of the damage threshold with leaching would however be desirab le to confirm this 

observation. 

CONCLUSIONS OF PART V 

The present Part is devoted to the development of a tool incorporated in the ALLIANCES 

numerica l platform that allows for predicting the long-term evolutions of the mineral 

composition of leached cement itious materials and of their mechanical and diffusive 

properties. This numerical instn11nent is built up by incorporating the multi-scale 

homogen i7..ation approach proposed in Parts II and Ill to predict respectively tl1e evolutions of 

the diffusivity and of the elastic behavior of cement-based materials into ALLIANCES. The 

micromechanical damage model developed in Part JV has also been integrated to estimate the 

damage propagation in these materia ls. 



Pnr1 V: Simuht1ions of1hc chemo·nlcChitnic11J degrada1ions hy lc3ching ofccJncnl·bascd rnatc1ials P:.gc 211 

Owing lo the numerical device developed, s imulations of the chemical behavior ofdecalcified 

cement-based materials have been carried out. The good agreement of the simulated 

dissolution front propagation and stiffoess reduction with experimental data constitute a 

further validation of the multi-scale homogenization approach proposed in the manuscript. 

Residual resistance experiments illustrating the couplings between damage and leaching have 

also been s imulated. The numerical resu lts confronted with experimental tests arc 

encouraging but may require some further refinement for the pred ictions of' damage inside the 

materia l. Nevertheless, they give some interesting in terpretations summarized below for the 

measures ga ined from these tests that are particularly useful for assessing the durabil ity of 

cement-based materials. The simulated behaviour of sound and leached mortar beams in 

flexion has underl ined the necessity to have the damage threshold presently expressed in 

deformat ions evolved w ith decalcification. An empirical method that assimilates the decrease 

of the Young modulus due to leaching to the one caused by damage is then employed to 

predict more accurately the maximum load that the deteriorated material can sustain. 

According to this method, the fonnation of cracks is then influenced by dccalcification, the 

leached zones being less damaged than the chemically sound ones. 

Appendix V.A: C hemical formulae and equilib r ium constan ts of the m ineral phases in 
the reduced datab ase. 

Mincr:i l Equilibrium 
phases 

Chemical fo rmula constant 
References 

CH Ca( OH), IO"""" Ba1y (2005) 

Aft 6 CaO • Al,Os-3 S03 - I 0-sl.OO . If . 
24 H20 

J\Fm 4 CaO . AJ,o, - S03 - I0-10.25 - II -
12H,O 

1 lydrogarnet 3 Cao - Al,Os - 6 H,O IO""'llA> • If. 

C1.6,SH 1.65 CaO - Si02(aq) - I 0"9.l• . If . 
1.65 H20 

C1 ,,SH 1.25 Cao - SiO,(i1q) - I 0->o.>s . fl . 
1.25 H20 

Co,90SH 0.90 CaO - SiO,(aq) - I 0.13.01 . fl . 
0.90 H20 

SiO,(am) Si02(aq) I 0...-2.1r, van dcr Lee and 
de Wind! (2002) 

Oiaspore AI0 2H 10·7.13 - II -

Gypsum Ca(SO,) - 2 H20 10·•.4• . fl . 
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Appendix V.B: Chemical-transpor t input data used for the sim ulations of chapter 14. 

OPC type I paste 
Phases w/c=0.50 

(Heukamp et al. 2005) 

Estimated hydration rate 0.90 

CH (mol/L) 3.78 
AFt (mol/L) 0.00 

AFm (mol/L) 0.18 

1 lydrogamet (mol/L) 0.00 

CSH (mol/L) 5.26 

UC 0012 
Total water porosity 0.328 
parametcrfofthe MCSA 0.64 
representing CSH"' 

D~; (111
2/s) 

7.6 10"'" 
(value es1imated by the n1uhi·scalc 

homottcniz.'ltion model) 

Table V.8.2: Mineral co111positio11 oft/re OPC type I paste with w!c = 0.50 (Ile11ka111p et 
ill. 2005). 

Phases 
Mortar (w/c = 0.40) 

( Le Bcllego 200 I) 

CH (mol/L) l.37 
AFt (mol/L) 0.034 
AFm (mol/L) 0.17 

Hydrogamet (mol/L) 0.00 

CSH (mol/L) 1.49 
UC volume fraction 0.068 
Water porosity 0.1 8 
Volume fraction of sand 

0.50 
aggregates 
ITZ volume fraction 0.103 
Parameter f"" of the 

0.78 MCSA representing CSH'"" 

o,:, estimated by the 1.8 10·12 
multi-scale model (m2/s) 

Diffusivity measured 1.7 10·12 

experimentally (Bourdcuc 1994) 

Table V.B.2: lnitillf composition oft/re mortar and input dat1111sedfor tire si11111lations of 
flexio11 tests. 
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IS GENERAL CONCLUSIONS AND P ERSP ECT IVES 

The present chapter recapitulates the main findings and co 1 · 
nc us1ons of the thesis. Some 

discussions and proposals for future research arc also fomrnlated. 

15.J Main conclusions 

The findi ngs or achievements of the thesis concern different domains that can be separated in 

the subsequent categories: 

(i) homogenization theories; 

(i i) modelling and prediction of the macroscopic properties of cement-based materials; 

(iii) numerica l simulations of coupled chemo-transport-mechanical degradations of 

cement-based materials. 

In the first Parts of the manuscript, diverse homogeni zation techniques have been assessed 

using different criteria and tested on particular cases that have been solved numerically. 

Among the reviewed schemes, double-inclusion type models and GSCS exhibit the most 

suited attributes for esti mating the linear elastic propert ies of cement-based materials. By 

revisiting the D IM of Hori and Nemat-Nasscr ( 1993), a modified version of this model 

overcoming some of its origina l shortcomings in the case of coated inclusions has been 

derived. 

T he merits of homogen ization theories for predicting the effective diffusive properties of 

porous media presenting high contrast between phase diffusivities have also been examined. 

Many models such as the matrix-inclusion type schemes are pointed out to be inappropriate, 

since they are inade<Jtiate for modelling percolating or connected pores. A novel estimate 

associated to a space-fill ing assemblage mixing two types of composite spheres pertinent to 

account for pore connectivity has thus been developed. By construction, this MCSA scheme 

automatically respects HS rigorous bounds and depends only on one geometric parameter 

which vari ation allows the realization of any diffusivi ty ranging within these bounds. 

By taking benefit of EMTs reta ined from the preceding review, a two-step homogenization 

model is developed for the predicti on of the macroscopic linear elastic properties of HCP and 

mortars and validated by comparison with experimental measurements. T he developed model 

is also va lidated in the case of cement pastes and mortars submiucd to severe leach ing. T he 

in fluence of inclusion shape on the micromechanical estimations of the effective elastic 

properties of HCP has also been investigated. The spherical particle phase approximati on that 

is genera lly adopted for simplicity is shown to be valid in most cases, except for very porous 

leached pastes. Using the same framework as the two-scale approach developed in elasti city. a 
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more sophisticated model surmounting the lack of knowledge on CSH diffusivities is 

proposed for predicting the macroscopic diffusivities of cement pastes and mortars. In this 

multi-sca le model, the two types of CSH containing connected gel porosity are estimated with 

the help of the MCSA scheme presently developed. 

An orthotropic damage model has been developed for concrete materials by combining the 

Mazars model (1984) and micromechanical concepts. Jt comprises two damage variables, 

representing the density of cracks in two perpendicular directions, which is suited to deal with 

orthotropic damage under plane stress conditions. It is less involved than other simi lar 

approaches in the literature (e.g. Pensee and Kondo 2003) but presents the advantage to be 

relatively simple to implement numerically. 

Simulations of chemical and of coupled chemo-mechanical degradations of leached cemcnt­

based materials have been performed by integrating into ALLIANCES the different models 

developed in the rest of the thesis to predict the evolutions of the diffusivity and of the 

mechanical behavior of cement-based materials. The numerical results obtained have been 

confronted with experimental tests and are encouraging. 

The possible benefits of the present work are multiple. First, the homogenization schemes 

proposed, such as the MCSA estimate, appear well suited for cemcntitious materials but arc 

also of potential interest for other kinds of comPQsites (e.g. porous media, granular materials). 

Second. the analytical multi-scale approach can be employed for computing the elastic and 

diffusive properties of any cement paste or mortar, which composition is accurately known, 

and their evolution with time. It furthermore nquires very Few parameters and is therefore 

useful for engineering applications. Finally, the chemo-mechanical simulations perfonned 

with the aid of this deductive model can be easily applied to other cement pastes and mortars. 

Moreover, the numerical results are instructive and help for better understanding the 

mechanisms of degradation. For instance, they clearly show the detrimental impact of 

Portlandite dissolution and of the progressive CSH decalcification on the elastic and diffusive 

properties of HCP. 

15.2 Proposals for future research 

The models and simulations proposed in the manuscript may obviously be further improved. 

Many interesting paths for future ameliorations can be envisaged. Double-inclusion type 

models have been shown to be of interest for their simplicity and versati lity but they could be 

further developed as proved by the proposed derivation of a modified DIM. Re.cent progress 

in analytical techniques of homogenization (e.g. Berryman 2006; Duan et al. 2006) may for 

instance be very promising for predicting with better accuracy the effective properties of 

cement-based materials. 
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The prediction of the non-linear mechanical behavior of cement-based materials needs to be 

improved. For this purpose, it would be desirable to develop and implement a more advanced 

damage model, including phenomena such as plasticity or creep. The integration of a non­

local fonnulation is also central to get better estimations of tbe post-peak behavior of tile 

damaged material. 

The chemo-mechanical simulations presented in the thesis are promising. Still, some more 

work should be done. Important aspects of the chemical degradation process, such as the 

progressive CSH decalcification, could be described more thorough ly. The retroactive effects 

of cracks on the cbemical degradation have also to be taken into account in order to reproduce 

fully coupled chemo-mcchanical experiments (Le Bellcgo 2003; Schneider and Chen 2005). 

This numerical work should then he extended to chemical attacks generating intemal 

pressures and possibly microcracks, such as sulphatic attacks. lt is also possible to extend tl1e 

simulations to concrete and eventually to real underground structures. 

15.3 Perspectives 

The present manuscript provides results that are particularly interesting in the context of 

nuclear waste disposal. But the present work is more generally justified by the increasi11g 

necess ity of adopting coupled multi-physical approaches for the assessment of the lifetime of 

existi11g structures. I.n the perspective of concrete durabil ity, more and more investigations are 

dedicated to coupled multi-physical problems, like the present one or tberrno-bydro­

mechanical ones (e.g. Gawin et al. 1999). This study put together witl1 other approaches (e.g. 

Bary ct al. 2007) could lead at term to the development of powerfu l prediction tools for the 

durabil ity of concrete facilities. JI constitutes a huge task because of the necessity of solving 

thorny issues, such as unsaturated conditions. These tools would then find very wide 

industrial applications, from nuclear reactors to C02 storage. 
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