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Abstract

Inferring the demographic history of species is one of the greatest challenges
in population genetics. Such histories are often represented as histories of
size changes, ignoring population structure. Alternatively, when structure
is assumed, they are defined a priori as population trees and not inferred.
This thesis aims to contribute methods and tools for reconstructing the
demographic history of populations that have been structured into an
unknown number of sub-populations for long periods of time.

We present two approaches to demographic inference in the presence of
structure. The first is based on the IICR (Inverse Instantaneous Coalescence
Rate) which is a function of the demographic model and sampling scheme,
and can be estimated for a single diploid individual. The proposed method
fits observed IICR curves with exact IICR curves obtained under piecewise
stationary symmetrical island models, and infers the number of islands,
their common size, and the amount of gene flow in different periods of
time. Our application to a set of five human PSMCs yielded demographic
histories that are in agreement with previous studies suggesting ancient
human structure.

The second approach assumes multiple genetic samples, and is centered
on the use of the SFS (Site Frequency Spectrum) as a summary statistic
for demographic inference. We focus on the efficient computation of the
exact expected SFS under a general model of population structure, and
show that, for sample sizes up to 26 haploids, it is possible to achieve
good numerical accuracy and performance in symmetrical island models by
exploiting the sparsity pattern of the transition matrix for the associated
Markov process.





Résumé

L’inférence de l’histoire démographique des espèces représente l’un des plus
grands défis de la génétique des populations. Cette histoire est souvent
représentée comme une histoire de changements de taille de populations,
sous l’hypothèse que la structure des populations peut être ignorée. Al-
ternativement, lorsqu’on suppose qu’il y a une structure, elle est souvent
définie a priori comme un arbre de populations et n’est pas inférée. Cette
thèse vise à proposer des méthodes et des outils pour reconstruire l’histoire
démographique de populations qui ont été structurées en un nombre in-
connu de sous-populations pendant de longues périodes de temps.

Nous présentons deux approches de l’inférence démographique en pré-
sence de structure. La première est basée sur l’IICR (Inverse Instantaneous
Coalescence Rate), fonction du modèle démographique et du schéma
d’échantillonnage, qui peut être estimée pour un seul individu diploïde en
utilisant la méthode du PSMC (pairwise sequentially Markovian coalescent).
La méthode proposée ajuste les courbes IICR observées avec les courbes
IICR exactes obtenues dans le cadre de modèles en ’îles symétriques sta-
tionnaires par morceaux, et infère le nombre d’îles, leur taille commune
et l’importance du flux génétique à différentes périodes de temps. Notre
application à un ensemble de cinq PSMCs humains a fourni des histoires
démographiques qui sont en accord avec des études précédentes suggérant
une structure humaine ancienne.

La seconde approche se base sur des échantillons génétiques multiples,
et est centrée sur l’utilisation du SFS (Site Frequency Spectrum) comme
statistique pour l’inférence démographique. Nous nous concentrons sur
l’efficacité du calcul du SFS exact attendu dans le cadre d’un modèle
général de structure de population, et nous montrons que, pour des tailles
d’échantillon allant jusqu’à 26 haploïdes, il est possible d’obtenir une bonne
précision numérique et de bonnes performances pour les modèles d’îles
symétriques en exploitant la propriété de parcimonie de la matrice de
transition pour le processus de Markov associé.
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Introduction

Population genetics has seen a major transformation in the last few decades with the wide
availability of full-scale genomic sequences. Global initiatives like the 1000 Human Genomes
Project (Siva, 2008) has made it possible to have a highly detailed insight into the nature of
genetic diversity. One of the great challenges facing the field today is analyzing this rapidly
increasing mountain of information in a sensible and efficient manner (Beaumont, 2004; Johri
et al., 2020). The development of mathematical models for the evolution of populations
plays a central role in this effort, along with the associated statistical and numerical analysis
methods. This thesis aims to contribute methods and tools for reconstructing the demographic
history of populations that have long been geographically structured into an unknown number
of sub-populations.

Reconstructing demographic histories in the context of population genetics is often achieved
by fitting the parameters of a model according to the observed sequenced data. Some
parameters of interest are past population sizes (Beaumont, 1999; Li and Durbin, 2011;
Schiffels and Durbin, 2013; Liu and Fu, 2015; Boitard et al., 2016) or the dates of major
demographic events such as population splits or admixture events and their proportions
(Gutenkunst et al., 2009; de Barros Damgaard et al., 2018). One classical example of such
parameter inference is Watterson’s θW estimator (Watterson, 1975), which measures the
population mutation rate by counting the number of places in the genome where a sample of
individuals exhibit differences. A more recent example can be found in Li and Durbin’s PSMC
method (Li and Durbin, 2011), which estimates the ancestral size history of a population
using the full sequence of a single diploid individual, under the operating assumption that
such population has remained panmictic over time, i.e., isolated and without internal mating
structures.

This assumption of panmixia has been widely prevalent in many studies over the years (Li
and Durbin, 2011; Liu and Fu, 2015). Indeed, contending with the presence of structure and
migration has the potential to greatly complicate any demographic model. Some studies of
human evolution have introduced structure in the form of simplified tree models, where the
number of populations is fixed a priori, i.e., the topology is not inferred (other aspects, such as
divergence times, are inferred). The branches of these trees often represent large continental
regions that are themselves assumed to have remained panmictic over long periods of time
(Gutenkunst et al., 2009; Prado-Martinez et al., 2013; Noskova et al., 2019). These panmictic
and tree models are useful approximations, and they have proven their utility in building
stories of human expansions and population splits. However, if the inferred parameter values
or conclusions may fundamentally change depending on the underlying model assumptions,
then the resulting stories can be questioned (Wakeley, 1999; Mazet et al., 2016; Scerri et al.,
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2019).

The present thesis focuses exclusively on models of structured populations. One of our core
objectives in this context is to develop methods of demographic inference where the number
of populations can be inferred rather than assumed. The other objective is to understand the
extent to which the observed genetic diversity within populations can be attributed to the
effects of structure and changes in connectivity rather than to changes in population size. The
main theoretical background supporting this approach is the structured coalescent (Herbots,
1994) which provides a Markovian framework for the study of the genealogy of a sample of
lineages that are dynamically migrating between a set of islands or demes. In Chapter 1 we
present a summary of a few key concepts in population genetics such as the Wright-Fisher
model and the associated coalescent process and a few of its extensions, including variable
population size, deme-based population structure, and the infinite-sites mutation model.
We also introduce the Inverse Instantaneous Coalescence Rate (IICR) function and the site
frequency spectrum (SFS), both of which are proposed as summary statistics for inferential
approaches.

Chapter 2 describes a method for inferring the number of populations and the changes in
connectivity in a piecewise-stationary n-island model. The n-island is the simplest model of
demographic structure, where all the islands are assumed of the same size, and connectivity
is fully symmetrical in the sense that all islands exchange migrants with all other islands at
the same rate. The piecewise-stationarity refers to the fact that this migration rate may
change in a discrete manner throughout time. The dates of these events are also inferred.
This model has some limitations as it ignores spatial distances and other complexities of real
species, but the choice for this first attempt was guided by simplicity and computational
feasibility. The method in question uses the IICR of a single diploid sample as input data in
order to fit the model parameters. First described in Mazet et al. (2016), the IICR is closely
linked with the probability distribution of the coalescence times of one pair of lineages. It
is an attractive candidate for demographic inference in our context since it can be always
defined independently of the assumed demographic model, and previous simulations (Chikhi
et al., 2018; Rodríguez et al., 2018) have shown that it is sensitive to population structure,
sampling patterns and fluctuations of migration rates. The IICR can be estimated from real
data using methods such as the PSMC.

The process of fitting the data was accomplished using a general purpose meta-heuristic to
explore the parameter space and minimize the distance between a candidate IICR and the target
(observed) one. The chapter also details the approach and results of our validation efforts,
which consisted in simulating IICR curves under different n-island models and comparing the
inferred parameters with the known ones. We then applied the method to human genomic
data using five published PSMC curves (Prado-Martinez et al., 2013) and compared the
inferred histories between individuals and with previously inferred scenarios by Rodríguez et al.
(2018) and Noskova et al. (2019). This study was published in Arredondo et al. (2021).

Chapter 3 focuses on establishing a framework for demographic inference of structured
populations using multi-sample summary statistics. Having multiple samples provides better
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information resolution in the not-so-distant past of the sample, since in typical ancestral trees,
most of the total branch length is distributed close to the samples near the bottom of the tree
(leafs). The chapter introduces two candidate multi-sample summary statistics: the IICRk
and the SFS. The IICRk is a natural generalization of the IICR that is formulated using the
random distribution of the waiting time until the first coalescence in a sample of size k , and
can be estimated for real data using methods such as the MSMC (Schiffels and Durbin, 2013).
On the other hand, the SFS is a histogram of allele frequencies that has been widely applied
as an efficient way for summarizing the genetic diversity of a sample (Wakeley and Hey, 1997;
Griffiths and Tavaré, 1998; Nielsen, 2000; Gutenkunst et al., 2009; Excoffier et al., 2013).

We show in this chapter that the Markovian framework of the structured coalescent can
be generalized to capture the necessary information for computing these functions within
arbitrary numerical accuracy. Similar approaches have been avoided in the past due to the
computational challenges of handling the state spaces of the associated Markov processes,
which grow in size almost exponentially as a function of the number of samples. However, we
show that by not tracking the historical origin of the lineages (mainly used to compute the
joint SFS of the populations), using appropriate model specializations that take advantage of
inherent symmetries, and exploiting of the sparsity patterns that appear in the rate matrix
under certain state orderings, it is possible to very quickly compute the expected SFS of
samples of size up to k = 26 in models of symmetrical n-island structure. The approach is
general in the sense that it allows for many potential types of structured scenarios, however
we exclusively showcase the n-island as a model specialization for the implementation and
results, once again due to its mathematical simplicity.

All along this work we have strived to not only establish novel methods for approaching
the questions of demographic inference in the context of population structure, but also
to provide implementations of these methods that are both intuitively usable and highly
performant. The codebases for these projects are available in github.com/arredondos/snif

and github.com/arredondos/sisifs.

Many questions remain unanswered. In the final chapter on conclusions and future work, we
attempt to paint a broad map of where the results of this work can fit in a larger framework
of demographic inference for structured populations by indicating some of the ways in which
the presented methods can be generalized.
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Introduction (version française)

La génétique des populations a connu une transformation majeure au cours des dernières
décennies, grâce à une large disponibilité de séquences génomiques complètes. Des initiatives
mondiales comme le projet 1000 génomes humains (Siva, 2008) ont permis d’avoir un aperçu
très détaillé de la nature de la diversité génétique. L’un des grands défis auxquels le domaine
est confronté aujourd’hui est l’analyse de cette masse d’information en rapide augmentation,
d’une manière pertinente et efficace (Beaumont, 2004; Johri et al., 2020). Le développement
de modèles mathématiques pour l’évolution des populations ainsi que les méthodes d’analyses
statistique et numérique associées jouent un rôle central. Cette thèse a pour but d’ apporter des
méthodes et des outils de reconstruction de l’histoire démographique de populations qui sont
depuis longtemps structurées géographiquement en un nombre inconnu de sous-populations.

La reconstruction de l’histoire démographique dans le contexte de la génétique des popula-
tions est souvent réalisée en ajustant les paramètres d’un modèle en fonction des données
séquentielles observées. Certains paramètres d’intérêt sont les tailles de population passées
(Beaumont, 1999; Li and Durbin, 2011; Schiffels and Durbin, 2013; Liu and Fu, 2015; Boitard
et al., 2016) ou les dates d’événements démographiques majeurs tels que les divisions de
population ou les événements de mélange et leurs proportions (Gutenkunst et al., 2009;
de Barros Damgaard et al., 2018). Un exemple classique de cette inférence de paramètres
est l’estimateur θW de Watterson (Watterson, 1975), qui mesure le taux de mutation de la
population en comptant le nombre d’endroits du génome où un échantillon d’individus présente
des différences. Un exemple plus récent se trouve dans la méthode PSMC de Li et Durbin (Li
and Durbin, 2011), qui estime l’histoire de la taille ancestrale d’une population en utilisant la
séquence complète d’un seul individu diploïde, sous l’hypothèse que cette population est restée
panmictique au fil du temps, c’est-à-dire isolée et sans structures internes de reproduction.

Cette hypothèse de panmixie a été largement adoptée dans de nombreuses études au
fil des ans (Li and Durbin, 2011; Liu and Fu, 2015). En effet, faire face à la présence de
la structure et de la migration complique considérablement tout modèle démographique.
Certaines études de l’évolution humaine ont introduit une structure sous la forme de modèles
d’arbres simplifiés, où le nombre de populations est fixé a priori, c’est-à-dire que la topologie
n’est pas inférée (d’autres aspects, comme les temps de divergence, le sont). Les branches
de ces arbres représentent souvent de grandes régions continentales qui sont elles-mêmes
supposées être restées panmictiques sur de longues périodes de temps (Gutenkunst et al.,
2009; Prado-Martinez et al., 2013; Noskova et al., 2019). Ces modèles panmictiques et
arborescents sont des approximations utiles, et ils ont prouvé leur utilité pour construire des
histoires d’expansions humaines et de scissions de populations. Cependant, si les valeurs des
paramètres déduites ou les conclusions peuvent changer fondamentalement en fonction des
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hypothèses du modèle sous-jacent, alors les histoires qui en résultent peuvent être remises en
question (Wakeley, 1999; Mazet et al., 2016; Scerri et al., 2019).

La présente thèse se concentre exclusivement sur les modèles de populations structurées.
Un de nos objectifs principaux dans ce contexte est de développer des méthodes d’inférence
démographique où le nombre de populations peut être déduit plutôt que supposé. L’autre
objectif est de comprendre dans quelle mesure la diversité génétique observée au sein des
populations peut être attribuée aux effets de la structure et des changements de connectivité
plutôt qu’aux changements de taille de la population. Le principal fondement théorique de
cette approche est le coalescent structuré (Herbots, 1994) qui fournit un cadre markovien
pour l’étude de la généalogie d’un échantillon de lignées qui migrent dynamiquement entre
un ensemble d’îles ou de dèmes. Dans le chapitre chap :prelim, nous présentons un résumé de
quelques concepts clés en génétique des populations tels que le modèle de Wright-Fisher et
le processus de coalescence associé, ainsi que quelques-unes de ses extensions, notamment
la taille variable de la population, la structure de la population basée sur les dèmes et le
modèle de mutation à sites infinis. Nous présentons également la fonction inverse du taux de
coalescence instantané (IICR) et le spectre de fréquence des sites (SFS), qui sont tous deux
proposés comme statistiques pour les approches inférentielles.

Le chapitre 2 décrit une méthode permettant de déduire le nombre de populations et les
changements de connectivité dans un modèle n-île stationnaire par morceaux. Le modèle
n-île est le modèle le plus simple de structure démographique, dans lequel toutes les îles sont
supposées avoir la même taille, et la connectivité est totalement symétrique dans le sens
où toutes les îles échangent des migrants avec toutes les autres îles au même rythme. La
stationnarité par morceaux fait référence au fait que ce taux de migration peut changer de
manière discrète au cours du temps. Les dates de ces événements sont également déduites. Ce
modèle présente certaines limites car il ignore les distances spatiales et d’autres complexités
des espèces réelles, mais le choix pour cette première tentative a été guidé par la simplicité et
la faisabilité informatique. La méthode en question utilise l’IICR d’un seul échantillon diploïde
comme données d’entrée afin d’ajuster les paramètres du modèle. Décrit pour la première fois
dans Mazet et al. (2016), l’IICR est étroitement lié à la distribution de probabilité des temps
de coalescence d’une paire de lignées. Il s’agit d’un candidat intéressant pour l’inférence
démographique dans notre contexte puisqu’il peut toujours être défini indépendamment du
modèle démographique supposé, et des simulations antérieures (Chikhi et al., 2018; Rodríguez
et al., 2018) ont montré qu’il est sensible à la structure de la population, aux modèles
d’échantillonnage et aux fluctuations des taux de migration. L’IICR peut être estimé à partir
de données réelles en utilisant des méthodes telles que le PSMC.

Le processus d’ajustement des données a été réalisé à l’aide d’une méta-heuristique d’usage
général pour explorer l’espace des paramètres et minimiser la distance entre un IICR candidat
et l’IICR cible (observé). Ce chapitre détaille également l’approche et les résultats de nos
efforts de validation, qui ont consisté à simuler des courbes d’IICR sous différents modèles
n-îles et à comparer les paramètres déduits avec les paramètres connus. Nous avons ensuite
appliqué la méthode à des données génomiques humaines en utilisant cinq courbes PSMC
publiées (Prado-Martinez et al., 2013) et comparé les histoires inférées entre les individus et
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avec les scénarios inférés précédemment par Rodríguez et al. (2018) et Noskova et al. (2019).
Cette étude a été publiée dans Arredondo et al. (2021).

Le chapitre 3 établit un cadre pour l’inférence démographique de populations structurées
à l’aide de statistiques multi-échantillons. Le fait d’avoir plusieurs échantillons permet une
meilleure résolution des informations dans un passé pas si lointain de l’échantillon, puisque dans
les arbres ancestraux typiques, la majeure partie de la longueur totale des branches est localisée
à proximité des échantillons situés au bas de l’arbre (feuilles). Ce chapitre présente deux
statistiques multi-échantillons candidates : l’IICRk et le SFS. L’IICRk est une généralisation
naturelle de l’IICR formulé en utilisant la distribution aléatoire du temps d’attente jusqu’à la
première coalescence dans un échantillon de taille k , et peut être estimé pour des données
réelles en utilisant des méthodes telles que le MSMC (Schiffels and Durbin, 2013). D’autre
part, le SFS est un histogramme des fréquences alléliques qui a été largement appliqué car
c’est un moyen efficace de résumer la diversité génétique d’un échantillon (Wakeley and Hey,
1997; Griffiths and Tavaré, 1998; Nielsen, 2000; Gutenkunst et al., 2009; Excoffier et al.,
2013).

Nous montrons dans ce chapitre que le cadre markovien du coalescent structuré peut
être généralisé pour capturer les informations nécessaires au calcul de ces fonctions avec
une précision numérique arbitraire. Des approches similaires ont été évitées dans le passé
en raison des difficultés de calcul liées à la manipulation des espaces d’état des processus
de Markov associés, dont la taille croît de manière presque exponentielle en fonction du
nombre d’échantillons. Cependant, nous montrons qu’en ne suivant pas l’origine historique
des lignées (principalement utilisée pour calculer le SFS conjoint des populations), en utilisant
des spécialisations de modèle appropriées qui tirent profit des symétries inhérentes, et en
exploitant les propriétés de parcimonie qui apparaissent dans la matrice de taux sous certains
ordres d’état, il est possible de calculer très rapidement le SFS attendu d’échantillons de
taille allant jusqu’à k = 26 dans des modèles de structure symétrique à n-îles. L’approche est
générale dans le sens où elle permet de nombreux types de scénarios structurés. Cependant
nous présentons exclusivement le modèle en îles pour la mise en œuvre et les résultats, une
fois encore en raison de sa simplicité mathématique.

Tout au long de ce travail, nous nous sommes efforcés non seulement d’établir de nouvelles
méthodes pour aborder les questions d’inférence démographique dans le contexte de la
structure de la population, mais aussi de fournir des implémentations de ces méthodes qui
soient à la fois intuitivement utilisables et hautement performantes. Les programmes sont
disponibles dans github.com/arredondos/snif et github.com/arredondos/sisifs.

De nombreuses questions restent sans réponse. Dans le dernier chapitre, consacré aux
conclusions et aux travaux futurs, nous tentons de dresser une carte générale de la place des
résultats de ce travail dans un cadre plus large d’inférence démographique pour les populations
structurées, en indiquant certaines des façons dont les méthodes présentées peuvent être
généralisées.
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Chapter 1.

Preliminaries

In this chapter we briefly summarize some basic elements of population genetics in order to
make the document more self-contained, and also to establish a few of the naming conventions
and assumptions that will be referenced in later chapters. For the sake of brevity, the material
here is discussed quite tersely, and only the theoretical concepts that are most closely related
to the themes of the following chapters are covered. For a more complete and through
exposition of population genetics theory, see Hein et al. (2004); Tavaré (2004); Gillespie
(2004).

1.1. The Wright-Fisher model

The Wright-Fisher model in its most simple version describes the evolution of a population
of 2N haploid individuals (often interpreted as genes) with minimal assumptions. The
generations are discrete and non-overlapping, and generation t + 1 is created by making
each individual a copy of one of the 2N from generation t, chosen randomly with probability
1/(2N).

The model in this form makes a number of strong assumptions about the population,
which evolves in a sequence of discrete time steps by replacing the entire generation with its
descendants in every step. Each descendant is an exact copy if its predecessor, so the model
does not have a concept of sexual reproduction or gene recombination. Additionally, since
each predecessor is selected randomly with uniform probability from the population, there is
no concept of demographic structure, fitness or selection in the model.

Typically, the populations we are modeling consist of the genes or alleles of a genome,
instead of individual organisms. In the following sections, we focus on a backwards-in-time
view of the Wright-Fisher model, known as the coalescent, and relax some of the assumptions
made here in favor of having more useful models.

21





With this it follows that the probability for a sampled pair of lineages to find a common
ancestor in exactly g generations in the past is:

(

1− 1
2N

)g−1 1

2N
, (1.2.1)

since they choose different ancestors in the first g − 1 generations, and then choose the
same ancestor in the next one. In this case we say that the pair of genes coalesces in g
generations. We denote the time until coalescence of two lineages by TN2 , with a probability
distribution P (TN2 = g) as in (1.2.1), which corresponds to a geometric distribution with
parameter 1/(2N) and an expected value of 2N.

Generalizing for a sample of size k lineages, we have that the probability of there being no
coalescences in the previous generation, again counting favorable and total outcomes, is:

P (TNk > 1) =
(2N)(2N − 1) · · · (2N − k + 1)

(2N)k

=
(

1− 1
2N

)(

1− 2
2N

)

· · ·
(

1− k − 1
2N

)

= 1k−1 +
(−1
2N

)

1k−2 +
(−2
2N

)

1k−2 + · · ·+
(−k + 1
2N

)

1k−2 +O
( 1

N2

)

= 1− 1
2N

k−1
∑

i=1

i +O
( 1

N2

)

= 1− k(k − 1)
4N

+O
( 1

N2

)

, (1.2.2)

where O
(

1/N2
)

captures all the terms that are divided by N2 or a higher power. If we
introduce the additional assumption that k ≪ N, these terms are negligible and can be
discarded. In terms of the model, this is equivalent to assuming that when the size of a
random sample is very small compared to the size of the population, it is extremely unlikely
that more than two lineages will have a common ancestor in the previous generation, and
thus this possibility can be excluded.

With this approximation we have that the probability of observing the first coalescence in a
sample of size k in exactly g generations (becoming then a sample of size k − 1) is given by:

P (TNk = g) ≈
(

1− k(k − 1)
4N

)g−1
k(k − 1)
4N

. (1.2.3)

Consequently, the variable TNk can be approximated by a geometric distribution with parameter
k(k − 1)/(4N) =

(

k
2

)

/(2N). Since the ancestors of the genes are chosen with uniform
probability, the times TNk , TNk−1, . . . , TN2 are independent.

1.2.2. The continuous-time approximation

In the previous sections we measure time in discrete units of time (generations), and the
corresponding TNk random variables reflect this. However, for large populations sizes and
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long-running processes (large N and g), the coalescent can be well approximated by a
continuous-time process where time is scaled in proportion to the population size. Using
this transformation, the coalescence times become independent of the population size. For
instance, if we take t = g/(2N), then the probability that a pair of lineages will note coalesce
before g generations is:

P (TN2 > g) =

(

1− 1
2N

)g

⇔ P

(

TN2
2N

> t

)

=

(

1− 1
2N

)2Nt

≈ e−t

⇔ P

(

TN2
2N
6 t

)

≈ 1− e−t ,

therefore the variable T2 := T
N
2 /(2N) can be approximated by an exponential distribution of

parameter 1 for large values of N. Using a similar transformation we can see that the scaled
times Tk := T

N
k /(2N) can be approximated by exponential distributions of parameter

(

k
2

)

:

P (TNk > g) =

(

1−
(

k

2

)

1

2N

)g

⇔ P (Tk 6 t) ≈ 1− e−(
k
2)t .

In order to reduce the notation complexity, the approximation Tk ≈ exp
(

k
2

)

will be implicitly
assumed in the following equations. With this we can compute the expected value of several
quantities related to the genealogy of the samples. For instance, the expected time until the
first coalescence among k samples is:

E(Tk) =
1
(

k
2

) =
2

k(k − 1) .

Other quantities of interest are the expected time until the most recent common ancestor of
the samples, given by the total height of the tree: TMRCA = Tk + Tk−1 + · · ·+ T2:

E(TMRCA) =

k
∑

i=2

E(Ti)

= 2

k
∑

i=2

1

i(i − 1) = 2
(

1− 1
k

)

; (1.2.4)

and the expected total branch length of the tree, which can be computed by weighing the
times Ti according to the number of live lineages:

E(BLk) =

k
∑

i=2

i E(Ti)

= 2

k
∑

i=2

1

i − 1 = 2
k−1
∑

i=1

1

i
. (1.2.5)
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We can see from equations (1.2.4) and (1.2.5) that taking large samples has quickly diminishing
returns, since the expected tree height is bounded by 2, and the expected total branch length
grows on the order of log(k).

An important benefit of looking at the population evolution through the lens of the
coalescent is that simulating gene genealogies becomes computationally feasible, even for very
long-running processes and very large population sizes. Indeed, given a sample of k genes
in a Wright-Fisher population, we can simulate the exponential time Tk , and then choose a
random pair from the

(

k
2

)

possible pairs to form a coalescence. Then replace k with k − 1
and repeat until the MRCA of the sample is reached. This approach, with many other added
capabilities for more general models, is notably used by the ubiquitous simulation software
ms (Hudson, 2004).

1.3. Demographic models

In this section we discuss some generalizations to the Wright-Fisher model and the associated
coalescent process that allow for more flexibility in the population evolution, and thus more
realistic and useful models featuring fluctuating population sizes and population structure.

1.3.1. Population size change

In the previous sections we have been assuming that the evolution of the population is
constrained to having a constant size throughout time. we now relax this assumption by
introducing a population size function. Returning to the discrete-time framework, we denote
by N(g) the number of haploid individuals or sequences in the population g generations
before the present. Therefore, N(0) = 2N would be the current population size, N(1) the
size of the generation prior, and so on. We note that in this model, the probability for two
genes sampled in the present to have a common ancestor in the previous generation is

1

N(1)
.

Continuing this argument g generations in the past we have that the probability that a pair
of genes have not yet coalesced is given by:

P (TN2 > g) =

g
∏

i=1

(

1− 1

N(i)

)

. (1.3.1)

We can consider a continuous-time version of N(g) by rounding up the coalescent times
2Nt to an integer number of generations. With this we can define Nc(t) := N(⌈2Nt⌉) as
well as the continuous-time relative size function λ(t) = Nc(t)/Nc(0). We now derive the
distribution of the time T2 for this size changing population. Recall that for x ∈ (0; 1) we
have the inequality

x 6 − ln(1− x) 6 x

1− x ,
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which after substituting x for 1/N(i) and adding for i = 1, . . . , g reduces to

g
∑

i=1

1

N(i)
6 −

g
∑

i=1

ln

(

1− 1

N(i)

)

6

g
∑

i=1

1

N(i)− 1 . (1.3.2)

We note that with the change of variable τ = i/2N we can have the transformation

g
∑

i=1

1

N(i)
=

g
∑

i=1

1

Nc(i/2N)
=

∫ g

1

di

Nc(i/2N)
=

∫ g/2N

0

dτ

λ(τ)
.

Additionally, we know from (1.3.1) that

g
∑

i=1

ln

(

1− 1

N(i)

)

= ln

g
∏

i=1

(

1− 1

N(i)

)

= lnP (TN2 > g) = lnP (T2 > g/2N)

therefore (1.3.2) implies that for large N:

− lnP (T2 > g/2N) ≈
∫ g/2N

0

dτ

λ(τ)

⇔ P (T2 > t) ≈ exp
(

−
∫ t

0

dτ

λ(τ)

)

. (1.3.3)

Equation (1.3.3) indicates that there is a very close relation between the relative size
change function λ(t) of a varying size Wright-Fisher population and the distribution of the
time until the coalescence of a pair of genes sampled from such a population. We return to
this idea in §1.4.3.

A similar result can be had for the distribution of Tk , i.e., the time until the first coalescence
in a sample of size k . Indeed, by counting favorable and total cases, we have:

P (TNk > 1) =
N(1)(N(1)− 1)(N(1)− 2) · · · (N(1)− (k − 1))

N(1)k

=

k−1
∏

i=1

(

1− i

N(1)

)

,

which, after following a series of derivations similar to those of (1.2.2), conduces to:

P (TNk > 1) ≈ 1−
(

k

2

)

1

N(1)

⇒ P (TNk > g) ≈
g
∏

i=1

(

1−
(

k

2

)

1

N(i)

)

≈ 1−
(

k

2

) g
∑

i=1

1

N(i)

= 1−
(

k

2

)∫ g/2N

0

dτ

λ(τ)
,
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from which we get:

P (Tk > t) ≈ exp
(

−
(

k

2

)∫ t

0

dτ

λ(τ)

)

. (1.3.4)

1.3.2. Population structure

Another one of the strong assumptions in the basic Wright-Fisher model relates to the fact
that parents are chosen at random with equal probability. In a mating population, this
would translate to the assumption that every mating pair is equally as likely to produce
offspring. In reality, physical distances often impose an important barrier for finding mates,
and geographically close pairs are more likely to produce offspring than those that are much
further apart.

Figure 1.2: Examples of models of structure.

We can model this idea in the Wright-Fisher scheme using the finite Herbots’s model of
the structured coalescent (Herbots, 1994). We assume the existence of n populations or
demes that behave as haploid Wright-Fisher models of size Ni = 2siN genes each, where
si is the relative deme size and N is large as usual. Migration occurs between demes as in
each generation a proportion qi j of lineages migrates from deme i to deme j . We denote
by mi the proportion of the population of deme i that was received from other demes in
any given generation, such that mi =

∑

i 6=j qj i sj/si . Herbots showed that measuring time
in units of 2N generations and making N go to infinity in such a way that the number of
migrants stays bounded, the model converges to a continuous-time Markov process. In this
transformation, qi j goes to zero in such a way that the product 2Nqj i sj/si converges and
has limit Mi j/2. Thus we can express the transition rates in the rate matrix Q of the Markov
process as functions of n, si and Mi j .

There are several different types of demographic models. They differ by the configuration
of their deme sizes and the patterns of connectivity. Some notable examples (see Figure 1.2):

• The symmetrical islands models, or n-island model for short (Wright, 1931): all islands
have the same size, and all the migration rates Mi j between any pair of islands i and j
are equal, so we use the notation M = (n−1)Mi j to denote the migration rate received
by any given island.
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• Continent-island models: one island (the continent) is significantly larger in size than
the rest, which are of the same size. Additionally, migration only occurs from the
continent to the islands with rate M1. In some cases, migration back from the islands
into the continent is modeled with another rate M2.

• Stepping-stone models: the islands are spatially arranged, and migration can only
occur between neighboring islands, with symmetrical rate M. Many different spatial
arrangements are possible, but popular ones are rectangular and linear arrangements.

It is important to note that in general structured scenarios, no closed-form expressions can
be obtained for quantities of interest like E(T2) or the site frequency spectrum (SFS), for
instance. One recurring theme of this dissertation is exploring such properties in special cases
of structured scenarios.

1.4. Demographic inference

Demographic inference is one of the central topics of this work. We are interested in extracting
information from observed data in the form of estimated model parameters. There are several
different coalescent models attempting to describe various aspects of the genealogy and using
different sets of assumptions, and there is often a multitude of parameters defining such
models. Regardless of these variations, mutations are the source of observed genetic diversity,
and any model that attempts to explain real-world data must account for the presence of
mutations.

1.4.1. A model of mutation

Here we explore a generalization of the Wright-Fisher model where the assumption that each
descendant is exactly identical to its parent is lifted. We introduce genetic types by imposing
a mutation process on top of the evolution process, where each time a lineage or gene copies
its parent from the previous generation, a mutation is introduced with probability u, and thus
the offspring becomes a different genetic type. Alternatively, the new lineage is an exact copy
of its ancestor with with probability 1− u.

Under the lens of the coalescent we may be interested in knowing, for instance, the average
number of generations we need to trace back in the genealogical history of a single lineage in
order to find a mutation. In each step backwards in time, the probability that the lineage
experienced a mutation has a Bernoulli distribution of parameter u, therefore the probability
that the lineage has mutated after exactly g backward generations is given by

P (TNM = g) = u(1− u)g−1,

where TNM is the time until first mutation of a sampled lineage, with a geometric distribution
of parameter u. Measuring time in units of 2N generations, we can once again obtain a

28



convenient continuous-time approximation for large N:

P (TNM 6 g) = 1− (1− u)g,
⇔ P (TM 6 t) ≈ 1− e−tθ/2, (1.4.1)

where TM denotes time in units of 2N generations and θ := 4Nu is the scaled mutation rate.
This parameter can be interpreted as the expected number of mutations separating a sample
of two lineages, since the expected time until their coalescence is 2N generations, and thus
2Nu mutations are expected on each branch.

Equation 1.4.1 indicates that TM can be approximated by an exponential variable of
parameter θ/2 for large values of N. A consequence of this is that the number of mutations
in a branch of length t in the genealogical tree is Poisson distributed, with intensity tθ/2.
Therefore, if we denote this number of mutations Mt , we have:

P (Mt = k) =
(tθ)k

k!2k
e−tθ/2. (1.4.2)

Knowing the distribution of Mt allows us to simulate the mutations efficiently. Indeed, given a
simulated genealogical tree, we can randomly place Mt mutations on each branch of length t
to obtain a realization of the coalescent process with mutation.

1.4.2. The SFS

We can model the process in which mutations occur in genomic sequences in a simple way by
introducing the assumption that the probability for a mutation to occur in the same position
twice is null. This assumption is justified in the presence of very long sequences with low
mutation rates, and it is known as the infinite sites model of mutation, in which mutations
always happen in new locations. Under this assumption, we can assign binary states to
the positions along the genome. The two states, which can be coded as 1 and 0, can be
interpreted as the position containing a mutation or not, respectively. We can thus represent
a genomic sequence as a string of zeroes and ones. If two genes are observed to have different
codes in a given position, we say that the position is a segregating or polymorphic site. We
could distinguish a mutated position from a non-mutated one, for instance, by comparing
with a sampled sequence from an outgroup species.

A convenient way of summarizing the genetic diversity of a sample under these assumptions
is to simply inspect the values of the sampled sequences in the segregating sites, given that
the sequences match exactly in all other sites. Consider the following example, where k = 6
sequences were sampled, and 8 segregating sites were observed among them.

The rows of Table 1 contain the sequence encoding for each of the segregating positions
(columns, labeled SNP j for single-nucleotide polymorphism number j). For instance, we
can see that 4 of the 8 polymorphisms were singletons, meaning that a mutation happened
in exactly one of the sampled sequences. We can similarly track the number of sites that
exhibited exactly i mutations, and compile this information in a vector ξ = (ξ1, . . . , ξk−1),
where ξi is the number of segregating sites at which there are exactly i copies of the mutant
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SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6 SNP 7 SNP 8

Sample 1 0 1 0 0 0 0 1 0
Sample 2 1 0 1 0 0 0 1 0
Sample 3 0 1 1 0 0 1 0 0
Sample 4 0 0 0 0 1 0 1 1
Sample 5 0 0 1 0 0 0 1 0
Sample 6 0 0 0 1 0 1 1 0

Total 1 2 3 1 1 2 5 1

Table 1.1.: An example for how to compute the observed site frequency spectrum (SFS) in a sample of

size k = 6 genes. The columns show the segregating sites (SNPs), which are the positions in the genome

where a mutation is observed for at least one of the sampled sequences. With increased sequence length,
the table grows horizontally, but the SFS is always of length k − 1 because this is the maximum possible

number of observed mutations (a column full of 1s is not possible since this would correspond to a

mutation taking place before the most recent common ancestor of the sample, and as such it would not

visible in the coalescence tree).

type. In the example of Table 1, ξ = (4, 2, 1, 0, 1). Under the assumptions of a Wright-Fisher
model with constant population size and scaled mutation rate θ, it can be shown that:

E(ξi) =
θ

i
, i = 1, . . . , k − 1. (1.4.3)

See Tajima (1989); Fu (1995); Griffiths and Tavaré (1998); Hudson (2015) for various proofs
of (1.4.3). The vector ξ is known as the Site Frequency Spectrum, and it has been the basis
for many estimators and test statistics for analyzing genomic data. Notable examples are the
θW (Watterson, 1975) and θπ (Tajima, 1983) estimators of θ; Tajima’s D (Tajima, 1989);
Fay and Wu’s H (Fay and Wu, 2000); and the fixation index FST (Wright, 1943).

1.4.3. The IICR

We show in §1.3.1 that the distribution of T2 times in a size-changing Wright-Fisher population
is closely related to the relative size function λ(t). Indeed, in (1.3.3) we can solve for λ(t)
to obtain:

λ(t) =
P (T2 > t)

fT2
, (1.4.4)

where fT2 is the probability density function of the T2 random variable. There are methods
that can estimate the right-hand side of (1.4.4) from real data, most notably the PSMC
method from Li and Durbin (2011) estimates T2 by analyzing the local density of the number
of segregating sites along the genome of a single diploid individual. This method has been
used to estimate the function λ(t) in several applications, but it is notable that the quantity
P (T2 > t)/fT2 can always be defined, regardless of the underlying evolutionary model or
its assumptions, therefore it is useful to study it independently of the assumptions of a
size-changing Wright-Fisher population. This was first done by Mazet et al. (2016), which
referred to it as the Inverse Instantaneous Coalescence Rate, or IICR for short.
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It is important to stress that the IICR is not tied to any particular model, panmictic or
otherwise. It is defined using the distribution of the coalescence times of a sample of size two
as in (1.4.4). It can be approximated to arbitrary numerical precision under many demographic
models (Rodríguez et al., 2018); it can also be computed empirically by simulating a sample
of coalescent times (Chikhi et al., 2018); and it can be read from full sequence genomic data
using the appropriate methods, like the previously cited PSMC.
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Chapter 2.

Demographic inference using the IICR

To use the IICR as a summary of genomic information we first assume that an IICR curve can
be obtained, which we will use as the target for demographic inference. With simulated data
(sequences or T2 values) this target curve can be obtained under any pre-defined coalescent
model that could be expressed with a simulation tool (e.g., the ms program (Hudson, 2004)).
With real genome-wide sequence data, the curve can be estimated with the PSMC method
of Li and Durbin (2011). We then try to identify a piecewise stationary n-island model
that generates an IICR that is identical or similar to the target IICR (or PSMC curve). The
similarity between the two IICR curves is quantified with a distance metric defined below. We
use a genetic algorithm to explore the parameter space (number of populations, migration
rate within a time component, and timing of these changes assuming a fixed number of
components for each independent analysis) and minimize that distance. We compute the
IICR under the non-stationary structured coalescent (NSSC) of Rodríguez et al. (2018).

2.1. The piecewise stationary n-island coalescent

2.1.1. The parameter space

We first define the parameter space, as this directly determines the family of demographic
histories that we can explore and infer from. The piecewise stationarity refers to the fact that,
although migration rate is constant and identical between any pair of islands, this rate may
be different between consecutive time periods (components), and there is a fixed number γ
that represents the number of demographic events. To say that there are γ > 0 changes of
gene flow thus means that there are c = γ + 1 components or periods of constant gene flow.
Likewise, the deme size, which is the same for all islands, may in theory change through time
in the general model presented in Rodríguez et al. (2018). In the present study we focus on
models with constant population size but we present a more general model where deme sizes
can change between components. In this more general case, the parameter space includes
the number of islands n, the times ti for the demographic events, and the values of both the
migration rate Mi and the local deme size si at each new demographic period. Note that n is
inferred but it does not change through time. We thus assume no extinction, no population
split and no creation of new populations.
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Given a fixed integer γ of demographic events to consider (γ > 0) and a collection of
bounds B in the form of:

B =
(

[nmin; nmax], [t1min; t1max] . . . [tγmin; tγmax],

[M0min;M0max] . . . [Mγmin;Mγmax], [s0min; s0max] . . . [sγmin; sγmax]
)

, (2.1.1)

we define the parameter space Φγ,B as:

Φγ,B =
{

ϕ = (n, t1 . . . tγ,M0 . . .Mγ, s0 . . . sγ) ∈ N×R
3γ+3, s.t. ∀i :

2 6 nmin 6 n 6 nmax; 0 < timin 6 ti 6 timax;

0 < Mimin 6 Mi 6 Mimax; 0 < simin 6 si 6 simax

}

. (2.1.2)

We define bounds for each variable because we use a constrained optimization algorithm, for
which all parameters must be bounded (see §2.2). Also, since we focus on the case where
there are no deme size changes, we enforce this by using B, as making simin = simax = 1 for
all 0 6 i 6 γ effectively fixes all deme sizes to 1, and reduces the number of parameters
to 2γ + 2.

2.1.2. Computing and scaling the IICR

Given any demographic scenario from Φγ,B, the associated coalescent process is an instance
of the NSSC of Rodríguez et al. (2018). Our main object of interest regarding these scenarios
is the IICR. In the supplementary materials we provide a brief overview of how to perform its
computation for any given ϕ ∈ Φγ,B based on the work of Rodríguez et al. (2018).

The computation of the IICR uses functions that receive the time t in units of 2N
generations, and return values in units of N generations per coalescence, so these IICR
functions are dimensionless in the sense that they operate in a relative frame of reference.

In order to compare the IICR with PSMC inferences, we need to re-scale both the time
and the IICR values by a reference deme of size N which specifies how many haploid genes
correspond to a local deme size of 1 as follows:

sIICR(g) = N IICR(g/2N);

where sIICR(g) refers to the scaled IICR, and IICR(t) to the unscaled (dimensionless) one.
Note that we use g for generations as the variable name for sIICR to further stress the
difference. The parameter space for the sIICR can be thought of as a simple one-dimensional
addition to Φγ,B:

Φ̂γ,B =
{

ϕ̂ = (N,ϕ) ∈ R ×Φγ,B such that 0 < Nmin 6 N 6 Nmax
}

.

Considering the c components which constitute the model, we note that during component i ,
taking 0 6 i 6 γ = c − 1, the underlying coalescent process Xt is being governed by an
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deme (initial state 1) has distribution Fsame(t) = P (t)(1,3) and density fsame(t) = D(t)(1,3),
and for the case where we sample in two different demes (initial state 2), then T2,diff. would
have its distribution given by Fdiff.(t) = P (t)(2,3) and its density by fdiff.(t) = D(t)(2,3).

The factor matrices in (2.1.3) can be computed in several ways in the general case (see
Herbots (1994) or Hobolth et al. (2019)), but considering this particular instance of size
3× 3, they may also be computed directly given an arbitrary ∆t and rate matrix Q:

e∆t Q =





F11 F12 1− F11 − F12
F21 F22 1− F21 − F22
0 0 1



 , (2.1.4)

where:

F11 =
(δ + α− 2Ms)exp2 + (δ − α+ 2Ms)exp1

2δ
,

F12 = (n − 1)F21,

F21 =
Ms(exp1 − exp2)

δ
,

F22 =
(δ + α− 2Ms)exp1 + (δ − α+ 2Ms)exp2

2δ
,

exp1 = exp
(∆t(δ − α)
2s(n − 1)

)

,

exp2 = exp
(∆t(−δ − α)
2s(n − 1)

)

,

δ =
√

α2 − 4Ms(n − 1),
α = Mns + n − 1.

(2.1.5)
With this we can efficiently compute either IICR functions:

IICRsame(t) =
1− Fsame(t)
fsame(t)

, IICRdiff.(t) =
1− Fdiff.(t)
fdiff.(t)

. (2.1.6)

In contrast with the parameter space for the unscaled IICR (Φγ,B) in which there is a
one-to-one correspondence between a parameter tuple and the corresponding IICR curve,
there are only 3γ + 3 independent degrees of freedom in Φ̂γ,B, even though there are 3γ + 4
parameters. This notion is formalized by the following lemma.

Lemma 1. Given any ϕ̂ = (N, n, t1 . . . tγ,M0 . . .Mγ, s0 . . . sγ) ∈ Φ̂γ,B, then the parameter
tuple:

ϕ̂0 =
(N

C
, n, Ct1 . . . Ctγ,

M0
C
· · ·Mγ

C
,Cs0 . . . Csγ

)

is such that:
sIICRϕ̂(g) = sIICRϕ̂0(g) ∀g > 0,

where C is any rescaling factor for which the coordinates of ϕ̂0 are within the bounds B.

Proof. Let us denote by πn,M,s(t) the factors etQ that appear in the definition of P (t)
(equations 2.1.3 and 2.1.4). It is easy to verify that for any C > 0, we have:

πn,M,s(t) = πn,M
C
,Cs(Ct). (2.1.7)

Indeed, from the expressions in (2.1.5) we can see that the parameter M always appears in
the factor Ms , and the parameter t always appears in the factor t/s , which are invariant
under the transformation (M, s, t) 7→ (M

C
, Cs, Ct).
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Next, given any:

ϕ = (n, t1 . . . tγ,M0 . . .Mγ, s0 . . . sγ),

ϕ0 = (n, Ct1 . . . Ctγ,
M0
C
· · ·Mγ

C
,Cs0 . . . Csγ),

and any t > 0, we can write P (t) from (2.1.3) as:

Pϕ(t) =

( i
∏

k=1

πn,Mk−1,sk−1(tk − tk−1)
)

πn,Mi ,si (t − ti)

=

( i
∏

k=1

π
n,
Mk−1
C
,Csk−1

(Ctk − Ctk−1)
)

π
n,
Mi
C
,Csi
(Ct − Cti)

= Pϕ0(Ct). (2.1.8)

where i is the largest index such that ti 6 t and subsequently Cti 6 Ct. We denote
now by Fϕ(t) any of Fsame(t) = Pϕ(t)(1,3) or Fdiff.(t) = Pϕ(t)(1,2). From (2.1.8) we have
Fϕ(t) = Fϕ0(Ct). In order to introduce scaling, we consider an arbitrary effective size N and
perform the corresponding change of variable t = g/2N. Thus, by having ϕ̂ = (N,ϕ) and
ϕ̂0 = (N/C,ϕ0), we get:

Fϕ

( g

2N

)

= Fϕ0

(Cg

2N

)

⇒ 1

2N
fϕ

( g

2N

)

=
C

2N
fϕ0

(Cg

2N

)

⇒ N
1− Fϕ(g/2N)
fϕ(g/2N)

=
N

C

1− Fϕ0(Cg/2N)
fϕ0(Cg/2N)

⇒ sIICRϕ̂(g) = sIICRϕ̂0(g) �

The implication of Lemma 1 is that when trying to infer all the parameters of ϕ̂ simul-
taneously, the only parameter for which we may get an absolute estimate is n, as the rest
of them can only be distinguished up to an unknown re-scaling factor C. Note that this
un-identifiability issue is different from the one identified in Mazet et al. (2016) regarding the
inability to discriminate between panmictic and non-panmictic demographies with a single
IICR. However, we stress here that in practice this is not necessarily an issue because it
suffices to fix one of the model parameters (for instance, s0 = 1) to be able to uniquely map
any sIICR curve to its parameters. In the case of constant size this is even less of an issue,
since all deme sizes are fixed to si = 1 and thus no further considerations are necessary.

2.2. Optimization framework: search algorithm and

optimality criteria

The search algorithm explores the parameter space and uses an optimality criterion to select
the structured scenario that best explains a given target IICR curve, either scaled or unscaled.
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We also assume that the underlying coalescence times for these target IICRs have cumulative
distribution F0 and density f0.

Given a target IICR0 and a parameter space Φγ,B, we want to find a parameter tuple ϕ in
Φγ,B such that the exact IICR curve corresponding to the model defined by ϕ (denoted by
IICRϕ) approximates IICR0. We thus want to find the minimal distance:

min
ϕ∈Φγ,B

d
(

IICR0, IICRϕ
)

. (2.2.1)

Regarding the distance d , a straightforward definition would be:

d
(

IICR0, IICRϕ
)

=

∫ ∞

0

∣

∣IICR0(t)− IICRϕ(t)
∣

∣w(t) dt, (2.2.2)

where w(t) is a weight function that should take into account the natural distribution of
the information in an IICR. One reasonable solution for w is to take a quantity proportional
to the density f0 of the coalescence times because it ensures that the integral in (2.2.2) is
finite, and also because it assigns more weight to the temporal periods where the target
IICR0 is expected to be more accurate and reliable since more coalescences are likely to have
happened.

We thus consider the family of weight functions:

w(t) =
f ω0 (t)

‖f ω0 ‖1
, (2.2.3)

where ‖ · ‖1 is the L1-norm and ω > 0 is a weight-shifting parameter, with the purpose of
dampening (if ω < 1) or exaggerating (if ω > 1) the effect of the weight f0. Unless otherwise
noted, we take ω = 1, which corresponds in practice to giving more weight to recent periods
of the IICR in direct proportion to the density f0 in an n-island model.

In practice, we need to consider that all we know about IICR0 is a stepwise discretization
over a bounded interval of time, so a numerical approximation of the distance (2.2.2) is
required. This includes approximating the density f0 of the underlying T2 distribution. Given
a division of time into I intervals

{

[τj−1; τj)
}

for 1 6 j 6 I, where τ0 = 0 and τI <∞, we
can consider a discrete representation of IICR0 in the form of a collection of I values {yj}
such that:

IICR0(t) = yj , ∀t ∈ [τj−1; τj), 1 6 j 6 I. (2.2.4)

We can use this form to compute a numerical approximation for the integral in (2.2.2). For
instance, a first degree approximation would yield:

d
(

IICR0, IICRϕ
)

=

I
∑

j=1

∣

∣yj − IICRϕ(τj)
∣

∣w(τj−1) (τj − τj−1).

As for the values of w(τj), notice that from (1.4.4) we have the identity:

f0(t) = exp
(

∫ t

0

−dτ
IICR0(τ)

)/

IICR0(t),
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which, using the representation (2.2.4), can be discretized into:

f0(0) = 1/y0,

f0(τj) = exp

( j
∑

k=1

τk−1 − τk
yk

)/

yj , 1 6 j 6 I.

We then have that for any given ω, w(τj) can be expressed as:

w(τj) = f
ω
0 (τj)

/ I
∑

k=1

f ω0 (τk).

An alternative option for the definition of d in (2.2.1) could be one that takes into account
the ultimate visual nature of the curve fitting task. Assuming that the points {τj} are
log-distributed and that they will be used for visualization purposes in a horizontally log-scaled
plot like Figure 2.11, then the definition:

d(IICR0, IICRϕ) =

I
∑

j=1

∣

∣yj − IICRϕ(τj)
∣

∣, (2.2.5)

captures the perceived visual difference between the plots of the two curves. We distinguish
distance (2.2.2) from (2.2.5) by denoting them dω and dvisual respectively. We keep both
definitions because we found that the weighted family of distances generally performs better
than the visual distance under certain validation tests, but also that the dvisual distance can
be used to choose the optimal weight parameter in dω (see Figure 2.24).

Regarding the optimization problem (2.2.1) itself, we use the Differential Evolution method
(Storn and Price, 1997). As a genetic meta-heuristics, this algorithm maintains and evolves
(using mutation and recombination parameters) a population of solutions iteratively. As
a global optimization algorithm, it features mechanisms for escaping local optima of the
parameter space. In §2.2.1 we explore the potential effects on the inference results of tuning
some of the parameters provided by this algorithms implementation. For our validations,
the method runs by using multiple steps of optimization which we refer to as rounds. In
addition, we stress that the method should be used multiple times on real data sets. We set a
maximum number of allowed rounds, as well as a tolerance ε for the distance which controls
the minimum number of rounds.

2.2.1. Comparison of optimization parameters

Here we explore the effect of various parameters of the optimization algorithm on the speed
of convergence of the inference process.

The most important parameters that affect the search process and convergence criteria are:
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• strategy: it can be one of 12 possible values (see Table 1) and controls how each new
generation of solutions are computed from the previous one. Default is ‘best1bin’.

• maxiter: maximum number of iterations the algorithm will perform before forcing
convergence. Default is 5000.

• popsize: number of simultaneous solutions during any given generation. Default is 15.

• tol: relative tolerance for search convergence. The convergence criteria is met when
the standard deviation of the solutions within a generation is smaller than tol times
the average energy (in our case, distance) within that generation. Default is 10−2.

• mutation: per-generation mutation rate of the solutions. The default behaviour is to
draw a random value from a uniform distribution in [0.5, 1] each generation.

• recombination: per-generation recombination rate of the solutions. Default is 0.7.

We selected 10 random simulated scenarios with unscaled IICR and c = 4 components
from the set of exact IICR validations that had not converged before 500 rounds (these would
correspond to scenarios off the diagonals in Figure A.4). For each one of them, and for each
of the 12 possible values for the strategy parameter, we attempted another 100 rounds.
Table 1 shows the number of rounds it took for each of the 10 scenarios to converge in each
case (a value of 100 means that convergence was not reached).

Strategy #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
best2exp 17 1 100 2 100 22 3 100 57 22

best2bin 6 35 100 2 11 93 100 4 33 100

currenttobest1exp 2 80 100 5 100 69 12 100 8 26

best1exp 3 76 100 21 4 100 10 100 62 100

rand1exp 4 100 100 10 100 14 100 100 100 38

randtobest1exp 32 100 100 9 100 78 100 30 100 100

currenttobest1bin 21 100 100 27 100 100 100 94 63 88

best1bin 27 100 100 28 54 100 100 100 100 100

rand2exp 40 100 100 100 100 24 100 100 100 100

rand1bin 100 100 100 3 100 100 100 100 100 100

rand2bin 96 100 100 23 100 100 100 100 100 100

randtobest1bin 92 100 100 100 100 100 100 100 100 100

Total
424

484

502

576

666

749

793

809

864

903

919

992

Table 2.1.: Results of varying the strategy parameter of the differential evolution algorithm on the

speed of convergence of 10 difficult demographic scenarios with c = 4 components.

As can be seen, strategy ‘best2exp’ was best with a combined number of 424 rounds for
the 10 scenarios.

Next, using this optimal strategy parameter, we tried one alternative value for the rest
of the optimization parameters at a time, again allowing a maximum of 100 rounds. The
alternative values were as follows:

• maxiter was changed from 5000 to 10000.
• popsize was changed from 15 to 50.
• mutation was changed from random sample in [0.5, 1] to random sample in [0.5, 1.7].

40



• recombination was changed from 0.7 to 0.9.
The results, shown in Table 2, suggest that these parameters should be left at their default
values.

Parameter no. 1 no. 2 no. 3 no. 4 no. 5 no. 6 no. 7 no. 8 no. 9 no. 10
popsize 100 100 100 100 100 100 100 100 100 100

recombination 100 100 100 100 100 100 100 100 100 100

mutation 100 100 100 100 100 100 100 100 100 100

max-iter 100 100 100 100 100 100 100 100 100 100

Total

1,000

1,000

1,000

1,000

Table 2.2.: Results of varying the popsize, recombination, mutation and max-iter parameters of

the differential evolution algorithm on the speed of convergence of 10 difficult demographic scenarios

with c = 4 components.

2.3. Validation framework and results

We applied the SNIF inferential method to target IICRs generated under piecewise stationary
n-island models of increasing complexity (i.e., number of components) and with known
parameter values (N, n, ti , Mi) and then compared the inferred parameter values to those
actually used.

In what follows we present various ways of generating random demographic scenarios and
then computing appropriate IICR curves from them for use in validation.

Φ̂γ,B

Continuous

sampling

Discrete

sampling

ϕ̂
(N,n,ti ,Mi )

Exact

IICR

{xi} ∼ T2

110010011· · ·
001101101· · ·

T-sim

IICR

Seq-sim

IICR

SNIF
ϕ̂0

(N0,n0,t0
i
,M0
i
)

Compare!

Figure 2.2: Flowchart of the validation procedures. Starting from a parameter space Φ̂γ,B we use one

of two sampling methods (§2.3.1) to generate a demographic history ϕ̂ defined (for the scaled case) by

the parameters (N, n, ti ,Mi). We then compute the IICR of that demographic history using one of three

methods (§2.3.2) to obtain the target IICR. After that, we run the inference algorithm on this target

IICR curve (using wider bounds than those in B) to obtain an estimated (or inferred) demographic

history ϕ̂0 = (N
0, n0, t0i ,M

0
i ), which we then compare to the known ϕ̂ in order to assess the accuracy

of the inference methodology (§2.3.4 and §2.3.5).

2.3.1. Sampling the parameter space

Given a parameter space Φγ,B (we only discuss the unscaled case here for brevity, but the
same principles apply to a scaled parameter space), we sample demographic scenarios from
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which we compute the corresponding IICRs. We used two sampling strategies which we call
continuous and discrete sampling.

Continuous sampling. Assuming that we want to realise L independent tests, this sampling
strategy consists in using uniform or log-uniform distributions for each of the 3γ + 3 random
variables:

n ∼ U{nmin, nmin + 1, . . . , nmax},
t1 ∼ LU10[t1min; t1max], . . . , tγ ∼ LU10[tγmin; tγmax],
M0 ∼ U[M0min;M0max], . . . ,Mγ ∼ U[Mγmin;Mγmax],
s0 ∼ U[s0min; s0max], . . . , sγ ∼ U[sγmin;Mγmax], (2.3.1)

where U denotes a uniform distribution (discrete in the case of n and continuous for the
rest) and LU10 denotes a log-uniform distribution of base 10. This distribution is used for
sampling the times of changes in a logarithmic space in order to take into account the natural
distribution of information in an IICR.

After sorting the times ti , we can define the L sampled scenarios by constructing, for
1 6 j 6 L, the tuple

(

nj , t j1 . . . t
j
γ,M

j
0 . . .M

j
γ, s

j
0 . . . s

j
γ

)

. This sampling strategy makes it
very unlikely to sample exactly the same parameter values twice or to sample exactly the same
Mi values in two consecutive components. However, it sometimes produces demographic
scenarios in which consecutive ti and/or Mi values may be close to each other, and thus
difficult to distinguish. This makes it thus harder on our inferential framework compared to
cases where we would chose contrasted scenarios with clearly separated events with major
changes in migration rates. In other words, our inferential method was sometimes inferring
parameters in the case of extremely difficult scenarios as we show below.

In §2.3.4 we show the results obtained using this sampling method with L = 400 scenarios.
The bounds for sampling and inferring are shown in Table 2.3. In particular, we note that in
practice we disallow deme size changes by fixing the bounds of the si to 1, which consequently
reduces the parameter space to just 2γ + 2 parameters.

simulation inference

min max min max

n 2 40 2 50

ti 0.1 50 0.01 100

Mi 0.1 50 0.05 60

si 1 1 1 1

N 103 103 102 104

Table 2.3.: Parameter bounds used during the generation of demographic scenarios for validation.
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Discrete sampling. Here we sampled L = 100 independent scenarios from the same
parameter space, but using the following set of predefined values:

n ∈ n = {2, 5, 10, 15, 20},
ti ∈ t = {1/10, 1/2, 1, 2, 5, 10, 20, 50} ∀i ,

Mi ∈M = {1/10, 1/5, 1/2, 1, 2, 5, 10, 20, 50} ∀i ,
si ∈ s = {1} ∀i ;

The inference process was, however, done within the continuous space. For instance, under
this validation scheme (see §2.3.5) we only simulated data with 2, 5, 10, 15, 20 islands but
the inference process always allowed n to take any value between 2 and 50. The choice of
the L independent simulated data sets was done using the following procedure. We first
considered the following cartesian product of dimension 2γ + 2:

K = n × t
γ ×M

γ+1 × {1}.

and then uniformly drew L tuples from K without replacement. We then sorted the sampled
event times obtaining thus a set of L demographic scenarios. We drew randomly (without
replacement) from the set K, rejecting scenarios with identical Mi values in two consecutive
components, until we reached L accepted scenarios.

2.3.2. The three types of target IICRs

We explored three different types of target IICRs (see Figure 2.3) that could be obtained
given a scenario ϕ ∈ Φγ,B. All IICRs were discretized so as to be comparable to PSMC plots
(see equation 2.2.4).

Validating SNIF on PSMC plots across the parameter space described above would be
extremely time consuming as it would require simulating genomes and then running the PSMC
method (or other related methods) on these genomes before applying our approach. We thus
only ran the PSMC method in the case of the scenarios inferred for the human data so as to
integrate the uncertainty due to the PSMC inferential process. The issue of uncertainty is
crucial but our aim is not to test the PSMC or other inferential methods. To clarify this we
explain below the different types of IICR that could be computed given a scenario ϕ ∈ Φγ,B.

Exact IICR We can compute the IICR for any n-island model at any time value t, but
to generate input data we need a discretization as in (2.2.4), so considering that we take a
log-distributed sample of size I in the interval [tmin, tmax], we end up with a suitable IICR0.
Note that even though this IICR has been discretized, its values are exact within machine
precision, so it is still an artificial product compared to real data.

For the validations using the exact IICR in §2.3.4 we chose for the distance tolerance
between a target and an inferred IICR a value of ε = 10−10 for the unscaled IICRs and an
equivalent value of ε = 10−7 for the scaled IICR (since the simulated N was always 1000).
It should be noted that this value of ε is quite small even for double-precision floating-point
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arithmetic, and thus is only a reasonable choice for validation using exact IICRs (i.e., those
where the distance could theoretically be zero).

T-sim IICR The T-sim IICR is obtained by simulating a finite collection of T2 realizations
using ms and then building an empirical IICR as in Mazet et al. (2016), using the Kaplan–Meier
estimator (Kaplan and Meier, 1958), with log-distributed times. We stress that ms scales
time in units of 4N generations whereas our models use a scale of 2N generations (see the
example in Figure 2.3), so this must be kept in mind when writing ms commands.

Seq-sim IICR We simulate genomic sequences with ms and then apply the PSMC method
for obtaining the IICR0 to be used by the inference method. Since simulating genomes and
performing PSMC analyses is significantly more time consuming than the other two methods,
we limited ourselves to validating the Seq-sim IICR for the human PSMC based scenarios
that we obtain after performing the demographic inference described in §2.4. The results of
this step are shown in §2.4.2 of the Supplementary Materials.
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Figure 2.3: The three ways of obtaining a target IICR. The panels represent different types of discretised

target IICRs for the same two-components demographic history with N = 103, n = 4, t1 = 7,

(Mi) = (0.5, 1.0) and (si) = (1.0, 1.0). (a) Exact IICR, computed as per section 2.1.2 and discretized

to 32 intervals. In gray we show a smoother discretization and keep it in the other panels for reference.

This is obtained using the approach of Rodríguez et al. (2018). (b) T-sim IICR, obtained by simulating

2 × 104 T2 samples using the ms command ms 2 20000 -T -L -I 4 2 0 0 0 0.5 -eM 3.5 1 -eN

3.5 1 and later scaling the IICR using the value of N. This is the approach used in Chikhi et al. (2018)

(c) Seq-sim IICR, obtained by running PSMC on a genome simulated using the ms command ms 2 100

-t 100 -r 20 2000000 -p 8 -I 4 2 0 0 0 0.5 -eM 3.5 1 -eN 3.5 1 and later scaling with mutation

rate µ = 1.25× 10−8. This is obtained by running the PSMC method of Li and Durbin (2011)
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2.3.3. Quantifying the inference error

In order to quantify the inference error incurred during the continuous-sampling validation
phase, we measured the normalised root-mean-square deviation (nRMSD) between the
simulated and inferred parameter values for each parameter of the demographic models
(c = 1 to c = 6 components). These values can be seen in the lower-right corner of every
sub-panel in figures A.1 to A.6 and A.8 to A.13. They are also summarised in Figure 2.4.
We note that the number of islands n and the effective size N (in scaled scenarios) is very
well inferred regardless of the number of components c . On the other hand, the inference
accuracy of the connectivity rates Mi does get gradually worse when increasing the number
of parameters (see section Validation results using exact target IICRs in the main text).

0

0.1

0.2

N
o
rm

a
li
ze

d
R

M
S

D

0

0.5

1 M0 M1 M2

M3 M4 M5

0

1

2

3

1 2 3 4 5 6

0

0.1

0.2

c

n N

1 2 3 4 5 6

0

0.5

1

c

2 3 4 5 6

0

1

2

3

c

t1 t2 t3

t4 t5

Figure 2.4: Normalised root-mean-square deviation of the inferred parameters during validation. The

top part of each sub-panel corresponds to the parameters of unscaled scenarios, and the bottom part to

scaled scenarios. The number of components c of the scenarios is in the horizontal axis in every case.

In an effort to quantify the component misidentification phenomenon, we computed
the correlation between 100 randomly sampled pairwise values of simulated and estimated
parameters (in this case, the simulated M2 parameter in unscaled scenarios of c = 5
components with the inferred Mj parameters of the same scenarios). The key insight
underlying this test is that when a parameter is badly estimated, it may be due to the fact
that the method estimated the value from the component that is either just before or just
after it. Conversely, the value of M from other components should be non-correlated, since
values are taken at random within the range of allowed values. Now, we do not know if the
method used the component just before or just after, as this may change from simulation
to simulation. To solve this problem we computed the correlation (r 2) by using either both
values or just the value that was closest. We did exactly the same for the values taken from
other components that are not expected to be correlated. We find indeed that when no
correlation is expected there is no correlation, but when we take the best value the correlation
increases, and it increases much more when it is a neighbouring value. Additionally, we found
that this effect is significantly amplified (r 2 increased from 0.37 to 0.82) when we exclude
from our sample the tests were the inferred rates were within 10% of the simulated values,
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further indicating that this effect is present mostly when there is a large mismatch between
the simulated and inferred M values. These results are displayed in Figure 2.5.

random global random far best far best near

0

0.25

0.5

0.75

1

r2

Non-filtered

Filtered at 10%

Figure 2.5: Parameter misidentification. We measure the r2 correlation between M2 and M̂j in a sample

of 100 scenarios with c = 5 components. In ‘random global’ we draw Mj from components 0, 1, 3, and
4. In ‘random far’ we draw Mj from components 0 and 4. In ‘best far’ we draw Mj from components

0 and 4 again, but always keep the best fitting value of the two. Finally, in ‘best near’ we draw Mj
from components 1 and 3 and always keep the best fitting value. ’Filtered at 10%’ indicates that the

scenarios where the inferred value was within 10% of the simulated value were excluded.

2.3.4. Validation results using exact target IICRs

A first set of figures (Figures 2.6, A.1 to A.6, and A.8 to A.13) represents the simulated
and inferred parameter values on the horizontal and vertical axes, respectively, using the
continuous sampling strategy. As explained in §2.3.1, the range of possible values in the
inference process was always wider than the range used for the simulated values (see Table 2.3
for the exact values). We quantified the inference error for each parameter by computing the
Normalized Root-Mean-Square Deviation (nRMSD). This value is displayed in the lower-right
corner of each panel of the previously mentioned figures, and summarized for all parameters
in Figure 2.4. For reference, we also highlight the y = x line, indicating what would be a
perfect inference, and the region corresponding to 10% of relative error around this line (50%
of relative error in the case of the ti parameters). A summary of how many tests fall within
this margin of error (and others) is displayed in figures A.7 and A.14. Altogether, these figures
always show the data points near the y = x , hence suggesting that the inferred parameter
was identical or very close to the simulated parameters. This is particularly obvious for all
the parameters corresponding to scenarios with up to four components, where the nRMSD
values stayed below 0.5 (the case of the ti parameters is exceptional, since the exponential
distribution of its range disproportionately affects the error measures). For instance, Figure
2.6a shows the results for a model with three components, in which there is a nearly perfect
match (nRMSD close to or below 0.1 for the non-t parameters) between the simulated and
inferred values for the model parameters. For five- and six-component scenarios the results
are still nearly perfect for most of the simulated scenarios but we observe an increasing
number of cases (i.e., simulated scenarios) where the parameters are poorly estimated, with
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of scenarios with 500 rounds increased with the number of components. We found indeed
that the proportion of simulations for which that maximum was reached increased with the
number of components. For instance, all five- and six-component scenarios stopped their
parameter search at 500 rounds, hence suggesting that at least some had not yet reached an
optimum solution. For the cases with one- and two-component scenarios, all 800 independent
simulations reached convergence in less than 150 rounds (see Figure 2.7). Again, the choice
of the tolerance ε plays a role in these results, and selecting larger tolerances will tend to
produce earlier convergence in general, but not necessarily better results.
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Figure 2.7: Number of performed rounds during validations with exact IICRs. The top panel shows

the number of rounds (up to a maximum of 500) that the method required before converging to a

scenario with a distance value smaller than the tolerance ε = 10−10 for the unscaled case. The bottom

panel shows the same information for scaled scenarios and a tolerance of ε = 10−7. We represent in

different colors the curves corresponding to scenarios with different simulated (and inferred) number of

components, ranging from c = 2 up to c = 6; the same data-set represented in figures A.1 to A.6 (top

panel) and figures A.8 to A.13 (bottom panel). Higher number of rounds is not correlated with worse

fit when the maximum number of rounds is not reached; and when it is reached it is not necessarily

an indication of bad fit either, although all instances of bad fit stem from inferences that reached the

maximum allowed number of rounds.

As a test we randomly identified a couple of scenarios with six components that had
bad estimates and re-ran the algorithm with 5000 rounds. We found that the distance
value consistently decreases with more rounds (see Figure 2.8), but the inferred parameter
values may not converge to the simulated ones because with more components there is a
higher probability that two consecutive simulated Mi values are very close, thus making the
corresponding event time challenging to infer.

The second possible reason for the poorly estimated parameters in Figure 2.6 may be related
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Figure 2.8: Convergence of the inferred IICR with the progression of the inference rounds. We measured

the best distance achieved (ω = 1) as a function of the completed rounds for up to 5000 rounds. The

two curves correspond to two c = 6 component scenarios that did not previously converge (ε = 10−10)

in 500 rounds (marked with a vertical dashed line). We note that there is a clear trend for the distance

between the IICR curves to decrease with more inference rounds, but there is also diminishing returns to

performing a very large number of rounds, since the issue of component misidentification may be an

insurmountable difficulty for some scenarios (see main text for a more detailed discussion).

to the fact that some simulated components may have a short duration that do not leave a
significant mark on the IICR curve, thus leading them to be “skipped”. We refer to this issue
as component misidentification, which could lead to a particular estimated parameter to be
plotted in the wrong panel. For instance, the method may miss the first change in migration
rate at t1 and identify the second change in migration at t2. In such a case the method will
assign the inferred t2 value to the set of inferred t1 values and plot it in the t1 panel. This
wrongly assigned t2 value will thus appear away from the diagonal in the t1 panel even if it
was well-estimated. Such misassignment cases for one parameter will also have consequences
for the Mi plots, and thus will generate several misassignments across panels. They are also
expected to increase in frequency as the number of components increases and as the ti values
become closer to each other. This phenomenon can be observed clearly in the right panels of
Figure 2.9. We also present an attempt at quantifying it for the case of c = 5 in Figure 2.5.
One way to mitigate the effect of this misassignment issue in the analysis of the results is to
visualize the simulated and inferred scenarios using what we call a connectivity graph. This
connectivity graph represents the times at which migration changes against the values of the
migration rates. Such connectivity graphs are featured in the next section.

49



2.3.5. Validation results using T-sim IICRs

The connectivity graphs and IICR plots obtained from simulated T2 values show that again
the scenarios are generally very well reconstructed (Figure 2.9 and Figures B.1 to B.15).

In Figure 2.9 the connectivity graphs obtained for all the scenarios simulated with three
and four components show that the inferred times at which migration rates changed (green
vertical lines) and the inferred migration rates (green horizontal lines) are generally overlapping
close to the simulated values (dotted vertical and horizontal gray lines). In the right panels
of this figure, we show a subset of the inferred migration histogram (in red). Namely, we
show the distributions of the migration values that were inferred for components with a
simulated migration value of Mi = 10 for panel (a) and Mi = 1 for panel (b). This allows
us to better appreciate the variance of the inferred migration values in the context of the
simulated ones, as well as the component misassignment effect mentioned earlier. Indeed, we
note here that the incorrectly inferred migration values are clustered around other simulated
values, indicating a mismatch in a particular component assignment which does not affect
the rest of the inferred demographic history (we present a quantification of this effect for a
limited case in Figure 2.5).

For example, consider the right sub-panel of (a). We see that most repetitions correctly
inferred a value close to M = 10 for the components with that simulated migration rate.
However, there were cases where a given component i was simulated with a migration rate of
Mi = 10, but it was missed entirely (maybe because it did not generate a very different IICR
or because it had a short duration), and thus the inferred migration value for component i
ultimately reflected either Mi−1 or Mi+1. In panel (b) we can observe the same effect with
higher intensity because with more components it is more likely for them to be misaligned or
misidentified during inference. See Figure 2.5 for a quantification of this effect on scenarios
of c = 5 components.

These connectivity graphs (and the one obtained for five components shown in Figure B.13)
also show that there are regions of the parameter space where the green lines are more widely
distributed. For instance, in the recent past of Figure 2.9b (ti < 10

−3 generations) when the
simulated Mi value was 0.1 or 0.2 the inferred values seem to vary between 0.05 and 0.3,
suggesting that the method identifies periods with low migration rates but that the exact
value is difficult to estimate properly, at least in the recent times. These graphs however
summarize extremely different scenarios, including scenarios in which consecutive Mi values
may be similar. We thus stress that the quality of the inference is dependent on the timing of
the changes in migration rates and on the size of the change in Mi values.

Figure 2.10 shows the results for four different scenarios. In each of the four panels, we
represented the inferred and target IICR plots, connectivity graphs, N (the size of each the
islands) and n (the number of islands) for the corresponding model. Panels (a) and (b)
correspond to three- and four-component scenarios, whereas panels (c) and (d) show the
results for two five-component scenarios, one for which we obtained very good estimates and
one for which the estimates were poorer. In panels (b) and (c) the inferred and simulated Mi
and ti values are on top of each other as can be seen in the connectivity graphs. Similarly, N
and n are also well estimated. Here, the IICR plots also overlap, although this does not always
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We also observe that for real data it may be helpful to run the analyses for a varying number
of rounds, since too few rounds may negatively affect the quality of the fit. Also, once a
scenario has been inferred, it is advisable, as an additional validation step, to simulate data
under the inferred scenario and use SNIF to re-infer the parameters. This is what we do with
the real human data in the next section.
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running every inference a second time, ignoring this period of possible recent expansion. This
is accomplished using an option that allows to limit the interval where the distance function is
computed. In this case, we restricted both this range and the bounds for the ti to be between
50 thousand and 10 million years ago, thus ignoring any population size change that may
have happened in the last 50,000 years. Note that this option is also useful to ignore very
ancient sections of the PSMC plots which may be difficult to trust.

Since real human PSMCs are unlikely to have been generated by an n-island model, the
default value of ω used for simulated data may not be the most appropriate, and we thus
performed inferences with ω ∈ {1, 0.5, 0.2}. Decreasing values of ω give increasing weight
to the most ancient part of the PSMC (see the weighted distances (2.2.3)). The resulting
inferred demographic scenarios are shown in section §2.4.1.

To validate the inference process using PSMC outputs, we generated 10 Seq-sim IICRs
corresponding to the inferred demographic scenarios for the French, Karitiana and Yoruba
individuals. We exclude the Dai and Sardinian populations from this analysis because the their
corresponding inferred histories are similar to the other three (see Figures 2.18 through 2.24).
For each one of the selected scenarios we simulated nreps = 30 chromosomes of length
L = 108 base pairs, using the effective size N inferred by SNIF, a per-base per-generation
mutation rate of µ = 1.25× 10−8 (see (Scally and Durbin, 2012) and references therein).
We kept for consistency the scaled recombination rate of ρ = θ/5 as in Li and Durbin (2011),
and we ran the ms command with θ = 4µLN using:

ms 2 nreps -t θ -r ρ L -p 8 -I . . .

where the rest of the command follows according to the inferred demography (see Figure 2.3
for a reference). After that we prepared a .psmcfa file as input for PSMC, always choosing a
bin size of s = 100. Then we ran the PSMC with the command:

psmc -N25 -t15 -r5 -p "4+25*2+4+6" . . .

following Li and Durbin (2011) on human data. We then scaled the resulting curve using the
information in the generated .psmc file and used these PSMC curves as targets to determine
whether we could indeed infer the parameters used for such complex scenarios.

We also applied SNIF to genomic data simulated under the scenarios used to describe
recent human evolutionary history by Gutenkunst et al. (2009) and Noskova et al. (2019).
Here, we thus ask the following two questions: if human evolution were indeed closer to such
splitting models, would our method infer again an n-island model with similar parameters to
those inferred from the humans PSMCs? additionally, do these models generate IICR plots
that are similar to the human PSMCs? The results of these validations are shown in §2.4.2
of the Supplementary Materials.

2.4.1. Results

Figures 2.12 and 2.13 show the results of using SNIF on the human data.
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fit to the data. The model stipulates the existence of an ancestral population that experienced
an increase in size around 275 thousand years ago (Kya), and the a splitting event at about
150 Kya. This split resulted in two populations that exchanged gene flow asymmetrically: a
large one that eventually became the modern African population, and a smaller one ancestral
to the modern Eurasian population, whatever this terminology may mean. This ancestral
lineage split about 22 Kya into the precursors of the European and Asian populations, which
at this point began an exponential increase in size that continued to present day. During
this period, all three lineages continued to exchange gene flow asymmetrically. The times for
these resize and splitting events are represented as dotted vertical gray lines in Figure 2.14.

It is clear that the nature of this model does not lend itself to be exactly modelled by a
symmetrical n-island model, but the piecewise-stationarity of our family of models should still
be able to pick up the main demographic events. For example, from an n-island perspective,
a merger or joining of two populations (going backwards in time) may be represented by an
increase in gene flow, although this effect may be confounded by the actual changes in both
the sizes of the populations and migration rates taking place during these events. Also of
note is the fact that the first merger event is not visible to our method because it marks the
start of the recent population expansion and is thus excluded from the distance computation.

As can be seen in panel (a) of Figure 2.14, these IICRs do not exhibit any major features
past the 300 Kya mark, so they do not agree with the human PSMCs of Figure 2.11 (of which
the representative ones are again shown in Figure 2.14 in dashed trace for reference), and
they also do not generate significant events in the inferred demographic histories. Particularly,
varying the value of the weight-shifting parameter ω did not make a great effect in this
set of inferences (which is in contrast with the results shown in Figure 2.12). This inferred
demographic history can be roughly summarized from panel (b) as having a period of relative
high gene flow followed by a sharp decrease near the 300 Kya mark, which can be very clearly
attributed to the size increase of the ancestral population in the C3PO model.

The inferred number of demes and their relatives sizes for each population can be observed
in Figure 2.15. The numbers for the African population is in sharp contrast with the other
two populations. We can also observe that for the three populations there is more variance
(compared to the results from Figure 2.13) in the inferred values of n and N across the
different values of c and ω. This may indicate a weaker link to an underlying n-island model.

In general, there is little agreement between the demographic histories inferred by our
method from the PSMC data and the simulated IICRs from the C3PO model. This is expected
because of how the two models have fundamentally incompatible structures, not only regarding
the island versus tree aspect, but also due to the size changes in the C3PO model that affect
the IICR potentially as much as gene flow does. However, we do identify the approximate
timings of the two visible demographic events when using c = 5 components and the more
recent-weighted value of ω = 1. These results also serve as additional validation that our
method will not return the same parameter values regardless of the source of the data. They
also suggest that the C3PO model is unlikely to be a good model to understand questions
about ancient human structure and evolution.
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Figure 2.15: Application of our inference method to a generally-accepted tree-like human demographic

scenario with three modern populations. (a) Inferred number of islands for each modern population.

(b) Inferred local size of each island. Shown here are the scenarios with 4 and 5 components c , and all

three values of the weight-shifting parameter ω. The bars with the darker color, marked ’restricted’ in

the legend, correspond to inferences realized with the option of ignoring recent population expansion.

2.4.2. Seq-Sim validations

Figure 2.17 shows the results of the validations using seq-sim IICRs. For the three chosen
representative human populations (French, Karitiana and Yoruba), we selected the SNIF
inferences obtained with the parameter values c = 5 components and ω = 0.2. The selection
of these values as the preferred ones was supported by the fact that the dvisual distance
(see Figure 2.24) was best for them. For each of these inferred models we generated two
independent genomic sequences of length 3× 109 base pairs and applied the PSMC method
to obtain two independently estimated target IICRs. These seq-sim IICRs are shown in blue
on the left panels of Figure 2.17. The connectivity graphs associated with these inferred
models are represented in the middle panels by the red curves. The corresponding inferred
values of n and N are marked as the black reference circles in the right panels of the figure.

After obtaining the seq-sim IICRs, we applied again our inference method. The goal is
to validate whether it would be able to consistently infer the same parameter values of
the demographic history regardless of the origin of the source IICR curve. To this end
we performed 10 independent inferences from each of the two target IICRs. The inferred
IICRs are superimposed on the left panels of Figure 2.17 (transparent red curves, 20 per
population). The inferred connectivity graphs are shown in the middle panels (transparent
green curves) and the inferred values of n and N are presented in the right panels. We observe
an agreement with the previously inferred histories, which suggests that if the real history of
human evolution were close to piecewise n-island models like those used in this work, our
method would be able to infer the parameters properly, and they would be similar to those
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Figure 2.22: Inferred number of islands for the human populations.
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maintained constant. The method can in principle infer changes in population size but this
should be part of an extension of the present work. At this stage we stress that more work is
needed before changes in connectivity and population size can be estimated together with
confidence.

The intended use case for our method consists of several inference cycles, each preceded
by adjustments to the many available parameters which include: the bounds B for the
estimated variables, the number of components c , the weight distance parameter ω, the time
interval where the distance is to be computed, the number of inference rounds along with the
tolerance ε, some parameters of the search algorithm, and other minor options. This cycle
emerges naturally from the fact that the inference process itself runs fairly quickly (a few
seconds per round), so it is feasible to prepare a script that generates inferences under several
combinations of these parameters and later do a general assessment of what are the most
plausible scenarios for the data depending on the visual fit, the consistency of the inferred
demographic histories, the distribution of the distances, etc. The SNIF software already
includes a number of auxiliary scripts that may be used in this later analysis stage, including
for instance the automatic generation of figures similar to the sub-panels of figures 2.12
and 2.13 in the main text, where the target and inferred IICRs can be compared, and the
nature of the best fitting scenarios can be understood using the connectivity graphs or the n
and N plots.

As for the number of components c , specifying a higher value will generally (but not always)
result in a better fit and a lower distance, however it also incurs in longer analysis times
and diminishing returns on the new information present in the resulting inferred histories.
These aspects can be balanced by increasing the value of c up to the point where the
inferred demographic histories start converging (for instance, as more components are added,
the connectivity graphs stop revealing new major events and any additional new degrees of
freedom are only used to refine already existing details).

As part of the user inference cycles mentioned above, the bounds system can be configured
to infer parameters for more strict or specialized symmetrical island models. For instance, it
is possible to fix the number of inferred islands to be exactly 3 by setting nmin = nmax = 3 in
the inference bounds B. Likewise, given an independent estimate of the reference size N for
the data, this information may be used to process the corresponding scaled target IICR as an
unscaled one using matching inference bounds for the parameter N.

An important point concerning scaling is that the supplied value of the mutation rate µ
must be accurately specified when inferring demographic parameters from a PSMC curve.
This value is not used during the inference, but it is used in order to properly scale the PSMC
curve and convert it into a target IICR, therefore it is important to provide the same value
of µ that was used during the PSMC analysis. Otherwise, the only parameter that can be
correctly inferred is n, since the rest of the parameters would only be accurate up to a scaling
factor. This follows from a similar logic to that of Lemma 1.

We also suggest to use the hand-fitting Python script developed in Chikhi et al. (2018) as
a complement to the automated inference process proposed in this work. You may want to
compare the results obtained this way with the output of SNIF. Doing this will help make
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sense of the data, or help set the bounds for the many SNIF parameters.
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Chapter 3.

Multi-sample summary statistics for
demographic inference

In this chapter we explore two different multi-sample summary statistics, with the goal of
using them in a future demographic inference application, similar to that of Chapter 2 with
the IICR summary statistic for a sample of size two haploids. The two summary statistics in
question are the IICRk of an n-island model, and the expected site frequency spectrum (SFS)
of a general structured model.

The IICRk of an n-island model is the most natural generalisation of the IICR. On the
other hand, the SFS is a widely used statistic that succinctly summarizes genetic diversity of
a demographic sample (Wakeley and Hey, 1997; Griffiths and Tavaré, 1998; Nielsen, 2000;
Gutenkunst et al., 2009; Excoffier et al., 2013). For both cases, the methods we present
in this chapter are centered on building and analyzing a Markov process that captures all
necessary information to compute the given summary statistic of k sampled haploid lineages
in a structured model.

Similar Markovian approaches have been used previously in the context of the coales-
cent (Hobolth et al., 2019). Notably, Herbots (1994) with the study of the structured
coalescent; Rodríguez et al. (2018) with an extension to piece-wise stationarity models for
studying the Inverse Instantaneous Coalescence Rate (IICR); and Kern and Hey (2017) with the
exact computation of the expected Joint AFS for the two-populations isolation-with-migration
(IM) demographic model.

The main challenge with the exact approach is that the Markov state space grows very
quickly (almost exponentially) with the size of the sample, which poses a hard limit on
applicability due to computational intractability. One of the aspects we explore in this chapter
to mitigate this effect is the concept of model specialization, which is a way to compress the
state space by exploiting symmetries in the studied models. The n-island model is best suitable
for this kind of analysis due to its high degree of symmetry and mathematical simplicity.

The majority of this chapter sections are dedicated to the study of the SFS summary
statistic. The SFS is a distribution ξ = (ξi)

k−1
i=1 where ξj indicates the proportion of observed

segregating sites with exactly i derived alleles. The sample can be of any size (although large
values of k quickly become computationally prohibitive) and the demographic structure can
be specified by an arbitrary migration matrix and deme-sizes vector. In §3.2 we proceed to
enumerate the state space for the continuous-time Markov process that will be studied. We
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represent the states as k × n matrices, where k is the haploid sample size, n is the number
of demes, and an entry z with coordinates (i , j) indicates that, in the corresponding state,
there are z lineages in deme j , each ancestral to i lineages from the sample (see Figure 3.1).
This state representation captures the necessary information to exactly compute the expected
SFS of the sample under any arbitrary initial sampling configuration π0. Indeed, our main
result (presented in §3.3) expresses the expected SFS as a conceptually simple function of
the data structures derived from our representation.

During §3.2, we present algorithms that will collectively allow us to enumerate the state
space and computing the corresponding transition rates. Special attention is placed to the
ordering of the states, since this allows the rate matrix to have a special block structure
(Figure 3.2) that can be exploited to achieve a computationally efficient method for obtaining
the expected times spend under each state. This method is developed in §3.3.

In §3.4 we present a specialization of the demographic model to the symmetrical n-island
model. Figure 3.3 shows how, by taking advantage of the symmetrical nature of this model
(and updating the proposed algorithms accordingly), the state space can be significantly
compressed, thus making the use of larger sample sizes computationally feasible. The figure
also shows a comparison of the size of the state space in Kern and Hey (2017) for computing
the joint SFS of a two-island isolation-with-migration model.

3.1. The structured coalescent and the IICRk

In the classical structured coalescent, the evolution of the populations can be modeled with
a continuous-time Markov chain in which the states are the vectors α = (α1, α2, ..., αn)
indicating how many lineages there are in every island.

Initially, the sum
∑

i αi is k , the total number of sampled lineages. The distribution of the αi
varies across the islands as migrations and coalescences occur. Rodríguez et al. (2018) goes
into the details of how to build such models for several examples of demographic structures.
In all cases, once we have enumerated the states and computed the transition matrix Q, then
the exponential function P (t) = exp(tQ) contains information about the state of the Markov
chain at time t. Specifically, we know that exp(tQ)[i , j ] = P (X(t) = αj |X(0) = αi). These
probabilities are useful for computing functions like the IICR, since the IICR can be obtained
given the distribution of T2. A special case for the n-island model and a sample size of k = 2
was used in Chapter 2.

In the presence of a larger sample (k > 2) we may be interested in computing its associated
IICRk function. We know from (1.3.4) how, in a size changing population, the relative size
function λ(t) is related to the distribution of Tk :

λ(t) =

(

k

2

)

P (Tk > t)

fTk (t)
. (3.1.1)

But just like in the case for the IICR, the right hand side of (3.1.1) is not constrained
to the model of panmixia with size change, or to any other demographic model for that
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matter, and as such it can be computed exactly given the distribution of Tk , and can be
estimated from real demographic data using methods like MSMC (Schiffels and Durbin, 2013)
and MAGIC (Weissman and Hallatschek, 2017). Given the similarity of this situation to the
un-identifiability problem described in Mazet et al. (2016), it is only fitting that we call this
function the IICRk :

IICRk(t) =
1− Ftk (t)
fTk (t)

. (3.1.2)

It is important to stress that the distribution of Tk (and therefore, the IICRk) depends
on the initial state of the Markov process, i.e., the sampling vector. let call this vector π0,
and assume that it is a probability distribution over the possible initial states of the Markov
process.

We can now pose the question of what are the possible states in a structured model
with n island and k lineages: “In how many different ways can k lineages migrate and
coalesce in n demes?” The answer depends on whether we can distinguish, or tell apart
from each other, the individual lineages and/or demes. If we represent each state as an
n-tuple α = (α1, α2, . . . , αn), where αi denotes the set of lineages in island i , then we are
distinguishing the islands by their position in the tuple. If additionally we distinguish the
lineages by naming them ℓ1, ℓ2, . . . , ℓk , then we could represent the following four distinct
states for n = 4 and k = 3:

({ℓ1, ℓ2}, {}, {ℓ3}, {}), ({ℓ1, ℓ3}, {}, {ℓ2}, {}),

({}, {ℓ3}, {ℓ1, ℓ2}, {}), ({}, {ℓ2}, {ℓ1, ℓ3}, {}). (3.1.3)

Now, if we were to assume that the k lineages are indistinguishable, then there would be
no need to use the names ℓj , and we could encode in each component xi simply the number
of lineages it contains. The above states reduce thus to the following:

(2, 0, 1, 0),

(0, 1, 2, 0). (3.1.4)

Alternatively, if we decide we can indeed distinguish the lineages but not the individual
islands, then we would need to keep the ℓj , but also introduce a convention on how to arrange
the demes. One way to do so is to consider only non-increasing tuples, i.e., encode each state
as α = (α1, α2, . . . , αn) where |αi | > |αi+1| for all valid i . Under these assumptions, the
states in (3.1.3) reduce to:

({ℓ1, ℓ2}, {ℓ3}, {}, {}), ({ℓ1, ℓ3}, {ℓ2}, {}, {}). (3.1.5)

Finally, if neither islands nor lineages are distinguishable, then all of the cases considered
(and more) are included in the following single, terse, state:

(2, 1, 0, 0).
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So, how many states are there in each case?

Ignoring coalescence events, we proceed to count in how many ways can exactly k lineages
be distributed in n demes. See Stanley (2011, §1.9) for more details:

distinguishable
n islands

indistinguishable
n islands

distinguishable
k lineages

nk
{

k

1

}

+

{

k

2

}

+ · · ·+
{

k

n

}

indistinguishable
k lineages

((n

k

))

p1(k) + p2(k) + · · ·+ pn(k)

Here, the symbol
{

k
i

}

denotes a Stirling number of the second kind, which counts the
number of ways to partition a set of exactly k labelled objects (the lineages) into exactly i
non-empty unlabeled subsets (the demes). These numbers can be computed like this:

{

k

i

}

=
1

i !

i
∑

j=0

(−1)i−j
(

i

j

)

jk .

More on Stirling numbers in L Graham (1994, §6.1).

The symbol
((

n
k

))

denotes a multiset coefficient. It counts the number of multisets of k
elements which are taken from a set of n elements (multisets are sets that allow repeated
elements). It can be easily shown that:

((n

k

))

=

(

n + k − 1
k

)

.

More on multisets in Stanley (2011, §1.2).

Finally, pi(k) is a restricted partition number. It counts in how may ways can the number
k be expressed as the sum of exactly i non-null numbers.

In general, an integer partition of k is a multiset of positive integers that sum to k . For
example, there are 7 possible partitions of k = 5, which can be represented as:

{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}. (3.1.6)

The order of the terms in the multiset is unspecified, so 5 = 2 + 3 is the same partition as
5 = 3 + 2. An alternative way of representing these partitions is by using product notation,
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where we specify the number of times each part is repeated, from 1 to k which is the largest
possible part. The partitions in (3.1.6) would be re-written as:

(00001), (10010), (01100), (20100), (12000), (31000), (50000). (3.1.7)

We denote by P (k), or simply P for simplicity, the total number of integer partitions of k .
There is no known closed-form expression for P , but Hardy and Ramanujan (1918) provided
the asymptotic approximation

P ∼ e
π
√
2k/3

4k
√
3
.

Algorithm P generates all partitions of k in standard notation (3.1.6).

Algorithm P: For evaluating routine Partitions(k), which visits, in reverse-lexicographic
order, all integer partitions (a1, a2, . . . , aω) such that

∑ω
i=1 ai = k .

1 ω ← 1; a← (0)1×k
2 while True:
3 aω ← k ; q ← ω − idk−1
4 while True:
5 visit (a1, a2, . . . , aω)
6 if aq 6= 2:
7 break
8 aq ← 1; q ← q − 1; ω ← ω + 1; aω ← 1
9 if q = 0:

10 exit
11 x ← aq − 1; aq ← x ; k ← ω − q − 1; ω ← q + 1

12 while k > x :
13 aω ← x ; ω ← ω + 1; k ← k − x

See Knuth (2005, §7.2.1.4) for the derivation and detailed analysis of this algorithm.
Integer partitions can be restricted in a multitude of ways. In this chapter, we are interested

in restricting the number of parts. For instance, 5 = 2 + 3 is a partition in two parts, and
5 = 2 + 1 + 1 + 1 is a partition in four parts. The symbols pj(k) thus count the possible
number of restricted partitions of k into j parts.

We may choose from these distinguishable/indistinguishable configurations depending on
our needs. For instance, if the sizes of the islands are different in the general case, then
the islands are inherently distinguishable. It is important to keep in mind that the choice of
configuration will affect the size of the state space and the transition rates of the system. In
any case, we denote the total number of states in the Markov chain by E.

Returning to the IICRk , in order to compute this function we must be able to evaluate
the state of the continuous-time Markov system until the moment of first coalescence.
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The migration events after the first coalescence need not be taken into account, nor any
coalescences after the first, since these events do not contribute to the distribution of Tk .
For that reason, any coalescence event that happens in the initial states leads to the only
absorbing state of the system. This produces a rate matrix Q with the structure:

Q =

(

Q∗ b

0 0

)

E×E

,

where Q∗ is of size (E − 1)× (E − 1), and b is of size (E − 1)× 1. We are interested in
computing P (t) = exp(tQ). The coefficient P (t)[i , E − 1] contains the probability that,
given an initial sampling in state i , the system has reached the absorbing state by time t, i.e.,
P (Tk > t).

There are many ways to compute matrix exponentials. See for instance the extensive review
in Moler and Van Loan (2003). An important problem of these methods, however, is that
they are based on matrix factorizations, which have a computational complexity of O(E3),
with E being the size of the matrix. Additionally, factorization methods generally produce
dense factors even when the matrix Q is sparse, which also poses a large challenge in memory
requirements. As a result, these methods scale poorly with the size of the problem (number
of sampled lineages or number of islands in the model).

An alternative approach can be had with the computation of only the action of the
exponential matrix. Indeed, we note that for our application, we are only interested in the
last column of exp(tQ). We can express this by saying that we want to compute the vector
(π0)⊤ exp(tQ) without having to compute exp(tQ) first. There are a number of methods
that have focused on this in the literature (see for instance Al-Mohy and Higham (2011)),
and with an asymptotic time complexity of O(E2) they provide a great improvement over
the factorization methods mentioned before. However, they still have some drawbacks: these
methods are based on the truncated computation of the Taylor expansion of exp(tQ), and a
significant part of their computational cost is spend towards finding the ideal cutoff point that
minimizes the numerical error. Moreover, they do not take advantage of the sparse nature of
the matrix Q.

Recent developments by Sherlock (2021) provide an improvement over these methods.
Sherlock proposes an algorithm that computes the action of the exponential while taking into
account the properties of Q by virtue of it being specifically the rate matrix of a Markov
process. This algorithm achieves a computational cost of O(Eρ), where ρ is the maximum
diagonal element of Q in absolute value.

An implementation of Sherlock’s algorithm with an application to demographic inference
using the IICRk will be the subject of a future study.

3.2. The structured coalescent with ancestry tracking

We proceed to describe the state space for the continuous-time Markov process that models the
migrations and ancestry of a sampled population. We do this by introducing a generalization
of the classical structured coalescent process.
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Given our description of state matrix for a model with n demes and k samples, there is a
relationship between the number of sampled lineages and the coefficients αi j of any state
matrix α, which is given by the invariant:

∑

16i6k
16j6n

i αi j = k, ∀α. (3.2.1)

We refer to the factor i in (3.2.1) as the weight of the lineages that are in the row i . It
represents the fact that each lineage in row i is ancestral to i lineages from the sample. The
number of lineages that are present in any given state α is denoted |α|, so:

∑

16i6k
16j6n

αi j = |α|,

and we call rα the number of coalescences that have taken place up to state α, such that

k = |α|+ rα, ∀α.

We note that the state matrix associated with any state α is empty for rows below rα + 1.
Indeed, if we suppose αi j > 1 for some i > rα + 2, then the weight of that lineage is at least
rα +2, and since the remaining |α| − 1 lineages have weight at least 1, then the total weight
of the state is:

k =
∑

16i6k
16j6n

i αi j > (rα + 2) + (|α| − 1) = k + 1,

which is absurd.

We denote by E the set of all possible states α, and by E the total number of states:

E =
{

α ∈ Z
k×n
+ :

k
∑

i=1

n
∑

j=1

i αi j = k

}

, |E| = E.

The set E is clearly defined by the sample size k and number of demes n, but in order to
avoid notation clutter we keep this dependency implicit.

Another important notion related to the state matrices are the contribution vectors. The
contribution vector of state α, denoted ψα, is defined as the sum by rows of the states
matrices:

ψα =

(

∑

16j6n

α1,j ,
∑

16j6n

α2,j , . . . ,
∑

16j6n

αk,j

)

.

Returning to the example from Figure 3.1, the contribution vectors are:

ψα1 = (4, 0, 0, 0); ψα2 = ψα3 = (2, 1, 0, 0);

ψα4 = ψα5 = (1, 0, 1, 0); ψα6 = (0, 0, 0, 1).
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In general, for i < k , the coefficient ψα(i) represents the contribution to E(ξi) for each unit
of time the process spends in state α on average (see §3.3). We denote by P the set of all
possible contribution vectors, and by P its total number of elements:

P =
{

ψ ∈ Z
k
+ :

k
∑

i=1

i ψ(i) = k

}

, |P| = P. (3.2.2)

In this case, P depends only on the number of samples k (in fact P = E when n = 1), but
once again we keep this dependency implicit.

3.2.2. Transitions between states

From this point onwards we use the notation ei j to indicate a matrix of size k × n with null
coefficients except for the one in row i and column j , which has a value of 1.

There are two possible types of state transitions: migration events and coalescence events.
During a migration event, one lineage in deme j migrates to deme g 6= j with rate mjg. We
collect these rates in the matrix

M = (mjg) with 1 6 j, g 6 n; j 6= g.

We convene, for the sake of completeness, that the diagonal elements of M are null.
Given two states α and β, and a weight of i ∈ {1, . . . , k − 1}, the process can transition

from α to β via migration event if for some j, g ∈ {1, . . . , n}

β = α− ei j + eig, (3.2.3)

and this transition happens with rate mjg for every lineage that could potentially migrate,
of which there are αi j . Algorithm M generates all possible destination states β given any
departure state α.

Algorithm M: For evaluating routine MigrationDestinations(M, α), which given the
migration rates M and a state matrix α of size k × n, visits all the tuples (β,m) where
β is a state satisfying (3.2.3) and m (which may be null) is the corresponding transition
rate.

1 for each i in {1, 2, . . . , k − 1}:
2 for each j in {1, 2, . . . , n}:
3 if αi j > 1:
4 for each g in {1, 2, . . . , j − 1, j + 1, . . . , n}:
5 β ← α− ei j + eig
6 m ← αi j mjg
7 visit (β,m)
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We note that Algorithm M visits all potential migration destinations, regardless of whether
a transition would be possible given the migration ratesM. This behaviour is desired because,
in addition to generating the migration rates, we use the algorithm to build the state space E
by repeatedly simulating all possible migrations (see §3.2.4 and Algorithm A).

A coalescence happens when two lineages in the same deme j are replaced with their
immediate common ancestor, also in deme j . This coalescence happens with a rate that is
the inverse of the deme size. We collect the deme sizes in the vector

S = (sj)nj=1.

Given two states α and β, and two values i , h ∈ {1, . . . , k − 1}, the process can transition
from α to β via coalescence event if for some j ∈ {1, . . . , n}

β = α− ei j − ehj + ei+h, j , (3.2.4)

and this transition happens with rate 1/sj for every pair of lineages that can coalesce, of
which there are

(

αi j
2

)

if h = i , and αi j αhj otherwise. Algorithm C generates all possible states
to which the process can transition by a coalescence from α.

Algorithm C: For evaluating routine CoalescenceDestinations(S, α), which given
the deme sizes and a state matrix α, visits all the tuples (β, c) where β is a state
satisfying (3.2.4) and c 6= 0 is the corresponding coalescence rate.

1 for each j in {1, 2, . . . , n}:
2 for each i in {1, 2, . . . , k − 1}:
3 if αi j > 1:
4 if αi j > 2:
5 β ← α− 2ei j + e2i ,j
6 c ← αi j(αi j − 1)/(2si)
7 visit (β, c)

8 for each h in {i + 1, . . . , k − 1}:
9 if αhj > 1:

10 β ← α− ei j − ehj + ei+h,j
11 c ← αi j αhj/si
12 visit (β, c)

3.2.3. Grouping and sorting the states

We now focus on defining the rate matrix of the Markov process. This is a matrix Q of size
E × E, where coefficient (ℓ0, ℓ1) contains the rate of transition from state αℓ0 to state αℓ1

when ℓ0 6= ℓ1; and the diagonal elements are defined such that
∑E
ℓ=1Q(ℓ0, ℓ) = 0. To define
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such a matrix, we first need to impart an order ≺ on the set of all states E . The focus of
this section will therefore be the construction of a bijective map

L : E → {1, . . . , E}
αℓ 7→ ℓ (3.2.5)

such that 1 6 ℓ0 < ℓ1 6 E ⇔ αℓ0 ≺ αℓ1 .

We start with the partial order given by the natural transition of the process from states
with more living lineages to states with fewer living lineages. Indeed, migration events do
not change the number of living lineages, and a coalescence events decrease them by one,
therefore |α| (or equivalently, rα) decreases (increases) during any given instantiation of the
process. We convene then that:

rα < rβ ⇒ α ≺ β. (3.2.6)

In the example from Figure 3.1, since rα1 = 0 and rα3 = 1, we have α1 ≺ α3.
By grouping together the states that share the same number of live lineages, we get a

partition of the state space into k disjoint parts (one part for each possible value of rα
from 0 to k − 1). We denote these parts by Ei , each with Ei elements, such that E = ∪iEi
and E =

∑

i Ei :

Ei =
{

α ∈ E : rα = i − 1
}

, |Ei | = Ei , 1 6 i 6 k.

The partition {Ei} can be understood as the quotient set E/R, where R is the equivalence
relation

α R β ⇔ rα = rβ ⇔ |α| = |β|; α, β ∈ E . (3.2.7)

This partial order imposes a k × k block structure on Q, where block (i , h) has dimen-
sions Ei × Eh, and contains the rates of transitioning from the states in Ei to the states
in Eh.

Q =











[Q11]E1×E1 [Q12]E1×E2 · · · [Q1k ]E1×Ek
[Q21]E2×E1 [Q22]E2×E2 · · · [Q2k ]E2×Ek

...
...

. . .
...

[Qk1]Ek×E1 [Qk2]Ek×E2 · · · [Qkk ]Ek×Ek











E×E

. (3.2.8)

We note that if the process is at a non-absorbing state α ∈ Ei , then it can only transition
to another state in Ei via migration, or to a state in Ei+1 via coalescence, therefore all the
coefficients of block [Qih] are null when h 6= i and h 6= i + 1. Matrix Q is thus block
bi-diagonal, with blocks Ai = [Qi i ] for 1 6 i 6 k in the diagonal, and blocks Bi = [Qi , i+1]
for 1 6 i 6 k − 1 in the upper diagonal.

Q =















A1 B1
A2 B2

. . . . . .

Ak−1 Bk−1
Ak















E×E

.
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We call Ai the migration blocks and Bi the coalescence blocks of Q. We further note that
migration block Ak is null, since there are no more transitions once the process arrives at any
of the stationary states of Ek . An alternative representation of Q is thus possible:

Q =

(

Q∗ B

0 0

)

, (3.2.9)

where

Q∗ =















A1 B1
A2 B2

. . . . . .

Ak−2 Bk−2
Ak−1















E∗×E∗

and B =















0

0

...
0

Bk−1















E∗×Ek

.

Here, Q∗ is known as the sub-intensity matrix and contains the rates of transition between
the transient states E∗ = E − Ek . E∗ is the number of transient states E − Ek .

Next we focus on defining the order ≺ for the states within the sets Ei . We begin by
defining another equivalence relation C between states of E . We say that two states are
equivalent under C if they have the same contribution vector:

α C β ⇔ ψα = ψβ; α, β ∈ E . (3.2.10)

This relation partitions the state space into disjoint sets identified by their common contribution
vector. We can thus think of each different contribution vector as the representative of an
equivalence class of states, or a macrostate. In order to count how many different macrostates
there are in a process with sample size k , we need to briefly return to integer partitions. It
is clear from their product representation (3.1.7) that the set of all integer partitions of k
is the set P of all possible state contribution vectors defined in (3.2.2). There are thus P
possible macrostates in the process. The number of parts in macrostate ψα ∈ P is given by
∑k
i=1ψα(i) = |α|. We group the macrostates by their number of parts following a similar

procedure to how we group the states by their number of live lineages in (3.2.7). Overloading
the name R to define a relation on P , we say that:

ψα R ψβ ⇔ |α| = |β| ⇔ rα = rβ; ψα, ψβ ∈ P. (3.2.11)

This partitions P into k disjoint sets Pi , each with Pi macrostates, such that P = ∪iPi
and P =

∑

i Pi :

Pi =
{

ψα ∈ P : rα = i − 1
}

, |Pi | = Pi , 1 6 i 6 k.

We sort the macrostates of Pi in reverse lexicographic order of standard notation (3.1.6)
as does Algorithm P, so for k = 5 we have (4, 1) ≺ (3, 2) in P2, and (3, 1, 1) ≺ (2, 2, 1) in
P3. This is a total order in Pi , so for each i ∈ {1, . . . , k} we will assume the existence of a
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bijective map Li defined on Pi such that Li(ψ) ∈ {1, . . . , Pi}, and for ψ, ϕ ∈ Pi , we have
ψ ≺ ϕ⇔ Li(ψ) < Li(ϕ).

Since ψα ∈ Pi ⇔ rα = i − 1 ⇔ α ∈ Ei , this order in Pi motivates a natural way to
introduce a partial order in the elements of Ei . We convene that for α, β ∈ Ei ,

ψα ≺ ψβ ⇒ α ≺ β. (3.2.12)

We can group together the uncomparable states of Ei by returning to the equivalence
relation C defined in (3.2.10) such that α C β ⇔ ψα = ψβ for α, β ∈ Ei . There are Pi
equivalence classes in the quotient set Ei/C, which we will denote Eip, each with Eip states.
We now have Ei = ∪Pip=1Eip, and Ei =

∑Pi
p=1 Eip

Eip =
{

α ∈ Ei : Li(ψα) = p
}

, |Eip| = Eip, 1 6 p 6 Pi .

As was the case with Q in (3.2.8), this partial order on Ei imposes a Pi ×Pi block structure
on migration block Ai , and a Pi×Pi+1 block structure on coalescence block Bi . For p, q 6 Pi ,
sub-block (p, q) of Ai has dimensions Eip × Eiq, and for q′ 6 Pi+1, sub-block (p, q′) of Bi
has dimensions Eip × Ei+1, q′ .

Upon closer inspection, we see that the contribution vectors of the states in Ei are invariant
under migration. Indeed, if β = α− ei j + eig, then the sum of row i of both states remains
unchanged, and thus ψα = ψβ. This implies that sub-block (p, q) of migration block Ai has
all null entries except when p = q, and thus Ai is Pi × Pi block-diagonal. We denote the
diagonal sub-blocks of Ai as Aip ∈ R

Eip×Eip for 1 6 p 6 Pi . There is no such simplification for
coalescence block Bi , but we group all its sub-blocks in each block-column as Biq ∈ R

Ei×Ei+1, q

with 1 6 q 6 Pi+1 for later convenience:

Ai =











Ai1
Ai2

. . .

Ai Pi











Ei×Ei

; Bi =
(

Bi1 Bi2 · · · Bi Pi+1
)

Ei×Ei+1
. (3.2.13)

To make ≺ a total order, we need to define it for the states within each of the P sub-
sub-spaces Eip. There is no further benefit in doing so in terms of the structure of the rate
matrix Q in the general case, but it is still a necessary step for building it. We thus convene
that the order of the states in Eip is the one obtained by applying algorithm M to state
α =

(

L−1i (p)⊤, 0k×1, . . . , 0k×1
)

and all its subsequent migration destinations repeatedly (this
procedure is detailed in algorithm A). Therefore, for every i = 1, . . . , k and p = 1, . . . , Pi we
assume the existence of a bijective map Lip defined on Eip such that Lip(α) ∈ {1, . . . , Eip}
and α ≺ β ⇔ Lip(α) < Lip(β). With this construction, we can finally map every state
α ∈ E to an index ℓ ∈ {1, . . . , E}, and the definition of the global map L (3.2.5) would be

L(α) = σip + Lip(α), ∀α ∈ E (3.2.14)
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always be defined regardless of the value of n by placing their associated contribution vector
in the first column:

ψ 7→ α = (ψ⊤ 0 0 · · · 0)k×n. (3.2.15)

The contribution vectors ψ are obtained by converting the partitions (a1, . . . , aω) generated
by algorithm P to product notation (3.1.7). See lines [3 ··· 6] in Algorithm Q.

The next step is to generate (and add to Eip) all the states that can be reached via
migration from the initial state (3.2.15) using Algorithm M, then all the states that can be
reached from those new states, and so on until no new states are being visited or added. This
operation is accomplished using a queue data structure, or any generic data structure that
implements the FIFO (first in, first out) interface, where elements are added at one end of
the queue, and removed from the other end.

For our use, we may represent a queue of states as a tuple of length 0 6 ω < ∞ with
elements in E , and two associated functions: enq and deq, which add (enqueue) and remove
(dequeue) elements from the queue, respectively. More precisely, we say that U ∈ Eω is a
queue of size ω; and for U = ∪ω>0 Eω we define the maps

enq : U × E → U ,
(

(α1, α2, . . . , αω), α
)

7→
(

α1, α2, . . . , αω, α
)

;

deq : U\E0 → E × U ,
(

α1, α2, . . . , αω
)

7→
(

α1, (α2, . . . , αω)
)

.

For a formal treatment of the queue abstract data structure (and other common data
structures in computer science), see Lehmann and Smyth (1981).

Each time a state β is found to be reachable via migration from state α, we accumulate the
corresponding migration rate m in coefficient Aip(Lip(α),Lip(β)) of the migration sub-block.
The index mapping functions Lip are also progressively constructed. We represent them as
subsets of the cartesian product Eip × {1, . . . , Eip}, which contains tuple (α, ℓ) if and only
if Lip(α) = ℓ. Building these data structures is sufficient to fully define the state space,
since the state spaces Eip are simply the domains of the maps, which we reference using the
notation Eip = DLip . Algorithm A summarizes the proposed procedure for this stage.

Ò Implementation Notes

An efficient implementation of Algorithm A should not repeatedly reallocate and rebuild
matrix Aip as indicated in step [11]. Instead, the sparsity of these matrices should be exploited
by using a space-efficient representation like the DOK (dictionary of keys) format, for instance.
In such cases, step [11] simply adds the key-value pair ((ℓ0, ℓ1), m) to the dictionary.

Coalescence stage. The goal for this stage is to compute the coalescence sub-blocks Bip,
and consequently update the diagonal entries of sub-blocks Aip.
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Algorithm A: For evaluating routine MigrationSubBlock(M, α0), which given the
pairwise migration ratesM of the island model and a protostate α0 (3.2.15) in Eip, builds
and returns (Aip,Lip).

1 Aip ← (0)1×1; Lip ←
{

(α0, 1)
}

; U ← (α0)1×1
2 while size(U) > 0:
3 (α,U)← deq(U)
4 ℓ0 ← Lip(α)
5 for each (β,m) in MigrationDestinations(M, α):
6 if β ∈ DLip :
7 ℓ1 ← Lip(β)
8 Aip(ℓ0, ℓ1)← Aip(ℓ0, ℓ1) +m

9 else:
10 ℓ1 ← |Lip|+ 1; Lip ← Lip ∪

{

(β, ℓ1)
}

11 Aip ←
(

Aip 0

0 0

)

ℓ1×ℓ1
; Aip(ℓ0, ℓ1)← m

12 U ← enq(U, β)
13 Aip(ℓ0, ℓ0)← Aip(ℓ0, ℓ0)−m
14 return (Aip,Lip)

Since at this point all the states Eip are known, as well as the index maps Li and Lip,
the procedure simply consists in visiting, for every state α, all possible states β that can
be reached by coalescence. This is accomplished by using Algorithm C and accumulating
the coalescence rates in coefficient Biq(σip − σi + Lip(α),Li+1, q(β)) for the corresponding
value of q. The detailed procedures are presented in lines [9 ··· 18] of Algorithm Q. In general,
Algorithm Q presents the complete construction of the Markov process, showing the details
of how to combine all algorithms specified so far. Here, we omit some of the more menial
details of the process, which includes how to compute the sizes Ei and Eip given the existing
information, and how to assemble the final rate matrix Q and index map L by arranging their
respective sub-parts Aip, Bip and Lip.
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Algorithm Q: For evaluating routine RateMatrix(k, n,M,S), which given the model
parameters, builds the rate matrix of the Markov process and the associated data structures.

1 L1 ← {}; L2 ← {}; · · · ; Lk ← {}
2 for each a = (a1, a2, . . . , aω) in Partitions(k):
3 α← (0)k×n
4 for each j in {1, . . . , ω}:
5 αaj 1 ← αaj 1 + 1

6 i ← k − ω + 1
7 p ← |Li |+ 1; Li ← Li ∪

{

(ψα, p)
}

8 (Aip,Lip)← MigrationSubBlock(M, α)

9 for each i in {1, . . . , k − 1}:
10 for each q in {1, . . . , Pi+1}:
11 Biq ← (0)Ei×Eiq
12 for each p in {1, . . . , Pi}:
13 σ ← Ei1 + Ei2 + · · ·+ Ei , p−1
14 for each (α, ℓ0) in Lip:
15 for each (β,m) in CoalescenceDestinations(S, α):
16 q ← Li+1(ψβ); ℓ1 ← Li+1 q(β)
17 Biq(σ + ℓ0, ℓ1)← Biq(σ + ℓ0, ℓ1) +m

18 Aip(ℓ0, ℓ0)← Aip(ℓ0, ℓ0)−m
19 return (Q,L)

3.3. Computing the expected SFS

In this section we show, given the Markov process defined previously, how to compute the
expected SFS for an arbitrary model structure and sample configuration. This computation is
reduced to a linear algebra problem for which we propose an efficient solution in Algorithm X.

In the infinite-sites model, all mutations occur on unique sites, and as such the number of
mutations is equal to the number of segregating sites. When a mutation occurs in a lineage
with i descendants in the sample (a lineage of weight i), the corresponding segregating site
has i copies of the mutated allele. Additionally, since we model mutations as a Poisson
process of intensity θ along each branch of the genealogy, the total number of mutations that
occur in lineages of weight i has an expected value of θ times the expected total length of
such lineages, which we denote as ζi :

E(ξi) = θ E(ζi).

In the example of Figure 3.1, ζ1, ζ2 and ζ3 would be the total length of red, blue and green
branches, respectively.
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Since we are interested in the normalized AFS ξ̄ = ξ/‖ξ‖1, the parameter θ is cancelled
away, so we focus exclusively on the quantities E(ζi). These can be computed by adding, for
every transient state α ∈ E\Ek = E∗, the number of lineages of weight i (given by ψα(i))
multiplied by the expected total time spent in the state before absorption, which we denote
by Tα. We thus have:

E(ζi) =
∑

α∈E∗

ψα(i)E(Tα). (3.3.1)

In order to compute the times E(Tα), we return to the sub-intensity matrix Q∗ defined
in (3.2.9). This matrix is non-singular, and G = (−Q∗)−1, known as the process’ Green
matrix, has the property that coefficient G(ℓ0, ℓ1) is the expected time that the process
spends in state αℓ1 before absorption, given an initialization at state αℓ0 (see Bladt and
Nielsen (2017), Theorem 3.1.14 ). With an initial distribution for the transient states π0 =
(

π0(1), π0(2), . . . , π0(E∗)
)⊤

, we can then write E(Tαℓ) as

E(Tαℓ) =

E∗
∑

ι=1

π0(ι)G(ι, ℓ), (3.3.2)

where E∗ = |E∗| = E − Ek . We can combine and rearrange equations (3.3.1) and (3.3.2) to
get

E(ζi) =

E∗
∑

ι=1

π0(ι)

E∗
∑

ℓ=1

G(ι, ℓ) ψαℓ(i),

which can be further simplified when considering all values of 1 6 i < k as

E(ζ) = (π0)⊤ · G ·Ψ, (3.3.3)

where Ψ, called the contribution matrix, is an E∗ × (k − 1) matrix where coefficient
Ψ(ℓ, i) = ψαℓ(i) is the number of lineages of weight i in state αℓ.

3.3.1. Numerical solution

We now turn to the question of how to numerically solve problem (3.3.3). The computation
of matrix G involves inverting Q∗, which grows exponentially in size with the number of the
samples k (see Figure 3.3), so it is inevitable that the computational cost of the solution will
eventually exceed the available resources regardless of the underlying method, given a large
enough value of k = kcritical. Due to this inherent and unavoidable complexity, our strategy
simply consists in exploiting the sparsity and structure of Q (§3.2.3) to delay kcritical as much
as possible.

We avoid the direct computation of the inverse G. Instead, we compute the product
(π0)⊤ · G by solving the linear system

A · t = π0, (3.3.4)
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where A = (−Q∗)⊤. The unknowns of this system are the coefficients of a vector t ∈ R
E∗×1,

which contains in component ℓ the time E(Tαℓ) given initial distribution π0. Following the
notation conventions of §3.2.3, we denote by ti and π0i the segments of vectors t and π0

corresponding to states in Ei , for i = 1, . . . , k − 1; and by tip and π0ip the sub-segments
corresponding to the states in Eip for p = 1, . . . , Pi . We can thus write system (3.3.4) in the
following block form:











−A⊤1
−B⊤1 −A⊤2

. . . . . .

−B⊤k−2 −A⊤k−1











·











t1
t2
...

tk−1











=











π01
π02
...

π0k−1











. (3.3.5)

This structure immediately suggests the sequence of sub-problems:

−A⊤1 · t1 = π01,
−A⊤i · ti = bi ··= π0i + B⊤i−1 · ti−1, i = 2, . . . , k − 1. (3.3.6)

We note that in (3.3.6), the problems must be solved sequentially, since the solution segment ti
depends on the previous one ti−1. Assuming thus that i > 2 and ti−1 is known, we now focus
on computing ti . Exploiting the sub-structure of the system matrix Ai (3.2.13), the problem
−A⊤i · ti = bi can be decomposed into the following Pi sub-problems (Figure 3.2):

− A⊤ip · tip = bip ··= π0ip + B⊤i−1, p · ti−1, p = 1, . . . , Pi . (3.3.7)

We note that the computation of the solution sub-segment tip does not depend on any
other sub-segments of ti ; only on the already-available segment ti−1. This implies that all Pi
problems in (3.3.7) can be solved in parallel. For each one of them we use the Successive
Over-Relaxation iterative method: given an initial guess t0ip, the scheme (known as SOR(ω))
generates a sequence of solutions t1ip, t

2
ip,. . . ,tκip, where coefficient tκip(ℓ) is computed using

information from tκip(ι) for ι < ℓ and tκ−1ip (ι) for ι > ℓ, so there is no need to keep two
versions of the solution sub-segment tip in memory. We use the norm of the residual vector
resκip = −A⊤ip · tκip − bip as the convergence metric, so for a given desired precision δ, the
stopping criterion is ‖resκip‖∞ < δ. We denote by t̂ip the final approximation tκip of the
unknown vector tip. The detailed procedure is given in lines [7 ··· 10] of Algorithm X.

The parameter ω in the SOR method affects the rate of convergence. A necessary condition
for convergence is 0 < ω < 2, and for system matrices that are M-matrices (as is the case
for all the Aip), a sufficient condition for convergence is 0 < ω 6 1 (see §7.2.3 in Hackbusch
(1994)). In practice, values of ω larger than 1 can be used to accelerate convergence despite
not satisfying the sufficient convergence condition.

à Math Minute

We referenced the concept of M-matrices in the previous argumentation. An M-matrix is
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a matrix A ∈ R
n×n satisfying the conditions:

• A(i , i) > 0 for all i = 1, . . . , n;
• A(i , j) 6 0 for all i 6= j ;
• A is non-singular, with A−1(i , j) > 0 for all i and j .
It is quite straightforward to verify that all our system matrices Aip are M-matrices. Indeed,

all diagonal elements of −Q∗ are positive, all the off-diagonal elements are non-negative,
and all coefficients of (−Q∗)−1 = G are also non-negative since they can be interpreted as
expected permanence times.

Algorithm X summarizes our proposed method for computing the expected SFS ξ̂ given
the rate matrix Q of the Markov process and an initial state distribution π0.

Algorithm X: For evaluating routine ExpectedScaledAFS(Q,L, π0, t̂, ω, δ), which given
the data structures associated with the Markov process and an anterior distribution of
states π0, updates an approximate solution t̂ to problem (3.3.4) using a SOR(ω) iterative
scheme until ‖res‖∞ < δ, and returns que corresponding value of ζ̂.

1 ζ ← (0)1×(k−1)
2 for each i in {1, 2, . . . , k − 1}:
3 for each p in {1, 2, . . . , Pi} in parallel :
4 bip ← π0ip
5 if i > 1:
6 bip ← bip + B

⊤
i−1, p · t̂i−1

7 repeat
8 for each ℓ in {1, 2, . . . , Eip}:
9 t̂ip(ℓ)← (1− ω)t̂ip(ℓ)− ω

(

bip(ℓ) +
∑

ι6=ℓ Aip(ι, ℓ)t̂ip(ι)
)

/Aip(ℓ, ℓ)

10 until ‖A⊤ip · t̂ip + bip‖∞ < δ

11 ψ ← L−1i (p)
12 for each h in {1, 2, . . . , k − 1}:
13 ζ(h)← ζ(h) + ψ(h) ‖t̂ip‖1
14 return ζ

Ò Implementation Notes

The read and write operation in line [13] must be implemented as an atomic operation
due to the fact that ζ is shared across parallel threads. Otherwise, the values of ζ(h) could
become corrupted as one thread reads a value, and another thread immediately writes another
incompatible value to it. If atomic operations are not available, then lines [11 ··· 13] must be
moved to a separate, non-parallel, p loop.
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3.3.2. Error analysis

Algorithm X guarantees that after each final iteration of the SOR scheme, the residues
resip = −A⊤ip · t̂ip − bip satisfy ‖resip‖∞ < δ. It is then easy to verify that the global residue
of system (3.3.4) given by res = A · t̂ − π0 satisfies ‖res‖∞ < δ. This is a consequence
of the fact that the vectors resip are simply sub-segments of res, and that for X ⊂ R we
have maxx∈X |x | < δ ⇔ ∀x ∈ X, |x | < δ. We can thus say that given δ > 0, Algorithm X
computes ζ̂ = t̂⊤ ·Ψ, an approximation of E(ζ) (3.3.3) where

‖A · t̂ − π0‖∞ < δ.

However, the “end user” of Algorithm X is not necessarily interested in t̂ or the residue,
but rather in

E(ξ̄) =
E(ζ)

‖E(ζ)‖1
,

so it would be more meaningful to control the norm of the error err = E(ξ̄)− ξ̂, where ξ̂ is
the approximation of E(ξ̄) given by Algorithm X:

ξ̂ =
ζ̂

‖ζ̂‖1
.

Our goal for this section is therefore to find a way of controlling ‖err‖∞ by controlling ‖res‖∞.

à Math Minute

Some preliminary results about p-norms and their induced matrix norms:

• If 0 < p < q 6∞, then for any x ∈ R
n:

‖x‖p 6 n
1
p
− 1
q ‖x‖q and ‖x‖q 6 ‖x‖p, (3.3.8)

where we convene that 1/q = 0 for the case q =∞. This result follows form Hölder’s
inequality for R

n vectors. No tighter bounds are possible in the general case, since
equality is achieved with x = (1, 1, . . . , 1) and x = (1, 0, . . . , 0) respectively.

• For any non-null x , y ∈ R
n we have

∥

∥

∥

∥

x

‖x‖ −
y

‖y‖

∥

∥

∥

∥

6
2‖x − y‖
‖x‖ , (3.3.9)
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regardless of the norm ‖ · ‖. Proof:

∥

∥

∥

∥

x

‖x‖ −
y

‖y‖

∥

∥

∥

∥

=

∥

∥

∥

∥

x

‖x‖ −
y

‖x‖ +
y

‖x‖ −
y

‖y‖

∥

∥

∥

∥

=

∥

∥

∥

∥

1

‖x‖(x − y) +
(

1

‖x‖ −
1

‖y‖

)

y

∥

∥

∥

∥

6
‖x − y‖
‖x‖ +

∣

∣

∣‖x‖ − ‖y‖
∣

∣

∣

‖x‖‖y‖ ‖y‖ 6 2‖x − y‖‖x‖ .

• Any norm in R
n can be used to define a norm in R

m×n as follows:

‖A‖ = sup
{

‖A · x‖ : x ∈ R
n, ‖x‖ = 1

}

= sup
{

‖A · x‖/‖x‖ : x ∈ R
n, ‖x‖ 6= 0

}

.

Matrix norms defined this way are called induced norms. Their most useful property is
a direct consequence of the definition:

‖A · x‖ 6 ‖A‖ ‖x‖,

In addition to the standard norm properties, induced norms also satisfy the sub-
multiplicative property:

‖A · B‖ 6 ‖A‖ ‖B‖.
Two notable induced norms:

‖A‖1 = max
16j6n

m
∑

i=1

|ai j |, ‖A‖∞ = max
16i6m

n
∑

j=1

|ai j |.

Notice that ‖A‖∞ = ‖A⊤‖1.

A lower bound for ‖err‖∞ can be derived as follows:
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‖err‖∞ 6 ‖err‖1

=

∥

∥

∥

∥

∥

E(ζ)

‖E(ζ)‖1
− ζ̂

‖ζ̂‖1

∥

∥

∥

∥

∥

1

6
2
∥

∥E(ζ)− ζ̂
∥

∥

1

‖E(ζ)‖1

=
2‖Ψ⊤ · (t − t̂)‖1
‖E(ζ)‖1

=
2‖Ψ⊤ · (A−1π0 − t̂)‖1

‖E(ζ)‖1

=
2‖Ψ⊤ · A−1 · (π0 − A · t̂)‖1

‖E(ζ)‖1
=
2‖Ψ⊤ · A−1 · res‖1

‖E(ζ)‖1

6
2‖Ψ⊤‖1 ‖A−1‖1 ‖res‖1

‖E(ζ)‖1
6 2E∗

‖Ψ‖∞ ‖G‖∞ ‖res‖∞
‖E(ζ)‖1

.

We note that since ‖Ψ‖∞ is the largest possible row sum of Ψ, and the rows of Ψ are the
contribution vectors of the states of E∗, then ‖Ψ‖∞ = maxα∈E∗ |α| = k . We also note that
‖G‖∞ = ‖(Q∗)−1‖∞. With this we have

‖err‖∞ 6
2kE∗ ‖(Q∗)−1‖∞
‖E(ζ)‖1

‖res‖∞. (3.3.10)

In order to continue we need an upper bound for ‖E(ζ)‖1. In what follows we note that since
Ψ > 0 and G⊤ = A−1 > 0, then all of the coefficients of G ·Ψ are also non-negative.

∥

∥E(ζ)
∥

∥

1
=
∥

∥(π0)⊤ · G ·Ψ
∥

∥

1
=

k−1
∑

i=1

∣

∣

∣

∣

E∗
∑

ℓ=1

π0(ℓ) (G ·Ψ)(ℓ, i)
∣

∣

∣

∣

=

E∗
∑

ℓ=1

π0(ℓ)

k−1
∑

i=1

(G ·Ψ)(ℓ, i)

=

E∗
∑

ℓ=1

π0(ℓ)

k−1
∑

i=1

E∗
∑

ι=1

G(ℓ, ι)Ψ(ι, i)

=

E∗
∑

ℓ=1

π0(ℓ)

E∗
∑

ι=1

G(ℓ, ι)

k−1
∑

i=1

Ψ(ι, i)

=

E∗
∑

ℓ=1

π0(ℓ)

E∗
∑

ι=1

G(ℓ, ι)|αι|.

Since ι 6 E∗, αι is a transient state and therefore has at least two live lineages, thus:

∥

∥E(ζ)
∥

∥

1
>

E∗
∑

ℓ=1

2π0(ℓ)

E∗
∑

ι=1

G(ℓ, ι)

>

E∗
∑

ℓ=1

2π0(ℓ) G(ℓ, ℓ).

The coefficient G(ℓ, ℓ) is E(Tαℓ|X0 = αℓ), the expected total time the process spends in
state αℓ prior to absorption, given that the process started in that same state. This expected
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time can be computed as the product of the total expected number of visits to state αℓ

E(Nαℓ |X0 = αℓ), multiplied by the expected duration of each visit, which is an exponentially
distributed time with parameter −Q(ℓ, ℓ). An upper bound for G(ℓ, ℓ) thus can be obtained
by observing that E(Nαℓ|X0 = αℓ) > 1, since at least one visit is expected at state αℓ in lieu
if it being the initial state. Additionally, we note that:

−Q(ℓ, ℓ) 6
E∗
∑

ι=1

|Q(ℓ, ι)| 6 max
16ℓ6E∗

E∗
∑

ι=1

|Q(ℓ, ι)| = ‖Q∗‖∞.

This implies that the expected duration of one visit to state αℓ is greater than 1/‖Q∗‖∞.
With this we have:

∥

∥E(ζ)
∥

∥

1
>

2

‖Q∗‖∞

E∗
∑

ℓ=1

π0(ℓ) = 2
‖π0‖1
‖Q∗‖∞

.

Returning then to (3.3.10):

‖err‖∞ 6
2kE∗ ‖(Q∗)−1‖∞
‖E(ζ)‖1

‖res‖∞

6
kE∗ ‖Q∗‖∞‖(Q∗)−1‖∞

‖π0‖1
‖res‖∞

=
kE∗κ(Q∗)

‖π0‖1
‖res‖∞, (3.3.11)

where κ(Q∗) is the condition number of the matrix Q∗. These results can be summarized in
the following

Lemma 2. For any ε > 0, it is sufficient to choose δ as

δ =
‖π0‖1

kE∗κ(Q∗)
ε (3.3.12)

to have
‖res‖∞ < δ ⇒ ‖err‖∞ < ε.

Having a clear criterium for how to control the global error of the normalized expected
SFS E(ξ̄), we can proceed to present the main and final algorithm of this chapter:

Algorithm R: For evaluating routine ExpectedAFS(k, n,M,S, α0, ω, ε), which given
the model parameters and an initial sampling state α0 ∈ E1, returns an approximation of
E(ξ̄) with global error ‖err‖∞ < ε using a SOR(ω) iterative scheme.

1 (Q,L)← RateMatrix(k, n,M,S)
2 π0 ← (0)1×E∗ ; π0

(

L−1(α0)
)

← 1
3 δ ← ε ‖π0‖1/

(

kE∗κ(Q∗)
)

4 t0 ← (0)E∗×1
5 ζ̂ ← ExpectedScaledAFS(Q,L, π0, t0, ω, δ)
6 return ζ̂/‖ζ̂‖1
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3.3.3. Early termination

The following discussion is concerned with the eventual use of Algorithm R in the context of
demographic inference, where early termination is desirable.

Given a value of ε, Algorithm R computes a numerical approximation of E(ξ̄) with an
error ‖err‖∞ < ε. However, the internal solution method we use for each of the P sub-
sub-problems (3.3.7) is iterative, meaning that progressively-accurate approximations for
which tip are being computed, which in turn could be used to compute progressively-accurate
approximations of ζ̂. Obtaining early approximations of ζ̂ (i.e., approximations where ‖err‖∞
is not smaller than ε yet) could be useful for implementing more flexible stopping criteria,
where we allow the method to converge to the desired high accuracy ε only if the SFS
is approaching a previously designated target SFS; and otherwise terminate the process
prematurely, thus saving computational resources.

The key insight for our proposal comes from the observation that Algorithm X operates by
simply updating or replacing a starting solution t0 with a more accurate one t̂, for which
‖res‖∞ < δ. This means that it is possible to continue refining the solution by repeatedly
invoking the routine, each time passing as t0 the final result t̂ from the previous invocation,
and a smaller value of δ.

One possible realization of this idea is as follows: suppose we are interested in observing
d intermediate solutions ζ̂ prior to the convergence with ‖err‖ < ε, then we may define d
intermediate tolerances:

ε1 = ε
1/d . . . εκ = ε

κ/d . . . εd = ε, (3.3.13)

along with the corresponding δκ = δ
κ/d , and invoke Algorithm X d times: once for each of

the δκ. After each invocation we evaluate the corresponding early approximation of E(ξ̂),
and decide whether to continue or terminate the process. The sequence (3.3.13), while
certainly not unique, satisfies the desirable properties that the εκ are in descending order
(assuming ε < 1), and are uniformly log-spaced. This implies that the subsequent invocations
of Algorithm X, which improve the accuracy of the solution from δκ to δκ+1, should take
similar times to execute.

There is a tradeoff to be balanced between execution time and level of control when
choosing the value of d , since the products Bi−1, p · t̂i−1 and Ψ⊤ · ζ̂ (lines [6] and [12 ··· 13]
of Algorithm X, respectively) have to be computed d times each. See Figure 3.10.

The following revision of Algorithm R takes an additional parameter (d), and visits d
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increasingly-accurate approximations of E(ξ̄).

Algorithm R’: For evaluating an overload of routine ExpectedAFS(k, n,M,S, v , ω, d, ε)
allowing early termination.

.

.

.
...

4 t̂ ← (0)E∗×1
5 for each κ in {1, . . . , d}:
6 ζ̂ ← ExpectedScaledAFS(Q,L, π0, t̂, ω, δκ/d)
7 visit ζ̂/‖ζ̂‖1

We can see in Figure 3.10 the tradeoff between computation time and error introspection
granularity in an n-island model. In general, there are diminishing returns with values of d
larger than 10, although the exact optimal value depends heavily on the application. In all
cases, the fastest results are achieved with the fewer introspection steps.

3.4. Model specialization: Symmetrical n-island

Despite the efficient algorithms presented in the previous sections, the state space grows
too quickly and becomes computationally intractable even for small values of k . For this
reason, we believe that the most sensible application for these methods is through model
specializations. A model specialization is a way of compressing the state space by taking
advantage of the symmetries present in a specific demographic model. In this section we use
the n-island model as a case study for introducing model specializations.

The n-island model represents the worst case scenario regarding the size of the state
space. Indeed, since all islands are reachable from all other islands, the migration matrix M
is completely dense, which in turn implies that the transition rate matrix Q is the largest
and least sparse possible. On the other hand, the n-island model is the most symmetrical
demographic model possible: all islands have the same sizes and connectivity, thus they are
only distinguishable through the number and configuration of lineages present. Consider for
instance the following states in a symmetrical 3-island model with k = 4 sampled lineages:

α1

2
1 ,

α2

2
1 ,

α3

2
1 ,

α4

2
1 ,

α5

2
1 ,

α6

2
1 . (3.4.1)

The states in (3.4.1) are different only because we have numbered the islands, but since
the islands are indistinguishable, they can all be grouped in the same equivalence class. This
equivalence class is characterized by one of the islands having two lineages of weight 1 and
another island having one lineage of weight 2. This class can be represented by a state matrix
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where the columns no longer indicate the island number, but are simply an arbitrary indexing
of the non-empty islands. We can define a unique class representative by sorting the columns
of the equivalent state matrices. We use the reverse-lexicographic ordering on the columns
(read from top to bottom). With this ordering, the class representative of the equivalence
set (3.4.1) would be α1.

We will assume the existence of a function ClassRepresentative that maps E onto itself,
and assigns to every state matrix its class representative. In this section we present modified
versions for some of the previously derived algorithms in order for them to work for the
n-island model specialization.

The results shown in this section were obtained with the software SISiFS (short for Symmetri-
cal Islands Site Frequency Spectrum). The implementation was done using the D programming
language, and can be found in the public repository github.com/arredondos/sisifs.

3.4.1. The rate matrix, revisited

We saw in §3.2.2 that the model state space is discovered by generating all possible migration
and coalescence events (algorithms M and C, respectively). In order to adapt these for
a symmetrical n-island specialization, all we have to do is to only visit the states class-
representatives, which as discussed previously, are obtained by sorting the columns of the state
matrices. Therefore, the adaptation will consist of, given a destination state β, generating its
class representative β∗ and visiting it instead.

Algorithm sM: For evaluating routine SymmetricalMigrationDestinations(m,α),
which given the migration rate m and a state matrix α of size k × n, visits all the tuples
(β,m) where β is a class-representative state satisfying (3.2.3) for symmetrical island
models, and m is the corresponding transition rate.

1 for each i in {1, 2, . . . , k − 1}:
2 for each j in {1, 2, . . . , n}:
3 if αi j > 1:
4 for each g in {1, 2, . . . , j − 1, j + 1, . . . , n}:
5 β ← α− ei j + eig; β∗ ← ClassRepresentative(β)
6 visit (β∗, αi j m)

This simple modification allows for a large compression of the state space. See Figure 3.3
for a comparison of the number of states of the Markov systems associated to the symmetrical
n-island model, and the most general demographic model possible, where all the states are
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present.

Algorithm sC: For evaluating routine SymmetricalCoalescenceDestinations(s, α),
which given the deme size s of a symmetrical island model and a state matrix α, visits all
the tuples (β, c) where β is a class-representative state satisfying (3.2.4) for this model,
and c is the corresponding coalescence rate.

1 for each j in {1, 2, . . . , n}:
2 for each i in {1, 2, . . . , k − 1}:
3 if αi j > 1:
4 if αi j > 2:
5 β ← α− 2ei j + e2i ,j ; β∗ ← ClassRepresentative(β)
6 c ← αi j(αi j − 1)/(2s)
7 visit (β∗, c)

8 for each h in {i + 1, . . . , k − 1}:
9 if αhj > 1:

10 β ← α− ei j − ehj + ei+h,j ; β∗ ← ClassRepresentative(β)

11 c ← αi j αhj/s

12 visit (β∗, c)

The simplification of the Markov system provided by the n-island model specialization goes
beyond simply reducing the number of states. Indeed, since now all migration events happen
with the same rate m, and all coalescence events with the same rate 1/s , the coefficients of
the rate matrix also become greatly simplified. We can observe in Algorithm sM (line 6) that
the coefficients of the migration blocks Ai are of the form

∑

ℓ,ι αℓ,ιm = mCℓ,ι. Similarly for
the coalescence blocks Bi (see algorithm sC, lines 7 and 12), the transition rates are of the
form 1

s
Cℓ,ι. Consequently, we can decompose the rate matrix Q of a symmetrical n-island

model in the following form:

Q = mQm +
1

s
Qc ,

The matrices Qm and Qc hold the coefficients Cℓ,ι for the migration and coalescence blocks,
respectively, and they are invariant given k and n fixed. We can use this representation in
order to greatly reduce the computational cost of building the rate matrix (algorithm Q)
for the same values of k and n but many different values of m and s . See figure 3.4 for
a comparison of the computational resources required to execute algorithm Q and those
required to build the rate matrix given Qm and Qc .

All time and memory benchmarks presented in this and the next sections were performed on
a Ryzen 3700X desktop system with 32GB of RAM. As can be seen in Figure 3.4, the RAM
capacity was the eventual limiting factor in how big a sample could be processed (k = 26 in
this case). We note that larger samples could be processed by having systems with larger
main memory compute the symbolic rate matrix representation remotely and then distribute
this file to the local system where the analyses are being conducted. The size of this file, and
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vector is [14, 6, 6], there are spikes in the expected SFS at frequencies 14, 6, 14+6 and 6+6.
Another observation is that this effect is amplified when the migration value is small, since it
increases the probability that coalescence happens before migration in a deme. Likewise, a
smaller number of islands also amplifies this effect of structure, although to a lesser degree
than M.

We can quantify the effect of structure on the SFS by measuring the deviation of the
expected SFS in these n-island models from the expected SFS under panmixia (1.4.3). We
present these results in Figure 3.6. We notice the same spikes near the sampling frequencies,
but also that for many of the structure parameters, there is a smaller-than-expected (as
compared to a panmictic model) number of unique mutations (singletons and doubletons)
and a higher-than-expected number of shared mutations.

These results are not entirely new (see for instance Figure 4.11 in Hein et al. (2004)).
However, we can now compute these figures exactly (up to machine precision), and very
quickly. Figure 3.7 shows the required time to compute run Algorithm X for some parameter
values of the n-island. The sizes of the associated Markov chains can be referenced in
Figure 3.3. For instance, we observe that for a sample of size k = 26, the rate matrix has
over 8 million states, and the implementation of Algorithm X in SISiFS iteratively solves the
associated linear system to a precision of ε = 10−6 in under 2 seconds, if the migration rate
is not too large. The migration rate M affects the performance of the method because the
condition number of the system matrices κ(Aip) increases rapidly with large values of M.

The effect of the high condition number for large M can also be observed as numerical
instability in Figure 3.8. This figure showcases the convergence of the expected SFS under
various n-island models to the expected SFS under panmixia, for which the closed-form
expression is known (1.4.3) when M →∞. This convergence is expected since island models
with a very high migration rate are known to behave like panmictic models with a population
size equal to the sum of the island sizes. We verify this fact by making M increasingly larger
and comparing the two expected SFSs by computing the ‖ · ‖∞-based distance between
them. We observe that the algorithm converges exponentially to the correct solution in all
but the largest cases (k > 24). This result serves as a validation of Algorithm X, but also
indicates that in practice, the degradation of speed and accuracy due to very large values of
M does not impose a great limitation on the method, given that the expected SFS can be
well-approximated by (1.4.3) in such cases.

As an additional form of validation, we conducted simulations using the ms software and
computed the empirical SFS for samples of various sizes under the n-island model. We
simulated independent chromosomes continuously with a given value of θ until we achieved a
certain number of observed segregating sites. After that, all the information at these sites
was aggregated and an empirical SFS was computed. The goal is to compare the obtained
results with the ones given by our methods. This approach validates both algorithms Q and X.
Figure 3.9 shows the results of these comparisons. We find that estimating the expected SFS
with this method is a poor substitute for exactly computing it using our approach for the
tested sampling sizes (k 6 26), both from the numerical accuracy perspective as well as from
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the required computation time (we note that even though Figure 3.9 does not show the times
required to complete these ms simulations, our method was so many orders of magnitudes
faster for the same accuracies, that we felt that a direct comparison was unnecessary).

Figure3.10 showcases the early-termination feature of Algorithm R’ (see §3.3.3). Here, we
can see the trade-off between the speed of convergence and the flexibility afforded by the error
introspection. Increasing the value of the parameter d allows for additional intermediate results
of the expected SFS to be available. This could be useful for terminating the computation
of the expected SFS if it is not converging towards the desired curve. For instance, in the
context of a hypothetical demographic inference application, the computation of the SFS
could be aborted before reaching the accuracy specified by ε if the expected SFS if not
converging towards the target (observed) SFS, and the search algorithm could then focus on
testing other parameters.

As expected, the fastest results are achieved with d = 1, but since the convergence is
often achieved in one or two iterations, it also allows for minimum flexibility. This is the
recommended value for one-time computations. In general, the optimum value of the d
parameter will be heavily dependant on the application that Algorithm R’ is being used in.
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Chapter 4.

Conclusions and future work

In this final section of the thesis we summarize the main results from the previous chapters in
a forward-looking context, where the natural steps for the continuation of the research are
outlined.

4.1. The IICR and the inference of structure

In Chapter 2 we presented an inference framework that is able to accurately infer structure
parameters (number of islands and their sizes) within a symmetrical island model given an
IICR estimate like the PSMC. It is also able to date up to five events of changes in migration
rate (i.e., six components) with good precision and consistency, as long as the underlying
model is compatible with a symmetrical island model with constant population size.

A comprehensive validation effort using simulated data support these results. Indeed, the
normalized RMSD (nRMSD) (Figure 2.4) of the simulated vs. inferred scenario parameters is
zero for stationary scenarios (c = 1), and increases linearly with the number of components.
The M parameters reach a value of about 0.5 at six components, and we see that the first
(most recent) and last (most ancient) components are better estimated than the middle
ones. It is likely that these middle components are being affected by what we called the
component misidentification phenomenon, where the migration rate for a given component is
being inferred for a neighboring one (previous or following), thus contributing to a negative
correlation between the simulated and inferred migration values for a given component. This
can happen when, for instance, a given demographic event (with an associated change of
migration rate) does not have a large-enough effect on the shape of the IICR curve. Regardless
of this behavior, the number of islands n and the reference effective size N are consistently well
estimated, reaching an nRMSD of about 0.1 in the worst cases. The event time parameters
(ti) exhibit the worst nRMSD values, varying between 1 and 2 in the worst cases. Although
in these cases, the fact that time is log-spaced and spans several orders of magnitude causes
outliers to have a disproportionate contribution to this statistic.

One novel aspect of our approach is that the number of demes gets inferred as one of the
model parameters, and it is in fact the best estimated parameter, which is in agreement with
Mazet et al. (2015) that used information from the distribution of T2 values and a likelihood
approach. These authors however, only analysed stationary models. Here we found that
other parameters were also well-estimated when the number of components was low, but we
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also observed that the estimated value of n scaled well with increasing model complexity. A
similar consistency can be observed with the deme size parameter N (see Figure 2.4). We
give up some flexibility in the model by keeping the number of demes constant throughout the
history of the population, so the timed demographic events cannot represent splits or joining
of populations even though such events are likely to have taken place in the history of species.
Additionally, in the n-island model we do not account for possible asymmetrical gene flow or
different deme sizes, even when the theoretical framework does allow for such representations.
However, it is a more challenging problem to validate due to the fact that during any given
component, changing both the migration rate and the deme size have confounding effects
on the IICR curve which can be hard to separate. This requires a dedicated study with a
different methodology which will be explored in a future work.

4.2. A note on human evolution

An application of our IICR-based inference method to five publicly available human PSMCs
suggests that the backwards long term history of the sampled individuals, when accounting for
possible recent expansions and the noise introduced by the PSMC method, can be accurately
modelled in the framework of a symmetrical island model of approximately 10 to 12 demes
with varying levels of connectivity through time. Only one of the five samples (Yoruba)
displayed less consistent evidence of this finding, which may indicate that more complex
models (possibly including asymmetric gene flow, spatial modelling of the environment, or
changes in deme sizes) could be needed to explain the full complexity of the data.

These findings regarding changes in connectivity and number of islands are in agreement
with the results of Rodríguez et al. (2018), in which a hand-fitting approach of the IICRs
was used to arrive at an estimate of 10 islands with a similar value of N and a comparable
period featuring a significant increased of gene flow between 600 Kya and 2 Mya. Note that
the timing in years and the deme sizes in Rodríguez et al. (2018) differ due to the change in
mutation rate.

We also compared our results with the tree model for human evolution published by Noskova
et al. (2019) (the C3PO model), which is a revision of the model from Gutenkunst et al. (2009)
and represents a simplified model of human evolution (Jouganous et al., 2017; Kamm et al.,
2019). The C3PO model proposes an ancestral human population that experiences two splits:
an old one that resulted in the current African “population” and another more recent one
that resulted in the current European and Asian “populations”. The parameters of this model
include the times of these events, the population size history of these populations and their
ancestral branches, and the migration rates between them. The summary statistic targeted
by these methods is the AFS, and we see that a fitting AFS does not guarantee a fitting
IICR and vice versa (Chikhi et al., 2018; Beichman et al., 2017). Indeed, the IICRs of the
populations from the C3PO model do not resemble those of the real humans. Likewise, when
we use the C3PO model to generate IICR curves, and infer the corresponding demographic
history using SNIF, these inferred n-island models do not resemble those inferred directly
from the human IICRs, and the parameter values are less consistent across different runs.
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These findings suggest that tree models fitted with the SFS, like those considered here, do
not offer a definitive answer to the question of human evolution and other families of models
should be explored (Goldstein and Chikhi, 2002; Scerri et al., 2018, 2019). It remains to be
seen however how well models inferred with our method fit the real SFS of their respective
human populations. A more general treatment of this question is a good candidate for
future research. However, in §2.4.3 we compared the SFS of a sample of 216 humans from
the Yoruba population (Lapierre et al., 2017) to the one inferred by the GADMA method
from Noskova et al. (2019) and the one corresponding to three variations of the inferred
demographic model by our method (see Figure 2.25). These simulations suggest that existing
SFSs could be easily fitted with a structured model similar to those inferred by SNIF, but in
which we would allow for a recent population size change.

4.3. Computing the exact SFS for structured populations

The SFS has long been an important statistic due to its capacity to succinctly summarize a
large amount of information about the genetic diversity of a sample and the ease with which
it can be computed using real data.

Comparable approaches to utilize the SFS with structured populations (Gutenkunst et al.,
2009; Excoffier et al., 2013; Kern and Hey, 2017) focused on what is known as the joint SFS,
where information regarding the origin of the lineages is preserved along with the frequency of
the mutations. This approach limits the number of populations that can be modeled, since a
high-dimensional joint SFS is both computationally intractable and uninformative in practice,
since one would expect that most of the coefficients would be null due to lack of information.

In this work we show that by focusing on the aggregate SFS of structured populations, it is
possible to have a summary statistic that allows for complex models of population structure
and is sensitive to the model parameters (see figures 3.6 and 3.5). We also show that by using
phase-type theory, it is possible to exactly compute this SFS for moderate sample sizes very
quickly. We did this by introducing a generalization of Herbots’s structured coalescent that
tracks information regarding the ancestry of the lineages as well as their location in the demes.
The challenge of the approach is tied to its computational requirements, since the state
space of the Markov process grows almost exponentially with the sample size. To combat
this effect, we recommend the usage of model specializations. These are Markov processes
that are derived from the general process described in §3.2 that include state-reduction
optimizations specific to the demographic model in use. These state reductions are achieved
by exploiting the symmetries often exhibited in structured models. We explore the n-island
model specialization in §3.4. One obvious way to continue this line of research is to explore
other model specializations. A great candidate would be the stepping-stone family of models,
which would enable us to draw more spatial-aware conclusions from the potential demographic
inference applications.

The performance results shown in figures 3.3 to 3.7 are focused on the n-island model
specialization. We do not know yet how these techniques will perform under different models.
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On one hand, the n-island is the most symmetrical of the structured models, therefore it
allows for the greatest compression on the state space, so from this perspective, other models
would be expected to require larger state spaces and thus more computational resources.
On the other hand, the n-island model has the densest migration matrix of all structured
models (note that in the stepping stone model for instance, the migration matrix itself is
sparse). This means that other models will generate even sparser rate matrices. Given that
the computational cost in sparse-algebra methods are associated with the number of non-null
coefficients, this could counter the effect of the increased state space. It is hard to estimate
how these two opposite effects will ultimately affect the performance of the methods. This is
why more specializations have to be developed and tested.

4.4. Structured demographic inference using

multi-sample statistics

One immediate use case for the methods presented here is to use the SFS as a summary
statistic for parameter inference in structured models.

We have shown that, at least for the case of the n-island model, we can achieve good
performance and accuracy when computing the SFS. This is in stark contrast with simulation-
based estimates of the SFS, which are significantly slower for all tested sample sizes and less
accurate (see Figure 3.9). This opens the opportunity for an approach similar to that of
Chapter 2, where the summary statistic in use would be the SFS. There are two important
questions that would need to be researched here: how to manage the sampling vector and
how to choose the distance function.

The sampling vector is an important aspect of any structured demographic model that
incorporates multiple samples. We have seen that it can have a profound impact on the SFS
of otherwise identical n-island models (Figure 3.5), and such is the case as well for the IICRk
(see the differences between IICRs and IICRd in Chikhi et al. (2018)).

One initial approach could be to assume that the sampling vector is known, although this
defeats the purpose of an inferential approach. Alternatively, we could attempt to completely
infer the sampling vector. This would add a great burden of dimensionality to the parameter
space which could render the method impractical. Perhaps a compromise can be achieved
between these two extreme approaches, where any existing information about the samples is
incorporated in the model (for instance, lineages 1 and 2 are always from the same deme, as
are lineages 3 and 4, etc.). In models that are spatially aware, such as the many variants
of the stepping stones model, an alternative approach to managing the sampling vector is
possible. We can assume that the actual (physical) sampling locations are known, given a
map of the sampling region. We can then associate each sample with the nearest model deme
corresponding to that region of the map. This approach allows the sampling vector to be
constructed organically from the rest of the model parameters. See Figure 4.1 for an example.

Regarding the question of what distance to use for inference, this will depend on the exact
nature of the method. For purely SFS based methods, log-likelihood metrics have been
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successfully used in the past (Gutenkunst et al., 2009; Excoffier et al., 2013). However, a
multi-sample demographic-inference method need not be SFS-only based. In cases where
full-genome information is available for the sampled individuals, it is conceivable to combine
the predictive power of both the IICR and the SFS summary statistics. This could be modeled
either by using several IICR curves, belonging to each of the sampled individuals. The
optimization goal in these scenarios is less clearly defined, as is often the case with multi-
objective optimization problems. An initial approach could be based on a linear combination
of the distances used for each of the summary statistics.

Figure 4.1: A method for parameterizing spatial structured models. A stepping-stone model is defined

by overlaying a grid onto the map of the region of interest. The physical locations of the samples (the

red dots in the figure) are assumed to be known, and each one is associated with the nearest deme (the

association is represented by a red line connecting the sample with a deme). In this example model, it is

possible to specify the number of islands, their connections, and the sampling vector by setting a single

parameter: the grid spacing.

Another potential direction is to use multiple IICR curves simultaneously during the inference
process. These multiple IICRs may come in the form of more than one IICR sampled from an
asymmetrical demographic model (for which the initial sampling deme does result in different
curves (Chikhi et al., 2018), as opposed to the n-island model where demes are by definition
indistinguishable). They may also be in the form of multiple IICRk curves where k is the
number of sampled haploid genomes. Indeed, the IICR of Mazet et al. (2016) was defined for
k = 2, and this is the IICR that we have been studying in our previous works. However, the
concept can be extended to more haploid genomes in the same way that the MSMC method
(Schiffels and Durbin, 2013) is an extension of the PSMC to multiple genomes, which takes
into consideration the distribution of the coalescent time Tk . The precise concept of the
IICRk is currently being developed in a separate study.

These approaches may prove beneficial in choosing between structured and non-structured
models. Indeed, Grusea et al. (2018) shows that using more than one IICR curve can help
discriminate between structured and non structured scenarios in the n-island model. Finally,
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the incorporation of larger samples not only enables exploring more complex scenarios, but
it also allows using other summary statistics to complement the IICR, most notably among
them the AFS, which is widely used for the purposes of demographic inference.

4.5. Closing thoughts

We have presented in this work an inference method for automatically estimating demographic
parameters under a piecewise stationary symmetrical island model that uses the IICR as
its summary statistic. The underlying methodology consists in quantifying the discrepancy
between a target IICR and many simulated IICR curves for a large number of candidate
scenarios, and using this metric to drive a global optimization process. With a large number
of validations we have shown that the method works accurately and consistently for a diverse
range of parameter values, and we additionally showed an application to human data that
agrees with and improves upon previously published results using similar approaches. We
believe that despite its current scope, our IICR-based method can be of great value during
the initial exploration of the parameter space for simple models, and thus can also provide a
starting point for manually fitting the IICR with models that could express spatial structure
and varying N (Rodríguez et al., 2018).

With the goal of extending this method to multi-sample statistics, we have taken the first
steps towards incorporating the SFS by providing a method for exactly computing it in the
context of structured demographic models. The proposed method allows for an arbitrary
number of demes and an arbitrary connectivity matrix between the demes. We also provide
an implementation for the special case of the n-island model which was shown to be superior
to simulation-based estimates of the SFS in both runtime (for the tested sample sizes) and
accuracy. These developments should allow us to incorporate the SFS as a summary statistic
in inference applications for demographic models of structure in which the number of islands
is unknown and potentially large.
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Figure A.7: Percent of tests within a given relative error in unscaled scenarios. For each parameter

of the demographic scenarios, we counted the instances where the inferred value was within a certain

percent of the simulated one. We say that an inferred parameter p̄ is within x% of the simulated value

p if −xp̂ < 100(p̂− p) < xp. Note that not all parameters are present in all scenarios (for instance, the

parameter M4 only appears in scenarios with c > 5 components).

130













n

0 20 40 60 80100

0

20

40

60

80

100

P
er

ce
n
t

o
f

te
st

s

M0

0 20 40 60 80100

c = 1 c = 2 c = 3

c = 4 c = 5 c = 6

N

0 20 40 60 80100

t1
0

20

40

60

80

100

M1

t2
0

20

40

60

80

100

M2

t3
0

20

40

60

80

100

M3

t4
0

20

40

60

80

100

M4

t5

0 20 40 60 80100

0

20

40

60

80

100

Percent of relative error

M5

0 20 40 60 80100

Figure A.14: Percent of tests within a given relative error in scaled scenarios. For each parameter of the

demographic scenarios, we counted the instances where the inferred value was within a certain percent

of the simulated one. We say that an inferred parameter p̄ is within x% of the simulated value p if

−xp̂ < 100(p̂ − p) < xp. Note that not all parameters are present in all scenarios (for instance, the

parameter M4 only appears in scenarios with c > 5 components).

136



Appendix B.

Additional results of validation using
T-sim IICRs

In this section we show the validation results of simulating and then inferring from 100 randomly
generated demographic scenarios with scaled IICRs and varying number of components c . In
all cases, the scenario parameters were drawn from the following finite sets:

n ∈ {2, 5, 10, 15, 20},
ti ∈ {0.1, 0.5, 1, 2, 5, 10, 20, 50} ∀i ,
Mi ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50} ∀i , (B.0.1)

si = 1 ∀i ,
N = 1000.

Unlike in the previous sections, the simulated IICRs are T-sim IICRs, meaning that the
values are not exact due to the stochastic nature of the underlying ms simulation. For each
value of c from c = 1 to c = 5 we show the aggregate connectivity graph for all the
simulations as well as the IICR and parameters of two individual scenarios from the set.

B.1. Scenarios with 1 component
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