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Abstract

The theory of point processes is a branch of spatial statistics. A spatial (and spatio-

temporal) point pattern, as a realization of a point process, is a collection of events

for which locations (and times) of occurrence have been observed in a specified spatial

region (and temporal period). Point patterns are often classified into three classes of sin-

gle interaction structure: randomness, clustering, and inhibition that can be modeled for

instance by Poisson process, Cox processes, and Gibbs processes, respectively. These

single-structure point process models can be too simplistic to describe some complex

phenomena in seismology, epidemiology, and forestry as they involve several structures

at different spatial (and spatio-temporal) scales, thus requiring multi-structure point pro-

cesses to describe them. The main concern of this Ph.D. thesis is the spatio-temporal

modeling of such complex point patterns taking into account the spatio-temporal inho-

mogeneity driven by covariates and the complexity of the interaction structures.

In the spatial point processes literature, three general approaches are considered

for constructing multi-structure point process models: thinning, superposition, and hy-

bridization. The key contribution of the Ph.D. thesis is to introduce spatio-temporal hy-

brid point processes based on Gibbs and Cox models using hybridization approach and

to develop their global and local statistical inference through composite likelihoods and

Bayesian hierarchical approach and their simulation process through the birth–death

Metropolis–Hastings algorithm.

Finally, we apply these new hybrid point processes to model the complex interaction

structure observed on different datasets: forest fire occurrences in France and Spain and

the hotspots of temperature in the United States.

Keywords: Spatio-temporal Gibbs point processes, Hybridization, Composite likeli-

hoods, Bayesian hierarchical approach, Forest fires, Hotspots of temperature.
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Résumé

La théorie des processus ponctuels est une branche de la statistique spatiale. Un

modèle ponctuel spatial (spatio-temporel), en tant que réalisation d’un processus ponctuel,

est un ensemble d’événements pour lesquels des positions (et des dates) d’occurrence

ont été observées dans une région (et durant une période temporelle). Les semis de

points sont souvent classés en trois classes de structure unique d’interaction : aléatoire,

agrégée et répulsive qui peuvent être modélisées par exemple par les processus de Pois-

son, les processus de Cox et les processus de Gibbs, respectivement. Ces modèles de

processus ponctuels à structure unique peuvent être trop simplistes pour décrire certains

phénomènes complexes en sismologie, épidémiologie et foresterie car ils impliquent

plusieurs structures à différentes échelles spatiales (et spatio-temporelles), nécessitant

ainsi des processus ponctuels multi-structures pour les décrire. L’enjeu de cette thèse est

la modélisation spatio-temporelle de semis de points en tenant compte de l’inhomogénéité

spatio-temporelle induite par des covariables et la complexité des structures d’interaction.

Dans la littérature sur les processus ponctuels spatiaux, trois approches générales

sont envisagées pour construire des modèles de processus ponctuels multi-structures :

l’éclaircissement, la superposition et l’hybridation. La principale contribution de cette

thèse est d’introduire de nouveaux processus ponctuels hybrides spatio-temporels basés

sur des modèles de Gibbs et Cox en utilisant l’approche d’hybridation et de développer

leur inférence statistique globale et locale à travers les vraisemblances composites et

l’approche hiérarchique bayésienne et leur simulation à travers l’algorithme de naissance-

mort de Metropolis-Hastings.

Enfin, nous appliquons ces nouveaux processus ponctuels hybrides pour modéliser

la structure d’interaction complexe observée sur différents jeux de données : les occur-

rences de feux de forêt en France et en Espagne et les points de température extrême

aux États-Unis.

Mots clés : Processus ponctuels de Gibbs spatio-temporels, Hybridation, Vraisem-

blance composite, Approche hiérarchique bayésienne, Feux de forêt, Points de température

extrême.
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Chapter 1

Introduction

Human activity is the source of environmental and climatic changes whose manifesta-

tions tend to become more and more frequent and extreme. Assessing the impact of

weather and environmental change necessitates a better understanding of the random

mechanisms governing the intensity of occurrences and the severity of risk events. The

scientific reflection on risk prevention needs to consider a more realistic modeling of

natural phenomena and their consequences, even at small spatial and temporal scales,

in order to improve decision tools that remain simple and easy to use.

Single-structure point process models are too simplistic to describe such complex

phenomena, e.g. in seismology (Siino et al. 2017, 2018b), epidemiology (Iftimi et al.

2017, 2018), and in forestry (Gabriel et al. 2017), as they involve several structures

at different spatial (or spatio-temporal) scales. The main concern of this thesis is

the spatio-temporal modeling of multi-structure point patterns taking into account the

spatio-temporal inhomogeneity driven by covariates and the complexity of the interac-

tion structures. Forest fires is one such risk events and motivate our work.

Note that this manuscript is a long summary of all published and drafted papers

based on the thesis work. Published and submitted papers can be found in Appendix.

This chapter provides a review on construction methods and proposed point process

models for multi-structure point patterns (based on Raeisi et al. (2019), see Appendix A)

and about the use of point process theory to forest fire occurrences.

1.1 Preliminaries

Fundamental concepts of the theory of point processes emerged from life tables, re-

newal theory and counting problems (Daley and Vere-Jones 2003). The modern theory

has mainly been developed between 1940’s and 1970’s (see e.g. the monographs by

Palm (Palm 1943), Feller (Feller 1950), Bartlett (Bartlett 1954), Matérn (Matérn 1960)

and Cox (Cox 1955, 1962)) and is linked to nonlinear techniques in stochastic process

theory (Bartlett 1955, Bosq 1998). From 1980’s spatial and spatio-temporal point pro-

cesses have then become a subject on their own right. Today, they cover a plethora of

applications in ecology, forestry, astronomy, epidemiology, seismology, fishery. . .

1



1.1. PRELIMINARIES CHAPTER 1. INTRODUCTION

Spatial (and spatio-temporal) point process data are a collection of points for which

locations (and times) of occurrence have been observed in a specified spatial region (and

temporal period). Usually, the terms points and events are respectively used for arbitrary

locations and for observations. The main goals in the analysis of point patterns concern

the specification of intensity variations (first-order moment), interaction between events

(second-order moment) and model identification for the underlying process. Processes

are often classified into three classes of interaction structure (Diggle 1983):

• randomness: In the absence of any interaction between events, a point pattern is

said Completely Spatially (or Spatio-Temporally) Random in the sense that the

probability that an event occur at any point is equally likely to occur anywhere

within a bounded region and that its location (and time) is independent of each

any other event. This property provides the standard baseline against which point

patterns are often compared. The simplest and most fundamental point process

for modelling a complete random distribution of points is the Poisson point pro-

cess (Kingman 1993, 2006). It is used as null hypothesis for statistical test of

interaction (Diggle 2003, Illian et al. 2008).

• clustering or aggregation: In a clustered distribution, events tend to be closer than

would be expected under complete randomness. Clustered patterns are mainly

modelled by Cox processes (Cox 1972), in particular log-Gaussian Cox pro-

cesses (Møller et al. 1998, Brix and Møller 2001, Brix and Diggle 2001, Dig-

gle et al. 2013), Poisson Cluster processes (Neyman and Scott 1958, Brix and

Kendal 2002, Gabriel 2014) and Shot-Noise Cox processes (Brix and Chadœuf

2000, Møller and Waagepetersen 2004, Møller and Diaz-Avalos 2010).

• inhibition or regularity: In a regular distribution, events are more evenly spaced

than would be expected under complete randomness. This structure can be mod-

elled by Strauss processes (Strauss 1975, Cronie and van Lieshout 2015), Matérn

hard core processes (Matérn 1960, Gabriel et al. 2013) or determinantal point

processes (Macchi 1975, Lavancier et al. 2015).

Gibbs processes (Ruelle 1969, Preston 1976, Dereudre 2019) offer a large class of mod-

els which allow any of the above interaction structure.

These single-structure point process models are too simplistic to describe phenom-

ena with interactions at different spatial or spatio-temporal scales. That is for instance

the case of seismic data as the different sources of earthquakes (faults, active tectonic

plate and volcanoes) produce events with different displacements (Siino et al. 2017)

and can be seen as the superposition of background earthquakes (which are distributed

over a large spatio-temporal scale with low density) and clustered earthquakes (which

are distributed over a small spatio-temporal scale with high density) (Pei et al. 2012).

2



1.2. POINT PROCESSES METHODS CHAPTER 1. INTRODUCTION

Such multi-structure phenomena motivate statisticians to construct new spatial point

process models, e.g. in ecology (Levin 1992, Wiegand et al. 2007, Picard et al. 2009),

in epidemiology (Iftimi et al. 2017) and in seismology (Siino et al. 2017, 2018b), mainly

based on Gibbs processes, but not only (Lavancier and Møller 2016). There are very few

spatio-temporal models: Gabriel et al. (2017) modeled the multi-scale spatio-temporal

structure of forest fires occurrences by log-Gaussian Cox processes (LGCP), Iftimi et al.

(2018) developed a multi-scale area-interaction model for varicella cases and Illian et al.

(2012b) modelled the locations of muskoxen herds by LGCP with a constructed covari-

ate measuring local interactions.

In the spatial point processes literature, three general approaches are considered for

constructing multi-structure point process models: thinning and superposition (Chiu

et al. 2013), hybridization (Baddeley et al. 2013). Thinning consists in deleting points

of a point process according to some probabilistic rule which is either independent or

dependent of thinning other points (Chiu et al. 2013). This operation allows to get

point processes with inhibition at small scales and attraction at large scales (Andersen

and Hahn 2016, Lavancier and Møller 2016). Superposition of several processes is the

union of the points of each process. It can be useful to model multi-scale clustered

processes (Wiegand et al. 2007).

Hybridization consists in combining two or more point process models (Baddeley

et al. 2015). Spatial hybrids of Gibbs models are defined in Baddeley et al. (2013) and

hybrids of area-interaction potentials in Picard et al. (2009). Extension of the hybridiza-

tion approach to the spatio-temporal framework has recently been considered in Iftimi

et al. (2018).

The key contribution of this thesis is to develop new Gibbs and/or Cox model-based

spatio-temporal multi-scale point processes by using hybridization. In the following,

we review available models and methods for spatial (spatio-temporal) multi-structure

point patterns and an overview of point process-based analyses and modeling of forest

fire occurrences.

1.2 Point processes methods

We consider a finite spatial or spatio-temporal point process X observed in W , where

W denotes either a spatial region S ⊂ R
d or a spatio-temporal region S×T ⊂ R

d×R.

We denote x a realization of the point process, i.e. a collection of events {ξi}i=1,...,n

(or {(ξi, ti)}i=1,...,n) ⊂ W . Let η be any point in W . We refer to Daley and Vere-Jones

(2003), Chiu et al. (2013) (resp. Diggle and Gabriel (2010), Diggle (2013), Gonzalez

et al. (2016)) for more formal definitions of spatial (resp. spatio-temporal) point pro-

cesses. Without loss of generality, we set d = 2 throughout this thesis. The main

characteristics driving the spatial (resp. spatio-temporal) distribution of points are the

3



1.2. POINT PROCESSES METHODS CHAPTER 1. INTRODUCTION

intensity function, which governs the univariate distribution of the points of X , and the

pair correlation function, which governs the bivariate distribution of the points of X ,

i.e. the interaction between events. In the following we remind some definitions and

properties when X is a spatial or a spatio-temporal point process.

Campbell’s theorem (Chiu et al. 2013) relates the expectation of a function, h as-

sumed to be non-negative and measurable, summed over a point process X to an integral

involving the mean measure of the point process :

E

[

6=
∑

η1,...,ηk∈X

h(η1, . . . , ηk)

]

=

∫

. . .

∫

h(η1, . . . , ηk)λ
(k)(η1, . . . , ηk)Π

k
i=1dηi,

where ηi ∈ W and λ(k), k ≥ 1, are the product densities. For a simple point process,

i.e. ηi 6= ηj for i 6= j, if they exist, the product densities are related to the count-

ing measure N in infinitesimal spatial or spatio-temporal regions dη1, . . . ,dηk ⊂ W ,

around η1, . . . , ηk, with volumes |dη1|, . . . , |dηk| : P [N(dη1) = 1, . . . , N(dηk) = 1] =

λ(k)(η1, . . . , ηk)Π
k
i=1dηi. Thus, the intensity function is related to the expected number

of points in infinitesimal regions

λ(η) = λ(1)(η) = lim
|dη|→0

E[N(dη)]

|dη|

and the pair correlation function is defined by

g(ηi, ηj) =
λ(2)(ηi, ηj)

λ(ηi)λ(ηj)
. (1.1)

A point process is homogeneous when its intensity is constant, λ(η) = λ, ∀η, inho-

mogeneous otherwise. In practice, the inhomogeneity is often driven by environmental

covariates and we account for them by using parametric models for the intensity func-

tion (Baddeley et al. 2015). Under the assumption of stationarity, the properties of

the point process are invariant under translation and the process is homogeneous. The

second-order stationarity states that the second-order intensity only depends on the

difference between points λ(2)(ηi, ηj) = λ(2)(ηi − ηj). Because in practice most of pro-

cesses are inhomogeneous, Baddeley and Turner (2000) and Gabriel and Diggle (2009)

weakened it and defined the second-order intensity-reweighted stationary assumption

for which the pair correlation function (1.1) is well-defined and a function of ηi−ηj . van

Lieshout (2019) provides general concepts of factorial moment properties. The previous

definition of inhomogeneous processes is not unique, Hahn et al. (2015) defined inho-

mogeneous model classes (including the class of reweighted second-order stationary

processes) into the common general framework of hidden second-order stationary pro-

cesses. The pair correlation function describes the structure of dependence/interaction

4



1.2. POINT PROCESSES METHODS CHAPTER 1. INTRODUCTION

between points : g(ηi, ηj) = 1, > 1 and < 1 indicates that the pattern is, respectively,

completely random, clustered and regular.

Assume that the distribution of the point process is defined by a probability density

f(x) with respect to the distribution of a unit rate Poisson process. The probability

density can be used to study point processes. It can be viewed as the probability of

getting the point pattern x, divided by the same probability under Complete Random-

ness (Baddeley et al. 2015). The mathematical form of the probability density deter-

mines the structure of the point process, see Coeurjolly et al. (2017) and Coeurjolly and

Lavancier (2019) about formulation of the density of point processes. A closely related

concept is the Papangelou conditional intensity function (Papangelou 1974), which has

been extended to the spatio-temporal framework by Cronie and van Lieshout (2015). It

is defined by

λ(η|x) = f(x
⋃

η)

f(x)
, (1.2)

for η /∈ x provided f(x) 6= 0.

1.2.1 Classical point process models

We refer to Diggle (2003), Møller and Waagepetersen (2004), Illian et al. (2008), Chiu

et al. (2013), Baddeley et al. (2015) and Cronie and van Lieshout (2015), Diggle and

Gabriel (2010), Diggle (2013), Gabriel et al. (2013), Gonzalez et al. (2016) for a pre-

sentation of most of spatial and spatio-temporal point process models. Hereafter we

only focus on the ones mentioned/used in Section 1.3 to construct multi-structure point

process models, namely the Poisson, Cox and Gibbs processes.

Poisson process

The Poisson point process is the reference model for independence of the locations of

events, i.e. for complete spatial (or spatio-temporal) randomness. It is also the simplest

and most widely used inhomogeneous point process model. Poisson point processes

with intensity function λ(η) are defined by two postulates :

• The number of points in any region B ⊆ W , N(B), follows a Poisson distribution

with parameter
∫

B
λ(η)dη,

• For all B ⊆ W , given N(B) = n, the n events in B form an independent random

sample from the distribution on B with probability density function λ(η)/
∫

B
λ(η)dη.

The probability density of a Poisson point process with respect to the unit rate Poisson

process is

f(x) = exp

(

|W|−
∫

W

λ(η)dη

)

Πη∈xλ(η).

5



1.2. POINT PROCESSES METHODS CHAPTER 1. INTRODUCTION

Then, from Equation (1.2), the Papangelou conditional intensity is λ(η|x) = λ(η) and

λ(2)(ηi, ηj) = λ(ηi)λ(ηj), so that g(ηi, ηj) = 1.

Cox process

Cox processes, so-called doubly stochastic point processes (Cox 1955), are considered

as a generalization of inhomogeneous Poisson processes where the intensity is a real-

ization of a random field Λ = {Λ(η)}η∈W . These models are particularly useful as soon

as spatial variation in events density reflects both the environment and dependence be-

tween events. Moreover, their first- and second-order moments being tractable, they are

very attractive. We have

λ(η) = E[Λ(η)] and g(ηi, ηj) =
E[Λ(ηi)Λ(ηj)]

λ(ηi)λ(ηj)
= 1 +

cov (Λ(ηi),Λ(ηj))

λ(ηi)λ(ηj)
. (1.3)

The probability density f(x) = E
[

exp
(

|W|−
∫

W
Λ(η)dη

)

Πη∈xΛ(η)
]

is intractable for

these processes. Consequently, the Papangelou conditional intensity is not known. The

second-order intensity function λ(2)(ηi, ηj) = E [Λ(ηi)Λ(ηj)] is only tractable for two

special cases of Cox processes, that we present below, the Shot Noise Cox process and

the log-Gaussian Cox process.

Shot noise Cox processes (Møller 2003) (SNCP) are a wide class of Cox processes

associated to

Λ(η) =
∑

(c,γ)∈Φ

γk(c, η),

where Φ is a Poisson point process on W × [0,∞) with intensity measure ζ and k(c, ·)
is a density function on W , ∀c ∈ W . The intensity and pair correlation function are

λ(η) =

∫

γk(c, η)dζ(c, γ) and g(ηi, ηj) = 1 +

∫

γ2k(c, ηi)k(c, ηj)dζ(c, γ)

λ(ηi)λ(ηj)
.

SNCP include Poisson cluster processes, i.e. a Poisson process in which each point

is replaced by a cluster of points, the original point is considered as the cluster cen-

ter (Cox and Isham 1980). When the points in the cluster are independently and iden-

tically distributed about the cluster centre, the process is referred to as a Neyman-Scott

process (Neyman and Scott 1958). Two mathematically tractable models of Neyman-

Scott processes are the Thomas process (Thomas 1949), where k is a zero-mean normal

density, and the Matérn cluster process, where k is a uniform density on a ball centered

at the origin.

Log-Gaussian Cox processes (LGCP) have been introduced in Møller et al. (1998),

considering that the intensity is a log-Gaussian process : Λ(η) = exp (Z(η)), where Z is

a real-valued Gaussian random field, with mean function µ(η) and covariance function

6



1.2. POINT PROCESSES METHODS CHAPTER 1. INTRODUCTION

C(ηi, ηj). In that case, from Equation (1.3) we have

λ(η) = exp (µ(η) + C(η, η)/2) , ∀η ∈ W and g(ηi, ηj) = exp (C(ηi, ηj)) , ∀ηi, ηj ∈ W .

The expression of the pair correlation function shows that the interaction is controlled

by the second-order moment of Z. If C(ηi, ηj) ≥ 0, we get g(ηi, ηj) > 1 and cluster-

ing. As they are based on a latent random field describing the intensity, LGCPs have

a hierarchical structure making them particularly flexible (Illian et al. 2008). Note that

the interaction is controlled through the second-order moment of the Gaussian random

field, so that LGCPs do not describe the mechanistic process generating the points what

is the case of most of Gibbs processes (see below) for which the dependence between

points is controlled through local interaction between pairs of points.

Gibbs process

A finite Gibbs point process on W admits a density

f(x) = exp (−Ψ(x)) (1.4)

w.r.t. the Poisson process of unit intensity on W . The potential function Ψ is often

specified as the sum of pair potentials :

Ψ(η1, . . . , ηn) = α0 +
∑

i

α1(ηi) +
∑

i<j

α2(ηi, ηj) + · · ·+ αn(η1, . . . , ηn), (1.5)

with α0 a normalizing constant for the density and the pair potentials α1, α2, . . . which

determine the contribution to the potential from each δ-uple of points. Note that,

if the αδ, δ ≥ 2 are identically zero, the process is Poisson with intensity λ(η) =

exp(−α1(η)). Hence, α1 can be viewed as controlling a spatial (or spatio-temporal)

trend, while the αδ, δ ≥ 2 control the interactions between events. The normalizing

constant is generally intractable, so it is often impossible to compute the intensity and

pair correlation function of Gibbs processes. However, the Papangelou conditional in-

tensity can be computed (Coeurjolly and Lavancier 2019).

When the interaction between points is restricted to pairs, i.e. for

f(x) = αΠiβ(ηi)Πi<jγ(ηi, ηj),

with α > 0, β an intensity function and γ a symmetric interaction function, the process

is called pairwise interaction process (Diggle 1983, van Lieshout 2000). A well-known

example of such processes is the Strauss process (Strauss 1975) for which

f(x) = αβn(x)γs(x),

7
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where β, γ > 0, n(x) is the number of points in x and s(x) the number of neighbour

pairs of x at distances less than a given distance R. When γ = 0, we get the hardcore

process. Note that in the Strauss process, γ should be smaller than 1 otherwise the

density is no integrable. Geyer (1999) modified the Strauss process and proposed the

Geyer saturation process in which the overall contribution from each point is trimmed

to never exceed a maximum value. We thus have

f(x) = αβn(x)Πη∈xγ
min(s,t(η,r,x)), (1.6)

where α, β, γ, r, s are parameters and t(η, r, x) is the number of other events lying with

a distance r of the point η.

1.3 Review on multi-structure point processes

Spatial and spatio-temporal single-structure point process models presented in Section

1.2 are generally used when only one type of interaction governs the structure of the

point pattern. When there are indications that the spatial or spatio-temporal structure

combines several structures or varies with ranges of distances, we need to consider

multi-structure point process models.

We present in this section some of these models derived from the classes of Gibbs

and Cox processes. By nature, few spatial point processes can exhibit directly several

structures and/or scales of interaction and we recall some useful construction techniques

to incorporate the multi-structure: hybridization, thinning, superposition or clustering.

1.3.1 Models based on Gibbs processes

Gibbs point processes are mainly used to model repulsion structure in point patterns,

even if some examples exist for modelling low clustering (Chiu et al. 2013). Their def-

inition through the potential function Ψ fit well in the statistical mechanics framework

where the spatial modelling of particles needs often to consider their interaction. It is

common in various domains (mechanics, biology. . . ) to observe repulsion at short range

and aggregation at medium-long range of entities, leading to define multi-structure point

processes models.

For pairwise interaction processes, some parametric potential functions can be de-

fined to take into account multiple scales of interaction, see e.g. Ruelle (1969), Ogata

and Tanemura (1981), Penttinen (1984), Clyde and Strauss (1991), Habel et al. (2019).

We consider in the sequel the homogeneous case, i.e. when α1 is constant and the pair

potential function α2(ηi, ηj) = α2(‖ηi − ηj‖) in (1.5).

The Lennard-Jones pair potential function, well-known in statistical mechanics, is

8
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given by

α2(r) = ǫ1

(σ

r

)m1

− ǫ2

(σ

r

)m2

, ∀r > 0

where m1 > m2, ǫ1, σ > 0 and in the multi-structure case ǫ2 > 0. Another one is the

step potential function given by

α2(r) = cl if Rl−1 < r ≤ Rl ∀l = 1, · · · ,m

where R0 = 0, Rm = ∞, c1 = ∞, cm = 0 and cl ∈ R for l = 2, · · · ,m− 1. The result-

ing model is an extension of the Strauss process to the multi-scale framework (Penttinen

1984). The square-well potential is obtained with l = 2. More recently, Goldstein et al.

(2015) introduced a pair potential function varying smoothly over distance with scale

interactions defined through a differential system of equations. Other pair potential

functions can be found in the literature for modeling multi-structure phenomena, e.g. in

Ogata and Tanemura (1981) and Chiu et al. (2013).

Some of these pair potential functions define multi-scale generalizations of single

scale Gibbs processes. Indeed, the step potential functions of homogeneous pairwise

interaction processes in Diggle (1983) and Penttinen (1984) represent multi-scale ex-

tensions of the Strauss process where the density is given by

f(x) = αβn(x)

m
∏

l=1

γ
sl(x)
l ,

where sl(x) =
∑

i<j ✶(Rl−1 < ‖ηi − ηj‖≤ Rl).

In the same way, the multi-scale generalization of the area-interaction model has

been introduced in Ambler (2002) and Ambler and Silverman (2004, 2010) with a two-

scale structure and in Picard et al. (2009) for multi-scale marked area-interaction pro-

cesses. Its density function in a homogeneous multi-scale case is given by

f(x) = αβn(x)

m
∏

l=1

exp(−κlU(x, rl))

where U(x, rl) is the d-dimensional volume of the set W ∩ ⋃η∈x b(η, rl), with b(η, rl)

the ball centered at ηi of radius rl > 0. The sign of κl defines the lth structure : inhi-

bition if negative, clustering otherwise. Nightingale et al. (2019) used area-interaction

point processes for bivariate point patterns for modelling both attractive and inhibitive

intra- and inter-specific interactions of two plant species.

Baddeley et al. (2013) defined a new class of multi-scale Gibbs point processes

named hybrid models and including the two previous generalization examples. This

9
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unified framework allows to define properly generalizations of single-scale Gibbs point

processes by preserving Ruelle and local stability (van Lieshout 2000). This hybridiza-

tion technique consists in defining the density function of a multi-scale point process

model as the product of several densities of Gibbs point processes, so that

f(x) = cf1(x)...fm(x)

where c is a normalization constant and fl is a Gibbs density function for l = 1, . . . ,m.

The choice of the normalization constant allows to well define a probability density in

the case where the product f1...fm is integrable. The integrability condition is of course

essential and induced by others conditions on the fl (Ruelle statbility, local stability

or hereditary), see Baddeley et al. (2013) which play an important role in simulation

algorithms and are established in general to demonstrate the model validity of the hybrid

process.

Baddeley et al. (2013) introduced the spatial multi-scale Geyer saturation point pro-

cess that was applied in epidemiology by Iftimi et al. (2017) and in seismology by Siino

et al. (2017) and Siino et al. (2018b). Iftimi et al. (2018) extended the hybridization

approach to the spatio-temporal framework and introduce the spatio-temporal multi-

scale area-interaction point process (see Section 2.1.1). In Chapter 2 (resp. Chapter 3),

we define (resp. provide an estimation procedure) the inhomogeneous spatio-temporal

multi-scale Geyer saturation process. This work is published in Raeisi et al. (2021b),

see Appendix B. Rajala et al. (2018) used a multitype generalization of Gibbs point

processes with point-to-point interactions at different spatial scales in order to model a

complex rainforest data of 83 species.

The definition of hybrid Gibbs models does not impose to consider the same m

Gibbs models which is emphasized in Baddeley et al. (2015). In this way, Badreldin

et al. (2015) applied a hybrid model with three model structures at different ranges of

distance to the spatial pattern of halophytic species distribution in an arid coastal envi-

ronment. They considered a hardcore process at very short distances, a Geyer process

at short to medium distances and a Strauss process for the structure at large distances.

Wang et al. (2020) fitted a spatial hybrid Geyer hardcore point process on the spatial

distribution of trees. In Chapter 2, we extend this type of hybrids to the spatio-temporal

context. This work is submitted for publication in Raeisi et al. (2021a), see Appendix C.

As a different approach to model the repulsion at short range and aggregation at

medium-long range, Vihrs et al. (2021) embedded spatially structured Gaussian random

effects in the Gibbs trend function and introduced, in particular, the log Gaussian Cox

Strauss point process which we extend to the spatio-temporal context in Chapter 2.

10
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1.3.2 Models based on Cox processes

Cox processes are mainly defined from additive or log-linear random intensity func-

tions. Their hierarchical structure allows to quantify the various sources of variation

governing the spatial or spatio-temporal distribution of the pattern of interest. They are

widely used for modelling environmental and ecological patterns.

Cluster Cox processes and superposition

Some Cox processes are obtained by clustering of offspring points around parent points

and correspond to specific cases of cluster processes. This two-step construction allows

to consider easily different structures for the patterns of parents and offspring.

Møller and Torrisi (2005) introduced the class of Generalized Shot Noise Cox pro-

cesses (GSNCP), extending the definition of SNCP, and allowing relevant multi-structure

point processes for modelling regularity and clustering in many applications. This class

has two advantages. Firstly, the parent process is not restricted to be Poisson, as in

Neyman-Scott processes, and can be a repulsive Gibbs point process in order to add in-

hibition between the clusters. Secondly, in each cluster, the intensity and the bandwidth

of the dispersion kernel can be random. By consequence, a GSNCP is a Cox process

driven by a random field of the form

Λ(η) =
∑

(c,γ,h)∈Φ

γkh(c, η),

where Φ is a point process on W × [0,∞) × [0,∞) and h is a bandwidth for the ker-

nel density kh(c, ·). So, given Φ, a GSNCP is distributed as the superposition ∪lXl of

independent Poisson processes with intensity functions γlkhl
(cl, ·) where {γl}l, {hl}l

are random and Φcent = {cl}l is the parent process. In population dynamics, with

G0 a Poisson process for the initial population and Gn+1 a GSNCP where the cluster

centers are given by Gn, the superposition of GSNCPs G0, G1, . . . is a spatial Hawkes

process (Hawkes 1971). The GSNCP class contains the special cluster Cox process

defined in Yau and Loh (2012), where the parents process is a Strauss process. This

model coupling inhibition at medium/long range and aggregation in cluster is applied

to tree locations in a rain-forest, in order to consider the competition and reproduc-

tion mechanisms. Albert-Green (2016) and Albert-Green et al. (2019) generalized the

Neymann-Scott process by considering a log-Gaussian Cox process model for the par-

ents, instead of a homogeneous Poisson process, leading to two scales of clustering,

inter- and intra-clusters. This hierarchical model is applied to storm cell modelling in

North Dakota.

Wiegand and co-authors’ papers (Wiegand et al. 2007, 2009) consider several con-

struction of Cox processes incorporating clustering at multiple scales. The nested

11
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double-cluster process is an extension of the Thomas process in an multi-generation

evolution of the population where the offspring become parents and generate offspring.

They consider also the superposition of cluster processes, like the Thomas process.

Cox processes with constructed covariate

Another way to incorporate both small and large spatial scale structure in Cox processes

is to define a constructed covariate measuring the local structure of a point pattern as-

sociated to an additional spatial effect at medium-long range. This methodology devel-

oped in Illian et al. (2012a) and applied to koala data is used again in Illian et al. (2012b,

2013) for other spatial ecological data. They consider a log-Gaussian Cox process in a

Bayesian framework in order to apply the INLA approach for speeding up the estima-

tion of parameters in comparison to MCMC approaches that are very time-consuming.

Gabriel et al. (2017) used also this approach in the context of wildfire modelling in

Mediterranean France. In the case of a spatial LGCP model, the method consists in

estimating the random field Λ on grid cells si as follow

Λ(si) = exp

(

β0 + f(zc(si)) +

p
∑

k=1

fk(zk(si)) + Y (si)

)

where β0 is the intercept, f(zc(·)) is a function of the constructed covariate zc, fk, k =

1, . . . , p are functions of the observed covariates zk and Y is a Gaussian random field

taking into account the spatial autocorrelation not explained by the covariates. This

intensity is estimated for each cell si of a grid partitioning the observation window.

In Illian et al. (2012a), the constructed covariate at each center point c of the grid cell

s is the distance from c to the nearest point in the pattern outside the grid cell, i.e zc(s) =

minη∈x\s(‖c − η‖). This constructed covariate describes small scale inter-individual

behavior whereas the random field Y captures the spatial autocorrelation at a large

spatial scale. The space-time and space-mark extensions of the constructed covariate

definition are respectively introduced in Illian et al. (2012b) and Illian et al. (2013).

In Gabriel et al. (2017) the constructed covariate corresponds to a temporal intensity

index given by the ratio between the number of wildfires observed spatially close to an

other in a specified period and the total number of closed wildfires observed outside this

given period. This covariate measures the temporal wildfire inhibition at close spatial

distances induced by the local burn of vegetation after a wildfire occurrence. Sørbye

et al. (2019) fitted a LGCP to rainforest tree species by adding to the combination of

covariates in the log-intensity a spatial random field and error field. The first random

field captures the spatial autocorrelation in point counts among neighboring grid cells

and the second one the clustering within grid cells, as a nugget effect in geostatistics.

12
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The intensity in s ∈ W is thus given by

Λ(s) = exp

(

β0 +

p
∑

k=1

βkzk(s) +
1√
τ

{√
ρ× Y (s) +

√

1− ρ× ǫ(s)
}

)

where βk are linear effects of observed covariates zk, Y is a spatial random field with

autocorrelation between grid cells and ǫ the error field driving the aggregation structure

within grid cells.

Thinned point processes

Thinning is a an operation allowing to delete points in a point process in order to obtain

a new one with different characteristics. Each point of a point process has a probability

1− π of deletion, where the retention probability π can be constant or not, independent

of the location point or depending on one to several points. For Cox processes, this

technique is generally applied to create random local regularity. For example, Andersen

and Hahn (2016) applied a Matérn hard core dependent thinning to a Shot Noise Cox

process to obtain short range repulsion with medium range clustering. For a given point

pattern and a specified distance h, Matérn hard core thinning acts by first attaching

random positive marks (arrival times) to each point. Subsequently a point is removed

if it has a neighbour within distance h and with a smaller mark (i.e. the neighbour

arrived earlier). In that way, for a given location η, the retention probability π(η) is

the ratio between the intensities of the thinned process and the original process at η.

Lavancier and Møller (2016) extended the definition of interrupted point processes in

Stoyan (1979) and Chiu et al. (2013) and considered a spatial point process X obtained

by an independent thinning driven by a random process Z on a regular point process Y .

An example is given with Y a Matérn hard core process and Z the transformation by a

characteristic function of a Boolean disc model (Chiu et al. 2013).

1.4 Point process-based analysis and modeling of forest fire occurrences

Statistical modeling of forest fires appeared in the late 1970s with the works of Wilkins

(1977) and Dayananda (1977). More recently, the theory of point processes has been

considered as statistical tools to analyze spatial (spatio-temporal) structures of forest

fire occurrences. Podur et al. (2003) analyzed the occurrences of lightning-caused for-

est fires in Canada. Raeisi (2018), Pereira and Turkman (2018), and Xi et al. (2019)

reviewed briefly the literature in forest fire occurrences modeling with (spatial) spatio-

temporal point processes. The studies are classified into two types: those related to

exploratory analysis, based on summary statistics and those related to model analysis

which might include non-Poisson point process models.
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1.4.1 Exploratory analysis of forest fires

In exploratory analysis of point patterns, aims are to map local spatial/spatio-temporal

density variations and to test interactions between points. The former is achieved by

estimating the first-order intensity, the later by using summary statistics as the pair

correlation function or any related function. One can further investigate separability in

space, time and/or marks, see Gabriel and Diggle (2009), Gonzalez et al. (2016).

The intensity function reflects the average density of points in the point process and

can be used to identify areas with a high or low expected number of points. It can be

estimated from parametric and non-parametric methods. Estimating kernel density of

fire occurrences patterns indicate heterogeneous spatial distributions with hotspots (Yin

et al. 2007, del Hoyo et al. 2011, Gralewicz et al. 2011, Gonzalez-Olabarria et al. 2015,

Fuentes-Santos et al. 2016, Yin et al. 2019, Li and Banerjee 2020) and can be used to

create maps of “fire occurrence zones” (Koutsias et al. 2004, 2014, 2015). Parametric

models further quantify the influence of various covariates that drive local density vari-

ations of fire ignitions (Yang et al. 2008, Mundo et al. 2013). The inclusion and test

of spatially (or spatio-temporally) varying covariates in intensity function has been of

particular interest in Diaz-Avalos et al. (2014), Borrajo et al. (2017, 2018, 2020a,b), and

Myllymäki et al. (2021).

Fuentes-Santos et al. (2017) and Fuentes-Santos et al. (2021) proposed non-parametric

tests to compare the spatial distribution of two observed forest fire patterns based on

comparison of their first-order intensities.

For spatio-temporal point patterns, one can preliminary test for first-order separa-

bility. Schoenberg (2004), Diaz-Avalos et al. (2013), and Fuentes-Santos et al. (2018)

show that the intensity of forest fire occurrences varies in space and time in a non-

separable way.

Dependencies between points can be described through the analysis of second-order

characteristics. From spatial (Genton et al. 2006) or spatio-temporal (Wang and Ander-

son 2010, Comas et al. 2014, Costafreda-Aumedes et al. 2016, Tonini et al. 2017) K or

L-functions, forest fire occurrences show clustering, i.e. a local over-density in space

and/or in time. Some analyses also identified multi-structure properties. Forest fire

occurrences can be spatially clustered at a relatively small scale but regularly spaced

at a larger scale (Podur et al. 2003), significantly clustered at different spatial scales

(Gonzalez-Olabarria et al. 2011, Juan et al. 2012). In the spatio-temporal framework,

Tonini et al. (2017) carried out a spatio-temporal clustering analysis for forest fires in

Portugal and found a complex structure associated with different behavior according

to the size of the fire ”medium fires tend to aggregate around small fires, while large

fires aggregate at a larger distance and longer times, indicating that the return time
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Table 1.1 Overview of spatial point process-based studies for modelling forest fires

Studies Model Estimation Study area

Podur et al. (2003) Poisson Composite likelihood Canada

Yang et al. (2007) Poisson Composite likelihood USA

Yang et al. (2008) Poisson Composite likelihood USA

Hering et al. (2009) Poisson and Geyer Composite likelihood USA

Turner (2009) Poisson and Geyer and Strauss hardcore Composite likelihood Canada

Juan et al. (2012) Poisson, Thomas and area-interaction Composite likelihood Spain

Liu et al. (2012) Poisson Composite likelihood China

Miranda et al. (2012) Poisson Composite likelihood USA

Serra et al. (2013) Poisson, Thomas and area-interaction Composite likelihood Spain

Trilles et al. (2013) Poisson and area-interaction Composite likelihood Spain

Yang et al. (2015) Poisson Composite likelihood USA

Arago et al. (2016) Poisson and area-interaction Composite likelihood Spain

Woo et al. (2017) Poisson and area-interaction Composite likelihood Korea

Juan (2019) LGCP INLA Spain

Gomez-Rubio (2020) LGCP INLA Spain

Baile et al. (2021) Multifractal Cox Composite likelihood France

following these events is longer than for small and medium fires”. Defining a normal-

ized empirical intensity ratio index, Gabriel et al. (2017) showed that inhibitive patterns

between neighboring events can span several years.

Some other studies considered first-order and second-order characteristics for iden-

tifying drivers and spatial distribution of wildfires (Kwak et al. 2009, 2010, Gua et al.

2011, Pereira and Turkman 2012, Fuentes-Santos et al. 2013, Zhang et al. 2013, Gua

et al. 2015, 2016, 2017, Bates et al. 2018, Rihan et al. 2019).

Further information can be added to fire locations, as the burned areas or the cause of

ignition, and can be treated as marks. Zhang and Zhuang (2014) proposed a local odds

ratio approach to estimate the localized dependence structure between burned areas and

fire locations. Schoenberg (2004) found evidence of a lack of separability between

fire occurrences and sizes due to small-scale clustering. Hence, the marks may not be

separable from the points. Pereira and Turkman (2012) also rejected the separability

assumption between space, time and marks.

1.4.2 Point process models for forest fires

In the last two decades, forest fire occurrences have been modeled with point process

models. Spatial point process models mainly include Poisson and area interaction mod-

els, while spatio-temporal models are Cox models (Log-Gaussian and Shot Noise Cox

processes). Tables 1.1 and 1.2 report spatial and spatio-temporal models used in differ-

ent articles, as well as the inference method used for model fitting and the study area.

These Tables show that models tend to be more complex along years, as an attempt to

better include the relatively large number of covariates (e.g. land use and the meteoro-

logical covariates such as temperature and precipitation that are measured in time), but

also the interaction structures highlighted in the previous section.

Hawkes point process models have also been considered for forest fire occurrences
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Table 1.2 Overview of spatio-temporal point process-based studies for modelling forest

fires

Studies Model Estimation Study area

Møller and Diaz-Avalos (2010) SNCP Composite likelihood USA

Serra et al. (2012) LGCP INLA Spain

Pereira et al. (2013) LGCP INLA Portugal

Serra et al. (2014a) Poisson hurdle model INLA Spain

Serra et al. (2014b) LGCP INLA Spain

Najafabadi et al. (2015) SNCP Composite likelihood Iran

Gabriel et al. (2017) LGCP INLA France

Opitz et al. (2020) LGCP INLA France

Juan (2020) LGCP INLA Spain

(Brillinger et al. 2003, Peng et al. 2005, Schoenberg et al. 2007, 2009, Xu and Schoen-

berg 2011, Taylor et al. 2013). Due to the occurrence of human-caused forest fires

on network of roads, paths and trials, (Uppala and Handcock 2014, Comas et al. 2019)

model forest fires on linear networks. Marked point process models allowed to consider

fire sizes (Diaz-Avalos et al. 2016). Pimont et al. (2021) developed a two-components

Bayesian hierarchically-structured probabilistic model for daily fire activity which con-

tains a spatio-temporal Poisson model for fire occurrence and piecewise-estimated Pareto

and Generalized-Pareto distributions for fire sizes. As an extension, since the heavy

tails of burned areas lead to a dominant influence of the most extreme wildfires, Koh

et al. (2021) focus on accurate modeling of the distribution of extreme wildfires, and its

spatio-temporal variation. As an alternative application of the marked point processes

in forest fires modelling, Quinlan et al. (2021) considered the duration of fires as marks.

Different approaches can be used to fit these models, e.g. moment-, likelihood-

and Bayesian-based methods. For most of point process models, the likelihood has

no closed form expression (and thus is intractable). To address this issue, a simple

and quick inference procedure is using the composite likelihood-based inference, as the

pseudo-likelihood (Baddeley and Turner 2000) or logistic likelihood (Baddeley et al.

2014) for Gibbs models. Cox models involve an unobserved (Gaussian) random field

in which composite likelihood estimation methods would involve complex integrals.

These models are hierarchical and are therefore naturally suited to a Bayesian hierar-

chical approach for inference based on integrated nested Laplace approximation (INLA)

(Rue et al. 2009) or on the Markov chain Monte Carlo (MCMC) method (Taylor et al.

2015). See Taylor and Diggle (2014) for a comparison.

1.5 Outline of thesis

As discussed in the previous section, the spatio-temporal distribution of forest fire oc-

currences is very complex in nature with non-separability in space and time and mul-

tiple structures (repulsion and aggregation) at different spatial and/or temporal scales.

Spatio-temporal variations of fire occurrences further depend on the spatial distribu-
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tion of current land use and meteorological conditions, but also depends on past events

(changes in vegetation due to fires affect the probability of fire occurrence during a re-

generation period). In this thesis we develop new models for such complex phenomena,

as well as some methods for their inference and simulation.

In Chapter 2, based on the extension of hybridization approach (Baddeley et al.

2013) to the spatio-temporal framework (Iftimi et al. 2018), we propose the spatio-

temporal hybrid Geyer saturation point process for multi-scale point patterns and spatio-

temporal hybrid Strauss hardcore point process that combines both multi-scaling by

hybridization and hardcore distances.

A different approach, leading to more flexibility in the model but also to more chal-

lenging inference, consists of Gibbs models that contain both random and fixed effects

as in Illian and Hendrichsen (2010) to take into account complex patterns of hetero-

geneity. We propose a new modeling approach for this case, and we embed spatio-

temporally structured Gaussian random effects in the Gibbs trend function. Therefore,

our approach focuses on models derived from the multi-scale classes of combinations of

Gibbs and log-Gaussian Cox point processes, to which we refer as Cox-Gibbs models

in the following.

In Chapter 3, we aim to extend and implement available inference methods for these

new models in the spatio-temporal framework. We classify the inference procedure into

two approaches: global and local estimation methods. We tailor common methods for

a global statistical inference in Gibbs models: the pseudo-likelihood and logistic likeli-

hood approaches. However, the calculation of the likelihoods variants (composite likeli-

hoods: pseudo-likelihood and logistic likelihood) used in point process inference would

involve complex, high-dimensional integrals for Cox-Gibbs models, and we would need

estimation methods that allow handling the latent (i.e., unobserved) Gaussian variables.

However, due to the hierarchical structure of such models, they can be naturally formu-

lated and estimated within a Bayesian hierarchical approach, using techniques as the

INLA (Rue et al. 2009).

The models based on global parameter estimates can not take into account different

local interaction structures. Thus, we extend the local likelihood approach (Badde-

ley 2017) to the spatio-temporal context as an alternative method for modeling multi-

structure point patterns with spatially and/or temporally varying parameters in Gibbs

point process models.

In Chapter 4, we implement a birth-death Metropolis-Hasting algorithm for simu-

lating the hybrid Gibbs models. We propose a two-step procedure for simulating the

hybrid Cox-Gibbs model by simulating, firstly, a realisation of a Gaussian random field
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and then simulating a realisation of hybrid Cox-Gibbs model given that Gaussian reali-

sation using the birth-death Metropolis-Hasting algorithm.

The models, estimation and simulation methods proposed in this thesis have been

carried out using R together with the spatstat (Baddeley and Turner 2005), stpp

(Gabriel et al. 2013), splancs (Rowlingson and Diggle 1993), fields (Nychka

et al. 2017), sparr (Davies et al. 2011), raster (Hijmans 2020), INLA (Lindgren

and Rue 2015) and GET (Myllymäki and Mrkvička 2019) packages.

In Chapter 5, we investigate the hybrid Gibbs models proposed in Chapter 2 for

fitting forest fire occurrences in South of France and in central Spain. We also develop

an innovative application of spatio-temporal modeling of temperature hotspots, and in

particular of temperature anomalies, in the United States using Cox-Gibbs models.
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Chapter 2

New models

In this chapter, we extend two spatial Gibbs models to the spatio-temporal and multi-

scale contexts and then propose a model which is a combination of Cox and Gibbs

models.

2.1 Models based on Gibbs point processes

Gibbs models are flexible point processes that allow the specification of point interac-

tions via a probability density defined with respect to the unit rate Poisson point process.

These models allow to characterize a form of local or Markovian dependence amongst

events. Gibbs point processes contain a large class of flexible and natural models that

can be applied for:

• Postulating the interaction mechanisms between pairs of points,

• Taking into account clustering, randomness or inhibition structures,

• Combining several structures at different scales with the hybridization approach.

Let x = {η1, ..., ηn} = {(ξ1, t1), , ..., (ξn, tn)} be a spatio-temporal point pattern where

(ξi, ti) ∈ W = S × T ⊂ R
2 ×R. We consider (W , d(·, ·)) where d((u, v), (u′, v′)) :=

max{||u− u′||, |v − v′|} for (u, v), (u′, v′) ∈ W is a complete, separable metric space.

The cylindrical neighbourhood Cq
r (u, v) centred at (u, v) ∈ W is defined by

Cq
r (u, v) = {(a, b) ∈ W : ||u− a||≤ r, |v − b|≤ q}, (2.1)

where r, q > 0 are spatial and temporal radius and ||·|| denotes the Euclidean distance in

R
2 and |·| denotes the usual distance in R. Note that Cq

r (u, v) is a cylinder with centre

(u, v), radius r, and height 2q that represents a natural neighborhood for extending

spatial Gibbs models to the spatio-temporal context (Gonzalez et al. 2016).

A finite Gibbs point process is a finite simple point process defined with a density

f(x) that satisfies the hereditary condition, i.e. f(x) > 0 ⇒ f(y) > 0 for all y ⊂ x.

A closely related concept to density functions is Papangelou conditional intensity

function (Papangelou, 1974) which is a tool for simulating Gibbs models and inferring
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its parameters. The Papangelou conditional intensity of a spatio-temporal point process

on W with density f for (u, v) ∈ W is defined by

λ((u, v)|x) = f(x
⋃

(u, v))

f(x\(u, v)) , (2.2)

with a/0 := 0 for all a ≥ 0 (Cronie and van Lieshout, 2015).

The Papangelou conditional intensity is also very useful to describe the local inter-

actions in a point pattern, and leads to the notion of a Markov point process which is

base of implementation MCMC algorithms for simulation of Gibbs models. We say that

the point process has ”interactions of range R at (ξ, t)” if points further than R away

from (ξ, t) do not contribute to the conditional intensity at (ξ, t).

Definition 2.1.1. A spatio-temporal Gibbs point process X has a finite interaction

range R if the Papangelou conditional intensity satisfies

λ((u, v)|x) = λ((u, v)|x ∩ CR
R (u, v)) (2.3)

for all configurations x of X and all (u, v) ∈ W , where CR
R (u, v) denotes the cylinder

of radius R > 0 and height 2R > 0 centred at (u, v).

Spatio-temporal Gibbs models usually have finite interaction range property (spatio-

temporal Markov property) and are called in this case Markov point processes (van

Lieshout 2000). The finite range property of a spatio-temporal Gibbs model implies

that the probability to insert a point (u, v) into x depends only on some cylindrical

neighborhoods of (u, v). We further refer to Dereudre (2019) for more formal introduc-

tion of Gibbs point processes.

Here, we first review spatio-temporal Gibbs models and then extend the spatial

Geyer and Strauss hardcore models to the spatio-temporal single- and multi-scale con-

text.

2.1.1 Spatio-temporal Gibbs models review

In the literature, several spatio-temporal Gibbs point process models have been pro-

posed such as the hardcore (Cronie and van Lieshout 2015), Strauss (Gonzalez et al.

2016) and area-interaction (Iftimi et al. 2018) point processes.

A Gibbs point process model explicitly postulates that interactions traduce depen-

dencies between the points of the pattern. The hardcore interaction is one of the simplest

type of interactions, which forbids points being too close to each other. The homoge-

neous spatio-temporal hardcore point process is defined by the density

f(x) = cλn(x)
1{||ξ − ξ′||> hcs or |t− t′|> hct; ∀(ξ, t) 6= (ξ′, t′) ∈ x}, (2.4)

20



2.1. GIBBS MODELS CHAPTER 2. NEW MODELS

with respect to a unit rate Poisson point process on W , where c > 0 is a normalizing

constant, λ > 0 is an activity parameter, hcs, hct > 0 are, respectively, the spatial and

the temporal hardcore distances and n(x) is the number of points in x. The Papan-

gelou conditional intensity of a homogeneous spatio-temporal hardcore point process

for (u, v) /∈ x is obtained

λ((u, v)|x) = λ1{||ξ − u||> hcs or |t− v|> hct; ∀(ξ, t) ∈ x}
= λ

∏

(ξ,t)∈x

1{||ξ − u||> hcs or |t− v|> hct}

= λ
∏

(ξ,t)∈x

1{(ξ, t) /∈ Chct
hcs

(u, v)}.
(2.5)

The homogeneous spatio-temporal Strauss point process is defined by density

f(x) = cλn(x)γSq
r (x), (2.6)

with respect to a unit rate Poisson point process on W , where Sq
r (x) =

∑

(ξ,t) 6=(ξ′,t′)∈x

1{||ξ − ξ′||≤ r, |t − t′|≤ q} and the Papangelou conditional intensity of the model for

(u, v) /∈ x is

λ((u, v)|x) = λγn[Cq
r (u,v);x], (2.7)

and for (ξ, t) ∈ x

λ((ξ, t)|x) = λγn[Cq
r (ξ,t);x\(ξ,t)], (2.8)

where n[Cq
r (y, z); x] =

∑

(ξ,t)∈x 1{||y − ξ||≤ r, |z − t|≤ q} is the number of points in

x which are in a cylinder Cq
r (y, z). Although the Strauss point process was originally

intended as a model of clustering, it can only be used to model inhibition, because the

parameter γ cannot be greater than 1. If we take γ > 1, the density function of Strauss

model is not integrable, so it does not define a valid probability density.

Iftimi et al. (2018) defined the homogeneous spatio-temporal area-interaction point

process by density

f(x) = cλn(x)
∏

(ξ,t)∈x

γ−ℓ(∪(ξ,t)∈xC
q
r (ξ,t)), (2.9)

with respect to a unit rate Poisson point process on W , where ℓ is the Lebesgue measure

restricted to W . Iftimi et al. (2018) extended the hybridization approach for an inho-

mogeneous area-interaction model in spatio-temporal framework where the density is

given by

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)
m
∏

j=1

γ
−ℓ(∪(ξ,t)∈xC

qj
rj

(ξ,t))

j , (2.10)

with respect to a unit rate Poisson process on W , where (rj, qj) are pairs of irregular

parameters of the model and γj are interaction parameters, j = 1, . . . ,m. New hybrid
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Gibbs models can also be defined from the hardcore process (2.4) and the Strauss pro-

cess (2.6) introduced in the spatio-temporal framework, but much more hybrid Gibbs

models remain to be developed to better describe spatio-temporal complex phenomena

in practice.

As mentioned, Strauss point process model only achieves the inhibition structure.

In spatial framework, two ways are introduced to overcome this problem that we extend

to spatio-temporal framework hence defining two new spatio-temporal Gibbs point pro-

cess models.

2.1.2 Spatio-temporal Geyer saturation model

A first way to propose the Gibbs models based on Strauss model which intend for

clustering structures is to consider an upper bound for the number of neighboring points

that interact. Indeed, we extend the spatial Geyer saturation point process (1.6) to the

spatio-temporal framework replacing the Euclidean balls by spatio-temporal cylindrical

neighborhoods (Gonzalez et al. 2016).

Definition 2.1.2. We define the spatio-temporal Geyer saturation point process as the

point process with density

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)γmin{s,n(Cq
r (ξ,t);x)}, (2.11)

with respect to a unit rate Poisson process on W , where c > 0 is a normalizing con-

stant, λ is a non-negative, measurable and bounded function, γ > 0 is the interaction

parameter, s is the saturation parameter, and n(Cq
r (ξ, t); x) =

∑

(u,v)∈x\(ξ,t) ✶(||u−ξ||≤
r, |v − t|≤ q) is the number of points of x lying in Cq

r (ξ, t) and different from (ξ, t).

The function λ describes some spatio-temporal trend in point pattern that can be

estimated using covariates. The scalars γ, r, q and s are the parameters of the model.

The saturation parameter s is an upper bound of the number of points in the cylinder Cq
r .

By using hybridization approach (Baddeley et al. 2013, Iftimi et al. 2018), we define a

multi-scale version of (2.11).

Definition 2.1.3. We define the spatio-temporal multi-scale Geyer saturation point pro-

cess as the point process with density

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)
m
∏

j=1

γ
min{sj ,n(C

qj
rj

(ξ,t);x)}

j , (2.12)

with respect to a unit rate Poisson process on W , where γj > 0, j = 1, . . . ,m, are the

interaction parameters, and r1 < · · · < rm, q1 < · · · < qm are spatial and temporal

interaction ranges.
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For any j ∈ {1, ...,m}, the interaction parameters 0 < γj < 1 reflect inhibition,

while γj > 1 reflect clustering between points at some spatio-temporal scales. When

sj = 0 or γj = 1 for all j ∈ {1, ...,m}, the density (2.12) corresponds to the density of

an inhomogeneous Poisson process. Equation (2.12) indicates that the structure of the

process changes with the spatial and temporal distances rj, qj . Covariates can be added

to the model by assuming that the spatio-temporal trend λ is function of a covariate

vector Z(ξ, t), i.e. λ(ξ, t) = Ψ(Z(ξ, t)).

Lemma 2.1.1. The spatio-temporal multi-scale Geyer point process is a Markov point

process in the sense of Ripley-Kelly (Ripley and Kelly 1977) and its density (2.12) is

measurable and integrable for all γj, j = 1, . . . ,m with m ∈ N.

Proof. A Geyer model is hereditary, locally and Ruelle stable and hence integrable (Geyer

1999). Baddeley et al. (2013) showed these properties for hybrids. As in Iftimi et al.

(2018), we can show that the spatio-temporal Geyer saturation point process (2.11) is

a Markov point process in Ripley-Kelly’s sense at interaction range 2max{r, q} and

that the spatio-temporal multi-scale Geyer saturation process (2.12) is also a Markov

point process in Ripley-Kelly sense at interaction range max1≤j≤m{2max{rj, qj}} =

2max{rm, qm} (Baddeley et al. 2013).

For any (u, v) ∈ W , the Papangelou conditional intensity function of the spatio-

temporal multi-scale Geyer saturation process is

λ((u, v)|x) = λ(u, v)
m
∏

j=1

γ
min{sj ,n(C

qj
rj

(u,v);x)}

j

×
∏

(ξ,t)∈x\(u,v)

γ
min{sj ,n(C

qj
rj

(ξ,t));x∪(u,v))}−min{sj ,n(C
qj
rj

(ξ,t);x\(u,v))}

j ,

(2.13)

The Markovian property (Lemma 2.1.1) ensures that this conditional intensity only de-

pends on (u, v) and its neighbors in x. Hence, we can design simulation algorithms for

generating realizations of the model, see Chapter 4.

2.1.3 Spatio-temporal Strauss hardcore model

A second way to propose the Gibbs models based on Strauss model which intend for

clustering structures is to introduce a hardcore condition to the Strauss density (2.6).

Hence, we can define a Strauss hardcore model in the spatio-temporal context.

Definition 2.1.4. We define the spatio-temporal Strauss hardcore point process as the
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point process with density

f(x) = c

n
∏

i=1

λ(ξi, ti)γ
Sq
r (x)1{||ξ − ξ′||> hcs or |t− t′|> hct; ∀(ξ, t) 6= (ξ′, t′) ∈ x},

(2.14)

where 0 < hcs < r and 0 < hct < q.

The model could be used to model clustering patterns with a softer attraction be-

tween the points like a pattern with a combination of interaction terms that show re-

pulsion between the points at a small scale and attraction between the points at a larger

scale. The Papangelou conditional intensity of a spatio-temporal Strauss hardcore point

process for (u, v) /∈ x is obtained

λ((u, v)|x) = λ(u, v)γn[Cq
r (u,v);x]1{||ξ − u||> hcs or |t− v|> hct; ∀(ξ, t) ∈ x}

= λ(u, v)γn[Cq
r (u,v);x]

∏

(ξ,t)∈x

1{(ξ, t) /∈ Chct
hcs

(u, v)}. (2.15)

A hybrid version of spatio-temporal Strauss hardcore model can be defined by hy-

bridization approach.

Definition 2.1.5. We define the spatio-temporal hybrid Strauss hardcore point process

with density

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)
m
∏

j=1

γ
S
qj
rj

(x)

j

× 1{||ξ′ − ξ′′||> hcs or |t′ − t′′|> hct; ∀(ξ′, t′) 6= (ξ′′, t′′) ∈ x},
(2.16)

where 0 < hcs < r1 < · · · < rm and 0 < hct < q1 < · · · < qm.

In the same way, Papangelou conditional intensity of an inhomogeneous spatio-

temporal hybrid Strauss hardcore process for (u, v) /∈ x is obtained

λ((u, v)|x) = λ(u, v)
m
∏

j=1

γ
n[C

qj
rj

(u,v);x]

j 1{||ξ − u||> hcs or |t− v|> hct; ∀(ξ, t) ∈ x}

= λ(u, v)
m
∏

j=1

γ
n[C

qj
rj

(u,v);x]

j

∏

(ξ,t)∈x

1{(ξ, t) /∈ Chct
hcs

(u, v)}.

(2.17)

The Papangelou conditional intensity of the Gibbs point process models including a

hardcore interaction term takes the value zero at some locations. We can thus write that
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for all parameters of the model

λ((u, v)|x) = m((u, v)|x)λ+((u, v)|x), (2.18)

where m((u, v)|x) takes only the values 0 and 1, and λ+((u, v)|x) > 0 everywhere.

In the same way as Lemma 2.1.1, the spatio-temporal hybrid Strauss hardcore point

process (2.16) is a Markov point process in Ripley and Kelly (1977) sense at interaction

range max{rm, qm}.

2.2 Models based on Cox and Gibbs processes

Gibbs models represent a flexible class of processes for setting direct interaction be-

tween points. The spatio-temporal heterogeneity in the expected number of points ob-

served per unit of space and time can be captured by estimating a non constant trend

term estimation of a Gibbs models. In the literature, this trend is typically considered

as a function of the covariates, whose influence is expressed through a small number

of parameters, for instance by estimating fixed effects in a generalized linear model as

in Iftimi et al. (2018). In this section, we introduce the models derived from the multi-

scale classes of combinations of Gibbs and log-Gaussian Cox point processes, to which

we refer as Cox-Gibbs models in the following.

We consider the popular class of pairwise interaction point processes with density

f(x) = c

n
∏

i=1

λ(ξi, ti)
∏

i<j

γ((ξi, ti), (ξj, tj)), (2.19)

with respect to a unit rate Poisson process on W for all point patterns x, where c > 0 is

a normalizing constant, λ : W → ❘
+ is a first-order interaction function which models

systematic aggregation of points and γ : W ×W → ❘
+ is a second-order interaction

function which models repulsion between the points with form γ((ξi, ti), (ξj, tj)) =

γ(||ξi − ξj||, |ti − tj|).
The simplest nontrivial pairwise interaction process is the Strauss process with

γ((ξi, ti), (ξj, tj)) = γ1{||ξi−ξj ||≤r,|ti−tj |≤q} in (2.19) where r and q are spatial and tempo-

ral radii, respectively. Pairwise interaction processes are mainly models for a repulsive

behaviour. However, a Strauss hardcore process with density (2.14) rewritten as

f(x) = c

n
∏

i=1

λ(ξi, ti)
∏

i<j

γ1{||ξi−ξj ||≤r,|ti−tj |≤q}
1{||ξ − ξ′||> hcs

or |t− t′|> hct; ∀(ξ, t) 6= (ξ′, t′) ∈ x},
(2.20)

where hcs, hct are spatial and temporal hardcore distances, is a model for both repul-
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sive and attractive behaviours. Interesting Gibbs point process models are usually in-

troduced with infinite order of interaction such as Geyer saturation point process with

density (2.11).

In point process literature, modeling the small-scale interactions is an important and

difficult challenge. To overcome that, we consider firstly a spatio-temporal pairwise

interaction point process X with density (2.19) and then consider a doubly stochastic

construction by replacing λ with a random function Λ in order to introduce random

aggregation to the model which is an extension of a Cox process (when γ = 1). When Λ

is the random intensity function of a log Gaussian Cox process, we have a log Gaussian

Cox pairwise interaction process. Specifically, we consider for (u, v) ∈ W

Λ(u, v) = exp(Z(u, v)), (2.21)

where Z := {Z(u, v)}(u,v)∈W is a Gaussian random field (GRF). Indeed, we suggest

a model for regularity at small-scale and aggregation at larger-scale. Due to different

values for parameters of the model, we have some well-known special cases (e.g. ho-

mogeneous Poisson, log Gaussian Cox process, and pairwise interaction process) in

spatio-temporal context.

The log Gaussian Cox pairwise interaction process has a density (with respect to the

unit rate Poisson process) with the form

f(x) = ❊

[

1

c(Z)

n
∏

i=1

exp (Z(ξi, ti))
∏

i<j

γ(||ξi − ξj||, |ti − tj|)
]

, (2.22)

where the expectation is with respect to the GRF Z and c(Z) is the normalising constant

obtained by conditioning on Z.

Hence, a log Gaussian Cox Strauss process (LGCSP) has density

f(x) = ❊

[

1

c(Z)

n
∏

i=1

exp (Z(ξi, ti))
∏

i<j

γ1{||ξi−ξj ||≤r,|ti−tj |≤q}

]

. (2.23)

In the same way, we can introduce the log Gaussian Cox Strauss hardcore process

(LGCSHP) with density

f(x) = ❊[
1

c(Z)

n
∏

i=1

exp (Z(ξi, ti))
∏

i<j

γ1{||ξi−ξj ||≤r,|ti−tj |≤q}

× 1{||ξ − ξ′||> hcs or |t− t′|> hct; ∀(ξ, t) 6= (ξ′, t′) ∈ x}].
(2.24)
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We can also introduce the log Gaussian Cox Geyer process (LGCGP) with density

f(x) = ❊

[

1

c(Z)

n
∏

i=1

exp (Z(ξi, ti))γ
min{s,n(Cq

r (ξi,ti);x)}

]

. (2.25)

Due to existence the GRF Z in density of hybrid Gibbs-Cox models, the Papangelou

conditional intensity can have a general form for (u, v) /∈ x

λ((u, v)|x,Z) = Γ((u, v)|x)ζ((u, v)|Z), (2.26)

where Γ is related to second-order interaction of the model which is free of complex

integrals of GRF while

ζ((u, v)|Z) = ❊ [exp (Z(u, v))
∏n

i=1 exp (Z(ξi, ti))]

❊ [
∏n

i=1 exp (Z(ξi, ti))]
.

Hence, for a LGCSP we have in (2.26)

Γ((u, v)|x) = γn[Cq
r (u,v);x],

where n[Cq
r (u, v); x] =

∑

i ✶(||u− ξi||≤ r, |v − ti|≤ q), for a LGCSHP we have

Γ((u, v)|x) = γn[Cq
r (u,v);x]

∏

i

1{(ξi, ti) /∈ Chct
hcs

(u, v)},

and for a LGCGP we have

Γ((u, v)|x) = γmin{s,n(Cq
r (u,v);x)}

∏

i

γmin{s,n(Cq
r (ξi,ti));x∪(u,v))}−min{s,n(Cq

r (ξi,ti);x)}.
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Chapter 3

Inference

There are different ways in fitting point process models, basically: moment-, likelihood-

and Bayesian-based methods. In general, the likelihood has no closed form expression

(and thus is intractable) for most of density’s models. To address this issue, a simple and

quick inference procedure is using the composite likelihood-based inference which is

mainly defined based on the Papangelou conditional intensity function. In this chapter,

we focus on both global and local parameter estimation. For global estimation, we ex-

tend to the spatio-temporal context two composite likelihood-based inference methods

for our new Gibbs models and design a Bayesian hierarchical approach for the Cox-

Gibbs model. We then implement a local parameter estimation approach to take into

account different local interaction structures for spatio-temporal Gibbs models.

3.1 Global parameter estimation

Gibbs point process models involve two types of parameters: regular parameters and

irregular parameters. A parameter is called regular if the log likelihood is a linear

function of that parameter, irregular otherwise. Typically, regular parameters determine

the ‘strength’ of the interaction, while irregular parameters determine the ‘range’ of the

interaction.

Irregular parameters, like saturation threshold s and distances r and q in Geyer

model (2.11) and also hcs and hct in Strauss hardcore model (2.14), are difficult to

estimate using the maximum likelihood method because the likelihood function is not

differentiable with respect to them. These parameters can be estimated using the profile

pseudo-likelihood approach (Baddeley and Turner 2000) or predetermined by the user

using some summary statistics, like the pair correlation and the auto-correlation func-

tions (Iftimi et al. 2018), in order to determine the interaction ranges. Baddeley and

Turner (2006) presented the methods that are used for irregular parameter estimation in

the spatial framework.

In the spatio-temporal framework, we combine the advantages of the two previous

methodologies. By computing some statistics summarizing the range of interactions in

space and time, we consider a set of feasible irregular parameter values and we choose
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the combination of them providing the best Akaike’s Information Criterion (AIC) for

the fitted model.

However, the hardcore interaction term m(·|x) in the conditional intensity (2.18)

does not depend on the other parameters of the densities of Gibbs point processes. This

implies that it can first be estimated and kept fixed for the sequel (Baddeley et al. 2019).

In the spatial framework, the maximum likelihood estimate of the hardcore distance

in m(·|x) corresponds to the minimum interpoint distance (Baddeley et al. 2013). The

generalization to the spatio-temporal context with a cylindrical hardcore structure im-

plies to consider a multi-objective minimization problem over the spatial and temporal

hardcore distances hcs and hct. The choice of our hardcore parameters needs to analyze

the Pareto front of feasible solutions on the graph of spatial and temporal interpoint dis-

tances. We refer to Ehrgott (2005) for a description of multi-criteria optimization and

the definition of Pareto optimality. To estimate the hardcore distance hcs and hct, we

consider a feasible solution on the Pareto front as large as possible and with a ratio

consistent with our knowledge of interaction mechanisms in practice.

Regular parameters like trend λ and interaction γ in (2.11) and (2.14) can be esti-

mated using the pseudo-likelihood method (Baddeley and Turner 2000) or the logistic

likelihood method (Baddeley et al. 2014) rather than the maximum likelihood method

(Ogata and Tanemura 1981). Indeed, they are based on the conditional intensity which

is tractable for most Gibbs models and is free from the normalization constant c (whose

estimation is computationally very expensive, even for a small number of regular pa-

rameters). Here we tailor these two methods to estimate regular parameters of our

spatio-temporal models and we compare their performance in Chapter 4.

3.1.1 Composite likelihoods

The likelihoods of Gibbs models are intractable; when a surrogate likelihood is re-

quired, the choice is usually a composite likelihood (Lindsay 1988, Varin et al. 2011)

of which there are several kinds adapted to different classes of models. See Baddeley

et al. (2019) for composite likelihood-based statistical inference in Gibbs point pro-

cesses. We here implement two composite likelihoods; pseudo-likelihood and logistic

likelihood for Geyer and Strauss hardcore models.

3.1.1.1 Pseudo-likelihood approach

Let θ be the vector of regular parameters that we aim to estimate. Besag (1977) de-

fined the pseudo-likelihood for spatial point processes in order to avoid computational

problems with point process likelihoods. One can easily extend it for a spatio-temporal
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point process with conditional intensity λθ((u, v)|x) over W as follows

PL(x;θ) = exp

(

−
∫

S

∫

T

λθ((u, v)|x)dvdu
)

∏

(ξ,t)∈x

λθ((ξ, t)|x). (3.1)

The pseudo score is defined by

U(x;θ) =
∂

∂θ
logPL(x;θ), (3.2)

that is an unbiased estimating function. The maximum pseudo-likelihood normal equa-

tions are then given by
∂

∂θ
logPL(x;θ) = 0, (3.3)

where

logPL(x;θ) =
∑

(ξ,t)∈x

log λθ((ξ, t)|x)−
∫

S

∫

T

λθ((u, v)|x)dvdu, (3.4)

and λθ(·|x) is defined by (2.13) for hybrid Geyer model (2.12).

For sake of clarity, we now assume that θ = [log γ1, . . . , log γm]
⊤ the logarithm of

interaction parameters in model (2.12). To estimate θ, we use the pseudo-likelihood ap-

proach. Equation (2.13) can be rewritten as λθ((u, v)|x) = λ(u, v)
∏m

j=1 exp(θjSj((u, v), x))

where

Sj((u, v), x) = min{sj, n(Cqj
rj
(u, v); x)}

+
∑

(ξ,t)∈x\(u,v)

[min{sj, n(Cqj
rj
(ξ, t); x ∪ (u, v))}

−min{sj, n(Cqj
rj
(ξ, t); x\(u, v))}],

(3.5)

is a sufficient statistics. Then, for S((u, v), x) = [S1((u, v), x), . . . , Sm((u, v), x)]⊤

log λθ((u, v)|x) = log λ(u, v) + θ⊤S((u, v), x) (3.6)

is a linear model in θ with offset log λ(u, v). Thus, equation (3.3) gives us the pseudo-

likelihood equations

∂

∂θ





∑

(ξ,t)∈x

[log λ(ξ, t) +
m
∑

j=1

θjSj((ξ, t), x)]−
∫

S

∫

T

λ(u, v)
m
∏

j=1

eθjSj((u,v),x)dvdu



 = 0,

(3.7)
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For each parameter θi, i = 1, . . . ,m, the equations (3.7) can be rewritten

∑

(ξ,t)∈x

Si((ξ, t), x) =

∫

S

∫

T

λ(u, v)Si((u, v), x)
m
∏

j=1

eθjSj((u,v),x)dvdu, (3.8)

The major difficulty is to estimate the integrals on the right hand side of equations

(3.8). The pseudo-likelihood cannot be computed exactly but must be approximated

numerically.

For a point process model, the approximation of likelihood is converted into a re-

gression model. In the following, we refer to generalized log-linear Poisson regression

approach as approximation of integrals in (3.8). In the next subsection, we also investi-

gate an alternative, the logistic regression.

Berman and Turner (1992) developed a numerical quadrature method to approx-

imate maximum likelihood estimation for an inhomogeneous Poisson point process.

Berman-Turner method has then been extended to Gibbs point processes by Baddeley

and Turner (2000), approximating the integral in (3.4) by a Riemann sum

∫

S

∫

T

λθ((u, v)|x)dvdu ≈
n+p
∑

k=1

wkλθ((ξk, tk)|x), (3.9)

where (ξk, tk) are points in {(ξ1, t1), ..., (ξn, tn), (ξn+1, tn+1), ..., (ξn+p, tn+p)} ∈ W
consisting of the n events of x and p dummy points, and wk are quadrature weights

such that
∑n+p

k=1 wk = ℓ(S × T ) where ℓ is Lebesgue measure. This yields an approxi-

mation for the log pseudo-likelihood of the form

logPL(x;θ) ≈
∑

(ξ,t)∈x

log λθ((ξ, t)|x)−
n+p
∑

k=1

wkλθ((ξk, tk)|x). (3.10)

Note that if the set of points {(ξk, tk), k = 1, . . . , n + p} includes all the points of

x = {(ξ1, t1), ..., (ξn, tn)}, we can rewrite (3.10) as

logPL(x;θ) ≈
n+p
∑

k=1

wk (yk log λθ((ξk, tk)|x)− λθ((ξk, tk)|x)) , (3.11)

where

yk =







1/wk, if (ξk, tk) ∈ x is an event,

0, if (ξk, tk) /∈ x is a dummy point.
(3.12)

The right hand side of (3.11), for fixed x, is formally equivalent to the log-likelihood

of independent Poisson variables Yk ∼ Poisson(λθ((ξk, tk)|x)) taken with weights

wk. Therefore, by using the glm function in R (R Core Team 2016), we can perform
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the maximum likelihood-based parameter estimation of this Poisson generalized linear

model and obtain the maximum value for (3.11).

Note that in hybrid Geyer model (2.12), we consider λ(ξ, t) = λβ(ξ, t) = βµ(ξ, t)

where µ(ξ, t) is known or estimated beforehand and β is a parameter to estimate. In

summary, the method is as follows.

Algorithm 1

• Generate a set of p uniform dummy points in W and merge them with all the

data points in x to construct the set of quadrature points (ξk, tk) ∈ W with k =

1, . . . , n+ p.

• Compute the quadrature weights wk and the indicators yk defined in (3.12),

• Compute the sufficient statistics S((ξk, tk), x) at each quadrature point,

• Fit a log-linear Poisson regression with explanatory variables S((ξk, tk), x), and

offset log λ(ξk, tk) on the responses yk with weights wk to obtain estimates θ̂ for

the S-vector and intercept θ̂0,

• Return the maximum pseudo-likelihood-based parameter estimates γ̂j = exp(θ̂j)

for j = 1, . . . ,m and β̂ = exp(θ̂0).

We define the quadrature scheme by defining a spatio-temporal partition of W into

cubes Ck of equal volumes ν and by using the counting weights proposed in Baddeley

and Turner (2000). We then assign to each dummy or data point (ξk, tk) a weight

wk = ν/nk where nk is the number of dummy and data points that lie in the same cube

as (ξk, tk).

The number of dummy points should be sufficient for an accurate estimate of the

pseudo-likelihood. We follow Baddeley and Turner (2000) and start with p ≈ 4n(x).

Then, we increase it until
∑

k wk = ℓ(W), what can lead to high computational costs.

An alternative way to define the quadrature scheme for Algorithm 1 is based on

Dirichlet tessellation (Baddeley and Turner 2000) and the weight of each point is equal

to the volume of the corresponding Dirichlet 3D cell. We consider cubes because it

is less time consuming and provides similar results (see Opitz (2009) for quadrature

schemes comparison of 3D Gibbs point processes).

3.1.1.2 Logistic likelihood approach

The logistic likelihood method (Baddeley et al. 2014) is an alternative for estimating

the regular parameters of Gibbs models that is closely related to the pseudo-likelihood

method. The Berman-Turner approximation often requires a quite large number of
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dummy points. Hence, fitting such GLM can be computationally intensive, especially

when dealing with a large dataset. Baddeley et al. (2014) formulated the pseudo-

likelihood estimation equation as a logistic regression using auxiliary dummy point

configurations and proposed a computational technique for fitting Gibbs point process

models to spatial point patterns. Iftimi et al. (2018) extended the logistic likelihood

approach for spatio-temporal Gibbs point processes and we tailored it to our model.

Let x be a realization of a spatio-temporal point process defined on W having a

density fθ with respect to the unit rate Poisson process and with conditional intensity

function λθ(·|x). We consider an independent Poisson process for dummy points, with

intensity function ρ, and we denote by d a set of dummy points. We follow Badde-

ley et al. (2014) (resp. Iftimi et al. (2018)) for choosing ρ of a homogeneous (resp.

inhomogeneous) Poisson process in simulation study (resp. application). See Badde-

ley et al. (2014), for a data-driven determination of ρ and its effect on efficiency and

practicability of the method.

By defining Y (ξ, t) = ✶{(ξ,t)∈x} for (ξ, t) ∈ x ∪ d, we obtain independent Bernoulli

variables taking one for data points and zero for dummy points. We have

Pr(Y (ξ, t) = 1) =
λθ((ξ, t)|x\(ξ, t))

λθ((ξ, t)|x\(ξ, t)) + ρ(ξ, t)
, (3.13)

By considering the log linearity assumption for the conditional intensity λθ(·|x)
in (3.6), the logit of Pr(Y (ξ, t) = 1) is

log
λθ((ξ, t)|x\(ξ, t))

ρ(ξ, t)
= log

λ(ξ, t)

ρ(ξ, t)
+

m
∑

j=1

θjSj((ξ, t), x\(ξ, t)), (3.14)

which is a linear model in θ with offset log λ(ξ,t)
ρ(ξ,t)

.

Since λθ((ξ, t)|x) = λθ((ξ, t)|x\(ξ, t)) for (ξ, t) ∈ d, the log logistic likelihood is

defined by

logLL(x,d;θ) =
∑

(ξ,t)∈x∪d

Y (ξ, t) log
λθ((ξ, t)|x\(ξ, t))

λθ((ξ, t)|x\(ξ, t)) + ρ(ξ, t)

+
∑

(ξ,t)∈x∪d

[1− Y (ξ, t)] log
ρ(ξ, t)

λθ((ξ, t)|x) + ρ(ξ, t)

=
∑

(ξ,t)∈x

log
λθ((ξ, t)|x\(ξ, t))

λθ((ξ, t)|x\(ξ, t)) + ρ(ξ, t)

+
∑

(ξ,t)∈d

log
ρ(ξ, t)

λθ((ξ, t)|x) + ρ(ξ, t)
.

(3.15)

The maximum of the log-logistic likelihood exists and under regularity condition (Bad-
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deley et al. 2019) is unique. Hence, estimation can be implemented in R by using the

glm function.

As in Algorithm 1, we consider λ(ξ, t) = λβ(ξ, t) = βµ(ξ, t) and we estimate the

regular parameters form the following algorithm.

Algorithm 2

• Generate dummy points d from a Poisson process with intensity function ρ and

merge them with all the data points in x to construct the set of quadrature points

(ξk, tk) ∈ W ,

• Obtain the response variables yk (1 for data points, 0 for dummy points),

• Compute the sufficient statistics S((ξk, tk), x\(ξk, tk)) at each quadrature point,

• Fit a logistic regression model with explanatory variables S((ξk, tk), x\(ξk, tk)),
and offset log (µ(ξk, tk)/ρ(ξk, tk)) on the responses yk to obtain estimates θ̂ for

the S-vector and intercept θ̂0,

• Return the parameter estimator γ̂ = exp(θ̂) and β̂ = exp(θ̂0) and in the case

where µ(ξk, tk)/ρ(ξk, tk) is a constant c we have β̂ = c−1 exp(θ̂0).

In the same way, we assume that θ = (log γ1, log γ2, ..., log γm) is the logarithm of

interaction parameters in spatio-temporal hybrid Strauss hardcore point process (2.16).

The Papangelou conditional intensity of the spatio-temporal hybrid Strauss hardcore

process for (u, v) ∈ W is

λ((u, v)|x) = λ(u, v)
m
∏

j=1

γ
n[C

qj
rj

(u,v);x\(u,v)]

j 1{||ξ−u||> hcs or |t−v|> hct; ∀(ξ, t) ∈ x\(u, v)}.

(3.16)

To estimate θ, due to (2.18), we just consider the points (u, v) where m((u, v)|x) is

equal to 1 in (3.16). By defining Sj((u, v), x) := n[C
qj
rj (u, v); x \ (u, v)] in (3.16), we

can thus write λθ((u, v)|x) = λ(u, v)
∏m

j=1 exp(θjSj((u, v), x)). Hence, the logarithm

of the Papangelou conditional intensity of the spatio-temporal hybrid Strauss hardcore

point process for (u, v) ∈ W which satisfies in hardcore condition, i.e. m((u, v)|x) = 1

in (3.16), is

log λ((u, v)|x) = log λ(u, v) +
m
∑

j=1

(log γj)Sj((u, v), x)

= log λ(u, v) + θ⊤S((u, v), x)

(3.17)
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corresponding to a linear model in θ with offset log λ(u, v) where

S((u, v), x) = [S1((u, v), x), S2((u, v), x), ..., Sm((u, v), x)]⊤

is a sufficient statistics.

The logit for the models is

log
λθ((ξ, t)|x)

ρ(ξ, t)
= log

λ(ξ, t)

ρ(ξ, t)
+

m
∑

j=1

θjSj((ξ, t), x), (3.18)

which is a linear model in θ with offset log λ(ξ,t)
ρ(ξ,t)

. We finally implement Algorithm 2 for

quadrature points (data and dummy points) such that m(·|x) = 1.

3.1.2 Bayesian approach

The calculation of composite likelihoods: pseudo-likelihood and logistic likelihood in-

volves complex, high-dimensional integrals for Cox-Gibbs models, which further need

estimation methods to handle the latent (i.e., unobserved) Gaussian variables. The hi-

erarchical structure of the Cox-Gibbs model ensures a Bayesian formulation, and in-

ference can be achieved by using the Integrated Nested Laplace Approximation (Rue

et al. 2009). In Gabriel et al. (2017), Serra et al. (2014b), Opitz et al. (2020) and Pimont

et al. (2021), INLA-based estimation has been implemented for spatio-temporal log-

Gaussian Cox process models (i.e., without Gibbs interactions) for wildfire ignitions.

We here extend INLA-based inference to spatio-temporal Cox-Gibbs processes. It is

coupled with the stochastic partial differential equations approach of Lindgren et al.

(2011) for numerically convenient Gauss-Markov representations of spatial Matérn co-

variances, Alternatively, one could consider Markov chain Monte Carlo (MCMC) esti-

mation for LGCPs (Taylor et al. 2015), whose use could be extended to the Cox-Gibbs

models, but we do not pursue this approach here. The INLA method calculates the in-

tegrals by a set of carefully chosen deterministic approximations related to the classical

Laplace approximation (Tierney and Kadane 1986). INLA is generally faster compared

to MCMC methods when considering comparable approximation accuracy, and INLA

works well even with very sophisticated hierarchical structures combining several Gaus-

sian random effects. A comparison in the spatial LGCP setting (but without estimating

hyperparameters such as the range and variance of the Gaussian) was conducted by

Taylor and Diggle (2014).

3.1.2.1 Bayesian estimation with INLA

Rue et al. (2009) introduced INLA as an estimation method for generalized mixed ad-

ditive regression models with multivariate Gaussian random effects, also called latent
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Gaussian models. Opitz (2017) reviews INLA method for spatio-temporal applications

and presents the approach as follows. The distribution of observation yi of the response

depends on a predictor ηi (with Gaussian prior distribution) and potentially on other

parameters, so-called hyperparameters collected into a vector θ. We adopt standard

Bayesian notation by writing π(.) for densities and conditional densities. Specifically,

conditional to ηi and θ, we write the probability density of yi as π(yi|ηi,θ). Most often,

the mean of yi is related to ηi through a link function h−1 such that ❊(yi|ηi,θ) = h(ηi),

i = 1, . . . , n, with h : ❘→ ❘. The hierarchical model is as structured follows:

θ ∼ π(θ), hyperparameters,

z|θ ∼ Nm(0,Q
−1
θ
), latent Gaussian process

y | z,θ
ind.∼
∏

i

π(yi|ηi(z),θ), observations

where Qθ is the precision matrix of the latent Gaussian vector z. The predictor vector η

is additively composed of components z, that is, η(z) = Az, with the fixed observation

matrix A ∈ ❘n×m that maps latent variables z to predictors ηi = ηi(z) associated to

observations yi. The resulting joint posterior density of z and θ given y is

π(z,θ|y) ∝ exp

(

−1

2
z′Qθz+

∑

i

log(π(yi|ηi,θ))) + log π(θ)

)

,

in general, and in our case, this density does not correspond to some known and easily

tractable multivariate distribution family.

3.1.2.2 Latent Gauss–Markov fields and Laplace approximation

We say that a random vector z|θ ∼ N (0,Q−1
θ
) is a Gauss–Markov random field if Q

is a sparse matrix, i.e. the number of non-null entries of its n × n covariance matrix

Q = (qij)1≤i,j≤n is O(n).

The core of the INLA approach is Laplace approximation which starts with the

computation the integral
∫

f(z)dz. This integral can be approximated by using the fact

that a multivariate Gaussian density integrates to 1 as follows

∫

f(z)dz =

∫

exp(kg(z))dz ≈
(

2π

k

)d/2

|H(g)(z∗)|−1/2exp(kg(z∗)),

where z∗ is the unique global maximum of g and H(g)(z∗) is the Hessian matrix.
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In the context of INLA, Let k = 1 and f(z) = exp(g(z)) = π(z,θ). We have

∫

π(z,θ)dz =
1

πG(z∗|θ)
exp(π(z∗,θ)),

where πG is a Gaussian approximation with mean vector z∗ to the conditional density

of z|θ. Hence, to calculate the posterior marginal densities of hyperparameters

π(θj|y) =
∫ ∫

π(z,θ|y)dzdθ−j =

∫

π(θ|y)dθ−j,

we use the Laplace approximation for
∫

π(z,θ|y)dz = π(θ|y) such that the approxi-

mated density
∼
π satisfies

∼
π(θ|y) ∝ π(z,θ,y)

πG(z|θ,y)
|z=z∗(θ)

where z∗(θ) is the mode of the joint density π(z,θ,y) for fixed (θ,y). Thus an approx-

imation of the posterior marginal of θj is

∼
π(θj|y) =

L
∑

l=1

wl
∼
π(θl|y),

which is a numerical integration with a set of integration nodes θl chosen from a nu-

merical exploration of the surface of the density
∼
π(θ−j, θj|y) with θj held fixed and

weights wl. To calculate the posterior marginal densities of the latent Gaussian field

π(zi|y) =
∫ ∫

π(z,θ|y)dz−idθ =

∫

π(zi|θ,y)π(θ|y)dθ,

that just is enough to approximately evaluate π(zi|θ,y). Hence, an approximation of

the posterior marginal of zi is

∼
π(zi|y) =

K
∑

k=1

wk
∼
π(zi|θk,y)

∼
π(θk|y),

where
∼
π(zi|θk,y) ∝

π(z|θk,y)

π(z−i|zi,θk,y)

is a numerical integration with a set of integration nodes θk and weights wk.

3.1.2.3 Penalized complexity priors

Simpson et al. (2017) have proposed a principled, intuitive approach of choosing prior

distributions for important hyperparameters of Bayesian models, such as the range and
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variance parameters of the SPDE-based GMRF-representation of Gaussian fields with

Matérn covariance.

3.2 Local parameter estimation

An alternative approach for modeling multi-scale point patterns relies on local likeli-

hood approach (Loader 1999, Baddeley 2017) to obtain spatially-varying estimates of

the parameters of a point process model. We here provide an extension to the spatio-

temporal framework to explore local changes in the interaction structures, that can not

be retrieved from models with global parameters.

The local likelihood at each spatio-temporal point (ξ, t) ∈ W is the likelihood of

the restriction of point process to a cylinder centred at (ξ, t). It may be investigated

in pseudo-likelihood’s or logistic likelihood’s model fitting of spatio-temporal Gibbs

point processes (Besag 1977, Lindsay 1988, Baddeley et al. 2014). Local pseudo-

likelihood for Gibbs models was defined independently by Zhuang (2015) and Bad-

deley et al. (2015). Baddeley (2017) developed a general approach, the local composite

likelihood. In what follows, we develop local versions of two composite likelihoods:

pseudo-likelihood and logistic likelihood for our spatio-temporal Gibbs models (Sec-

tion 3.1.1). In each case, the logarithm of the composite likelihood is a stochastic inte-

gral over the spatio-temporal domain, similar to the Poisson log-likelihood. We simply

introduce a local weighting kernel into this stochastic integral, giving a local composite

log-likelihood.

3.2.1 Local pseudo-likelihood

Zhuang (2015) extended the local likelihood to spatio-temporal point processes so that

to each point (u∗, v∗) is assigned a spatial weight Wσs
(u∗) that depends on its relative

spatial location u∗ as follows

logLL(u∗;θ) =
n
∑

i=1

Wσs
(u∗ − ξi) log λθ(ξi, ti)−

∫

S

∫

T

Wσs
(u∗ − u)λθ(u, v)dvdu,

(3.19)

where Wσs
is a weight function (usually a kernel function) and λθ is intensity function.

The local likelihood can be also used to estimate the spatio-temporal variation of the

parameters of the model.

We extend the local likelihood approach to spatio-temporal Gibbs point process

models by using pseudo-likelihood (Besag 1977) at each desired spatio-temporal point
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(u∗, v∗) ∈ W by

logLPL((u∗, v∗);θ) =
n
∑

i=1

Wσs
(u∗ − ξi)Wσt

(v∗ − ti) log λθ((ξi, ti)|x)

−
∫

S

∫

T

Wσs
(u∗ − u)Wσt

(v∗ − v)λθ((u, v)|x)dvdu,
(3.20)

where Wσs
(u) = σ−2

s W (u/σs) and Wσt
(v) = σ−1

t W (v/σt) are weight functions (usu-

ally a kernel function), σs, σt > 0 are the smoothing bandwidths, and λθ(·|x) is con-

ditional intensity function of Gibbs model. By maximizing logLPL((u∗, v∗);θ) and

varying (u∗, v∗), we can determine how parameter θ changes with spatio-temporal

points. Local pseudo-likelihood (3.20) can be maximised in the same way as pseudo-

likelihood approach proposed in Section 3.1.1.1.

The local pseudo-likelihood (3.20) can be approximated by

logLPL((u∗, v∗);θ) ≈
n
∑

i=1

Wσs
(u∗ − ξi)Wσt

(v∗ − ti) log λθ((ξi, ti)|x)

−
n+p
∑

k=1

Wσs
(u∗ − ξk)Wσt

(v∗ − tk)λθ((uk, vk)|x)wk,

(3.21)

where (ξk, tk) are points in {(ξ1, t1), ..., (ξn, tn), (ξn+1, tn+1), ..., (ξn+p, tn+p)} ∈ W =

S×T and wk are quadrature weights that
∑n+p

k=1 wk = ℓ(S×T ). Hence, we can rewrite

(3.21) as

logLPL((u∗, v∗);θ) ≈
n+p
∑

k=1

(yk log λk − λk)wkWσs
(u∗ − ξk)Wσt

(v∗ − tk), (3.22)

where λk = λθ((ξk, tk)|x) and

yk =







1/wk if (ξk, tk) ∈ x

0 if (ξk, tk) /∈ x
(3.23)

The right hand side of (3.22), for fixed x, is formally equivalent to the log-likelihood of

independent Poisson variables Yk ∼ Poisson(λk) taken with weights wk ×Wσs
(u∗ −

ξk) × Wσt
(v∗ − tk). Therefore (3.22) can be maximized using standard software for

fitting GLMs, such as that in R (R Core Team, 2016).

Due to the advantage of logistic likelihood over pseudo-likelihood for spatio-temporal

Gibbs point processes (see Iftimi et al. (2018) and Section 4.3.1), we aim to develop the

local logistic likelihood for spatio-temporal Gibbs point processes as follows.
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3.2.2 Local logistic likelihood

We assume that X is a spatio-temporal point process on W = S × T whose distribu-

tion is given by a density fθ with respect to a unit rate Poisson process on W and let

x = {(ξ1, t1), ..., (ξn, tn)} be a realisation of X with conditional intensity function of

a loglinear form, i.e. λθ((u, v)|x) = λ(u, v) exp(θ⊤S((u, v), x)) for (u, v) ∈ W . The

local logistic log likelihood at point (u∗, v∗) can be defined by

logLLL((u∗, v∗);θ) =
∑

(ξi,ti)∈x

Wσs
(u∗ − ξi)Wσt

(v∗ − ti) log
λθ((ξi, ti)|x)

λθ((ξi, ti)|x) + ρ(ξi, ti)

−
∫

S

∫

T

Wσs
(u∗ − u)Wσt

(v∗ − v)ρ(u, v) log
λθ((u, v)|x) + ρ(u, v)

ρ(u, v)
dvdu,

(3.24)

where Wσs
,Wσt

are weight functions and ρ is a nonnegative real-valued function. By

Campbell theorem, we have

E





∑

(ξi,ti)∈d

Wσs
(u∗ − ξi)Wσt

(v∗ − ti) log
ρ(ξi, ti)

λθ((ξi, ti)|x) + ρ(ξi, ti)



 =

∫

S

∫

T

Wσs
(u∗ − u)Wσt

(v∗ − v)ρ(u, v) log
λθ((u, v)|x) + ρ(u, v)

ρ(u, v)
dvdu,

(3.25)

Hence, we can approximate (3.24) by

logLLL((u∗, v∗);θ) ≈
∑

(ξi,ti)∈x

Wσs
(u∗ − ξi)Wσt

(v∗ − ti) log
λθ((ξi, ti)|x)

λθ((ξi, ti)|x) + ρ(ξi, ti)

+
∑

(ξi,ti)∈d

Wσs
(u∗ − ξi)Wσt

(v∗ − ti) log
ρ(ξi, ti)

λθ((ξi, ti)|x) + ρ(ξi, ti)

(3.26)

where d = {(ξn+1, tn+1), ..., (ξn+p, tn+p)} is a random pattern of p dummy points that

is a realisation of a Poisson point process D independent of X with intensity function

ρ. The local logistic score at point (u∗, v∗) is

U((u∗, v∗);θ) =
∂

∂θ
logLLL((u∗, v∗);θ)

=
∑

(ξi,ti)∈x

Wσs
(u∗ − ξi)Wσt

(v∗ − ti)
ρ(ξi, ti)ζθ((ξi, ti)|x)

λθ((ξi, ti)|x) + ρ(ξi, ti)

−
∫

S

∫

T

Wσs
(u∗ − u)Wσt

(v∗ − v)
λθ((u, v)|x)ρ(u, v)ζθ((u, v)|x)

λθ((u, v)|x) + ρ(u, v)
dvdu

(3.27)

40



3.2. LOCAL PARAMETER ESTIMATION CHAPTER 3. INFERENCE

where ζθ is the first derivative of the log conditional intensity, log λθ(·|x), with respect

to θ and local parameter estimates θ̂(u∗, v∗) is a zero of the local score (3.27).

By considering the log linearity assumption for conditional intensity λθ(·|x), the

negative Hessian matrix is thus obtained

H((u∗, v∗);θ) = − ∂

∂θ⊤
U((u∗, v∗);θ) = − ∂2

∂θ∂θ⊤
logLLL((u∗, v∗);θ)

= −
∑

(ξ,t)∈x

Wσs
(u∗ − ξ)Wσt

(v∗ − t)ζθ((ξ, t)|x)ζθ((ξ, t)|x)⊤

× ρ(ξ, t)S((ξ, t), x)

(S((ξ, t), x) + ρ(ξ, t))2

+

∫

S

∫

T

Wσs
(u− u∗)Wσt

(v − v∗)ζθ((u, v)|x)ζθ((u, v)|x)⊤

× ρ(u, v)2S((u, v), x)

(S((u, v), x) + ρ(u, v))2
dvdu.

(3.28)

We can also rewrite (3.26) by

logLLL((u∗, v∗);θ) =
∑

(ξ,t)∈x∪d

Wσs
(ξ − u∗)Wσt

(t− v∗)Y (ξ, t) log pθ((ξ, t)|x)

+
∑

(ξ,t)∈x∪d

Wσs
(ξ − u∗)Wσt

(t− v∗)[1− Y (ξ, t)] log(1− pθ((ξ, t)|x)),

(3.29)

where pθ((ξ, t)|x) = λθ((ξ,t)|x)

λθ((ξ,t)|x)+ρ(ξ,t)
and Y (ξ, t) = 1{(ξ,t)∈x} for (ξ, t) ∈ x ∪ d, with

Pr(Y (ξ, t) = 1) =
λθ((ξ, t)|x)

λθ((ξ, t)|x) + ρ(ξ, t)
. (3.30)

Hence, the local logistic likelihood (3.26) is a weighted logistic regression with

offset term log λ(ξ,t)
ρ(ξ,t)

and weights Wσs
(u∗ − ·)Wσt

(v∗ − ·) that can be maximised in the

same way as logistic likelihood approach in Section 3.1.1.2 at point (u∗, v∗) ∈ W as

follows.

Algorithm 3

• Generate a set of dummy points according to a Poisson process with intensity

function ρ and merge them with all the data points in x to construct the set of

quadrature points (uk, vk) ∈ W ,

• Compute the weights Wσs
(u∗ − uk)Wσt

(v∗ − vk),

• Obtain the response variables yk (1 for data points, 0 for dummy points),
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• Compute the values S((uk, vk), x) of the vector of sufficient statistics at each

quadrature point,

• Fit a logistic regression model with explanatory variables S((uk, vk), x) and off-

set log[λ(uk, vk)/ρ(uk, vk)] and weights Wσs
(u∗ − uk)Wσt

(v∗ − vk) on the re-

sponses yk to obtain local estimates θ̂(u∗, v∗) for the S-vector and intercept

θ̂0(u
∗, v∗),

• Return the local parameter estimator γ̂(u∗, v∗) = exp(θ̂(u∗, v∗)) and β̂(u∗, v∗) =

exp(θ̂0(u
∗, v∗)) and in case that λ(uk, vk)/ρ(uk, vk) is constant c, the offset pa-

rameter may be omitted and return γ̂(u∗, v∗) = exp(θ̂(u∗, v∗)) and β̂ = c−1

exp(θ̂0(u
∗, v∗)).

Algorithm 3 can be implemented in the same way as Algorithm 2 in R. However,

it requires to compute the weights Wσs
(u∗ − uk)Wσt

(v∗ − vk). We assume the weight

functions are kernel densities for simplicity. For a density estimation and bandwidth

selection, we develop proposed approach in Baddeley (2017) to the spatio-temporal

framework. Hence, first, we have to select bandwidths in (3.24).

3.2.3 Bandwidth selection

In the context of point processes, a range of different methods for bandwidth selection

have been proposed in the literature (see e.g. Baddeley et al. (2015) and Davies et al.

(2018) for overviews), and most noteworthy are perhaps the recent method of Cronie

and van Lieshout (2018) and the Poisson processes likelihood cross-validation method

in Loader (1999) which we here develop it to the logistic likelihood.

The logistic likelihood cross-validation criterion is defined by

LLCV (σs, σt) =
n
∑

i=1

log
λ̂−i((ξi, ti)|x)

λ̂−i((ξi, ti)|x) + ρ(ξi, ti)

−
∫

S

∫

T

ρ(u, v) log
λ̂((u, v)|x) + ρ(u, v)

ρ(u, v)
dvdu,

(3.31)

where λ̂((u, v)|x) = λ
θ̂(u,v)((u, v)|x), and λ̂−i((ξi, ti)|x) = λ

θ̂−i(ξi,ti)
((ξi, ti)|x) is the

plug-in estimation of conditional intensity at a point (ξi, ti), using the leave-one-out

parameter estimation θ̂−i(ξi, ti) based on x \ (ξi, ti), and θ̂(ξ, t) = θ̂((ξ, t); σs, σt) is

the local estimate of θ at spatio-temporal point (ξ, t) using bandwidths σs, σt > 0. The

optimal bandwidths σopt
s , σopt

t are the maximiser of (3.31).

It is difficult to approximate the integrals on the right hand side of (3.31). To address
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this issue, we have by (3.26)

LLCV (σs, σt) ≈
n
∑

i=1

log
λ̂−i((ξi, ti)|x)

λ̂−i((ξi, ti)|x) + ρ(ξi, ti)

+

n+p
∑

i=n+1

log
ρ(ξi, ti)

λ̂−i((ξi, ti)|x) + ρ(ξi, ti)

=
n
∑

i=1

log λ̂−i((ξi, ti)|x)

+

n+p
∑

i=1

log
ρ(ξi, ti)

λ̂−i((ξi, ti)|x) + ρ(ξi, ti)
.

(3.32)

Note that, in principle, it is required to fit n+ p local logistic likelihoods for sample

size n + p− 1 for obtaining a single evaluation of (3.32). Hence, it has a high compu-

tational cost and for overcoming it, we approximate (3.32) as follows. As in the case of

density estimation in page 90 of Loader (1999), we may approximate θ̂−i(ξi, ti) to first

order using leverage and influence functions (Baddeley 2017, Baddeley et al. 2019).

Hence, we have

log λ̂−i((ξi, ti)|x)− log λ̂((ξi, ti)|x) ≈ −ζ
θ̂(ξi,ti)

((ξi, ti)|x)⊤H((ξi, ti); θ̂(ξi, ti))
−1

× ζ∗
θ̂(ξi,ti)

((ξi, ti)|x),
(3.33)

where

ζ∗
θ
((ξi, ti)|x) = Wσs

(0)Wσt
(0)ζθ((ξi, ti)|x)

+
∑

j 6=i,j∈x

Wσs
(ξj − ξi)Wσt

(tj − ti)△(ξi,ti) ζθ((ξj, tj)|x)

−
∑

j 6=i,j∈x∪d

Wσs
(ξj − ξi)Wσt

(tj − ti)△(ξi,ti) πθ((ξj, tj)|x),
(3.34)

with △(u,v)g((u
′, v′), x) := g((u′, v′), x ∪ (u, v))− g((u′, v′), x \ (u, v)), for (u, v),

(u′, v′) ∈ W and

πθ((ξj, tj)|x) = ζθ((ξj, tj)|x)
λθ((ξj, tj)|x)

λθ((ξj, tj)|x) + ρ(ξj, tj)
.
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Hence, we approximate (3.32) by

LLCV (σs, σt) ≈
n
∑

i=1

log λ
θ̂(ξi,ti)

((ξi, ti)|x)

−
n
∑

i=1

ζ
θ̂(ξi,ti)

((ξi, ti)|x)⊤H((ξi, ti); θ̂(ξi, ti))
−1ζ∗

θ̂(ξi,ti)
((ξi, ti)|x)

−
n+p
∑

i=1

λ̂−i((ξi, ti)|x)
λ̂−i((ξi, ti)|x) + ρ(ξi, ti)

,

(3.35)

The third term of right side in (3.35) is the first order of Taylor series expansion of

log ρ

λ̂−i+ρ
(log(1− x) = −x− x2

2
− · · ·,−1 < x < 1) by

log
ρ

λ̂−i + ρ
= log(1− λ̂−i

λ̂−i + ρ
) ≈ − λ̂−i

λ̂−i + ρ
, (3.36)

where λ̂−i((ξi, ti)|x) is obtained from (3.33).
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Chapter 4

Simulations

Simulation-based techniques play an important role in the analysis of point patterns

which are used in calculation of summary statistics and goodness-of-fit tests for point

process models and also visualisation of point process models (Illian et al. 2008). This

chapter treats both an algorithm based on MCMC methods and two-step simulation-

based procedure for Gibbs and Cox-Gibbs models proposed in Chapter 2. We imple-

mented simulation algorithms and inference methods in R code. Most of them can be

found here http://edith.gabriel.pagesperso-orange.fr/software.html.

4.1 Gibbs models' simulation

The simulation algorithms of Gibbs point process models require only computation of

the Papangelou conditional intensity which avoids to consider the difficult estimation

of the unknown normalizing constant in the density function. Gibbs point process mod-

els can be simulated by using Markov chain Monte Carlo (MCMC) algorithms like the

birth-death Metropolis-Hastings algorithm (Møller and Waagepetersen 2004) that be-

longs to the large class of Metropolis-Hastings algorithms (Geyer and Møller 1994).

In this section, we first present the birth-death Metropolis-Hastings algorithm and sec-

ondly we investigate the goodness of parameter estimation of the two approaches intro-

duced before.

4.1.1 Birth-death Metropolis-Hastings algorithm

For x a spatio-temporal point pattern in W , we can propose either a birth with proba-

bility q(x) or a death with probability 1 − q(x). For a birth, a new point (u, v) ∈ W
is sampled from a probability density b(x, ·) and the new point configuration x ∪ (u, v)

is accepted with probability A(x, x ∪ (u, v)), otherwise the state remains unchanged.

For a death, the point (ξ, t) ∈ x chosen to be removed is selected according to a dis-

crete probability distribution d(x, .) on x, and the proposal x \ (ξ, t) is accepted with

probability A(x, x \ (ξ, t)), otherwise the state remains unchanged. For simplicity, we

consider q(x) = 1
2
, b(x, ·) = 1/ℓ(W) and d(x, ·) = 1/n(x). By setting A(x, x ∪

(u, v)) = min{1, r((u, v); x)}, and A(x, x \ (ξ, t)) = min{1, 1/r((ξ, t); x \ (ξ, t))}

45



4.2. COX-GIBBS MODELS' SIMULATION CHAPTER 4. SIMULATIONS

where r((u, v); x) = ℓ(W)
n(x)+1

× λ((u, v)|x) is the Hastings ratio (Iftimi et al. 2018), we

obtain the following birth-death Metropolis-Hastings algorithm.

Algorithm 4

For n = 0, 1, ..., given Xn = x (e.g. a Poisson process for n = 0), generate Xn+1:

• Generate two uniform numbers y1, y2 in [0, 1],

• If y1 ≤ 1
2

then

– A new point (u, v) is uniformly sampled from a probability density 1/ℓ(W ),

– Compute r((u, v); x) = ℓ(W)
n(x)+1

λ((u, v)|x), (u, v) /∈ x.

If y2 < r((u, v); x) then Xn+1 = x ∪ (u, v) else Xn+1 = x

• If y1 >
1
2

then

– Uniformly select a point (ξ, t) in x according to a discrete probability den-

sity 1/n(x),

– Compute r((ξ, t); x\(ξ, t)) = ℓ(W)
n(x)

λ((ξ, t)|x \ (ξ, t))), (ξ, t) ∈ x.

If y2 < 1/r((ξ, t); x\(ξ, t)) then Xn+1 = x\(ξ, t) else Xn+1 = x.

– Note that if x = ∅ then Xn+1 = x.

This simulation process is repeated a large number of time in order to ensure the

convergence of the algorithm to the expected distribution. This number of iterations is

unknown a priori and must be determined by the user from practical knowledge and/or

diagnostic tools. To investigate the convergence of the algorithm, we use a “trace plot”

which shows the evolution of the number of points at each iteration of Algorithm 4.

Thus, we check that the number of points in the simulated point pattern is stabilized

(see Møller and Waagepetersen (2004), Illian et al. (2008) for more details).

4.2 Cox-Gibbs models' simulation

For generating the simulations from the hybrid Cox-Gibbs models, we follow two dif-

ferent procedures in simulation study and model validation.

For simulation study, we simulate point patterns under this model in two steps: first,

a realization of Gaussian random field is simulated by the function rLGCP from the

R-package spatstat. Second, a realization of hybrid Cox-Gibbs model given that

realization is simulated using the birth–death Metropolis–Hastings algorithm.

For model validation, we simulate point patterns under fitted hybrid Cox-Gibbs

model in two steps too: first, we sample from the posterior distribution of the fitted
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INLA model and extract the values of its latent field as a first-order interaction func-

tion (or trend function) of the Gibbs model. Second, a realization of hybrid Cox-Gibbs

model given computed trend is simulated using the birth–death Metropolis–Hastings

algorithm by the function rmh.default from the R-package spatstat. Indeed,

we need the predictions from the model anywhere in the domain as we do not have any

other covariate. To do this, an option is computation the linear predictor at the mesh

nodes and project it onto the grid taking into account the uncertainty by sampling from

its posterior distribution of the fitted INLA model. Hence, we could sample directly

from the posterior marginal of the linear predictor at the observation scale. Indeed,

when the likelihood depends not only in the latent field but also on some hyperparame-

ters (as in the Gaussian case) we need to sample both η and θ jointly. In R-INLA this

can be done using the inla.posterior.sample function which needs the out-

put from the inla function by setting config=TRUE in the control.compute

option.

Note that these simulations are motivated by our application on temperature anoma-

lies (see Section 5.2) in which we consider spatial interactions during time intervals.

Hence simulations above are performed in space but could be easily extended to the

spatio-temporal framework in the case of continuous times, by using stpp package for

simulating log-Gaussian Cox processes and estimating K-function.

4.3 Simulation study

The aim of our simulation study is threefold: first we want to compare the performance

of the composite likelihood approaches defined in the previous chapter for the Gibbs

models, second we want to test the simulation procedure of the Cox-Gibbs model and

third we want to test the local logistic likelihood method.

4.3.1 Simulation study for Gibbs models

We compare the performance of the pseudo-likelihood and logistic likelihood approaches

on the spatio-temporal multi-scale Geyer point process. Due to obtained results, we

then perform a simulation study for the spatio-temporal hybrid Strauss hardcore model

based on logistic likelihood approach.

We implement the estimation and simulation algorithms in R and generate 100 simu-

lated realizations in the unit cube from three models of hybrid Geyer point process. The

first one exhibits strong clustering (Model 1), the second one exhibits small scale inhi-

bition and large scale clustering (Model 2) and the third one exhibits inhibition (Model

3). Model parameters are reported in Table 4.1. We consider a burn-in period of 20,000

steps in Algorithm 4. Fig. 4.1 shows one realization of each model.
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Table 4.1 Parameters of the three multi-scale Geyer point process models used in sim-

ulation study.

Values of parameter

Regular parameters Irregular parameters

Model λ γ r q s
Model 1 70 (1.5,1.5) (0.05,0.1) (0.05,0.1) (2,2)

Model 2 100 (0.5,1.5) (0.05,0.1) (0.05,0.1) (1,3)

Model 3 200 (0.8,0.8) (0.05,0.1) (0.05,0.1) (1,1)

Figure 4.1 Realizations of Model 1 (left); Model 2 (middle); Model 3 (right) from

hybrid Geyer model.

According to Baddeley et al. (2014), we generate a spatio-temporal Poisson process

with intensity ρ = 4n(x) (resp. 4n(x)/ℓ(W)) as dummy points in Algorithm 1 (resp.

Algorithm 2). For each model, we compute the root mean square error (RMSE) of each

set of estimated parameters (Table 4.3) and plot the related boxplots (Fig. 4.2). In Ta-

ble 4.3 the lowest RMSE value is in bold and in Fig. 4.2 the true values are represented

by horizontal red lines. Both RMSE and boxplots show that the logistic likelihood ap-

proach performs better than the pseudo-likelihood approach for any model. Note that

in the spatial framework, Baddeley et al. (2014) showed that for large datasets the lo-

gistic likelihood method is preferable than the pseudo-likelihood method as it requires

a smaller number of dummy points and performs quickly and efficiently. Daniel et al.

(2018) and Choiruddin et al. (2018) investigated a similar comparison when these meth-

ods are regularized (i.e. using an approach with a simultaneous parameter estimation

and variable selection by maximizing a penalized likelihood functions). Iftimi et al.

Table 4.2 RMSE of parameter estimates from 100 simulated realizations of the multi-

scale Geyer point process model.

Model 1 Model 2 Model 3

Method λ̂ γ̂1 γ̂2 λ̂ γ̂1 γ̂2 λ̂ γ̂1 γ̂2
pseudo 62.09 0.59 0.25 103.74 0.09 0.27 22.13 0.45 0.29

logistic 12.07 0.18 0.16 17.30 0.08 0.08 27.48 0.20 0.12
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Figure 4.2 Boxplots of regular parameters estimated from the pseudo-likelihood and

logistic likelihood approaches for Model 1 (first row), Model 2 (second row) and Model

3 (third row) from hybrid Geyer model. True values are represented by horizontal red

lines.
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Table 4.3 Parameter combinations of three hybrid Strauss hardcore point process mod-

els used in simulation study.

Values of parameter

Regular parameters Irregular parameters

Model λ γ r, q hcs, hct
Model 4 70 (0.8,.08) (0.05,0.1) (0.01,0.01)

Model 5 50 (1.5,1.5) (0.05,0.1) (0.01,0.01)

Model 6 70 (0.5,1.5) (0.05,0.1) (0.01,0.01)

Table 4.4 Point and interval parameter estimates of three hybrid Strauss hardcore point

process models used in simulation study.

True values Mean 95% CI

Model 4

λ = 70 71.43 (69.16,73.70)

γ1 = 0.8 0.89 (0.78,1.00)

γ2 = 0.8 0.78 (0.74,0.82)

Model 5

λ = 50 50.84 (48.99,52.68)

γ1 = 1.5 1.41 (1.23,1.60)

γ2 = 1.5 1.46 (1.38,1.54)

Model 6

λ = 70 71.67 (69.18,74.15)

γ1 = 0.5 0.50 (0.43,0.57)

γ2 = 1.5 1.49 (1.42,1.55)

(2018) found the advantage of the logistic likelihood approach for the spatio-temporal

multi-scale area-interaction point process model. We here confirm this advantage for

the spatio-temporal multi-scale Geyer point process model.

Hence, we consider the logistic likelihood approach for a simulation study of hybrid

Strauss hardcore model. We generate simulations of three stationary spatio-temporal

hybrid Strauss hardcore point processes specified by a conditional intensity of the form

(3.16) in W = [0, 1]3. The parameter values used for the simulations are reported in

Table 4.3. The spatial and temporal radii r and q, spatial and temporal hardcores hcs

and hct are treated as known parameters.

We generate 100 simulations of each specified model. Boxplots of parameter esti-

mates λ, γ1, and γ2 obtained from the logistic likelihood estimation method for each

model are shown in Fig. 4.3. The red horizontal lines represent the true parameter

values. Point and interval parameter estimates λ, γ1, and γ2 are reported in Table 4.4.

Most of the estimated parameter values are close to the true values for three models.

Due to visual and computational comparisons, we conclude that the logistic likelihood

approach performs well for spatio-temporal hybrid Strauss hardcore point processes.
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Figure 4.3 Boxplots of parameter estimates of the hybrid Strauss hardcore point process

obtained from the logistic likelihood estimation methods. Up to down: Model 4, Model

5, and Model 6. 51
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Figure 4.4 The simulated LGCGPs on the unit square (black points) and the corre-

sponding realisation of Z (blue to yellow scale image).

4.3.2 Simulation study for Cox-Gibbs models

Consider a spatial LGCGP on the observation window W = [0, 1]2 with density

f(x) = ❊

[

1

c(Z)

n
∏

i=1

exp (Z(ξi))γ
min{s,tr(ξi,x\ξi)}

]

, (4.1)

where tr(ξi, x\ξi) =
∑

j 6=i 1{||ξj − ξi||≤ r}. For simulation of point pattern under

this model, first, a realisation z of Z is simulated with the function rLGCP from the

R-package spatstat where Z is a Gaussian random field with constant mean 5 and

exponential covariance function

C(u) = Q2 exp(−u/α)

with Q2 = 2 and α = 0.1. Second, three realisations of LGCGP given Z = z is

simulated using a birth-death Metropolis-Hastings algorithm is implemented in function

rmh.default in spatstat package from a Geyer point process model with r =

0.05, s = 2 and three different value of γ = 0.05, 0.3, 0.5.

To assess the degree of clustering and regularity we consider L(u) − u which its

negative (resp. positive) values show point process is repulsive (resp. aggregated) at

inter-point distances u.

Fig. 4.4 is three examples of simulated realisations of the LGCGP on W = [0, 1]2

with mentioned parameters. Fig. 4.4 shows the effect of more intensity of Gaussian

random field, as first-order interaction of LGCGP, in some part of the window leads

to more density in same parts when the value of γ is increased. Fig. 4.5 shows plots

of empirical estimates of the L-functions minus the identity of the point patterns with

above parameters which each of these plots comes with the empirical L-functions of 19

different realisations of same process with their mean to assess the general behaviour

of the LGCGP related to value of γ. The point patterns exhibit both regularity and

aggregation in different scale with a decreasing degree of regularity at small to moderate

distances as increases, but a similar degree of aggregation at large distances. However,
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Figure 4.5 The empirical L-function minus the identity for the point patterns of Fig. 4.4

(black curve) and for 19 simulations of the same process (grey curves) plus their mean

(green curve).

Figure 4.6 (Left) A simulated multi-structure point pattern in unit cube with 132 points.

(Right) A spatial projection of point pattern.

the general behaviour of the empirical L-function suggests a tendency to a higher degree

of clustering at large distances when the value of γ is increased. Fig. 4.5 also suggests

that for realisations of an LGCGP, the empirical estimate of L(u)−u often has a global

minimum when u is close to the interaction radius r, at least when there is strong to

moderate repulsion in the model.

4.3.3 First evaluation of the local logistic likelihood approach

To assess the performance of the local logistic likelihood procedure, we generate a

multi-structure point pattern in an unit cube. We consider a pattern which is a combi-

nation of strong clustering and randomness. Fig. 4.6 (left) is the plot of spatio-temporal

multi-structure point pattern in unit cube devided to two regions by plane x = 0.5 that

the left region (region I) appears to be strongly clustered while the right region (region

II) appears to be randomised. Fig. 4.6 (right) is a spatial projection of point patten.

We consider a homogeneous spatio-temporal Strauss hardcore point process as a

template model with density (2.14). Due to the value of γ, the model is clustered if

γ > 1 and inhibited if γ < 1.

We fitted the Strauss hardcore point process model with r = q = 0.05 and spatial

and temporal hardcore distances equal to 0.005 to the pattern, yielding λ̂ = 45.68 and
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Figure 4.7 Local estimates of parameters λ (left) and γ (right) of Strauss hardcore point

process.

γ̂ = 3.45. The optimal bandwidth are σs = 0.2 and σt = 0.03 by approximating the

logistic likelihood cross-validation criterion (3.35). Fig. 4.7 is the local estimates of

the first-order interaction λ (left) and second-order interaction γ (right) for the Strauss

hardcore point process using these optimal bandwidths. The points in region I have

the large estimated values for γ (larger than one with blue color) that suggests a strong

clustered pattern. For most of points in region II, γ is locally estimated smaller or close

to one with red color. There are some points in region II that γ is estimated larger than

one which is due to existence other points (data or dummy) near them.
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Chapter 5

Applications

In this chapter, we consider the Gibbs models developed in Section 2.1 to describe two

different patterns of forest fire occurrences, the first in South of France, the second

in centre Spain. The Cox-Gibbs model proposed in Section 2.2 is considered in an

innovative application of spatio-temporal modeling of hotspots of temperature, and in

particular of temperature anomalies, in the United States.

5.1 Gibbs models for forest fire occurrences

Economic and ecological disasters caused by wildfires in the world have led the sci-

entific community to develop many novel statistical analysis and modelling wildfire

occurrences to better understand their behaviors. In this section, first, we focus on the

modelling of forest fire occurrences in the Bouches-du-Rhône county (Southern France)

between 2001 and 2015 available from the Prométhée database1 and the Castilla-La

Mancha in Spain between 2004 to 2007 available from the clmfires dataset in R-

package spatstat by hybrid Geyer model and hybrid Strauss hardcore model, re-

spectively.

Several statistical studies have shown the influence of environmental and meteoro-

logical factors on forest fire occurrences. In the French Mediterranean basin, Opitz et al.

(2020) fit a spatio-temporal log-Gaussian Cox process model for forest fire occurrences

with a log-linear intensity depending on spatio-temporal land use and weather covari-

ates. Ganteaume and Jappiot (2013) investigated the impact of the different covariates

on the number of fires using multivariate analysis and Gabriel et al. (2017) explored

the influence of land cover covariates, temperature and precipitation on the probability

of event occurrence. In addition to the spatio-temporal clustering of events induced by

some covariates, Gabriel et al. (2017) detected spatio-temporal interaction structures

at different scales and notably an inhibitive effect that arises locally in time and space

after wildfires as we expect lesser occurrences at these locations during a vegetation

regeneration period.

Hence, we propose to fit the spatio-temporal hybrid Geyer point process model

1https://www.promethee.com/en
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(2.12) on wildfire occurrences to take into account both the inhomogeneities induced

by covariates and the multi-scale structure of interactions.

However, the complexity of forest fire occurrences is due in particular to the ex-

istence of multi-scale structures and also hardcore distances in space and time. For

instance, changes in vegetation due to forest fires burnt areas affect the probability of

fire occurrences during the regeneration period leading to the existence of hardcore dis-

tances in space-time.

The main second focus of our forest fire pattern analysis is to quantify the interac-

tions across a range of spatio-temporal scales with the presence of hardcore distances

which can be done by using the spatio-temporal hybrid Strauss hardcore process model

(2.16). We apply the hybrid Strauss hardcore model on a forest fire pattern of Castilla-

La Mancha in Spain.

5.1.1 Hybrid Geyer model for forest fires in France

Our data set is of the form (ξi, ti), i = 1, . . . , 434, where (ξi, ti) corresponds to a wild-

fire with more than 1 hectare of burnt surface spatially indexed by a DFCI2 cell center

ξi in the Lambert 93 projection system and year ti ∈ {2001, . . . , 2015}. To avoid du-

plicated points we uniformly jittered ξi in its DFCI cell. We refer the reader to Gabriel

et al. (2017) and Opitz et al. (2020) for further information on the data. Whilst forest

fires are daily reported, we consider here the yearly scale, as done in many works (see

e.g. Serra et al. (2012, 2014a,b)), because of the small number of reports and to opti-

mize computation time in model fitting and validation steps. Fig. 5.1 plots locations of

forest fires (left panel) and yearly number of occurrences (right panel). It shows some

clustering at short and medium spatial distances. Note that there exist two particular

areas without any fire occurrences as they correspond to a lake (center) and marshlands

(South-West). The number of fires slightly exponentially decreases in time over the 15

years, mainly due to improvements of fire-fighting resources.

We consider the same framework as in Gabriel et al. (2017) and restrict our attention

to the following covariates: water coverage, elevation, coniferous cover and building

cover as spatial covariates and temperature average, precipitation as spatio-temporal

covariates. Hence, we can consider these covariates as good proxies of the main en-

vironmental, climatic and human factors. Maps of covariates are shown in Fig. 5.2 in

2001.

5.1.1.1 Model fitting

Here we first estimate the spatio-temporal trend and then fit the multi-scale spatio-

temporal Geyer model to forest fire occurrences. This two-step model fitting procedure

2district units for fire management strategies, see Opitz et al. (2020)

56



5.1. FOREST FIRES CHAPTER 5. APPLICATIONS

Figure 5.1 (Left) Forest fire locations in UTM coordinate system (distance in meters),

with more than 1 hectare of burnt area, recorded during the years 2001 to 2015 in the

Bouches-du-Rhône county in France. (Right) Number of recorded forest fires per year.

Figure 5.2 Maps of covariates: water coverage (top left), elevation (top right), conifer-

ous cover (middle left), building cover (middle right), temperature average (botton left)

and square root of precipitation (botton right) in 2001.
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follows our assumption that most forest fire occurrences are firstly due to environmental

and meteorological conditions and secondly due to unobserved pairwise interactions.

This technique will allow to see the benefits of the multi-scale interaction structure in

our hybrid model compared to an inhoogeneous Poisson model with the same spatio-

temporal trend.

Spatio-temporal trend estimation

We express the spatio-temporal trend (2.12) as λ(ξ, t) = βµ(ξ, t) where log µ(ξ, t) is

assumed to linearly depend on covariates:

log µ(ξ, t) = β0 +
4
∑

k=1

βS
kZ

S
k (ξ) +

2
∑

l=1

βST
l ZST

l (ξ, t) + αt (5.1)

with ZS
k (ξ), k = 1, . . . , 4, the spatial covariates, ZST

l (ξ, t), l = 1, 2, the spatio-temporal

covariates and αt a decreasing trend of fire counts over time. Because the covariates

are known at a fixed discretization scale, µ(ξ, t) does not vary for points ξ inside the

same DFCI unit with a time t corresponding to the same year. By consequence, we

can restrict our attention on DFCI grid cell centers ξi, i = 1, . . . , 1320 and years tj =

2001, . . . , 2015 for j = 1, . . . , 15, and we consider a Poisson response for our model

Nij|µ(ξi, tj) ∼ Poisson(µ(ξi, tj)), where Nij is the number of forest fires in ith DFCI

cell at year tj . The coefficient β will be estimated simultaneously with the others regular

parameters by the logistic likelihood approach. Table 5.1 reports the coefficients β0,

βS
k , βST

l and α estimated as in Gabriel et al. (2017) and Opitz et al. (2020). The sign

indicates if covariates favour (if positive, like coniferous, building and temperature)

or prevent (if negative, like water, elevation, precipitation and time) fire occurrences.

All covariates are globally significant and results are consistent with previous works

(Ganteaume and Jappiot 2013, Gabriel et al. 2017, Opitz et al. 2020) for this county.

Note that p-values have been computed during the trend fitting under a Poisson model

and not for the overall fitting of forest fire occurrences under our spatio-temporal hybrid

Geyer saturation process. Thus, we might obtained more significance of the covariates

than under our hybrid Geyer saturation model.

Parameters estimation

There is no common method for estimating irregular parameters in spatial or spatio-

temporal Gibbs point process models. Here we considered several combinations of

ad-hoc values within a reasonable range and select the optimal irregular parameters

according to the Akaike’s Information Criterion (AIC) of the fitted model.

Baddeley and Turner (2006) suggest that the spatial interaction radius r of the Geyer

saturation point process should be between 0 and the maximum nearest neighbor dis-
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Table 5.1 Estimated coefficients, standard errors and p-values based on two-tailed Stu-

dent’s t-tests of significant differences from zero.

Covariates Coefficients Estimates Standard error p-value

Intercept β0 262 26 < 2× 10−16 ∗∗∗

Water βS
1 -1.88 0.29 5.89×10−11 ∗∗∗

Elevation βS
2 -0.001 0.0004 0.0008 ∗∗∗

Coniferous βS
3 0.77 0.36 0.031 ∗

Building βS
4 4 0.89 8.08×10−6 ∗∗∗

Temperature βST
1 0.37 0.06 1.13×10−10 ∗∗∗

Precipitation βST
2 -11.3 1.48 1.75× 10−14 ∗∗∗

Time α -0.14 0.001 < 2× 10−16 ∗∗∗

tance, about 8000 meters for our dataset. For the temporal radius q, we consider small

values to be in accordance with the natural phenomena of forest fire occurrences. Fi-

nally, for the saturation parameter s, we have n(Cq
r (ξi, ti); x) ≤ s for all (ξi, ti) ∈ x.

Hence, for any pair (r, q), we set s = max1≤i≤n n(C
q
r (ξi, ti); x).

According to the advantage of logistic likelihood over pseudo-likelihood (see Sec-

tion 4.3.1), we use the logistic likelihood method and Algorithm 2 to estimate the regular

parameters. We simulate dummy points from an inhomogeneous Poisson point process

with intensity ρ(ξ, t) = Cµ(ξ, t)/ν where C = 4 by a classical rule of thumb in the

logistic likelihood approach and ν = 2000 × 2000 × 1 (area of a DFCI cell multiplied

by 1 year).

We fitted the spatio-temporal multi-scale Geyer point process model for a range of

ad-hoc values (rj, qj) ∈ [0, 8000] × {1, 2, 3, 4, 5}, and their corresponding values of

sj , j = 1, . . . ,m, with varying m in {1, 2, 3, 4, 5}. The minimum AIC is obtained for

the combination given in Table 5.2. Estimated regular parameters γj associated with

their 95% bootstrap confidence intervals show strong clustering at very short distances,

weak repulsion (resp. clustering) at small (resp. medium) scale, and randomness at

large scale. Another methodology for testing the significance of γj parameters from 1

could be to extend the pseudo-likelihood or composite likelihood ratio test introduced

in Baddeley et al. (2016) to the spatio-temporal case.

5.1.1.2 Model validation

We validate our fitted model from several Monte Carlo tests using statistics based on

the spatio-temporal inhomogeneous K-function (Gabriel and Diggle 2009). First, we

generate nsim = 99 simulations from our fitted hybrid Geyer model (2.12) by Algo-

rithm 4 with a burn-in period of 70, 000 steps, representing realizations from our null

hypothesis. Then, we compute the spatio-temporal inhomogeneous K-function for

the observed and simulated point patterns, denoted respectively by K̂inh
obs (hs, ht) and
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Table 5.2 Parameter estimates for m = 4.

Irregular parameters

r 500 2000 5000 7500

q 1 2 3 4

s 4 7 27 57

Estimated regular parameters and 95% confidence intervals

β̂ = 0.66 γ̂1 = 2.73 γ̂2 = 0.93 γ̂3 = 1.07 γ̂4 = 0.98
[0.442, 0.968] [1.818, 3.405] [0.820, 0.994] [1.020, 1.120] [0.962, 1.011]

K̂inh
i (hs, ht), i ∈ {1, ..., nsim}, with an estimated separable intensity function obtained

by kernel smoothing. For each value of the spatio-temporal distance (hs, ht), lower (L)

and upper (U ) critical envelopes of the summary statistics are computed locally

L(hs, ht) = min
1≤i≤nsim

K̂inh
i (hs, ht), U(hs, ht) = max

1≤i≤nsim

K̂inh
i (hs, ht). (5.2)

In addition to these local envelopes, we compute local and global p-values as in Tamayo-

Uria et al. (2014), Siino et al. (2018a) in order to respectively detect spatio-temporal

distances where the departure from the null hypothesis is the most significant and the

overall adequacy of our model. Let E(hs, ht) and V (hs, ht) denote the mean and vari-

ance of
{

K̂inh
1 (hs, ht), . . . , K̂

inh
nsim

(hs, ht), K̂
inh
obs (hs, ht)

}

. We define the local p-value

for each pair (hs, ht) by

p(hs, ht) =
1 +

∑nsim

i=1 ✶{Ti(hs, ht) > Tobs(hs, ht)}
nsim + 1

, (5.3)

where Ti(hs, ht) (resp. Tobs(hs, ht)) denotes the local statistic T computed from the ith

simulation (resp. the data) at (hs, ht). The local statistic is defined by

T (hs, ht) =

√

(K̂inh(hs, ht)− E(hs, ht))2

V (hs, ht)
. (5.4)

The global test combines the information for all spatial and temporal distances. We

define the test statistic

T̃ =

∫ ht,max

0

∫ hs,max

0

T (hs, ht)dhsdht, (5.5)

where hs,max and ht,max are user-specific maximum spatial and temporal distances

which are preferable to choose close to the (expected) range of interaction of the under-

lying point process. Illian et al. (2008) recommends to compare the results for several
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Figure 5.3 Temporal separations ht are in year and spatial distances hs are in

kilometer. a) Envelopes of the spatio-temporal inhomogeneous K-function for the

simulated spatio-temporal multi-scale Geyer point process according to the estimated

parameters. b) Image plot of the local p-value. c) Image plot of the global p-value for

any pairs of (hs,max, ht,max).

values of hs,max and ht,max. The p-value of the global test is then given by

pglobal =
1 +

∑nsim

i=1 ✶{T̃i > T̃obs}
nsim + 1

.

Fig. 5.3.a) shows the spatio-temporal inhomogeneous K function computed on our

dataset (dark grey) and the envelopes obtained from our hybrid Geyer model (light

grey); K̂inh
obs (hs, ht) lies inside the envelopes, meaning that the fitted model seems to

describe properly the spatio-temporal structure of the data. This is confirmed by local

p-values at any distances (Fig. 5.3.b). Global p-values are given in Fig. 5.3.c) for any

combination of hs,max and ht,max. Again, it shows that our fitted model is validated.

In addition, we also compute global envelopes and p-value of the spatio-temporal

K̂inh functions based on the Extreme Rank Length (ERL) measure defined in Myl-

lymäki et al. (2017) and implemented in the R-package GET (Myllymäki and Mrkvička

2019). The main advantage is that the resulting p-value will not depend on a priori

parameters as in the definition of pglobal with the hs,max and ht,max values. For each

point pattern, we consider the long vector Ti, i = 1, . . . , nsim (resp. Tobs) merging the

Kinh
i (·, ht) (resp. Kinh

obs (·, ht)) estimates for all considered values ht. The ERL measure

61



5.1. FOREST FIRES CHAPTER 5. APPLICATIONS

of vector Ti (resp. Tobs) of length nst is defined as

Ei =
1

nns

nst
∑

j=1

✶{Rj ≺ Ri}, (5.6)

where Ri is the vector of pointwise ordered ranks and ≺ is an ordering operator Myl-

lymäki et al. (2017), Myllymäki and Mrkvička (2019). The final p-value is obtained

by

perl =
1 +

∑nsim

i=1 ✶{Ei ≥ Eobs}
nsim + 1

. (5.7)

The global p-value perl is equal to 0.34 consolidating previous results and validating our

hybrid Geyer model.

Note that we did the same tests for 99 simulations of an inhomogeneous Poisson

process with intensity µ(ξ, t)/(2000 × 2000 × 1) (5.8). This model has been rejected

at the level 5%, with a median global p-value equals to 0.04. The perl value is equal to

0.04 under the Poisson assumption rejecting also this baseline model.

5.1.2 Hybrid Strauss hardcore model for forest fires in Spain

Castilla La Mancha is located in the middle of the Iberian peninsula and the third largest

of Spain’s autonomous regions representing 15.7% of the Spanish national territory.

5.1.2.1 Data and covariates description

The clmfires dataset available in spatstat package records the occurrence of

forest fires in the region of Castilla-La Mancha, Spain (Figure 5.4, left) from 1998 to

2007. The study area is approximately 400 by 400 km. The clmfires dataset has

already been used in some academic works devoted to the point process theory (see e.g.

Juan et al. (2010), Gomez-Rubio (2020), Myllymäki et al. (2021)). The dataset has two

levels of precision: from 1998 to 2003 locations were recorded as the centroid of the

corresponding “district unit”, while since 2004 locations coorespond to the exact UTM

coordinates of the centroids of the fires.

Due to the low precision of fire locations for the years 1998 to 2003 (Gomez-Rubio

2020), we focus on fires in the period 2004 to 2007. In this period, we consider large

forest fires with burnt areas larger than 5 ha. Fig. 5.4 (middle) shows the point pattern

of 432 wildfire locations onto the spatial region.

Due to memory constraints and availability of climate covariates in months, we

consider monthly fire occurrences. The temporal component of the process takes integer

values from 1 to 48. We thus consider W = S × T where S is the region of Castilla-

la-Mancha and T = {1, 2, . . . , 48} corresponds to the months since January 2004. Fig.

5.4 (right) shows the monthly number of fires occurring during our time period. We
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Figure 5.4 Left: Map of region of Castilla-La Mancha (Spain). Middle: Forest fire

locations. Right: monthly numbers of fires recorded between January 2004 and De-

cember 2007 with burnt areas, spatial distances and time distances respectively bigger

than 5 ha, 0.2 km and 100 days.

Figure 5.5 Image plot of environmental covariates (elevation, orientation, slope and

land use) and climate covariates (precipitation and temperature) in January 2007.

observe seasonal effects with notably large numbers of fires in summer that could be

caused by high temperatures and low precipitations in this period and also by human

activities.

In point pattern analysis, the spatial (spatio-temporal) inhomogeneity of patterns

is notably driven by covariates. The clmfires dataset contains four environmental

covariates that we include in our analysis: elevation, orientation, slope and land use.

The covariates are known on a spatial grid with pixels of 4 × 4 km, resulting in a total

of 10,000 pixels. The land use is a factor-valued covariate whereas the others are real-

valued covariates. We also consider weather data freely provided by the WorldClim

database3 and containing monthly maximum temperatures (◦C) and total precipitations

(mm). Fig. 5.5 illustrates the environmental covariates, which are considered fixed

during our temporal period, and the climate covariates in January 2007.

3https://www.worldclim.org
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5.1.2.2 Estimation

First, we estimate the trend function by considering a generalized linear model (GLM)

on covariates. Then, by an exploratory analysis using spatio-temporal summary statis-

tics we approximate the hardcore parameters and the interaction ranges. Finally, we

use the logistic likelihood approach described in Section 3.1.1.2 for the estimation of

regular parameters of our model with the trend function estimated in a preliminary step.

Trend estimate

Since covariates are available on a spatial grid, we restrict our attention on the re-

lated grid centers ξi, i = 1, . . . , 10000 and months {tj}j=1,...,48 ∈ T and consider

Nij|λ(ξi, tj) ∼ Poisson(λ(ξi, tj)) where Nij is the number of forest fires in the ith

grid center at month tj .

Following last section, by considering a GLM with Poisson response, we obtain:

log λ(ξi, ti) = β0 +
6
∑

k=1

βkZk(ξi, ti), (5.8)

where Zk(ξi, ti), k = 1, . . . , 6, are the environmental and climatic covariates at point

(ξi, ti) and β0, βk, k = 1, . . . , 6 are the coefficients to estimate. As said before, we con-

sider the same values for environmental covariates over time. A straightforward way

to fit a GLM in R is to use the function glm. Table 5.3 reports the estimated coeffi-

cients in (5.8) and their significance level by a two-tailed Student’s t-test. Coefficients

higher (respectively lower) than zero imply an increase (resp. decrease) of the expected

mean number of forest fires when the covariate value increase (resp. decrease). Those

related to elevation and temperature are positively significant, showing that these two

covariates favors the ignition of wildfires. At the opposite, the covariate precipitation

as a negative significant coefficient indicating that an increase of the amount of precipi-

tations induces a decrease in the mean number of forest fires. The land use appears not

significantly different from zero, it can be explained by the low spatial resolution of the

covariates.

Irregular parameter estimates

We have two types of irregular parameters in our spatio-temporal Gibbs point process.

On the one hand, the hardcore distances that we can choose among the feasible so-

lutions on the Pareto front of spatial and temporal interpoint distances. According to

Fig. 5.6, we choose on the Pareto front the unique feasible solution in our case that

gives non-zero values for the two hardcore distances, i.e. hcs = 0.35 km and hct = 1

month. On the other hand, for the nuisance parameters m, rj and qj , j = 1, . . . ,m,
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Table 5.3 Estimated coefficients, standard errors and p-values based on two-tailed Stu-

dent’s t-tests of significant differences from zero.

Coefficients Estimate Standard error p-value

β0 (intercept) -8.468 0.298 < 2× 10−16 ∗∗∗

β1 (elevation) 0.546 0.164 0.001 ∗∗∗

β2 (orientation) 0.005 0.003 0.114

β3 (slope) -0.019 0.01 0.054

β4 (land use) -0.009 0.024 0.689

β5 (precipitation) -0.007 0.002 0.003 ∗∗

β6 (temperature) 0.054 0.006 < 2× 10−16 ∗∗∗

Figure 5.6 Spatial and temporal interpoint distances respectively lower than 5 kms and

12 months (black circles). The red line corresponds to the Pareto front and the red

rectangle to the hardcore domain.

there is no common method for estimating them. Here we considered several com-

binations of ad-hoc values within a reasonable range and select the optimal irregular

parameters according to the Akaike’s Information Criterion (AIC) of the fitted model

after the regular parameter estimation step. We chose 25 configurations of reasonable

range for the nuisance parameters using a preliminary spatio-temporal exploratory anal-

ysis of the interaction ranges done with the inhomogeneous pair correlation function,

the maximum nearest neighbor distance and the temporal auto-correlation function. We

fitted the spatio-temporal hybrid Strauss point process model for a range of ad-hoc val-

ues rj ∈ (0.35, 20], qj ∈ {2, ..., 15}, j = 1, . . . ,m and m ∈ {1, . . . , 6}. The minimum

AIC is obtained for the combination given in Table 5.4.

Regular parameter estimates

We consider the logistic likelihood method investigated in Section 3.1.1.2 to estimate

the regular parameters. We simulate dummy points from an inhomogeneous Poisson
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Table 5.4 Parameter estimates for m = 6.

Irregular parameters

r 0.5 1 1.5 6 15 20

q 2 4 6 8 12 15

Estimated regular parameters

γ̂1 = 2.56 γ̂2 = 2.24 γ̂3 = 4.65 γ̂4 = 0.88 γ̂5 = 1.17 γ̂5 = 0.81

point process with intensity ρ(ξ, t) = Cλ̂(ξ, t)/ν where C = 4 by a classical rule of

thumb in the logistic likelihood approach, λ̂ is the estimated trend and ν = 4 × 4 × 1

is the volume of a grid cell on one month. In order to satisfy the hardcore condition

in (2.18), we remove dummy points at spatial and temporal distances respectively less

than hcs and hct. Estimated regular parameters are provided in Table 5.4.

5.1.2.3 Goodness-of-fit

The goodness-of-fit is accomplished by simulating point patterns from the fitted model.

The first diagnostic can be formulated by summary statistics of point processes. As

the second-order characteristics carry most of the information on the spatio-temporal

structure (Stoyan 1992, Gonzalez et al. 2016), we only consider the pair correlation

function (g-function).

We generate nsim = 99 simulations from the fitted hybrid Strauss hardcore model

and compute the corresponding second-order summary statistics gi(hs, ht), i = 1, . . . ,

nsim, for fixed spatio-temporal distances (hs, ht). We then build upper and lower en-

velopes:

U(hs, ht) = max
1≤i≤nsim

gi(hs, ht), L(hs, ht) = min
1≤i≤nsim

gi(hs, ht), (5.9)

and compare the summary statistics obtained from the data, gobs(hs, ht), to the pointwise

envelopes. If it lies outside the envelopes at some spatio-temporal distances (hs, ht),

then we reject at these distances the hypothesis that our data come from our fitted model.

Fig. 5.7 shows the spatio-temporal inhomogeneous g-function computed on our dataset

(blue) and the envelopes obtained from the fitted model (light grey); gobs(hs, ht) lies

inside the envelopes for all (hs, ht), meaning that the hybrid Strauss hardcore model is

suitable for the data.

In addition, we compute global envelopes and p-value of the spatio-temporal g-

functions based on the Extreme Rank Length (ERL) measure defined in Section 5.1.1.2.

For each point pattern, we consider the long vector Ti, i = 1, . . . , nsim (resp. Tobs)

merging the gi(·, ht) (resp. gobs(·, ht)) estimates for all considered values ht. The ERL

measure of vector Ti (resp. Tobs) of length nst is defined in (5.6). Due to the global p-

value perl = 0.59 and the absence of significant regions, that corresponds here to pairs

of spatial and temporal distances where the statistics is significantly above or below the
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Figure 5.7 Envelopes of the spatio-temporal inhomogeneous g-function obtained from

simulations of the fitted spatio-temporal hybrid Strauss hardcore point process (light

grey). The blue surface corresponds to gobs. Temporal separations are in month and

spatial distances are in kilometer.

envelopes (see Fig. 5.8 and GET package), we conclude that our hybrid Strauss hardcore

model can not be rejected a significance level of 1%.

Figure 5.8 Top: estimated pair correlation function ĝobs, lower EL and upper EU bounds

of the 99% global rank envelope (ERL). Bottom: differences Eobs−EL and EU −Eobs.

Negative values (if any) are represented in red and lead to reject the fitted model. Values

on the horizontal axis are in kilometers and those on the vertical axis are in months.

5.2 Application to local temperature hotspots

We develop an innovative application of spatio-temporal modeling of hotspots of tem-

perature, and in particular of temperature anomalies, in the United States, where we

remove Alaska and islands such as Hawai from the observation window. Based on

a space-time temperature dataset available on a regular grid of latitude, longitude and

months, we define a hotspot as a spatio-temporal point, i.e., as the combination of a spa-

tial grid cell and a month and year. A hotspot arises if the temperature value observed
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at the grid cell is higher than the values in all of the neighboring grid cells during the

same month and year. We can either limit the spatial neighborhood of a grid cells to

all its adjacent grid cells, or we can use larger neighborhood composed of all the grid

cells whose center point lies within a certain distance radius R0 of the center point of

the reference grid cell. Moreover, to focus on hotspots corresponding to relatively large

temperatures, we can further add the condition that the temperature value at the grid

cell must be higher than a certain quantile of the temperature distribution. Specifically,

we aim to extract hotspots that arise in temperature anomalies, such that the occur-

rence of a hotspot indicates a temperature value that is relatively high with respect to

local climatic conditions. Therefore, we apply the hotspot extraction algorithm after a

pretransformation of the original temperature values.

5.2.1 Hotspot extraction

This work is based on a gridded reanalysis dataset (at spatial 0.1o resolution, i.e., ap-

proximately 10 km) of monthly means of temperatures at 2 m height for the period

1981–2019 spanning 39 years, provided by the ERA5 climate model and postprocessed

by the Copernicus Climate Data service of the European Union (Copernicus Climate

Data Store 2021). We further use auxiliary variables related to altitude from the Shuttle

Radar Topography Mission dataset. We use the temperature grid as basis for point pro-

cess modeling of hotspots, and we refer to it as the PP grid. To upscale altitude data (at

1 km resolution) to the resolution of the temperature grid, we generate two synthetic

variables: empirical mean and standard deviation of the altitude values in each of the

PP grid cells.

We denote by s(i1, i2, a,m) the temperature value at grid cell (i1, i2), i1 = 1, . . . , 250,

i2 = 1, . . . , 700 during year a = 1, . . . , 39 and month m = 1, . . . , 12. The co-

ordinates of the center of grid cell (i1, i2) are denoted by ui1,i2 . There is a total of

39× 12× 250× 700 = 60900000 observed values.

Temperature anomalies s̃(i1, i2, a,m) are computed as follows.

s̃(i1, i2, a,m) =
s(i1, i2, a,m)− µ̂(i1, i2,m)

σ̂(i1, i2,m)
, (5.10)

where µ̂(i1, i2,m) and σ̂(i1, i2,m) are empirical means and the standard deviations,

respectively, of temperatures, and they are calculated by pooling together the tempera-

ture data of the 39 observations years for each configuration (i1, i2,m). By construction,

temperature anomalies have approximately mean zero and variance one.

Our algorithm for extracting temperature hotspots proceeds as follows:

INPUTS: Monthly gridded reanalysis data; neighborhood radius R0 > 0.1o; quantile

level p ∈ [0, 1].
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1. Estimate

µ̂(i1, i2,m) =
1

39

39
∑

a=1

s(i1, i2, a,m)

and

σ̂(i1, i2,m) =

√

√

√

√

1

39

39
∑

a=1

(s(i1, i2, a,m)− µ̂(i1, i2,m))2.

2. Compute anomalies using formula (5.10).

3. Extract all hotspot locations xi = (i1, i2, a,m) satisfying

min
x̃∈B(xi)

(s̃(xi)−s̃(x̃)) > 0, where B(xi) = {(̃i1, ĩ2, a,m) | ‖(̃i1, ĩ2)−(i1, i2)‖≤ R0}.

4. RETURN the space-time point pattern {xi, i = 1, . . . , N}.

Steps 1 and 3 in the algorithm can be implemented efficiently using raster represen-

tations (Hijmans 2020).

5.2.2 Model fitting and validation

We fit an extension of model (4.1) with s = ∞ by considering a spatial hybrid Strauss

model (Baddeley et al., 2013) rather than Strauss model. The irregular parameters of

the model (e.g. r) are estimated by profile pseudo-likelihhod (Baddeley and Turner,

2000). We consider r = {0.5, 0.6, 0.7, 0.8, 0.9, 1}. The estimated interaction parame-

ters are then γ̂ = {0.12, 0.77, 0.65, 0.93, 0.85, 0.40}. We extract the results of the spatial

random field. The resulting maps are reported in Fig. 5.9.

We implement a method for model validation based on posterior predictions and

comparison with their second-order summary statistics according to the global en-

velopes. We draw 19 samples from the posterior joint distribution which we interested

in the values of the latent field of each sample. We need to query the index for each

latent field component. Hence, we can obtain the predicted values for each response.

We compute L-function for each sample and also for the point patterns during 1981

to 2019. Fig. 5.10 compares L-function for point patterns in during 1981 to 2019 in

August and mean of L-function for 19 samples from the posterior joint distribution of

fitted LGCSP and confirms that the fitted LGCSP captures the behavior of the point

pattern very well.
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Figure 5.9 Posterior mean of the spatial random fields for August of 1981 (top-left),

1999 (top-right), 2009 (bottom-left), and 2019 (bottom-right) .

Figure 5.10 Combined global envelopes based on the empirical L-function for LGCSP fitted by our

INLA˙based approach. The solid curve is the empirical functional summary statistics for the observed

point pattern and the dashed curve is the means obtained from 19 posterior predictions. Each shaded area

indicates a 95% global envelope based on the extreme rank length. At the top of each plot, the p-value of

the corresponding global envelope test is stated.
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Chapter 6

Conclusion and future work

6.1 Conclusion

A spatial (and spatio-temporal) point pattern, as a realization of a point process, is a

collection of events for which locations (and times) of occurrence have been observed

in a specified spatial region (and temporal period). Point patterns are often classified

into three classes of single interaction structure: randomness, clustering, and inhibi-

tion that can be modeled for instance by Poisson process, Cox processes, and Gibbs

processes, respectively. These single-structure point process models can be too sim-

plistic to describe some complex phenomena in seismology, epidemiology, and forestry

as they involve several structures at different spatial (and spatio-temporal) scales, thus

requiring multi-structure point processes to describe them. The main concern of this

Ph.D. thesis is the spatio-temporal modeling of such complex point patterns taking into

account the spatio-temporal inhomogeneity driven by covariates and the complexity of

the their interaction structures at different scales.

In the spatial point processes literature, three general approaches are considered

for constructing multi-structure point process models: thinning, superposition, and hy-

bridization. The key contribution of the Ph.D. thesis is to introduce spatio-temporal

hybrid point processes based on Gibbs and Cox models using hybridization approach

and to develop their statistical inference.

Extending hybridization approach to the spatio-temporal framework, we develop

new hybrid Gibbs models, namely the spatio-temporal hybrid Geyer saturation point

process and spatio-temporal hybrid Strauss hardcore point process, that combine both

multi-scaling and hardcore distances. A different approach, leading to more flexibility

in the model and challenging inference, consists of Gibbs models that contain both

random and fixed effects to take into account complex patterns of heterogeneity. We

propose to embed spatio-temporally structured Gaussian random effects in the Gibbs

trend function. Therefore, this approach focuses on models derived from the multi-

scale classes of combinations of Gibbs and log-Gaussian Cox point processes which

we refer to as Cox-Gibbs models.

We also extend to the spatio-temporal framework, and implement, inference meth-
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ods for these new models. In this Ph.D. thesis we classify the inference procedure

into two approaches: global and local estimation methods. For the global statistical

inference of Gibbs models we tailor the pseudo-likelihood and logistic likelihood ap-

proaches. Because, the models based on global parameter estimates can not take into ac-

count different local interaction structure, we extend the local likelihood approach to the

spatio-temporal context. It can be viewed as an alternative method for modeling multi-

structure point patterns with spatially and/or temporally varying parameters in Gibbs

point process models. Finally, for Cox-Gibbs models, the calculation of the likeli-

hood variants (composite likelihoods: pseudo-likelihood and logistic likelihood) would

involve complex, high-dimensional integrals, and we would need estimation methods

that allow handling the latent Gaussian variables. Due to the hierarchical structure of

Cox-Gibbs models, we can formulate and estimate them within a Bayesian hierarchical

approach, using techniques as the Integrated Nested Laplace Approximation.

We propose to simulate the hybrid Gibbs point process models with a birth-death

Metropolis-Hasting algorithm. We develop a two-step procedure for simulating the hy-

brid Cox-Gibbs model by simulating, firstly, a realisation of a Gaussian random field

and then simulating a realisation of hybrid Cox-Gibbs model given that Gaussian real-

isation using the birth-death Metropolis-Hasting algorithm. Estimation, simulation and

validation methods proposed in the Ph.D. thesis have been carried out using R together

with the spatstat, stpp, splancs, fields, sparr, raster, INLA and GET

packages.

Finally we use these models to describe the complex interaction structure observed

in different data sets. We particularly focus on wildfires in France and in Spain using

hybrid Gibbs models. The spatio-temporal distribution of forest fires is very complex

in nature with non-separability in space and time and multiple structures (repulsion and

aggregation) at different spatial and/or temporal scales. Spatio-temporal variations of

fire occurrences further depend on the spatial distribution of current land use and meteo-

rological conditions, but also depends on past events (changes in vegetation due to fires

affect the probability of fire occurrence during a regeneration period). We also develop

an innovative application of spatio-temporal modeling of hotspots of temperature, and

in particular of temperature anomalies, in the United States using Cox-Gibbs models.

6.2 Future work

We defined two new spatio-temporal multi-scale Gibbs point process models and de-

tailed extensions of classical statistical inference methods and MCMC simulation tech-

niques to the spatio-temporal framework. Simulation algorithms and inference meth-

ods are implemented in R code1 and will be added to the stpp package (Gabriel et al.

1http://edith.gabriel.pagesperso-orange.fr/software.html
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2013).

Some of our choices can be discussed and eventually improved in future works,

notably in our application to forest fire occurrences which is not presented as an in-

depth study but as an illustration of the model fitting on real data.

In our forest fire occurrences application study in France (resp. Spain), we con-

sidered a log-linear form for the trend depending on covariate information. We chose a

two-step procedure for estimating, at first, the trend coefficients and then the regular pa-

rameters of the interaction function. Our knowledge on forest fire mechanisms guided

this choice because the main driver of occurrence locations is the environmental hetero-

geneity and the secondary one is the interaction phenomena. The trend is estimated at

the spatial DFCI (resp. grid) scale and at the yearly (resp. monthly) one, corresponding

to our covariate resolution. In that way, we estimated a global trend at a medium scale

whereas the interaction parameters are estimated at the point locations and represent a

local interaction behavior at a fine scale.

This procedure could be improved by incorporating variable selection methods, e.g.

via regularization. Indeed, when fitting inhomogeneous Gibbs models to patterns by

this two-step procedure there is the problem of deciding which covariates should be

included in the final model. Recently, Choiruddin et al. (2018) and Daniel et al. (2018)

presented a general framework for regularizing inhomogeneous spatial Gibbs point

process models via penalized composite likelihoods, incorporating both the pseudo-

likelihood and logistic likelihood approaches to model fitting. Regularization is an

attractive procedure that performs variable selection and parameter estimation simul-

taneously by maximizing a penalized likelihood function. This methodology could

be extended in several ways, first, extension to the spatio-temporal Gibbs models and

proposing the penalized logistic likelihood in a spatio-temporal framework. Second,

regularization could be applied on the spatio-temporal Gibbs models with more com-

plex interaction terms, such as multi-scale and hybrid interactions as we developed in

this thesis.

Our two-step estimation procedure allows us to provide confidence intervals for

both the trend coefficients and the regular parameters. We notice that some parameters

γj are closed to one. Here we consider a bootstrap estimate of the confidence interval for

each γj . We could further test departure from one by extending the adjusted composite

likelihood ratio test (Baddeley et al. 2016) to the spatio-temporal framework. Indeed,

Baddeley et al. (2016) proposed a likelihood ratio test for spatial Gibbs point process

models fitted by maximum pseudo-likelihood. They discussed that implementing other

composite likelihood as the logistic likelihood would provide a better composite like-

lihood ratio test. Estimating diagnostics related to the logistic likelihood requires to

estimate the variance–covariance matrix of the logistic score and the sensitivity matrix.
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Baddeley et al. (2014) provide consistent estimators of these quantities. The exten-

sion to the spatio-temporal framework is a full-blown work that also involves efficient

implementation.

Our method for choosing irregular parameters in hybrid Geyer model (resp. hy-

brid Strauss hardcore model) relies on a maximum profile likelihood approach based

on the logistic likelihood estimation procedure and AIC values for model selection. In-

troduced for the pseudo-likelihood estimates in Anwar and Stein (2015) and applied to

the logistic likelihood approach by us using the results in Baddeley et al. (2014), this

method consists in fixing irregular parameters and maximizing the composite likelihood

with respect to the regular ones. This technique is a computationally-intensive method.

Thanks to a preliminary spatio-temporal exploratory analysis of the interaction ranges

done with the inhomogeneous pair correlation function, the maximum nearest neigh-

bor distance and the temporal autocorrelation function, we chose few configurations of

feasible values for the nuisance parameters m, rj , qj and sj , j = 1, . . . ,m (resp. m,

rj , qj , j = 1, . . . ,m). Considering more values would be very time-consuming and

developing a new estimation method would be a subject in its own right. During the

model validation procedure, we could use the global envelope tests based on the ERL

measure to asses the goodness-of-fit of submodels with fewer irregular parameters to

be parsimonious.

Our models could further be applied to describe complex point processes in other

fields, like seismology and epidemiology for example, because several mechanisms

exhibit interaction between points at multiple scales in space and time.
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Borrajo, M. I., González-Manteigaand, W. and Martı́nez-Miranda, M. D. (2020b), Test-

ing for significant differences between two spatial patterns using covariates, Spatial

Statistics 40, 100379.

Bosq, D. (1998), Nonparametric Statistics for Stochastic Processes, Springer-Verlag

New York, New York.

Brillinger, D. R., Haiganoush, K. P. and Benoit, J. W. (2003), Risk assessment: a forest

fire example, in D. R. Goldstein, ed., Statistics and Science: A Festchrift for Terry

Speed, Institute of Mathematical Statistics, Beachwood, pp. 177–196.

Brix, A. and Chadœuf, J. (2000), Spatio-temporal modeling of weeds and shot-noise G

Cox processes, Biometrical Journal 44, 83–99.

Brix, A. and Diggle, P. J. (2001), Spatiotemporal prediction for log-Gaussian Cox

processes, Journal of the Royal Statistical Society. Series B (Statistical Methodology)

63(4), 823–841.

Brix, A. and Kendal, W. S. (2002), Simulation of cluster point processes without edge

effects, Advances in Applied Probability 34, 267–280.

Brix, A. and Møller, J. (2001), Space-time multitype log Gaussian Cox processes with a

view to modelling weed data, Journal Scandinavian Journal of Statistics 28, 471–488.

Chiu, S. N., Stoyan, D., Kendall, W. S. and Mecke, J. (2013), Stochastic Geometry and

its Applications, 3 edn, Wiley, Chichester.

77



BIBLIOGRAPHY BIBLIOGRAPHY

Choiruddin, A., Coeurjolly, J. F. and Letué, F. (2018), Convex and non-convex regular-
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Abstract: Spatial and spatio-temporal single-structure point process models
are widely used in epidemiology, biology, ecology, seismology. . . However, most
natural phenomena present multiple interaction structure or exhibit dependence
at multiple scales in space and/or time, leading to define new spatial and spatio-
temporal multi-structure point process models. In this paper, we investigate and
review such multi-structure point process models mainly based on Gibbs and
Cox processes.

1. Introduction

Fundamental concepts of the theory of point processes emerged from life tables,
renewal theory and counting problems [28]. The modern theory has mainly been de-
veloped between 1940’s and 1970’s (see e.g. the monographs by Palm [69], Feller [36],
Bartlett [12], Matérn [59] and Cox [23, 24]) and is linked to nonlinear techniques in
stochastic process theory [13, 14]. From 1980’s spatial and spatio-temporal point pro-
cesses have then become a subject on their own right. Today, they cover a plethora
of applications in ecology, forestry, astronomy, epidemiology, seismology, fishery. . .

Spatial (and spatio-temporal) point process data are a collection of points for
which locations (and times) of occurrence have been observed in a specified spatial
region (and temporal period). Usually, the terms points and events are respectively
used for arbitrary locations and for observations. The main goals in the analysis of
point patterns concern the specification of intensity variations (first-order moment),
interaction between events (second-order moment) and model identification for the
underlying process. Processes are often classified into three classes of interaction
structure [30]:

• randomness: In the absence of any interaction between events, a point pattern
is said Completely Spatially (or Spatio-Temporally) Random in the sense that
the probability that an event occur at any point is equally likely to occur any-
where within a bounded region and that its location (and time) is independent
of each any other event. This property provides the standard baseline against

∗Corresponding author
AMS 2000 subject classifications: Primary 60G55, 62M30; secondary 62H11
Keywords and phrases: Spatio-temporal point process models, Cox process, Gibbs process,

Multi-scale process, Multi-structure process
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which point patterns are often compared. The simplest and most fundamental
point process for modelling a complete random distribution of points is the
Poisson point process [53, 54]. It is used as null hypothesis for statistical test
of interaction [31, 50].

• clustering or aggregation: In a clustered distribution, events tend to be closer
than would be expected under complete randomness. Clustered patterns are
mainly modelled by Cox processes [25], in particular log-Gaussian Cox pro-
cesses [16, 17, 34, 60], Poisson Cluster processes [18, 38, 65] and Shot-Noise
Cox processes [15, 63, 64].

• inhibition or regularity : In a regular distribution, events are more evenly spaced
than would be expected under complete randomness. This structure can be
modelled by Strauss processes [27, 82], Matérn hard core processes [37, 59] or
determinantal point processes [55, 58].

Gibbs processes [29, 74, 77] offer a large class of models which allow any of the above
interaction structure.

These single-structure point process models are too simplistic to describe phe-
nomena with interactions at different spatial or spatio-temporal scales. That is for
instance the case of seismic data as the different sources of earthquakes (faults, ac-
tive tectonic plate and volcanoes) produce events with different displacements [78]
and can be seen as the superposition of background earthquakes (which are dis-
tributed over a large spatio-temporal scale with low density) and clustered earth-
quakes (which are distributed over a small spatio-temporal scale with high density)
[71]. Such multi-structure phenomena motivate statisticians to construct new spatial
point process models, e.g. in ecology [57, 73, 87], in epidemiology [47] and in seis-
mology [78, 79], mainly based on Gibbs processes, but not only [56]. There are very
few spatio-temporal models: [40] and [76] modeled the multi-scale spatio-temporal
structure of forest fires occurrences by log-Gaussian Cox processes (LGCP) and
multi-scale Geyer saturation process respectively, [48] developed a multi-scale area-
interaction model for varicella cases and [52] modelled the locations of muskoxen
herds by LGCP with a constructed covariate measuring local interactions.

In the spatial point processes literature, three general approaches are considered
for constructing multi-structure point process models: hybridization [10], thinning
and superposition [19]. Hybridization consists in combining two or more point pro-
cess models [9]. Spatial hybrids of Gibbs models are defined in [10] and hybrids of
area-interaction potentials in [73]. Extension of the hybridization approach to the
spatio-temporal framework has recently been considered in [48, 76]. Thinning con-
sists in deleting points of a point process according to some probabilistic rule which
is either independent or dependent of thinning other points [19]. This operation al-
lows to get point processes with inhibition at small scales and attraction at large
scales [6, 56]. Superposition of several processes is the union of the points of each
process. It can be useful to model multi-scale clustered processes [87].

In this paper, we give a thorough overview of available methods and models
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for spatial and spatio-temporal multi-structure point process data. In Section 2,
we review the required preliminaries which include definitions and properties of
point processes and single-structure models. In Section 3, we investigate the spatial
and spatio-temporal multi-structure point process models based on Gibbs and Cox
processes and other methods for introducting new multi-structure models. Finally,
Section 4 provides concluding remarks and discusses directions for future research.

2. Inhomogeneity and structures in point patterns

2.1. Definitions

We consider a finite spatial or spatio-temporal point processX observed inW, where
W denotes either a spatial region W ⊂ R

d or a spatio-temporal region W × T ⊂
R

d × R. We denote x a realization of the point process, i.e. a collection of events
{xi}i=1,...,n (or {(xi, ti)}i=1,...,n) ⊂ W. Let ξ be any point in W. We refer to [19, 28]
(resp. [33, 35, 43]) for more formal definitions of spatial (resp. spatio-temporal) point
processes. Without loss of generality, we set d = 2 throughout this paper. The main
characteristics driving the spatial (resp. spatio-temporal) distribution of points are
the intensity function, which governs the univariate distribution of the points of X,
and the pair correlation function, which governs the bivariate distribution of the
points of X, i.e. the interaction between events. In the following we remind some
definitions and properties when X is a spatial or a spatio-temporal point process.

Campbell’s theorem [19] relates the expectation of a function, h assumed to be
non-negative and measurable, summed over a point process X to an integral involv-
ing the mean measure of the point process :

E





6=
∑

ξ1,...,ξk∈X

h(ξ1, . . . , ξk)



 =

∫

. . .

∫

h(ξ1, . . . , ξk)λ
(k)(ξ1, . . . , ξk)Π

k
i=1dξi,

where ξi ∈ W and λ(k), k ≥ 1, are the product densities. For a simple point process,
i.e. ξi 6= ξj for i 6= j, if they exist, the product densities are related to the count-
ing measure N in infinitesimal spatial or spatio-temporal regions dξ1, . . . ,dξk ⊂ W ,
around ξ1, · · · , ξk, with volumes |dξ1|, · · · , |dξk| : P [N(dξ1) = 1, . . . , N(dξk) = 1] =
λ(k)(ξ1, . . . , ξk)Π

k
i=1dξi. Thus, the intensity function is related to the expected num-

ber of points in infinitesimal regions

λ(ξ) = λ(1)(ξ) = lim
|dξ|→0

E[N(dξ)]

|dξ|

and the pair correlation function is defined by

(2.1) g(ξi, ξj) =
λ(2)(ξi, ξj)

λ(ξi)λ(ξj)
.
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A point process is homogeneous when its intensity is constant, λ(ξ) = λ, ∀ξ, inhomo-

geneous otherwise. In practice, the inhomogeneity is often driven by environmental
covariates and we account for them by using parametric models for the intensity func-
tion [9]. Under the assumption of stationarity, the properties of the point process
are invariant under translation and the process is homogeneous. The second-order

stationarity states that the second-order intensity only depends on the difference
between points λ(2)(ξi, ξj) = λ(2)(ξi − ξj). Because in practice most of processes are
inhomogeneous, [8, 39] weakened it and defined the second-order intensity-reweighted
stationary assumption for which the pair correlation function (2.1) is well-defined
and a function of ξi − ξj . [85] provides general concepts of factorial moment prop-
erties. The previous definition of inhomogeneous processes is not unique, [45] de-
fined inhomogeneous model classes (including the class of reweighted second-order
stationary processes) into the common general framework of hidden second-order
stationary processes. The pair correlation function describes the structure of depen-
dence/interaction between points : g(ξi, ξj) = 1, > 1 and < 1 indicates that the
pattern is, respectively, completely random, clustered and regular.

Assume that the distribution of the point process is defined by a probability density
f(x) with respect to the distribution of a unit rate Poisson process. The probability
density can be used to study point processes. It can be viewed as the probability
of getting the point pattern x, divided by the same probability under Complete
Randomness [9]. The mathematical form of the probability density determines the
structure of the point process, see [21, 22] about formulation of the density of point
processes. A closely related concept is the Papangelou conditional intensity func-
tion [70], which has been extended to the spatio-temporal framework by [27]. It is
defined by

(2.2) λ(ξ|x) = f(x
⋃

ξ)

f(x)
,

for ξ /∈ x provided f(x) 6= 0.

2.2. Classical point process models

We refer to [9, 19, 31, 50, 64] and [27, 33, 35, 37, 43] for a presentation of most of
spatial and spatio-temporal point process models. Hereafter we only focus on the
ones mentioned/used in Section 3 to construct multi-structure point process models,
namely the Poisson, Cox and Gibbs processes.

Poisson point processes

The Poisson point process is the reference model for independence of the locations
of events, i.e. for complete spatial (or spatio-temporal) randomness. It is also the
simplest and most widely used inhomogeneous point process model. Poisson point
processes with intensity function λ(ξ) are defined by two postulates :
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• The number of points in any region B ⊆ W, N(B), follows a Poisson distri-
bution with parameter

∫

B λ(ξ)dξ,
• For all B ⊆ W , given N(B) = n, the n events in B form an independent
random sample from the distribution on B with probability density function
λ(ξ)/

∫

B λ(ξ)dξ.

The probability density of a Poisson point process with respect to the unit rate
Poisson process is

f(x) = exp

(

|W| −
∫

W
λ(ξ)dξ

)

Πξ∈xλ(ξ).

Then, from Equation (2.2), the Papangelou conditional intensity is λ(ξ|x) = λ(ξ)
and λ(2)(ξi, ξj) = λ(ξi)λ(ξj), so that g(ξi, ξj) = 1.

Cox processes

Cox processes, so-called doubly stochastic point processes [23], are considered as a
generalization of inhomogeneous Poisson processes where the intensity is a realiza-
tion of a random field Λ = {Λ(ξ)}ξ∈W . These models are particularly useful as soon
as spatial variation in events density reflects both the environment and dependence
between events. Moreover, their first- and second-order moments being tractable,
they are very attractive. We have

(2.3) λ(ξ) = E[Λ(ξ)] and g(ξi, ξj) =
E[Λ(ξi)Λ(ξj)]

λ(ξi)λ(ξj)
= 1 +

cov (Λ(ξi),Λ(ξj))

λ(ξi)λ(ξj)
.

The probability density f(x) = E
[

exp
(

|W| −
∫

W Λ(ξ)dξ
)

Πξ∈xΛ(ξ)
]

is intractable
for these processes. Consequently, the Papangelou conditional intensity is not known.
The second-order intensity function λ(2)(ξi, ξj) = E [Λ(ξi)Λ(ξj)] is only tractable for
two special cases of Cox processes, that we present below, the Shot Noise Cox process
and the log-Gaussian Cox process.

Shot noise Cox processes [61] (SNCP) are a wide class of Cox processes associated
to

Λ(ξ) =
∑

(c,γ)∈Φ

γk(c, ξ),

where Φ is a Poisson point process on W×[0,∞) with intensity measure ζ and k(c, ·)
is a density function on W, ∀c ∈ W. The intensity and pair correlation function are

λ(ξ) =

∫

γk(c, ξ)dζ(c, γ) and g(ξi, ξj) = 1 +

∫

γ2k(c, ξi)k(c, ξj)dζ(c, γ)

λ(ξi)λ(ξj)
.

SNCP include Poisson cluster processes, i.e. a Poisson process in which each point
is replaced by a cluster of points, the original point is considered as the cluster cen-
ter [26]. When the points in the cluster are independently and identically distributed
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about the cluster centre, the process is referred to as a Neyman-Scott process [65].
Two mathematically tractable models of Neyman-Scott processes are the Thomas

process [83], where k is a zero-mean normal density, and the Matérn cluster process,
where k is a uniform density on a ball centered at the origin.

Log-Gaussian Cox processes (LGCP) have been introduced in [60], considering
that the intensity is a log-Gaussian process : Λ(ξ) = exp (Y (ξ)), where Y is a real-
valued Gaussian random field, with mean function µ(ξ) and covariance function
C(ξi, ξj). In that case, from Equation (2.3) we have

λ(ξ) = exp (µ(ξ) + C(ξ, ξ)/2) , ∀ξ ∈ W and g(ξi, ξj) = exp (C(ξi, ξj)) , ∀ξi, ξj ∈ W.

The expression of the pair correlation function shows that the interaction is con-
trolled by the second-order moment of Y . If C(ξi, ξj) ≥ 0, we get g(ξi, ξj) > 1
and clustering. As they are based on a latent random field describing the intensity,
LGCPs have a hierarchical structure making them particularly flexible [50]. Note
that the interaction is controlled through the second-order moment of the Gaussian
random field, so that LGCPs do not describe the mechanistic process generating
the points what is the case of most of Gibbs processes (see below) for which the
dependence between points is controlled through local interaction between pairs of
points.

Gibbs point processes

A finite Gibbs point process on W admits a density

(2.4) f(x) = exp (−Ψ(x))

w.r.t. the Poisson process of unit intensity on W. The potential function Ψ is often
specified as the sum of pair potentials :

(2.5) Ψ(ξ1, . . . , ξn) = α0 +
∑

i

α1(ξi) +
∑

i<j

α2(ξi, ξj) + · · ·+ αn(ξ1, . . . , ξn),

with α0 a normalizing constant for the density and the pair potentials α1, α2, . . .
which determine the contribution to the potential from each δ-uple of points. Note
that, if the αδ, δ ≥ 2 are identically zero, the process is Poisson with intensity
λ(ξ) = exp(−α1(ξ)). Hence, α1 can be viewed as controlling a spatial (or spatio-
temporal) trend, while the αδ, δ ≥ 2 control the interactions between events. The
normalizing constant is generally intractable, so it is often impossible to compute the
intensity and pair correlation function of Gibbs processes. However, the Papangelou
conditional intensity can be computed [22].

When the interaction between points is restricted to pairs, i.e. for

f(x) = αΠiβ(ξi)Πi<jγ(ξi, ξj),
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with α > 0, β an intensity function and γ a symmetric interaction function, the
process is called pairwise interaction process [30, 84]. A well-known example of such
processes is the Strauss process [82] for which

f(x) = αβn(x)γs(x),

where β, γ > 0, n(x) is the number of points in x and s(x) the number of neighbour
pairs of x at distances less than a given distance R. When γ = 0, we get the Hard

Core process. Note that in the Strauss process, γ should be smaller than 1 otherwise
the density is no integrable. [41] modified the Strauss process and proposed theGeyer

saturation process in which the overall contribution from each point is trimmed to
never exceed a maximum value. We thus have

f(x) = αβn(x)Πξ∈xγ
min(s,t(ξ,r,x)),

where α, β, γ, r, s are parameters and t(ξ, r,x) is the number of other events lying
with a distance r of the point ξ.

3. Multi-structure point process models

Spatial and spatio-temporal single-structure point process models presented in the
previous section are generally used when only one type of interaction governs the
structure of the point pattern. When there are indications that the spatial or spatio-
temporal structure combines several structures or varies with ranges of distances,
we need to consider multi-structure point process models. We present in this section
some of these models derived from the classes of Gibbs and Cox processes. By nature,
few spatial point processes can exhibit directly several structures and/or scales of
interaction and we recall some useful construction techniques to incorporate the
multi-structure: hybridization, thinning, superposition or clustering.

3.1. Models based on Gibbs processes

Gibbs point processes are mainly used to model repulsion structure in point patterns,
even if some examples exist for modelling low clustering [19]. Their definition through
the potential function Ψ fit well in the statistical mechanics framework where the
spatial modelling of particles needs often to consider their interaction. It is common
in various domains (mechanics, biology. . . ) to observe repulsion at short range and
aggregation at medium-long range of entities, leading to define multi-structure point
processes models.

For pairwise interaction processes, some parametric potential functions can be
defined to take into account multiple scales of interaction, see e.g. [20, 44, 67, 72, 77].
We consider in the sequel the homogeneous case, i.e. when α1 is constant and the
pair potential function α2(ξi, ξj) = α2(‖ξi − ξj‖) in (2.5).
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The Lennard-Jones pair potential function, well-known in statistical mechanics,
is given by

α2(r) = ǫ1

(σ

r

)m1 − ǫ2

(σ

r

)m2

, ∀r > 0

where m1 > m2, ǫ1, σ > 0 and in the multi-structure case ǫ2 > 0. Another one is
the step potential function given by

α2(r) = cl if Rl−1 < r ≤ Rl ∀l = 1, · · · ,m

where R0 = 0, Rm = ∞, c1 = ∞, cm = 0 and cl ∈ R for l = 2, · · · ,m − 1. The
resulting model is an extension of the Strauss process to the multi-scale framework
[72]. The square-well potential is obtained with l = 2. More recently, [42] introduced
a pair potential function varying smoothly over distance with scale interactions de-
fined through a differential system of equations. Other pair potential functions can
be found in the literature for modeling multi-structure phenomena, e.g. in [19, 67].

Some of these pair potential functions define multi-scale generalizations of single
scale Gibbs processes. Indeed, the step potential functions of homogeneous pairwise
interaction processes in [30] and [72] represent multi-scale extensions of the Strauss
process where the density is given by

f(x) = αβn(x)
m
∏

l=1

γ
sl(x)
l ,

where sl(x) =
∑

i<j 1(Rl−1 < ‖ξi − ξj‖ ≤ Rl).

In the same way, the multi-scale generalization of the area-interaction model has
been introduced in [3–5] with a two-scale structure and in [73] for multi-scale marked
area-interaction processes. Its density function in a homogeneous multi-scale case is
given by

f(x) = αβn(x)
m
∏

l=1

exp(−κlU(x, rl))

where U(x, rl) is the d-dimensional volume of the set W ∩⋃ξ∈x b(ξ, rl), with b(ξ, rl)
the ball centered at ξi of radius rl > 0. The sign of κl defines the lth structure :
inhibition if negative, clustering otherwise. [66] used area-interaction point processes
for bivariate point patterns for modelling both attractive and inhibitive intra- and
inter-specific interactions of two plant species.

[10] defined a new class of multi-scale Gibbs point processes named hybrid models
and including the two previous generalization examples. This unified framework
allows to define properly generalizations of single-scale Gibbs point processes by
preserving Ruelle and local stability [84]. This hybridization technique consists in



On spatial and spatio-temporal multi-structure point process models 9

defining the density function of a multi-scale point process model as the product of
several densities of Gibbs point processes, so that

f(x) = cf1(x)...fm(x)

where c is a normalization constant and fl is a Gibbs density function for l =
1, · · · ,m. The choice of the normalization constant allows to well define a proba-
bility density in the case where the product f1...fm is integrable. The integrability
condition is of course essential and induced by others conditions on the fl (Ruelle
statbility, local stability or hereditary, see [10]) which play an important role in sim-
ulation algorithms and are established in general to demonstrate the model validity
of the hybrid process.

[10] introduced the spatial multi-scale Geyer saturation point process that was
applied in epidemiology by [47] and in seismology by [78] and [79]. [76] extend the
definition and the estimation procedure in the general case of an inhomogeneous
spatio-temporal multi-scale Geyer saturation process which density is given by

(3.1) f(x) = c
∏

ξ∈x

λ(ξ)
m
∏

l=1

γ
min{sl,n(C

ql
rl
(ξ);x)}

l

where λ ≥ 0 is a measurable and bounded function, γl, rl, ql and sl > 0 are the model
parameters and n(Cq

r (ξ);x) =
∑

ξi∈x\ξ
1{||xi−x|| ≤ rl, |ti−t| ≤ ql} is the number of

other points in x which are in a cylinder centred on ξ ∈ x with spatial and temporal
radii rl and ql. For fixed l ∈ {1, . . . ,m}, when 0 < γl < 1 we would expect to see
inhibition between events at spatio-temporal scales. On the other hand, when γl > 1
we expect clustering between events. We observe that Equation (3.1) reduces to an
inhomogeneous Poisson process when sl = 0 ∀l ∈ {1, . . . ,m}. [75] used a multitype
generalization of Gibbs point processes with point-to-point interactions at different
spatial scales in order to model a complex rainforest data of 83 species.

The definition of hybrid Gibbs models does not impose to consider the same m
Gibbs models which is emphasized in [9]. In this way, [11] applied a hybrid model
with three model structures at different ranges of distance to the spatial pattern
of halophytic species distribution in an arid coastal environment. They considered
a hardcore process at very short distances, a Geyer process at short to medium
distances and a Strauss process for the structure at large distances.

3.2. Models based on Cox processes

Cox processes are mainly defined from additive or log-linear random intensity func-
tions. Their hierarchical structure allows to quantify the various sources of variation
governing the spatial or spatio-temporal distribution of the pattern of interest. They
are widely used for modelling environmental and ecological patterns.
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Cluster Cox processes and superposition

Some Cox processes are obtained by clustering of offspring points around parent

points and correspond to specific cases of cluster processes. This two-step construc-
tion allows to consider easily different structures for the patterns of parents and
offspring.

[62] introduced the class of Generalized Shot Noise Cox processes (GSNCP), ex-
tending the definition of SNCP, and allowing relevant multi-structure point pro-
cesses for modelling regularity and clustering in many applications. This class has
two advantages. Firstly, the parent process is not restricted to be Poisson, as in
Neyman-Scott processes, and can be a repulsive Gibbs point process in order to
add inhibition between the clusters. Secondly, in each cluster, the intensity and the
bandwidth of the dispersion kernel can be random. By consequence, a GSNCP is a
Cox process driven by a random field of the form

Λ(ξ) =
∑

(c,γ,h)∈Φ

γkh(c, ξ),

where Φ is a point process on W× [0,∞)× [0,∞) and h is a bandwidth for the kernel
density kh(c, ·). So, given Φ, a GSNCP is distributed as the superposition ∪lXl of
independent Poisson processes with intensity functions γlkhl

(cl, ·) where {γl}l, {hl}l
are random and Φcent = {cl}l is the parent process. In population dynamics, with
G0 a Poisson process for the initial population and Gn+1 a GSNCP where the cluster
centers are given by Gn, the superposition of GSNCPs G0, G1, . . . is a spatial Hawkes
process [46]. The GSNCP class contains the special cluster Cox process defined in
[88], where the parents process is a Strauss process. This model coupling inhibition
at medium/long range and aggregation in cluster is applied to tree locations in a
rain-forest, in order to consider the competition and reproduction mechanisms. [1]
and [2] generalized the Neymann-Scott process by considering a log-Gaussian Cox
process model for the parents, instead of a homogeneous Poisson process, leading to
two scales of clustering, inter- and intra-clusters. This hierarchical model is applied
to storm cell modelling in North Dakota.

Wiegand and co-authors’ papers [86, 87] consider several construction of Cox pro-
cesses incorporating clustering at multiple scales. The nested double-cluster process
is an extension of the Thomas process in an multi-generation evolution of the pop-
ulation where the offspring become parents and generate offspring. They consider
also the superposition of cluster processes, like the Thomas process.

Cox processes with constructed covariate

Another way to incorporate both small and large spatial scale structure in Cox
processes is to define a constructed covariate measuring the local structure of a
point pattern associated to an additional spatial effect at medium-long range. This
methodology developed in [51] and applied to koala data is used again in [49, 52] for
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other spatial ecological data. They consider a log-Gaussian Cox process in a Bayesian
framework in order to apply the INLA approach for speeding up the estimation of
parameters in comparison to MCMC approaches that are very time-consuming. [40]
used also this approach in the context of wildfire modelling in Mediterranean France.
In the case of a spatial LGCP model, the method consists in estimating the random
field Λ on grid cells si as follow

Λ(si) = exp

(

β0 + f(zc(si)) +

p
∑

k=1

fk(zk(si)) + Y (si)

)

where β0 is the intercept, f(zc(·)) is a function of the constructed covariate zc,
fk, k = 1, · · · , p are functions of the observed covariates zk and Y is a Gaussian
random field taking into account the spatial autocorrelation not explained by the
covariates. This intensity is estimated for each cell si of a grid partitioning the
observation window.

In [51], the constructed covariate at each center point c of the grid cell s is
the distance from c to the nearest point in the pattern outside the grid cell, i.e
zc(s) = minξ∈x\s(‖c − ξ‖). This constructed covariate describes small scale inter-
individual behavior whereas the random field Y captures the spatial autocorrela-
tion at a large spatial scale. The space-time and space-mark extensions of the con-
structed covariate definition are respectively introduced in [52] and [49]. In [40] the
constructed covariate corresponds to a temporal intensity index given by the ratio
between the number of wildfires observed spatially close to an other in a specified
period and the total number of closed wildfires observed outside this given period.
This covariate measures the temporal wildfire inhibition at close spatial distances
induced by the local burn of vegetation after a wildfire occurrence. [80] fitted a
LGCP to rainforest tree species by adding to the combination of covariates in the
log-intensity a spatial random field and error field. The first random field captures
the spatial autocorrelation in point counts among neighboring grid cells and the
second one the clustering within grid cells, as a nugget effect in geostatistics. The
intensity in s ∈ W is thus given by

Λ(s) = exp

(

β0 +

p
∑

k=1

βkzk(s) +
1√
τ

{√
ρ× Y (s) +

√

1− ρ× ǫ(s)
}

)

where βk are linear effects of observed covariates zk, Y is a spatial random field
with autocorrelation between grid cells and ǫ the error field driving the aggregation
structure within grid cells.

Thinned point processes

Thinning is a an operation allowing to delete points in a point process in order to
obtain a new one with different characteristics. Each point of a point process has a



12 M. Raeisi et al.

probability 1 − π of deletion, where the retention probability π can be constant or
not, independent of the location point or depending on one to several points. For
Cox processes, this technique is generally applied to create random local regularity.
For example, [6] applied a Matérn hard core dependent thinning to a Shot Noise Cox
process to obtain short range repulsion with medium range clustering. For a given
point pattern and a specified distance h, Matérn hard core thinning acts by first
attaching random positive marks (arrival times) to each point. Subsequently a point
is removed if it has a neighbour within distance h and with a smaller mark (i.e. the
neighbour arrived earlier). In that way, for a given location ξ, the retention proba-
bility π(ξ) is the ratio between the intensities of the thinned process and the original
process at ξ. [56] extended the definition of interrupted point processes in [81] and
[19] and considered a spatial point process X obtained by an independent thinning
driven by a random process Z on a regular point process Y . An example is given
with Y a Matérn hard core process and Z the transformation by a characteristic
function of a Boolean disc model [19].

4. Discussion and conclusion

This paper presents a review of methods for constructing multi-structure point pro-
cesses for modelling aggregation and/or inhibition at different spatial or spatio-
temporal scales. We focus our attention on the main two classes of point processes,
namely the Gibbs and Cox processes. Some multi-structure techniques are specific
to a family of point processes, as the hybridization approach for Gibbs processes
or the double-cluster process for Cox processes; others are more global, as the su-
perposition or the thinning method, even if they are respectively more adapted to
Gibbs or Cox processes. We could also consider determinantal point processes to
model regularity as in [56] who considered it instead of the Matérn hard core pro-
cess. Spatio-temporal point processes can also be defined by conditioning on the
past, often used in epidemiology or seismology. For instance, the definition of the
conditional intensity in [32] allows an aggregation of cases in the spatio-temporal
spread of the foot and mouth disease and also a random occurrence of cases in the
entire observation domain.

We selected the most relevant references for us in the state-of-the-art of these
types of Gibbs and Cox models to describe these approaches for introducing reg-
ularity in cluster processes and aggregation in repulsive processes. Because these
models are suitable in an environmental and ecological framework, due to the com-
plexity of mechanisms governing attraction and repulsion of entities (particles, cells,
plants. . . ), we can expect a wide use of these models in many studies.



On spatial and spatio-temporal multi-structure point process models 13

References

[1] Albert-Green, A. (2016). Joint Models for Spatial and Spatio-Temporal

Point Processes. PhD thesis, University of Western Ontario.
[2] Albert-Green, A., Braun, W.J., Dean, C. B. and Miller, C. (2019). A

hierarchical point process with application to storm cell modelling. Canad. J.

Stat. 47(1) 46–64.
[3] Ambler, G.K. (2002). Dominated Coupling from the Past and Some Exten-

sions of the Area-Interaction Process. PhD thesis, University of Bristol.
[4] Ambler, G.K. and Silverman, B. (2004). Perfect simulation of spatial point

processes using dominated coupling from the past with application to a mul-

tiscale area-interaction point process. Preprint, University of Bristol, Depart-
ment of Mathematics, Bristol. Available at http://www.stats.ox.ac.uk/ sil-
verma/pdf/amblersilverman1.pdf

[5] Ambler, G.K. and Silverman, B. (2010). Perfect simulation using dominated

coupling from the past with application to area-interaction point processes and

wavelet thresholding. In: Bingham, N.H., Goldie, C.M. (Eds.), Probability and
Mathematical Genetics. Cambridge University Press, Cambridge.

[6] Andersen, I.T. and Hahn, U. (2016). Matern thinned Cox processes. Spat.

Stat. 15 1–21.
[7] Baddeley, A.J. and van Lieshout, M-C. (1995). Area-interaction point

processes. Ann. I. Stat. Math. 47(4) 601–619.
[8] Baddeley, A.,Moller, J., andWaagepetersen, R. (2000). Non- and semi-

parametric estimation of interaction in inhomogeneous point patterns. Stat.

Neer. 54 329–350.
[9] Baddeley, A., Rubak, E. and Turner, R. (2015). Spatial Point Patterns:

Methodology and Applications with R, Chapman and Hall/CRC Press, London.
[10] Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013). Hybrids of

gibbs point process models and their implementation. J. Stat. Soft. 55(11)
1–43.

[11] Badreldin, N., Uria-Diez, J., Mateu, J., Youssef, A., Stal, C., El-
Bana, M., Magdy, A. and Goossens, R. (2015). A spatial pattern analysis
of the halophytic species distribution in an arid coastal environment. Env. Mon.

Ass. 187 1–15.
[12] Bartlett, M.S. (1954). Processus stochastiques ponctuels. Ann. Inst. Henri
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1. Introduction

Nowadays point process models are widely used to highlight trends and interactions in the
spatial or spatio-temporal distribution of events. Most of them are single-structure in the sense
that they exhibit either spatial randomness (e.g. modeled by the Poisson process Kingman, 1993,
2006) or clustering (mostly modeled by Cox processes (Cox, 1972), in particular log-Gaussian Cox
processes (Møller et al., 1998; Brix and Møller, 2001; Brix and Diggle, 2001; Diggle et al., 2013),
Poisson Cluster processes (Neyman and Scott, 1958; Brix and Kendal, 2002; Gabriel, 2014) and
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Shot-Noise Cox processes (Brix and Chadœuf, 2000; Møller and Waagepetersen, 2004; Møller and

Diaz-Avalos, 2010)) or inhibition (modeled by Strauss processes Strauss, 1975; Cronie and van

Lieshout, 2015, Matérn hard core processes Matérn, 1960; Gabriel et al., 2013 and determinantal

point processes Macchi, 1975; Lavancier et al., 2015). However, lot of phenomena present interac-

tions at different scales what motivate statisticians to develop new models, mainly spatial models in

ecology (Levin, 1992; Wiegand et al., 2007; Picard et al., 2009), epidemiology (Iftimi et al., 2017) or

seismology (Siino et al., 2017, 2018b), but very few spatio-temporal models in environment (Gabriel

et al., 2017) or epidemiology (Iftimi et al., 2018) as lately reviewed in Raeisi et al. (2019). Multi-scale

models are mostly based on Gibbs models (see Dereudre, 2019 for a recent review on Gibbs models)

as they offer a large class of models which allow any of the above mentioned interaction structure.

Multi-structure models can then be obtained by hybridization (Baddeley et al., 2013).

Gibbs point processes are studied by their probability density, defined with respect to the unit

rate Poisson point process. Well-known inhibitive Gibbs models include the hardcore model (events

are forbidden to come too close together) and the Strauss model (Strauss, 1975) (pairs of close

events are not impossible but are unlikely to occur). Generalizing the Strauss process, the Geyer

saturation process (Geyer, 1999) intends to model both inhibition and clustering. It is able to take

into account the clustering nature of a pattern due to interactions between points in absence of

covariate information (Anwar and Stein, 2015).

Baddeley et al. (2013) defined a new class of multi-scale Gibbs point processes, so-called hybrid

models. The hybridization technique consists in defining the density function of a multi-scale point

process model as the product of several densities of Gibbs point processes, fl for l = 1, . . . ,m, so

that f = cf1×· · ·× fm where c is a normalization constant. The choice of the normalization constant

allows to well define a probability density in the case where the product of densities is integrable. In

particular, Baddeley et al. (2013) introduced the spatial multi-scale Geyer saturation point process

that has then been applied in epidemiology (Iftimi et al., 2017) and in seismology (Siino et al., 2017,

2018b). Iftimi et al. (2018) extended the hybridization approach to the spatio-temporal framework

and introduced the spatio-temporal multi-scale area-interaction process. New hybrid Gibbs models

can also be defined from the hardcore process (Cronie and van Lieshout, 2015) and the Strauss

process (Gonzalez et al., 2016) introduced in the spatio-temporal framework, but much more hybrid

Gibbs models remain to be developed to better describe spatio-temporal complex phenomena in

practice.

Forest fire occurrences present multi-scale structures which are related to spatial or spatio-

temporal inhomogeneities of environmental and climate covariates as well as influence of past

events. Their complex interaction structure has been modeled by a spatio-temporal log-Gaussian

Cox process in Opitz et al. (2020) and with an inhibitive effect as covariate in Gabriel et al. (2017).

Gibbs point process models have also been considered in the spatial context for modeling wildfires

like the area-interaction point process (Juan et al., 2012; Serra et al., 2013; Trilles et al., 2013; Arago

et al., 2016; Woo et al., 2017) or the Geyer point process (Turner, 2009). In this paper, we aim

to extend the spatial Geyer saturation point process to the spatio-temporal framework replacing

the Euclidean balls by spatio-temporal cylindrical neighborhoods (Gonzalez et al., 2016). We also

introduce its multi-scale version by extending the hybridization approach (Baddeley et al., 2013)

to space and time. We then model forest fire occurrences using our spatio-temporal multi-scale

Geyer saturation point process. Our data, available from the Prométhée database1, concern forest

fire occurrences in the Bouches-du-Rhône department (South of France) between 2001 and 2015.

The spatio-temporal multi-scale Geyer saturation point process model is introduced in Section 2.

In Section 3, we extend the pseudo-likelihood and logistic likelihood approaches for statistical

inference of Gibbs models to the spatio-temporal framework. Then in Section 4 we implement

the model simulation using a birth–death Metropolis–Hastings algorithm and present a simulation

study to compare the performance of the two estimation methods. Finally, in Section 5, we apply

our model to forest fire occurrences in Southern France.

1 https://www.promethee.com/en.
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2. Spatio-temporal Geyer saturation point process

A spatio-temporal point process can be viewed as a random locally finite subset of a Borel
set W = S × T ⊂ R

2 × R. We consider a complete, separable metric space (W , d(·, ·)) where
d((u, v), (u′, v′)) := max{∥u − u′∥, |v − v′|} for (u, v), (u′, v′) ∈ W . For N the state space of points
configurations of W , x ∈ N denotes a point pattern, i.e. x = {(ξ1, t1), . . . , (ξn, tn)} where (ξi, ti)
describes the location and time, respectively, associated with the ith event.

The cylindrical neighborhood C
q
r (u, v) centered at (u, v) ∈ W = S × T is defined as

Cq
r (u, v) = {(a, b) ∈ W = S × T : ∥u − a∥ ≤ r, |v − b| ≤ q}, (1)

where r, q > 0 are spatial and temporal radii, ∥ · ∥ denotes the Euclidean distance in R
2 and

|·| denotes the usual distance in R. Note that C
q
r (u, v) is a cylinder with center (u, v), radius r ,

and height 2q that represents a natural neighborhood for extending spatial Gibbs models to the
spatio-temporal context (Gonzalez et al., 2016).

The Papangelou conditional intensity (Papangelou, 1974) of a spatio-temporal point process on
W with density f is defined by

λ((u, v)|x) =
f (x

⋃

(u, v))

f (x\(u, v))
, (2)

with a/0 := 0 for a ≥ 0 and (u, v) ∈ W (Cronie and van Lieshout, 2015). Hence, we have

λ((u, v)|x) =
f (x

⋃

(u,v))

f (x)
if (u, v) /∈ x and λ((u, v)|x) = f (x)

f (x\(u,v))
if (u, v) ∈ x.

Gonzalez et al. (2016) introduced a spatio-temporal Strauss process with conditional intensity
for (u, v) /∈ x

λ((u, v)|x) = λγ ñ(C
q
r (u,v);x), (3)

where ñ(C
q
r (u, v); x) =

∑

(ξ,t)∈x 1{∥u − ξ∥ ≤ r, |v − t| ≤ q} is the number of points of x lying in

C
q
r (u, v).
The density function of Strauss model is not integrable for γ > 1, it thus does not define a

valid probability density and the Strauss process cannot be intended for clustering structures. To
avoid this issue, Geyer (1999) considers an upper bound (saturation parameter) for the number of
neighboring points that interact and define the (spatial) Geyer saturation point process.

Definition 1. We define the spatio-temporal Geyer saturation point process as the point process with
density

f (x) = c
∏

(ξ,t)∈x

λ(ξ, t)γmin{s,n(C
q
r (ξ,t);x)}, (4)

with respect to a unit rate Poisson process on W , where c > 0 is a normalizing constant, λ is
a non-negative, measurable and bounded function, γ > 0 is the interaction parameter, s is the
saturation parameter, and n(C

q
r (ξ, t); x) =

∑

(u,v)∈x\(ξ,t) 1(∥u − ξ∥ ≤ r, |v − t| ≤ q) is the number

of points of x lying in C
q
r (ξ, t) and different from (ξ, t).

The function λ describes some spatio-temporal trend in point pattern that can be estimated using
covariates. The scalars γ , r, q and s are the parameters of the model. The saturation parameter s is an
upper bound of the number of points in the cylinder C

q
r . By using hybridization approach (Baddeley

et al., 2013; Iftimi et al., 2018), we define a multi-scale version of (4).

Definition 2. We define the spatio-temporal multi-scale Geyer saturation point process as the point
process with density

f (x) = c
∏

(ξ,t)∈x

λ(ξ, t)

m
∏

j=1

γ
min{sj,n(C

qj
rj
(ξ,t);x)}

j , (5)

with respect to a unit rate Poisson process on W , where γj > 0, j = 1, . . . ,m, are the interaction
parameters, and r1 < · · · < rm, q1 < · · · < qm are spatial and temporal interaction ranges.

3
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For any j ∈ {1, . . . ,m}, the interaction parameters 0 < γj < 1 reflect inhibition, while γj > 1
reflect clustering between points at some spatio-temporal scales. When sj = 0 or γj = 1 for all
j ∈ {1, . . . ,m}, the density (5) corresponds to the density of an inhomogeneous Poisson process.
Eq. (5) indicates that the structure of the process changes with the spatial and temporal distances
rj, qj. Covariates can be added to the model by assuming that the spatio-temporal trend λ is function
of a covariate vector Z(ξ, t), i.e. λ(ξ, t) = Ψ (Z(ξ, t)).

Lemma 1. The spatio-temporal multi-scale Geyer point process is a Markov point process in the

sense of Ripley–Kelly (Ripley and Kelly, 1977) and its density (5) is measurable and integrable for all

γj, j = 1, . . . ,m with m ∈ N.

Proof. A Geyer model is hereditary, locally and Ruelle stable and hence integrable (Geyer, 1999).
Baddeley et al. (2013) showed these properties for hybrids. As in Iftimi et al. (2018), we can
show that the spatio-temporal Geyer saturation point process (4) is a Markov point process in
Ripley–Kelly’s sense at interaction range 2max{r, q} and that the spatio-temporal multi-scale Geyer
saturation process (5) is also a Markov point process in Ripley–Kelly sense at interaction range
max1≤j≤m{2max{rj, qj}} = 2max{rm, qm} (Baddeley et al., 2013). □

For any (u, v) ∈ W , the Papangelou conditional intensity function of the spatio-temporal
multi-scale Geyer saturation process is

λ((u, v)|x) = λ(u, v)

m
∏

j=1

γ
min{sj,n(C

qj
rj
(u,v);x)}

j

×
∏

(ξ,t)∈x\(u,v)

γ
min{sj,n(C

qj
rj
(ξ,t);x∪(u,v))}−min{sj,n(C

qj
rj
(ξ,t);x\(u,v))}

j .

(6)

The Markovian property (Lemma 1) ensures that this conditional intensity only depends on (u, v)
and its neighbors in x. Hence, we can design simulation algorithms for generating realizations of
the model, see Section 4.

3. Inference

Geyer saturation point process model (4) involves two types of parameters: regular parameters
and irregular parameters. A parameter is called regular if the log likelihood is a linear function
of that parameter, irregular otherwise. Regular parameters like trend λ and interaction γ can be
estimated using the pseudo-likelihood method (Baddeley and Turner, 2000) or the logistic likelihood
method (Baddeley et al., 2014) rather than the maximum likelihood method (Ogata and Tanemura,
1981). Indeed, they are based on the conditional intensity which is tractable for most Gibbs models
and is free from the normalization constant c (whose estimation is computationally very expensive,
even for a small number of regular parameters). Here we tailor these two methods to estimate
regular parameters of our spatio-temporal model and we compare their performance in the next
section.

Irregular parameters, like saturation threshold s and distances r and q, are difficult to esti-
mate using the maximum likelihood method because the likelihood function is not differentiable
with respect to them. These parameters can be estimated using the profile pseudo-likelihood
approach (Baddeley and Turner, 2000) or predetermined by the user using some summary statistics,
like the pair correlation and the auto-correlation functions (Iftimi et al., 2018), in order to determine
the interaction ranges. Baddeley and Turner (2006) presented the methods that are used for
irregular parameter estimation in the spatial framework.

In this paper, we combine the advantages of the two previous methodologies. By computing
some statistics summarizing the range of interactions in space and time, we consider a set of feasible
irregular parameter values and we choose the combination of them providing the best Akaike’s
Information Criterion (AIC) for the fitted model.

4
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3.1. Pseudo-likelihood approach

Let θ be the vector of regular parameters that we aim to estimate. Besag (1977) defined the
pseudo-likelihood for spatial point processes in order to avoid computational problems with point
process likelihoods. One can easily extend it for a spatio-temporal point process with conditional
intensity λθ((u, v)|x) over W as follows

PL(x; θ) = exp

(

−

∫

S

∫

T

λθ((u, v)|x)dvdu

)

∏

(ξ,t)∈x

λθ((ξ, t)|x). (7)

The pseudo score is defined by

U(x; θ) =
∂

∂θ
log PL(x; θ), (8)

that is an unbiased estimating function. The maximum pseudo-likelihood normal equations are then
given by

∂

∂θ
log PL(x; θ) = 0, (9)

where

log PL(x; θ) =
∑

(ξ,t)∈x

log λθ((ξ, t)|x) −

∫

S

∫

T

λθ((u, v)|x)dvdu, (10)

and λθ(·|x) is defined by (6) for hybrid Geyer model (5).
For sake of clarity, we now assume that θ = [log γ1, . . . , log γm]⊤ the logarithm of interaction

parameters in model (5). To estimate θ, we use the pseudo-likelihood approach. Eq. (6) can be
rewritten as λθ((u, v)|x) = λ(u, v)

∏m

j=1 exp(θjSj((u, v), x)) where

Sj((u, v), x) = min{sj, n(C
qj
rj
(u, v); x)}

+
∑

(ξ,t)∈x\(u,v)

[min{sj, n(C
qj
rj
(ξ, t); x ∪ (u, v))}

− min{sj, n(C
qj
rj
(ξ, t); x\(u, v))}],

(11)

is a sufficient statistics. Then, for S((u, v), x) = [S1((u, v), x), . . . , Sm((u, v), x)]
⊤

log λθ((u, v)|x) = log λ(u, v) + θ⊤S((u, v), x) (12)

is a linear model in θ with offset log λ(u, v). Thus, Eq. (9) gives us the pseudo-likelihood equations

∂

∂θ

⎡

⎣

∑

(ξ,t)∈x

[log λ(ξ, t) +

m
∑

j=1

θjSj((ξ, t), x)] −

∫

S

∫

T

λ(u, v)

m
∏

j=1

eθjSj((u,v),x)dvdu

⎤

⎦ = 0, (13)

For each parameter θi, i = 1, . . . ,m, Eqs. (13) can be rewritten

∑

(ξ,t)∈x

Si((ξ, t), x) =

∫

S

∫

T

λ(u, v)Si((u, v), x)

m
∏

j=1

eθjSj((u,v),x)dvdu, (14)

The major difficulty is to estimate the integrals on the right hand side of Eqs. (14). The pseudo-
likelihood cannot be computed exactly but must be approximated numerically.

For a point process model, the approximation of likelihood is converted into a regression model.
In the following, we refer to generalized log-linear Poisson regression approach as approximation
of integrals in (14). In the next subsection, we also investigate an alternative, the logistic regression.

Berman and Turner (1992) developed a numerical quadrature method to approximate maximum
likelihood estimation for an inhomogeneous Poisson point process. Berman–Turner method has

5
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then been extended to Gibbs point processes by Baddeley and Turner (2000), approximating the

integral in (10) by a Riemann sum

∫

S

∫

T

λθ((u, v)|x)dvdu ≈

n+p
∑

k=1

wkλθ((ξk, tk)|x), (15)

where (ξk, tk) are points in {(ξ1, t1), . . . , (ξn, tn), (ξn+1, tn+1), . . . , (ξn+p, tn+p)} ∈ W consisting of the

n events of x and p dummy points, and wk are quadrature weights such that
∑n+p

k=1 wk = ℓ(S × T )

where ℓ is Lebesgue measure. This yields an approximation for the log pseudo-likelihood of the

form

log PL(x; θ) ≈
∑

(ξ,t)∈x

log λθ((ξ, t)|x) −

n+p
∑

k=1

wkλθ((ξk, tk)|x). (16)

Note that if the set of points {(ξk, tk), k = 1, . . . , n + p} includes all the points of x = {(ξ1, t1), . . . ,
(ξn, tn)}, we can rewrite (16) as

log PL(x; θ) ≈

n+p
∑

k=1

wk (yk log λθ((ξk, tk)|x) − λθ((ξk, tk)|x)) , (17)

where

yk =

{

1/wk, if (ξk, tk) ∈ x is an event,

0, if (ξk, tk) /∈ x is a dummy point.
(18)

The right hand side of (17), for fixed x, is formally equivalent to the log-likelihood of independent

Poisson variables Yk ∼ Poisson(λθ((ξk, tk)|x)) taken with weights wk. Therefore, by using the glm

function in R (R Core Team, 2016), we can perform the maximum likelihood-based parameter

estimation of this Poisson generalized linear model and obtain the maximum value for (17).

Note that in hybrid Geyer model (5), we consider λ(ξ, t) = λβ (ξ, t) = βµ(ξ, t) where µ(ξ, t) is

known or estimated beforehand and β is a parameter to estimate. In summary, the method is as

follows.

Algorithm 1

• Generate a set of p uniform dummy points in W and merge them with all the data points in

x to construct the set of quadrature points (ξk, tk) ∈ W with k = 1, . . . , n + p.

• Compute the quadrature weights wk and the indicators yk defined in (18),

• Compute the sufficient statistics S((ξk, tk), x) at each quadrature point,

• Fit a log-linear Poisson regression with explanatory variables S((ξk, tk),x), and offset log λ(ξk, tk)

on the responses yk with weights wk to obtain estimates θ̂ for the S-vector and intercept θ̂0,

• Return the maximum pseudo-likelihood-based parameter estimates γ̂j = exp(θ̂j) for j =

1, . . . ,m and β̂ = exp(θ̂0).

We define the quadrature scheme by defining a spatio-temporal partition of W into cubes Ck of

equal volumes ν and by using the counting weights proposed in Baddeley and Turner (2000). We

then assign to each dummy or data point (ξk, tk) a weight wk = ν/nk where nk is the number of

dummy and data points that lie in the same cube as (ξk, tk). The number of dummy points should

be sufficient for an accurate estimate of the pseudo-likelihood. We follow Baddeley and Turner

(2000) and start with p ≈ 4n(x). Then, we increase it until
∑

k wk = ℓ(W ), what can lead to high

computational costs.

An alternative way to define the quadrature scheme for Algorithm 1 is based on Dirichlet

tessellation (Baddeley and Turner, 2000) and the weight of each point is equal to the volume of the

corresponding Dirichlet 3D cell. In this paper, we consider cubes because it is less time consuming

and provides similar results (see Opitz, 2009 for quadrature schemes comparison of 3D Gibbs point

processes).

6
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3.2. Logistic likelihood approach

The logistic likelihood method (Baddeley et al., 2014) is an alternative for estimating the regular
parameters of Gibbs models that is closely related to the pseudo-likelihood method. The Berman–
Turner approximation often requires a quite large number of dummy points. Hence, fitting such
GLM can be computationally intensive, especially when dealing with a large dataset. Baddeley et al.
(2014) formulated the pseudo-likelihood estimation equation as a logistic regression using auxiliary
dummy point configurations and proposed a computational technique for fitting Gibbs point process
models to spatial point patterns. Iftimi et al. (2018) extended the logistic likelihood approach for
spatio-temporal Gibbs point processes and we tailored it to our model.

Let x be a realization of a spatio-temporal point process defined on W having a density fθ with
respect to the unit rate Poisson process and with conditional intensity function λθ(·|x). We consider
an independent Poisson process for dummy points, with intensity function ρ, and we denote by d
a set of dummy points. We follow Baddeley et al. (2014) (resp. Iftimi et al., 2018) for choosing ρ
of a homogeneous (resp. inhomogeneous) Poisson process in simulation study (resp. application).
See Baddeley et al. (2014), for a data-driven determination of ρ and its effect on efficiency and
practicability of the method.

By defining Y (ξ, t) = 1{(ξ,t)∈x} for (ξ, t) ∈ x∪d, we obtain independent Bernoulli variables taking
one for data points and zero for dummy points. We have

Pr(Y (ξ, t) = 1) =
λθ((ξ, t)|x\(ξ, t))

λθ((ξ, t)|x\(ξ, t)) + ρ(ξ, t)
, (19)

By considering the log linearity assumption for the conditional intensity λθ(·|x) in (12), the logit
of Pr(Y (ξ, t) = 1) is

log
λθ((ξ, t)|x\(ξ, t))

ρ(ξ, t)
= log

λ(ξ, t)

ρ(ξ, t)
+

m
∑

j=1

θjSj((ξ, t), x\(ξ, t)), (20)

which is a linear model in θ with offset log λ(ξ,t)

ρ(ξ,t)
.

Since λθ((ξ, t)|x) = λθ((ξ, t)|x\(ξ, t)) for (ξ, t) ∈ d, the log logistic likelihood is defined by

log LL(x, d; θ) =
∑

(ξ,t)∈x∪d

Y ((ξ, t)) log
λθ((ξ, t)|x\(ξ, t))

λθ((ξ, t)|x\(ξ, t)) + ρ(ξ, t)

+
∑

(ξ,t)∈x∪d

[1 − Y ((ξ, t))] log
ρ(ξ, t)

λθ((ξ, t)|x) + ρ(ξ, t)

=
∑

(ξ,t)∈x

log
λθ((ξ, t)|x\(ξ, t))

λθ((ξ, t)|x\(ξ, t)) + ρ(ξ, t)

+
∑

(ξ,t)∈d

log
ρ(ξ, t)

λθ((ξ, t)|x) + ρ(ξ, t)
.

(21)

The maximum of the log-logistic likelihood exists and under regularity condition (Baddeley et al.,
2019) is unique. Hence, estimation can be implemented in R by using the glm function.

As in Algorithm 1, we consider λ(ξ, t) = λβ (ξ, t) = βµ(ξ, t) and we estimate the regular
parameters form the following algorithm.

Algorithm 2

• Generate dummy points d from a Poisson process with intensity function ρ and merge them
with all the data points in x to construct the set of quadrature points (ξk, tk) ∈ W ,

• Obtain the response variables yk (1 for data points, 0 for dummy points),

• Compute the sufficient statistics S((ξk, tk), x\(ξk, tk)) at each quadrature point,

• Fit a logistic regression model with explanatory variables S((ξk, tk), x\(ξk, tk)), and offset

log (µ(ξk, tk)/ρ(ξk, tk)) on the responses yk to obtain estimates θ̂ for the S-vector and intercept

θ̂0,

7
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• Return the parameter estimator γ̂ = exp(θ̂) and β̂ = exp(θ̂0) and in the case where

µ(ξk, tk)/ρ(ξk, tk) is a constant c we have β̂ = c−1 exp(θ̂0).

4. Simulation

The simulation algorithms of Gibbs point process models require only computation of the
Papangelou conditional intensity which avoids to consider the difficult estimation of the unknown
normalizing constant in the density function. Gibbs point process models can be simulated by
using Markov chain Monte Carlo (MCMC) algorithms like the birth–death Metropolis–Hastings
algorithm (Møller and Waagepetersen, 2004) that belongs to the large class of Metropolis–Hastings
algorithms (Geyer and Møller, 1994). In this section, we first present the birth–death Metropolis–
Hastings algorithm and secondly we investigate the goodness of parameter estimation of the two
approaches introduced before.

4.1. Birth–death Metropolis–Hastings algorithm

For x a spatio-temporal point pattern in W , we can propose either a birth with probability
q(x) or a death with probability 1 − q(x). For a birth, a new point (u, v) ∈ W is sampled
from a probability density b(x, ·) and the new point configuration x ∪ (u, v) is accepted with
probability A(x, x∪ (u, v)), otherwise the state remains unchanged. For a death, the point (ξ, t) ∈ x

chosen to be removed is selected according to a discrete probability distribution d(x, .) on x, and
the proposal x \ (ξ, t) is accepted with probability A(x, x \ (ξ, t)), otherwise the state remains
unchanged. For simplicity, we consider q(x) = 1

2
, b(x, ·) = 1/ℓ(W ) and d(x, ·) = 1/n(x). By setting

A(x, x ∪ (u, v)) = min{1, r((u, v); x)}, and A(x, x \ (ξ, t)) = min{1, 1/r((ξ, t); x \ (ξ, t))} where
r((u, v); x) = ℓ(W )

n(x)+1
× λ((u, v)|x) is the Hastings ratio (Iftimi et al., 2018), we obtain the following

birth–death Metropolis–Hastings algorithm.

Algorithm 3

For n = 0, 1, . . ., given Xn = x (e.g. a Poisson process for n = 0), generate Xn+1:

• Generate two uniform numbers y1, y2 in [0, 1],
• If y1 ≤ 1

2
then

– A new point (u, v) is uniformly sampled from a probability density 1/ℓ(W ),

– Compute r((u, v); x) = ℓ(W )

n(x)+1
λ((u, v)|x), (u, v) /∈ x.

If y2 < r((u, v); x) then Xn+1 = x ∪ (u, v) else Xn+1 = x

• If y1 > 1
2
then

– Uniformly select a point (ξ, t) in x according to a discrete probability density 1/n(x),

– Compute r((ξ, t); x\(ξ, t)) = ℓ(W )

n(x)
λ((ξ, t)|x \ (ξ, t)), (ξ, t) ∈ x.

If y2 < 1/r((ξ, t); x\(ξ, t)) then Xn+1 = x\(ξ, t) else Xn+1 = x.

– Note that if x = ∅ then Xn+1 = x.

This simulation process is repeated a large number of time in order to ensure the convergence of
the algorithm to the expected distribution. This number of iterations is unknown a priori and must
be determined by the user from practical knowledge and/or diagnostic tools. We choose 20,000
iteration steps in simulation study (70,000 iteration steps in the application study). To investigate
the convergence of the algorithm, we use a ‘‘trace plot’’ which shows the evolution of the number
of points at each iteration of Algorithm 3. Thus, we check that the number of points in the simulated
point pattern is stabilized (see Møller and Waagepetersen, 2004; Illian et al., 2008 for more details).

4.2. Simulation study

We compare the performance of the pseudo-likelihood and logistic likelihood approaches on
the spatio-temporal multi-scale Geyer point process. We generate 100 simulated realizations in

8
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Table 1

Parameters of the three multi-scale Geyer point process models used in

simulation study.

Model Values of parameter

Regular parameters Irregular parameters

λ γ r q s

Model 1 70 (1.5,1.5) (0.05,0.1) (0.05,0.1) (2,2)

Model 2 100 (0.5,1.5) (0.05,0.1) (0.05,0.1) (1,3)

Model 3 200 (0.8,0.8) (0.05,0.1) (0.05,0.1) (1,1)

Table 2

RMSE of parameter estimates from 100 simulated realizations of the multi-scale Geyer point process model.

Method Model 1 Model 2 Model 3

λ̂ γ̂1 γ̂2 λ̂ γ̂1 γ̂2 λ̂ γ̂1 γ̂2

pseudo 62.09 0.59 0.25 103.74 0.09 0.27 22.13 0.45 0.29

logistic 12.07 0.18 0.16 17.30 0.08 0.08 27.48 0.20 0.12

Fig. 1. Realizations of Model 1 (left); Model 2 (middle); Model 3 (right).

the unit cube from three models. The first one exhibits strong clustering (Model 1), the second
one exhibits small scale inhibition and large scale clustering (Model 2) and the third one exhibits
inhibition (Model 3). Model parameters are reported in Table 1. We consider a burn-in period of
20,000 steps in Algorithm 3. Fig. 1 shows one realization of each model.

According to Baddeley et al. (2014), we generate a spatio-temporal Poisson process with intensity
ρ = 4n(x) (resp. 4n(x)/ℓ(W )) as dummy points in Algorithm 1 (resp. Algorithm 2). For each model,
we compute the root mean square error (RMSE) of each set of estimated parameters (Table 2) and
plot the related boxplots (Fig. 2). In Table 2 the lowest RMSE value is in bold and in Fig. 2 the
true values are represented by horizontal red lines. Both RMSE and boxplots show that the logistic
likelihood approach performs better than the pseudo-likelihood approach for any model.

Note that in the spatial framework, Baddeley et al. (2014) showed that for large datasets the
logistic likelihood method is preferable than the pseudo-likelihood method as it requires a smaller
number of dummy points and performs quickly and efficiently. Daniel et al. (2018) and Choiruddin
et al. (2018) investigated a similar comparison when these methods are regularized (i.e. using
an approach with a simultaneous parameter estimation and variable selection by maximizing a
penalized likelihood functions). Iftimi et al. (2018) found the advantage of the logistic likelihood
approach for the spatio-temporal multi-scale area-interaction point process model. We here confirm
this advantage for the spatio-temporal multi-scale Geyer point process model.

5. Application to forest fire occurrences

Economic and ecological disasters caused by wildfires in the world have led the scientific
community to develop many novel statistical analysis and modeling wildfire occurrences to better

9
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Fig. 2. Boxplots of regular parameters estimated from the pseudo-likelihood and logistic likelihood approaches for Model

1 (first row), Model 2 (second row) and Model 3 (third row). True values are represented by horizontal red lines. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

understand their behaviors. In this section, we focus on the modeling of forest fire occurrences in
the Bouches-du-Rhône county (Southern France) between 2001 and 2015.

10
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Fig. 3. (Left) Forest fire locations in UTM coordinate system (distance in meters), with more than 1 hectare of burnt area,

recorded during the years 2001 to 2015 in the Bouches-du-Rhône county in France. (Right) Number of recorded forest

fires per year.

Several statistical studies have shown the influence of environmental and meteorological factors

on forest fire occurrences. In the French Mediterranean basin, Opitz et al. (2020) fit a spatio-

temporal log-Gaussian Cox process model for forest fire occurrences with a log-linear intensity

depending on spatio-temporal land use and weather covariates. Ganteaume and Jappiot (2013)

investigated the impact of the different covariates on the number of fires using multivariate

analysis and Gabriel et al. (2017) explored the influence of land cover covariates, temperature and

precipitation on the probability of event occurrence. In addition to the spatio-temporal clustering

of events induced by some covariates, Gabriel et al. (2017) detected spatio-temporal interaction

structures at different scales and notably an inhibitive effect that arises locally in time and space

after wildfires as we expect lesser occurrences at these locations during a vegetation regeneration

period.

We propose to fit the spatio-temporal hybrid Geyer point process model (5) on wildfire occur-

rences to take into account both the inhomogeneities induced by covariates and the multi-scale

structure of interactions.

5.1. Data

Our dataset is of the form (ξi, ti), i = 1, . . . , 434, where (ξi, ti) corresponds to a wildfire with

more than 1 hectare of burnt surface spatially indexed by a DFCI2 cell center ξi in the Lambert 93

projection system and year ti ∈ {2001, . . . , 2015}. To avoid duplicated points we uniformly jittered

ξi in its DFCI cell. We refer the reader to Gabriel et al. (2017) and Opitz et al. (2020) for further

information on the data. Whilst forest fires are daily reported, we consider here the yearly scale, as

done in many works (see e.g. Serra et al., 2012, 2014a,b), because of the small number of reports

and to optimize computation time in model fitting and validation steps. Fig. 3 plots locations of

forest fires (left panel) and yearly number of occurrences (right panel). It shows some clustering

at short and medium spatial distances. Note that there exist two particular areas without any fire

occurrences as they correspond to a lake (center) and marshlands (South-West). The number of

fires slightly exponentially decreases in time over the 15 years, mainly due to improvements of

fire-fighting resources.

We consider the same framework as in Gabriel et al. (2017) and restrict our attention to the

following covariates: water coverage, elevation, coniferous cover and building cover as spatial

covariates and temperature average, precipitation as spatio-temporal covariates. Hence, we can

consider these covariates as good proxies of the main environmental, climatic and human factors.

Maps of covariates are shown in Fig. 4 in 2001.

2 District units for fire management strategies, see Opitz et al. (2020).
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Fig. 4. Maps of covariates: water coverage (top left), elevation (top right), coniferous cover (middle left), building cover

(middle right), temperature average (bottom left) and square root of precipitation (bottom right) in 2001.

5.2. Model fitting

Here we first estimate the spatio-temporal trend and then fit the spatio-temporal multi-scale
Geyer model to forest fire occurrences. This two-step model fitting procedure follows our assump-
tion that most forest fire occurrences are firstly due to environmental and meteorological conditions
and secondly due to unobserved pairwise interactions. This technique will allow to see the benefits
of the multi-scale interaction structure in our hybrid model compared to an inhomogeneous Poisson
model with the same spatio-temporal trend.

5.2.1. Spatio-temporal trend estimation

We express the spatio-temporal trend (5) as λ(ξ, t) = βµ(ξ, t) where logµ(ξ, t) is assumed to
linearly depend on covariates:

logµ(ξ, t) = β0 +

4
∑

k=1

βS
k Z

S
k (ξ ) +

2
∑

l=1

βST
l Z ST

l (ξ, t) + αt (22)

with Z S
k (ξ ), k = 1, . . . , 4, the spatial covariates, Z ST

l (ξ, t), l = 1, 2, the spatio-temporal covariates
and αt a decreasing trend of fire counts over time. Because the covariates are known at a fixed

12
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Table 3

Estimated coefficients, standard errors and p-values based on two-tailed Student’s

t-tests of significant differences from zero.

Covariates Coefficients Estimates Standard error p-value

Intercept β0 262 26 < 2 × 10−16 ∗∗∗

Water βS
1 −1.88 0.29 5.89×10−11 ∗∗∗

Elevation βS
2 −0.001 0.0004 0.0008 ∗∗∗

Coniferous βS
3 0.77 0.36 0.031 ∗

Building βS
4 4 0.89 8.08×10−6 ∗∗∗

Temperature βST
1 0.37 0.06 1.13×10−10 ∗∗∗

Precipitation βST
2 −11.3 1.48 1.75 × 10−14 ∗∗∗

Time α −0.14 0.001 < 2 × 10−16 ∗∗∗

discretization scale, µ(ξ, t) does not vary for points ξ inside the same DFCI unit with a time t

corresponding to the same year. By consequence, we can restrict our attention on DFCI grid cell

centers ξi, i = 1, . . . , 1320 and years tj = 2001, . . . , 2015 for j = 1, . . . , 15, and we consider a

Poisson response for our model Nij|µ(ξi, tj) ∼ Poisson(µ(ξi, tj)), where Nij is the number of forest

fires in ith DFCI cell at year tj. The coefficient β will be estimated simultaneously with the other
regular parameters by the logistic likelihood approach. Table 3 reports the coefficients β0, β

S
k , β

ST
l

and α estimated as in Gabriel et al. (2017) and Opitz et al. (2020). The sign indicates if covariates

favor (if positive, like coniferous, building and temperature) or prevent (if negative, like water,

elevation, precipitation and time) fire occurrences. All covariates are globally significant and results

are consistent with previous works (Ganteaume and Jappiot, 2013; Gabriel et al., 2017; Opitz et al.,

2020) for this county. Note that p-values have been computed during the trend fitting under a

Poisson model and not for the overall fitting of forest fire occurrences under our spatio-temporal

hybrid Geyer saturation process. Thus, we might have obtained more significance of the covariates

than under our hybrid Geyer saturation model.

5.2.2. Parameters estimation

There is no common method for estimating irregular parameters in spatial or spatio-temporal

Gibbs point process models. Here we considered several combinations of ad-hoc values within a

reasonable range and select the optimal irregular parameters according to the Akaike’s Information

Criterion (AIC) of the fitted model.

Baddeley and Turner (2006) suggest that the spatial interaction radius r of the Geyer saturation

point process should be between 0 and the maximum nearest neighbor distance, about 8000 meters

for our dataset. For the temporal radius q, we consider small values to be in accordance with

the natural phenomena of forest fire occurrences. Finally, for the saturation parameter s, we have

n(C
q
r (ξi, ti); x) ≤ s for all (ξi, ti) ∈ x. Hence, for any pair (r, q), we set s = max1≤i≤n n(C

q
r (ξi, ti); x).

According to the former section, we use the logistic likelihood method and Algorithm 2 to

estimate the regular parameters. We simulate dummy points from an inhomogeneous Poisson point

process with intensity ρ(ξ, t) = Cµ(ξ, t)/ν where C = 4 by a classical rule of thumb in the logistic

likelihood approach and ν = 2000 × 2000 × 1 (area of a DFCI cell multiplied by 1 year).

We fitted the spatio-temporal multi-scale Geyer point process model for a range of ad-hoc

values (rj, qj) ∈ [0, 8000] × {1, 2, 3, 4, 5}, and their corresponding values of sj, j = 1, . . . ,m,

with varying m in {1, 2, 3, 4, 5}. The minimum AIC is obtained for the combination given in

Table 4. Estimated regular parameters γj associated with their 95% bootstrap confidence intervals

show strong clustering at very short distances, weak repulsion (resp. clustering) at small (resp.

medium) scale, and randomness at large scale. Another methodology for testing the significance

of γj parameters from 1 could be to extend the pseudo-likelihood or composite likelihood ratio test

introduced in Baddeley et al. (2016) to the spatio-temporal case.
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Table 4

Parameter estimates for m = 4.

Irregular parameters

r 500 2000 5000 7500

q 1 2 3 4

s 4 7 27 57

Estimated regular parameters and 95% confidence intervals

β̂ = 0.66 γ̂1 = 2.73 γ̂2 = 0.93 γ̂3 = 1.07 γ̂4 = 0.98

[0.442, 0.968] [1.818, 3.405] [0.820, 0.994] [1.020, 1.120] [0.962, 1.011]

5.3. Model validation

We validate our fitted model from several Monte Carlo tests using statistics based on the spatio-
temporal inhomogeneous K -function (Gabriel and Diggle, 2009). First, we generate nsim = 99
simulations from our fitted hybrid Geyer model (5) by Algorithm 3 with a burn-in period of 70,000
steps, representing realizations from our null hypothesis. Then, we compute the spatio-temporal
inhomogeneous K -function for the observed and simulated point patterns, denoted respectively

by K̂ inh
obs (hs, ht ) and K̂ inh

i (hs, ht ), i ∈ {1, . . . , nsim}, with an estimated separable intensity function
obtained by kernel smoothing. For each value of the spatio-temporal distance (hs, ht ), lower (L)
and upper (U) critical envelopes of the summary statistics are computed locally

L(hs, ht ) = min
1≤i≤nsim

K̂ inh
i (hs, ht ), U(hs, ht ) = max

1≤i≤nsim

K̂ inh
i (hs, ht ). (23)

In addition to these local envelopes, we compute local and global p-values as in Tamayo-Uria et al.
(2014), Siino et al. (2018a) in order to respectively detect spatio-temporal distances where the
departure from the null hypothesis is the most significant and the overall adequacy of our model. Let

E(hs, ht ) and V (hs, ht ) denote the mean and variance of
{

K̂ inh
1 (hs, ht ), . . . , K̂

inh
nsim

(hs, ht ), K̂
inh
obs (hs, ht )

}

.

We define the local p-value for each pair (hs, ht ) by

p(hs, ht ) =
1 +

∑nsim
i=1 1{Ti(hs, ht ) > Tobs(hs, ht )}

nsim + 1
, (24)

where Ti(hs, ht ) (resp. Tobs(hs, ht )) denotes the local statistic T computed from the ith simulation
(resp. the data) at (hs, ht ). The local statistic is defined by

T (hs, ht ) =

√

(K̂ inh(hs, ht ) − E(hs, ht ))2

V (hs, ht )
. (25)

The global test combines the information for all spatial and temporal distances. We define the
test statistic

T̃ =

∫ ht,max

0

∫ hs,max

0

T (hs, ht )dhsdht , (26)

where hs,max and ht,max are user-specific maximum spatial and temporal distances which are
preferable to choose close to the (expected) range of interaction of the underlying point process.
Illian et al. (2008) recommend to compare the results for several values of hs,max and ht,max. The
p-value of the global test is then given by

pglobal =
1 +

∑nsim
i=1 1{T̃i > T̃obs}

nsim + 1
.

Fig. 5.(a) shows the spatio-temporal inhomogeneous K function computed on our dataset (dark

gray) and the envelopes obtained from our hybrid Geyer model (light gray); K̂ inh
obs (hs, ht ) lies inside

the envelopes, meaning that the fitted model seems to describe properly the spatio-temporal
structure of the data. This is confirmed by local p-values at any distances (Fig. 5.(b)). Global p-values
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Fig. 5. Temporal separations ht are in year and spatial distances hs are in kilometer. (a) Envelopes of the spatio-temporal

inhomogeneous K -function for the simulated spatio-temporal multi-scale Geyer point process according to the estimated

parameters. (b) Image plot of the local p-value. (c) Image plot of the global p-value for any pairs of (hs,max, ht,max).

are given in Fig. 5.(c) for any combination of hs,max and ht,max. Again, it shows that our fitted model
is validated.

In addition, we also compute global envelopes and p-value of the spatio-temporal K̂ inh functions
based on the Extreme Rank Length (ERL) measure defined in Myllymäki et al. (2017) and imple-
mented in the R package GET (Myllymäki and Mrkvička, 2019). The main advantage is that the
resulting p-value will not depend on a priori parameters as in the definition of pglobal with the hs,max

and ht,max values. For each point pattern, we consider the long vector Ti, i = 1, . . . , nsim (resp. Tobs)
merging the K inh

i (·, ht ) (resp. K
inh
obs (·, ht )) estimates for all considered values ht . The ERL measure of

vector Ti (resp. Tobs) of length nst is defined as

Ei =
1

nns

nst
∑

j=1

1{Rj ≺ Ri},

where Ri is the vector of pointwise ordered ranks and ≺ is an ordering operator (Myllymäki et al.,
2017; Myllymäki and Mrkvička, 2019). The final p-value is obtained by

perl =
1 +

∑nsim
i=1 1{Ei ≥ Eobs}

nsim + 1
.

The global p-value perl is equal to 0.34 consolidating previous results and validating our hybrid Geyer
model.

Note that we did the same tests for 99 simulations of an inhomogeneous Poisson process with
intensity µ(ξ, t)/(2000×2000×1) (22). This model has been rejected at the level 5%, with a median
global p-value equals to 0.04. The perl value is equal to 0.04 under the Poisson assumption rejecting
also this baseline model.

Conclusion

Due to the capability of Gibbs point processes to cover prevalent structures (inhibition, random-
ness and clustering), the hybridization approach allows to introduce new Gibbs models combining
several structures at different scales. In this paper, we defined the spatio-temporal multi-scale Geyer
saturation point process model and detailed the classical statistical inference methods and MCMC
simulation techniques that we have extended to the spatio-temporal framework and implemented
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in R code3 that will be added to the stpp package (Gabriel et al., 2013). Our simulation study
highlighted a better goodness-of-fit of parameters for the logistic likelihood approach compared
to the pseudo-likelihood approach. Finally, we illustrated the interest of using this model on a
spatio-temporal dataset of forest fire locations associated with environment covariates. The model
validation shows that our model captures the multi-scale interaction structure inherent to forest
fire occurrences.

In this paper, we focused our attention on the definition of a new hybrid Gibbs model, the
inference methods and MCMC simulation algorithms that we needed to adapt to the spatio-
temporal context. Some of our choices can be discussed and eventually improved in future works,
notably in our application to forest fire occurrences which is not presented as an in-depth study
but as an illustration of the model fitting on real data.

In our application study, we considered a log-linear form for the trend depending on covariate
information. We chose a two-step procedure for estimating, at first, the trend coefficients and then
the regular parameters of the interaction function. Our knowledge on forest fire mechanisms guided
this choice because the main driver of occurrence locations is the environmental heterogeneity and
the secondary one is the interaction phenomena. The trend is estimated at the spatial DFCI scale
and at the yearly one, corresponding to our covariate resolution. In that way, we estimated a global
trend at a medium scale whereas the interaction parameters are estimated at the point locations
and represent a local interaction behavior at a fine scale. This procedure could be improved by
incorporating variable selection methods, e.g. via regularization (Choiruddin et al., 2018; Daniel
et al., 2018).

Our two-step estimation procedure allows us to provide confidence intervals for both the trend
coefficients and the regular parameters. We notice that some parameters γj are closed to one.
Here we consider a bootstrap estimate of the confidence interval for each γj. We could further
test departure from one by extending the adjusted composite likelihood ratio test (Baddeley et al.,
2016) to the spatio-temporal framework. Indeed, Baddeley et al. (2016) proposed a likelihood ratio
test for spatial Gibbs point process models fitted by maximum pseudo-likelihood. They discussed
that implementing other composite likelihood as the logistic likelihood would provide a better
composite likelihood ratio test. Estimating diagnostics related to the logistic likelihood requires to
estimate the variance–covariance matrix of the logistic score and the sensitivity matrix. Baddeley
et al. (2014) provide consistent estimators of these quantities. The extension to the spatio-temporal
framework is a full-blown work that also involves efficient implementation.

For the choice of irregular parameters, because the likelihood is not differentiable with respect to
them, we used a maximum profile likelihood approach based on the logistic likelihood estimation
procedure and AIC values for model selection. Introduced for the pseudo-likelihood estimates
in Anwar and Stein (2015) and applied to the logistic likelihood approach by us using the results
in Baddeley et al. (2014), this method consists in fixing irregular parameters and maximizing the
composite likelihood with respect to the regular ones. This technique is a computationally-intensive
method. Thanks to a preliminary spatio-temporal exploratory analysis of the interaction ranges
done with the inhomogeneous pair correlation function g , the maximum nearest neighbor distance
and the temporal autocorrelation function, we chose few configurations of feasible values for the
nuisance parameters m, rj, qj and sj, j = 1, . . . ,m. Considering more values would be very time-
consuming and developing a new estimation method would be a subject in its own right. During
the model validation procedure, we could use the global envelope tests based on the ERL measure
to assess the goodness-of-fit of submodels with fewer irregular parameters to be parsimonious.

Our model can be used in many fields, like seismology and epidemiology for example, because
several mechanisms exhibit interaction between points at multiple scales in space and time. Relying
on this work, we can also develop hybrid models with different density structures. Indeed, although
it was not necessarily highlighted here, we know that forest fires with large burnt areas avoid future
fire occurrences during a vegetation regeneration period. Such cases of strong inhibition may be
modeled by hybrid Gibbs point processes with a hardcore component like the hybrid Geyer hardcore
point process. We recently extended our work to this model.

3 http://edith.gabriel.pagesperso-orange.fr/software.html.
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temporal setting, both multi-scaling by hybridization and hardcore distances.
Our so-called hybrid Strauss hardcore point process model allows different
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1 Introduction

In point process modeling, most of existing models yield point patterns with
mainly single-structure, but only a few with multi-structure. Interactions with
single-structure are often classified into three classes: randomness, clustering
and inhibition. Among inhibition processes is the hardcore process. It has some
hardcore distance h in which distinct points are not allowed to come closer
than a distance h apart. This type of interaction can be modelled by Gibbs
point processes as the hardcore or Strauss hardcore point processes and also
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by Cox point processes as Matérn’s hardcore (Matérn, 1960; 1986) or Matérn
thinned Cox point processes (Andersen and Hahn, 2016). Here, we focus on
the former, i.e. Gibbs models implemented by a hardcore component as in the
Strauss hardcore model. The form of Strauss hardcore density indicates that
the hardcore parameter only rules at least distance between points, and has no
effect on the interaction terms of the density (Dereudre and Lavancier, 2017,
sect. 2.3).

In several domains, there exist point patterns with hardcore distances that
have to be modelled. Spatial point patterns with hardcore property can be
found in capillaries studies (Mattfeldt et al., 2006; 2007; 2009), in texture
synthesis (Hurtut et al., 2009), in forest fires (Turner, 2009), in cellular net-
works (Taylor et al., 2012 and Ying et al., 2014), in landslides (Das and Stein,
2016), in modern and contemporary architecture and art (Stoyan, 2016) and
in location clustering econometrics (Sweeney and Gomez-Antonio, 2016).

There also exist point patterns with either clustering and inhibition like
hardcore interactions at different scales simultaneously (Badreldin et al., 2015;
Andersen and Hahn, 2016 and Wang et al., 2020). Wang et al. (2020, sect.
2.4) investigated effect of the hardcore distance on spatial patterns of trees by
comparing the pair correlation function curves for different values of hardcore
distances in the fitted hybrid Geyer hardcore model. Raeisi et al. (2019) review
spatial and spatio-temporal point processes that model both inhibition and
clustering at different scales. Such multi-structure interactions can be modelled
by the spatial hybrid Gibbs point process (Baddeley et al, 2013). In this paper,
we aim to extend the spatial Strauss hardcore point process (Ripley, 1988)
to the spatio-temporal framework and introduce a multi-scale version of it
using hybridization approach. We use this model to describe one of the most
complex phenomena from the spatio-temporal modeling point of view: forest
fire occurrences.

The complexity of forest fire occurrences is due in particular to the exis-
tence of multi-scale structures and hardcore distances in space and time. For
instance, spatio-temporal variations of fire occurrences depend on the spatial
distribution of current land use and weather conditions. Changes in vegetation
due to forest fires burnt areas further affect the probability of fire occurrences
during the regeneration period leading to the existence of hardcore distances in
space-time. The multi-scale structure of clustering and inhibition in the spatio-
temporal pattern of the forest fire occurrences is discussed in Gabriel et al.
(2017). Wildfires have mainly been modelled by Cox processes and inferred by
Bayesian hierarchical approaches, as the integrated nested Laplace approxima-
tion (INLA) approach (Rue et al., 2009). See Møller and Diaz-Avalos (2010),
Pereira et al. (2013), Serra et al. (2012, 2014a,b), Najafabadi et al. (2015),
Juan (2020) and Pimont et al. (2021) for single-structure models and Gabriel
et al. (2017), Opitz et al. (2020) for multi-structure models. Recently, Raeisi et
al. (2021) modelled the multi-structure of forest fire occurrences by a spatio-
temporal Gibbs process and use a composite likelihood approach for its infer-
ence.
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This paper is organized as follows. In Section 2 we introduce in the spatio-
temporal framework the notations and definitions of Gibbs point processes
in order to introduce our multi-scale version of the Strauss hardcore model.
Section 3 is devoted to the inference of our model. It describes techniques to
determine the irregular parameters (hardcore and interaction distances) and
the logistic-likelihood approach generalized to the spatio-temporal setting to
estimate the regular parameters (strength of interactions). Section 4 illustrates
the goodness-of-fit of the logistic likelihood approach on simulated patterns of
our model obtained by an extended Metropolis-Hastings algorithm. Finally in
Section 5, we apply our model to monthly records of forest fires in the center
of Spain.

2 Towards multi-scale Strauss hardcore point processes

Gibbs models are flexible point processes that allow the specification of point
interactions via a probability density defined with respect to the unit rate
Poisson point process. These models allow to characterize a form of local or
Markovian dependence amongst events. Gibbs point processes contain a large
class of flexible and natural models that can be applied for:

– Postulating the interaction mechanisms between pairs of points,
– Taking into account clustering, randomness or inhibition structures,
– Combining several structures at different scales with the hybridization ap-

proach.

Let x = {(ξ1, t1), , ..., (ξn, tn)} be a spatio-temporal point pattern where
(ξi, ti) ∈ W = S×T ⊂ R

2×R. We consider (W,d(·, ·)) where d((u, v), (u′, v′)) :=
max{||u− u′||, |v − v′|} for (u, v), (u′, v′) ∈ W is a complete, separable metric
space. The cylindrical neighbourhood Cq

r (u, v) centred at (u, v) ∈ W is defined
by

Cq
r (u, v) = {(a, b) ∈ W : ||u− a||≤ r, |v − b|≤ q}, (1)

where r, q > 0 are spatial and temporal radius and ||·|| denotes the Euclidean
distance in R

2 and |·| denotes the usual distance in R. Note that Cq
r (u, v) is a

cylinder with centre (u, v), radius r, and height 2q.
A finite Gibbs point process is a finite simple point process defined with a

density f(x) that satisfies the hereditary condition, i.e. f(x) > 0 ⇒ f(y) > 0
for all y ⊂ x.

A closely related concept to density functions is Papangelou conditional
intensity function (Papangelou, 1974) which is a tool for simulating Gibbs
models and inferring its parameters. The Papangelou conditional intensity of
a spatio-temporal point process on W with density f is defined, for (u, v) ∈ W ,
by

λ((u, v)|x) = f(x
⋃

(u, v))

f(x\(u, v)) , (2)

with a/0 := 0 for all a ≥ 0 (Cronie and van Lieshout, 2015).
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The Papangelou conditional intensity is also very useful to describe local
interactions in a point pattern, and leads to the notion of a Markov point
process which is the basis for the implementation of MCMC algorithms used
for simulating of Gibbs models. We say that the point process has ”interactions
of range R at (ξ, t)” if points further than R away from (ξ, t) do not contribute
to the conditional intensity at (ξ, t). A spatio-temporal Gibbs point process X
has a finite interaction range R if the Papangelou conditional intensity satisfies

λ((u, v)|x) = λ((u, v)|x ∩ CR
R (u, v)) (3)

for all configurations x of X and all (u, v) ∈ W, where CR
R (u, v) denotes the

cylinder of radius R > 0 and height 2R > 0 centred at (u, v). Spatio-temporal
Gibbs models usually have finite interaction range property (spatio-temporal
Markov property) and are called in this case Markov point processes (van
Lieshout 2000). The finite range property of a spatio-temporal Gibbs model
implies that the probability to insert a point (u, v) into x depends only on
some cylindrical neighborhood of (u, v).

Here, we first review spatio-temporal Gibbs models and then extend the
spatial Strauss hardcore model to the spatio-temporal and multi-scale context.
We further refer to Dereudre (2019) for more formal introduction of Gibbs
point processes.

2.1 Single-scale Gibbs point process models

In the literature, several spatio-temporal Gibbs point process models have
been proposed such as the hardcore (Cronie and van Lieshout, 2015), Strauss
(Gonzalez et al., 2016), area-interaction (Iftimi et al., 2018), and Geyer (Raeisi
et al., 2021) point processes.

A Gibbs point process model explicitly postulates that interactions traduce
dependencies between the points of the pattern. The hardcore interaction is
one of the simplest type of interaction, which forbids points being too close
to each other. The homogeneous spatio-temporal hardcore point process is
defined by the density

f(x) = cλn(x)
1{||ξ − ξ′||> hs or |t− t′|> ht; ∀(ξ, t) 6= (ξ′, t′) ∈ x}, (4)

with respect to a unit rate Poisson point process on W , where c > 0 is a nor-
malizing constant, λ > 0 is an activity parameter, hs, ht > 0 are, respectively,
the spatial and the temporal hardcore distances and n(x) is the number of
points in x. The Papangelou conditional intensity of a homogeneous spatio-
temporal hardcore point process for (u, v) /∈ x is obtained

λ((u, v)|x) = λ1{||ξ − u||> hs or |t− v|> ht; ∀(ξ, t) ∈ x}
= λ

∏

(ξ,t)∈x

1{||ξ − u||> hs or |t− v|> ht}

= λ
∏

(ξ,t)∈x

1{(ξ, t) /∈ Cht

hs
(u, v)}.

(5)
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. The homogeneous spatio-temporal Strauss point process is defined by density

f(x) = cλn(x)γSq
r (x), (6)

with respect to a unit rate Poisson point process on W , where

Sq
r (x) =

∑

(ξ,t) 6=(ξ′,t′)∈x

1{||ξ − ξ′||≤ r, |t− t′|≤ q}

and the Papangelou conditional intensity of the model is

for (u, v) /∈ x, λ((u, v)|x) = λγn[Cq
r (u,v);x], (7)

and

for (ξ, t) ∈ x, λ((ξ, t)|x) = λγn[Cq
r (ξ,t);x\(ξ,t)], (8)

where n[Cq
r (y, z);x] =

∑

(ξ,t)∈x
1{||y − ξ||≤ r, |z − t|≤ q} is the number of

points in x which are in a cylinder Cq
r (y, z). Although the Strauss point process

was originally intended as a model of clustering, it can only be used to model
inhibition, because the parameter γ cannot be greater than 1. If we take γ > 1,
the density function of Strauss model is not integrable, so it does not define a
valid probability density.

As mentioned, the Strauss point process model only achieves the inhibition
structure. In the spatial framework, two ways are introduced to overcome this
problem that we extend to the spatio-temporal framework hence defining two
new spatio-temporal Gibbs point process models.

A first way is to consider an upper bound for the number of neighboring
points that interact. In this case, Raeisi et al. (2021) defined a homogeneous
spatio-temporal Geyer saturation point process by density

f(x) = cλn(x)
∏

(ξ,t)∈x

γmin{s,n∗[Cq
r (ξ,t);x]}, (9)

with respect to a unit rate Poisson point process on W , where s is a saturation
parameter and n∗[Cq

r (ξ, t);x] = n[Cq
r (ξ, t);x \ (ξ, t)] =

∑

(u,v)∈x\(ξ,t) 1{||u −
ξ||≤ r, |v − t|≤ q}.

A second way is to introduce a hardcore condition to the Strauss density
(6). Hence, we can define a Strauss hardcore model in the spatio-temporal
context.

Definition 1 We define the spatio-temporal Strauss hardcore point process as
the point process with density

f(x) = cλn(x)γSq
r (x)1{||ξ − ξ′||> hs or |t− t′|> ht; ∀(ξ, t) 6= (ξ′, t′) ∈ x},

(10)

where 0 < hs < r and 0 < ht < q.
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The model could be used to model clustering patterns with a softer at-
traction between the points like a pattern with a combination of interaction
terms that show repulsion between the points at a small scale and attraction
between the points at a larger scale. The Papangelou conditional intensity of
a homogeneous spatio-temporal Strauss hardcore point process for (u, v) /∈ x
is obtained

λ((u, v)|x) = λγn[Cq
r (u,v);x]1{||ξ − u||> hs or |t− v|> ht; ∀(ξ, t) ∈ x}

= λγn[Cq
r (u,v);x]

∏

(ξ,t)∈x

1{(ξ, t) /∈ Cht

hs
(u, v)}. (11)

We can define inhomogeneous versions of all above models by replacing
the constant λ by a function λ(ξ, t), inside the product operator over (ξ, t) ∈
x, that expresses a spatio-temporal trend, which can be a function of the
coordinates of the points and depends on covariate information.

2.2 Multi-scale Gibbs point process models

Since most natural phenomena exhibit dependence at multiple scales as earth-
quake (Siino et al., 2017;2018) and forest fire occurrences (Gabriel et al., 2017),
single-scale Gibbs point process models are unrealistic in many applications.
This motivates us and other statisticians to construct multi-scale generaliza-
tions of the classical Gibbs models. Baddeley et al. (2013) proposed hybrid
models as a general way to generate multi-scale processes combining Gibbs
processes. Given m densities f1, f2, ..., fm of Gibbs point processes, the hy-
brid density is defined as f(x) = cf1(x) × f2(x) × · · · × fm(x) where c is a
normalization constant.

Iftimi et al. (2018) extended the hybrid approach for an area-interaction
model to the spatio-temporal framework where the density is given by

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)
m
∏

j=1

γ
−ℓ(∪(ξ,t)∈x

C
qj
rj

(ξ,t))

j , (12)

with respect to a unit rate Poisson process on W , where (rj , qj) are pairs
of irregular parameters of the model and γj are interaction parameters, j =
1, . . . ,m.

In the same way, Raeisi et al. (2021) defined a spatio-temporal multi-scale
Geyer saturation point process with density

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)
m
∏

j=1

γ
min{sj ,n(C

qj
rj

(ξ,t);x)}

j (13)

with respect to a unit rate Poisson process on W , where c > 0 is a normal-
izing constant, λ ≥ 0 is a measurable and bounded function, γj > 0 are the
interaction parameters.

Similarly, a hybrid version of spatio-temporal Strauss model can be defined
by hybridization.
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Definition 2 We define the spatio-temporal hybrid Strauss point process with
density

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)
m
∏

j=1

γ
S

qj
rj

(x)

j , (14)

with respect to a unit rate Poisson process on W .

Note that we called the model (14) hybrid rather than multi-scale. The
model (14) can cover inhibition structure because 0 < γj < 1, ∀j ∈ {1, . . . ,m}.
However, it can take into account clustering if one of densities in hybrid is the
one of a hardcore process.

2.3 Hybrid Strauss hardcore point process

The hybrid Gibbs point process models do not necessarily include m same
Gibbs point process models (see Baddeley et al., 2015 sect. 13.8). Badreldin et
al. (2015) applied a spatial hybrid model including a hardcore density to model
strong inhibition at very short distances, Geyer density for cluster structure in
short to medium distances and a Strauss density for a randomness structure in
larger distances to the spatial pattern of the halophytic species distribution in
an arid coastal environment. Wang et al. (2020) fitted a spatial hybrid Geyer
hardcore point process on the tree spatial distribution patterns. In this section,
we extend this type of hybrids to the spatio-temporal context.

Definition 3 We define the spatio-temporal hybrid Strauss hardcore point pro-

cess with density

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)

m
∏

j=1

γ
S

qj
rj

(x)

j

× 1{||ξ′ − ξ′′||> hs or |t′ − t′′|> ht; ∀(ξ′, t′) 6= (ξ′′, t′′) ∈ x},
(15)

where 0 < hs < r1 < · · · < rm and 0 < ht < q1 < · · · < qm.

The Papangelou conditional intensity of an inhomogeneous spatio-temporal
hybrid Strauss hardcore process is then, for (u, v) /∈ x,

λ((u, v)|x) = λ(u, v)
m
∏

j=1

γ
n[C

qj
rj

(u,v);x]

j 1{||ξ − u||> hs or |t− v|> ht; ∀(ξ, t) ∈ x}

= λ(u, v)
m
∏

j=1

γ
n[C

qj
rj

(u,v);x]

j

∏

(ξ,t)∈x

1{(ξ, t) /∈ Cht

hs
(u, v)}.

(16)

Because, the conditional intensity of Gibbs models including a hardcore inter-
action term takes the value zero at some locations, we can rewrite it as

λ((u, v)|x) = m((u, v)|x)λ+((u, v)|x), (17)
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where m((u, v)|x) takes only the values 0 and 1, and λ+((u, v)|x) > 0 every-
where.

The spatio-temporal hybrid Strauss hardcore point process (15) is a Markov
point process in Ripley-Kelly’s (1977) sense at interaction range max{rm, qm}.
This can be shown as in Iftimi et al. (2018) and Raeisi et al. (2021).

3 Inference

Gibbs point process models involve two types of parameters: regular and irreg-
ular parameters. A parameter is called regular if the log likelihood of density
is a linear function of that parameter otherwise it is called irregular. Typically,
regular parameters determine the ‘strength’ of the interaction, while irregular
parameters determine the ‘range’ of the interaction. As an example, in the
Strauss hardcore point process (10), the trend parameter λ and the interac-
tion γ are regular parameters and the interaction distances r and q and the
hardcore distances hs and ht are irregular parameters.

To determine the interaction distances r and q, there are several practi-
cal techniques, but no general statistical theory available. A useful technique
is the maximum profile pseudo-likelihood approach (Baddeley and Turner,
2000). In the spatio-temporal framework, Iftimi et al. (2018) and Raeisi et al.
(2021) selected feasible range of irregular parameters by analyzing the behav-
ior of some summary statistics and the goodness-of-fit of several models with
different combinations of parameters.

The hardcore interaction term m(·|x) in the conditional intensity (17) does
not depend on the other parameters of the densities of Gibbs point processes.
This implies that it can first be estimated and kept fixed for the sequel (Bad-
deley et al., 2019, p. 26). In the spatial framework, the maximum likelihood
estimate of the hardcore distance in m(·|x) corresponds to the minimum in-
terpoint distance (Baddeley et al., 2013, Lemma 7). The generalization to the
spatio-temporal context with a cylindrical hardcore structure implies to con-
sider a multi-objective minimization problem over the spatial and temporal
hardcore distances hs and ht. The choice of our hardcore parameters needs
to analyze the Pareto front of feasible solutions on the graph of spatial and
temporal interpoint distances. We refer the reader to Ehrgott (2005) for a de-
scription of multi-criteria optimization and the definition of Pareto optimality.
To estimate the hardcore distance hs and ht, we consider a feasible solution
on the Pareto front as large as possible and with a ratio consistent with our
knowledge of interaction mechanisms in practice.

Regular parameters can be estimated using the pseudo-likelihood method
(Baddeley and Turner, 2000) or logistic likelihood method (Baddeley et al.,
2014) rather than the maximum likelihood method (Ogata and Tanemura,
1981). Due to the advantage of the logistic likelihood over pseudo-likelihood
for spatio-temporal Gibbs point processes (Iftimi et al., 2018; Raeisi et al.,
2021), we implement the former approach in Raeisi et al. (2021, Algorithm
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2 ) for regular parameter estimation of the spatio-temporal hybrid Strauss
hardcore point process.

We assume that θ = (log γ1, log γ2, . . . , log γm) is the logarithm of interac-
tion parameters in spatio-temporal hybrid Strauss hardcore point process (15).
To estimate θ, due to (17), we just consider the points (u, v) where m((u, v)|x)
is equal to 1 in (16). By defining Sj((u, v),x) := n[C

qj
rj (u, v);x \ (u, v)] in (16),

we can thus write λθ((u, v)|x) = λ(u, v)
∏m

j=1 exp(θjSj((u, v),x)).= Hence,
the logarithm of the Papangelou conditional intensity of the spatio-temporal
hybrid Strauss hardcore point process for (u, v) ∈ W which satisfies in hard-
core condition, i.e. m((u, v)|x) = 1 in (16), is

log λ((u, v)|x) = log λ(u, v) +

m
∑

j=1

(log γj)Sj((u, v),x)

= log λ(u, v) + θ⊤S((u, v),x)

(18)

corresponding to a linear model in θ with offset log λ(u, v) where S((u, v),x) =
[S1((u, v),x), S2((u, v),x), ..., Sm((u, v),x)]⊤ is a sufficient statistics.

By considering a set of dummy points d from an independent Poisson
process with intensity function ρ, we obtain by defining the Bernoulli variables
Y ((ξ, t)) = ✶{(ξ,t)∈x} for (ξ, t) ∈ x∪d that the logit of P (Y ((ξ, t))) = 1 is equal

to log
λθ((ξ,t)|x\(ξ,t))

ρ(ξ,t) . Under regularity conditions, the log-logistic likelihood

logLL(x,d;θ) =
∑

(ξ,t)∈x

log
λθ((ξ, t)|x)

λθ((ξ, t)|x) + ρ(ξ, t)

+
∑

(ξ,t)∈d

log
ρ(ξ, t)

λθ((ξ, t)|x) + ρ(ξ, t)
,

(19)

admits a unique maximum. By consequence, the estimation of θ in the Papan-
gelou conditional intensity is equivalent to the estimation of logistic regression
parameters, already implemented by using standard software for GLMs. The
logistic regression

log
λθ((ξ, t)|x)

ρ(ξ, t)
= log

λ(ξ, t)

ρ(ξ, t)
+

m
∑

j=1

θjSj((ξ, t),x), (20)

is a linear model in θ with offset log λ(ξ,t)
ρ(ξ,t) . We use the approach of Raeisi et

al. (2021) for data and dummy points such that m(·|x) = 1. We also consider
that λ(ξ, t) = βµ(ξ, t), where µ(ξ, t) is a trend preliminary estimated with
spatio-temporal covariates.

4 Simulation study

Due to the markovian property of the spatio-temporal hybrid Strauss hardcore
point process (15), its Papangelou conditional intensity at a point thus depends
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Table 1 Parameter combinations of three hybrid Strauss hardcore point process models
used in simulation study.

Values of parameter
Regular parameters Irregular parameters

Model λ γ r, q hs, ht

Model 1 70 (0.8,.08) (0.05,0.1) (0.01,0.01)
Model 2 50 (1.5,1.5) (0.05,0.1) (0.01,0.01)
Model 3 70 (0.5,1.5) (0.05,0.1) (0.01,0.01)

Table 2 Mean and 95% interval regular parameter estimates of the three hybrid Strauss
hardcore point process models used in simulation study.

True values Mean 95% CI
Model 1

λ = 70 71.43 (69.16,73.70)
γ1 = 0.8 0.89 (0.78,1.00)
γ2 = 0.8 0.78 (0.74,0.82)

Model 2

λ = 50 50.84 (48.99,52.68)
γ1 = 1.5 1.41 (1.23,1.60)
γ2 = 1.5 1.46 (1.38,1.54)

Model 3

λ = 70 71.67 (69.18,74.15)
γ1 = 0.5 0.50 (0.43,0.57)
γ2 = 1.5 1.49 (1.42,1.55)

only on that point and its neighbors in x. Hence, We can design simulation
approach by Markov chain Monte Carlo algorithms.

Gibbs point process models can be simulated a birth-death Metropolis-
Hastings algorithm that typically requires only computation of the Papan-
gelou conditional intensity (Møller and Waagepetersen, 2004). Raeisi et al.
(2021) extended the birth-death Metropolis-Hastings algorithm to the spatio-
temporal context that we adapt here for simulating the spatio-temporal hybrid
Strauss hardcore point process.

We implement the estimation and simulation algorithms in R (R Core
Team, 2016) and generate simulations of three stationary spatio-temporal hy-
brid Strauss hardcore point processes specified by a conditional intensity of
the form (16) in W = [0, 1]3. The parameter values used for the simulations
are reported in Table 1. The spatial and temporal radii r and q, spatial and
temporal hardcores hs and ht, are treated as known parameters.

We generate 100 simulations of each specified model. Boxplots of parameter
estimates λ, γ1, and γ2 obtained from the logistic likelihood estimation method
for each model are shown in Figure 1. The red horizontal lines represent the
true parameter values. Point and interval parameter estimates λ, γ1, and γ2 are
reported in Table 2. Most of the estimated parameter values are close to the
true values for three models. Due to visual and computational comparisons,
we conclude that the logistic likelihood approach performs well for spatio-
temporal hybrid Strauss hardcore point processes.
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Fig. 1 Boxplots of regular parameter estimates of the hybrid Strauss hardcore point process
obtained from the logistic likelihood estimation methods. Up to down: Model 1, Model 2,
and Model 3

5 Application

In this section we aim to model the interactions of forest fire occurrences across
a range of spatio-temporal scales.

5.1 Data description

The clmfires dataset available in spatstat package records the occurrences
of forest fires in the region of Castilla-La Mancha, Spain (Figure 2, left) from
1998 to 2007. The study area is approximately 400 km×400 km. The clmfires
dataset has already been used in some academic works devoted to the point
process theory (see e.g. Juan et al., 2010; Gomez-Rubio, 2020, sect. 7.4.2;
Myllymäki et al., 2020). The dataset has two levels of precision: from 1998 to
2003 locations were recorded as the centroids of the corresponding “district
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Fig. 2 Left: Map of region of Castilla-La Mancha (Spain). Middle: Forest fire locations.
Right: monthly numbers of fires recorded between January 2004 and December 2007 with
burnt areas, spatial distances and time distances respectively bigger than 5 ha, 0.2 km and
100 days.

units”, while since 2004 locations correspond to the exact UTM coordinates
of the fire locations.

Due to the low precision of fire locations for the years 1998 to 2003 (Gomez-
Rubio 2020, sect. 7.4.2), we focus on fires in the period 2004 to 2007. In this
period, we consider large forest fires with burnt areas larger than 5 ha. Figure
2 (middle) shows the point pattern of 432 wildfire locations onto the spatial
region.

Due to memory constraints and availability of climate covariates in months,
we consider monthly fire occurrences. The temporal component of the process
takes integer values from 1 to 48. We thus consider W = S × T where S
is the region of Castilla-la-Mancha and T = {1, 2, . . . , 48} corresponds to the
months since January 2004. Figure 2 (right) shows the monthly number of fires
occurring during our time period. We observe seasonal effects with notably
large numbers of fires in summer that could be caused by high temperatures
and low precipitations in this period and also by human activities.

In point pattern analysis, the spatial (spatio-temporal) inhomogeneity of
patterns is notably driven by covariates. The clmfires dataset contains four
environmental covariates that we include in our analysis: elevation, orienta-
tion, slope and land use. The covariates are known on a spatial grid with
pixels of 4 km× 4 km, resulting in a total of 10, 000 pixels. The land use is a
factor-valued covariate whereas the others are real-valued covariates. We also
consider weather data freely provided by the WorldClim database1 and con-
taining monthly maximum temperatures (◦C) and total precipitations (mm).
Figure 3 illustrates the environmental covariates, which are considered fixed
during our temporal period, and the climate covariates in January 2007.

5.2 Estimation

First, we estimate the trend function by considering a generalized linear model
(GLM) on covariates. Then, by an exploratory analysis using spatio-temporal

1 https://www.worldclim.org
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Fig. 3 Image plot of environmental covariates (elevation, orientation, slope and land use)
and climate covariates (precipitation and temperature) in January 2007.

summary statistics we approximate the hardcore parameters and the inter-
action ranges. Finally, we use the logistic likelihood approach described in
Section 3 for the estimation of regular parameters of our model with the trend
function estimated in the preliminary step.

5.2.1 Trend estimate

Since covariates are available on a spatial grid, we restrict our attention on
the related grid centers ξi, i = 1, . . . , 10000 and months {tj}j=1,...,48 ∈ T and
consider Nij |λ(ξi, tj) ∼ Poisson(λ(ξi, tj)) where Nij is the number of forest
fires in the ith grid center at month tj .

Following Raeisi et al. (2021), by considering a GLM with Poisson response,
we obtain:

log λ(ξi, ti) = β0 +
6
∑

k=1

βkZk(ξi, ti), (21)

where Zk(ξi, ti), k = 1, . . . , 6, are the environmental and climatic covariates
at point (ξi, ti) and β0, βk, k = 1, . . . , 6 are the coefficients to estimate. As
said before, we consider the same values for environmental covariates over
time. A straightforward way to fit a GLM in R is to use the function glm.
Table 3 reports the estimated coefficients in (21) and their significance level by
a two-tailed Student’s t-test. Coefficients higher (respectively lower) than zero
imply an increase (resp. decrease) of the expected mean number of forest fires
when the covariate value increase (resp. decrease). Those related to elevation

and temperature are positively significant, showing that these two covariates
favors the ignition of wildfires. At the opposite, the covariate precipitation has
a negative significant coefficient indicating that an increase of the amount of
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Table 3 Estimated coefficients, standard errors and p-values based on two-tailed Student’s
t-tests of significant differences from zero.

Coefficients Estimate Standard error p-value
β0 (intercept) -8.468 0.298 < 2× 10−16 ∗∗∗

β1 (elevation) 0.546 0.164 0.001 ∗∗∗

β2 (orientation) 0.005 0.003 0.114
β3 (slope) -0.019 0.01 0.054
β4 (land use) -0.009 0.024 0.689
β5 (precipitation) -0.007 0.002 0.003 ∗∗

β6 (temperature) 0.054 0.006 < 2× 10−16 ∗∗∗

precipitation induces a decrease in the mean number of forest fires. The land

use appears not significantly different from zero, it can be explained by the
low spatial resolution of the covariates.

5.2.2 Irregular parameter estimates

We have two types of irregular parameters in our spatio-temporal Gibbs point
process. On the one hand, the hardcore distances that we can choose among
the feasible solutions on the Pareto front of spatial and temporal interpoint
distances. According to Figure 4, we choose on the Pareto front the unique
feasible solution in our case that gives non-zero values for the two hardcore
distances, i.e. hs = 0.35 km and ht = 1 month. On the other hand, for the
nuisance parameters m, rj and qj , j = 1, . . . ,m, there is no common method
for estimating them. Here we considered several combinations of ad-hoc val-
ues within a reasonable range and select the optimal irregular parameters
according to the Akaike’s Information Criterion (AIC) of the fitted model af-
ter the regular parameter estimation step (Raeisi et al., 2021). We chose 25
configurations of reasonable range for the nuisance parameters using a prelim-
inary spatio-temporal exploratory analysis of the interaction ranges done with
the inhomogeneous pair correlation function, the maximum nearest neighbor
distance and the temporal auto-correlation function. We fitted the spatio-
temporal hybrid Strauss point process model for a range of ad-hoc values
rj ∈ (0.35, 20], qj ∈ {2, ..., 15}, j = 1, . . . ,m and m ∈ {1, . . . , 6}. The mini-
mum AIC is obtained for the combination given in Table 4.

5.2.3 Regular parameter estimates

We consider the logistic likelihood method investigated in Section 3 to estimate
the regular parameters. We simulate dummy points from an inhomogeneous
Poisson point process with intensity ρ(ξ, t) = Cλ̂(ξ, t)/ν where C = 4 by a

classical rule of thumb in the logistic likelihood approach, λ̂ is the estimated
trend and ν = 4 × 4 × 1 is the volume of a grid cell on one month. In order
to satisfy the hardcore condition in (17), we remove dummy points at spatial
and temporal distances respectively less than hs and ht. Estimated regular
parameters are provided in Table 4.
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Fig. 4 Spatial and temporal interpoint distances respectively lower than 5 kms and 12
months (black circles). The red line corresponds to the Pareto front and the red rectangle
to the hardcore domain.

Table 4 Parameter estimates for m = 6.

Irregular parameters
r 0.5 1 1.5 6 15 20
q 2 4 6 8 12 15

Estimated regular parameters
γ̂1 = 2.56 γ̂2 = 2.24 γ̂3 = 4.65 γ̂4 = 0.88 γ̂5 = 1.17 γ̂5 = 0.81

5.3 Goodness-of-fit

The goodness-of-fit is accomplished by simulating point patterns from the fit-
ted model. The first diagnostic can be formulated by summary statistics of
point processes. As the second-order characteristics carry most of the infor-
mation on the spatio-temporal structure (Stoyan, 1992 ; Gonzalez et al., 2016),
we only consider the pair correlation function (g-function).

We generate nsim = 99 simulations from the fitted hybrid Strauss hard-
core model and compute the corresponding second-order summary statistics
gi(u, v), i = 1, . . . , nsim, for fixed spatio-temporal distances (u, v). We then
build upper and lower envelopes:

U(u, v) = max
1≤i≤nsim

gi(u, v), L(u, v) = min
1≤i≤nsim

gi(u, v), (22)

and compare the summary statistics obtained from the data, gobs(u, v), to the
pointwise envelopes. If it lies outside the envelopes at some spatio-temporal
distances (u, v), then we reject at these distances the hypothesis that our data
come from our fitted model. Figure 5 shows the spatio-temporal inhomoge-
neous g-function computed on our dataset (blue) and the envelopes obtained
from the fitted model (light grey); gobs(u, v) lies inside the envelopes for all
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(u, v), meaning that the hybrid Strauss hardcore model is suitable for the data.

Fig. 5 Envelopes of the spatio-temporal inhomogeneous g-function obtained from simula-
tions of the fitted spatio-temporal hybrid Strauss hardcore point process (light grey). The
blue surface corresponds to gobs. Temporal separations v are in month and spatial distances
u are in kilometer.

In addition, we compute global envelopes and p-value of the spatio-temporal
g-functions based on the Extreme Rank Length (ERL) measure defined in
Myllymäki et al. (2017) and implemented in the R package GET (Myllymäki
and Mrkvička, 2020). For each point pattern, we consider the long vector Ti,
i = 1, . . . , nsim (resp. Tobs) merging the gi(·, v) (resp. gobs(·, v)) estimates for
all considered values ht. The ERL measure of vector Ti (resp. Tobs) of length
nst is defined as

Ei =
1

nns

nst
∑

j=1

✶{Rj ≺ Ri},

where Ri is the vector of pointwise ordered ranks and ≺ is an ordering operator
(Myllymäki et al., 2017; Myllymäki and Mrkvička, 2020). The final p-value is
obtained by

perl =
1 +

∑nsim

i=1 ✶{Ei ≥ Eobs}
nsim + 1

.

Due to the global p-value perl = 0.59 and the absence of significant regions,
that corresponds here to pairs of spatial and temporal distances where the
statistics is significantly above or below the envelopes (see Figure 6 and GET

package), we conclude that our hybrid Strauss hardcore model can not be
rejected a significance level of 1%.

Conclusion

In this paper, we introduced the spatio-temporal Strauss hardcore point pro-
cess. The Strauss hardcore model is a Gibbs model for which points are pushed
to be at a hardcore distance apart and repel up to a interaction distance which
is larger than the hardcore distance. As in Raeisi et al. (2021), inference and
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Fig. 6 Top: estimated pair correlation function ĝobs, lower EL and upper EU bounds of the
99% global rank envelope (ERL). Bottom: differences Eobs − EL and EU − Eobs. Negative
values (if any) are represented in red and lead to reject the fitted model. Values on the
horizontal axis are in kilometers and those on the vertical axis are in months.

simulation of the model were performed with logistic likelihood and birth-
death Metropolis-Hasting algorithm, respectively. A multi-scale version of the
model was introduced and applied to wildfires to take into account structural
complexity of forest fire occurrences in space and time. We based our model
validation on both pointwise and global envelopes and p-value based on the
Extreme Rank Length (ERL) measure of the spatio-temporal inhomogeneous
pair correlation function. Our model could be suitable in other environmen-
tal and ecological frameworks, when we want to deal with the complexity
of mechanisms governing attraction and repulsion of entities (particles, cells,
plants. . . ).

In spatio-temporal Gibbs point process models, the heterogeneity can be
captured by estimating a non-constant trend. This spatio-temporal trend is
typically considered as a function of covariates by estimating fixed effects in
a generalized linear model as we carried out it in this paper and also in If-
timi et al. (2018) and Raeisi et al. (2021). A different approach consists in
considering Gibbs models with both random and fixed effects (e.g. see Il-
lian and Hendrichsen, 2010) to take into account complex patterns of spatio-
temporal heterogeneity. Vihrs et al. (2020) proposed a new modeling approach
for this case and embedded spatially structured Gaussian random effects in
trend function of a pairwise interaction process. They introduced the spatial
log-Gaussian Cox Strauss point process to capture both structures; aggrega-
tion in small-scale and repulsion in large-scale. Rather than spatial pairwise
interaction processes in single-scale, we now focus on models derived from
the multi-scale classes of combinations of Gibbs and log-Gaussian Cox point
processes in space and time, to which we refer to as Cox-Gibbs models. We
propose to embed spatio-temporally structured Gaussian random effects in the
Gibbs trend function. Due to the hierarchical structure of such models, we can
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formulate and estimate them within a Bayesian hierarchical framework, using
the INLA approach.
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