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The theory of point processes is a branch of spatial statistics. A spatial (and spatiotemporal) point pattern, as a realization of a point process, is a collection of events for which locations (and times) of occurrence have been observed in a specified spatial region (and temporal period). Point patterns are often classified into three classes of single interaction structure: randomness, clustering, and inhibition that can be modeled for instance by Poisson process, Cox processes, and Gibbs processes, respectively. These single-structure point process models can be too simplistic to describe some complex phenomena in seismology, epidemiology, and forestry as they involve several structures at different spatial (and spatio-temporal) scales, thus requiring multi-structure point processes to describe them. The main concern of this Ph.D. thesis is the spatio-temporal modeling of such complex point patterns taking into account the spatio-temporal inhomogeneity driven by covariates and the complexity of the interaction structures.

In the spatial point processes literature, three general approaches are considered for constructing multi-structure point process models: thinning, superposition, and hybridization. The key contribution of the Ph.D. thesis is to introduce spatio-temporal hybrid point processes based on Gibbs and Cox models using hybridization approach and to develop their global and local statistical inference through composite likelihoods and Bayesian hierarchical approach and their simulation process through the birth-death Metropolis-Hastings algorithm.

Finally, we apply these new hybrid point processes to model the complex interaction structure observed on different datasets: forest fire occurrences in France and Spain and the hotspots of temperature in the United States.

Introduction

Human activity is the source of environmental and climatic changes whose manifestations tend to become more and more frequent and extreme. Assessing the impact of weather and environmental change necessitates a better understanding of the random mechanisms governing the intensity of occurrences and the severity of risk events. The scientific reflection on risk prevention needs to consider a more realistic modeling of natural phenomena and their consequences, even at small spatial and temporal scales, in order to improve decision tools that remain simple and easy to use.

Single-structure point process models are too simplistic to describe such complex phenomena, e.g. in seismology (Siino et al. 2017(Siino et al. , 2018b)), epidemiology (Iftimi et al. 2017(Iftimi et al. , 2018)), and in forestry (Gabriel et al. 2017), as they involve several structures at different spatial (or spatio-temporal) scales. The main concern of this thesis is the spatio-temporal modeling of multi-structure point patterns taking into account the spatio-temporal inhomogeneity driven by covariates and the complexity of the interaction structures. Forest fires is one such risk events and motivate our work.

Note that this manuscript is a long summary of all published and drafted papers based on the thesis work. Published and submitted papers can be found in Appendix.

This chapter provides a review on construction methods and proposed point process models for multi-structure point patterns (based on Raeisi et al. (2019), see Appendix A) and about the use of point process theory to forest fire occurrences.

Preliminaries

Fundamental concepts of the theory of point processes emerged from life tables, renewal theory and counting problems (Daley and Vere-Jones 2003). The modern theory has mainly been developed between 1940's and 1970's (see e.g. the monographs by Palm (Palm 1943), Feller (Feller 1950), Bartlett (Bartlett 1954), Matérn (Matérn 1960) and Cox (Cox 1955(Cox , 1962))) and is linked to nonlinear techniques in stochastic process theory (Bartlett 1955, Bosq 1998). From 1980's spatial and spatio-temporal point processes have then become a subject on their own right. Today, they cover a plethora of applications in ecology, forestry, astronomy, epidemiology, seismology, fishery. . . Spatial (and spatio-temporal) point process data are a collection of points for which locations (and times) of occurrence have been observed in a specified spatial region (and temporal period). Usually, the terms points and events are respectively used for arbitrary locations and for observations. The main goals in the analysis of point patterns concern the specification of intensity variations (first-order moment), interaction between events (second-order moment) and model identification for the underlying process. Processes are often classified into three classes of interaction structure (Diggle 1983):

• randomness: In the absence of any interaction between events, a point pattern is said Completely Spatially (or Spatio-Temporally) Random in the sense that the probability that an event occur at any point is equally likely to occur anywhere within a bounded region and that its location (and time) is independent of each any other event. This property provides the standard baseline against which point patterns are often compared. The simplest and most fundamental point process for modelling a complete random distribution of points is the Poisson point process (Kingman 1993(Kingman , 2006)). It is used as null hypothesis for statistical test of interaction (Diggle 2003, Illian et al. 2008).

• clustering or aggregation: In a clustered distribution, events tend to be closer than would be expected under complete randomness. Clustered patterns are mainly modelled by Cox processes (Cox 1972), in particular log-Gaussian Cox processes (Møller et al. 1998, Brix and Møller 2001, Brix and Diggle 2001, Diggle et al. 2013), Poisson Cluster processes (Neyman and Scott 1958, Brix and Kendal 2002, Gabriel 2014) and Shot-Noise Cox processes (Brix and Chadoeuf 2000, Møller and Waagepetersen 2004, Møller and Diaz-Avalos 2010).

• inhibition or regularity: In a regular distribution, events are more evenly spaced than would be expected under complete randomness. This structure can be modelled by Strauss processes (Strauss 1975, Cronie andvan Lieshout 2015), Matérn hard core processes (Matérn 1960, Gabriel et al. 2013) or determinantal point processes (Macchi 1975, Lavancier et al. 2015).

Gibbs processes (Ruelle 1969, Preston 1976, Dereudre 2019) offer a large class of models which allow any of the above interaction structure. These single-structure point process models are too simplistic to describe phenomena with interactions at different spatial or spatio-temporal scales. That is for instance the case of seismic data as the different sources of earthquakes (faults, active tectonic plate and volcanoes) produce events with different displacements (Siino et al. 2017) and can be seen as the superposition of background earthquakes (which are distributed over a large spatio-temporal scale with low density) and clustered earthquakes (which are distributed over a small spatio-temporal scale with high density) (Pei et al. 2012).

Such multi-structure phenomena motivate statisticians to construct new spatial point process models, e.g. in ecology (Levin 1992, Wiegand et al. 2007, Picard et al. 2009), in epidemiology (Iftimi et al. 2017) and in seismology (Siino et al. 2017(Siino et al. , 2018b)), mainly based on Gibbs processes, but not only (Lavancier and Møller 2016). There are very few spatio-temporal models: Gabriel et al. (2017) modeled the multi-scale spatio-temporal structure of forest fires occurrences by log-Gaussian Cox processes (LGCP), Iftimi et al. (2018) developed a multi-scale area-interaction model for varicella cases and [START_REF] Illian | Using INLA to fit a complex point process model with temporally varying effects -a case study[END_REF] modelled the locations of muskoxen herds by LGCP with a constructed covariate measuring local interactions.

In the spatial point processes literature, three general approaches are considered for constructing multi-structure point process models: thinning and superposition (Chiu et al. 2013), hybridization (Baddeley et al. 2013). Thinning consists in deleting points of a point process according to some probabilistic rule which is either independent or dependent of thinning other points (Chiu et al. 2013). This operation allows to get point processes with inhibition at small scales and attraction at large scales (Andersen andHahn 2016, Lavancier andMøller 2016). Superposition of several processes is the union of the points of each process. It can be useful to model multi-scale clustered processes (Wiegand et al. 2007).

Hybridization consists in combining two or more point process models (Baddeley et al. 2015). Spatial hybrids of Gibbs models are defined in Baddeley et al. (2013) and hybrids of area-interaction potentials in Picard et al. (2009). Extension of the hybridization approach to the spatio-temporal framework has recently been considered in Iftimi et al. (2018).

The key contribution of this thesis is to develop new Gibbs and/or Cox model-based spatio-temporal multi-scale point processes by using hybridization. In the following, we review available models and methods for spatial (spatio-temporal) multi-structure point patterns and an overview of point process-based analyses and modeling of forest fire occurrences.

Point processes methods

We consider a finite spatial or spatio-temporal point process X observed in W, where W denotes either a spatial region S ⊂ R d or a spatio-temporal region S × T ⊂ R d × R.

We denote x a realization of the point process, i.e. a collection of events {ξ i } i=1,...,n (or {(ξ i , t i )} i=1,...,n ) ⊂ W. Let η be any point in W. We refer to Daley and Vere-Jones (2003), Chiu et al. (2013) (resp. Diggle and Gabriel (2010), Diggle (2013), Gonzalez et al. (2016)) for more formal definitions of spatial (resp. spatio-temporal) point processes. Without loss of generality, we set d = 2 throughout this thesis. The main characteristics driving the spatial (resp. spatio-temporal) distribution of points are the intensity function, which governs the univariate distribution of the points of X, and the pair correlation function, which governs the bivariate distribution of the points of X, i.e. the interaction between events. In the following we remind some definitions and properties when X is a spatial or a spatio-temporal point process.

Campbell's theorem (Chiu et al. 2013) relates the expectation of a function, h assumed to be non-negative and measurable, summed over a point process X to an integral involving the mean measure of the point process :

E = η 1 ,...,η k ∈X h(η 1 , . . . , η k ) = . . . h(η 1 , . . . , η k )λ (k) (η 1 , . . . , η k )Π k i=1 dη i ,
where η i ∈ W and λ (k) , k ≥ 1, are the product densities. For a simple point process, i.e. η i = η j for i = j, if they exist, the product densities are related to the counting measure N in infinitesimal spatial or spatio-temporal regions dη 1 , . . . ,dη k ⊂ W, around η 1 , . . . , η k , with volumes |dη 1 |, . . . , |dη k | : P [N (dη 1 ) = 1, . . . , N (dη k ) = 1] = λ (k) (η 1 , . . . , η k )Π k i=1 dη i . Thus, the intensity function is related to the expected number of points in infinitesimal regions λ(η) = λ (1) 

(η) = lim |dη|→0 E[N (dη)]
|dη| and the pair correlation function is defined by g(η i , η j ) = λ (2) (η i , η j ) λ(η i )λ(η j ) .

(1.1)

A point process is homogeneous when its intensity is constant, λ(η) = λ, ∀η, inhomogeneous otherwise. In practice, the inhomogeneity is often driven by environmental covariates and we account for them by using parametric models for the intensity function (Baddeley et al. 2015). Under the assumption of stationarity, the properties of the point process are invariant under translation and the process is homogeneous. The second-order stationarity states that the second-order intensity only depends on the difference between points λ (2) (η i , η j ) = λ (2) (η iη j ). Because in practice most of processes are inhomogeneous, Baddeley and Turner (2000) and Gabriel and Diggle (2009) weakened it and defined the second-order intensity-reweighted stationary assumption for which the pair correlation function (1.1) is well-defined and a function of η i -η j . van Lieshout (2019) provides general concepts of factorial moment properties. The previous definition of inhomogeneous processes is not unique, Hahn et al. (2015) defined inhomogeneous model classes (including the class of reweighted second-order stationary processes) into the common general framework of hidden second-order stationary processes. The pair correlation function describes the structure of dependence/interaction between points : g(η i , η j ) = 1, > 1 and < 1 indicates that the pattern is, respectively, completely random, clustered and regular.

Assume that the distribution of the point process is defined by a probability density f (x) with respect to the distribution of a unit rate Poisson process. The probability density can be used to study point processes. It can be viewed as the probability of getting the point pattern x, divided by the same probability under Complete Randomness (Baddeley et al. 2015). The mathematical form of the probability density determines the structure of the point process, see Coeurjolly et al. (2017) and Coeurjolly and Lavancier (2019) about formulation of the density of point processes. A closely related concept is the Papangelou conditional intensity function (Papangelou 1974), which has been extended to the spatio-temporal framework by Cronie and van Lieshout (2015). It is defined by

λ(η|x) = f (x η) f (x) , (1.2) 
for η / ∈ x provided f (x) = 0.

Classical point process models

We refer to Diggle (2003), Møller and Waagepetersen (2004), Illian et al. (2008), Chiu et al. (2013), Baddeley et al. (2015) and Cronie and van Lieshout (2015), Diggle and Gabriel (2010), Diggle (2013), Gabriel et al. (2013), Gonzalez et al. (2016) for a presentation of most of spatial and spatio-temporal point process models. Hereafter we only focus on the ones mentioned/used in Section 1.3 to construct multi-structure point process models, namely the Poisson, Cox and Gibbs processes.

Poisson process

The Poisson point process is the reference model for independence of the locations of events, i.e. for complete spatial (or spatio-temporal) randomness. It is also the simplest and most widely used inhomogeneous point process model. Poisson point processes with intensity function λ(η) are defined by two postulates :

• The number of points in any region B ⊆ W, N (B), follows a Poisson distribution with parameter B λ(η)dη,

• For all B ⊆ W, given N (B) = n, the n events in B form an independent random sample from the distribution on B with probability density function λ(η)/ B λ(η)dη.

The probability density of a Poisson point process with respect to the unit rate Poisson process is

f (x) = exp |W|- W λ(η)dη Π η∈x λ(η).
Then, from Equation (1.2), the Papangelou conditional intensity is λ(η|x) = λ(η) and λ (2) (η i , η j ) = λ(η i )λ(η j ), so that g(η i , η j ) = 1.

Cox process

Cox processes, so-called doubly stochastic point processes (Cox 1955), are considered as a generalization of inhomogeneous Poisson processes where the intensity is a realization of a random field Λ = {Λ(η)} η∈W . These models are particularly useful as soon as spatial variation in events density reflects both the environment and dependence between events. Moreover, their first-and second-order moments being tractable, they are very attractive. We have

λ(η) = E[Λ(η)] and g(η i , η j ) = E[Λ(η i )Λ(η j )] λ(η i )λ(η j ) = 1 + cov (Λ(η i ), Λ(η j )) λ(η i )λ(η j ) . (1.
3)

The probability density f (x) = E exp |W|-W Λ(η)dη Π η∈x Λ(η) is intractable for these processes. Consequently, the Papangelou conditional intensity is not known. The second-order intensity function λ (2) (η i , η j ) = E [Λ(η i )Λ(η j )] is only tractable for two special cases of Cox processes, that we present below, the Shot Noise Cox process and the log-Gaussian Cox process. λ(η) = γk(c, η)dζ(c, γ) and g(η i , η j ) = 1 + γ 2 k(c, η i )k(c, η j )dζ(c, γ) λ(η i )λ(η j ) .

SNCP include Poisson cluster processes, i.e. a Poisson process in which each point is replaced by a cluster of points, the original point is considered as the cluster center (Cox and Isham 1980). When the points in the cluster are independently and identically distributed about the cluster centre, the process is referred to as a Neyman-Scott process (Neyman and Scott 1958). Two mathematically tractable models of Neyman-Scott processes are the Thomas process (Thomas 1949), where k is a zero-mean normal density, and the Matérn cluster process, where k is a uniform density on a ball centered at the origin. Log-Gaussian Cox processes (LGCP) have been introduced in Møller et al. (1998), considering that the intensity is a log-Gaussian process : Λ(η) = exp (Z(η)), where Z is a real-valued Gaussian random field, with mean function µ(η) and covariance function C(η i , η j ). In that case, from Equation (1.3) we have λ(η) = exp (µ(η) + C(η, η)/2) , ∀η ∈ W and g(η i , η j ) = exp (C(η i , η j )) , ∀η i , η j ∈ W.

The expression of the pair correlation function shows that the interaction is controlled by the second-order moment of Z. If C(η i , η j ) ≥ 0, we get g(η i , η j ) > 1 and clustering. As they are based on a latent random field describing the intensity, LGCPs have a hierarchical structure making them particularly flexible (Illian et al. 2008). Note that the interaction is controlled through the second-order moment of the Gaussian random field, so that LGCPs do not describe the mechanistic process generating the points what is the case of most of Gibbs processes (see below) for which the dependence between points is controlled through local interaction between pairs of points.

Gibbs process

A finite Gibbs point process on W admits a density f (x) = exp (-Ψ(x)) (1.4) w.r.t. the Poisson process of unit intensity on W. The potential function Ψ is often specified as the sum of pair potentials :

Ψ(η 1 , . . . , η n ) = α 0 + i α 1 (η i ) + i<j α 2 (η i , η j ) + • • • + α n (η 1 , . . . , η n ), (1.5) 
with α 0 a normalizing constant for the density and the pair potentials α 1 , α 2 , . . . which determine the contribution to the potential from each δ-uple of points. Note that, if the α δ , δ ≥ 2 are identically zero, the process is Poisson with intensity λ(η) = exp(-α 1 (η)). Hence, α 1 can be viewed as controlling a spatial (or spatio-temporal) trend, while the α δ , δ ≥ 2 control the interactions between events. The normalizing constant is generally intractable, so it is often impossible to compute the intensity and pair correlation function of Gibbs processes. However, the Papangelou conditional intensity can be computed (Coeurjolly and Lavancier 2019).

When the interaction between points is restricted to pairs, i.e. for f (x) = αΠ i β(η i )Π i<j γ(η i , η j ), with α > 0, β an intensity function and γ a symmetric interaction function, the process is called pairwise interaction process (Diggle 1983, van Lieshout 2000). A well-known example of such processes is the Strauss process (Strauss 1975) for which f (x) = αβ n(x) γ s(x) ,

1.3. MULTI-STRUCTURE MODEL REVIEW CHAPTER 1. INTRODUCTION
where β, γ > 0, n(x) is the number of points in x and s(x) the number of neighbour pairs of x at distances less than a given distance R. When γ = 0, we get the hardcore process. Note that in the Strauss process, γ should be smaller than 1 otherwise the density is no integrable. Geyer (1999) modified the Strauss process and proposed the Geyer saturation process in which the overall contribution from each point is trimmed to never exceed a maximum value. We thus have f (x) = αβ n(x) Π η∈x γ min(s,t(η,r,x)) , (1.6) where α, β, γ, r, s are parameters and t(η, r, x) is the number of other events lying with a distance r of the point η.

Review on multi-structure point processes

Spatial and spatio-temporal single-structure point process models presented in Section 1.2 are generally used when only one type of interaction governs the structure of the point pattern. When there are indications that the spatial or spatio-temporal structure combines several structures or varies with ranges of distances, we need to consider multi-structure point process models. We present in this section some of these models derived from the classes of Gibbs and Cox processes. By nature, few spatial point processes can exhibit directly several structures and/or scales of interaction and we recall some useful construction techniques to incorporate the multi-structure: hybridization, thinning, superposition or clustering.

Models based on Gibbs processes

Gibbs point processes are mainly used to model repulsion structure in point patterns, even if some examples exist for modelling low clustering (Chiu et al. 2013). Their definition through the potential function Ψ fit well in the statistical mechanics framework where the spatial modelling of particles needs often to consider their interaction. It is common in various domains (mechanics, biology. . . ) to observe repulsion at short range and aggregation at medium-long range of entities, leading to define multi-structure point processes models.

For pairwise interaction processes, some parametric potential functions can be defined to take into account multiple scales of interaction, see e.g. Ruelle (1969), Ogata and Tanemura (1981), Penttinen (1984), Clyde and Strauss (1991), Habel et al. (2019). We consider in the sequel the homogeneous case, i.e. when α 1 is constant and the pair potential function α 2 (η i , η j ) = α 2 ( η iη j ) in (1.5).

The Lennard-Jones pair potential function, well-known in statistical mechanics, is given by α

2 (r) = ǫ 1 σ r m 1 -ǫ 2 σ r m 2
, ∀r > 0 where m 1 > m 2 , ǫ 1 , σ > 0 and in the multi-structure case ǫ 2 > 0. Another one is the step potential function given by

α 2 (r) = c l if R l-1 < r ≤ R l ∀l = 1, • • • , m where R 0 = 0, R m = ∞, c 1 = ∞, c m = 0 and c l ∈ R for l = 2, • • • , m -1.
The resulting model is an extension of the Strauss process to the multi-scale framework (Penttinen 1984). The square-well potential is obtained with l = 2. More recently, Goldstein et al. (2015) introduced a pair potential function varying smoothly over distance with scale interactions defined through a differential system of equations. Other pair potential functions can be found in the literature for modeling multi-structure phenomena, e.g. in Ogata and Tanemura (1981) and Chiu et al. (2013). Some of these pair potential functions define multi-scale generalizations of single scale Gibbs processes. Indeed, the step potential functions of homogeneous pairwise interaction processes in Diggle (1983) and Penttinen (1984) represent multi-scale extensions of the Strauss process where the density is given by

f (x) = αβ n(x) m l=1 γ s l (x) l
, where s l (x) = i<j ✶(R l-1 < η iη j ≤ R l ).

In the same way, the multi-scale generalization of the area-interaction model has been introduced in Ambler (2002) and Ambler andSilverman (2004, 2010) with a twoscale structure and in Picard et al. (2009) for multi-scale marked area-interaction processes. Its density function in a homogeneous multi-scale case is given by

f (x) = αβ n(x) m l=1 exp(-κ l U (x, r l ))
where U (x, r l ) is the d-dimensional volume of the set W ∩ η∈x b(η, r l ), with b(η, r l ) the ball centered at η i of radius r l > 0. The sign of κ l defines the lth structure : inhibition if negative, clustering otherwise. Nightingale et al. (2019) used area-interaction point processes for bivariate point patterns for modelling both attractive and inhibitive intra-and inter-specific interactions of two plant species. Baddeley et al. (2013) defined a new class of multi-scale Gibbs point processes named hybrid models and including the two previous generalization examples. This unified framework allows to define properly generalizations of single-scale Gibbs point processes by preserving Ruelle and local stability (van Lieshout 2000). This hybridization technique consists in defining the density function of a multi-scale point process model as the product of several densities of Gibbs point processes, so that

f (x) = cf 1 (x)...f m (x)
where c is a normalization constant and f l is a Gibbs density function for l = 1, . . . , m. The choice of the normalization constant allows to well define a probability density in the case where the product f 1 ...f m is integrable. The integrability condition is of course essential and induced by others conditions on the f l (Ruelle statbility, local stability or hereditary), see Baddeley et al. (2013) which play an important role in simulation algorithms and are established in general to demonstrate the model validity of the hybrid process. Baddeley et al. (2013) introduced the spatial multi-scale Geyer saturation point process that was applied in epidemiology by Iftimi et al. (2017) and in seismology by Siino et al. (2017) and Siino et al. (2018b). Iftimi et al. (2018) extended the hybridization approach to the spatio-temporal framework and introduce the spatio-temporal multiscale area-interaction point process (see Section 2.1.1). In Chapter 2 (resp. Chapter 3), we define (resp. provide an estimation procedure) the inhomogeneous spatio-temporal multi-scale Geyer saturation process. This work is published in [START_REF] Raeisi | A spatio-temporal multi-scale model for Geyer saturation point process: Application to forest fire occurrences[END_REF], see Appendix B. Rajala et al. (2018) used a multitype generalization of Gibbs point processes with point-to-point interactions at different spatial scales in order to model a complex rainforest data of 83 species.

The definition of hybrid Gibbs models does not impose to consider the same m Gibbs models which is emphasized in Baddeley et al. (2015). In this way, Badreldin et al. (2015) applied a hybrid model with three model structures at different ranges of distance to the spatial pattern of halophytic species distribution in an arid coastal environment. They considered a hardcore process at very short distances, a Geyer process at short to medium distances and a Strauss process for the structure at large distances. Wang et al. (2020) fitted a spatial hybrid Geyer hardcore point process on the spatial distribution of trees. In Chapter 2, we extend this type of hybrids to the spatio-temporal context. This work is submitted for publication in Raeisi et al. (2021a), see Appendix C.

As a different approach to model the repulsion at short range and aggregation at medium-long range, Vihrs et al. (2021) embedded spatially structured Gaussian random effects in the Gibbs trend function and introduced, in particular, the log Gaussian Cox Strauss point process which we extend to the spatio-temporal context in Chapter 2.

Models based on Cox processes

Cox processes are mainly defined from additive or log-linear random intensity functions. Their hierarchical structure allows to quantify the various sources of variation governing the spatial or spatio-temporal distribution of the pattern of interest. They are widely used for modelling environmental and ecological patterns.

Cluster Cox processes and superposition Some Cox processes are obtained by clustering of offspring points around parent points and correspond to specific cases of cluster processes. This two-step construction allows to consider easily different structures for the patterns of parents and offspring. Møller and Torrisi (2005) introduced the class of Generalized Shot Noise Cox processes (GSNCP), extending the definition of SNCP, and allowing relevant multi-structure point processes for modelling regularity and clustering in many applications. This class has two advantages. Firstly, the parent process is not restricted to be Poisson, as in Neyman-Scott processes, and can be a repulsive Gibbs point process in order to add inhibition between the clusters. Secondly, in each cluster, the intensity and the bandwidth of the dispersion kernel can be random. By consequence, a GSNCP is a Cox process driven by a random field of the form

Λ(η) = (c,γ,h)∈Φ γk h (c, η),
where Φ is a point process on W × [0, ∞) × [0, ∞) and h is a bandwidth for the kernel density k h (c, •). So, given Φ, a GSNCP is distributed as the superposition ∪ l X l of independent Poisson processes with intensity functions γ l k h l (c l , •) where {γ l } l , {h l } l are random and Φ cent = {c l } l is the parent process. In population dynamics, with G 0 a Poisson process for the initial population and G n+1 a GSNCP where the cluster centers are given by G n , the superposition of GSNCPs G 0 , G 1 , . . . is a spatial Hawkes process (Hawkes 1971). The GSNCP class contains the special cluster Cox process defined in Yau and Loh (2012), where the parents process is a Strauss process. This model coupling inhibition at medium/long range and aggregation in cluster is applied to tree locations in a rain-forest, in order to consider the competition and reproduction mechanisms. Albert-Green (2016) and Albert-Green et al. (2019) generalized the Neymann-Scott process by considering a log-Gaussian Cox process model for the parents, instead of a homogeneous Poisson process, leading to two scales of clustering, inter-and intra-clusters. This hierarchical model is applied to storm cell modelling in North Dakota.

Wiegand and co-authors' papers (Wiegand et al. 2007(Wiegand et al. , 2009) consider several construction of Cox processes incorporating clustering at multiple scales. The nested double-cluster process is an extension of the Thomas process in an multi-generation evolution of the population where the offspring become parents and generate offspring. They consider also the superposition of cluster processes, like the Thomas process.

Cox processes with constructed covariate

Another way to incorporate both small and large spatial scale structure in Cox processes is to define a constructed covariate measuring the local structure of a point pattern associated to an additional spatial effect at medium-long range. This methodology developed in Illian et al. (2012a) and applied to koala data is used again in [START_REF] Illian | Using INLA to fit a complex point process model with temporally varying effects -a case study[END_REF]Illian et al. ( , 2013) ) for other spatial ecological data. They consider a log-Gaussian Cox process in a Bayesian framework in order to apply the INLA approach for speeding up the estimation of parameters in comparison to MCMC approaches that are very time-consuming. Gabriel et al. (2017) used also this approach in the context of wildfire modelling in Mediterranean France. In the case of a spatial LGCP model, the method consists in estimating the random field Λ on grid cells s i as follow

Λ(s i ) = exp β 0 + f (z c (s i )) + p k=1 f k (z k (s i )) + Y (s i ) where β 0 is the intercept, f (z c (•)) is a function of the constructed covariate z c , f k , k = 1, .
. . , p are functions of the observed covariates z k and Y is a Gaussian random field taking into account the spatial autocorrelation not explained by the covariates. This intensity is estimated for each cell s i of a grid partitioning the observation window.

In Illian et al. (2012a), the constructed covariate at each center point c of the grid cell s is the distance from c to the nearest point in the pattern outside the grid cell, i.e z c (s) = min η∈x\s ( cη ). This constructed covariate describes small scale inter-individual behavior whereas the random field Y captures the spatial autocorrelation at a large spatial scale. The space-time and space-mark extensions of the constructed covariate definition are respectively introduced in [START_REF] Illian | Using INLA to fit a complex point process model with temporally varying effects -a case study[END_REF] and Illian et al. (2013). In Gabriel et al. (2017) the constructed covariate corresponds to a temporal intensity index given by the ratio between the number of wildfires observed spatially close to an other in a specified period and the total number of closed wildfires observed outside this given period. This covariate measures the temporal wildfire inhibition at close spatial distances induced by the local burn of vegetation after a wildfire occurrence. [START_REF] Sørbye | Careful prior specification avoids incautious inference for log-Gaussian Cox point processes[END_REF] fitted a LGCP to rainforest tree species by adding to the combination of covariates in the log-intensity a spatial random field and error field. The first random field captures the spatial autocorrelation in point counts among neighboring grid cells and the second one the clustering within grid cells, as a nugget effect in geostatistics.
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The intensity in s ∈ W is thus given by

Λ(s) = exp β 0 + p k=1 β k z k (s) + 1 √ τ √ ρ × Y (s) + 1 -ρ × ǫ(s)
where β k are linear effects of observed covariates z k , Y is a spatial random field with autocorrelation between grid cells and ǫ the error field driving the aggregation structure within grid cells.

Thinned point processes

Thinning is a an operation allowing to delete points in a point process in order to obtain a new one with different characteristics. Each point of a point process has a probability 1π of deletion, where the retention probability π can be constant or not, independent of the location point or depending on one to several points. For Cox processes, this technique is generally applied to create random local regularity. For example, Andersen and Hahn (2016) applied a Matérn hard core dependent thinning to a Shot Noise Cox process to obtain short range repulsion with medium range clustering. For a given point pattern and a specified distance h, Matérn hard core thinning acts by first attaching random positive marks (arrival times) to each point. Subsequently a point is removed if it has a neighbour within distance h and with a smaller mark (i.e. the neighbour arrived earlier). In that way, for a given location η, the retention probability π(η) is the ratio between the intensities of the thinned process and the original process at η. Lavancier and Møller (2016) extended the definition of interrupted point processes in Stoyan (1979) and Chiu et al. (2013) and considered a spatial point process X obtained by an independent thinning driven by a random process Z on a regular point process Y . An example is given with Y a Matérn hard core process and Z the transformation by a characteristic function of a Boolean disc model (Chiu et al. 2013).

Point process-based analysis and modeling of forest fire occurrences

Statistical modeling of forest fires appeared in the late 1970s with the works of [START_REF] Wilkins | A Stochastic Analysis of the Effect of Fire on Remote Vegetation[END_REF] and [START_REF] Dayananda | Stochastic models for forest fires[END_REF]. More recently, the theory of point processes has been considered as statistical tools to analyze spatial (spatio-temporal) structures of forest fire occurrences. [START_REF] Podur | Spatial patterns of lightning-caused forest fires in Ontario, 1976-1998[END_REF] analyzed the occurrences of lightning-caused forest fires in Canada. [START_REF] Raeisi | On models for complex spatio-temporal point process data[END_REF], Pereira and[START_REF] Pereira | Statistical models of vegetation fires-spatial and temporal patterns[END_REF][START_REF] Xi | Statistical models of key components of wildfire risk[END_REF] reviewed briefly the literature in forest fire occurrences modeling with (spatial) spatiotemporal point processes. The studies are classified into two types: those related to exploratory analysis, based on summary statistics and those related to model analysis which might include non-Poisson point process models.

Exploratory analysis of forest fires

In exploratory analysis of point patterns, aims are to map local spatial/spatio-temporal density variations and to test interactions between points. The former is achieved by estimating the first-order intensity, the later by using summary statistics as the pair correlation function or any related function. One can further investigate separability in space, time and/or marks, see Gabriel and Diggle (2009), Gonzalez et al. (2016).

The intensity function reflects the average density of points in the point process and can be used to identify areas with a high or low expected number of points. It can be estimated from parametric and non-parametric methods. Estimating kernel density of fire occurrences patterns indicate heterogeneous spatial distributions with hotspots [START_REF] Yin | Spatial patterns of lightning at different spatial scales in the western United States during August of 1990 -a case study using the geographic information systems technology[END_REF][START_REF] Del Hoyo | Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data[END_REF][START_REF] Gralewicz | Spatial and temporal patterns of wildfire ignitions in Canada from 1980 to 2006[END_REF][START_REF] Gonzalez-Olabarria | Different factors for different causes: Analysis of the spatial aggregations of fire ignitions in Catalonia (Spain)[END_REF][START_REF] Fuentes-Santos | Consistent smooth bootstrap kernel intensity estimation for inhomogeneous spatial Poisson point processes[END_REF][START_REF] Yin | Wildfire detection probability of MODIS fire products under the constraint of environmental factors: a study based on confirmed ground wildfire records[END_REF][START_REF] Li | Spatial and temporal patterns of wildfires in California[END_REF] and can be used to create maps of "fire occurrence zones" [START_REF] Koutsias | Fire occurrence patterns at landscape level: beyond positional accuracy of ignition points with kernel density estimation methods[END_REF][START_REF] Koutsias | Fire occurrence zones: kernel density estimation of historical wildfire ignitions at the national level, Greece[END_REF][START_REF] Koutsias | Fire occurrence zoning from local to global scale in the European Mediterranean basin: implications for multi-scale fire management and policy[END_REF]. Parametric models further quantify the influence of various covariates that drive local density variations of fire ignitions [START_REF] Yang | Spatial control of occurrence and spread of wildfires in the Missouri Ozark Highlands[END_REF][START_REF] Mundo | Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia[END_REF]. The inclusion and test of spatially (or spatio-temporally) varying covariates in intensity function has been of particular interest in Diaz-Avalos et al. ( 2014), [START_REF] Borrajo | Testing firstorder intensity model in non-homogeneous Poisson point processes with covariates[END_REF][START_REF] Borrajo | Nonparametric first-order analysis of spatial and spatio-temporal point processes[END_REF]Borrajo et al. ( , 2020a,b),b), and Myllymäki et al. (2021). For spatio-temporal point patterns, one can preliminary test for first-order separability. [START_REF] Schoenberg | Testing separability in spatial-temporal marked point processes[END_REF][START_REF] Diaz-Avalos | Similarity measures of conditional intensity functions to test separability in multidimensional point processes[END_REF]), and Fuentes-Santos et al. (2018) show that the intensity of forest fire occurrences varies in space and time in a nonseparable way.

Dependencies between points can be described through the analysis of second-order characteristics. From spatial [START_REF] Genton | Spatio-temporal analysis of wildfire ignitions in the St Johns River water management district, Florida[END_REF] or spatio-temporal [START_REF] Wang | An evaluation of spatial and temporal patterns of lightning-and human-caused forest fires in Alberta, Canada, 1980-2007[END_REF][START_REF] Comas | Characterizing configurations of fire ignition points through spatiotemporal point processes[END_REF][START_REF] Costafreda-Aumedes | Spatio-temporal configurations of human-caused fires in Spain through point patterns[END_REF][START_REF] Tonini | Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps[END_REF]) K or L-functions, forest fire occurrences show clustering, i.e. a local over-density in space and/or in time. Some analyses also identified multi-structure properties. Forest fire occurrences can be spatially clustered at a relatively small scale but regularly spaced at a larger scale [START_REF] Podur | Spatial patterns of lightning-caused forest fires in Ontario, 1976-1998[END_REF], significantly clustered at different spatial scales [START_REF] Gonzalez-Olabarria | Using multi-scale spatial analysis to assess fire ignition density in Catalonia, Spain[END_REF], Juan et al. 2012). In the spatio-temporal framework, [START_REF] Tonini | Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps[END_REF] carried out a spatio-temporal clustering analysis for forest fires in Portugal and found a complex structure associated with different behavior according to the size of the fire "medium fires tend to aggregate around small fires, while large fires aggregate at a larger distance and longer times, indicating that the return time following these events is longer than for small and medium fires". Defining a normalized empirical intensity ratio index, Gabriel et al. (2017) showed that inhibitive patterns between neighboring events can span several years. Some other studies considered first-order and second-order characteristics for identifying drivers and spatial distribution of wildfires [START_REF] Kwak | Spatial and temporal pattern of the human-caused forest fire occurrences in Korea[END_REF], 2010[START_REF] Gua | Spatial patterns of lightning-ignited forest fires in daxing'an mountains, Heilongjiang Province, China[END_REF][START_REF] Pereira | Preliminary analysis of the forest fires in Portugal using point processes[END_REF][START_REF] Fuentes-Santos | Forest fire spatial pattern analysis in Galicia (NW Spain)[END_REF][START_REF] Zhang | Spatial distribution pattern of human-caused fires in Hulunbeir grassland[END_REF][START_REF] Gua | Historic distribution and driving factors of human-caused fires in the Chinese boreal forest between 1972 and 2005[END_REF], 2016, 2017[START_REF] Bates | Exploratory analysis of lightningignited wildfires in the Warren Region, Western Australia[END_REF][START_REF] Rihan | Wildfires on the Mongolian Plateau: identifying drivers and spatial distributions to predict wildfire probability[END_REF].

Further information can be added to fire locations, as the burned areas or the cause of ignition, and can be treated as marks. [START_REF] Zhang | On the local odds ratio between points and marks in marked point processes[END_REF] proposed a local odds ratio approach to estimate the localized dependence structure between burned areas and fire locations. [START_REF] Schoenberg | Testing separability in spatial-temporal marked point processes[END_REF] found evidence of a lack of separability between fire occurrences and sizes due to small-scale clustering. Hence, the marks may not be separable from the points. [START_REF] Pereira | Preliminary analysis of the forest fires in Portugal using point processes[END_REF] also rejected the separability assumption between space, time and marks.

Point process models for forest fires

In the last two decades, forest fire occurrences have been modeled with point process models. Spatial point process models mainly include Poisson and area interaction models, while spatio-temporal models are Cox models (Log-Gaussian and Shot Noise Cox processes). Tables 1.1 and 1.2 report spatial and spatio-temporal models used in different articles, as well as the inference method used for model fitting and the study area. These Tables show that models tend to be more complex along years, as an attempt to better include the relatively large number of covariates (e.g. land use and the meteorological covariates such as temperature and precipitation that are measured in time), but also the interaction structures highlighted in the previous section.

Hawkes point process models have also been considered for forest fire occurrences LGCP INLA France Opitz et al. (2020) LGCP INLA France Juan (2020) LGCP INLA Spain [START_REF] Brillinger | Risk assessment: a forest fire example[END_REF][START_REF] Peng | A space-time conditional intensity model for evaluating a wildfire hazard index[END_REF][START_REF] Schoenberg | A critical assessment of the burning index in Los Angeles County, California[END_REF], 2009[START_REF] Xu | Point process modeling of wildfire hazard in Los Angeles County, California[END_REF], Taylor et al. 2013) 2021) focus on accurate modeling of the distribution of extreme wildfires, and its spatio-temporal variation. As an alternative application of the marked point processes in forest fires modelling, [START_REF] Quinlan | Modeling wildfires via marked spatio-temporal Poisson processes[END_REF] considered the duration of fires as marks.

Different approaches can be used to fit these models, e.g. moment-, likelihoodand Bayesian-based methods. For most of point process models, the likelihood has no closed form expression (and thus is intractable). To address this issue, a simple and quick inference procedure is using the composite likelihood-based inference, as the pseudo-likelihood (Baddeley and Turner 2000) or logistic likelihood (Baddeley et al. 2014) for Gibbs models. Cox models involve an unobserved (Gaussian) random field in which composite likelihood estimation methods would involve complex integrals. These models are hierarchical and are therefore naturally suited to a Bayesian hierarchical approach for inference based on integrated nested Laplace approximation (INLA) (Rue et al. 2009) or on the Markov chain Monte Carlo (MCMC) method [START_REF] Taylor | Bayesian inference and data augmentation schemes for spatial, spatiotemporal and multivariate log-Gaussian Cox processes in R[END_REF]. See [START_REF] Taylor | INLA or MCMC? a tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes[END_REF] for a comparison.

Outline of thesis

As discussed in the previous section, the spatio-temporal distribution of forest fire occurrences is very complex in nature with non-separability in space and time and multiple structures (repulsion and aggregation) at different spatial and/or temporal scales. Spatio-temporal variations of fire occurrences further depend on the spatial distribu-tion of current land use and meteorological conditions, but also depends on past events (changes in vegetation due to fires affect the probability of fire occurrence during a regeneration period). In this thesis we develop new models for such complex phenomena, as well as some methods for their inference and simulation.

In Chapter 2, based on the extension of hybridization approach (Baddeley et al. 2013) to the spatio-temporal framework (Iftimi et al. 2018), we propose the spatiotemporal hybrid Geyer saturation point process for multi-scale point patterns and spatiotemporal hybrid Strauss hardcore point process that combines both multi-scaling by hybridization and hardcore distances.

A different approach, leading to more flexibility in the model but also to more challenging inference, consists of Gibbs models that contain both random and fixed effects as in Illian and Hendrichsen (2010) to take into account complex patterns of heterogeneity. We propose a new modeling approach for this case, and we embed spatiotemporally structured Gaussian random effects in the Gibbs trend function. Therefore, our approach focuses on models derived from the multi-scale classes of combinations of Gibbs and log-Gaussian Cox point processes, to which we refer as Cox-Gibbs models in the following.

In Chapter 3, we aim to extend and implement available inference methods for these new models in the spatio-temporal framework. We classify the inference procedure into two approaches: global and local estimation methods. We tailor common methods for a global statistical inference in Gibbs models: the pseudo-likelihood and logistic likelihood approaches. However, the calculation of the likelihoods variants (composite likelihoods: pseudo-likelihood and logistic likelihood) used in point process inference would involve complex, high-dimensional integrals for Cox-Gibbs models, and we would need estimation methods that allow handling the latent (i.e., unobserved) Gaussian variables. However, due to the hierarchical structure of such models, they can be naturally formulated and estimated within a Bayesian hierarchical approach, using techniques as the INLA (Rue et al. 2009).

The models based on global parameter estimates can not take into account different local interaction structures. Thus, we extend the local likelihood approach (Baddeley 2017) to the spatio-temporal context as an alternative method for modeling multistructure point patterns with spatially and/or temporally varying parameters in Gibbs point process models.

In Chapter 4, we implement a birth-death Metropolis-Hasting algorithm for simulating the hybrid Gibbs models. We propose a two-step procedure for simulating the hybrid Cox-Gibbs model by simulating, firstly, a realisation of a Gaussian random field and then simulating a realisation of hybrid Cox-Gibbs model given that Gaussian realisation using the birth-death Metropolis-Hasting algorithm.

The models, estimation and simulation methods proposed in this thesis have been carried out using R together with the spatstat [START_REF] Baddeley | spatstat: a R package for analyzing spatial point patterns[END_REF], stpp (Gabriel et al. 2013), splancs [START_REF] Rowlingson | Splancs: spatial point pattern analysis code in S-PLUS[END_REF], fields [START_REF] Nychka | fields: Tools for spatial data[END_REF], sparr [START_REF] Davies | sparr: analyzing spatial relative risk using fixed and adaptive kernel density estimation in R[END_REF], raster (Hijmans 2020), INLA [START_REF] Lindgren | Bayesian spatial modelling with R-INLA[END_REF] and GET (Myllymäki and Mrkvička 2019) packages.

In Chapter 5, we investigate the hybrid Gibbs models proposed in Chapter 2 for fitting forest fire occurrences in South of France and in central Spain. We also develop an innovative application of spatio-temporal modeling of temperature hotspots, and in particular of temperature anomalies, in the United States using Cox-Gibbs models.

Chapter 2

New models

In this chapter, we extend two spatial Gibbs models to the spatio-temporal and multiscale contexts and then propose a model which is a combination of Cox and Gibbs models.

Models based on Gibbs point processes

Gibbs models are flexible point processes that allow the specification of point interactions via a probability density defined with respect to the unit rate Poisson point process. These models allow to characterize a form of local or Markovian dependence amongst events. Gibbs point processes contain a large class of flexible and natural models that can be applied for:

• Postulating the interaction mechanisms between pairs of points,

• Taking into account clustering, randomness or inhibition structures,

• Combining several structures at different scales with the hybridization approach.

Let x = {η 1 , ..., η n } = {(ξ 1 , t 1 ), , ..., (ξ n , t n )} be a spatio-temporal point pattern where

(ξ i , t i ) ∈ W = S × T ⊂ R 2 × R. We consider (W, d(•, •)) where d((u, v), (u ′ , v ′ )) := max{||u -u ′ ||, |v -v ′ |} for (u, v), (u ′ , v ′ ) ∈ W is a complete, separable metric space. The cylindrical neighbourhood C q r (u, v) centred at (u, v) ∈ W is defined by C q r (u, v) = {(a, b) ∈ W : ||u -a||≤ r, |v -b|≤ q}, (2.1) 
where r, q > 0 are spatial and temporal radius and ||•|| denotes the Euclidean distance in R 2 and |•| denotes the usual distance in R. Note that C q r (u, v) is a cylinder with centre (u, v), radius r, and height 2q that represents a natural neighborhood for extending spatial Gibbs models to the spatio-temporal context (Gonzalez et al. 2016).

A finite Gibbs point process is a finite simple point process defined with a density f (x) that satisfies the hereditary condition, i.e. f (x) > 0 ⇒ f (y) > 0 for all y ⊂ x.

A closely related concept to density functions is Papangelou conditional intensity function (Papangelou, 1974) which is a tool for simulating Gibbs models and inferring its parameters. The Papangelou conditional intensity of a spatio-temporal point process on W with density f for (u, v) ∈ W is defined by

λ((u, v)|x) = f (x (u, v)) f (x\(u, v)) , (2.2) 
with a/0 := 0 for all a ≥ 0 (Cronie and van Lieshout, 2015). The Papangelou conditional intensity is also very useful to describe the local interactions in a point pattern, and leads to the notion of a Markov point process which is base of implementation MCMC algorithms for simulation of Gibbs models. We say that the point process has "interactions of range R at (ξ, t)" if points further than R away from (ξ, t) do not contribute to the conditional intensity at (ξ, t). 

λ((u, v)|x) = λ((u, v)|x ∩ C R R (u, v)) (2.3)
for all configurations x of X and all (u, v) ∈ W, where C R R (u, v) denotes the cylinder of radius R > 0 and height 2R > 0 centred at (u, v).

Spatio-temporal Gibbs models usually have finite interaction range property (spatiotemporal Markov property) and are called in this case Markov point processes (van Lieshout 2000). The finite range property of a spatio-temporal Gibbs model implies that the probability to insert a point (u, v) into x depends only on some cylindrical neighborhoods of (u, v). We further refer to Dereudre (2019) for more formal introduction of Gibbs point processes.

Here, we first review spatio-temporal Gibbs models and then extend the spatial Geyer and Strauss hardcore models to the spatio-temporal single-and multi-scale context.

Spatio-temporal Gibbs models review

In the literature, several spatio-temporal Gibbs point process models have been proposed such as the hardcore (Cronie and van Lieshout 2015), Strauss (Gonzalez et al. 2016) and area-interaction (Iftimi et al. 2018) point processes.

A Gibbs point process model explicitly postulates that interactions traduce dependencies between the points of the pattern. The hardcore interaction is one of the simplest type of interactions, which forbids points being too close to each other. The homogeneous spatio-temporal hardcore point process is defined by the density

f (x) = cλ n(x) 1{||ξ -ξ ′ ||> hc s or |t -t ′ |> hc t ; ∀(ξ, t) = (ξ ′ , t ′ ) ∈ x}, (2.4) 
with respect to a unit rate Poisson point process on W, where c > 0 is a normalizing constant, λ > 0 is an activity parameter, hc s , hc t > 0 are, respectively, the spatial and the temporal hardcore distances and n(x) is the number of points in x. The Papangelou conditional intensity of a homogeneous spatio-temporal hardcore point process for

(u, v) / ∈ x is obtained λ((u, v)|x) = λ1{||ξ -u||> hc s or |t -v|> hc t ; ∀(ξ, t) ∈ x} = λ (ξ,t)∈x 1{||ξ -u||> hc s or |t -v|> hc t } = λ (ξ,t)∈x 1{(ξ, t) / ∈ C hct hcs (u, v)}.
(2.5)

The homogeneous spatio-temporal Strauss point process is defined by density

f (x) = cλ n(x) γ S q r (x) , (2.6) 
with respect to a unit rate Poisson point process on W, where S q r (x) = (ξ,t) =(ξ ′ ,t ′ )∈x 1{||ξξ ′ ||≤ r, |tt ′ |≤ q} and the Papangelou conditional intensity of the model for

(u, v) / ∈ x is λ((u, v)|x) = λγ n[C q r (u,v);x] , (2.7) 
and for (ξ, t) ∈ x λ((ξ, t)|x) = λγ n[C q r (ξ,t);x\(ξ,t)] , (2.8) where n[C q r (y, z); x] = (ξ,t)∈x 1{||y -ξ||≤ r, |z -t|≤ q} is the number of points in x which are in a cylinder C q r (y, z). Although the Strauss point process was originally intended as a model of clustering, it can only be used to model inhibition, because the parameter γ cannot be greater than 1. If we take γ > 1, the density function of Strauss model is not integrable, so it does not define a valid probability density. Iftimi et al. (2018) defined the homogeneous spatio-temporal area-interaction point process by density

f (x) = cλ n(x) (ξ,t)∈x γ -ℓ(∪ (ξ,t)∈x C q r (ξ,t)) , (2.9) 
with respect to a unit rate Poisson point process on W, where ℓ is the Lebesgue measure restricted to W. Iftimi et al. (2018) extended the hybridization approach for an inhomogeneous area-interaction model in spatio-temporal framework where the density is given by .10) with respect to a unit rate Poisson process on W, where (r j , q j ) are pairs of irregular parameters of the model and γ j are interaction parameters, j = 1, . . . , m. New hybrid Gibbs models can also be defined from the hardcore process (2.4) and the Strauss process (2.6) introduced in the spatio-temporal framework, but much more hybrid Gibbs models remain to be developed to better describe spatio-temporal complex phenomena in practice.

f (x) = c (ξ,t)∈x λ(ξ, t) m j=1 γ -ℓ(∪ (ξ,t)∈x C q j r j (ξ,t)) j , ( 2 
As mentioned, Strauss point process model only achieves the inhibition structure. In spatial framework, two ways are introduced to overcome this problem that we extend to spatio-temporal framework hence defining two new spatio-temporal Gibbs point process models.

Spatio-temporal Geyer saturation model

A first way to propose the Gibbs models based on Strauss model which intend for clustering structures is to consider an upper bound for the number of neighboring points that interact. Indeed, we extend the spatial Geyer saturation point process (1.6) to the spatio-temporal framework replacing the Euclidean balls by spatio-temporal cylindrical neighborhoods (Gonzalez et al. 2016).

Definition 2.1.2. We define the spatio-temporal Geyer saturation point process as the point process with density

f (x) = c (ξ,t)∈x λ(ξ, t)γ min{s,n(C q r (ξ,t);x)} , (2.11) 
with respect to a unit rate Poisson process on W, where c > 0 is a normalizing constant, λ is a non-negative, measurable and bounded function, γ > 0 is the interaction parameter, s is the saturation parameter, and n(C q r (ξ, t); x) = (u,v)∈x\(ξ,t) ✶(||u-ξ||≤ r, |v -t|≤ q) is the number of points of x lying in C q r (ξ, t) and different from (ξ, t).

The function λ describes some spatio-temporal trend in point pattern that can be estimated using covariates. The scalars γ, r, q and s are the parameters of the model. The saturation parameter s is an upper bound of the number of points in the cylinder C q r . By using hybridization approach (Baddeley et al. 2013, Iftimi et al. 2018), we define a multi-scale version of (2.11).

Definition 2.1.3. We define the spatio-temporal multi-scale Geyer saturation point process as the point process with density .12) with respect to a unit rate Poisson process on W, where γ j > 0, j = 1, . . . , m, are the interaction parameters, and

f (x) = c (ξ,t)∈x λ(ξ, t) m j=1 γ min{s j ,n(C q j r j (ξ,t);x)} j , ( 2 
r 1 < • • • < r m , q 1 < • • • < q m are
spatial and temporal interaction ranges.

For any j ∈ {1, ..., m}, the interaction parameters 0 < γ j < 1 reflect inhibition, while γ j > 1 reflect clustering between points at some spatio-temporal scales. When s j = 0 or γ j = 1 for all j ∈ {1, ..., m}, the density (2.12) corresponds to the density of an inhomogeneous Poisson process. Equation (2.12) indicates that the structure of the process changes with the spatial and temporal distances r j , q j . Covariates can be added to the model by assuming that the spatio-temporal trend λ is function of a covariate vector Z(ξ, t), i.e. λ(ξ, t) = Ψ(Z(ξ, t)).

Lemma 2.1.1. The spatio-temporal multi-scale Geyer point process is a Markov point process in the sense of Ripley-Kelly (Ripley and Kelly 1977) and its density (2.12) is measurable and integrable for all γ j , j = 1, . . . , m with m ∈ N.

Proof. A Geyer model is hereditary, locally and Ruelle stable and hence integrable (Geyer 1999). Baddeley et al. (2013) showed these properties for hybrids. As in Iftimi et al. (2018), we can show that the spatio-temporal Geyer saturation point process (2.11) is a Markov point process in Ripley-Kelly's sense at interaction range 2 max{r, q} and that the spatio-temporal multi-scale Geyer saturation process (2.12) is also a Markov point process in Ripley-Kelly sense at interaction range max 1≤j≤m {2 max{r j , q j }} = 2 max{r m , q m } ( Baddeley et al. 2013).

For any (u, v) ∈ W, the Papangelou conditional intensity function of the spatiotemporal multi-scale Geyer saturation process is

λ((u, v)|x) = λ(u, v) m j=1 γ min{s j ,n(C q j r j (u,v);x)} j × (ξ,t)∈x\(u,v) γ min{s j ,n(C q j r j (ξ,t));x∪(u,v))}-min{s j ,n(C q j r j (ξ,t);x\(u,v))} j , (2.13)
The Markovian property (Lemma 2.1.1) ensures that this conditional intensity only depends on (u, v) and its neighbors in x. Hence, we can design simulation algorithms for generating realizations of the model, see Chapter 4.

Spatio-temporal Strauss hardcore model

A second way to propose the Gibbs models based on Strauss model which intend for clustering structures is to introduce a hardcore condition to the Strauss density (2.6). Hence, we can define a Strauss hardcore model in the spatio-temporal context. Definition 2.1.4. We define the spatio-temporal Strauss hardcore point process as the point process with density (2.14) where 0 < hc s < r and 0 < hc t < q.

f (x) = c n i=1 λ(ξ i , t i )γ S q r (x) 1{||ξ -ξ ′ ||> hc s or |t -t ′ |> hc t ; ∀(ξ, t) = (ξ ′ , t ′ ) ∈ x},
The model could be used to model clustering patterns with a softer attraction between the points like a pattern with a combination of interaction terms that show repulsion between the points at a small scale and attraction between the points at a larger scale. The Papangelou conditional intensity of a spatio-temporal Strauss hardcore point process for

(u, v) / ∈ x is obtained λ((u, v)|x) = λ(u, v)γ n[C q r (u,v);x] 1{||ξ -u||> hc s or |t -v|> hc t ; ∀(ξ, t) ∈ x} = λ(u, v)γ n[C q r (u,v);x] (ξ,t)∈x 1{(ξ, t) / ∈ C hct hcs (u, v)}.
(2.15)

A hybrid version of spatio-temporal Strauss hardcore model can be defined by hybridization approach.

Definition 2.1.5. We define the spatio-temporal hybrid Strauss hardcore point process with density

f (x) = c (ξ,t)∈x λ(ξ, t) m j=1 γ S q j r j (x) j × 1{||ξ ′ -ξ ′′ ||> hc s or |t ′ -t ′′ |> hc t ; ∀(ξ ′ , t ′ ) = (ξ ′′ , t ′′ ) ∈ x}, (2.16) where 0 < hc s < r 1 < • • • < r m and 0 < hc t < q 1 < • • • < q m .
In the same way, Papangelou conditional intensity of an inhomogeneous spatiotemporal hybrid Strauss hardcore process for

(u, v) / ∈ x is obtained λ((u, v)|x) = λ(u, v) m j=1 γ n[C q j r j (u,v);x] j 1{||ξ -u||> hc s or |t -v|> hc t ; ∀(ξ, t) ∈ x} = λ(u, v) m j=1 γ n[C q j r j (u,v);x] j (ξ,t)∈x 1{(ξ, t) / ∈ C hct hcs (u, v)}.
(2.17)

The Papangelou conditional intensity of the Gibbs point process models including a hardcore interaction term takes the value zero at some locations. We can thus write that for all parameters of the model

λ((u, v)|x) = m((u, v)|x)λ + ((u, v)|x), (2.18) 
where m((u, v)|x) takes only the values 0 and 1, and λ + ((u, v)|x) > 0 everywhere. In the same way as Lemma 2.1.1, the spatio-temporal hybrid Strauss hardcore point process (2.16) is a Markov point process in Ripley and Kelly (1977) sense at interaction range max{r m , q m }.

Models based on Cox and Gibbs processes

Gibbs models represent a flexible class of processes for setting direct interaction between points. The spatio-temporal heterogeneity in the expected number of points observed per unit of space and time can be captured by estimating a non constant trend term estimation of a Gibbs models. In the literature, this trend is typically considered as a function of the covariates, whose influence is expressed through a small number of parameters, for instance by estimating fixed effects in a generalized linear model as in Iftimi et al. (2018). In this section, we introduce the models derived from the multiscale classes of combinations of Gibbs and log-Gaussian Cox point processes, to which we refer as Cox-Gibbs models in the following.

We consider the popular class of pairwise interaction point processes with density

f (x) = c n i=1 λ(ξ i , t i ) i<j γ((ξ i , t i ), (ξ j , t j )), (2.19) 
with respect to a unit rate Poisson process on W for all point patterns x, where c > 0 is a normalizing constant, λ : W → | + is a first-order interaction function which models systematic aggregation of points and γ : W × W → | + is a second-order interaction function which models repulsion between the points with form γ((ξ i , t i ), (ξ j , t

j )) = γ(||ξ i -ξ j ||, |t i -t j |).
The simplest nontrivial pairwise interaction process is the Strauss process with γ((ξ i , t i ), (ξ j , t j )) = γ 1{||ξ i -ξ j ||≤r,|t i -t j |≤q} in (2.19) where r and q are spatial and temporal radii, respectively. Pairwise interaction processes are mainly models for a repulsive behaviour. However, a Strauss hardcore process with density (2.14) rewritten as (2.20) where hc s , hc t are spatial and temporal hardcore distances, is a model for both repul-sive and attractive behaviours. Interesting Gibbs point process models are usually introduced with infinite order of interaction such as Geyer saturation point process with density (2.11).

f (x) = c n i=1 λ(ξ i , t i ) i<j γ 1{||ξ i -ξ j ||≤r,|t i -t j |≤q} 1{||ξ -ξ ′ ||> hc s or |t -t ′ |> hc t ; ∀(ξ, t) = (ξ ′ , t ′ ) ∈ x},
In point process literature, modeling the small-scale interactions is an important and difficult challenge. To overcome that, we consider firstly a spatio-temporal pairwise interaction point process X with density (2.19) and then consider a doubly stochastic construction by replacing λ with a random function Λ in order to introduce random aggregation to the model which is an extension of a Cox process (when γ = 1). When Λ is the random intensity function of a log Gaussian Cox process, we have a log Gaussian Cox pairwise interaction process. Specifically, we consider for

(u, v) ∈ W Λ(u, v) = exp(Z(u, v)), (2.21) 
where Z := {Z(u, v)} (u,v)∈W is a Gaussian random field (GRF). Indeed, we suggest a model for regularity at small-scale and aggregation at larger-scale. Due to different values for parameters of the model, we have some well-known special cases (e.g. homogeneous Poisson, log Gaussian Cox process, and pairwise interaction process) in spatio-temporal context.

The log Gaussian Cox pairwise interaction process has a density (with respect to the unit rate Poisson process) with the form 2.22) where the expectation is with respect to the GRF Z and c(Z) is the normalising constant obtained by conditioning on Z. Hence, a log Gaussian Cox Strauss process (LGCSP) has density .23) In the same way, we can introduce the log Gaussian Cox Strauss hardcore process (LGCSHP) with density

f (x) = ❊ 1 c(Z) n i=1 exp (Z(ξ i , t i )) i<j γ(||ξ i -ξ j ||, |t i -t j |) , ( 
f (x) = ❊ 1 c(Z) n i=1 exp (Z(ξ i , t i )) i<j γ 1{||ξ i -ξ j ||≤r,|t i -t j |≤q} . ( 2 
f (x) = ❊[ 1 c(Z) n i=1 exp (Z(ξ i , t i )) i<j γ 1{||ξ i -ξ j ||≤r,|t i -t j |≤q} × 1{||ξ -ξ ′ ||> hc s or |t -t ′ |> hc t ; ∀(ξ, t) = (ξ ′ , t ′ ) ∈ x}].
( 2.24) We can also introduce the log Gaussian Cox Geyer process (LGCGP) with density (2.25) Due to existence the GRF Z in density of hybrid Gibbs-Cox models, the Papangelou conditional intensity can have a general form for 2.26) where Γ is related to second-order interaction of the model which is free of complex integrals of GRF while

f (x) = ❊ 1 c(Z) n i=1 exp (Z(ξ i , t i ))γ min{s,n(C q r (ξ i ,t i );x)} .
(u, v) / ∈ x λ((u, v)|x, Z) = Γ((u, v)|x)ζ((u, v)|Z), ( 
ζ((u, v)|Z) = ❊ [exp (Z(u, v)) n i=1 exp (Z(ξ i , t i ))] ❊ [ n i=1 exp (Z(ξ i , t i ))]
.

Hence, for a LGCSP we have in (2.26)

Γ((u, v)|x) = γ n[C q r (u,v);x] ,
where

n[C q r (u, v); x] = i ✶(||u -ξ i ||≤ r, |v -t i |≤ q), for a LGCSHP we have Γ((u, v)|x) = γ n[C q r (u,v);x] i 1{(ξ i , t i ) / ∈ C hct hcs (u, v)},
and for a LGCGP we have

Γ((u, v)|x) = γ min{s,n(C q r (u,v);x)} i γ min{s,n(C q r (ξ i ,t i ));x∪(u,v))}-min{s,n(C q r (ξ i ,t i );x)} .
Chapter 3

Inference

There are different ways in fitting point process models, basically: moment-, likelihoodand Bayesian-based methods. In general, the likelihood has no closed form expression (and thus is intractable) for most of density's models. To address this issue, a simple and quick inference procedure is using the composite likelihood-based inference which is mainly defined based on the Papangelou conditional intensity function. In this chapter, we focus on both global and local parameter estimation. For global estimation, we extend to the spatio-temporal context two composite likelihood-based inference methods for our new Gibbs models and design a Bayesian hierarchical approach for the Cox-Gibbs model. We then implement a local parameter estimation approach to take into account different local interaction structures for spatio-temporal Gibbs models.

Global parameter estimation

Gibbs point process models involve two types of parameters: regular parameters and irregular parameters. A parameter is called regular if the log likelihood is a linear function of that parameter, irregular otherwise. Typically, regular parameters determine the 'strength' of the interaction, while irregular parameters determine the 'range' of the interaction. Irregular parameters, like saturation threshold s and distances r and q in Geyer model (2.11) and also hc s and hc t in Strauss hardcore model (2.14), are difficult to estimate using the maximum likelihood method because the likelihood function is not differentiable with respect to them. These parameters can be estimated using the profile pseudo-likelihood approach (Baddeley and Turner 2000) or predetermined by the user using some summary statistics, like the pair correlation and the auto-correlation functions (Iftimi et al. 2018), in order to determine the interaction ranges. Baddeley and Turner (2006) presented the methods that are used for irregular parameter estimation in the spatial framework.

In the spatio-temporal framework, we combine the advantages of the two previous methodologies. By computing some statistics summarizing the range of interactions in space and time, we consider a set of feasible irregular parameter values and we choose the combination of them providing the best Akaike's Information Criterion (AIC) for the fitted model.

However, the hardcore interaction term m(•|x) in the conditional intensity (2.18) does not depend on the other parameters of the densities of Gibbs point processes. This implies that it can first be estimated and kept fixed for the sequel (Baddeley et al. 2019). In the spatial framework, the maximum likelihood estimate of the hardcore distance in m(•|x) corresponds to the minimum interpoint distance (Baddeley et al. 2013). The generalization to the spatio-temporal context with a cylindrical hardcore structure implies to consider a multi-objective minimization problem over the spatial and temporal hardcore distances hc s and hc t . The choice of our hardcore parameters needs to analyze the Pareto front of feasible solutions on the graph of spatial and temporal interpoint distances. We refer to Ehrgott (2005) for a description of multi-criteria optimization and the definition of Pareto optimality. To estimate the hardcore distance hc s and hc t , we consider a feasible solution on the Pareto front as large as possible and with a ratio consistent with our knowledge of interaction mechanisms in practice.

Regular parameters like trend λ and interaction γ in (2.11) and (2.14) can be estimated using the pseudo-likelihood method (Baddeley and Turner 2000) or the logistic likelihood method (Baddeley et al. 2014) rather than the maximum likelihood method (Ogata and Tanemura 1981). Indeed, they are based on the conditional intensity which is tractable for most Gibbs models and is free from the normalization constant c (whose estimation is computationally very expensive, even for a small number of regular parameters). Here we tailor these two methods to estimate regular parameters of our spatio-temporal models and we compare their performance in Chapter 4.

Composite likelihoods

The likelihoods of Gibbs models are intractable; when a surrogate likelihood is required, the choice is usually a composite likelihood [START_REF] Lindsay | Composite likelihood methods[END_REF][START_REF] Varin | An overview of composite likelihood methods[END_REF] of which there are several kinds adapted to different classes of models. See Baddeley et al. (2019) for composite likelihood-based statistical inference in Gibbs point processes. We here implement two composite likelihoods; pseudo-likelihood and logistic likelihood for Geyer and Strauss hardcore models.

Pseudo-likelihood approach

Let θ be the vector of regular parameters that we aim to estimate. Besag (1977) defined the pseudo-likelihood for spatial point processes in order to avoid computational problems with point process likelihoods. One can easily extend it for a spatio-temporal point process with conditional intensity λ θ ((u, v)|x) over W as follows

P L(x; θ) = exp - S T λ θ ((u, v)|x)dvdu (ξ,t)∈x λ θ ((ξ, t)|x). (3.1)
The pseudo score is defined by

U (x; θ) = ∂ ∂θ log P L(x; θ), (3.2) 
that is an unbiased estimating function. The maximum pseudo-likelihood normal equations are then given by

∂ ∂θ log P L(x; θ) = 0, (3.3) 
where

log P L(x; θ) = (ξ,t)∈x log λ θ ((ξ, t)|x) - S T λ θ ((u, v)|x)dvdu, (3.4) 
and λ θ (•|x) is defined by (2.13) for hybrid Geyer model (2.12).

For sake of clarity, we now assume that θ = [log γ 1 , . . . , log γ m ] ⊤ the logarithm of interaction parameters in model (2.12). To estimate θ, we use the pseudo-likelihood approach. Equation (2.13) can be rewritten as

λ θ ((u, v)|x) = λ(u, v) m j=1 exp(θ j S j ((u, v), x)) where S j ((u, v), x) = min{s j , n(C q j r j (u, v); x)} + [min{s j , n(C q j r j (ξ, t); x ∪ (u, v))} -min{s j , n(C q j r j (ξ, t); x\(u, v))}], (3.5) 
is a sufficient statistics. Then, for S((u, v),

x) = [S 1 ((u, v), x), . . . , S m ((u, v), x)] ⊤ log λ θ ((u, v)|x) = log λ(u, v) + θ ⊤ S((u, v), x) (3.6)
is a linear model in θ with offset log λ(u, v). Thus, equation (3.3) gives us the pseudolikelihood equations

∂ ∂θ   (ξ,t)∈x [log λ(ξ, t) + m j=1 θ j S j ((ξ, t), x)] - S T λ(u, v) m j=1 e θ j S j ((u,v),x) dvdu   = 0, (3.7) 
For each parameter θ i , i = 1, . . . , m, the equations (3.7) can be rewritten

(ξ,t)∈x S i ((ξ, t), x) = S T λ(u, v)S i ((u, v), x) m j=1 e θ j S j ((u,v),x) dvdu, (3.8) 
The major difficulty is to estimate the integrals on the right hand side of equations (3.8). The pseudo-likelihood cannot be computed exactly but must be approximated numerically.

For a point process model, the approximation of likelihood is converted into a regression model. In the following, we refer to generalized log-linear Poisson regression approach as approximation of integrals in (3.8). In the next subsection, we also investigate an alternative, the logistic regression. Berman and Turner (1992) developed a numerical quadrature method to approximate maximum likelihood estimation for an inhomogeneous Poisson point process. Berman-Turner method has then been extended to Gibbs point processes by Baddeley and Turner (2000), approximating the integral in (3.4) by a Riemann sum

S T λ θ ((u, v)|x)dvdu ≈ n+p k=1 w k λ θ ((ξ k , t k )|x), (3.9) 
where (ξ k , t k ) are points in {(ξ 1 , t 1 ), ..., (ξ n , t n ), (ξ n+1 , t n+1 ), ..., (ξ n+p , t n+p )} ∈ W consisting of the n events of x and p dummy points, and w k are quadrature weights such that n+p k=1 w k = ℓ(S × T ) where ℓ is Lebesgue measure. This yields an approximation for the log pseudo-likelihood of the form

log P L(x; θ) ≈ (ξ,t)∈x log λ θ ((ξ, t)|x) - n+p k=1 w k λ θ ((ξ k , t k )|x). (3.10) Note that if the set of points {(ξ k , t k ), k = 1, . . . , n + p} includes all the points of x = {(ξ 1 , t 1 ), ..., (ξ n , t n )}, we can rewrite (3.10) as log P L(x; θ) ≈ n+p k=1 w k (y k log λ θ ((ξ k , t k )|x) -λ θ ((ξ k , t k )|x)) , (3.11) 
where

y k =    1/w k , if (ξ k , t k ) ∈ x is an event, 0, if (ξ k , t k ) / ∈ x is a dummy point.
(3.12)

The right hand side of (3.11), for fixed x, is formally equivalent to the log-likelihood of independent Poisson variables Y k ∼ P oisson(λ θ ((ξ k , t k )|x)) taken with weights w k . Therefore, by using the glm function in R (R Core Team 2016), we can perform the maximum likelihood-based parameter estimation of this Poisson generalized linear model and obtain the maximum value for (3.11).

Note that in hybrid Geyer model (2.12), we consider λ(ξ, t) = λ β (ξ, t) = βµ(ξ, t) where µ(ξ, t) is known or estimated beforehand and β is a parameter to estimate. In summary, the method is as follows.

Algorithm 1

• Generate a set of p uniform dummy points in W and merge them with all the data points in x to construct the set of quadrature points (ξ k , t k ) ∈ W with k = 1, . . . , n + p.

• Compute the quadrature weights w k and the indicators y k defined in (3.12),

• Compute the sufficient statistics S((ξ k , t k ), x) at each quadrature point,

• Fit a log-linear Poisson regression with explanatory variables S((ξ k , t k ), x), and offset log λ(ξ k , t k ) on the responses y k with weights w k to obtain estimates θ for the S-vector and intercept θ0 ,

• Return the maximum pseudo-likelihood-based parameter estimates γj = exp( θj ) for j = 1, . . . , m and β = exp( θ0 ).

We define the quadrature scheme by defining a spatio-temporal partition of W into cubes C k of equal volumes ν and by using the counting weights proposed in Baddeley and Turner (2000). We then assign to each dummy or data point (ξ k , t k ) a weight w k = ν/n k where n k is the number of dummy and data points that lie in the same cube as (ξ k , t k ).

The number of dummy points should be sufficient for an accurate estimate of the pseudo-likelihood. We follow Baddeley and Turner (2000) and start with p ≈ 4n(x). Then, we increase it until k w k = ℓ(W), what can lead to high computational costs.

An alternative way to define the quadrature scheme for Algorithm 1 is based on Dirichlet tessellation (Baddeley and Turner 2000) and the weight of each point is equal to the volume of the corresponding Dirichlet 3D cell. We consider cubes because it is less time consuming and provides similar results (see Opitz (2009) for quadrature schemes comparison of 3D Gibbs point processes).

Logistic likelihood approach

The logistic likelihood method (Baddeley et al. 2014) is an alternative for estimating the regular parameters of Gibbs models that is closely related to the pseudo-likelihood method. The Berman-Turner approximation often requires a quite large number of dummy points. Hence, fitting such GLM can be computationally intensive, especially when dealing with a large dataset. Baddeley et al. (2014) formulated the pseudolikelihood estimation equation as a logistic regression using auxiliary dummy point configurations and proposed a computational technique for fitting Gibbs point process models to spatial point patterns. Iftimi et al. (2018) extended the logistic likelihood approach for spatio-temporal Gibbs point processes and we tailored it to our model.

Let x be a realization of a spatio-temporal point process defined on W having a density f θ with respect to the unit rate Poisson process and with conditional intensity function λ θ (•|x). We consider an independent Poisson process for dummy points, with intensity function ρ, and we denote by d a set of dummy points. We follow Baddeley et al. (2014) (resp. Iftimi et al. (2018)) for choosing ρ of a homogeneous (resp. inhomogeneous) Poisson process in simulation study (resp. application). See Baddeley et al. (2014), for a data-driven determination of ρ and its effect on efficiency and practicability of the method.

By defining Y (ξ, t) = ✶ {(ξ,t)∈x} for (ξ, t) ∈ x ∪ d, we obtain independent Bernoulli variables taking one for data points and zero for dummy points. We have

P r(Y (ξ, t) = 1) = λ θ ((ξ, t)|x\(ξ, t)) λ θ ((ξ, t)|x\(ξ, t)) + ρ(ξ, t) , (3.13) 
By considering the log linearity assumption for the conditional intensity λ θ (•|x) in (3.6), the logit of P r(Y (ξ, t) = 1) is

log λ θ ((ξ, t)|x\(ξ, t)) ρ(ξ, t) = log λ(ξ, t) ρ(ξ, t) + m j=1 θ j S j ((ξ, t), x\(ξ, t)), (3.14) 
which is a linear model in θ with offset log λ(ξ,t) ρ(ξ,t) . Since λ θ ((ξ, t)|x) = λ θ ((ξ, t)|x\(ξ, t)) for (ξ, t) ∈ d, the log logistic likelihood is defined by

log LL(x, d; θ) = (ξ,t)∈x∪d Y (ξ, t) log λ θ ((ξ, t)|x\(ξ, t)) λ θ ((ξ, t)|x\(ξ, t)) + ρ(ξ, t) + (ξ,t)∈x∪d [1 -Y (ξ, t)] log ρ(ξ, t) λ θ ((ξ, t)|x) + ρ(ξ, t) = (ξ,t)∈x log λ θ ((ξ, t)|x\(ξ, t)) λ θ ((ξ, t)|x\(ξ, t)) + ρ(ξ, t) + (ξ,t)∈d log ρ(ξ, t) λ θ ((ξ, t)|x) + ρ(ξ, t) . (3.15)
The maximum of the log-logistic likelihood exists and under regularity condition (Bad-deley et al. 2019) is unique. Hence, estimation can be implemented in R by using the glm function.

As in Algorithm 1, we consider λ(ξ, t) = λ β (ξ, t) = βµ(ξ, t) and we estimate the regular parameters form the following algorithm.

Algorithm 2

• Generate dummy points d from a Poisson process with intensity function ρ and merge them with all the data points in x to construct the set of quadrature points

(ξ k , t k ) ∈ W,
• Obtain the response variables y k (1 for data points, 0 for dummy points),

• Compute the sufficient statistics S((ξ k , t k ), x\(ξ k , t k )) at each quadrature point,

• Fit a logistic regression model with explanatory variables S((

ξ k , t k ), x\(ξ k , t k )), and offset log (µ(ξ k , t k )/ρ(ξ k , t k ))
on the responses y k to obtain estimates θ for the S-vector and intercept θ0 ,

• Return the parameter estimator γ = exp( θ) and β = exp( θ0 ) and in the case where

µ(ξ k , t k )/ρ(ξ k , t k ) is a constant c we have β = c -1 exp( θ0 ).
In the same way, we assume that θ = (log γ 1 , log γ 2 , ..., log γ m ) is the logarithm of interaction parameters in spatio-temporal hybrid Strauss hardcore point process (2.16). The Papangelou conditional intensity of the spatio-temporal hybrid Strauss hardcore process for

(u, v) ∈ W is λ((u, v)|x) = λ(u, v) m j=1 γ n[C q j r j (u,v);x\(u,v)] j 1{||ξ-u||> hc s or |t-v|> hc t ; ∀(ξ, t) ∈ x\(u, v)}. (3.16) To estimate θ, due to (2.18), we just consider the points (u, v) where m((u, v)|x) is equal to 1 in (3.16). By defining S j ((u, v), x) := n[C q j r j (u, v); x \ (u, v)] in (3.16), we can thus write λ θ ((u, v)|x) = λ(u, v) m j=1 exp(θ j S j ((u, v), x)).
Hence, the logarithm of the Papangelou conditional intensity of the spatio-temporal hybrid Strauss hardcore point process for (u, v) ∈ W which satisfies in hardcore condition, i.e. m ((u, v)

|x) = 1 in (3.16), is log λ((u, v)|x) = log λ(u, v) + m j=1 (log γ j )S j ((u, v), x) = log λ(u, v) + θ ⊤ S((u, v), x) (3.17)
corresponding to a linear model in θ with offset log λ(u, v) where

S((u, v), x) = [S 1 ((u, v), x), S 2 ((u, v), x), ..., S m ((u, v), x)] ⊤ is a sufficient statistics.
The logit for the models is

log λ θ ((ξ, t)|x) ρ(ξ, t) = log λ(ξ, t) ρ(ξ, t) + m j=1 θ j S j ((ξ, t), x), (3.18) 
which is a linear model in θ with offset log λ(ξ,t) ρ(ξ,t) . We finally implement Algorithm 2 for quadrature points (data and dummy points) such that m(•|x) = 1.

Bayesian approach

The calculation of composite likelihoods: pseudo-likelihood and logistic likelihood involves complex, high-dimensional integrals for Cox-Gibbs models, which further need estimation methods to handle the latent (i.e., unobserved) Gaussian variables. The hierarchical structure of the Cox-Gibbs model ensures a Bayesian formulation, and inference can be achieved by using the Integrated Nested Laplace Approximation (Rue et al. 2009). In Gabriel et al. (2017), [START_REF] Serra | Spatiotemporal log-Gaussian Cox processes for modelling wildfire occurrence: the case of Catalonia, 1994-2008[END_REF], Opitz et al. (2020) and Pimont et al. (2021), INLA-based estimation has been implemented for spatio-temporal log-Gaussian Cox process models (i.e., without Gibbs interactions) for wildfire ignitions. We here extend INLA-based inference to spatio-temporal Cox-Gibbs processes. It is coupled with the stochastic partial differential equations approach of [START_REF] Lindgren | An explicit link between Gaussian fields and Gaussian Markov random fields the SPDE approach[END_REF] for numerically convenient Gauss-Markov representations of spatial Matérn covariances, Alternatively, one could consider Markov chain Monte Carlo (MCMC) estimation for LGCPs [START_REF] Taylor | Bayesian inference and data augmentation schemes for spatial, spatiotemporal and multivariate log-Gaussian Cox processes in R[END_REF], whose use could be extended to the Cox-Gibbs models, but we do not pursue this approach here. The INLA method calculates the integrals by a set of carefully chosen deterministic approximations related to the classical Laplace approximation [START_REF] Tierney | Accurate approximations for posterior moments and marginal densities[END_REF]. INLA is generally faster compared to MCMC methods when considering comparable approximation accuracy, and INLA works well even with very sophisticated hierarchical structures combining several Gaussian random effects. A comparison in the spatial LGCP setting (but without estimating hyperparameters such as the range and variance of the Gaussian) was conducted by [START_REF] Taylor | INLA or MCMC? a tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes[END_REF]. Rue et al. (2009) introduced INLA as an estimation method for generalized mixed additive regression models with multivariate Gaussian random effects, also called latent Gaussian models. [START_REF] Opitz | Latent Gaussian modeling and INLA: A review with focus on spacetime applications[END_REF] reviews INLA method for spatio-temporal applications and presents the approach as follows. The distribution of observation y i of the response depends on a predictor η i (with Gaussian prior distribution) and potentially on other parameters, so-called hyperparameters collected into a vector θ. We adopt standard Bayesian notation by writing π(.) for densities and conditional densities. Specifically, conditional to η i and θ, we write the probability density of y i as π(y i |η i , θ). Most often, the mean of y i is related to η i through a link function h

Bayesian estimation with INLA

-1 such that ❊(y i |η i , θ) = h(η i ), i = 1, . . . , n, with h : | → |. The hierarchical model is as structured follows: θ ∼ π(θ), hyperparameters, z|θ ∼ N m (0, Q -1 θ ), latent Gaussian process y | z, θ ind. ∼ i π(y i |η i (z), θ), observations
where Q θ is the precision matrix of the latent Gaussian vector z. The predictor vector η is additively composed of components z, that is, η(z) = Az, with the fixed observation matrix A ∈ | n×m that maps latent variables z to predictors η i = η i (z) associated to observations y i . The resulting joint posterior density of z and θ given y is

π(z, θ|y) ∝ exp - 1 2 z ′ Q θ z + i log(π(y i |η i , θ))) + log π(θ) ,
in general, and in our case, this density does not correspond to some known and easily tractable multivariate distribution family.

Latent Gauss-Markov fields and Laplace approximation

We say that a random vector z|θ ∼ N (0,

Q -1 θ ) is a Gauss-Markov random field if Q is a sparse matrix, i.e. the number of non-null entries of its n × n covariance matrix Q = (q ij ) 1≤i,j≤n is O(n).
The core of the INLA approach is Laplace approximation which starts with the computation the integral f (z)dz. This integral can be approximated by using the fact that a multivariate Gaussian density integrates to 1 as follows

f (z)dz = exp(kg(z))dz ≈ 2π k d/2 |H(g)(z * )| -1/2 exp(kg(z * )),
where z * is the unique global maximum of g and H(g)(z * ) is the Hessian matrix.

In the context of INLA, Let k = 1 and f (z) = exp(g(z)) = π(z, θ). We have

π(z, θ)dz = 1 π G (z * |θ) exp(π(z * , θ)),
where π G is a Gaussian approximation with mean vector z * to the conditional density of z|θ. Hence, to calculate the posterior marginal densities of hyperparameters

π(θ j |y) = π(z, θ|y)dzdθ -j = π(θ|y)dθ -j ,
we use the Laplace approximation for π(z, θ|y)dz = π(θ|y) such that the approximated density

∼ π satisfies ∼ π(θ|y) ∝ π(z, θ, y) π G (z|θ, y) | z=z * (θ)
where z * (θ) is the mode of the joint density π(z, θ, y) for fixed (θ, y). Thus an approximation of the posterior marginal of

θ j is ∼ π(θ j |y) = L l=1 w l ∼ π(θ l |y),
which is a numerical integration with a set of integration nodes θ l chosen from a numerical exploration of the surface of the density ∼ π(θ -j , θ j |y) with θ j held fixed and weights w l . To calculate the posterior marginal densities of the latent Gaussian field

π(z i |y) = π(z, θ|y)dz -i dθ = π(z i |θ, y)π(θ|y)dθ,
that just is enough to approximately evaluate π(z i |θ, y). Hence, an approximation of the posterior marginal of

z i is ∼ π(z i |y) = K k=1 w k ∼ π(z i |θ k , y) ∼ π(θ k |y), where ∼ π(z i |θ k , y) ∝ π(z|θ k , y) π(z -i |z i , θ k , y)
is a numerical integration with a set of integration nodes θ k and weights w k . [START_REF] Simpson | Penalising model component complexity: A principled, practical approach to constructing priors[END_REF] have proposed a principled, intuitive approach of choosing prior distributions for important hyperparameters of Bayesian models, such as the range and variance parameters of the SPDE-based GMRF-representation of Gaussian fields with Matérn covariance.

Penalized complexity priors

Local parameter estimation

An alternative approach for modeling multi-scale point patterns relies on local likelihood approach [START_REF] Loader | Local Regression and Likelihood[END_REF][START_REF] Baddeley | Local composite likelihood for spatial point processes[END_REF]) to obtain spatially-varying estimates of the parameters of a point process model. We here provide an extension to the spatiotemporal framework to explore local changes in the interaction structures, that can not be retrieved from models with global parameters.

The local likelihood at each spatio-temporal point (ξ, t) ∈ W is the likelihood of the restriction of point process to a cylinder centred at (ξ, t). It may be investigated in pseudo-likelihood's or logistic likelihood's model fitting of spatio-temporal Gibbs point processes (Besag 1977[START_REF] Lindsay | Composite likelihood methods[END_REF], Baddeley et al. 2014). Local pseudolikelihood for Gibbs models was defined independently by [START_REF] Zhuang | Weighted likelihood estimators for point processes[END_REF] and Baddeley et al. (2015). [START_REF] Baddeley | Local composite likelihood for spatial point processes[END_REF] developed a general approach, the local composite likelihood. In what follows, we develop local versions of two composite likelihoods: pseudo-likelihood and logistic likelihood for our spatio-temporal Gibbs models (Section 3.1.1). In each case, the logarithm of the composite likelihood is a stochastic integral over the spatio-temporal domain, similar to the Poisson log-likelihood. We simply introduce a local weighting kernel into this stochastic integral, giving a local composite log-likelihood.

Local pseudo-likelihood

Zhuang (2015) extended the local likelihood to spatio-temporal point processes so that to each point (u * , v * ) is assigned a spatial weight W σs (u * ) that depends on its relative spatial location u * as follows

log LL(u * ; θ) = n i=1 W σs (u * -ξ i ) log λ θ (ξ i , t i ) - S T W σs (u * -u)λ θ (u, v)dvdu, (3.19)
where W σs is a weight function (usually a kernel function) and λ θ is intensity function. The local likelihood can be also used to estimate the spatio-temporal variation of the parameters of the model.

We extend the local likelihood approach to spatio-temporal Gibbs point process models by using pseudo-likelihood (Besag 1977) at each desired spatio-temporal point (3.20) where

(u * , v * ) ∈ W by log LP L((u * , v * ); θ) = n i=1 W σs (u * -ξ i )W σt (v * -t i ) log λ θ ((ξ i , t i )|x) - S T W σs (u * -u)W σt (v * -v)λ θ ((u, v)|x)dvdu,
W σs (u) = σ -2 s W (u/σ s ) and W σt (v) = σ -1 t W (v/σ t )
are weight functions (usually a kernel function), σ s , σ t > 0 are the smoothing bandwidths, and λ θ (•|x) is conditional intensity function of Gibbs model. By maximizing log LP L((u * , v * ); θ) and varying (u * , v * ), we can determine how parameter θ changes with spatio-temporal points. Local pseudo-likelihood (3.20) can be maximised in the same way as pseudolikelihood approach proposed in Section 3.1.1.1.

The local pseudo-likelihood (3.20) can be approximated by

log LP L((u * , v * ); θ) ≈ n i=1 W σs (u * -ξ i )W σt (v * -t i ) log λ θ ((ξ i , t i )|x) - n+p k=1 W σs (u * -ξ k )W σt (v * -t k )λ θ ((u k , v k )|x)w k , (3.21) 
where (ξ k , t k ) are points in {(ξ 1 , t 1 ), ..., (ξ n , t n ), (ξ n+1 , t n+1 ), ..., (ξ n+p , t n+p )} ∈ W = S × T and w k are quadrature weights that n+p k=1 w k = ℓ(S × T ). Hence, we can rewrite (3.21) as (3.22) where λ k = λ θ ((ξ k , t k )|x) and

log LP L((u * , v * ); θ) ≈ n+p k=1 (y k log λ k -λ k )w k W σs (u * -ξ k )W σt (v * -t k ),
y k =    1/w k if (ξ k , t k ) ∈ x 0 if (ξ k , t k ) / ∈ x (3.23)
The right hand side of (3.22), for fixed x, is formally equivalent to the log-likelihood of independent Poisson variables Y k ∼ P oisson(λ k ) taken with weights

w k × W σs (u * - ξ k ) × W σt (v * -t k )
. Therefore (3.22) can be maximized using standard software for fitting GLMs, such as that in R (R Core Team, 2016). Due to the advantage of logistic likelihood over pseudo-likelihood for spatio-temporal Gibbs point processes (see Iftimi et al. (2018) and Section 4.3.1), we aim to develop the local logistic likelihood for spatio-temporal Gibbs point processes as follows.

Local logistic likelihood

We assume that X is a spatio-temporal point process on W = S × T whose distribution is given by a density f θ with respect to a unit rate Poisson process on W and let x = {(ξ 1 , t 1 ), ..., (ξ n , t n )} be a realisation of X with conditional intensity function of a loglinear form, i.e. λ θ ((u, v)

|x) = λ(u, v) exp(θ ⊤ S((u, v), x)) for (u, v) ∈ W. The local logistic log likelihood at point (u * , v * ) can be defined by log LLL((u * , v * ); θ) = (ξ i ,t i )∈x W σs (u * -ξ i )W σt (v * -t i ) log λ θ ((ξ i , t i )|x) λ θ ((ξ i , t i )|x) + ρ(ξ i , t i ) - S T W σs (u * -u)W σt (v * -v)ρ(u, v) log λ θ ((u, v)|x) + ρ(u, v) ρ(u, v) dvdu, (3.24) 
where W σs , W σt are weight functions and ρ is a nonnegative real-valued function. By Campbell theorem, we have

E   (ξ i ,t i )∈d W σs (u * -ξ i )W σt (v * -t i ) log ρ(ξ i , t i ) λ θ ((ξ i , t i )|x) + ρ(ξ i , t i )   = S T W σs (u * -u)W σt (v * -v)ρ(u, v) log λ θ ((u, v)|x) + ρ(u, v) ρ(u, v) dvdu, (3.25) 
Hence, we can approximate (3.24) by

log LLL((u * , v * ); θ) ≈ (ξ i ,t i )∈x W σs (u * -ξ i )W σt (v * -t i ) log λ θ ((ξ i , t i )|x) λ θ ((ξ i , t i )|x) + ρ(ξ i , t i ) + (ξ i ,t i )∈d W σs (u * -ξ i )W σt (v * -t i ) log ρ(ξ i , t i ) λ θ ((ξ i , t i )|x) + ρ(ξ i , t i ) (3.26)
where d = {(ξ n+1 , t n+1 ), ..., (ξ n+p , t n+p )} is a random pattern of p dummy points that is a realisation of a Poisson point process D independent of X with intensity function ρ. The local logistic score at point

(u * , v * ) is U ((u * , v * ); θ) = ∂ ∂θ log LLL((u * , v * ); θ) = (ξ i ,t i )∈x W σs (u * -ξ i )W σt (v * -t i ) ρ(ξ i , t i )ζ θ ((ξ i , t i )|x) λ θ ((ξ i , t i )|x) + ρ(ξ i , t i ) - S T W σs (u * -u)W σt (v * -v) λ θ ((u, v)|x)ρ(u, v)ζ θ ((u, v)|x) λ θ ((u, v)|x) + ρ(u, v) dvdu (3.27)
where ζ θ is the first derivative of the log conditional intensity, log λ θ (•|x), with respect to θ and local parameter estimates θ(u * , v * ) is a zero of the local score (3.27). By considering the log linearity assumption for conditional intensity λ θ (•|x), the negative Hessian matrix is thus obtained

H((u * , v * ); θ) = - ∂ ∂θ ⊤ U ((u * , v * ); θ) = - ∂ 2 ∂θ∂θ ⊤ log LLL((u * , v * ); θ) = - (ξ,t)∈x W σs (u * -ξ)W σt (v * -t)ζ θ ((ξ, t)|x)ζ θ ((ξ, t)|x) ⊤ × ρ(ξ, t)S((ξ, t), x) (S((ξ, t), x) + ρ(ξ, t)) 2 + S T W σs (u -u * )W σt (v -v * )ζ θ ((u, v)|x)ζ θ ((u, v)|x) ⊤ × ρ(u, v) 2 S((u, v), x) (S((u, v), x) + ρ(u, v)) 2 dvdu. (3.28)
We can also rewrite (3.26) by

log LLL((u * , v * ); θ) = (ξ,t)∈x∪d W σs (ξ -u * )W σt (t -v * )Y (ξ, t) log p θ ((ξ, t)|x) + (ξ,t)∈x∪d W σs (ξ -u * )W σt (t -v * )[1 -Y (ξ, t)] log(1 -p θ ((ξ, t)|x)), (3.29) where p θ ((ξ, t)|x) = λ θ ((ξ,t)|x) λ θ ((ξ,t)|x)+ρ(ξ,t) and Y (ξ, t) = 1 {(ξ,t)∈x} for (ξ, t) ∈ x ∪ d, with P r(Y (ξ, t) = 1) = λ θ ((ξ, t)|x) λ θ ((ξ, t)|x) + ρ(ξ, t) . (3.30)
Hence, the local logistic likelihood (3.26) is a weighted logistic regression with offset term log λ(ξ,t) ρ(ξ,t) and weights W σs (u * -•)W σt (v * -•) that can be maximised in the same way as logistic likelihood approach in Section 3.1.1.2 at point (u * , v * ) ∈ W as follows.

Algorithm 3

• Generate a set of dummy points according to a Poisson process with intensity function ρ and merge them with all the data points in x to construct the set of quadrature points

(u k , v k ) ∈ W, • Compute the weights W σs (u * -u k )W σt (v * -v k ),
• Obtain the response variables y k (1 for data points, 0 for dummy points),

• Compute the values S((u k , v k ), x) of the vector of sufficient statistics at each quadrature point,

• Fit a logistic regression model with explanatory variables S((

u k , v k ), x) and off- set log[λ(u k , v k )/ρ(u k , v k )] and weights W σs (u * -u k )W σt (v * -v k )
on the responses y k to obtain local estimates θ(u * , v * ) for the S-vector and intercept θ0 (u * , v * ),

• Return the local parameter estimator γ(u

* , v * ) = exp( θ(u * , v * )) and β(u * , v * ) = exp( θ0 (u * , v * )) and in case that λ(u k , v k )/ρ(u k , v k ) is constant c, the offset pa-
rameter may be omitted and return

γ(u * , v * ) = exp( θ(u * , v * )) and β = c -1 exp( θ0 (u * , v * )).
Algorithm 3 can be implemented in the same way as Algorithm 2 in R. However, it requires to compute the weights W σs (u *u k )W σt (v *v k ). We assume the weight functions are kernel densities for simplicity. For a density estimation and bandwidth selection, we develop proposed approach in [START_REF] Baddeley | Local composite likelihood for spatial point processes[END_REF] to the spatio-temporal framework. Hence, first, we have to select bandwidths in (3.24).

Bandwidth selection

In the context of point processes, a range of different methods for bandwidth selection have been proposed in the literature (see e.g. Baddeley et al. (2015) and [START_REF] Davies | Tutorial on kernel estimation of continuous spatial and spatiotemporal relative risk with accompanying instruction in R[END_REF] for overviews), and most noteworthy are perhaps the recent method of Cronie and van Lieshout (2018) and the Poisson processes likelihood cross-validation method in [START_REF] Loader | Local Regression and Likelihood[END_REF] which we here develop it to the logistic likelihood.

The logistic likelihood cross-validation criterion is defined by

LLCV (σ s , σ t ) = n i=1 log λ-i ((ξ i , t i )|x) λ-i ((ξ i , t i )|x) + ρ(ξ i , t i ) - S T ρ(u, v) log λ((u, v)|x) + ρ(u, v) ρ(u, v) dvdu, (3.31) 
where

λ((u, v)|x) = λ θ(u,v) ((u, v)|x), and λ-i ((ξ i , t i )|x) = λ θ-i (ξ i ,t i ) ((ξ i , t i )|x)
is the plug-in estimation of conditional intensity at a point (ξ i , t i ), using the leave-one-out parameter estimation θ-i (ξ i , t i ) based on x \ (ξ i , t i ), and θ(ξ, t) = θ((ξ, t); σ s , σ t ) is the local estimate of θ at spatio-temporal point (ξ, t) using bandwidths σ s , σ t > 0. The optimal bandwidths σ opt s , σ opt t are the maximiser of (3.31). It is difficult to approximate the integrals on the right hand side of (3.31). To address this issue, we have by (3.26)

LLCV (σ s , σ t ) ≈ n i=1 log λ-i ((ξ i , t i )|x) λ-i ((ξ i , t i )|x) + ρ(ξ i , t i ) + n+p i=n+1 log ρ(ξ i , t i ) λ-i ((ξ i , t i )|x) + ρ(ξ i , t i ) = n i=1 log λ-i ((ξ i , t i )|x) + n+p i=1 log ρ(ξ i , t i ) λ-i ((ξ i , t i )|x) + ρ(ξ i , t i ) . (3.32)
Note that, in principle, it is required to fit n + p local logistic likelihoods for sample size n + p -1 for obtaining a single evaluation of (3.32). Hence, it has a high computational cost and for overcoming it, we approximate (3.32) as follows. As in the case of density estimation in page 90 of [START_REF] Loader | Local Regression and Likelihood[END_REF], we may approximate θ-i (ξ i , t i ) to first order using leverage and influence functions [START_REF] Baddeley | Local composite likelihood for spatial point processes[END_REF], Baddeley et al. 2019). Hence, we have

log λ-i ((ξ i , t i )|x) -log λ((ξ i , t i )|x) ≈ -ζ θ(ξ i ,t i ) ((ξ i , t i )|x) ⊤ H((ξ i , t i ); θ(ξ i , t i )) -1 × ζ * θ(ξ i ,t i ) ((ξ i , t i )|x), (3.33) 
where

ζ * θ ((ξ i , t i )|x) = W σs (0)W σt (0)ζ θ ((ξ i , t i )|x) + j =i,j∈x W σs (ξ j -ξ i )W σt (t j -t i ) △ (ξ i ,t i ) ζ θ ((ξ j , t j )|x) - j =i,j∈x∪d W σs (ξ j -ξ i )W σt (t j -t i ) △ (ξ i ,t i ) π θ ((ξ j , t j )|x), (3.34) 
with

△ (u,v) g((u ′ , v ′ ), x) := g((u ′ , v ′ ), x ∪ (u, v)) -g((u ′ , v ′ ), x \ (u, v)), for (u, v), (u ′ , v ′ ) ∈ W and π θ ((ξ j , t j )|x) = ζ θ ((ξ j , t j )|x) λ θ ((ξ j , t j )|x) λ θ ((ξ j , t j )|x) + ρ(ξ j , t j )
.

Hence, we approximate (3.32) by

LLCV (σ s , σ t ) ≈ n i=1 log λ θ(ξ i ,t i ) ((ξ i , t i )|x) - n i=1 ζ θ(ξ i ,t i ) ((ξ i , t i )|x) ⊤ H((ξ i , t i ); θ(ξ i , t i )) -1 ζ * θ(ξ i ,t i ) ((ξ i , t i )|x) - n+p i=1 λ-i ((ξ i , t i )|x) λ-i ((ξ i , t i )|x) + ρ(ξ i , t i ) , (3.35) 
The third term of right side in (3.35) is the first order of Taylor series expansion of

log ρ λ-i +ρ (log(1 -x) = -x -x 2 2 -• • •, -1 < x < 1) by log ρ λ-i + ρ = log(1 - λ-i λ-i + ρ ) ≈ - λ-i λ-i + ρ , (3.36) 
where λ-i ((ξ i , t i )|x) is obtained from (3.33).

Chapter 4

Simulations

Simulation-based techniques play an important role in the analysis of point patterns which are used in calculation of summary statistics and goodness-of-fit tests for point process models and also visualisation of point process models (Illian et al. 2008). This chapter treats both an algorithm based on MCMC methods and two-step simulationbased procedure for Gibbs and Cox-Gibbs models proposed in Chapter 2. We implemented simulation algorithms and inference methods in R code. Most of them can be found here http://edith.gabriel.pagesperso-orange.fr/software.html.

Gibbs models' simulation

The simulation algorithms of Gibbs point process models require only computation of the Papangelou conditional intensity which avoids to consider the difficult estimation of the unknown normalizing constant in the density function. Gibbs point process models can be simulated by using Markov chain Monte Carlo (MCMC) algorithms like the birth-death Metropolis-Hastings algorithm (Møller and Waagepetersen 2004) that belongs to the large class of Metropolis-Hastings algorithms (Geyer and Møller 1994).

In this section, we first present the birth-death Metropolis-Hastings algorithm and secondly we investigate the goodness of parameter estimation of the two approaches introduced before.

Birth-death Metropolis-Hastings algorithm

For x a spatio-temporal point pattern in W, we can propose either a birth with probability q(x) or a death with probability 1q(x). For a birth, a new point (u, v) ∈ W is sampled from a probability density b(x, •) and the new point configuration x ∪ (u, v) is accepted with probability A(x, x ∪ (u, v)), otherwise the state remains unchanged. For a death, the point (ξ, t) ∈ x chosen to be removed is selected according to a discrete probability distribution d(x, .) on x, and the proposal x \ (ξ, t) is accepted with probability A(x, x \ (ξ, t)), otherwise the state remains unchanged. For simplicity, we consider q

(x) = 1 2 , b(x, •) = 1/ℓ(W) and d(x, •) = 1/n(x). By setting A(x, x ∪ (u, v)) = min{1, r((u, v); x)}, and A(x, x \ (ξ, t)) = min{1, 1/r((ξ, t); x \ (ξ, t))} where r((u, v); x) = ℓ(W) n(x)+1 × λ((u, v)|x)
is the Hastings ratio (Iftimi et al. 2018), we obtain the following birth-death Metropolis-Hastings algorithm.

Algorithm 4

For n = 0, 1, ..., given X n = x (e.g. a Poisson process for n = 0), generate X n+1 :

• Generate two uniform numbers y 1 , y 2 in [0, 1],

• If y 1 ≤ 1 2 then -A new point (u, v) is uniformly sampled from a probability density 1/ℓ(W ), -Compute r((u, v); x) = ℓ(W) n(x)+1 λ((u, v)|x), (u, v) / ∈ x. If y 2 < r((u, v); x) then X n+1 = x ∪ (u, v) else X n+1 = x • If y 1 > 1 2 then
-Uniformly select a point (ξ, t) in x according to a discrete probability den-

sity 1/n(x), -Compute r((ξ, t); x\(ξ, t)) = ℓ(W) n(x) λ((ξ, t)|x \ (ξ, t))), (ξ, t) ∈ x. If y 2 < 1/r((ξ, t); x\(ξ, t)) then X n+1 = x\(ξ, t) else X n+1 = x. -Note that if x = ∅ then X n+1 = x.
This simulation process is repeated a large number of time in order to ensure the convergence of the algorithm to the expected distribution. This number of iterations is unknown a priori and must be determined by the user from practical knowledge and/or diagnostic tools. To investigate the convergence of the algorithm, we use a "trace plot" which shows the evolution of the number of points at each iteration of Algorithm 4. Thus, we check that the number of points in the simulated point pattern is stabilized (see Møller and Waagepetersen (2004), Illian et al. (2008) for more details).

Cox-Gibbs models' simulation

For generating the simulations from the hybrid Cox-Gibbs models, we follow two different procedures in simulation study and model validation.

For simulation study, we simulate point patterns under this model in two steps: first, a realization of Gaussian random field is simulated by the function rLGCP from the R-package spatstat. Second, a realization of hybrid Cox-Gibbs model given that realization is simulated using the birth-death Metropolis-Hastings algorithm.

For model validation, we simulate point patterns under fitted hybrid Cox-Gibbs model in two steps too: first, we sample from the posterior distribution of the fitted INLA model and extract the values of its latent field as a first-order interaction function (or trend function) of the Gibbs model. Second, a realization of hybrid Cox-Gibbs model given computed trend is simulated using the birth-death Metropolis-Hastings algorithm by the function rmh.default from the R-package spatstat. Indeed, we need the predictions from the model anywhere in the domain as we do not have any other covariate. To do this, an option is computation the linear predictor at the mesh nodes and project it onto the grid taking into account the uncertainty by sampling from its posterior distribution of the fitted INLA model. Hence, we could sample directly from the posterior marginal of the linear predictor at the observation scale. Indeed, when the likelihood depends not only in the latent field but also on some hyperparameters (as in the Gaussian case) we need to sample both η and θ jointly. In R-INLA this can be done using the inla.posterior.sample function which needs the output from the inla function by setting config=TRUE in the control.compute option.

Note that these simulations are motivated by our application on temperature anomalies (see Section 5.2) in which we consider spatial interactions during time intervals. Hence simulations above are performed in space but could be easily extended to the spatio-temporal framework in the case of continuous times, by using stpp package for simulating log-Gaussian Cox processes and estimating K-function.

Simulation study

The aim of our simulation study is threefold: first we want to compare the performance of the composite likelihood approaches defined in the previous chapter for the Gibbs models, second we want to test the simulation procedure of the Cox-Gibbs model and third we want to test the local logistic likelihood method.

Simulation study for Gibbs models

We compare the performance of the pseudo-likelihood and logistic likelihood approaches on the spatio-temporal multi-scale Geyer point process. Due to obtained results, we then perform a simulation study for the spatio-temporal hybrid Strauss hardcore model based on logistic likelihood approach.

We implement the estimation and simulation algorithms in R and generate 100 simulated realizations in the unit cube from three models of hybrid Geyer point process. The first one exhibits strong clustering (Model 1), the second one exhibits small scale inhibition and large scale clustering (Model 2) and the third one exhibits inhibition (Model 3). Model parameters are reported in Table 4.1. We consider a burn-in period of 20,000 steps in Algorithm 4. Algorithm 2). For each model, we compute the root mean square error (RMSE) of each set of estimated parameters (Table 4.3) and plot the related boxplots (Fig. 4.2). In Table 4.3 the lowest RMSE value is in bold and in Fig. 4.2 the true values are represented by horizontal red lines. Both RMSE and boxplots show that the logistic likelihood approach performs better than the pseudo-likelihood approach for any model. Note that in the spatial framework, Baddeley et al. (2014) showed that for large datasets the logistic likelihood method is preferable than the pseudo-likelihood method as it requires a smaller number of dummy points and performs quickly and efficiently. Daniel et al. (2018) and Choiruddin et al. (2018) investigated a similar comparison when these methods are regularized (i.e. using an approach with a simultaneous parameter estimation and variable selection by maximizing a penalized likelihood functions). Iftimi et al. (2018) found the advantage of the logistic likelihood approach for the spatio-temporal multi-scale area-interaction point process model. We here confirm this advantage for the spatio-temporal multi-scale Geyer point process model.

Hence, we consider the logistic likelihood approach for a simulation study of hybrid Strauss hardcore model. We generate simulations of three stationary spatio-temporal hybrid Strauss hardcore point processes specified by a conditional intensity of the form (3.16) in W = [0, 1] 3 . The parameter values used for the simulations are reported in Table 4.3. The spatial and temporal radii r and q, spatial and temporal hardcores hc s and hc t are treated as known parameters.

We generate 100 simulations of each specified model. Boxplots of parameter estimates λ, γ 1 , and γ 2 obtained from the logistic likelihood estimation method for each model are shown in Fig. 4.3. The red horizontal lines represent the true parameter values. Point and interval parameter estimates λ, γ 1 , and γ 2 are reported in Table 4.4. Most of the estimated parameter values are close to the true values for three models. Due to visual and computational comparisons, we conclude that the logistic likelihood approach performs well for spatio-temporal hybrid Strauss hardcore point processes. 

f (x) = ❊ 1 c(Z) n i=1 exp (Z(ξ i ))γ min{s,tr(ξ i ,x\ξ i )} , (4.1) 
where t r (ξ i , x\ξ i ) = j =i 1{||ξ jξ i ||≤ r}. For simulation of point pattern under this model, first, a realisation z of Z is simulated with the function rLGCP from the R-package spatstat where Z is a Gaussian random field with constant mean 5 and exponential covariance function

C(u) = Q 2 exp(-u/α)
with Q 2 = 2 and α = 0.1. Second, three realisations of LGCGP given Z = z is simulated using a birth-death Metropolis-Hastings algorithm is implemented in function rmh.default in spatstat package from a Geyer point process model with r = 0.05, s = 2 and three different value of γ = 0.05, 0.3, 0.5.

To assess the degree of clustering and regularity we consider L(u)u which its negative (resp. positive) values show point process is repulsive (resp. aggregated) at inter-point distances u. 4.4 shows the effect of more intensity of Gaussian random field, as first-order interaction of LGCGP, in some part of the window leads to more density in same parts when the value of γ is increased. Fig. 4.5 shows plots of empirical estimates of the L-functions minus the identity of the point patterns with above parameters which each of these plots comes with the empirical L-functions of 19 different realisations of same process with their mean to assess the general behaviour of the LGCGP related to value of γ. The point patterns exhibit both regularity and aggregation in different scale with a decreasing degree of regularity at small to moderate distances as increases, but a similar degree of aggregation at large distances. However, the general behaviour of the empirical L-function suggests a tendency to a higher degree of clustering at large distances when the value of γ is increased. Fig. 4.5 also suggests that for realisations of an LGCGP, the empirical estimate of L(u)u often has a global minimum when u is close to the interaction radius r, at least when there is strong to moderate repulsion in the model.

First evaluation of the local logistic likelihood approach

To assess the performance of the local logistic likelihood procedure, we generate a multi-structure point pattern in an unit cube. We consider a pattern which is a combination of strong clustering and randomness. Fig. 4.6 (left) is the plot of spatio-temporal multi-structure point pattern in unit cube devided to two regions by plane x = 0.5 that the left region (region I) appears to be strongly clustered while the right region (region II) appears to be randomised. Fig. 4.6 (right) is a spatial projection of point patten.

We consider a homogeneous spatio-temporal Strauss hardcore point process as a template model with density (2.14). Due to the value of γ, the model is clustered if γ > 1 and inhibited if γ < 1.

We fitted the Strauss hardcore point process model with r = q = 0.05 and spatial and temporal hardcore distances equal to 0.005 to the pattern, yielding λ = 45.68 and (3.35). Fig. 4.7 is the local estimates of the first-order interaction λ (left) and second-order interaction γ (right) for the Strauss hardcore point process using these optimal bandwidths. The points in region I have the large estimated values for γ (larger than one with blue color) that suggests a strong clustered pattern. For most of points in region II, γ is locally estimated smaller or close to one with red color. There are some points in region II that γ is estimated larger than one which is due to existence other points (data or dummy) near them.

Chapter 5

Applications

In this chapter, we consider the Gibbs models developed in Section 2.1 to describe two different patterns of forest fire occurrences, the first in South of France, the second in centre Spain. The Cox-Gibbs model proposed in Section 2.2 is considered in an innovative application of spatio-temporal modeling of hotspots of temperature, and in particular of temperature anomalies, in the United States.

Gibbs models for forest fire occurrences

Economic and ecological disasters caused by wildfires in the world have led the scientific community to develop many novel statistical analysis and modelling wildfire occurrences to better understand their behaviors. In this section, first, we focus on the modelling of forest fire occurrences in the Bouches-du-Rhône county (Southern France) between 2001 and 2015 available from the Prométhée database1 and the Castilla-La Mancha in Spain between 2004 to 2007 available from the clmfires dataset in Rpackage spatstat by hybrid Geyer model and hybrid Strauss hardcore model, respectively.

Several statistical studies have shown the influence of environmental and meteorological factors on forest fire occurrences. In the French Mediterranean basin, Opitz et al. (2020) fit a spatio-temporal log-Gaussian Cox process model for forest fire occurrences with a log-linear intensity depending on spatio-temporal land use and weather covariates. Ganteaume and Jappiot (2013) investigated the impact of the different covariates on the number of fires using multivariate analysis and Gabriel et al. (2017) explored the influence of land cover covariates, temperature and precipitation on the probability of event occurrence. In addition to the spatio-temporal clustering of events induced by some covariates, Gabriel et al. (2017) detected spatio-temporal interaction structures at different scales and notably an inhibitive effect that arises locally in time and space after wildfires as we expect lesser occurrences at these locations during a vegetation regeneration period.

Hence, we propose to fit the spatio-temporal hybrid Geyer point process model

(2.12) on wildfire occurrences to take into account both the inhomogeneities induced by covariates and the multi-scale structure of interactions. However, the complexity of forest fire occurrences is due in particular to the existence of multi-scale structures and also hardcore distances in space and time. For instance, changes in vegetation due to forest fires burnt areas affect the probability of fire occurrences during the regeneration period leading to the existence of hardcore distances in space-time.

The main second focus of our forest fire pattern analysis is to quantify the interactions across a range of spatio-temporal scales with the presence of hardcore distances which can be done by using the spatio-temporal hybrid Strauss hardcore process model (2.16). We apply the hybrid Strauss hardcore model on a forest fire pattern of Castilla-La Mancha in Spain.

Hybrid Geyer model for forest fires in France

Our data set is of the form (ξ i , t i ), i = 1, . . . , 434, where (ξ i , t i ) corresponds to a wildfire with more than 1 hectare of burnt surface spatially indexed by a DFCI2 cell center ξ i in the Lambert 93 projection system and year t i ∈ {2001, . . . , 2015}. To avoid duplicated points we uniformly jittered ξ i in its DFCI cell. We refer the reader to Gabriel et al. (2017) and Opitz et al. (2020) for further information on the data. Whilst forest fires are daily reported, we consider here the yearly scale, as done in many works (see e.g. Serra et al. (2012Serra et al. ( , 2014a,b),b)), because of the small number of reports and to optimize computation time in model fitting and validation steps. Fig. 5.1 plots locations of forest fires (left panel) and yearly number of occurrences (right panel). It shows some clustering at short and medium spatial distances. Note that there exist two particular areas without any fire occurrences as they correspond to a lake (center) and marshlands (South-West). The number of fires slightly exponentially decreases in time over the 15 years, mainly due to improvements of fire-fighting resources.

We consider the same framework as in Gabriel et al. (2017) and restrict our attention to the following covariates: water coverage, elevation, coniferous cover and building cover as spatial covariates and temperature average, precipitation as spatio-temporal covariates. Hence, we can consider these covariates as good proxies of the main environmental, climatic and human factors. Maps of covariates are shown in Fig. 5.2 in 2001.

Model fitting

Here we first estimate the spatio-temporal trend and then fit the multi-scale spatiotemporal Geyer model to forest fire occurrences. This two-step model fitting procedure follows our assumption that most forest fire occurrences are firstly due to environmental and meteorological conditions and secondly due to unobserved pairwise interactions. This technique will allow to see the benefits of the multi-scale interaction structure in our hybrid model compared to an inhoogeneous Poisson model with the same spatiotemporal trend.

Spatio-temporal trend estimation

We express the spatio-temporal trend (2.12) as λ(ξ, t) = βµ(ξ, t) where log µ(ξ, t) is assumed to linearly depend on covariates:

log µ(ξ, t) = β 0 + 4 k=1 β S k Z S k (ξ) + 2 l=1 β ST l Z ST l (ξ, t) + αt (5.1)
with Z S k (ξ), k = 1, . . . , 4, the spatial covariates, Z ST l (ξ, t), l = 1, 2, the spatio-temporal covariates and αt a decreasing trend of fire counts over time. Because the covariates are known at a fixed discretization scale, µ(ξ, t) does not vary for points ξ inside the same DFCI unit with a time t corresponding to the same year. By consequence, we can restrict our attention on DFCI grid cell centers ξ i , i = 1, . . . , 1320 and years t j = 2001, . . . , 2015 for j = 1, . . . , 15, and we consider a Poisson response for our model N ij |µ(ξ i , t j ) ∼ P oisson(µ(ξ i , t j )), where N ij is the number of forest fires in i th DFCI cell at year t j . The coefficient β will be estimated simultaneously with the others regular parameters by the logistic likelihood approach. Table 5.1 reports the coefficients β 0 , β S k , β ST l and α estimated as in Gabriel et al. (2017) and Opitz et al. (2020). The sign indicates if covariates favour (if positive, like coniferous, building and temperature) or prevent (if negative, like water, elevation, precipitation and time) fire occurrences. All covariates are globally significant and results are consistent with previous works (Ganteaume and Jappiot 2013, Gabriel et al. 2017, Opitz et al. 2020) for this county. Note that p-values have been computed during the trend fitting under a Poisson model and not for the overall fitting of forest fire occurrences under our spatio-temporal hybrid Geyer saturation process. Thus, we might obtained more significance of the covariates than under our hybrid Geyer saturation model.

Parameters estimation

There is no common method for estimating irregular parameters in spatial or spatiotemporal Gibbs point process models. Here we considered several combinations of ad-hoc values within a reasonable range and select the optimal irregular parameters according to the Akaike's Information Criterion (AIC) of the fitted model. Baddeley and Turner (2006) suggest that the spatial interaction radius r of the Geyer saturation point process should be between 0 and the maximum nearest neighbor dis- tance, about 8000 meters for our dataset. For the temporal radius q, we consider small values to be in accordance with the natural phenomena of forest fire occurrences. Finally, for the saturation parameter s, we have n(C q r (ξ i , t i ); x) ≤ s for all (ξ i , t i ) ∈ x. Hence, for any pair (r, q), we set s = max 1≤i≤n n(C q r (ξ i , t i ); x). According to the advantage of logistic likelihood over pseudo-likelihood (see Section 4.3.1), we use the logistic likelihood method and Algorithm 2 to estimate the regular parameters. We simulate dummy points from an inhomogeneous Poisson point process with intensity ρ(ξ, t) = Cµ(ξ, t)/ν where C = 4 by a classical rule of thumb in the logistic likelihood approach and ν = 2000 × 2000 × 1 (area of a DFCI cell multiplied by 1 year).

We fitted the spatio-temporal multi-scale Geyer point process model for a range of ad-hoc values (r j , q j ) ∈ [0, 8000] × {1, 2, 3, 4, 5}, and their corresponding values of s j , j = 1, . . . , m, with varying m in {1, 2, 3, 4, 5}. The minimum AIC is obtained for the combination given in Table 5.2. Estimated regular parameters γ j associated with their 95% bootstrap confidence intervals show strong clustering at very short distances, weak repulsion (resp. clustering) at small (resp. medium) scale, and randomness at large scale. Another methodology for testing the significance of γ j parameters from 1 could be to extend the pseudo-likelihood or composite likelihood ratio test introduced in Baddeley et al. (2016) to the spatio-temporal case.

Model validation

We validate our fitted model from several Monte Carlo tests using statistics based on the spatio-temporal inhomogeneous K-function (Gabriel and Diggle 2009). First, we generate n sim = 99 simulations from our fitted hybrid Geyer model (2.12) by Algorithm 4 with a burn-in period of 70, 000 steps, representing realizations from our null hypothesis. Then, we compute the spatio-temporal inhomogeneous K-function for the observed and simulated point patterns, denoted respectively by Kinh obs (h s , h t ) and 

p(h s , h t ) = 1 + n sim i=1 ✶{T i (h s , h t ) > T obs (h s , h t )} n sim + 1 , (5.3) 
where T i (h s , h t ) (resp. T obs (h s , h t )) denotes the local statistic T computed from the i th simulation (resp. the data) at (h s , h t ). The local statistic is defined by

T (h s , h t ) = ( Kinh (h s , h t ) -E(h s , h t )) 2 V (h s , h t ) . (5.4)
The global test combines the information for all spatial and temporal distances. We define the test statistic

T = ht,max 0 hs,max 0 T (h s , h t )dh s dh t , (5.5) 
where h s,max and h t,max are user-specific maximum spatial and temporal distances which are preferable to choose close to the (expected) range of interaction of the underlying point process. Illian et al. (2008) recommends to compare the results for several In addition, we also compute global envelopes and p-value of the spatio-temporal Kinh functions based on the Extreme Rank Length (ERL) measure defined in Myllymäki et al. (2017) and implemented in the R-package GET (Myllymäki and Mrkvička 2019). The main advantage is that the resulting p-value will not depend on a priori parameters as in the definition of p global with the h s,max and h t,max values. For each point pattern, we consider the long vector T i , i = 1, . . . , n sim (resp. T obs ) merging the

K inh i (•, h t ) (resp. K inh obs (•, h t ))
estimates for all considered values h t . The ERL measure of vector T i (resp. T obs ) of length n st is defined as

E i = 1 n ns nst j=1 ✶{R j ≺ R i }, (5.6) 
where R i is the vector of pointwise ordered ranks and ≺ is an ordering operator Myllymäki et al. ( 2017), Myllymäki and Mrkvička (2019). The final p-value is obtained by

p erl = 1 + n sim i=1 ✶{E i ≥ E obs } n sim + 1 . (5.7)
The global p-value p erl is equal to 0.34 consolidating previous results and validating our hybrid Geyer model. Note that we did the same tests for 99 simulations of an inhomogeneous Poisson process with intensity µ(ξ, t)/(2000 × 2000 × 1) (5.8). This model has been rejected at the level 5%, with a median global p-value equals to 0.04. The p erl value is equal to 0.04 under the Poisson assumption rejecting also this baseline model.

Hybrid Strauss hardcore model for forest fires in Spain

Castilla La Mancha is located in the middle of the Iberian peninsula and the third largest of Spain's autonomous regions representing 15.7% of the Spanish national territory.

Data and covariates description

The clmfires dataset available in spatstat package records the occurrence of forest fires in the region of Castilla-La Mancha, Spain (Figure 5.4, left) from 1998 to 2007. The study area is approximately 400 by 400 km. The clmfires dataset has already been used in some academic works devoted to the point process theory (see e.g. Juan et al. (2010), Gomez-Rubio (2020), Myllymäki et al. (2021)). The dataset has two levels of precision: from 1998 to 2003 locations were recorded as the centroid of the corresponding "district unit", while since 2004 locations coorespond to the exact UTM coordinates of the centroids of the fires.

Due to the low precision of fire locations for the years 1998 to 2003 (Gomez-Rubio 2020), we focus on fires in the period 2004 to 2007. In this period, we consider large forest fires with burnt areas larger than 5 ha. Fig. 5.4 (middle) shows the point pattern of 432 wildfire locations onto the spatial region.

Due to memory constraints and availability of climate covariates in months, we consider monthly fire occurrences. The temporal component of the process takes integer values from 1 to 48. We thus consider W = S × T where S is the region of Castillala-Mancha and T = {1, 2, . . . , 48} corresponds to the months since January 2004. Fig. 5.4 (right) shows the monthly number of fires occurring during our time period. We observe seasonal effects with notably large numbers of fires in summer that could be caused by high temperatures and low precipitations in this period and also by human activities.

In point pattern analysis, the spatial (spatio-temporal) inhomogeneity of patterns is notably driven by covariates. The clmfires dataset contains four environmental covariates that we include in our analysis: elevation, orientation, slope and land use. The covariates are known on a spatial grid with pixels of 4 × 4 km, resulting in a total of 10,000 pixels. The land use is a factor-valued covariate whereas the others are realvalued covariates. We also consider weather data freely provided by the WorldClim database3 and containing monthly maximum temperatures ( • C) and total precipitations (mm). Fig. 5.5 illustrates the environmental covariates, which are considered fixed during our temporal period, and the climate covariates in January 2007.

Estimation

First, we estimate the trend function by considering a generalized linear model (GLM) on covariates. Then, by an exploratory analysis using spatio-temporal summary statistics we approximate the hardcore parameters and the interaction ranges. Finally, we use the logistic likelihood approach described in Section 3.1.1.2 for the estimation of regular parameters of our model with the trend function estimated in a preliminary step.

Trend estimate

Since covariates are available on a spatial grid, we restrict our attention on the related grid centers ξ i , i = 1, . . . , 10000 and months {t j } j=1,...,48 ∈ T and consider N ij |λ(ξ i , t j ) ∼ P oisson(λ(ξ i , t j )) where N ij is the number of forest fires in the i th grid center at month t j .

Following last section, by considering a GLM with Poisson response, we obtain:

log λ(ξ i , t i ) = β 0 + 6 k=1 β k Z k (ξ i , t i ), (5.8) 
where Z k (ξ i , t i ), k = 1, . . . , 6, are the environmental and climatic covariates at point (ξ i , t i ) and β 0 , β k , k = 1, . . . , 6 are the coefficients to estimate. As said before, we consider the same values for environmental covariates over time. A straightforward way to fit a GLM in R is to use the function glm. Table 5.3 reports the estimated coefficients in (5.8) and their significance level by a two-tailed Student's t-test. Coefficients higher (respectively lower) than zero imply an increase (resp. decrease) of the expected mean number of forest fires when the covariate value increase (resp. decrease). Those related to elevation and temperature are positively significant, showing that these two covariates favors the ignition of wildfires. At the opposite, the covariate precipitation as a negative significant coefficient indicating that an increase of the amount of precipitations induces a decrease in the mean number of forest fires. The land use appears not significantly different from zero, it can be explained by the low spatial resolution of the covariates.

Irregular parameter estimates

We have two types of irregular parameters in our spatio-temporal Gibbs point process.

On the one hand, the hardcore distances that we can choose among the feasible solutions on the Pareto front of spatial and temporal interpoint distances. According to Fig. 5.6, we choose on the Pareto front the unique feasible solution in our case that gives non-zero values for the two hardcore distances, i.e. hc s = 0.35 km and hc t = 1 month. On the other hand, for the nuisance parameters m, r j and q j , j = 1, . . . , m, there is no common method for estimating them. Here we considered several combinations of ad-hoc values within a reasonable range and select the optimal irregular parameters according to the Akaike's Information Criterion (AIC) of the fitted model after the regular parameter estimation step. We chose 25 configurations of reasonable range for the nuisance parameters using a preliminary spatio-temporal exploratory analysis of the interaction ranges done with the inhomogeneous pair correlation function, the maximum nearest neighbor distance and the temporal auto-correlation function. We fitted the spatio-temporal hybrid Strauss point process model for a range of ad-hoc values r j ∈ (0.35, 20], q j ∈ {2, ..., 15}, j = 1, . . . , m and m ∈ {1, . . . , 6}. The minimum AIC is obtained for the combination given in Table 5.4.

Regular parameter estimates

We consider the logistic likelihood method investigated in Section 3.1.1.2 to estimate the regular parameters. We simulate dummy points from an inhomogeneous Poisson point process with intensity ρ(ξ, t) = C λ(ξ, t)/ν where C = 4 by a classical rule of thumb in the logistic likelihood approach, λ is the estimated trend and ν = 4 × 4 × 1 is the volume of a grid cell on one month. In order to satisfy the hardcore condition in (2.18), we remove dummy points at spatial and temporal distances respectively less than hc s and hc t . Estimated regular parameters are provided in Table 5.4.

Goodness-of-fit

The goodness-of-fit is accomplished by simulating point patterns from the fitted model. The first diagnostic can be formulated by summary statistics of point processes. As the second-order characteristics carry most of the information on the spatio-temporal structure (Stoyan 1992, Gonzalez et al. 2016), we only consider the pair correlation function (g-function). We generate n sim = 99 simulations from the fitted hybrid Strauss hardcore model and compute the corresponding second-order summary statistics g i (h s , h t ), i = 1, . . . , n sim , for fixed spatio-temporal distances (h s , h t ). We then build upper and lower envelopes:

U (h s , h t ) = max 1≤i≤n sim g i (h s , h t ), L(h s , h t ) = min 1≤i≤n sim g i (h s , h t ), (5.9) 
and compare the summary statistics obtained from the data, g obs (h s , h t ), to the pointwise envelopes. If it lies outside the envelopes at some spatio-temporal distances (h s , h t ), then we reject at these distances the hypothesis that our data come from our fitted model. Fig. 5.7 shows the spatio-temporal inhomogeneous g-function computed on our dataset (blue) and the envelopes obtained from the fitted model (light grey); g obs (h s , h t ) lies inside the envelopes for all (h s , h t ), meaning that the hybrid Strauss hardcore model is suitable for the data.

In addition, we compute global envelopes and p-value of the spatio-temporal gfunctions based on the Extreme Rank Length (ERL) measure defined in Section 5.1.1.2. For each point pattern, we consider the long vector T i , i = 1, . . . , n sim (resp. T obs ) merging the g i (•, h t ) (resp. g obs (•, h t )) estimates for all considered values h t . The ERL measure of vector T i (resp. T obs ) of length n st is defined in (5.6). Due to the global pvalue p erl = 0.59 and the absence of significant regions, that corresponds here to pairs of spatial and temporal distances where the statistics is significantly above or below the 

Application to local temperature hotspots

We develop an innovative application of spatio-temporal modeling of hotspots of temperature, and in particular of temperature anomalies, in the United States, where we remove Alaska and islands such as Hawai from the observation window. Based on a space-time temperature dataset available on a regular grid of latitude, longitude and months, we define a hotspot as a spatio-temporal point, i.e., as the combination of a spatial grid cell and a month and year. A hotspot arises if the temperature value observed at the grid cell is higher than the values in all of the neighboring grid cells during the same month and year. We can either limit the spatial neighborhood of a grid cells to all its adjacent grid cells, or we can use larger neighborhood composed of all the grid cells whose center point lies within a certain distance radius R 0 of the center point of the reference grid cell. Moreover, to focus on hotspots corresponding to relatively large temperatures, we can further add the condition that the temperature value at the grid cell must be higher than a certain quantile of the temperature distribution. Specifically, we aim to extract hotspots that arise in temperature anomalies, such that the occurrence of a hotspot indicates a temperature value that is relatively high with respect to local climatic conditions. Therefore, we apply the hotspot extraction algorithm after a pretransformation of the original temperature values.

Hotspot extraction

This work is based on a gridded reanalysis dataset (at spatial 0.1 o resolution, i.e., approximately 10 km) of monthly means of temperatures at 2 m height for the period 1981-2019 spanning 39 years, provided by the ERA5 climate model and postprocessed by the Copernicus Climate Data service of the European Union (Copernicus Climate Data Store 2021). We further use auxiliary variables related to altitude from the Shuttle Radar Topography Mission dataset. We use the temperature grid as basis for point process modeling of hotspots, and we refer to it as the PP grid. To upscale altitude data (at 1 km resolution) to the resolution of the temperature grid, we generate two synthetic variables: empirical mean and standard deviation of the altitude values in each of the PP grid cells. We denote by s(i 1 , i 2 , a, m) the temperature value at grid cell (i 1 , i 2 ), i 1 = 1, . . . , 250, i 2 = 1, . . . , 700 during year a = 1, . . . , 39 and month m = 1, . . . , 12. The coordinates of the center of grid cell (i 1 , i 2 ) are denoted by u i 1 ,i 2 . There is a total of 39 × 12 × 250 × 700 = 60900000 observed values.

Temperature anomalies s(i 1 , i 2 , a, m) are computed as follows.

s(i 1 , i 2 , a, m) = s(i 1 , i 2 , a, m) -μ(i 1 , i 2 , m) σ(i 1 , i 2 , m) , (5.10) 
where μ(i 1 , i 2 , m) and σ(i 1 , i 2 , m) are empirical means and the standard deviations, respectively, of temperatures, and they are calculated by pooling together the temperature data of the 39 observations years for each configuration (i 1 , i 2 , m). By construction, temperature anomalies have approximately mean zero and variance one.

Our algorithm for extracting temperature hotspots proceeds as follows: INPUTS: Monthly gridded reanalysis data; neighborhood radius R 0 > 0.1 o ; quantile level p ∈ [0, 1].

Estimate

μ(i 1 , i 2 , m) = 1 39 39 a=1 s(i 1 , i 2 , a, m)
and

σ(i 1 , i 2 , m) = 1 39 39 a=1 (s(i 1 , i 2 , a, m) -μ(i 1 , i 2 , m)) 2 .
2. Compute anomalies using formula (5.10).

Extract all hotspot locations

x i = (i 1 , i 2 , a, m) satisfying min x∈B(x i ) (s(x i )-s(x)) > 0, where B(x i ) = {( ĩ1 , ĩ2 , a, m) | ( ĩ1 , ĩ2 )-(i 1 , i 2 ) ≤ R 0 }.
4. RETURN the space-time point pattern {x i , i = 1, . . . , N }.

Steps 1 and 3 in the algorithm can be implemented efficiently using raster representations (Hijmans 2020).

Model fitting and validation

We fit an extension of model ( 4.1) with s = ∞ by considering a spatial hybrid Strauss model (Baddeley et al., 2013) rather than Strauss model. The irregular parameters of the model (e.g. r) are estimated by profile pseudo-likelihhod (Baddeley and Turner, 2000). We consider r = {0.5, 0.6, 0.7, 0.8, 0.9, 1}. The estimated interaction parameters are then γ = {0.12, 0.77, 0.65, 0.93, 0.85, 0.40}. We extract the results of the spatial random field. The resulting maps are reported in Fig. 5.9.

We implement a method for model validation based on posterior predictions and comparison with their second-order summary statistics according to the global envelopes. We draw 19 samples from the posterior joint distribution which we interested in the values of the latent field of each sample. We need to query the index for each latent field component. Hence, we can obtain the predicted values for each response. We compute L-function for each sample and also for the point patterns during 1981 to 2019. Conclusion and future work

Conclusion

A spatial (and spatio-temporal) point pattern, as a realization of a point process, is a collection of events for which locations (and times) of occurrence have been observed in a specified spatial region (and temporal period). Point patterns are often classified into three classes of single interaction structure: randomness, clustering, and inhibition that can be modeled for instance by Poisson process, Cox processes, and Gibbs processes, respectively. These single-structure point process models can be too simplistic to describe some complex phenomena in seismology, epidemiology, and forestry as they involve several structures at different spatial (and spatio-temporal) scales, thus requiring multi-structure point processes to describe them. The main concern of this Ph.D. thesis is the spatio-temporal modeling of such complex point patterns taking into account the spatio-temporal inhomogeneity driven by covariates and the complexity of the their interaction structures at different scales.

In the spatial point processes literature, three general approaches are considered for constructing multi-structure point process models: thinning, superposition, and hybridization. The key contribution of the Ph.D. thesis is to introduce spatio-temporal hybrid point processes based on Gibbs and Cox models using hybridization approach and to develop their statistical inference.

Extending hybridization approach to the spatio-temporal framework, we develop new hybrid Gibbs models, namely the spatio-temporal hybrid Geyer saturation point process and spatio-temporal hybrid Strauss hardcore point process, that combine both multi-scaling and hardcore distances. A different approach, leading to more flexibility in the model and challenging inference, consists of Gibbs models that contain both random and fixed effects to take into account complex patterns of heterogeneity. We propose to embed spatio-temporally structured Gaussian random effects in the Gibbs trend function. Therefore, this approach focuses on models derived from the multiscale classes of combinations of Gibbs and log-Gaussian Cox point processes which we refer to as Cox-Gibbs models.

We also extend to the spatio-temporal framework, and implement, inference meth-ods for these new models. In this Ph.D. thesis we classify the inference procedure into two approaches: global and local estimation methods. For the global statistical inference of Gibbs models we tailor the pseudo-likelihood and logistic likelihood approaches. Because, the models based on global parameter estimates can not take into account different local interaction structure, we extend the local likelihood approach to the spatio-temporal context. It can be viewed as an alternative method for modeling multistructure point patterns with spatially and/or temporally varying parameters in Gibbs point process models. Finally, for Cox-Gibbs models, the calculation of the likelihood variants (composite likelihoods: pseudo-likelihood and logistic likelihood) would involve complex, high-dimensional integrals, and we would need estimation methods that allow handling the latent Gaussian variables. Due to the hierarchical structure of Cox-Gibbs models, we can formulate and estimate them within a Bayesian hierarchical approach, using techniques as the Integrated Nested Laplace Approximation.

We propose to simulate the hybrid Gibbs point process models with a birth-death Metropolis-Hasting algorithm. We develop a two-step procedure for simulating the hybrid Cox-Gibbs model by simulating, firstly, a realisation of a Gaussian random field and then simulating a realisation of hybrid Cox-Gibbs model given that Gaussian realisation using the birth-death Metropolis-Hasting algorithm. Estimation, simulation and validation methods proposed in the Ph.D. thesis have been carried out using R together with the spatstat, stpp, splancs, fields, sparr, raster, INLA and GET packages.

Finally we use these models to describe the complex interaction structure observed in different data sets. We particularly focus on wildfires in France and in Spain using hybrid Gibbs models. The spatio-temporal distribution of forest fires is very complex in nature with non-separability in space and time and multiple structures (repulsion and aggregation) at different spatial and/or temporal scales. Spatio-temporal variations of fire occurrences further depend on the spatial distribution of current land use and meteorological conditions, but also depends on past events (changes in vegetation due to fires affect the probability of fire occurrence during a regeneration period). We also develop an innovative application of spatio-temporal modeling of hotspots of temperature, and in particular of temperature anomalies, in the United States using Cox-Gibbs models.

Future work

We defined two new spatio-temporal multi-scale Gibbs point process models and detailed extensions of classical statistical inference methods and MCMC simulation techniques to the spatio-temporal framework. Simulation algorithms and inference methods are implemented in R code1 and will be added to the stpp package (Gabriel et al. 2013). Some of our choices can be discussed and eventually improved in future works, notably in our application to forest fire occurrences which is not presented as an indepth study but as an illustration of the model fitting on real data.

In our forest fire occurrences application study in France (resp. Spain), we considered a log-linear form for the trend depending on covariate information. We chose a two-step procedure for estimating, at first, the trend coefficients and then the regular parameters of the interaction function. Our knowledge on forest fire mechanisms guided this choice because the main driver of occurrence locations is the environmental heterogeneity and the secondary one is the interaction phenomena. The trend is estimated at the spatial DFCI (resp. grid) scale and at the yearly (resp. monthly) one, corresponding to our covariate resolution. In that way, we estimated a global trend at a medium scale whereas the interaction parameters are estimated at the point locations and represent a local interaction behavior at a fine scale.

This procedure could be improved by incorporating variable selection methods, e.g. via regularization. Indeed, when fitting inhomogeneous Gibbs models to patterns by this two-step procedure there is the problem of deciding which covariates should be included in the final model. Recently, Choiruddin et al. (2018) and Daniel et al. (2018) presented a general framework for regularizing inhomogeneous spatial Gibbs point process models via penalized composite likelihoods, incorporating both the pseudolikelihood and logistic likelihood approaches to model fitting. Regularization is an attractive procedure that performs variable selection and parameter estimation simultaneously by maximizing a penalized likelihood function. This methodology could be extended in several ways, first, extension to the spatio-temporal Gibbs models and proposing the penalized logistic likelihood in a spatio-temporal framework. Second, regularization could be applied on the spatio-temporal Gibbs models with more complex interaction terms, such as multi-scale and hybrid interactions as we developed in this thesis.

Our two-step estimation procedure allows us to provide confidence intervals for both the trend coefficients and the regular parameters. We notice that some parameters γ j are closed to one. Here we consider a bootstrap estimate of the confidence interval for each γ j . We could further test departure from one by extending the adjusted composite likelihood ratio test (Baddeley et al. 2016) to the spatio-temporal framework. Indeed, Baddeley et al. (2016) proposed a likelihood ratio test for spatial Gibbs point process models fitted by maximum pseudo-likelihood. They discussed that implementing other composite likelihood as the logistic likelihood would provide a better composite likelihood ratio test. Estimating diagnostics related to the logistic likelihood requires to estimate the variance-covariance matrix of the logistic score and the sensitivity matrix. Baddeley et al. (2014) provide consistent estimators of these quantities. The extension to the spatio-temporal framework is a full-blown work that also involves efficient implementation.

Our method for choosing irregular parameters in hybrid Geyer model (resp. hybrid Strauss hardcore model) relies on a maximum profile likelihood approach based on the logistic likelihood estimation procedure and AIC values for model selection. Introduced for the pseudo-likelihood estimates in Anwar and Stein (2015) and applied to the logistic likelihood approach by us using the results in Baddeley et al. (2014), this method consists in fixing irregular parameters and maximizing the composite likelihood with respect to the regular ones. This technique is a computationally-intensive method. Thanks to a preliminary spatio-temporal exploratory analysis of the interaction ranges done with the inhomogeneous pair correlation function, the maximum nearest neighbor distance and the temporal autocorrelation function, we chose few configurations of feasible values for the nuisance parameters m, r j , q j and s j , j = 1, . . . , m (resp. m, r j , q j , j = 1, . . . , m). Considering more values would be very time-consuming and developing a new estimation method would be a subject in its own right. During the model validation procedure, we could use the global envelope tests based on the ERL measure to asses the goodness-of-fit of submodels with fewer irregular parameters to be parsimonious.

Our models could further be applied to describe complex point processes in other fields, like seismology and epidemiology for example, because several mechanisms exhibit interaction between points at multiple scales in space and time.

Introduction

Fundamental concepts of the theory of point processes emerged from life tables, renewal theory and counting problems [28]. The modern theory has mainly been developed between 1940's and 1970's (see e.g. the monographs by Palm [START_REF] Palm | Intensitätsschwankungen in Fernsprechverkehr[END_REF], Feller [36], Bartlett [12], Matérn [59] and Cox [23,24]) and is linked to nonlinear techniques in stochastic process theory [13,14]. From 1980's spatial and spatio-temporal point processes have then become a subject on their own right. Today, they cover a plethora of applications in ecology, forestry, astronomy, epidemiology, seismology, fishery. . . Spatial (and spatio-temporal) point process data are a collection of points for which locations (and times) of occurrence have been observed in a specified spatial region (and temporal period). Usually, the terms points and events are respectively used for arbitrary locations and for observations. The main goals in the analysis of point patterns concern the specification of intensity variations (first-order moment), interaction between events (second-order moment) and model identification for the underlying process. Processes are often classified into three classes of interaction structure [30]:

• randomness: In the absence of any interaction between events, a point pattern is said Completely Spatially (or Spatio-Temporally) Random in the sense that the probability that an event occur at any point is equally likely to occur anywhere within a bounded region and that its location (and time) is independent of each any other event. This property provides the standard baseline against which point patterns are often compared. The simplest and most fundamental point process for modelling a complete random distribution of points is the Poisson point process [53,54]. It is used as null hypothesis for statistical test of interaction [31,50]. • clustering or aggregation: In a clustered distribution, events tend to be closer than would be expected under complete randomness. Clustered patterns are mainly modelled by Cox processes [25], in particular log-Gaussian Cox processes [16,17,34,[START_REF] Møller | Log Gaussian Cox processes[END_REF], Poisson Cluster processes [18,38,[START_REF] Neyman | Statistical approach to problems of cosmology[END_REF] and Shot-Noise Cox processes [15,[START_REF] Møller | Structured spatio-temporal shotnoise Cox point process models, with a view to modelling forest fires[END_REF][START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]. • inhibition or regularity: In a regular distribution, events are more evenly spaced than would be expected under complete randomness. This structure can be modelled by Strauss processes [27,[START_REF] Strauss | A model for clustering[END_REF], Matérn hard core processes [37,59] or determinantal point processes [55,58].

Gibbs processes [29,[START_REF] Preston | Random Fields[END_REF][START_REF] Ruelle | Statistical Mechanics: Rigorous Results[END_REF] offer a large class of models which allow any of the above interaction structure. These single-structure point process models are too simplistic to describe phenomena with interactions at different spatial or spatio-temporal scales. That is for instance the case of seismic data as the different sources of earthquakes (faults, active tectonic plate and volcanoes) produce events with different displacements [START_REF] Siino | Spatial pattern analysis using hybrid models: an application to the Hellenic seismicity[END_REF] and can be seen as the superposition of background earthquakes (which are distributed over a large spatio-temporal scale with low density) and clustered earthquakes (which are distributed over a small spatio-temporal scale with high density) [START_REF] Pei | Multi-scale decomposition of point process data[END_REF]. Such multi-structure phenomena motivate statisticians to construct new spatial point process models, e.g. in ecology [57,[START_REF] Picard | The multi-scale marked area-interaction point process: a model for the spatial pattern of trees[END_REF][START_REF] Wiegand | Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering[END_REF], in epidemiology [47] and in seismology [START_REF] Siino | Spatial pattern analysis using hybrid models: an application to the Hellenic seismicity[END_REF][START_REF] Siino | Multiscale processes to describe the eastern sicily seismic sequences[END_REF], mainly based on Gibbs processes, but not only [56]. There are very few spatio-temporal models: [40] and [START_REF] Raeisi | A spatio-temporal multiscale model for Geyer saturation point process: application to forest fire occurrences[END_REF] modeled the multi-scale spatio-temporal structure of forest fires occurrences by log-Gaussian Cox processes (LGCP) and multi-scale Geyer saturation process respectively, [48] developed a multi-scale areainteraction model for varicella cases and [52] modelled the locations of muskoxen herds by LGCP with a constructed covariate measuring local interactions.

In the spatial point processes literature, three general approaches are considered for constructing multi-structure point process models: hybridization [10], thinning and superposition [19]. Hybridization consists in combining two or more point process models [9]. Spatial hybrids of Gibbs models are defined in [10] and hybrids of area-interaction potentials in [START_REF] Picard | The multi-scale marked area-interaction point process: a model for the spatial pattern of trees[END_REF]. Extension of the hybridization approach to the spatio-temporal framework has recently been considered in [48,[START_REF] Raeisi | A spatio-temporal multiscale model for Geyer saturation point process: application to forest fire occurrences[END_REF]. Thinning consists in deleting points of a point process according to some probabilistic rule which is either independent or dependent of thinning other points [19]. This operation allows to get point processes with inhibition at small scales and attraction at large scales [6,56]. Superposition of several processes is the union of the points of each process. It can be useful to model multi-scale clustered processes [START_REF] Wiegand | Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering[END_REF].

In this paper, we give a thorough overview of available methods and models for spatial and spatio-temporal multi-structure point process data. In Section 2, we review the required preliminaries which include definitions and properties of point processes and single-structure models. In Section 3, we investigate the spatial and spatio-temporal multi-structure point process models based on Gibbs and Cox processes and other methods for introducting new multi-structure models. Finally, Section 4 provides concluding remarks and discusses directions for future research.

Inhomogeneity and structures in point patterns

Definitions

We consider a finite spatial or spatio-temporal point process X observed in W, where W denotes either a spatial region W ⊂ R d or a spatio-temporal region W × T ⊂ R d × R. We denote x a realization of the point process, i.e. a collection of events {x i } i=1,...,n (or {(x i , t i )} i=1,...,n ) ⊂ W. Let ξ be any point in W. We refer to [19,28] (resp. [33,35,43]) for more formal definitions of spatial (resp. spatio-temporal) point processes. Without loss of generality, we set d = 2 throughout this paper. The main characteristics driving the spatial (resp. spatio-temporal) distribution of points are the intensity function, which governs the univariate distribution of the points of X, and the pair correlation function, which governs the bivariate distribution of the points of X, i.e. the interaction between events. In the following we remind some definitions and properties when X is a spatial or a spatio-temporal point process.

Campbell's theorem [19] relates the expectation of a function, h assumed to be non-negative and measurable, summed over a point process X to an integral involving the mean measure of the point process :

E   = ξ 1 ,...,ξ k ∈X h(ξ 1 , . . . , ξ k )   = . . . h(ξ 1 , . . . , ξ k )λ (k) (ξ 1 , . . . , ξ k )Π k i=1 dξ i ,
where ξ i ∈ W and λ (k) , k ≥ 1, are the product densities. For a simple point process, i.e. ξ i = ξ j for i = j, if they exist, the product densities are related to the counting measure N in infinitesimal spatial or spatio-temporal regions dξ 1 , . . . ,

dξ k ⊂ W, around ξ 1 , • • • , ξ k , with volumes |dξ 1 |, • • • , |dξ k | : P [N (dξ 1 ) = 1, . . . , N (dξ k ) = 1] = λ (k) (ξ 1 , . . . , ξ k )Π k i=1 dξ i .
Thus, the intensity function is related to the expected number of points in infinitesimal regions

λ(ξ) = λ (1) (ξ) = lim |dξ|→0 E[N (dξ)]
|dξ| and the pair correlation function is defined by

(2.1) g(ξ i , ξ j ) = λ (2) (ξ i , ξ j ) λ(ξ i )λ(ξ j ) .
A point process is homogeneous when its intensity is constant, λ(ξ) = λ, ∀ξ, inhomogeneous otherwise. In practice, the inhomogeneity is often driven by environmental covariates and we account for them by using parametric models for the intensity function [9]. Under the assumption of stationarity, the properties of the point process are invariant under translation and the process is homogeneous. The second-order stationarity states that the second-order intensity only depends on the difference between points λ (2) (ξ i , ξ j ) = λ (2) (ξ iξ j ). Because in practice most of processes are inhomogeneous, [8,39] weakened it and defined the second-order intensity-reweighted stationary assumption for which the pair correlation function (2.1) is well-defined and a function of ξ iξ j . [START_REF] Van Lieshout | Theory of Spatial Statistics[END_REF] provides general concepts of factorial moment properties. The previous definition of inhomogeneous processes is not unique, [45] defined inhomogeneous model classes (including the class of reweighted second-order stationary processes) into the common general framework of hidden second-order stationary processes. The pair correlation function describes the structure of dependence/interaction between points : g(ξ i , ξ j ) = 1, > 1 and < 1 indicates that the pattern is, respectively, completely random, clustered and regular.

Assume that the distribution of the point process is defined by a probability density f (x) with respect to the distribution of a unit rate Poisson process. The probability density can be used to study point processes. It can be viewed as the probability of getting the point pattern x, divided by the same probability under Complete Randomness [9]. The mathematical form of the probability density determines the structure of the point process, see [21,22] about formulation of the density of point processes. A closely related concept is the Papangelou conditional intensity function [START_REF] Papangelou | The conditional intensity of general point processes and an application to line processes[END_REF], which has been extended to the spatio-temporal framework by [27]. It is defined by

(2.2) λ(ξ|x) = f (x ξ) f (x) , for ξ / ∈ x provided f (x) = 0.

Classical point process models

We refer to [9,19,31,50,[START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF] and [27,33,35,37,43] for a presentation of most of spatial and spatio-temporal point process models. Hereafter we only focus on the ones mentioned/used in Section 3 to construct multi-structure point process models, namely the Poisson, Cox and Gibbs processes.

Poisson point processes

The Poisson point process is the reference model for independence of the locations of events, i.e. for complete spatial (or spatio-temporal) randomness. It is also the simplest and most widely used inhomogeneous point process model. Poisson point processes with intensity function λ(ξ) are defined by two postulates :

• The number of points in any region B ⊆ W, N (B), follows a Poisson distribution with parameter B λ(ξ)dξ, • For all B ⊆ W, given N (B) = n, the n events in B form an independent random sample from the distribution on B with probability density function λ(ξ)/ B λ(ξ)dξ.

The probability density of a Poisson point process with respect to the unit rate Poisson process is

f (x) = exp |W| - W λ(ξ)dξ Π ξ∈x λ(ξ).
Then, from Equation (2.2), the Papangelou conditional intensity is λ(ξ|x) = λ(ξ) and λ (2) (ξ i , ξ j ) = λ(ξ i )λ(ξ j ), so that g(ξ i , ξ j ) = 1.

Cox processes

Cox processes, so-called doubly stochastic point processes [23], are considered as a generalization of inhomogeneous Poisson processes where the intensity is a realization of a random field Λ = {Λ(ξ)} ξ∈W . These models are particularly useful as soon as spatial variation in events density reflects both the environment and dependence between events. Moreover, their first-and second-order moments being tractable, they are very attractive. We have

(2.3) λ(ξ) = E[Λ(ξ)] and g(ξ i , ξ j ) = E[Λ(ξ i )Λ(ξ j )] λ(ξ i )λ(ξ j ) = 1 + cov (Λ(ξ i ), Λ(ξ j )) λ(ξ i )λ(ξ j ) .
The probability density f (x) = E exp |W| -W Λ(ξ)dξ Π ξ∈x Λ(ξ) is intractable for these processes. Consequently, the Papangelou conditional intensity is not known.

The second-order intensity function λ (2) 

(ξ i , ξ j ) = E [Λ(ξ i )Λ(ξ j )] is
(ξ i , ξ j ) = 1 + γ 2 k(c, ξ i )k(c, ξ j )dζ(c, γ) λ(ξ i )λ(ξ j ) .
SNCP include Poisson cluster processes, i.e. a Poisson process in which each point is replaced by a cluster of points, the original point is considered as the cluster center [26]. When the points in the cluster are independently and identically distributed about the cluster centre, the process is referred to as a Neyman-Scott process [START_REF] Neyman | Statistical approach to problems of cosmology[END_REF]. Two mathematically tractable models of Neyman-Scott processes are the Thomas process [START_REF] Thomas | A generalization of Poisson's binomial limit for use in ecology[END_REF], where k is a zero-mean normal density, and the Matérn cluster process,

where k is a uniform density on a ball centered at the origin. Log-Gaussian Cox processes (LGCP) have been introduced in [START_REF] Møller | Log Gaussian Cox processes[END_REF], considering that the intensity is a log-Gaussian process : Λ(ξ) = exp (Y (ξ)), where Y is a realvalued Gaussian random field, with mean function µ(ξ) and covariance function C(ξ i , ξ j ). In that case, from Equation ( 2.3) we have

λ(ξ) = exp (µ(ξ) + C(ξ, ξ)/2) , ∀ξ ∈ W and g(ξ i , ξ j ) = exp (C(ξ i , ξ j )) , ∀ξ i , ξ j ∈ W.
The expression of the pair correlation function shows that the interaction is controlled by the second-order moment of Y . If C(ξ i , ξ j ) ≥ 0, we get g(ξ i , ξ j ) > 1 and clustering. As they are based on a latent random field describing the intensity,

LGCPs have a hierarchical structure making them particularly flexible [50]. Note that the interaction is controlled through the second-order moment of the Gaussian random field, so that LGCPs do not describe the mechanistic process generating the points what is the case of most of Gibbs processes (see below) for which the dependence between points is controlled through local interaction between pairs of points.

Gibbs point processes

A finite Gibbs point process on W admits a density (2.4) f (x) = exp (-Ψ(x))

w.r.t. the Poisson process of unit intensity on W. The potential function Ψ is often specified as the sum of pair potentials :

(2.5) Ψ(ξ 1 , . . . , ξ n ) = α 0 + i α 1 (ξ i ) + i<j α 2 (ξ i , ξ j ) + • • • + α n (ξ 1 , . . . , ξ n ),
with α 0 a normalizing constant for the density and the pair potentials α 1 , α 2 , . . . which determine the contribution to the potential from each δ-uple of points. Note that, if the α δ , δ ≥ 2 are identically zero, the process is Poisson with intensity λ(ξ) = exp(-α 1 (ξ)). Hence, α 1 can be viewed as controlling a spatial (or spatiotemporal) trend, while the α δ , δ ≥ 2 control the interactions between events. The normalizing constant is generally intractable, so it is often impossible to compute the intensity and pair correlation function of Gibbs processes. However, the Papangelou conditional intensity can be computed [22]. When the interaction between points is restricted to pairs, i.e. for

f (x) = αΠ i β(ξ i )Π i<j γ(ξ i , ξ j ),
with α > 0, β an intensity function and γ a symmetric interaction function, the process is called pairwise interaction process [30,[START_REF] Van Lieshout | Markov Point Processes and Their Applications[END_REF]. A well-known example of such processes is the Strauss process [START_REF] Strauss | A model for clustering[END_REF] for which

f (x) = αβ n(x) γ s(x) ,
where β, γ > 0, n(x) is the number of points in x and s(x) the number of neighbour pairs of x at distances less than a given distance R. When γ = 0, we get the Hard Core process. Note that in the Strauss process, γ should be smaller than 1 otherwise the density is no integrable. [41] modified the Strauss process and proposed the Geyer saturation process in which the overall contribution from each point is trimmed to never exceed a maximum value. We thus have

f (x) = αβ n(x) Π ξ∈x γ min(s,t(ξ,r,x)) ,
where α, β, γ, r, s are parameters and t(ξ, r, x) is the number of other events lying with a distance r of the point ξ.

Multi-structure point process models

Spatial and spatio-temporal single-structure point process models presented in the previous section are generally used when only one type of interaction governs the structure of the point pattern. When there are indications that the spatial or spatiotemporal structure combines several structures or varies with ranges of distances, we need to consider multi-structure point process models. We present in this section some of these models derived from the classes of Gibbs and Cox processes. By nature, few spatial point processes can exhibit directly several structures and/or scales of interaction and we recall some useful construction techniques to incorporate the multi-structure: hybridization, thinning, superposition or clustering.

Models based on Gibbs processes

Gibbs point processes are mainly used to model repulsion structure in point patterns, even if some examples exist for modelling low clustering [19]. Their definition through the potential function Ψ fit well in the statistical mechanics framework where the spatial modelling of particles needs often to consider their interaction. It is common in various domains (mechanics, biology. . . ) to observe repulsion at short range and aggregation at medium-long range of entities, leading to define multi-structure point processes models.

For pairwise interaction processes, some parametric potential functions can be defined to take into account multiple scales of interaction, see e.g. [20,44,[START_REF] Ogata | Estimation of interaction potentials of spatial point patterns through the maximum likelihood procedure[END_REF][START_REF] Penttinen | Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the Maximum Likelihood Method[END_REF][START_REF] Ruelle | Statistical Mechanics: Rigorous Results[END_REF]. We consider in the sequel the homogeneous case, i.e. when α 1 is constant and the pair potential function α 2 (ξ i , ξ j ) = α 2 ( ξ iξ j ) in (2.5).

The Lennard-Jones pair potential function, well-known in statistical mechanics, is given by

α 2 (r) = ǫ 1 σ r m 1 -ǫ 2 σ r m 2
, ∀r > 0 where m 1 > m 2 , ǫ 1 , σ > 0 and in the multi-structure case ǫ 2 > 0. Another one is the step potential function given by

α 2 (r) = c l if R l-1 < r ≤ R l ∀l = 1, • • • , m where R 0 = 0, R m = ∞, c 1 = ∞, c m = 0 and c l ∈ R for l = 2, • • • , m -1.
The resulting model is an extension of the Strauss process to the multi-scale framework [START_REF] Penttinen | Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the Maximum Likelihood Method[END_REF]. The square-well potential is obtained with l = 2. More recently, [42] introduced a pair potential function varying smoothly over distance with scale interactions defined through a differential system of equations. Other pair potential functions can be found in the literature for modeling multi-structure phenomena, e.g. in [19,[START_REF] Ogata | Estimation of interaction potentials of spatial point patterns through the maximum likelihood procedure[END_REF].

Some of these pair potential functions define multi-scale generalizations of single scale Gibbs processes. Indeed, the step potential functions of homogeneous pairwise interaction processes in [30] and [START_REF] Penttinen | Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the Maximum Likelihood Method[END_REF] represent multi-scale extensions of the Strauss process where the density is given by

f (x) = αβ n(x) m l=1 γ s l (x) l , where s l (x) = i<j 1(R l-1 < ξ i -ξ j ≤ R l ).
In the same way, the multi-scale generalization of the area-interaction model has been introduced in [3][4][5] with a two-scale structure and in [START_REF] Picard | The multi-scale marked area-interaction point process: a model for the spatial pattern of trees[END_REF] for multi-scale marked area-interaction processes. Its density function in a homogeneous multi-scale case is given by

f (x) = αβ n(x) m l=1 exp(-κ l U (x, r l ))
where U (x, r l ) is the d-dimensional volume of the set W ∩ ξ∈x b(ξ, r l ), with b(ξ, r l ) the ball centered at ξ i of radius r l > 0. The sign of κ l defines the lth structure : inhibition if negative, clustering otherwise. [START_REF] Nightingale | Area interaction point processes for bivariate point patterns in a Bayesian context[END_REF] used area-interaction point processes for bivariate point patterns for modelling both attractive and inhibitive intra-and inter-specific interactions of two plant species.

[10] defined a new class of multi-scale Gibbs point processes named hybrid models and including the two previous generalization examples. This unified framework allows to define properly generalizations of single-scale Gibbs point processes by preserving Ruelle and local stability [START_REF] Van Lieshout | Markov Point Processes and Their Applications[END_REF]. This hybridization technique consists in defining the density function of a multi-scale point process model as the product of several densities of Gibbs point processes, so that

f (x) = cf 1 (x)...f m (x)
where c is a normalization constant and f l is a Gibbs density function for l = 1, • • • , m. The choice of the normalization constant allows to well define a probability density in the case where the product f 1 ...f m is integrable. The integrability condition is of course essential and induced by others conditions on the f l (Ruelle statbility, local stability or hereditary, see [10]) which play an important role in simulation algorithms and are established in general to demonstrate the model validity of the hybrid process.

[10] introduced the spatial multi-scale Geyer saturation point process that was applied in epidemiology by [47] and in seismology by [START_REF] Siino | Spatial pattern analysis using hybrid models: an application to the Hellenic seismicity[END_REF] and [START_REF] Siino | Multiscale processes to describe the eastern sicily seismic sequences[END_REF]. [START_REF] Raeisi | A spatio-temporal multiscale model for Geyer saturation point process: application to forest fire occurrences[END_REF] extend the definition and the estimation procedure in the general case of an inhomogeneous spatio-temporal multi-scale Geyer saturation process which density is given by

(3.1) f (x) = c ξ∈x λ(ξ) m l=1 γ min{s l ,n(C q l r l (ξ);x)} l
where λ ≥ 0 is a measurable and bounded function, γ l , r l , q l and s l > 0 are the model parameters and n(C q r (ξ); x)

= ξ i ∈x\ξ 1{||x i -x|| ≤ r l , |t i -t| ≤ q l }
is the number of other points in x which are in a cylinder centred on ξ ∈ x with spatial and temporal radii r l and q l . For fixed l ∈ {1, . . . , m}, when 0 < γ l < 1 we would expect to see inhibition between events at spatio-temporal scales. On the other hand, when γ l > 1 we expect clustering between events. We observe that Equation (3.1) reduces to an inhomogeneous Poisson process when s l = 0 ∀l ∈ {1, . . . , m}. [START_REF] Rajala | Detecting multivariate interactions in spatial point patterns with Gibbs mmodels and variate selection[END_REF] used a multitype generalization of Gibbs point processes with point-to-point interactions at different spatial scales in order to model a complex rainforest data of 83 species.

The definition of hybrid Gibbs models does not impose to consider the same m Gibbs models which is emphasized in [9]. In this way, [11] applied a hybrid model with three model structures at different ranges of distance to the spatial pattern of halophytic species distribution in an arid coastal environment. They considered a hardcore process at very short distances, a Geyer process at short to medium distances and a Strauss process for the structure at large distances.

Models based on Cox processes

Cox processes are mainly defined from additive or log-linear random intensity functions. Their hierarchical structure allows to quantify the various sources of variation governing the spatial or spatio-temporal distribution of the pattern of interest. They are widely used for modelling environmental and ecological patterns. other spatial ecological data. They consider a log-Gaussian Cox process in a Bayesian framework in order to apply the INLA approach for speeding up the estimation of parameters in comparison to MCMC approaches that are very time-consuming. [40] used also this approach in the context of wildfire modelling in Mediterranean France. In the case of a spatial LGCP model, the method consists in estimating the random field Λ on grid cells s i as follow

Λ(s i ) = exp β 0 + f (z c (s i )) + p k=1 f k (z k (s i )) + Y (s i ) where β 0 is the intercept, f (z c (•)) is a function of the constructed covariate z c , f k , k = 1, • • • , p
are functions of the observed covariates z k and Y is a Gaussian random field taking into account the spatial autocorrelation not explained by the covariates. This intensity is estimated for each cell s i of a grid partitioning the observation window.

In [51], the constructed covariate at each center point c of the grid cell s is the distance from c to the nearest point in the pattern outside the grid cell, i.e z c (s) = min ξ∈x\s ( cξ ). This constructed covariate describes small scale interindividual behavior whereas the random field Y captures the spatial autocorrelation at a large spatial scale. The space-time and space-mark extensions of the constructed covariate definition are respectively introduced in [52] and [49]. In [40] the constructed covariate corresponds to a temporal intensity index given by the ratio between the number of wildfires observed spatially close to an other in a specified period and the total number of closed wildfires observed outside this given period. This covariate measures the temporal wildfire inhibition at close spatial distances induced by the local burn of vegetation after a wildfire occurrence. [START_REF] Sorbye | Careful prior specification avoids incautious inference for log-Gaussian Cox point processes[END_REF] fitted a LGCP to rainforest tree species by adding to the combination of covariates in the log-intensity a spatial random field and error field. The first random field captures the spatial autocorrelation in point counts among neighboring grid cells and the second one the clustering within grid cells, as a nugget effect in geostatistics. The intensity in s ∈ W is thus given by

Λ(s) = exp β 0 + p k=1 β k z k (s) + 1 √ τ √ ρ × Y (s) + 1 -ρ × ǫ(s)
where β k are linear effects of observed covariates z k , Y is a spatial random field with autocorrelation between grid cells and ǫ the error field driving the aggregation structure within grid cells.

Thinned point processes

Thinning is a an operation allowing to delete points in a point process in order to obtain a new one with different characteristics. Each point of a point process has a probability 1π of deletion, where the retention probability π can be constant or not, independent of the location point or depending on one to several points. For Cox processes, this technique is generally applied to create random local regularity. For example, [6] applied a Matérn hard core dependent thinning to a Shot Noise Cox process to obtain short range repulsion with medium range clustering. For a given point pattern and a specified distance h, Matérn hard core thinning acts by first attaching random positive marks (arrival times) to each point. Subsequently a point is removed if it has a neighbour within distance h and with a smaller mark (i.e. the neighbour arrived earlier). In that way, for a given location ξ, the retention probability π(ξ) is the ratio between the intensities of the thinned process and the original process at ξ. [56] extended the definition of interrupted point processes in [START_REF] Stoyan | Interrupted point processes[END_REF] and [19] and considered a spatial point process X obtained by an independent thinning driven by a random process Z on a regular point process Y . An example is given with Y a Matérn hard core process and Z the transformation by a characteristic function of a Boolean disc model [19].

Discussion and conclusion

This paper presents a review of methods for constructing multi-structure point processes for modelling aggregation and/or inhibition at different spatial or spatiotemporal scales. We focus our attention on the main two classes of point processes, namely the Gibbs and Cox processes. Some multi-structure techniques are specific to a family of point processes, as the hybridization approach for Gibbs processes or the double-cluster process for Cox processes; others are more global, as the superposition or the thinning method, even if they are respectively more adapted to Gibbs or Cox processes. We could also consider determinantal point processes to model regularity as in [56] who considered it instead of the Matérn hard core process. Spatio-temporal point processes can also be defined by conditioning on the past, often used in epidemiology or seismology. For instance, the definition of the conditional intensity in [32] allows an aggregation of cases in the spatio-temporal spread of the foot and mouth disease and also a random occurrence of cases in the entire observation domain.

We selected the most relevant references for us in the state-of-the-art of these types of Gibbs and Cox models to describe these approaches for introducing regularity in cluster processes and aggregation in repulsive processes. Because these models are suitable in an environmental and ecological framework, due to the complexity of mechanisms governing attraction and repulsion of entities (particles, cells, plants. . . ), we can expect a wide use of these models in many studies.

Introduction

Nowadays point process models are widely used to highlight trends and interactions in the spatial or spatio-temporal distribution of events. Most of them are single-structure in the sense that they exhibit either spatial randomness (e.g. modeled by the Poisson process Kingman, 1993Kingman, , 2006) ) or clustering (mostly modeled by Cox processes (Cox, 1972), in particular log-Gaussian Cox processes (Møller et al., 1998;Brix and Møller, 2001;Brix and Diggle, 2001;Diggle et al., 2013), Poisson Cluster processes (Neyman and Scott, 1958;Brix and Kendal, 2002;Gabriel, 2014) and Shot-Noise Cox processes (Brix and Chadoeuf, 2000;Møller and Waagepetersen, 2004;Møller and Diaz-Avalos, 2010)) or inhibition (modeled by Strauss processes Strauss, 1975;Cronie andvan Lieshout, 2015, Matérn hard core processes Matérn, 1960;Gabriel et al., 2013 anddeterminantal point processes Macchi, 1975;Lavancier et al., 2015). However, lot of phenomena present interactions at different scales what motivate statisticians to develop new models, mainly spatial models in ecology (Levin, 1992;Wiegand et al., 2007;Picard et al., 2009), epidemiology (Iftimi et al., 2017) or seismology (Siino et al., 2017(Siino et al., , 2018b)), but very few spatio-temporal models in environment (Gabriel et al., 2017) or epidemiology (Iftimi et al., 2018) as lately reviewed in Raeisi et al. (2019). Multi-scale models are mostly based on Gibbs models (see Dereudre, 2019 for a recent review on Gibbs models) as they offer a large class of models which allow any of the above mentioned interaction structure. Multi-structure models can then be obtained by hybridization (Baddeley et al., 2013).

Gibbs point processes are studied by their probability density, defined with respect to the unit rate Poisson point process. Well-known inhibitive Gibbs models include the hardcore model (events are forbidden to come too close together) and the Strauss model (Strauss, 1975) (pairs of close events are not impossible but are unlikely to occur). Generalizing the Strauss process, the Geyer saturation process (Geyer, 1999) intends to model both inhibition and clustering. It is able to take into account the clustering nature of a pattern due to interactions between points in absence of covariate information (Anwar and Stein, 2015). Baddeley et al. (2013) defined a new class of multi-scale Gibbs point processes, so-called hybrid models. The hybridization technique consists in defining the density function of a multi-scale point process model as the product of several densities of Gibbs point processes, f l for l = 1, . . . , m, so that f = cf 1 ו • •×f m where c is a normalization constant. The choice of the normalization constant allows to well define a probability density in the case where the product of densities is integrable. In particular, Baddeley et al. (2013) introduced the spatial multi-scale Geyer saturation point process that has then been applied in epidemiology (Iftimi et al., 2017) and in seismology (Siino et al., 2017(Siino et al., , 2018b)). Iftimi et al. (2018) extended the hybridization approach to the spatio-temporal framework and introduced the spatio-temporal multi-scale area-interaction process. New hybrid Gibbs models can also be defined from the hardcore process (Cronie and van Lieshout, 2015) and the Strauss process (Gonzalez et al., 2016) introduced in the spatio-temporal framework, but much more hybrid Gibbs models remain to be developed to better describe spatio-temporal complex phenomena in practice.

Forest fire occurrences present multi-scale structures which are related to spatial or spatiotemporal inhomogeneities of environmental and climate covariates as well as influence of past events. Their complex interaction structure has been modeled by a spatio-temporal log-Gaussian Cox process in Opitz et al. (2020) and with an inhibitive effect as covariate in Gabriel et al. (2017). Gibbs point process models have also been considered in the spatial context for modeling wildfires like the area-interaction point process (Juan et al., 2012;Serra et al., 2013;Trilles et al., 2013;Arago et al., 2016;Woo et al., 2017) or the Geyer point process (Turner, 2009). In this paper, we aim to extend the spatial Geyer saturation point process to the spatio-temporal framework replacing the Euclidean balls by spatio-temporal cylindrical neighborhoods (Gonzalez et al., 2016). We also introduce its multi-scale version by extending the hybridization approach (Baddeley et al., 2013) to space and time. We then model forest fire occurrences using our spatio-temporal multi-scale Geyer saturation point process. Our data, available from the Prométhée database1 , concern forest fire occurrences in the Bouches-du-Rhône department (South of France) between 2001 and 2015.

The spatio-temporal multi-scale Geyer saturation point process model is introduced in Section 2. In Section 3, we extend the pseudo-likelihood and logistic likelihood approaches for statistical inference of Gibbs models to the spatio-temporal framework. Then in Section 4 we implement the model simulation using a birth-death Metropolis-Hastings algorithm and present a simulation study to compare the performance of the two estimation methods. Finally, in Section 5, we apply our model to forest fire occurrences in Southern France.

Spatio-temporal Geyer saturation point process

A spatio-temporal point process can be viewed as a random locally finite subset of a Borel

set W = S × T ⊂ R 2 × R. We consider a complete, separable metric space (W , d(•, •)) where d((u, v), (u ′ , v ′ )) := max{∥u -u ′ ∥, |v -v ′ |} for (u, v), (u ′ , v ′ ) ∈ W .
For N the state space of points configurations of W , x ∈ N denotes a point pattern, i.e. x = {(ξ 1 , t 1 ), . . . , (ξ n , t n )} where (ξ i , t i ) describes the location and time, respectively, associated with the ith event.

The cylindrical neighborhood C q r (u, v) centered at (u, v) ∈ W = S × T is defined as

C q r (u, v) = {(a, b) ∈ W = S × T : ∥u -a∥ ≤ r, |v -b| ≤ q}, (1) 
where r, q > 0 are spatial and temporal radii, ∥ • ∥ denotes the Euclidean distance in R 2 and |•| denotes the usual distance in R. Note that C q r (u, v) is a cylinder with center (u, v), radius r, and height 2q that represents a natural neighborhood for extending spatial Gibbs models to the spatio-temporal context (Gonzalez et al., 2016). The Papangelou conditional intensity (Papangelou, 1974) of a spatio-temporal point process on W with density f is defined by

λ((u, v)|x) = f (x ⋃ (u, v)) f (x\(u, v)) , (2) 
with a/0 := 0 for a ≥ 0 and (u, v) ∈ W (Cronie and van Lieshout, 2015). Hence, we have λ

((u, v)|x) = f (x ⋃ (u,v)) f (x) if (u, v) / ∈ x and λ((u, v)|x) = f (x) f (x\(u,v)) if (u, v) ∈ x.
Gonzalez et al. ( 2016) introduced a spatio-temporal Strauss process with conditional intensity

for (u, v) / ∈ x λ((u, v)|x) = λγ ñ(C q r (u,v);x) , (3) 
where

ñ(C q r (u, v); x) = ∑ (ξ ,t)∈x 1{∥u -ξ ∥ ≤ r, |v -t| ≤ q} is the number of points of x lying in C q r (u, v).
The density function of Strauss model is not integrable for γ > 1, it thus does not define a valid probability density and the Strauss process cannot be intended for clustering structures. To avoid this issue, Geyer (1999) considers an upper bound (saturation parameter) for the number of neighboring points that interact and define the (spatial) Geyer saturation point process.

Definition 1. We define the spatio-temporal Geyer saturation point process as the point process with density

f (x) = c ∏ (ξ ,t)∈x λ(ξ , t)γ min{s,n(C q r (ξ ,t);x)} , (4) 
with respect to a unit rate Poisson process on W , where c > 0 is a normalizing constant, λ is a non-negative, measurable and bounded function, γ > 0 is the interaction parameter, s is the saturation parameter, and

n(C q r (ξ , t); x) = ∑ (u,v)∈x\(ξ ,t) 1(∥u -ξ ∥ ≤ r, |v -t| ≤ q)
is the number of points of x lying in C q r (ξ , t) and different from (ξ , t). The function λ describes some spatio-temporal trend in point pattern that can be estimated using covariates. The scalars γ , r, q and s are the parameters of the model. The saturation parameter s is an upper bound of the number of points in the cylinder C q r . By using hybridization approach (Baddeley et al., 2013;Iftimi et al., 2018), we define a multi-scale version of (4). Definition 2. We define the spatio-temporal multi-scale Geyer saturation point process as the point process with density

f (x) = c ∏ (ξ ,t)∈x λ(ξ , t) m ∏ j=1 γ min{s j ,n(C q j r j (ξ ,t);x)} j , (5) 
with respect to a unit rate Poisson process on W , where γ j > 0, j = 1, . . . , m, are the interaction parameters, and

r 1 < • • • < r m , q 1 < • • • < q m are
spatial and temporal interaction ranges. For any j ∈ {1, . . . , m}, the interaction parameters 0 < γ j < 1 reflect inhibition, while γ j > 1 reflect clustering between points at some spatio-temporal scales. When s j = 0 or γ j = 1 for all j ∈ {1, . . . , m}, the density ( 5) corresponds to the density of an inhomogeneous Poisson process.

Eq. ( 5) indicates that the structure of the process changes with the spatial and temporal distances r j , q j . Covariates can be added to the model by assuming that the spatio-temporal trend λ is function of a covariate vector Z (ξ , t), i.e. λ(ξ , t) = Ψ (Z (ξ , t)).

Lemma 1. The spatio-temporal multi-scale Geyer point process is a Markov point process in the sense of Ripley-Kelly (Ripley and Kelly, 1977) and its density ( 5) is measurable and integrable for all γ j , j = 1, . . . , m with m ∈ N.

Proof. A Geyer model is hereditary, locally and Ruelle stable and hence integrable (Geyer, 1999). Baddeley et al. (2013) showed these properties for hybrids. As in Iftimi et al. (2018), we can show that the spatio-temporal Geyer saturation point process ( 4) is a Markov point process in Ripley-Kelly's sense at interaction range 2 max{r, q} and that the spatio-temporal multi-scale Geyer saturation process ( 5) is also a Markov point process in Ripley-Kelly sense at interaction range max 1≤j≤m {2 max{r j , q j }} = 2 max{r m , q m } (Baddeley et al., 2013). □ For any (u, v) ∈ W , the Papangelou conditional intensity function of the spatio-temporal multi-scale Geyer saturation process is

λ((u, v)|x) = λ(u, v) m ∏ j=1 γ min{s j ,n(C q j r j (u,v);x)} j × ∏ (ξ ,t)∈x\(u,v) γ min{s j ,n(C q j r j (ξ ,t);x∪(u,v))}-min{s j ,n(C q j r j (ξ ,t);x\(u,v))} j . (6) 
The Markovian property (Lemma 1) ensures that this conditional intensity only depends on (u, v)

and its neighbors in x. Hence, we can design simulation algorithms for generating realizations of the model, see Section 4.

Inference

Geyer saturation point process model ( 4) involves two types of parameters: regular parameters and irregular parameters. A parameter is called regular if the log likelihood is a linear function of that parameter, irregular otherwise. Regular parameters like trend λ and interaction γ can be estimated using the pseudo-likelihood method (Baddeley and Turner, 2000) or the logistic likelihood method (Baddeley et al., 2014) rather than the maximum likelihood method (Ogata and Tanemura, 1981). Indeed, they are based on the conditional intensity which is tractable for most Gibbs models and is free from the normalization constant c (whose estimation is computationally very expensive, even for a small number of regular parameters). Here we tailor these two methods to estimate regular parameters of our spatio-temporal model and we compare their performance in the next section.

Irregular parameters, like saturation threshold s and distances r and q, are difficult to estimate using the maximum likelihood method because the likelihood function is not differentiable with respect to them. These parameters can be estimated using the profile pseudo-likelihood approach (Baddeley and Turner, 2000) or predetermined by the user using some summary statistics, like the pair correlation and the auto-correlation functions (Iftimi et al., 2018), in order to determine the interaction ranges. Baddeley and Turner (2006) presented the methods that are used for irregular parameter estimation in the spatial framework.

In this paper, we combine the advantages of the two previous methodologies. By computing some statistics summarizing the range of interactions in space and time, we consider a set of feasible irregular parameter values and we choose the combination of them providing the best Akaike's Information Criterion (AIC) for the fitted model.

Pseudo-likelihood approach

Let θ be the vector of regular parameters that we aim to estimate. Besag (1977) defined the pseudo-likelihood for spatial point processes in order to avoid computational problems with point process likelihoods. One can easily extend it for a spatio-temporal point process with conditional intensity λ θ ((u, v)|x) over W as follows

PL(x; θ) = exp ( - ∫ S ∫ T λ θ ((u, v)|x)dvdu ) ∏ (ξ ,t)∈x λ θ ((ξ , t)|x). (7)
The pseudo score is defined by

U(x; θ) = ∂ ∂θ log PL(x; θ), (8) 
that is an unbiased estimating function. The maximum pseudo-likelihood normal equations are then given by

∂ ∂θ log PL(x; θ) = 0, (9) 
where

log PL(x; θ) = ∑ (ξ ,t)∈x log λ θ ((ξ , t)|x) - ∫ S ∫ T λ θ ((u, v)|x)dvdu, (10) 
and λ θ (•|x) is defined by ( 6) for hybrid Geyer model (5).

For sake of clarity, we now assume that θ = [log γ 1 , . . . , log γ m ] ⊤ the logarithm of interaction parameters in model (5). To estimate θ, we use the pseudo-likelihood approach. Eq. ( 6) can be rewritten as λ θ ((u, v)|x) = λ(u, v)

∏ m j=1 exp(θ j S j ((u, v), x)) where S j ((u, v), x) = min{s j , n(C q j r j (u, v); x)} + ∑ (ξ ,t)∈x\ (u,v) [ min{s j , n(C q j r j (ξ , t); x ∪ (u, v))}

-min{s j , n(C q j r j (ξ , t); x\(u, v))}], (11) 
is a sufficient statistics. Then, for S((u, v),

x) = [S 1 ((u, v), x), . . . , S m ((u, v), x)] ⊤ log λ θ ((u, v)|x) = log λ(u, v) + θ ⊤ S((u, v), x) (12) 
is a linear model in θ with offset log λ(u, v). Thus, Eq. ( 9) gives us the pseudo-likelihood equations

∂ ∂θ ⎡ ⎣ ∑ (ξ ,t)∈x [log λ(ξ , t) + m ∑ j=1 θ j S j ((ξ , t), x)] - ∫ S ∫ T λ(u, v) m ∏ j=1 e θ j S j ((u,v),x) dvdu ⎤ ⎦ = 0, (13) 
For each parameter θ i , i = 1, . . . , m, Eqs. ( 13) can be rewritten ((u,v),x) dvdu, (14) The major difficulty is to estimate the integrals on the right hand side of Eqs. (14). The pseudolikelihood cannot be computed exactly but must be approximated numerically.

∑ (ξ ,t)∈x S i ((ξ , t), x) = ∫ S ∫ T λ(u, v)S i ((u, v), x) m ∏ j=1 e θ j S j
For a point process model, the approximation of likelihood is converted into a regression model. In the following, we refer to generalized log-linear Poisson regression approach as approximation of integrals in (14). In the next subsection, we also investigate an alternative, the logistic regression. Berman and Turner (1992) developed a numerical quadrature method to approximate maximum likelihood estimation for an inhomogeneous Poisson point process. Berman-Turner method has then been extended to Gibbs point processes by Baddeley and Turner (2000), approximating the integral in (10) by a Riemann sum (15) where (ξ k , t k ) are points in {(ξ 1 , t 1 ), . . . , (ξ n , t n ), (ξ n+1 , t n+1 ), . . . , (ξ n+p , t n+p )} ∈ W consisting of the n events of x and p dummy points, and w k are quadrature weights such that ∑ n+p k=1 w k = ℓ(S × T ) where ℓ is Lebesgue measure. This yields an approximation for the log pseudo-likelihood of the form log PL(x; θ) ≈ ∑

∫ S ∫ T λ θ ((u, v)|x)dvdu ≈ n+p ∑ k=1 w k λ θ ((ξ k , t k )|x),
(ξ ,t)∈x log λ θ ((ξ , t)|x) - n+p ∑ k=1 w k λ θ ((ξ k , t k )|x). ( 16 
)
Note that if the set of points {(ξ k , t k ), k = 1, . . . , n + p} includes all the points of x = {(ξ 1 , t 1 ), . . . , (ξ n , t n )}, we can rewrite (16) as

log PL(x; θ) ≈ n+p ∑ k=1 w k (y k log λ θ ((ξ k , t k )|x) -λ θ ((ξ k , t k )|x)) , (17) 
where

y k = { 1/w k , if (ξ k , t k ) ∈ x is an event, 0, if (ξ k , t k ) / ∈ x is a dummy point. (18) 
The right hand side of ( 17), for fixed x, is formally equivalent to the log-likelihood of independent

Poisson variables Y k ∼ Poisson(λ θ ((ξ k , t k )|x)) taken with weights w k . Therefore, by using the glm function in R (R Core Team, 2016), we can perform the maximum likelihood-based parameter estimation of this Poisson generalized linear model and obtain the maximum value for (17).

Note that in hybrid Geyer model ( 5), we consider λ(ξ , t) = λ β (ξ , t) = βµ(ξ , t) where µ(ξ , t) is known or estimated beforehand and β is a parameter to estimate. In summary, the method is as follows.

Algorithm 1

• Generate a set of p uniform dummy points in W and merge them with all the data points in x to construct the set of quadrature points (ξ k , t k ) ∈ W with k = 1, . . . , n + p. • Compute the quadrature weights w k and the indicators y k defined in (18), • Compute the sufficient statistics S((ξ k , t k ), x) at each quadrature point, • Fit a log-linear Poisson regression with explanatory variables S((ξ k , t k ),x), and offset log λ(ξ k , t k ) on the responses y k with weights w k to obtain estimates θ for the S-vector and intercept θ0 , • Return the maximum pseudo-likelihood-based parameter estimates γj = exp( θj ) for j = 1, . . . , m and β = exp( θ0 ).

We define the quadrature scheme by defining a spatio-temporal partition of W into cubes C k of equal volumes ν and by using the counting weights proposed in Baddeley and Turner (2000). We then assign to each dummy or data point (ξ k , t k ) a weight w k = ν/n k where n k is the number of dummy and data points that lie in the same cube as (ξ k , t k ). The number of dummy points should be sufficient for an accurate estimate of the pseudo-likelihood. We follow Baddeley and Turner (2000) and start with p ≈ 4n(x). Then, we increase it until ∑ k w k = ℓ(W ), what can lead to high computational costs.

An alternative way to define the quadrature scheme for Algorithm 1 is based on Dirichlet tessellation (Baddeley and Turner, 2000) and the weight of each point is equal to the volume of the corresponding Dirichlet 3D cell. In this paper, we consider cubes because it is less time consuming and provides similar results (see Opitz, 2009 for quadrature schemes comparison of 3D Gibbs point processes).

Logistic likelihood approach

The logistic likelihood method (Baddeley et al., 2014) is an alternative for estimating the regular parameters of Gibbs models that is closely related to the pseudo-likelihood method. The Berman-Turner approximation often requires a quite large number of dummy points. Hence, fitting such GLM can be computationally intensive, especially when dealing with a large dataset. Baddeley et al. (2014) formulated the pseudo-likelihood estimation equation as a logistic regression using auxiliary dummy point configurations and proposed a computational technique for fitting Gibbs point process models to spatial point patterns. Iftimi et al. (2018) extended the logistic likelihood approach for spatio-temporal Gibbs point processes and we tailored it to our model.

Let x be a realization of a spatio-temporal point process defined on W having a density f θ with respect to the unit rate Poisson process and with conditional intensity function λ θ (•|x). We consider an independent Poisson process for dummy points, with intensity function ρ, and we denote by d a set of dummy points. We follow Baddeley et al. (2014) (resp. Iftimi et al., 2018) for choosing ρ of a homogeneous (resp. inhomogeneous) Poisson process in simulation study (resp. application).

See Baddeley et al. (2014), for a data-driven determination of ρ and its effect on efficiency and practicability of the method.

By defining Y (ξ , t) = 1 {(ξ ,t)∈x} for (ξ , t) ∈ x∪d, we obtain independent Bernoulli variables taking one for data points and zero for dummy points. We have

Pr(Y (ξ , t) = 1) = λ θ ((ξ , t)|x\(ξ , t)) λ θ ((ξ , t)|x\(ξ , t)) + ρ(ξ , t) , (19) 
By considering the log linearity assumption for the conditional intensity λ θ (•|x) in ( 12), the logit of

Pr(Y (ξ , t) = 1) is log λ θ ((ξ , t)|x\(ξ , t)) ρ(ξ , t) = log λ(ξ , t) ρ(ξ , t) + m ∑ j=1 θ j S j ((ξ , t), x\(ξ , t)), (20) 
which is a linear model in θ with offset log λ(ξ ,t) ρ(ξ ,t) .

Since λ θ ((ξ , t)|x) = λ θ ((ξ , t)|x\(ξ , t)) for (ξ , t) ∈ d, the log logistic likelihood is defined by

log LL(x, d; θ) = ∑ (ξ ,t)∈x∪d Y ((ξ , t)) log λ θ ((ξ , t)|x\(ξ , t)) λ θ ((ξ , t)|x\(ξ , t)) + ρ(ξ , t) + ∑ (ξ ,t)∈x∪d [1 -Y ((ξ , t))] log ρ(ξ , t) λ θ ((ξ , t)|x) + ρ(ξ , t) = ∑ (ξ ,t)∈x log λ θ ((ξ , t)|x\(ξ , t)) λ θ ((ξ , t)|x\(ξ , t)) + ρ(ξ , t) + ∑ (ξ ,t)∈d log ρ(ξ , t) λ θ ((ξ , t)|x) + ρ(ξ , t) . (21) 
The maximum of the log-logistic likelihood exists and under regularity condition (Baddeley et al., 2019) is unique. Hence, estimation can be implemented in R by using the glm function.

As in Algorithm 1, we consider λ(ξ , t) = λ β (ξ , t) = βµ(ξ , t) and we estimate the regular parameters form the following algorithm.

Algorithm 2 • Return the parameter estimator γ = exp( θ) and β = exp( θ0 ) and in the case where µ(ξ k , t k )/ρ(ξ k , t k ) is a constant c we have β = c -1 exp( θ0 ).

Simulation

The simulation algorithms of Gibbs point process models require only computation of the Papangelou conditional intensity which avoids to consider the difficult estimation of the unknown normalizing constant in the density function. Gibbs point process models can be simulated by using Markov chain Monte Carlo (MCMC) algorithms like the birth-death Metropolis-Hastings algorithm (Møller and Waagepetersen, 2004) that belongs to the large class of Metropolis-Hastings algorithms (Geyer and Møller, 1994). In this section, we first present the birth-death Metropolis-Hastings algorithm and secondly we investigate the goodness of parameter estimation of the two approaches introduced before.

Birth-death Metropolis-Hastings algorithm

For x a spatio-temporal point pattern in W , we can propose either a birth with probability q(x) or a death with probability 1q(x). For a birth, a new point (u, v) ∈ W is sampled from a probability density b(x, •) and the new point configuration x ∪ (u, v) is accepted with probability A(x, x ∪ (u, v)), otherwise the state remains unchanged. For a death, the point (ξ , t) ∈ x chosen to be removed is selected according to a discrete probability distribution d(x, .) on x, and the proposal x \ (ξ , t) is accepted with probability A(x, x \ (ξ , t)), otherwise the state remains unchanged. For simplicity, we consider q

(x) = 1 2 , b(x, •) = 1/ℓ(W ) and d(x, •) = 1/n(x). By setting A(x, x ∪ (u, v)) = min{1, r((u, v); x)}, and A(x, x \ (ξ , t)) = min{1, 1/r((ξ , t); x \ (ξ , t))} where r((u, v); x) = ℓ(W ) n(x)+1 × λ((u, v)|x)
is the Hastings ratio (Iftimi et al., 2018), we obtain the following birth-death Metropolis-Hastings algorithm.

Algorithm 3

For n = 0, 1, . . ., given X n = x (e.g. a Poisson process for n = 0), generate X n+1 :

• Generate two uniform numbers y 1 , y 2 in [0, 1], • If y 1 ≤ 1 2 then -A new point (u, v) is uniformly sampled from a probability density 1/ℓ(W ), -Compute r((u, v); x) = ℓ(W ) n(x)+1 λ((u, v)|x), (u, v) / ∈ x. If y 2 < r((u, v); x) then X n+1 = x ∪ (u, v) else X n+1 = x • If y 1 > 1 2 then -Uniformly select a point (ξ , t) in x according to a discrete probability density 1/n(x), -Compute r((ξ , t); x\(ξ , t)) = ℓ(W ) n(x) λ((ξ , t)|x \ (ξ , t)), (ξ , t) ∈ x. If y 2 < 1/r((ξ , t); x\(ξ , t)) then X n+1 = x\(ξ , t) else X n+1 = x. -Note that if x = ∅ then X n+1 = x.
This simulation process is repeated a large number of time in order to ensure the convergence of the algorithm to the expected distribution. This number of iterations is unknown a priori and must be determined by the user from practical knowledge and/or diagnostic tools. We choose 20,000 iteration steps in simulation study [START_REF] Papangelou | The conditional intensity of general point processes and an application to line processes[END_REF]000 iteration steps in the application study). To investigate the convergence of the algorithm, we use a ''trace plot'' which shows the evolution of the number of points at each iteration of Algorithm 3. Thus, we check that the number of points in the simulated point pattern is stabilized (see Møller and Waagepetersen, 2004;Illian et al., 2008 for more details).

Simulation study

We compare the performance of the pseudo-likelihood and logistic likelihood approaches on the spatio-temporal multi-scale Geyer point process. We generate 100 simulated realizations in the unit cube from three models. The first one exhibits strong clustering (Model 1), the second one exhibits small scale inhibition and large scale clustering (Model 2) and the third one exhibits inhibition (Model 3). Model parameters are reported in Table 1. We consider a burn-in period of 20,000 steps in Algorithm 3. Fig. 1 shows one realization of each model. According to Baddeley et al. (2014), we generate a spatio-temporal Poisson process with intensity ρ = 4n(x) (resp. 4n(x)/ℓ(W )) as dummy points in Algorithm 1 (resp. Algorithm 2). For each model, we compute the root mean square error (RMSE) of each set of estimated parameters (Table 2) and plot the related boxplots (Fig. 2). In Table 2 the lowest RMSE value is in bold and in Fig. 2 the true values are represented by horizontal red lines. Both RMSE and boxplots show that the logistic likelihood approach performs better than the pseudo-likelihood approach for any model. Note that in the spatial framework, Baddeley et al. (2014) showed that for large datasets the logistic likelihood method is preferable than the pseudo-likelihood method as it requires a smaller number of dummy points and performs quickly and efficiently. Daniel et al. (2018) and Choiruddin et al. (2018) investigated a similar comparison when these methods are regularized (i.e. using an approach with a simultaneous parameter estimation and variable selection by maximizing a penalized likelihood functions). Iftimi et al. (2018) found the advantage of the logistic likelihood approach for the spatio-temporal multi-scale area-interaction point process model. We here confirm this advantage for the spatio-temporal multi-scale Geyer point process model.

Application to forest fire occurrences

Economic and ecological disasters caused by wildfires in the world have led the scientific community to develop many novel statistical analysis and modeling wildfire occurrences to better 2020) fit a spatiotemporal log-Gaussian Cox process model for forest fire occurrences with a log-linear intensity depending on spatio-temporal land use and weather covariates. Ganteaume and Jappiot (2013) investigated the impact of the different covariates on the number of fires using multivariate analysis and Gabriel et al. (2017) explored the influence of land cover covariates, temperature and precipitation on the probability of event occurrence. In addition to the spatio-temporal clustering of events induced by some covariates, Gabriel et al. (2017) detected spatio-temporal interaction structures at different scales and notably an inhibitive effect that arises locally in time and space after wildfires as we expect lesser occurrences at these locations during a vegetation regeneration period.

We propose to fit the spatio-temporal hybrid Geyer point process model ( 5) on wildfire occurrences to take into account both the inhomogeneities induced by covariates and the multi-scale structure of interactions.

Data

Our dataset is of the form (ξ i , t i ), i = 1, . . . , 434, where (ξ i , t i ) corresponds to a wildfire with more than 1 hectare of burnt surface spatially indexed by a DFCI2 cell center ξ i in the Lambert 93 projection system and year t i ∈ {2001, . . . , 2015}. To avoid duplicated points we uniformly jittered ξ i in its DFCI cell. We refer the reader to Gabriel et al. (2017) and Opitz et al. (2020) for further information on the data. Whilst forest fires are daily reported, we consider here the yearly scale, as done in many works (see e.g. Serra et al., 2012Serra et al., , 2014a,b),b), because of the small number of reports and to optimize computation time in model fitting and validation steps. Fig. 3 plots locations of forest fires (left panel) and yearly number of occurrences (right panel). It shows some clustering at short and medium spatial distances. Note that there exist two particular areas without any fire occurrences as they correspond to a lake (center) and marshlands (South-West). The number of fires slightly exponentially decreases in time over the 15 years, mainly due to improvements of fire-fighting resources.

We consider the same framework as in Gabriel et al. (2017) and restrict our attention to the following covariates: water coverage, elevation, coniferous cover and building cover as spatial covariates and temperature average, precipitation as spatio-temporal covariates. Hence, we can consider these covariates as good proxies of the main environmental, climatic and human factors. 

Model fitting

Here we first estimate the spatio-temporal trend and then fit the spatio-temporal multi-scale Geyer model to forest fire occurrences. This two-step model fitting procedure follows our assumption that most forest fire occurrences are firstly due to environmental and meteorological conditions and secondly due to unobserved pairwise interactions. This technique will allow to see the benefits of the multi-scale interaction structure in our hybrid model compared to an inhomogeneous Poisson model with the same spatio-temporal trend.

Spatio-temporal trend estimation

We express the spatio-temporal trend (5) as λ(ξ , t) = βµ(ξ , t) where log µ(ξ , t) is assumed to linearly depend on covariates: (22) with Z S k (ξ ), k = 1, . . . , 4, the spatial covariates, Z ST l (ξ , t), l = 1, 2, the spatio-temporal covariates and αt a decreasing trend of fire counts over time. Because the covariates are known at a fixed 

log µ(ξ , t) = β 0 + 4 ∑ k=1 β S k Z S k (ξ ) + 2 ∑ l=1 β ST l Z ST l (ξ , t) + αt

Model validation

We validate our fitted model from several Monte Carlo tests using statistics based on the spatiotemporal inhomogeneous K -function (Gabriel and Diggle, 2009). First, we generate n sim = 99 simulations from our fitted hybrid Geyer model ( 5) by Algorithm 3 with a burn-in period of 70,000 steps, representing realizations from our null hypothesis. Then, we compute the spatio-temporal inhomogeneous K -function for the observed and simulated point patterns, denoted respectively by K inh obs (h s , h t ) and K inh i (h s , h t ), i ∈ {1, . . . , n sim }, with an estimated separable intensity function obtained by kernel smoothing. For each value of the spatio-temporal distance (h s , h t ), lower (L) and upper (U) critical envelopes of the summary statistics are computed locally

L(h s , h t ) = min 1≤i≤n sim K inh i (h s , h t ), U(h s , h t ) = max 1≤i≤n sim K inh i (h s , h t ). (23) 
In addition to these local envelopes, we compute local and global p-values as in Tamayo-Uria et al. ( 2014), Siino et al. (2018a) in order to respectively detect spatio-temporal distances where the departure from the null hypothesis is the most significant and the overall adequacy of our model. Let 

where T i (h s , h t ) (resp. T obs (h s , h t )) denotes the local statistic T computed from the ith simulation (resp. the data) at (h s , h t ). The local statistic is defined by

T (h s , h t ) = √ ( K inh (h s , h t ) -E(h s , h t )) 2 V (h s , h t ) . (25) 
The global test combines the information for all spatial and temporal distances. We define the test statistic

T = ∫ h t,max 0 ∫ h s,max 0 T (h s , h t )dh s dh t , (26) 
where h s,max and h t,max are user-specific maximum spatial and temporal distances which are preferable to choose close to the (expected) range of interaction of the underlying point process. Illian et al. (2008) recommend to compare the results for several values of h s,max and h t,max . The p-value of the global test is then given by are given in Fig. 5.(c) for any combination of h s,max and h t,max . Again, it shows that our fitted model is validated.

p global = 1 + ∑ n sim i=1 1{ Ti > Tobs } n sim + 1 .
In addition, we also compute global envelopes and p-value of the spatio-temporal K inh functions based on the Extreme Rank Length (ERL) measure defined in Myllymäki et al. (2017) and implemented in the R package GET (Myllymäki and Mrkvička, 2019). The main advantage is that the resulting p-value will not depend on a priori parameters as in the definition of p global with the h s,max and h t,max values. For each point pattern, we consider the long vector T i , i = 1, . . . , n sim (resp. T obs ) merging the K inh i (•, h t ) (resp. K inh obs (•, h t )) estimates for all considered values h t . The ERL measure of vector T i (resp. T obs ) of length n st is defined as

E i = 1 n ns n st ∑ j=1 1{R j ≺ R i },
where R i is the vector of pointwise ordered ranks and ≺ is an ordering operator (Myllymäki et al., 2017; Myllymäki and Mrkvička, 2019). The final p-value is obtained by

p erl = 1 + ∑ n sim i=1 1{E i ≥ E obs } n sim + 1 .
The global p-value p erl is equal to 0.34 consolidating previous results and validating our hybrid Geyer model. Note that we did the same tests for 99 simulations of an inhomogeneous Poisson process with intensity µ(ξ , t)/(2000×2000×1) (22). This model has been rejected at the level 5%, with a median global p-value equals to 0.04. The p erl value is equal to 0.04 under the Poisson assumption rejecting also this baseline model.

Conclusion

Due to the capability of Gibbs point processes to cover prevalent structures (inhibition, randomness and clustering), the hybridization approach allows to introduce new Gibbs models combining several structures at different scales. In this paper, we defined the spatio-temporal multi-scale Geyer saturation point process model and detailed the classical statistical inference methods and MCMC simulation techniques that we have extended to the spatio-temporal framework and implemented in R code3 that will be added to the stpp package (Gabriel et al., 2013). Our simulation study highlighted a better goodness-of-fit of parameters for the logistic likelihood approach compared to the pseudo-likelihood approach. Finally, we illustrated the interest of using this model on a spatio-temporal dataset of forest fire locations associated with environment covariates. The model validation shows that our model captures the multi-scale interaction structure inherent to forest fire occurrences.

In this paper, we focused our attention on the definition of a new hybrid Gibbs model, the inference methods and MCMC simulation algorithms that we needed to adapt to the spatiotemporal context. Some of our choices can be discussed and eventually improved in future works, notably in our application to forest fire occurrences which is not presented as an in-depth study but as an illustration of the model fitting on real data.

In our application study, we considered a log-linear form for the trend depending on covariate information. We chose a two-step procedure for estimating, at first, the trend coefficients and then the regular parameters of the interaction function. Our knowledge on forest fire mechanisms guided this choice because the main driver of occurrence locations is the environmental heterogeneity and the secondary one is the interaction phenomena. The trend is estimated at the spatial DFCI scale and at the yearly one, corresponding to our covariate resolution. In that way, we estimated a global trend at a medium scale whereas the interaction parameters are estimated at the point locations and represent a local interaction behavior at a fine scale. This procedure could be improved by incorporating variable selection methods, e.g. via regularization (Choiruddin et al., 2018;Daniel et al., 2018).

Our two-step estimation procedure allows us to provide confidence intervals for both the trend coefficients and the regular parameters. We notice that some parameters γ j are closed to one.

Here we consider a bootstrap estimate of the confidence interval for each γ j . We could further test departure from one by extending the adjusted composite likelihood ratio test (Baddeley et al., 2016) to the spatio-temporal framework. Indeed, Baddeley et al. (2016) proposed a likelihood ratio test for spatial Gibbs point process models fitted by maximum pseudo-likelihood. They discussed that implementing other composite likelihood as the logistic likelihood would provide a better composite likelihood ratio test. Estimating diagnostics related to the logistic likelihood requires to estimate the variance-covariance matrix of the logistic score and the sensitivity matrix. Baddeley et al. (2014) provide consistent estimators of these quantities. The extension to the spatio-temporal framework is a full-blown work that also involves efficient implementation.

For the choice of irregular parameters, because the likelihood is not differentiable with respect to them, we used a maximum profile likelihood approach based on the logistic likelihood estimation procedure and AIC values for model selection. Introduced for the pseudo-likelihood estimates in Anwar and Stein (2015) and applied to the logistic likelihood approach by us using the results in Baddeley et al. (2014), this method consists in fixing irregular parameters and maximizing the composite likelihood with respect to the regular ones. This technique is a computationally-intensive method. Thanks to a preliminary spatio-temporal exploratory analysis of the interaction ranges done with the inhomogeneous pair correlation function g, the maximum nearest neighbor distance and the temporal autocorrelation function, we chose few configurations of feasible values for the nuisance parameters m, r j , q j and s j , j = 1, . . . , m. Considering more values would be very timeconsuming and developing a new estimation method would be a subject in its own right. During the model validation procedure, we could use the global envelope tests based on the ERL measure to assess the goodness-of-fit of submodels with fewer irregular parameters to be parsimonious.

Our model can be used in many fields, like seismology and epidemiology for example, because several mechanisms exhibit interaction between points at multiple scales in space and time. Relying on this work, we can also develop hybrid models with different density structures. Indeed, although it was not necessarily highlighted here, we know that forest fires with large burnt areas avoid future fire occurrences during a vegetation regeneration period. Such cases of strong inhibition may be modeled by hybrid Gibbs point processes with a hardcore component like the hybrid Geyer hardcore point process. We recently extended our work to this model.

Introduction

In point process modeling, most of existing models yield point patterns with mainly single-structure, but only a few with multi-structure. Interactions with single-structure are often classified into three classes: randomness, clustering and inhibition. Among inhibition processes is the hardcore process. It has some hardcore distance h in which distinct points are not allowed to come closer than a distance h apart. This type of interaction can be modelled by Gibbs point processes as the hardcore or Strauss hardcore point processes and also by Cox point processes as Matérn's hardcore (Matérn, 1960;[START_REF] Matérn | Spatial Variation[END_REF] or Matérn thinned Cox point processes (Andersen and Hahn, 2016). Here, we focus on the former, i.e. Gibbs models implemented by a hardcore component as in the Strauss hardcore model. The form of Strauss hardcore density indicates that the hardcore parameter only rules at least distance between points, and has no effect on the interaction terms of the density (Dereudre and Lavancier, 2017, sect. 2.3).

In several domains, there exist point patterns with hardcore distances that have to be modelled. Spatial point patterns with hardcore property can be found in capillaries studies [START_REF] Mattfeldt | Statistical analysis of reduced pair correlation functions of capillaries in the prostate gland[END_REF]2007;2009), in texture synthesis [START_REF] Hurtut | Appearance-guided synthesis of element arrangements by example[END_REF], in forest fires (Turner, 2009), in cellular networks [START_REF] Taylor | Pairwise interaction processes for modeling cellular network topology[END_REF][START_REF] Ying | Characterizing spatial patterns of base stations in cellular networks[END_REF], in landslides [START_REF] Das | Application of the Multitype Strauss Point Model for Characterizing the Spatial Distribution of Landslides[END_REF], in modern and contemporary architecture and art [START_REF] Stoyan | Point process statistics: application to modern and contemporary art and design[END_REF] and in location clustering econometrics (Sweeney and Gomez-Antonio, 2016).

There also exist point patterns with either clustering and inhibition like hardcore interactions at different scales simultaneously (Badreldin et al., 2015;Andersen andHahn, 2016 andWang et al., 2020). Wang et al. (2020, sect. 2.4) investigated effect of the hardcore distance on spatial patterns of trees by comparing the pair correlation function curves for different values of hardcore distances in the fitted hybrid Geyer hardcore model. Raeisi et al. (2019) review spatial and spatio-temporal point processes that model both inhibition and clustering at different scales. Such multi-structure interactions can be modelled by the spatial hybrid Gibbs point process (Baddeley et al, 2013). In this paper, we aim to extend the spatial Strauss hardcore point process [START_REF] Ripley | Statistical Inference for Spatial Processes[END_REF] to the spatio-temporal framework and introduce a multi-scale version of it using hybridization approach. We use this model to describe one of the most complex phenomena from the spatio-temporal modeling point of view: forest fire occurrences.

The complexity of forest fire occurrences is due in particular to the existence of multi-scale structures and hardcore distances in space and time. For instance, spatio-temporal variations of fire occurrences depend on the spatial distribution of current land use and weather conditions. Changes in vegetation due to forest fires burnt areas further affect the probability of fire occurrences during the regeneration period leading to the existence of hardcore distances in space-time. The multi-scale structure of clustering and inhibition in the spatiotemporal pattern of the forest fire occurrences is discussed in Gabriel et al. (2017). Wildfires have mainly been modelled by Cox processes and inferred by Bayesian hierarchical approaches, as the integrated nested Laplace approximation (INLA) approach (Rue et al., 2009). See Møller and Diaz-Avalos (2010), Pereira et al. (2013), Serra et al. (2012Serra et al. ( , 2014a,b),b), Najafabadi et al. (2015), Juan (2020) and Pimont et al. (2021) for single-structure models and Gabriel et al. (2017), Opitz et al. (2020) for multi-structure models. Recently, Raeisi et al. (2021) modelled the multi-structure of forest fire occurrences by a spatiotemporal Gibbs process and use a composite likelihood approach for its inference.

This paper is organized as follows. In Section 2 we introduce in the spatiotemporal framework the notations and definitions of Gibbs point processes in order to introduce our multi-scale version of the Strauss hardcore model. Section 3 is devoted to the inference of our model. It describes techniques to determine the irregular parameters (hardcore and interaction distances) and the logistic-likelihood approach generalized to the spatio-temporal setting to estimate the regular parameters (strength of interactions). Section 4 illustrates the goodness-of-fit of the logistic likelihood approach on simulated patterns of our model obtained by an extended Metropolis-Hastings algorithm. Finally in Section 5, we apply our model to monthly records of forest fires in the center of Spain.

2 Towards multi-scale Strauss hardcore point processes Gibbs models are flexible point processes that allow the specification of point interactions via a probability density defined with respect to the unit rate Poisson point process. These models allow to characterize a form of local or Markovian dependence amongst events. Gibbs point processes contain a large class of flexible and natural models that can be applied for:

-Postulating the interaction mechanisms between pairs of points, -Taking into account clustering, randomness or inhibition structures, -Combining several structures at different scales with the hybridization approach.

Let x = {(ξ 1 , t 1 ), , ..., (ξ n , t n )} be a spatio-temporal point pattern where

(ξ i , t i ) ∈ W = S×T ⊂ R 2 ×R. We consider (W, d(•, •)) where d((u, v), (u ′ , v ′ )) := max{||u -u ′ ||, |v -v ′ |} for (u, v), (u ′ , v ′ ) ∈ W is a complete, separable metric space. The cylindrical neighbourhood C q r (u, v) centred at (u, v) ∈ W is defined by C q r (u, v) = {(a, b) ∈ W : ||u -a||≤ r, |v -b|≤ q}, (1) 
where r, q > 0 are spatial and temporal radius and ||•|| denotes the Euclidean distance in R 2 and |•| denotes the usual distance in R. Note that C q r (u, v) is a cylinder with centre (u, v), radius r, and height 2q.

A finite Gibbs point process is a finite simple point process defined with a density f (x) that satisfies the hereditary condition, i.e. f (x) > 0 ⇒ f (y) > 0 for all y ⊂ x.

A closely related concept to density functions is Papangelou conditional intensity function (Papangelou, 1974) which is a tool for simulating Gibbs models and inferring its parameters. The Papangelou conditional intensity of a spatio-temporal point process on W with density f is defined, for (u, v) ∈ W , by

λ((u, v)|x) = f (x (u, v)) f (x\(u, v)) , (2) 
with a/0 := 0 for all a ≥ 0 (Cronie and van Lieshout, 2015).

The Papangelou conditional intensity is also very useful to describe local interactions in a point pattern, and leads to the notion of a Markov point process which is the basis for the implementation of MCMC algorithms used for simulating of Gibbs models. We say that the point process has "interactions of range R at (ξ, t)" if points further than R away from (ξ, t) do not contribute to the conditional intensity at (ξ, t). A spatio-temporal Gibbs point process X has a finite interaction range R if the Papangelou conditional intensity satisfies

λ((u, v)|x) = λ((u, v)|x ∩ C R R (u, v)) (3) 
for all configurations x of X and all (u, v) ∈ W, where C R R (u, v) denotes the cylinder of radius R > 0 and height 2R > 0 centred at (u, v). Spatio-temporal Gibbs models usually have finite interaction range property (spatio-temporal Markov property) and are called in this case Markov point processes (van Lieshout 2000). The finite range property of a spatio-temporal Gibbs model implies that the probability to insert a point (u, v) into x depends only on some cylindrical neighborhood of (u, v).

Here, we first review spatio-temporal Gibbs models and then extend the spatial Strauss hardcore model to the spatio-temporal and multi-scale context. We further refer to Dereudre (2019) for more formal introduction of Gibbs point processes.

Single-scale Gibbs point process models

In the literature, several spatio-temporal Gibbs point process models have been proposed such as the hardcore (Cronie and van Lieshout, 2015), Strauss (Gonzalez et al., 2016), area-interaction (Iftimi et al., 2018), and Geyer (Raeisi et al., 2021) point processes.

A Gibbs point process model explicitly postulates that interactions traduce dependencies between the points of the pattern. The hardcore interaction is one of the simplest type of interaction, which forbids points being too close to each other. The homogeneous spatio-temporal hardcore point process is defined by the density

f (x) = cλ n(x) 1{||ξ -ξ ′ ||> h s or |t -t ′ |> h t ; ∀(ξ, t) = (ξ ′ , t ′ ) ∈ x}, (4)
with respect to a unit rate Poisson point process on W , where c > 0 is a normalizing constant, λ > 0 is an activity parameter, h s , h t > 0 are, respectively, the spatial and the temporal hardcore distances and n(x) is the number of points in x. The Papangelou conditional intensity of a homogeneous spatiotemporal hardcore point process for (u, v) / ∈ x is obtained

λ((u, v)|x) = λ1{||ξ -u||> h s or |t -v|> h t ; ∀(ξ, t) ∈ x} = λ (ξ,t)∈x 1{||ξ -u||> h s or |t -v|> h t } = λ (ξ,t)∈x 1{(ξ, t) / ∈ C ht hs (u, v)}. (5) 
. The homogeneous spatio-temporal Strauss point process is defined by density

f (x) = cλ n(x) γ S q r (x) , (6) 
with respect to a unit rate Poisson point process on W , where

S q r (x) = (ξ,t) =(ξ ′ ,t ′ )∈x 1{||ξ -ξ ′ ||≤ r, |t -t ′ |≤ q}
and the Papangelou conditional intensity of the model is

for (u, v) / ∈ x, λ((u, v)|x) = λγ n[C q r (u,v);x] , (7) 
and for (ξ,

t) ∈ x, λ((ξ, t)|x) = λγ n[C q r (ξ,t);x\(ξ,t)] , (8) 
where n[C q r (y, z); x] = (ξ,t)∈x 1{||y -ξ||≤ r, |z -t|≤ q} is the number of points in x which are in a cylinder C q r (y, z). Although the Strauss point process was originally intended as a model of clustering, it can only be used to model inhibition, because the parameter γ cannot be greater than 1. If we take γ > 1, the density function of Strauss model is not integrable, so it does not define a valid probability density.

As mentioned, the Strauss point process model only achieves the inhibition structure. In the spatial framework, two ways are introduced to overcome this problem that we extend to the spatio-temporal framework hence defining two new spatio-temporal Gibbs point process models.

A first way is to consider an upper bound for the number of neighboring points that interact. In this case, Raeisi et al. (2021) defined a homogeneous spatio-temporal Geyer saturation point process by density

f (x) = cλ n(x) (ξ,t)∈x γ min{s,n * [C q r (ξ,t);x]} , (9) 
with respect to a unit rate Poisson point process on W , where s is a saturation parameter and n * [C q r (ξ, t); x] = n[C q r (ξ, t); x \ (ξ, t)] = (u,v)∈x\(ξ,t) 1{||u -ξ||≤ r, |v -t|≤ q}.

A second way is to introduce a hardcore condition to the Strauss density (6). Hence, we can define a Strauss hardcore model in the spatio-temporal context.

Definition 1

We define the spatio-temporal Strauss hardcore point process as the point process with density

f (x) = cλ n(x) γ S q r (x) 1{||ξ -ξ ′ ||> h s or |t -t ′ |> h t ; ∀(ξ, t) = (ξ ′ , t ′ ) ∈ x}, (10) 
where 0 < h s < r and 0 < h t < q.

The model could be used to model clustering patterns with a softer attraction between the points like a pattern with a combination of interaction terms that show repulsion between the points at a small scale and attraction between the points at a larger scale. The Papangelou conditional intensity of a homogeneous spatio-temporal Strauss hardcore point process for (u, v) / ∈ x is obtained λ((u, v)|x) = λγ n[C q r (u,v);x] 1{||ξ -u||> h s or |t -v|> h t ; ∀(ξ, t) ∈ x} = λγ n[C q r (u,v);x] (ξ,t)∈x 1{(ξ, t) / ∈ C ht hs (u, v)}. (11) We can define inhomogeneous versions of all above models by replacing the constant λ by a function λ(ξ, t), inside the product operator over (ξ, t) ∈ x, that expresses a spatio-temporal trend, which can be a function of the coordinates of the points and depends on covariate information.

Multi-scale Gibbs point process models

Since most natural phenomena exhibit dependence at multiple scales as earthquake (Siino et al., 2017;[START_REF] Raeisi | On models for complex spatio-temporal point process data[END_REF] and forest fire occurrences (Gabriel et al., 2017), single-scale Gibbs point process models are unrealistic in many applications. This motivates us and other statisticians to construct multi-scale generalizations of the classical Gibbs models. Baddeley et al. (2013) proposed hybrid models as a general way to generate multi-scale processes combining Gibbs processes. Given m densities f 1 , f 2 , ..., f m of Gibbs point processes, the hybrid density is defined as f

(x) = cf 1 (x) × f 2 (x) × • • • × f m (x)
where c is a normalization constant. Iftimi et al. (2018) extended the hybrid approach for an area-interaction model to the spatio-temporal framework where the density is given by f (x) = c (ξ,t)∈x λ(ξ, t) m j=1 γ -ℓ(∪ (ξ,t)∈x C q j r j (ξ,t)) j , (12) with respect to a unit rate Poisson process on W , where (r j , q j ) are pairs of irregular parameters of the model and γ j are interaction parameters, j = 1, . . . , m.

In the same way, Raeisi et al. (2021) defined a spatio-temporal multi-scale Geyer saturation point process with density f (x) = c (ξ,t)∈x λ(ξ, t) m j=1 γ min{sj ,n(C q j r j (ξ,t);x)} j (13) with respect to a unit rate Poisson process on W , where c > 0 is a normalizing constant, λ ≥ 0 is a measurable and bounded function, γ j > 0 are the interaction parameters.

Similarly, a hybrid version of spatio-temporal Strauss model can be defined by hybridization. 

with respect to a unit rate Poisson process on W .

Note that we called the model ( 14) hybrid rather than multi-scale. The model ( 14) can cover inhibition structure because 0 < γ j < 1, ∀j ∈ {1, . . . , m}. However, it can take into account clustering if one of densities in hybrid is the one of a hardcore process.

Hybrid Strauss hardcore point process

The hybrid Gibbs point process models do not necessarily include m same Gibbs point process models (see Baddeley et al., 2015 sect. 13.8). Badreldin et al. (2015) applied a spatial hybrid model including a hardcore density to model strong inhibition at very short distances, Geyer density for cluster structure in short to medium distances and a Strauss density for a randomness structure in larger distances to the spatial pattern of the halophytic species distribution in an arid coastal environment. Wang et al. (2020) fitted a spatial hybrid Geyer hardcore point process on the tree spatial distribution patterns. In this section, we extend this type of hybrids to the spatio-temporal context. 

Because, the conditional intensity of Gibbs models including a hardcore interaction term takes the value zero at some locations, we can rewrite it as

λ((u, v)|x) = m((u, v)|x)λ + ((u, v)|x), (17) 
where m((u, v)|x) takes only the values 0 and 1, and λ + ((u, v)|x) > 0 everywhere.

The spatio-temporal hybrid Strauss hardcore point process ( 15) is a Markov point process in Ripley-Kelly's (1977) sense at interaction range max{r m , q m }. This can be shown as in Iftimi et al. (2018) and Raeisi et al. (2021).

Inference

Gibbs point process models involve two types of parameters: regular and irregular parameters. A parameter is called regular if the log likelihood of density is a linear function of that parameter otherwise it is called irregular. Typically, regular parameters determine the 'strength' of the interaction, while irregular parameters determine the 'range' of the interaction. As an example, in the Strauss hardcore point process (10), the trend parameter λ and the interaction γ are regular parameters and the interaction distances r and q and the hardcore distances h s and h t are irregular parameters.

To determine the interaction distances r and q, there are several practical techniques, but no general statistical theory available. A useful technique is the maximum profile pseudo-likelihood approach (Baddeley and Turner, 2000). In the spatio-temporal framework, Iftimi et al. (2018) and Raeisi et al. (2021) selected feasible range of irregular parameters by analyzing the behavior of some summary statistics and the goodness-of-fit of several models with different combinations of parameters.

The hardcore interaction term m(•|x) in the conditional intensity (17) does not depend on the other parameters of the densities of Gibbs point processes. This implies that it can first be estimated and kept fixed for the sequel (Baddeley et al., 2019, p. 26). In the spatial framework, the maximum likelihood estimate of the hardcore distance in m(•|x) corresponds to the minimum interpoint distance (Baddeley et al., 2013, Lemma 7). The generalization to the spatio-temporal context with a cylindrical hardcore structure implies to consider a multi-objective minimization problem over the spatial and temporal hardcore distances h s and h t . The choice of our hardcore parameters needs to analyze the Pareto front of feasible solutions on the graph of spatial and temporal interpoint distances. We refer the reader to Ehrgott (2005) for a description of multi-criteria optimization and the definition of Pareto optimality. To estimate the hardcore distance h s and h t , we consider a feasible solution on the Pareto front as large as possible and with a ratio consistent with our knowledge of interaction mechanisms in practice.

Regular parameters can be estimated using the pseudo-likelihood method (Baddeley and Turner, 2000) or logistic likelihood method (Baddeley et al., 2014) rather than the maximum likelihood method (Ogata and Tanemura, 1981). Due to the advantage of the logistic likelihood over pseudo-likelihood for spatio-temporal Gibbs point processes (Iftimi et al., 2018;Raeisi et al., 2021), we implement the former approach in Raeisi et al. (2021, Algorithm 2 ) for regular parameter estimation of the spatio-temporal hybrid Strauss hardcore point process.

We assume that θ = (log γ 1 , log γ 2 , . . . , log γ m ) is the logarithm of interaction parameters in spatio-temporal hybrid Strauss hardcore point process (15). To estimate θ, due to (17), we just consider the points (u, v) where m((u, v)|x) is equal to 1 in (16). By defining S j ((u, v), x) := n[C qj rj (u, v); x \ (u, v)] in ( 16), we can thus write λ θ ((u, v)|x) = λ(u, v) m j=1 exp(θ j S j ((u, v), x)).= Hence, the logarithm of the Papangelou conditional intensity of the spatio-temporal hybrid Strauss hardcore point process for (u, v) ∈ W which satisfies in hardcore condition, i.e. m((u, v)|x) = 1 in ( 16), is log λ((u, v)|x) = log λ(u, v) + m j=1 (log γ j )S j ((u, v), x) = log λ(u, v) + θ ⊤ S((u, v), x) (18) corresponding to a linear model in θ with offset log λ(u, v) where S((u, v), x) = [S 1 ((u, v), x), S 2 ((u, v), x), ..., S m ((u, v), x)] ⊤ is a sufficient statistics.

By considering a set of dummy points d from an independent Poisson process with intensity function ρ, we obtain by defining the Bernoulli variables Y ((ξ, t)) = ✶ {(ξ,t)∈x} for (ξ, t) ∈ x∪d that the logit of P (Y ((ξ, t))) = 1 is equal to log λ θ ((ξ,t)|x\(ξ,t)) ρ(ξ,t)

. Under regularity conditions, the log-logistic likelihood 

is a linear model in θ with offset log λ(ξ,t) ρ(ξ,t) . We use the approach of Raeisi et al. (2021) for data and dummy points such that m(•|x) = 1. We also consider that λ(ξ, t) = βµ(ξ, t), where µ(ξ, t) is a trend preliminary estimated with spatio-temporal covariates.

Simulation study

Due to the markovian property of the spatio-temporal hybrid Strauss hardcore point process (15), its Papangelou conditional intensity at a point thus depends In this section we aim to model the interactions of forest fire occurrences across a range of spatio-temporal scales.

Data description

The clmfires dataset available in spatstat package records the occurrences of forest fires in the region of Castilla-La Mancha, Spain (Figure 2, left) from 1998 to 2007. The study area is approximately 400 km×400 km. The clmfires dataset has already been used in some academic works devoted to the point process theory (see e.g. Juan et al., 2010;Gomez-Rubio, 2020, sect. 7.4.2;[START_REF] Myllymäki | GET: Global envelopes in R[END_REF]. The dataset has two levels of precision: from 1998 to 2003 locations were recorded as the centroids of the corresponding "district Due to memory constraints and availability of climate covariates in months, we consider monthly fire occurrences. The temporal component of the process takes integer values from 1 to 48. We thus consider W = S × T where S is the region of Castilla-la-Mancha and T = {1, 2, . . . , 48} corresponds to the months since January 2004. Figure 2 (right) shows the monthly number of fires occurring during our time period. We observe seasonal effects with notably large numbers of fires in summer that could be caused by high temperatures and low precipitations in this period and also by human activities.

In point pattern analysis, the spatial (spatio-temporal) inhomogeneity of patterns is notably driven by covariates. The clmfires dataset contains four environmental covariates that we include in our analysis: elevation, orientation, slope and land use. The covariates are known on a spatial grid with pixels of 4 km × 4 km, resulting in a total of 10, 000 pixels. The land use is a factor-valued covariate whereas the others are real-valued covariates. We also consider weather data freely provided by the WorldClim database1 and containing monthly maximum temperatures ( • C) and total precipitations (mm). Figure 3 illustrates the environmental covariates, which are considered fixed during our temporal period, and the climate covariates in January 2007.

Estimation

First, we estimate the trend function by considering a generalized linear model (GLM) on covariates. Then, by an exploratory analysis using spatio-temporal summary statistics we approximate the hardcore parameters and the interaction ranges. Finally, we use the logistic likelihood approach described in Section 3 for the estimation of regular parameters of our model with the trend function estimated in the preliminary step.

Trend estimate

Since covariates are available on a spatial grid, we restrict our attention on the related grid centers ξ i , i = 1, . . . , 10000 and months {t j } j=1,...,48 ∈ T and consider N ij |λ(ξ i , t j ) ∼ P oisson(λ(ξ i , t j )) where N ij is the number of forest fires in the i th grid center at month t j .

Following Raeisi et al. (2021), by considering a GLM with Poisson response, we obtain: log λ(ξ i , t i ) = β 0 + 6 k=1 β k Z k (ξ i , t i ), (21) where Z k (ξ i , t i ), k = 1, . . . , 6, are the environmental and climatic covariates at point (ξ i , t i ) and β 0 , β k , k = 1, . . . , 6 are the coefficients to estimate. As said before, we consider the same values for environmental covariates over time. A straightforward way to fit a GLM in R is to use the function glm. Table 3 reports the estimated coefficients in (21) and their significance level by a two-tailed Student's t-test. Coefficients higher (respectively lower) than zero imply an increase (resp. decrease) of the expected mean number of forest fires when the covariate value increase (resp. decrease). Those related to elevation and temperature are positively significant, showing that these two covariates favors the ignition of wildfires. At the opposite, the covariate precipitation has a negative significant coefficient indicating that an increase of the amount of precipitation induces a decrease in the mean number of forest fires. The land use appears not significantly different from zero, it can be explained by the low spatial resolution of the covariates.

Irregular parameter estimates

We have two types of irregular parameters in our spatio-temporal Gibbs point process. On the one hand, the hardcore distances that we can choose among the feasible solutions on the Pareto front of spatial and temporal interpoint distances. According to Figure 4, we choose on the Pareto front the unique feasible solution in our case that gives non-zero values for the two hardcore distances, i.e. h s = 0.35 km and h t = 1 month. On the other hand, for the nuisance parameters m, r j and q j , j = 1, . . . , m, there is no common method for estimating them. Here we considered several combinations of ad-hoc values within a reasonable range and select the optimal irregular parameters according to the Akaike's Information Criterion (AIC) of the fitted model after the regular parameter estimation step (Raeisi et al., 2021). We chose 25 configurations of reasonable range for the nuisance parameters using a preliminary spatio-temporal exploratory analysis of the interaction ranges done with the inhomogeneous pair correlation function, the maximum nearest neighbor distance and the temporal auto-correlation function. We fitted the spatiotemporal hybrid Strauss point process model for a range of ad-hoc values r j ∈ (0.35, 20], q j ∈ {2, ..., 15}, j = 1, . . . , m and m ∈ {1, . . . , 6}. The minimum AIC is obtained for the combination given in Table 4.

Regular parameter estimates

We consider the logistic likelihood method investigated in Section 3 to estimate the regular parameters. We simulate dummy points from an inhomogeneous Poisson point process with intensity ρ(ξ, t) = C λ(ξ, t)/ν where C = 4 by a classical rule of thumb in the logistic likelihood approach, λ is the estimated trend and ν = 4 × 4 × 1 is the volume of a grid cell on one month. In order to satisfy the hardcore condition in (17), we remove dummy points at spatial and temporal distances respectively less than h s and h t . Estimated regular parameters are provided in Table 4.

(u, v), meaning that the hybrid Strauss hardcore model is suitable for the data. In addition, we compute global envelopes and p-value of the spatio-temporal g-functions based on the Extreme Rank Length (ERL) measure defined in Myllymäki et al. (2017) and implemented in the R package GET [START_REF] Myllymäki | GET: Global envelopes in R[END_REF]. For each point pattern, we consider the long vector T i , i = 1, . . . , n sim (resp. T obs ) merging the g i (•, v) (resp. g obs (•, v)) estimates for all considered values h t . The ERL measure of vector T i (resp. T obs ) of length n st is defined as

E i = 1 n ns nst j=1 ✶{R j ≺ R i },
where R i is the vector of pointwise ordered ranks and ≺ is an ordering operator (Myllymäki et al., 2017;[START_REF] Myllymäki | GET: Global envelopes in R[END_REF]. The final p-value is obtained by

p erl = 1 + nsim i=1 ✶{E i ≥ E obs } n sim + 1 .
Due to the global p-value p erl = 0.59 and the absence of significant regions, that corresponds here to pairs of spatial and temporal distances where the statistics is significantly above or below the envelopes (see Figure 6 and GET package), we conclude that our hybrid Strauss hardcore model can not be rejected a significance level of 1%.

Conclusion

In this paper, we introduced the spatio-temporal Strauss hardcore point process. The Strauss hardcore model is a Gibbs model for which points are pushed to be at a hardcore distance apart and repel up to a interaction distance which is larger than the hardcore distance. As in Raeisi et al. (2021), inference and In spatio-temporal Gibbs point process models, the heterogeneity can be captured by estimating a non-constant trend. This spatio-temporal trend is typically considered as a function of covariates by estimating fixed effects in a generalized linear model as we carried out it in this paper and also in Iftimi et al. (2018) and Raeisi et al. (2021). A different approach consists in considering Gibbs models with both random and fixed effects (e.g. see Illian and Hendrichsen, 2010) to take into account complex patterns of spatiotemporal heterogeneity. Vihrs et al. (2020) proposed a new modeling approach for this case and embedded spatially structured Gaussian random effects in trend function of a pairwise interaction process. They introduced the spatial log-Gaussian Cox Strauss point process to capture both structures; aggregation in small-scale and repulsion in large-scale. Rather than spatial pairwise interaction processes in single-scale, we now focus on models derived from the multi-scale classes of combinations of Gibbs and log-Gaussian Cox point processes in space and time, to which we refer to as Cox-Gibbs models. We propose to embed spatio-temporally structured Gaussian random effects in the Gibbs trend function. Due to the hierarchical structure of such models, we can

  Shot noise Cox processes (Møller 2003) (SNCP) are a wide class of Cox processes associated to Λ(η) = (c,γ)∈Φ γk(c, η), where Φ is a Poisson point process on W × [0, ∞) with intensity measure ζ and k(c, •) is a density function on W, ∀c ∈ W. The intensity and pair correlation function are

  Fuentes-Santos et al. (2017) and Fuentes-Santos et al. (2021) proposed non-parametric tests to compare the spatial distribution of two observed forest fire patterns based on comparison of their first-order intensities.

  Definition 2.1.1. A spatio-temporal Gibbs point process X has a finite interaction range R if the Papangelou conditional intensity satisfies

  Fig. 4.1 shows one realization of each model.
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 41 Parameters of the three multi-scale Geyer point process models used in sim-05,0.1) (0.05,0.1)(1,1) 

Figure 4 . 1

 41 Figure 4.1 Realizations of Model 1 (left); Model 2 (middle); Model 3 (right) from hybrid Geyer model.

Figure 4 . 2

 42 Figure 4.2 Boxplots of regular parameters estimated from the pseudo-likelihood and logistic likelihood approaches for Model 1 (first row), Model 2 (second row) and Model 3 (third row) from hybrid Geyer model. True values are represented by horizontal red lines.

Figure 4 . 3

 43 Figure 4.3 Boxplots of parameter estimates of the hybrid Strauss hardcore point process obtained from the logistic likelihood estimation methods. Up to down: Model 4, Model 5, and Model 6.51

Figure 4 . 4

 44 Figure 4.4 The simulated LGCGPs on the unit square (black points) and the corresponding realisation of Z (blue to yellow scale image).

Fig. 4 .

 4 4 is three examples of simulated realisations of the LGCGP on W = [0, 1] 2 with mentioned parameters. Fig.

Figure 4 . 5

 45 Figure 4.5 The empirical L-function minus the identity for the point patterns of Fig. 4.4 (black curve) and for 19 simulations of the same process (grey curves) plus their mean (green curve).
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 46 Figure 4.6 (Left) A simulated multi-structure point pattern in unit cube with 132 points. (Right) A spatial projection of point pattern.

Figure 4 . 7

 47 Figure 4.7 Local estimates of parameters λ (left) and γ (right) of Strauss hardcore point process.
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 51 Figure 5.1 (Left) Forest fire locations in UTM coordinate system (distance in meters), with more than 1 hectare of burnt area, recorded during the years 2001 to 2015 in the Bouches-du-Rhône county in France. (Right) Number of recorded forest fires per year.

Figure 5 . 2

 52 Figure 5.2 Maps of covariates: water coverage (top left), elevation (top right), coniferous cover (middle left), building cover (middle right), temperature average (botton left) and square root of precipitation (botton right) in 2001.

Figure 5 . 3

 53 Figure 5.3 Temporal separations h t are in year and spatial distances h s are in kilometer. a) Envelopes of the spatio-temporal inhomogeneous K-function for the simulated spatio-temporal multi-scale Geyer point process according to the estimated parameters. b) Image plot of the local p-value. c) Image plot of the global p-value for any pairs of (h s,max , h t,max ).
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 54 Figure 5.4 Left: Map of region of Castilla-La Mancha (Spain). Middle: Forest fire locations. Right: monthly numbers of fires recorded between January 2004 and December 2007 with burnt areas, spatial distances and time distances respectively bigger than 5 ha, 0.2 km and 100 days.
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 55 Figure 5.5 Image plot of environmental covariates (elevation, orientation, slope and land use) and climate covariates (precipitation and temperature) in January 2007.
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 56 Figure 5.6 Spatial and temporal interpoint distances respectively lower than 5 kms and 12 months (black circles). The red line corresponds to the Pareto front and the red rectangle to the hardcore domain.

Figure 5 . 7

 57 Figure 5.7 Envelopes of the spatio-temporal inhomogeneous g-function obtained from simulations of the fitted spatio-temporal hybrid Strauss hardcore point process (light grey). The blue surface corresponds to g obs . Temporal separations are in month and spatial distances are in kilometer.

Figure 5 . 8

 58 Figure 5.8 Top: estimated pair correlation function ĝobs , lower E L and upper E U bounds of the 99% global rank envelope (ERL). Bottom: differences E obs -E L and E U -E obs . Negative values (if any) are represented in red and lead to reject the fitted model. Values on the horizontal axis are in kilometers and those on the vertical axis are in months.

Fig. 5 .

 5 10 compares L-function for point patterns in during 1981 to 2019 in August and mean of L-function for 19 samples from the posterior joint distribution of fitted LGCSP and confirms that the fitted LGCSP captures the behavior of the point pattern very well.

Figure 5 . 9

 59 Figure 5.9 Posterior mean of the spatial random fields for August of 1981 (top-left), 1999 (top-right), 2009 (bottom-left), and 2019 (bottom-right) .

Figure 5 . 10

 510 Figure 5.10 Combined global envelopes based on the empirical L-function for LGCSP fitted by our INLA˙based approach. The solid curve is the empirical functional summary statistics for the observed point pattern and the dashed curve is the means obtained from 19 posterior predictions. Each shaded area indicates a 95% global envelope based on the extreme rank length. At the top of each plot, the p-value of the corresponding global envelope test is stated.

  only tractable for two special cases of Cox processes, that we present below, the Shot Noise Cox process and the log-Gaussian Cox process. Shot noise Cox processes [61] (SNCP) are a wide class of Cox processes associated to Λ(ξ) = (c,γ)∈Φ γk(c, ξ), where Φ is a Poisson point process on W ×[0, ∞) with intensity measure ζ and k(c, •) is a density function on W, ∀c ∈ W. The intensity and pair correlation function are λ(ξ) = γk(c, ξ)dζ(c, γ) and g
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 1 Fig. 1. Realizations of Model 1 (left); Model 2 (middle); Model 3 (right).

Fig. 2 .

 2 Fig. 2. Boxplots of regular parameters estimated from the pseudo-likelihood and logistic likelihood approaches for Model 1 (first row), Model 2 (second row) and Model 3 (third row). True values are represented by horizontal red lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3 .

 3 Fig. 3. (Left) Forest fire locations in UTM coordinate system (distance in meters), with more than 1 hectare of burnt area, recorded during the years 2001 to 2015 in the Bouches-du-Rhône county in France. (Right) Number of recorded forest fires per year.

  Maps of covariates are shown in Fig. 4 in 2001.

Fig. 4 .

 4 Fig. 4. Maps of covariates: water coverage (top left), elevation (top right), coniferous cover (middle left), building cover (middle right), temperature average (bottom left) and square root of precipitation (bottom right) in 2001.

Fig. 5 .

 5 Fig. 5.(a) shows the spatio-temporal inhomogeneous K function computed on our dataset (dark gray) and the envelopes obtained from our hybrid Geyer model (light gray); K inh obs (h s , h t ) lies inside the envelopes, meaning that the fitted model seems to describe properly the spatio-temporal structure of the data. This is confirmed by local p-values at any distances (Fig. 5.(b)). Global p-values

Fig. 5 .

 5 Fig. 5. Temporal separations h t are in year and spatial distances h s are in kilometer. (a) Envelopes of the spatio-temporal inhomogeneous K -function for the simulated spatio-temporal multi-scale Geyer point process according to the estimated parameters. (b) Image plot of the local p-value. (c) Image plot of the global p-value for any pairs of (h s,max , h t,max ).

Definition 2

 2 We define the spatio-temporal hybrid Strauss point process with density f (x) = c

Definition 3 ×

 3 We define the spatio-temporal hybrid Strauss hardcore point pro-1{||ξ ′ξ ′′ ||> h s or |t ′t ′′ |> h t ; ∀(ξ ′ , t ′ ) = (ξ ′′ , t ′′ ) ∈ x},(15)where 0< h s < r 1 < • • • < r m and 0 < h t < q 1 < • • • < q m .The Papangelou conditional intensity of an inhomogeneous spatio-temporal hybrid Strauss hardcore process is then, for (u, v) / ∈ x,λ((u, v)|x) = λ(u, v) u,v);x] j 1{||ξ -u||> h s or |t -v|> h t ; ∀(ξ, t) ∈ x} = λ(u, v)

Fig. 1

 1 Fig. 1 Boxplots of regular parameter estimates of the hybrid Strauss hardcore point process obtained from the logistic likelihood estimation methods. Up to down: Model 1, Model 2, and Model 3

Fig. 2

 2 Fig. 2 Left: Map of region of Castilla-La Mancha (Spain). Middle: Forest fire locations. Right: monthly numbers of fires recorded between January 2004 and December 2007 with burnt areas, spatial distances and time distances respectively bigger than 5 ha, 0.2 km and 100 days.

  units", while since 2004 locations correspond to the exact UTM coordinates of the fire locations.Due to the low precision of fire locations for the years 1998 to 2003 (Gomez-Rubio 2020, sect. 7.4.2), we focus on fires in the period 2004 to 2007. In this period, we consider large forest fires with burnt areas larger than 5 ha.

Figure 2 (

 2 middle) shows the point pattern of 432 wildfire locations onto the spatial region.

Fig. 3

 3 Fig. 3 Image plot of environmental covariates (elevation, orientation, slope and land use) and climate covariates (precipitation and temperature) in January 2007.

Fig. 5

 5 Fig. 5 Envelopes of the spatio-temporal inhomogeneous g-function obtained from simulations of the fitted spatio-temporal hybrid Strauss hardcore point process (light grey). The blue surface corresponds to g obs . Temporal separations v are in month and spatial distances u are in kilometer.

Fig. 6

 6 Fig. 6 Top: estimated pair correlation function ĝobs , lower E L and upper E U bounds of the 99% global rank envelope (ERL). Bottom: differences E obs -E L and E U -E obs . Negative values (if any) are represented in red and lead to reject the fitted model. Values on the horizontal axis are in kilometers and those on the vertical axis are in months.
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 11 Overview of spatial point process-based studies for modelling forest fires

	Studies	Model	Estimation	Study area

Table 1 . 2

 12 Overview of spatio-temporal point process-based studies for modelling forest fires

	Studies	Model	Estimation	Study area
	Møller and Diaz-Avalos (2010)	SNCP	Composite likelihood	USA
	Serra et al. (2012)	LGCP	INLA	Spain
	Pereira et al. (2013)	LGCP	INLA	Portugal
	Serra et al. (2014a)	Poisson hurdle model	INLA	Spain
	Serra et al. (2014b)	LGCP	INLA	Spain
	Najafabadi et al. (2015)	SNCP	Composite likelihood	Iran
	Gabriel et al. (2017)			

Table 4 .

 4 2 RMSE of parameter estimates from 100 simulated realizations of the multiscale Geyer point process model.

			Model 1			Model 2			Model 3	
	Method	λ	γ1	γ2	λ	γ1	γ2	λ	γ1	γ2
	pseudo 62.09 0.59 0.25 103.74 0.09 0.27 22.13 0.45 0.29
	logistic 12.07 0.18 0.16 17.30 0.08 0.08 27.48 0.20 0.12

Table 4 . 3

 43 Parameter combinations of three hybrid Strauss hardcore point process models used in simulation study.

			Values of parameter	
		Regular parameters	Irregular parameters
	Model	λ	γ	r, q	hc s , hc t
	Model 4 70	(0.8,.08)	(0.05,0.1) (0.01,0.01)
	Model 5 50	(1.5,1.5)	(0.05,0.1) (0.01,0.01)
	Model 6 70	(0.5,1.5)	(0.05,0.1) (0.01,0.01)

Table 4 . 4

 44 Point and interval parameter estimates of three hybrid Strauss hardcore point process models used in simulation study.

	True values Mean	95% CI
			Model 4
	λ = 70	71.43 (69.16,73.70)
	γ 1 = 0.8	0.89	(0.78,1.00)
	γ 2 = 0.8	0.78	(0.74,0.82)
			Model 5
	λ = 50	50.84 (48.99,52.68)
	γ 1 = 1.5	1.41	(1.23,1.60)
	γ 2 = 1.5	1.46	(1.38,1.54)
			Model 6
	λ = 70	71.67 (69.18,74.15)
	γ 1 = 0.5	0.50	(0.43,0.57)
	γ 2 = 1.5	1.49	(1.42,1.55)

Table 5 . 1

 51 Estimated coefficients, standard errors and p-values based on two-tailed Student's t-tests of significant differences from zero.

	Covariates	Coefficients Estimates Standard error p-value
	Intercept Water Elevation Coniferous Building Temperature β ST β 0 β S 1 β S 2 β S 3 β S 4 1 Precipitation β ST 2 Time α	262 -1.88 -0.001 0.77 4 0.37 -11.3 -0.14	26 0.29 0.0004 0.36 0.89 0.06 1.48 0.001	< 2 × 10 -16 * * * 5.89×10 -11 * * * 0.0008 * * * 0.031 * 8.08×10 -6 * * * 1.13×10 -10 * * * 1.75 × 10 -14 * * * < 2 × 10 -16 * * *

Table 5 . 2

 52 Parameter estimates for m = 4. Kinh i (h s , h t ), i ∈ {1, ..., n sim }, with an estimated separable intensity function obtained by kernel smoothing. For each value of the spatio-temporal distance (h s , h t ), lower (L) and upper (U ) critical envelopes of the summary statistics are computed locally L(h s , h t ) = min

		Irregular parameters		
	r	500	2000	5000	7500
	q	1	2	3	4
	s	4	7	27	57
	Estimated regular parameters and 95% confidence intervals
	β = 0.66	γ1 = 2.73	γ2 = 0.93	γ3 = 1.07	γ4 = 0.98
	[0.442, 0.968] [1.818, 3.405] [0.820, 0.994] [1.020, 1.120] [0.962, 1.011]
		Kinh			
	1≤i≤n sim			

i (h s , h t ), U (h s , h t ) = max 1≤i≤n sim Kinh i (h s , h t ). (5.2) In addition to these local envelopes, we compute local and global p-values as in Tamayo-Uria et al. (2014), Siino et al. (2018a) in order to respectively detect spatio-temporal distances where the departure from the null hypothesis is the most significant and the overall adequacy of our model. Let E(h s , h t ) and V (h s , h t ) denote the mean and variance of Kinh 1 (h s , h t ), . . . , Kinh n sim (h s , h t ), Kinh obs (h s , h t ) . We define the local p-value for each pair (h s , h t ) by

Table 5 . 3

 53 Estimated coefficients, standard errors and p-values based on two-tailed Student's t-tests of significant differences from zero.

	Coefficients	Estimate Standard error	p-value
	β 0 (intercept) β 1 (elevation)	-8.468 0.546	0.298 0.164	< 2 × 10 -16 * * * 0.001 * * *
	β 2 (orientation)	0.005	0.003	0.114
	β 3 (slope)	-0.019	0.01	0.054
	β 4 (land use)	-0.009	0.024	0.689
	β 5 (precipitation) -0.007	0.002	0.003 * *
	β 6 (temperature)	0.054	0.006	< 2 × 10 -16 * * *

Table 5 . 4

 54 Parameter estimates for m = 6.

				Irregular parameters		
	r	0.5	1	1.5	6	15	20
	q	2	4	6	8	12	15
			Estimated regular parameters		
		γ1 = 2.56	γ2 = 2.24	γ3 = 4.65	γ4 = 0.88	γ5 = 1.17	γ5 = 0.81

•

  Generate dummy points d from a Poisson process with intensity function ρ and merge them with all the data points in x to construct the set of quadrature points (ξ k , t k ) ∈ W , • Obtain the response variables y k (1 for data points, 0 for dummy points), • Compute the sufficient statistics S((ξ k , t k ), x\(ξ k , t k )) at each quadrature point, • Fit a logistic regression model with explanatory variables S((ξ k , t k ), x\(ξ k , t k )), and offset log (µ(ξ k , t k )/ρ(ξ k , t k )) on the responses y k to obtain estimates θ for the S-vector and intercept θ0 ,

Table 1

 1 Parameters of the three multi-scale Geyer point process models used in simulation study.

	Model	Values of parameter			
		Regular parameters	Irregular parameters	
		λ	γ	r	q	s
	Model 1	70	(1.5,1.5)	(0.05,0.1)	(0.05,0.1)	(2,2)
	Model 2	100	(0.5,1.5)	(0.05,0.1)	(0.05,0.1)	(1,3)
	Model 3	200	(0.8,0.8)	(0.05,0.1)	(0.05,0.1)	(1,1)

Table 2

 2 RMSE of parameter estimates from 100 simulated realizations of the multi-scale Geyer point process model.

	Method	Model 1			Model 2			Model 3		
		λ	γ1	γ2	λ	γ1	γ2	λ	γ1	γ2
	pseudo	62.09	0.59	0.25	103.74	0.09	0.27	22.13	0.45	0.29
	logistic	12.07	0.18	0.16	17.30	0.08	0.08	27.48	0.20	0.12

Table 4

 4 Parameter estimates for m = 4.

	Irregular parameters			
	r	500	2000	5000	7500
	q	1	2	3	4
	s	4	7	27	57
	Estimated regular parameters and 95% confidence intervals		
	β = 0.66	γ1 = 2.73	γ2 = 0.93	γ3 = 1.07	γ4 = 0.98
	[0.442, 0.968]	[1.818, 3.405]	[0.820, 0.994]	[1.020, 1.120]	[0.962, 1.011]

  By consequence, the estimation of θ in the Papangelou conditional intensity is equivalent to the estimation of logistic regression parameters, already implemented by using standard software for GLMs.

			+	(ξ,t)∈d	log	λ θ ((ξ, t)|x) + ρ(ξ, t) ρ(ξ, t)	,	(19)
	admits a unique maximum. The
	logistic regression					
	log	λ θ ((ξ, t)|x) ρ(ξ, t)	= log	λ(ξ, t) ρ(ξ, t)	+

log LL(x, d; θ) = (ξ,t)∈x log λ θ ((ξ, t)|x) λ θ ((ξ, t)|x) + ρ(ξ, t) m j=1 θ j S j ((ξ, t), x),

Table 3

 3 Estimated coefficients, standard errors and p-values based on two-tailed Student's t-tests of significant differences from zero.

	Coefficients	Estimate	Standard error	p-value
	β 0 (intercept) β 1 (elevation)	-8.468 0.546	0.298 0.164	< 2 × 10 -16 * * * 0.001 * * *
	β 2 (orientation)	0.005	0.003	0.114
	β 3 (slope)	-0.019	0.01	0.054
	β 4 (land use) β 5 (precipitation) β 6 (temperature)	-0.009 -0.007 0.054	0.024 0.002 0.006	0.689 0.003 * * < 2 × 10 -16 * * *

(ξ,t)∈x\(u,v) 

https://www.promethee.com/en

district units for fire management strategies, seeOpitz et al. (2020) 

https://www.worldclim.org

http://edith.gabriel.pagesperso-orange.fr/software.html

https://www.promethee.com/en.

District units for fire management strategies, seeOpitz et al. (2020).

http://edith.gabriel.pagesperso-orange.fr/software.html.

https://www.worldclim.org

Morteza Raeisi et al. formulate and estimate them within a Bayesian hierarchical framework, using the INLA approach.

Appendices

Appendix A Review article published in Annales of ISUP 94 Cluster Cox processes and superposition Some Cox processes are obtained by clustering of offspring points around parent points and correspond to specific cases of cluster processes. This two-step construction allows to consider easily different structures for the patterns of parents and offspring. [START_REF] Møller | Generalised shot noise Cox processes[END_REF] introduced the class of Generalized Shot Noise Cox processes (GSNCP), extending the definition of SNCP, and allowing relevant multi-structure point processes for modelling regularity and clustering in many applications. This class has two advantages. Firstly, the parent process is not restricted to be Poisson, as in Neyman-Scott processes, and can be a repulsive Gibbs point process in order to add inhibition between the clusters. Secondly, in each cluster, the intensity and the bandwidth of the dispersion kernel can be random. By consequence, a GSNCP is a Cox process driven by a random field of the form

where Φ is a point process on W ×[0, ∞)×[0, ∞) and h is a bandwidth for the kernel density k h (c, •). So, given Φ, a GSNCP is distributed as the superposition ∪ l X l of independent Poisson processes with intensity functions γ l k h l (c l , •) where {γ l } l , {h l } l are random and Φ cent = {c l } l is the parent process. In population dynamics, with G 0 a Poisson process for the initial population and G n+1 a GSNCP where the cluster centers are given by G n , the superposition of GSNCPs G 0 , G 1 , . . . is a spatial Hawkes process [46]. The GSNCP class contains the special cluster Cox process defined in [START_REF] Yau | A genralization of the Neyman-Scott process[END_REF], where the parents process is a Strauss process. This model coupling inhibition at medium/long range and aggregation in cluster is applied to tree locations in a rain-forest, in order to consider the competition and reproduction mechanisms. [1] and [2] generalized the Neymann-Scott process by considering a log-Gaussian Cox process model for the parents, instead of a homogeneous Poisson process, leading to two scales of clustering, inter-and intra-clusters. This hierarchical model is applied to storm cell modelling in North Dakota.

Wiegand and co-authors' papers [START_REF] Wiegand | Recruitment in tropical tree species: Revealing complex spatial patterns[END_REF][START_REF] Wiegand | Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering[END_REF] consider several construction of Cox processes incorporating clustering at multiple scales. The nested double-cluster process is an extension of the Thomas process in an multi-generation evolution of the population where the offspring become parents and generate offspring. They consider also the superposition of cluster processes, like the Thomas process.

Cox processes with constructed covariate

Another way to incorporate both small and large spatial scale structure in Cox processes is to define a constructed covariate measuring the local structure of a point pattern associated to an additional spatial effect at medium-long range. This methodology developed in [51] and applied to koala data is used again in [49,52] for (Ganteaume and Jappiot, 2013;Gabriel et al., 2017;Opitz et al., 2020) for this county. Note that p-values have been computed during the trend fitting under a Poisson model and not for the overall fitting of forest fire occurrences under our spatio-temporal hybrid Geyer saturation process. Thus, we might have obtained more significance of the covariates than under our hybrid Geyer saturation model.

Parameters estimation

There is no common method for estimating irregular parameters in spatial or spatio-temporal Gibbs point process models. Here we considered several combinations of ad-hoc values within a reasonable range and select the optimal irregular parameters according to the Akaike's Information Criterion (AIC) of the fitted model. Baddeley and Turner (2006) suggest that the spatial interaction radius r of the Geyer saturation point process should be between 0 and the maximum nearest neighbor distance, about 8000 meters for our dataset. For the temporal radius q, we consider small values to be in accordance with the natural phenomena of forest fire occurrences. Finally, for the saturation parameter s, we have n(C q r (ξ i , t i ); x) ≤ s for all (ξ i , t i ) ∈ x. Hence, for any pair (r, q), we set s = max 1≤i≤n n(C q r (ξ i , t i ); x).

According to the former section, we use the logistic likelihood method and Algorithm 2 to estimate the regular parameters. We simulate dummy points from an inhomogeneous Poisson point process with intensity ρ(ξ , t) = C µ(ξ , t)/ν where C = 4 by a classical rule of thumb in the logistic likelihood approach and ν = 2000 × 2000 × 1 (area of a DFCI cell multiplied by 1 year).

We fitted the spatio-temporal multi-scale Geyer point process model for a range of ad-hoc values (r j , q j ) ∈ [0, 8000] × {1, 2, 3, 4, 5}, and their corresponding values of s j , j = 1, . . . , m, with varying m in {1, 2, 3, 4, 5}. The minimum AIC is obtained for the combination given in Table 4. Estimated regular parameters γ j associated with their 95% bootstrap confidence intervals show strong clustering at very short distances, weak repulsion (resp. clustering) at small (resp. medium) scale, and randomness at large scale. Another methodology for testing the significance of γ j parameters from 1 could be to extend the pseudo-likelihood or composite likelihood ratio test introduced in Baddeley et al. (2016) to the spatio-temporal case. only on that point and its neighbors in x. Hence, We can design simulation approach by Markov chain Monte Carlo algorithms. Gibbs point process models can be simulated a birth-death Metropolis-Hastings algorithm that typically requires only computation of the Papangelou conditional intensity (Møller and Waagepetersen, 2004). Raeisi et al. (2021) extended the birth-death Metropolis-Hastings algorithm to the spatiotemporal context that we adapt here for simulating the spatio-temporal hybrid Strauss hardcore point process.

We implement the estimation and simulation algorithms in R (R Core Team, 2016) and generate simulations of three stationary spatio-temporal hybrid Strauss hardcore point processes specified by a conditional intensity of the form (16) in W = [0, 1] 3 . The parameter values used for the simulations are reported in Table 1. The spatial and temporal radii r and q, spatial and temporal hardcores h s and h t , are treated as known parameters.

We generate 100 simulations of each specified model. Boxplots of parameter estimates λ, γ 1 , and γ 2 obtained from the logistic likelihood estimation method for each model are shown in Figure 1. The red horizontal lines represent the true parameter values. Point and interval parameter estimates λ, γ 1 , and γ 2 are reported in Table 2. Most of the estimated parameter values are close to the true values for three models. Due to visual and computational comparisons, we conclude that the logistic likelihood approach performs well for spatiotemporal hybrid Strauss hardcore point processes. 

Goodness-of-fit

The goodness-of-fit is accomplished by simulating point patterns from the fitted model. The first diagnostic can be formulated by summary statistics of point processes. As the second-order characteristics carry most of the information on the spatio-temporal structure (Stoyan, 1992 ;Gonzalez et al., 2016), we only consider the pair correlation function (g-function). We generate n sim = 99 simulations from the fitted hybrid Strauss hardcore model and compute the corresponding second-order summary statistics g i (u, v), i = 1, . . . , n sim , for fixed spatio-temporal distances (u, v). We then build upper and lower envelopes:

and compare the summary statistics obtained from the data, g obs (u, v), to the pointwise envelopes. If it lies outside the envelopes at some spatio-temporal distances (u, v), then we reject at these distances the hypothesis that our data come from our fitted model. Figure 5 shows the spatio-temporal inhomogeneous g-function computed on our dataset (blue) and the envelopes obtained from the fitted model (light grey); g obs (u, v) lies inside the envelopes for all