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“Blessed are the cracked, for they shall let in the light.”

Groucho Marx
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Abstract

Physically based light transport simulation has progressively become the standard
approach in the image production industry over the past few years. The Path Trac-
ing algorithm and its variations are used to render photo-realistic images both for
their theoretical simplicity and their accuracy to simulate complex lightning phe-
nomenons.

However those simulations require exploring the whole set of light paths connecting
a light source to the camera sensor and averaging their contributions in the associ-
ated pixels. Constructing such light paths is a complex sequential process since light
can bounce around the scene several times before reaching the camera. Due to the
stochastic nature of Monte Carlo path tracing we often need a large number of paths
per pixel to reach acceptable levels of noise in final images. This is even more prob-
lematic when the integration domain gets higher in dimension, which is the case
when adding production effects such as motion blur, depth of field and volumetric
rendering.

Another important aspect is that we often have to generate more than one image of
a scene, for instance when rendering stereo pairs to simulate binocular vision; lentic-
ular images, light field images and holographic stereograms to simulate depth and
parallax using multiple points of views; animated camera paths for virtual walk-
throughs or classical animation rendering with motion blur.

In this dissertation, our goal is to accelerate the rendering of multiple viewpoint
during a single simulation by exploiting redundancy across views. This poses a
challenge as existing methods for sharing light paths across views introduce signif-
icant variance and–or bias, and are not well suited to render all production effects,
materials, surfaces and participating media that a scene may include.

We start by introducing the path integral formulation of light transport, the associ-
ated Monte Carlo estimators, and the building blocks that forms the basis of path
reusing applications. We then introduce a theoretical framework for multi-view
rendering that rewrite each pixel integrals as a multi-strategy integrals with trans-
formed samples. We show that to accurately reuse path samples across different
pixel integrals we can not rely on classical estimators, that suffer from high vari-
ance, and that we need correctly defined path transformations, that currently can
not handle volumetric light transport.

We hence introduce a new Monte Carlo estimator, which is biased but consistent,
that combines multiple sampling strategies and automatically handles normaliza-
tion issues which results in lower variance than classical estimators. Our new esti-
mator allow us to accurately evaluate each pixel integral using a simple weighted
average of sample contributions with specific weighting functions. We further ex-
tends the family of path transformations to allow path reusing in presence of par-
ticipating media. Finally we develop a new unidirectional algorithm that readily
extends state of the art volumetric path tracing to jointly render several frames at
once. We introduce new methods to transform and reuse paths from one camera to
the others and to generate subpaths that best contribute to a subset of views.

We demonstrate the effectiveness of our method at reducing noise at equal rendering
time budget on several scenes with complex geometry and materials, participating
media and production effects
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Résumé

Au cours des dernières années, la simulations du transport de lumière physique-
ment réaliste est progressivement devenue l’approche standard dans l’industrie de
la production d’images. L’algorithme de Path Tracing et ses variantes sont utilisés
pour rendre des images photoréalistes, tant pour leur simplicité théorique et d’implé-
mentation que pour leur capacité à simuler des phénomènes d’éclairage complexe.

Cependant, ces simulations nécessitent d’explorer l’ensemble des chemins reliant
une source lumineuse au capteur de la caméra et de calculer la moyenne de leurs
contributions dans les pixels associés. La construction de ces chemins est un pro-
cessus séquentiel complexe puisque la lumière peut rebondir plusieurs fois dans la
scène avant d’atteindre la caméra. En raison de la nature stochastique des estima-
teurs de Monte Carlo utilisés en Path Tracing, il nécéssite souvent de construire et
évaluer un très grand nombre de chemins par pixel pour atteindre des niveaux de
bruit acceptables dans les images. Ceci est encore plus problématique lorsque les di-
mensions du domaine d’intégration augmentent. Ce qui est le cas lorsque l’on ajoute
des effets de production tels que le flou de mouvement, la profondeur de champ et
le rendu volumétrique.

Un autre aspect important est que nous devons souvent calculer plus d’une image
d’une scène, par exemple lors du rendu de paires stéréo pour simuler la vision binoc-
ulaire ; d’images lenticulaires, d’images de champs lumineux (lightfield) et de stéréo-
grammes holographiques pour simuler et visualiser la profondeur et la parallaxe en
utilisant plusieurs points de vue ; de trajectoires de caméra animées pour les visites
virtuelles ou le rendu d’animation classique avec flou de mouvement.

Dans cette thèse, notre objectif est d’accélérer le rendu de plusieurs points de vue lors
d’une même simulation en exploitant la cohérence entre les caméras. Ceci représente
un défi car les méthodes existantes pour réutiliser les chemins entre plusieurs vues
introduisent du biais visible dans les images, et ne sont pas adaptées pour tous les
effets de production, les matériaux, les surfaces et les volumes qu’une scène peut
inclure.

Nous commençons par présenter la formulation intégrale du transport de lumière,
les estimateurs de Monte Carlo associés, et les blocs de construction qui constituent
la base des applications de réutilisation de chemin. Nous introduisons ensuite un
cadre théorique pour le rendu multi-vues qui exprime l’intégrale d’un pixel comme
une intégrale multi-stratégie avec des transformation d’échantillons. Nous mon-
trons que pour réutiliser correctement les chemins échantillonnés dans différents
pixels, nous ne pouvons pas nous reposer sur les estimateurs classiques, qui souf-
frent d’une variance élevée, et que nous avons besoin de transformations de chemin
correctement définies, qui ne peuvent actuellement pas gérer le transport de lumière
dans les milieux participants.

Nous introduisons donc un nouvel estimateur de Monte Carlo, biaisé mais cohérent,
qui combine plusieurs stratégies d’échantillonnage et traite automatiquement les
problèmes de normalisation, ce qui se traduit par une variance inférieure à celle des
estimateurs classiques. Notre nouvel estimateur nous permet d’évaluer avec préci-
sion et sans biais visible l’intégrale de chaque pixel en utilisant une simple moyenne
pondérée des contributions avec des fonctions de pondération spécifiques. Enfin,
nous développons un nouvel algorithme unidirectionnel qui étend directement l’état
de l’art en Path Tracing volumétrique pour rendre conjointement plusieurs images.
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Nous introduisons de nouvelles méthodes pour transformer et réutiliser le chemin
d’une caméra à l’autre en présence de milieux participants et pour générer des sous-
chemins qui contribuent le mieux à un sous-ensemble d’observateur.

Nous démontrons sur plusieurs scènes comprenant de la géométrie complexe, des
matériaux complexes, des milieux participants et des effets de production que cette
méthode réduit efficacement le bruit par rapport aux calculs image par image à
temps de calcul équivalent.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI103/these.pdf 
© [B. Fraboni], [2021], INSA Lyon, tous droits réservés



xi

Contents

Abstract vii

Résumé ix

1 Introduction 1
1.1 The multi-view problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of thesis contributions . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 The multi view problem . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 A self normalized multi-strategy estimator . . . . . . . . . . . . 3
1.2.4 Path transformations for heterogeneous volumes . . . . . . . . 4
1.2.5 Practical multi view rendering . . . . . . . . . . . . . . . . . . . 4

2 The path integral framework 5
2.1 Extended path integral formulation: Surface, Volumes, Null scattering 5

2.1.1 Path length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Measurement contribution function . . . . . . . . . . . . . . . . 6
2.1.3 Camera importance function . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Participating media . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Transmittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Null-scattering framework . . . . . . . . . . . . . . . . . . . . . 8

2.1.5 Bidirectional scattering distribution function . . . . . . . . . . . 9
Properties of a BSDF . . . . . . . . . . . . . . . . . . . . . . . . . 9
Surface BSDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Phase functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Null scattering singularity . . . . . . . . . . . . . . . . . . . . . . 12
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.6 Emitted radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.7 Geometric term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.8 The path space measure . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Unbiased Monte Carlo estimators 15
3.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Random variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Distribution and density . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Discrete case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.4 Expected value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.5 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.6 Monte Carlo Estimator . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.7 Quality of the estimator . . . . . . . . . . . . . . . . . . . . . . . 19

Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI103/these.pdf 
© [B. Fraboni], [2021], INSA Lyon, tous droits réservés



xii

Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Multidimensional integrals and Monte Carlo . . . . . . . . . . . . . . . 21
3.3 Uniform sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Zero variance importance sampling . . . . . . . . . . . . . . . . 23
3.4.2 Design of non uniform distributions . . . . . . . . . . . . . . . . 24
3.4.3 Importance sampling of complex integrands . . . . . . . . . . . 25
3.4.4 Sampling and integration domains . . . . . . . . . . . . . . . . . 26
3.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Multiple importance sampling . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.1 Multiple Importance Sampling . . . . . . . . . . . . . . . . . . . 27
3.5.2 Weighting heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.3 Variance of MIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.4 Continuous Multiple Importance Sampling . . . . . . . . . . . . 30
3.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Variance reduction for MIS . . . . . . . . . . . . . . . . . . . . . 31
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Unidirectional path construction 33
4.1 Camera sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Exit pupil sampling . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 Direction sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 Time sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Medium sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Distance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Event sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Surface and volume intersections . . . . . . . . . . . . . . . . . . . . . . 36
4.4 BSDF sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Light sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Path guiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 Russian Roulette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Shift mappings 41
5.1 Sample transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Applications to path reusing . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Discrete path reusing . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Path space filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.3 Gradient domain rendering . . . . . . . . . . . . . . . . . . . . . 44
5.2.4 Multiple view rendering . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 The multi-view rendering problem 49
6.1 The multi-view pixel integral . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 The multi-view MIS variance problem . . . . . . . . . . . . . . . . . . . 50

Variance of Importance Sampling . . . . . . . . . . . . . . . . . 50
Variance of Multiple Importance Sampling . . . . . . . . . . . . 50
Multi-view overlapping domains . . . . . . . . . . . . . . . . . . 50

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI103/these.pdf 
© [B. Fraboni], [2021], INSA Lyon, tous droits réservés



xiii

The multi-view MIS variance problem . . . . . . . . . . . . . . . 51
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 The missing volumetric shift mappings . . . . . . . . . . . . . . . . . . 53
6.4 The wavefront path construction . . . . . . . . . . . . . . . . . . . . . . 54
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

MIS variance reduction . . . . . . . . . . . . . . . . . . . . . . . 56
Volumetric shift mappings . . . . . . . . . . . . . . . . . . . . . 56
Multi-view path construction . . . . . . . . . . . . . . . . . . . . 56

7 Weighted Monte Carlo estimators 57
7.1 Weighted importance sampling with the ratio estimator . . . . . . . . . 57

7.1.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.1.2 Variance of WIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1.3 Unbiasing ratio estimators . . . . . . . . . . . . . . . . . . . . . . 59
7.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 Multiple weighted importance sampling . . . . . . . . . . . . . . . . . . 63
7.2.1 Weighting heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.2 MWIS estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.3 Variance of MWIS . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Null-scattering shift mappings 71
8.1 Segment configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 Copy-based shift mappings . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.2.1 Raw depth copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2.2 Primary sample copy . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2.3 Majorant optical depth copy . . . . . . . . . . . . . . . . . . . . 73

8.3 Scale-based shift mappings . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3.1 Raw depth linear scale . . . . . . . . . . . . . . . . . . . . . . . . 74

Normalized cumulated distance . . . . . . . . . . . . . . . . . . 75
Shift formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Jacobian determinant and PDF . . . . . . . . . . . . . . . . . . . 76
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3.2 Majorant optical depth linear scale . . . . . . . . . . . . . . . . . 76
Majorant optical depth . . . . . . . . . . . . . . . . . . . . . . . . 76
Shift formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Jacobian determinant and PDF . . . . . . . . . . . . . . . . . . . 78
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.3.3 Primary sample linear scale . . . . . . . . . . . . . . . . . . . . . 78
Primary random sample . . . . . . . . . . . . . . . . . . . . . . . 78
Shift formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Jacobian determinant and PDF . . . . . . . . . . . . . . . . . . . 80
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.4.1 Raw depth shift mapping . . . . . . . . . . . . . . . . . . . . . . 80
8.4.2 Primary sample shift mapping . . . . . . . . . . . . . . . . . . . 81

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI103/these.pdf 
© [B. Fraboni], [2021], INSA Lyon, tous droits réservés



xiv

8.4.3 Majorant optical depth shift mapping . . . . . . . . . . . . . . . 81
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9 Practical multi-view rendering – Construction 85
9.1 Multi-view path construction . . . . . . . . . . . . . . . . . . . . . . . . 85

9.1.1 Base prefix sampling . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.1.2 Prefix shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Shutter time shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Film shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Lens shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Null interactions shift . . . . . . . . . . . . . . . . . . . . . . . . 88
Pivot shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Jacobian and pdf evaluation . . . . . . . . . . . . . . . . . . . . . 88

9.1.3 Computing path suffix . . . . . . . . . . . . . . . . . . . . . . . . 89
Direct illumination . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Indirect illumination sampling . . . . . . . . . . . . . . . . . . . 89

9.1.4 Robust computation of MWIS weights . . . . . . . . . . . . . . . 91
9.1.5 Pixel accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10 Practical multi-view rendering – Implementation and results 93
10.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10.1.1 Adaptive sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.1.2 Core engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.1.3 Toy engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.2.2 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.3 Discussion and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.3.1 Reuse through specular interfaces: specular manifold techniques104
10.3.2 A-priori versus a-posteriori methods: denoising . . . . . . . . . 104
10.3.3 Bias impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.3.4 Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Cache coherency . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Shift mapping complexity . . . . . . . . . . . . . . . . . . . . . . 105

10.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11 Conclusion 107
11.1 Self-normalized multi strategy estimators . . . . . . . . . . . . . . . . . 107
11.2 Path reusing in presence of heterogeneous media . . . . . . . . . . . . . 107
11.3 Practical multi-view rendering . . . . . . . . . . . . . . . . . . . . . . . 108

A The camera importance function 111
A.1 The thin lens approximation . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.2 Interaction with the lens . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.3 Derivation of the camera importance function . . . . . . . . . . . . . . 113
A.4 PBRT Erratum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.5 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B Majorant optical depth shift code 115

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI103/these.pdf 
© [B. Fraboni], [2021], INSA Lyon, tous droits réservés



xv

C Lens supersampling 117
C.1 Importance sampling the circle of confusion . . . . . . . . . . . . . . . . 118
C.2 Sampling the lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
C.3 Shifting the lens sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI103/these.pdf 
© [B. Fraboni], [2021], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI103/these.pdf 
© [B. Fraboni], [2021], INSA Lyon, tous droits réservés



1

Chapter 1

Introduction

1.1 The multi-view problem

Physically based light transport simulations have progressively become the stan-
dard approaches in the image production industry over the past few years. The Path
Tracing algorithm and its variations are used to render photo-realistic images both
for their theoretical and practical simplicity and their accuracy to simulate complex
lightning phenomenons such as depth of field, soft shadows, motion blur, specular
caustics, participating media, spectral effects like diffraction, and much more.

FIGURE 1.1 – Example of a complex scene composed of a dense procedural heterogeneous
medium, a 166k triangles model 1and 3600 light sources rendered in 88 hours. Note how the
fine details in the clouds enhance the realism of the scene at the cost of an overlong rendering

time.

However those simulations require exploring the whole set of light paths connecting
a light source to the camera sensor and averaging their contributions in the associ-
ated pixels. Constructing such light paths is a complex sequential process since light
can bounce around the scene several times before reaching the camera. To remain
tractable the path construction involves Monte Carlo methods and random sampling

1Original model courtesy of Zeroswat made available under the CC-BY license.
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2 Chapter 1. Introduction

to accurately estimate the integral of the radiance reaching every pixels with a finite
number of samples. Due to the stochastic nature of Monte Carlo path tracing we of-
ten need a large number of paths per pixel to reach acceptable levels of noise in final
images. This is even more problematic when the integration domain gets higher in
dimension, which is the case when adding production effects such as motion blur,
depth of field and volumetric rendering. For these reasons, rendering photo realistic
images is a time consuming operation as illustrated in Figure 1.2.

5308 min 1326 min 332 min 82 min 21 min

FIGURE 1.2 – Close up details of the scene from Figure 1.1 at different rendering times. A
desirable quality cannot always be reached in reasonable time budget.

Another important aspect is that we often have to generate more than one image of
a scene, for instance when rendering stereo pairs to simulate binocular vision; lentic-
ular images, light field images and holographic stereograms to simulate depth and
parallax using multiple points of views; animated camera paths for virtual walk-
throughs or classical animation rendering with motion blur. These setups can all
benefit of path reuse since all cameras are close in the spatio-temporal domain, thus
are likely to share some parts of the light path space. Although there is a strong co-
herency between observed regions, the method used so far is to render frame after
frame for practical reasons: lack of robust multi-view estimators, ease of distributed
computing, and ease of implementation.

In this dissertation, our goal is to accelerate the rendering of multiple viewpoint dur-
ing a single simulation by exploiting redundancy across views. This poses a chal-
lenge as existing methods for reusing light paths across views introduce significant
variance and/or bias. Furthermore they are not well suited to render all production
effects, materials, surfaces and participating media that a scene may include.

1.2 Overview of thesis contributions

Our contributions cover new statistical estimators that are beneficial to reduce vari-
ance, new path sampling strategies and a new application pipeline for multiple view
rendering (published as [Fraboni et al. 2019, 2022]).

1.2.1 Previous work

We start this dissertation by introducing the path integral framework and its recent
extensions for volume rendering in chapter 2, which is essential to allow path reuse
in presence of participating media. We then present the classical unbiased Monte
Carlo estimators used in rendering applications in chapter 3, which have limitations
in some situations as we shall see in chapter 6. Next, we review the common path
construction methods used in unidirectional path tracing in chapter 4 that generate
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1.2. Overview of thesis contributions 3

interactions in path space. Finally, we present the common path transformations
methods in chapter 5 that modify some path interactions to allow path reuse in ren-
dering applications. This concludes the first part of the thesis covering previous
approaches. We invite the readers that are familiar with some of these topics to se-
lectively skip these chapters.

1.2.2 The multi view problem

The second part of this dissertation starts by introducing a theoretical framework
for multi-view rendering and exposing the main challenges in chapter 6. We define
an extended path space and decompose each pixel integral to several subdomains
integrals with multiple sampling techniques on each subdomain. Our formulation is
derived from the path integral formulation of light transport introduced in chapter 2.

Effectively reducing the variance by combining several sampling techniques requires
robust multi-strategy estimators such as Multiple Importance Sampling (MIS) [Veach
and Guibas 1995] or its derived versions. Some former multiple view rendering
methods neglected such weighting combinations [Henrich et al. 2011, Havran et al.
2003, Adelson and Hodges 1995], on the contrary others methods demonstrated that
MIS is efficient to optimally combine each sample in the multi view context [Mén-
dez Feliu et al. 2006, Schwarzhaupt 2019]. However, as we shall see MIS and derived
techniques perform poorly when the number of contributing strategies is unknown
a priori. This results in a problematic additional variance that cannot be addressed
with classical unbiased estimators, motivating the introduction of new estimators
that overcome these limitations in chapter 7.

Additionally, we show that to accurately reuse samples from one pixel to another
some bijective path transformations have to be used, similar to the ones presented
in chapter 5. However, path transformations have never been extended to handle
heterogeneous participating media, motivating the introduction of new transforma-
tions in chapter 8.

1.2.3 A self normalized multi-strategy estimator

Reusing path samples from different pixels poses certain difficulties in Monte Carlo
integration. The amount of paths built from every pixels is consequent but only few
can be transformed to reach a given pixel.

We demonstrate that unbiased multi strategy Monte Carlo estimators (MIS – CMIS)
[Veach and Guibas 1995, West et al. 2020] exhibit high variance when the number
of contributing strategies to a pixel is not known a priori. In fact, the more we add
paths that gather zero contributions to the estimator, the more the variance increases.
MIS and CMIS require knowing the total number of samples drawn for each pixel to
correctly normalize each pixel estimate.

Furthermore in the context of multi view rendering the number of samples per pixel
is variable depending on how many other pixels share some visible areas – volumes
in the scene. Using the naive assumption that every pixel could contribute to every
other pixels lead to a huge amount of variance since the renormalization takes into
account all samples drawn on every pixels. Explicitly estimating the contributing
pixels informations for each pixel allows to compute a better estimate of the normal-
ization but results in a biased but consistent estimator.
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4 Chapter 1. Introduction

We hence introduce in chapter 7 a new Monte Carlo estimator, which is biased but
consistent, that combines multiple sampling strategies and automatically handles
this normalization issue [Bekaert et al. 2000, Owen 2013] and leads to a considerable
variance reduction. Our final estimator reduces to a weighted sum that is simple to
compute and does not require additional storage than a 4-channel image for each
camera. In addition, we show that available bias-correction techniques [Talbot et al.
2005, McLeish 2011, Booth 2007, Bitterli et al. 2020] are inappropriate for the multi-
view problem.

1.2.4 Path transformations for heterogeneous volumes

Next, we introduce new methods to transform and reuse paths that traverses arbi-
trary media in chapter 8. Our new mappings build upon the theory of null scat-
tering [Miller et al. 2019] and can be evaluated in closed form. And their Jacobian
determinants required to take into account the change in density are simple to com-
pute. Our mappings allow to extend any path reuse application to handle arbitrary
participating media.

1.2.5 Practical multi view rendering

Finally, we develop a new unidirectional algorithm that readily extends state of the
art volumetric path tracing to jointly render several frames at once in chapter 9. Our
multi-view path construction build upon our new transformations and the contri-
butions are accumulated using our new estimator. Additionally we propose a new
similarity heuristic to compare on-the-fly arbitrary scattering distributions in order
to generate subpaths that best contribute to a subset of pixels.

We implement our variant of multiple view rendering in a custom renderer, which is
also the first path reusing method that handles heterogeneous participating media.
We demonstrate the efficiency of our method on several test scenes with complex
geometry and materials, participating media and production effects in chapter 10.
Our results exhibit less noise at equal rendering time budget than frame by frame
path tracing.
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5

Chapter 2

The path integral framework

We start this dissertation with an introduction to the classical formulations of light
transport simulations. We review light integrals in presence of surfaces and media
in their path space form that defines the theoretical basis of unidirectional rendering
algorithms. We do not cover the operator formulations as well as adjoint and bidi-
rectional methods since they are out of the scope of this dissertation [Veach 1998].

Some recommended references for an overview are the excellent Eric Veach thesis
that formalizes surfaces integrals [Veach 1998], the recent state-of-the-art report on
volumetric light transport simulations [Novák et al. 2018], and finally the extended
null-scattering framework introduced in [Miller et al. 2019]. Additionally recent
courses on path tracing provide excellent materials on novel techniques [Fascione
et al. 2019, Jakob et al. 2019, Hill et al. 2020]. For an introductory book about ra-
diometry and light transport from the physical point of view see [McCluney 2014].
Last but not least, the book Physically based rendering: From theory to implementation
by Pharr et al. is a good introduction from both technical and theoretical points of
view.

2.1 Extended path integral formulation: Surface, Volumes,
Null scattering

The path integral formulation of light transport [Kajiya 1986, Veach 1998], its ex-
tension to participating media [Pauly et al. 2000] and null scattering [Miller et al.
2019] formulate the estimate of a pixel j as the integral of all the light contributions
reaching the pixel:

Ij =
∫

Ω
f j(x̄)dµ(x̄) (2.1)

where a path x̄ is a finite sequence of vertices in space {x0, . . . , xk} starting from the
camera aperture (or lens in simple models) and reaching a light source, the integra-
tion domain Ω is the union of all paths of finite lengths (Ω =

⋃∞
i=1 Ωi), the path

measure dµ is the product of the differential measures at each path vertex, and f j(x)
is the measurement contribution function of the path.

We review the terms of the pixel integral and the measurement contribution func-
tion in the following sections. In addition, we illustrate several configurations in
Figure 2.5 to show the evolution of the path integral framework. We do not cover
all aspects in depth but rather propose a synthesized view of the current state of the
rendering framework supported by a rich literature.
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6 Chapter 2. The path integral framework

2.1.1 Path length

A path of length k is comprised of k + 1 vertices where k− 1 of them are surface or
volume interactions in the scene, the first is a lens interaction and the last is a light
source interaction. The sensor point – i.e. on the film plane – is usually not accounted
in the path length since it is a pure virtual point and the lens is considered the first
real surface interaction in the scene. Camera sample paths can therefore be classified
by length, further illustrated in Figure 2.1:

• a path of length k = 1 connects the camera exit point to a light source directly
and its contribution is denoted L0,

• a path of length k = 2 connects the camera exit point, to a scene interaction
and then to a light source and its contribution is denoted L1 or direct lighting,

• a path of length k = 3 will be composed of a lens interaction, two interactions
in the scene and a light interaction and its contribution is denoted L2 or indirect
lighting,

• and correspondingly for longer paths, which are also accounted in the indirect
lighting.

The path integral hence gathers contributions from paths of every length to accu-
rately simulate the light propagation in the real world.

a) L0 b) L1 c) L2

d) L3 e) L4→∞ f) L0→∞

L0

L1

L2

FIGURE 2.1 – Several contribution layers of a diffuse Cornell Box lit by a light source: from
left to right the contribution layer of paths of length a) k = 1 – visible light source, b) k = 2 –
direct lighting, c) k = 3 – indirect 2 bounces, d) k = 4 – indirect 3 bounces, e) k = {5, . . . , ∞}
– indirect 4 bounces and more. The complete global illumination f) is the sum of all layers.

2.1.2 Measurement contribution function

The measurement contribution function evaluates the light contribution for a given
path x̄. This function is a multidimensionnal integrand – since a path is multidimen-
sionnal – which decompose in a product of terms modeling light scattering:

f j(x̄) =Wj(x0, x1)G(x0, x1)T(x0, x1)Le(xk−1, xk)·[
k−1

∏
i=1

fs(xi−1, xi, xi+1)G(xi, xi+1)T(xi, xi+1)

]
(2.2)
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2.1. Extended path integral formulation: Surface, Volumes, Null scattering 7

where Wj is the camera importance function w.r.t pixel j, Le is the emitted radiance
of the light vertex xk, T is the transmittance and G is the geometric terms on every
path segment, and fs is the bidirectional scattering distribution function (BSDF) at each
non terminal vertex. We then present each term of the integrand in the following
sections.

2.1.3 Camera importance function

A camera is a virtual object that is defined by a set of parameters such as the position,
orientation, exposure interval, lens system, focal distance, field of view, trajectory,
etc. The camera sensor or film is a virtual pixel matrix positioned in space. A light ray
that traverses the lens system of a camera reaches the sensor with a certain density
which is accounted by the camera importance function.

Therefore the camera importance function Wj hides the sensor response of the cam-
era and a filter function over the exposure window (temporal) and over the image
plane w.r.t pixel j (spatial).

The sensor response is usually baked 1 in a smart way to cancel out terms that arise
after sampling primary rays that finds the first hit point on the scene and geometric
terms [Kolb et al. 1995, Hanika and Dachsbacher 2014]. This is also necessary for ad-
joint and bidirectional methods to correctly compare the path differential measures
of different sampling techniques [Veach 1998].

2.1.4 Participating media

A participating medium is a volume filled with microscopic particles which absorb
and scatter light particles. We model these volumes using statistical descriptors
which represent the probability densities of photons to absorb or scatter per unit
distance traversed through the volume:

• the absorption coefficient µa,

• the scattering coefficient µs,

• the extinction coefficient µt, defined as µt = µa + µs.

A medium is said to be homogeneous if these coefficients are spatially constant, and
heterogeneous if they are spatially varying. In addition, these coefficients may vary
depending on the wavelength to simulate wavelet dependent phenomenons, for ex-
ample to simulate the color bleed from blue to red in earth atmospheric scattering or
the colors in rainbows [Sadeghi et al. 2012].

Transmittance

The light propagation in participating media is described by the radiative transfer
equation [Chandrasekhar 1960], which takes into account four processes: absorption,
out-scattering, in-scattering and emission due to the particles encountered along a
straight line in the volume. The two former processes induce a loss of radiance along
the ray, whereas the latter two induce a gain of energy. The transmittance measures
the light attenuation along a straight line through media due to the absorption and

1The camera importance function derivation given in [Pharr et al. 2016, section 16.1.1 equation 16.4]
seems to be using the wrong cosine term. For a corrected version please see Appendix A.
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8 Chapter 2. The path integral framework

out scattering processes [Lambert 1760], and writes:

T(x, y) = e−
∫ ty

tx µt(xt)dt = e−τ(x,y) where xt = x + t · ωx→y (2.3)

This models the light attenuation considering uncorrelated particles in the medium,
hence producing an exponentially decreasing distribution through the medium. How-
ever it is possible to handle non-exponential models [Bitterli et al. 2018]. The integral
of the extinction coefficient along the segment is called the optical thickness denoted
τ. Although the optical thickness does not have a closed-form for spatially varying
extinctions, the transmittance of homogeneous volumes can be solved as follows:

T(x, y) = e−µt·(ty−tx). (2.4)

To evaluate transmittance in heterogeneous media we rely on estimators of the trans-
mittance that can be biased (e.g. ray marching) or unbiased (e.g. delta tracking and
derivated methods). We invite the reader to refer to [Novák et al. 2018] for a detailed
survey of radiative transfer equations and existing transmittance estimators. In ad-
dition more recent works propose several new transmittance estimators based on
new integral formulations of the radiative transfer equation that are more accurate
and converge faster in some situations [Georgiev et al. 2019, Kettunen et al. 2021].

We illustrate various exponential transmittance profiles with constant and varying
extinction coefficients in Figure 2.2.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Distance through the medium

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Extinction coe�cient

`1(C)
`2(C)
`3(C)
`4(C)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Distance through the medium

0.0

0.2

0.4

0.6

0.8

1.0
Transmittance

)1(C) = exp(−
∫ C

0 `1(C))
)2(C) = exp(−

∫ C
0 `2(C))

)3(C) = exp(−
∫ C

0 `3(C))
)4(C) = exp(−

∫ C
0 `4(C))

FIGURE 2.2 – We plot several extinction coefficients (left) and their associated transmittance
(right) in 1D. Note that constant extinction (i.e. homogeneous medium – blue curve) has a
perfect decreasing exponential transmittance. On the contrary spatially varying extinctions
(i.e. heterogeneous media – green, orange and red curves) have non trivial transmittance

profiles.

Null-scattering framework

Until recently, no path formulation provided the closed-form expressions associated
to the transmittance of ordinary heterogeneous participating media. Miller et al. de-
fined a Null scattering framework that extends the general path integral formulation to
explicitly take into account fictitious (null) particles in media. This technique differs
from previous unbiased methods by explicitly accounting and sampling null parti-
cles along a straight line between two real scattering interactions (see [Novák et al.
2018, sect. 4.2] for a survey of preceding unbiased methods). Two new statistical
quantities are added to the model:
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2.1. Extended path integral formulation: Surface, Volumes, Null scattering 9

• the combined extinction coefficient µ̄, or majorant of the medium, which bounds
the extinction coefficient µt,

• the null scattering extinction coefficient µn, defined as µn = µ̄− µt.

The transmittance in the real heterogeneous medium, in general impossible to ex-
press in closed-form, is replaced by the combined transmittance of an homogenized
medium which has a closed-form expression:

T̄(x, y) = e−µ̄·(ty−tx). (2.5)

The path sampling process then includes explicit scattering event sampling (e.g.
null, absorption or scattering interaction) at each step in the medium and enable an-
alytical evaluation of the combined transmittance T̄ and paths pdfs between paths
vertices on a volume segment. A path of length k has then m real interactions (see
in Figure 2.1), plus several null interaction on medium segments. Note that when
µn = 0 this formulation reduces to the classical exponential form. For example in
presence of homogeneous media by setting µ̄ = µt, it falls back to the closed-form
sampling and evaluation process (i.e. with only real interactions). Additionnaly the
null scattering framework naturally allows combining different sampling techniques
in spatially and spectrally varying media.

2.1.5 Bidirectional scattering distribution function

The bidirectional scattering distribution function (BSDF) describes the directional
scattering model at each non terminal interaction of the path. The BSDF quantifies
the fraction of light propagated at a path vertex as a function of the incident direction
ωi – from where comes the light – and the outgoing direction – towards which the
light is scattered, see Figure 2.3 for a picture of several BSDF models.

At each interaction of a path, the scattering model is expressed with the generalized
BSDF formulation including surface, volume and null scattering, which writes:

fs(x, y, z) =


fr(ωy→x, ωy→z) if y is on a surface,
µs(y) fp(ωy→x, ωy→z) if y is a scattering medium interaction,
µn(y)δ(ωy→x, ωy→z) if y is a null medium interaction.

(2.6)

Properties of a BSDF

A correctly defined BSDF should respect three main properties:

1. Positivity: fs(ωi, ωo) ≥ 0.

2. Energy conservation:
∫

Ω fs(ωi, ωo) cos θidωi ≤ 1. Note that for an ideal en-
ergy conserving model the total scattered energy should be equal to the total
received energy. However several BSDF models only consider a single scatter-
ing interaction – i.e. does not take into account inter-reflections at the micro
scale of the matter or particle – which may result in a loss of energy. Since
losing energy is tolerable in practice, a BSDF model adding energy is a counter
physical behavior and must be avoided since emissions are taken into account
separately (see subsection 2.1.6). The problem of energy loss is addressed with
multiple scattering models [Heitz et al. 2016] or precomputed energy compen-
sation for single scattering models [Turquin 2017, Conty and Kulla 2017].
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10 Chapter 2. The path integral framework

3. Reciprocity: fs(ωi, ωo) = fs(ωo, ωi). Reciprocity is a physical property of scat-
tering models and is required for BSDF models to be usable in adjoint and
bidirectional methods [Veach 1998, chap. 3.6 and chap 5.]. Although most
BSDF models are reciprocal by construction, this condition can be reasonably
violated in unidirectional rendering algorithms since reciprocity is not a strong
requirement. For example the multiple scattering model proposed in [Turquin
2017] is voluntarily not reciprocal, since the author focused its work on the
shape of the multiple scattering lobe rather than on its reciprocity.

Smooth diffuse Smooth conductor Smooth dielectric Smooth plastic

Rough diffuse Rough conductor Rough dielectric Rough plastic

Isotropic scattering
Anisotropic forward

scattering
Anisotropic backward

scattering
Dirac forward
null sacttering

FIGURE 2.3 – Examples of common BSDF models used in computer graphics depicted from
top to bottom: smooth surface models (top), rough surface models (center), and medium

phase functions (bottom).

Surface BSDF

On surfaces the scattering function describes the reflection and – or transmission
model of the surface material. This BSDF is defined over the unit hemisphere cen-
tered around the normal of the path interaction. A very wide family of models
have been developed over the years (analytical, numerical or measured), for a non-
exhaustive list with comparisons see [Guarnera et al. 2016, table 1] and [Montes and
Ureña 2012, table 1, figure 2], and for a taxonomy of BSDF see [McGuire et al. 2020].

The most common models include: diffuse Lambertian models, Dirac distributions
for perfectly specular surfaces (i.e. smooth conductors and dielectrics), rough diffuse
models [Oren and Nayar 1994, Heitz and Dupuy 2015, d’Eon 2021], glossy models
for rough surface through the micro-facet theory [Cook and Torrance 1982] such as
the GGX distribution [Walter et al. 2007, Heitz 2014, Heitz and d’Eon 2014, Heitz
2018], models accounting for multiple scattering at the micro scale [Heitz et al. 2016,
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2.1. Extended path integral formulation: Surface, Volumes, Null scattering 11

Turquin 2017, Conty and Kulla 2017], models for multi layered materials for richer
appearances [Jakob et al. 2014, Guo et al. 2018, Xia et al. 2020, Gamboa et al. 2020,
Belcour 2018] – e.g. one or several coatings, one substrate, and eventually media in
between.

Phase functions

Inside media the scattering function, called the phase function, is defined over the
unit sphere around the path interaction. As for surfaces, it models the directional
distribution of scattered rays ωi leaving a real medium particle when the particle is
observed from a given direction ωo.

Several scattering models exists, such as: the isotropic phase function which is mod-
eled by a uniform directional distribution over the unit sphere, the Rayleigh phase
function which describes atmospheric scattering in presence of particles that have
a small radius w.r.t to the wavelengths of the light [Rayleigh 1871], the Lorenz-
Mie phase function for realistic cloud simulation in presence of spherical droplets
with radiis of the same order than the wavelength [Lorenz 1890, Mie 1908], the sim-
pler Henyey-Greenstein scattering model [Henyey and Greenstein 1941] which has
a simple closed-form parameterized by the mean cosine parameter g ∈ [−1, 1]. The
latter parameter defines the shape of the directional distribution: g = 0, g > 0
and g < 0 corresponds respectively to isotropic scattering, forward scattering and
backward scattering (see bottom row in Figure 2.3). Mixture of simple phase func-
tions – e.g. Henyey-Greenstein – can be used to model richer volume appearances
[Gkioulekas et al. 2013, Sharma 2015]. We illustrate several phase function profiles in
Figure 2.4. Several other models exist and some of them are for example developed
in astrophysics to describes scattering phenomenons in the universe, simpler ones
used in computer graphics for simulation or visualization, see [Pegoraro 2016] and
[d’Eon 2016] for additional materials regarding phase functions. Note that in media,
the phase function is weighted by the scattering coefficient of the medium µs.

0°
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180°

225°

270°

315°

−3
−2

−1
0

1

45°

Large droplets models
Henyey-Greenstein, g=0.85
Cornette-Shanks, g=0.85
Haltrin, g=0.85

Kokhanovsky
Mie-Murky

0°

45°

90°

135°

180°

225°

270°

315°

−3
−2

−1
0

1

45°

Small droplets models
Rayleigh
Mie-Hazy
Henyey-Greenstein, g=0 (isotropic)

A visual comparison of Mie phase function approximations (logarithmic scale)

FIGURE 2.4 – Several phase functions profiles approximated from the Mie theory to simulate
cloud-sized spherical droplets (left plots) and haze-sized spherical droplets (right plots).
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12 Chapter 2. The path integral framework

Null scattering singularity

A last form due to the null-scattering framework describes the scattering model at
null interactions in the medium. Since null events model fictitious particles – i.e.
where no scattering happens – which are constrained on a straight line between two
real scattering vertices, the light propagation direction remains unchanged. There-
fore the resulting scattering function is a Dirac delta distribution2 in the forward
direction (see bottom right in Figure 2.3) weighted by the null scattering extinction
coefficient µn.

Discussion

The BSDF is at the core of rendering applications to accurately simulate light scat-
tering in a scene. As mentioned before, a BSDF is parameterized by the observing
direction, hence is often a view-dependent distribution. As we shall see in chapter 9,
comparing BSDF with identical parameters but different outgoing directions is a
key component in the context of multi-view rendering. In fact reusing a section of
a path that has been sampled w.r.t to an outgoing direction ωo,1, does not neces-
sarily contributes to another observing direction ωo,2 if the distribution is strongly
view-dependent.

2.1.6 Emitted radiance

Light sources are essentials in a scene in order to illuminate visible objects. The
emitted radiance Le from a path vertex y towards another vertex x is expressed dif-
ferently depending if the emitting vertex is on a surface or in a medium. In the latter
case, the attenuation due to the volume absorption µa is taken into account.

Le(x, y) =
{

Le(x, y) if y is on a surface,
µa(y)Le(x, y) if y is an absorbing medium interaction.

(2.7)

Several models of light sources have been developed to model different light be-
haviors such as: area lights, point lights, spot light, infinite lights (i.e. sun), image
based lights, measured lights (i.e. environment lighting) and blackbody emitters (i.e.
stars). For further details see [Pharr et al. 2016, chap. 12].

2.1.7 Geometric term

The geometric term on each path segment takes into account the visibility V between
segment endpoints, the light attenuation due to the traveled distance (the inverse
squared falloff) and the orientation with respect to the geometric normal of surfaces
(the cosine between the normal and the segment normalized direction).

2In the original article Miller et al. use a heavyside function to enforce the ordering of null vertices
along the null scattering chain. However since the chain is constrained between two real scattering
events, the only possible scattering direction is the forward direction. For that reason we prefer encod-
ing the null vertices ordering inside the path measure and use the Dirac to denote the only possible
scattering direction at a null interaction.
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2.1. Extended path integral formulation: Surface, Volumes, Null scattering 13

G(x, y) = V(x, y) · D(x, y)D(y, x)
‖x − y‖2 where

D(x, y) =
{

|n(x) · ωx→y| if x is on a surface with n(x) its normal,
1 if x is in a medium.

V(x, y) =
{

1 if x and y are mutually visible,
0 otherwise.

(2.8)

The light attenuation comes from the change of measure between differential solid
angle to differential area measure [Veach 1998, eq. 8.2] [Pharr et al. 2016, eq. 5.6].

a)

b)

c)

G(x0, x1)

fr(x0, x1, x2)

G(x1, x2)

fr(x1, x2, x3)

G(xk−2, xk−1)

fr(xk−3, xk−2, xk−1)

G(xk−1, xk)

fr(xk−2, xk−1, xk)

Le(xk−1, xk)
Wj(x0, x1)

x0

x1 x2

xk−2 xk−1

xk

G(x0, x1)

T(x0, x1)

µs(x1) fp(x0, x1, x2)

G(x1, x2)

T(x1, x2)

µs(x2) fp(x1, x2, x3) G(xk−2, xk−1)

fr(xk−3, xk−2, xk−1)

G(xk−1, xk)

fr(xk−2, xk−1, xk)
Le(xk−1, xk)

Wj(x0, x1)

x0

x1 x2

xk−2 xk−1

xk

G(xr0 , xr1 )

T̄(xr0 , xr1 ) = T̄(x0, x1)T̄(x0, x2)

µs(xr1 ) fp(xr0 , xr1 , xr2 )

µn(x1)δ(x0, x1, x2) µn(x3)δ(x2, x3, x4)

µn(x4)δ(x4, x5, x6)

G(xr1 , xr2 )

T̄(xr1 , xr2 ) = T̄(x2, x3)T̄(x3, x4)T̄(x4, x5)

µs(xr2 ) fp(xr1 , xr2 , xr3 )

G(xk−2, xk−1)

fr(xk−3, xk−2, xk−1)

G(xk−1, xk)

fr(xk−2, xk−1, xk)
Le(xk−1, xk)

Wj(xr0 , xr1 )

x0 ≡ xr0

x1 x2 ≡ xr1 x3 x4 x5 ≡ xr2

xk−2 ≡ xrm−2 xk−1 ≡ xrm−1

xk ≡ xrm

FIGURE 2.5 – Path space terms of the path integral formulation within a) the surface frame-
work [Veach 1998], b) the surface and real medium framework [Pauly et al. 2000], and c) the
null scattering framework [Miller et al. 2019]. It is worth noting that null scattering inter-
actions (x1, x3, x4) in figure c) are taken into account explicitly in the path. Thus a path of k

interactions has only m real interactions denoted by the subscript r.

2.1.8 The path space measure

The extended path integral framework includes three different types of interactions
along the path:

• Surface interactions in the surface space denoted A,

• Volume interactions in the volume space denoted V,

• Null interactions in the null scattering volume space denoted Vn.
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14 Chapter 2. The path integral framework

Note that Vn is simply a copy of V since null scattering interactions may happen
anywhere some volume is defined. We can thus rewrite the path space definition as:

Ω =
∞⋃

i=1

Ωi

=
∞⋃

i=1

(A ∪V ∪Vn)
i+1

(2.9)

with i denoting the path length (number of segments on a path). The path differen-
tial measure is the product of the differential measures at each vertex that constitutes
the path. Therefore the differential measure of a path x̄ = {x0, . . . , xk} writes:

dµ(x̄) =
k

∏
i=0


dA(xi) if xi is on a surface,
dV(xi) if xi is a real medium interaction,
dVn(xi) if xi is a null medium interaction.

(2.10)

It is worth noting that an interaction or a chain of interactions of a path may be gen-
erated by different construction techniques resulting in the same associated measure
but in different probability densities. The fact that several construction strategies are
available for the same samples lets us select or weight them in a way such that they
best contribute to our integration problem.

2.2 Conclusion

In this section, we detailed the framework for evaluating the contribution of a light
path in a scene (illustrated in Figure 2.5). There are still two missing pieces to esti-
mate a pixel value: generating light paths and integrating their contributions.

Integral estimation. In fact, rendering an image involves estimating this integral
for each pixel of the camera. Monte Carlo estimators are convenient to get accurate
estimates of high dimensional integrals since their convergence does not depend on
the dimensionality of the integrand. As we shall see in chapter 3, these methods rely
on probability theory and random sampling of the integration domain.

Path construction. Random construction of light paths is often a sequential ap-
proach. We review in detail the path sampling methods used in a path tracer in
chapter 4.

Path transformations. Constructing paths is expensive in practice and sometimes
fails at finding some light contributions. Several rendering methods uses determin-
istic transformations of paths to improves the local exploration of the path space.
Furthermore these techniques can be used to mutualize the exploration between
several pixels enabling path reusing and multiple view rendering methods. These
transformations and existing applications, in particular path reusing, are presented
in chapter 5.
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Chapter 3

Unbiased Monte Carlo estimators

The measurement contribution function of a path detailed in the previous chapter
is a multidimensional integrand comprised of several variables, each vertex of the
path. Integrating in more than 1-dimension is a complex problem, and classical 1-
dimensional methods such as piecewise polynomial interpolation or finite elements
can hardly be employed due to the complexity of the integrand and a convergence
rate that becomes exponentially worse w.r.t to the dimension.

Nevertheless several early radiosity techniques [Goral et al. 1984, Cohen and Green-
berg 1985, Cohen et al. 1988, 1993, Sillion and Peuch 1994] exploited finite element
methods to compute light transport integrals, but were constrained by scene com-
plexity – i.e. limited to a moderate amount of geometry, simple materials and a finite
number of bounces – and required long precomputation and large storage. The com-
plexity of these methods depends on the number of space subdivisions or patches
and on the number of indirect bounces to integrate – i.e. the dimension of the light
paths.

For that reason rendering algorithms moved to use Monte Carlo (MC) methods
[Cook 1986, Kajiya 1986] for which the convergence rate does not depend on the
random variable dimensionality. The idea behind Monte Carlo is that we only need
to evaluate the integrand at some stochastically chosen points in the domain to get
an estimate of its integral. Hence we require the ability to sample light paths and
to evaluate their contribution. Monte Carlo methods are more generic and can el-
egantly handle arbitrary light scattering models, at the expense of variance that re-
sults in high-frequency noise in the images. Fortunately this noise vanishes as the
number of samples averaged per pixel increases.

In this chapter we start by detailing common existing models for evaluating integrals
with Monte Carlo and review their main properties and drawbacks.

Monte Carlo methods are well studied from the neutron transport research [Metropo-
lis and Ulam 1949, Metropolis et al. 1987] and several books propose a great intro-
duction on the topic such as Monte Carlo statistical methods by Robert and Casella. An
rendering oriented introduction on MC can be found in [Pharr et al. 2016, section
13] and further details can be found in Eric Veach thesis [Veach 1998]. For advanced
importance sampling methods and richer examples we recommend the book Monte
Carlo theory, methods and examples by Art B. Owen.
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16 Chapter 3. Unbiased Monte Carlo estimators

3.1 Prerequisites

Monte Carlo methods are statistical methods based on the probability theory. We
recall some basic definitions to better introduce Monte Carlo estimators.

3.1.1 Random variable

A random variable X is a function defined on a probability space which takes values
that depend on a stochastic process. Furthermore a function f of a random variable
X is a random variable, we write Y = f (X). This is the basic object we manipulate
in rendering application: we generate random light paths in a 3D scene. A sampled
path X is thus a random variable, and the contribution f (X) of a sampled path is
also a random variable.

3.1.2 Distribution and density

A continuous random variable is described by a continuous cumulative distribution
function (CDF). The CDF is the probability of a random variable to take a value less
or equal than a threshold.

cdf(x) = P(X ≤ x) (3.1)

The probability density function (PDF) of a random variable is the derivative of the
CDF.

pdf(x) =
d cdf(x)

dx
(3.2)

In practical applications (sampling), the PDF describes the effective repartition of
the probabilities over the domain: regions where the PDF takes high value are more
likely to be sampled, on the contrary regions where the PDF is close to zero have
fewer samples distributed as illustrated by the histogram in Figure 3.1. For the sake
of simplicity we will denote p(x) as a PDF in the rest of the dissertation. Since a CDF
is monotonically increasing and its maximal value is 1, the associated PDF is strictly
positive and integrate to 1 over the continuous domain of events.

∫

Ω
p(x)dx = 1 (3.3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0
Truncated Gaussian distribution

cdf
pdf
4k samples histogram

FIGURE 3.1 – Example of Gaussian distribution of mean 0.5 and standard deviation 1.2 trun-
cated to the interval [−0.5, 2.5]. The effective number of samples distributed (histogram) is

proportional to the value of the PDF (blue curve).
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3.1. Prerequisites 17

3.1.3 Discrete case

A random variable may also be discrete when the possible set of event is finite count-
able (e.g. the outcomes of a dice). It is then described by a discrete CDF which is
piecewise constant. The equivalent of the PDF in the discrete case is the probabil-
ity mass function (PMF) (sometimes called discrete PDF) which is normalized over
the sum of all events probabilities, ∑Ω p(x) = 1. Discrete random variables are il-
lustrated in Figure 3.2. They are widely used in computer graphics applications for
discrete stochastic selection, e.g. light sampling, 2D texture sampling, mipmap hier-
archy sampling (trees), etc [Haines and Akenine-Möller 2019, chap. 16][Marrs et al.
2021, chap. 21].

1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0
Fair die distribution

discrete cdf
discrete pmf
1k samples histogram

1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0
Biased die distribution

discrete cdf
discrete pmf
1k samples histogram

FIGURE 3.2 – Example of 6-sided dice distributions and associated discrete CDF and PMF.
The left plot illustrates the fair case where all outcomes have the same probabilities (uni-
form discrete distribution). On contrary the right plot depicts a rigged die for which the
probabilities has been biased. The effective number of samples distributed (histogram) is

proportional to the value of the PMF for each possible outcome (blue curve).

3.1.4 Expected value

The expected value or first moment of a random variable Y = f (X) over a measurable
space Ω with associated measure µ is:

E [Y] =
∫

Ω
f (x)p(x)dµ(x) (3.4)

The expected value has the following useful properties which serve as a basis for
numerous derivations:

∀α ∈ R, E [αX] = αE [X] and E

[
∑

i
Xi

]
= ∑

i
E [Xi] (3.5)

3.1.5 Variance

The variance or second central moment, of a random variable Y is defined as:

V [Y] = E
[
(Y − E [Y])2

]
(3.6)

and measures the dispersion of the random variable w.r.t its expectation. This is
an important measure to determine whether chosen density is a good choice for a
given integrand. The base variance formula from Equation 3.6 can be simplified as
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18 Chapter 3. Unbiased Monte Carlo estimators

follows:

V [Y] = E
[
(Y−E [Y])2

]
= E

[
Y2 − 2YE [Y] + E [Y]2

]
= E

[
Y2]− 2E [Y]E [Y] + E [Y]2

= E
[
Y2]−E [Y]2

(3.7)

The variance has the following properties:

∀α ∈ R, V [αX] = α2V [X] and V

[
∑

i
Xi

]
= ∑

i
V [Xi] (3.8)

which are useful to derive the variance of Monte Carlo estimators as we shall see in
the next section.

3.1.6 Monte Carlo Estimator

Unlike Equation 3.4, in most applications our goal is to compute the following sim-
pler integral:

I =
∫

Ω
f (x)dµ(x) (3.9)

It is interesting that the integral I equals the expected value of the ratio of the inte-
grand and the PDF of a random variable X (which is a random variable):

E

[
f (X)

p(X)

]
=
∫

Ω

f (x)
p(x)

p(x)dµ(x)

=
∫

Ω
f (x)dµ(x)

= I

(3.10)

Hence for a given realization of X with an arbitrary density p(X) over the domain,
the ratio f (X)

p(X)
is an unbiased estimate of I as long as p(x) > 0 whenever f (x) > 0. A

Monte Carlo estimator with one realization writes:

Î1 =
f (X)

p(X)
(3.11)

where the hat denotes the estimator and the subscript denotes the number of real-
izations. Using properties from Equation 3.5, it is thus possible to average over n
realizations to get a better estimate:

În =
1
n

n

∑
i=1

f (Xi)

p(Xi)
(3.12)

which is also a Monte Carlo estimator with n realizations. Note that this is an estima-
tor of the true mean hence for different n-samples realizations the estimated value
may change but the estimate stabilizes when n becomes very large.
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3.1.7 Quality of the estimator

If the distribution of samples p is appropriate, the estimator converges to the ex-
pected value. But we know that there is a remaining error for a fixed sample budget
n. To quantify this error, we can study the variance, the bias and the error of the
estimator and their convergence rates.

Variance

We compute the variance of the n-samples Monte Carlo estimator În using the prop-
erties from Equation 3.8:

V
[
În
]
= V

[
1
n

n

∑
i=1

f (Xi)

p(Xi)

]

=
1
n2 V

[
n

∑
i=1

f (Xi)

p(Xi)

]

=
1
n2

n

∑
i=1

V

[
f (Xi)

p(Xi)

]
=

1
n

V

[
f (X)

p(X)

]
=

1
n

V
[
Î1
]

(3.13)

This equation shows that the variance decreases linearly with the number of sam-
ples, reaching zero as n tends to infinity:

lim
n→∞

V
[
În
]
= 0 (3.14)

Bias

The bias of an estimator is defined as the difference between the expected value of
an estimator and the true integral value:

B
(

Î
)
= E

[
Î
]
− I (3.15)

An estimator is said to be unbiased if its expected value equals the true integral value,
on the contrary it is said to be biased if its expected value do not equal the true integral
value, hence:

E
[
Î
]
= I ⇔ Î is unbiased

E
[
Î
]
6= I ⇔ Î is biased

(3.16)

The bias can either be constant for any fixed sample budget, ∀n, B
(

În
)
= c, or van-

ishing as n increases. In the latter situation, the estimator is said to be consistent and
the bias converges to zero as n tends to infinity:

∀n, B
(

În
)
= h(n) lim

n→∞
h(n) = 0 ⇔ Î is biased but consistent (3.17)

Unbiased algorithms are preferred when convergence is a strong requirement, but
biased alternatives can often improve the error and even performance particularly
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20 Chapter 3. Unbiased Monte Carlo estimators

when it is also consistent. For additional details regarding the bias in Monte Carlo
estimators, we refer the reader to [Hachisuka 2013]. Several bounds of convergence
of the mean, variance and bias are summarized in Table 3.1.

Mean Variance Bias

Unbiased lim
n→∞

În = I lim
n→∞

V
[
În
]
= 0 ∀n, B

(
În
)
= 0

Biased lim
n→∞

În = I + c lim
n→∞

V
[
În
]
= 0 ∀n, B

(
În
)
= c

Consistent lim
n→∞

În = I + h(n) lim
n→∞

V
[
În
]
= 0 lim

n→∞
B
(

În
)
= 0

TABLE 3.1 – Table of different limits of estimators properties w.r.t estimator type.

Error

If the expected value I is known or an accurate estimate is available, we can compute
the mean squared error as the expected value of the squared error of an estimator w.r.t
to the integral value:

MSE
(

Î
)
= E

[(
Î − I

)2
]

= V
[
Î
]
+ B( Î)2

(3.18)

which quantify how close an estimator is from the expected value. Note that an
alternative form of the MSE is the sum of the variance and the squared bias of an
estimator. If the estimator is unbiased it is straightforward to show that the MSE
equals the variance and converges to zero as well when n grows to infinity. If the
estimator is biased, the MSE converges to a constant and never reaches the true
integral value. If the estimator is consistent, the MSE tends to zero as a limit when n
tends to infinity. The convergence rate of the MSE of an unbiased estimator is then
similar to the convergence of the variance which decreases linearly w.r.t n. Hence,
the convergence of the root mean squared error, RMSE =

√
MSE, is O

(
n−0.5).

Convergence

Depending on the integrand complexity a Monte Carlo estimator may require a large
amount of samples to get an accurate estimate of the integral I. The measure of the
accuracy of the estimator is determined by its convergence rate. It can be shown that
the basic Monte Carlo estimator, using uniform random samples over the domain,
converges in O

(
n−0.5). The latter property means that it requires four times more

samples to divide the visible error by two.

The convergence rate of MC estimators can be improved by using quasi Monte Carlo
methods based on low discrepancy sequences (e.g. Halton, Hammersley, Sobol, lattices)
or optimized pointsets (e.g. Dart Throwing, BNOT, LDBN, SOT), see [Keller et al. 2019]
for a recent course on the topic.

For example, the error of an estimator using the Sobol sequence decreases with rate

O( (log n)d

n ), which is close to O(n−1) when the number of dimensions d is small and
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3.2. Multidimensional integrals and Monte Carlo 21

the number of sample n is large. Under the latter conditions, this means that with
two times more samples the error is divided by a factor two.

3.1.8 Discussion

Even though the convergence rate may not be optimal, it is worth mentioning that
the convergence rate of Monte Carlo estimators does not depend on the random vari-
able dimensionality. This property makes these methods the only practical solution
for high-dimensional integration problems. To get a better estimate of an integral
we have to reduce the error of the estimator, consequently we have to reduce its
variance (in the case of an unbiased estimator). The variance is closely related to the
choice of the distribution of samples. As we shall see in the next section the best
possible unbiased estimator is an estimator for which all realizations are constant.

Unbiased estimators are theoretically perfect however they often suffer from variance
that is long to disappear, which directly affects the error. Nevertheless, carefully
using biased estimators is often acceptable as long as the quality of the results is not
degraded – because visible artifacts in images are not tolerable in practice – since
they can dramatically reduce the variance or the computational cost of an estimator.
Biased method are often used in real time application for performance reasons and as
smoothing techniques since the presence of a high error is not desirable and would
require extra filtering.

Furthermore biased but consistent estimators can be great compromise, with an in-
finite sample budget the expected value is reached, and at reasonable sample count
the bias may barely be noticeable. Especially in the context of path reusing, where
we massively reuse samples at a reduced cost, the increased number of paths fur-
ther reduces the bias of consistent estimators. In chapter 7, we explore a family of
such biased but consistent estimators that are practical in the context of multi view
rendering.

3.2 Multidimensional integrals and Monte Carlo

Let us recall that the pixel integral takes the following form:

I =
∫

Ω
f (x̄)dµ(x̄) (3.19)

and by extension the multidimensional version can be written:

I =
∫

Ω0

∫
Ω1

. . .
∫

Ωk

f (x0, x1, . . . , xk)
k

∏
i=0

dxi (3.20)

A Monte Carlo estimator approximates the integral by random sampling of the in-
tegration domain and taking the average contribution over n sample realizations:

I ≈ În =
1
n

n

∑
i=1

f (X̄i)

p(X̄i)
(3.21)

Here, each sample X̄i is a sequence of vertices in path space that has been sampled
with PDF p(X̄i), taking into account the repartition of samples in space. Since our
random variable Xi is multidimensional its PDF here is a joint PDF that is the prod-
uct of all independently sampled events PDF on the path. It can be shown that the
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22 Chapter 3. Unbiased Monte Carlo estimators

expected value of the estimator În equals I with any correctly defined PDF:

E
[
În
]
= E

[
1
n

n

∑
i=1

f (X̄i)

p(X̄i)

]

=
1
n

n

∑
i=1

E

[
f (X̄i)

p(X̄i)

]
=

1
n

n

∑
i=1

∫
Ω

f (x)
p(x)

p(x)dx

=
1
n

n

∑
i=1

∫
Ω

f (x)dx

=
1
n

n

∑
i=1

I

= I

(3.22)

3.3 Uniform sampling

The simplest way to generate samples over a domain is by uniform sampling. Hence
the PDF is constant over the domain Ω and equals the inverse of the domain volume
Vµ (Ω) w.r.t to the associated measure µ. Using uniform sampling the Monte Carlo
estimator reduces to the following:

În =
1
n

n

∑
i=1

f (X̄i)

p(X̄i)

=
1
n

n

∑
i=1

f (X̄i)Vµ (Ω) with p(X̄i) =
1

Vµ (Ω)

=
Vµ (Ω)

n

n

∑
i=1

f (X̄i)

(3.23)

Uniform sampling can be done by sampling the d-dimensional hypercube and stretch-
ing each dimension to match the domain extent. An example integration problem
using uniform sampling is presented in Figure 3.3. This Monte Carlo estimator is
unbiased and converges to the expected value.

3.4 Importance sampling

When the integrand f is almost zero everywhere except in a small area of the do-
main, classic uniform sampling may converge slowly. Indeed, uniform sampling
distributes an equal amount of samples everywhere in the domain. However, in this
case most of them gather zero contribution, thus variance increases drastically. To
address this problem Importance Sampling (IS) methods have been introduced [Kahn
1950a,b, Kahn and Marshall 1953]. The idea behind IS is to use non uniform dis-
tributions to sample more densely the regions of interest – i.e. biasing the samples
to cover the regions where the integrand is non zero – and weighting the integrand
by the PDF accounting for the modified distribution of samples. The IS estimator
is unbiased as long as the modified PDF is positive whenever the integrand is. Al-
though carefully chosen IS strategies can seriously reduce the variance of the esti-
mator, choosing a wrong IS scheme can make the variance worse.
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FIGURE 3.3 – Uniform Sampling in 1D. The integrand f in the top left plot (orange) is in-
tegrated on the domain [−4, 4] using uniform samples with PDF in dashed gray. We plot
the mean, rmse, variance and bias of the uniform Monte Carlo estimator averaged over 1000
realizations of 1 to 100 samples. The bias here is a residual due to numerical errors but is
expected to be zero since the estimator is unbiased and the expected value is matched on

average. The variance decreases with rate O
(
n−1) and the rmse with rate O

(
n−0.5).

3.4.1 Zero variance importance sampling

The source of error in Monte Carlo estimators comes from the variance of the sam-
ples w.r.t to the integrand. One property of IS is that by distributing samples exactly
proportionally to the value of the integrand we can construct a zero variance estimator.
Indeed, by making p ∝ f the ratio f

p becomes constant and the source of variance
can be cancelled:

V

[
f (X̄i)

p(X̄i)

]
= E

[(
f (X̄i)

p(X̄i)

)2
]
− E

[
f (X̄i)

p(X̄i)

]2

= E
[
c2]− E [c]2

= c2 − c2

= 0

(3.24)

Each sample has the same contribution and the constant c can be deduced as follows:

E

[
f (X̄i)

p(X̄i)

]
= E [c] = I ⇐⇒ c =

∫

Ω
f (x)dx (3.25)

The constant c acts as the normalization factor of the PDF of zero variance samples,
which writes:

p(x) =
f (x)

c
=

f (x)∫
Ω f (x)dx

(3.26)
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24 Chapter 3. Unbiased Monte Carlo estimators

Zero variance estimators thus require already knowing the integral value I, which
in most cases is impossible to express in closed-form for complex integrands. We
illustrate zero variance importance sampling in Figure 3.4.
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FIGURE 3.4 – Zero variance importance sampling in 1D. The integrand f in the top left
plot (orange) is integrated on the domain [−4, 4] using zero variance importance sampling
with PDF p ∝ f in dashed orange. Due to the PDF construction the mean always equals the
expected value, hence the rmse, the variance and the bias of the perfect importance sampling

Monte Carlo estimator equal zero.

3.4.2 Design of non uniform distributions

Several methods exist to build non uniform distributions of samples, such as:

• the CDF inversion method which can be analytic [Devroye 1986] or numeric
[Cline et al. 2009, Heitz 2020],

• the use of geometric transformations of samples as described in [Hart et al.
2020, sect. 3]: starting from a known distribution of samples and deterministi-
cally transforming samples, which can be analytic if the Jacobian of the map-
ping is known in closed-form or numeric [Hart et al. 2020],

• the rejection sampling method: by sampling a larger domain and rejecting
samples that are outside the region of interest, however rejection methods can
be very inefficient if the proportion of rejection is greater than the proportion
of acceptance,

• generic models and machine learning: starting from a generic model (basis of
PDF) we can learn a distribution using adaptive importance sampling [Rubin-
stein 1997, Lepage 1978, Cornuet et al. 2012], or directly encode the distribution
in a latent space using neural importance sampling [Müller et al. 2019].
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3.4. Importance sampling 25

• stochastic resampling [Talbot et al. 2005, Bitterli et al. 2020]: starting from a
set of samples drawn from distribution q, these methods randomly resample
within the set of samples to fit a target distribution p, at the expense of addi-
tional variance.

3.4.3 Importance sampling of complex integrands

In the case of a complex – multi-term integrands, it is common to perform IS on
specific terms of the function for which a zero variance IS scheme is known. This
cancels some terms of the function and often leads to a smoother estimate with re-
duced variance. Another possibility is to find or learn coarser sample distributions
we can sample from that resemble the integrand.

Taking back the example integrand from Figure 3.4, the integrand decouple in two
terms, a Gaussian g and a discontinuity h, such that:

f (x) = g(x) · h(x) (3.27)

If the product g · h is complex to sample, a simpler PDF that fits only one of the terms,
e.g. a Gaussian distribution proportional to g, can be sampled and still gives a large
variance reduction in comparison to uniform sampling as depicted in Figure 3.5.

−2.5 0.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0
Problem

5 (G)
?0(G)

0 50 100
0

1

2

3

Averaged mean (5000 runs)

Expectation
�̂=

0 50 100
0

1

2

3

Averaged rmse (5000 runs)

RMSE
(
�̂=

)

−2.5 0.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0
Samples Histogram

-

0 50 100
0

1

2

3

Averaged variance (5000 runs)

V
(
�̂=

)

0 50 100
0

1

2

3

Averaged bias (5000 runs)

B
(
�̂=

)

FIGURE 3.5 – Importance sampling in 1D. The integrand f in the top left plot (orange) is
integrated on the domain [−4, 4] using importance sampling with a PDF p that resemble f
but does not match the discontinuity in dashed red. Since the shape of the PDF is similar to
the shape of one term of the integrand the variance of the IS estimator is expectedly reduced.

On the contrary using distributions that poorly fit the integrand shape lead to defi-
cient IS estimators. A deficient IS scheme may have higher variance than uniform
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26 Chapter 3. Unbiased Monte Carlo estimators

sampling or worse, an infinite variance. Such sampling strategies lead to numeri-
cally instable estimators and should be avoided to get correct estimates of an integral
as presented in Figure 3.6.
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FIGURE 3.6 – Importance sampling in 1D. The integrand f in the top left plot (orange) is
integrated on the domain [−4, 4] using importance sampling with a PDF p that does not
resemble f in dashed blue. The estimator is numerically unstable since the samples poorly
cover the regions where f is positive. Hence the results is numerically biased even after 5000
realizations, and the variance is a thousand times higher than uniform sampling variance.
Note that both RMSE and variance plots has been scaled in comparison to previous figures.

3.4.4 Sampling and integration domains

In importance sampling we are only interested in distributing samples where the in-
tegrand is positive. Since it can be difficult to achieve, several importance sampling
techniques distribute samples in a larger domain than the positive domain of the
integrand – for example rejection sampling. Consequently some samples yield zero
contributions to the estimator, such that:

p(x) > 0 and f (x) = 0 (3.28)

but are still taken into account in the sample count n hence in the samples mean.
Thus increasing the variance of the estimator. In such situation we would rather
count only non zero contributions in the estimator to reduce its variance, replacing
n by n{x| f (x)>0}. But in practice this leads to biased (and not consistent) estimates of
the integral, as any sample drawn has to count for the estimator to be unbiased.

3.4.5 Discussion

Importance sampling is one of the best sampling tool in computer graphics appli-
cation and lots of research has been done to find better IS schemes to sample light
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3.5. Multiple importance sampling 27

transport integrals. In a path tracer, IS is used everywhere to sample camera rays,
materials, light sources, shapes, volumes, etc. Finding better IS strategies is still an
active area of research.

Sometimes several IS strategies are available to sample the same event but account-
ing for different terms of the integrand. Different techniques are not guaranteed to
yield similar contributions, with some working better than others. Thus, we can aim
at selecting or preponderantly weighting the best strategy for each situation using a
multi-strategy estimator.

Consequently some estimators has been proposed to optimally combine these strate-
gies in an unbiased way as we shall see in the next section. Note that even though
one IS strategy alone leads to a poor estimates of the integral (e.g. high variance or
wrong sample distribution), it can still be efficient within a multi-strategy estimator.

3.5 Multiple importance sampling

Given multiple IS strategies, samples can be drawn from each strategy indepen-
dently and averaged in the associated IS estimator. From these independent esti-
mators, it is then possible to build a new estimator using a linear combination of
them:

Înaive-mis =
k

∑
i=1

αi Îi with
k

∑
i=1

αi = 1 (3.29)

for which we can easily show that it is an unbiased estimator of I:

E
[
Înaive-mis

]
= E

[
k

∑
i=1

αi Îi

]
=

k

∑
i=1

E
[
αi Îi
]
=

k

∑
i=1

αiE
[
Îi
]
=

k

∑
i=1

αi I = I (3.30)

But naively averaging the IS estimators associated to each strategy – or computing
any linear combination of them – does not generally reduce its variance. The reason
is that each estimator suffers from a different variance and the use of a linear combi-
nation simply blends these variance together without reducing the overall variance
of the final estimator. The variance of the linear combination writes:

V
[
Înaive-mis

]
= V

[
k

∑
i=1

αi Îi

]
=

k

∑
i=1

V
[
αi Îi
]
=

k

∑
i=1

α2
i V
[
Îi
]

(3.31)

and if one of the strategies has high variance this estimator still assigns a non zero
weight to the associated strategy. Hence its variance will be present in the resulting
estimator. For that reason, Veach and Guibas [1995] introduced Multiple Importance
Sampling (MIS) to optimally combine multiple sampling strategies.

3.5.1 Multiple Importance Sampling

Instead of weighting the estimators, MIS weights each sample separately in a com-
bined estimator. It makes the use of a discrete set of weighting functions wi(x) (one
per strategy) that locally compare the PDF assigned by each strategy to a sample.
The MIS integral arises by splitting the integral into a sum of integrals, given that
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the sum of the weighting functions equals one, ∑i wi(x) = 1:

Imis =
∫

Ω
f (x)dx

=
∫

Ω

k

∑
i=1

wi(x) f (x)dx

=
k

∑
i=1

∫
Ω

wi(x) f (x)dx

=
k

∑
i=1

Ii,mis

(3.32)

From this integral, two Monte Carlo estimators has been proposed:

• The multi-sample model, that distributes a fixed number of samples ni per strat-
egy among n total samples and writes:

Îms-mis =
k

∑
i=1

Îi,mis =
k

∑
i=1

1
ni

ni

∑
j=1

wi(xij)
f (xij)

pi(xij)
(3.33)

• The one-sample model, that draws one sample xi from strategy i, stochastically
selected among k with a fixed probability ci, with ∑i ci = 1:

Îos-mis =
wi(xi) f (xi)

ci pi(xi)
(3.34)

These two MIS estimators are unbiased a long as ∑i wi(x) = 1 whenever f (x) > 0
and wi(x) = 0 whenever pi(x) = 0, and are usually averaged over m realizations.

3.5.2 Weighting heuristics

The weighting functions wi(x) can be chosen arbitrarily while they respect the above
conditions. Several weighting heuristics has been proposed, such as the balance
heuristic:

wi(x) =
ci pi(x)

∑k
i=1 ck pk(x)

(3.35)

, the power heuristic that raises the PDFs in Equation 3.35 at a power β, the maximum
heuristic that only keeps the maximum PDF (it can be seen as the power heuristic
with β = ∞), and the cutoff heuristic that only keeps the PDFs above a certain thresh-
old value.

The probability ci associated to each strategy – the relative number of samples per
strategy – is a user defined parameter. In the multi sample model the probability as-
signed to each strategy is ci =

ni
n , which lead to an alternative form of Equation 3.33:

Îms-mis =
1
n

k

∑
i=1

ni

∑
j=1

wi(xij)
f (xij)

ci pi(xij)
(3.36)
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The one sample model using the balance heuristic weights is similar to Mixture Im-
portance Sampling. In fact the final sample distribution is a weighted mixture of
strategies with a user defined probability per strategy. To sample from a mixture dis-
tribution we first randomly select strategy pi ∝ ci, then we sample xi ∝ pi, the PDF
of such samples is then p(x) = ∑k

i=1 ci pi(x) which is exactly what the one-sample
model combined with the balance heuristic does (cf. Figure 3.7 and Figure 3.8).
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FIGURE 3.7 – Multiple importance sampling in 1D. The integrand f in the top left plot (or-
ange) is integrated on the domain [−4, 4] using two distributions p1 and p2. To combine
these distribution we rely on the balance heuristic and the one-sample model with the same
assigned probability ci per strategy. Given these strategies the balance heuristic provably
minimizes the variance of the combination. The estimator is expectedly unbiased, but still
exhibits high variance, since any of the source strategies is a good importance sampler of the

integrand.
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FIGURE 3.8 – The combined density of MIS depends on the weighting heuristic and deforms
the source density of samples. On the left we plot the source distribution of samples, in the
middle the combined MIS density with the balance heuristic, and on the right the combined

MIS density with the power heuristic using β = 4.

3.5.3 Variance of MIS

The balance heuristic has been proved to minimize the variance of the one-sample
estimator Veach and Guibas [1995] and is extensively used in practice. In the case of
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the multi-sample model with no a priori knowledge regarding the different strate-
gies, the balance heuristic is still the best possible choice since no other weighting
heuristic has significantly lower variance. If one of the strategy is known to perform
better than any other strategy, using the power heuristic will preponderantly weight
the strategy of highest PDF, hence reduce the variance of the overall combination by
assigning low weights to other poor strategies.

3.5.4 Continuous Multiple Importance Sampling

Recently, West et al. proposed a continuous version of the MIS framework to handle
infinite uncountable sets of techniques. The CMIS integral arises by integrating over
a continuous technique space T instead of summing over a discrete set of techniques
like in Equation 3.32, given that the integral of the continuous weighting functions
equals one,

∫
T w(t, x)dt = 1:

Icmis =
∫

Ω
f (x)dx

=
∫

Ω

∫
T

w(t, x)dt f (x)dx

=
∫
T

∫
Ω

w(t, x) f (x)dxdt

=
∫
T

It,cmisdt

(3.37)

The CMIS integral is not directly practical to evaluate since it would require inte-
grating the whole technique space for each sample – i.e. the CMIS integral over
the technique space requires evaluating a marginal. Hence, the authors propose to
stochastically sample a set of pairs (technique, sample) to approximate the marginal
[West et al. 2020, equation 12], which constitutes the Stochastic MIS (SMIS) estima-
tor. This estimator is then a stochastic discretization of the CMIS integral, while the
MIS integral is a deterministic discretization of the technique space, and still gives
an unbiased estimate of the integral I.

3.5.5 Discussion

“But the robustness comes at the expense of decreased overall efficiency; the MIS combina-
tion can be far from optimal and sometimes significantly better results may be achieved by
ignoring all samples but the ones taken from the single best technique.”

Kondapaneni et al.

It is worth noting that the strategy of highest density is assigned the highest weight
in MIS models. The assumption of the weighting heuristics is that any used PDF is
somewhat beneficial for at least one term of the integrand. However, if one strategy
erroneously distributes a large number of samples where the integrand is close to
zero, the variance of the MIS estimator consequently increases. Ideally we should
avoid sampling the strategies that have very poor contributions. But in practice it is
often difficult to know a priori if a sampling strategy is beneficial or not. The prob-
ability – or relative number of samples – is thus blindly assigned to each strategy
without prior knowledge w.r.t the integrand.
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Variance reduction for MIS

For that reason, lots of research have been done on optimizing the sample allocation
or better weighing heuristics to lower the variance of MIS estimators in the past few
years [Sbert et al. 2018, Grittmann et al. 2019, Karlík et al. 2019, Kondapaneni et al.
2019]. These works necessitate per strategy estimation of statistical moments, which
are complex to evaluate in a rendering pipeline and require per pixel storage of these
additional informations. Authors proposed coarser estimates of these informations,
to remain tractable in memory but they remain costly. Kondapaneni et al. derives the
optimal MIS weights that are not constrained to be positive and that provably min-
imize the variance of the combination. However, computing these optimal weights
requires storing and inverting a matrix whose size depends on the number of strate-
gies, which is impractical when the number of contributing techniques is high or not
known a priori.

3.6 Conclusion

We presented a family of unbiased Monte Carlo estimators, that are widely used
in the rendering context. Still, the MIS technique that allows combining several
sampling strategies is not optimal and may increase the variance when one of the
strategies is a poor importance sampler of the integrand, but is assigned a significant
weight. In fact, MIS fails at detecting and ignoring strategies that poorly contributes.
For that reason blindly sampling a set of strategies, where some of them distribute
their samples outside of the positivity domain of the integrand, results in large vari-
ance in the MIS estimator that increases with the number of ghost strategies. This is
the case in the context of multiple view rendering as we shall see in chapter 6.
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Chapter 4

Unidirectional path construction

We now present how to explicitly generate light paths in a scene to evaluate and av-
erage their contributions per pixel integral. There exists several way of constructing
such paths, but the most common is to use an incremental and iterative process.

We start from the camera and incrementally construct path vertices until it reaches
a light source. Note that the inverse process is also useful for bidirectional methods
but we will not cover these aspects in this dissertation since we focus on unidirec-
tional methods. After sampling the primary camera ray the process is incremental
since we will repeat the same operations after each real interaction of the path, that
is:

• sampling a direction ωi from interaction xi,

• tracing the ray (xi, ωi) through the scene to find the next interaction xi+1.

Repeating these steps until a light is found is the basis of a path tracer. The direc-
tions can simply be sampled regarding the material properties at interactions xi, but
the chances of hitting a light source can be small depending on the scene configu-
ration. Therefore using connection techniques such as next event estimation [Shirley
and Wang 1994] – i.e. importance sampling of the light sources – can improve the
efficiency of the method by gathering more light contributions along the path.

Furthermore, in the presence of participating media, the ray traversal has to take
into account that medium particles may be encountered. Hence some methods has
been developed to sample medium interactions along a ray.

Finally to control the path length during the construction without biasing the path
distribution, a mechanism called Russian Roulette is used to randomly stop the
path when the carried energy – or the probability to gather energy – becomes small
enough.

Some construction details and more advanced techniques are described in the book
Physically based rendering [Pharr et al. 2016, chap. 14 and chap. 15]. For further details
concerning bidirectional methods see [Pharr et al. 2016, chap. 16].

4.1 Camera sampling

After a pixel has been selected (often deterministically), we generate a ray by im-
portance sampling the camera shutter, the exit pupil of the lens and the pixel area.
The final process gives us a ray r(x, ω, t) and its PDF p(R) = p(x) · p(ω) · p(t). We
then trace the ray towards the scene to find the next interaction point (surface or

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI103/these.pdf 
© [B. Fraboni], [2021], INSA Lyon, tous droits réservés

https://www.pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection
https://www.pbr-book.org/3ed-2018/Light_Transport_II_Volume_Rendering
https://www.pbr-book.org/3ed-2018/Light_Transport_III_Bidirectional_Methods
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medium). Additional details concerning the camera sampling process are presented
in Appendix A.

4.1.1 Exit pupil sampling

The sampled point x on the exit pupil is considered the first real surface point of
the path and is often sampled uniformly on a 2D shape. We commonly uniformly
sample a disk of radius r [Shirley and Chiu 1997] with PDF p(x) = 1

πr2 , but other
shapes or non uniform distribution can also be used for different effects, for example
stylized bokeh.

4.1.2 Direction sampling

Even though the exiting ray direction could be sampled uniformly on a hemisphere
aligned with the camera forward direction, it is not efficient in practice. Indeed,
using uniform direction sampling results in a large number of rays that can not reach
the sensor of the camera. A more efficient method starts by sampling the camera
sensor (or pixel) and the camera exit pupil.

Then the direction of the ray ω is constrained by the position sampled within the
pixel area xfilm, the exit pupil position x, and the lens system that deviates the ray
[Kolb et al. 1995, Hanika and Dachsbacher 2014]. The pixel is often described as a
2D square that is easily sampled uniformly to generate the point xfilm, but some non-
uniform spatial filter can also be sampled. Depending on the lens model the exiting
direction can be difficult to construct.

4.1.3 Time sampling

The time t is sampled in the camera shutter interval with PDF p(t). The density is
often proportional to the temporal filter which can be non-uniform. Note that some
of the camera parameters such as position or orientation can change with time and
have to be interpolated for each sampled time.

4.2 Medium sampling

During the ray traversal if a medium boundary is found, we need to sample parti-
cles depth to simulate medium interactions. This process is known as free-flight sam-
pling. Several methods exist but the most common is delta tracking which combines
both free-flight sampling and event type sampling (e.g. null, absorption, scattering)
[Novák et al. 2018, Miller et al. 2019].

4.2.1 Distance sampling

This method importance samples a homogenized version of the participating medium.
The extinction coefficient of the homogenized medium µ̄ is an upper-bound of the
real one µt. It is expressed as the sum of the real extinction coefficient and a fictitious
complementary one µ̄ = µt + µn. We hence generate an interaction at distance t
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4.2. Medium sampling 35

using either unbounded or bounded sampling of the majorant medium section:

Unbounded sampling t ∈ [0, ∞[ Bounded sampling t̂ ∈ [0, tmax[
u ∝ U (0, 1) u ∝ U (0, 1)
t(u) = − log(1−u)

µ̄ t̂(u) = − log(1−u(1−T̄(tmax)))
µ̄

p(t) = µ̄T̄(t) = µ̄(1− u) p(t̂) = µ̄T̄(t̂)
1−T̄(tmax)

= µ̄ · ( 1
1−T̄(tmax)

− u)

(4.1)

where T̄ is the combined transmittance. Using unbounded sampling is convenient
when we still want to traverse the medium since distance interactions can pass
through the whole section. On contrary bounded sampling forces the interaction
to happen inside the medium section. Note that the channel or wavelength can be
randomly selected before free-flight sampling and combined with MIS to track spec-
tral extinctions coefficients.

Additional free-flight sampling techniques exist such as regular tracking for piece-
wise constant media which is costly for high resolution grids, or ray marching which
uses constant marching steps inside the medium which is biased. For additional de-
tails regarding delta tracking and derived methods we invite the reader to refer to
the volumetric rendering survey [Novák et al. 2018].

4.2.2 Event sampling

When the distance t has been sampled we can construct the interaction position
using:

xi = xi−1 + ω · t (4.2)

where xi−1 is the preceding interaction and ω is the ray direction. We then gather all
possible events probability at the interaction position denoted x:

Pn(x) =
µn(x)

µ̄
Pa(x) =

µa(x)
µ̄

Ps(x) =
µs(x)

µ̄
(4.3)

and randomly sample one of the event with probability pe(x) with e ∈ {a, n, s}.

If an absorption event is sampled, the path will terminate by gathering the medium
emissions. If a scattering event is sampled, the delta tracking loop will terminate to
sample the phase function and continue the path. If a null interaction is sampled, we
continue the delta tracking loop until either we leave the medium or a real interac-
tion is found in the medium or on a surface. Note that in the case of an homogeneous
medium the null scattering coefficient µn equals zero hence the interaction is neces-
sarily a real interaction. The delta tracking algorithm depicted in Figure 4.1 and is
reproduced in Algorithm 1 in its spectral MIS version [Miller et al. 2019].

Additionally it is convenient to modify the probabilities assigned to each event when
the volume is not emissive, since sampling absorption interactions will gather zero
contributions and increase the variance. The modified probabilities writes:

Pn(x) =
µn(x)

µ̄
Pa(x) = 0 Ps(x) =

µt(x)
µ̄

(4.4)

The chain of null interactions sampled between two real interactions – i.e. the real
endpoints of the segment (medium or surface) – is refered as a null scattering chain.
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Algorithm 1 Medium sampling routine inside a medium section.
1: function DELTATRACKING(x, ω)
2: i← RandomChannel (c1, . . . , cn) . select channel
3: p← [1, . . . , 1]n . init PDF
4: while True do
5: u← U (0, 1) . uniform sample
6: t← − log(1−u)

µ̄i . distance sample
7: x ← x + tω . interaction position
8: e← RandomEvent

(
Pi

n(x), Pi
a(x), Pi

s(x)
)

. event sample
9: p← p ◦

[
T̄c1(t)µc1

e , . . . , T̄cn(t)µcn
e
]

. update PDF
10: if e ∈ {a, s} then
11: return {e, x, 1

n ∑j pj} . return event, sample and MIS PDF

t1 n1 t2 n2 t3 s1

FIGURE 4.1 – Illustration of Delta Tracking in heterogeneous medium. The real medium
parameterized by coefficients {µa(x), µs(x)} in blue is bounded by the combined homoge-
nized medium with majorant extinction µ̄ (red+blue). Given a ray direction that traverses
the medium, free flight distances are sampled in the combined medium until a real medium
interaction (blue particle) is found. After each step, the type of medium interaction (null, ab-
sorption, scattering) is randomly chosen hence several null interactions (red particles) may

be sampled before a real one happens.

4.2.3 Discussion

Delta tracking is a simple method for unbiased sampling of arbitrary participating
media. However when the majorant extinction µ̄ becomes large, the free flight sam-
pling steps becomes very small hence the number of DT trials increases. This makes
the method cost unbounded, since the null scattering chain length is, but is required
to integrate finer details in heterogeneous media.

4.3 Surface and volume intersections

During the ray traversal of the scene, if a surface is reached we found the next real
interaction of the path. To test the ray versus scene intersections, it is common to use
efficient bounding volume hierarchies or other space partitioning structures [Parker
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et al. 2010, Wald et al. 2014]. In presence of motion blurred animation we use spatio-
temporal partitioning structures instead [Woop et al. 2017]. In presence of partici-
pating media, the volume boundaries (interfaces) are also stored in a similar acceler-
ation structure that can be intersected to know when a rays enters or exits a medium
section. Furthermore, if the volumes are discretized in 3D, we often use sparse voxel
octree structures [Museth et al. 2019] that allow efficient storage and traversal of dis-
crete voxel sets.

If the surface is emissive – i.e. is a light – the path construction process ends and the
contribution of the path can be evaluated. If the surface is not emissive we have to
sample a direction to continue the path w.r.t to the surface material.

4.4 BSDF sampling

At every surface interaction (resp. scattering medium interaction) of the path the
BSDF (resp. phase function) is sampled to find a direction to continue the path as
illustrated in Figure 4.2. Several analytic models allow importance sampling of the

FIGURE 4.2 – An example path of real length k = 4 that traverses a scene. The path is built
incrementally by sampling a diffuse BSDF at the first bounce, an isotropic phase function at
the second bounce in the medium, and a rough BSDF at the third interaction to finally reach
a light source. Note that the phase function is sampled only at real scattering interactions,

and the ray continues in the forward direction at every null interaction.

shape of the scattering distribution, but numerical approximations or measured data
can be used when no closed form is available.

Given an outgoing direction ωo (towards the camera), the incident direction ωi (to-
wards the light) is sampled with PDF p(ωi, ωo). We refer the reader to the literature
cited in subsection 2.1.5 for further details regarding importance sampling of com-
mon BSDF, since most of the models are derived with their importance sampling
routine.

4.5 Light sampling

As suggested before, the iterative path construction can be inefficient at finding some
light contribution – i.e. reaching a light source. For that reason several methods has
been proposed to sample and connect path vertices to light sources directly, which
we refer to as next event estimation illustrated in Figure 4.3 (right).
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FIGURE 4.3 – Simple BSDF sampling (top row) takes several bounces on the scene to get a
light contribution. That is when the sampled direction points by chance towards a light and
the path has not been occluded before reaching the light source. However when the light
sources are small this technique becomes very inefficient as lights are never found, result-
ing in higher variance. Next event estimation (bottom row) on contrary performs at every
interaction a connexion to a light source position that has been sampled. Which in most sit-
uations lead to a dramatic variance reduction. The bottom row render, using light sampling,
exhibits almost zero noise at equal rendering time on comparison with BSDF sampling only.

The common approach is to build a discrete CDF w.r.t total area or total power over
all available light sources, sample the discrete set of sources and sample a point
on the selected source at each path interaction. A connection ray or shadow ray
is then traced between the interaction position and the light position to ensure the
mutual visibility and to evaluate the transmittance between both points. With this
technique, each path interaction has a chance to gather a direct contribution which
allow for faster convergence. Note that if the current BSDF is a Dirac delta function
(e.g. perfect mirror or glass), NEE has no chance to gather any contribution, since
the unique contributing direction can not be found by sampling sources. Further-
more, since a light can be found with either BSDF sampling or light sampling, their
respective contributions are generally combined with MIS [Veach and Guibas 1995].

Several improvements exist such as resampling techniques which find sources that
better contribute locally [Talbot et al. 2005, Bitterli et al. 2020], the use of light hierar-
chies to avoid sampling sources that are far from the interaction [Conty Estevez and
Kulla 2018, Moreau and Clarberg 2019, Yuksel 2020, Tokuyoshi and Harada 2016],
and manifold versions of NEE that better find light sources in presence of discon-
tinuities, e.g. through dielectric interfaces [Hanika et al. 2015] or through highly
forward scattering media [Weber et al. 2017].
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4.6 Path guiding

Since BSDF sampling or light sampling produces variance in some situations, it
could be more efficient to directly sample the product of BSDF and light contribu-
tions. Path guiding consists in learning the spatial-directional distribution of light
which can be stored in screen space or in scene space, see [Vorba et al. 2019] for a
survey. Combining classical BSDF sampling and guiding structure sampling results
in a substantial variance reduction. The structure is often learned online, by up-
dating and refining its distribution with new random samples, and simultaneously
sampled to generate samples with lower variance.

4.7 Russian Roulette

To increase the efficiency of the estimator we should focus on the sampling of paths
that best contributes to the pixel. In fact, paths that bounce around the scene hun-
dreds of times with low contributions increases the variance and are costly to sam-
ple. We hence use a Russian Roulette (RR) that stochastically terminate paths and
still maintain the pixel estimator unbiased [Pharr et al. 2016, sect. 13.7].

We define a probability Pi ∈ [0, 1] at each interaction xi, that represents the proba-
bility of the path to continue. Conversely we can say that the path is rejected with
probability 1− Pi. The RR trial is achieved by drawing a uniform random number
u = U (0, 1) and comparing it to Pi:

if u < Pi the path continues and the estimator is divided by Pi
if u >= Pi the path terminates

(4.5)

Dividing by the continuation probability accounts for the energy lost by terminated
paths.

The choice of probability Pi can be arbitrary, for example using a binary coin with
probability Pi = 0.5 works, but increases the variance when the light contribution of
the path is high. In fact, this probability should be proportional to the light contri-
bution of the path to the pixel. It is common instead to use local materials properties
(BSDF-based RR) or the current importance (throughput-based RR) carried by the
path to get a coarse estimate of what its contribution will be. However these local
strategies sometimes fail in scenes dominated by penumbrae and non uniform light
distributions. An optimal choice for Pi would require to know the expected contri-
bution of the current path to the pixel which is often not available – but an estimate
of its contribution can be used instead [Vorba and Křivánek 2016] using adjoint (i.e.
bidirectional) methods.

4.8 Discussion

We have presented the classical building blocks of a state of the art volumetric path
tracer which are resumed in Algorithm 2. Note this is a very simplified version
to showcase the simplicity of the main unidirectional path tracing loop. Several
blocks were omitted such as spectral wavelength discretization [Wilkie et al. 2014,
Evans and McCool 1999] or subsurface scattering for skin and translucent materials
[Jensen et al. 2001, Christensen 2015] – which is a simplified version of volumetric
light transport.
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In the next chapter we present path space transformations that build upon path con-
struction methods and allow path reusing in several existing rendering algorithms.

Algorithm 2 Path tracer pseudocode. The PathTracing function incrementally con-
struct a path and gather its contribution. In the Render function, we sample camera
primary rays and average n contributions for each pixel of the film. The BSDF sam-
ple step can be mixed with a guiding estimate to better find light contributions.

1: function PathTracing(Ray r, Scene s)
2: Color c = {0,0,0}
3: Interaction x = DefaultInteraction()
4: while True do
5: . find real interaction
6: x = Intersect(r, s)
7: if x.medium then
8: x = DeltaTracking(x, r, s)
9: if not x then return c

10: . hit a light
11: if x.emission > 0 then
12: return c+x.weight*x.emission
13: . sample light sources if possible
14: if x.bsdf.type 6= BSDF_DIRAC then
15: c = c + NextEventEstimation(x, r, s)
16: . sample bsdf
17: BsdfSample bs = x.bsdf.Sample(x, r)
18: x.weight = x.weight*bs.weight
19: . russian roulette
20: p = x.ContinuationProbability()
21: if p ≥ Uniform(0,1) then return c
22: x.weight = x.weight / p
23: . update ray data
24: r = Ray(x.position,bs.direction,r.time)

25: function Render(Camera c, Scene s, int n)
26: for Pixel i in c.film do
27: for int j in range(0,n) do
28: Ray r = c.Sample(i)
29: c.film[i] = c.film[i] + PathTracing(r, s) / n
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Chapter 5

Shift mappings

In this chapter we introduce sample transformations, often referred to as shift map-
pings or warps, which denotes the deterministic modification of a sample (uniform or
not) that results in a change of its density. Path transformations are widely used to
generate non uniform distributions – i.e. importance sampling – or to design more
efficient path space exploration. In fact slightly modifying a base sample in a con-
trolled way to better match the integrand distribution results in a reduction of the
variance.

We first review the principle and required properties of transformations. We then
review several techniques that have been used in rendering applications to modify
samples for path reusing purposes.

5.1 Sample transformations

Given a base n-dimensional sample x = {x1, . . . , xn} with PDF p(x) and a bijective
transformation T that deterministically transform the sample such that x′ = T(x).
The PDF of such transformed sample hence writes:

p(x′) = p(x)
∣∣T′∣∣−1 (5.1)

where |T′| is the Jacobian determinant of the transformation. The base PDF p(x)
may be a joint PDF depending on how the components have been sampled. Note
that several transformations can be applied separately on each component of the n-
dimensional sample (e.g. T1, . . . , Tn), or combined on several components at once
(e.g. T1,2,3, . . . , Tn−1,n). We denote these transformations {Ti|i ∈ 1, . . . , m} and com-
pute the PDF of a transformed sample using the product of their inverse Jacobian
thanks to the chain rule:

p(x′) = p(x)
m

∏
i=1

∣∣T′i ∣∣−1 (5.2)

The transformed sample x′ is constructed by successfully applying each transforma-
tion on its respective components. Formally we could define each transformation
Ti as an identity for every unchanged dimensions and the respective shifts for each
transformed dimension – i.e. those that are modified by the shift. Analogously this
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Jacobian naturally appears in a change of variable of integration:

I =
∫

Ω
f (x)dx

=
∫

T−1(Ω)
f (T(x))

∣∣∣∣dT(x)
dx

∣∣∣∣dx

=
∫

T−1(Ω)
f (T(x))

∣∣T′∣∣dx

(5.3)

and takes into account the change of density. Furthermore, combining samples from
base technique with PDF p(x) and transformed samples with PDF p(x′) is possible
through MIS. A transformation operation can be applied in any measurable space
hence shift mappings has been proposed both in primary sample space – i.e. in the
unit n-dimensional hypercube – and in path space.

Relationship to Metropolis mutations strategies. These transformations can be
seen as deterministic versions of stochastic mutations from Metropolis rendering meth-
ods (MLT), see [Šik and Křivánek 2018] for a survey. These mutations have been
introduced to perform local and global exploration of the path space [Veach and
Guibas 1997, sect. 5.3][Cline and Egbert 2005, Cline et al. 2005, Kelemen et al. 2002,
Jakob and Marschner 2012]. Some of them have been later extended as deterministic
transformations, for example:

• pixel mutations that correspond to pixel shifts in gradient-domain rendering
methods,

• lens mutations that correspond to lens shifts in multiple view rendering meth-
ods.

A path mutation is accepted or rejected using a stochastic process where the mu-
tation probability accounts for the change in density. Analogously the PDF of a
transformed sample takes into account the change in density through the inverse
Jacobian determinant.

5.2 Applications to path reusing

Path reusing consists in finding some point within the scene visible from one pixel,
which we refer to as pivot point, and reconnecting it towards other pixels for which
the pivot is also visible. The chain of events connecting the pixel point on the film
to the pivot point in the scene forms the path prefix. The prefix can be comprised of
several interactions on surfaces areas and inside volumes. The key idea of path reuse
is to mutualise the construction and the evaluation of a subpath following the pivot,
which is referred to as the path suffix. As the number of pixels that are connectible to
the same pivot point increases, the construction cost of the path suffix is amortized
as its contribution is massively reused among pixels.

These methods has been explored to reuse path contributions after the second in-
teraction in discrete path reusing and path space filtering, and after the first interaction
for multiple view rendering. Additionally, gradient domain rendering exploits shift map-
pings to sample correlated gradient paths through neighboring pixels in a similar
way as path reusing.
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5.2.1 Discrete path reusing

This first class of methods aims at reusing indirect illumination for several pixels by
transforming paths between the first and the second bounce [Bekaert et al. 2002, Xu
and Sbert 2007, Bauszat et al. 2017, Bitterli et al. 2020]. The original method proposed
by Bekaert et al. starts by sampling a path from each pixel or a subset of pixels of
an image tile. Then, for each base path a shift mapping is applied consisting of a
path reconnection from its first interaction to another second interaction on a different
pixel path. The latter pixel path suffix is copied to complete the transformed path.
This process is repeated for each different pixel that traced a path. Hence at the cost
of a single visibility test, several paths suffix can be reused among different pixels as
illustrated in Figure 5.1.

Here the pivot points are the second interactions of each traced paths which are con-
nected to all visible first interactions. Each initial path can be seen as an importance
sampling technique of the scene area, hence MIS is used to weight contributions of
base and transformed paths within a pixel. Note that several improving techniques

FIGURE 5.1 – Discrete path reusing as proposed in [Bekaert et al. 2002]. Each pixel of a
tile in screen space (dashed) traces a complete path that gathers a light contribution. In
a second step, the first interaction of a pixel path is connected to any visible pivot point
(circled interactions). Finally, several new paths consisting of the initial prefix, a connection

segment, and another suffix can be constructed at reduced cost (a visibility test).

allows arbitrary repartition of pixels that first generates path. Additionally, connec-
tions are not limited to the second interaction, and may happen at any interaction of
another base path if correctly weighted.

5.2.2 Path space filtering

Similarly to discrete path reusing, path space filtering methods [Keller et al. 2014,
Binder et al. 2019, West et al. 2020] use some path connection shift in path space
to benefit from suffix path reuse. However, contributions are averaged for other
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paths in the vicinity of the prefix endpoint instead of performing connection to ev-
ery other available strategies as depicted in Figure 5.2. The original biased weighting
heuristics has been replaced by unbiased SMIS estimations in [West et al. 2020].

FIGURE 5.2 – Path space filtering proposed in [Keller et al. 2014]. Several pixels trace a
complete path that gathers a light contribution. In a spatial grid the neighbors in the vicinity
(blue and red circled areas) of interactions several contributions are gathered and averaged

with some weighting heuristics.

5.2.3 Gradient domain rendering

The idea behind gradient domain rendering approaches is to sample and estimate
gradients as well as an estimate of the image. A final reconstruction step is used to
combine gradients and pixel estimates. This process has been successfully extended
for different rendering algorithms [Gruson et al. 2018, Bauszat et al. 2017, Manzi
et al. 2016, 2015, Kettunen et al. 2015, Lehtinen et al. 2013], see [Hua et al. 2019] for a
survey.

To construct gradient images, the use of uncorrelated paths through neighboring
pixels and finite difference of their contributions is very ineffective due to the vari-
ance of Monte Carlo methods. Instead, a base path is first sampled through a pixel
i using standard path construction, and then slightly transformed such that it tra-
verses a desired neighboring pixel. The resulting transformed path is referred to as
the offset path. The more the offset path is close to the base path, the better are the
gradients estimates – i.e. the Jacobian of the transformation is closer to one. The
conservation of common subpaths in gradients path construction is a sort of path
reusing as illustrated in Figure 5.3.

For that reason several shift mappings has been designed to construct offset paths
that resemble base paths. A common strategy is to reuse the same uniform ran-
dom numbers that generated the base interactions, known as primary sample space
copy [Kelemen et al. 2002, Bitterli et al. 2017], primarily used for mutating paths
in primary sample space Metropolis methods. This method assumes that samples
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FIGURE 5.3 – Gradient domain path tracing as proposed in [Kettunen et al. 2015]. A base
path traversing pixel i is constructed (in blue). Then an offset path (in red) is constructed by
applying several transformations to the base path: the initial pixel is shifted to a neighboring
pixel, resulting in a different intersection on the scene, the half-vector sampled to traverse
the transparent sphere are reused and finally the offset path is reconnected to the base path

at the second consecutive diffuse interaction – i.e. the suffix remains unchanged.

generated with the same random numbers are likely to be similar in a close neigh-
borhood. However reusing random numbers sometimes fails to generate paths that
are correlated, for example when a segment of the offset path gets occluded. Other
strategies have been developed to better constrain the offset path to resemble the
base path:

• Pixel shift mapping is used to correlate the base film position and the offset film
position [Lehtinen et al. 2013, fig. 5],

• Time shift mapping is used to correlate base and offset paths in the temporal
domain [Manzi et al. 2016, fig. 3],

• Half vector copy is used to correlate glossy BSDF samples by reusing the sam-
pled BSDF microfacet normal h [Kettunen et al. 2015, fig. 10],

• Path reconnection is used at the first two consecutive diffuse bounces to keep a
common path suffix between the base and the offset path, increasing the cor-
relation and reducing the cost of the offset path construction (firstly proposed
in the context of path reusing [Bekaert et al. 2002, fig. 1]),

• Manifold exploration is used to correlate a chain of specular events connecting
two diffuse (i.e. connectible) interactions [Jakob and Marschner 2012, fig. 2
and 6],

• Photon shift and mixed shift are used to correlate the position of base and offset
photons for gradient domain photon density estimation [Hua et al. 2017, fig.
3][Gruson et al. 2018, fig. 4],
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• Depth copy is used to correlate an homogeneous bounded transmittance sam-
ple (i.e. the gather point) from the base path to the offset path for gradient
domain volumetric photon mapping [Gruson et al. 2018, fig. 3]. Note that both
linear scaling and primary sample copy has also been proposed to shift these
homogeneous transmittance samples.

• several other shift mappings are used to correlate higher-order primitives for
volume photon density estimation [Gruson et al. 2018, fig. 6].

Combining some of these shift mappings techniques allows for bidirectional, pho-
ton density and unified methods to construct offset paths that are reversible and
closely resemble base paths. When a shift trial fails and results in a paths with a null
PDF – e.g. when a shifted segment gets occluded – the algorithm falls back to finite
differences since two base paths are generated pairwise for pixel i and j.

Even though shift mappings in bounded homogeneous media have been proposed,
no method has been proposed to handle heterogeneous participating media – i.e.
shift mapping of null scattering chains. We develop new volumetric shift mappings
as will be discussed in chapter 8.

5.2.4 Multiple view rendering

Multi-view rendering consists in path reusing for disjoint pixel integrals – i.e. with
different positions and orientations on separate sensor planes. In fact, path con-
nections can be done at the first real interaction found in the scene, for example in
areas or volumes where the visibility is shared between several pixels, as illustrated
in Figure 5.4. Again, a path prefix can be reused among several pixels amortizing
its construction cost. Multi-view rendering methods can be used to render animated
sequences of a static scene or the rendering of several points of view during a sin-
gle simulation. Even though both classes of methods are similar in nature as they
perform path space shifts, a scene with different camera locations causes large trans-
formations of path prefixes, and hence large variations of the Jacobian.

Early approaches of multiple view rendering were designed for surfaces and simple
materials only (e.g. diffuse and rough materials) [Henrich et al. 2011, Méndez Feliu
et al. 2006, Havran et al. 2003, Adelson and Hodges 1995, 1993]. They first sample a
base path from one pixel and then transform the path lens interaction to the lens of
another camera using a lens shift. The connection between the first real interaction
and this new lens vertex constrain the new pixel position on the film plane. Finally
the suffix of the transformed path remain unchanged after the pivot point. Note that
in the case of a glossy or specular material at the connection pivot, a transformed
path may gather a null contribution for its respective pixel integral, hence increas-
ing its variance. Detecting these poor paths is a complex task, and has not been
explored. Furthermore, these technique has not been extended for heterogeneous
medium since no shift mapping of null scattering chain is available, though some
work has been done for shift in homogeneous media [Tessari et al. 2017, Gruson
et al. 2018].

For camera and scene animation Jorge Schwarzhaupt reuses paths along the time
dimension. He reevaluates occlusions due to object or camera motion, but not the
shading to remain tractable. This approximation results in a minor bias and requires
storing entire base paths to reevaluate transformed positions after the time shift.
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FIGURE 5.4 – Multiple view rendering as proposed in [Havran et al. 2003]. A base path
traversing pixel i is constructed (in blue). Then an offset path (in red) is constructed by
applying several transformations to the base path: the initial lens interaction is shifted to an-
other camera lens, the pivot intersection on the scene remains unchanged, the pixel position
j is then constrained by the lens and scene points. The offset path is then connected to the

base path at the pivot interaction and the suffix is unchanged.

Other multi-view approaches reuse at fixed time only, for animations of static scenes,
stereo rendering or lightfield rendering.

Additionally, base and transformed paths can be combined using MIS [Méndez Feliu
et al. 2006, Henrich et al. 2011, Schwarzhaupt 2019]. However, the authors do not
deeply discuss or explore the fact that MIS may severely increase the variance in
multiple view rendering.

Finally, another approach of multiple view rendering consists in reusing path using
lens shifts for integrated depth of field supersampling [Schwarzhaupt 2019], which
consists in reusing a sample that is out of focus several times through different loca-
tions on the lens to importance sample the circle of confusion.

5.3 Discussion

We have presented path transformations and their applications in context of path
reusing, in particular in multi view rendering methods. As we shall see in chapter 6
and chapter 8, we propose to build new shift mappings of null scattering chains to
allow path reusing in presence of heterogeneous mediums. Our new mappings can
further be combined with existing shifts to allow for richer path transformations,
and thus better path space exploration for path reuse purposes. We demonstrate our
new methods for volumetric multiple view rendering in chapter 9 and chapter 10.
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Chapter 6

The multi-view rendering problem

In this chapter we briefly formalize the multi view rendering problems arising in the
state of the art methods that are solved in the next chapters.

6.1 The multi-view pixel integral

To formalize the multi view problem, we consider every pixel that is present on a
scene as a source sampling strategy that can generate prefixes in the scene. The idea
behind multiple view rendering is to shift a base prefix, towards other pixels to reuse
a common suffix path. However, we do not know a priori if a prefix sampled from
pixel i could be transformed to reach another pixel j. That is when pixels i and j
share a common subdomain of the path space.

Let Ti→j be a bijective transformation that can transform a path generated from pixel
i and to pixel j and conversely with its inverse, we extend the path space associated
with pixel j as the union of several pixel domains:

Ω̄j =
k⋃

i=1

Ti→j (Ωi) (6.1)

Note that while we have increased the size of the path space, the additional paths do
not contribute to the pixel value. This overall does not change the estimated integral.
We can then rewrite the path integral of pixel j as a multi strategy integral on the
extended domain (similar to the MIS integral) which lets appear the transformed
samples Ti→j(x̄i), the Jacobian determinant that accounts for the change in density
and some weighting functions w̄i associated with each strategy:

Ij =
∫

Ωj

f j(x̄)dx̄

=
∫

Ω̄j

k

∑
i=1

w̄i(x̄)︸ ︷︷ ︸
=1

f j(x̄)dx̄

=
k

∑
i=1

∫
Ti→j(Ωi)

w̄i(Ti→j(x̄)) f j(Ti→j(x̄))
∣∣∣∣∂Ti→j(x̄)

∂x̄

∣∣∣∣dx̄

(6.2)

Note that some paths generated from pixel i and transformed with T may not con-
tribute to pixel j due to occlusions. This is problematic as such samples with zero
contributions are still accounted with MIS and classical weightings heuristics [Veach
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and Guibas 1995]. In fact, the integrand equals zero but the sample MIS weight is
non null which increases the variance of the estimator. We further detail this prob-
lem and some possible solutions in the next sections. Additionally, we require the
ability to transform sampled prefixes from one pixel to another and the Jacobian of
the transformation in closed form which we will further explore for volumetric ren-
dering. Finally, we discuss the solutions to build a common suffix path for several
prefix.

6.2 The multi-view MIS variance problem

Variance of Importance Sampling

As previously explained when all samples drawn have a significant contribution
then the estimator has low variance. On the contrary if a lot of samples have zero
contribution then the estimator suffers from high variance. Note that when using
importance sampling, we are relying on a single sampling strategy. For that reason
its sampling domain should at least contain the compact support of the integrand –
i.e. its positivity domain – to accurately estimate its integral. Furthermore, the closer
the sampling domain is to the integrand support, the better is the integral estimate
as illustrated in Figure 6.1.

FIGURE 6.1 – Different sampling domains (colored regions) of an integrand positively de-
fined on the dashed support. Distributing samples where the integrand is positively defined
(left – red) results in a good estimate. Distributing samples a bit larger than the support
(middle – blue) increases the variance but can still produce a reasonable estimate. Distribut-
ing most samples outside of the support (right – yellow) leads to high variance estimates

and should be avoided.

Variance of Multiple Importance Sampling

Given multiple strategies combined with MIS, the union of the sampling domains
should cover the support of the integrand. In fact, at least one of the available strate-
gies should be non zero when the integrand is, to ensure covering the whole support.
However nothing guarantees that every strategy significantly contributes within the
pixel support. If the contributing strategies are not known beforehand, it is thus
common to assign a fixed amount of samples to each of the available strategies, even
to those that do not contribute at all as illustrated in Figure 6.2.

Multi-view overlapping domains

In the multiple view rendering context, each pixel corresponds to a specific integra-
tion domain. However, the specific domain of different pixels can overlap in the
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FIGURE 6.2 – Different sampling domains (colored regions) of an integrand positively de-
fined on the dashed support. On the left several IS strategies (red and blue) distribute sam-
ples where the integrand is positively defined, which results in a good estimate. In the mid-
dle, several IS strategies (green and red) distribute samples a bit larger than the support of
the integrand (middle – red and green), which increases the variance but still can produce a
reasonable estimate. On the right we use several IS strategies (red and yellow) with some of
them that distribute samples outside of the support, which lead to high variance estimates.

global path sampling space – i.e. the union of every pixels domains – which lets
us reuse parts of sampled paths as depicted in Figure 6.3. But more importantly, the

FIGURE 6.3 – Overlapping domains of different pixels in a simple bunny scene. The shared
projected domain over the scene has a non trivial extent, since it is constrained by the scene

geometry, volumes, etc.

field of view of a camera and the occlusions by objects of the scene decide the visibil-
ity of a point for a given pixel and shape the bounds of both its support and its own
sampling domain. Thus, a scene point can be visible and sampled from one view but
occluded for another, and it is hard to determine the extent of the path space shared
between pixels, in particular in the presence of participating media and complex
geometry.

The multi-view MIS variance problem

Still, we can use MIS to combine samples that have been generated from different
pixels – i.e. different importance sampling strategies of the scene space. However,
blindly reusing visible samples from any pixel sampler performs poorly in practice
since some of them mostly distributes their samples outside of the desired area, but
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are still accounted in the estimator. The MIS combination hence has a large variance
and reusing samples generated from other pixels is not beneficial. Such a configura-
tion is depicted in Figure 6.4.

FIGURE 6.4 – Different domains (colored regions) associated with different pixels, combined
with MIS to integrate an integrand positively defined on the dashed support. Some pixels
better distribute samples than other regarding the target dashed region. However, some of
them still have a large sampling area yielding zero contributions, thus produce a consider-

able amount of variance in the estimator.

Discussion

Several solutions come to mind to reduce the variance of naively reusing every avail-
able strategy and combining them using MIS, such as:

• pre-computing a list of overlapping pixels for each pixel,

• using an on-line estimate of the list of overlapping pixels for each pixel,

• stochastically selecting a set of pixels to reuse for each pixel to limit the vari-
ance (SMIS) [West et al. 2020],

• selecting a deterministic set of pixels to reuse for each pixel to limit the variance
(e.g. the ones that best overlaps).

However none of these strategies is simple to set up, due to precomputations and
memory footprint, and mostly build upon heuristics that are not guaranteed to re-
duce the variance of the MIS combination.

The problem there can be formulated as follows: can we discard the zero contribut-
ing samples and still get an accurate estimate of the integral ?

Proposed solution

Fortunately, there exists a family of weighted Monte Carlo estimators that are biased
but consistent that circumvents these difficulties by ignoring contributions outside
of a target support as depicted in Figure 6.5. In the context of multi view render-
ing, the target support (dashed) is always known, in fact it corresponds to the pixel
sampling domain (the red strategy). We can use this knowledge to compare each
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reused sample – i.e. generated by other pixels – with the primary sampling strategy
of the pixel using a weighting function that discards non contributing samples. We
propose a new multiple strategy estimator in chapter 7, that benefits from MIS and
weighted estimators, and allows us to reuse parts of paths between pixels without
introducing further variance, without precomputations or additional memory.

FIGURE 6.5 – Our proposed weighted multiple strategy estimator allows us to only take
into account samples that have a non zero contribution and drastically reduces variance in

comparison to MIS.

Motivating example

To further illustrate the problem, we compare several multiple strategy estimators
in 1D in Figure 6.6 and Table 6.1 to demonstrate that MIS estimators may have sig-
nificant variance in a simple multi strategy scenario.

Estimator Biased Consistent Variance Memory Figure 6.6

Îk =
1
n ∑n

i=1 wj,mis(xij)
fk(xij)

cj pj(xij)
No Yes High No (2, 3, 4, 5)

Îk =
1
n̂ ∑n̂

i=1 wj,mis(xij)
fk(xij)

cj pj(xij)
Yes No Low No (7)

Îk =
ĉ
n̂ ∑n̂

i=1 wj,mis(xij)
fk(xij)

cj pj(xij)
Yes Yes Low Yes (6)

Ĩk =
∑n

i=1 wj,mis(xij)
fk(xij)

cj pj(xij)

∑n
i=1 wj,mis(xij)

Yes No High No (1)

Ĩk =
∑n̂

i=1 wj,mwis(xij)
fk(xij)

p(xij)

∑n̂
i=1 wj,mwis(xij)

Yes Yes Low No (8)

TABLE 6.1 – Formula and properties of the different multi-view estimators compared in Fig-
ure 6.6. We denote n as the total number of samples drawn, j as the strategy that sampled xij,
cj the relative number of samples per strategy, n̂ as the estimated number of samples with
non zero contributions, ĉ = k

k̂
as a renormalization factor where k̂ it the estimated number

of contributing techniques – i.e. the techniques that generate at least one non zero sample –
and k the total number of techniques.

6.3 The missing volumetric shift mappings

We introduced shifts mapping techniques for path reusing in chapter 5 and exposed
that transformations in heterogeneous media have not been explored yet. With the
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Comparison of several multi-strategy estimators

FIGURE 6.6 – We estimate the integral of the blue 1D pixel (pixel 1) with several Monte
Carlo estimators and report their properties in Table 6.1. Estimators (2, 3, 4, 5) are classical
one-sample MIS estimators with varying numbers of strategies and stochastic or determin-
ist choice of the source strategy. Although those estimators are unbiased they still suffer
from variance, especially when the strategy associated with pixel 3 is taken into account,
and samples only zero contributions regarding pixel 1. Estimator (1) is a naive tentative of
renormalizing the estimator with the sum of weights, which also leads to a biased and non
consistent estimate that does not decrease the variance. Estimator (7) is a naive tentative of
counting only non zero contributions to decrease the variance but it leads to a biased and
non consistent estimate. Estimator (6) is an estimator that estimates the number of contribut-
ing strategies during the integration by maintaining a list of contributors for pixel 1 that is
refined on the fly, and used to renormalize the result (cf. Table 6.1). This estimator combines
our three source strategies and attains the same variance and error level as the best unbiased
MIS estimator, but leads to a biased and consistent estimate. Finally, estimator (8) is the new
estimator that we propose in chapter 7 which performs best in term of variance and error to

combine these three strategies.

objective of extending path reusing methods, we propose in chapter 8 three new shift
mappings which allow the reuse of null scattering chains in heterogeneous medium.
We demonstrate the efficiency of our method in the context of multiple view render-
ing, in a setup similar as the one depicted in figure Figure 6.7.

6.4 The wavefront path construction

Most of state of the art methods for path reusing presented in chapter 5 sample
one or several complete paths at once – e.g. one per pixel – and then reuse each
path suffix for every base pixel with multi-sample estimators, such as MIS or SMIS
multi-sample models. For example, gradient domain approaches samples gradients
pairwise, discrete path reusing approaches sample several pixels within a tile, and
multiple view rendering approaches sample a complete path before reconnecting
towards other pixels.

However, this construction has several disadvantages. First, it requires selecting
pixels sets a priori, using either a discrete (e.g. a tile in screen space) or a stochas-
tic process (e.g. random selection in the vicinity of a pixel). This selection always
rely on heuristics and a subset of pixels is not guaranteed to allow reuse between
every pixels pairs (unless computed and stored). As explained before, it is difficult
to evaluate the extent of shared path space between pixels. Second, constructing
one complete path per selected pixel requires storage which is impractical with long
medium paths. Third, these methods often suffer from artifacts due to the construc-
tion of the set of samples to reuse, for example in discrete path reusing the tiles used
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FIGURE 6.7 – Multiple view rendering through heterogeneous media in [Fraboni et al. 2022].
A base path traversing pixel i is constructed (in blue). Then an offset path (in red) is con-
structed by applying several transformations to the base path: the initial lens interaction is
shifted to another camera lens, the pivot in the medium remains unchanged, the pixel posi-
tion j is constrained by the lens and the pivot points. Additionally, several null interactions
in the medium are shifted to the offset prefix using our new shift mappings and the suffix

path remains unchanged.

may be visible in the final image [Bauszat et al. 2017, Figure. 2]. Last but not least,
with MIS multi-sample every base path that has been traced has to be accounted,
even ones with negligible contributions that increase the variance. These samples
should rather not be accounted and rejected.

Instead, we propose a multi-view construction that traces a single path for several
pixels, and rely on one-sample estimators to accumulate contributions on each cam-
era [Fraboni et al. 2019, 2022]. In practice, a base prefix is traced to find a pivot
point, then we construct several transformed prefixes that reconnects the pivot to
other cameras, and finally after performing a similarity selection among prefixes a
single suffix path is traced for every remaining prefix. This approach is similar to
wavefront rendering [Fascione et al. 2018, Christensen et al. 2018, Burley et al. 2018],
is simpler than the multi-sample construction as each sample is independent from
the others and less information has to be stored. Additionally, the prefix selection
step allows us to select the prefixes that gather the best contributions through a sim-
ilarity selection of the scattering distribution associated with each prefix. In this
way we ensure that the sampled direction to continue the path gather a significant
contribution for several view directions. We detail our complete multi-view path
construction method in chapter 9.

6.5 Discussion

We reviewed in this chapter several new solutions to address the problems that we
described.
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MIS variance reduction

We propose in chapter 7 new estimators to address the MIS variance problems in the
presence of a large number of strategies that do not always distribute samples in the
regions of interest.

Volumetric shift mappings

We propose in chapter 8 new shift mappings that allow tranformaing null scattering
chains in arbitrary heterogeneous media as required for path reuse purposes. These
new mappings can be used for example in the context of multiple view rendering or
gradient domain rendering to extends these techniques for heterogeneous media.

Multi-view path construction

We detail our complete multi-view path construction method in chapter 9 which is
simpler and requires less storage than classic multi-sample path reusing methods.
We further show the results of our method in chapter 10.
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Chapter 7

Weighted Monte Carlo estimators

In this chapter we first introduce a family of weighted estimators related to impor-
tance sampling, which are called weighted importance sampling (WIS) [Powell and
Swann 1966, Spanier 1979, Spanier and Maize 1994, Bekaert et al. 2000]. They rely
on an automatic renormalization of the samples mean and specific weighting func-
tions, that can dramatically reduce the variance in comparison to standard IS when
correctly used.

Secondly we propose a new family of multiple strategy estimators that combines
both WIS and MIS. This new approach has two advantages: first, our estimator re-
duces the variance of the classic MIS estimator in presence of poor strategies, simi-
larly to WIS. Second, our estimator optimally combines the available sampling tech-
niques, similarly to MIS.

7.1 Weighted importance sampling with the ratio estimator

“If we really accepted the idea that a sample from one distribution is a sample from any
distribution (if appropriately weighted) then we should not be surprised at the next two
results stated below.”

Trotter and Tukey

Instead of generating samples from a desired distribution p – i.e. using importance
sampling – that is complex or impossible to sample, it is feasible to sample from a
source distribution q that is convenient or simpler to sample and to reweight sam-
ples using a weighting function and a ratio estimator. The original Weighted Uniform
Sampling [Powell and Swann 1966] method was only designed to transform uniform
samples to arbitrary distributions. It has later been extended to handle arbitrary
source densities and is known as Weighted Importance Sampling (WIS) [Spanier 1979,
Spanier and Maize 1994, Bekaert et al. 2000], or as Self Normalized Importance Sam-
pling (SNIS) [Owen 2013]. WIS estimators have been successfully used in rendering
applications [Heitz et al. 2018, Bekaert et al. 2000, Keller 1996] to evaluate complex
integrals.

The idea behind WIS is to virtually transform the samples from a source distribution
q such that the weighted distribution of samples matches p. If the target density p is
carefully chosen, the variance of the WIS estimator may be smaller than the variance
of the IS estimator w.r.t q. Therefore, given a source distribution q the integral I can
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be approximated w.r.t p as follows:

I =
∫

Ω
f (x)dµ(x)

= Ep

[
f (X)

p(X)

]
= Ep

[
f (X)

q(X)

q(X)

p(X)

]

= Ep

 f (X)

q(X)

1
p(X)
q(X)


= Ep

[
f (X)

q(X)

]
Ep

 1
p(X)
q(X)


≈

Eq

[
f (X)
q(X)

]
Eq

[
p(X)
q(X)

]
≈

Eq

[
w(X) f (X)

p(X)

]
Eq [w(X)]

with w(X) =
p(X)

q(X)
.

(7.1)

where the subscript denotes the distribution that has to be sampled. The weighting
function w compensate the use of the source PDF q. The associated Monte Carlo
estimator, denoted Ĩwis, writes as a ratio of estimators:

Ĩwis =

1
n1

∑n1
i=1 w(Xi)

f (Xi)
p(Xi)

1
n2

∑n2
j=1 w(Xj)

=

1
n1

∑n1
i=1

f (Xi)
q(Xi)

1
n2

∑n2
j=1

p(Xj)

q(Xj)

(7.2)

It is worth noting that the sets of samples used in the numerator and the denom-
inator can be identical, hence reducing the above equation to a weighted mean of
samples:

Ĩwis =
∑n

i=1 w(Xi)
f (Xi)
p(Xi)

∑n
i=1 w(Xi)

(7.3)

instead of a simple mean like classical Monte Carlo estimators. The main benefit of
Equation 7.3 is that we get rid of the normalization by the number of realizations n.

7.1.1 Properties

The WIS estimator is biased due to Jensen’s inequality – E[X]
E[Y] ≤ E

[X
Y

]
– but consis-

tent since the bias tends to zero [Spanier and Maize 1994, Spanier 1979, Powell and
Swann 1966, Bekaert et al. 2000, Owen 2013] with rate O

(
n−1). Thus even though

the WIS estimator is biased, the bias is asymptotically negligible, and makes the
estimator asymptotically unbiased.

Note that Equation 7.1 is still valid if the weighting function w(x) is known up to
constant factor [Owen 2013]. The normalization is in fact done by the estimator in
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the denominator – the qualifier self normalized referring to this property.

This estimator is useful in situations where we cannot analytically construct samples
from distribution p – i.e. for which we cannot invert the associated CDF – but we
know the shape of p is closer to the integrand than the shape of q. The WIS estimator
works best when the denominator in Equation 7.3 is close to the number of samples
n, which means that the source PDF q and the target PDF p are somewhat similar.

7.1.2 Variance of WIS

The variance of the WIS estimator can be approximated with the delta method [Cochran
1977, Bekaert et al. 2000, Owen 2013] as a ratio estimator:

V
[
Ĩ
]
=

1
n

Eq

[(
w(X) f (X)

p(X)
− w(X)I

)2
]

(
Eq [w(X)]

)2
(7.4)

which can be estimated using the following Monte Carlo estimator:

Ṽ
[
Ĩ
]
=

1
n

1
n ∑n

i=1 w2(Xi)
(

f (Xi)
p(Xi)
− I
)2

( 1
n ∑n

i=1 w(Xi)
)2

=
∑n

i=1 w2(Xi)
(

f (Xi)
p(Xi)
− I
)2

(∑n
i=1 w(Xi))

2

(7.5)

However this variance estimator is also biased and underestimate the true variance
at a low number of samples.

A nice property of the WIS estimator is that it can approximately reach zero variance
[Bekaert et al. 2000] even if samples are not distributed according to p as long as
p ∝ f , p(x) > 0 whenever f (x) > 0 and q(x) > 0 whenever p(x) > 0. The first two
conditions are equivalent to the classic IS conditions to reach zero variance estimates.
The last condition is required to get a correct estimate of I otherwise some parts of
the integral would be missing or undefined and Ĩ could not converge towards the
true expected value. However, perfect importance densities are mostly not available
in closed form.

7.1.3 Unbiasing ratio estimators

“The price we pay is an additional randomization inserted into the sequence and a possible
increase in the mean squared error (MSE).”

McLeish

The main drawback of WIS is that the resulting estimator is biased. Several bias-
correction methods exist however they all rely on additional stochastic processes
[Talbot et al. 2005, McLeish 2011, Booth 2007, Bitterli et al. 2020] which we review
below.

Random walks. Thomas E. Booth proposed using a geometric serie to approximate
the reciprocal integral 1

E[Y] . An unbiased estimate of that geometric distribution
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can be simulated using random walks and Russian Roulette [McLeish 2011]. This
method is practical and has successfully been used in several rendering applications
[Zeltner et al. 2020, Qin et al. 2015, Bangaru et al. 2020], but the number of trials
required to converge is unbounded and the additional variance introduced by the
estimator of the reciprocal can be very large.

Discrete resampling. Recently, Bitterli et al. showed that the Resampled Importance
Sampling (RIS) estimator [Talbot et al. 2005] is a bias corrected version of WIS.

The idea behind RIS is to generate a set of M samples from q and select one sample
among them with discrete resampling [Talbot et al. 2005]. The selected sample is
then approximately distributed according to the target distribution p. The number of
candidates M interpolates from distribution source q (M = 1) to target distribution
p (M = ∞).

The discrete resampling routine can be described as follows:

1. Generate M candidate samples from q

2. Evaluate for each candidate xi the resampling weight w(xi) =
p(xi)
q(xi)

3. Build the discrete CDF of the sample weights

4. Random sample the discrete CDF to get a single sample with PDF:

p̂M(xi) =
q(xi)w(xi)

1
M ∑M

j=1 w(xj)
with w(x) =

p(x)
q(x)

=
p(xi)

1
M

M

∑
j=1

w(xj)︸ ︷︷ ︸
bias correction term

(7.6)

The denominator in the PDF acts as a bias-correction term, hence the use of the
classic unbiased Monte Carlo estimator is valid:

Î =
1
n

n

∑
i=1

f (xi)

p̂M(xi)
(7.7)

However applying unbiased RIS requires selecting a single sample among a set of
candidates drawn from distribution q which becomes impractical when q is complex
to sample. Indeed the resampling step may be either a huge waste of computational
time or even unachievable when candidates have an infinitesimal chance to be sam-
pled.

Stream resampling. The RIS technique requires storing all sample candidates and
building the discrete CDF of the samples. A blind version of this algorithm that
overcomes these preconditions has been proposed [Chao 1982, Bitterli et al. 2020]
and further detailed in the book chapter [Marrs et al. 2021, chap. 23]. Its pseudocode
is reported in Algorithm 3. This method makes use of a reservoir R(x, w, s) that
stores a sample x, an associated sample weight w, and the sum s of all samples
weights that has been streamed in the reservoir so far.
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Algorithm 3 Weighted Reservoir Sampling
1: function RESERVOIRSAMPLING(R(x, w, s))
2: x ∝ q . Generate candidate x from q
3: w(x)← p(x)

q(x) . Evaluate the sample weight
4: R.s← R.s + w(x) . Update the sum of weights in the reservoir
5: ξ ← U (0, 1)
6: if ξ ≤ w(x)

R.s then . Try to replace the sample currently in the reservoir
7: R.x ← x . Update sample
8: R.w← w(x) . Update sample weight
9: return R . Return the updated reservoir

This methods results in the same approximated PDF as RIS and share the same prop-
erties and limitations.

7.1.4 Results

We illustrate the WIS estimator and compare it to the IS estimator in 1D in Figure 7.1.

7.1.5 Discussion

The WIS estimator is practical in several situations, e.g. when the target distribution
p is difficult to sample but better fit to the integrand f , or when the number of sam-
ples n drawn is unknown a priori or costly to estimate the weighted mean of WIS
preclude its evaluation, but is biased.

Although unbiased RIS and WRS successfully improves direct illumination sam-
pling due to inexpensive light sampling techniques, we cannot rely on such resam-
pling techniques for path reusing purposes, since generating candidate paths possi-
bly through dense volumes and discarding them after resampling would be a waste
of computational time.

Nevertheless, using WIS in path reusing application could be beneficial since it has
less requirements than other estimators. In addition, path reusing virtually increases
the number of path generated per integral and thus increase the number of samples
per estimator. For that reason, the bias in WIS estimators will reciprocally vanish
faster and hopefully will not be noticeable.

The main limitation of the WIS estimator is that it is restricted to a single source
strategy. In the following section, we show how to extend the WIS framework to an
arbitrary number of strategy.
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FIGURE 7.1 – Illustrative example of the difference between IS (top problem) and WIS (bot-
tom problem). The integrand f in the top left plot (orange) is integrated using distributions
p1. However, given a known distribution p0 (red), that is a priori a better fit to the integrand,
MWIS reweights samples such that the resulting distribution perfectly matches p0. This is
well illustrated by the histograms of samples before (green) and after (red) reweighting. This
results in a reduction of the error and variance at equal sample count, at the cost a slight bias

that vanishes rapidly.
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7.2 Multiple weighted importance sampling

As for importance sampling, the WIS estimator can be extended to combine several
sampling strategies {1, . . . , k} with respective PDF q1, . . . , qk in order to evaluate the
integrand w.r.t to a target density p (that possibly a mixture density itself) . To ad-
dress this problem, we propose the Multiple weighted importance sampling (MWIS) es-
timator Imwis, which consists of a linear combination of weighted estimators Ii,mwis
with associated normalization weights Wi:

Imwis =
k

∑
i=1

Ii,mwis ·Wi (7.8)

The estimator Ii,mwis associated with strategy i is, similarly to a WIS estimator, nor-
malized by the expected value of the weighting function wi,wmis (cf. Equation 7.1):

Ii,mwis =
Eqi

[
wi,wmis(X) f (X)

p(X)

]
Eqi [wi,wmis(X)]

(7.9)

but we postpone the discussion of the choice of the ideal weighting function wi,wmis
in the multiple strategy case (cf. subsection 7.2.1). The normalization weights Wi
used in the linear combination arise naturally as a ratio estimator such that ∑i Wi =
1, by taking:

Wi =
Eqi [wi,wmis(X)]

∑k
j=1 Eqj

[
wj,wmis(X)

] (7.10)

Finally, plugging the last two equations into Equation 7.8 leads to the MWIS formu-
lation as a ratio of sum of integrals:

Imwis =
k

∑
i=1

Ii,mwis ·Wi

=
k

∑
i=1

Eqi

[
wi,mwis(X) f (X)

p(X)

]
Eqi [wi,mwis(X)]

·
Eqi [wi,mwis(X)]

∑k
j=1 Eqj

[
wj,mwis(X)

]
=

∑k
i=1 Eqi

[
wi,mwis(X) f (X)

p(X)

]
∑k

j=1 Eqj

[
wj,mwis(X)

]
(7.11)

which compares to the MIS formulation as a sum of integrals. The MWIS estimator
is, similarly to WIS, a biased but consistent estimator due to Jensen’s inequality.

7.2.1 Weighting heuristics

The choice of the weighting functions wi,mwis is crucial to get the best possible vari-
ance reduction similarly to MIS. For each sample x, the function wi,mwis serves two
purposes: first reweighting the source density w.r.t the target density – i.e. compa-
rably to WIS – and second combining the multiple strategies in an optimal manner
– i.e. comparably to MIS. The former point takes into account that strategy i has
been sampled with density qi, but that the contribution is evaluated w.r.t the target
density p. The latter point takes into account that strategy i has been selected among
k available strategies to generate the sample x.
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Hence we reasonably suggest that the MWIS weighting functions takes the following
form:

wi,mwis(x) = wi,mis(x) · wi,wis(x) (7.12)

which is a valid weighting heuristic within the MWIS framework thanks to the self-
normalization of the estimator. The sufficient conditions are p(x) > 0 whenever
f (x) > 0 and ∃i, qi(x) > 0 whenever p(x) > 0. The WIS-related part of the weight
is constrained by the source and target PDF used, hence:

wi,wis(x) =
p(x)

ciqi(x)
(7.13)

where qi is the density that generated the sample x, and ci the probability of selecting
strategy i – i.e. the relative number of samples. The MIS-related part on contrary
can be any heuristic following the MIS weighting conditions (cf. subsection 3.5.2).
Hence, the MIS balance heuristic [Veach and Guibas 1995] is a good choice that takes
into account the real local repartition of samples:

wi,mis(x) =
ciqi(x)

∑k
j=1 cjqj(x)

(7.14)

where ci is the probability of drawing a sample from the i-th strategy – i.e. the rela-
tive number of samples per strategy. Finally, using the balance heuristic the MWIS
weighting function reduces to the simple form:

wi,mwis(x) =
p(x)

∑k
j=1 cjqj(x)

(7.15)

The latter equation enlightens the fact that within MWIS we reweight the samples
using a weighted mixture of distributions – i.e. the denominator – which is also the
resulting distribution of MIS balance estimators. Still, MIS and MWIS weighting
function are differents and serve different purposes.

7.2.2 MWIS estimator

The Monte Carlo estimator corresponding to Equation 7.11 writes as a weighted sum
of estimators:

Ĩmwis =
∑k

i=1
1
ni

∑ni
j=1 wi(xij)

f (xij)

p(xij)

∑k
l=1

1
nl

∑nl
m=1 wl(xlm)

(7.16)

Similarly to the WIS estimator, the sets of samples used in the numerator and the
denominator can be identical, hence turning the above equation into a weighted
mean of samples:

Ĩmwis =

1
n ∑n

j=1 wi(xij)
f (xij)

p(xij)

1
n ∑n

j=1 wi(xij)
=

∑n
j=1 wi(xij)

f (xij)

p(xij)

∑n
j=1 wi(xij)

(7.17)

where strategy i is stochastically chosen with probability ci, or deterministically cho-
sen with frequency ci =

ni
n . The latter equation preclude the need to know or com-

pute the number of realizations averaged in the estimator – even the realizations
which have a zero weight. Any sample with weight wi(x) = 0 is thus not taken into
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account, and the variance of the estimator is reduced accordingly. On contrary an
unbiased MIS estimator would take into account these samples increasing its vari-
ance.

7.2.3 Variance of MWIS

Similarly to WIS, the variance of the MWIS estimator can be approximated with the
delta method [Cochran 1977, Bekaert et al. 2000, Owen 2013] as a ratio estimator
and shares the same properties: it can reach zero variance even if samples are not
distributed according to p as long as p ∝ f , p(x) > 0 whenever f (x) > 0 and q(x) >
0 whenever p(x) > 0, and estimating the variance with a Monte Carlo estimator
underestimate the true variance at low number of samples as we can see in Figure 7.2
and Figure 7.3 (bottom row, column averaged variance).

7.2.4 Results

We illustrate our MWIS estimator and compare it to MIS estimator in 1D in Figure 7.2
and Figure 7.3. We additionally present a 2D density reconstruction example in Fig-
ure 7.4.

7.2.5 Discussion

The MWIS estimator makes it possible to sample from k arbitrary distributions with
different domains, and to reweight samples such that a target distribution p is matched,
further reducing the variance of the estimator if p is chosen close to the integrand.
This is especially efficient when combining several importance samplers to estimates
several integrals in a row and reusing samples between them.

Unbiasing MWIS. Similarly to WIS unbiasing the MWIS estimator can be compu-
tationally costly and requires additional sampling for random walks or resampling
processes. This estimator is again related to the multi-sample RIS estimator [Bitterli
et al. 2020, Talbot et al. 2005], as a biased but consistent self-normalizing version.

Application to path reusing. In the context of multiple view rendering, we con-
sider each pixel as a possible sampling strategy of the scene. As explained before,
combining all possible sampling techniques may fail or require additional informa-
tions with MIS.

Instead, our estimator combines multiples strategies – i.e. the different pixels that
may find a pivot point – and reweights the samples w.r.t a chosen target density –
which is none other than the base sampling technique of the pixel being integrated,
since the target density better fits its integrand.

In this way, the contributions does not add further variance than the base technique
– i.e. sampling from the pixel directly – thanks to the the reweighting. Additionally
MWIS weights completely discard the samples that fall outside of the domain being
integrated, hence it does not introduce further variance due to occluded prefixes,
while MIS does.

We exploit this mechanism to reweight transformed samples as if they were directly
sampled from the pixel they contribute to. Contrary to MIS that requires additional
work (storage and/or computations) to discard strategies that poorly contribute to
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the estimator, MWIS has a much simpler form and naturally handles poor contribu-
tions such that they do not increase the variance. This makes MWIS highly practical
with no additional storage requirement in a multi-view setting.

7.3 Conclusion

“Why did offline-rendering people publish several papers on control variates and (to our
knowledge) never published a ratio estimator, which is simpler and better?”

Heitz, Hill, and McGuire

In this chapter we presented non classical Weighted Importance Sampling (WIS)
ratio estimators and extended them to combine multiple source strategies in our
Multiple Weighted Importance Sampling (MWIS) estimators.

This new family of estimators are similarly to WIS biased and consistent, but allow
to reduce the variance in comparison to classical unbiased MIS estimators. It uses the
knowledge of some target distribution that closely match the integrand to reweight
the samples from different strategies. We take benefit from these estimators in our
practical multiple view rendering to overcome MIS limitations, as we shall see in
chapter 9 and chapter 10.
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Integration problem using MWIS balance heuristic with two source densities p1 and p2 and a target density p0

FIGURE 7.2 – Difference between MIS (top problem) and MWIS (bottom problem) to inte-
grate f , shown in orange, using two distributions p1 and p2. Given an a-priori distribution p0
(red) that better fits the integrand, MWIS reweights samples such that the combined distri-
bution of strategies perfectly matches p0. This results in a reduction of the error and variance,
at the cost a slight bias that vanishes rapidly. Note that the averaged estimated variance of
MWIS (bottom row, column averaged variance, red area) is largely underestimated at low

sample count as its variations should follow the true variance (red curve).
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Integration using MWIS power heuristic with source densities p1 and p2 and a target density p0

FIGURE 7.3 – Illustrative example of the difference between MIS (top problem) and MWIS
(bottom problem) using the power heuristic. The integrand f in the top left plot (orange) is
integrated using two distributions p1 and p2. However, given a known distribution p0 (red),
that is a priori a better fit to the integrand, MWIS reweights samples such that the combined
distribution of strategies perfectly matches p0. This results in a reduction of the error and
variance at equal sample count, at the cost a slight bias that vanishes rapidly. Note that
the bias is lower than MWIS combined with the balance heuristic, however the variance is
greater, hence slightly increasing the RMSE. Nevertheless, both MWIS weighting functions

(balance and power) results in lower error than MIS on this problem.
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FIGURE 7.4 – Illustrative example of the resulting density of MWIS estimators in 2D. We
draw samples uniformly from both the orange and blue polygons as our source densities.
We aim at matching the uniform density over the orange polygon, as our target density. We
show on the first and third rows a subset of 100 samples, for which the bubble radius corre-
sponds to the weight assigned to each sample for comparison purposes. On the second and
fourth rows we display the weighted histogram of 2500 samples for each multiple strategy
estimator. Combining samples with uniform mixture, MIS balance, MIS power or MIS max
results in a density that is preponderant in some areas of the domain: they conserves the
peaks of the distributions. On the contrary the weighted histogram of our MWIS estimator
perfectly match the target density. Furthermore, we can observe in both MWIS histograms
the variance reduction due to the additional reweighted blue samples, in comparison to the

histogram of native orange samples (top left).
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Chapter 8

Null-scattering shift mappings

A stated before, no shift mapping has been proposed to shift a chain of null scat-
tering interactions on a path segment composed of two real interaction endpoints.
These shift mappings are essential to enhance path reusing applications with arbi-
trary heterogeneous volumes, enabling volumetric multiple view rendering or gra-
dient domain volumetric path tracing. We propose in this chapter new null interac-
tions shift mappings that allow path reusing in presence of heterogeneous medias
leveraged from the null scattering framework [Miller et al. 2019].

8.1 Segment configuration

A path segment is a chain of random events for which both endpoints are real inter-
actions. In between, there can be {0, . . . , m} null interactions in media. Our concern
is to shift these null interactions from one base segment to a transformed segment
for path reuse purposes, as depicted in Figure 8.1.

?

FIGURE 8.1 – Null scattering chain shift configuration. Given a base path segment (top)
composed of several null interactions, we aim at deterministically shifting these interactions

onto a target segment (bottom) that crosses media as well.

The shifted chain must have the same number of random events as the native one, in
order to be defined on the same probability space. Note that recent techniques have
been developed to reduce or expand the dimensionality of the probability space in
the context of Metropolis mutations [Otsu et al. 2017, Bitterli et al. 2017, Pantaleoni
2017], but we did not explore such solutions which could eventually be applied to
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path transformations. Hence, if the base chain crosses medium but the shifted seg-
ment does not, we cannot construct a valid shift, since there is no medium space
to shift null interactions. If neither of the chains cross any medium section, there
is no null interaction to shift but the last interaction that remains unchanged. For
these reason, when shifting from one segment to another we suppose that medium
sections have been gathered beforehand.

The null scattering interactions may be shifted independently from each other or
on contrary incrementally following the base construction ordering – i.e. from the
first to the last sampled interaction. Hence, we explore several different approaches
through global and local shifts on the chain.

We recall that a null interaction is sampled during the tracking process within the
media (cf. section 4.2). The PDF of a null interaction x, given its free flight sample
distance t, and its null probability Pn, writes:

p(x) = p(t)Pn(x) (8.1)

Our goal is to define a bijective transformation such that the free flight sampled
depth changes deterministically and fall inside the medium sections of the target
segment. We also need its Jacobian in closed form to correctly take into account the
change in density due to the transformation.

8.2 Copy-based shift mappings

We first present copy-based transformations that have been proposed and used in
several previous work to shift interactions. However, these shift mappings lead to
some failure cases that are depicted in Figure 8.2.

8.2.1 Raw depth copy

We first consider the naive approach of replicating the exact free flight distances ti
that have been sampled on the base segment for each null interaction xi. Hence, from
the shifted segment medium entry point x′min, a first interaction is put at distance
t′0 = t0 on the shifted segment direction ω′. Generalizing for each interaction gives
the following formula:

x′i = x′min + ω′ · t′i with t′i = ti (8.2)

and the shifted PDF then writes:

p(x′i) = p(t′i)Pn(x′i) = p(ti)

∣∣∣∣∂t′i
∂ti

∣∣∣∣−1

︸ ︷︷ ︸
=1

Pn(x′i) = p(ti)Pn(x′i) (8.3)

However, by reusing the same raw sample depth, some of the transformed volume
interactions may even end up either outside of the medium section or farther than
the segment endpoints. This approach has been proposed, and successfully used, in
gradient domain methods [Gruson et al. 2018], although authors mention that some
interactions may be invalid. But we aim at reusing interactions on segments that can
be geometrically very different (e.g. two disjoint points of view observing the same
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pivot), hence this simple shift mapping may lead to a whole family of invalid shifted
segment, as illustrated in Figure 8.2.

tmin tmax

t′min t′max

FIGURE 8.2 – Volumetric chains shift mapping failures. Given a base path segment (top)
composed of several null interactions, the transformed interactions on the target segment
(bottom) are constructed by reusing the same free flight distances – i.e. raw depths. This
results in a family of invalid shifts, when shifted interactions fall outside of the medium
sections or the segment. Not only depth copy but primary sample copy and optical depth

copy shift mapping suffer from the same failure cases.

On the contrary, we want to enforce transformed null scattering interactions to fall
inside medium sections, to increase our chances to find a valid shifted segment.

8.2.2 Primary sample copy

Another common approach is random sequence replay [Kelemen et al. 2002, Bitterli
et al. 2017] – i.e. reusing the uniform random numbers that generated the samples.
Hence, each shifted interaction x′i is constructed using the random sample u′i = ui,
that has been used to generate the base interaction xi. Using the free flight sampling
construction (cf. section 4.2) the shifted depth is computed as follows:

t′i = −
log(1− u′i)

µ̄′
= − log(1− ui)

µ̄′
= − µ̄

µ̄′
log(1− ui)

µ̄
=

µ̄

µ̄′
ti (8.4)

The shifted depth is thus a scaled version of the base one, and the interaction PDF
writes:

p(x′i) = p(t′i)Pn(x′i) = p(ti)

∣∣∣∣∂t′i
∂ti

∣∣∣∣−1

Pn(x′i) = p(ti)
µ̄′

µ̄
Pn(x′i) (8.5)

But again, this way of transforming null interactions may result in invalid shifted in-
teractions, for example when the medium majorant extinction coefficients are equals
µ̄′ = µ̄⇔ µ̄

µ̄′ = 1, the primary sample shift results in the same failure case as the raw
depth copy mapping depicted in Figure 8.2.

Another drawback of both raw depth and PSS copy approaches is that there is no
obvious solution to shift in presence of several disjoint medium sections easily.

8.2.3 Majorant optical depth copy

A last solution to consider in the family of shifts by copy, is the majorant optical
depth copy τ̄′(t′) = τ̄(t), where the majorant optical depth of an interaction is
copied to find the shifted interaction. Without going into further details, this scheme
can lead to invalid shifts since shifted interactions are not bounded inside the target
medium segments. For example using the medium section depicted in Figure 8.2
and equal majorants µ̄ = µ̄′ = 1 the majorant optical depth copy is equivalent to
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depth copy and results in the same failure case that precludes the construction of a
whole family of shifts.

8.3 Scale-based shift mappings

We present three new shift mappings, summarized in Equation 8.6, that transform a
base chain of null interactions, such that the resulting shifted interactions fall within
the medium sections of the target segment. We construct shifted interactions using
linear scales of the cumulated raw depth, the majorant optical depth and the primary
samples, by deriving their correct stretching constants and their respective Jacobian
determinants.

Shifts Copy Linear Scale

Primary Sample u′ = u u′ = k · u

k = 1−T̄(t′max)
1−T̄(tmax)

Raw Depth t′ = t t′ = k · t

k = t′max
tmax

Majorant Optical Depth τ̄′ = τ̄ τ̄′ = k · τ̄

k = τ̄′max
τ̄max

(8.6)

8.3.1 Raw depth linear scale

A first solution to ensure the shifted interactions from the base segment to the target
segment fall inside the medium sections is to copy the normalized cumulated dis-
tance of the base interaction. This mapping corresponds to a linear scale of the depth
traversed in media as illustrated in Figure 8.3.

t0,min t0,max t1,min t1,max

t′0,min t′0,max

lmax

1

1

l′max

0

0

0

0

Cumulated raw depth

Stretch

Copy ratio

Unstretch

Shifted prefix

Base prefix

FIGURE 8.3 – Raw depth linear scale shift mapping. We compute the cumulated distance
through volumes for each base interaction. After normalization by the cumulated volume
depth of the base segment, we then copy the ratio to construct the shifted interaction. Mul-
tiplying by the cumulated volume depth of the target segment, gives the shifted cumulated
depth. Finally, we compute the position of the shifted interaction by marching the target

segment volume sections until reaching the desired cumulated depth.
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Normalized cumulated distance

We define the cumulated distance l of an interaction at distance t as follows:

l(t) =
∫ t

0
V(x)dx (8.7)

where V(x) is a characteristic function that equals one if x is within a medium zero
otherwise:

V(x) =
{

1 if µ̄(x) > 0,
0 else.

(8.8)

Note that the cumulated depth can be obtained by summing over each volume in-
terval until reaching the distance t contained in section nt:

l(t) =
nt

∑
i=1

(min (t, tmax,i)− tmin,i) (8.9)

where tmin,i is the entry depth of the i-eth volume section and respectively tmax,i is
its exit depth.

Shift formulation

Now we define the shift mapping as a copy of the base interaction normalized cu-
mulated depth:

⇔ l′(t′)
l′max

=
l(t)
lmax

⇔ l′(t′) =
l′max
lmax
· l(t)

⇔ l′(t′) = k · l(t)

(8.10)

and k = l′max
lmax

is a constant defined by the base and the target segment volume sec-
tions cumulated lengths. Expanding the above equation lets us express the shifted
interaction depth t′ as a function of the base interaction depth t:

l′(t′) = k · l(t)

⇔
∫ t′

0
V ′(x)dx = k ·

∫ t

0
V(x)dx

⇔
nt′

∑
i=1

(
min

(
t′, t′max,i

)
− t′min,i

)
= k ·

nt

∑
j=1

(
min

(
t, tmax,j

)
− tmin,j

)
⇔ t′ + a1 = k · [t + a2]

⇔ t′ = k · t + R

(8.11)

where a1 = ∑n−1
i=1

(
t′max,i − t′min,i

)
− t′min,n, a2 = ∑m−1

j=1

(
tmax,j − tmin,j

)
− tmin,m and

R = k · a2− a1. Applying the transformation for each base null interaction completes
the construction of the shifted segment.
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Jacobian determinant and PDF

The Jacobian of this mapping is straightforward to compute and is constant – i.e.
global – on the whole segment: ∣∣∣∣∂t′

∂t

∣∣∣∣ = k =
l′max
lmax

(8.12)

Finally the PDF of a transformed interaction writes:

p(x′i) = p(t′i)Pn(x′i) = p(ti)

∣∣∣∣∂t′i
∂ti

∣∣∣∣−1

Pn(x′i) = p(ti)
lmax

l′max
Pn(x′i) (8.13)

Discussion

In the presence of single base and target medium sections this mapping corresponds
to a linear scale of the raw depth. This shift mapping allows a simple construction
of the transformed interactions and a simple Jacobian evaluation that is global on
the whole segment. However the resulting distributions of real and null interac-
tions do not take into account the properties of the traversed medium section – e.g.
the majorant extinction coefficients of each interval, or the traversed transmittance.
The mapping only scales source distributions towards the target medium segment,
which is not what we aim for in practice. We present in the next sections two local
shift mappings – i.e. with varying Jacobian – that takes into account volume proper-
ties to better distribute the shifted interactions.

8.3.2 Majorant optical depth linear scale

One better solution is to take into account the majorant optical depth τ̄ of each null
interaction in the volume sections, to accurately scale the interaction positions, fur-
ther illustrated in Figure 8.4. Note that we use the majorant optical depth because
the true optical depth does not in general have a closed form expression or one that
is too complex to inverse. On the contrary, the majorant optical depth is piecewise
linear on the medium sections and is thus always invertible in closed form.

Majorant optical depth

The majorant optical depth is obtained by integrating the majorant extinction coeffi-
cient from the medium entry to the interaction position:

τ̄(t) =
∫ t

0
µ̄(x)dx (8.14)

Note that the majorant is either constant or piecewise constant if several volume
sections are crossed. Hence it can be obtained by summing over each interval of
constant majorant µ̄i until reaching the interaction at distance t contained in section
nt:

τ̄(t) =
nt

∑
i

µ̄i (min (t, tmax,i)− tmin,i) (8.15)

with tmin,i the entry depth of the i-eth volume section and respectively tmax,i the exit
depth. In case of overlapping media, we replace the unique majorants by the sum of
majorants in overlapping sections.
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t0,min µ̄0=1 t0,max t1,min µ̄1=2 t1,max

t′0,min

µ̄′0=1.2

t′0,max

τ̄max

1

1

τ̄′max

0

0

0

0

Majorant optical depth

Stretch

Copy ratio

Unstretch

Shifted prefix

Base prefix

FIGURE 8.4 – Majorant optical depth linear scale shift mapping. We compute the optical
depth through volumes for each base interaction. After normalization by the total optical
depth of the base segment, we then copy the ratio to construct the shifted interaction. Mul-
tiplying by the total optical depth of the target segment, gives the shifted optical depth.
Finally we compute the position of the shifted interaction by marching the target segment

volume sections until reaching the desired optical depth.

Shift formulation

The mapping is then defined by copying the normalized majorant optical depth of
the base interactions:

τ̄′(t′)
τ̄′max

=
τ̄(t)
τ̄max

⇔ τ̄′(t′) =
τ̄′max
τ̄max

τ̄(t)

⇔ τ̄′(t′) = k · τ̄(t)

(8.16)

where k = τ′max
τmax

is a constant defined by the base and the target segment volume
sections maximum optical depth. From there we can express the position on the
target segment t′ as a function of t the distance on the base segment:

τ̄′(t′) = k · τ̄(t)

⇔
∫ t′

0
µ̄′(x)dx = k ·

∫ t

0
µ̄(x)dx

⇔
nt′

∑
i=1

µ̄′i
(
min

(
t′, t′max,i

)
− t′min,i

)
= k ·

nt

∑
j=1

µ̄j
(
min

(
t, tmax,j

)
− tmin,j

)
⇔ µ̄′nt′

· t′ + a1 = k · [µ̄nt · t + a2]

⇔ t′ = k · µ̄nt

µ̄′nt′

· t + R

(8.17)

where a1 = ∑
nt′−1
i=1 µ̄′i

(
t′max,i − t′min,i

)
− µ̄′nt′

· t′min,nt′
, a2 = ∑nt−1

j=1 µ̄j
(
tmax,j − tmin,j

)
−

µ̄nt · tmin,nt and R = k·a2−a1
µ̄′n

. Applying the transformation for each base null interac-
tion completes the construction of the shifted segment.
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Jacobian determinant and PDF

The Jacobian determinant of the complete transformation writes:∣∣∣∣∂t′

∂t

∣∣∣∣ = k · µ̄nt

µ̄′nt′

=
τ′max
τmax

· µ̄nt

µ̄′nt′

(8.18)

Finally the PDF of a transformed interaction writes:

p(x′i) = p(ti)

∣∣∣∣∂t′i
∂ti

∣∣∣∣−1

Pn(x′i) = p(ti)
τmax

τ′max
·

µ̄′nt′

µ̄nt

Pn(x′i) (8.19)

Discussion

In the presence of single base and target medium sections this mapping corresponds
to a linear scale of the majorant optical depth. Hence, the resulting shifted distribu-
tions of events correspond to a piecewise stretch of the source distributions. Note
that as opposed to the raw depth mapping, the Jacobian determinant is local for each
interaction due to the presence of the base section majorant µ̄nt , associated with the
base interaction at distance t, and the target section majorant µ̄′nt′

associated with the
shifted interaction at distance t′.

8.3.3 Primary sample linear scale

The common free-flight sampling approach is unbounded, hence for a given uniform
random number u the resulting sampled distance t lies between zero and infinity.
However the primary sample can be renormalized over a bounded interval using the
integral of the combined transmittance over this interval. Hence another working
approach is to linearly scale the primary random sample such that the resulting free
flight distance is bounded in the target volume interval. This results in a shift that
perfectly maps a source majorant distribution to a target majorant distribution as
we shall see in the results section 8.4. Again this shift substitutes an ideal mapping
between the real and null densities that cannot be solved in closed form.

Primary random sample

The primary random sample associated with a free flight sampled distance t is ex-
pressed as a function of the combined transmittance T̄:

u =
∫ t

0
T̄(x)dx = 1− T̄(t) (8.20)

Note that the majorant is either constant or piecewise constant if several volume
sections are crossed. Hence the combined transmittance can be obtained using a
product of the transmittance over each interval of constant majorant µ̄i, or using the
inverse exponential of the piecewise optical depth, until reaching the interaction at
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distance t contained in section nt:

T̄(t) = exp (−τ̄(t))

= exp

(
−

nt

∑
i

µ̄i (min (t, tmax,i)− tmin,i)

)

=
nt

∏
i

exp (−µ̄i (min (t, tmax,i)− tmin,i))

(8.21)

with tmin,i the entry depth of the i-eth volume section and respectively tmax,i the exit
depth. In case of overlapping media, we replace the unique majorants by the sum of
majorants in overlapping sections.

Shift formulation

The mapping is then defined by copying the normalized random sample of the base
interactions:

u′

u′max
=

u
umax

⇔u′ =
u′max
umax

· u

⇔u′ = k · u

(8.22)

where k = u′max
umax

is a constant defined by the integral of the combined transmittance
from the last interaction to the segment endpoint, on the base and respectively the
target segment, which is related to bounded transmittance sampling. From there we
can express the position on the target segment t′ as a function of t the distance on
the base segment:

u′ = k · u
⇔1− T̄(t′) = k (1− T̄(t))
⇔T̄(t′) = 1− k (1− T̄(t))
⇔ exp

(
−τ̄(t′)

)
= 1− k (1− T̄(t))

⇔τ̄(t′) = − log (1− k (1− T̄(t)))
⇔µ̄′nt′

· t′ = − log (1− k (1− T̄(t)))− a1

⇔t′ =
− log (1− k (1− T̄(t)))− a1

µ̄′nt′

⇔t′ =
− log (1− k + k exp(−τ̄(t)))− a1

µ̄′nt′

(8.23)

where τ̄(t′) = µ̄′nt′
· t′ + a1 and a1 = ∑

nt′−1
i=1 µ̄′i

(
t′max,i − t′min,i

)
− µ̄′nt′

· t′min,nt′
. Apply-

ing the transformation for each base null interaction completes the construction of
the shifted segment.
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Jacobian determinant and PDF

The Jacobian determinant of the complete transformation writes as:∣∣∣∣∂t′

∂t

∣∣∣∣ = µ̄nt

µ̄′nt′

k
(k− (k− 1) exp (τ̄(t))) (8.24)

Finally the PDF of a transformed interaction writes:

p(x′i) = p(ti)

∣∣∣∣∂t′i
∂ti

∣∣∣∣−1

Pn(x′i) (8.25)

Discussion

The scaling factor k of the primary sample is the ratio of transmittance normalization
terms over the base and target volume intervals after the last interaction. It depends
on volumes parameters in each traversed section, and on the last interaction posi-
tion thus is a more local transformation than the optical depth shift. Similarly to the
majorant optical depth shift, it performs a local transformation that requires com-
puting the majorant extinction coefficients in each traversed section. Although this
approach is a valid shift that perfectly match the target majorant density, it requires
evaluating several exponentials and induces a slightly more complicated Jacobian
to compute without significantly improving the distribution of the shifted samples
regarding the target distributions of real and null interactions (cf. Figure 8.5).

8.4 Results

We illustrate our shift mapping operators in Figure 8.5, Figure 8.6 and Figure 8.7.

They allow for remapping distributions from an arbitrary source medium segment,
to an arbitrary target medium segment. However, by construction none of them
perfectly matches the true distributions of real interactions or null interactions, since
we can not construct the ideal mappings from these two distributions to the tar-
get ones. Some methods such as optimal transport or dynamic numerical inversion
could solve the problem of distribution remapping. However, these methods would
be too computationally intensive for our use case where we deal with a large number
of medium segments and shift operations.

Instead, our mappings rely on geometric quantities available in close form (e.g. raw
distances, combined transmittance and majorant extinction coefficient). Hence, we
do not expect them to perfectly match the target distributions (real or null).

8.4.1 Raw depth shift mapping

In practice, the raw depth shift mapping results in shifted distributions that closely
resemble the source distributions. Although this is not desired for a general purpose
mapping as the target distributions may be very different, this mapping works best
when the source and target distributions are close to each others.
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8.4.2 Primary sample shift mapping

The primary sample shift mapping instead better spread the shifted distributions to
perfectly match the target majorant density. However, we aim at matching the true
distribution of real or null interactions for path reuse purpose (we shift null and real
interactions), which is not achieved with this mapping. Furthermore, it sometimes
leads to oversampled regions at the end of the segment. Additionally its Jacobian is
slightly more complex to evaluate than our other mappings.

8.4.3 Majorant optical depth shift mapping

The optical depth shift mapping is balanced between both: it better stretches than
the raw depth by taking into account the local majorant coefficient, and most of the
time better resembles the true distributions (real and null) than the primary sample
shift mapping. Finally, it has a simple evaluation and Jacobian formula. We hence
use the latter in our path reuse application as it is a good tradeoff between the quality
of shifted real distributions and the complexity of evaluation.

8.5 Conclusion

We presented several shifts mappings that ensure valid transformations of null scat-
tering chain from one base medium segment to a target medium segment. They
result in remapped distributions of different quality that have their strength and
drawbacks regarding the distributions we aim to match. In our work we mostly use
our mapping to shift null interactions, but they could be used to shift real interac-
tions if needed.

We demonstrate in chapter 10 the efficiency of our mappings in our volumetric mul-
tiple view rendering application. They could further be used in other path reusing
applications to extend them to heterogeneous participating media.
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FIGURE 8.5 – A source segment on the domain [0, 9] is depicted in the top row (green curves)
with its associated majorant, null and real extinction coefficients (top left), majorant and
real optical depths (top center) and distributions of majorant, real and null interactions (top
right). Note that we use varying extinctions that simulate heterogeneous mediums. A sec-
ond target segment the domain [0, 3] is depicted in the second row (red curves) with its
associated extinction coefficient (left), optical depth (center) and distributions of real and
null event (right). Our shift mappings operators aims at mapping the free flight distribu-
tions of the source segment towards the target segment. The first mapping operates on raw
depths (blue curves), results in a rescaling of the depth with a constant Jacobian (third row
left), and thus in a stretch of the source distributions (fourth to bottom rows left). The second
mapping operates on optical depths (orange curves), results in a rescaling of the majorant
optical depth with a piecewise constant Jacobian (third row center), and thus in a piecewise
stretch of the source distributions (fourth to bottom rows center). The last mapping oper-
ates on primary samples (brown curves), results in a rescaling of the primary samples with
a more complex Jacobian (third row right), and thus more complex transformation of the
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FIGURE 8.6 – Similar example as in Figure 8.5 with different target densities.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI103/these.pdf 
© [B. Fraboni], [2021], INSA Lyon, tous droits réservés



84 Chapter 8. Null-scattering shift mappings

0 2 4 6 8
Distance through the medium

0.1

0.2

0.3

0.4

0.5

0.6

Source extiction coe�cient

¯̀(C)
` (C)
`= (C)

0 2 4 6 8
Distance through the medium

0

1

2

3

4

5
Source optical depth
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FIGURE 8.7 – Similar example as in Figure 8.5 with different target densities.
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Chapter 9

Practical multi-view rendering
Construction

In this chapter we detail a practical application of our contributions to multiple view
rendering covered in [Fraboni et al. 2019, 2022]. Our construction builds upon our
MWIS estimator, our new volumetric chains shift mappings and a measure of the
distance between scattering distributions to share significant subpaths.

9.1 Multi-view path construction

Our goal is to simultaneously reduce the error in multiple path traced images of the
same scene. Instead of rendering each image separately, we share sampled paths
between multiple pixel integrals. We hence benefit from shared path construction
and shading with a small overhead. The efficiency gain comes from the construction
of one single suffix path contributing to several pixels.

Our multi-view rendering technique first samples a base prefix path from a pixel.
We then reconnect the first real (non-null, surface or volume) interaction of the base
prefix – the pivot – to every other camera for which the path is expected to contribute
(i.e. this interaction is visible from the new point of view as it is not occluded, falls
within its view frustum, occurs during overlapping exposure time, and the scatter-
ing function has a significant component towards the new camera). We formulate
a transformation of all interactions that have occurred during the simulation along
the base prefix path towards the other pixels, in such a way that valid shifted prefixes
can be built, as illustrated in Figure 9.1. Finally, we sample a direction to trace a
path suffix that is shared among the set of selected prefixes. For each pixel integral,
we combine all base and shifted prefix paths that reach the pixel using our MWIS
estimator.

9.1.1 Base prefix sampling

We first generate a ray by importance sampling a camera shutter, lens and film. If
a medium boundary is found, delta tracking is used to sample interaction distances
across the media and event sampling to determine the interaction types [Novák et al.
2018, Miller et al. 2019]. If a null interaction is sampled, we continue the sampling
routine until we either leave the medium or a real interaction is found (medium or
surface).

Finally, the complete path prefix is a chain of random events: a film interaction, a
lens interaction, {0, . . . , m} null interactions in the medium, and a last interaction
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Time,
Lens,

Film
shifts

Pivot

Null interactions shifts

Base prefix

FIGURE 9.1 – Prefix chains shift configuration

either on a surface or a real medium interaction (cf. Figure 9.1). This last interaction,
which we will refer to as the pivot, is the key to our path reuse work since it can be
visible from other points of view. Before constructing the path suffix, we connect
every camera to the pivot by shifting (i.e. transforming) all the events composing
this base prefix to form shifted prefixes, as we describe next.

9.1.2 Prefix shift

Once a base prefix is generated and the pivot is found, we try to build shifted pre-
fixes that connect the pivot to other cameras, the targets as depicted in Figure 9.1.
The shifted chain must have the same number of random events as the base one,
in order to be defined on the same probability space. We start by shifting the base
lens interaction to the lens of a target camera. We then check that the pivot is not oc-
cluded and falls within the target camera view frustum and exposure time. Next, the
remaining sampled events along the base prefix are shifted to build another prefix
connecting a new lens event to the pivot interaction. A ray is traced from the target
lens to the pivot to collect the target medium sections. If only one of the base or
shifted prefix crosses medium sections, we cannot construct a valid shift because the
number of random events differs between the two chains. If neither of the prefixes
crosses any medium section, the shift is complete as there is no medium interaction,
but only a surface interaction at the pivot that remains unchanged.

Our goal is then to define a bijective transformation of the base medium interactions,
such that the shifted medium interactions fall within the target medium sections of
the target segment. The medium interaction depths can thus be mapped back and
forth to unique and valid interactions on base and target prefixes.

We also need the Jacobian of the transformation in closed form to correctly account
for the change in density. All required transformations are described in the following
sections, where index i denotes the pixel used to generate the base prefix and index
j denotes another pixel and its shifted prefix.

Shutter time shift

We construct paths at fixed time since dealing with object motion would require re-
evaluating occlusions and shading on the complete path due to moving geometry
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– the cost of the time shift would be equivalent to constructing a full path. Hence
the base shutter time is reused tj = ti, and the Jacobian of the shift is

∣∣∣T′i→j

∣∣∣ = 1.
Finally, we can compute both the transformed pdf and the pdf as if the time sample
was sampled from camera j directly:

pdf transformed from i to j: pi→j(tj) = pi(ti)
∣∣∣T′i→j

∣∣∣−1
= pi(ti)

pdf base from j (target): pj→j(tj) = pj(tj)
(9.1)

Note that the second pdf is used in our MWIS weights as the target strategy.

Film shift

The lens event is shifted by reusing the random numbers that sampled the base
lens interaction, similarly to the work of Schwarzhaupt and Fraboni et al.. This is
equivalent to scaling the base lens interaction, such that the shifted one fall within
the support of the target lens. Considering a thin lens model and given a base lens
interaction xlens,i, this results in the simple transformation:

xlens,j =
rj

ri
· xlens,i with Jacobian

∣∣∣T′i→j

∣∣∣ = r2
j

r2
i

(9.2)

where ri and rj are base and target lens radii. Finally, we can compute both the
transformed pdf and the pdf as if the lens and film samples were sampled from
camera j directly (for MWIS weights):

pdf transformed from i to j: pi→j(xlens,j) = pi(xlens,i)
∣∣∣T′i→j

∣∣∣−1
= pi(xlens,i)

r2
i

r2
j

pdf base from j (target): pj→j(xlens,j) = pj(xlens,j)
(9.3)

Lens shift

After shifting the lens event, the film position is then constrained by the refraction of
the ray connecting the lens to the pivot. Hence the film interaction does not require
a shift in itself but we have to compute its position xfilm,j from xlens,j and xpivot,j, as
in light tracing or bidirectional methods. Finally, the change of measure between
the base film plane and the shifted one is accounted with the following Jacobian
[Lehtinen et al. 2013]:∣∣∣T′i→j

∣∣∣ = g(xlens,i, xpivot,i)

g(xlens,i, xfilm,i)
·

g(xlens,j, xpivot,j)

g(xlens,j, xfilm,j)
(9.4)

where g(a, b) = D(a,b)
‖b−a‖2 and D(a, b) = | ~ωab · ~nb| if b is on a surface else D(a, b) = 1.

Finally, we can compute both the transformed pdf and the pdf as if the lens sample
was sampled from camera j directly (for MWIS weights):

pdf transformed from i to j: pi→j(xfilm,j) = pi(xfilm,i)
∣∣∣T′i→j

∣∣∣−1

pdf base from j (target): pj→j(xfilm,j) = pj(xfilm,j)
(9.5)
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Null interactions shift

We then apply our majorant optical depth shift mapping (see chapter 8) for every null
interactions along the base segment between the camera lens and pivot. Thus, by
construction the shifted interactions are ensured to fall within the target medium
sections.

We copy the normalized majorant optical depth from a null interaction at depth ti on
the base segment to find the shifted position tj on the target segment. The code that
performs the transformation is reproduced in Appendix B. Denoting n (resp. m) the
index of the medium section of interaction ti (resp. tj) on the base segment (resp. on
the target segment), the Jacobian determinant of the transformation writes:∣∣∣∣∂tj

∂ti

∣∣∣∣ = τmax,j

τmax,i
· µ̄n,i

µ̄m,j
(9.6)

Finally, we can compute both the transformed pdf and the pdf as if the null interac-
tion was sampled on the target segment directly (for MWIS weights):

pdf transformed from i to j: pi→j(tj) = pi(ti)
∣∣∣T′i→j

∣∣∣−1
= pi(ti)

τmax,i
τmax,j
· µ̄m,j

µ̄n,i

pdf base from j (target): pj→j(tj) = pj(tj)
(9.7)

Pivot shift

The last interaction can be either on a surface or in a medium but its location stays
fixed in space, hence we copy its position: xpivot,j = xpivot,i and

∣∣∣T′i→j

∣∣∣ = 1. Finally,
we can compute both the transformed pdf and the pdf as if the pivot was sampled
on the target segment directly (for MWIS weights):

pdf transformed from i to j: pi→j(xpivot,j) = pi(xpivot,i)
∣∣∣T′i→j

∣∣∣−1
= pi(xpivot,i)

pdf base from j (target): pj→j(xpivot,j) = pj(xpivot,j)
(9.8)

Jacobian and pdf evaluation

The complete shift generates a new chain in path space that connects the target cam-
era to the pivot. The Jacobian of the chain transformation is the product of each
independent shift Jacobian: ∣∣∣T′i→j (x̄i)

∣∣∣ = n

∏
k=0

∣∣∣T′i→j (xi,k)
∣∣∣ (9.9)

and the joint pdf of the base interactions writes:

pi (x̄i) =
n

∏
k=0

pi (xi,k) (9.10)
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Finally the pdf of the path x̄i from pixel i transformed to path x̄j for pixel j is given
by:

pi→j
(
x̄j
)
= pi (x̄i)

∣∣∣T′i→j (x̄i)
∣∣∣−1

(9.11)

which is further used to compute the MWIS weights. Similarly the pdf used as a
target in MWIS weights – i.e. as if the samples were sampled directly from pixel j –
writes:

pj→j
(
x̄j
)
= pj

(
x̄j
) ∣∣∣T′j→j

(
x̄j
)∣∣∣−1

︸ ︷︷ ︸
=1

=
n

∏
k=0

pj
(
xj,k
)

(9.12)

9.1.3 Computing path suffix

After finding a base pivot point and constructing the possible prefixes by shifting all
events along the base prefix, we can evaluate direct and indirect illumination at once
for all cameras with successful shifts.

Direct illumination

The direct illumination part is simple in the sense that sampling light sources does
not generally depend on prefix directions, using for example next event estimation.
We hence apply regular light source sampling: we generate a light sample, com-
pute the common part of the contribution for all prefixes, and finally multiply it by
the scattering function and the path throughput associated to each prefix j indepen-
dently. We can further improve the results by combining multiple direct illumination
sampling techniques [Miller et al. 2019].

In case of a directional component in direct illumination, for example using path
guiding or product importance sampling, the importance sampling of the light sources
depends on the prefix directions. Hence, a single sample taken for one prefix is not
guaranteed to contribute to every other prefixes. We rather propose to use the ap-
proach described in the next section for selecting prefixes that are close to the base
prefix using the product importance pdf instead of the scattering distribution pdf.

Indirect illumination sampling

Indirect illumination is more complex. We need to sample a single scattering direc-
tion to start building the shared path suffix, but the scattering distribution function
at the pivot interaction is generally view-dependent. This is notably the case for
mostly glossy and perfect specular materials, and highly anisotropic medium phase
functions. Hence, we have to ensure that every prefix contribution is significant.
For that reason, we discard shifted prefixes whose scattering distribution function
differs too much from the base one.

The path suffix sampling process should not increase the variance of the base pixel,
nor of the target pixels. We chose to proceed with stochastic acceptance or rejection
of shifted prefixes. We accept a candidate shifted prefix if the associated scattering
distribution at the pivot point is similar to that of the base prefix (Figure 9.2). Doing
so requires to compare scattering distributions, which is a difficult problem.

We first proposed an ad-hoc similarity heuristic [Fraboni et al. 2019] only designed
for surface materials that gave good results at selecting similar bsdf. However, we
found a more robust and generic approach using a true statistical distance. Thus,
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FIGURE 9.2 – At the pivot point, the scattering function of all prefixes should be similar
to the base one to avoid increasing the variance. We use an approximate measure of the
shared volume of both distributions (hatched region) to accept or reject the prefix. Our

approximation handles both surface and volume scattering distributions.

we use an acceptance probability based on a discrete total variation (TV) approxi-
mation [Fraboni et al. 2022] between pairs of scattering distributions. This TV ap-
proximation is evaluated on the fly and produces a well-defined distance for general
distributions, including any bsdf and phase function. We evaluate the TV distance
on a small set of directions {ωi}i, and their density for both distributions, before
normalizing both discrete pdf sets and computing the approximate TV distance as:

TV(p, q, {ωi}i) =
1
2 ∑

i

∣∣∣∣
p(ωi)

∑k p(ωk)
− q(ωi)

∑k q(ωk)

∣∣∣∣ (9.13)

This approximation is inexpensive for a small number of directions. In practice, we
use two directions chosen according to the type of scattering distribution at the pivot
interaction. For surface interactions, we use the mirror directions of both viewing
directions, that is the peak of the distribution in Cook-Torrance microfacet mod-
els [Cook and Torrance 1982]. For strong retroreflective surfaces, we can use the
viewing directions directly. For medium interactions, we use the forward directions
of both viewing directions if the phase is forward scattering, and the backward di-
rections in case of backward scattering, that are the peaks of the distribution.

This approximation overestimates the true TV distance but gives correct estimates
for rough single and bi-layered materials (i.e. rough plastics, conductors, dielectrics,
coatings) and phase functions with varying anisotropy.

We compare every candidate prefix to the base prefix and reject those with large
TV distances. The acceptance probability of a candidate prefix reads: Pi→j = 1 −
TV

(
pi, pj, {ωk}k

)
and is further used to compute the MWIS weights. In practice,

this random selection does not introduce noticeable fireflies, since paths are rejected
when distributions mismatch. To avoid unnecessary computations, this test can be
performed before the null interactions shift. To finalize the suffix, a direction is sam-
pled through the uniform mixture of scattering distributions associated to the ac-
cepted prefixes, and the remaining part of the suffix is built by regular path tracing
as it is view-independent.

As stated in the preceding section, a very similar approach could be used to select
prefixes in case of a direct illumination technique that is view dependent (e.g. prod-
uct importance sampling). This could be done by replacing the scattering pdf by the
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modified pdf taking into account light sources into the total variation approxima-
tion. Additionally, the discrete set of directions chosen to evaluate the approxima-
tion should take into account the peaks of the distributions.

9.1.4 Robust computation of MWIS weights

After generating path prefixes and their associated Jacobians, we compute MWIS
weights for each of them. We compute the weights at the first visible interaction
once and use them to accumulate a single contribution for both direct and indirect
illumination. This allows us to use a single image buffer. To avoid precision issues
we re-write MWIS weights in term of ratios of pdfs and Jacobians. In practice, we
compute these ratios event per event as a chain is transformed, since the ratios of
final pdfs may suffer from precision issues due to large pdfs in dense heterogeneous
volumes. Denoting wi→j(x̄j) the MWIS weight for path x̄j in pixel j that results from
transforming path x̄i from pixel i, we obtain a more numerically stable expression:

wi→j(x̄j) =
pi→j(x̄j)

∑k pk→j(x̄j)
·

pj→j(x̄j)

pi→j(x̄j)

=
ciqi(x̄i)|T′i→j|−1

∑k ckqk(x̄k)|T′k→j|−1 ·
cjqj(x̄j)|T′j→j|−1

ciqi(x̄i)|T′i→j|−1

=

cjqj(x̄j)|T′j→j|−1

ciqi(x̄i)|T′i→j|−1

∑k
ckqk(x̄k)|T′k→j|−1

ciqi(x̄i)|T′i→j|−1

(9.14)

The above equation reduces to a simple form with a common denominator for all
prefixes using the chain rule |T′a→b| · |T′b→c| = |T′a→c| and the identity |T′a→a| = 1:

wi→j(x̄j) =

cjqj(x̄j)|T′j→j|−1

ciqi(x̄i)|T′i→j|−1

∑k
ckqk(x̄k)|T′k→k |−1

ciqi(x̄i)|T′i→k |−1

=

cjqj(x̄j)

ciqi(x̄i)
· |T′i→j|

∑k
ckqk(x̄k)
ciqi(x̄i)

· |T′i→k|

=

pj→j(x̄j)

pi→j(x̄j)

∑k
pk→k(x̄k)
pi→k(x̄k)

(9.15)

We thus efficiently compute and sum up the ratios of source and target pdf multi-
plied by the Jacobian during the prefix shift step for each candidate pixel. We finally
compute MWIS weights when adding sample contributions to the image buffer nor-
malizing the ratios by the sum of ratios.

9.1.5 Pixel accumulation

The complete pixel MWIS estimator averaging n samples writes:

Ĩk,n =
∑n

i=1 wj→k(x̄k,i)
fk(x̄k,i)

pk→k(x̄k,i)

∑n
i=1 wj→k(x̄k,i)

(9.16)
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where k denotes the pixel being integrated, i the sample index, and j the index of the
base pixel that generated the path prefix. In practice, instead of accumulating the nu-
merator and denominator separately we compute an incremental (online) weighted
mean:

Ĩk,n = Ĩk,n−1 +
wj→k(x̄k,n)

∑n
i=1 wj→k(x̄k,i)

(
fk (x̄k,n)

pk→k (x̄k,n)
− Ĩk,n−1

)
(9.17)

where each channel red, green and blue of the image buffer directly stores its mean
and the sum of MWIS weights is stored in the alpha channel. This allows us to
preview the final render directly on the GPU by updating a single RGBA openGL
texture.

9.2 Discussion

Several design choices were made in our construction.

We prefer to operate with a single image buffer per camera, hence requiring the
prefix selection step to ensure that every prefix receive a significant contribution.
Another approach would be to store the direct and indirect illumination estimators
in two separate buffers. In this way, we could compute different MWIS weights for
direct and indirect illumination and could possibly remove the prefix selection step.
The former weight for direct illumination would be identical to the one we derived
in this section, hence taking into account every interactions until the pivot point.
The latter weight for indirect illumination could also take into account the bsdf or
the phase function making the prefix selection unnecessary to reduce the variance.
Still, the path prefixes with very low contributions after transforming from one base
prefix should be rejected as they increase the overhead of the method for very small
or no gain.

We choose to use the optical depth shift mapping for two reasons: first the distri-
bution of shifted samples is better than the raw depth shift mapping since it takes
into account the local majorant of the medium. Second, the associated Jacobian is
very similar to the raw depth shift mapping, composed of ratios of values, which is
less costly than the primary sample shift mapping that requires several exponentials
evaluation. Additionally, the distribution of the shifted samples using the primary
sample shift mapping is very close to the optical depth shift distribution, hence their
quality of results are indistinguishable.

9.3 Conclusion

We detailed the building blocks of our method with the associated computations to
build a multi-view pixel estimator with volumetric path reuse. In the next chapter
we present our implementation and the results of this method.
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Chapter 10

Practical multi-view rendering
Implementation and results

In this chapter we detail the implementation of our multiple view rendering frame-
work described in chapter 9. We aim at making a practical implementation for multi-
view rendering with the same constraints as in a production pipeline. Thus, we fo-
cus on usability, genericity and simplicity. Our work should respect the following
principles:

• Reuse paths as much as possible. In order to save significant computational
time we aim at reusing subpaths as much as possible, since path construction
(i.e. intersection / visibility tests) and shading operations are costly in a path
tracer. Hence, every base sample is transformed and reused if possible.

• Handle arbitrary surfaces or volumes. The technique should be as generic as
possible and should work for any material in order to handle real productions
use-cases, which is the case thanks to a combination of several shift mappings.

• Simple to implement in a path tracer. As a complex implementation is not
likely to be useful in production, our work only decouples the first bounce on
the scene and then falls back to regular path tracing.

• Compatible with existing techniques. Our work should be compatible with
classical techniques for direct and indirect illumination since a lack of flexi-
bility is not acceptable in production. As previously stated, our framework
supports any combination of direct and indirect illumination techniques.

• Efficiency. Our method should be fast and use the minimum amount of re-
quired memory. We avoided precomputations in our methods, which only
require cheap on-the-fly operations that readily integrate in a path tracer. Ad-
ditionally our multi-view technique requires a single image buffer per camera.

10.1 Implementation details

We implemented our method in a custom renderer that includes a state of the art
volumetric integrator using the spectral heterogeneous volumetric path sampling
approach of Miller et al., with MIS between direct illumination techniques (i.e. light
sampling+ratio tracking and bsdf sampling+delta tracking), and adaptive sampling
of the image space to fill in undersampled areas. We detail specific aspects in the
following sections.
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10.1.1 Adaptive sampling

Sharing paths between cameras leads to inhomogeneous sample density over the
film due to occlusions and our selective path reuse, as illustrated in Figure 10.1. This
is a classical drawback when reusing paths as pixels lacking samples cannot be pre-
dicted. For this reason we use a multi-pass adaptive strategy to fill in undersampled
areas.

Our adaptive refinement pipeline [Fraboni et al. 2019, 2022] improves on previous
adaptive refinement approaches based on several observations: we combine a total
variation noise estimate [Heitz et al. 2018, sect. 4.2] that is good at finding perceptible
noise, that is fed with an f-divergence error criterion [Rigau et al. 2003], that is good at
finding difficult and undersampled areas of the image more robustly than variance
estimates.

We first proceed with several pilot iterations which distribute samples uniformly
over all pixels. We then compute an error estimation based on the square root of χ2

divergence [Rigau et al. 2003, Eq. 29] for each pixel. Let m1 denotes the samples first
moment (the sum of sample contributions), m2 the samples second moment (the sum
of sample squared contributions) and n the number of samples, the error criterion
associated with pixel j writes:

αj =

√
n ·m2 −m2

1

n2 (10.1)

Due to the need of the per pixel second statistical moments an additional buffer is
required for adaptive sampling. Next, we evaluate a total variation noise estimate of
the error gradient, similar to the metric proposed by Heitz et al. in Eq. 29. The noise
estimate is computed using integrals of the magnitude of second order derivatives
of the error criterion along m uniformly rotated lines li traversing the pixel j:

β j =
1
m

m

∑
i=1

∫
li

∣∣∣∣‖d2α(li(t))‖
dt2

∣∣∣∣dt (10.2)

In practice, we strictly follow Heitz et al. construction: we use m = 4 asterisk shaped
lines with a random per-pixel offset angle, a random radius around pixel j, and
estimate the integrals using second order finite differences. Finally, the resulting per
pixel criterion β j is used to adaptively distribute a sample budget over the image
plane similarly to several production renderer [Fascione et al. 2018, Christensen et al.
2018, Burley et al. 2018]. This scheme is iterated until a time limit, a number of
iterations or a target error is reached.

The adaptive scheme both redistributes samples in under sampled areas, making
them imperceptible, and slightly reduces the noise in areas where error is impor-
tant. In fact, the noise estimation highlights noisy areas and high gradients, which
have been proved to be correlated with the variance [Manzi et al. 2016]. We empir-
ically found that our criterion works best among several refinement criteria, such
as variance estimates, f-divergences estimates alone, noise estimates alone, standard
deviation estimates and relative standard deviation estimates. Nevertheless, other
adaptive error criteria which focuses on undersampled areas could be used.
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10.1.2 Core engine

The core source code is composed of 35000 lines of C++ all made during the course
of this PhD. It has been used to render thousands of hours of images and all fig-
ures from our publications [Fraboni et al. 2019, 2022]. We showcase some renders
produced by our renderer in Figure 10.2. It includes the following list of features:

• Integrators

– Unidirectional volumetric path tracing integrator (vpt) [Miller et al. 2019]

– Multiple view volumetric path tracing integrator (mvpt) and its adaptive
version (amvpt) [Fraboni et al. 2022]

– Multiple view path tracing integrator [Fraboni et al. 2019] (extended to
volumetric support for comparisons)

– Depth of field supersampling1 integrator (surfaces only)

– Discrete path reusing integrator (surfaces only) [Bekaert et al. 2002]

– Miscellaneous: Ambient occlusion, Normal, Light tracing

• Materials

– smooth models: diffuse reflection/transmission, conductor, dielectric with
absorption, plastic with absorption, bi-layered model (coating and sub-
strate) with absorption

– rough models: diffuse reflection/transmission, conductor, dielectric with
absorption, plastic with absorption, bi-layered model (coating and sub-
strate) with absorption

– microfacet models Beckmann and GGX

– energy compensation [Turquin 2017]

– mix BSDF

– thin film interferences

– BSDF validation methods [Heitz 2014]

– BSDF similarity methods [Fraboni et al. 2022]

• Direct illumination techniques

– BSDF sampling

– Next event estimation [Shirley and Wang 1994]

– Equiangular sampling [Kulla and Fajardo 2012]

– Combinations with MIS [Veach and Guibas 1995, Miller et al. 2019]

– RIS with CDF inversion or reservoirs (ReSTIR) [Talbot et al. 2005, Bitterli
et al. 2020]

• Homogeneous and heterogeneous participating media

– Spectral absorption, scattering and emission support

1We extended our path reuse work to handle importance sampling of the circle of confusion. This
has been proposed independently from [Schwarzhaupt 2019] and is summarized in Appendix C.
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– Density functions

* Uniform and 3D textures density

* Sparse voxel density support with NanoVDB [Museth 2021]

* Procedural 3D noise density (value, perlin, simplex, ridged) and 4D
for animated media support with FastNoise [Peck 2020, Musgrave
et al. 1994]

– Phase functions

* Uniform

* Henyey-Greenstein

* Mie approximation with numerical CDF inversion

– Transmittance estimators

* Spectral delta tracking and spectral ratio tracking [Miller et al. 2019]

* Unbiased ray marching approximation [Kettunen et al. 2021]

• Textures and UV mapping

• Depth of field with thin lens model [Kolb et al. 1995]

• Time integration for motion blur

• Fast ray - scene intersection with Intel Embree [Wald et al. 2014]

• Progressive rendering with OpenGL preview

• Adaptive rendering with various error criteria [Kajiya 1986, Rigau et al. 2003,
Heitz et al. 2018, Fraboni et al. 2019, 2022]

10.1.3 Toy engines

We additionally built two toy renderers based on a minimalist codebase [Georgiev
et al. 2012, SmallVCM]:

• SmallMVPT a minimalist multi-view renderer [Fraboni et al. 2019, https://
github.com/bfraboni/SmallMVPT] (surfaces only) which accompanies the ar-
ticle.

• SmallMVVPT a minimalist multi-view volumetric renderer (surface + homo-
geneous volumes) which is unpublished yet.

Note that the second one served as proof-of-concept before starting the complete
heterogeneous media support in the core engine.
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mvpt w/o adaptive refinement amvpt w/ adaptive refinement

FIGURE 10.1 – We shows the samples repartition in both mvpt (left) and amvpt (right) on
the anisotropy clouds scene, the varying roughness cubes scene and on the mixed cloud and
specular cubes scene Figure 10.7. When the anisotropy of volumes increases less paths are
reused between cameras due to our similarity test between scattering distributions, leading
to undersampled areas (top row left – dark cubes in the front row). When the roughness of
surfaces decreases the less paths are reused between cameras due to our similarity test be-
tween scattering distributions, leading to undersampled areas (middle row left – dark cubes
in the back row). Specular surfaces can not benefit from path reuse without using special
shifts for specular chains [Jakob and Marschner 2012, Kettunen et al. 2015], leading to un-
dersampled areas (bottom row left – dark cubes in the middle row). Note that our adaptive
refinement strategy (right column) redistributes samples in these dark areas making them

imperceptible.
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FIGURE 10.2 – Showcase of the rendering engine. The dragon model courtesy of Stanford
Computer Graphics Laboratory. The spaceship model courtesy of thecali. Lucy model cour-
tesy of Stanford Computer Graphics Laboratory. The shogun model courtesy of Zeroswat.
The Disney Cloud Data Set courtesy of Walt Disney Animation Studios. The sponza atrium
model courtesy of Marko Dabrovic. Zero day model courtesy of Beeple. The pool table

model courtesy of Chamouleau.
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10.2 Results

We illustrate our rendering technique on several applications, including the render-
ing of lenticular images, lightfield images, holographic stereograms, virtual walk-
through in static scenes. We also designed several test scenes with varying materials
and camera setups to evaluate our algorithm under different conditions and to eval-
uate our adaptive refinement. Finally we rendered several videos of dynamic scenes
including motion blur. In the following examples, except for the Disney cloud, all
volumes are procedural and made from ridged multifractal or simpler functions
[Musgrave et al. 1994].

10.2.1 Applications

Lenticular images. We print lenticular images that consist of 10 views with small
baseline and horizontal parallax (Figure 10.3, top). A lenticular sheet of 60 lenticles
per inch was used, images were printed in 600 dpi, leaving 10 views per lenticle.

Lightfield images. Our lightfield display – a 8K Looking Glass display – renders
horizontal parallax light fields consisting of 45 views (Figure 10.3, bottom).

FIGURE 10.3 – Top row. We print lenticular images using 10 views. Bottom row. Our light-
field display renders images consisting of 45 views. We demonstrate our method on 3 light-

field images.

Holographic stereograms. Holographic stereograms are holograms that are printed
using many ordinary renderings of the same scene (as opposed to rendering an inter-
ference pattern). Cameras are typically positioned extremely close to the object, and
baseline is very small. Each rendered image is displayed on a spatial light modula-
tor, traversed by a laser light beam, and a system of lenses prints its optical Fourier
transform on a tiny part of a sensitive film, called hogel. The grid of hogels is com-
posed of 114× 171 views. Rendering 114× 171 ≈ 20k views at once would be in-
tractable due to memory limits. In practice, we rendered tiles of 7× 7 views with
our method. A generated monochrome hologram can be seen in Figure 10.4 using a
prototype printer.
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FIGURE 10.4 – Hologram printed from 114× 171 views of the Disney cloud rendered via
tiles of 7× 7 views.

Virtual walkthroughs. Camera paths in static scenes can also benefit from our
method. Our supplementary video showcases a walktrough over the dragon scene
with 100 frames, each considered as one view.

Video motion blur. We demonstrate the benefit of our method on a sequence of an
animated cloud. In that case, the temporal filtering (i.e., motion blur) reuses paths
from views that are temporally adjacent. We use a filter size of 5 frames.

Stereo pairs. Note that our methods also works in stereo rendering setups, how-
ever the gain is of less visual interest than with other multi-view setups with more
cameras. In fact, with only two times more samples the error is at most divided by
half. In our tests, the gain with stereo rendering depends on the scenes and cam-
era overlapping regions but is at most 1.7 times more samples a equal time on a
complete diffuse scene.

10.2.2 Comparisons

Full render statistics and equal-time comparisons for all our results are provided
in Table Figure 10.9, while rendered images with comparison to single-view path-
tracing (vpt) can be seen in Figure 10.5, and comparisons to Fraboni et al. [Fraboni
et al. 2019] and Mendez et al. [Méndez Feliu et al. 2006] are shown in Figure 10.8.
We demonstrate the ability of our adaptive refinement strategy (amvpt) to fill in
the undersampled regions that occurs with the (mvpt) integrator in Figure 10.7. In
Figure 10.6 we demonstrate how the relative mean square error (relMSE) and sym-
metric mean absolute percentage error (SMAPE) decrease as we increase the number
of views.
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Dragon cloud sequence (45 frames)

reference
SMAPE
relMSE

Equal time - 75 min

mvpt 16 spp
0.011 (0.52x)
0.001 (0.27x)

vpt 64 spp
0.021 (1.0x)
0.003 (1.0x)

Equal time - 18 min

mvpt 2 spp
0.021 (0.5x)
0.003 (0.26x)

vpt 16 spp
0.042 (1.0x)
0.013 (1.0x)

2.0 20.0 Time (m)
0.01

0.04

Er
ro
r
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PE

)

Disney cloud sequence (45 frames)

reference
SMAPE
relMSE

Equal time - 350 min

mvpt 16 spp
0.027 (0.8x)
0.023 (0.78x)

vpt 242 spp
0.034 (1.0x)
0.029 (1.0x)

Equal time - 90 min

mvpt 2 spp
0.047 (0.83x)
0.042 (0.81x)

vpt 64 spp
0.056 (1.0x)
0.051 (1.0x)

1.0 44.0 Time (m)

0.03

0.08

Er
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r
(S
M
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)

Spot (16 frames)

reference
SMAPE
relMSE

Equal time - 21 m

mvpt 64 spp
0.004 (0.56x)
0.0002 (0.31x)

vpt 256 spp
0.008 (1.0x)
0.001 (1.0x)

Equal time - 6 m

mvpt 16 spp
0.008 (0.53x)
0.001 (0.28x)

vpt 64 spp
0.016 (1.0x)
0.002 (1.0x)

1 10.0Time (m)
0.004

0.013
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r
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Shogun cloud sequence (7 frames)

reference
SMAPE
relMSE

Equal time - 9.5 h

mvpt 16 spp
0.053 (0.76x)
0.025 (0.64x)

vpt 40 spp
0.07 (1.0x)
0.039 (1.0x)

Equal time 2.5h

mvpt 4 spp
0.099 (0.82x)
0.071 (0.74x)

vpt 12 spp
0.12 (1.0x)
0.095 (1.0x)

28.0 74.0 Time (m)
0.05

0.09
Er
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r
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)

FIGURE 10.5 – Side by side comparison of our technique (mvpt) against independent volu-
metric path tracing (vpt) on different sequences.

Spot

reference
SMAPE
relMSE

64 cameras - 350 s

mvpt 1 spp
0.017 (0.57x)
0.003 (0.32x)

vpt 17 spp
0.031 (1.0x)
0.008 (1.0x)

16 cameras - 90 s

mvpt 1 spp
0.033 (0.54x)
0.01 (0.32x)

vpt 5 spp
0.062 (1.0x)
0.031 (1.0x)

4 cameras - 23 s

mvpt 1 spp
0.076 (0.71x)
0.044 (0.6x)

vpt 2 spp
0.107 (1.0x)
0.073 (1.0x)

Dragon cloud

reference
SMAPE
relMSE

45 cameras - 350 s

mvpt 1 spp
0.03 (0.45x)
0.007 (0.22x)

vpt 7 spp
0.066 (1.0x)
0.03 (1.0x)

15 cameras - 50 s

mvpt 1 spp
0.048 (0.46x)
0.017 (0.25x)

vpt 3 spp
0.104 (1.0x)
0.066 (1.0x)

5 cameras - 10 s

mvpt 1 spp
0.084 (0.65x)
0.047 (0.5x)

vpt 2 spp
0.128 (1.0x)
0.094 (1.0x)

FIGURE 10.6 – Comparisons with variable number of cameras. Increasing the number of
views results in lower error at equal rendering time.
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Spaceship (4 frames)

reference
SMAPE
relMSE

Equal time - 240s

mvpt
0.022 (0.93x)
0.016 (0.97x)

amvpt
0.019 (0.79x)
0.012 (0.76x)

vpt
0.024 (1.0x)
0.016 (1.0x)

Di�erence with ref. (x10)

mvpt
0.03 (0.94x)
0.023 (0.97x)

amvpt
0.025 (0.8x)
0.018 (0.75x)

vpt
0.031 (1.0x)
0.023 (1.0x)

1.01.0 Time (m)

0.019

0.015

Er
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r
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PE

)

Cubes (7 frames)

reference
SMAPE
relMSE

Equal time - 400s

mvpt
0.029 (0.82x)
0.021 (0.89x)

amvpt
0.03 (0.84x)
0.018 (0.77x)

vpt
0.036 (1.0x)
0.023 (1.0x)

Di�erence with ref. (x5)

mvpt
0.029 (0.82x)
0.021 (0.89x)

amvpt
0.03 (0.84x)
0.018 (0.77x)

vpt
0.036 (1.0x)
0.023 (1.0x)

3.0 5.0 Time (m)

0.024

0.02

Er
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r
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)

Cubes (7 frames)

reference
SMAPE
relMSE

Equal time - 400s

mvpt
0.023 (0.84x)
0.004 (0.74x)

amvpt
0.023 (0.86x)
0.004 (0.72x)

vpt
0.027 (1.0x)
0.006 (1.0x)

Di�erence with ref. (x10)

mvpt
0.023 (0.84x)
0.004 (0.74x)

amvpt
0.023 (0.86x)
0.004 (0.72x)

vpt
0.027 (1.0x)
0.006 (1.0x)

3.0 4.0 Time (m)

0.011
0.01
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r
(S
M
A
PE

)

Cloubes (5 frames)

reference
SMAPE
relMSE

Equal time - 600s

mvpt
0.019 (0.71x)
0.003 (0.53x)

amvpt
0.02 (0.76x)
0.003 (0.57x)

vpt
0.026 (1.0x)
0.005 (1.0x)

Di�erence with ref. (x10)

mvpt
0.019 (0.71x)
0.003 (0.53x)

amvpt
0.02 (0.76x)
0.003 (0.57x)

vpt
0.026 (1.0x)
0.005 (1.0x)

3.0 5.0 Time (m)

0.0150.015
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r
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FIGURE 10.7 – We illustrate our adaptive refinement (amvpt). The top row shows a scene
with isotropic phase function and difficult-to-render purely refractive dielectrics and glossy
metals. The second row shows clouds of increasing anisotropic phase function, from left to
right and top to bottom the mean cosine parameter g of the phase function varies from 0
to 0.98, we expect less reuse in strongly anisotropic media. The third row shows cubes of
increasing linear roughness [Burley and Studios 2012], from left to right and top to bottom
the parameter of the BSDF varies from 0.001 to 0.98, we expect less reuse on low roughness
surfaces (mirror-like). The botton row shows perfectly specular dielectric cubes in a scene,
for which we expect no reuse. In all cases, the refinement helps distribute samples in un-
dersampled and difficult areas. The adaptive method has a slight overhead due to error
and sample maps evaluation, and distributes less samples in regions where the multi-view

already performs well.
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Cloubes (7 frames)

reference
SMAPE
relMSE

Equal time - 800s

mvpt
0.018 (0.76x)
0.005 (0.66x)

amvpt
0.019 (0.8x)
0.006 (0.7x)

vpt
0.024 (1.0x)
0.008 (1.0x)

Fraboni et al.
w/ selection
0.023 (0.98x)
0.008 (0.97x)

Mendez et al.
full reuse

0.026 (1.09x)
0.01 (1.26x)

3.0 5.0 Time (m)

0.0150.015

Er
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r
(S
M
A
PE

)

reference
SMAPE
relMSE

Di�erence with ref. (x10)

mvpt
0.018 (0.76x)
0.005 (0.66x)

amvpt
0.019 (0.8x)
0.006 (0.7x)

vpt
0.024 (1.0x)
0.008 (1.0x)

Fraboni et al.
w/ selection
0.023 (0.98x)
0.008 (0.97x)

Mendez et al.
full reuse

0.026 (1.09x)
0.01 (1.26x)

FIGURE 10.8 – We compare our methods (mvpt) and its adaptive version (amvpt) that use
our MWIS estimator, to state of the art multiple view rendering estimators [Fraboni et al.
2019, Méndez Feliu et al. 2006] that use MIS and which assume per pixels normalization
terms constant. Note that we used our new shifts for transforming prefixes in participating
medias, and our new similarity distance between scattering distribution as path rejection
criterion, to replace the ad-hoc heuristic from Fraboni et al. method. Reusing all prefixes
disregarding the variation of the Jacobians and the scattering function similarity, akin to
Mendez et al. method (dark blue curve and insets), results in strongly visible fireflies and
bias that precludes convergence. Although the rejection proposed by Fraboni et al. (red
curve and insets) limits the degradations due to large variations of Jacobians, it still exhibits
some fireflies and a visible bias that do not vanishes as the number of samples increases. On
the contrary our multi-view (mvpt) and adaptive (amvpt) solutions exhibit lower levels of
noise and no visible bias (nor in the curve slopes) or artifacts even at low sample count and

performs better than independent path tracing (vpt).

Scene Multi-View Single-View
MSE Time Native SPP Total SPP # views MSE Time SPP Resolution

Shogun 1 (7 frames) 0.025 9.5h 16 94 7 0.039 9.5h 40 1280x720
Shogun 1 (lenticular) – 15.5h 16 122 10 – – – 1280x720

Shogun 1 (video) – 55h 8 – 50 – – – 1280x720
Spot 2 (4 cameras) 0.044 23s 1 3 4 0.073 23s 2 1280x720
Spot 2 (16 cameras) 0.01 90s 1 15 16 0.031 90s 5 1280x720
Spot 2 (light field) 0.003 350s 1 52 64 0.008 350s 17 1280x720
Spot 2 (lenticular) 0.001 7m 16 – 10 0.002 7m 64 1920x1080

Dragon 2 (5 cameras) 0.047 10s 1 5 5 0.094 10s 2 1280x720
Dragon 2 (15 cameras) 0.017 50s 1 13 15 0.066 50s 3 1280x720
Dragon 1 (light field) 0.001 75m 16 580 45 0.003 75m 64 1280x720
Cloud 2 (lenticular) 0.011 45m 32 – 10 – – – 1920x1080
Cloud 2 (light field) 0.023 350m 16 290 45 0.029 350m 242 1280x720
Cloud 3 (hologram) 0.009 201d 4 80 19494 0.011 201d 64 1920x1080

Motion blur cloud 1 (video) – 21h 16 48 20 – 21h 20 1280x720
Dragon flyover 2 (video) 0.0011 96m 4 – 100 0.0014 96m 62 1024x640

FIGURE 10.9 – Equal time comparison for various scene setups. Compute setups: 1 Desktop
computer 1, 2 desktop computer 2, 3 compute cluster with 424 jobs of 7x7 camera tiles.
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10.3 Discussion and limitations

We discuss several specific aspects of the method that could further enrich end im-
prove the results and the current limitations of our implementation.

10.3.1 Reuse through specular interfaces: specular manifold techniques

Our method is useful only on non truly specular surfaces, since no reuse at the first
real interaction can occur in such situations. This results in undersampled regions
of the image and we rely on adaptive sampling to alleviate the problem.

However, solutions have been explored to transform constrained specular paths,
such as specular manifold exploration [Jakob and Marschner 2012, Zeltner et al.
2020] or techniques for direct lighting through specular chains [Hanika et al. 2015,
Weber et al. 2017, Loubet et al. 2020] and specular shifts (i.e. half vector copy) for
gradient domain rendering [Gruson et al. 2018, Bauszat et al. 2017, Manzi et al. 2016,
2015, Kettunen et al. 2015, Lehtinen et al. 2013]. Our shift mappings for null scatter-
ing chains could be combined with such techniques, to handle specular manifold ex-
ploration, independently from our contributions as illustrated in Figure 10.10. Such
combination could further reduce the sample inhomogeneity in multi-view images
in presence of specular or near specular surfaces.

FIGURE 10.10 – Multiple view rendering with reuse at specular interfaces. On the left spec-
ular manifold exploration is used after disconnecting the lens point from the base camera
(red) to the target lens to maintain the specular constraint of the prefix chain (blue). On the
right half vector copy is used after connecting the pivot point to the target lens to continue
through specular surfaces, and reconnecting once two consecutive diffuse vertices has been

found.

10.3.2 A-priori versus a-posteriori methods: denoising

A posteriori methods have also been proposed in the context of spatio-temporal
sequences [Vogels et al. 2018, Zimmer et al. 2015] to reduce variance (or noise).
However, they require exporting a large number of decomposed layers, which first
requires implementing exporters for example to compute specular motion vectors
[Zimmer et al. 2015], and second would further increase the memory footprint of
our multi-view method that already stores every image buffer. Additionally they
are not designed in essence for arbitrary camera locations, but rather for consecutive
frames of animated sequences, hence can not be employed in all cases our algorithm
covers. Still our method could benefit from a spatio-temporal denoising post pro-
cessing pass.
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Other spatial denoising methods [Áfra 2018, Zwicker et al. 2015, Parker et al. 2010,
Boughida and Boubekeur 2017] can be applied in a final pass to remove the remain-
ing noise, similarly to path tracing renders, further benefiting of the reduced vari-
ance due to our path reuse. In fact, the results of our methods attain a desired noise
level faster than classic single frames approaches.

10.3.3 Bias impact

Our MWIS estimators is biased and consistent. In practice we did not notice visible
bias at fixed sample budget in comparison to single frame path tracing on scenes
of different complexity. This is due to two reasons: first since we use our estimator
for path reuse purposes, the number of samples per pixel quickly increases, hence
rapidly reducing the supposedly visible bias as the bias vanishes in O

(
n−1). Second,

the bias is supposed to be visible at low sample count (less than 50). However, the
complex light transport integrand results in noisy estimates that in practice hide the
bias. In fact, the mean squared error of an estimator is the sum of the variance and
the squared bias, if the bias is negligible w.r.t the variance then it has very low impact
on the final error.

10.3.4 Performances

Our research prototype is designed as proof of concept and is not representative of
the true performance that an optimized version could reach. Hence, there is still
room for improvements.

Cache coherency

Due to the high number of image buffers, using adequate structures (i.e. sample
queues) to maintain cache coherency while writing contributions could further im-
prove the performances of our method. Currently this is the main performance bot-
tleneck we encounter that precludes our implementation to get closer to the theo-
retical efficiency of the method (n cameras→ n times more samples at equal time).
Still, the gain of our method is significant with our current implementation.

Shift mapping complexity

Our shift mappings of null scattering chains requires storing the prefix chains for ev-
ery visible and selected pixel. In dense heterogeneous mediums the chains of events
may be very long. Storing and shifting such long chains can be costly in practice and
of limited gain if the suffix path built after is short. For example, integrating direct
illumination with our multi view method works fine but may converge slower than
the classic frame by frame approach due to the overhead of the shifts. For that rea-
son, it could be favorable to detect the areas where mvpt is less efficient to fall back
to single frame vpt.

10.4 Conclusion

In this section we presented the results of our multi view rendering framework com-
bining our contributions: new volumetric shift mappings, a new MWIS estimator, a
new similarity metric for arbitrary distributions and a new adaptive refinement cri-
terion.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI103/these.pdf 
© [B. Fraboni], [2021], INSA Lyon, tous droits réservés



106 Chapter 10. Practical multi-view rendering – Implementation and results

We showed that our method allows to render complex scattering in participating
media in an efficient way by shifting and sharing the construction of difficult paths
across views. Our multi view method improves the results by an order of magnitude
in comparison to classical frame by frame volumetric path tracing when the scene
benefits from reuse. This signify that we reach a desired quality faster, or that our
results exhibit less noise at equal time.
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Chapter 11

Conclusion

We conclude this dissertation with a summary of our contributions and the doors
they open.

11.1 Self-normalized multi strategy estimators

As a first contribution, we introduced a new family of Monte Carlo estimators, Multi-
ple Weighted Importance Sampling, that builds upon two existing family of estimators,
the well known Multiple Importance Sampling and the less known Weighted Importance
Sampling. We combined the best of both methods to overcome some limitations of
unbiased MIS estimators in some multiple strategies scenarios. We showed that our
MWIS estimator can effectively reduce the variance of the combination of arbitrary
techniques (mixed poor and good) when MIS cannot.

In practice, we use a target technique that is known to be a good sampling technique,
to reweight the contributions of the different strategies as if they were directly sam-
pled using the target strategy. This is even more efficient when one of the source
strategies is also the chosen target. Furthermore we show that our estimator simply
reduces to a weighted mean of contributions, which is as efficient to evaluate as a
classic mean for unbiased Monte Carlo estimators. We exploit the benefits of our
estimator in a practical rendering application that suffers from variance or require
complex extra work with MIS estimators.

Our MWIS estimator is biased and consistent, but in our experiments the bias is im-
perceptible even at low sample counts, in which case the error is dominated by the
variance or the bias has vanished thanks to the high number of reused contributions.
Even though our estimator is biased, we believe that the combination of MIS and
WIS is a powerful tool that could benefit to other applications. In fact, ratio estima-
tors have already proved their efficiency in several rendering applications. Finding
new applications that could benefit from MWIS is left for future investigation. Still,
an unbiased version of such estimator, that do not require stochastic resampling or
additional random walk is also an interesting area of future work.

11.2 Path reusing in presence of heterogeneous media

In the second part of our contributions, we unify surfaces and volumetric path reuse
through new shift mappings in presence of arbitrary media.

Our shifts are designed to ensure that a valid deterministic bijective mapping exists
between a source and a target chain of medium interactions. Furthermore, they are
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simple to evaluate with their Jacobian in closed form. However, they do not perfectly
reproduce the desired distributions of events on the target chain. Hence, finding
efficient mappings of better quality is an interesting direction for future work.

Our mappings straightforwardly combines with existing mappings to allow richer
path transformations. This is a step towards extending classical path reusing meth-
ods to volumetric rendering with null scattering methods. Notably, extending gradient-
domain rendering to null scattering is currently in course of research as a direct
application of our shift mappings, since this method cannot currently handle arbi-
trary heterogeneous media. In fact, constructing correlated base and offset paths to
sample image gradients in presence of heterogeneous media requires shifting the
null collisions encountered on the base path towards the offset path, which can be
done using our mappings. Similarly, other path reusing methods, such as discrete
path reusing and depth of field supersampling, could be extended to null scattering.
Further investigations could be done to use our shift mappings within bidirectional
methods which has been left aside during the thesis.

11.3 Practical multi-view rendering

In the third part of our contributions, we propose a practical volumetric multi view
rendering framework that builds upon our MWIS estimator and our shift mappings.
We further propose a similarity metric between scattering distributions to select the
prefixes that can share significant suffix contributions.

We implemented our method in a custom rendering engine with state of the art
methods for volumetric rendering and direct illumination. This is the first path
reusing application that handles heterogeneous media. Additionally we develop
a new adaptive sampling error criterion that correctly focuses on under-sampled
areas and noise, that classical adaptive error criteria do not achieve. We compare
our multi-view and adaptive multi-view methods to frame by frame rendering, and
improves the results by an order of magnitude on several test scenes. An open
source implementation of the method in a common open source research oriented
renderer [Jakob 2010, Nimier-David et al. 2019, Pharr 2018] could be an interesting
future work.
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Appendix A

The camera importance function

I have read several articles and path tracer implementations that uses different an-
gles or distances in the primary rays pd f and camera importance computation. This
did not help me to understand what was the terms involved, even while reading the
well-known book PBRT [Pharr et al. 2016]. I found out that other computer graphics
developers shared the same doubts in The Missing Primary Ray PDF in Path Trac-
ing. So after a bit of reading regarding camera optics and ray generation, I rewrote
the complete derivation for camera ray pdfs and importance function.

A.1 The thin lens approximation

First described in 1984 in [Cook et al. 1984], the thin lens model is a good approx-
imation for depth of field effect in rendering. But the clean derivation of the light
transport integral is not given in the paper. Later published, the derivation in [Kolb
et al. 1995] gives the equation of the radiance measured at a point x0 on the film plane
and let appear the "cosine fourth" falloff law due to the lens system (cf. Figure A.1).
Another form of the derivation (and its extension to thick lenses) is described in
[Hanika and Dachsbacher 2014], in which the falloff term is described as the change
of measure between the film area and the exit direction. Indeed, the lens system
deviates the observed direction, that is why the final density on the sensor is not
homogeneous.
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FIGURE A.1 – Lens - Image Plane configuration
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We notice that these two last references are using the same terms (cf. Figure A.1):

• d – the distance between the film point x0 and the lens point x1,

• θ0 – the angle between the direction �ω0 connecting the film point to the lens
point and the camera forward direction,

• θ1 – the angle between the exit ray direction �ω1 in the scene and the camera
forward direction.

A.2 Interaction with the lens

�ωi

�ωo

x1

O

x′1

ηlensηmedium ηmedium

≈

�ωi

�ωo

x1

O

FIGURE A.2 – The thin lens approximation

We briefly recall the assumptions defining the thin lens model:

• The thickness of the lens is neglected. The entry point and the exit point are
assumed to be the same, here x1 (cf. Figure A.2). The interaction inside the lens
is not taken into account, thus there is no geometric term G involved while
passing through the lens.

• The medium at the entry and at the exit of the lens is the same. A light ray
passing through the lens undergoes two consecutive refractions. Thus the in-
teractions involved are medium → lens at the entry then lens → medium at the
exit. Deriving Snell’s law of refraction (see [Veach 1998, chap. 5.2] and [Pharr
et al. 2016, sect. 8.2.3]) two times for two inverse interactions cancel out the
terms accounting for the change of refractive media.

• The refraction is perfect through the lens and the radiance carried by a ray is
integrally transmitted. This implies that the ray throughput and the directional
probability density are unchanged while passing through the lens.

• Given an outgoing direction �ωo, the corresponding incident direction �ωi devi-
ated by the lens system is unique (and conversely).
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A.3 Derivation of the camera importance function

The camera importance function Wj introduced by Veach [Veach 1998] hides the sen-
sor response of the camera and a filter function over exposure time and image space.
The Monte Carlo simulation of light transport involves sampling schemes and their
associated probability densities (pd f ) to compute the images. That is why in practice
the camera importance function is baked in a smart way to cancel out some terms.

We recall that integrating the camera importance function over the exit pupil point
x1 of the camera – the first real surface point in the scene usually confound on the
lens surface for thin lens model (but this is untrue for other complex lens models) –
and the exit ray direction writes:∫

A

∫
Ω

Wj(x1, ω1) cos θ1dx1dω1 (A.1)

This equation must integrate to one to respect the normalization criterion. This re-
quires canceling the cosine term between the camera forward direction and the ray
direction leaving the pupil and the probability densities that may rise from sampling
the lens point and the ray direction (defined w.r.t area times solid angle measure),
hence:

Wj(x1, ω1) =
p(x1)p(ω1)

cos θ1
(A.2)

Note that when integrating over the time dimension for motion blur in animated
scenes, we similarly take into account the time sampling pdf in the camera impor-
tance function. Assuming a simple thin lens camera model, the exit point is uni-
formly sampled over the lens surface, for which the pdf writes:

p(x1) =
1

πr2 =
1

Alens
(A.3)

where r is the lens radius. Until here [Pharr et al. 2016] describe the same equations.
However, the camera ray direction pdf is constrained by the sampled film point pdf
p(x0) and the inverse change of measure between the film and the lens given by the
following the relation:

dA = dω
cos θ

d2 ⇔ dω = dA
d2

cos θ
(A.4)

Finally the exiting ray pdf writes:

p(ω1) = p(x0)
‖x0 − x1‖2

cos θ0

=
1

Afilm

‖x0 − x1‖2

cos θ0

=
d2

Afilm cos3 θ0
given ‖x0 − x1‖ =

d
cos θ0

(A.5)

Putting pieces together we get the final form of the camera importance function as
follows:

Wj(x1, ω1) =

{
d2

Alens Afilm cos3 θ0 cos θ1
if r > 0,

d2

Afilm cos4 θ1
if r = 0.

(A.6)
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A.4 PBRT Erratum

In [Pharr et al. 2016, sect. 16.1.1], the authors provides some details about this formu-
lation which suffer from a lack of explanations and clear figures. A complete figure
of the system (see Figure A.1) is easier to understand that the split ones exposed in
the book. I noticed that authors wrongly assume θ0 = θ1 in their formulation (and
in the source code also), instead of distinguishing them. Note that the Equation A.6
reduces to the one given in [Pharr et al. 2016, section 16.1.1 equation 16.4] if and only
if:

• the film is at distance d = 1 from the lens, which is possible since it is a user
parameter of the camera model,

• the lens radius is r = 0, hence θ0 = θ1, which does not hold if a thin lens is
used and rise a division by zero in their equation.

A.5 Code

We reproduce the corrected code that returns the camera importance value for a ray
given as parameter.

// compute importance for a given ray and return the associated pixel
float we(const Ray& ray, vec2& pixel) const
{

// check if ray belongs to the time window
if( ray.time() > close || ray.time() < open ) return 0.f;

// check if ray points out of the camera
Point p_lens = w2c(ray.origin());
Vector w_lens = w2c(ray.direction());
if (w_lens.z >= 0) return 0;

// find point of focus
float t_focus = std::abs(z_focus / w_lens.z);
Point p_focus = p_lens + t_focus * w_lens;

// find pixel position
Point p_film = c2r(p_focus);
pixel = vec2(p_film.x, p_film.y);

// return zero importance for out of bounds points
if( !valid(pixel) ) return 0;

// direction between camera origin, film point and point of focus
Vector w_focus = normalize(Vector(p_focus));

// find true film point in camera space
float t_film = std::abs(z_film / w_focus.z);
Point p_film(t_film * w_focus);

// lens to film direction in camera space
Vector w_film = normalize(p_lens - p_film);

// compute probability densities
float pdf_p_lens = lens.eval();
float pdf_w_lens = z_film * z_film / (film_area * w_film.z * w_film.z * w_film.z);
float pdf_time = close-open > 0 ? 1 / std::abs(close-open) : 1;

// return camera importance value
return std::abs(pdf_time * pdf_w_lens * pdf_p_lens / w_lens.z);

}
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Appendix B

Majorant optical depth shift code

We reproduce the code extract that performs our majorant optical depth transforma-
tion for completeness. Note this snippet focuses on readability mor the performance
and could further be optimized.

struct MediumRecords
{

std::vector<float> distances; // depth entry / exit of each medium section (2*n)
std::vector<Medium*> mediums; // medium associated to each section (n)
Ray ray;
int size() const { return mediums.size(); }

// i-th section majorant optical depth
float mod(int i, const int channel) const
{

return (distances[2*i+1] - distances[2*i]) * mediums[i]->barMu(channel);
}

// total sections majorant optical depth
float mod(const int channel) const
{

float m = 0.f;
for(int i = 0; i < size(); ++i)

m += mod(i, channel);
return m;

}

// return normalized majorant optical depth in [0,1] from real depth
float depthToModRatio(const float t, const int channel) const
{

float modt = 0.f;
for(int i = 0; i < size(); ++i)
{

const float a = distances[2*i];
const float b = distances[2*i+1];
// cumulate section length until we reach t
modt += (std::min(t,b) - a) * mediums[i]->barMu(channel);
if( t <= b )

break;
}
float modmax = mod(channel);
float r = std::min(1.f, std::max(0.f, modt / modmax));
return r;

}

// return real depth from normalized ratio of majorant optical depth
float modRatioToDepth(const float ratio, const int channel) const
{

if( ratio == 1.f ) return distances.back();
if( ratio == 0.f ) return distances.front();

const float modt = ratio * mod(channel);
float mod = 0.f;
for(int i = 0; i < size(); ++i)
{

const float a = distances[2*i];
const float b = distances[2*i+1];
mod += (b - a) * mediums[i]->barMu(channel);
// the real position is in this section
if( modt <= mod )
{

// from the end of the section we have to move backwards of
// delta = (mod - modt) / barMu to find the real depth
return b - (mod - modt) / mediums[i]->barMu(channel);

}
}
return distances.front();

}
};
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Appendix C

Lens supersampling

We describe in this appendix an approach to reuse sample paths by multiple lens
connections using a shift mapping operator and importance sampling of the circle
of confusion.

Thin lenses

The thin lens model is used to simulate depth of field by deviating camera rays [Kolb
et al. 1995, Hanika and Dachsbacher 2014] (see Appendix A for further details). The
parameters required by the model are:

• d f ilm the distance between the lens and the film plane,

• d f ocus the distance between the lens and plane in focus,

• R the lens radius.

Circle of confusion

The depth of field effect is due to the optical properties of lens systems. The pro-
jected image of an object is a blurred circle over the film plane. This region is known
as the circle of confusion. The blur circle of diameter C in the focus plane times
the magnification ratio m gives us the diameter of the circle of confusion c (cf. Fig-
ure C.1).

c = Cm (C.1)

The magnification is the ratio between the film distance and the focus distance.

m =
d f ilm

d f ocus
(C.2)

The blur circle only depends on distances dP and d f ocus, and the lens radius R. In-
deed, the intercept theorem (Thales) gives the relation:

C
2R

=
|dP − d f ocus|

dP
(C.3)

Putting every pieces together let us express the diameter of the circle of confusion
w.r.t known distances as:

c = 2R
|dP − d f ocus|

dP

d f ilm

d f ocus
(C.4)
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Hence, for every point P visible from the camera, we can easily compute the associ-
ated circle of confusion area over the image plane:

Acircle = π

(
R
|dP − d f ocus|

dP

d f ilm

d f ocus

)2

(C.5)

image plane

plane in focus

optical axisO

P

c

C

d f ilm d f ocus

dP

R

FIGURE C.1 – Geometric configuration

C.1 Importance sampling the circle of confusion

Given a scene point P visible from the camera lens, we want to distribute samples
proportional to the size of the associated circle of confusion. A straightforward man-
ner is to compare the pixel area and the circle area over the image plane. The number
of samples required is given by the ratio between the pixel area and the circle of con-
fusion area. Then a circle of confusion covering the area of ten pixel would result in
ten contributions.

n =
Acircle

Apixel
(C.6)

Since the ratio can be arbitrary small or large, we clamp the value to a minimum of
one, because we do not want less than one sample, and a maximum of a fixed user
parameter nmax setting the maximum splatting limit for a given path.

C.2 Sampling the lens

Sampling a path requires sampling a point on the lens. The initial lens point is sam-
pled in the unit square and then remapped on the disk. The concentric mapping by
Shirley and Chiu [Shirley and Chiu 1997] maps a point (ξ1, ξ2) in the unit square
to the unit disk while preserving the area. First the point is remapped in the [-1,1]
square.

a = 2ξ1 − 1 b = 2ξ2 − 1 (C.7)
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Then the point (a, b) is mapped to the unit disk using the concentric mapping.{
u = a cos

(
πb
4a

)
v = a sin

(
πb
4a

)
if a2 > b2

u = b cos
(

π
2 −

πa
4b

)
v = b sin

(
π
2 −

πa
4b

)
otherwise

(C.8)

C.3 Shifting the lens sample

We aim to reuse the path sample on other lens points such that the depth of field
benefits from super sampling. We want to generate a set of n lens points following
a known shift of the initial lens point (e.g. regular grid, QMC sequences, optimized
pointsets). The set size n is proportional to the area of the circle of confusion. The
supersampling is done by iterating over the shifted lens points and constructing the
transformed path using. An illustrative example of shifting a sequence is given in
Figure C.2 .

FIGURE C.2 – Shifted Fibonacci grid to unit disk mapping
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Light Transport Simulation with Vertex Connection and Merging. ACM Trans.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI103/these.pdf 
© [B. Fraboni], [2021], INSA Lyon, tous droits réservés

https://doi.org/10.1145/800031.808590
https://research.nvidia.com/publication/2021-06_An-Analytic-BRDF
https://research.nvidia.com/publication/2021-06_An-Analytic-BRDF
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1145/3305366.3328079
https://doi.org/10.2312/sr.20191217


124 BIBLIOGRAPHY

Graph. 31, 6, Article 192 (Nov. 2012), 10 pages. https://doi.org/10.1145/
2366145.2366211

Iliyan Georgiev, Zackary Misso, Toshiya Hachisuka, Derek Nowrouzezahrai,
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