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R É S U M É

La gestion partagée des approvisionnement (Vendor Management In-
ventory ou VMI) change la division traditionnelle des décisions au
sein de la chaîne logistique : c’est le fournisseur qui contrôle les ap-
provisionnements de ses clients en décidant quand et de combien
réapprovisionner leurs stocks. Basé sur la confiance, le VMI bénéficie
autant au fournisseur qu’à ses clients : le fournisseur réduit son coût
de transport en regroupant les différentes livraisons, tandis que le
client n’a pas besoin de dédier des ressources à la planification de ses
approvisionnements.

Le fournisseur doit ainsi gérer de façon intégrée ses livraisons pour
minimiser ses coûts de transport, et les stocks de ses clients pour sa-
tisfaire leur niveau de service attendu. Le problème qui en résulte
est appelé Inventory Routing Problem (IRP). Il intègre deux problèmes
opérationnels de la supply chain : la gestion des stocks et le transport.
Dans le réseau IRP, un fournisseur est chargé de gérer le stock et la
livraison d’un ensemble de clients, pour satisfaire leurs demandes
sur un horizon temporel donné. L’objectif du décideur est de déter-
miner, pour chaque période de l’horizon temporel, si un client doit
être réapprovisionné, avec quelle quantité et selon quel itinéraire, en
optimisant à la fois les coûts de stockage et les coûts de transport.

Un défi commun à toutes les opérations de la chaîne logistique est
la gestion de l’incertitude ; cela s’applique également à l’IRP. En ef-
fet, la multiplicité des acteurs et des paramètres de l’IRP augmente
le nombre de sources d’incertitude, qui peuvent être liées aux pro-
blèmes de gestion des stocks comme aux problèmes de transport. La
demande des clients peut changer de manière inattendue ; un chauf-
feur peut être confronté à un embouteillage imprévu, ou découvrir
en arrivant chez un client que la place de stationnement de livraison
est indisponible. Ainsi, en augmentant considérablement le temps de
déplacement et de service, ou en modifiant la demande, les plannings
du décideur peuvent devenir irréalisables.

Les manières les plus courantes de prendre en compte les incer-
titudes dans la littérature sont les approches a priori. Les approches
a priori gèrent les incertitudes de manière proactive, c’est-à-dire en
construisant des plannings de réapprovisionnement robustes (qui res-
teront réalisables face à un large éventail d’événements) ou par opti-
misation stochastique (en optimisant l’objectif en espérance), combi-
nés à des stratégies de réparation si les solutions sont infaisables. Le
principal inconvénient de telles approches est le conservatisme de
leurs solutions, qui les rend coûteuses, surtout lorsque la plage de
variabilité des paramètres incertains est grande.
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L’objectif de cette thèse est de rompre avec la tendance de la litté-
rature à gérer les incertitudes majoritairement a priori, avec des ap-
proches d’optimisation stochastiques et robustes. Pour ce faire, nous
nous concentrons sur les sources d’incertitude les plus courantes dans
les situations réelles : la demande des clients et les temps de trajets.

Dans des situations réelles, il est rare qu’un client passe commande
en donnant une distribution probabiliste ou un intervalle. Les valeurs
sont plutôt basées sur des données historiques, et sujettes à modifica-
tion à tout moment dans l’horizon temporel. Par conséquent, la façon
la plus naturelle de gérer une telle incertitude est d’attendre qu’elle
soit révélée et de procéder à une réparation des plannings établis ini-
tialement ou bien à une ré-optimisation complète.

Dans la littérature de l’IRP, les incertitudes sont rarement gérées
par une approche de ré-optimisation. Cette rareté pourrait s’expli-
quer par le fait que la ré-optimisation peut s’avérer inadaptée aux
problèmes de transport. Dans le cas du Vehicle Routing Problem (VRP),
des chercheurs affirment que du point de vue des coûts, ré-optimiser
les décisions de tournées une fois les incertitudes révélées est une
meilleure alternative théorique aux approches a priori, mais résoudre
un VRP avec ré-optimisation reste un problème difficile. Par ailleurs,
les approches a priori ont l’avantage de préserver la structure des so-
lutions, ce qui n’est pas le cas pour la ré-optimisation. Ces limitations
concernent cependant moins l’IRP que d’autres problèmes de trans-
port : bien que le transport soit une composante importante, les autres
composantes fournissent des variables d’ajustement supplémentaires,
telles que sa dimension multipériode, la disponibilité d’un stock ou
un éventuel transbordement. La possibilité d’anticiper une livraison,
ainsi que le tampon fourni par les stocks tant chez le fournisseur
que chez son client donnent ainsi une flexibilité supplémentaire pour
réagir aux incertitudes. Par conséquent, nous pensons que des ap-
proches a posteriori pour l’IRP devraient être étudiées.

Une stratégie a posteriori consiste à réparer la solution initiale en
y apportant de petites modifications pour la rendre réalisable. Par
exemple, si la demande d’un client augmente un jour où aucun appro-
visionnement n’était prévu pour lui, et que son niveau de stock n’est
pas suffisant pour couvrir l’augmentation de la demande, il aura be-
soin d’une visite supplémentaire dans la solution réparée. Si les véhi-
cules utilisés pour cette période sont déjà à pleine capacité dans la so-
lution initiale, le décideur doit choisir entre insérer ce client à la place
d’un autre dans l’itinéraire ou utiliser un autre véhicule pour faire un
réapprovisionnement direct. La difficulté ici est le compromis entre la
faisabilité des solutions et leur rentabilité ; et lorsque davantage de de-
mandes de clients changent, l’ensemble des possibilités augmente de
façon exponentielle, ce qui rend les stratégies de réparation difficiles
à développer. Une autre approche est une ré-optimisation complète
de la solution initiale, à partir du moment où l’événement inattendu
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est révélé jusqu’à la fin de l’horizon temporel. L’inconvénient de cette
approche est que la nouvelle solution peut être complètement diffé-
rente de la première. Cela crée des problèmes d’organisation : par
exemple, si le nouveau plan nécessite plus de véhicules, et donc plus
de chauffeurs, ils peuvent être difficiles à trouver au dernier moment.
De plus, si le fournisseur change constamment sa date de livraison,
le client peut perdre confiance et chercher un autre fournisseur. De
telles situations entraînent des surcoûts très difficiles à quantifier :
le décideur peut donc privilégier des solutions « stables » lors de la
ré-optimisation.

Mais comment savoir qu’une solution est stable ? Dans la littéra-
ture, un planning stable est défini comme un planning qui « s’écarte
le moins possible de l’original ». Cette définition étant très générale,
son application dans le cas de l’IRP n’est pas évidente. Par exemple,
considérons un planning qui réapprovisionne cinq clients selon une
certaine séquence un jour donné ; deux solutions sont proposées pour
faire face à une augmentation de la demande d’un client. La première
solution maintient le même ensemble de clients dans la même sé-
quence mais les réapprovisionne avec des quantités qui diffèrent de la
solution initiale. Une autre solution supprime un client de l’itinéraire
et modifie la séquence. Parmi ces deux solutions ; laquelle fournit le
plus petit écart, et est donc la plus stable ? Il n’y a pas de réponse
simple.

Cela nous amène à notre première question de recherche :

Comment mesurer la stabilité de l’IRP en cas d’incertitude de la demande ?

En ce qui concerne l’incertitude des temps de trajets, une approche
a priori semble appropriée, car un intervalle de temps peut être une
bonne représentation du temps nécessaire pour se déplacer d’un en-
droit à un autre. L’exemple le plus courant s’obtient avec une re-
cherche rapide sur n’importe quel logiciel de navigation GPS. Ainsi,
contrairement à la demande, la source de la volatilité temporelle n’est
pas imprévisible mais dépend de paramètres déterministes.

On peut distinguer deux types de temps différents dans les pro-
blèmes de transport tels que l’IRP : le temps de trajet et le temps de
service. Dans cette thèse, on ne s’intéresse qu’au premier. La volatilité
des temps de trajets est généralement due au fait que les IRP évoluent
dans un contexte de logistique urbaine, où les conditions de circula-
tion peuvent varier au cours de la journée. Cette volatilité n’est pas
aléatoire mais dépend plutôt du temps. Cela signifie que le temps de
trajet ne dépend pas seulement des lieux de départ et d’arrivée, mais
dépend également de l’heure de départ.

L’incertitude liée aux temps de trajets est donc gérée a priori mais
de manière déterministe, en les considérant comme time dependent.
Cependant, les problèmes de transport time dependent ont tendance à
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être plus difficiles à résoudre que leur équivalent de base. Cela nous
amène à notre deuxième question de recherche :

Comment intégrer l’aspect time dependent dans l’IRP et le résoudre ef-
ficacement ?

Un chapitre est consacré à la première question de recherche. Une
revue de la littérature sur les approches de réoptimisation pour les
problèmes NP-difficiles, en général, et les problèmes de séquençage
tels que les problèmes d’ordonnancement et de routage, en particulier,
est menée. La littérature montre que les problèmes de ré-optimisation
sont généralement aussi difficiles que les problèmes initiaux, et que
leurs solutions optimales respectives peuvent être complètement dif-
férentes. Par conséquent, une revue des mesures de stabilité dans la
littérature de sous-problèmes de l’IRP (tels que le transport et la ges-
tion de stocks) et de problèmes de séquençage similaires (tels que l’or-
donnancement) est proposée. Une partie de ces mesures sont choisies
pour être adaptées pour l’IRP. Le problème de ré-optimisation par
rapport à l’objectif initial – le coût total composé des coûts de posses-
sion et de transport – est formulé. Les mesures de stabilité sont adap-
tées et leurs avantages et inconvénients discutés ; certaines sont for-
mulées mathématiquement et leur corrélation et leur impact par rap-
port au coût sont étudiés. Les expérimentations numériques montrent
que pour une grande partie des instances résolues, il existe une forte
corrélation entre les mesures, c’est-à-dire qu’optimiser une mesure re-
vient à optimiser l’autre, et que l’impact des solutions stables sur le
coût est plutôt faible.

Deux chapitres sont consacrés à la deuxième question de recherche
et répondent aux deux parties de la question, respectivement, Com-
ment intégrer l’aspect time dependent dans l’IRP ? et le Comment résoudre
le TD-IRP efficacement ?. Le premier de ces deux chapitres propose
une revue de la littérature des variantes de l’IRP avec le temps de
trajets comme préoccupation principale. On constate ainsi qu’il y a
très peu de littérature sur le time dependent IRP (TD-IRP). Ainsi, on se
concentre sur des problèmes de transport pur. En partant de l’abon-
dante littérature des problèmes de transport time dependent, quatre
formulations mathématiques pour le TD-IRP basées sur une discre-
tisation différente du temps sont proposées. Un nouveau benchmark
est généré, inspiré des benchmarks de la littérature de l’IRP et du Time
Dependent Travelling Salesman Problem (TD-TSP). La comparaison des
performances de quatre formulations différentes du TD-IRP montre
qu’une formulation se détache grâce à sa capacité à résoudre des
instances plus grandes. Le second chapitre consacré à la deuxième
question de recherche, étudie la pertinence de considérer les temps
de trajets comme time dependent. Deux critères sont considérés : les
gains en termes de coût de la solution et la complexité empirique de
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résoudre des problèmes TD-IRP. Les résultats des expérimentations
numériques montrent que considérer le TD-IRP apporte des gains
en termes de coût, mais rend le problème beaucoup plus difficile à
résoudre. Inspirée par les résultats de cette étude et des structures op-
timales des solutions du TD-IRP, une matheuristique est proposée. La
matheuristique alloue dans un premier temps l’ensemble des clients
à visiter à une période de l’horizon temporel. Ensuite, pour chaque
période, un TD-TSP est résolu pour déterminer la séquence de visite.
Les résultats montrent que la matheuristique est efficace.

Enfin, un chapitre de conclusions résume les contributions et liste
des perspectives de recherche à moyen et long terme.
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I N T R O D U C T I O N

Vendor management inventory (VMI) changes the traditional divi-
sion of decisions within the supply chain: the supplier controls the
inventory of its clients by deciding when and how much to replen-
ish their inventories. Built on trust, the VMI system is a win-win
situation: the supplier is able to reduce its transportation cost by con-
solidating the different deliveries, whereas the client does not need
dedicated resources to schedule its supplies.

The VMI supplier must thus manage both its deliveries to incur
the least transportation cost, and the clients’ inventory to satisfy their
expected service level. The resulting problem is called the inventory
routing problem (IRP). It integrates two operational problems of the
supply chain: inventory management and routing. In the IRP net-
work, a supplier is responsible for managing the inventory and the
distribution of a set of clients, to satisfy their demands on a given
time horizon. The objective of the decision-maker is to decide, for
each period of the time horizon, whether a client should be replen-
ished, with which quantity and following which route, optimising
both the inventory and transportation costs.

A common challenge faced by all supply chain operations is the
management of uncertainty; this also applies to the IRP. Indeed, the
multiplicity of actors and parameters of the IRP makes the range
of uncertainty wide, as they can be related to both inventory man-
agement and routing components. The clients’ demand may change
unexpectedly; a driver may be confronted to an unexpected traffic
jam, or when arriving at a client’s location, the delivery parking slot
might be unavailable. By drastically increasing the travelling and ser-
vice time, or modifying the demand, the decision-maker’s plans may
become unfeasible.

The most common ways to take uncertainties into consideration in
the literature are a priori approaches. The a priori approaches manage
uncertainties in a proactive way either by making robust replenish-
ment plans, that will be feasible even when faced with a wide range
of events or in a stochastic manner by optimising the expected value
of the objective combined with repair strategies in case the solutions
are infeasible. The main drawback of such approaches is the con-
servatism of their solutions, which makes them expensive, especially
when the range of variability of the uncertain parameters is wide.

However, tackling uncertainties can be done in different fashions.
A posteriori approaches handle uncertainties once they are revealed
through either repair strategies or a full re-optimisation. The draw-
back of repairing the initial solution is the difficulty to develop strate-
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gies that yield feasible solutions without a huge degradation of the
solution’s cost. Re-optimisation on the other hand can obtain cost-
efficient solutions, although such a solution may be completely dif-
ferent from the initial one. This deviation between the two solutions
may create organisational issues that lead to additional costs that are
very difficult to quantify. Thus it is necessary to propose optimisation
metrics that ensure the stability of the initial solution.

Another way of managing uncertainties is to study their sources.
Indeed, depending on the data, one can notice that all uncertainties
are not unpredictable and that some may depend on deterministic
parameters. Therefore, it is possible to lift such uncertainties in an a
priori but deterministic fashion.

The objective of this dissertation is to tackle the IRP uncertainties
by focusing on two of their main sources: the clients’ demand and the
travelling time. The clients’ demand uncertainty is handled through
a re-optimisation approach with stability metrics. The travelling time
uncertainty is managed in an a priori but deterministic fashion by
considering it as time dependent.

In Chapter 1, a review of the IRP literature under uncertainty and
variants of the IRP where the travelling time is the main focus is
carried out and yields two research questions: how to measure stability
in the IRP under demand uncertainty? and How to incorporate the time
dependent aspect in the IRP and solve it efficiently?.

Chapter 2 is dedicated to answer the first question, where stabil-
ity metrics from the literature of sub-problems of the IRP (such as
routing and inventory management) or similar sequencing problems
(such as scheduling) are re-adapted for the IRP. These metrics are for-
mulated and their correlation and impact on the cost of the solutions
are investigated. Chapter 3 and Chapter 4 answer the second question
by tackling the Time Dependent IRP (TD-IRP) where travelling times
do not only depend on the departure and arrival locations, but on the
time of departure as well. Chapter 3 proposes four mathematical for-
mulations for the (TD-IRP) inspired from the rich literature on time
dependent routing problems. The four formulations are compared
on a new generated benchmark based on benchmarks of the IRP and
TD-TSP literature. Chapter 4 investigates the relevance of considering
time dependent travelling times by considering two aspects: the gain
in cost and the computational complexity. Moreover, a study on the
structure of optimal TD-IRP solutions inspires an assign-and-route
matheuristic in order to solve large-sized instances.

2
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1
I N V E N T O RY R O U T I N G P R O B L E M A N D
U N C E RTA I N T Y

During the last century, the industrial field has seen an exponential
evolution which led to a very globalised market of which industries
took advantage to exploit new markets and new technologies. How-
ever, globalisation engendered a fierce competition for market shares.
To gain a considerable advantage over their competitors, companies
have mostly focused on manufacturing operations. However, in re-
cent years, due to the development of several concepts and paradigms
such as re-configurable manufacturing systems, 3D printing, additive
manufacturing. . . the development threshold of manufacturing oper-
ations has almost been reached. Thus, in order for companies to keep
improving their competitiveness, logistics and supply chain opera-
tions can play a key role.

The “Who’s Who in Logistics Guide” by Armstrong & Associates,
Inc. estimates that the global logistics market accounts for 10.7% of
the world’s GDP as of 2019. Transport and inventory holding opera-
tions, together, represent more than 70% of that amount (Armstrong
& Associates, Inc.", 2020). Therefore, an effective transportation and
inventory operations management can provide a major source of com-
petitive advantage. A way to make these operations efficient is to in-
tegrate their decision processes. It is in this context that the Vendor
Managed Inventory (VMI) emerges.

VMI is a business practice aimed at reducing logistics costs and
adding business value (Coelho et al., 2014a). It promises a win-win
situation for both the supplier and the client. In a true VMI setting,
the supplier has the freedom to plan the replenishment schedule as
long as the clients are able to satisfy their demand. This enables
suppliers and clients to both optimise the transportation costs and to
minimise their inventory cost.

The range of applicability of VMI is quite wide: it goes from the
food industry to the distribution of petroleum and liquid gases. It
has been applied with success in several known cases. Some of the
precursors in the area are Coca Cola to replenish their vending ma-
chines (Mangiaracina et al., 2012), the collaboration between Procter
& Gamble and Walmart (Harsono, 2013) in the diaper distribution in-
dustry or Air Liquide who supplies gas to multiple healthcare centres.
(André et al., 2020).

The operational problem raised by the implementation of VMI is
to decide when and how much each client should be replenished
over a time horizon. This problem is called the Inventory Routing

3
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Problem (IRP).. And just as in any other logistics paradigm or oper-
ations, a challenge that can be faced is uncertainties. This aspect has
been highlighted last year during the COVID crisis when intensive
care hospitalisations increased dramatically and the need for oxygen
re-supply spiked. In this chapter we briefly present the IRP in its
simplest case and try to indentify the gaps in the literature of the IRP
under uncertainty.

In Section 1.1, we give a brief overview of the literature of the IRP
by presenting the variants existing in the literature, a mathematical
formulation and the most commonly used approaches to solve the
simplest case of the IRP. Section 1.2 proposes an exhaustive literature
of the IRP under uncertainties and identifies its gaps. Finally, Sec-
tion 1.3 identifies two research questions and gives insights on how
these questions will be answered throughout the next chapters of this
dissertation.

1.1 inventory routing problem

The origins of the IRP go back to the paper of Bell et al. (1983)
where the goal was to automatise the process of delivering liquid
gases for the company Air Product. In its simplest case, the IRP is
set in a network where a supplier is supposed to deliver goods to its
clients, over a time horizon. The objective of the IRP is to decide for
each period, whether a client is served, with which quantity, and a
route for a single vehicle, while minimising the total cost (e.g. trans-
portation costs, inventory cost or possibly other objectives).

However, the pure IRP is hardly representative of all the situations
that can occur in real-life. Other than the deterministic/uncertain
context of the data, four types of additional challenges can be faced:
challenges related to the satisfaction of the client; challenges related
to the vehicles and/or drivers; challenges related to the product; and
finally, challenges related to the specifications of the network. We list
here some of these requirements and the variants of IRP dedicated to
cater for them. Figure 1.1 summarises all these variants.

client : Because of some space limitations, the clients can provide
an upper bound of their inventory capacity.
Due to the constraints related to urban deliveries (e.g. rush
hours, availability of parking slots. . . ) and to scheduling prob-
lems (e.g. workers availability. . . ), the client may require to be
served in a certain time interval. The variant of the IRP which
meets this requirements is the inventory routing problem with
time windows (IRPTW). A systematic review of the IRPTW lit-
erature is presented in Delgado et al. (2018).

vehicle : Vehicles have a limited capacity. This property is taken
into consideration in all works related to the IRP. As one ca-
pacitated vehicle may not be enough, one variant of the IRP
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• Time-windows 

• Inventory capacity 

• Demand satisfaction, 
backorder, lost sales

• Number of products 

• Nature of products

• Transshipment 

• Multi-echelon 

• Cyclic 

• Number of suppliers

Vehicle Network

Product Client

• Number of vehicle 

• Vehicle capacity 

• Travel-time constrained

Figure 1.1 – A summary of the different variants of the IRP in the literature

that cater for this problem is the multi-vehicle inventory rout-
ing problem.
In order to cater for legal limitations of work hours per day,
drivers may be given routes that must be completed in a certain
amount of time. The IRP with route duration limit meets this
requirement. The most recent work to tackle this problem is
Lefever (2018a).

product : The number of the products handled is a property that
the multi-product IRP variant takes into consideration. A rele-
vant work in this context is presented by Mirzapour Al-e-Hashem
et al. (2013).
The nature of the product is important in the IRP since it may
impose different requirements, mainly related to perishability.
In this context, the IRP with lead times, where the clients im-
pose lead times to cater for perishability issues, emerges. Li et
al. (2016b) is an example of a study that takes it in considera-
tion. We note that the problem of perishability in the case of
a single-product can be handled by imposing a route duration
limit.

network : In order to design a network that is efficient in an eco-
nomical sense, but also ecological, reducing the number of ve-
hicles used to replenish the clients as well as reducing the total
travelled distance is primordial (Mirzapour Al-e-Hashem et al.,
2013). Therefore, Coelho et al. (2012) introduced a new variant
of the IRP, the inventory routing problem with transshipment
(IRPT). Transshipment in this case means that the replenish-
ment is not only done from the supplier to a client using an
owned vehicle, but can also be done from a client to another
client or from the supplier to a client by hiring a subcontractor.
A study reports that in addition to the decrease of the overall
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cost, transshipment helps diminishing accidents (Timajchi et al.,
2019).
The number of suppliers is an additional property of the IRP
that can be taken into consideration, by having different suppli-
ers, or by including transshipment, where each client becomes
a potential supplier. A recent work in this context is presented
in Bertazzi et al. (2019)
Moreover, in order to avoid the challenges that the scheduling
in a large time horizon can bring, such as regularity, some sup-
pliers prefer handling the IRP for a smaller time interval that
will be reproduced over and over. Hence the periodic/cyclic
IRP. Relevant works in this context are presented in Lefever et
al. (2016) and Raa et al. (2009).
Finally, to have a globally optimised network, the IRP can be
studied in a multi-echelon environment where multiple layers
of the supply chain are included: for example, a supplier, the
different retailers that the supplier serve and the different clients
that the different retailers serve. Recent works in this context
are presented in Farias et al. (2021) and Guimarães et al. (2019).

The IRP is known to be an NP-Hard problem (Archetti et al., 2007).
Therefore, many scholars dedicate their works to find the most suit-
able solution approaches for the different variants described above.
Scholars proposed exact methods such as mixed integer linear pro-
grams, branch-and-cut, branch-and-price and Bender’s decomposi-
tion algorithms to optimally solve the problem. Due to the hardness
of the IRP for large instances, heuristics are also used, such as ge-
netic algorithms, local search based heuristics or hybrid algorithms.
Literature reviews dedicated to the different solution approaches for
the IRP are presented in Bertazzi et al. (2012, 2013) and Coelho et al.
(2014a).

The IRP literature is quite rich. Because the contributions of this
dissertation are not related to the mathematical formulation and the
solving approaches of the basic IRP, the remaining of this section fo-
cuses only on presenting elements from the literature of the IRP that
will be used throughout this dissertation. First, a basic mathemati-
cal formulation of the IRP based on the formulation of Archetti et al.
(2007) is presented. The problem is then illustrated with a simple ex-
ample. Finally, a branch-and cut procedure for the IRP, that combines
state-of-the-art cuts and reformulations, is presented in order to solve
the problem efficiently.
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1.1.1 Mathematical formulation of the IRP

1.1.1.1 Notations

definition sets :

— G = (V , E) is a graph where vertex 0 ∈ V represents the
supplier, V\{0} the set of clients and E the set of edges.

— H = {0, 1, ..., |H|} is a time horizon where p ∈ H repre-
sents the index of the period. Note that p = 0 represents
the initial state.

client data :

— Dt
i is the demand of client i ∈ V\{0} at period p ∈ H.

— I0
i represents the initial inventory (at period p = 0) of client

i ∈ V\{0}.
— Imax

i is the maximum inventory level for client i ∈ V\{0}.
supplier data :

— Rp is the quantity of products available or produced at
supplier 0 ∈ V for period p ∈ H.

— I0
0 represents the initial inventory of the supplier.

— C represents the capacity of the vehicle.

costs :

— hi is the holding cost paid for each product in the inventory
of the client/supplier i ∈ V at the end of period p ∈ H.

— f (i, j) is the travelling distance of edge (i, j) ∈ E .

— c is the cost of going through one distance unit.

1.1.1.2 Variables and mathematical model

— xp
i,j = 1 if edge (i, j) ∈ E is travelled by vehicle at period p ∈ H,

0 otherwise.

— yp
i = 1 if client i ∈ V\{0} is visited at period p ∈ H, 0 other-

wise.

— Ip
i ∈ R is the inventory level of client i ∈ V\{0} at the end of

period p ∈ H.

— qp
i ∈ R is the quantity sent to client i ∈ V\{0} at period p ∈ H.
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IRP

min objIRP = c× ∑
i∈V

∑
j∈V ,i<j

∑
p∈H\{0}

xp
i,j × f (i, j) + ∑

i∈V
∑

p∈H
Ip
i × hi

s.t Ip
0 = Ip−1

0 − ∑
i∈V\{0}

qp
i + Rp ∀p ∈ H\{0} (1)

Ip
i = Ip−1

i + qp
i − Dp

i ∀i ∈ V\{0} , ∀p ∈ H\{0} (2)

Ip
i ≤ Imax

i ∀i ∈ V\{0} , ∀p ∈ H\{0} (3)

qp
i + Ip−1

i ≤ Imax
i ∀i ∈ V\{0} , ∀p ∈ H\{0} (4)

qp
i ≤ yp

i × Imax
i ∀i ∈ V\{0} , ∀p ∈ H\{0} (5)

qp
0 ≤ yp

0 × C ∀p ∈ H\{0} (6)

∑
j∈V\{0}

xp
i,j + ∑

j∈V\{0}
xp

j,i = 2× yp
i ∀i ∈ V , ∀p ∈ H\{0} (7)

∑
i∈S

∑
j∈S ,i<j

xp
i,j ≤ |S | − 1 ∀S ⊆ V\{0} , p ∈ H\{0} (8)

xp
i,j ∈ {0, 1} ∀i, j ∈ V , ∀p ∈ H\{0} (9)

yp
i ∈ {0, 1} ∀i ∈ V , ∀p ∈ H\{0} (10)

qp
i ≥ 0 ∀i ∈ V\{0} , ∀p ∈ H\{0} (11)

Ip
i ≥ 0 ∀i ∈ V , ∀p ∈ H\{0} (12)

The objective computes the total holding cost and the total travel-
ling cost for the whole time horizon H.

Constraints (1) are flow conservation constraints that compute the
inventory level of the supplier at each period p ∈ H\{0} from its
previous inventory level, the quantity produced and the quantities
sent to the clients at period p. Similarly, Constraints (2) state the
flow conservation constraints regarding the clients. They compute
the inventory level of each client i ∈ V\{0} for each period p ∈
H\{0} from its previous inventory level, the quantity received from
the supplier and its demand for period p.
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The inventory capacity is enforced through several constraints: Con-
straints (3) state that the inventory level of client i ∈ V\{0} at any
period p ∈ H must be lower than Imax

i , and Constraints (4) state that
a replenishment of this client at period p ∈ H\{0} cannot exceed its
maximal inventory level.

Constraints (5) link variables yp
i with qp

i , stating that a client i ∈
V\{0} which receives a quantity at period p ∈ H\{0}, is necessar-
ily visited at period p. Imax is used here as an upper bound for qp

i .
Constraints (6) work similarly for the supplier, stating that the quan-
tity leaving supplier 0 at period p ∈ H\{0} is limited by the vehicle
capacity C.

Constraints (7) state that if a location is visited, it is entered and
left once. Constraints (8) eliminate sub-tours. Finally, constraints (9)
to (12) enforce integrality and non-negativity conditions on the vari-
ables.

1.1.2 An illustrative example

Let us consider a small instance of the IRP where V = {0, 1, 2, ..., 5}
is composed of five clients besides supplier 0, time horizon |H| = 3
and vehicle capacity C = 150. Table 1.1 lists all data related to the
instance. The columns represent, respectively, the indices i of the
supplier/clients, the coordinates (xi; yi), the initial inventory I0

i , the
maximum inventory Imax

i , the quantity Rp available to supplier 0 at
each time period of horizon H, the demand Dp

i of clients {1, 2, ..., 5}
for each time period of horizon H, and finally the holding costs. The
length of each edge approximates the cost of travelling the edge. This
Euclidean distance is computed from the coordinates of the locations.

i (xi; yi) I0
i Imax

i
Rp Dp

i hi

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

0 (154;417) 510 +∞ 193 193 193 0.03

1 (172;334) 40 130 65 65 65 0.02

2 (267;87) 20 70 35 35 35 0.03

3 (148;433) 58 116 58 58 58 0.03

4 (355;444) 24 48 24 24 24 0.02

5 (38;152) 11 22 11 11 11 0.02

Table 1.1 – A representation of the data of the example instance

Table 1.2 and Figure 1.2 present an optimal solution for the exam-
ple instance. Table 1.2 presents the inventory levels at the end of each
period of each location and the quantities sent from the supplier to
each client for the whole time horizon, and Figure 1.2 gives a graph-
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ical overview of the same solution. In period p = 1, deliveries are
made to clients 1, 2 and 5 in this order. For p = 2, the supplier re-
plenishes clients 1, 3 and 4. Finally, for period p = 3, clients 1, 2, 3
and 5 are re-visited.

Note that in Table 1.2 the inventory level is given at the end of the
period, whereas Figure 1.2 shows it at the beginning of the period.
This choice was made to improve the figure readability; the inventory
level at the end of the period in Figure 1.2 can be computed by adding
the quantity received to the inventory level at the beginning of the
period, minus the demand of the client for that period.

i
Ip
i qp

i

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

0 553 596 639

1 64 43 24 89 44 46

2 35 0 0 50 0 35

3 0 0 0 0 58 58

4 0 24 0 0 48 0

5 11 0 0 11 0 11

Table 1.2 – A solution for the example instance

1.1.3 Solving method

The mathematical formulation presented in Section 1.1.1 is strength-
ened with additional valid inequalities presented in Archetti et al.
(2007), Coelho et al. (2014b) and Desaulniers et al. (2016). Archetti’s
valid inequalities are “logical inequalities” and are inspired by logical
cuts introduced for problems such as the Orienteering Problem and
the Undirected Selective Travelling Salesman Problem (TSP). Coelho’s
valid inequalities determine the minimum number of routes in the
planning horizon, whereas Desaulniers’s valid inequalities determine
“the minimum number of sub-deliveries per demand”. Moreover,
the bounds are improved and the routing component of the IRP re-
formulated according to the work of Lefever (2018b). Finally, sub-tour
elimination constraints are added dynamically into the procedure as
described in Algorithm 1.1.

1.2 uncertainty in the irp literature

A common challenge faced by all supply chain operations, the IRP
included, is the management of uncertainties. Due to the multiplicity
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Figure 1.2 – A solution for the example instance
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Algorithm 1.1: Branch-and-cut procedure
1: input: an empty set of nodes Q and an empty solution S
2: add the root node to Q and set the upper bound b = +∞
3: while Q is not empty do
4: solve the linear relaxation of the first node
5: if the solution of the linear relaxation is fractional then
6: Branch on fractional variables using the branching strategy

in Lefever (2018b)
7: Add the resulting nodes to Q and delete the first node
8: else
9: if subtours S exist then

10: Add corresponding constraints (8)
11: else
12: if the objective value is smaller than b, update S to the

solution and b to the objective value.
13: delete the node from Q
14: end if
15: end if
16: end while
17: return solution S

of actors and parameters of the IRP, the sources of uncertainties can
be very large: “within combined inventory management and routing
there are technical uncertainties due to transportation conditions and
equipment, as well as economical or market uncertainties...” (Ander-
sson et al., 2010). Moreover, uncertainties can be handled in different
manners: in an a priori or in an a posteriori fashion.

Using the keywords uncertainty, stochastic, re-optimisation, robust com-
bined to inventory routing problem, VMI, we identified 46 articles deal-
ing with uncertainty in IRP. In the following, the main sources of un-
certainties for the IRP encountered in the literature are listed. More-
over, the identified references are classified with respect to the sources
of uncertainties handled and the approaches used in Table 1.3 and Ta-
ble 1.4.

1.2.1 Sources of uncertainty

Figure 1.3 summarises the sources of uncertainties treated in the
literature related to the different parameters of the IRP, presented in
Figure 1.1. These uncertainties are detailed in next sections.

1.2.1.1 Uncertainties related to the clients

demand variation. The demand of the client can change : this
source of uncertainty is considered in a vast majority of the
articles reviewed, namely 38 out of 46 articles. It is also the case
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• Demand variation

• Travelling time variation 

• Travelling time-windows 
variation

Vehicle Network

Product Client

• Vehicle availability 
variation

Figure 1.3 – A summary of the different sources of uncertainties treated in the IRP litera-
ture

in this dissertation since it can have an impact in both inventory
and routing decisions.

1.2.1.2 Uncertainties related to the vehicles

vehicle availability variation. A dysfunction of one of the
vehicles of the fleet or the unavailability of one of the drivers can
occur. Only Jafarian et al. (2019) and Dong et al. (2018) address
this source of uncertainty.

1.2.1.3 Uncertainties related to the network

supplier quantity variation. The quantity available at the sup-
plier at the beginning of each period can change. Only Dong et
al. (2018) address this uncertainty.

travelling time variations . Since routing is a part of the IRP,
all the disruptions faced in urban delivery are possible, espe-
cially traffic jams or time-dependant travelling times where the
travelling time depends on the departure time. 11 articles take
interest of this source of uncertainty. It is the case of this disser-
tation as well, as it is a source of uncertainty that can be faced
in all variants of the IRP and can have an impact on inventory
management decisions.

travelling time windows variations . Weather conditions can
result in a disruption of the travelling time windows, especially
when delivering liquid gases, since the high temperature can
build-up the pressure of the gas (Cho et al., 2018) and/or in
the context of maritime IRP, where unperturbed weather condi-
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tions are necessary for the safety of the trip. 5 articles tackle this
uncertainty in the context of maritime IRP.

1.2.2 Approaches to handle uncertainty

Two different ways to handle uncertainties can be distinguished.
On the one hand, a priori methods anticipate uncertainties by build-
ing solutions that are able to resist potential disruptions. Stochastic
optimisation and robust optimisation are the most commonly used
a priori methods in the literature. Stochastic optimisation is gener-
ally considered when a probabilistic distribution of the uncertainty
is known: the objective is then to optimise the expected value of a
chosen criterion. A review of the different stochastic optimisation
methods used in the literature of the IRP under demand and lead
times uncertainty is presented in Roldán et al. (2017). In robust op-
timisation, the uncertainties are presented as a set of scenarios, and
solutions generated should be able to resist all or some of these sce-
narios. A posteriori methods, on the other hand, react to the unex-
pected events after they occur. This can be done either through local
repair, or by a complete re-optimisation of a deterministic model once
the disruptions are revealed.

Table 1.3 and Table 1.4 show a huge disparity in the approaches
used to handle uncertainty in the IRP literature. Over the 46 identi-
fied references, 45 handle the uncertainty in an a priori fashion. How-
ever, although re-optimisation has been used for the IRP in a deter-
ministic rolling horizon context (Al-Ameri et al., 2008; Rakke et al.,
2011), only Dong et al. (2018) use it to cater for uncertainty issues.

In Al-Ameri et al. (2008) and Rakke et al. (2011), the rolling horizon
decomposition is used as a matheuristic in order to solve large-sized
instances. The time horizon of the IRP is decomposed into smaller pe-
riods of time, the first of which is solved to optimality while the oth-
ers are relaxed. Then, iteratively, the variables of the already solved
periods are fixed and the next one is solved to optimality, relaxing
the remaining ones. For Dong et al. (2018) the process is slightly dif-
ferent. The first iteration solves the IRP under stochastic parameters
using a stochastic MIP over the whole horizon. Then, for each pe-
riod of the horizon, new information is revealed. If the solution of
the stochastic problem is infeasible given the new information, a full
re-optimisation is conducted over the whole horizon, modelling the
new information as deterministic parameters while keeping the oth-
ers stochastic. Once the re-optimised solution is obtained, the horizon
is rolled by fixing the variables related to the first periods of the re-
optimised solution. The procedure is then iterated until the end of
the horizon.
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1.3 dissertation objectives

The objective of this dissertation is to break the tendency to mostly
manage uncertainties in an a priori fashion with stochastic and robust
optimisation approaches. The main drawback of such approaches
is usually the cost of protection. As an illustration, note that the
most common robust approach makes plans that resist to the worst
case scenario. In the IRP, if the clients’ demand is uncertain, the
worst case scenario uses the upper bound of the demand variability
interval, therefore the solution includes large safety stocks. If the
demand turns out to be smaller than the worst case (and it is bound
to be in the vast majority of cases), the inventory will turn out to
be oversized, which makes the robust solution very costly. Another
example of a worst case scenario would be to consider the maximal
possible travelling time, when travelling times are uncertain. In this
case, if the driver does not in fact face any problem when travelling
from a client to another, he will arrive earlier than planned and in
this case will have to stay idle for some time in order to visit the
client on schedule. This shows the problem with robust approaches:
in trying to resist all possible uncertainties, the yielded solutions are
highly conservative, which makes them expensive, especially when
the range of variability of the uncertain parameter is wide.

In this dissertation, we focus on the most commonly faced sources
of uncertainty in real-life situations: the clients’ demand and the trav-
elling time.

1.3.1 Demand uncertainty

In real-life situations, clients rarely place an order by giving a prob-
abilistic distribution or an interval. Instead, they compute a value
based on historical data, and this value is subject to modification at
any moment in the time-horizon. Therefore, the most natural way to
handle such uncertainty is to wait for it to be revealed and repair the
initial plans accordingly or conduct a full re-optimisation.

As seen in Table 1.3 and Table 1.4, the literature of the IRP where
uncertainties are handled through re-optimisation is rather sparse.
This gap might be explained by the fact that re-optimisation can be
ill-suited to routing problems. In the case of the Vehicle Routing
Problem (VRP), Salavati-Khoshghalb et al. (2019) state that from a
cost perspective, re-optimising routing decisions once uncertainties
are revealed is a better theoretical alternative to a priori approaches.
Although, solving a VRP with re-optimisation is challenging. More-
over, a priori approaches tend to preserve consistency in routing oper-
ations which is not the case for re-optimisation. However, although
routing is an important component of the IRP, its other components
provide adjustment variables that are not available in the VRP, such
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as its multi-period dimension, the availability of an inventory, or pos-
sible transshipment. Indeed, the possibility to anticipate a delivery,
as well as the buffer provided by inventories at both the supplier and
its client give extra flexibility to react to uncertainties. Therefore, we
believe a posteriori approaches for the IRP should be investigated.

One a posteriori strategy is to repair the initial solution by making
small modifications to turn the solution into a feasible one. For ex-
ample, if the demand of a client i increases on Tuesday when no
supply was planned for him, and his inventory level is not sufficient
to cover the demand increase, he will need an extra visit in the re-
paired solution. If the vehicles used for this period are already at
full capacity in the initial solution, the decision-maker should decide
whether to replace a client j in the routing with client i or using
another vehicle to make a direct replenishment for client i. The diffi-
culty here is the trade-off between the feasibility of the solutions and
its cost-efficiency; and when more clients’ demands change, the set
of possibilities increases exponentially, making repair strategies hard
to develop. Another approach is a full re-optimisation of the initial
solution, from the time the unexpected event is revealed until the
end of the time horizon. The drawback of this approach is that the
new solution can be completely different from the initial one. This
creates organisational issues: for example, if the new plan requires
more vehicles, and therefore more drivers, they might be difficult to
find at short notice – also, if the supplier keeps changing his delivery
date, the client can lose trust and look for a different supplier. Such
situations lead to additional costs that are very difficult to quantify:
the decision maker may therefore favour “stable” solutions when re-
optimising.

But how to know a solution is stable? Herroelen et al. (2005) define
a stable plan as one that “deviates as little as possible from the original
one". This definition being very general, its application in the case of
IRP is not straightforward. For example, let us consider a plan which
replenishes five clients in a certain sequence on a given day; two so-
lutions are proposed to deal with a demand increase from one client.
The first solution keeps the same set of clients in the same sequence
but replenishes them with quantities that differ from the initial solu-
tion. Another solution removes one client from the route and changes
the sequence. Which of these solutions provides the smallest devia-
tion, thus is the most stable? There is no straightforward answer.

This leads to our first research question:

How to measure stability in the IRP under demand uncertainty?

We focus on demand uncertainty; this uncertainty is handled in an
a posteriori approach, through re-optimisation. For this approach to
make sense from a practical point of view, it is necessary to define
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metrics that can adequately quantify stability for the IRP. Since the
actors and parameters of the IRP are multiple, a single stability metric
can only cover a part of the full range of stability. Therefore, ensuring
overall stability requires a careful choice of metrics. The correlation of
the stability metrics should thus be studied in relation to each other,
and to the initial objective – namely, the cost.

1.3.2 Travelling time uncertainty

When it comes to time uncertainty, an a priori approach seems
appropriate, since a time interval can be a good representation for
the time required to travel from one location to another. The most
common example is a quick search on any GPS navigation software.
However, unlike the demand, the source of time volatility is not un-
predictable but depends on deterministic parameters.

We can distinguish two different types of time in routing problems
such as the IRP: travelling time and service time. For the service time,
it can be decomposed into two types as well: parking/administrative
operations times and unloading times. For the travelling time, the
volatility is generally due to the fact that the IRPs evolve in an urban
logistic context, where traffic conditions can vary throughout the day.
This volatility is not random but rather time dependent. It means
that the travelling time does not depend only on the departure and
arrival locations, but depends on the time of departure as well. The
same thing can be said for parking times, as looking for a parking
spot in rush hours can take longer than at other hours of the day. For
unloading times, they are not time dependent, but rather quantity
dependent. It means that unloading one unit of product does not
take as much as time as unloading a dozen of units.

In this dissertation, we focus only on travelling time uncertainties
by handling them in an a priori but deterministic fashion, by consider-
ing them as time dependent. However, time dependent routing prob-
lems tend to be more difficult to solve than their basic counterpart
(Gendreau et al., 2015). This leads to our second research question:

How to incorporate the time dependent aspect in the IRP and solve it effi-
ciently?

To this purpose, mathematical formulations are proposed and com-
pared, a new benchmark presented and a matheuristic developed.
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1.3.3 Structure of the dissertation

Figure 1.4 summarises the structure of the dissertation.

Inventory Routing Problem

Uncertainty

Demand uncertainty Travelling time uncertainty

Scientific 
approach

A posteriori A priori
Re-optimisation and stability 

metrics Time dependent IRP

Literature 
review

Re-optimisation IRP with travelling time focus

Stability TD routing problem

Contributions

Stability metrics: definition 
and formulation

Four formulations

New benchmark

Dominance-based 
comparison

Investigating the relevance

Assign-and-route matheuristic

Chapter 2

Chapter 4

Chapter 3

Chapter 1

Figure 1.4 – A summary of the dissertation structure

Chapter 2 is dedicated to answering the first research question. A
review of the literature of re-optimisation approaches for NP-Hard
problems, in general, and sequencing problems such as scheduling
and routing problems, in particular, is conducted. The literature
shows that re-optimisation problems are generally as hard as the ini-
tial ones, thus their respective optimal solutions may be completely
different. Therefore, stability metrics in sub-problems of the IRP such
as routing and inventory management and similar sequencing prob-
lems such as scheduling are reviewed. A subset of these metrics is
designated to be re-adapted for the IRP. The re-optimisation prob-
lem in relation to the initial objective, i.e. the total cost (composed of
holding and transportation costs), is formulated. The stability metrics
are re-adapted and their advantages and drawbacks discussed. Some
of these metrics are mathematically formulated and their correlation
and their impact in relation to the cost investigated.

Chapter 3 and Chapter 4 answer the second question of this disser-
tation. In Chapter 3, a review of the literature of IRP variants where
the travelling time is the main focus is proposed. The review shows
that the the time dependent IRP (TD-IRP) literature is rather sparse.
Thus, the focus of the review shifts to pure time dependent routing
problems. Based on the riche literature of time dependent routing
problems, four mathematical formulations for the TD-IRP are pro-
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posed and a new benchmark, based on benchmarks of the IRP and
TD-TSP literature, is generated. Moreover, numerical experiments are
conducted to compare the performances of the four formulations. In
Chapter 4, the relevance of considering the travelling time as time
dependent regarding the gain in the solutions’ cost and the computa-
tional complexity is investigated through numerical experiments. In-
spired by the results, a matheuristic is proposed to solve large-sized
instances.

The summary of contributions and short-term perspectives are given
at the end of each chapter. The final summary of contributions and
mid and long-term perspectives are presented in Chapter 5.
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2
R E - O P T I M I S AT I O N A N D S TA B I L I T Y

The uncertainty of the clients’ demand is one of the most com-
monly treated uncertainty in the IRP literature. However, most schol-
ars tackle this problem through a priori approaches, such as stochas-
tic and robust optimisation. In this chapter, a re-optimisation ap-
proach is proposed. As re-optimisation problems tend to be as hard
as the initial problems, optimal re-optimisation solutions may be com-
pletely different than the initial ones, thus creating organisational is-
sues. The objective of this chapter is to answer the first question of
our dissertation “how to measure stability in the IRP under demand un-
certainty?”. In order to control the difference between the initial and
the re-optimisation, stability metrics are proposed and compared.

This chapter is organised as follows: Section 2.1.1 review the liter-
ature of re-optimisation as an approach to handle uncertainty in dif-
ferent fields such as routing problems, scheduling and graph theory.
However, since such studies do not take into consideration stability
as a re-optimisation criterion, we look for stability metrics in differ-
ent fields of the literature, but close enough that these metrics could
be adapted to our problem. Section 2.1.2 thus reviews stability ap-
plied to the Travelling Salesman Problem, Vehicle Routing Problem,
Inventory Management and Scheduling, to look for stability metrics
that may be adapted to fit our needs. In Section 2.2, a cost-based re-
optimisation model is proposed. The approach is illustrated through
the example presented Section 1.1.2 when faced with unexpected
events, without stability concerns at this point. In Section 2.3, seven
stability metrics are identified from the conducted literature review;
the advantages and drawbacks of adapting these measures to the IRP
are discussed, and a mathematical formulation adapted to the IRP is
proposed for the most relevant metrics. Numerical experiments are
performed in Section 2.4 to test the proposed mathematical formu-
lations and investigate the correlations between the stability metrics
proposed and their correlation to the initial objective, the cost.

2.1 literature review

The literature of re-optimisation as an approach to cater for un-
certainty issues focuses on two aspects: First, the complexity of the
re-optimisation problems as well as their solving approaches. Sec-
ond, controlling the deviation between the initial solution and the
re-optimised one.
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2.1.1 Solving re-optimisation problems

Re-optimisation is an up-and-coming optimisation field that tries
to cater for uncertainty problems. Considering a problem with an
optimal solution, the purpose behind re-optimisation is to find an op-
timal solution for a new perturbed instance. Boria et al. (2011) present
an overview of works related to the field.

The first scholars to tackle dynamic or uncertain problems by us-
ing re-optimisation are Frederickson (1985), Rohnert (1985), and Der-
touzos et al. (1989). In this case, polynomial problems such as min-
imum spanning-tree or shortest path are targeted. The objective is
to maintain the optimality of the solutions when the departure or
arrival vertex is modified for the shortest path, or there is an inser-
tion, a deletion or a modification of the weight of an edge for both
problems. However, it is only until the early years of the 21

st century
that this two-stage re-optimisation (i.e. initial and perturbed state)
emerged. This new paradigm is applied in many research projects
and for various fields. In the following, we focus on NP-Hard prob-
lems in general, and sequencing problems such as scheduling and
routing problems which are a component of the IRP, in particular.

2.1.1.1 Graph problems

In graph theory, there is a variety of NP-Hard problems such as
the max-independent set, max k-colorable, max split graph, Steiner
tree. . . Many scholars tackled the re-optimisation of these problems
under the addition or the removal of a vertex from the graph or the
modification of the weight of an edge. Scholars show that the re-
optimisation problems are just as hard as the initial problems. To
that purpose, the authors of Bilò et al. (2008) improve approxima-
tion ratios of different approximation algorithms for finding the min-
imum Steiner tree when the weight of an edge in the original in-
stance is modified. Böckenhauer et al. (2009) presents a proof that
the re-optimisation of the steiner tree is just as hard as the original
when a vertex is added or removed. Moreover, the authors propose a
new approximation algorithm improving the best approximation ra-
tio known. Boria et al. (2013) focus on improving the approximation
ratios of the max independent set, max k-colorable sub-graph and
max split sub-graph, when vertices are added or removed.

2.1.1.2 Scheduling problems

In scheduling, the literature of re-optimisation problems is quite
rich. And similarly to graph problems, scholars show that such
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problems are as hard as the initial ones and focus on efficient ap-
proaches to solve them. Zweben et al. (1993) present an approach
called “Gerry” that uses constraint-based iterative repair as well as
simulated annealing notions. It is used in the context of space shuttle
ground processing which encompasses the scheduling of inspection
and repair tasks of space shuttles in preparation for launch. Fang
et al. (1993) solve the job-shop rescheduling problem where the pro-
cessing time or the starting time of a task may be modified. Using
a recursive approach, a set of tasks that are impacted by the change
are designated and a smaller job-shop scheduling problem is solved
by a GA (Genetic Algorithm). Schäffter (1997) tackles the problem
of re-scheduling with forbidden sets i.e. sets of tasks that are not
allowed to be scheduled in parallel. The author proves that the prob-
lem is as hard as the original problem. Furthermore, approximation
algorithms with ratios of 3/2 and 4/3, for the cases where, respec-
tively, one forbidden set or more is added, or removed, are presented.
Boria et al. (2014) tackle the re-optimisation of various NP-hard min-
sum scheduling problems. The approximation ratios of simple re-
optimisation strategies, under job insertion or deletion, are analysed.
Fang et al. (2015) present a survey for re-scheduling in railway net-
works where the various models are categorised in respect to their
constraints and objectives. Also, solution approaches are presented,
and their advantages and inconveniences discussed.

2.1.1.3 Routing problems

Just as scheduling problems, re-optimisation for routing problems
is the focus of numerous scholars. The literature is mostly focused
on the well known routing problems: the shortest path, TSP, VRP.
Desrochers et al. (1988) tackle the problem of the shortest path prob-
lem with time windows. They prove that the re-optimisation problem
is as hard as the original one and present a primal-dual algorithm
with a pseudo-polynomial complexity to optimally solve it. Bertsi-
mas (1992) solves the stochastic VRP with a worst-case a priori ap-
proach and compares it to two strategies of re-optimisation i.e. in the
case where, respectively, the demand is known at the moment of the
visit of a customer and/or at the start of the tour. Haughton (2000)
introduces a framework to quantify the benefits of re-optimisation
for the stochastic VRP considering, among others, the service region
and the capacity of the fleet. Archetti et al. (2003) tackle the TSP for
cases when one node is added or removed. This work concludes that
the re-optimisation problem is as hard as the original problem. The
study also shows that the application of the cheapest insertion heuris-
tic (Rosenkrants et al., 1977), in the case where a node is added, re-
duces the best known approximation ratio. Böckenhauer et al. (2007)
prove that although the TSP when the weight of an edge is modi-
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fied is as hard as the original one, it admits a better approximation
algorithm than when a vertex is added or removed, and present a
new algorithms that improves the approximation ratio. Ausiello et al.
(2009) propose an approximation algorithm for the Min-TSP when a
vertex is added. The authors show that in case of the Max-TSP, a
simple heuristic is asymptotically optimum when a constant number
of nodes are inserted and propose an approximation algorithm for
the general case. Secomandi et al. (2009) solve the vehicle routing
problem with stochastic demand by modelling it as a finite-horizon
markovian decision process. Optimality is achieved for instances
up to 15 customers. For larger instances, they propose a partial re-
optimisation process where only a subset of the markovian decision
process states is taken into consideration. Two heuristics to determine
these states are presented, respectively, the partitioning heuristic and
the sliding heuristic . Delage et al. (2010) propose dynamic program-
ming and tabu-search approaches to re-optimise the multi-depot vehi-
cle routing problem with time windows when the service time is un-
certain. Böckenhauer et al. (2010) tackle the TSP with deadlines where
a vertex must be visited before a certain deadline. The modification in
this context is consist of the addition or the deletion of a vertex as well
as of a deadline. An approximation algorithm is proposed to solve
the problem. Chow (2014) proposes two re-optimisation algorithms
to solve the generalised selective household activity routing problem:
An adapted version of the 2-opt heuristic for tours improvement and
the first meta-heuristic designed for re-optimisation called Genetic Al-
gorithm with Mitochondrial Eve. Spliet et al. (2014) propose a mathe-
matical model and a two-phased heuristic for the capacitated vehicle
routing problem, where a deviation of the original schedule results in
an additional cost. The cost in this case depends on the vertex itself as
well as its position in the sequence. Monnot (2015) achieves the same
approximation ratio as Ausiello et al. (2009) for the TSP but improves
the complexity of the algorithm to a linear one. Ulmer (2019) intro-
duces the notion of degree of dynamism (DOD) and tries to identify
the most suitable approach for a dynamic vehicle routing problem
(i.e. re-optimisation or anticipation) in respect to its DOD. The study
concludes that for low DODs, re-optimisation can be a very good tool,
whereas for higher ones, anticipation is needed.

Intuitively, when considering re-optimisation approaches, we esti-
mate that the initial solution can be a good starting point in order to
obtain optimality for the disrupted problem. However, as shown in
the literature presented above, re-optimisation problems are in most
cases as hard as the initial problem. This means two things: First,
since the complexity of the IRP can be reduced to most of the prob-
lems cited, re-optimisation for the IRP is NP-hard as well. Thus, it is
necessary to propose exact approaches to obtain optimal re-optimised
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solutions. Second, as there is no obvious path to transform the op-
timal solution of the initial problem into an optimal solution of the
re-optimisation problem, the two solutions may be completely differ-
ent.

2.1.2 Stability as a re-optimisation criterion

As stated in Salavati-Khoshghalb et al. (2019), when considering re-
optimisation to handle uncertainty problems, one of the main prob-
lems that can be faced is the instability, sometimes called “nervous-
ness”, of the new re-optimised plans with regards to the initial ones.

The definition of stability in re-optimisation problems has been
tackled for different fields, but not for the IRP, as shown in Section 1.2.
However, since the problem under consideration is an integration of
two sub-problems, respectively, inventory management and routing,
we can look at the definition of stability in these component problems.
The following sections present the related works dedicated to stabil-
ity in these two fields, in addition to scheduling problems, which
are commonly used as reductions for routing problems. Within these
fields, a special care is given to problems modelled over a rolling hori-
zon: while they do not carry out re-optimisation as such, they often
deal with uncertainty with a real concern for stability.

The lack of an agreed-upon definition of stability or a well-established
vocabulary regarding the issue at hand makes it difficult to list key-
words that ensure an exhaustive search. We used the keywords “sta-
bility”, “nervousness” and “disruption management”; a screening
was then conducted among those results, to keep only the relevant
articles concerning stability as a re-optimisation criterion.

2.1.2.1 Stability concerns in scheduling

Stability when re-optimising was first tackled in the scheduling
field by Wu et al. (1993). In this work, heuristics are proposed to
re-schedule jobs on one machine when a disruption occurs, e.g. a
machine failure, with two objectives: efficiency (i.e. makespan) and
stability. Two strategies are conducted: first, a full re-optimisation
of the unfinished tasks before the disruption. Second, a “right-shift”
strategy, where the exact sequence that was to be performed in the
original schedule is performed after the disruption, absorbing the
idle times if possible in the process. In this context, a stable schedule
is one that minimises the sum of the absolute difference of starting
times for all tasks as well as preserving the sequence between the
re-optimised and the original schedule. Since the right shift strategy
gives by definition more stable solutions, the focus of Wu et al. (1993)
is to present local search-based heuristics for the re-optimisation pro-
cess to keep the solution stable.
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Several articles extend the work done by Wu et al. (1993). Cowling
et al. (2002) present a bi-objective study that takes utility and stability
as optimisation criteria. The utility is defined as the deviation in com-
pletion time between the original schedule and the re-optimised one.
Stability takes into account, in addition to the deviation of the start-
ing time, the deviation of the completion time of each task separately.
This is because the disruption in this case is not only a machine dys-
function, but can be, among others, a change in the processing time
as well. Rangsaritratsamee et al. (2004) present a dynamic job shop
rescheduling. The rescheduling policy is called “discrete event driven
rescheduling” and is the result of a work presented in Church et al.
(1992) in the context of rescheduling production systems under dy-
namic job arrivals. A scheduling horizon is defined, and “reschedul-
ing points” designated on it. At each rescheduling point, the jobs
to be scheduled are the ones that are not scheduled at the previous
rescheduling point or the ones that arrived afterwards. The multi-
objective efficiency/stability is reconsidered, while adding, in addi-
tion to the starting time deviation, a new stability metric, inspired by
the work of Lin et al. (1994) and called “the total deviation penalty”.
It associates a penalty, restrictively, to jobs rescheduled earlier: the
earlier the job is rescheduled, the bigger the penalty. In this con-
text, a genetic algorithm is presented to generate schedules at each
rescheduling point.

Curry et al. (2005) present a simulation study that investigates the
trade-off between two conflicting objectives, respectively, a step-wise
increasing tardiness cost function and a metric of stability, defined by
the proportion of rescheduled jobs that change machine assignment
during rescheduling. A branch-and-price algorithm is presented in
this case to solve the re-scheduling problem.

Pfeiffer et al. (2007) present a simulation-based stability evaluation
of different rescheduling policies, such as: right-shift schedule, com-
plete re-scheduling. . . Both single and multi-machine job-shop prob-
lems are investigated and an industrial application is presented. In
this case, the stability metrics considered are the ones presented in
Rangsaritratsamee et al. (2004), i.e. starting time deviation and total
deviation penalty. However, no hint is given about which strategy
performs better in terms of stability.

The machine re-assignment and starting time deviations metrics
will be discussed for the IRP in Section 2.3.

2.1.2.2 Stability concerns in routing

Sörensen (2006) proposes a bi-objective approach to ensure the sta-
bility of the route in a vehicle routing problem. The stability of a
route is assessed by the re-adaptation of the “edit distance” approach
introduced by Levenshtein (1966). The idea behind this approach is
to minimise the number of steps to transform a string into another
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string by a set of operators, respectively: addition, deletion and sub-
stitution. In the case of the VRP, the strings are the set of routes of the
solution. The problem is solved as follows: first, dynamic program-
ming is used to find the minimum operations to transform each route
of the original solution to each route of the re-optimised one. Second,
a mathematical assignment model computes the optimal edit distance
between the original solution and the re-optimised one.

Schönberger et al. (2008) tackle the problem of “nervousness”, de-
fined as “the symptom appearing during the transition from the so far
followed schedule to an updated schedule after additional requests
appeared”. Nervousness issues are classified into two types: exter-
nal nervousness which affects the client (e.g. a change in the arrival
time) and internal nervousness which does not matter for the client
(e.g. a re-assignment to another vehicle – however, whether vehicle re-
assignment is really external can be debated upon, since some clients
prefer having the same driver when served). Then, an adaptive con-
trol of a subcontractor to balance the workload of a capacitated fleet
of vehicle is proposed and investigated. Three metrics are used to as-
sess the nervousness, two external and one internal. Mode Selection
Nervousness represents the ratio of the clients visited with a differ-
ent transport mode compared to the original schedule (i.e. a change
from an owned vehicle to a subcontractor) ; Resource Assignment
Nervousness represents the ratio of the clients that are re-assigned
to a different vehicle. The internal metric, Arrival Time Nervousness,
represents the ratio of clients for which the arrival time has been mod-
ified.

Zhang et al. (2007) and Wang et al. (2011) take interest in the VRP
with time windows under uncertainty. Disruptions for Zhang et al.
(2007) are the unavailability of a vehicle for an interval of time due
to vehicle failure or traffic conditions. In Wang et al. (2011), possible
disruptions are a modification of the delivery address of a client, a
deviation in its time window, a perturbation of its demand, a dele-
tion of a request or any combination of these disruptions. To ensure
the stability of the re-optimised solution, both articles use a metric
on customer service time where a penalty is applied if the client is
served in a time that is outside of its time window. Wang et al. (2011)
extend the stability metrics with two other criteria. First, a metric on
driving paths where a penalty is applied if an arc that did not exist in
the original solution appears in the re-optimised one and vice versa.
Second, a metric on delivery costs is the deviation between the costs
of the original and the re-optimised solution.

Dettenbach et al. (2015) present a mathematical model to re-optimise
tours in last mile distribution with electric vehicles fleet. The network
is in this case decomposed into multiple districts and all clients of one
district are assigned to a vehicle. In case of a failure, which is pre-
sented as a dysfunction of one of the electric vehicles or the absence
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of a driver, the model is supposed to select a back-up district whose
clients are to be dispatched and added to the other districts. The sta-
bility is modelled as constraints. Each time a district is dispatched,
it is decomposed into a certain number of paths, this number being
smaller or equal to the number of operational vehicles, i.e. the num-
ber of non-dispatched districts. These paths are then inserted in other
districts, in the place of one and only one edge, keeping the sequence
the same as in the original route.

The sequence preservation, edit distance and mode selection ner-
vousness metrics, in addition to resource re-assignment and arrival
time deviation which are similar to, respectively, machine re-assignment
and starting time deviation will be discussed for the IRP in Sec-
tion 2.3.

2.1.2.3 Stability concerns in inventory management

Uncertainty is a key component in inventory management. Usu-
ally, it is tackled using stochastic formulations and/or by sizing a
safety stock, which are a priori methods. On the contrary, in the cur-
rent work we investigate stability in re-optimisation, which is an a
posteriori method.

Re-optimisation is not a field of work in inventory management,
because the problem of when and how much to order when demand
changes is rather easy : a typical example is Wilson’s model (Harris,
1919) whose complexity is in O(1).

Many scholars take interest on problems of inventory management
by assessing the impact on the cost while comparing different replen-
ishment strategies or when considering a bad evaluation of the hold-
ing cost, referring to it as a “robustness study”. Inderfurth (1994) is
the first to tackle the problem of “nervousness” in inventory man-
agement. In this paper, the nervousness in the context of a rolling
planning horizon is shown to be heavily affected by the choice of the
inventory policy. A comparison between the (s, S) and (s, nQ) poli-
cies is presented. The work concludes that the reorder point s plays
a less important role than the size of the lot Q, which means that the
superiority of the (s, S) policy, which can be shown to be optimal for
a wide class of problems under pure cost consideration, needs to be
reconsidered under stability criteria. In this context, a robust/stable
solution is one that minimises the deviation in the solution cost.

However, what interests us is a solution that minimises the devi-
ation in the solution structure, i.e. the order quantity and order fre-
quency. This definition of stability is implicitly implied in well known
replenishment strategies (such as fixed order quantity, economic or-
der quantity, or order up-to-levels) that set replenishment at fixed in-
tervals and/or in fixed quantity. Here the stability is ensured by the
solution structure itself, i.e. the fact that we are looking for a fixed
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interval and/or a fixed quantity. Therefore a stability metric does not
seem necessary.

However, in the context of production planning with problems
such as Lot Sizing, Master Production Schedule (MPS), Material Re-
quirements Planning (MRP) or Capacity Expansion Planning (CEP),
where the notion of inventory management is a key element, stability
in the sense of solution structure has been of interest. The work in
Sridharan et al. (1988) is the first to tackle the problem of quantifying
stability under rolling horizon planning and is a basis for numerous
future works. In this paper, stability is quantified by the difference be-
tween the quantity planned originally and the re-optimised quantity
for the MPS. They propose to weight the metric in order to priori-
tise the stability of closer periods. This metric has been re-adapted
to other problems (Herrera et al., 2016; Kadipasaoglu et al., 1997;
Kimms, 1998; Narayanan et al., 2010; Sahin et al., 2008).

Kadipasaoglu et al. (1997) re-adapt the same metric for the MRP
and propose a new one based on the deviation in frequency of replen-
ishments. Kimms (1998) re-adapts the metric to CEP and Lot Sizing.
Sahin et al. (2008) extend the work of Kadipasaoglu et al. (1997) and
propose a new metric that quantifies the number of deviations in re-
plenishments: a deviation occurs if a client is replenished at a period
when it was not supposed to be in the initial plan, and vice versa.
Narayanan et al. (2010) combine the metrics of Sridharan et al. (1988)
and Sahin et al. (2008) for the joint replenishment lot sizing problem.
They propose nine local-search based heuristics and investigate the
trade-off between stability and the cost of the obtained solutions. Fi-
nally, Herrera et al. (2016) extend the work of Sridharan et al. (1988)
for the MPS by proposing sub-metrics of stability that quantify the
deviation of the quantity for each period and not only for the whole
horizon. Their experiments show that an improvement in stability
does not lead to a significant cost increase.

The replenishment deviation and quantity deviation metrics will
be discussed for the IRP in Section 2.3.

2.1.2.4 Literature review synthesis

A summary of the conducted literature review of the stability met-
rics is presented in Table 2.1. The rows of this table use the names
of the stability metrics that we propose for the IRP and which will
be presented in Section 2.3, and link them to their counterpart in the
literature review of the different fields – namely, scheduling, routing
and inventory management. The names given in the table cells are
those used by the authors, when they differ from the name we use.
This shows the terminology appears to depend on the fields, although
the metrics are quite similar: hence the need for us to propose names
for the IRP metrics.
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2.2 cost-based re-optimisation

Let us now consider that the demand of the clients are subject to
unexpected changes. Each of such changes is modelled as a deter-
ministic event E = {pE,DE} where pE ∈ H represents the period
for which the event happens and DE represents a set of modified de-
mands. Note that the event always occurs at the beginning of period
pE.

An example of an event for the example instance of Section 1.1.2
is presented in Table 2.2. Event E in this case occurs at period p =

2. Therefore, a re-optimisation is needed for the second and third
periods. The demands that are modified compared to Table 1.1 are
shown with bold characters. For example, for client 4, demands in
periods p = 2 and p = 3 increased to 48 instead of 24, whereas for
client 1, demand for period p = 2 turned to 0 instead of 65.

i
Dp

i

p = 1 p = 2 p = 3

1 65 0 65

2 35 35 70

3 58 0 58

4 24 48 48

5 11 0 11

Table 2.2 – A representation of an event for the example instance

In order to face this demand modification, a re-optimisation is
needed for horizon Hnew = {pE, pE + 1, ..., |H|}. To mathematically
formulate the re-optimisation problem, let S = {Xp

i,j, Yp
i , Qp

i , Ip
i } and

Snew = {xp
i,j, yp

i , qp
i , Ip

i } be, respectively, a set of data representing the
original solution for the deterministic problem and a set of decision
variables for the re-optimisation problem.

33

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI064/these.pdf 
© [F. A. Touzout], [2021], INSA Lyon, tous droits réservés



Cost-based re-optimisation (IRPR)

min objIRP = c ∑
i∈V

∑
j∈V ,i<j

∑
p∈H\{0}

xp
i,j × f (i, j) + ∑

i∈V
∑

p∈H
Ip
i × hi

s.t Ip
0 = Ip−1

0 − ∑
i∈V\{0}

qp
i + Rp ∀p ∈ Hnew (13)

Ip
i = Ip−1

i + qp
i − Dp

i ∀i ∈ V\{0} , ∀p ∈ Hnew (14)

Ip
i ≤ Imax

i ∀i ∈ V\{0} , ∀p ∈ Hnew (15)

qp
i + Ip−1

i ≤ Imax
i ∀i ∈ V\{0} , ∀p ∈ Hnew (16)

qp
i ≤ yp

i × Imax
i ∀i ∈ V\{0} , ∀p ∈ Hnew (17)

qp
0 ≤ yp

0 × C ∀p ∈ Hnew (18)

∑
j∈V\{0}

xp
i,j + ∑

j∈V\{0}
xp

j,i = 2× yp
i ∀i ∈ V , ∀p ∈ Hnew (19)

∑
i∈S

∑
j∈S ,i<j

xp
i,j ≤ |S | − 1 ∀S ⊆ V\{0} , p ∈ Hnew (20)

(9) to (12)

xp
i,j = Xp

i,j ∀(i, j) ∈ E , ∀p ∈ Hfixed (21)

yp
i = Yp

i ∀i ∈ V , ∀p ∈ Hfixed (22)

Ip
i = Ip

i ∀i ∈ V , ∀p ∈ Hfixed (23)

qp
i = Qp

i ∀i ∈ V , ∀p ∈ Hfixed (24)

Compared to the original model presented in Section 1.1.1, the cost-
based re-optimisation problem time horizon H is decomposed in two
parts: Hfixed = {0, 1, . . . , p− 1} and Hnew = {pE, pE + 1, ..., |H|}. In
the first part of this time horizon, i.e. before the occurrence of the
event, constraints (21) to (24) are added. They fix the decision vari-
ables of Snew to the values taken by the decision variables in S . For
the second part of the time horizon, i.e. after the event, the constraints
are kept the same as in the IRP model.
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Figure 2.1 shows an optimal solution for the example instance faced
with the event presented in Table 2.2. This solution is obtained using
the model formulated above. The variables regarding period 1 in
Snew are fixed to the values determined in S , since the event occurs
at period 2. During p = 2, client 1 is no longer visited in comparison
to the initial solution S . Finally, for p = 3, clients 1, 2 and 4 are
visited in this order, instead of 1, 2, 5 and 3.

The problem with this new solution Snew is that it can be perceived
as too different from solution S in terms of solution structure. There-
fore, stability metrics are needed to reduce this difference.

2.3 adaptation and mathematical formulation of sta-
bility metrics

In this section, we discuss the relevance for the IRP of the stability
metrics found in the literature review carried out in Section 2.1.2. The
advantages and drawbacks of these each are analysed. Only those
that are judged relevant for the IRP are mathematically formulated
and illustrated using the example of Section 1.1.2.

There are several ways to include these metrics in the mathematical
formulation of the cost-based re-optimisation presented in Section 2.2:
either as objective, as hard constraints or as soft constraints, i.e. inte-
grated to the objective as penalties to be paid each time the metric
is violated. In this section, the former option is used: the objectives
of the mathematical formulations proposed aim at minimising the
violations of the metrics.

2.3.1 Sequence preservation

description : Sequence preservation is an important stability met-
ric used in both scheduling (Wu et al., 1993) and routing problems
(Dettenbach et al., 2015). In the literature, it is used as an additional
constraint where the sequence (or part of the sequence) of an original
solution must be preserved in the re-optimised solution (Dettenbach
et al., 2015).

Let us consider an example where clients {a, b, c} are visited in the
original solution S at period p with route R = {a− b− c}. The event
adds two more clients that should be visited at period p, thus the
set of clients to visit in this route becomes {a, b, c, d, e}. A subset of
possible solutions for the re-optimised case would be routes: Rnew

1 =

{a− b− c− d− e}, Rnew
2 = {a− b− c− e− d} and Rnew

3 = {a− d−
b− e− c}. A stable solution in this case can be defined by one that
minimises the number of violations of the sequence. To compute this
number, the edges taken in solution S are compared with the ones
taken in solution Snew. For example, for Rnew

1 and Rnew
2 the number

of violations of the sequence would be equal to 0 since the edges
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Figure 2.1 – A representation of an optimal solution for the re-optimised
example instance with the cost as an objective
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between a and b and between b and c exist in Snew. However, for
Rnew

3 it would be equal to 2 since both edges are missing.

advantages : In urban delivery the products to deliver are gen-
erally stored inside the truck following the sequence of the solution
so that the products of the first client to visit are the most accessible.
Disturbing the original sequence when re-optimising would result in
an increase of the visiting time and therefore the duration of the route.
Preserving the sequence avoids such issues.

drawbacks : A sequence changes only when clients are added
to or removed from a route, compared to the original solution. Re-
optimising the IRP with sequence preservation therefore implies solv-
ing a travelling salesman problem (TSP) when a vertex is inserted,
removed or substituted. Because it is well known that an efficient
solution of such a modified TSP can be completely different from a
solution of the original one (Archetti et al., 2003), preserving the se-
quence can have a huge impact on the cost of the solution. Another
drawback of this metric is that it is mainly external since it has no
effect whatsoever on the client.

mathematical formulation : Let us now mathematically for-
mulate the sequence preservation metric for the IRP. Let zp

i,j be a bi-
nary variable that is equal to 1 if there is a sequence violation, i.e. if
edge (i, j) ∈ E is used in a route at period i in solution S but not in
Snew, or if it is used in Snew but not in S .

Sequence preservation-based re-optimisation (IRPR-SP)

min ∑
p∈Hnew

∑
i∈V

∑
j∈V ,i<j

zp
i,j

s.t. (9) to (24)

zp
i,j = |X

p
i,j − xp

i,j| ∀p ∈ Hnew , ∀i ∈ V , ∀j ∈ V , i < j (25)

zp
i,j ∈ {0, 1} ∀p ∈ Hnew , ∀i ∈ V , ∀j ∈ V , i < j (26)

The IRPR-SP model modifies the formulation of the IRPR by chang-
ing the objective function (which becomes the minimisation of the
number of sequence violations) and extending it with constraints (25)
and (26). Constraints (25) count one violation of sequence if an edge
(i, j) is taken in S and not in Snew and vice versa; they are not linear,
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but we note that a constraint z = |x− y| can be linearized as follows
if z appears in the minimization objective:

z = |x− y| ⇔

z ≥ x− y

z ≥ y− x

Constraints (26) ensure the binarity of variables zp
i,j.

Figure 2.2 represents an optimal solution for the example instance
using the model IRPR-SP. As in Figure 2.1, the re-optimisation pro-
cess starts at the second period. In period p = 2, the same sequence
is preserved. However, for p = 3, there is one sequence violation, due
to the addition of client 4 to the tour. Indeed, in this case, arc 1− 2 is
no longer taken and is replaced by the sequence 1− 4− 2.

2.3.2 Visit deviation

description : Visit deviation is a metric we re-adapt for the IRP
and based on the metric presented in Sahin et al. (2008). This metric
is not applicable to purely routing problems such as TSP and VRP. In-
deed, due to the time dimension of the IRP, it is possible not to visit
a client for a certain period, as long as its demand is satisfied, which
is not the case for the problems cited previously. The visit deviation
quantifies the number of clients that are visited in the re-optimised so-
lution whereas they were not supposed to be in the original one and
vice-versa. This metric is mainly external according to Schönberger
et al. (2008)’s classification, i.e. it is designed to cater for clients satis-
faction.

advantages : A client which is visited when it was not supposed
to be may face some planning issues related to the unavailability of
resources such as the human workforce, machinery, parking slots. . .
Conversely, expecting a visit that does not actually occur causes a
waste of time and resources. Therefore, minimising the visits viola-
tion minimises the disruptions for the client and increases the relia-
bility of the supplier from the clients’ point of view.

drawbacks : Because the visit deviation metric is mainly external,
i.e. favours the client’s point of view, it does not explicitly ensure any
internal stability. Therefore, it cannot guarantee an efficient routing.
However, it is worth noting that the visit deviation metric does ensure
internal and external stability in inventory management in an implicit
way, since not visiting a client that was supposed to be resupplied,
or visiting a client that was not supposed to be resupplied, has a
negative impact on the stability of the inventory of both the supplier
and the client.
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Figure 2.2 – A representation of an optimal solution for the re-optimised
example instance with the sequence preservation as an objective
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Another drawback of the metric is that, in some cases, it can be
counterproductive: minimising the visit deviation can lead to a client
being visited for no reason (no product being delivered) other than
to keep it visited.

mathematical formulation : Let zp
i be a binary variable that

is equal to 1 if there is a visit deviation for client i at period p, i.e. if it
is visited while it was not supposed to be, or if it is not visited while
it was supposed to be.

Visit deviation-based re-optimisation (IRPR-VD)

min ∑
p∈Hnew

∑
i∈V\{0}

zp
i

s.t. (9) to (24)

zp
i = |Yp

i − yp
i | ∀p ∈ Hnew , ∀i ∈ V\{0} (27)

zp
i ∈ {0, 1} ∀p ∈ Hnew , ∀i ∈ V\{0} (28)

The objective of the IRPR-VD is the minimisation of the number of
visit deviations. It extends the IRPR with constraints (27) and (28).
Constraints (27) define a deviation for a client i in period p as hap-
pening if it is visited in S and not visited in Snew or vice-versa. It can
be linearized as explained before. Constraints (28) ensure the binarity
of variables zp

i .
An optimal solution of the IRPR-VD of the example instance is

presented in Figure 2.3. In period 2 the same clients are visited as in
S . For period 3, client 4 is visited in addition to clients 1, 2, 3 and 5.
Therefore, there is one visit deviation in total, the objective is 1.

2.3.3 Quantity received deviation

description : We propose the quantity received deviation as a
stability metric for the IRP, in order to address the lack of stabil-
ity metrics in inventory management previously emphasised in the
literature review. This metric computes the difference between the
quantity that was supposed to be sent in the original solution and
the quantity received in the re-optimised one. This metric is meant to
improve the service quality, i.e. it is mainly external.

advantages : A good point is that when the quantity received de-
viation is kept at a minimum, fewer planning issues are faced. Indeed,
a client receiving less quantity than planned has uselessly mobilised
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Figure 2.3 – A representation of an optimal solution for the re-optimised
example instance with the visit deviation as an objective
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costly resources for this process. Conversely, if the client receives
more products than planned, there might be a shortage of resources
which may increase the service time, thus disrupting the entire deliv-
ery plan.

This metric is the only one that handles explicitly the inventory
management component of the IRP.

drawbacks : The logic behind VMI is to let the decision maker,
who has the best overview of the network, decide whom to serve
and with which quantity. However, when limiting the value of the
quantity deviation metric, such flexibility is somewhat constrained.
Note that, although this drawback exists for all the metrics proposed,
we believe that it is much more significant in the case of quantity
deviation.

mathematical formulation : let q̃p
i ∈ R be the quantity re-

ceived deviation, i.e. the difference of quantity received by client i at
period p, between the original solution and the re-optimised one.

Quantity deviation-based re-optimisation (IRPR-QD)

min ∑
p∈Hnew

∑
i∈V\{0}

q̃p
i

s.t. (9) to (24)

q̃p
i = |Qp

i − qp
i | ∀p ∈ Hnew , ∀i ∈ V\{0} (29)

q̃p
i ≥ 0 ∀p ∈ Hnew , ∀i ∈ V\{0} (30)

The objective of the IRPR-QD is to minimise the total quantity devi-
ations. Compared to the IRPR, it adds constraints (29) and (30). Con-
straints (29) compute the difference between the quantity planned
in solution S and received in Snew. These constraints can easily
be linearised as mentioned before. Constraints (30) ensure the non-
negativity of variables q̃p

i .
An optimal solution of the IRP-QD of the example instance is pre-

sented in Figure 2.4. The differences in quantity occur in period p = 3
just as in SP and VD. For example, client 1 receives 22 instead of 46.
The total amount of the differences over all the clients sums up to
166.
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Figure 2.4 – A representation of an optimal solution for the re-optimised
example instance with the quantity deviation as an objective
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2.3.4 Clients re-allocation

description : In urban delivery, and when considering a fleet of
vehicles, the network of clients can be decomposed in different dis-
tricts. A driver in this case is generally allocated to clients that belong
to a single district, so that drivers can get familiar with the area traffic,
shortcuts, as well as the specific requirements of the clients.

When re-optimising, a way to achieve stability is to minimise the re-
allocations of clients to drivers from other areas. The computation of
the number of re-allocations is as follows: one occurs for each visited
client in S , if the driver is no longer the same in Snew. This metric is a
re-adaptation of the “Resource Assignment Nervousness” presented
in Schönberger et al. (2008).

advantages : When the clients re-allocation metric is kept at a
minimum, the driver is less disturbed by the events, which enhances
his/her performance as well as the satisfaction of the client.

drawbacks : In the IRP, clients that were not visited in the original
plan can be added to a route in the re-optimised solution, or clients
that were previously visited can be removed from the route. This will
not affect the clients re-allocation metric at all, since the clients re-
allocation metric changes only when a client is visited in both S and
Snew but with different vehicles. For example, let K1 = {a, b, c, d}
and K2 = {e, f , g} be the sets of clients visited by vehicle 1 and 2,
respectively, in S . If in Snew, Knew

1 = {a, b, c} and Knew
2 = {e, f , g, h},

the number of visited clients that are allocated to different vehicles is
equal to zero, even if client d has been removed and client h added.
This example shows the limitations of this metric, that does not detect
some big differences between S and Snew.

We do not propose a mathematical formulation for the client re-
allocation metric because we chose to focus on a variant of the IRP
where only one vehicle is used (see model in Section 2.2), whereas
the client re-allocation metric is only compatible with multi-vehicle
variants.

2.3.5 Edit distance

description : As mentioned in Section 2.1.2, the idea behind the
edit distance in Sörensen’s work (Sörensen, 2006) is to minimise the
number of operations (addition, deletion, substitution) that transform
the original solution into the re-optimised one. This metric is easily
adapted to the case of the IRP.

advantages : The advantage of this stability metric is mostly com-
putational: the operators used to compute the edit distance (addition,
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deletion and substitution) could be used within a local search proce-
dure. Local search algorithms are known to be very efficient heuris-
tics for sequencing problems, therefore they can help solving routing
component of the IRP.

drawbacks : Let us take the example of a time period in which to
visit client {a, b, c} should be visited, with route R = {a− b− c} as
initial solution. Considering the addition of two clients {d, e}, routes
Rnew

1 = {a− b− c− d− e} and Rnew
2 = {a− d− b− e− c} can both

be obtained by performing two addition operations. For Rnew
1 , d and

e are inserted to the end of the sequence, whereas for Rnew
2 , d and e

are inserted, respectively, between a− b and b− c. One could argue
that Rnew

1 represents a more stable solution than Rnew
2 as it does not

change the initial sequence. However, the edit distance metric cannot
differentiate between them.

Another drawback of the edit distance metric is that it is generally
considered as an indicator of stability and not an active optimisation
criterion. This is due to the NP-hardness of defining the optimal edit
distance for Snew in relation to S (Sörensen, 2006). Therefore, we do
not see how to propose a linear model that optimises the edit distance
and do not propose a mathematical formulation for the edit distance
metric.

2.3.6 Delivery system modification

description : Delivery system modification as a metric can be
considered only when deliveries can be subcontracted, e.g. for the
IRP with transshipment. It is adapted from the “Mode Selection Ner-
vousness” metric presented in Schönberger et al. (2008). It quantifies
variations in the mode of delivery between the original solution and
the re-optimised one by counting the number of clients that are vis-
ited by the supplier’s own fleet in Snew rather than a subcontractor,
or that are visited by a subcontractor instead of the supplier’s fleet.

advantages : This metric helps limiting the changes in resources
between the original and the re-optimised solutions. Indeed, the de-
cision maker has to determine how many drivers/owned vehicles
he/she will need to perform the routes of the solution, as well as
the number of transshipments. Minimising the modifications in the
delivery system should avoid contractual issues with the transporta-
tion provider if deliveries that were supposed to be outsourced are
actually managed internally, or vice versa.

drawbacks : The main drawback of the delivery system modifica-
tion metric is that it can only be considered within a variant of the
IRP, i.e. when transshipment is possible. In addition, it does not en-
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sure any external stability. Indeed, it does not usually matter for a
client whether the delivery is made by a subcontractor or an owned
vehicle, as long as the right quantity is received.

The delivery system modification metric is compatible only with
variants of the IRP where transshipment is considered. Therefore, no
mathematical formulation is proposed for this metric.

2.3.7 Visiting time deviation

description : The visiting time deviation metric can be consid-
ered when time-related considerations, such as travel times, arrival
times, etc, are explicitly modelled in the IRP. This metric sums the
differences, for each client, between the time of visit in the initial
solution and the re-optimised one.

advantages : The advantage of this metric is twofold. First, when
the visiting time deviations are at a minimum, the client is more sat-
isfied, since the resulting plan does not disturb too much its schedule
regarding closing time, other deliveries, unavailability of resources. . .

Second, it ensures, indirectly, some internal stability. Indeed, in
order to minimise the deviations in the time of visit, the paths of the
drivers must not undergo heavy changes.

drawbacks : The only drawback of this metric is that it does not
ensure any stability in terms of inventory management. However, it
is very efficient for the routing component of the IRP since it ensures
both internal and external stability.

The visiting time deviation as a metric is only relevant when the
time aspect is considered for the routing component. Therefore, we
do not propose a mathematical formulation due to its incompatibility
with our variant of the IRP.

2.3.8 A qualitative discussion

The panel of stability metrics presented in this section ensure a
large range of stability for the IRP and are compatible with different
variants. As a summary, Table 2.3 shows, for each stability metric
proposed, if an internal or external stability in both routing and in-
ventory management is ensured, if it is compatible with the three
most commonly used variants of the IRP in the literature, respec-
tively, IRP (multi-vehicle included), IRP with transshipment (IRPT)
and IRP with time windows (IRPTW) and finally, if a Mixed Integer
Linear Programm (MILP) is proposed for the metric. For example,
visit deviation ensures external stability in both routing and inven-
tory management and internal stability in inventory management. It
is also compatible with every variant of the IRP. For the sequence
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preservation on the other hand, although it can be compatible with
all the variants of the IRP, it only ensures internal routing stability.
The last column shows that MILP models are proposed for three met-
rics only, namely, sequence preservation, visit deviation and quantity
deviation. This is due to the incompatibility of some of the metrics
with the variant of the IRP proposed in this paper (client re-allocation,
delivery system modification and visiting time deviation) or to their
non linearity (edit distance).

Routing Inv. management Problem variants Proposed

Internal External Internal External IRP IRPT IRPTW MILP
model

Sequence preservation X X X X X

Visit deviation X X X X X X X

Quantity received deviation X X X X X X

Clients re-allocation X X X X

Edit distance X X X X

Delivery system modification X X

Visiting time deviation X X X

Table 2.3 – Categorisation of the IRP stability metrics

It appears from Table 2.3 that no stability metric is able to ensure
internal and external stability in both routing and inventory man-
agement. Therefore, ensuring the full range of stability for a certain
variant of the IRP can be a tedious task. For example, combining
sequence preservation, visit deviation and quantity deviation does
ensure the full range of stability. However, including all of them to
an optimisation model comes with its challenges. If the metrics are
considered as hard constraints, it is very complicated to determine
a thresh-hold of stability for the metrics that ensures that a feasible
solution can be obtained. On the other hand, if they are considered as
soft constraints, it is difficult to define an appropriate weight for each
metric. Therefore, in the next section, we propose a way to compare
the stability metrics by investigating their behaviour in relation to
each other and to the initial objective function, the cost. The objective
of this comparison is to determine if there is a dominance relation-
ship between the metrics in order to eliminate the dominated or the
redundant ones.

2.4 comparison of stability metrics

In this section, experiments are conducted in order to compare
the stability metrics. To that purpose, the benchmark used is de-
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scribed in Section 2.4.1, a dominance function is introduced in Sec-
tion 2.4.2, then experimental results are presented and discussed in
Section 2.4.3.

All experiments are conducted on a CPU Intel Xeon E5-1620 v3

@3.5Ghz with 64GB RAM using the branch-and-cut procedure pre-
sented in Algorithm 1.1 and with a 600 seconds time limit. The
subtour elimination constraints are added dynamically using Gurobi
9.0.0 as a solver with the lazyConstraints parameter. All models are
implemented with Java in Eclipse IDE.

Note that only three metrics here are compared, namely, sequence
preservation, visit deviation and quantity deviation. As explained in
Section 2.3 and shown in Table 2.3, these metrics are the only ones
judged both relevant and compatible with the IRP variant considered
in this paper.

2.4.1 Benchmark

To model the initial problem before unexpected events happen, we
use the benchmark proposed by Archetti et al. (2007), which is the
most commonly used in the literature. Table 2.4 describes the charac-
teristics of the instances used. There are two different time horizons
(|H| = 3 and 6 periods), and different possible numbers of clients
|V| for each time horizon. The holding cost h is significantly higher
in half of the instances. For each combination (|H|, |V|, h), five (#in-
stances) instances exist, on which ten (#events) events are generated
for three different sets of scenarios. For example, for |H| = 3 and
|V| = 5, there are 5 different instances when the holding cost h is
low and 5 others when it is high. For each one of these 10 different
instances, 10 events for each scenario are generated, which makes
the total number of instances for |H| = 3 and |V| = 5 equal to
10× 10× 3 = 300. With all combinations considered, the total num-
ber of instances is equal to 3000.

|H| |V| h #instances scenarios #events per
scenario

3 {5, 10, 20, 30, 40, 50} {high, low} 5 {1, 2, 3} 10

6 {5, 10, 20, 30}

Table 2.4 – A description of the benchmark set of the numerical experiments

The three different scenarios considered to generate the events are
presented in Table 2.5. The table gives the percentage of clients that
change their demand in each scenario; the columns shows the de-
mand variation in each case. For example, in scenario 1, the demand
of each client have a probability of 0.1 to become 0, a probability of 0.8
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to stay the same and a probability of 0.1 to double. These variations
are rather drastic to ensure that significant changes can be observed
in the structure of the re-optimised solution. The procedure to gener-
ate an event is presented in Algorithm 2.1.

Scenario
Demand

= 0 ×0.5 == ×1.5 ×2

1 10% - 80% - 10%

2 15% 10% 50% 10% 15%

3 30% - 40% - 30%

Table 2.5 – A description of the different event scenarios

Algorithm 2.1: Generation of an event
1: input: An instance, u index of the scenario
2: randomly generate a period pE where pE ∈ H
3: for p ∈ {pE, pE + 1, ..., |H|} do
4: for i ∈ V\{0} do
5: Depending on the scenario u, Dp

i is modified according to
Table 2.5

6: end for
7: end for
8: return

2.4.2 A dominance function

Let w be an instance of the problem, W a set of instances, and
F = { f1, f2, ..., f|F |} a set of metrics. An optimal solution of instance
w with the metric fv ∈ F as an objective function is denoted by f ∗v (w).
We denote by f ∗v′(w| f ∗v (w)) the optimal solution of instance w with
metric fv′ as objective function, metric fv being kept at its optimal
value f ∗v (w) through an added constraint.

The dominance of metric fv over metric fv′ for set W is denoted
as fv �W fv′ . A metric fv dominates a metric fv′ for set W if and
only if for all instances w ∈ W it is possible to find the optimal
solution for metric fv′ when metric fv is fixed to its optimal value, i.e.
f ∗v′(w) = f ∗v′(w| f ∗v (w)).

Let us now set |F | = 4 and f1 = Ĉ , f2 = SP, f3 = VD and
f4 = QD where Ĉ is the cost, SP the sequence preservation, VD the
visit deviation and QD the quantity deviation. In order to compare
these metrics, the instances of the benchmark need to be solved to
optimality for each metric, and then for each metric fixed to its opti-
mal value through an added constraint, the other metrics are solved
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to optimality. The procedure for one instance and one event is pre-
sented in Algorithm 2.2 and Table 2.6: it starts by solving the initial
problem and obtaining the initial solution S . Afterwards, for each
metric fv ∈ F the re-optimisation solution Snew

fv
is obtained from the

initial solution S and the event Ew and the optimal value of the metric
f ∗v is obtained. For the remaining metrics fv′ , a new re-optimisation
problem is solved, where the value of metric f new

v of index v is fixed
to its optimal value f ∗v . The results of this procedure is a matrix M
of dimensions |F | × |F| (Table 2.6).

As an illustration, in Table 2.6, cell SP∗ contains the optimal so-
lution when the objective is to minimise the sequence preservation,
cell SP∗(VD∗) contains the optimal solution when the objective is to
minimise the sequence preservation while keeping the visit deviation
at its optimal value VD∗, and finally, VD∗(SP∗) contains the optimal
solution of the visit deviation when the sequence preservation is kept
at its optimal value.

Algorithm 2.2: A description of the solving procedure for an
instance w ∈ W

1: input: An instance w ∈ W , one of its events Ew, an empty matrix
M of |F | × |F| dimension

2: solve the initial problem to get S as optimal solution
3: for fv ∈ |F| do
4: solve to get Snew

fv
(Ew, S) and setM fv , fv to f ∗v (w)

5: for fv′ ∈ |F|, fv′ 6= fv do
6: add the constraint f new

v (w) = f ∗v (w)

7: solve to get Snew
fv′

(Ew, S| f ∗v (w)) and setM fv , fv′
to f ∗v′(w)| f ∗v

8: end for
9: end for

10: return M

Ĉ SP VD QD

Ĉ Ĉ∗ SP∗(Ĉ∗) VD∗(Ĉ∗) QD∗(Ĉ∗)

SP Ĉ∗(SP∗) SP∗ VD∗(SP∗) QD∗(SP∗)

VD Ĉ∗(VD∗) SP∗(VD∗) VD∗ QD∗(VD∗)

QD Ĉ∗(QD∗) SP∗(QD∗) VD∗(QD∗) QD∗

Table 2.6 – Structure of matrixM for one instance and one of its events

An example for an instance where |H| = 6 and |V| = 30, subjected
to an event drawn from the probability distribution of scenario 1,
is presented in Table 2.7. It shows that VD �w SP, since SP∗ =

SP∗(VD∗) = 0 and that SP �w VD, since VD∗ = VD∗(SP∗) = 3.
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Therefore, a dominance relation exists between SP and VD in both
ways, thus it is not a strict one. These two metrics can be said to
be equivalent, i.e. optimising the sequence preservation first does not
keep us from finding the optimal solution for visit deviation and vice-
versa. Furthermore, observation of metrics QD and VD shows these
metrics to be divergent, i.e. optimising one deteriorates the other.

Ĉ SP VD QD

Ĉ 8328.03 7 8 1334

SP 8456.58 0 3 468

VD 9016.52 0 3 764

QD 9399.88 0 6 468

Table 2.7 – Results for an instance where |H| = 6 and |V| = 30

2.4.3 Experimental results and discussion

comparison of SP , V D and QD . All 3000 instances of set W
are subjected to the procedure described in Algorithm 2.2, solving
|F | × |F| = 16 MILPs for each instance. The results are presented
in Table 2.8 where each cell represents the ratio of instances where fv

dominates fv′ .

�W Ĉ SP VD QD

Ĉ - 31.77 % 20.87 % 13.12 %

SP 31.77 % - 95.33 % 95.19 %

VD 20.87 % 95.33 % - 89.04 %

QD 13.12 % 95.19 % 89.04 % -

Table 2.8 – Dominance results between the stability metrics and the cost

Table 2.8 shows a high rate of equivalence between the stability
metrics, namely, sequence preservation, visit deviation and quantity
deviation. Indeed, for sequence preservation, there is an equivalence
rate of 95% with both visit deviation (96.33%) and quantity devia-
tion (95.19%). This means that divergences happen in only 5% of the
cases: in these cases, optimising sequence preservation deteriorates
visit deviation and/or quantity deviation (and vice-versa). Moreover,
although the rate of equivalence between visit deviation and quan-
tity deviation drops to 89% it is still very strong. This amount of
equivalence was intuitively expected due to the interrelationship of
the mathematical formulations of the stability metrics.
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Since keeping a plan stable is supposed to be costly, low equiva-
lence rates were intuitively expected between the cost and the stabil-
ity metrics. Yet, the results show the cost to be equivalent for, respec-
tively, 30%, 20% and 13% of the cases for sequence preservation, visit
deviation and quantity deviation. To deepen this analysis, we thus
take a closer look at the evolution of the cost in comparison to the
stability metrics when they are divergent. For each instance w ∈ W ,
the gap between the optimal cost and the optimal cost when a sta-
bility metric is kept at its optimal value gĈ

fv
is computed. For exam-

ple, for the case of cost and sequence preservation: gĈ
SP = Ĉ∗(SP∗)−Ĉ∗

Ĉ∗
.

Figure 2.5 represent the distribution of these gaps for, respectively,
sequence preservation, visit deviation and quantity deviation when
the cost and these metrics are divergent, i.e. 68.23% of the instances
for SP, 79.13% for VD and 86.88% for QD.

Figure 2.5a shows the distribution of the gap in the cost regarding
SP. We can see that almost 37% of the instances have a gap in the
cost inferior to 2.5% and almost 25% when the gap is between 2.5%
and 5%. Therefore, for 60% of the instances, the cost is deteriorated
only up to 5% when SP is optimal. Furthermore, almost 20% of
the instances have a gap within 5% and 10%. On the other hand,
less than 1% of the instances have a gap superior to 30%. A similar
distribution is observed for both VD and QD for the cost gap interval
]5,+∞[. However, for the interval ]0, 10] it goes up to 66% for VD
and up to 70% for QD. It is worth noting that the choice was made
not to include the ratio of the instances where there is an equivalence
between the cost and the stability metrics to show that the histograms
have the same shape when there is divergence. Table 2.9 shows the
distribution of the gap in cost in relation to the stability metrics for
all the instances, including when there is an equivalence, i.e. gĈ

fv
= 0.

gĈ
fv

%

= 0 ]0, 2.5] ]2.5, 5] ]5, 7.5] ]7.5, 10] ]10, 12.5] ]12.5, 15] ]15, 17.5] ]17.5, 20] ]20, 30] ≥ 30

SP 31.77 25.16 15.60 10.13 6.32 3.49 2.73 1.69 1.04 1.55 0.57

VD 20.87 34.07 18.43 10.53 5.75 3.43 2.75 1.57 0.89 1.29 0.46

QD 13.12 40.59 20.53 10.46 5.51 3.10 2.56 1.14 0.82 1.57 0.64

Table 2.9 – Distribution of the gap in the cost for SP, VD and QD

Two conclusions can be drawn from Table 2.9. First, the difference
in equivalence rate between the stability metrics and the cost is due to
very small deviations in the cost. Indeed, the distribution of the gap
in the cost for interval ]5,+∞[ is the same for all three metrics. The
only difference is observed in interval [0, 5] where the difference in
equivalence rate between SP and VD is shifted to a gap smaller than
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Figure 2.5 – A representation of the distribution of the gap in the cost
when the cost and the stability metrics SP, VD and QD
are divergent
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5%. The other conclusion is that the performance of re-optimising
with the stability metrics depend on the decision maker. If the de-
cision maker accepts the deterioration of the cost of the solution up
to a certain threshold in order to ensure the stability of the solutions,
the results show that if the threshold is fixed to 5%, in almost 75% of
the instances optimising stability yields an acceptable cost. This rate
goes up to almost 90% when the threshold is fixed to 10%.

To ensure that these results can be generalised, at least for setW , a
decomposition of the results is performed for the different parameters
of the benchmark: number of clients |V|, event scenario (1, 2 or 3)
and the size of horizon |H|. For the equivalence rates presented in
Table 2.8, the results stay the same no matter which event scenario is
performed. On the other hand, the number of clients and the horizon
size have an impact on the equivalence rates between the cost and
the stability metrics. For example, when |V| = 5, for |H| = 3 the
equivalence rates between cost and SP, VD and QD are, respectively,
52%, 53% and 40% and drop to 31%, 37% and 27% for |H| = 6. When
|V| = 30, for |H| = 3, the equivalence rates are 28%, 11% and 4%
and drop to 20%, 5% and 2% for |H| = 6. This means that the larger
the instances get, in terms of number of clients or size of the time
horizon, the smaller the equivalence rate becomes. However, these
two parameters do not have any impact on the distribution of the
cost, as 90% of the solutions lead to a solution with a gap in the cost
inferior to 10%.

on the hardness of the re-optimisation problem . An-
other observation that is worth mentioning is the difficulty of solving
the re-optimisation problems. Because the re-optimisation problems
lead to models that are smaller than the original ones, part of the
variables being fixed, we intuitively expected them to be easier to
solve. However, Table 2.10 shows that, contrary to the original MILPs,
some re-optimisation MILPs are not solved to optimality in the given
time limit (600 seconds). For example, when the objective of the re-
optimisation is to minimise cost Ĉ, 2884 instances out of 3000 are
solved to optimality.

Ĉ SP VD QD

Ĉ 2884 2841 2841 2832

SP 2830 2941 2941 2940

VD 2945 2945 2945 2945

QD 2945 2945 2945 2945

Table 2.10 – Number of optimal solutions (out of 3000 instances)
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We believe this difficulty of solving the re-optimisation problem
comes from the demand change rather than from the stability mea-
sures added to the problem. To validate this intuition, the instances
of the benchmark are solved when the demand is constant (as de-
fined in the benchmark of Archetti et al. (2007)), and then when the
demand is modified for the whole horizon H according to scenario 1

presented in Table 2.5. The performances for both cases are compared
in Table 2.11 where column |V| represents the number of clients, |H|
the horizon, hi indicates whether the holding cost is low (-) or high
(+). Columns ĈLR, ĈMILP, g, cpu(s), g represent, respectively, the lin-
ear relaxation at the root node, the objective value of the MILP, the
gap between the optimal solution and the best bound found, the exe-
cution time and finally the gap between the optimal solution and the
bound at the root node, i.e. g = ĈMILP−ĈLR

ĈLR
, for the instance with con-

stant demand. The next columns, marked with exponent .new, display
those same indicators for the instance with modified demands.

Table 2.11 shows that the model performs better with constant de-
mand as the linear relaxations are tighter. Indeed, the instances of the
benchmark provided by Archetti et al. (2007) are generated so that for
each p ∈ H:

1. the demand for a client i ∈ V\{0} is constant: ∀p ∈ H\{0}Dp
i =

Di

2. the vehicle capacity is three halves of the total demand for a
period p: C = 3

2 × ∑
i∈V\{0}

Dp
i

3. the quantity produced by the supplier for a period p is equal to
the total demand for that period: Rp = ∑

i∈V\{0}
Dp

i

4. the inventory capacity is equal to twice or three times the de-
mand for a period p: Imax

i = {2, 3} × Dp
i

5. the initial inventory is equal to the inventory capacity minus the
demand for one period: S0

i = Imax
i − Di

Assumption 2 combined with assumption 3 makes it possible to
replenish all clients at any period of the horizon H at least to satisfy
their demands for the period in question. Assumptions 4 and 5 on the
other hand ensure that when |H| = 3 for example, only one delivery
for each client can satisfy its demand for the whole horizon. All of the
above make Archetti et al. (2007)’s instances easier to solve. However,
in the case where the demand is not constant anymore, as it is the
case in the re-optimisation problem, these assumptions do not hold
anymore. Therefore, we believe that it is necessary to propose a new
benchmark of the IRP that is more realistic, the assumptions cited
above being rarely met in a real-life instances.
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2.5 conclusion

2.5.1 Contributions

This chapter answers the first question of our dissertation “how to
measure stability in the IRP under demand uncertainty?” by proposing
stability metrics to be used when re-optimising the IRP. Re-optimisation
is considered as an approach to deal with unexpected events for two
reasons. First, the literature lacks “a posteriori” methods in the con-
text of IRP. Second, the parameters of the IRP themselves (time di-
mension, flexibility brought by the inventory) make re-optimisation a
relevant approach to investigate. When re-optimising, new objectives
appear, besides the cost, to define the performance of the solution.
Indeed, it might not be desirable for the new solution to be radically
different from the original one – in other words, the stability of the
re-optimised solutions compared to the original ones needs to be en-
sured. To determine how to ensure this stability and due to the lack
of agreed-upon definition of the concept, we carried out a literature
review of the stability metrics used for components problems of the
IRP, respectively, routing and inventory management, and sequenc-
ing problems such as scheduling. The stability metrics resulting from
this literature review are then adapted to the IRP, their advantages
and drawbacks presented, and their mathematical formulations pro-
posed. A framework of comparison validates the mathematical for-
mulations of these metrics as well as investigates their behaviour in
relation to each other and to the initial objective function, the cost.
We show that the metrics have a tight relationship to each other and
are equivalent in most cases. Furthermore, we show that their impact
on the cost of the solution seems to be rather small. Finally, by inves-
tigating the hardness of solving the re-optimisation models, we show
that the benchmark of the literature does not reflect the complexity
of solving an IRP due to the way it is generated, hence the need of
proposing new benchmarks that are compatible with real-life situa-
tions. A new benchmark is proposed in the next chapter.

2.5.2 Perspectives

A direct extension of the work proposed in this chapter would be
to propose a comparison for the whole panel of stability metrics pro-
posed in Chapter 2 for the different compatible variants of the IRP.
Moreover, in this chapter, we consider that only one event occurs. A
perspective would be to investigate whether it is always possible to
find feasible solutions when considering that multiple events would
occur during the time horizon. Finally, as the numerical experiments
of this chapter are conducted on a theoretical benchmark, it would be
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interesting to confront these models to real-life data and investigate
whether the same conclusions hold.

Another perspective would be to confront the re-optimisation ap-
proach proposed in this chapter to robust and stochastic optimisation
approaches. This would investigate further the relevance of using
re-optimisation as an approach to cater for demand uncertainty. As
we do not present the uncertainties of the demand as a probabilis-
tic distribution, a comparison with robust optimisation seems appro-
priate. For example, we can consider a set of possible events that
can occur: The robust optimisation model would propose one so-
lution that would be feasible no matter which event happens. The
re-optimisation approach under stability metrics would propose a so-
lution for each event. A comparison can be made between the average
cost of the re-optimisation solutions in relation to the cost of the ro-
bust solution.

The next two chapters will focus on handling a different source of
uncertainty, namely the travelling time.
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3
T I M E D E P E N D E N T I N V E N T O RY R O U T I N G
P R O B L E M

When evolving in an urban logistics context, one problem that can
be faced is the volatility of the travelling times between locations. In
the IRP literature, this volatility is represented as a probabilistic dis-
tribution or bounded intervals that evolve around their mean values.
Such a presentation of the travelling time seems appropriate, as a
quick search on any GPS navigation software will give the travelling
time as an interval. However, this volatility is rarely unpredictable
and depend on the fluidity of the traffic conditions which are the
result, in most of the cases, of deterministic parameters. Thus, this
volatility can be represented in a deterministic manner by consider-
ing the travelling times as time dependent. In this chapter and the
next one, we answer the second question of our dissertation “How to
incorporate the time dependent aspect in the IRP and solve it efficiently?”.

This chapter is presented as follows: In Section 3.1 we first propose
a review of the IRP literature where travelling times are the main
focus. However, since the time dependent IRP literature is rather
sparse, we turn to pure routing problems to investigate how the time
dependent aspect is handled. In Section 3.2, the TD-IRP is described
and four different mathematical formulations inspired by the TD-TSP
and TD-VRP literature are proposed. The difference between these
formulations lies in the way in which the time is discretised and in
the shape of the travelling time functions used. Theses differences
are shown through an illustrative example. Section 3.3 presents a
new benchmark for the TD-IRP based on benchmarks from the IRP
and the TD-TSP literature. Finally, Section 3.4 assesses, validates and
compares the efficiency of the proposed mathematical formulations
through numerical experiments conducted on the newly generated
benchmark.

3.1 literature review

3.1.1 IRP with travelling time focus

In the IRP literature, the most common variants where the travel-
ling time is the main focus is the IRP with time windows. In this case,
clients can only be served within a certain time interval. Delgado
et al. (2018) propose a review of the literature for the IRP with time
windows. In a recent work by Alarcon Ortega et al. (2020), the au-
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thors propose a matheuristic to solve the Consistent Inventory Rout-
ing Problem with Time Windows and Split Deliveries. This variant of
the IRP arises from a real-world application, namely route planning
and inventory management for beer and other beverages companies.
As the clients have different opening times and time windows, satis-
fying the overall demand can only be done by splitting the deliveries
across more than one vehicle. Furthermore, the satisfaction of the
clients depends on the consistency in delivery times. The matheuris-
tic builds an initial solution by using a constructive heuristic to decide
which clients must be visited for each period. Local search operators
are then applied on this solution to improve its quality, and then a
MIP is solved to determine the timing and the quantities. This solu-
tion goes through iterative improvements in a second phase, using an
adaptive large neighbourhood search algorithm.

Another variant in the literature is the travel time-constrained IRP.
In this context, the tours must be completed before a certain duration
limit. This variant caters for some legislation requirements where
drivers are not allowed to drive for longer than a certain duration
in order to avoid traffic accidents. Lefever et al. (2021) present a Ben-
der’s decomposition algorithm to propose robust solutions where the
travelling times evolve in symmetric and bounded intervals around
their mean values. Another work is proposed by Coelho et al. (2020)
in a Multi-Attribute Inventory Routing Problem context, which is the
integration of the Multi-Depot IRP and the travel-time constrained
IRP. In this paper, the authors propose a hybrid exact algorithm to
solve the problem combining Mixed Integer Programming (MIP) and
Variable Neighbourhood Search schemes. Extensive experimental re-
sults prove the efficiency of the hybridation process, as it accelerates
the resolution with respect to a branch-and-cut algorithm applied to
the regular MIP formulation.

Other scholars focus on the sustainability of the transportation com-
ponent of the IRP. In Alkaabneh et al. (2020), the authors propose a
mathematical formulation that optimises the costs due to fuel con-
sumption, inventory holding, and greenhouse gas emissions. Green-
house gas emissions are computed as a function of fuel consumption
levels that are calculated from the vehicle speed, load and travelled
distance. As the travelling time is computed by vehicle speed and
travelled distance, this paper is relevant for our literature. To solve
the problem efficiently, the authors propose a Bender’s decomposi-
tion approach with several acceleration strategies such as valid in-
equalities and efficient upper bounds.

In Li et al. (2014), an original way of handling travelling time in
the IRP is proposed. Instead of optimising the classic inventory and
transportation costs, the authors minimise the maximum travel time
among all vehicles. The problem is set for a large petroleum and
petrochemical Chinese enterprise group that is responsible for the
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distribution of gasoline to gas stations. The authors argue that in
this context, avoiding stock out is more important than focusing on
transportation cost minimisation, as running out of stock might not
only be viewed as a business problem, but also a social problem by
the local community. The authors propose a tabu-search algorithm to
solve the problem, and propose a Lagrangian relaxation formulation
to produce tight lower bounds in order to assess the efficiency of their
algorithm.

In all the works cited above, the travelling time is an important
parameter of the problem. Most of these works model the travelling
time between two locations as a constant value, which does not take
into account the volatility of the travelling time, especially in urban
logistics where traffic conditions can have a huge impact. However,
in works such as Dong et al. (2018), Lefever et al. (2021), and Rahimi
et al. (2017), it is taken into consideration by modelling the travelling
time as uncertain data. One other way to take this volatility into
consideration is to consider time dependent travelling times.

To the best of our knowledge, only one paper tackles the TD-IRP.
In Cho et al. (2014), the authors propose a variant of the IRP where
the speed of the vehicles is time dependent. In order to model the
volatility of the speed throughout the day, an artificial benchmark is
generated where the day is decomposed into three main time inter-
vals: morning rush hours, off-peak hours and evening rush hours.
The speed is different from one interval to another and the authors
assume that these assumptions are sufficient to mimic the traffic con-
ditions during the day. Moreover, the authors propose a genetic al-
gorithm to solve the problem. However, since 2014, no scholars have
taken interest in the TD-IRP, thus we turn to pure routing problems to
better understand how time dependent travelling times are handled.

3.1.2 Time dependent routing problems

In time dependent routing problems, the travelling time between
two locations does not only depend on the departure and arrival lo-
cations but also on the time of departure. During the last decades,
the literature of time dependent routing problems has exponentially
increased. Gendreau et al. (2015) propose an extensive review of the
literature. They show that the time dependent aspect is only consid-
ered for pure routing problems such as the time dependent Travelling
Salesman Problem (TD-TSP) or the time dependent Vehicle Routing
Problem (TD-VRP). The paper concludes that time dependent prob-
lems are harder to solve than their basic counterparts and that al-
though the literature is substantial, it is still recent, thus the need
for new efficient approaches. The remainder of this section focuses
only on work published subsequently to the review by Gendreau et
al. (2015).
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As time dependent routing problems are hard to solve, most of
the recent work on the TD-VRP and TD-TSP consists in proposing
new efficient algorithms for their different variants. New exact algo-
rithms are proposed to solve time dependent routing problems using
the most common approaches such as integer linear programming
(Arigliano et al., 2019; Hansknecht et al., 2018; Montero et al., 2017;
Sun et al., 2018), dynamic programming (Lera-Romero et al., 2020)
and constraint programming (Melgarejo et al., 2015). The authors of
Minh Vu et al. (2018) propose a novel approach based on the dynamic
discretisation discovery framework that, instead of generating a time-
expanded network in a static fashion, does so in a dynamic and iter-
ative manner. The results show that the algorithm outperforms those
of the literature and that it is robust with respect to all instance pa-
rameters, particularly the degree of travel time variability. However,
although the performances of exact approaches are rapidly increas-
ing, solving large-sized problems is still a computational challenge.
Therefore, scholars propose algorithms based on local search proce-
dures to solve such instances, such as adaptive large neighbourhood
search (Franceschetti et al., 2017; Pan et al., 2021; Rincon-Garcia et al.,
2020), ant colony algorithm (Deng et al., 2018; Liu et al., 2020), tabu
search (Ban, 2019), variable neighbourhood search (Lu et al., 2020), or
genetic algorithms such as the Non-dominated Sorting Genetic Algo-
rithm (NSGA-II) (Zhao et al., 2019).

The other part of the time dependent literature focuses on generat-
ing time dependent travelling time functions. Malandraki et al. (1992)
are the first to propose an artificial model where the travel time are
represented as a step function of time. The shortcoming of such a
representation is that the First In First Out (FIFO) property, i.e. if a
vehicle leaves at time t ≥ t′ it arrives later than if it left at t′, does
not hold. To cater for this problem, the authors propose to allow ve-
hicles to wait at nodes. Ichoua et al. (2003) propose another solution
to overcome the satisfaction of the FIFO property by considering ar-
tificial travel speeds as a step function of time instead. This yields a
travelling time function that is step-wise continuous. As there are no
discontinuities in the travelling time function, the FIFO property is
always satisfied.

The first to propose travel time functions based on real data of
the city of Berlin from 1988 to 1996 are Fleischmann et al. (2004). The
travelling time functions are constant step-wise, just as in Malandraki
et al. (1992). In order to cater for the FIFO property requirements, the
authors propose an algorithm to smooth the function and transform
it into a linear step-wise function, just as in Ichoua et al. (2003).

Since then, many scholars proposed new artificial and real-life based
travelling time functions based on the models of Ichoua et al. (2003)
and Fleischmann et al. (2004). The most recent work in this area is
proposed by Rifki et al. (2020), where the authors propose a new real-
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life benchmark for routing problems based on the traffic conditions of
the city of Lyon in France, using a dynamic microscopic simulator of
traffic flow. The purpose of their study is to show the impact of space
granularity, i.e. the number of sensors deployed to monitor the traffic
flow, and time granularity, i.e. the number and length of time steps,
on the quality of the solutions for pick-up and delivery optimal tours.

Table 3.1 summarises the time dependent literature showing the
problems solved, the solving approaches and the type of data used of
the papers cited above.

This rich time dependent routing literature provides ideas on how
to model the TD-IRP, that will be exploited throughout this chapter
by proposing four different mathematical formulations. Moreover, it
provides benchmarks generated from real-life data to validate and
investigate the efficiency of these formulations.

3.2 problem description and mathematical formulations

The TD-IRP is an extension of the IRP on its transportation compo-
nent, where the travelling time between two locations does not only
depend on the departure and arrival locations, but on the time of de-
parture as well. In this chapter, we consider that a period represents a
day of the week. Each day is discretised into small time intervals for
which the travelling time between two locations are different from
one time interval to another. These time intervals are called time
steps. Finally, we consider that all tours start at the beginning of the
period. This assumption may seem counterproductive in the case of
TD-IRP, since leaving later may reduce the cost of the tour. Note how-
ever that in real-life situations, the working hours of the drivers are
generally fixed beforehand. In such a case, starting at a different time
than the beginning of the period would amount to adding a waiting
time at the depot.

Let G ′ = (V ,A) be a directed graph where (i, j) ∈ A is an arc
linking vertices i and j ∈ V .
M is a set of time steps where m ∈ M represents the index of

the time step and L its duration. |M| represents the number of time
intervals into which a period p ∈ H is discretised. T represents
the same thing but when period p ∈ H is discretised to its finest
granularity where |T | = |M| × L. For example, if a period p is a day
decomposed into 12 time intervals of one hour, |M| would be equal
to 12, and if we suppose that the finest granularity is in seconds,
L = 3600 and |T | = 43200.

Let f (i, j, m) be a step-wise constant travelling time function, that
represents the duration of travelling through arc (i, j) ∈ A when leav-
ing i ∈ V at time step m ∈ M. The issue with such functions is that
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they do not ensure the First In First Out Property (FIFO). If the FIFO
property is not ensured, it means that a vehicle A is able to arrive
earlier than a vehicle B by departing later. This is not realistic when
vehicles A and B are travelling on the same arc with the same speed.
One way to cater for this issue is to transform the function f into a
linear step-wise function. Let f FIFO(i, j, t) be a step-wise linear trav-
elling time function, that represent the duration of travelling through
arc (i, j) ∈ A when leaving i ∈ V at time t ∈ T .

3.2.1 First In First Out property

Let f ′(i, j, t) be a travelling time function such that: i, j ∈ V , t ∈ T
is the time of departure from i to j and |T | is the length of a period.
Function f ′ enforces the FIFO property only and only if:

t′ + f ′(i, j, t′) ≥ t + f ′(i, j, t) ∀(i, j) ∈ A, ∀t, t′ ∈ T where t′ ≥ t

In other words, a travelling time function that enforces the FIFO prop-
erty ensures that if leaving i to j at t, it is impossible to arrive later
than when leaving i to j at t′ when t′ is later than t. Such property
is not satisfied for the travelling time function f which is a constant
piece-wise function.

Therefore, to ensure that f enforces the FIFO property, it needs to
be transformed into a linear step-wise function f FIFO. In this disserta-
tion, we use the procedure presented in Fleischmann et al. (2004).

Let tm be the time interval of time step m, where tm = [tmin
m ; tmin

m+1[

and tmin
m represents the beginning of interval tm.

When there is an increasing discontinuity between time step m and
its successor m + 1, i.e. f (i, j, m) < f (i, j, m + 1), the FIFO property
is always satisfied since for all t′ ∈ tm+1 and t ∈ tm: t′ > t and
f (i, j, m + 1) > f (i, j, m). Therefore t′ + f (i, j,

⌈ t′
L

⌉
) > t′ + f (i, j,

⌈ t
L

⌉
).

However, when a decreasing discontinuity occurs, an interval exists
in tm for which the FIFO property is not satisfied. This non-FIFO
interval is denoted by tFIFO

m where tFIFO
m ⊆ tm. We demonstrate this

through an example of a constant piece-wise travelling time function,
whereM = 3 and L = 5, presented in Figure 3.1. We also show how
to define the interval tFIFO

m and transform the travelling time function
f , into one that enforces the FIFO property f FIFO.

Following the constant step-wise travelling time function f pre-
sented in Figure 3.1a, Table 3.2 shows whether the FIFO property is
ensured, depending on the time of departure between two successive
time steps.

We can see from the table that between time steps 2 and 3, there
exists a moment where the FIFO property is no longer satisfied, as by
leaving from i at 6, we arrive later than if we left at 8. In this case,
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Figure 3.1 – Transformation of f into f FIFO

m tdeparture f (i, j, tdeparture) tarrival FIFO

1 0 2 2

X
2 4 7 11

2 4 7 11

X
3 8 4 12

2 6 7 13

x
3 8 4 12

Table 3.2 – An example of the FIFO satisfaction property depending on the
departure time between two time steps
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the interval tFIFO
m for which the function no longer satisfies the FIFO

property is defined as

tFIFO
m = [max

{
tmin
m , tmin

m+1 − ( f (i, j, m)− f (i, j, m + 1))
}

; tmin
m+1]

In the case of the example, tFIFO
2 = [max{4, 8− (7− 4)}; 8] = [5; 8].

Now that the interval tFIFO
m is identified, the constant piece-wise

function f is transformed into a linear piece-wise function such as

f FIFO(i, j, t) = min
{

f (i, j, m =

⌊
t
L

⌋
), min

n∈N
n(t)

}
∀t ∈ T , ∀(i, j) ∈ A

N is a set of linear functions n that are added for every decreas-
ing discontinuity. The full procedure for the FIFO transformation is
described in Algorithm 3.1.

Algorithm 3.1: FIFO transformation procedure

1 [b]
1: input: a constant piece-wise travelling time function f , an arc

(i, j) ∈ A and an empty set of linear functions N
2: for m ∈ M = {1, 2, ..., |M| − 1} do
3: if f (i, j, m) > f (i, j, m + 1) then
4: create a linear function n such that

n(t) =

−t + f (i, j, tmin
m+1) + tmin

m+1 ∀t < tmin
m+1

+∞ ∀t ≥ tmin
m+1

5: add n to N
6: end if
7: end for
8: return f and N

It is worth noting that our transformation is made only for time
steps where a decreasing discontinuity happens just as in Melgarejo
et al. (2015), as opposed to Fleischmann et al. (2004), where the func-
tion is smoothed for each increasing or decreasing discontinuity. This
choice was made to ensure that the FIFO property is enforced, but at
the same time stay as faithful as possible to the benchmark. Moreover,
we believe that this makes the travelling time functions more realistic
as when a congestion appears, the travelling time does not evolve in
a smooth manner but evolves in a sharp manner.

3.2.2 Four mathematical formulations

In the following, four mathematical formulations are proposed for
the TD-IRP. These formulations are based on different discretisations
of the time as well as the use of travelling time functions of different
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forms (constant and linear piece-wise). Formulations 1 and 2 will be
described in details, whereas for the third and fourth formulations,
only the differences to the first one are shown.

3.2.2.1 TD-IRP formulation 1: discretisation in seconds

The first formulation represents the most natural way of modelling
the problem by discretising the length of a period to its finest granu-
larity, the seconds. The travelling time between two locations in this
formulation is computed with the linear piece-wise function f FIFO.

To mathematically formulate the TD-IRP, the model presented in
Section 1.1.1 is extended with variables xpt

ij . They are binary variables
that are equal to 1 if (i, j) ∈ A is travelled in period p and the depar-
ture time from i to j is t ∈ T , 0 otherwise. These variables represent
the same information as variables xp

ij, only with a different granular-

ity since if |T | = 1, xp
ij = xpt

ij .

TD-IRP: discretisation in seconds

min objTD-IRP
1 = c ∑

(i,j)∈A
∑

p∈H
∑

t∈T
f FIFO(i, j, t)× xpt

ij + ∑
i∈V

∑
p∈H′

hi × Ip
i

s.t (1) to (6) and (8) to (12)

∑
j∈V ′

xp
ij = yp

i ∀i ∈ V , ∀p ∈ H (31)

∑
j∈V ′

xp
ji = yp

i ∀i ∈ V , ∀p ∈ H (32)

∑
t∈T

xpt
ij = xp

ij ∀(i, j) ∈ A, ∀p ∈ H (33)

∑
j∈V ′

xp0
0j = yp

0 ∀p ∈ H (34)

∑
vk∈P\{vn}

∑
tvk∈T

x
p,tvk
vk ,vk+1 ≤ |P| − 2 ∀[P, T] infeasible, p ∈ H (35)

xpt
ij ∈ {0, 1} ∀(i, j) ∈ A, t ∈ T , ∀p ∈ H (36)

The objective of the first formulation of the TD-IRP modifies the ob-
jective of the IRP in the transportation component, where the trans-
portation cost is no longer computed from the euclidean distances,
but using the linear piece-wise function f FIFO. Moreover, it replaces
constraints (7) by constraints (31) and (32) which state that we arrive
and leave a visited location only once. This difference is due to the
fact that in the TD-IRP, G ′ is a directed graph.

The time dependent aspect is ensured by constraints (33) to (36).
Constraints (33) link variables xpt

ij with variables xp
ij and state that if

an arc (i, j) ∈ A is travelled in period p, it leaves i at one and only
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one point in time t ∈ T . Constraints (34) state that routing starts at
the beginning of period p ∈ H, i.e. t = 0. Constraints (35) eliminate
time dependent infeasible paths, where [P, T] is a time dependent
infeasible path. Finally, constraints (36) enforce integrality and non-
negativity conditions on the TD-IRP variables.

The definition of a time dependent infeasible path is presented be-
low, as described in Miranda-Bront et al. (2010).

Time dependent infeasible path

Let P =< v1, ..., vk−1, vk, vk+1, ..., vn > where vk ∈ V ′ and v1 = vn =

0 the supplier. Let T =< tv1 , ..., tvk−1 , tvk , tvk+1 , ..., tvn−1 > be a set of
departure times. A time dependent path [P, T] is a combination of P
and T where T represents the departure times of vk ∈ P\{vn}.

Let t′vk
be the possible departure time of vk, svk the service time at

location vk ∈ P:

— t′vk
=

0 + svk ∀vk ∈ {v1, vn}

t′vk−1
+ f FIFO(vk−1, vk, t′vk−1

) + svk ∀vk ∈ P\{vn, v1}
— [P, T] is infeasible ⇐⇒ ∃vk ∈ P : tvk 6= t′vk

Variables generation

One drawback of this formulation is the number of variables #xpt
ij =

|V|2 × |H| × |M| × L. This number can be very large when |V|, |H|,
|M| and L are big. However, as shown with constraints (34), the
supplier always leave at the beginning of the period, i.e. t = 0. With
this assumption, and since we might need to visit all the clients for
one period in order to satisfy their demand, a solution would be to
compute an upper bound for the total time needed to visit all clients
at once. This can be done by any heuristic that solves the TD-TSP.

Let T ′ be the resulting reduced set of time-units in which the
tour must be completed and M′ its equivalent in time steps, where

|M′| =
⌈
|T ′|

L

⌉
. Moreover, the travelling times between two locations

i, j ∈ V are not of the order of the second and can be quite large.
Therefore, there exist a set of times for which it is impossible to reach
any client at that time. Thus, number of variables can be largely re-
duced by generating the variable only by considering locations that
are time dependent reachable. Algorithm 3.2 generates all the reach-
able vertices before the upper bound |T ′|. Algorithm 3.3 removes all
the vertices that are not in a route that leads to the supplier. Finally,
Algorithm 3.4 generates a set of variables Ap ⊆ A which represents
the time dependent arcs that are possible to go through.
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Algorithm 3.2: Possible time dependent vertices generation

1: Input: a step-wise linear function f FIFO, a set of locations V , a set
of periods H, a tour upper bound T ′ and an empty set of
possible vertices Vpossible where vt

i ∈ Vpossible, i ∈ V and t ∈ T is
the departure time from vertex i

2: let vPredt
i be a set of predecessors of vertex vt

i
3: Vpossible ← v0

0
4: while Vpossible is not empty do
5: let Vpossible

toDelete and Vpossible
toAdd be, respectively, sets of vertices to

delete and to add
6: for vt

i ∈ Vpossible do
7: Vpossible

toDelete ← vt
i

8: if i 6= 0 or t = 0 then
9: for j ∈ V do

10: if j 6= i then
11: if t′ = t + f FIFO(i, j, t) + sj ≤ |T ′| then
12: vPredt′

j ← vt
i

13: Vpossible
toAdd ← vt′

j
14: end if
15: end if
16: end for
17: end if
18: end for
19: delete Vpossible

toDelete from Vpossible

20: add Vpossible
toAdd to Vpossible

21: clear Vpossible
toDelete and Vpossible

toAdd
22: end while
23: return Vpossible
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Algorithm 3.3: Graph cleaning procedure

1: Input: a set of possible vertices Vpossible

2: let VnoSucc be a set of vertices without a successor
3: while VnoSucc is not empty do
4: remove VnoSucc from Vpossible

5: clear VnoSucc

6: for vt
i ∈ Vpossible do

7: for vt′
j ∈ vPredt′

j do

8: mark that vt′
j has a successor

9: end for
10: end for
11: for vt

i ∈ Vpossible do
12: if vt

i does not have a successor then
13: VnoSucc ← vt

i
14: for vt′

j ∈ vPredt′
j do

15: mark vt′
j with no successor

16: end for
17: end if
18: end for
19: end while
20: return Vpossible

Algorithm 3.4: Variables generation

1: Input: A set of possible vertices Vpossible and an empty set of
variables Ap

2: for p ∈ H do
3: for vt

i ∈ Vpossible do
4: for vt′

j ∈ vPredt
i do

5: Ap ← xpt
ij

6: end for
7: end for
8: end for
9: return Ap
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3.2.2.2 TD-IRP formulation 2: breakpoints discretisation

Formulation 2 discretises the time into a new number of time steps
based on a discretisation into breakpoints, that are points at which
the slope of function f FIFO changes. It is a re-adaptation of the time
dependent ready function formulation proposed by Sun et al. (2018)
and used in the paper of Pan et al. (2021) for a TD-TSP with time
windows.

The first thing to do for the breakpoints formulation is to decom-
pose the duration of the period into a new set of time steps Mnew,
where the time steps m′ ∈ Mnew have different duration and are de-
fined in the interval [wm′

ij , wm′+1
ij [ where wm′

ij represents the beginning

of the time step and wm′+1
ij the end of the time step. This decomposi-

tion is done on the linear step-wise function f FIFO.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0 1 2 3 4 5 6 7 8 9 10 11 12
w0 w1 w2 w3 w4

b

θ
Slope

Figure 3.2 – Decomposing the period into a new set of time stepsMnew

Figure 3.2 shows the new set of time steps Mnew defined for the
example presented in Figure 3.1b. θij represents the slope which, in
our case, is equal to −1 for each time step m′ ∈ Mnew where the
function is linear and 0 when the function is constant. bij represents
the intersection of the function with the y-axis. For time steps m′ ∈
Mnew where the function is linear, bij = wm′

ij + f (i, j, wm′
ij ) whereas for

time steps where it is constant, bij = f (i, j, wm′
ij ).

The travelling time can be computed such that:

f FIFO(i, j, t) = θij × t + bij

In order to propose a new model based on breakpoints, three vari-
ables are introduced: dtpm

ij a continuous variable that represent the
departure time from i to j if the departure time of i ∈ V to j ∈ V
for period p ∈ H is in time step m′ and 0 otherwise; dttp

i , a contin-
uous variable that represents the departure time from i in period p
if location i ∈ V is visited in period p ∈ H and 0 otherwise; atp, a
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continuous variable that represents the arrival time at the supplier
for each period p ∈ H and equals to 0 if no deliveries are performed.
Moreover, the index m of variables xpm

ij is replaced by m′ ∈ Mnew.

TD-IRP: time dependent ready function formulation

min obj = c ∑
p∈H

atp + ∑
i∈V

∑
p∈H′

hi × Ip
i

s.t (1) to (6) and (8) to (12)

∑
m′∈Mnew

xpm′

ij = xp
ij ∀(i, j) ∈ A, ∀p ∈ H (37)

∑
j∈V

∑
m′∈Mnew

dtpm′

ij = dttp
i ∀i ∈ V , ∀p ∈ H (38)

dtpm′

ij ≥ wm′
ij × xpm′

ij ∀(i, j) ∈ A, ∀m′ ∈ Mnew, ∀p ∈ H (39)

dtpm′

ij ≤ (wm′+1
ij − 1)xpm′

ij ∀(i, j) ∈ A, ∀m′ ∈ Mnew, ∀p ∈ H (40)

∑
j∈V ′

xp0
0j = yp

0 ∀p ∈ H (41)

∑
j∈V ′

dtpm′

0j = 0 j ∈ V , m′ ∈ Mnew, ∀p ∈ H (42)

∑
j∈V ′

dttp
0 = 0 ∀p ∈ H (43)

atp = ∑
i∈V

∑
m′∈Mnew

{dtpm′

i0 + f (i, 0, dtpm′

i0 )}xpm′

i0 ∀p ∈ H (44)

dttp
i ≥ {dtpm′

ij + f (i, j, dtpm′

ij ) + sj}x
pm′

ij ∀i ∈ V ′, ∀j ∈ V , ∀m′ ∈ Mnew, ∀p ∈ H (45)

dtpm′

ij ∈ [0, |M′| × L] ∀(i, j) ∈ A, m′ ∈ Mnew, ∀p ∈ H (46)

dttp
i ∈ [0, T ′] ∀i ∈ V , ∀p ∈ H (47)

atp ∈ [0, T ′] ∀p ∈ H (48)

xpm′

ij ∈ {0, 1} ∀(i, j) ∈ A, m′ ∈ Mnew, ∀p ∈ H (49)

In addition to Constraints (1) to (6) and (8) to (12) the model is ex-
tended with the following constraints: constraints (37) link variables
xp

ij to variables xpm′

ij . Constraints (38) link variables dtpm′

ij to variables
dttp

i . Constraints (39) and (40) state that if we leave i to j in time step
m′, then the departure time from i to j is bounded with the lower
and upper bounds of the definition interval of time step m′. Con-
straints (41) to (43) state that for each period p, the departure time
from the supplier is 0. Constraints (44) computes the arrival time at
the supplier for each period p. Constraints (45) state the departure
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time from each client. Finally, constraints (46) to (49) enforce integral-
ity and non-negativity conditions on the newly defined variables.

Note that constraints (44) and (45) are non-linear constraints. There-
fore, they need to be linearised. Constraints (44) then become:

atp = ∑
i∈V

∑
m′∈Mnew

{(1 + θij)dtpm′

i0 + bij × xpm′

i0 } ∀p ∈ H (50)

Constraints (45) become:

M− sj ≥ dtpm′

ij (1 + θij) + (bij + M)xpm′

ij − dttp
i

∀i ∈ V ′ , ∀j ∈ V , ∀m′ ∈ Mnew , ∀p ∈ H , M = T ′ (51)

3.2.2.3 TD-IRP formulation 3: time step discretisation

The difference between the third and the first formulations (discreti-
sation in seconds) resides in the discretisation of the period. In this
case, the period is discretised to the set of time steps M. Therefore,
variables xpt

ij are replaced by variables xpm
ij . Variables xpm

ij are gener-
ated in the same manner as in formulation 1, using Algorithms 3.2

to 3.4 where line 5 of Algorithm 3.4 is replaced by: Ap ← xpd t
L e

ij .
Now that the period is discretised into time stepsM, it is no longer

possible to use f FIFO to compute the objective. The objective is there-
fore replaced by

objTD-IRP
2 = c ∑

(i,j)∈A
∑

p∈H
∑

m∈M
f (i, j, m)× xpm

ij + ∑
i∈V

∑
p∈H′

hi × Ip
i

This formulation will provide solutions that satisfy the FIFO prop-
erty. However, differences between the objective values of formu-
lations 1 or 2 and formulation 3 are to be expected since they are
computed with two different functions. These differences are to be ex-
pected only when the optimal tour of formulation 1 or 2 goes through
arc (i, j) ∈ A at a time t ∈ T where f FIFO(i, j, t) < f (i, j, d t

Le). In other
words, if the departure time t belongs to the interval of time step d t

Le
which is transformed into a decreasing slope in order to satisfy the
FIFO property (Time interval [5,8] in Figure 3.1b).

All other constraints remain the same as well as the definition of a
time dependent feasible path.

It is worth noting that the variables as well as the time dependent
infeasible paths are defined using the step-wise linear function f FIFO.

3.2.2.4 TD-IRP formulation 4: Time step discretisation with waiting times

This formulation discretises a period to the set of time steps M
just like formulation 3. Formulation 4 however only uses the con-
stant step-wise travelling time function f by allowing waiting times
at client’s locations. Variables xpm

ij are used for this formulation as
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well but cannot be generated with Algorithms 3.2 to 3.4 since the ad-
dition of waiting times implies a new decision on when to leave from
a client’s location to another. However, in order to limit these waiting
times, only the variables with index m smaller than the upper bound
(expressed in time steps)M′ are generated.

The objective and constraints are the same as the ones of formula-
tion 3. However, since the waiting times are allowed at the clients and
since these waiting times are not explicitly represented in the model
(with a variable), they are not taken into consideration in the cost of
the solution. Therefore, the transportation component of the objective
function will only minimise the cost related to the moving time of the
vehicle and cannot minimise the earliest arrival time at the supplier
(moving + waiting times).

Moreover, the introduction of waiting times changes the definition
of a time dependent infeasible path as follows:

Time dependent infeasible path with waiting times

Let T now be a set of departure time steps such that
T =< mv1 , ..., mvk−1 , mvk , mvk+1 , ..., mvn−1 >, t′vk

the earliest departure
time at location vk ∈ P and tmin

mk
the beginning of time step mk:

— t′vk
=

0 + svk ∀vk ∈ {v1, vn}

max{t′vk−1
+ f (vk−1, vk, b

t′vk−1
L c) + svk , tmin

mk
} ∀k ∈ P\{vn, v1}

— [P, T] is infeasible ⇐⇒ ∃vk ∈ P : t′vk
/∈ [tmin

mk
; tmin

mk+1[

A synthesis of the differences between the four formulations is pre-
sented in Table 3.3. It shows the level of discretisation for each formu-
lation k, whether waiting times (WT) are allowed or not, the function
used for the objective obj, the function used for the generation of the
variables, the function used for the elimination of the time dependent
infeasible paths and finally the nature of the optimised objective.

k Discretisation WT
Functions used

Objective
obj Ap [P, T]

1 T x f FIFO f FIFO f FIFO Arrival time

2 Mnew x f FIFO x x Arrival time

3 M x f f FIFO f FIFO Arrival time

4 M X f x f Travelling time

Table 3.3 – A synthesis of the properties of the four mathematical formula-
tions
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3.2.3 An illustrative example

Let us consider an example of the TD-IRP where the network is
composed of a supplier and three clients V = {0, 1, 2, 3}, a time hori-
zon |H| = 3 and a vehicle capacity C = 20. Each period p ∈ H is
decomposed into |M| = 3 time steps with a length L = 10 time units.
Table 3.4 and Figure 3.3 present all the data related to instance w. The
columns of Table 3.4 represent, respectively, the indices i of the sup-
plier/clients, their initial inventory I0

i and maximum inventory Imax
i ,

the production rate Rp of the supplier, the demand Dp
i of the clients

and finally the holding costs. Figure 3.3 illustrates the travelling times
between each couple of locations for every time step. The service time
for all clients is assumed to be equal to 1. The figure shows for exam-
ple that the travelling time between 0 and 1 is of f (0, 1, 1) = 8 for the
first time step, 12 for the second and 10 for the third.

i I0
i Imax

i
Rp Dp

i hi

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

0 30 +∞ 30 30 30 - - - 0.1

1 15 20 - - - 8 12 10 0.15

2 10 25 - - - 15 11 19 0.18

3 5 10 - - - 8 4 3 0.13

Table 3.4 – A representation of the data for the example instance

The solutions of the example regarding the four proposed formu-
lations are presented Table 3.5, Figure 3.4, Figure 3.5 and Figure 3.6.
Table 3.5 presents the inventory levels at the end of each period of
each location Ip

i and the quantities qp
i sent from the supplier to each

client i for the whole time horizon. These values are the same for all
four formulations. Figure 3.4, Figure 3.5 and Figure 3.6 show, respec-
tively, the sequence of the routing component through a Gantt chart
for formulation 1 and 2, 3 and 4. The blue parts in Figure 3.5 and
Figure 3.6 show the solution of formulation 1 re-computed with the
constant step-wise function f instead of the linear step-wise function
f FIFO and without waiting times for formulation 4.

As we can see from Table 3.5, clients 2 and 3 are replenished in
period p = 1, all clients are replenished in period p = 2 and clients 1
and 2 are visited in period p = 3.

Figure 3.4, Figure 3.5 and Figure 3.6 show that for:

p = 1 All four formulations, the vehicle leaves the supplier, visits
client 2 and then client 3 in the first time step. In the beginning
of the second time step, it leaves client 3 to return to the supplier
at time 18 without waiting at any node for formulation 4.
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i
Ip
i qp

i

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

0 40 50 60

1 7 8 0 0 13 2

2 10 1 0 15 2 18

3 2 3 0 5 5 0

Table 3.5 – Values of variables Ip
i and qp

i for the example’s optimal solution

p = 2 Formulation 1, 2 and 4 follow the same sequence by visiting
client 1, 3 and 2. However, the difference between the two is that
for formulation 1, the departure time from client 1 is 9, whereas
for formulation 4, there is a waiting time until 10, i.e. m = 2,
to depart. The arrival time at the supplier is 26. Indeed, as we
can see from the first formulation’s solution re-computed with f
(chart in blue), by not waiting, the arrival time is 27. Moreover,
since waiting times are not included in the objective function
of formulation 4, by waiting, the total cost is c × (8 + 3 + 3 +

8) = 22 instead of c× (8 + 5 + 3 + 8) = 24 for the solution of
formulation 1 re-computed with f .
For formulation 3 on the other hand, the positions of clients 2
and 3 in the sequence are inverted. Indeed, by inverting the
positions of these two clients, the cost of solution is c× (8 + 8 +
4 + 3) = 23 instead of the 24 of the solution of formulation 1

re-computed with f . Moreover, the arrival time is 26, just as in
the solution of formulation 1.

p = 3 Clients 1 and 2 are visited following the same sequence in all
four formulations. However, in formulation 4, waiting time oc-
curs at both client 1 and client 2. Although the solution pro-
posed by formulation 1 when re-computed in f arrives ear-
lier than the solution of formulation 4, the cost of solutions
is larger as it is equal to c × (8 + 4 + 4) = 16 instead of the
c× (8 + 3 + 3) = 12 of the solution of formulation 4.

3.3 a new benchmark for the td-irp

Since the TD-IRP has only been studied once in the IRP literature
(Cho et al., 2014), benchmarks for the TD-IRP are nonexistent. In this
section, we thus propose a new benchmark for the TD-IRP, combining
an IRP benchmark proposed in Archetti et al. (2007) with a TD-TSP
benchmark proposed in Rifki et al. (2020). Both benchmarks are first
modified and adapted to better fit our needs, the main objective being
of mimicking real-life conditions as closely as possible.
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3.3.1 Inventory management data

The inventory-related data of the benchmark is generated using the
benchmark proposed in Archetti et al. (2007). Although this bench-
mark is the most commonly used in the IRP literature, it is generated
following rather strong assumptions:

— the demand of the clients is constant for the whole horizon;

— the vehicle’s capacity is large enough to replenish all clients in
one period;

— initial inventories are such that no replenishment is needed for
the first period of the horizon;

— the holding cost of some clients is inferior than the one of the
supplier.

These assumptions are rarely met in real-life instances. Further-
more, they lead to optimal solutions in which the clients are all re-
plenished in a single period. Such structures rarely reflect real-life
solutions, especially in urban logistics where the size of vehicles is
small and the inventory capacities at the delivery points are not large
enough to ensure demand satisfaction for a large period of time.

Therefore, modifications are performed on a subset of the instances
proposed, in order to provide a more realistic benchmark. The gen-
eration of the new values is done for instances with |H| = {3, 6}, a
number of clients |V ′|H|=3| = {5, 10, 15, 20, 25, 30} when |H| = 3 and
|V ′|H|=6| = {5, 10, 15, 20} when |H| = 6. For each combination of
these parameters, 5 different instances are generated, which yields a
total of 50 instances. Algorithm 3.5 presents the generation process.

The demand of the new benchmark is no longer constant, but varies
from one period to another by ±[−0.25, 0.25] of the initial value Dold

i .
The value of 0.25 in this case is arbitrary. The production rate of the
supplier is set such that it is possible to meet the demand of all the
clients for each period. The inventory capacity of the clients can cover
the demand for up to two periods on average whereas the one of the
supplier is unlimited. The initial inventory levels of the clients follow
a uniform distribution over the set {0, 0.25, 0.50, 0.75, 1} × Imax

i . The
initial inventory of the supplier can cover the inventory capacity of
all the clients once. The vehicle capacity is set such that it can only
cover up to 90% of the demand average for one period. Finally, we
assume that the holding cost of the supplier should be inferior to the
one of the clients and set it to 2/3 of the smallest holding cost of the
clients. This assumption is made from the realistic hypothesis that
the supplier is able to handle its inventory more efficiently than its
clients. Furthermore, clients in this case are situated in urban areas,
where the holding costs tend to be higher.
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Algorithm 3.5: Inventory management component data gener-
ation

1: input: an instance from the benchmark of Archetti et al. (2007)
2: for i ∈ V ′ do
3: for p ∈ H do
4: generate a random δ ∈ [−0.25, 0.25]
5: Dp

i = bDold
i × (1 + δ)c

6: end for
7: Imax

i = 2
|H| ∑

p∈H
Dp

i

8: generate a random number ρ ∈ [0, 1[

9: I0
i =



0 if ρ ∈ [0, 0.2[

Imax
i × 0.25 if ρ ∈ [0.2, 0.4[

Imax
i × 0.5 if ρ ∈ [0.4, 0.6[

Imax
i × 0.75 if ρ ∈ [0.6, 0.8[

Imax
i if ρ ∈ [0.8, 1[

10:

11: end for
12: C = 0.9

|H|×|V ′| ∑
i∈V ′

∑
p∈H

Dp
i

13: h0 = 2
3 min

i∈V ′
hi

14: Rp = 1.25
|H|×|V ′| ∑

i∈V ′
∑

p∈H
Dp

i

15: I0
0 = ∑

i∈V ′
Imax
i
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3.3.2 Time dependent travelling time functions

In the benchmark of Archetti et al. (2007), the distance travelled
between two locations is defined by the euclidean distance. In our
benchmark, this data is disregarded and replaced by time dependent
travelling time functions.

Producing time dependent functions for routing problems is a pro-
ductive field in transportation literature. A variety of functions exist
in the literature (Rifki et al., 2020): some are artificial while others
are based on real traffic data. In the previously cited paper of Rifki
et al. (2020) in Section 3.1.1, the authors propose a benchmark based
on the traffic conditions of the city of Lyon in France, using a dy-
namic microscopic simulator of traffic flow. Based on data collected
from sensors placed in the axes of the city, a time dependent travel-
ling time function is defined for a time interval of 12 hours and is
decomposed into time steps. For each time step, a consistent spatio-
temporal mean formulation is used to compute the travelling time
for each segment of the network. Afterwards, the shortest path is
computed between each two different locations for each time step.
The benchmark yields a set of constant piece-wise travelling time
functions between each two different locations with different time
granularity/time steps |M| = {1, 12, 30, 60, 120} of respective lengths
L = {720, 60, 24, 12, 6} minutes, for 250 instances in total. An exam-
ple of these travelling time functions between two random locations
is presented in Figure 3.7. It shows the travelling time function, as
explained in Figure 3.1a, but with different time steps |M|. The fig-
ure shows that the travelling time functions are highly volatile which
can seem unrealistic. However, it is not unreasonable in urban trans-
portation since the travelling times between two locations are already
small and a bit of traffic congestion can indeed double or triple the
travelling time.

For all instances described in Section 3.3.1, a set of locations are
randomly picked from Rifki et al. (2020)’s benchmark and matched
to each location from Archetti et al. (2007)’s benchmark. The time
dependent travelling time functions corresponding to this set of loca-
tions are added to the instance.

3.3.3 Travel-time constraint

In Section 3.2.2.1 it is stated that since the departure time is always
the beginning of the period, computing an upper bound will restrict
the number of variables generated. Moreover, Section 3.2.2.4 states
that travelling cost incurs only when the vehicle is moving from one
location to another. Therefore, since waiting at nodes does not incur
any cost, it is unrestricted and can occur as long as it is profitable
to wait. However, this can yield solutions where the waiting time is
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extremely high in comparison to the travelling time. This is unrealis-
tic as one cannot ask a driver to park and wait for hours in order to
optimise the cost. In order to restrict this waiting time, we propose
to limit the total duration of a tour with travel time constraints.

Since our benchmark is set in an urban distribution context, and
since a day is long enough to visit a high number of clients in one
period, we propose travel time constraints that allow the visit of all
clients in one period as long as the capacity of the vehicle is not
exceeded, while ensuring the FIFO property and at the same time
restrict the waiting times. To generate such values, a TD-TSP is solved
through an iterated local search heuristic presented in Algorithm 3.6,
using f FIFO. The objective value of the TD-TSP will be the travel-time
constraint for which the tour must be completed, thus minimising the
waiting at nodes. Note that any heuristic that can solve the TD-TSP
can provide a value for T ′.

Algorithm 3.6: TD-TSP: ILS

1: input: f FIFO, a set of locations to visit and empty values |T ′| and
|M′|

2: while A time limit is not exceeded and the local optimal is not
reached do

3: generate a random sequence and set its tour length to |T ′| if it
is better or is still empty

4: apply local search operations such as movements and swaps
5: Movements:
6: for k, k′ ∈ V, k 6= k′ do
7: slide the vertex at the kth position and slide it to position k′

leaving the rest of the sequence unchanged
8: end for
9: Swaps:

10: for k, k′ ∈ V, k 6= k′ do
11: swap the vertex at the kth position with the vertex of

position k′ and vice versa
12: end for
13: set |T ′| to the obtained solution if it is better
14: end while
15: |M′| =

⌈ |T ′|
L

⌉
16: return |T ′| and |M′|

The final benchmark is readily available at https://github.com/

faycalt/TDIRP.
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3.4 comparison of the four formulations

In this section, numerical experiments are conducted in order to
compare the performances of the four mathematical formulations pre-
sented in Section 3.2.2. The performances are compared in general,
as well as regarding the objective of the earliest arrival time at the
supplier, as both formulation 3 and 4 provide solutions that are not
necessarily optimal in that regard as seen in Figure 3.4, Figure 3.5 and
Figure 3.6. This will be done by re-computing the tours of formula-
tions 3 and 4 with the step-wise linear function f FIFO and without
waiting times for formulation 4.

All experiments are conducted on a CPU Intel Xeon E5-1620 v3

@3.5Ghz with 64GB RAM in a Java-Gurobi environment. Gurobi 9.0.2
is used as a solver and the subtours as well as the time dependent in-
feasible paths elimination constraints are added dynamically through
a branch-and-cut procedure using the lazyConstraints parameter, the
default number of threads and a time-limit of 3600 seconds. The ex-
priments are conducted on the newly generated benchmark. They
are conducted on a set of 100 instances where 5 different instances
are solved for each combination of parameters |V ′| = {5, 10, 15},
|H| = {3, 6}, |M| = {12, 30, 60, 120} except for combination {|V ′| =
15, |H| = 6}.

Table 3.6 shows the results of these numerical experiments. For
each formulation k, |Ak| is the average number of time dependent
variables, gRLk is the average gap between the solution found and the
best lower bound and CPUk is the execution time, in seconds. Finally,
gATk′

k are the average gaps between the arrival times of formulation k′

in comparison to formulation k. “x” means that no solution has been
found within the given time limit. Note that for formulation 2, |A|
represent only the number of boolean variables, as the other routing
variables dt, dtt and at are continuous. Moreover, we do not provide
the gap between formulations 3 and 4 in relation to formulation 2, as
formulation 2 is optimal in terms of arrival time at the supplier, just
as formulation 1.

The first observation is that the differences between the optimal so-
lutions of the four formulations reside only in the sequence in which
the clients are visited for each period, as the variables related to in-
ventory management, i.e. whether a client is visited and the quantity
sent for each client at each period, are always optimal. Indeed, in
formulations 1, 2 and 3, the objective function of the transportation
component is the same, i.e. minimising the arrival time at the sup-
plier, but formulated with different discretisations of the time and
computed with a different function for formulation 3. However, the
transportation component of the objective function for formulation
4 is not only formulated in a different manner, but minimises only
the total travelling time of the vehicle without the idle time resulting
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from service or waiting time. Therefore, it is interesting to see that
this re-formulation does not have an impact on the optimality of the
inventory management decisions.

The results show that although the number of the time dependent
variable of formulation 1 is reduced using Algorithms 3.2 to 3.4, it is
still very high (up to 2 million variables for instances with 15 clients).
Formulation 1 cannot solve instances with |V ′| > 5 as no feasible
solution is found within the time limit. We can also see that for somes
instances with |H| = 6 and |M| = 60, it is more difficult to solve than
with 120 time steps. Moreover, we can see that even for instances
with 5 clients and 6 periods, the computation time is high when the
number of time steps is higher than formulations 3 and 4.

Similarly to formulation 1, formulation 2 cannot solve instances
with |V ′| > 5 as no feasible solution is found within the time limit.
The same observation is confirmed for instances with |H| = 6 and
|M| = 60. Moreover, although for all the instances with |V ′| = 5 for-
mulation 2 is able to find the optimal solutions, for some instances, it
is not able to prove the optimality of these solutions, as the gap to the
best lower bound found is up to 19.64% on average for instances with
|H| = 6 and |M| = 30. Finally, the computation time is extremely
higher than formulation 1. These poor performances of formulation
2 were expected, as the re-adapted formulation is based on big-M
constraints and was initially introduced in a time windows context.
Indeed, the time windows provide bounds for M that can be efficient,
which is not the case in this dissertation.

Formulation 3 is able to solve more instances optimally. However,
instances with a number of clients |V ′| = 10, a number of periods
|H| = 6 and a number of time steps |M| = 120 are not optimally
solved. The same goes for instances with |V ′| = 15 and |M| ≥ 60.

For instances that are optimally solved with formulation 1, the re-
sults show that formulation 3 provides optimal solutions with regards
to the arrival time in 75% of the cases, whereas in the other 25%, it
degrades it to a maximum of 5%.

Formulation 4 is able to solve all instances optimally apart from one
instance only where |V ′| = 10, |H| = 6 and |M| = 120. Although
the number of time dependent variables is higher in comparison to
formulation 3, formulation 4 is more efficient as the branch-and-cut
procedure performs less iterations.

For instances that are optimally solved with formulation 1, optimal
solutions of formulation 4 when re-computed with f FIFO degrade the
arrival time to a maximum of 5%. For all other instances, as no fea-
sible solutions are found with formulation 1, they are compared to
the solutions of formulation 3. The results show the same gap of 5%
between formulations 3 and 4. However, this result is to be nuanced
as the arrival times of formulation 3 are not necessarily optimal.
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As a result of these numerical experiments, formulation 4 will be
used in order to investigate the relevance of the TD-IRP, which is one
of the objectives of Chapter 4. Although formulation 4 does not pro-
vide optimal solutions regarding the arrival time at the supplier, it is
able to solve larger instances than the other three formulations with-
out heavily degrading the arrival time at the supplier. In addition, in
some applications, one can argue that optimising the total travelling
time is more important than the arrival time.

3.5 conclusion

3.5.1 Contributions

This chapter tackles the TD-IRP where the travelling time between
two locations depends on the time of departure and is not constant
throughout the day. The literature shows that although the time de-
pendent routing literature is quite rich, only one paper takes interest
in the TD-IRP. Four mathematical formulations for the TD-IRP are
proposed, based on the different models proposed in the literature
for time dependent routing problems such as the TD-VRP and the
TD-TSP: formulation 1 with a fine discretisation of time, formulation
2 with breakpoints discretisation, formulation 3 with a step-wise dis-
cretisation without allowing waiting times and formulation 4 with a
step-wise discretisation with waiting times allowed. To validate and
compare the efficiency of these mathematical formulations, numerical
experiments are conducted on a new proposed benchmark inspired
by benchmarks from the literature of the IRP and the TD-TSP. The
results show that none of the proposed formulations degrades the
quality of the inventory management component of the solution, i.e.
the decision on which clients to visit and which quantity to send for
each period of the time horizon, as all four formulations are opti-
mal in this regard. Moreover, they show that the formulations where
waiting times are allowed is more efficient, i.e. it is able to solve more
large-sized instances than the other formulations, and even though
the main drawback of this formulation is that it does not optimise
the length of the tour as efficiently as the other formulations, only a
small degradation is observed in the value of the objective function.

3.5.2 Perspectives

A natural perspective of the work conducted in this chapter is to
extend the comparison of the four proposed formulations to other
formulations of time dependent routing problems that are used to
handle variants with different parameters. Moreover, as all the for-
mulations proposed in this chapter are under the assumption that
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the departure time from the supplier is always at the beginning of
the period, a future perspective would be to take advantage of the
time dependent aspect by considering the departure time as a deci-
sion variable. Such a hypothesis can have a huge impact on the im-
provement of the cost of the time dependent solutions, as sometimes
it is way more efficient to leave later in order to avoid congestion.
Another perspective would be to investigate the efficiency of these
formulations for the TD-IRP with time windows, as in this context,
waiting at nodes can be very relevant.
The next chapter investigates the relevance of considering time de-
pendent travelling times. Moreover, it proposes a matheuristic to effi-
ciently solve larger problems.
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4
S O LV I N G T H E T D - I R P

In Gendreau et al. (2015), the authors state that time dependent
problems are harder to solve than their basic counterparts and that
although the literature is substantial, it is still recent, thus the need
for new efficient approaches. The previous chapter answered the first
part of our second research question “How to incorporate the time de-
pendent aspect in the IRP”. Four mathematical formulations for the TD-
IRP were proposed. The results showed that the fourth formulation,
i.e. a time step discretisation of the time and the use of constant step-
wise travelling time functions with allowed waiting times, is the most
efficient one. This chapter handles the second part of the question
“How to efficiently solve the TD-IRP?” In this chapter, only the fourth
formulation will be used.

In the following, Section 4.1 investigates the relevance of consider-
ing time dependent travelling times through a comparison between
optimal time dependent solutions and constant travelling time trans-
portation solutions re-solved in a time dependent environment. As a
result of this investigation, Section 4.2 proposes a matheuristic for the
TD-IRP in order to solve large-sized instances where the problem is
decomposed into a problem where the clients to visit for each period
are designated, first, and a TD-TSP solved second.

4.1 investigating the relevance of td-irp

In order to investigate the relevance of the TD-IRP, we compare op-
timal time dependent solutions to constant travelling time solutions
re-solved in a time dependent environment. To that purpose, all time
dependent instances, i.e. with |M| > 1, are solved twice. The two
phases are described in Figure 4.1. In the first phase, the instances
are solved optimally. Afterwards, the solutions of instances with con-
stant travelling time, i.e. with |M| = 1, are re-solved in time depen-
dent instances, where |M| ∈ {12, 30, 60, 120}. As we can see from
Figure 4.1a, by solving the problem with constant travelling time, we
fix the inventory management variables Ip

i , qp
i , which state the inven-

tory levels and the quantities sent for each client, and the routing
variables xp

ij which state the clients to be visited and in which order
they should be visited. Afterwards, the time steps of departure from
each location are determined subsequently by solving the TD-IRP in
a time dependent environment.
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(a) Procedure for optimal TD-IRP solutions
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(b) Procedure for constant travelling time solutions re-solved in a time dependent environ-
ment

Figure 4.1 – Procedure for optimal TD-IRP solutions vs. constant travelling time solu-
tions re-solved in a time dependent environment

4.1.1 Numerical experiments

All experiments are conducted on a CPU Intel Xeon E5-1620 v3

@3.5Ghz with 64GB RAM in a Java-Gurobi environment. Gurobi 9.0.2
is used as a solver and the dynamic constraints are added using the
lazyConstraints parameter. The experiments are conducted on all 250

instances generated in Section 3.3 with a time limit of 3600 seconds.
The results are presented in Table 4.1 and Table 4.2 as follows:

Columns |H|, |V ′|, and |M| present, respectively, the length of the
horizon, the number of clients in the network and the number of
time steps of the travelling time function. Columns z, g and CPU
present, respectively, the objective value, the gap to the best lower
bound found and the execution time of the solution of the TD-IRP.
These values are average values over five instances of each combi-
nation of parameters H, V ′ and M. Columns z|M|=1, g|M|=1 and
CPUM=1 represent, respectively, the objective value, the gap to the
best lower bound and the execution time, in average, of the TD-IRP
when the solution with constant travelling time is re-solved in a time
dependent environment. Finally, column gz

z|M|=1
represents the gap

between the objectives values z and z|M|=1 where gz
z|M|=1

=
z|M|=1−z

z .
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|V ′| |M| z g% CPU z|M|=1 g|M|=1% CPU|M|=1 gz
z|M|=1

%

5

1 3790.27 0.00 0.00

12 3387.27 0.00 0.00 3398.27 0.00 0.00 0.32

30 3136.02 0.00 0.01 3136.47 0.00 0.00 0.02

60 2916.07 0.00 0.02 2926.07 0.00 0.00 0.34

120 2584.09 0.00 0.05 2611.27 0.00 0.00 1.25

10

1 5544.34 0.00 0.04

12 4906.04 0.00 0.06 4927.14 0.00 0.00 0.44

30 4579.25 0.00 0.55 4628.34 0.00 0.01 1.09

60 4183.26 0.00 1.10 4237.14 0.00 0.02 1.25

120 3752.34 0.00 45.97 3829.54 0.00 0.05 2.02

15

1 6822.30 0.00 0.07

12 6169.50 0.00 0.32 6230.70 0.00 0.01 0.99

30 5823.55 0.00 4.46 5963.70 0.00 0.04 2.45

60 5346.01 0.00 70.24 5470.30 0.00 0.23 2.37

120 4701.56 0.45 1610.18 4885.90 0.00 1.17 3.94

20

1 8588.07 0.00 0.28

12 7699.65 0.00 4.87 7833.87 0.00 0.02 1.68

30 7198.26 0.00 782.55 7375.67 0.00 0.13 2.43

60 6622.56 0.75 2240.37 6900.47 0.00 2.78 4.18

120 6025.68 4.47 3600.03 6285.47 0.00 2.02 4.42

25

1 9246.05 0.00 0.78

12 8426.63 0.00 160.87 8536.65 0.00 0.04 1.32

30 7864.11 0.80 2308.50 8025.05 0.00 0.41 2.05

60 7378.17 4.16 3600.03 7547.05 0.00 26.22 2.35

120 6807.12 9.92 3600.04 6870.65 0.00 430.99 0.94

30

1 10611.99 0.00 0.73

12 9615.59 0.29 2397.94 9710.79 0.00 0.15 0.97

30 9160.58 2.85 3600.02 9220.39 0.00 4.81 0.63

60 8599.19 6.21 3600.03 8606.79 0.19 1232.12 0.10

120 7761.99 8.21 3600.10 7820.39 0.24 1825.42 0.76

Table 4.1 – Results for the comparison between optimal TDIRP solutions and constant
travelling time solutions re-solved in a time dependent environment for |H| =
3.
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|V ′| |M| z g% CPU z|M|=1 g|M|=1% CPU|M|=1 gz
z|M|=1

%

5

1 8385.85 0.00 0.04

12 7514.45 0.00 0.03 7520.65 0.00 0.00 0.09

30 6941.13 0.00 0.07 6942.45 0.00 0.00 0.02

60 6448.17 0.00 0.21 6460.05 0.00 0.00 0.19

120 5740.21 0.00 0.26 5796.45 0.00 0.01 1.04

10

1 11040.83 0.00 0.11

12 9856.17 0.00 0.27 9968.03 0.00 0.00 1.15

30 9209.18 0.00 13.60 9344.03 0.00 0.01 1.52

60 8496.00 0.00 47.21 8604.63 0.00 0.05 1.32

120 7532.50 0.39 1074.80 7777.83 0.00 0.21 3.30

15

1 13923.93 0.00 0.47

12 12564.94 0.00 3.05 12683.13 0.00 0.02 0.91

30 11923.00 0.00 495.22 12134.93 0.00 0.09 1.82

60 10912.59 0.95 2929.27 11158.33 0.00 1.53 2.24

120 9760.72 4.45 3600.02 9980.93 0.00 3.79 2.25

20

1 17726.17 0.00 2.16

12 15905.55 0.02 1143.01 16034.57 0.00 0.04 0.78

30 14821.00 1.28 3600.01 15030.17 0.00 0.59 1.39

60 13695.51 3.52 3600.03 13945.17 0.01 72.53 1.80

120 12501.52 7.31 3600.04 12641.77 0.06 1535.07 1.11

Table 4.2 – Results for the comparison between optimal TDIRP solutions and constant travelling
time solutions re-solved in a time dependent environment for |H| = 6.
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4.1.2 Discussion

The results presented in Table 4.1 and Table 4.2 yield the following
three observations:

The first observation is that TD-IRPs are difficult to solve. Indeed,
instances with |V ′| ≥ 20 and |M| ≥ 30, among others, are not op-
timally solved within the time limit. Although the TD-IRP is not
strictly a routing problem, routing problems of the order of 20, 25

and 30 clients are generally considered, in the VRP and TSP litera-
ture, as small instances. However, in a time dependent context, for
an instance where |M| = 120, all the routing variables are multiplied
by |M| which makes the problem 120 times bigger. Furthermore, the
periodicity aspect adds to the difficulty by multiplying all variables
by |H|. Finally, since the problem is an integrated one, inventory de-
cisions have a big impact on the size of the feasible solutions area,
which adds another layer of difficulty to the TD-IRP.

Moreover, solutions of constant travelling time functions make good
solutions in a time dependent environment. As we can see from col-
umn gz

z|M|=1
, the maximal gap between z and z|M|=1 is of 4.42%.

Finally, the efficiency of the constant travelling time functions in a
time dependent environment should be nuanced. Indeed, although
the solutions of constant travelling time functions in a time dependent
environment are indisputably good, they can be nuanced with the
following considerations:

— the values of gz
z|M|=1

are average values over only 5 values, which
can be misleading if the standard deviation is high enough.
Figure 4.2 shows the distribution of these gaps. We can see
from the figure that gaps can go up to 8.2% when |V ′|=20 and
|M| = 120.

— As stated in the first observation, the TD-IRP is difficult to solve.
Therefore, for instances when |V ′| ≥ 25, the values of z are not
optimal and have gaps up to 8.21% to the best lower bound
found. On the other hand, the values of z|M|=1 are mostly opti-
mal and have a maximal gap to the best lower bound of 0.24%.
Therefore, to have a better idea of how the gap is evolving, a
comparison between z|M|=1 and the best lower bound found
when solving the time dependent problem zLB is needed. Fig-
ure 4.3 presents the distribution of these gaps. We can see from
the figure that the gaps can go up to 13.63% when |V ′| = 25
and |M| = 120.

— When looking closely at the structure of the optimal time depen-
dent solutions, we notice that the inventory levels of the clients
and the supplier are not extremely different from the solutions
of when |M| = 1. Therefore, the gaps presented in Table 4.1
and Table 4.2 are mostly transportation costs, as the inventory
costs are almost equal. In this case, the gain in transportation
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Figure 4.2 – Distribution of gz
z|M|=1
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cost by optimising with time dependent travelling time func-
tions is more important than indicated in the tables.

— Finally, in our model, we made the hypothesis that all tours
start at the beginning of period p, i.e. at time step m = 0. This
hypothesis can be very restrictive in a time dependent environ-
ment as the departure time can have a big influence on the op-
timal tour.

For all these reasons, we believe that optimising with time depen-
dent functions can be beneficial in order to have cost-efficient solu-
tions. However, solving large TD-IRP instances seems to be a com-
putational challenge. Therefore, it is necessary to propose new algo-
rithms to solve the TD-IRP more efficiently.

4.2 an assign-and-route matheuristic for the td-irp

In Section 4.1.2, we studied the structure of optimal TD-IRP solu-
tions in comparison to solutions of constant travelling time functions
when re-solved in a time dependent environment. This comparison
showed that the difference between the two solutions lies mostly in
the sequence in which the clients are visited, and rarely in the set
of clients visited at each period p or the quantities sent and inven-
tory levels of said clients. Therefore, we propose a matheuristic to
solve the TD-IRP by decomposing the problem into two parts: First,
defining the inventory level, the quantities to send for each client and
the clients to visit for each period. Second, defining the sequence in
which the clients will be visited and the departure time steps from
each location.

4.2.1 Description of the matheuristic procedure

The results in Section 4.1 show that optimal constant travelling time
solutions when re-solved in a time dependent environment yield time
dependent solutions that differ from optimal time dependent solu-
tions, mostly in the routing component, and particularly the sequence
of visiting the clients rather than the set of clients visited. Based on
these observations, we propose a matheuristic that decomposes the
problem into two parts: First, we define the inventory level, the quan-
tities to send for each client and the clients to visit for each period by
solving the problem using constant travelling time functions. After-
wards, for each period p ∈ H, the sequence in which the clients are
visited and the departure time steps from each location are defined
by solving an independent TD-TSP. A mathematical formulation for
the TD-TSP is presented below. Vp represents the set of locations to
visit for each period p and Ap is a set of arcs linking them. Variables
xij and xm

ij represent the same variables as, respectively, xp
ij and xpm

ij –
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but the index of period p is no longer needed, as the TD-TSPs of each
period are solved independently.

The full decomposition procedure is described in detail in Fig-
ure 4.4.

TD-TSP

min obj = c ∑
(i,j)∈Ap

∑
m∈M

f (i, j, m)× xm
ij

s.t ∑
j∈Vp 6=i

xij = 1 ∀i ∈ Vp (52)

∑
j∈Vp 6=i

xji = 1 ∀i ∈ Vp (53)

∑
(i,j)∈S

xij ≤ |S | − 1 ∀S ⊆ Ap (54)

∑
m∈M

xm
ij = xij ∀(i, j) ∈ Ap (55)

∑
j∈V ′p

x0
0j = 1 (56)

∑
vk∈P\{vn}

∑
mk∈T

xmk
vk ,vk+1 ≤ |P| − 2 ∀[P, T] infeasible (57)

xij ∈ {0, 1} ∀(i, j) ∈ Ap (58)

xm
ij ∈ {0, 1} ∀(i, j) ∈ Ap, m ∈ M′ (59)

TD-IRP  
 |ℳ | = 1

Inventory management

Routing

Ip
i , qp

i

yp
i

TD-TSP   
 

∀p ∈ ℋ
|ℳ | > 1

Routing

Solution

xp
ij , xpm

ij

Figure 4.4 – A description of the matheuristic procedure

To optimally define the set of clients to be visited at each period
p ∈ H, the mathematical formulation presented in Section 3.2.2.3
is paired to the branch-and-cut procedure presented in Section 1.1.3.
For the TD-TSP, the same branch-and-cut procedure is used paired to
the TD-TSP mathematical formulation presented above.

The choice to use the same algorithms and mathematical formula-
tions to solve the decomposition process enables a fairer comparison
between the exact approach and the matheuristic, in order to show

101

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI064/these.pdf 
© [F. A. Touzout], [2021], INSA Lyon, tous droits réservés



more clearly the advantage of using such a decomposition. Indeed,
better approaches in the literature exist that solve the TD-TSP more
efficiently. But by using such state-of-the-art algorithms to solve the
TD-TSP, the difference in performances would not be directly related
to the decomposition approach but would instead be credited (at least
partially) to the efficiency of the algorithms in question.

4.2.2 Numerical experiments

In order to efficiently compare the performances of the proposed
matheuristic compared to the exact approach, both approaches will
be solved in the same time limit of 3600 seconds. For the exact ap-
proach, and since there is only one branch-and-cut algorithm to solve,
the Gurobi time limit parameter is used. However, for the matheuris-
tic, for instances with |H| = 3 and |H| = 6, there are, respectively, 4

and 7 different models to solve: A TD-IRP when |M| = 1, then in-
dependent TD-TSPs for each period p ∈ H. Therefore, it is necessary
to distribute the available computing time between these models in a
way that ensures that all models are solved. In this case, the problem
of defining the set of clients to visit is solved first with a 3600 seconds
time limit, which is amply sufficient for this first step. The remaining
time is then distributed equally between the different TD-TSPs. After-
wards, for each period p ∈ H, if the TD-TSP is solved before its time
limit, the remaining time is iteratively equally distributed on the not
yet solved TD-TSPs. Algorithm 4.1 presents the full procedure of the
matheuristic.

The results of the comparison are shown in Table 4.3 and Table 4.4
as follows: Columns |H|, |V ′|, and |M| present, respectively, the
length of the horizon, the number of clients in the network and the
number of time steps of the travelling time function. Columns z, g%,
CPU and zLB present, respectively, the objective value, the gap to
the best lower bound found, the execution time and the best lower
bound found for the exact approach. These values are average values
over five instances of each combination of parameters |H|, |V ′| and
|M|. Columns zMH, and CPUMH represent, respectively, the objective
value and the execution time, in average, of the matheuristic. Finally,
columns gz

zMH
, gzLB

zMH
and gCPU

CPUMH
represent, respectively, the gap be-

tween z and zMH, the gap between zMH and zLB and finally the gap
between CPUMH and CPU where: gz

zMH
= zMH−z

z , gzLB

zMH
= zMH−zLB

zLB and
gCPU

CPUMH
= CPUMH−CPU

CPU . The values indexed with an asterisk represent
the ones for which at least one TD-TSP is not optimally solved.
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Algorithm 4.1: A matheuristic for the TD-IRP
1: input: instance I , a number of time steps M, an empty solution
S , and a time limit TL = 3600

2: solve I for |M| = 1
3: fix the variables yp

i , qp
i and Ip

i of S .
4: remaining time: RT = TL− CPUS|M|=1

5: for p ∈ H do
6: TLTD-TSP

p = RT
|H|

7: end for
8: for p ∈ H do
9: a set of locations to visit Vp where Vp ⊆ V

10: solve the TD-TSP for Vp with |M| = M and a time limit
TLTD-TSP

p
11: remaining time from the TD-TSP of period p:

RTTD-TSP
p = TLTD-TSP

p − CPUTD-TSP
p

12: if RTTD-TSP
p > 0 then

13: remaining set of unsolved TD-TSP Hremaining = H\{1, ..., p}
14: for p′ ∈ Hremaining do

15: TLTD-TSP
p′ =TLTD-TSP

p′ +
RTTD-TSP

p

|Hremaining|
16: end for
17: end if
18: set the values of variables xp

ij and xpm
ij for period p

19: end for
20: return S
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|V ′| |M| z g% CPU zLB zMH CPUMH gz
zMH

% gzLB

zMH
% gCPU

CPUMH
%

5

1 3790.27 0.00 0.00

12 3387.27 0.00 0.00 3387.27 3387.27 0.01 0.00 0.00 0.00

30 3136.02 0.00 0.01 3136.02 3136.47 0.01 0.02 0.02 0.00

60 2916.07 0.00 0.02 2916.07 2916.07 0.02 0.00 0.00 -15.00

120 2584.09 0.00 0.05 2584.09 2597.47 0.03 0.57 0.57 -37.67

10

1 5544.34 0.00 0.04

12 4906.04 0.00 0.06 4906.04 4907.54 0.07 0.03 0.03 25.43

30 4579.25 0.00 0.55 4579.25 4584.74 0.22 0.13 0.13 -59.89

60 4183.26 0.00 1.10 4183.26 4188.54 0.46 0.13 0.13 -51.96

120 3752.34 0.00 45.97 3752.34 3756.54 1.14 0.12 0.12 -76.48

15

1 6822.30 0.00 0.07

12 6169.50 0.00 0.32 6169.50 6198.90 0.40 0.50 0.50 37.14

30 5823.55 0.00 4.46 5823.55 5852.10 1.14 0.51 0.51 -68.28

60 5346.01 0.00 70.24 5346.01 5377.70 2.68 0.63 0.63 -94.91

120 4701.56 0.45 1610.18 4681.23 4740.70 7.73 0.85 1.31 -97.62

20

1 8588.07 0.00 0.28

12 7699.65 0.00 4.87 7699.65 7734.47 1.29 0.43 0.43 -40.81

30 7198.26 0.00 782.55 7198.10 7230.07 6.25 0.43 0.43 -96.85

60 6622.56 0.75 2240.37 6574.74 6675.07 10.63 0.78 1.53 -98.64

120 6025.68 4.47 3600.03 5756.28 6035.87 74.80 0.23 4.70 -97.92

25

1 9246.05 0.00 0.78

12 8426.63 0.00 160.87 8426.63 8463.05 8.23 0.43 0.43 -88.87

30 7864.11 0.80 2308.50 7798.68 7909.45 70.73 0.58 1.38 -96.03

60 7378.17 4.16 3600.03 7063.85 7357.05 826.04 -0.24 3.88 -77.05

120 6807.12 9.92 3600.04 6132.34 6649.05* 2153.25 -2.30* 7.39* -40.19

30

1 10611.99 0.00 0.73

12 9615.59 0.29 2397.94 9587.89 9648.99 79.33 0.35 0.64 -96.57

30 9160.58 2.85 3600.02 8901.15 9143.19 1035.16 -0.20 2.64 -71.25

60 8599.19 6.21 3600.03 8062.89 8427.79 1351.96 -1.95 4.13 -62.45

120 7761.99 8.21 3600.10 7122.38 7752.59* 3600.03 -0.11* 8.10* 0.00

Table 4.3 – Matheuristic performances for |H| = 3
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|V ′| |M| z g% CPU zLB zMH CPUMH gz
zMH

% gzLB

zMH
% gCPU

CPUMH
%

5

1 8385.85 0.00 0.04

12 7514.45 0.00 0.03 7514.27 7514.45 0.04 0.00 0.00 68.33

30 6941.13 0.00 0.07 6940.97 6941.85 0.05 0.01 0.01 0.48

60 6448.17 0.00 0.21 6448.17 6449.45 0.10 0.02 0.02 -32.19

120 5740.21 0.00 0.26 5740.00 5741.25 0.12 0.02 0.02 -43.81

10

1 11040.83 0.00 0.11

12 9856.17 0.00 0.27 9855.96 9870.23 0.22 0.14 0.14 5.65

30 9209.18 0.00 13.60 9209.18 9235.43 0.77 0.29 0.29 -86.55

60 8496.00 0.00 47.21 8495.84 8525.23 1.35 0.35 0.35 -93.95

120 7532.50 0.39 1074.80 7505.65 7578.83 3.16 0.64 1.02 -96.22

15

1 13923.93 0.00 0.47

12 12564.94 0.00 3.05 12564.94 12586.33 1.15 0.18 0.18 -51.14

30 11923.00 0.00 495.22 11922.77 11948.73 3.56 0.23 0.23 -96.89

60 10912.59 0.95 2929.27 10812.31 10947.33 7.25 0.33 1.28 -99.00

120 9760.72 4.45 3600.02 9324.18 9721.13 26.58 -0.40 4.02 -99.26

20

1 17726.17 0.00 2.16

12 15905.55 0.02 1143.01 15902.29 15947.17 5.84 0.26 0.28 -94.54

30 14821.00 1.28 3600.01 14636.60 14846.97 17.90 0.17 1.45 -99.50

60 13695.51 3.52 3600.03 13216.30 13654.37 48.41 -0.28 3.22 -98.66

120 12501.52 7.31 3600.04 11593.15 12251.17 205.82 -2.03 5.12 -94.28

Table 4.4 – Matheuristic performances for |H| = 6
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4.2.3 Discussion

The results of Table 4.3 and Table 4.4 show that the matheuristic per-
forms very well. These performances are discussed first in compari-
son to the best solutions found by the exact approach in Section 4.1.1.
In a second phase, they are compared to the best lower bounds found
by the exact approach.

For all instances solved optimally with the exact approach, the max-
imal average gap between zMH and z is of 0.63%, when |H| = 3,
|V ′| = 15 and |M| = 60. Figure 4.5 presents a more detailed look
at how gz

zMH
is distributed. As we can see in Figure 4.5c, the largest

gap for instances |H| = 3, |V ′| = 15 and |M| = 60 is of 1.51% and
one instance is solved optimally. Now for all instances, the maximal
gap goes up to 2.47% when |V ′| = 30 and |M| = 120 (Figure 4.5d)
whereas the minimum gap goes down to −3.57% when |V ′| = 30
and |M| = 60 (Figure 4.5c). This means that the matheuristic is able
to improve the best solution found by the exact approach within the
time limit. Moreover, it does so in a shorter time, as shown by the
gap in time gCPU

CPUMH
which in this case is of −35.33%.

Since not all instances can optimally be solved with the exact ap-
proach, we compare the performances of the matheuristic to the best
lower bounds found by the exact approach in order to have a more
accurate idea of how it is performing. Figure 4.6 presents a more
detailed look at the distribution of gzLB

zMH
. The largest gap gzLB

zMH
of the

instances for which all the TD-TSPs in the matheuristic are solved
optimally, i.e. the ones not indexed with an asterisk in Table 4.3 and
Table 4.4, is observed for instances where |H| = 6, |V ′| = 20 and
|M| = 120. The average gap is of 5.12% whereas the maximal and
minimal gaps are of, respectively, 6.29% and 2.68%. For instances for
which all the TD-TSPs are not optimally solved, e.g. |V ′| = {25, 30}
and |M| = 120, the maximal gap goes up to 11.45%. However, for
these instances, the gaps can be reduced by improving the TD-TSPs
that are not optimal, as the largest gap of these TD-TSPs to their best
lower bound can go up to 22%. This can be done by exploiting the lit-
erature of TD-TSP which is getting increasingly richer, in comparison
to the literature of TD-IRP which is almost nonexistent.

Moreover, it is worth noting that the values of zLB are obtained
using a branch-and-cut procedure. Therefore, the lower bound solu-
tions have a high probability of containing sub-tours and time depen-
dent infeasible paths. In this context, the gaps gzLB

zMH
that are observed

when TD-IRPs are not optimally solved can be nuanced, as zLB can
be improved, which makes the real gap between zMH and the optimal
TD-IRP solutions even closer than gzLB

zMH
.

As a conclusion, the decomposition procedure of our matheuristic
proves to be very efficient. The strengths of this matheuristic lie in
the fact that it is inspired by observations of optimal TD-IRP solutions.
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Moreover, it has the capacity of scaling as its improvement depends
on the efficiency of the formulations and algorithms of IRP and TD-
TSP, on which the literature is exponentially increasing.

4.3 conclusion

4.3.1 Contributions

Following the results of Chapter 3, this chapters investigates the
impact of inventory decisions on the structure of optimal time de-
pendent tours by comparing optimal TD-IRPs and optimal IRPs com-
puted in a time dependent environment. The results show that opti-
mising in a time dependent environment can be beneficial, cost-wise,
and that, similarly to the results of Rifki et al. (2020) in the context
of the TD-TSP, time-granularity has an impact on improving the cost.
Based on the observations made on these results, a matheuristic that
decomposes the problem into a problem of defining the set of clients
to visit for each period first and routing second, is proposed. The
results show that the proposed matheuristic is very efficient. Further-
more, its performances can be improved by taking advantage of the
rich literature of time dependent routing problems in comparison to
the very sparse literature of TD-IRP.

4.3.2 Perspectives

Perspectives in this context would be to take advantage of the
rich literature of TD-TSPs to improve the matheuristic performances
by implementing exact approaches that are more efficient than the
branch-and-cut procedure used in this paper. In parallel, it is nec-
essary to propose new valid inequalities for the TD-IRP that provide
tighter lower bounds in order to efficiently assess the performances of
the matheuristic. Improving the efficiency of solving the TD-IRP un-
der the assumptions of this dissertation would greatly help extending
the problem to other variants that are more complex, such as variable
departure times instead of always departing at the beginning of the
period.
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5
C O N C L U S I O N

contributions

The industrial world has seen an important evolution in the last
century. The market has become more globalised and the competition
fiercer. In an effort to keep up with the competition, industries are
increasingly looking at supply chain operations as a means of gaining
a considerable advantage over their competitors.

VMI is an added value logistics trend. It is a system in which the
clients delegate the control of their inventory to the supplier. It is
an advantageous situation for both actors, as the supplier is able to
reduce the inventory and transportation costs by deciding how much
quantity should be sent to each client and in which order to visit them
for each period of a time horizon. For the clients, they longer need
to dedicate resources in order to manage their replenishment. The
resulting operational problem is called the IRP.

One of the issues that IRP is faced with is the uncertainty of its
parameters. Since the IRP is an integrated problem, uncertainties can
emanate from all of its different components and parameters, thus the
range of uncertainty sources can be wide. This dissertation focuses on
two of the most commonly faced uncertainties in real-life situations,
the clients’ demand and the travelling time.

In Chapter 1, the state-of-the-art of IRP under uncertainty literature
is established. The study shows that although the literature is quite
rich, it is focused on stochastic and robust optimisation approaches,
whereas the other a priori and a posteriori approaches are highly over-
looked. This brings the question “How to take into account demand and
travelling time uncertainty in a different but realistic and efficient manner?”

Chapter 2 answers the question by focusing on the demand uncer-
tainty. Due to multi-period dimension and the flexibility brought by
the inventory, re-optimisation seems an appropriate approach. How-
ever, re-optimisation can yield solutions that are radically different
from the original ones. Thus, it is necessary to ensure the stability of
the solutions. A panel of stability metrics from the literature of rout-
ing, scheduling and inventory management are identified, re-adapted
and mathematically formulated for the IRP. The behaviour of these
metrics in relation to each other is investigated to show that they are
highly correlated: optimising one means optimising the other. More-
over, the price of stability is examined and the results show that it is
rather small.
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Chapter 3 and Chapter 4 focus on the travelling time. In this case,
an a priori but deterministic approach is proposed by considering the
travelling time as time dependent. In Chapter 3, the literature of the
IRP when travelling times are the main focus is reviewed and shows
that the interest for the TD-IRP is fairly low. Thus, by turning to pure
routing problems, ideas on how to formulate and solve the TD-IRP
emerged. Four mathematical formulations for the TD-IRP, based on
different discretisations of the time and the use of travelling time func-
tions of different forms are proposed. To validate these formulations,
a new benchmark of the TD-IRP is proposed, inspired by benchmarks
of the IRP and TD-TSP literature. The conducted numerical experi-
ments show that one of the four formulations performs better than
the other three. However, it also shows that just as the other routing
time dependent problems, the TD-IRP is harder to solve than its ba-
sic counterpart. In this context, Chapter 4 investigates the relevance
of considering time dependent travelling times and the results show
that it can be very cost effective. Moreover, based on the observa-
tions of optimal time dependent solutions made from these numer-
ical experiments, a matheuristic is proposed. The results show that
the matheuristic is very efficient and produce new upper bounds for
numerous instances.

Finally, in a larger context, we believe our dissertation has two
main contributions: First, it shows that even though approaches to
manage uncertainties can be ill-suited for some problems such as re-
optimisation with pure routing problems, by considering them for
integrated problems, the multiple parameters and actors of the inte-
grated problems can lift the limitations of said approaches, making
them a viable option. Moreover, by studying the real sources of uncer-
tainties, we realise that some uncertainties are not so unpredictable
and can be lifted by representing the data in a different manner.

perspectives

Direct extensions of the models and approaches proposed in this
dissertation are presented in the conclusions of each chapter. In the
following, we list a few mid and long-term perspectives that scholars
can ponder on.

Since the work presented in this thesis manages the uncertainty of
the two most common parameters in IRP, and given that the ways of
handling these uncertainties are not incompatible with each other, a
natural perspective is to investigate the relevance of re-optimisation
with stability metrics for the TD-IRP. This would enable the valida-
tion of other stability metrics related to the time component, such as
the visiting time deviation. In addition, with such a model, the major
sources of uncertainty, namely the client’s demand and the travelling

112

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI064/these.pdf 
© [F. A. Touzout], [2021], INSA Lyon, tous droits réservés



time uncertainties would be managed.

Since there are different manners to handle uncertainty in the lit-
erature, such as a priori and a posteriori approaches, a perspective is
to combine such approaches. Such combination is already studied
in the literature by proposing a priori solutions, and once the uncer-
tainty is revealed, infeasible solutions are repaired through a posteri-
ori approaches. However, this can be done differently by studying
the strength of each approach regarding different parameters. Ulmer
(2019) tries to identify a threshold of degree of dynamism for which
re-optimisation becomes more efficient than stochastic optimisation
and vice-versa for the VRP. As the IRP is set in a multi-period con-
text, another parameter that can be investigated is the time at which
an event occurs. Which approach should be used if the chances of an
event occurring are greater for a nearer or a more distant period? Al-
though intuitively one can argue that events that may occur in closer
periods can be more adequately handled with a priori approaches
whereas more distant events are most suited to a posteriori ones, it
would be interesting to validate this intuition, and furthermore iden-
tify the threshold for which this change occurs.

One of the biggest sources of uncertainty is the lack of control over
the data. Indeed, we have seen in this dissertation that it is possible
to lift uncertainties related to travelling times by proposing travelling
time functions that are time dependent. Since we live in a world
where data is increasingly available, a perspective is to extend this
idea to other uncertainties by studying their sources and trying to
determine deterministic parameters that cause them. This is already
done in the literature for the service time for example, where in the
same manner as the travelling time, it is considered in a time depen-
dent environment for the TD-TSP (Taş et al., 2016). However, time
dependent service time takes in consideration only a part of the un-
certainty related to the service time. The other part depends on the
quantity that needs to be unloaded at each client. This problem can
be very important in routing problems in general such as the TD-TSP
and TD-VRP. Pure routing problems do not have a multi-period di-
mension, thus all clients need to be visited in one period. Therefore,
a service time that depends on the quantity to deliver only helps as-
sessing more accurately the length of tour. On the other hand, for
the TD-IRP it is even more relevant due to its multi-period context.
Indeed, such a parameter can have an impact, not only on the length
of the tour, but on the whole structure of a TD-IRP solution, since in
some cases it is more beneficial to do multiple small deliveries over
the periods of the time horizon rather than a big delivery that might
take up a lot of unloading time. This is a problem that arises for
products that take a long time to be unloaded, for example fuel. In
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gas stations, it is very common to interrupt the service when refilling
the fuel tanks. As this idle time can have an impact on the station’s
earnings, it may be wiser to determine several small replenishment
at a time where the affluence is not high rather than a large replen-
ishment that can extend to a time where the affluence is high.

Another issue that has preoccupied scholars in recent years is sus-
tainability. Many researchers have been interested in this problem
within the context of the IRP by proposing models where the green-
house gas emitted is minimised based on the travelled distances and
the load of the truck. However, we believe that distance is not an
element that allows an accurate computation of the amount of green-
house gas emissions. As emissions depend on the speed at which the
engine is running, it is well known that when driving on highways,
it is possible to travel large distances but with a regime that is fairly
regular, which means that the emission is not extremely high. On the
other hand, when in an urban logistics context, there are a lot of idle
times where no distance is travelled but greenhouse gases are emit-
ted, and by braking regularly, the regime of the engine is always high,
causing higher emissions. One perspective is to compare the distance
element to other elements, such as the travelling time, the speed of
the vehicle, or a more accurate element: the revolutions per minute
of the engine.

As stated in Section 1.3, although re-optimisation does not have a
reputation for being effective when it comes to pure problems, in the
case of integrated problems, it is possible that the different parame-
ters of the problems can cater for the limitations that re-optimisation
imposes. One perspective would be to investigate the relevance of
using re-optimisation for other integrated problems such as the loca-
tion routing problem or the integrated process plan and scheduling
problem.

Finally, a perspective is to propose new models that cater for other
challenges that reality imposes by integrating other sub-problems of
the supply chain to the IRP. A problem that can generally be faced in
transport problems is optimising the packing of the products inside
of the distribution vehicle (3D packing). Indeed, due to the limited ca-
pacity of the vehicles, by packing the products in an efficient manner,
capacity can be gained. Moreover, due to the limited access points in
a vehicle, it is very important to pack the products in the vehicle in
the most ergonomic way possible taking into account the sequence in
which customers will be visited. This is even more important in an ur-
ban logistics context where it is necessary to be reactive in order not
to waste time, since the availability of parking slots is rather limited,
which does not offer too much flexibility. Another problem that can
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be integrated to the IRP is the lot-sizing. Indeed, the number of the
products available to the supplier in the IRP is always considered as
a given data. However, by integrating the production problem to the
IRP, it is possible to greatly reduce the cost of inventory, especially
when considering the transshipment parameter which could play a
role of safety stock if ever faced with a production shortage due to
uncertainties.
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RESUME :  
L’Inventory Routing Problem (IRP) est l’intégration de deux sous-problèmes de la chaîne logistique: la gestion de stock et le 
transport. Un défi commun à toutes les opérations de la chaîne logistique est la gestion de l'incertitude ; cela s'applique 
également à l’IRP. Les approches les plus courantes de prendre en compte les incertitudes dans la littérature sont les 
approches “a priori”. Les approches “a priori” gèrent les incertitudes de manière proactive en établissant des plans de 
réapprovisionnement robustes, qui seront réalisables même face à un large éventail d’événements. Dans cette thèse on 
s’attaque aux deux sources majeures d’incertitudes dans le contexte de l’IRP: la demande des clients et les temps de trajets. 
L'incertitude liée a la demande des clients est gérée par une approche “a posteriori” de ré-optimisation avec des mesures de 
stabilité. Les métriques de stabilité de la littérature des sous-problèmes de l'IRP tels que le transport et la gestion des stocks ou 
des problèmes de séquençage similaires tels que l'ordonnancement sont réadaptés pour l'IRP. Ces métriques sont formulées et 
leur corrélation et leur impact sur le coût étudiés. Pour les temps de trajets, l’incertitude est gérée de manière “a priori” mais 
déterministe en les considérant comme dépendants du temps. Dans ce contexte, quatre formulations mathématiques pour l'IRP 
dépendant du temps (TD-IRP) inspirées de la riche littérature des problèmes de transport dépendant du temps sont proposées. 
Les quatre formulations sont comparées sur un nouveau benchmark généré basé sur des benchmarks de la littérature de l’IRP 
et Time-Dependent Travelling Salesman Problem (TD-TSP). La pertinence de considérer des temps de parcours dépendant du 
temps est étudiée et une matheuristique proposée afin de résoudre des instances de grande taille. 
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