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Chapter 1.

Introduction à la partie statistique (in French)

Cette section présente les concepts nécessaire à la bonne compréhension de cette thèse. D’abord,
nous discutons des statistiques Bayésiennes and des méthodes de Monte-Carlo par chaı̂nes de Markov
(MCMC en Anglais). Ensuite, nous détaillons expliquons les bases de l’analyse du Fond Diffus Cos-
mologique et l’usage des méthodes MCMC dans ce context. Finalement, nous résumons nos contribu-
tions dans les deux dernières sections.

1.1. Statistiques Bayésiennes

Le but de l’inférence Bayésienne est d’extraire de la connaissance à partir d’expériences faites dans
le monde réel, voir Robert (2007) pour une revue de littérature. Chaque expérience peut être décrite
mathématiquement comme un n-uplet pY,BpYq, tPθ, θ P Θuq où Y est l’espace d’observation et BpYq la
tribu Borélienne de Y. L’ensemble Θ est appelé l’espace des paramètres et tPθ, θ P Θu est une famille de
mesures sur pY,BpYqq. Dans le reste de ce manuscrit nous considérons seulement Y “ Rd avec d P N‹,
Θ Ď Rm et nous supposons que Pθ est dominée par la mesure de Lebesgue dy quelque soit θ P Θ.
L’inférence Bayésienne quantifie l’incertitude sur θ en mettant à jour la croyance a priori de l’expérimentateur

grâce aux données. Si nous considérons que θ est une variable aléatoire sur pΘ,BpΘq,dθq, l’expérimentateur
peut formaliser sa croyance a priori concernant le paramètre, avant toute observation, grâce à la mesure
a priori p0pθqdθ, où p0pθq est la densité de θ par rapport à dθ. Supposons qu’on observe y, une réalization
de la variable aléatoire Y P Y, nous pouvons définir la vraisemblance:

p : Θ ˆ Y Ñ r0,`8q (1.1)
pθ, yq ÞÑ ppy|θq

Les données y peuvent contraindre l’incertitude a priori grâce à la vraisemblance. Nous pouvons décrire
l’incertitude a posteriori sur le paramètre grâce à la distribution:

πpθ|yq “
ppy|θqp0pθq

Zpyq
(1.2)

où
Zpyq “

ż

Θ
ppy|θqp0pθqdθ (1.3)

est appelée l’évidence ou la vraisemblance marginale. Puisque p0 est une densité de probabilité, nous
avons Zpyq ă 8. Il est possible de choisir p0 telle que:

ż

Θ
p0pθqdθ “ 8.

Dans ce cas il est nécessaire de vérifier que Zpyq ă 8 pour que Eq. (1.3) soit bien définie.
En pratique, les moments de la distribution a posteriori nous intéressent:

Erhpθq|ys “

ż

Θ
hpθqπpθ|yqdθ (1.4)

7
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où h : Θ Ñ R par exemple, et nous voulons aussi estimer l’évidence Eq. (1.3). Nous souhaitons aussi un
estimateur ponctuel de notre paramètre. Pour celà, nous prenons l’estimateur du maximum a posteriori
(MAP):

θMAP P arg max
θ

πpθ|yq.

Manifestement, faire de l’inférence Bayésienne suppose que nous soyons capables de calculer des
espérances comme Eq. (1.4). C’est difficile en général et la distribution a posteriori Eq. (1.2) est souvent
difficilement calculable. Dans ce cas, nous avons deux options: caractériser la distribution a posteri-
ori à travers un échantillonage ou l’approximer grâce à une famille de distribution calculables. Dans la
prochaine section, nous nous concentrons sur la première option. Pour la seconde approche, le lecteur
peut lire Martin J Wainwright (2008).

1.2. Méthodes de Monte-Carlo par chaı̂nes de Markov

Puisque πpθ|yq est une densité sur Θ, nous abandonnons la dépendance en y par soucis de clarté. Nous
considérons donc πpθq au lieu de πpθ|yq.
Les méthodes de Monte-Carlo par chaı̂nes de Markov (MCMC) ont pour objectif de calculer des espérances

sur l’espace d’état Θ:

Eπrhpθqs “

ż

Θ
hpθqπpθqdθ (1.5)

où π est une densité sur Θ et, par exemple, h : Θ Ñ R. Pour ce faire, les méthodes MCMC produisent
des échantillons corrélés de π et estiment Eq. (1.5) grâce à la moyenne empirique de ces échantillons.
Plus précisément, les méthodes MCMC construisent une chaı̂ne de Markov pθqně1 telle que:

1
N

N
ÿ

n“0
hpθnq

a.s
ÝÝÝÝÑ
NÑ8

Eπrhpθqs. (1.6)

Si le noyau de transition P de la chaı̂ne de Markov laisse π invariante:
ż

Θ
πpθqP pθ,dθ1

qdθ “ πpθ
1

qdθ1

et que la chaı̂ne est irréductible et apériodique, alors nous savons que pour π ´ p.s tout θ0 P Θ:

||Pnpθ0, dθq ´ πpθqdθ||TV ÝÝÝÑ
nÑ8

0

où ||.||TV est la norme de variation totale, voir e.g Roberts and Rosenthal (2004). Cela signifie que pour
π´ p.s tout point de départ, la chaı̂ne converge vers sa distribution invariante. Sous la condition plus forte
d’Harris récurrence, ce résultat est valable pour tout θ0 P Θ, voir e.g Roberts and Rosenthal (2004). En
plus de ce résultat, nous pouvons également caractériser la vitesse de convergence vers la distribution
invariante: si la chaı̂ne possède un ”small set” and satisfait une condition de ”drift” sur cet ensemble, elle
est géométriquement ergodique, c’est à dire:

||Pnpθ0, dθq ´ πpθqdθ||TV ď Mpθ0qρn

pour un ρ P r0, 1r et Mpθ0q ă 8 pour π´p.s tout θ0 P Θ. Dans le cas où M ne dépend pas de θ0, la chaı̂ne
est dite uniformément ergodique. Finalement, nous avons un théorème de la limite centrale:

1
?
N

N
ÿ

n“0
thpXnq ´ Eπrhpθqsu

L
ÝÝÝÝÑ
NÑ8

N p0, σ2
hq

8
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pour π ´ p.s tout θ0 P Θ, où

σ2
h “ Varπphq ` 2

8
ÿ

n“1
Covphpθ0q, hpθnqq (1.7)

sous la condition que la chaı̂ne est uniformément ergodique et que Eπrhpθqs ă 8, voir Meyn and Tweedie
(2014). Dans le cas où la chaı̂ne n’est que géométriquement ergodique, le théorème de la limite centrale
tient toujours si Eπrhpθqs ă 8 et si la chaı̂ne est réversible, c’est à dire:

πpdθ0qP pθ0, dθ1q “ πpdθ1qP pθ1,dθ0q

pour n’importe quel θ0, θ1 P Θ. Finalement, si

L2
0pπq “ thpθq : Eπrhpθqs “ 0; Varπrhpθqs ă 8u

est l’espace de Hilbert des fonctions scalaires de moyenne nulle, de variance finie et de produit scalaire ă

hpθq, tpθq ą“ Eπrhpθqtpθqs tel que ||hpθq||L2
0pπq “ă hpθq, hpθq ą, nous pouvons définir l’opérateur ”forward”

comme:
Fnhpxq “ Erhpθnq|θ0 “ xs “

ż

Θ
hpθqPnpx,dθq (1.8)

pour n’importe quel n P N‹. Liu et al. (1995) ont montré qu’à stationnarité, c’est à dire lorsque nous
supposons que θ0 „ π et que θn|θ0 „ Pnpθ0,dθq, nous avons:

||Fn|| “ γn (1.9)

où ||.|| est la norme opérateur définie comme:

||F || “ sup
tPL2

0pπq

||Ft||L2
0pπq

||t||L2
0pπq

et
γn :“ sup

f,g
Corrpfpθ0q, gpθnqq (1.10)

est le coefficient de corrélation maximal entre θ0 et θn, où le supremum est pris sur l’ensemble des fonc-
tions scalaires dont la variance est finie. Nous pouvons voir que les normes d’opérateur des puissances
de F , toutes inférieures à 1, sont directement bornées par les autocorrélations ”lag-n” de la chaı̂ne. Fi-
nalement, Liu et al. (1995) ont montré que si la chaı̂ne est réversible, F est auto-adjoint, et dans ce
cas:

||F ||n “ γn.

Dans les deux prochaines sections, nous donnons des exemples d’algorithmes de Monte-Carlo par
chaı̂nes de Markov ayant les propriétés que nous venons de décrire: l’algorithme de Métropolis-Hastings
et l’échantillonneur de Gibbs.

1.2.1. L’algorithme de Métropolis-Hastings

Une façon connue de construire des chaı̂nes de Markov comme décrit dans dans la section précédente
est l’algorithme de Métropolis-Hatings, décrit par Hastings (1970): à chaque étape n P N, un nouvel état
θ

1

est proposé grâce à la distribution instrumentale Qpθn´1, dθq. Nous acceptons ce nouvel état, c’est
à dire θn “ θ

1

, avec une probabilité qui dépend du ratio de la densité évaluée en ce nouvel état sur la
densité évaluée en l’état précédent θn´1.
En fonction du choix de Q, cet algorithme a différentes propriétés. En général, les praticiens choisissent
Qpθn´1, dθq

L
“ N pθn´1, τΣq, où τ P R` est le paramètre d’échelle et τΣ est la matrice de covariance de
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la distribution instrumentale, tous les deux choisis par l’utilisateur. Il faut choisir Σ de sorte que la matrice
de covariance de la distribution cible corresponde à peu près à la matrice de covariance de la distribution
instrumentale. Cela nous aidera à proposer de nouveaux états le long des principales directions de
la distribution cible. Le paramètre τ est choisi tel que l’algorithme a le taux d’acceptation voulu. Cet
algorithme est appelé l’algorithme de Métropolis-Hastings par marche aléatoire, voir Tierney (1994): à
chaque étape nous perturbons l’état actuel θn avec un bruit Gaussien et nous obtenons un nouvel état
θn`1. Si l’état proposé est dans une région de plus grande probabilité que l’état précent, nous acceptons
automatiquement ce nouvel état. Sinon, nous l’acceptons avec une probabilité proportionnelle au ratio
des densités évaluées en le nouveau et l’ancien état, voir Algorithm 1. Manifestement, nous devons être

Algorithm 1: Etape n de l’algorithme de Métropolis-Hastings par marche aléatoire
Input: Etat actuel θn´1, densité cible π
Output: Etat suivant θn

1 Simuler θ
1

„ N pθn´1, τΣq

2 Calculer rpθn´1, θ
1

q “ min
#

πpθ
1

q

πpθn´1q
, 1
+

3 Simuler u „ Ur0, 1s

4 if u ă rpθn´1, θ
1

q then
5 définir θn Ð θ

1

6 else
7 définir θn Ð θn´1

capable d’évaluer au moins une version non normalisée de π pour implémenter cet algorithme.
Cet algorithme laisse la loi cible π invariante par construction. En effet, son noyau de transition est donné

par:

PRWMHpθn´1, dθnq “rpθn´1, θnqQpθn´1; dθnq ` δθn´1pdθnq

ˆ

"

1 ´

ż

Θ
rpθn´1, θ

1

qQpθn´1; dθ1

q

*

où la fonction r est définie par Algorithme 1. Il est facile de démontrer que:

πpdθn´1qPRWMHpθn´1,dθnq “ πpdθnqPRWMHpθn, dθn´1q (1.11)

c’est à dire, PRWMH vérifie les ”detailed balance conditions”. En intégrant les deux côtés de Eq. (1.11) par
rapport à θn´1 nous donne la π-invariance de PRWMH et puisque la distribution intrumentale est continue
et positive sur Θ ˆ Θ, elle est aussi irréductible. Il s’ensuit que l’algorithme est aussi irréductible. Tierney
(1994) décrit les propriétés théoriques de cet algorithme.
Dans la section suivante nous discutons d’une autre façon de construire des chaı̂nes de Markov avec

les bonnes propriétés: l’échantillonneur de Gibbs.

1.2.2. L’échantillonneur de Gibbs

Si Θ Ď Rm est multidimensionnel et que nous connaissons les lois conditionnelles πpθi|θ´iq de la loi
cible π, où θi est la i-ème composante de θ et θ´i dénote toutes les composantes excepté la i-ème,
nous pouvons implémenter un échantillonneur de Gibbs, voir Algorithme 2. Cet algorithme est ap-
pelé l’échantillonneur de Gibbs par balayage systématique. La variante par balayage aléatoire con-
siste à sélectionner aléatoirement une des conditionnelles à échantillonner, ce qui rend l’algorithme
réversible. Les deux algorithmes laissent π invariante. Cependant, nous devons vérifier que l’algorithme
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Algorithm 2: Etape n de l’échantillonneur de Gibbs
Input: Etat actuel θn´1, densité cible π
Output: Etat suivant θn

1 Echantillonner θ1
n „ πpθ1|θ´1

n´1q

2 Echantillonner θ2
n „ πpθ2|θ1

n, θ
3
n´1, . . . , θ

m
n´1q

3 Echantillonner θ3
n „ πpθ3|θ1

n, θ
2
n, θ

4
n´1, . . . , θ

m
n´1q

...
4 Echantillonner θmn „ πpθm|θ´m

n q

est irréductible et apériodique. Si une distribution conditionnelle de π n’a pas de forme connue, nous
pouvons remplacer un échantillonnage direct par un algorithme de Métropolis-Hastings ciblant cette con-
ditionnelle pour un nombre fixé d’étapes. Cet algorithme est appelé ”Metropolis-within-Gibbs”. Puisque
l’algorithme de Métropolis-Hastings laisse invariante la bonne distribution, l’algorithme ”Metropolis-within-
Gibbs” laisse π invariante. Bien que l’échantillonneur de Gibbs ne requiert pas la calibrations de paramètres,
l’introduction d’un pas de Métropolis pour échantillonner une des lois conditionnelles introduit la nécessité
d’un calibrage de la loi instrumentale. En règle générale, calibrer un algorithme ”Metropolis-within-Gibbs”
est plus difficile que de calibrer un algorithme de Métropolis-Hastings: à chaque itération, les paramètres
de la loi conditionnelle cible changent. Cela signifie une calibration différente pour la loi instrumentale à
chaque itération, tandis que l’algorithme de Métropolis-Hastings ne requiert la calibration de la loi instru-
mentale qu’une fois pour toutes.
Au lieu d’échantillonner chaque loi conditionnelle univariée, nous pouvons partitionner les coordonnées

en sous-ensembles et échantillonner chacun des ces sous-ensembles conditionnellement aux autres.
Cet algorithme est similaire à l’Algorithm 2 excepté que les distributions conditionnelles sont maintenant
multivariées. Liu et al. (1995) a montré que sous certaines conditions, l’échantillonneur de Gibbs par
balayage systématique est géométriquement ergodique avec un taux de convergence:

ρ “ r :“ lim
nÑ8

||Fn||1{n ă 1

où F est l’opérateur ”forward” de la chaı̂ne définie en Eq. (1.8) et r est appelé le rayon spectral de
l’opérateur F . Sous certaines conditions, l’échantillonneur de Gibbs par balayage aléatoire est géométriquement
ergodique avec un taux:

ρ “ ||F || ă 1.

Ces deux derniers résultats ensembles avec Eq. (1.9) suggèrent que nous pourrions utiliser les auto-
corrélations ”lag-n” de l’échantillonneur de Gibbs avec balayage systématique et les autocorrelations ”lag-
1” de l’échantillonneur de Gibbs par balayage aléatoire pour estimer leur taux de convergence géométrique
respectifs. Le cas ou les coordonnées sont partitionnées en deux sous-ensembles θ “ pθ1, θ2q est bien
étudié et compris, voir Liu (1994) et Liu et al. (1994). Par simplicité, nous considérons le cas où Θ Ď R2.
Dans ce cas, les processus pθ1

nqně1 et pθ2
nqně1 sont des chaı̂nes de Markov réversibles. Il a été montré

qu’à stationnarité:
γ1 “ γπ (1.12)

où γ1 est définie en Eq. (2.10) et
γπ “ sup

f,g
Corrpfpθ1q, gpθ2qq

où le supremum est pris sur toutes les fonctions à valeurs réelles de variance finie et pθ1, θ2q est distribué
selon π. De plus, nous avons:

γπ1 “ γπ2 “ γ2
π (1.13)
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avec, pour i P t1, 2u:
γπi “ sup

f,g
Corrpfpθinq, gpθin`1qq

où le supremum est pris sur toutes les fonctions à valeurs réelles avec variance finie et où nous supposons
la stationnarité. Il s’ensuit que:

||F ||2 “ ||F1|| “ ||F2|| “ γ2
π

où γ est le coefficient de corrélation maximale définie en Eq. (1.10) et F , F1 et F2 sont les opérateurs
”forward” de chaı̂nes pθnqně1, pθ1

nqně1 et pθ2
nqně1 respectivement. Le résultat Eq. (1.12) énonce que la

corrélation maximale entre deux états successifs de l’échantillonneur de Gibbs est égal à la corrélation
maximale de deux composantes de la loi cibles π. Le résultat Eq. (1.13) implique que le coefficient de
corrélation maximale entre deux état successifs des sous chaı̂nes pθ1

nqně1 et pθ2
nqně1 dépend directe-

ment de la corrélation maximale entre les deux composantes de la loi cible. De plus, nous savons qu’à
stationnarité, l’autocorrélation ”lag-1” est donnée par:

γπ1 “ sup
h : Varphpθqqă8

"

1 ´
ErVarphpθ1q|θ2qs

Varrhpθ1qs

*

(1.14)

où le terme de droite est appelé fraction d’information manquante, voir Liu (1994).
De plus, Liu (1994) et Liu et al. (1994) ont démontré que les rayons spectraux des opérateurs ”forward”
des chaı̂nes pθ1

nqně1, pθ2
nqně1 et pθnqně1 sont tous égaux à γ2

π. Cela signifie que le taux de convergence
géométrique de l’échantillonneur de Gibbs et des sous chaı̂nes depend de la force des corrélations entre
ses deux composantes. De plus par Eq. (1.13), la force de ces corrélations se manifeste au travers des
variances conditionnelles: si θ1 et θ2 sont très corrélées, le support de de la distribution de θ1 sachant θ2

est petit comparé à la variance de la loi marginale a posteriori de θ1 et l’échantillonneur de Gibbs n’explore
pas efficacement le support de la loi jointe a posteriori. Cela se traduit par une fraction d’information
manquante proche de un et donc un taux de convergence géométrique proche de un.

1.2.3. Control variates

Nous pouvons réduire la variance des estimateurs de Monte-Carlo grâce à des variables de contrôle,
voir Robert and Casella (2004). Supposons que nous avons J P N fonctions hj telles que, quelque soit
j P t1, . . . , Ju:

Eπpθ|yqrhjpθqs “ 0

appelées variables de contrôle. Alors l’estimateur

p̂β :“ 1
N

N
ÿ

n“1
tfpθnq ` βthpθnqu (1.15)

est tel que
p̂β

p.s
ÝÝÝÝÑ
NÑ8

Erfpθq ` βthpθqs “ Erfpθqs.

où β P RJ et hpθq “ ph1pθq, . . . , hJpθqq P RJ . Nous devons choisir β et h tel que la variance de Eq. (1.15)
est réduite comparée la moyenne ergodique usuelle Eq. (1.6). Deux scenarii sont possibles.
Le premier où les points pθqně0 ont été échantillonnés de façon i.i.d comme dans le cas de la méthode

du rejet où de l’échantillonnage d’importance. Dans ce cas:

Varpp̂βq “
1
N

tVarpfpθqq ` βtVarphpθqqβ ` 2βtCovphpθq, fpθqqu (1.16)

12
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où Varphpθqq est la matrice J ˆ J de variance du vecteur hpθq et Covphpθq, fpθqq est le vecteur J ˆ 1 avec
Covphpθq, fpθqqi,1 “ Covphipθq, fpθqq. En différentiant par rapport à β pour trouver la valeur atteignant la
variance minimale, nous avons:

β‹ “ ´Varphpθqq´1Covphpθq, fpθqq.

Bien sûr, les deux quantités du terme de droite ne sont pas nécessairement connues et nous devons
estimer β‹ en utilisant l’échantillon pθqně0 comme fait dans Owen (2013):

β̂ “ ´Σ̂´1
h,hΣ̂h,f

où Σ̂h,h et Σ̂h,f sont des estimateurs de Varphpθqq et Covphpθq, fpθqq basés sur pθqně0, respectivement.
Notons que le nouvel estimateur:

p̂β̂ :“ 1
N

N
ÿ

n“1
tfpθnq ` β̂thpθnqu

est asymptotiquement sans biais, voir Owen (2013).
Dans le second scénario pθqně0 ont été échantillonnés avec des méthodes de Monte-Carlo par chaı̂nes

de Markov. Les points échantillonnés ne sont plus indépendants et la variance de l’estimateur Eq. (1.15)
n’est plus Eq. (1.16) mais plutôt de la forme Eq. (1.7). Nous voulons maintenant minimiser la variance
asymptotique Eq. (1.15):

σ2
f`βth “Varπpfpθnq ` βthpθnqq

` 2
8
ÿ

n“1
Covpfpθ0q ` βthpθ0q, fpθnq ` βthpθnqq

en tant que fonction de β. C’est en général difficile. Quand le kernel de transition associé à la chaı̂ne
de Markov est réversible par rapport à la loi cible, Dellaportas and Kontoyiannis (2011) proposent une
façon d’estimer le β‹ optimal. Une autre option est de simplement ignorer les corrélations entre les
points successifs et de retourner au premier scénario. Le β‹ ainsi estimé ne minimize plus la variance
asymptotique dans ce cas.
Plusieurs choix pour h ont été proposés dans la littérature. Quand les moyennes conditionnelles de la

loi cible sont connues, Dellaportas and Kontoyiannis (2011) proposent les variables de contrôle:

hipθq “ θi ´ Erθi|θ´is

où θi dénote la i-ème composante de θ, θ´i dénote toute les composantes de θ excepté la i-ème et
l’espérance est prise sous πpθi|θ´i, yq.
Quand la fonction de score:

sπpθq “ ∇θ log πpθ|yq

est disponible, les fonctions:
hpxq “ ∇θ ¨ ϕpθq ` ϕpθq ¨ sπpθq

sont des variables de contrôle, pour toute fonction ϕ telle que
¿

BΘ

ppθqϕpθq ¨ npθqSpdθq “ 0

où
ű

BΘ dénote l’intégrale sur le bord de Θ, et Spdθq est l’élément de surface en θ P BΘ et sous la condition
que la densité de probabilité πp.|yq P C1pΘ,Rq.
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Nous ne sommes pas obligés de nous restreindre à une familles finie de variables de contrôle th1pθq, . . . , hJpθqu.
Par exemple Oates et al. (2016) proposent de construire une approximation non paramétrique de f . Ils
divisent l’échantillon pθq0ďnďN en deux sous-ensembles disjoints D0 et D1 de taille m ` 1 et N ´ m ´ 1
respectivement, et utilisent D0 pour avoir une approximation non paramétrique de f :

sf,D0 :“ arg min
gPH`

#

1
m

m
ÿ

n“0
pfpθnq ´ gpθnqq2 ` λ||g||H`

+

où λ ą 0, H` est un espace de Hilbert de fonctions écrites comme la somme d’une fonction constante
plus une autre fonction vérifiant le ”Stein trick” et ||.||H`

est la norme sur H`. Si nous définissons:

µpsf,D0q :“ Eπp.|yqrsf,D0pθqs

sous certaines conditions, parmi lesquelles f P H`, la variance du nouvel estimateur:

µ̂pD0,D1; fq “
1

N ´m´ 1

N
ÿ

n“m`1
tfpθnq ´ sf,D0pθnqu ` µpsf,D0q

est OpN´7{6q, surperformant le OpN´1q de la traditionnelle moyenne ergodique des méthodes de MCMC.
Une méthode similaire est employée par Mira et al. (2013) pour construire des variables de ccontrôle

menant à un estimateur de variance nulle. Supposons que nous choisissons un opérateur Hermitien H
agissant sur les fonctions infiniment différentiables à support compact tel que:

H
?
π “ 0

et une fonction ψ à support compact et infiniment différentiable. Alors:

f̃pθq “ fpθq `
Hψ

a

πpθ|yq

est telle que:
Eπpθ|yqrf̃pθqs “ Eπpθ|yqrfpθqs.

Le meilleur choix possible du couple pH,ψq est tel que f̃ a une variance nulle, ce qui arrive lorsque:

Hψ “ ´
a

πpθ|yq
␣

fpθq ´ Eπpθ|yqrfpθqs
(

. (1.17)

Mira et al. (2013) proposent plusieurs choix de fonctions ψ qui vérifient Eq. (1.17). Malheureusement,
pour un H donné la fonction optimale ψ ne peut en général pas être obtenue explicitement. Nous pouvons
alors restreindre ψ à une famille de fonctions paramétrique et minimiser la variance de f̃ par rapport à ces
paramètres. Dans ce cas, la variance du nouvel estimateur n’est plus zéro et nous devons vérifier que le
nouvel estimateur est non biaisé, voir Mira et al. (2013) poour plus de détails.

1.3. Data Augmentation

Il arrive parfois que l’on puisse réécrire la vraisemblance Eq. (1.1) comme:

πpy|θq “

ż

X
ppy|x, θqppx|θqdx (1.18)

où ppx|θq est une densité sur l’espace mesuré pX ,BpX q, dxq où X Ď Rq avec q P Nzt0u. Cela revient
à introduire une nouvelle variable aléatoire X sur X avec distribution conditionnelle ppx|θqdx, appelée
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x yθ

Figure 1.1.: Graph orienté acyclique de Eq. (1.18)

yx

θ

x‹

Figure 1.2.: Graph orienté acyclique de la paramétrisation non centrée.

variable latente.
Au lieu de cibler la loi à posteriori Eq. (1.18), nous pouvons maintenant cibler la loi jointe a posteriori:

πpθ, x|yq “
ppy|x, θqppx|θqppθq

Zpyq
.

Il y a plusieurs raisons pour faire cela: la vraisemblance observée Eq. (1.1) peut être incalculable, X peut
avoir un intérêt scientifique ou les méthodes MCMC peuvent être plus efficaces en ciblant la loi jointe a
posteriori plutôt que la loi a posterior des paramètres. Cibler la loi jointe a posteriori est appelé ”Data
augmentation”, voir Liu et al. (1994). Dans la suite, nous supposerons que les données et les paramètres
sont indépendant sachant les variables latentes:

ppy|x, θq “ ppy|xq

et nous dessinons le Graph Orienté Acyclique (DAG) du modèle Fig. 1.1. Dans ce contexte, un DAG
est une représentation graphique d’un modèle hiérarchique: un noeud rond dénote une variable non
observée, un noeud carré dénote une variable observée et une flèche pleine représente une dépendance
stochastique entre deux variables. Notons qu’il ne peut pas y avoir de cycle dans un tel graph, voir
Whittaker (1990).
Lorsque nous pouvons échantillonner x sachant pθ, yq ainsi que θ sachant px, yq, nous pouvons implémenter

un échanillonneur de Gibbs bivarié. Comme discuté dans la section précédente, plus les corrélations
a posteriori entre les paramètres et les variables latentes sont grandes, plus le taux de convergence
géométrique de l’échantillonneur de Gibbs est élevé. Dans ce cas, il faut casser les corrélations a poste-
riori afin d’améliorer ce taux de convergence. Pour ce faire, nous pouvons reparamétrer le modèle: nous
trouvons une paire de variables aléatoires pX‹, θq avec une loi jointe a priori p0pX‹, θq et une fonction η
telle que:

x “ ηpx‹, θq.

voir Papaspiliopoulos et al. (2007) par exemple. Notons que η, pour θ fixé, ne doit pas nécessairement
être bijective. Nous pouvons alors cibler la loi jointe a posteriori πpθ, x‹|yq et si nous faisons un bon choix
de η, la corrélation a posteriori entre θ et X‹ devrait être inférieur à la corrélation a posteriori entre θ and
X. Une reparamétrisation généralement utile est donnée par la paramétrisation non-centrée, dépeinte
en Fig. 1.2. Dans cette paramétrisation, le paramètre et les variables latentes sont maintenant a priori
indépendants et les corrélations entre les deux ne viennent que des données.
Quand l’échantillonneur de Gibbs sur la paramétrisation centrée, appelé l’échantillonneur de Gibbs

centré, mélange bien, l’échantillonneur de Gibbs sur la paramétrisation non centrée, appelé échantillonneur
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de Gibbs non centré, mélange mal: quand les données sont très informatives sur les variables latentes,
elles peuvent casser les corrélations a priori entre θ et x et l’échantillonneur de Gibbs centré aura un
taux de convergence géométrique bas. Tandis que l’échantillonneur de Gibbs non centré mélangera mal
puisque θ et x˚ seront fortement corrélés a posteriori, car la vraisemblance est très contraignante.
L’opposé est généralement vrai: quand la distribution a priori corrèle θ et x plus fortement que la vraisem-

blance n’identifie x, l’échantillonneur de Gibbs sera inefficace à cause d’une fraction d’information man-
quante élevée Eq. (1.14). L’échantillonneur de Gibbs non centré mélangera mieux puisque nous cassons
les corrélations a priori entre θ et x‹.
Considérons par exemple le modèle hiérarchique linéaire:

X „ N pθ, σ2
xq

Y „ N pX,σ2
yq

(1.19)

où X, Y , θ sont des variables aléatoires à valeurs réelles σx, σy sont des réels strictement positifs.
Nous utilisons une loi a priori plate sur θ et nous nous intéressons à sa loi a posteriori sachant les
variables observées πpθ|yq. Il est facile de montrer que

ş

R πpθ|yqdθ ă 8. Supposons de plus que nous
utilisons une stratégie de data augmentation et que nous ciblons la loi jointe a posteriori πpθ, x|yq avec
un échantillonneur de Gibbs. Un calcul simple montre que la loi jointe a posteriori de pθ,Xq est une loi
Gaussienne avec matrice de précision:

Qc “

¨

˚

˚

˝

1
σ2
x

´
1
σ2
x

´
1
σ2
x

1
σ2
x

`
1
σ2
y

˛

‹

‹

‚

ce qui donne la matrice de covariance:

Σc “

¨

˚

˝

σ2
x ` σ2

y σ2
y

σ2
y σ2

y

˛

‹

‚

.

Par Section 1.2.2 nous savons que le taux de convergence de cet échantillonneur de Gibbs est donné
par la corrélation maximale a posteriori entre les variables X et θ. De plus, puisqu’elles sont jointement
Gaussiennes, cette corrélations maximale et atteinte par les fonctions linéaires de X et θ et parce que les
fonctions linéaires n’affectent pas les corrélation entre variables Gaussiennes, le taux de convergence de
l’échantillonneur de Gibbs est donné par:

ρc “
σ2
y

σ2
y ` σ2

x

.

Nous savons que ce taux de converge est élevé quand la loi a priori est beaucoup plus informative que la
vraisemblance (c’est à dire quand la variance a priori σ2

x est plus faible que σ2
y). L’opposé est vrai: le taux

de convergence est bas lorsque la vraisemblance est beaucoup plus informative que la loi a priori. Nous
pouvons aussi réécrire: Eq. (1.19) dans une paramétrisation non centrée:

X‹ „ N p0, σ2
xq

Y „ N pθ `X‹, σ2
yq.
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Les variables θ et X sont maintenant a priori indépendantes et toutes les corrélations a posteriori viennent
de la vraisemblance. En suivant le même calcul que pour la paramétrisation centrée, nous obtenons le
taux de convergence pour l’échantillonneur de Gibbs bivarié avec la paramétrisation non centrée:

ρnc “
σ2
x

σ2
y ` σ2

x

“ 1 ´ ρc.

Il est clair que la paramétrisation non centrée a le comportement opposé à la paramétrisation centrée:
lorsque la vraisemblance est très informative comparée à la loi a priori, l’échantillonneur de Gibbs mélange
très mal. Au contraire, lorsque la loi a priori est plus informative que la vraisemblance, l’échantillonneur
de Gibbs mélange bien.
Une façon de bénéficier des propriétés de l’échantillonneur de Gibbs centré et non centré est d’utiliser

l’algorithme d’entrelacement: nous échantillonnons d’abord θ et x avec l’échantillonneur de Gibbs centré,
nous utilisons ensuite une transformation η pour changer de paramétrisation afin d’obtenir pθ, x‹q et fi-
nalement nous échantillonnons θ sachant x‹ comme dans l’échantillonneur de Gibbs non centré, voir Yu
and Meng (2011). Ce faisant, nous avons ”le meilleur des deux mondes”.

Algorithm 3: Etape n de l’algorithme d’entrelacement
Input: Etat actuel θn´1, densité cible π
Output: Prochain état θn

1 Simuler xn „ πpx|θn´1, yq

2 Simuler θn´0.5 „ πpθ|xn, yq

3 Calculer x‹
n “ η´1pxn, θn´0.5, yq

4 Simuler θn „ πpθ|x‹
n, yq
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Introduction

This section introduces the concepts needed to understand the rest of this thesis. We first discuss
Bayesian statistics and Markov chain Monte-Carlo (MCMC) methods. Then, we explain the basics of
Cosmic Microwave Background (CMB) data analysis and the use of MCMC methods in that context. Fi-
nally, we summarize the contributions of the two papers in the last two sections.

2.1. Bayesian statistics

The purpose of Bayesian inference is to extract knowledge about the world from experiments, see Robert
(2007) for an in-depth review. Each experiment can be mathematically described as a tuple pY,BpYq, tPθ, θ P

Θuq where Y is the observational space and BpYq is the Borel sigma-algebra of Y. The set Θ is called
the parameter space and tPθ, θ P Θu is a family of probability measures on pY,BpYqq. In the rest of this
manuscript we will only consider Y “ Rd with d P N‹, Θ Ď Rm and assume that Pθ is dominated by the
Lebesgue measure dy for any θ P Θ.
Bayesian inference quantifies the uncertainty on the parameter θ by updating the prior belief of the

experimenter thanks to the data. If we regard θ as a random variable on pΘ,BpΘq, dθq, the experimenter
can formalize its prior belief about the parameter, before any observation, through the prior measure
p0pθqdθ, where p0pθq is the density of θ with respect to dθ. Assuming we observe y a realization of the
random variable Y P Y, we can define the likelihood function:

p : Θ ˆ Y Ñ r0,`8q (2.1)
pθ, yq ÞÑ ppy|θq

The data y can constrain the prior uncertainty through the likelihood function. We can describe the a
posteriori uncertainty about the parameter through the posterior distribution:

πpθ|yq “
ppy|θqp0pθq

Zpyq
(2.2)

where
Zpyq “

ż

Θ
ppy|θqp0pθqdθ (2.3)

is called the evidence or marginal likelihood. Note that since p0 is a probability density function, we
necessarily have Zpyq ă 8. It is possible to choose p0 such that:

ż

Θ
p0pθqdθ “ 8.

In this case, it is necessary to check that Zpyq ă 8 so that Eq. (2.3) is well defined.
In practice, we are interested in the moments of the posterior distribution:

Erhpθq|ys “

ż

Θ
hpθqπpθ|yqdθ (2.4)
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where h : Θ Ñ R for example, and in estimating the marginal likelihood Eq. (2.3). We may also want a
point estimate of our parameter and take the Maximum A Posteriori (MAP) estimator:

θMAP P arg max
θ

πpθ|yq.

Obviously, our ability to do Bayesian inference relies on our ability to compute expectations like Eq. (2.4).
This is difficult in general and oftentimes the posterior distribution Eq. (2.2) is not even tractable. In this
case we have two options: characterizing the posterior distribution through sampling or approximating the
posterior distribution through a tractable family of distributions. In the next section we focus on the former
option. The interested reader can read Martin J Wainwright (2008) for an introduction to the latter.

2.2. Markov chain Monte-Carlo methods

Since πpθ|yq is a density over Θ, in this section we drop the dependence on y for the sake of brevity. So
we consider a density πpθq instead of πpθ|yq.
The Markov chain Monte-Carlo (MCMC) methods aim at computing expectations over the state space

Θ:
Eπrhpθqs “

ż

Θ
hpθqπpθqdθ (2.5)

where π is a density over Θ and, for example, h : Θ Ñ R. To do so, MCMC methods produce dependent
samples from π and estimate Eq. (2.5) with the empirical mean of the sample. More precisely, MCMC
methods build a Markov chain pθqně1 such that:

1
N

N
ÿ

n“0
hpθnq

a.s
ÝÝÝÝÑ
NÑ8

Eπrhpθqs. (2.6)

If the transition kernel P of the Markov chain leaves π invariant:
ż

Θ
πpθqP pθ,dθ1

qdθ “ πpθ
1

qdθ1

and the chain is irreducible and aperiodic, then we know that for π ´ a.e every θ0 P Θ:

||Pnpθ0,dθq ´ πpθqdθ||TV ÝÝÝÑ
nÑ8

0

where ||.||TV is the total variation norm, see e.g Roberts and Rosenthal (2004). This means that for π´a.e
every starting points, the chain converges to its invariant distribution. Under the stronger assumption that
the chain is Harris recurrent, this result holds for every θ0 P Θ, see e.g Roberts and Rosenthal (2004). On
top of that result, we can also characterize the speed of convergence to the stationary distribution: if the
chain possesses a small set and satisfies the drift condition on this set, it is geometrically ergodic, that is:

||Pnpθ0, dθq ´ πpθqdθ||TV ď Mpθ0qρn

for some ρ P r0, 1r and Mpθ0q ă 8 for π ´ a.e every θ0 P Θ. In the case M does not depend on θ0, the
chain is said to be uniformly ergodic. Finally, we have a Central Limit Theorem (CLT):

1
?
N

N
ÿ

n“0
thpXnq ´ Eπrhpθqsu

L
ÝÝÝÝÑ
NÑ8

N p0, σ2
hq

for π ´ a.e every θ0 P Θ, where

σ2
h “ Varπphq ` 2

8
ÿ

n“1
Covphpθ0q, hpθnqq (2.7)
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under the assumption that the chain is uniformly ergodic and that Eπrhpθqs ă 8, see Meyn and Tweedie
(2014). In the case the chain is only geometrically ergodic, the CLT still holds if Eπrhpθqs ă 8 and the
chain is reversible, that is:

πpdθ0qP pθ0, dθ1q “ πpdθ1qP pθ1,dθ0q

for any θ0, θ1 P Θ. Finally, if

L2
0pπq “ thpθq : Eπrhpθqs “ 0; Varπrhpθqs ă 8u

is the Hilbert space of all zero-mean scalar functions with finite variance and inner product ă hpθq, tpθq ą“

Eπrhpθqtpθqs such that ||hpθq||L2
0pπq “ă hpθq, hpθq ą, we can define the forward operator associated to the

chain as:
Fnhpxq “ Erhpθnq|θ0 “ xs “

ż

Θ
hpθqPnpx,dθq (2.8)

for any n P N‹. Liu et al. (1995) have shown that at stationarity, that is when we assume that θ0 „ π and
that θn|θ0 „ Pnpθ0,dθq, we have:

||Fn|| “ γn (2.9)

where ||.|| is the operator norm defined as:

||F || “ sup
tPL2

0pπq

||Ft||L2
0pπq

||t||L2
0pπq

and
γn :“ sup

f,g
Corrpfpθ0q, gpθnqq (2.10)

is the maximal correlation coefficient between θ0 and θn, with the supremum being taken over all scalar
functions with finite variance. We see that the operator norms of the powers of F , all inferior or equal to
1, are directly bounding the lag-n autocorrelations of the chain. Finally, Liu et al. (1995) have shown that
if the chain is reversible, F is self-adjoint, and in that case:

||F ||n “ γn.

In the next two subsections we give two examples of Markov chain Monte Carlo algorithms with the
properties we just described: the Metropolis-Hastings algorithm and the Gibbs sampler algorithm.

2.2.1. Metropolis-Hastings algorithm

A popular way to construct a Markov chain as described in the previous section is the Metropolis-Hastings
algorithm described by Hastings (1970): at each step n P N, a new state θ

1

is proposed according to a
proposal distribution Qpθn´1,dθq. We accept the new state, that is θn “ θ

1

, with a probability that depends
on the ratio of the density evaluated in the proposed move on the density of the previous state θn´1.
Depending on the choice of Q, the algorithm has different properties. Practitioners usually choose
Qpθn´1, dθq

L
“ N pθn´1, τΣq, where τ P R` is the scale parameter and τΣ is the covariance matrix of

the proposal distribution, both user-chosen. We must choose Σ so that the covariance of the target distri-
bution roughly matches the covariance of the proposal. This will help proposing moves along the principal
direction of the target distribution. The parameter τ is chosen so that the algorithm has the desired accep-
tance rate. This algorithm is called the Random-Walk Metropolis-Hastings algorithm, see Tierney (1994):
at each time step we perturb the current state θn with Gaussian noise and get a proposed state θn`1. If
the proposed state is in a region of higher density than the previous state, we always accept the move.
Otherwise, we accept it with a probability proportional to the ratio of the densities evaluated in the old and
proposed state, see Algorithm 4. Obviously, we need to be able to evaluate at least the unnormalized
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Algorithm 4: Step n of RWMH algorithm
Input: Current state θn´1, target density π
Output: Next state θn

1 Sample θ
1

„ N pθn´1, τΣq

2 Compute rpθn´1, θ
1

q “ min
#

πpθ
1

q

πpθn´1q
, 1
+

3 Sample u „ Ur0, 1s

4 if u ă rpθn´1, θ
1

q then
5 set θn Ð θ

1

6 else
7 set θn Ð θn´1

version of π to implement a Metropolis-Hastings algorithm.
This algorithm leaves the target π invariant by construction. Indeed, its Markov transition kernel is given

by:

PRWMHpθn´1, dθnq “rpθn´1, θnqQpθn´1; dθnq ` δθn´1pdθnq

ˆ

"

1 ´

ż

Θ
rpθn´1, θ

1

qQpθn´1; dθ1

q

*

where the function r is defined in Algorithm 4. It is then straightforward to show that:

πpdθn´1qPRWMHpθn´1,dθnq “ πpdθnqPRWMHpθn, dθn´1q (2.11)

that is, PRWMH verifies the detailed balance condition. Integrating both sides of Eq. (2.11) with respect to
θn´1 gives the π-invariance of PRWMH and since the proposal distribution is continuous and positive on
Θ ˆ Θ, it is also irreducible. It follows that the algorithm is also aperiodic. Tierney (1994) describes the
theoretical properties of this algorithm.
In the next subsection we discuss another popular way of building a Markov chain with the desired

properties: the Gibbs sampler algorithm.

2.2.2. The Gibbs sampler algorithm

If Θ Ď Rm is multidimensional and we know the conditionals πpθi|θ´iq of the target π, where θi denotes the
i-th components of θ and θ´i denotes all the components excepted the i-th one, we can implement a Gibbs
sampler, see Algorithm 5. This algorithm is called the systematic scan Gibbs sampler. The random scan

Algorithm 5: Step n of the Gibbs sampler
Input: Current state θn´1, target density π
Output: Next state θn

1 Sample θ1
n „ πpθ1|θ´1

n´1q

2 Sample θ2
n „ πpθ2|θ1

n, θ
3
n´1, . . . , θ

m
n´1q

3 Sample θ3
n „ πpθ3|θ1

n, θ
2
n, θ

4
n´1, . . . , θ

m
n´1q

...
4 Sample θmn „ πpθm|θ´m

n q

variant consists in drawing randomly the conditional to sample from, making the algorithm reversible. Both
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algorithms leave π invariant. However, we must check that the algorithm is irreducible and aperiodic. If a
conditional distribution of π has no known form, we can replace a direct sampling by a Metropolis-Hastings
algorithm targeting this conditional for any predetermined number of steps, implementing a Metropolis-
within-Gibbs algorithm. Since the Metropolis-Hastings algorithm leaves the right conditional invariant, the
Metropolis-within-Gibbs algorithm still leaves π invariant. However, while the Gibbs sampler is tuning-free,
introducing a Metropolis-Hastings step to sample from one of the conditional distribution introduces the
need of tuning its proposal distribution. In general, the tuning of a Metropolis-within-Gibbs algorithm is
more difficult than the tuning of a Metropolis-Hastings aglorithm: at each iteration, the parameters of the
conditional distribution targeted by the Metropolis step changes. This means that a different tuning of the
proposal distribution is required at each iteration, while the Metropolis-Hastings algorithm requires tuning
the proposal distribution once and for all.
Instead of sampling from each univariate conditional, we can partition the coordinates into subsets and

sample in turn each subset given the others. This algorithm is similar as Algorithm 5 except that the
conditional distributions are now multivariate. Liu et al. (1995) have shown that under mild conditions, the
systematic scan Gibbs sampler is geometrically ergodic with rate:

ρ “ r :“ lim
nÑ8

||Fn||1{n ă 1

where F is the forward operator of the chain defined in Eq. (2.8) and r is called the spectral radius of the
operator F . Under mild conditions, the random scan Gibbs sampler is geometrically ergodic with rate:

ρ “ ||F || ă 1.

These two previous results together with Eq. (2.9) suggest that we could use the lag-n autocorrelations
of the systematic scan Gibbs sampler and the lag-1 autocorrelation of the random scan Gibbs sampler to
estimate their respective geometric rate of convergence.
The case where the coordinates are partitioned into two subsets θ “ pθ1, θ2q is well studied and under-

stood, see Liu (1994) and Liu et al. (1994). For simplicity, we will consider the case where Θ Ď R2.
In this case the processes pθ1

nqně1 and pθ2
nqně1 are reversible Markov chains. It has been shown that at

stationarity:
γ1 “ γπ (2.12)

where γ1 is defined in Eq. (2.10) and

γπ “ sup
f,g

Corrpfpθ1q, gpθ2qq

where the supremum is taken over all scalar functions of finite variance and pθ1, θ2q is distributed according
to π. In addition, we have:

γπ1 “ γπ2 “ γ2
π (2.13)

with, for i P t1, 2u:
γπi “ sup

f,g
Corrpfpθinq, gpθin`1qq

where the supremum is taken over all scalar function with finite variance and stationarity is assumed. It
follows that:

||F ||2 “ ||F1|| “ ||F2|| “ γ2
π

where γ is the coefficient of maximal correlation defined in Eq. (2.10) and F , F1 and F2 are the forward
operators of the chains pθnqně1, pθ1

nqně1 and pθ2
nqně1 respectively. The result Eq. (2.12) states that the

maximal correlation between two successive Gibbs samples is equal to the maximal correlation of the two
components of the target density π. The result Eq. (2.13) implies that the maximal correlation coefficient
between successive samples from the subchains pθ1

nqně1 and pθ2
nqně1 directly depend on the maximal
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correlation between the two components of the target distribution. In addition, we know that at stationarity,
the lag-1 autocorrelation is given by:

γπ1 “ sup
h : Varphpθqqă8

"

1 ´
ErVarphpθ1q|θ2qs

Varrhpθ1qs

*

(2.14)

where the right hand term is called the fraction of missing information, see Liu (1994).
In addition, it has been shown by Liu (1994) and Liu et al. (1994) that the spectral radii of the forward
operators of the chains pθ1

nqně1, pθ2
nqně1 and pθnqně1 are all equal to γ2

π. This means that the geometric
rate of convergence of the Gibbs sampler and its subchains will depend on the strength of the correlations
between its two components. In addition, by Eq. (2.13), the strength of these correlations appear through
the conditional variance: if θ1 and θ2 are highly correlated, the support of the distribution of θ1 given θ2 is
small compared to the marginal posterior variance of θ1 and the Gibbs sampler does not explore efficiently
the entire support of the joint distribution. This translates into a fraction of missing information close to
one and hence a geometric convergence rate close to one.

2.2.3. Control variates

We can reduce the variance of Monte Carlo estimates using control variates, see Robert and Casella
(2004). Suppose we have J P N functions hj such that, for any j P t1, . . . , Ju:

Eπpθ|yqrhjpθqs “ 0

called control variates. Then the estimator

p̂β :“ 1
N

N
ÿ

n“1
tfpθnq ` βthpθnqu (2.15)

is such that
p̂β

a.s
ÝÝÝÝÑ
NÑ8

Erfpθq ` βthpθqs “ Erfpθqs.

where β P RJ and hpθq “ ph1pθq, . . . , hJpθqq P RJ .We must choose β and h so that the variance of
Eq. (2.15) is reduced compared to the usual ergodic average in Eq. (2.6). Two scenarii are possible.
The first one arises when the sampled points pθqně0 have been sampled i.i.d like in rejection sampling or

importance sampling. In this case:

Varpp̂βq “
1
N

tVarpfpθqq ` βtVarphpθqqβ ` 2βtCovphpθq, fpθqqu (2.16)

where Varphpθqq is the J ˆJ variance matrix of the vector hpθq and Covphpθq, fpθqq is the J ˆ 1 vector with
Covphpθq, fpθqqi,1 “ Covphipθq, fpθqq. Differentiating against β to find the value leading to the minimum
variance we get:

β‹ “ ´Varphpθqq´1Covphpθq, fpθqq.

Of course, the two quantities in the right hand term are not necessarily known and we may need to
estimate β‹ using the sample pθqně0 as done by Owen (2013):

β̂ “ ´Σ̂´1
h,hΣ̂h,f

where Σ̂h,h and Σ̂h,f are estimates of Varphpθqq and Covphpθq, fpθqq based on pθqně0, respectively. One
should note that the new estimator:

p̂β̂ :“ 1
N

N
ÿ

n“1
tfpθnq ` β̂thpθnqu
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is only asymptotically unbiased, see Owen (2013).
The second scenario happens when pθqně0 have been sampled with MCMC methods. The sampled

points are no longer independent and the variance of the estimator Eq. (2.15) is no longer Eq. (2.16) but
rather of the form Eq. (2.7). We now want to minimize the asymptotic variance of Eq. (2.15):

σ2
f`βth “Varπpfpθnq ` βthpθnqq

` 2
8
ÿ

n“1
Covpfpθ0q ` βthpθ0q, fpθnq ` βthpθnqq

as a function of β. This is not easy in general. When the transition kernel associated to the Markov chain
is reversible with respect to the target, Dellaportas and Kontoyiannis (2011) propose a way to estimate the
optimal β‹. Another option is to simply ignore the correlations between the successive samples and fall
back on the first scenario. However, the estimated β‹ does not minimize the asymptotic variance in this
case.
Several choices for h have been proposed in the literature. When the conditional means of the target

densities are known, Dellaportas and Kontoyiannis (2011) propose to take:

hipθq “ θi ´ Erθi|θ´is

where θi denotes the i-th component of θ, θ´i denotes all components of θ except the i-th one and the
expectation is taken under πpθi|θ´i, yq.
When the score function:

sπpθq “ ∇θ log πpθ|yq

is available, the functions:
hpxq “ ∇θ ¨ ϕpθq ` ϕpθq ¨ sπpθq

are control variates, for any function ϕ such that
¿

BΘ

ppθqϕpθq ¨ npθqSpdθq “ 0

where
ű

BΘ denotes the integral over the boundary of Θ, and Spdθq is the surface element at θ P BΘ and
under the condition that the probability density πp.|yq P C1pΘ,Rq.
We do not have to restrict ourselves to a finite basis of control variates functions th1pθq, . . . , hJpθqu. For

example Oates et al. (2016) propose to build a non-parametric approximation of f . They split the sample
pθq0ďnďN in two disjoint subsets D0 and D1 of size m` 1 and N ´m´ 1 respectively, and use D0 to get a
non parametric approximation of f :

sf,D0 :“ arg min
gPH`

#

1
m

m
ÿ

n“0
pfpθnq ´ gpθnqq2 ` λ||g||H`

+

where λ ą 0, H` is a Hilbert space of functions written as the sum of a constant function plus another
function verifying the Stein trick and ||.||H`

is the norm on H`. If we denote:

µpsf,D0q :“ Eπp.|yqrsf,D0pθqs

under some conditions, among which that f P H`, the variance of the new estimator:

µ̂pD0,D1; fq “
1

N ´m´ 1

N
ÿ

n“m`1
tfpθnq ´ sf,D0pθnqu ` µpsf,D0q

24



Chapter 2. Introduction

is OpN´7{6q, outperforming the OpN´1q of the traditional MCMC ergodic average.
A similar method is employed by Mira et al. (2013) for building zero-variance control variates. Suppose

we choose a Hermitian operator H acting on the infinitely differentiable functions with compact support
such that:

H
?
π “ 0

and a function ψ compactly supported and infinitely differentiable. Then:

f̃pθq “ fpθq `
Hψ

a

πpθ|yq

is such that:
Eπpθ|yqrf̃pθqs “ Eπpθ|yqrfpθqs.

The best possible choice of a couple pH,ψq is such that f̃ has zero variance, which happens when:

Hψ “ ´
a

πpθ|yq
␣

fpθq ´ Eπpθ|yqrfpθqs
(

. (2.17)

Mira et al. (2013) propose several choices of H and then to find the function ψ that verifies Eq. (2.17).
Unfortunately, for a given H the optimal function ψ cannot be obtained explicitly in general. We can
then restrict ψ to a parametric family of functions and minimize the variance of f̃ with respect to these
parameters. In this case, the variance of the new estimator is not zero anymore and we must verify that
the new estimator is unbiased, see Mira et al. (2013) for more details.

2.3. Data Augmentation

It happens sometimes that we can rewrite the likelihood Eq. (2.1) as:

πpy|θq “

ż

X
ppy|x, θqppx|θqdx (2.18)

where ppx|θq is a density on the measure space pX ,BpX q, dxq where X Ď Rq for q P Nzt0u. This amounts
to introducing a new random variable X on X with conditional distribution ppx|θqdx, called the latent
variable.
Instead of targeting the posterior distribution Eq. (3.3), we may now target the joint posterior distribution:

πpθ, x|yq “
ppy|x, θqppx|θqppθq

Zpyq
.

We have several reasons to do that: the observed likelihood Eq. (2.1) may be intractable, we may have a
scientific interest in doing inference on X or the MCMC methods would be more efficient targeting the joint
posterior distribution rather than the posterior on the parameter. Targeting the joint posterior distribution
is called a Data Augmentation scheme, see Liu et al. (1994). In the following we will assume that the data
and the parameters are independent given the latent variable:

ppy|x, θq “ ppy|xq

and we draw the Directed Acyclic Graph (DAG) of the model Fig. 2.1. In this context, a DAG is a graphical
representation of a hierarchical model: a round node depicts an unobserved variable, a square node
depicts an observed variable, plain arrows represent stochastic dependence relationships between two
variables and dashed arrows represent deterministic relationships. Note that there cannot be directed
cycles in such a graph, see Whittaker (1990).
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x yθ

Figure 2.1.: Directed acyclic graph of the Eq. (2.18)

yx

θ

x‹

Figure 2.2.: Directed acyclic graph of the non centered parametrization.

When we can sample x given pθ, yq as well as θ given px, yq, we can implement a two-steps Gibbs
sampler. As discussed in the previous section, the higher the posterior correlations between the latent
variable and the parameter, the poorer the geometrical convergence rate of the Gibbs sampler. When
this happens, we need to break the posterior correlations to improve the rate of convergence of the Gibbs
sampler. To do this, we can reparametrize the model: we find a random pair pX‹, θq with joint prior density
p0pX‹, θq and a function η such that:

x “ ηpx‹, θq.

see Papaspiliopoulos et al. (2007) for example. Note that η, for a fixed θ, need not to be one-to-one.
We can then target the posterior distribution πpθ, x‹|yq and if we made a good choice of η, the posterior
correlations between θ and X‹ should be lower than the posterior correlations between θ and X. A usually
useful parametrization is the non-centered parametrization, depicted in Fig. 2.2. In this parametrization,
the parameter and the latent variable are now a priori independent and the correlations between the two
are only coming from the data.
When the Gibbs sampler on centered parametrization, called the centered Gibbs, mixes well, the Gibbs

sampler on the non centered parametrization, called the non-centered Gibbs, usually mixes badly: when
the data is very informative about the latent variable, it may be sufficient to break the prior correlations
between θ and x and the centered Gibbs sampler will have a low geometrical rate of convergence. While
the non-centered Gibbs will mix poorly because θ and x˚ will be strongly correlated a posteriori, since the
likelihood is very constraining.
The opposite is usually true: when the prior distribution shows stronger correlations between θ and x

than the likelihood identifies x, the centered Gibbs sampler will be inefficient because of a high fraction of
missing information Eq. (2.14). The non-centered Gibbs will mix better since we broke the prior correla-
tions between θ and x‹.
Consider for example the simple linear hierarchical model:

X „ N pθ, σ2
xq

Y „ N pX,σ2
yq

(2.19)

where X, Y , θ are real-valued random variables and σx, σy are strictly positive real numbers. We set a
flat a prior on θ and we are interested in its posterior distribution given the observed variable πpθ|yq. It
is straightforward to show that

ş

R πpθ|yqdθ ă 8. Suppose in addition that we use a data augmentation
scheme and target the joint posterior distribution πpθ, x|yq with a Gibbs sampler. A simple calculation
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shows that this joint posterior distribution of pθ,Xq is a Gaussian distribution with precision matrix:

Qc “

¨

˚

˚

˝

1
σ2
x

´
1
σ2
x

´
1
σ2
x

1
σ2
x

`
1
σ2
y

˛

‹

‹

‚

which yields the covariance matrix:

Σc “

¨

˚

˝

σ2
x ` σ2

y σ2
y

σ2
y σ2

y

˛

‹

‚

.

We know from Section 2.2.2 that this Gibbs sampler is reversible and that its rate of convergence is given
by the maximal posterior correlation between X and θ. In addition, since they are jointly Gaussian, this
maximal correlation is attained by linear functions of X and θ and because linear functions do not affect
the correlations between two jointly Gaussian distributed variables, the rate of convergence of the Gibbs
sampler is given by:

ρc “
σ2
y

σ2
y ` σ2

x

.

We see that this rate of convergence is high when prior is much more informative than the likelihood (that
is when the prior variance σ2

x is much lower than σ2
y). The converse is true: the rate of convergence is

low when the likelihood is much more informative than the prior. We can also rewrite Eq. (2.19) in a non
centered parametrization:

X‹ „ N p0, σ2
xq

Y „ N pθ `X‹, σ2
yq.

The variables θ and X are now a priori independent and all the posterior correlations come from the
likelihood. Following the same calculation as for the centered parametrization, we get the following con-
vergence rate for the two step Gibbs sampler under the non centered parametrization:

ρnc “
σ2
x

σ2
y ` σ2

x

“ 1 ´ ρc.

It is obvious that the non centered parametrization has the opposite behavior as the centered one: when
the likelihood is very informative compared to the prior term, the Gibbs sampler mixes very badly. On the
contrary, when the prior term is more informative than the likelihood, the Gibbs sampler mixes well.
A way to enjoy the properties of the centered and the non-centered Gibbs samplers is to use the inter-

weaving algorithm: we first sample θ and x with the centered Gibbs sampler, then use our transformation
η to change parametrization and get pθ, x‹q and finally sample θ given x‹ as in the non-centered Gibbs
sampler, see Yu and Meng (2011). Doing so, we have the best of both worlds.

Algorithm 6: Step n of the interweaving algorithm
Input: Current state θn´1, target density π
Output: Next state θn

1 Sample xn „ πpx|θn´1, yq

2 Sample θn´0.5 „ πpθ|xn, yq

3 Compute x‹
n “ η´1pxn, θn´0.5, yq

4 Sample θn „ πpθ|x‹
n, yq
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2.4. Cosmology

We now introduce the basics of Cosmic Microwave Background (CMB) analysis. First, we introduce the
general context of the problem. Second, we give the technical details of the CMB experiments. Finally,
we discuss the statistical model and approaches that have been used so far to make inference about the
CMB.

2.4.1. Generalities

Today’s cosmologists estimate the age of the universe to be 13 billions years, the birth of which is called
the Big Bang. Some 380,000 years after that Big Bang, the universe cooled down, allowing the electrons to
bond with protons to form hydrogen, making the universe transparent, and allowing light to travel through
the universe. Looking far away in our universe today, we can still observe this light and this signal is called
the Cosmic Microwave Background (CMB).
Arno Penzias and Robert W. Wilson accidentally discovered this phenomenon in 1964 while testing a

radio equipment for Bell Labs, see Penzias and Wilson (1965). Since this moment, several space missions
have been launched to detect the CMB. The first one, called Cosmic Background Explorer (COBE), was
a NASA-funded satellite launched in 1989. Other missions were launched afterwards, like the Wilkinson
Microwave Anisotropy Probe space observatory (WMAP) in 2001 and the Planck telescope mission in
2009. The next mission consists in a satellite called LiteBird which should be launched in 2027.
In theory, the CMB signal should have faint fluctuations, called anisotropies. In practice, we observe that

while the main background is at 2.73K where K denotes the Kelvin unit, the anistropies on top are as
small as 100µK. The successive missions needed highly sensitive instruments and each mission pushed
the sensitivities and resolutions of its instrument to a new level, see Fig. 2.3. In addition, since we are
observing light, not only can we record its intensity, but also its polarization.
The intensity and polarization of this light tell us about the early universe. From the map of CMB fluc-

tuations, we can deduce its power spectrum, that is, the intensity of the different wavelengths composing
this signal. Once this power spectrum is obtained, we use it to discriminate between cosmological models
and cosmological parameters: different models and different parameters predict different power spectra,
which we can test against the observed power spectrum. Among the cosmological parameters of interest
are the quantity of dark matter, the quantity of dark energy, the age of the universe etc... In the rest of this
thesis we will focus on the power spectrum and leave the cosmological parameters aside.

2.4.2. The Cosmic Microwave Background signal

The signal is collected by an instrument spinning around an axis and pointing in different directions across
time, covering its observation area (the entire sky for some missions or part of it for others) in a given
period of time. This produces the time-ordered data (TOD): the value provided by the detector as a function
of time, see Fig. 2.4. The detectors are not perfect though, and they provide a noisy measurement, where
the noise also depends on the time and is time-correlated. At this stage, we do not have a map of the
sky yet, but only a noisy time-series. Once we have this, we can project it into a noisy spherical map of
the sky. For simplicity, it is often assumed that the noise is Gaussian for each pixel with a known standard
deviation, mean zero and that the correlations between pixels are negligible. We make this assumption in
the rest of the present thesis.
On top of the noisy measurements, a detector does not observe an infinitely precise point in a given

direction. Instead it gets information from a small area around that direction. This is what is called the
beam. In practice it takes the form of a convolution of the CMB sky map with a a beam function B,
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Figure 2.3.: Evolution of the resolution through the missions. The missions are in chronological order
from left to right. We can notice the increasing resolution. This is a NASA/JPL-Caltech/ESA
illustration. Link: https://photojournal.jpl.nasa.gov/catalog/PIA16874

expressed in spherical coordinates:

ssmoothedpθ, ϕq “

ż

r0,2πr

ż

r0,πs

Bpθ ´ θ
1

, ϕ´ ϕ
1

qspθ, ϕqdθ
1

dϕ
1

(2.20)

where θ P r0, πs is the azimuthal angle (longitude), ϕ P r0, 2πr is the polar angle (colatitude), s is the
noise-free skymap, ssmoothed is the convoluted skymap, and

B : r0, πs ˆ r0, 2πs Ñ R

is expressed in spherical coordinates and is assumed to be independent on the direction the detector is
pointing at. Different detectors may have different beam functions.
Another reason why we do not observe exactly the CMB signal is the presence of foreground compo-

nents. Other sources emit radiation and this pollutes our signal. Examples of such pollution are syn-
chrotron, free-free and thermal dust emissions. In the rest of this thesis we consider that the foregrounds
components have been removed, thanks to component separation techniques, see Ade et al. (2014b) for
example.

2.4.3. Spherical harmonics

To characterize the strength of the CMB fluctuations on the sphere, it is natural to decompose it in the
spherical harmonic basis as described by Müller (1966), the equivalent of the Fourier transform but on the
sphere. More precisely, any signal spθ, ϕq on the sphere can be written as:

spθ, ϕq “

8
ÿ

ℓ“0

ℓ
ÿ

m“´ℓ

aℓmYℓmpθ, ϕq (2.21)

where aℓm P C and the spherical harmonic function:

Yℓm : r0, πs ˆ r0, 2πs Ñ C
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Figure 2.4.: Example of time-ordered data of a detector, that is, the value of the detector against time.
Every time a particle hits the detector, its temperature increases and it takes some time to
cool down. We fit a template to these spikes and remove then. The remaining fluctuations
are the CMB signal and the noise. This figure comes from Ade et al. (2014a).

from an orthonormal basis on the sphere, with:

Yℓmpθ, ϕq “

d

2ℓ` 1
4π

pℓ´mq!
pℓ`mq!Pℓpcos θqeimϕ

where Pℓpcos θq are the associated Legendre polynomials, which for our purposes can be treated as black
box functions. Note that we can invert equation Eq. (2.21) and make a spherical harmonic analysis:

aℓm “

ż

r0,πs

ż

r0,2πr

spθ, ϕqY ‹
ℓmpθ, ϕqdθdϕ (2.22)

for any 0 ď ℓ ď and ´ℓ ď m ď ℓ, where Y ‹
ℓm is the complex conjugate of Yℓm. In addition, the angular

power spectrum tCℓuℓě0 of the signal is the ”empirical variance” of the aℓ,m coefficients:

Cℓ :“ 1
2ℓ` 1

ℓ
ÿ

m“´ℓ

|aℓ,m|2

In practice, we observe a discretization of the signal on the sphere in HEALPix format, see Gorski et al.
(2005). The minimal resolution consists in 12 pixels of same size on the sphere. Finer and finer resolutions
can be obtained by further dividing each pixel into four pixels of same size. So a specific resolution is given
by Npix “ 12N2

side, Nside “ 2n with n P N . This format has two main features:

• The sky is discretized in rings of iso-latitude pixels.

• Since the surface of the unit sphere is 4π and each pixel has the same size, the size of one pixel is
given by:

w :“ 4π
Npix

.

where Npix is the number of pixel of the grid.
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In the rest of this thesis we assume that the sphere is discretized into Npix such pixels and ni will denote
the spherical coordinates of the center of the i-th pixel. We can identify any pixel to the coordinates of its
center, so we will use ni to denote the pixel number i, for i P t1, . . . , Npixu.
In practice we can only expand the signal in spherical harmonic coefficients up to ℓ “ ℓmax ă 8. In this

case the spherical harmonic synthesis for a given pixel ni is given by:

spniq “

ℓmax
ÿ

ℓ“0

ℓ
ÿ

m“´ℓ

aℓmYℓmpniq.

If we define Y to be the matrix whose columns are the vectors

ÝÑ
Y ℓm :“ pYℓmpn1q, . . . , YℓmpnNpixqq P CNpix (2.23)

for 0 ď ℓ ď ℓmax and ´ℓ ď m ď ℓ and s the vector of paℓmq arranged in the same order, then we can write
the transformation of a map from the harmonic basis to the pixel domain, called a synthesis, as:

spix “ Y s.

As for the transformation of a map from the pixel domain to the harmonic basis, called an analysis, on the
discretized sphere we can approximate the integral Eq. (2.22) numerically:

aℓm «
4π
Npix

Npix
ÿ

i“1
spixpniqY

‹
ℓmpniq.

In matrix form, this is equivalent to:

s “
4π
Npix

Y ‹spix

where Y ‹ is the conjugate transpose of Y . In addition, we know that the Yℓm functions are orthonormal
on the sphere. This means that for any ℓ1, ℓ2, ´ℓ1 ď m1 ď ℓ1 and ´ℓ2 ď m2 ď ℓ2 we have, for a number
of pixels Npix sufficiently large:

4π
Npix

ÝÑ
Y

˚

ℓ1m1
ÝÑ
Y ℓ2m2 “

4π
Npix

Npix
ÿ

i“1
Y ˚
ℓ1m1pniqYℓ2m2pniq

«

ż

r0,πs

ż

r0,2πr

Y ˚
ℓ1m1pθ, ϕqYℓ2m2pθ, ϕqdθdϕ

“ δℓ1ℓ2δm1m2

where δxy denotes the Dirac function that is one if x “ y and zero otherwise. This in turn implies that:

Y ‹Y «
Npix
4π I (2.24)

where I is the identity matrix in dimension pℓmax ` 1q2. This means that in the numerical implementation,
we can make a spherical synthesis of a signal expressed in spherical harmonics domain followed by
a spherical analysis and get the exact same signal in the spherical harmonics domain. Note that in
practice, instead of forming the matrix Y , we rely on numerical routines to perform spherical synthesis
and analysis. Exploiting the HEALPix grid format to perform fast Fourier transform on each one of the
iso-latitude ring, these routines scale as Opℓ3maxq when the number of iso-latitude rings is roughly equal to
ℓmax, see Reinecke (2011) for more details.
Finally, when we observe the polarization of the light and its intensity, we no longer observe a vector
spix P RNpix corresponding to a discretized skymap, but a vector of three maps psIpix, s

Q
pix, s

U
pixq P R3Npix
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with sIpix, s
Q
pix, s

U
pix P RNpix and I denotes intensity of the light and Q and U are its polarization in different

directions. This signal now decomposes as a vector paI,Pℓm qℓ,´ℓďmďℓ in the harmonic basis where:

aI,Pℓm :“ paTℓm, a
E
ℓm, a

B
ℓmq

and we write:
aPℓ,m :“ paEℓm, a

B
ℓmq.

The pixel maps and the spherical harmonics maps are related by a spherical synthesis:

sQpixpniq “

ℓmax
ÿ

ℓ“0

ℓ
ÿ

m“´ℓ

aPℓm ¨ YE,ℓmpniq

and

sUpixpniq “

ℓmax
ÿ

ℓ“0

ℓ
ÿ

m“´ℓ

aPℓm ¨ YB,ℓmpniq.

Here we have:

YE,2,ℓm “
1
2

»

—

–

Y2,ℓm ` Y´2,ℓm

´ipY2,ℓm ´ Y´2,ℓmq

fi

ffi

fl

and

YB,2,ℓm “
1
2

»

—

–

ipY2,ℓm ´ Y´2,ℓmq

Y2,ℓm ` Y´2,ℓm

fi

ffi

fl

where Y2,ℓm and Y´2,ℓm are spin-weighted spherical harmonics basis functions. We can treat these func-
tions as black-boxes and the reader can see Grain et al. (2009) for more details. We can also do a
spherical analysis:

aEℓm «
4π
Npix

Npix
ÿ

i“1
sQ,Upix pniqY

‹
E,ℓmpniq

and

aBℓm «
4π
Npix

Npix
ÿ

i“1
sQ,Upix pniqY

‹
B,ℓmpniq

where
sQ,Upix pniq “ psQpixpniq, s

U
pixpniqq

and the angular power spectrum is now:

Cℓ :“ 1
2ℓ` 1

ℓ
ÿ

m“´ℓ

aI,Pℓ,mpaI,Pℓ,mq‹.
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2.4.4. The statistical model

We can now write a statistical model for the observed sky. We assume that our skymap is of dimension
Npix “ 12N2

side, Nside “ 2n with n P N‹, we set ℓmax ď 2Nside and we ignore the monopole and dipole
components, which means that we consider C0 “ C1 “ 0.
Given a power spectrum tCℓu2ďℓďℓmax we can summarize the steps generating the observed signal:

1. We assume that the CMB signal s expressed in the harmonic domain has distribution:

s „ N p0,Cq

where C is the diagonal (block diagonal in the case of temperature and polarization) matrix where
each Cℓ is repeated 2ℓ` 1 times such that:

Covpaℓ1m2 , aℓ2m2q “ Cℓ1δℓ1ℓ2δm1m2

where δxy is the Dirac delta function equal to 1 if x “ y and 0 otherwise. If we observe the polarization
as well as the temperature, we have:

CovpaI,Pℓ1m2
, aI,Pℓ2m2

q “ Cℓ1δℓ1ℓ2δm1m2

where:

Cℓ “

¨

˚

˚

˚

˚

˝

CTTℓ CTEℓ CTBℓ

CTEℓ CEEℓ CEBℓ

CTBℓ CEBℓ CBBℓ

˛

‹

‹

‹

‹

‚

and tCTTℓ u, tCEEℓ u,tCBBℓ u, tCTEℓ u, tCTBℓ u, tCEBℓ u are the temperature, E-mode, B-mode and cross
correlations power spectra. So if we observe the intensity and the polarization, the covariance matrix
C is block diagonal with blocks Cℓ.

2. Since we do not observe this signal in the harmonic domain directly, we need to change to the pixel
domain:

spix “ Y s

where Y is defined in Eq. (2.23).

3. As explained Section 2.4.2, we actually observe a smoothed version of spix, obtained according to
Eq. (2.20). In the rest of this thesis we make the assumption that the beam is spherically symmetric,
which implies that its expansion writes:

Bpθq “

ℓmax
ÿ

ℓ“2
bℓYℓmpθ, 0q

where bℓ P R for 2 ď ℓ ď ℓmax. In the rest of this thesis we assume that the beam writes:

bℓ “ expt´ℓpℓ` 1qσ2
FWHM{p8 logp2qu (2.25)

In addition, a convolution between two functions amounts to a multiplication of their coefficients in
the expansion in the spherical harmonics basis. If we write B the diagonal matrix of dimension
pℓmax ` 1q2 ´ 4 with the coefficient bℓ repeated 2ℓ ` 1 times on the diagonal, the pixel map, once
smoothed, writes:

spix “ Y Bs “ Ỹ s

where Ỹ :“ Y B
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4. However we are not observing the smoothed pixel map directly. We must add a Gaussian noise,
with mean zero and covariance matrix N in the pixel domain, as explained in Section 2.4.2. So the
map d we are observing is given by:

d “ spix ` n

where n „ N p0,Nq and N is the instrumental noise covariance matrix.

Overall, the statistical model generating the observed data d P RNpix is a linear normal hierarchical model:

s|tCℓu „ N p0,Cq

d|s „ N pỸ s,Nq

(2.26)

The likelihood of this model writes straightforwardly in the pixel domain:

Lpd|tCℓuq9
exp

!

´p1{2qdtpỸ CỸ
t

` Nq´1d
)

|Ỹ CỸ
t

` N |1{2

where we can compute the covariance matrix in the following way:

Cpix :“ Erddts “ Erpspix ` nqpspix ` nqts

“ N `
ÿ

ℓ1,m1

ÿ

ℓ2,m2

Era˚
ℓ1,m1aℓ2,m2sY ˚

ℓ1,m1Yℓ2,m2bℓ1bℓ2

“ N `
ÿ

ℓ,m

Y ˚
ℓ,mYl,mCℓb

2
ℓ

“ N `
ÿ

ℓ

P ℓCℓ.

(2.27)

The last equality follows from the addition theorem for spherical harmonics, see Müller (1966), the depen-
dence of Cpix on tCℓu is dropped, and the matrix P ℓ is such that

P ℓ
i,j “

p2ℓ` 1qb2
ℓ

4π Pℓpri ¨ rjq “
p2ℓ` 1qb2

ℓ

4π Pℓpcos θijq

where ri, rj are unit vectors pointing to the pixels n̂i and n̂j respectively and θij denotes the angle between
these two vectors. Note that the expression Eq. (2.27) is valid whether we are observing the entire sky or
not.
If we observe the entire sky and N “ α2INpix , where INpix is the identity matrix in dimension Npix, we

can simplify the model by writing it in the spherical harmonics basis entirely:

s|tCℓu „ N p0,Cq

d1 “ s` n1

where
d1 “ B´1Y td

and
n1 „ N p0, α2Npix

4π B´2q
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The log-likelihood becomes:

log Lpd1|tCℓuq “ ´
1
2d

1T

ˆ

C ` α2Npix
4π B´2

˙´1
d1

´
1
2 log

ˇ

ˇ

ˇ

ˇ

C ` α2Npix
4π B´2

ˇ

ˇ

ˇ

ˇ

(2.28)

up to an additive constant, where |M | denotes the determinant of a matrix M . The reader can see
that the covariance matrix in this likelihood is diagonal and so it is computationally cheap to compute.
Unfortunately, the assumptions of full sky coverage and diagonal noise covariance matrix never hold in
practice, and this makes the CMB data analysis computationally much more expensive in practice. This
”ideal” situation still provides useful insights about the model and we will refer to it in later sections.

2.5. Power spectrum inference

In this section we use the statistical model described in Section 2.4 to perform inference on the angular
power spectrum. We first introduce the case of full sky observations. Then, we discuss inference ap-
proaches in the more realistic case where we do not observe the entire sky, first describing the pseudo-Cℓ
approach. We then explain in detail the likelihood approximations that have been used and the quadratic
maximum likelihood method. Finally, we take a Bayesian viewpoint and describe the Gibbs sampler ap-
proach.

2.5.1. Entire sky observation

Suppose that we are observing the entire sky. Thanks to the orthogonality property of the spherical
harmonic basis Eq. (2.24), we can multiply the last line of Eq. (3.1) and write it in the spherical harmonic
domain, as done in Eq. (2.28). If we neglect the noise, the estimator:

Ĉℓ “
1

2ℓ` 1

ℓ
ÿ

m“´ℓ

|dℓm|2 (2.29)

defined for 2 ď ℓ ď ℓmax is obviously an unbiased estimator of Cℓ. In addition, we have:

Var
˜

Ĉℓ
Cℓ

¸

“E

«

Ĉ2
ℓ

C2
ℓ

ff

´ E

«

Ĉℓ
Cℓ

ff2

“ ´ 1 `
1

p2ℓ` 1q2C2
ℓ

E

«

ÿ

m,m1

dℓmd
‹
ℓmd

‹
ℓm1dℓm1

ff

“ ´ 1 `
1

p2ℓ` 1q2C2
ℓ

ÿ

m

Erdℓmd
‹
ℓmdℓmd

‹
ℓms

`
ÿ

m,m1,m‰m1

Erdℓmd
‹
ℓmd

‹
ℓm1dℓms

“ ´ 1 `
1

p2ℓ` 1q2C2
ℓ

r3C2
ℓ p2ℓ` 1q

` 2ℓC2
ℓ p2ℓ` 1qs

“
2

p2ℓ` 1q
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where the fifth equality comes from Wick’s theorem, see Isserlis (1918). This means that:

VarpĈℓq “
2

2ℓ` 1C
2
ℓ .

In addition, in the presence of noise with a covariance matrix proportional to identity N “ α2INpix , we can
write the noise power spectrum as:

Nℓ “ α2Npix
4π b´2

ℓ (2.30)

and the pseudo-Cℓ estimator now writes:

Ĉℓ “
1

2ℓ` 1

ℓ
ÿ

m“´ℓ

|dℓm|2 ´Nℓ

and is unbiased. Its variance is given by:

VarpĈℓq “
2

2ℓ` 1pCℓ `Nℓq
2.

The part of the variance coming from the power spectrum Cℓ is called the cosmic variance and is an
irreducible source of uncertainty. For very large angular scales (low ℓ), the variance Ĉℓ is large because
of the cosmic variance. This is not surprising since Ĉℓ is an average of a few dℓm. For very low angular
scales (large ℓ), the variance is high because the exponential drop of the beam given in Eq. (2.25) sharply
increases the noise term given in Eq. (2.30). Note that the estimator Eq. (2.29) is also the maximum
likelihood estimator of Cℓ. In addition, since the variable:

Ŷℓ “ p2ℓ` 1q
Ĉℓ `Nℓ

Cℓ `Nℓ

is a sum of ν “ 2ℓ`1 independent standard normal variables, it is distributed according to a χ2 distribution
with ν degrees of freedom. From which it follows that the distribution of D̂ℓ “ Ĉℓ `Nℓ is given by:

ppD̂ℓ|Dℓq9D´1
ℓ

˜

D̂ℓ

Dℓ

¸ν{2´1

exp
#

´
ν

2
D̂ℓ

Dℓ

+

. (2.31)

where Dℓ “ Cℓ `Nℓ. So we see that:

D̂ℓ|Dℓ „ Γ
ˆ

ν

2 ,
2Cℓ

p2ℓ` 1q

˙

which has a mode in pν´ 2qCℓ{ν, not corresponding to its mean. This means that the distribution of D̂ℓ|Dℓ

is skewed in general. However, as l Ñ 8, this distribution tends to a Gaussian distribution, since D̂ℓ is an
average of 2ℓ` 1 i.i.d terms.
We can also take a Bayesian viewpoint and setting a flat prior p0 on tCℓu, we see from Eq. (2.31) the

posterior distribution of the Dℓ is an inverse gamma distribution:

Dℓ|d
1 „ Γ´1

˜

ν

2 ´ 1, νD̂2

¸

. (2.32)

These results remain true if we ignore the instrumental noise, except that D̂ℓ and Dℓ are replaced by Ĉℓ
and Cℓ respectively and that the noise terms Nℓ are removed.
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2.5.2. Pseudo-Cℓ

For simplicity, in this section we neglect the noise term and the beam effect in Eq. (2.26) to derive our
results. At the end of the section we provide the estimators with noise included. We follow Hivon et al.
(2002a) for the details of the results.
When we do not observe the entire sky, we can no longer use the orthogonality property Eq. (2.24) to

write our model in the harmonic spherical basis. Instead, the mask introduces coupling between the ãℓm
we recover from the incomplete skymap. If we denote by W pθ, ϕq the function that is one on unmasked
pixels and zero on masked pixels, and consider the skymap without the noise, we have:

ãℓm “

ż

r0,πs

ż

r0,2πr

spixpθ, ϕqW pθ, ϕqYℓmpθ, ϕqdθdϕ

“
ÿ

ℓ1m1

aℓ1m1

ż

r0,πs

ż

r0,2πr

Yℓ1m1pθ, ϕqYℓmpθ, ϕqW pθ, ϕqdθdϕ

“
ÿ

ℓ1m1

aℓ1m1Kℓmℓ1m1pW q

where Kℓmℓ1m1pW q is called the coupling kernel. Since the ãℓm are linear combinations of independent
Gaussian variables, they also are Gaussian variables. But they are not independent anymore. In matrix
form, calling s̃ the vector of ãℓm we get:

s̃ “ KpW qs

where K is called the coupling matrix. Unfortunately, this matrix is non invertible and we cannot recover
the true s from s̃. Instead, we define the pseudo-Cℓ estimator:

C̃ℓ “
1

2ℓ` 1
ÿ

m

|ãℓm|2 (2.33)

and compute its expectation:

ErC̃ℓ1s “
1

2ℓ1 ` 1
ÿ

ℓ1m1

Erãℓ1m1 ã
˚
ℓ1m1s

“
1

2ℓ1 ` 1

ℓ1
ÿ

m1“´ℓ1

ÿ

ℓ2m2

ÿ

ℓ3m3

Eraℓ2m2a
˚
ℓ3m3s

ˆKℓ1m1ℓ2m2pW qK˚
ℓ1m1ℓ3m3pW q

“
1

2ℓ1 ` 1

ℓ1
ÿ

m1“´ℓ1

ÿ

ℓ2

Cℓ2

ℓ2
ÿ

m2“´ℓ2

|Kℓ1m1ℓ2m2pW q|2

“
ÿ

ℓ2

M ℓ1ℓ2Cℓ2 .

where the sums on ℓ2, ℓ3 run over 0, . . . , ℓmax and the sums over m1, m2, m3 run over ´ℓ1, . . . , ℓ1,
´ℓ2, . . . , ℓ2, ´ℓ3, . . . , ℓ3. If we stack the pseudo-Cℓ estimators as a vector C̃ and similarly for the right
hand side of the last equality B2C ` Ñ , we get:

ErC̃s “ MC

where M is a matrix made of the M ℓ1ℓ2 elements:

M ℓ1ℓ2 “
2ℓ2 ` 1

4π
ÿ

l3

p2ℓ3 ` 1qWℓ3

¨

˚

˝

ℓ1 ℓ2 ℓ3

0 0 0

˛

‹

‚

2

,
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tWℓu denotes the power spectrum of the window function and the 3j Wigner symbol is given by:
¨

˚

˝

ℓ1 ℓ2 ℓ3

0 0 0

˛

‹

‚

“p´1qL{2
„

pL´ 2ℓ1q!pL´ 2ℓ2q!pL´ 2ℓ3q!
pL` 1q!

ȷ1{2

ˆ
pL{2q!

pL{2 ´ ℓ1q!pL{2 ´ ℓ2q!pL{2 ´ ℓ3q!

and L “ ℓ1 ` ℓ2 ` ℓ3. See, e.g Hivon et al. (2002b) and Efstathiou (2004) for a detailed derivation. For
small sky cuts, the M matrix is invertible, but not for larger sky cuts, see Mortlock et al. (2002).
It is assumed, see Hivon et al. (2002b), that the estimators C̃ℓ have the same distribution as their full sky

counterpart, except that the number of freedom is updated. More precisely, they are distributed according
to a χ2 distribution with a number of freedom given by:

ν “ p2ℓ` 1qfsky
w2

2
w4
,

where:
wi “

1
4π

ż

r0,πs

ż

r0,2πr

W ipθ, ϕqdθdϕ.

When taking the presence of noise and beam into account, the mean of the estimator Eq. (2.33) becomes:

ErĈℓs “
ÿ

ℓ2

M ℓ1ℓ2b
2
ℓCℓ2 ` Ñℓ

where Ñℓ is the average noise power spectrum given by:

Ñℓ “
1

4π

Npix
ÿ

i,j

N ijw
2Pℓpθijq

where w “ 4π{Npix and θij is the angle between pixel i and j, see Hivon et al. (2002b) and Efstathiou
(2004). In order to use C̃ as an unbiased estimator of the power spectrum, we need to know the beam B,
the noise power spectrum Ñ and be able to compute and invert the matrix M .
Since in general we do not know the power spectrum of the noise, we need to estimate it. Following Hivon

et al. (2002b), we can have an approximation of the noise time correlation during the sky observation and
deduce its temporal power spectrum. We can then sample a Gaussian noise in the time ordered data, see
Section 2.4.2, and project it into a skymap. We can then expand it into spherical harmonics coefficients.
Doing this many times allows us to get a good approximation of the noise power spectrum Ñ . An unbiased
estimator of the power spectrum is then given by:

Ĉ :“ B´2M´1pC̃ ´ ÑMCq

where ÑMC is a Monte-Carlo estimator of the noise power spectrum.

2.5.3. Likelihood approximations

For the sake of completeness, we mention the likelihood approximations based on the pseudo-Cℓ for
cosmological parameters inference.
When we apply a sky mask, the likelihood of Ĉℓ as a function of Cℓ is no longer an inverse gamma

probability distribution function, see Upham et al. (2019) for a derivation of the new likelihood function.
In addition, using a brute force maximum likelihood estimation based on this likelihood for a broad range
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of multipoles would be too time consuming for high resolution maps. Instead, many approximations have
been devised to approximate the likelihood of tCℓu given tĈℓu. We detail a few of them as an example.
The interested reader can see Hamimeche and Lewis (2008), Hamimeche and Lewis (2009) and Gerbino
et al. (2020) for further details.
The general idea is to start from the true likelihood function Eq. (2.31) for full sky and develop an approx-

imation that is quadratic in a function of tCℓu and that can be generalized to the cut sky situation:

´ 2 log LpXCq
C
“ pZC ´ ẐCqtM´1pZC ´ ẐCq ` log |Y |

where C
“ means equality up to an additive constant, ZC and ẐC are functions of tCℓu and tĈℓu respectively

and M is a chosen covariance matrix. We now give several examples, for any ℓ P t2, . . . , ℓmaxu:

• The symmetric Gaussian approximation. It is an approximation that is Gaussian in the true power
spectrum, with the covariance fixed at Ĉℓ:

´ 2 log LsymmetricpCℓ|Ĉℓq
C
“

2ℓ` 1
2

«

Ĉℓ ´ Cℓ

Ĉℓ

ff2

.

• The fiducial Gaussian approximation. It is the same as the symmetric Gaussian approximation,
except that the covariance is considered fixed at a Cℓ,fid value:

´ 2 log LfidpCℓ|Ĉℓq
C
“

2ℓ` 1
2

«

Cℓ ´ Cℓ

Ĉℓ,fid

ff2

.

• The improper Gaussian approximation. The approximation is still quadratic in Cℓ, this time the
covariance is set to Cℓ. It is called improper because a determinant term is missing:

´ 2 log LimproperpCℓ|Ĉℓq
C
“

2ℓ` 1
2

«

Ĉℓ ´ Cℓ
Cℓ

ff2

.

• The log-normal approximation is given by:

´ 2 log LLNpCℓ|Ĉℓq
C
“

2ℓ` 1
2

«

log
˜

Ĉℓ
Cℓ

¸ff2

.

• The one-third two-third approximation is a weighted sum of the two previous ones:

´ 2 log LWMAPpCℓ|Ĉℓq
C
“

1
3 log LimproperpCℓ|Ĉℓq `

2
3 log LLNpCℓ|Ĉℓq.

Ideally, these approximations should match the skewness of the likelihood for low ℓ and be approximately
Gaussian for high ℓ in order to be a good approximation of the likelihood function. Percival and Brown
(2006) have studied these approximations through their expansion around the maximum of the likelihood
function Eq. (2.32). We now give some examples of this, where for simplicity we ignore the noise term.
The maximum in Cℓ of Eq. (2.32) is Ĉℓ, so taking Cℓ “ p1 ` ϵqĈℓ we get that the log likelihood writes:

´ 2 log LexactpCℓ|Ĉℓq “ ν

„

ϵ2

2 ´
2ϵ3

3 ` Opϵ4q

ȷ

up to an additive constant. Doing the same development to the approximations, we get the following
results.
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Figure 2.5.: Plot of the true likelihood of Dℓ “
ℓpℓ` 1q

2π Cℓ and different likelihood approximation. We
assume full sky observation and no noise. This figure is taken from Gerbino et al. (2020)

• Development of the symmetric Gaussian approximation gives:

´ 2 log Lsymmetric “ ν
ϵ2

2 .

We see that this development matches the one of the likelihood up to the second term only. In
addition, we have

´ 2 log Lsymmetric ă ´2 log LexactpCℓ|Ĉℓq

for ϵ ą 0. The oppostive is true for ϵ ă 0. So this likelihood approximation is biased low. Finally,
since it is quadratic, it fails in capturing the skewness of the likelihood for low ℓ.

• Since all of the approximations match the likelihood at least up to the second order, we give only
another one example. The development of the one-third two-third approximation gives:

´ 2 log LWMAPpCℓ|Ĉℓq “ ν

„

ϵ2

2 ´
2ϵ3

3 ` Opϵ4q

ȷ

.

We see that it matches the likelihood up to the third order and should yield less biased results.

Many other approximations have been devised and studied, see e.g Gerbino et al. (2020). As an example,
we reproduce the plot of the likelihood approximations given in that paper, see Fig. 2.5.
We can use the likelihood approximation of our choice to make inference about the cosmological pa-

rameters, for example using maximum likelihood estimation or MCMC algorithms. Of course the biases
introduced by the approximation of the likelihood Cℓ is likely to bias the results on the cosmological pa-
rameters. This is studied in Hamimeche and Lewis (2008) and Hamimeche and Lewis (2009).
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2.5.4. Quadratic maximum likelihood method

The idea behind the Quadratic Maximum Likelihood (QML) estimator, see e.g Tegmark (1997), is that since
the pair products of the unmasked pixels are a linear combination of the power spectrum on average, one
of the best solution for the estimation of the power spectrum should be a linear combination of the the pair
products of the unmasked pixels. That is, we are looking for an estimator of the form:

Ĉℓ “ dtEℓd´ αℓ (2.34)

for ℓ P t0, . . . , ℓmaxu where Eℓ is a matrix and αℓ is a scalar, both depending on ℓ. We are looking for such
matrices and scalars that produce an unbiased estimator of the power spectrum and that is optimal, in the
sense that it minimizes the variance of the estimator Eq. (2.34). Since (Tegmark, 1997) we have:

ErdtEℓds “ TrpEℓCpixq “
ÿ

ℓ1

TrpP ℓ1

EℓqCℓ1 ` TrrNEℓs

show that for:
αℓ “ TrrNEℓs

we have
ErĈℓs “

ÿ

ℓ1

TrpP ℓ1

EℓqCℓ1 .

If we arrange the tĈℓu in vector Ĉ and the corresponding tCℓu in a vector C, this means we have:

ErĈs “ WC

for a matrix W . Which in turn implies that
C̃ “ W ´1Ĉ

is an unbiased estimator of the power spectrum if W is invertible. What is left is to choose the matrices
Eℓ. Tegmark (1997) show that if we choose

Eℓ “
1
2C´1

pixP ℓC´1
pix

then W “ F and the estimators Ĉ and C̃ have covariance matrix F where:

F “
1
2Tr

!

C´1
pixP ℓC´1

pixP ℓ
1)

is the Fisher information matrix associated to the likelihood Lpd|tCℓu, that is:

F :“ Er∇tCℓu log Lpd|tCℓuq∇tCℓu log Lpd|tCℓuqts.

The fact that the covariance matrix of the estimator is equal to the Fisher information matrix means that
we have an estimator achieving the Cramer-Rao bound: the lowest possible variance for an unbiased
estimator, see Nielsen (2013).
The computation of the QML estimator poses two problems: first, all the computation happens in the

pixel domain and the matrices involved are of size Npix ˆNpix. This can make the procedure costly, since
Cpix is dense and need to be inverted. The QML estimator scales as OpN3

pixq. The second problem is
that the procedure achieves an optimal variance when all the matrices are evaluated at “the true power
spectrum”. But this is the quantity we want to estimate. In practice, we need to guess a fiducial power
spectrum and compute the matrices in this power spectrum, leading to a potentially suboptimal estimator.
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2.5.5. The Bayesian viewpoint

We can also take a Bayesian viewpoint and use MCMC algorithms to sample from the posterior on the
power spectrum. Setting a prior p0 on the power spectrum the model writes:

tCℓu „ p0

s|tCℓu „ N p0,Cq

d|s „ N pỸ s,Nq

and we would like to sample from the posterior distribution:

πptCℓu|dq9Lpd|tCℓuqp0pCℓq.

However, when the resolution of the map is high, that is Npix is high, the computation of the likelihood is
very expensive because of the inversion of a Npix ˆNpix dense matrix and the computation of its determi-
nant. Fortunately, Eq. (3.1) is a hierarchical model and we can straightforwardly use a data augmentation
scheme. As explained in Section 2.3 and done in e.g Jewell et al. (2004), Hajian (2007) and Wandelt et al.
(2004), with a flat prior p0, we can target the joint posterior distribution:

πptCℓu, s|dq9ppd|sqπps|tCℓup0ptCℓuq (2.35)

where:
log ppd|sq “ ´pd´ Ỹ sqtN´1pd´ Ỹ sq{2 ` c1

and
log pps|tCℓuq “ ´stC´1s{2 ´ log |C|{2 ` c2

with c1, c2 – real valued constants and |M| denoting the absolute value of the determinant of a matrix M.
We can then use a two-step Gibbs sampler as described in Section 2.2.2 to target the joint distribution
Eq. (2.35). This algorithm has the advantage of being easy to implement and tuning-free.

1. Indeed, the first step, called the power spectrum sampling step, samples from the conditional

πptCℓu|s, dq “ πptCℓu|sq

where this equality follows from the fact that the power spectrum is independent from the observed
sky map given latent map s. As explained in Section 2.5.1 and ignoring the noise term, this step
amounts to sampling from ℓmax ´ 2 independent inverse gamma distributions:

pptCℓu|sq 9

ℓmax
ź

ℓ“2

exp t´p2ℓ` 1qσℓ{2Cℓu
C

p2ℓ`1q{2
ℓ

(2.36)

2. The second step, called constrained realization step, is also conceptually simple and tuning-free. It
is straightforward to show that:

s|d, tCℓu „ N pµ,Σq (2.37)

where

Σ :“ pỸ
t
N´1Ỹ ` C´1q´1

µ :“ ΣỸ
t
N´1d. (2.38)
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The covariance matrix Σ is dense in the presence of a sky mask and highly dimensional. Since it
depends on the power spectrum, we must compute its Cholesky decomposition at each iteration,
which is too costly. Instead, people have been solving the following system:

pỸ
t
N´1Ỹ ` C´1qx “ Ỹ

t
N´1{2w0 ` C´1{2w1 ` Ỹ

t
N´1d (2.39)

where w0, w1 „ N p0, Iq and I is the identity matrix in dimension pℓmax `1q2 ´4, see e.g Eriksen et al.
(2004). The exact resolution of this system leads to a solution distributed according to Eq. (2.37).
It is too costly to invert the matrix Q :“ Σ´1 at each Gibbs iteration. In practice people have
been using iterative algorithms like the preconditionned conjugate gradient (PCG) agorithm, see
Polyak (2021), to solve the system Eq. (2.39) approximately. To accelerate this resolution, different
preconditioners have been used. For example, we can use a diagonal preconditioner, consisting
in computing the diagonal of the inverse of Q or the dense preconditioner, consisting in computing
a block of the inverse of Q for a subset of components and the inverse of the diagonal for the the
other components, see e.g Seljebotn et al. (2019), Eriksen et al. (2004) and Papež et al. (2018) for
a review.

Since we are using a two-step Gibbs sampler, the results of Section 2.2.2 apply. In particular, and for full
sky observations and noise matrix N “ αINpixˆNpix , we roughly have:

VarpCℓ|dq9pCℓ `Nℓq
2

VarpCℓ|sq9C2
ℓ

where Nℓ “ α
Npix
4π B´2. This implies that the fraction of missing information Eq. (2.14) is low for the

components ℓ with Cℓ " Nℓ, called the high signal to noise ratio (SNR) component, and high for the
components ℓ such that Cℓ ! Nℓ, called the low SNR components. So we can expect this algorithm to mix
well for high SNR components and badly for low SNR components. This is what is observed in practice,
see Jewell et al. (2009). To circumvent this problem, Jewell et al. (2009) have used a non centered
parametrization as explained in Section 2.3 to break the correlation between the power spectrum and the
latent variables coming from the prior. This new algorithm samples the low SNR components efficiently
but in turn mixes very badly on the high SNR components.
A Fortran code, called COMMANDER, implements the Gibbs sampler described in this section, with a

range of preconditionners, see e.g Eriksen et al. (2008), Eriksen et al. (2004), Wandelt et al. (2004), Chu
et al. (2005) and Larson et al. (2007).

2.6. Summary of the contributions

2.6.1. Summary of our work regarding the analysis of the CMB data

In Section 2.5.5 we discussed the use of the Gibbs sampler made in e.g Jewell et al. (2004), to sample the
joint posterior distribution of the power spectrum and the true underlying skymap. We also explained that
this Gibbs sampler is inefficient in sampling the low signal-to-noise ratio power spectrum because of the
strong correlations between these power spectrum modes and the skymap. To break these correlations,
Jewell et al. (2009) have been using the results in Section 2.3 and build a non centered version of the
Gibbs sampler. That is, rewriting Eq. (3.1) as:

tCℓu „ p0

s̃ „ N p0, Iq

d “ Ỹ C1{2s̃` n
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they use a Gibbs sampler to target the joint posterior density πptCℓu, s̃|dq. This effectively breaks the
posterior dependencies between tCℓu and s̃ for the small angular scales. However, this Gibbs sampler is
very inefficient in sampling the large angular scales because of Metropolis-within-Gibbs move, see Jewell
et al. (2009). Our first contribution consists in using an interweaving scheme, described in Section 2.3.
Using this, we are able to sample efficiently the entire signal-to-noise ratio range for roughly the same
computational cost as the non centered Gibbs sampler.
The second contribution regards the highly dimensional system resolution, Eq. (2.39). First, we use a

Metropolis ratio after the resolution of this system, which enables us to solve it even more approximately
while still being sure that the Gibbs sampler targets the right distribution. This method has been described
by Gilavert et al. (2015). A second way to deal with this system is to bypass it altogether. To achieve
this, we augment the conditional posterior distribution πps|d, tCℓuq with a Gaussian distributed auxiliary
variable z such that sampling from πps|d, tCℓu, zq and πpz|d, tCℓu, sq is easy. This enables us to use a
Gibbs sampler targeting πpz, s|d, tCℓuq. Marginalizing over z after a predefined number of Gibbs steps
gives us a MCMC scheme targeting πps|d, tCℓuq. Unfortunately, the high signal-to-noise ratio components
of s are strongly correlated with z and this algorithm does not sample efficiently this part of the map s. To
improve the mixing of this algorithm, we use an overrelaxation step on top of the auxiliary Gibbs steps.
Overrelaxation is known to suppress the random-walk behavior of the Gibbs sampler in the presence
of strong correlations, see Neal (1998). The use of such an auxiliary variable drastically reduces the
computational cost of the Gibbs sampler: from few hundred of spherical harmonics transform (on top of
the computation of preconditioner) to only 2 such operations.
We tested the Gibbs sampler using different combinations of the steps described above, that is inter-

weaving with auxiliary step, interweaing with full system resolution, centered Gibbs sampling with auxiliary
Gibbs step... We evaluated their respective performances on liteBird like experiment, with two different
sky masks: one covering about 80% of the sky and the second one covering roughly 30% of the sky, thus
inducing greater correlations in the multipoles. In both cases we found that the Centered Gibbs sampler
with the auxiliary variable step outperforms any algorithm in terms of ESS per second. Compared to
the centered Gibbs sampler, its ESS per second is almost 10 times better on the EE polarization power
spectrum on average and almost 100 times better on BB polarization power spectrum.

2.6.2. Summary of our work regarding the compression of MCMC outputs

We usually want to discard part of the correlated output produced by a MCMC method. There may be
several reasons for that: we may want to discard the first b output of the chain, corresponding to the ”non-
stationary part” of the chain, effectively reducing the bias of the ergodic average given in Eq. (2.6). It is
also customary to keep one state every t states to reduce the memory footprint of the MCMC algorithm
or reducing the computational cost of a potential post-processing. This procedure is called thinning. Of
course, throwing some output away means throwing some information away, and we would like to keep
as much information about the target distribution as possible. To do so, we propose a two-step thinning
procedure. Suppose the MCMC algorithm targets a density p : Rd ÞÑ R and that we are interested in
evaluating the integral:

ppfq “ EprfpXqs (2.40)

where f : Rd ÞÑ R is a function. Suppose in addition that the MCMC algorithm yields an output
tX1, . . . , XNu. First, using J available control variates hpXq “ ph1pXq, . . . , hJpXqqt, we obtain an esti-
mator of the expectation Eq. (2.40) of interest as a weighted sum of the original chain:

p̂‹pfq “

N
ÿ

n“1
wnfpXnq

such that the weights twnu1ďnďN sum to one, are independent of f and such that
řN
n“1wnhjpXnq “ 0 for

any j P t1, . . . , Ju.

44



Chapter 2. Introduction

The second step is to resample the weighted chain tpwn, Xnqu1ďnďN based on the weights. To perform
this step, we use the Cube method, which is a survey sampling method, see Deville (2004). We use this
method to find a subsample tZmu1ďmďM Ă tXnu1ďnďN with M ! N such that

M
ÿ

m“1
hjpZmq “ 0 (2.41)

approximately for any j P t1, . . . , Ju. Since we know that EprhjpXqs “ 0 for any j P t1, . . . , Ju, we can
hope that the sample tZmu1ďmďM verifying Eq. (2.41) is ”representative” of p.
We also provide two different ways to build control variates: the first one when the score function is

available, called the Stein trick, see Oates et al. (2016). The second one is based on the conditional
means of p, see Dellaportas and Kontoyiannis (2011).
Finally, we evaluate our method against the regular thinning method and the kernel Stein Discrepency

(KSD) thinning method, see Riabiz et al. (2020) for the detail of this algorithm. We use three metrics to
compare these three methods: the kernel Stein discrepency, see Riabiz et al. (2020), the energy distance
described by Mak and Joseph (2018) and a star discrepency that we define in a subsequent section. The
numerical results showed that the Cube thinning method performs worse than the KSD thinning in terms
of KSD. This was expected since KSD thinning greedily minimizes the kernel Stein Discrepency. In terms
of star discrepency, our cube thinning method tends to perform better than the regular thinning procedure
and the KSD thinning method. In addition, the Cube thinning method outperforms the KSD thinning
procedure in terms of energy distance. Note that our method tends to perform differently depending on
the choice of control variate and the KSD thinning procedure performs differently depending on the kernel
choice, see Riabiz et al. (2020). In addition, our Cube method scales at worst as OpNJ3 ` 2Jq where J
is the number of control variates, while the KSD thinning procedure scales as OpNM2q where M is the
subsample size. This means that we can apply our procedure very quickly with a complexity independent
of the subsample size while the KSD thinning is very costly for subsample sizes M " 1.
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Amended Gibbs samplers for Cosmic Microwave
Background power spectrum estimation

Joint work with Nicolas Chopin, Josquin Errard and Radek Stompor, appeared in Physical Review D, 105,
103501.

We study different variants of the Gibbs sampler algorithm from the perspective of their applicability to
the estimation of power spectra of the cosmic microwave background (CMB) anisotropies. These include
approaches studied earlier in the CMB literature as well as new ones which are proposed in this work. We
demonstrate all these variants on full and cut sky simulations and compare their performance, assessing
both their computational and statistical efficiency. For this we employ a consistent comparison metric,
an effective sample size (ESS) per second. We show that one of the proposed approaches, referred
to as Centered overrelax, which capitalizes on additional, auxiliary variables to minimize computational
time needed per sample, and uses overrelaxation to decorrelate subsequent samples, performs better
than the standard Gibbs sampler by a factor between one and two orders of magnitude in the nearly full-
sky, satellite-like cases. It therefore potentially provides an interesting alternative to the currently favored
approaches.

3.1. Introduction

In the past few decades, the analysis of the Cosmic Microwave Background (CMB) has made a lot of
progress. Numerous, novel and advanced statistical and numerical techniques have been proposed and
implemented for virtually every step down the CMB data analysis pipeline. In particular, an entire slew
of very diverse methods have been designed to produce estimates of the temperature or polarization
power spectra or estimates of the cosmological parameters from a set of noisy CMB maps. We can divide
these in three broad categories. The first one includes the so-called pseudo-Cℓ approaches, see e.g.,
Upham et al. (2019); Hamimeche and Lewis (2008, 2009); Grain et al. (2009); Hivon et al. (2002b), which
compute the power spectra directly from the noisy observed maps of the CMB sky. See Gerbino et al.
(2020) for a review. The second category involves the maximum likelihood methods, see Gjerløw et al.
(2015); Tegmark and de Oliveira-Costa (2000), which maximize the likelihood of the observed CMB maps
with respect to the sought-after coefficients of the CMB power spectra. The third category comprises
the Bayesian approaches using Monte Carlo sampling methods, which directly target the posterior distri-
bution of the estimated parameters, such as power spectra, given the observed data. A number of such
techniques exist and some have been applied either for the power spectra or cosmological parameter esti-
mation. These include the Metropolis-Hastings sampler, see Lewis and Bridle (2002); Wraith et al. (2009);
Eriksen et al. (2008). the Hamiltonian Monte Carlo sampler see Taylor et al. (2008); Hajian (2007), or the
Gibbs sampler, see Eriksen et al. (2004); Larson et al. (2007); Racine et al. (2016); Jewell et al. (2009);
Wandelt et al. (2004).
Out of those, the pseudo-Cℓ methods are computationally very efficient but require careful character-
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isation of their statistical properties and a design of a corresponding pseudo-likelihood to allow for a
meaningful interpretation of the estimated spectra. They are often a method of choice for the analysis
of spectra at angular scales much smaller than the observed sky area, when such a pseudo-likelihood
construction is more straightforward, see Gerbino et al. (2020).
The maximum likelihood methods are statistically more robust. However, they are computationally heavy

and typically require approximations to provide a meaningful description of the power spectrum likelihood.
They are typically applicable only to downsized data sets providing constraints on the power spectra on
large angular scales, see Gjerløw et al. (2015); Tegmark and de Oliveira-Costa (2000).
The Monte Carlo sampling techniques can provide a robust description of the posterior distribution of the

estimated spectra in the full range of angular scales. They do so by generating chains of samples which
encode the statistical properties of the posterior. Some of these techniques can also cut significantly on
the computational load of the maximum likelihood methods. Out of potential methods, Gibbs samplers has
been found particularly well adapted to the context of the CMB power spectrum estimation, in e.g., Eriksen
et al. (2004); Racine et al. (2016); Jewell et al. (2009), and this is a Gibbs sampler which is implemented
in the most advanced, existing, Bayesian CMB power spectrum estimation code, see Racine et al. (2016).
Gibbs samplers have also thorough statistical underpinning. In particular, the efficiency of the two-steps
Gibbs sampler for linear hierarchical models, i.e., as used in the CMB context, have been extensively
studied in the statistical literature,e.g., Liu (1994).
The current implementations of the Gibbs sampler however remain computationally demanding. This

often imposes practical limits on the number or the size of test and validation runs which can be afforded,
and frequently requires approximations in modelling input CMB data in order to simplify the calculations.
The computational gain here comes however at the potential risk of increased statistical uncertainties,
presence of biases or both, in the final results of such analyses. More efficient Gibbs algorithms are
required in order to bypass such limitations.
There are two factors determining sampler’s run time: the time needed to draw a single sample and the

overall number of samples required to provide sufficient sampling of the posterior. How good the posterior
sampling is, is best quantified by a number of effective, uncorrelated samples. This number is smaller, and
typically much smaller, than the number of actual samples, which are usually correlated. The stronger the
correlations, the less efficiently the samples explore the volume of the posterior, and consequently, more
samples are needed to reach the same number of the effective samples. This effect is referred to in the
statistical literature as a bad mixing of the algorithm, in e.g Robert and Casella (2004).
In this paper we present several new ideas aiming at enhancing the performance of the Gibbs sampler as

applied to the CMB power spectrum estimation. These include methods, which aim at cutting the number
of actual samples required to characterize reliably the posterior, i.e., improving mixing properties of the
algorithms, as well as methods which attempt to trade the time needed to compute samples for their num-
ber, potentially leading to a net gain in the overall performance. The third possibility of improving numerical
algorithms and their implementation to cut on the computational time of each sample is not considered in
this work. To compare the different methods, we evaluate the number of effective, uncorrelated samples
which these methods can produce per unit time. This metric, referred to as an effective sample size per
second, ESS, is defined and discussed in Sect. 3.7.
We organize this paper as follows. In Section 3.2 we review the adopted data model and introduce

the basic formalism. In Section 3.3 we present the standard Gibbs sampler as considered in early CMB
power spectrum estimation literature and discuss its deficiencies. In Section 3.4 and 3.5 we discuss
techniques aiming at decreasing the number of necessary samples, while keeping the sample compu-
tations unchanged. In Section 3.6, we discuss ways to suppress time needed for the single sample
computations, compensating by an increased number of samples. Finally, in Section 3.7, we describe our
experiments and compare the performance of all the presented Gibbs variants. We show that on nearly
full-sky, satellite-like data, one of the proposed algorithms performs (in terms of the effective sample size
per second) one order of magnitude better on the EE power spectrum and two orders of magnitude better

47



Chapter 3. Amended Gibbs samplers for Cosmic Microwave Background power spectrum estimation

on the BB power spectrum than our baseline algorithm. We conclude our findings in Section 3.8.

3.2. Basic formalism

3.2.1. Data model

We assume throughout this work that the input data set consists of noisy maps including only the CMB
signal and we focus on the estimation of its power spectra from such maps. The maps typically cover
only part of the entire sky and can be of one, two or three Stokes parameters, corresponding to the total
intensity, I, or Stokes parameters, Q and U only, or all three Stokes parameters, I, Q, and U , respectively.
The CMB signal is assumed to be Gaussian, with the covariance given by matrix C. The noise in the
maps is also Gaussian with the covariance given by N . The data model underlying the maps is therefore
hierarchical, (see Eriksen et al. (2008, 2004); Wandelt et al. (2004); Chu et al. (2005)), and reads,

tCℓu „ p0,

s|tCℓu „ N p0,Cq,

d|s „ N pỸ s,Nq,

(3.1)

Here, „ denotes a sample drawn from the distribution on the right hand side. p0 is the flat prior and
N pm,Σq denotes the Gaussian distribution with mean m and covariance Σ.
The set tCℓu2ďℓďℓmax denotes a set of all relevant power spectra coefficients numbered by a multiple

number, ℓ, (with the monopole and dipole ignored in the case of total intensity power spectrum). These
uniquely define the CMB covariance matrix, C. Each Cℓ can be a number, i.e., in the case of the total
intensity maps, or a matrix, in the case of multiple Stokes parameter maps, as elaborated below, equa-
tion (3.2).
The variable s is the sky map expressed in the spherical harmonic basis. Hereafter, we follow the

convention that we use two real numbers (one for the coefficients with m “ 0) corresponding to the real
and imaginary part of the sky harmonic coefficients, instead of a single complex one, and separate them
into two real vectors, see Seljebotn (2010) for an extensive justification.
The matrix Ỹ is the product of the spherical harmonics synthesis matrix Y and the (diagonal) Gaussian

beam matrix B, in the spherical harmonic domain, which is assumed diagonal corresponding to an ax-
ially symmetric beam. Consequently, Ỹ s stands for the beam-smoothed CMB map in the pixel domain
computed from the harmonic coefficients, s, drawn from the Gaussian distribution with covariance C. In
general, it covers only observed part of the sky.
We assume that for a full sky map,

4π
Npix

Y TY “ I,

where I denotes the identity matrix, This means that the adapted pixelization used to discretize the map
objects is such that all the spherical harmonics all the way up the band limit, ℓmax, are orthogonal on the
grid made of the pixel centers.
The data vector, d P RNpix , is the noisy sky map in the pixel domain and Npix is the number of pixels of

the map.
We note that the noise covariance, N , is given in the pixel domain and assumed hereafter to be diagonal

(though not necessarily to be proportional to the unit matrix). In contrast, the signal covariance, C, is
defined in the harmonic domain, and is block diagonal (diagonal in the case of total intensity only). For
example, in the case of inference on total intensity and polarization, the blocks of the signal covariance
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are,

Cℓ “

¨

˚

˚

˚

˚

˝

CTTℓ CTEℓ CTBℓ

CTEℓ CEEℓ CEBℓ

CTBℓ CEBℓ CBBℓ

˛

‹

‹

‹

‹

‚

(3.2)

where tCTTℓ u, tCEEℓ u,tCBBℓ u, tCTEℓ u, tCTBℓ u, tCEBℓ u are the temperature, E-mode, B-mode and cross
correlations power spectra. For the standard, parity-invariant cosmology, adopted in this work, tCTBℓ u “

tCEBℓ u “ 0. In the rest of this paper, for simplicity, we will drop the dependency of the signal covariance
matrix on the power spectrum and define C :“ CptCℓuq.
For the sake of transparency, hereafter we present our algorithms specialized for the case of the to-

tal intensity as the generalization to include polarization is straightforward, see Larson et al. (2007) for
example. We however include polarization in all our numerical experiments experiments in Section 3.7.

3.2.2. Likelihood

If the observed data are normally distributed given the power spectrum, the likelihood of the observed
data reads,

Lpd|tCℓuq9
exp

!

´p1{2qdT pỸ CỸ
T

` Nq´1d
)

|Ỹ CỸ
T

` N |1{2
,

where | . . . | denotes the absolute value of the determinant of a matrix, and Ỹ CỸ
T is the signal covariance

of the cut-sky map in the pixel domain.
The full covariance matrix of this likelihood is dense in the pixel domain and, in the case of partial

sky coverage and noise covariance matrix not proportional to the identity, is also dense in the harmonic
domain, therefore inverting it and computing its determinant is time consuming as soon as the dimension,
i.e., the number of the observed sky pixels, is high. Hence the computation of the likelihood, and therefore
the maximum likelihood approach, becomes quickly prohibitive. We can however rely on the Bayesian
approach instead.

3.2.3. Bayesian approach

Adopting the Bayesian viewpoint and putting an improper flat prior p0ptCℓuq on the power spectrum, we
can derive the posterior distribution of the power spectrum coefficients,

πptCℓu|dq9Lpd|tCℓuq. (3.3)

Unfortunately, evaluating this posterior is as computationally involved as the computation of the likeli-
hood and making application of the sampling algorithms difficult or, as in the case of Metropolis-Hastings
sampler, directlt infeasible.
To bypass this difficulty we can augment our data model and consider a joint posterior over the power

spectrum and sky map, as done in previous works, for exampke in Eriksen et al. (2008, 2004); Wandelt
et al. (2004); Chu et al. (2005); Larson et al. (2007):

πptCℓu, s|dq9ppd|sqpps|tCℓuq. (3.4)

where
log ppd|sq “ ´pd´ Ỹ sqTN´1pd´ Ỹ sq{2 ` c1

and
log pps|tCℓuq “ ´sTC´1s{2 ´ log |C|{2 ` c2
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with c1, c2 – real valued constants. We note that s denotes the set of spherical harmonic coefficients and is
therefore equivalent to the full sky map in the pixel domain, notwithstanding the fact that d may correspond
only to a partial sky for which the data are available. Consequently, the number of elements of s can be
much larger than the number of the data points collected in d. The elements of s are referred to as
latent variables, as they are introduced to facilitate the computation and will be eventually discarded. As
their covariance matrix, C, is very structured, its determinant and its inverse are both straightforwardly
computable. Hence, we could apply the Metropolis-Hastings algorithm to this joint distribution, however,
we do not expect it to be efficient due to the high dimensionality of the problem and the strong correlations
between the variables. However, as first proposed in Jewell et al. (2004); Wandelt et al. (2004), we can
sample from the respective conditional posterior distributions of this joint posterior and can apply a Gibbs
sampler instead. We discuss this in detail in the next section.
We note that in general using an improper prior distribution may lead to an improper posterior distribution

- that is one with infinite mass - creating troubles for MCMC algorithms as discussed in the statistical
literature, see e.g., Hobert and Casella (1996). However, in our application and in the case of full-sky
data it can be shown, see appendix A, that the improper flat prior, pptCℓuq, results in a proper posterior
distribution. This is consistent with the previous CMB literature on MCMC applications, see Eriksen et al.
(2008, 2004); Wandelt et al. (2004); Chu et al. (2005); Larson et al. (2007), which have reported no
pathological cases. In contrast, as also shown in appendix A, using Jeffrey’s prior, described in Harold
(1946), on this model, as also suggested in some previous CMB works, e.g Larson et al. (2007) and
Eriksen et al. (2008), leads to an improper posterior distribution in the case of full sky observation and
thus results in a non-valid MCMC algorithm. Given that, and following the accepted convention in the field,
we adopt the improper flat prior on the power spectrum throughout this work.

3.3. Gibbs Sampling

3.3.1. The algorithm

The principle of Gibbs sampling for data augmentation is to sample iteratively from the conditional distri-
butions of the parameters and the latent variables, see, e.g., Tanner and Wong (1987). Algorithm 7 shows
one iteration of this algorithm applied to the joint posterior distribution in equation (3.4).

Algorithm 7: Iteration t of Gibbs sampling for Data Augmentation
Input: ptCℓut, stq
Output: ptCℓut`1, st`1q

1 st`1 „ pps|d, tCℓutq // Constrained Realization step
2 tCℓut`1 „ pptCℓu|d, st`1q // Power Sampling step

The first step of drawing a sample of the sky signal, st`1, given the data and the power spectrum is
called the constrained realization step. The second step is the power spectrum sampling step as it draws
a sample of the power spectrum given the data and the sky signal. This type of algorithms has been widely
used for CMB data analysis, in e.g Eriksen et al. (2008, 2004); Wandelt et al. (2004); Chu et al. (2005);
Larson et al. (2007). The hierarchical data model underlying Algorithm 7 can be represented graphically
by a directed acyclic graph (DAG) shown in Figure 3.1.

3.3.2. Constrained Realization step

The distribution of the sky map, conditional on the observed map and the power spectrum, is given by,

s|d, tCℓu „ N pµ,Σq (3.5)
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where

Σ :“ Q´1 “ pỸ
T

N´1Ỹ ` C´1q´1

µ :“ ΣỸ
T

N´1d. (3.6)

However, in the case of an inhomogeneous noise and/or an incomplete sky coverage, the covariance
matrix in equation (3.5), Σ, is dense and highly dimensional. Hence it is costly to invert it or to compute
its Cholesky decomposition.
In order to sample from this Gaussian distribution, we can rely instead on an algorithm proposed in

the CMB context in Wandelt et al. (2004) and known in the statistical literature as the Perturbation-
Optimization algorithm, see Orieux et al. (2012). The steps are,

• Draw w0, w1 „ N p0, Iq

• Solve for x:

pỸ
T

N´1Ỹ ` C´1qx “ Ỹ
T

N´1{2w0 ` C´1{2w1 ` Ỹ
T

N´1d (3.7)

where M1{2 denotes any matrix satisfying:

M “ M1{2pM1{2qT .

Obviously, the right-hand term of equation (3.7) is a normal variable with distribution N pỸ
T

N´1d,Qq and
the solution of this system is a random variable drawn from the distribution in equation (3.5). Since this
system may be very high-dimensional and badly conditioned, in practice the system in equation (3.7) is
solved using an iterative solver such as preconditioned conjugate gradient (PCG) algorithm. This indeed
has been the standard way of making the constrained realization step in the context of CMB data analysis,
see Eriksen et al. (2008, 2004); Wandelt et al. (2004); Chu et al. (2005); Larson et al. (2007); Jewell et al.
(2009), however, see, e.g., Elsner and Wandelt (2013), for alternative solvers, and Papež et al. (2018) for
their comparison. In the following, we introduce the Truncated Perturbation-Optimization (TPO) algorithm,
which is a Perturbation-Optimization algorithm using an iterative method to solve the linear system, which
is terminated after a predetermined number of iterations or reaching a precision threshold and therefore
potentially failing to attain sufficient accuracy.

3.3.3. Power spectrum sampling

The second step of the Gibbs sampler in Algorithm 7 consists in sampling the power spectrum condition-
ally on the sky signal, s, and the observed data, d. As visualized in Figure 3.1, the sampling is in fact
independent on the data as pptCℓu|s, dq “ pptCℓu|sq and given by,

s dtCℓu

Figure 3.1.: Directed acyclic graph of model 3.1. Circles and squares represent unobserved and observed
variables respectively. Plain arrows represent stochastic dependence.

pptCℓu|sq 9
exp

␣

´p1{2qsTC´1s
(

|C|1{2 . (3.8)
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In the case of either temperature or polarization, separately, this corresponds to a product of inverse
gamma distributions, see Eriksen et al. (2008, 2004); Wandelt et al. (2004); Chu et al. (2005); Larson
et al. (2007),

pptCℓu|sq 9

ℓmax
ź

ℓ“2

exp t´p2ℓ` 1qσℓ{2Cℓu
C

p2ℓ`1q{2
ℓ

, (3.9)

where,
σℓ :“ 1

2ℓ` 1
ÿ

´ℓmaxďmďℓmax

|aℓ,m|2

is the empirical power spectrum. In the case of temperature and polarization, we must instead sample
from independent inverse Wishart distributions, see Eriksen et al. (2008, 2004); Wandelt et al. (2004); Chu
et al. (2005); Larson et al. (2007). Hereafter, we continue presenting the formalism for the total intensity
case and include polarization only in the numerical experiments in Section 3.7.

3.3.4. Shortcomings

While being straightforward to implement and tuning-free, this algorithm has two major issues that can
prohibit its application in many cases of interest. These are: the high computational cost of the constrained
realization step and the strong correlations between the sky map and the power spectrum. This is this last
property, referred to in the statistical literature as bad mixing of the algorithm, which drives the number of
samples needed to sample the full volume of the posterior. Both these factors tend to inflate the overall
computational time of the algorithm potentially limiting its applicability. We discuss each of them in more
detail below.

Constrained realizations

The resolution of the system in equation (3.7) is costly in general. Depending on the preconditioner that
is being used, between Op350q and Op1000q spherical harmonics transforms were required for a WMAP-
like experiment, with eight frequency bands, see Eriksen et al. (2004). In this work, we find that the
resolution of the system takes Op240q spherical harmonics transforms for a lower resolution, LiteBIRD-like
experiment with an 80% Planck galactic mask, assuming the standard, Block-Jacobi preconditioner.
More sophisticated preconditioners could speed up the convergence, however they typically require ex-

pensive precomputation and extra time to apply them. These can significantly offset any gain in the
number of iterations they may bring. We note that in principle we need highly accurate solutions, what
exacerbates the computational problem. The high accuracy is necessary to ensure that the solutions are
really drawn from the required distribution. So while it may be tempting to compromise on the solution
precision in the interest of the time, for low accuracy solutions, we may not even know what is the true
underlying distribution they have been effectively drawn from, potentially invalidating the entire procedure.
This is a real issue for the Gibbs sampler, since if we are not sampling from the correct conditional distri-

butions at each iteration, we have no idea what effective joint distribution the Gibbs sampler is simulating
from or even whether this distribution exists at all.

Power spectrum sampling

The second problem concerns the sampling of the power spectrum conditional on the sky map, that is,
the second step of our Gibbs sampler.
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We define the lag-1 autocorrelation for any function f with finite second order moment under π, i.e., for
which

ş

f2pxqπpxq dx is finite, as

γf “
CovpfptCℓu0q, fptCℓu1q|dq

VarpfptCℓuq|dq
,

where tCℓu0 „ πptCℓ|dq and tCℓu1 are two consecutive power spectrum samples computed once the
stationarity has been reached. It has been shown in the statistical literature, see Liu (1994), that in the
case of data augmentation as in the case under consideration, at stationarity, the lag-1 autocorrelation,
γf , can be expressed as,

γf “ 1 ´
EtVarpfptCℓuq|s, dq|du

VarpfptCℓuq|dq
. (3.10)

Following the statistical literature results, see Liu et al. (1995) and Liu et al. (1994), it can be shown that
the geometric rate of convergence of the Gibbs sampler – see equation (B.1) in Appendix B for a definition,
γ, reads,

γ “ sup
f
γf “ tsup

f,g
CorrpfpCℓq, gpsq|dqu2 (3.11)

where the supremum is taken over all functions with finite second order moment under π, and Cov, Var,
Corr, and E stand respectively for covariance, variance, correlation, and expectation value of the argu-
ments. Equation (3.10) shows that the lag-1 autocorrelation is determined by the fraction of the “con-
ditional variance” over the posterior variance. If the conditional variance of the power spectrum given
the sky is very small compared to the posterior variance of the power spectrum, then the lag-1 autocor-
relation is high, leading to an inefficient sampling of the posterior and the bad mixing of the algorithm.
equation (3.11) states that this happens when tCℓu and s are highly correlated.
This is actually intuitive: when the variance of the conditional distribution is small compared to the pos-

terior one, sampling from this conditional distribution will make only “small steps”, changing very little the
power spectrum compared to the full range of potential posterior values. This in turn will lead to a small
change as compared to the full posterior when sampling the signal conditionally on the power spectrum
and so on. Consequently, the algorithm will not explore the posterior distribution efficiently.
Unfortunately, we encounter this problem in our application. Indeed, let us consider the case where we

observe the full sky and have an isotropic noise covariance matrix: in this case the matrix pC` Ỹ
TNỸ q´1

is diagonal in the harmonic domain and the posterior distribution is a product of inverse translated Gamma
distribution and we have roughly:

VarpCℓ|dq9pCℓ `Nℓq
2

VarpCℓ|sq9C2
ℓ .

Hence, the lag-1 autocorrelation for multipole ℓ reads,

γ
pℓq
f « 1 ´

ˆ

Cℓ
Cℓ `Nℓ

˙2
“ 1 ´

ˆ

SNRℓ

SNRℓ ` 1

˙2
, (3.12)

where SNRℓ stands for the signal-to-noise ratio of the power spectrum coefficient corresponding to multi-
pole ℓ, defined as,

SNRℓ “
Cℓ
Nℓ

Consequently, the standard Gibbs sampler will not sample the low signal-to-noise components efficiently,
as for SNRℓ ! 1, γpℓq

f „ 1, indicating, following on the previous discussion, that the posterior variance will
be much bigger than the conditional variance. What, in turn, from equation (3.11) is related to the fact that
the correlation between the power spectrum coefficients and the sky maps in this regime are strong.
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For high signal-to-noise cases, γpℓq
f „ 0, and the conditional and posterior variances are comparable, the

correlations between the power spectra and the sky are expected to be significantly lower, and we expect
that the algorithm will mix well for these components.
All these observations are graphically summarized in Fig. 3.2.

Figure 3.2.: Example of a sequence of consecutive samples of the Gibbs sampler in the centered
parametrization. For low signal-to-noise power spectrum coefficients, shown in the right panel,
the sky map and the power spectrum are strongly correlated. This leads to the bad mixing of
the algorithm in this regime and a large number of samples is needed to explore the posterior
for such components. This is not the case of the high signal-to-noise components shown in
the left panel. Here, the correlations are small and the resulting mixing of the algorithm is
good with many fewer samples needed to explore the posterior. In both panels the red plain
arrows depict sampling of the power spectrum given the sky map and the blue dotted arrows
sampling the sky map given the power spectrum.

3.4. Non Centered Gibbs sampling

3.4.1. Algorithm

To circumvent this problem, we reparametrize the model in equation (3.1) to break the dependencies
between the signal and the power spectrum. Such an approach was studied in the statistical literature, in
e.g. Papaspiliopoulos and Roberts (2003); Papaspiliopoulos et al. (2007); Agapiou et al. (2014), and the
CMB context in Jewell et al. (2009). The new model reads,

tCℓu „ p0

s̃ „ N p0, Iq

d “ Ỹ C1{2s̃` n

(3.13)

where n „ N p0,Nq and I is the identity matrix of dimension pℓmax ` 1q2 ´ 4. We plot its directed acyclic
graph representation in Figure 3.3.
In this parametrization, the power spectrum, tCℓu, and the signal, s̃, are now independent a priori and all

the posterior correlations come from the likelihood of the model.
In order to sample from that model we are also using a Gibbs sampler. Algorithm 8 shows one iteration

of the algorithm.
The first step is implemented like the first step of the centered Gibbs sampler except that at its conclusion

we change the parametrization: we simulate st`1 „ pps|d, tCℓutq and then set s̃t`1 “ C
´1{2
t st`1. The

second step, however, is different. This is because the power spectrum and the observed sky map are
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ds

tCℓu

s̃

Figure 3.3.: Directed acyclic graph of the model in equation (3.13). Circles and squares represent unob-
served and observed variables respectively. Plain arrows represent stochastic dependence.
Dashed arrows represent deterministic dependence.

Algorithm 8: Iteration t of the non centered Gibbs sampler
Input: ptCℓut, s̃tq
Output: ptCℓut`1, s̃t`1q

1 s̃t`1 „ pps̃|d, tCℓutq
2 tCℓut`1 „ pptCℓu|d, s̃t`1q

not independent when conditioned on the signal map. The second conditional density takes the following
form,

log pptCℓu|s̃, dq “ ´
1
2pd´ Ỹ C1{2s̃qTN´1pd´ Ỹ C1{2s̃q ` c (3.14)

where c is a constant. Since we are unable to sample directly from this conditional, we rely on a Metropolis
step. This is implemented as follows,

• Propose tCℓunew „ qp¨|tCℓutq

• Set tCℓut`1 “ tCℓunew with probability
r “ minp1, αq,

where

α “
exp

!

´pd´ Ỹ C
1{2
news̃tq

TN´1pd´ Ỹ C
1{2
news̃tq{2

)

exp
!

´pd´ Ỹ C
1{2
t s̃tqTN´1pd´ Ỹ C

1{2
t s̃tq{2

) ˆ
qptCℓut|tCℓunewq

qptCℓunew|tCℓutq
,

otherwise set tCℓut`1 “ tCℓut.

Here qp.|tCℓutq is the proposal distribution assumed to be normal with a diagonal covariance matrix,
centered in tCℓut, whose components are truncated to real positive numbers. This algorithm has already
been implemented in the context of CMB data analysis in Jewell et al. (2009). In addition, since the prob-
lem is very high-dimensional, we decompose tCℓu into disjoint subsets and we sample each them in turn,
one-by-one, while keeping all others fixed following the approach of Jewell et al. (2009). Consequently,
we are implementing a Gibbs sampler targeting the distribution in equation (3.14), however each Gibbs
step is performed thanks to the Metropolis step. We also follow Jewell et al. (2009) in order to tune the
diagonal elements of the covariance matrix of the proposal distribution, q.

3.4.2. Shortcomings

We can already expect this algorithm to suffer from two main shortcomings. First, we still have to solve a
high-dimensional linear system, as described in Section 3.3.4. The problems are the same, namely, the
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high computational cost of the algorithm and the fact that it may not always converge to a solution which
is sufficiently accurate.
The second problem of the non-centered Gibbs sampler is related to the sampling of the power spectrum

conditionally on the observed data and the signal map as discussed in, e.g., Jewell et al. (2009). Indeed,
when looking at the distribution in equation (3.14) we see that for the low signal-to-noise ratio compo-
nents, we can make large moves in the parameters space and the value of the density will not change
much because the noise is much bigger. Unfortunately the opposite is true for high signal-to-noise ratio
components: when the noise is small compared to the power spectrum, making large moves will make
large changes in the value of the density, leading to a small acceptance rate in the Metropolis-Hasting
algorithm. This is in addition to the fact that a mere use of the non centered parametrization already wors-
ens the mixing properties of the Gibbs sampler on the high signal-to-noise ratio components as visualized
in Figure 3.4. This intuition is confirmed by the experiments made in Jewell et al. (2009).
Consequently, we still need to find an alternative algorithm that is capable of sampling efficiently the high

and low SNR simultaneously.

3.5. Interweaving

Figure 3.4.: Example of a sequence of samples of the non-centered Gibbs sampler. For low signal-to-
noise power spectrum components, the sky map and the power spectrum are strong corre-
lated, right panel. This is not the case of the high signal-to-noise components, left panel. The
green plain arrows depict sampling the power spectrum given the sky map and the orange
dotted arrows the sky map given the power spectrum. As shown, the non-centered Gibbs
sampler explores the high signal-to-noise components much less efficiently, left panel, than
the low signal-to-noise components, right panel.

3.5.1. Algorithm

The idea of interweaving, also called ASIS in the statistical literature, see Yu and Meng (2011), allows us
to capitalize on the properties of the centered and non-centered Gibbs algorithm presented earlier. This
is done by combining both these samplers together rather than simply alternating between them. In this
section we apply this idea to the power spectrum estimation.
The interweaving scheme proposed here applies first the Gibbs kernel as described in Section 3.3,

followed by changing the variable to get a non-centered version of the algorithm and finally concluding by
sampling the power spectrum as explained in Section 3.4. These steps are implemented in Algorithm 9.
The first two steps of the algorithm are the usual centered Gibbs sampler, Section 3.3. The third step
constitutes a change of variable that shifts to the non-centered version of the Gibbs sampler. The fourth
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Algorithm 9: Iteration t of ASIS
Input: ptCℓut, stq
Output: ptCℓut`1, st`1q

1 st`0.5 „ pps|d, tCℓutq
2 tCℓut`0.5 „ pptCℓu|st`0.5q

3 s̃t`0.5 “ CptCℓut`0.5q´1{2st`0.5
4 tCℓut`1 „ pptCℓu|d, s̃t`0.5q

5 st`1 “ CptCℓut`1q1{2s̃t`0.5

step effectively samples the power spectrum from the non-centered parametrization, while the fifth goes
back to the centered one.
We note that we can look at the interweaving algorithm as an Alternating Subspace-Spanning Resam-

pling algorithm (ASSR), see Liu (2003) with the underlying MCMC algorithm being the centered Gibbs
sampler and the mapping defined as MptCℓu, sq “ ptCℓu, s̃q.
Intuitively, the algorithm will have better mixing properties than the centered and non-centered Gibbs

sampler algorithms. First, interweaving will mix as well as the centered Gibbs sampler on the high SNR
components, thanks to Steps 1 and 2, see Section 3.3. It will also mix as well as the non-centered Gibbs
sampler on the low SNR components, thanks to the change of variable and sampling in Steps 3 and 4.
Second, we are not only exploiting the strength of each algorithm. We can expect interweaving to show a
“compound effect”: the high SNR components will still benefit a bit from the non-centered step, however
inefficient it may be, and vice-versa.
So far we have proposed an algorithm that we expect to behave nicely on a broad range of signal-to-

noise ratios. But the constrained realization step is still a problem: whatever the mixing properties of the
algorithm we are using, the cost of one iteration is still very high and this is expected to continue to be a
major hindrance for the applications.

3.6. Constrained realization step

Solving the constrained realization equation, equation (3.7), is a problem for several reasons. First, this
system is high dimensional and dense and computing explicitly the inverse of its system matrix, Q, would
be really time consuming, not to mention the memory requirements to store it. These issues can be
efficiently handled by the use of an iterative solver, most commonly a preconditioned conjugate gradient
(PCG) algorithm. However, iterative algorithms solve the system only up to some pre-defined accuracy
and require sometimes a large number of iterations to provide a sufficiently precise solution. Trading on
this may speed up time to solution but can result in a bias, effects of which are hard to quantify.
One solution would be to add a Metropolis-Hastings step after we proposed a new sky map sample using

equation (3.7). This indeed would ensure that the accepted constrained realization solutions conform
indeed with the desired posterior. However, such a naive implementation would lower the acceptance rate
resulting into high autocorrelations between the successive samples.
We propose two alternative solutions to these two problems in this section. First, we present an auxiliary

variable scheme that allows us to add a Metropolis-Hastings step without reducing the efficiency of the
sampler. Second, we introduce another auxiliary variable that allows us to eliminate altogether any need
to sample exactly from a high dimensional normal distribution with a dense covariance matrix.
These two algorithms leave distribution in equation (3.5) invariant, leading therefore to a valid Gibbs

Sampler.
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3.6.1. Reversible jump perturbation optimisation step

Our first approach is based on an algorithm called in the statistical literature the Reversible-Jump Pertur-
bation Optimization (RJPO) algorithm described in Gilavert et al. (2015).
We start from augmenting the model with an auxiliary variable z such that

z|s „ N pQs` Qµ,Qq

where Q, µ are defined equation (3.6) and s is distributed according to equation (3.5). We then perform a
Metropolis-Hastings move on this augmented target.
Our proposal consists in the following deterministic, differentiable and reversible transformation:

ϕps, zq “ p´s` fpzq, zq “ ps1, zq.

Following Gilavert et al. (2015), the Metropolis acceptance rate for this proposal writes:

minp1, e´rpzqtps´s1qq,

where rpzq :“ z ´ Qfpzq.
On choosing fpzq “ Q´1z, the acceptance rate of the Metropolis-Hastings scheme is one, and we

accept every proposed move. In addition, as shown in Gilavert et al. (2015), this choice of fpzq leads to
uncorrelated successive samples.
Note that in this case s1 “ ´s` Q´1z “ ´s` Q´1pQs` ηq “ Q´1η where η „ N pQµ,Qq which means

we are solving the exact same system as for sampling from equation (3.5) in the usual centered Gibbs
sampler.
As we explained before, the problem is that we are unable to solve this system exactly and instead

we have to relay on some iterative algorithms that in the interest of time we stop once some predefined
precision has been reached. The scheme considered here allows to account on such effects.
Indeed, instead of defining fpzq “ Q´1z, we can define it as the output of a truncated iterative solver

like the preconditioned conjugate gradient algorithm. applied to the system Qfpzq “ z. The acceptance
rate of the corresponding Metropolis-Hastings algorithm will not be 1 and the correlations between two
successive samples will not be 0 anymore. Since the ratio depends on rpzq, the more precisely we solve
the system, the higher the acceptance rate, but so is the computational cost. With this algorithm, we are
facing a computational efficiency/autocorrelation tradeoff.
Let us denote û the approximate solution of Qfpzq “ z. Now we have s1 “ ´s ` û and rpzq “ z ´ Qû “

z ´ Qps` s1q “ η ´ Qs1. Finally the algorithm reads as Algorithm 10.

Algorithm 10: RJPO algorithm
1 Sample η „ N pQµ,Qq

2 Solve Qŝ “ η approximately
3 Compute α “ minp1, e´rpzqtps´ŝqq where rpzq :“ η ´ Qŝ.
4 With probability α, set s1 “ ŝ, otherwise set s1 “ s.

It is remarkable that the first and second steps of this RJPO algorithm are exactly the same system as
for sampling from distribution in equation (3.5). We are just adding a Metropolis-Hastings step to ensure
that we are leaving this distribution invariant, however approximately we solve the system.
The presence of such a Metropolis step allows us to solve the system with an arbitrary precision without

biasing the Metropolis-within-Gibbs algorithm. Thus, we can spare some computation time by decreasing
the precision required to solve the system.
If one chooses to solve the system exactly, the RJPO algorithm always accepts the proposed move and

the successive samples are uncorrelated. In this case, RJPO is exactly the same as the PO algorithm
used to sample from equation (3.5) in Section 3.3.2.
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If instead we decide to solve the system only approximately, we introduce correlations between succes-
sive samples and the acceptance rate will depend on how approximate we solve it: the more precise we
are, the higher the acceptance rate.
Even though the RJPO algorithm has nice properties, it still involves solving a very high dimensional

system, at least very approximately. We also have to arbitrate between a lower computing time and
higher autocorrelations. In the next section we present another auxiliary variable scheme that completely
bypasses such inconveniences.

3.6.2. Augmented Gibbs step

Instead of shortening the computing time needed to solve the constrained realization linear system as we
did in the previous subsection, we may avoid it completely and rely on a different MCMC scheme. The
dimension is huge though, and we would like to avoid the computation of an acceptance ratio. A Gibbs
sampler seems a natural solution. The relevant algorithm has been originally proposed in the statistical
literature in Marnissi et al. (2018). In this Section we describe it and adapt the generic algorithm to the
specific case of the CMB power spectrum estimation.

Gibbs step

Instead of sampling directly from the conditional distribution, equation (3.5):

πps|tCℓu, dq

we augment it with an auxiliary variable v so that sampling from Lpv|s, tCℓu, dq and Lps|v, tCℓu, dq is easier.
We choose a v such that:

v|s, tCℓu, d „ N pΓỸ s,Γq (3.15)

where Γ :“ pβI ´ N´1q and β is a scalar chosen so that Γ is positive definite. This gives us the following
conditional distribution (up to an irrelevant prior on v),

s|v, tCℓu, dq „ N pMỸ
T

pv ` N´1dq,Mq (3.16)

where M :“ p
βNpix

4π B2 ` C´1q´1. Note that both Γ and M are diagonal – or block diagonal matrices in
the case of temperature and polarization.
We note that we can sample efficiently from these two conditional distributions, and consequently we are

able to sample from the distribution in equation (3.5) as well and to do so without any need for solving the
constrained realization problem. Indeed, we can simply use the Gibbs sampler and draw pairs of ps, vq

consecutively from their conditional distributions and since
ş

πps, v|d, tCℓuqdv “ πps|d, tCℓuq, we merely
discard v at the end. Such a scheme leaves distribution in equation (3.5) invariant.
Even though this augmented Gibbs step is computationally efficient, its overall performance will mainly

depend on the correlations between v and s. If we write the joint distribution of ps, vq, we realize that they
are jointly Gaussian with covariance matrix,

»

—

–

Σ ΣỸ
TΓ

ΓỸ Σ Γ ` ΓỸ
TΣỸ Γ

fi

ffi

fl

(3.17)

Looking at equation (3.17), we see that Σ, defined in equation (3.5), is influencing the correlations between
s and v. From our earlier analysis, see also Eriksen et al. (2004), this may be a problem since Σ may be
dense for high signal-to-noise ratio components. We can expect this Gibbs step to show poor mixing on
these components. However, for lower SNR ratio components, Σ tend to be band diagonal and we can
expect this Gibbs move to be much more efficient. We confirm this expectation with help of numerical
experiments in Section 3.7.2.
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3.6.3. Overrelaxation

The overrelaxation method, see Neal (1998) for the statistical background, is a way around these strong
correlations. Instead of sampling successively from distributions in equations (3.15) and (3.16), we are
going to sample from,

vt`1 “ ΓỸ st ` γpvt ´ ΓỸ stq ` Γ1{2p1 ´ γ2q1{2Z1 (3.18)

and,
st`1 “ MỸ

T
pvt`1 ` N´1dq ` γpst ´ MỸ

T
pvt`1 ` N´1dqq ` M1{2p1 ´ γ2q1{2Z2 (3.19)

where Z1, Z2 are two independent standard normal variables, Z1 has the dimension of v and Z2 of s. Here
γ Ps ´ 1, 1r is a parameter chosen by the user.
It is straightforward to show that the move in equation (3.18) leaves the distribution in equation (3.15)
invariant, i.e., the distribution of vt`1 is given by equation (3.15) if that of vt is, and that the move in
equation (3.19) leaves the distribution in equation (3.16) invariant. In addition, it has been argued in the
statistical literature, see Neal (1998), that such a ”symmetrical” conditional move around the mean make
it possible for the Gibbs sampler to move in a consistent direction in the presence of correlations, thus
suppressing the random-walk behavior of the Gibbs sampler.

3.7. Experiments

In this section we consider several experiments. For the first comparison of our algorithms, we assume
that we observe the entire sky. This way, the covariance matrices are diagonal, the centered, non-centered
and interweaving algorithms are computationally cheap and we can easily draw many samples.
In the second round of experiments we assume exactly the same setting as the first one, except that we

apply the 80% Planck mask leading to a posteriori coupled multipoles.
In both cases in order to test our algorithms in the circumstances reflecting potential future applications

we assume noise levels and the resolution reflecting roughly those of the future CMB satellite mission,
LiteBird, see Hazumi and Group. (2020).
The final set of experiments is designed to mimic a ground-based setup. We take here very roughly

the parameters of the 90GHz frequency channel of the Simon Observatory, see Ade et al. (2019). We
assume a sky coverage of 37%, what leads to even more strongly coupled multipoles.

3.7.1. Polarization full-sky experiment

For this first experiment comparing interweaving and the centered and non centered Gibbs algorithms,
we assume we observe the entire sky and that the noise covariance matrix writes N “ α2I, where I
is the identity matrix of dimension Npix. For ease of implementation we are doing inference on EE and
BB components of the power spectrum only, assuming only Q and U maps are observed. In this case
we can exactly sample a map from the constrained realization step in equation (3.5) at no cost since the
covariance matrix of the normal distribution is diagonal. In addition, the power spectrum components are
a posteriori independent and we have an analytical expression for each marginal distribution.
Regarding the set-up, we choose NSIDE “ 256 with ℓmax “ 512 and we apply an instrumental beam of

30-arcmin fwhm. We choose a rms noise of α “ 0.2µK-arcmin. Since the BB components have a very
low signal-to-noise ratio for the highest multipoles, we make progressively wider bins, starting at l “ 396 -
corresponding to SNR “ 0.24 - and get a total of 412 multipoles instead of the 512 initial ones.
To make the comparison, we first run 10 chains of length 300 for each algorithm – with an exception of the

centered Gibbs – and use these samples to calibrate the proposal distributions of the non-centered power
sampling step. Once we have the covariance matrices of the proposal distributions, we run 10 chains of
104 iterations for each algorithm and compute the relevant metrics on this basis.
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Figure 3.5.: Integrated autocorrelation times against multipole for each algorithm. The BB components
are split into two graphs for readability, because of the broad range of scales they cover.

In order to evaluate the respective performances of these three algorithms, we look at the respective
Integrated Autocorrelation Time (IAT) for each one of them accross all the multipoles, where

IATℓ :“ 1 ` 2
Nlag
ÿ

k“1
ρℓk

and ρℓk is the autocorrelation of the chain at lag k for Cℓ defined at stationarity as:

ρℓk :“ CovpCℓ,0, Cℓ,kq

VarpCℓ|dq

with Cℓ,0 „ ppCℓ|dq and Cℓ,k is obtained after k iterations of Gibbs sampler, starting at Cℓ,0.
Figures 3.5 and 3.6 show the IAT for each algorithm against multipoles index and the logarithm of the

signal-to-noise ratio respectively. Since it is known, see Jewell et al. (2009), that the non-centered Gibbs
sampler does not mix well – however good is our tuning – for medium to high SNR, we only tuned it
on components having signal to noise ratio inferior to 1. For readability, we only show its performances
on these components and we split the BB components in two parts, which have very different scales,
and display them in two different panels. As expected, the interweaving algorithm mixes as well as the
centered Gibbs on signal-to-noise ratio superior to 1. However, when the SNR starts to be low, the
integrated autocorrelation times of the centered Gibbs algorithm increases sharply compared to those
of the interweaving. Note also that for the lowest signal-to-noise ratios, the non-centered version of the
Gibbs sampler performs better than the centered version, as expected, and that the interweaving have
even lower integrated autocorrelation times than non centered Gibbs. These results are in agreement
with the analysis of Section 3.5.
In order to have a clearer picture of the respective performances of the algorithms, we plot the ratio of

IATcentered{IATasis and IATnoncentered{IATasis against the multipoles in Figures 3.7 and 3.8, respectively.
We produce the same graphics against the log signal-to-noise ratio Figures 3.9 and 3.10. It is clear
from these plots that the interweaving algorithm inherits the excellent mixing properties of the centered
Gibbs on high signal-to-noise ratio components while outperforming it on the lower ones. In addition,
interweaving outperforms the non-centered Gibbs algorithm on lower signal-to-noise range. We provide
example of histograms for a wide range of signal-to-noise ratios in Appendix C.1.
This simple experiment shows how good the mixing properties of the interweaving algorithm are on the

full range of multipoles as it is able to sample efficiently for high and low signal-to-noise ratios. However,
because of the absence of sky-cut, these algorithms are very cheap computationally. Our analysis of the
respective efficiencies of the algorithms does not take into account the computing time. In addition, in the
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Figure 3.6.: Integrated autocorrelation time against log(SNR) for each algorithm. The BB components are
split into two graphs for readability, because of the very different scales.

Figure 3.7.: Ratios of Integrated Autocorrelation Time against multipole. Numerator: centered Gibbs.
Denominator: interweaving. A ratio superior to 1 indicates that centered Gibbs is performing
better than interweaving in terms of autocorelation time.

presence of a sky-mask, the tCℓu are no longer independent and this may hinder the non-centered power
spectrum sampling step. In order to test the algorithms in more realistic contexts, we consider a second
experiment with a cut-sky in the next section.

3.7.2. Nearly full-sky polarization experiment

The set-up of this experiment is exactly the same as the one Section 3.7.1 except that we apply the 80%
Planck sky mask, that we plot in Appendix C.2. We use the same binning and blocking schemes as in the
previous section.
Because we do not analyze the full sky, we cannot access the true posterior distribution and the system to

solve for the constrained realization step is no longer diagonal: we have to rely on a TPO algorithm using a
preconditioned conjugate gradient (PCG) solver, see Gilavert et al. (2015), with a diagonal preconditioner,
as done in previous works, in e.g Jewell et al. (2009), Eriksen et al. (2004) and explained in Section 3.3.2.
We also try a centered Gibbs sampler and an interweaving algorithm with a Gibbs step on the augmented

conditional instead of doing the usual system resolution. We test the interweaving algorithm with a RJPO,
see Gilavert et al. (2015), constrained realization step. We described each algorithm in Section 3.6. We
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Figure 3.8.: Ratios of Integrated Autocorrelation Time against multipole of non centered Gibbs on inter-
weaving. Note that the BB components are split in two graphs for readability, because of the
very broad range of scales.

Figure 3.9.: Ratios of Integrated Autocorrelation Time against log signal-to-noise ratio of centered Gibbs
on interweaving.

Figure 3.10.: Ratios of Integrated Autocorrelation Time against signal-to-noise ratio for non centered Gibbs
on interweaving. Note that the BB components are split in two graphs for readability, because
of the very different scales.
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Algorithm Constrained realization power spectrum sampling

Centered PCG centered move

ASIS PCG centered + non-centered moves

ASIS RJPO RJPO centered + non-centered moves

ASIS 1 auxiliary variable centered + non-centered moves

ASIS 20 auxiliary variable centered + non-centered moves

ASIS 65 auxiliary variable centred + non-centered moves

Centered 1 auxiliary variable centered move

Centered overrelax overrelaxation centered move

Table 3.1.: Summary of the approaches used to address constrained realization and power spectrum
sampling steps for each of the algorithms studied in this work.

follow Eriksen et al. (2004) and set the error threshold to 10´6 when using the TPO algorithm, except for
ASIS RJPO, where it is set to 10´5.
In the following, “Centered” will denote the usual centered Gibbs algorithm, “ASIS” and “ASIS RJPO”

will mean interweaving and interweaving with a RJPO step respectively. The format “algorithm name +
integer” will denote the algorithm ”algorithm name” with the PCG solver being replaced by the augmented
Gibbs sampler for the “integer” number of iterations. For example, “Centered 1” is the usual centered
Gibbs algorithm with the PCG step replaced by the augmented Gibbs sampler for one iteration only,
setting β “ α´2 ` 10´14. The name “Centered overrelax” denotes the centered Gibbs algorithm with the
PCG step replaced by two iterations of overrelaxation plus one iteration of classical augmented Gibbs
step, with γ “ ´0.995 chosen to be close to ´1 to deal with the strong correlations of the covariance
matrix, equation (3.17). Table 3.1 summarizes the algorithms.

We tune the algorithms as follows. We run each one of them for a few hundreds iterations. Based on
the results, we estimate the covariances of the marginal of each multipole and use them as the proposal
covariances – multiplied by a scalar inferior to one – for the actual run, targeting a 25% acceptance rate.
After tuning, every algorithm is run for 103 iterations, except for Centered overrelax and Centered 1 which
are run for 105 iterations since they are computationally cheaper.
We first look at the Effective Sample Sizes (ESS) per second of each algorithm. If we run the algorithm

for N iterations, the ESS for component ℓ is defined as:

ESSℓ :“ N

IATℓ

where IATℓ is defined in Section 3.7.1. The ESS per second, for each component, is then defined as the
ESS for the N iterations divided by the CPU time in second needed for the N iterations. Obviously, for any
ℓ, the greater ESSℓ per second, the better.

64



Chapter 3. Amended Gibbs samplers for Cosmic Microwave Background power spectrum estimation

We plot the ESS per second in Figure 3.11. Centered 1 and Centered overrelax outperform the other
algorithms in term of ESS per second, whatever the SNR. Otherwise, the algorithms using the PCG
sampling step seem to be performing better on the EE components than the ones using an auxiliary
Gibbs step, especially compared to ASIS 1 which underperforms. The opposite is true on BB. We can
easily explain these observations: the augmented Gibbs constrained realization step is much cheaper
than a PCG resolution of the system, but it also leads to much worse mixing properties on EE but not
on BB. We are facing a trade off between computing time and mixing on EE: the smaller the number of
augmented Gibbs step, the faster the algorithm but the greater the autocorrelations. The same holds for
ASIS RJPO. We must then find the number of Gibbs steps maximizing the ESS per second. But overall it
seems these algorithms will not perform as well as their PCG counterparts on EE.
The reader should also note that the non-centered step of interweaving comes with a cost that cannot be

reduced: in our case roughly 130 spherical harmonic synthesis operations. That is why ASIS 1 performs
much worse than ASIS 20 and ASIS 65: as the algorithm has to perform at least 130 spherical harmonic
transforms, one could as well do 20 augmented Gibbs constrained realization step instead of 1, improving
the mixing properties of the algorithm without increasing the computing time so much, leading to a better
ESS per second.
The picture is different for the BB components: the augmented Gibbs constrained realization step is

mixing much better on such lower signal-to-noise ratios and hence the algorithms using such a step have
a better ESS per second than their PCG counterparts. Note that Centered 1 and Centered overrelax
are outperforming all the other algorithms by far. That is because it comes at almost no cost – only one
spherical harmonic analysis and one synthesis per iteration. This has to be compared to the heavy cost
of the PCG solver, typically 150 PCG iterations, complemented by 2 spherical harmonics transform per
iteration, of the Centered, ASIS and ASIS RJPO algorithms, and to the incompressible cost of the non
centered step of the ASIS 1, ASIS 20 and ASIS 65 algorithms. Since the augmented Gibbs step mixes
well on this SNR, Centered 1 and Centered overrelax are good mixing and cheap algorithms, hence their
ESS per second is much better. One must be careful though: this behavior tends to fade on very low SNR:
the centered parametrization has greater and greater autocorrelations as the SNR decreases.
In order to get a better idea of the relative performances of the algorithms, we examine the ratios of ESS

per second of each algorithm on the ESS per second of the usual centered Gibbs and of the interweaving
algorithm, Tables 3.2 and 3.3.
These tables confirm the behavior we described above: on EE components ASIS 1 and ASIS 65 are

outperformed by Centered and ASIS in terms of ESS per second, while ASIS 20 seems to perform simi-
larly. Note that the algorithms tend to perform worse in comparison to Centered than compared to ASIS:
thought ASIS and Centered have roughly the same mixing on EE, ASIS is more expensive than Cen-
tered. In addition, Centered is outperforming ASIS on EE because it is a bit cheaper. On BB however,
each algorithm seems to outperform Centered. Again, this is because the augmented Gibbs constrained
realization step leads to as good a mixing as the PCG resolution while dramatically reducing the overall
cost of the algorithms, leading in turn to a much better ESS per second. As for ASIS, its ESS per second is
greater than the one of Centered only for the lowest signal-to-noise ratio components. This indicates that
we could probably have applied the non-centered step on these components only: the algorithm would
have been cheaper while still having good mixing properties on low SNR components, leading to a much
better ESS per second, on both EE and BB.
We should pay a closer attention to Centered 1 and Centered overrelax. These algorithms are com-

putationally cheap compared to any other algorithm. Hence, whatever their mixing properties on EE
components and on very low SNR components, their ESS per second is much higher. In addition, the ESS
per second of Centered overrelax is higher than the one of Centered 1 on EE components, showing that
these step is handling the strong correlations better.
Finally, Figure 3.12 shows the empirical mean posterior of Centered overrelax with the two standard de-
viations intervals. The solid black lines denotes the true spectrum. The recovered spectrum seems to
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Algorithm 5th 25th 50th 75th 95th

ASIS 0.544 0.685 0.772 0.88 1.061

ASIS 1 0.095 0.126 0.16 0.225 0.9

ASIS 20 0.287 0.477 0.697 1.044 1.997

ASIS 65 0.396 0.575 0.786 0.988 1.288

ASIS RJPO 0.647 0.79 0.896 1.013 1.217

Centered 1 1.015 1.862 2.915 5.303 29.31

Centered overrelax 2.843 4.708 6.925 11.265 28.635

Table 3.2.: For each algorithm, percentiles of their ESS per second relative to the ESS per second of the
Centered algorithm for EE components.

match the true spectrum well.

3.7.3. Polarization cut sky experiment

The set-up of this second cut-sky experiment is the same as in the preceding section, except that we apply
the Simon Observatory-motivated 37% sky mask, see Ade et al. (2019), that we plot in Appendix C.2, and
set the noise rms to σ “ 0.28µK per pixel for both EE and BB components. Since we have very low SNR
components we start binning the BB multipoles at ℓ “ 320 into progressively wider bins. After binning is
applied, we are left with 331 bins out of the 512 initial multipoles. Regarding the blocking scheme for the
non centered power spectrum sampling step, we make one block for multipoles 2 ď ℓ ď 280 and make
blocks of size one for 280 ă ℓ ď 331.
As in the previous section, we make tuning runs of 10 parallel chains of 300 iterations. Then, we run all

algorithms for 10 parallel chains of 103 iterations, except for the Centered 1 and Centered overrelax cases,
for which we run 10 parallel chains of length 105. Still following Eriksen et al. (2004), we set the threshold
for the PCG algorithm to 10´6, except for the interweaving algorithm with RJPO step, for which we set the
threshold to 10´5.
Figure 3.13 shows the ESS per CPU second against logpSNRq. ASIS, ASIS RJPO and Centered algo-

rithms tend to perform the same, except on the lower range of SNR where Centered algorithm is outper-
formed by ASIS and ASIS RJPO. We also note ASIS RJPO performs better than ASIS on the low SNR
components.
Clearly, the Centered 1 and Centered overrelax variants outperform any other algorithm, sometimes by

several orders of magnitude and over almost the entire range of SNR: that is because it is computationally
very cheap compared to the other algorithms. Note however that its mixing properties degrade with too
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Figure 3.11.: Effective Sample Size per second against logpSNRq for each algorithm. For the sake of clar-
ity, we group the algorithms with a similar performance and plot different groups in separate
panels. The left columns shows the results for the EE and the right one for the BB spectra.
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Figure 3.12.: Comparison of posterior power spectrum to the true power spectrum for the LiteBird-like
experiment. The blue points correspond to the mean power spectrum. The top and bottom of
the horizontal bars of the crosses correspond to the mean plus/minus two standard deviation.
The horizontal bars correspond to the ℓ range spanned by the binning scheme. We only plot
the crosses for one every ten multipoles on the non binned part. On the binned part, we only
plot the crosses for one every two multipoles. The panels show EE (top) and BB (bottom)
power spectra.
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Algorithm 5th 25th 50th 75th 95th

ASIS 0.376 0.697 1.016 1.625 3.966

ASIS 1 1.04 1.694 2.696 4.936 14.132

ASIS 20 1.115 1.689 2.466 3.972 10.15

ASIS 65 0.567 0.967 1.477 2.522 6.103

ASIS RJPO 0.391 0.644 1.007 1.719 4.097

Centered 1 38.62 63.838 83.914 116.926 169.758

Centered overrelax 2.173 14.331 36.227 100.185 492.866

Table 3.3.: For each algorithm, percentiles of their ESS per second relative to the ESS per second of the
Centered algorithm for BB components.

high and too low SNR. That is because the auxiliary step mixes worse on high SNR while the centered
parametrization provides a bad mixing on low SNR.
Finally, Tables 3.4 and 3.5 summarize the distribution of the ratios of ESS per second. On average, on
EE, the Centered 1 algorithm performs 14 times better than the ASIS and the Centered ones, with a
minimum of 0.17 and a maximum of 416. The few multipoles for which the ESS per second is worse than
that of the ASIS and Centered cases are the ones corresponding to the highest SNR, where the auxiliary
variable step mixes very badly. On BB, the Centered 1 variant performs on average 214 times better
than the ASIS and Centered approaches, with a minimum at 5 and a maximum at 1147. Note that the
Centered overrelax algorithm performs better than the Centered 1 one on EE but not on BB components.
However, it still performs much better on the BB components than the ASIS and Centered variants.
Figure 3.14 shows the empirical mean posterior distribution of Centered overrelax with the two standard

deviation interval. The solid black line denotes the true power spectrum.

3.8. Conclusion

We have discussed and compared a number of the Gibbs samplers implemented in the context of the
CMB power spectrum estimation.
Two of the studied cases, the centered Gibbs see Eriksen et al. (2008) and non centered Gibbs see Jew-

ell et al. (2004) samplers, have been previously applied to the inference of the power spectrum of the CMB
signal. While both the variants have been demonstrated to be feasible, they have been also found to be
computationally very demanding. Two main reasons behind it have been identified by Eriksen et al. (2008);
Jewell et al. (2004). First, both these algorithms display poor sampling efficiency, with the centered Gibbs
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Figure 3.13.: Effective Sample Size per second against logpSNRq for each algorithm. For the sake of
clarity, we plot the results for the Centered 1 case, separately.

Algorithm 5th 25th 50th 75th 95th

ASIS 0.549 0.738 0.991 1.248 1.703

ASIS RJPO 0.633 0.88 1.111 1.349 1.973

Centered 1 1.172 2.819 5.469 10.991 60.119

Centered overrelax 3.854 7.75 12.709 23.646 93.642

Table 3.4.: For each algorithm, percentiles of their ESS per second relative to the ESS per second of the
Centered algorithm for EE components.
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Figure 3.14.: An example of the constraints on the power spectra derived using the Centered overrelax
algorithm in the case of the ground-based experiment discussed in the text. The black
dashed lines show the true input spectra. The blue points show the best power estimates in
each bin equal to the mean power computed over the generated chains. The vertical bars of
the crosses correspond to the mean plus/minus one standard deviation, and the horizontal
bars the corresponding bins in ℓ. We only plot the crosses for one every ten multipoles
on the non binned part. We plot the crosses for every multipole on the binned part. The
top panel shows the EE power spectrum and the bottom – the BB one. The input CMB
maps assumed the standard cosmological model with the assumed tensor-to-scalar ratio
r “ 0.001.
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Algorithm 5th 25th 50th 75th 95th

ASIS 0.548 0.785 1.067 1.497 4.4

ASIS RJPO 0.621 0.982 1.239 1.819 4.922

Centered 1 75.717 129.257 183.94 279.193 516.07

Centered overrelax 28.877 52.064 75.548 104.045 157.7

Table 3.5.: For each algorithm, percentiles of their ESS per second relative to the ESS per second of the
Centered algorithm for BB components.

failing on the low SNR components and the non-centered Gibbs on the high SNR components. Second,
both these algorithms require significant computations for every sky signal sample due to the need for
solving the constrained realization system of equations. We have elaborated on both these factors from
the theoretical perspective and demonstrated them via numerical experiments.
We have subsequently proposed a number of possible extensions aiming at improving the overall perfor-

mance of these two methods.
First, we have looked at improving the sampling efficiency of the standard algorithms. To this end, we

have introduced the interweaving concept proposed earlier in the statistical literature, and implemented it
in the CMB power spectrum estimation context to improve on the mixing of the over the entire range of
signal-to-noise ratio, enabling a more efficient sampling of the entire power spectrum. While potentially
promising the improvement comes at the cost of increased computational time per sample.
Second, we have looked at the ways of lowering the cost of single sample computations via statistical

means. We have considered two approaches here. Our first proposal, the RJPO algorithm allows for
approximate solutions to the constrained realization problem without introducing biases to the final re-
sults and does not increase the sample autocorrelation length, if proper tuning is ensured. Our second
proposal alleviates the need for solving the constrained realization system altogether by introducing an
auxiliary variable. The algorithm is easy to implement and tuning free, but comes at the price of increased
dimensionality of the problem.
We have compared and studied all these variants on simulated CMB maps with full and cut-sky coverage.
We have found that for the cases with full and nearly full sky coverage show that the Centered overrelax

algorithm performed, on average, an order of magnitude better on EE and two orders of magnitude better
on BB in terms of ESS per second than the other algorithms.
This Centered overrelax algorithm It exhibits, however, some drawbacks: for very low or very high signal-

to-noise ratio, it produces long autocorrelations. For the very low ratios, it is because of the centered
parametrization, while for the very high ones, it is because of the bad mixing of the auxiliary Gibbs sampler
step. To solve the first problem, we face a trade-off: we may improve on the mixing by using a non-centered
step on the lowest SNR ratio components, but this would increase the cost of the algorithm. To solve the
second problem, we would need to find a better mixing algorithm for the constrained realization step, or
to find more efficient ways to solve the system.
We note that another MCMC algorithm addressing these problems and seemingly efficient for the en-

tire range of SNR ratios has been developed by Racine et al. (2016). However, to our knowledge, this
algorithm has only been used to make inference on the cosmological parameters instead of the power
spectrum. In addition, it requires two resolutions of the high dimensional constrained realization system
and is thus very costly and requires the tuning of proposal distributions.
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Appendix A.

Improper priors

In this appendix we show that in the case of a full sky observation and a noise matrix proportional to
identity N “ αI, using a flat prior over the power spectrum lead to a proper posterior distribution while
Jeffrey’s prior leads to an improper posterior distribution.
Since we assume full sky coverage and a noise matrix proportional to identity, we can rewrite Model 3.1

in harmonic domain:
d “ s` n

where s is the signal map expressed in the spherical harmonics basis - the vector of pal,mq2ďlďℓmax,0ďmďl

coefficients, that is s „ N p0,CptCℓuqq. We also now have n „ N p0,B´2αwq where w “
4π
Npix

, α being the

noise matrix in spherical harmonics basis. It follows that d is the observed skymap expressed in harmonic
domain too.
In this case, the likelihood straightforwardly writes as:

Lpd|tCℓuq “

ℓmax
ź

ℓ“2

exp
ˆ

´p1{2q
||dℓ||

2
2

Cℓ ` b´2
ℓ αw

˙

|Cℓ ` b´2
ℓ αw|p2ℓ`1q{2 ˆ 1tCℓą0u

Let us suppose we are using a flat prior on the power spectrum. In this case, we have πptCℓu|dq9Lpd|tCℓuq.
Then, doing the following change of variable: yl “ Cℓ ` b´2

l αw we have:
ż 8

0
Lpd|tCℓuqdC2 . . . dCℓmax9

ż 8

0

ℓmax
ź

l“2
pγpyl;αl, βlq ˆ 1

tyląb
´2
l
αwu

dy2 . . . dyℓmax

up to a positive multiplicative constant. Here pγ means inverse Gamma distribution with parameters

βl “
||dl||

2
2

2 and αl “
2l ´ 1

2 . Since 1
tyląb

´2
l
αwu

ď 1tylą0u, we have:

ż 8

0
Lpd|tCℓuqdC2 . . . dCℓmax À

ż 8

0

ℓmax
ź

l“2
pγpyl;αl, βlqdy2 ˆ ¨ ¨ ¨ ˆ dyℓmax

And the right-hand term of this equation is integrable as the product of independant inverse Gamma
densities. Hence, the posterior distribution we obtain with a flat prior is proper.

Now, with Jeffrey’s prior pptCℓuq “
śℓmax
l“2

1
Cℓ

, things are different:

ż 1

0
Lpd|tCℓuqpptCℓuqdC2 . . . dCℓmax “

ż 1

0

ℓmax
ź

l“2
ˆ

exp
ˆ

´p1{2q
||dl||

2
2

Cℓ ` b´2
l αw

˙

|Cℓ ` b´2
l αw|p2l`1q{2

1
Cℓ

1tCℓą0u.

But, on s0, 1s and for any l P t2, . . . , ℓmaxu we have:

exp
ˆ

´p1{2q
||dl||

2
2

Cℓ ` b´2
l αw

˙

ě exp
ˆ

´p1{2q
||dl||

2
2

b´2
l αw

˙

74



Appendix A. Improper priors

and
1

|Cℓ ` b´2
l αw|p2l`1q{2 ě

1
|1 ` b´2

l αw|p2l`1q{2

Hence we have

ż 1

0
Lpd|tCℓuqpptCℓuqdC2 . . . dCℓmax Á

ż 1

0

ℓmax
ź

l“2

1
Cℓ
dC2 ˆ ¨ ¨ ¨ ˆ dCℓmax

And obviously the right-hand side diverges to infinity. Since the integrand of the left-hand side is positive
on s0,8r, this proves that the posterior distribution is improper if we use Jeffrey’s prior on the power
spectrum.
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Mixing

In this appendix we provide a intuitive understanding of what we call the ”mixing” of a MCMC algorithm.
As a toy example, suppose we wish to sample the Gaussian vector pX,Y q with mean zero and covariance
matrix:

Σ “

¨

˚

˝

1 ρ

ρ 1

˛

‹

‚

where ρ Ps ´ 1, 1r.
Now we set ρ “ 0 and we use a Gibbs sampler to sample from this distribution. We can plot the trajectory
of the algorithm, see Figure B.1.
We can also suppose that ρ “ 0.99, in which case we get another trace plot, see Figure B.2.
We plot the autocorrelations of the Gibbs sampler for X and Y in Figure B.3.
We can see on Figures B.1 and B.2 that the Gibbs sampler with ρ “ 0 explores the target distribution

much more efficiently than when ρ “ 0.99. We can also see on Figure B.3 that the autocorrelations are
much longer when ρ “ 0.99 than when ρ “ 0. More precisely, the Gibbs sampler samples indepen-
dently when ρ “ 0 while when ρ “ 0.99, the sampled points are still correlated after 150 steps. When
an algorithm explores the target distribution and shows low autocorrelations like the Gibbs sampler when
ρ “ 0, we say it is mixing well. On the contrary, when an algorithm behaves like the Gibbs sampler when
ρ “ 0.99, we say it is mixing badly. Here, the term ”mixing” does not have a precise definition and we use
it loosely.

Even though we use the term ”mixing” loosely, we can still characterize the convergence of a Markov
chain with state space X , invariant distribution π and transition kernel P . We usually want our Markov
chain to converge geometrically to the invariant distribution π, that is:

||Pnpx, dyq ´ πpdyq||TV ď Crn (B.1)

for any x P X , where C ą 0 and r P r0, 1q are constants. The constant r is called the geometric rate of
convergence.
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Figure B.1.: Trace plot, in red, of the Gibbs sampler targeting the joint distribution of pX,Y q for ρ “ 0,
described in Appendix B. The circles are the level sets of the normal distribution.
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Figure B.2.: Trace plot, in red, of the Gibbs sampler targeting the joint distribution of pX,Y q for ρ “ 0.99,
described in Appendix B. The circles are the level sets of the normal distribution.

Figure B.3.: Autocorrelation plots of the Gibbs sampler, described in Appendix B, for X and Y and for
ρ “ 0 and ρ “ 0.99.
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Experiments

C.1. Full-sky polarization experiment

In this appendix we show histograms and autocorrelation plots that we obtained running the full-sky ex-
periment described 3.7.1 on Figures C.1 to C.4. All these figures confirm our analysis of Section 3.5 and
the results of Section 3.7.1: the interweaving algorithm performs as good as the centered Gibbs on high
SNR components and as good as the non-centered Gibbs on low SNR components. Note also that the
kernel density estimation of the histograms of interweaving matches almost perfectly the true posterior
marginals for any signal-to-noise ratio.

Figure C.1.: Examples of autocorrelations for EE components for full sky experiment, Section 3.7.1.

C.2. Sky masks

In this appendix we provide plots of the two sky maps used in the experiment section.
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Figure C.2.: Examples of autocorrelations for BB components for full sky experiment, Section 3.7.1.
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Figure C.3.: Examples of kernel density estimation of histograms for EE components for full sky experi-
ment, Section 3.7.1. For readability and since the mixing of the non centered Gibbs is bad,
we don’t include its histograms on this figures.
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Figure C.4.: Examples of kernel density estimation of histograms for BB components for full sky experi-
ment, Section 3.7.1. For readability and since the mixing of the non centered Gibbs is bad,
we don’t include its histograms on this figures.

Figure C.5.: Planck sky mask used for the first cut sky experiment described in Section 3.7.2. This mask
covers roughly 80% of the sky.
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Figure C.6.: Simon sky mask used for the second cut sky experiment described in Section 3.7.3. This
mask covers roughly 35% of the sky.

C.3. A first cut-sky polarization experiment

This appendix provides kernel density estimation based on the histograms of the histograms used in
Section 3.7.2. See Figures C.7 to C.10.

C.4. A second cut-sky polarization experiment

This appendix provides kernel density estimation based on the histograms obtained in Section 3.7.3. See
Figures C.11 and C.12.
Note that for the lowest SNR on BB components, Centered gives an irrelevant estimate of the posterior

density while Centered 1 gives a result in agreement with ASIS and ASIS RJPO: even though Centered
1 suffers from the centered parametrization, thanks to its low computational cost, we are able to perform
enough iterations to have a reliable estimate. Which is not the case of Centered because of its high
computational cost.
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Figure C.7.: Kernel density estimation of marginals for a sample of multipoles for EE components for cut-
sky experiment, Section 3.7.2.

84



Appendix C. Experiments

Figure C.8.: Kernel density estimation of marginals for a sample of multipoles for BB components for cut-
sky experiment, Section 3.7.2.
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Figure C.9.: Kernel density estimation of marginals for a sample of multipoles for EE components for cut-
sky experiment, Section 3.7.2.
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Figure C.10.: Kernel density estimation of marginals for a sample of multipoles for EE components cut-sky
experiment, Section 3.7.2.

87



Appendix C. Experiments

Figure C.11.: Kernel density estimation of the posterior density on EE cut-sky experiment, Section 3.7.3.
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Figure C.12.: Kernel density estimation of the posterior density on BB for cut-sky experiment, Sec-
tion 3.7.3.
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Chapter 4.

Fast compression of MCMC output

Joint work with Nicolas Chopin, appeared in Entropy 2021, 23(8), 1017.

We propose cube thinning, a novel method for compressing the output of a MCMC (Markov chain Monte
Carlo) algorithm when control variates are available. It amounts to resampling the initial MCMC sample
(according to weights derived from control variates), while imposing equality constraints on averages of
these control variates, using the cube method of Deville (2004). Its main advantage is that its CPU cost is
linear in N , the original sample size, and is constant in M , the required size for the compressed sample.
This compares favourably to Stein thinning (Riabiz et al., 2020), which has complexity OpNM2q, and which
requires the availability of the gradient of the target log-density (which automatically implies the availability
of control variates). Our numerical experiments suggest that cube thinning is also competitive in terms of
statistical error.

4.1. Introduction

MCMC (Markov chain Monte Carlo) remains to this day the most popular approach to sampling from a
target distribution p, in particular in Bayesian computation (Robert and Casella, 2004).
Standard practice is to run a single chain, X1, . . . , XN according to a Markov kernel that leaves invariant
p. It is also common to discard part of the simulated chain, either to reduce its memory footprint, or to
reduce the CPU cost of later post-processing operations, or more generally for the user’s convenience.
Historically, the two common recipes for compressing MCMC output are:

• burn-in, which amounts to discarding the b first states; and

• thinning, which amounts to retaining only one out of t (post burn-in) states.

The impact of either recipes on the statistical properties of the sub-sampled estimates are markedly
different. Burn-in reduces the bias introduced by the discrepancy between p and the distribution of the
initial state X1 (since Xb « p for b large enough). On the other hand, thinning always increases the
(asymptotic) variance of MCMC estimates (Geyer, 1992).
Practitioners often choose b (the burn-in period) and t (the thinning frequency) separately, in a somewhat

ad-hoc fashion (i.e. through visual inspection of the initial chain), or using convergence diagnosis such as
e.g. those reviewed in Cowles and Carlin (1996).
Two recent papers (Mak and Joseph, 2018; Riabiz et al., 2020), cast a new light on the problem of

compressing a MCMC chain by considering more generally the problem, for a given M , of selecting the
subsample of size M that best represents (according to a certain criterion) the target distribution p. We
focus for now on Riabiz et al. (2020), for reasons we explain below.
Stein thinning, the method developed in Riabiz et al. (2020), chooses the sub-sample S of size M which

minimises the following criterion:

DpSq :“ 1
M2

ÿ

m,nPS
kppXm, Xnq, S Ă t1, . . . , Nu, |S| “ M (4.1)
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where kp is a p´dependent kernel function derived from another kernel function k : X ˆX Ñ R, as follows:

kppx, yq “ ∇x ¨ ∇ykpx, yq ` x∇xkpx, yq, sppyqy ` x∇ykpx, yq, sppxqy ` kpx, yqxsppxq, sppyqy

with x¨, ¨y being the Euclidean inner product, sppxq :“ ∇ log ppxq is the so-called score function (gradient
of the log target density), and ∇ the gradient operator.
The rationale behind criterion (4.1) is that it may be interpreted as the KSD (kernel Stein divergence)

between the true distribution p and the empirical distribution of sub-sample S. We refer to Riabiz et al.
(2020) for more details on the theoretical background of the KSD, and its connection to Stein’s method.
Stein thinning is appealing, as it seems to offer a principled, quasi-automatic way to compress MCMC

output. However, closer inspection reveals the following three limitations.
First, it requires computing the gradient of the log-target density, sppxq “ ∇ log ppxq. This restricts the

method to problems where this gradient exists and is tractable (and, in particular, to X “ Rd).
Second, its CPU cost is OpNM2q. This makes it nearly impossible to use Stein thinning for M " 100.

This cost stems from the greedy algorithm proposed in Riabiz et al. (2020), see their Algorithm 1, which
adds at iteration t the state Xi which minimises kppXi, Xiq `

ř

jPSt´1
kppXi, Xjq, where St´1 is the sample

obtained from the t´ 1 previous iterations.
Third, its performance seems to depend in a non-trivial way on the original kernel function k; Riabiz

et al. (2020) propose several strategies for choosing and scaling k, but none of them seems to perform
uniformly well in their numerical experiments.
We propose a different approach in this paper, which we call cube thinning, and which addresses these

shortcomings to some extent. Assuming the availability of J control variates (that is, of functions hj with
known expectation under p), we cast the problem of MCMC compression as that of resampling the initial
chain under constraints based on these control variates. The main advantage of cube thinning is that its
complexity is OpNJ3q; in particular it does not depend on M . That makes it possible to use it for much
larger values of M . (We shall discuss the choice of J , but, by and large, J should be of the same order as
d, the dimension of the sampling space). The name stems from the cube method of Deville (2004), which
plays a central part in our approach, as we explain in the body of the chapter.
The availability of control variates may seem like a strong requirement. However, if we assume we are

able to compute sppxq “ ∇ log ppxq, then (for a large class of functions ϕ : Rd Ñ Rd, which we define later)

Ep rϕpxqsppxq ` ∇x ¨ ϕpxqs “ 0

where ∇x ¨ ϕ denotes the divergence of ϕ. In other words, the availability of the score function implies
automatically the availability of control variates. The converse is not true: there exists control variates
(e.g. Dellaportas and Kontoyiannis, 2011) that are not gradient-based. One of the examples we consider
in our numerical examples features such non gradient-based control variates; as a result, we are able to
apply cube thinning, although Stein thinning is not applicable.
The support point methods of Mak and Joseph (2018) does not require control variates. It is thus more

generally applicable than either cube thinning or Stein thinning. On the other hand, when gradients (and
thus control variates) are available, the numerical experiments of Riabiz et al. (2020) suggest that Stein
thinning outperforms support points. From now on, we focus on situations where control variates are
available.
The chapter is organised as follows. Section 4.2.3 recalls the concept of control variates, and explains

how control variates may be used to reweight a MCMC sample. Section 4.3 describes the cube method
of Deville (2004). Section 4.4 explains how to combine control variates and the cube method to perform
cube thinning. Section 4.5 assesses the statistical performance of cube thinning through two numerical
experiments.
We use the following notations throughout: p denotes both the target distribution and its probability

density; ppfq is a short-hand for the expectation of fpXq under p. The gradient of a function f is denoted
by ∇xfpxq, or simply ∇fpxq when there is no ambiguity. The i´th component of a vector v P Rd is denoted
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by vris, and its transpose by vt. The vectors of the canonical basis of Rd are denoted by ei, i.e. eirjs “ 1
if j “ i, 0 otherwise. Matrices are written in upper-case; the kernel (null space) of matrix A is denoted by
kerA. The set of functions f : Ω Ñ Rd that are continuously differentiable is denoted by C1pω,Rdq.

4.2. Control variates

4.2.1. Definition

Control variates are a very well known way to reduce the variance of Monte Carlo estimates; see e.g. the
books of Robert and Casella (2004), Glasserman (2004) and Owen (2013).
Suppose we want to estimate the quantity ppfq “ EprfpXqs for a suitable f : Rd Ñ R, based on an IID

(independent and identically distributed) sample tX1, . . . , XNu from distribution p. (The generalisation of
control variates to MCMC will be discussed in Section 4.4.)
The usual Monte Carlo estimate of ppfq is

p̂pfq “
1
N

N
ÿ

n“1
fpXnq.

Assume we know J P N‹ functions hj : Rd Ñ R for j P t1, . . . , Ju such that pphjq “ 0. Functions with this
property are called control variates. We can use this property to build an estimate with a lower variance:
let’s denote hpXq “ ph1pXq, . . . , hJpXqqt and write our new estimate:

p̂βpfq “
1
N

N
ÿ

n“1
fpXnq ` βthpXnq (4.2)

with β P RJ . Then it is straightforward to show that Erp̂βpfqs “ Erp̂pfqs “ ppfq. Depending on the choice
of β we may have Varrp̂βpfqs ď Varrp̂pfqs. The next section discusses how to choose such a β.

4.2.2. Control variates as a weighting scheme

The standard approach to choose β consists of two steps. First, one shows easily that the value the
minimises the variance of estimator (4.2) is:

β‹pfq “ VarphpXqq´1CovphpXq, fpXqq

where VarphpXqq is the J ˆ J variance matrix of the vector hpXq and CovphpXq, fpXqq is the J ˆ 1 vector
such that CovphpXq, fpXqqi,1 “ CovpfpXq, hipXqq.
Second, one realises that this quantity may be estimated from the sample X1, . . . , XN through a simple

linear regression model, where the fpXnq’s are the outcome, and the hjpXnq’s are the predictors:

fpXnq « µ` βthpXnq ` ϵn, Erϵns “ 0.

More precisely, let γ P RJ`1 be the vector such that γt “ pµ, βtq, H “ pHijq the design matrix such that
Hi1 “ 1, Hipj`1q “ hjpXiq, and F “ pfpX1q, . . . , fpXN qq. Then the OLS (ordinary least squares) estimate
of γ is

pγOLS “ pHtHq´1HtF. (4.3)

Since ErfpXnqs “ µ in this artificial regression model, the first component of pγOLS:

p̂‹pfq :“ pγOLS ˆ e1, (4.4)
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actually corresponds to estimate (4.2) when β “ pβOLS.
At first glance, the approach described above seems to require implementing a different linear regression

for each function f of interest. Owen (2013) noted however that one may re-express (4.4) as a weighted
average:

p̂‹pfq “

N
ÿ

n“1
wnfpXnq

where the weights wn sum to one, and do not depend on f . It is thus possible to compute these weights
once from a given sample (given a certain choice of control variates), and then quickly compute p̂‹pfq for
any function f of interest.
The exact expression of the weights are easily deduced from (4.4) and (4.3): w “ pwnq with

w “ HpHtHq´1e1.

4.2.3. Gradient-based control variates

In this section and the next, we recall generic methods to construct control variates. This section considers
specifically control variates that derive from the score function, sppxq “ ∇ log ppxq. (We therefore assume
that this quantity is tractable.)
Under the following two conditions:

1. the probability density p P C1pΩ, Rq where Ω Ď Rd is an open set;

2. Function ϕ P C1pΩ,Rdq is such that
ű

BΩ ppxqϕpxq ¨npxqSpdxq “ 0 where
ű

BΩ denotes the integral over
the boundary of Ω, and Spdxq is the surface element at x P BΩ;

the following function:
hpxq “ ∇x ¨ ϕpxq ` ϕpxq ¨ sppxq

is a control variate: pphq “ 0, see e.g. Mira et al. (2013) or Oates et al. (2016) for further details. To get
some intuition, note that in dimension 1 and assuming the domain of integration is an interval sa, brĂ R,
this amounts to an integration by part with the condition that hpbqppbq ´ hpaqppaq “ 0.
Thus, whenever the score function is available (and the conditions above hold), we are able to construct

an infinite number of control variates (one for each function ϕ). For simplicity, we shall focus on the
following standard classes of such functions. First, for i “ 1, . . . , d,

ϕi : Rd Ñ Rd

x ÞÑ ei

which leads to the following d control variates:

hipxq “ sppxqris. (4.5)

For a Gaussian target, Npµ,Σq, the score is sppxq “ ´Σ´1px ´ µq, and the control variates above
make it possible to reweigh the Monte Carlo sample to make it have the same expectation as the target
distribution.
Second, we consider, for i, j “ 1, . . . , d:

ϕij : Rd Ñ Rd

x ÞÑ xrisej

which leads to the following d2 control variates:

hijpxq “ 1ti “ ju ` xrissppxqrjs. (4.6)
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Again, for a Gaussian target Npµ,Σq, this makes it possible to fix the empirical covariance matrix to true
covariance Σ.
In our simulations, we consider two sets of control variates: the ‘full’ set, consisting of the d control

variates defined by (4.5), and the d2 control variates defined by (4.6). And a ‘diagonal’ set of 2d control
variates, where for (4.6), we only consider the cases where i “ j. Of course, the former set should lead
to better performance (lower variance), but since the complexity of our approach will be OpJ3q, where J
is the number of control variates, taking J “ Opd2q may be too expensive whenever the dimension d is
large.

4.2.4. MCMC-based control variates

We mention in passing other ways to construct control variates, in particular in the context of MCMC.
For instance, Dellaportas and Kontoyiannis (2011) noted that, for a Markov chain tXnu, the quantity

ϕpXnq ´ E rϕpXnq|Xn“1s

has expectation zero. In particular, if the MCMC kernel is a Gibbs sampler, it is likely that one is able to
compute the conditional expectation of each component; i.e. ϕpxq “ xris for i “ 1, . . . , d.
See also Hammer and Tjelmeland (2008) for another way to construct control variates when the Xn’s

are simulated from a Metropolis kernel.

4.3. The cube method

We review in this section the cube method of Deville (2004). This method originated from survey sampling,
and is a way to sample from a finite population under constraints. The first subsection gives some defini-
tions, the second one explains the flight phase of the cube method and the third subsection discusses the
landing phase of the method.

4.3.1. Definitions

Suppose we have a finite population t1, . . . , Nu of N individuals and that to each individual n “ 1, . . . , N
is associated a variable of interest yn and J auxiliary variables, vn “ pvn1, . . . , vnJq. Without loss of
generality, suppose also that the J vectors pv1j , . . . , vNjq are linearly independent. We are interested in
estimating the quantity Y “

řN
n“1 yn using a subsample of t1, . . . , Nu. Furthermore, we know the exact

value of each sum Vj “
řN
n“1 vnj , and we wish to use this auxiliary information to better estimate Y .

We assign, to each individual n, a sampling probability πn P r0, 1s. We consider binary random variables
Sn such that, marginally, PpSn “ 1q “ πn. We may then define the Horvitz-Thompson estimator of Y :

Ŷ “

N
ÿ

n“1

Snyn
πn

which is unbiased, and which depends only on selected individuals (i.e Sn “ 1).
We define similarly the Horvitz-Thompson estimator of Vj :

V̂j “

N
ÿ

n“1

Snvnj
πn

.

Our objective is to construct a joint distribution ξ for the inclusion variables Sn such that PξpSn “ 1q “ πn
for all n “ 1, . . . , N , and

V̂ “ V ξ-almost surely. (4.7)
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where V “ pV1, . . . , VJq, V̂ “ pV̂1, . . . , V̂Jq. Such a probability distribution is called a balanced sampling
design.

4.3.2. Subsamples as vertices

We can view all the possible samples from t1, . . . , Nu as the vertices of the hypercube C “ r0, 1sN in RN .
A sampling design with inclusion probabilities πn “ PξpSn “ 1q is then a distribution over the set of these
vertices such that ErSs “ π, where S “ pS1, . . . , SN qt, and π “ pπ1, . . . , πN qt is the vector of inclusion
probabilities. Hence, π is expressed as a convex combination of the vertices of the hypercube.
We can think of a sampling algorithm as finding a way to reach any vertex of the cube, starting at π,

while satisfying the balancing equation (4.7). But before we describe such a sampling algorithm, we may
wonder if it is possible to find a vertex such that (4.7) is satisfied.

4.3.3. Existence of a solution

The balancing equation (4.7) defines a linear system. Indeed, we can re-express (4.7) as S being a
solution to As “ V , where A “ pAjnq is of dimension J ˆ N , Ajn “ vkn{πn. This system defines a
hyperplane Q of dimension N ´ J in RN .
What we want is to find vertices of the hypercube C that also belong to the hyperplane Q. Unfortunately,

it is not necessarily possible, as it depends on how the hyperplane Q intersects the cube C. In addition,
there is no way to know beforehand if such a vertex exists. Since π P Q, we know that K :“ C X Q ‰ H

and is of dimension N ´ J . The only thing we can say is stated Proposition 1 in Deville (2004): if r is a
vertex of K, then in general q “ cardptn : 0 ă rrns ă 1uq ď J .
The next section describes the flight phase of the cube algorithm, which generates a vertex in K when

such vertices exist, or which, alternatively, returns a point in K with most (but not all) components set to
zero or one. In the latter case, one needs to implement a landing phase, which is discussed in Section
4.3.5.

4.3.4. Flight phase

The flight phases simulates a process πptq which takes values in K “ C X Q, and starts at πp0q “ π. At
every time t, one selects a unit vector uptq, then one chooses randomly between one of the two points
that are in the intersection of the hyper-cube C and the line parallel to uptq that passes through πpt ´ 1q.
The probability of selecting these two points are set to ensure that πptq is a martingale; in that way, we
have Erπts “ π at every time step. The random direction uptq must be generated to fulfil the following two
requirements: (a) that the two points are in Q; i.e. uptq P kerA; and (b) whenever πptq has reached one of
the faces of the hyper-cube, it must stay within that face; thus, uptqrks “ 0 if πpt´ 1qrks “ 0 or 1.
Algorithm 11 describes one step of the flight phase.

Algorithm 11: Flight phase iteration
Input: πpt´ 1q

Output: πptq
1 Sample uptq in kerA with ukptq “ 0 if the k-th component of πpt´ 1q is an integer.
2 Compute λ‹

1 and λ‹
2, the largest values of λ1 ą 0 and λ2 ą 0 such that: 0 ď πpt´ 1q ` λ1uptq ď 1

and 0 ď πpt´ 1q ´ λ2uptq ď 1.
3 With probability λ‹

2{pλ‹
1 ` λ‹

2q, set πptq Ð πpt´ 1q ` λ1uptq; otherwise, set πptq Ð πpt´ 1q ´ λ2uptq.

The flight phase stops when Step 1 of Algorithm 11 cannot be performed (i.e. no vector uptq fulfils these
conditions). Until this happens, each iteration increases by at least one the number of components in πptq
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that are either zero or one. Thus, the flight phases completes at most in N steps.
In practice, to generate uptq, one may proceed as follows: first generate a random vector vptq P RN , then

project it in the constraint hyperplane: uptq “ Iptqvptq´IptqAtpAIptqAtq´AIptqvptq where Iptq is a diagonal
matrix such that Ikkptq is 0 if πkptq is an integer and 1 otherwise, and M´ denotes the pseudo-inverse of
the matrix M .
Chauvet and Tillé (2006) propose a particular method to generate vector vptq which ensures that the

complexity of a single iteration of the flight phase is OpJ3q. This leads to an overall complexity of OpNJ3q

for the flight phase, since it terminates in at most N iterations.

4.3.5. Landing phase

Denote by π‹ the value of process πptq when the flight phase terminates. If π‹ is a vertex of C (i.e. all its
components are either zero or one), one may stop and return π‹ as the output of the cube algorithm. If π‹

is not a vertex, this informs us that no vertex belongs to K. One may implement a landing phase, which
aims at choosing randomly a vertex which is close to π‹, and such that the variance of the components of
V̂ is small.
Appendix D gives more details on the landing phase. Note that its worst-case complexity is Op2Jq.

However, in practice, it is typically either much faster, or not required (i.e. π‹ is already a vertex) as soon
as J ! N .

4.4. Cube thinning

We now explain how the previous ingredients (control variates, and the cube method) may be combined in
order to thin a Markov chain, X1, . . . , XN , into a sub-sample of size M . As before, the invariant distribution
of the chain is denoted by p, and we assume we know of J control variates hj , i.e. pphjq “ 0 for j “

1, . . . , J .

4.4.1. First step: computing the weights

The first step of our method is to use the J control variates to compute the N weights wn, as defined at the
end of Section 4.2.2. Recall that these weights sum to one, that they automatically fulfil the constraints:

N
ÿ

n“1
wnhjpXnq “ 0

for j “ 1, . . . , J , and that we use them to compute

p̂‹pfq “

N
ÿ

n“1
wnfpXnq (4.8)

as a low-variance estimate for ppfq for any f .
Recall that the control variates procedure we described in Section 4.2 assume that the input variables,
X1, . . . , XN , are IID. This is obviously not the case in a MCMC context; however, we follow the common
practice (Mira et al., 2013; Oates et al., 2016) of applying the procedure to MCMC points as if they were
IID points. This implies that the weighted estimate above corresponds to a value of β in (4.2) that does
not minimise the (asymptotic) variance of estimator (4.2). It is actually possible to estimate the value of β
that minimises the asymptotic variance of a MCMC estimate (Dellaportas and Kontoyiannis, 2011; Brosse
et al., 2019). However, this type of approach is specific to certain MCMC samplers, and, critically for us, it
cannot be cast as a weighting scheme. Thus we stick to this standard approach.
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We note in passing that, in our experiments (see Figure 4.1 and the surrounding discussion) the weights
wn makes it easy to assess visually the convergence (and thus the burn-in) of the Markov chain. In fact,
since the MCMC points of the burn-in phase are far from the mass of the target distribution, the procedure
must assign a small or negative weight to these points in order to respect the constraints based on the
control variates. Again, see Section 4.5.2 for more discussion on this issue. The fact that control variates
may be used to assess MCMC convergence has been known for a long time (e.g. Brooks and Gelman,
1998), but the visualisation of weights makes this idea more expedient.

4.4.2. Second step: cube resampling

The second step consists in resampling the weighted sample pwn, Xnqn“1,...,N , to obtain a sub-sample
S “ tXn : Sn “ 1u where Sn are random variables such that (a) ErSns “ wn; (b)

řN
n“1 Sn “ M , and (c)

for j “ 1, . . . , J :
ÿ

Sn“1
hjpXnq “ 0.

Condition (a) ensures that the procedure does not introduce any bias:

E

«

1
M

ÿ

Sn“1
fpXnq

∣∣∣∣X1:N

ff

“

N
ÿ

n“1
wnfpXnq.

Condition (b) ensures that the sub-sample is exactly of size M .
We would like to use the cube method in order to generate the Sn’s. Specifically, we would like to assign

the inclusion probabilities πn to wn, and impose the pJ ` 1q constraints defined above by Conditions (b)
and (c). There is one caveat, however: the weights wn do not necessarily lie in r0, 1s.

4.4.3. Dealing with weights outside of r0, 1s

We rewrite (4.8) as:

p̂‹pfq “
Ω
M

ˆ

N
ÿ

n“1
Wn ˆ sgnpwnqfpXnq

where Ω “ M´1 řN
n“1 |wn| and Wn “ M |wn|{Ω. We now have Wn ě 0, and

řN
n“1Wn “ M , which is

required for condition (b) in the previous section. We might have a few points such that Wn ą 1. In that
case, we replace them by tWnu copies, with adjusted weights Wn{tWnu.
It then becomes possible to implement the cube method, using as inclusion probabilities the Wn’s, and

as the matrix A that defines the J ` 1 constraints, the matrix A “ pAjnq such that A1n “ 1, Apj`1qn “

sgnpwnqhjpXnq. The cube method samples variables Sn, which may be used to compute the sub-sampled
estimate

ν̂pfq “
Ω
M

ÿ

Sn“1
sgnpwnqfpXnq.

More generally, in our numerical experiments, we shall evaluate to which extent the random signed
measure:

ν̂ “
Ω
M

ÿ

Sn“1
sgnpwnqδXnpdxq. (4.9)

is a good approximation of the target distribution p.
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4.5. Experiments

We consider two examples. The first example is taken from Riabiz et al. (2020), and is used to compare
cube thinning with KSD thinning. The second example illustrates cube thinning when used in conjunction
with control variates that are not gradient-based. We also include standard thinning in our comparisons.
Note that there is little point in comparing these methods in terms of CPU cost, as KSD thinning is con-

siderably slower than cube thinning and standard thinning whenever M " 100. (In one of our experiment,
for M “ 1000, KSD took close to 7 hours to run, while cube thinning with all the covariates took about 30
seconds.) Thus, our comparison will be in terms of statistical error, or, more precisely, in terms of how
representative of p is the selected sub-sample.
In the following (in particular in the plots), ”cubeFull” (resp. ”cubeDiagonal”) will refer to our approach

based on the full (resp. diagonal) set of control variates, as discussed in Section 4.2.3. The mention
”NoBurnin” means that burn-in has been discarded manually (hence no burn-in in the inputs). Finally,
”thinning” denotes the usual thinning approach, ”SMPCOV”, ”MED” and ”SCLMED” are the same names
used in Riabiz et al. (2020) for KSD thinning, based on three different kernels.
To implement the cube method, we used R package BalancedSampling.

4.5.1. Evaluation criteria

We could compare the three different methods in terms of variance of the estimates of ppfq for certain
functions f . However, it is easy to pick functions f that are strongly correlated with the chosen con-
trol variates; that would bias the comparison in favour of our approach. In fact, as soon as the target
is Gaussian-like, the control variates we chose in Section 4.2.3 should be strongly correlated with the
expectation of any polynomial function of order two, as we discussed in that section.
Rather, we consider criteria that are indicative of the performance of the methods for a general class of

function. Specifically, we consider three such criteria. The first one is the kernel Stein discrepency (KSD)
as defined in Riabiz et al. (2020) and recalled in the introduction, see (4.1). Note that this criterion is
particularly favourable to KSD thinning, since this approach specifically minimises this quantity. (We use
the particular version based on the median kernel in Riabiz et al. (2020).)
The second criterion is the energy distance (ED) between p and the empirical distribution defined by the

thinning method; e.g. (4.9) for cube thinning. Recall that the ED between two distributions F and G is:

EDpF,Gq “ 2E||Z ´X||2 ´ E||Z ´ Z 1||2 ´ E||X ´X 1||2 (4.10)

where Z 1, Z
iid
„ F and X 1, X

iid
„ G, and that this quantity is actually a pseudo-distance: EDpF,Gq ě 0,

EDpF,Gq “ 0 ñ F “ G, EDpF,Gq “ EDpG,F q, but ED does not fulfil the triangle inequality (Székely
and Rizzo, 2005; Klebanov, 2006).
One technical difficulty is that (4.9) is a signed measure, not a probability measure; see Appendix E on

how we dealt with this issue.
Our third criteria is inspired by the star discrepancy, a well-known measure of the uniformity of N points
un P r0, 1sd in the context of quasi-Monte Carlo sampling (Owen, 2013, Chap. 15). Specifically, we
consider the quantity

d‹pP̂ , ν̂q “ sup
BPB

ˇ

ˇ

ˇ
P̂ψpBq ´ ν̂ψpBq

ˇ

ˇ

ˇ

where ψ : Rd Ñ r0, 1sd, P̂ψ and ν̂ψ are the push-forward measures associated to empirical distributions
P̂ “ pN ´ bq´1 řN

n“b`1 δXnpdxq, and ν̂ as defined in (4.9), and B is the set of hyper-rectangles B “
śd
i“1r0, bis. In practice, we defined function ψ as follows: we apply the linear transform that makes the

considered sample to have zero mean and unit variance, and then we applied the inverse CDF (cumulative
distribution function) of a unit Gaussian to each component.
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Also, since the sup above is not tractable, we replace it by a maximum over a finite number of bi (simu-
lated uniformly).

4.5.2. Lotka-Volterra model

This example is taken from Riabiz et al. (2020). The Lotka-Volterra model describes the evolution of a
prey-predator system in a closed environment. We denote the number of prey by u1 and the number of
predator by u2. The growth rate of the prey is controlled by a parameter θ1 ą 0 and its death rate - due
to the interactions with the predators - is controlled by a parameter θ2 ą 0. In the same way, the predator
population has a death rate of θ3 ą 0 and a growth rate of θ4 ą 0. Given these parameters, the evolution
of the system is described by a system of ODEs:

du1
dt

“ θ1u1 ´ θ2u1u2

du2
dt

“ θ4u1u2 ´ θ3u2

Riabiz et al. (2020) set θ “ pθ1, θ2, θ3, θ4q “ p0.67, 1.33, 1, 1q, the initial condition u0 “ p1, 1q, and simulate
synthetic data. They assume they observe the populations of prey and predator at times ti, i “ 1, . . . , 2400
where the ti are taken uniformly on r0, 25s and that these observations are corrupted with a centered
Gaussian noise with a covariance matrix C “ diagp0.22, 0.22q. Finally, the model is parametrized in terms
of x “ plog θ1, log θ2, log θ3, log θ4q P R4 and a standard normal distribution as a prior on x is used.
The authors have provided their code as well as the sampled values they got by running different MCMC

chains for a long time. We use the exact same experimental set-up, and we do not run any MCMC chain
on our own, but use the ones they provide instead; specifically the simulated chain, of length 2 ˆ 106, from
preconditionned-MALA.
We compress this chain into a subsample of size either M “ 100 or M “ 1000. For each value of M ,

we run different variations of our cube method 50 times and make a comparison with the usual thinning
method and with the KSD thinning method with different kernels, see Riabiz et al. (2020). In Figure 4.1
we show the first 5000 weights of the cube method. We can see that after 1000 iterations, the weights
seem to stabilize. Based on visual examination of these weights, we choose a conservative burnin period
of 2000 iterations for the variants where burn-in is removed manually.
We plot the results of the experiment on Figures 4.3, 4.2 and 4.4.
First, we see that regarding the kernel Stein discrepancy metric, Figure 4.2, the KSD method performs

better than the standard thinning procedure and the cube method. This is not surprising since even if this
method does not properly minimizes the Kernel-Stein Discrepency, this is still its target. We also see that
for M “ 1000, the KSD method performs a bit better than our cube method which in turn performs better
than the standard thinning procedure. Note that the relative performance of the KSD method to our cube
methods depends on the kernel that is being used and that there is no way to determine which kernel will
perform best before running any experiment.
The picture is different for M “ 100: KSD thinning outperforms standard thinning, which in turn outper-

forms all of our cube thinning variations. Once again, the fact that the KSD method performs better than
any other method seems reasonable: since it is about minimizing the Kernel-Stein Discrepancy, the KSD
method is ”playing at home” on this metric.
If we look at Figure 4.4, we see that all of our cube methods outperform the KSD method with any

kernel. Interestingly, the standard thinning methods has a similar Energy Distance as the cube methods
with ”diagonal” control variates. These observations are true for both M “ 100 and M “ 1000. We can
also note that the cube method with the full set of control variates tends to perform much better than its
”diagonal” counterpart, whatever the value of M .
Finally, looking at Figure 4.3, it is clear that the KSD method - with any kernel - performs worse than any

cube method in terms of star discrepancy.
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Figure 4.1.: Lotka-Volterra example: first 5000 weights of the cube methods, based on full (top) or diagonal
(bottom) set of covariates.
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Figure 4.2.: Lotka-Volterra example: box-plots of the kernel Stein discrepency for all the cube method
variations, the KSD method for three kernels and the usual thinning method. Top: M “

100. Bottom: M “ 1000. (In the top plot, standard thinning is omitted to improve clarity, as
corresponding value is too high.)
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Figure 4.3.: Lotka-Volterra example: box-plots of the star discrepency for all the cube method variations,
the KSD method for three kernels and the usual thinning method. Top: M “ 100. Bottom:
M “ 1000.
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Figure 4.4.: Lotka-Volterra example: boxplots of the energy distance for all the cube method variations,
the KSD method for three kernels and the usual thinning method. Top: M “ 100. Bottom:
M “ 1000.
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Overall, the relative performance of the cube methods and KSD methods can change a lot depending
on the metric being used and the number of points we keep. In addition, while all the cube methods tend
to perform roughly the same, this is not the case of the KSD method, whose performances depend on
the kernel we use. Unfortunately, we have no way to determine beforehand which kernel will perform
best. This is a problem since the KSD method is computationally expensive for subsamples of cardinal
M " 100.
Thus, by and large, cube thinning seems much more convenient to use (both in terms of CPU time and

sensitivity to tuning parameters) while offering, roughly, the same level of statistical performance.

4.5.3. Truncated Normal

In this example, we use the (random-scan version of) the Gibbs sampler of Robert and Casella (2004) to
sample from 10-dimensional multivariate normal truncated to r0,8q10. We generated the parameters of
this truncated normal as follows: the mean was set as the realization of a 10-dimensional standard normal
distribution, while for the covariance matrix Σ we first generated a matrix M P M10,10pRq for which each
entry was the realization of a standard normal distribution. Then we set Σ “ MTM .
Since we are using a Gibbs sampler, we have access to the Gibbs control variates of Dellaportas and

Kontoyiannis (2011), based on the expectation of each update (which amounts to simulating from a uni-
variate Gaussian). Thus, we consider 10 control variates.
The Gibbs sampler is run for N “ 105 iterations; no burn-in is performed. We compare the following

estimators of the expectation of the target distribution the standard estimator, based on the whole chain
(‘usualEstim’ in the plots), the estimator based on standard thinning (‘thinEstim’ in the plots), the control
variate estimator based on the whole chain, i.e. (4.4) (’regressionEstim’ in the plots), and finally our cube
estimator described in Section 4.4 (‘cubeEstim’ in the plots). For standard thinning and cube thinning, the
thinning sample size is set to M “ 100, which corresponds to a compression factor of 103.
The results are shown in Figure 4.5. First, we can see that the control variates we chose lead to a sub-

stantial decrease in the variance of the estimates for regressionEstim compared to usualEstim. Second,
the cube estimator performs worse than the regression estimator in terms of variance, but this was ex-
pected, as explained in Section 4.4. More interestingly, if we cannot say that the cube estimator performs
better than the usual MCMC estimator in general, we can see that on some components it performs as
good or even better, even though the cube estimator uses only M “ 100 points while the usual estima-
tor uses 105 points. This is largely due to the excellent choice of the control variates. Finally, the cube
estimator outperforms the regular thinning estimator on every component, sometimes significantly.
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Figure 4.5.: Truncated normal example: box-plots over 100 independent replicates of each estimator; see
text for more details.
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Details on the landing phase

The landing phase seeks to generate a random vector S in t0, 1uN , with expectation π‹ (the output of
the flight phase), which minimises the criterion trpMVarpV̂ |π‹qq for a certain matrix M . (The notation ¨|π‹

refers to the distribution of S conditional on πptq “ π‹ at the end of the flight phase.)
Since VarpSq “ VarpErS|π‹sq ` ErVarpS|π‹qs by the law of total variance, and since the first term is zero

(as ErS|π‹s “ π‹), we have

VarpV̂ q “ ErVarpV̂ |π‹qs “ ErAVarpS|π‹qAts.

and thus:
trpMVarpV̂ |π‹qq “

ÿ

sPt0,1uN

pps|π‹qps´ π‹qtAtMAps´ π‹q.

Choosing M “ pAAtq´1, as recommended by Deville (2004), amounts to minimising the distance to the
hyperplane ‘on average’. Let

Cpsq “ ps´ π‹qtAtpAAtq´1Atps´ π‹q,

then the minimisation program is equivalent to the following linear programming problem over q variables
only:

min
ξ‹p.q

ÿ

s‹PS‹

Cps‹qξ‹ps‹q

with constraints
ř

s‹PS‹ ξ‹ps‹q “ 1, 0 ď ξ‹ps‹q ď 1,
ř

s‹PS‹|s‹
k

“1 ξ
‹ps‹q “ π‹

k for every k P U‹ and S‹ “

t0, 1uq where q “ cardpU‹q and U‹ “ tk P U : 0 ă π‹rks ă 1u. Here ξ‹ denotes the marginal distribution of
the components U‹ of the sampling design ξ and Cps‹q must be understood as Cpsq with the components
of s R U‹ being fixed by the result of flight phase, thus in this minimization problem C is in fact depending
on the components of s that are in U‹ only.
The constraints define a bounded polyhedron. By the fundamental theorem of linear programming, this

optimization problem has at least one solution on a minimal support, see Deville (2004).
The flight phase ends on a vertex of K and, by Proposition 1 in Deville (2004), q ď J ; typically J ! N .

This means that we are solving a linear programming problem in a dimension q potentially much lower
than the population size N , and if we do not have too many auxiliary variables, this optimization problem
will not be computationally too expensive. In practice, a simplex algorithm is used to find the solution.
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Estimation of the energy distance

There are two difficulties with computing (4.10). First, it involves intractable expectations. Second, as
pointed out at the end of Section 4.4.3, the empirical distribution generated by cube thinning, (4.9), is
actually a signed measure.
Regarding the first issue, we can approximate (4.10) from our MCMC sample X1, . . . , XN . That is, if

our subsampled empirical measure writes ν̂ “
řM
m“1wmδZm and that we approximate the distribution

associated with p by P̂ “ pN ´ bq´1 řN
n“b`1 δXn where 1 ď b ď N is the burn-in of the chain, then, we can

estimate EDpµ̂, pq with EDpµ̂, P̂ q.
Regarding the second issue, we can generalize the energy distance to finite measures: suppose we

have two finite and potentially signed measures ν1 and ν2, both defined on the same measurable space
pΩ,PpΩqu where Ω “ tX1, . . . , XNu and PpΩq denotes the set of parts of Ω. Suppose in addition that
ν1pΩq “ α1 and ν2pΩq “ α2 with α1 ‰ 0 and α2 ‰ 0. We define the generalized energy distance as:

ED‹pν1, ν2q “
2

α1α2

ż

Ω
||x´ y||2dν1pxqdν2pyq

´
1
α2

1

ż

Ω
||x´ x1||2dν1pxqdν1px1q

´
1
α2

2

ż

Ω
||y ´ y1||2dν2pyqdν2py1q.

Then, by negative definiteness of the application ϕpx, yq “ ||x´y||2 on RNˆRN , we have thatED‹pν1, ν2q ě

0 with equality if and only if
1
α1
ν1 “

1
α2
ν2. Which means that the generalized energy distance is zero if

and only if the two measures are equal up to a non-zero multiplicative constant, see Székely and Rizzo
(2005) for a demonstration. This generalized energy distance is also symmetric, but the triangle inequality
does not hold. It is a pseudo-distance.
Thus we will use the following criterion, which we will abusively call the energy distance in the rest of the

paper:

ED‹pν̂, P̂ q “
2

pN ´ bqα1

N
ÿ

k“1

N
ÿ

n“b`1

Ω
M
sgnpwkq||Xk ´Xn||21tSk“1u

´
1
α2

1

N
ÿ

n“1

N
ÿ

k“1

ˆ

Ω
M

˙2
sgnpwnqsgnpwkq||Zk ´ Zn||21tSk“1u1tSn“1u

where ν̂ is defined in (4.9) and we dropped the last term because it does not depend on ν̂ and it is a
potentially expensive sum of pN ´ bq2 terms.
Note that the probability of ν̂pΩq being zero is non-null and then there is a non-negligible probability of
ED‹pν̂, P̂ q being undefined. However, this event is unlikely to happen.
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Chapter 5.

Conclusion

The research presented in this thesis represents only a fraction of the methods that have been tried or
could be tried.
For the application to the Cosmic Microwave Background data analysis, we tried to sample from the high

dimensional Gaussian distribution using a preconditionned Crank-Nicolson algorithm: since both of the
prior term and the likelihood are Gaussians, we could sample from the likelihood on the low signal-to-noise
ratio range and correct with a metropolis ratio involving the prior, and sample from the prior on the high
signal-to-noise ratio part of the problem, to correct with a metropolis ratio involving the likelihood, as it is
usually done. This works well when considering the observed skymap to be zero everywhere. But when it
is not the case, this scheme does not work anymore. Other things that have been tried are the Metropolis
adjusted Langevin algorithm. But the problem is too high dimensional for a Metropolis ratio to be good
and the correlations are too strong on a large set of variables so that fitting a good proposal distribution is
very costly. In addition, if the user is willing to spend a long time computing a good approximation of the
covariance matrix of the Gaussian target, it is better invested in the computation of a good preconditionner
for the PCG resolution, that brings uncorrelated samples, on the contrary of a MALA algorithm. We also
tried some piece-wise deterministic Markov processes, which did not bring improvements.
There are several avenues of research. First, using an unadjusted Langevin algorithm within Gibbs would

be worth trying. It would bypass the correlation problem we have with the auxiliary variable scheme. It
would not suffer from the Metropolis ratio, it would also be very cheap and a Gaussian target has a log-
concave distribution, so we can expect the unadjusted Langevin algorithm to ”behave well”. Of course this
may introduce a bias in the results of the Gibbs sampler and this bias is hard to quantify theoretically. It
would be interesting to observe the behavior of the ULA within Gibbs experimentally.
Another avenue of research would be to integrate the foregrounds to the model. The correlations be-

tween the CMB skymap and the foregrounds are strong and a Gibbs sampler targeting their joint distribu-
tion while having to make a PCG resolution is inefficient: the correlations are so strong and the number of
iterations so low - because of the computing cost - that it cannot explore the target distribution efficiently.
Since we presented two very cheap algorithms, namely Centered 1 and Centered overrelax, it may be
interesting to try foreground removal. The correlations are still strong, but these algorithms are so cheap
that we could do a high number of iterations and thus explore the posterior distribution.
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Chapter 6.

List of talks

During these three PhD years, I have been invited to various events to talk about my research. Here is a
list of these events.

• ”Fast compression of MCMC output”, talk, Current developments in MCMC methods at IMPAN,
Warsaw, December 2021.

• ”Fast compression of MCMC output”, talk and poster, ISBA: Measuring the quality of MCMC output,
October 2021

• ”Fast compression of MCMC output”, talk, Journées MAS, August 2021.

109



Bibliography

N. A. Ade et al. Planck2013 results. x. HFI energetic particle effects: characterization, removal, and
simulation. Astronomy & Astrophysics, 571:A10, oct 2014a. doi: 10.1051/0004-6361/201321577.

P. Ade, J. Aguirre, and et al. The simons observatory: science goals and forecasts. Journal of Cosmology
and Astroparticle Physics, 2019(02):056–056, feb 2019. doi: 10.1088/1475-7516/2019/02/056.

P. A. R. Ade, N. Aghanim, et al. Planck2013 results. XII. diffuse component separation. Astronomy &
Astrophysics, 571:A12, oct 2014b. doi: 10.1051/0004-6361/201321580.

S. Agapiou, J. M. Bardsley, O. Papaspiliopoulos, and A. M. Stuart. Analysis of the Gibbs Sampler for Hier-
archical Inverse Problems. SIAM/ASA Journal on Uncertainty Quantification, 2(1):511–544, Jan. 2014.
ISSN 2166-2525. doi: 10.1137/130944229. URL http://epubs.siam.org/doi/10.1137/130944229.

S. Brooks and A. Gelman. Some issues for monitoring convergence of iterative simulations. Computing
Science and Statistics, pages 30–36, 1998.

N. Brosse, A. Durmus, S. Meyn, E. Moulines, and A. Radhakrishnan. Diffusion approximations and control
variates for MCMC. arXiv 1808.01665, 2019.
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Titre: Algorithmes bayésiens pour la grande dimension, applications en cosmologie.
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Résumé: Une très faible lumière nous parvient
depuis le ciel. Celle-ci n’est pas uniformément
répartie sur la carte du ciel mais présente des
anistropies. En analysant ces anistropies, nous
pouvons déduire son spectre de puissance, ce
qui nous permet de déduire les paramètres
de l’univers. En supposant que le modèle
statistique de génération de ces anistropies
soit un modèle hiéarchique linéaire Gaussien
et en ajoutant une distribution a priori sur les
paramètres, nous pouvons faire de l’inférence
Bayésienne sur ces paramètres. Ceci nous per-
met d’avoir non pas seulement un estimateur
ponctuel des paramètres mais aussi des barres
d’erreur sur ces quantités. Afin de mener à bien
cette inférence, nous reprenons et développons
l’échantillonneur de Gibbs utilisé jusque là dans
la littérature sur l’analyse du fond diffus cos-
mologique. Nous proposons un moyen de rac-
courcir le temps de résolution d’un système
en très grande dimension tout en gardant la
distribution cible invariante. Nous proposons
également un algorithme basé sur une variable
auxiliaire pour contourner cette résolution. Fi-
nalement, en présentant les paramétrisations
centrée et non centrée, nous utilisons une
stratégie d’interweaving afin d’avoir un algo-

rithme mélangeant bien sur l’ensemble du ratio
signal sur bruit.
Le second projet concerne la compression
des chaı̂nes de MCMC. Sous-échantillonner
une chaı̂ne de Markov augmente toujours la
variance asymptotique de l’estimateur obtenu.
Nous voulons donc garder les points les plus
représentatifs afin que cette variance asympto-
tique n’augmente pas trop. En utilisant une
méthode d’échantillonnage pour des sondages
et des ”control variates”, nous proposons une
méthode en deux étapes afin de ne garder
les points les plus représentatifs de la loi cible
parmi une chaı̂ne de MCMC: d’abord, nous util-
isons des control-variates afin d’obtenir un esti-
mateur s’écrivant comme une somme pondérée
de la chaı̂ne initiale. Ensuite, nous utilisons la
méthode du cube afin de sous-échantillonner la
chaı̂ne pondérée obtenue à l’étape précédente.
Nous proposons une façon de gérer les poids
négatifs que la première étape peut donner.
Nous proposons également deux façons d’avoir
des control-variates: l’une, basée sur le ”Stein
trick” et la seconde, basée sur les control-
variates de Gibbs. Ainsi, notre méthode ne
nécessite pas la fonction de score.
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Abstract: We receive a faint light from the sky.
This light is not uniform on the map of the sky but
presents anisotropies. From these anisotropies,
we can deduce its power spectrum, which in turn
allows us to determine the cosmological param-
eters of the universe. Assuming the statistical
model generating the sky map is a hierarchical
linear Gaussian model and adding a prior distri-
bution on the parameters, we can make Bayesian
inference on these parameters. This allows us
not only to have point estimates of the parame-
ters, but also error bars on these quantities. In
order to make this inference, we further develop
the usual Gibbs sampler used in the CMB data
analysis literature. We propose a way to shorten
the resolution of a very high dimensional system
while keeping the target distribution invariant. We
also offer an algorithm based on an auxiliary vari-
able to get around this resolution. Finally, us-
ing the concepts of centered and non centered
parametrization, we use an interweaving strat-
egy to have good mixing properties on the entire

signal-to-noise ratio range.
The second project regards the compression of
MCMC chains. Subsampling a Markov chain al-
ways increases the asymptotic variance of the
resulting estimator. Hence we want to keep the
points that are the most representative so that
this variance does not increase too much. Using
a survey sampling method and control variates,
we propose a two steps procedure to keep the
points that are the most representative of the tar-
get distribution out of a MCMC chain: first, we
use control-variates in order to get an estima-
tor which writes as a weighted sum of the chain.
Then, we use the cube method to subsample the
weighted chain we got at the end of the first step.
We propose a way to deal with negative weights
arising at the first step, which are incompatible
with the cube method. We also provide two ways
to build control-variates: one based on the Stein
trick and the other one based on the Gibbs con-
trol variates. Hence, our method does not neces-
sitate the availability of the score function.
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