
HAL Id: tel-03675233
https://theses.hal.science/tel-03675233v1

Submitted on 23 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Augmenting software engineers with modeling assistants
Maxime Savary-Leblanc

To cite this version:
Maxime Savary-Leblanc. Augmenting software engineers with modeling assistants. Software Engi-
neering [cs.SE]. Université de Lille, 2021. English. �NNT : 2021LILUB027�. �tel-03675233�

https://theses.hal.science/tel-03675233v1
https://hal.archives-ouvertes.fr

University of Lille
Doctoral School MADIS

Laboratory CRIStAL UMR 9189

Thesis defended by Maxime Savary-Leblanc
Defended on 15th December, 2021

In order to become Doctor from University of Lille

Academic Field Computer Science

Augmenting software
engineers with

modeling assistants
Thesis supervised by Sébastien Gérard Co-Supervisor

Xavier Le Pallec Co-Supervisor

Committee members

Referees Je↵ Gray Professor at University of Alabama
Dimitris Kolovos Professor at University of York
Ileana Ober Professor at Université Paul Sabatier

Examiners Silvia Abrahao Associate Professor at Universitat
Politècnica de València

Célia Martinie hdr Associate Professor at
Université Paul Sabatier

Lionel Seinturier Professor at Université de Lille

Supervisors Sébastien Gérard Senior Researcher at CEA List
Xavier Le Pallec hdr Associate Professor at

Université de Lille

Committee president

University of Lille
Doctoral School MADIS

Laboratory CRIStAL UMR 9189

Thesis defended by Maxime Savary-Leblanc
Defended on 15th December, 2021

In order to become Doctor from University of Lille

Academic Field Computer Science

Augmenting software
engineers with

modeling assistants
Thesis supervised by Sébastien Gérard Co-Supervisor

Xavier Le Pallec Co-Supervisor

Committee members

Referees Je↵ Gray Professor at University of Alabama
Dimitris Kolovos Professor at University of York
Ileana Ober Professor at Université Paul Sabatier

Examiners Silvia Abrahao Associate Professor at Universitat
Politècnica de València

Célia Martinie hdr Associate Professor at
Université Paul Sabatier

Lionel Seinturier Professor at Université de Lille

Supervisors Sébastien Gérard Senior Researcher at CEA List
Xavier Le Pallec hdr Associate Professor at

Université de Lille

Committee president

Université de Lille
École doctorale MADIS

Unité de recherche CRIStAL UMR 9189

Thèse présentée par Maxime Savary-Leblanc
Soutenue le 15 décembre 2021

En vue de l’obtention du grade de docteur de l’Université de Lille

Discipline Informatique

Supporter les
ingénieurs logiciels
avec des assistants de

modélisation
Thèse dirigée par Sébastien Gérard co-directeur

Xavier Le Pallec co-directeur

Composition du jury

Rapporteurs Je↵ Gray professeur à l’University of Alabama
Dimitris Kolovos professeur à l’University of York
Ileana Ober professeur à l’Université Paul Saba-

tier
Examinateurs Silvia Abrahao mcf à l’Universitat Politècnica de Va-

lència
Célia Martinie mcf hdr à l’Université Paul Sabatier
Lionel Seinturier professeur à l’Université de Lille

Directeurs de thèse Sébastien Gérard directeur de recherche au CEA List
Xavier Le Pallec mcf hdr à l’Université de Lille

Président du jury

This thesis has been prepared at

CRIStAL UMR 9189
Université de Lille
Campus scientifique
Bâtiment ESPRIT
Avenue Henri Poincaré
59655 Villeneuve d’Ascq
France

Web Site https://www.cristal.univ-lille.fr/

Abstract ix

Augmenting software engineers with modeling assistants

Abstract

Domain knowledge is a prerequisite to produce software design and implemen-
tation tailored to stakeholders’ requirements. One common way to formalize
that knowledge is achieved through conceptual models, which are commonly
used to describe or simulate a system. Acquiring such expertise requires to
discuss with knowledgeable stakeholders and/or to get an access to useful doc-
uments, which both might not always be easily accessible. In the same time,
more model samples can be gathered from multiple sources, what represents an
increasing number of already formalized and accessible knowledge pieces. For
example, some companies keep archives of internal model repositories. There
also exist numerous open source projects that contain models while some mod-
eling tools even o↵er the possibility to create public projects that are free to
browse. Such data sources could be exploited to create domain knowledge that
could be provided to software engineers while modeling. To be useful, this
knowledge must be of high quality, but must also be well integrated into the
software modeling process. The focus of this thesis is to provide a framework
to exploit knowledge to assist users of computer-based modeling tools with
software modeling assistants. This thesis first introduces our research questions
based on a systematic mapping study about software assistants for software
engineering, and then focuses on software assistants for modeling. It reports on
the design of modeling assistants based on a user-centered approach. We present
the conclusions of interviews conducted with experts in modeling, a stage in
which requirements are collected. Then, we develop the creation of a prototype
modeling knowledge base allowing (i) to create general and specific artificial
modeling knowledge, and (ii) to make them available to any software client via
recommendations. After introducing the results of an experiment regarding the
accuracy of the system, we discuss these preliminary results. Finally, this thesis
presents a software modeling assistant implementation integrated to the Papyrus
tool, which aims to cognify the UML modeling environment by integrating the
previously created knowledge. Our work helps to clarify the need for assistance
during software modeling work, presents an initial approach to the design of
software assistants for software modeling, and identify research challenges in
modeling assistance.

Keywords: software assistants, modeling, software engineering, trust, creativity,
recommender systems, automation

CRIStAL UMR 9189
Université de Lille – Campus scientifique – Bâtiment ESPRIT – Avenue
Henri Poincaré – 59655 Villeneuve d’Ascq – France

x Abstract

Supporter les ingénieurs logiciels avec des assistants de modélisation

Résumé

La connaissance du domaine est une condition préalable à la conception et à
la mise en œuvre de logiciels adaptés aux exigences des parties prenantes. Une
façon courante de formaliser cette connaissance est réalisée par des modèles
conceptuels, qui sont couramment utilisés pour décrire ou simuler un système.
L’acquisition d’une telle expertise nécessite de discuter avec des parties pre-
nantes bien informées et/ou d’avoir accès à des documents utiles, qui ne sont pas
toujours facilement accessibles. Dans le même temps, de plus en plus d’échan-
tillons de modèles peuvent être rassemblés à partir de sources multiples, ce
qui représente un nombre croissant d’éléments de connaissance déjà formalisés
et accessibles. Par exemple, certaines entreprises conservent des archives de
référentiels de modèles internes. Il existe également de nombreux projets open
source qui contiennent des modèles, tandis que certains outils de modélisation
o↵rent même la possibilité de créer des projets publics que l’on peut parcourir
librement. Ces sources de données pourraient être exploitées pour créer une
connaissance du domaine qui pourrait être fournie aux ingénieurs logiciels lors
de la modélisation. Pour être utile, cette connaissance doit être de haute qualité,
mais doit aussi être bien intégrée dans le processus de modélisation du logiciel.
L’objectif de cette thèse est de fournir un cadre pour exploiter les connaissances
afin d’aider les utilisateurs d’outils de modélisation informatique avec des assis-
tants de modélisation logicielle. Cette thèse présente d’abord nos questions de
recherche basées sur une étude de cartographie systématique sur les assistants
logiciels pour l’ingénierie logicielle, et se concentre ensuite sur les assistants
logiciels pour la modélisation. Elle rend compte de la conception d’assistants de
modélisation basée sur une approche centrée sur l’utilisateur. Nous présentons
les conclusions des entretiens menés avec des experts en modélisation, une étape
au cours de laquelle les exigences sont recueillies. Ensuite, nous développons la
création d’un prototype de base de connaissances en modélisation permettant (i)
de créer des connaissances artificielles générales et spécifiques en modélisation,
et (ii) de les mettre à disposition de tout client logiciel via des recommandations.
Après avoir présenté les résultats d’une expérience concernant la précision du
système, nous discutons ces résultats préliminaires. Enfin, cette thèse présente
l’implémentation d’un assistant de modélisation logiciel intégré à l’outil Papy-
rus, qui vise à cognifier l’environnement de modélisation UML en intégrant les
connaissances précédemment créées. Notre travail permet de clarifier le besoin
d’assistance pendant les travaux de modélisation de logiciels, de présenter une
première approche de la conception d’assistants logiciels pour la modélisation de
logiciels, et d’identifier les défis de recherche dans l’assistance à la modélisation.

Mots clés : assistants logiciels, modélisation, ingénieurie logicielle, confiance,
créativité, systèmes de recommandation, automatisation

Abstract xi

CRIStAL UMR 9189
Université de Lille – Campus scientifique – Bâtiment ESPRIT – Avenue
Henri Poincaré – 59655 Villeneuve d’Ascq – France

xii Abstract

Acknowledgements

This manuscript is the result of three years rich in emotions, twists and
turns, work, e↵orts, but also pleasure. First of all, I would like to thank
in a general way all the people who accompany me every day, from
various horizons, in particular from the associative field, which allow
me to live so many di↵erent adventures.

First of all, I would like to thank the referees of my thesis, professors
Ileana Ober, Je↵ Gray, and Dimitris Kolovos, who accepted to read the
manuscript and produce detailed and enriching reports. Your precise
feedback and remarks allowed me to prepare the defense as well as
possible, and to continue improving this manuscript. I would also
like to thank Silvia Abrahao, Celia Martinie, and Lionel Seinturier, the
examiners of my defense, who accepted to travel to o↵er their comments
and remarks on my work.

I will not find strong enough words to thank Xavier Le Pallec and
Sébastien Gérard for the 3 years spent at their side, as my thesis super-
visors. I am aware of the exceptional working environment that you
were able to provide me, materially, but especially humanly. I regularly
bothered you to get answers, opinions, material, and you always reacted
quickly and positively. It is necessary to note the incredible series of
problems that I had to face since the beginning of the thesis, and until
the last days before the defense. When you are unlucky ... you are un-
lucky. However, I will quote a great wise man "only those who do things
have to solve problems". Besides, great wise man, with this manuscript,
I emancipate myself as a slave!

I also want to thank the Carbon team at the University of Lille
for their technical support and our discussions in meetings. I thank
the CEA and the Papyrus development team, who did their best to
help me solve the problems I encountered with Papyrus. I would also
like to thank the researchers I was able to collaborate with during my
thesis. Thanks to Antonio Bucchiarone for the PapyGame adventure,

xiii

xiv Acknowledgements

thanks to Loli Burgueño for our discussions and your always meaningful
advices, thanks to Rodi Jolak for allowing me to do this interesting
experimentation (one month after starting my thesis), thanks to Jordi
Cabot for your vision and your always clear and pragmatic feedbacks,
thanks to Philippe Palanque for sharing your vision of HCI with me.
Thanks also to Michel Chaudron and Bran Selic for our discussions and
your wise feedbacks.

Finally, I would like to particularly thank my close friends and family,
who have been my support throughout this winding thesis adventure.
First, thanks to Florian and Corentin, my lifelong friends, for their
presence in my life. Florian, your daily support, our moments of life,
your good mood, your adventures, and simply you, allowed me to find
(or sometimes to find again) the strength to go on with this 3 years work.
If a thesis mixed with two lockdowns did not succeed in making us
crack, I believe that you will unfortunately have to support me for a
long time. Corentin, thank you for having decided that a thesis was not
enough, and that you had to add the organization of your wedding, and
very soon the birth of my godchild to the deal. Our online games, our
discussions and our laughs were a strength in which I could draw an
incredible positive energy. Thank you to Amélie for supporting me at
the beginning of my thesis, in a moment of uncertainty, when you don’t
know what you should do (or even who you are). Finally, I would like
to thank my parents for their unfailing support during all these years.
I never really knew how to choose what I wanted to do, so I chose to
do everything at the same time, and you were always there. Thank you.
Thank you to Delphine and Guillaume, my sister and my brother, for
their presence and their daily support.

Ce manuscrit est le résultat de trois années riches en émotions, en
rebondissements, en travail, en e↵orts, mais également en plaisir. Je
tiens tout d’abord à remercier de manière générale tous les gens qui
m’accompagnent au quotidien, d’horizons variés, notamment du milieu
associatif, qui me permettent de vivre autant d’aventures di↵érentes.

En premier lieu, je tiens à remercier rapporteurs de ma thèse, les
professeurs Ileana Ober, Je↵ Gray, et Dimitris Kolovos, qui ont accepté
de lire le manuscrit et de produire des rapports détaillés et enrichissants.
Votre feedback précis et vos remarques m’ont permis de préparer au
mieux la soutenance, et de continuer à améliorer ce manuscrit. Je tiens
également à remercier Silvia Abrahao, Célia Martinie et Lionel Sein-
turier, les examinateurs de la soutenance, qui ont accepté de faire le

Acknowledgements xv

déplacement pour venir proposer leurs commentaires et leurs remarques
sur mon travail.

Je ne trouverai pas demots assez forts pour remercier Xavier Le Pallec
et Sébastien Gérard pour les 3 années passées à leurs côtés, comme mes
directeurs de thèse. J’ai conscience de l’exceptionnel environnement
de travail que vous avez pu me fournir, matériellement, mais surtout
au niveau de votre disponibilité. Je vous ai régulièrement embêté pour
avoir des réponses, des avis, des opinions, du matériel, et vous avez
toujours réagi rapidement et positivement. Il faudra quand même noter
l’incroyable série de problèmes que j’ai dû a↵ronter depuis le début
de la thèse, et jusqu’aux derniers jours avant la soutenance. Quand on
n’a pas de chance . . . on n’a pas de chance. Cependant, je citerai un
grand sage "il n’y a que ceux qui font des choses qui doivent résoudre
des problèmes". D’ailleurs, grand sage, avec ce manuscrit, je m’émancipe
en tant qu’esclave !

Je souhaite remercier également l’équipe Carbon à l’université de
Lille pour le soutien technique et les discussions en réunions. Je re-
mercie le CEA et l’équipe de développement de Papyrus, qui ont fait
leur possible pour m’aider à résoudre les problèmes que je rencontrais
avec Papyrus. Je souhaite également remercier les chercheurs avec qui
j’ai pu collaborer au cours de ma thèse. Merci à Antonio Bucchiarone
pour l’aventure PapyGame, merci à Loli Burgueño pour nos discussions
et tes conseils toujours justes de sens, merci à Rodi Jolak pour m’avoir
permis de faire cette expérimentation interessante (un mois après avoir
commencé ma thèse), merci à Jordi Cabot pour ta vision et tes retours
toujours clairs et pragmatiques, merci à Philippe Palanque pour partager
ta vision de l’IHM avec moi. Merci également à Michel Chaudron et à
Bran Selic pour nos discussions et vos retours avisés.

Enfin, je souhaite particulièrement remercier mes proches, qui ont été
mon soutien tout au long de cette sinueuse aventure de thèse. D’abord,
merci à Florian et Corentin, mes amis de toujours, pour leur présence
dans ma vie. Florian, ton soutien quotidien, nos moments de vie, ta
bonne humeur, tes aventures, et tout simplement toi, m’ont permis de
trouver (ou de retrouver parfois) la force d’avancer sur ce travail de 3
ans. Si une thèse mixée à deux confinements n’ont pas réussi à nous
faire craquer, je crois que tu vas malheureusement devoir me supporter
encore un bon moment. Corentin, merci d’avoir jugé qu’une thèse n’était
pas su�sante, et qu’il fallait ajouter l’organisation de ton mariage, et très
bientôt la naissance de mon (ou ma) filleul(e) à l’a↵aire. Nos parties en
lignes, nos discussions et nos fou-rires ont été une force dans laquelle j’ai
pu puiser une énergie positive incroyable. Merci à Amélie pour m’avoir

xvi Acknowledgements

épaulé au début de ma thèse, dans un moment de flou, où l’on ne sait
pas bien ce que l’on doit faire (ni même qui l’on est). Merci enfin à mes
parents pour leur soutien sans faille depuis toutes ces années. Je n’ai
jamais trop su choisir ce que je voulais, alors j’ai choisi de tout faire en
même temps, et vous avez toujours répondu présents. Merci. Merci à
Delphine et à Guillaume, ma soeur et mon frère, pour leur présence et
leur soutien au quotidien.

Acronyms

API Application Programming Interface. 31, 32, 37, 38, 41, 55–57, 149,
164, 166, 168, 181, 183

CASE Computer-Aided Software Engineering. 14

CI/CD Continuous Integration/Continuous Delivery. 180

CSCW Computer-Supported Cooperative Work. 9, 14

CSE Collaborative Software Engineering. 14

DIKW Data, Information, Knowledge, and Wisdom. 16

HCI Human-Computer Interactions. xxiii, 9, 39, 41, 42, 49, 50, 53, 100,
202, 204

IDE Integrated Development Environment. 14, 16, 18, 39, 48, 49, 51,
53, 55, 57

IPSE Integrated Programming Support Environments. 14

MBSE Model-Based Software Engineering. 1, 4, 22, 85, 129

MCRS Multi-Criteria Recommender System. 128, 129, 170

MDE Model-Driven Engineering. 28, 68, 69, 85

ML Machine Learning. 28–30, 53, 192

OMG Object Management Group. 22

RS Recommender System. 35, 36, 40, 41, 44, 55, 56

xvii

xviii Acronyms

RSSE Recommender Systems for Software Engineering. 28

SASM Software Assistant for Software Modeling. xix, 122, 139, 140,
142, 144, 146, 148, 150, 152, 154, 156, 158, 235

SEE Software Engineering Environments. 14

SMS Systematic Mapping Study. 27, 29

SWEBOK Software Engineering Body of Knowledge. 29, 30

UI User Interface. 36, 148

UML Unified Modeling Language. xxiii, 9, 18–20, 36, 44, 55, 56, 62, 64,
66–74, 85–87, 95, 129, 130, 132, 147–149, 161–163, 166–172, 176,
180, 181, 191, 194, 200, 204

Summary

Abstract ix

Acknowledgements xiii

Acronyms xvii

Summary xix

List of Tables xxi

List of Figures xxiii

1 Introduction 1

I The current state of software modeling assistance 11

2 Supporting software modeling: context and challenges 13

3 Software Assistants for software engineering in literature 27

4 The need for assistance in software modeling practice 59

5 The big picture of software modeling assistance 99

II Designing Software Assistants for Modeling 105

6 Identifying design constraints from the literature 107

7 A framework for designing SASM 139

xix

xx Summary

III Validating our approach: preliminary work 159

8 Designing a software modeling assistant 161

9 Prototyping the software modeling assistant 179

10 Early evaluation of our system 189

Conclusion 199

Bibliography 207

Index 229

Contents 233

List of Tables

3.1 Selected conferences . 32
3.2 Selected journals . 32
3.3 Search keywords . 33
3.4 Pruning keywords . 33
3.5 Assistant purposes and specific tasks 55
3.6 Software Assistant types 55
3.7 Assistant types for specific tasks 56
3.8 Datasources description 57

4.1 Summary of participant’s profiles 66
4.2 Most challenging aspects of modeling according to our

participants . 70
4.3 Aspects of participants’ required modeling assistance . . 74
4.4 Participants’ features for their ideal modeling assistant . . 76
4.5 Features for the ideal modeling assistant with a client . . 76
4.6 Tasks on which participants help colleagues 82
4.7 Features to assist participants’ colleagues 84

7.1 Role of stakeholders . 143
7.2 Association of stakeholders and concerns 146
7.3 Framework system requirements viewpoint 151
7.4 Correspondence between system concerns and architec-

ture viewpoints . 157

8.1 Modeling assistant design overview from the concerns
perspective . 169

8.2 Criteria identification grid 173

10.1 Labelled data distribution 192
10.2 Learned overall functions 193

xxi

xxii List of Tables

10.3 Testing data set metrics measures 193

List of Figures

1.1 The user-centred design iterative process from ISO 9241-
210 [79] . 5

1.2 Detailed steps of design thinking adapted from [66] . . . 6

3.1 Inclusion-exclusion decision algorithm specification for
the reading of title, abstract, and full paper. 34

3.2 Exploration results. 35
3.3 Number of publications . 38
3.4 Number of assistants per purpose 39
3.5 Number of publications . 40
3.6 Number of of assistant types for identified purposes . . . 41
3.7 Number of assistants per HCI indicator 42
3.8 Nature of the output provided by the assistants 43
3.9 Machine Learning usage 44
3.10 Datasource usage by assistant type 45
3.11 Automation patterns . 46
3.12 Number of assistants implementing each automation pat-

tern . 46

4.1 Overview of the panel of participants 64
4.2 Formal and informal modeling media 65
4.3 Participants’ frequency of both informal and formal mod-

eling . 67
4.4 Types of UML diagrams that participants use 68
4.5 Modeling goals of the participants 69
4.6 Participants’ need for help when modeling 73
4.7 Participants’ answers to what makes a good or bad soft-

ware modeling assistant. 77
4.8 Overview of the results of R.Q. 3 subquestions 79

xxiii

xxiv List of Figures

6.1 A conceptual model of trust for recommender systems. . 112
6.2 Iterative alignment of problem and solution spaces, adapted

from [99] . 118
6.3 Main factors for creative production, from [102] 119
6.4 The three levels of knowledge for modeling assistants. . . 123

7.1 Conceptual model of an architecture description from
ISO 42010:2011 [80] . 140

7.2 Framework functional viewpoint 154
7.3 Framework structural viewpoint 155
7.4 Framework infrastructure viewpoint 156

9.1 The overall architecture of our prototype modeling assistant180
9.2 Example of class and attribute nodes metadata in the

graph database . 181
9.3 Example of Cypher query 182
9.4 Example of a recommender system query 184
9.5 The interface of the modeling assistant. 186
9.6 The anatomy of an attribute recommendation entry. . . . 187

10.1 The web data-labelling interface 190
10.2 The diagram to replicate in the use cases. 195
10.3 Exact recommendations (green/circle), approximate rec-

ommendations (orange/triangle), and not recommended
elements (red/square) in both use cases. 196

Chapter1
Introduction

1.1 Global context

Model-Based Software Engineering (MBSE) is now a widely recognized
methodology and its potential benefits are no longer to prove [76]. How-
ever, the increasing complexity of software systems to design, and the
broad diversity of user profiles to deal with push current modeling tools
to their limits [88]. In di↵erent studies, the usability or the interoper-
ability of such tools are very often stressed as major factors that slow
down the adoption of the model-based approaches. These elements of
accidental complexity [9] then increase the required mental e↵ort to
conceive models.

In the meantime, current modeling tools still poorly support the
essential complexity of the modeling task. This refers to the inherent
di�culty of the problem such as knowing and understanding the domain
concepts, choosing what to include in the model or not, or selecting
the right level of abstraction for a model [186]. While this essential
complexity cannot be reduced by definition, it can be addressed to assist
users during the creative problem-solving task of modeling. However,
the quality or even the existence of such assistance is tightly coupled to
the availability and the quality of domain and modeling knowledge.

Additional model samples can be gathered from multiple sources,
which represents an increasing number of already formalized and ac-
cessible knowledge pieces. For example, some companies maintain in-
ternal model repositories [194]. There also exist numerous open source
projects that contain models [72] while some modeling tools even o↵er

1

2 CHAPTER 1. Introduction

the possibility to create public projects that are free to browse. Modeling
tools could benefit from this available data to embed new knowledge-
empowered features –software modeling assistants– that augment users
and help them cope with the essential complexity of modeling. This
approach has been investigated in a few di↵erent papers [52, 162] and
industrial tools12, but is still not mainstream in modeling tools.

1.2 Thesis directions

In this thesis, we aim at understanding the modeling task better to
propose a solution to support it. Specifically, we investigate how the
notion of software assistants could be a solution to tackle current
software modeling issues. In this (less formal) section, we present our
vision of the work reported in this thesis manuscript. More specifically,
we present how we aim to address the topics of (i) software assistants, (ii)
current issues in software modeling, and (iii) solutions to these issues.

1.2.1 Software assistants

Software assistants are increasingly present in our lives, whether they
are materialized by hardware components, or only virtual, like those
integrated in our phones or cars. In fact, the term software assistant is
regularly used in the media, and consequently in the scientific litera-
ture, following the evolution of the common vocabulary. However, to
the extent of our knowledge, this term has never been defined in the
literature for software modeling nor for software engineering. At the
extreme, it seems that this term does not have a consensual definition
for everyday-life assistants either. Thus, the use of the term software as-
sistant seems to be at the discretion of the authors, judging on their own,
in pure subjectivity, if their system qualifies or not for this appellation.

One of the goals of this thesis is to clarify the notion of software assis-
tant for software engineering and software modeling. In this manuscript,
we propose our answer to "What is a software assistant for software engi-
neering?", based on the literature. We then show that, although software
modeling assistants share the same definition as software engineering
assistants, they must be designed in a particular way, in order to address
the specific problems of the modeling task.

1https://www.outsystems.com/ai/
2https://www.mendix.com/

1.2. Thesis directions 3

1.2.2 Current software modeling issues

Numerous studies highlighted that the adoption of model-based soft-
ware engineering approaches is limited by various modeling-related
issues. For instance, some studies point out the complexity of the mod-
eling language, while others highlight the steep learning curve and the
usability issues of modeling tools. These issues have been investigated
under several aspects, to such a point that they are now acknowledged
by the modeling research community.

Today, we know these multiple problems, but when we ask “What
is the first issue to tackle to help modeling practitioners?”, the answer is
far from obvious. Literature provides scattered portions of information,
often focused on one aspect of modeling, such as the complexity of
the language, or the use of the tool. However, practitioners mix all
these concepts together to achieve overall modeling tasks. This might
cause unexpected issues to emerge. In the meantime, it is important to
understand whether practitioners actually experience all aspect-specific
problems reported in the literature.

One of the goals of this thesis is to understand which, if any, issues
should be addressed in priority, according the practitioners. Thus, we
put our results in perspective with the literature to potentially identify
problems that may not have been addressed in the literature yet. Our
approach on this point is closer to applied research rather than fun-
damental research, as it builds on the desires of the population being
studied rather than on the theories validated in the literature. Thus,
the thesis aims to help academics but also practitioners who would be
interested in improving their tools, to adapt them to the field problems,
identified by the practitioners and the scientific community.

1.2.3 A solution to software modeling issues

During three years dedicated to research in the software modeling field,
we encountered many articles identifying the modeling problems, as
mentioned in the previous section. This is probably the case for many
readers of this manuscript and for researchers, provided that they reg-
ularly work in the modeling field. The mention of these problems is
recurrent in literature, to such a point that it is now almost an accepted
fact in the community that modeling raises many issues (but also solves
many).

However, while much work has been done on identifying such issues,
it seems that much less research e↵ort has been devoted to identifying
solutions to these problems. In any case, it is clear that these solutions

4 CHAPTER 1. Introduction

are much less known to the community than the problems. For exam-
ple, modeling researchers can easily cite the problem of modeling tools,
which appear to be a barrier to the broad adoption of MBSE approaches.
However, it seems much more complicated to list concrete and proven
solutions to this problem, e.g., to answer "How to improve modeling
tools in a concrete way?". This observation is not specific to model-
ing tools, and can be applied to almost any other modeling problem
identified in the literature.

The thesis aims to show that software assistants can help to compen-
sate for the previously identified problems of modeling (see the previous
section). Then, in order for these assistants to fulfill their role, and
hence propose better alternatives than the currently available tooling,
we particularly study how to assist modeling. The development of a good
solution first requires the perfect understanding of both the context
and the problem to be addressed. Thus, this manuscript presents an
analysis of the modeling task and the problems of modeling, as a basis
for understanding how to make software assistants a real solution to
modeling problems. Finally, we present a set of guidelines for defining
software assistants as concrete solutions to current modeling problems.

1.3 Research methodology

In this section, we describe the research approach that we conducted
over the three years of the thesis and introduce the research questions
that this manuscript addresses. Then, we present the 3-part structure of
the thesis.

1.3.1 Research approach

The overall goal of the thesis was to investigate how to design systems
capable of cognifying [37] the current modeling tools, e.g., capable of
integrating knowledge into software modeling tools to assist modelers.
We specifically investigated the Human-Computer Interactions between
such systems and the modeling engineers more than the technical as-
pects such as recommendation or graph algorithms. This interest had
been motivated by both the complex nature of the modeling task and the
current shortcomings of modeling tools. In this thesis, we particularly
emphasize the prevalence of well-designed interactions on the perfor-
mance of the back-end algorithms for assistance systems for software
modeling.

1.3. Research methodology 5

To do so, we followed an approach similar to the user-centred design
methodology as defined in the ISO 9241-210 standard named Human-
centred design for interactive systems [79]. This methodology of design
thinking, which is now commonly used to design the User eXperience
of new user-oriented systems, is based on four main stages as presented
in Figure 1.1, which then can be detailed as presented in Figure 1.2. We
detail these four main steps and introduce how we applied them to our
research about software modeling assistants.

Figure 1.1 – The user-centred design iterative process from ISO 9241-210
[79]

1. Understand and specify the context of the use. During this step,
designers are expected to conduct research to develop an under-
standing of the potential users of the system, and to observe where
users’ problems happen. This includes the understanding of (i)
the users and (ii) their characteristics, the (iii) goals and tasks of
the users, and (iv) the environment of the system. In our case, the
previous refer to the understanding of the various (i-ii) profiles
of modeling tool user, (iii) the nature of the modeling task, the soft-
ware modeling processes and inner tasks, as well as (iv) the current
modeling tools and their issues.

6 CHAPTER 1. Introduction

Figure 1.2 – Detailed steps of design thinking adapted from [66]

2. Specify the user requirements. This step mainly refers to iden-
tifying users’ needs. User experience design methods include
observation, surveys, or interviews, to gather the maximum infor-
mation about users and their true needs. This translates to our
case by gathering the modeling tool users’ expectations and needs
in term of assistance when performing digital modeling.

3. Produce design solutions to meet user requirements. It is dur-
ing this step that a prototype is developed for further evaluation.
The ISO standard only refers to the design of user tasks, user-
system interaction, and user interface that meet the requirements
identified in 2. However, it does not cover the way data is produced
to be displayed by these components. In this thesis, the prototype
creation instead requires a full software assistant to be developed
so evaluations can be performed. It hence includes the previous
components to be developed, as well as technical components such
as databases or algorithms.

1.3. Research methodology 7

4. Evaluate the designs against requirements. During this last step,
designers are expected to conduct user-centred evaluation, by per-
forming user-based testing and/or inspection-based evaluations
using usability and accessibility guidelines or requirements. These
two evaluation methods are further detailed in the ISO 9241-210
standard. Thus, in order to evaluate and validate the research
results of this thesis, empirical experiments with real modeling
tool users should be conducted.

We followed these steps to guide our research approach about cog-
nifying modeling tools. Our research work has thus allowed a better
understanding of the modeling tasks, the users’ needs, and the current
modeling tool issues, which is synthesized here in this manuscript and
has been partitioned into several articles. These articles underwent a
partial and preliminary validation by being submitted to peer-reviewed
venues, as listed at the end of the manuscript. Our research approach
was then structured to be split in di↵erent parts, and to answer the
overall thesis research questions presented in the following section.

1.3.2 Thesis research questions

To achieve our goals in understanding and assisting the software model-
ing activities, this thesis addresses the following research questions.

• T.R.Q. 1. What is a software assistant for software modeling?

• T.R.Q. 2. Are there software assistants for software engineering
(and software modeling) in the literature?

• T.R.Q. 3. What are the common characteristics of software assis-
tants for software engineering from the literature?

• T.R.Q. 4. Are there identifiable ways of designing software assis-
tants for software engineering that emerge from the literature?

• T.R.Q. 5. Are the software assistants available in the literature in
line with the expectations of modeling practitioners?

• T.R.Q. 6. What are the key concepts in modeling assistance?

• T.R.Q. 7. What are the guidelines to follow when designing soft-
ware assistants for software modeling?

8 CHAPTER 1. Introduction

One of the main interests of these research questions concerns the
social impact of introducing digital partners in a software engineering
task. Indeed, modeling assistance has almost always been performed
between colleagues, from human to human. Integrating a machine to
act as a human peer in a work-related task has a potentially important
social impact. The research questions investigate how to integrate these
digital peers into the work process of engineers in the most suitable way.
The social and emotional aspects such as users’ perception about what
is good or bad, their preferences, their creativity, or their propensity to
trust are part of this process, and are thus addressed by these research
questions. Composing a human-machine team shares many characteris-
tics with creating human-human teams, as done everyday in companies.
These issues can then be generalized to the problem of composing a
successful project team from heterogeneous profiles, often addressed in
software engineering.

These research questions aim at understanding how to support the
modeling activity. Thus, they may support economic interests at dif-
ferent scales. Assisting the modeling task aims at reducing the time or
e↵ort spent on it. The reduction of these two factors is sensibly linked to
the productivity increase of modeling engineers, which is of economic
interest to the company that employs them. Assisting conceptual model-
ing can potentially improve the quality of the models produced, which
in turn has a positive impact for the company. Editors and designers
of software solutions to support modeling might also find a strong eco-
nomic interest in the answers to these research questions. In particular,
the outcomes might allow them to better understand how to design (i) a
product more adapted to the target population, (ii) to produce products
with better acceptability, and (iii) to improve the design methodology of
their solutions.

These research questions are of interest to researchers seeking a
better understanding of collaborative modeling, with a machine. Indeed,
the notion of assistance implies the collaboration of two actors, whether
human-human, or human-machine. In particular, we deal with the key
notions of assistance, valid in both cases, and then refine our work on
how to translate these key notions into software systems. Our approach
is entirely based on scientific foundations coming from the literature and
may therefore be replicated and potentially generalized to assistance
for other tasks. The guidelines we propose allow for the design and
implementation of new assistance systems, and thus o↵er a validation
alternative, based on the comparison of existing or future solutions with
software assistants.

1.3. Research methodology 9

The approach guided by these research questions aims at proposing
an original and innovative solution by using software assistants to tackle
software modeling problems. These problems are a clearly identified
theme in the software modeling research community. Our work is
anchored at the crossroads of di↵erent research themes such as Software
Modeling, Human-Computer Interactions (HCI), Computer-Supported
Cooperative Work (CSCW), or the community of Bots systems.

1.3.3 Structure of the thesis manuscript
The manuscript is organized as follows. Part I investigates the current
state of Software Modeling Assistants, as to understand and specify the
context of the use of assistants, and to specify the user requirements
about them. Chapter 2 provides context elements to embrace the nature
of the modeling task and the challenges to support it with software
modeling assistants. Chapter 3 reports on our e↵ort to provide a clear
understanding of the literature about software assistants for software en-
gineering, including software modeling. Chapter 4 presents the results
of the interviews of 16 modeling experts about their need of assistance
at work. Chapter 5 puts into perspective the previous results of this
first part, highlighting the breaks between existing software assistants
and practitioners’ expectations, as well as the key notions of modeling
assistance.

Part II relies on the key notions of modeling assistance presented in
Part I to formalize the creation process of software modeling assistants.
Based on the results of our study of the literature, our systematic liter-
ature study, and our interviews, it describes the process of defining a
formal framework to design software assistants for software modeling.
Chapter 6 draws upon the conclusions of Chapter 5 and identifies lit-
erature guidelines to support the key notions of modeling assistance
in software systems. Chapter 7 presents the application of standard
ISO/IEC/IEEE 42010 to define a formal framework for the design of
software assistants for software modeling.

Part III reports on our framework validation approach. Chapter 8
describes the instantiation of the previously defined framework to design
a system that assists the creation of Unified Modeling Language (UML)
class diagrams inside the Papyrus modeling tool. Chapter 9 reports
on the preliminary evaluation e↵orts that have been conducted, and
describes our plan to conduct broader empirical evaluations. Chapter
10 concludes on the research questions and identifies perspectives to
extend or generalize our work.

10 CHAPTER 1. Introduction

Part I

The current state of
software modeling

assistance

Chapter2
Supporting software
modeling: context and
challenges

In this chapter, we provide a broad overview of the field of software assistants,
and dig into what is the nature of the software modeling task as the first step of
our human-centred research approach. Based on the state-of-the-art modeling
issues and modeling purposes, we present a first e↵ort in understanding
and specifying the modeling context, in which we plan to embed software
assistants. This chapter sets the scene for the thesis and identifies the first
issues of the thesis, namely the problems of modeling tools and assisting
modeling with respect to the nature of its inner mechanisms.

2.1 Tool support in Software Engineering

Tools for programmers naturally existed since the beginning of Software
Engineering around 1960. At that time, they were single tools focused
on some specific tasks of the Software Engineering life cycle, mainly
cumbersome to use, and often acting in isolation of each other [126].
Around 1980, the increasing complexity of the solutions to be produced
as well as the better understanding of the users’ needs drove the im-
provement of the existing Software Engineering instrumentation [22].
A new wave of systems then gradually replaced tools with more com-

13

14 CHAPTER 2. Supporting software modeling: context and challenges

prehensive functionalities gathered in environments, such as Integrated
Programming Support Environments (IPSE) and later Software Engi-
neering Environments (SEE). These systems fall under the emerging
field of Computer-Aided Software Engineering (CASE) tools, which lay
the foundation for modern-day Integrated Development Environments
(IDEs). As environments improve, other issues emerge such as the need
for collaboration to produce ever more complex systems, which paves
the way for the Computer-Supported CooperativeWork (CSCW) commu-
nity and more specifically the Collaborative Software Engineering (CSE)
community [67]. The CSE community seeks to enhance environments to
cope with di↵erent forms of collaboration.

During the 1990s, the agent research fields exploded and brought
to light a new opportunity for collaboration: that with the machine act-
ing as an autonomous system with which users (or other agents) could
interact and work [83]. Some agents are refined into intelligent agents
that are reactive, proactive, and social agents tailored for human-agent
collaboration [191], and applied to support Software Engineering pro-
cesses [62, 75]. However, due to the lack of computing resources and/or
data to exploit, such agent-based systems never became mainstream in
Software Engineering [54].

The broad Software Agent community has remained active and has
branched into several sub-categories. Particularly, the notion of con-
versational agent (a.k.a. bot or chatbot – coined by Michael Mauldin in
1994) is gaining importance recently, and has quickly became a must-
have, especially in the sectors of customer support or video games [56,
54]. In 2016, Storey and Zagalsky laid the foundation for research on
bots in software engineering and described how bots are increasingly
used to support tasks that traditionally required human intelligence
[174]. It has particularly been applied to Software Engineering to create
BOTse [173] or DevBots [54] (bots for Software Engineering) [134]. A
consensual definition established during the BOTse Dagstuhl seminar in
2020 [173] defines bots as systems featuring at least one of the following
characteristics: (i) automates one or more feature(s), (ii) performs one or
more function(s) that a human may do, (iii) interacts with a human or
other agents.

At ICSE’06, Boehm predicted a new kind of developer-helping sys-
tems for 2020s as "that provide feedback to developers based on domain
knowledge, programming knowledge, systems engineering knowledge,
or management knowledge" [22]. The description of previous bot sys-
tems is almost inline with these expectations but still lacks one essential
characteristic that Boehm described as “the use of knowledge”. Storey

2.2. A new wave of assistance systems: Software Assistants 15

et al. [174] identify bots embedding knowledge as one specific type of
bots. Thus, knowledge appears as an inflexion point, which opens the
way for the study of a specific type of system —knowledge-empowered
DevBots— that we will call Software Assistants for Software Engineer-
ing.

2.2 Anewwave of assistance systems: Software
Assistants

Software assistants are progressively spreading at work, into the Soft-
ware Engineering community. However, it has been several years that
they made their way into our daily lives. In this section, we elaborate on
the need to understand what is a software assistant for work tasks, and
clarify the role of knowledge in this new wave of systems.

2.2.1 Digital assistance systems: Software Assistants

Digital assistance systems such as Google Home, Amazon Alexa, but
also recommender systems on Netflix or Amazon, or website-integrated
chatbots, have spread into our lives recently, to the point that they now
seem commonplace [111, 68, 184]. These software assistants aim to
improve our daily life, by performing actions for us, answering our
questions, or anticipating our needs. To do so, they often o↵er smart
interactions, which usually adapt to the conditions in which they are
used [120]. However, although they are widespread at home, few of
these technologies have been applied to the work environment. Indeed,
it appears that research in the area of applying these assistance tech-
nologies to the world of work, and particularly to software modeling, is
underdeveloped. This may be related to the insu�cient understanding
of the tasks performed during modeling, which is a complex creative
activity aiming to solve ill-defined problems [181]. One of the objectives
of this thesis is to understand how these technologies anchored in our
daily life can be applied to work tasks, and in particular to the modeling
task.

2.2.2 Knowledge provided by software assistants

To be truly useful and e↵ective, software assistants must be able to
answer users’ questions or perform tasks for them. To do so, they
must demonstrate an understanding of the context, but also possess the

16 CHAPTER 2. Supporting software modeling: context and challenges

required knowledge to achieve their goals. Like human assistants [53],
software assistants must then embed knowledge.

Knowledge appeared in the 1980s in the scope of Software with
knowledge based systems [163]. However, it is with the increasing
amount of available storage and computation resources that it appeared
in the 2000’s as a revolution for digital systems, involving fundamental
changes in the way people relate to their own knowledge [20]. Knowledge
is a broad term which encapsulates di↵erent notions and which has no
consensual definition [154]. Nevertheless, it is commonly admitted that
data can lead to information which, in turn, can lead to knowledge, based
on the Data, Information, Knowledge, and Wisdom (DIKW) hierarchy
[3, 57]. In the scope of software systems, we adopt the definition of
knowledge as (i) the result of the analysis of structured information, (ii)
related to the current context, problem, or activity, (iii) and tailored to
the user’s needs [147, 133, 57].

Based on the highly influencial description of the DIKW hierarchy of
Rowley [147], we provide the following description of data, information
and knowledge in the frame of Software Engineering:

• Data is the content of the considered software artifacts.

• Information is a fact about one ore more artifacts, resulting from
their simple reading.

• Knowledge is the result of the analysis and combination of informa-
tion, valuable in the scope of the current problem, in the current
context.

Thus, the notion of knowledge only makes sense when linked to a
specific task or problem. Let us illustrate these concepts with an example.
John codes a Java program and launches the execution in his IDE. An
error occurs about a graphical element that John coded, and the error
message is displayed in the console. John wants to understand what
portion of the code causes the error. In this context, data is represented
by all the files containing Java code as well as the error message displayed
in the console. One information could be that 35 Java files contain
references to the graphical element (as all information, this is not context-
dependant). Then, one knowledge would be that the file causing the
error might be among a shortlist of three recommended files.

2.3. Challenges of Software Assistants for Software Modeling 17

2.3 Challenges of Software Assistants for Soft-
ware Modeling

Software assistants and their knowledge-based mechanisms appear as a
solution to improve the daily life and to propose new ways to interact
with electronic and software environments. In the meantime, while
research about them still appears limited, they seem to gain popularity
in industrial software development tools. In this section, we first clarify
the notion of software assistant for software engineering, and highlight
why these systems might appear as a solution to support modeling
engineers in their work. Then, we present how modeling assistants are
positioned in relation to the existing literature on modeling issues. More
precisely, we discuss why modeling assistants are a novel and relevant
solution to support modeling, with respect to the literature about the
actual practice of modeling and the modeling tools. Finally, we provide a
detailed description of the nature of the modeling task, to clearly define
what modeling assistants are to assist. This description is the foundation
of our later definition of modeling assistance, as it identifies the main
challenges to deal with when supporting the modeling task.

2.3.1 Software Assistants for Software Modeling

Software assistants aim to facilitate the access to knowledge through
well-designed interactions, such as presented in Section 2.2. Software
engineers exploit knowledge in many Software Engineering activities
[151], on a wide range of software and/or domain specific topics [97].
This recurring need, in conjunction with the evolution of technologies,
calls for a new wave of systems for software engineering that puts knowl-
edge at the heart of their logic and interactions. These assistance systems
are essential to enable engineers to keep control over increasingly large
and complex software systems to design and maintain.

To describe these systems, we adopt the definition of software bots
presented in Section 2.1, and define Software Assistants for Software En-
gineering as software bots which provide users with valuable knowledge
to help them identify, understand, or solve a problem. The notion of
knowledge refers to the definition introduced in Section 2.2.2. For the
sake of clarity in the rest of the paper, we will refer to software assistants
for software engineering with the shorter version software assistants.

In some previous works, software assistants may also be referred
to as Intelligent Assistant [119], IA-based digital Assistant [104], In-
telligent User Assistance System [105], Virtual Assistant [21], Smart

18 CHAPTER 2. Supporting software modeling: context and challenges

Assistant [116], Intelligent Agents [33], or shortly Bots [173]. While the
description of these systems seems to converge on the notion of assistant,
some also involve the notion of Intelligence. As knowledge appears to be
only one component of what constitutes intelligence [2, 106], we refrain
from qualifying software assistants of intelligent or smart. However,
artificial intelligence techniques, such as machine learning or ontologies,
might be embedded in software assistants to create, organize, or filter
the knowledge that is required.

Software assistants may help users make a decision and eventually
perform a task according to this decision with a certain degree of au-
tonomy. Their outcomes might not be deterministic, as they adapt to
each problem and context. They might be used to automate manual
tasks to save time and reduce e↵ort, but they must be able to come up
with new information and ideas and that may be valuable to increase
the knowledge of the user. Software assistants consist in complete and
ready-to-use software systems, accessible through a user interface (to
be able to provides users with valuable knowledge). Therefore, single
components and algorithms are not considered as software assistants.

Although there is a wide variety of bots and software tools embedded
into IDEs that perform automated tasks and are used during the software
development process (e.g., refactoring, search, and indentation tools), it
is worth noting that software assistants are still not mainstream.

2.3.2 Addressing modeling issues
Software Assistants for Software Modeling aim to assist modeling tool
users by augmenting them with knowledge. However, one may wonder
why software engineers need this new type of system. Indeed, the
modeling research community has been working on this topic for more
than forty years, and has already produced numerous modeling tools or
tool extensions.

In this section, we first show that the modeling community has been
very active in identifying the reality of practices in the field, concerning
the modeling methodology, and the use of the UML language. In the
meantime, we outline several studies that have pointed out the general
problems related to modeling. In a second step, we highlight the fact
that modeling tools remain limited in supporting the modeling activity,
and that they can even appear as a barrier to the adoption of modeling
methodologies. Finally, we justify the di�culty of tools to support the
modeling task by emphasizing the complex nature of this task.

The definition of the nature of the modeling task is a central point of
this manuscript, as it is at the origin of the major problems encountered

2.3. Challenges of Software Assistants for Software Modeling 19

during the design of assistance systems for modeling. These observations
shed light on the need for new modeling-supporting systems, tailored
to the users and to the complex nature of the modeling task.

The state of UML software modeling practice

The practice of software modeling is strongly coupled to the modeling
language used. In this thesis, we limit our scope to the use of UML
within software modeling tools. This choice had been guided by the
numerous studies indicating that UML remains the most taught and
used modeling language. Our approach being user-centred, we decided
to choose UML to maximize the population concerned by our results,
and to maximize the potential participants for our user-studies. This
section aims to identify studies that report on the practice of software
modeling, including the consequences of using UML as a modeling
language.

The work from Grossman et al. [65] identified that the main objec-
tives for using UML were to capture and communicate requirements,
and guide the development of code. These objectives are extended by
the works of Hutchinson et al. [77, 76] who propose a new and finer
classification of tasks as the use of models for team communication, for
understanding a problem at an abstract level, to capture and document
designs, the use of model-to-model transformations, and use of models
in testing, code generation, or model simulation. To achieve such goals,
practitioners sometimes encounter issues or challenges. Ozkaya [128]
focused on identifying practitioners’ challenges when practicing soft-
ware modeling. Their results provide a coarse-grained analysis of the
categories of challenges and identify the use and learning of modeling
languages as major challenges in software modeling. In their survey
about the perceptions of software modeling, Forward et al. [58] high-
light that practitioners face issues with modeling tools (as identified in
the following section), but also with the use of the modeling language
itself.

While modeling with UML could serve multiple purposes, it appears
that its use is sometimes partial, informal, and not widespread in or-
ganizations. The study of Dobing and Parsons [47] highlights the fact
that the use of UML modeling should not be considered as exclusive to
software professionals, and that there should be a better understanding
of its diagrams by all stakeholders. Dealing with the language complex-
ity, Chaudron et al. [40] also show that developers tend not to respect
the standards of the language, and that they use it rather informally.
Petre’s study [136] goes in the same direction and indicates that the use

20 CHAPTER 2. Supporting software modeling: context and challenges

of UML is most often selective (only a few elements and diagrams of the
language are used) and informal. Budgen et al. [35] propose a systematic
literature review investigating empirical evidences of UML aspects such
as metrics, comprehension, model quality, methods and tools.

The previous studies identify issues related to the way modeling is
selectively exploited in software engineering companies, most often by
highly-technical profiles, while it should be generalized to many more
collaborators and stakeholders. Such issues call for more support to
broaden the adoption of software modeling in companies, especially
to non-expert profiles. This support might include guidance on the
understanding of the concepts of the modeling language, of the internal
modeling methodology, or of existing diagrams. Despite the extensive
research work on this topic, the literature still highlights the need for as-
sistance in applying modeling methodologies and in using the modeling
languages.

These problems remain to be addressed by new systems, such as
software assistants for software modeling. These general modeling
issues are fed, if not caused, by the tools used for modeling, as stated
by Forward et al. [58]. The following section presents the literature
concerning the issues of modeling tools.

Software modeling tools

For many years, modeling tools have appeared to be an obstacle to the
development and adoption of software modeling methodologies [88].
In 2013, Hutchinson et al. [190] called on researchers and industry
to match tools to people, not the other way around, and to put more
e↵ort on studying processes, instead of tools. They particularly stated
that very little research has been carried out on how tools can or cannot
support this processes, and on how to develop simpler tools that can
fit into existing processes with minimal tailoring. Our study responds
to this call to identify the processes and tasks of software modeling
practitioners, in order to propose systems capable of helping them.

In their paper, Badreddin et al. [12] replicate the survey of Forward
et al. [58] ten years later to uncover trends of the software modeling
practice. While their survey highlights some increase in the adoption of
the broad practices of modeling as well as formal modeling, their results
suggest a persistent dissatisfaction with software modeling tools being
inadequate in their support for collaboration and communication. Thus,
since 2007, the industry does not seem to have succeeded in fixing the
acceptability issues of their modeling tools. This may indicate a research
gap in this field, or the di�culty of industrializing the research results.

2.3. Challenges of Software Assistants for Software Modeling 21

The articles from Planas et al. and Safdar et al. [137, 152] also inves-
tigated the usability of modeling tools used in industry by comparing
them. Both papers asked students to reproduce diagrams using di↵erent
modeling tools. Although their results allow to compare the ease of
execution of a feature from one tool to another, they do not allow to
identify features that might be missing in the tools.

While the previous section highlighted the need to support the
spread of the modeling methodologies and the use of modeling lan-
guages, this section demonstrated that modeling tools still struggle to
satisfy modeling engineers. Particularly, the unmanageable complexity
of modeling tools coupled with their usability issues appear to be a
barrier for engineers to perform modeling on these dedicated tools. This
highlights the need for existing tools to evolve, to support users instead
of hindering them. This is the role of software assistants for software
modeling to augment existing tools to better support users. However, to
not reproduce the errors from the past, it is crucial to exactly understand
the task that such systems should support. More precisely, it is essential
that modeling assistants focus and address the issues inherent to the
very nature of the modeling task. In the following section, we detail
how complex this task is, to provide a clear view of the challenges that
modeling assistants shall embrace.

2.3.3 The nature of the modeling task

In previous sections, we showed that, despite their ability to support
various tasks and activities, software assistants have still not clearly
made their way into the support of software modeling. We also identified
that modeling is still facing issues that appeared years ago about the
methodologies, the languages, or the tooling, and that are still currently
relevant. Modeling assistants could then be a solution to address these
problems, by augmenting the working environment of the users and
then facilitating the access to modeling features or knowledge. However,
in order to demonstrate an added value compared to the existing tooling,
these systems shall thoroughly meet the needs of the user, but especially
meet those of the modeling task. Thus, in order to best support the
modeling task, we need to study in more detail the processes that take
place when we practice software modeling. In this section, we clarify
our definition of software modeling, and describe its problem-solving
nature, its creative nature, the ill-defined aspect of the problem it raises,
and highlight the risks and constraints it faces.

22 CHAPTER 2. Supporting software modeling: context and challenges

Software design and software modeling

According to the Object Management Group (OMG)1, (software) mod-
eling is the designing of software applications before coding. This
definition, that we admit, merges two processes that we will di↵erentiate
and explain in this subsection, designing and modeling.

In his thesis about understanding and supporting software design
in Model-Based Software Engineering (MBSE), Jolak [84] defines the
process of designing as “the process of thinking about, pondering over,
making, shaping, and evaluating design decisions for something that is to be
created”. Budgen [34] identifies di↵erent actions that take part during
the process of designing:

• identification of the design actions to be performed;

• use of the representation forms;

• procedures for making transformations between representations;

• quality measures to aid in making choices;

• identification of particular constraints to be considered;

• verification/validation operations.

All these subtasks aim to structure the mental model of software engi-
neers, by refining their perception of the problem environment, orga-
nizing it, and refining their mental picture of the design based on their
mental picture of the context, as described by Ralph [144]. Then, as
stated by Budgen [34], software engineers can start producing a design,
which is a set of rules that describes how the solution should be built.

At some point, to be exploited, the envisioned design has to be pro-
duced on a media, to be communicated, for refinement or sharing. In
order to communicate this design, software engineers enter the process
of modeling. Modeling is a way to externalize or express the software
design decisions that are stored in the mind of software engineers. How-
ever, as the whole model might not be depictable on one single diagram,
choices must be made on the diagrams to create and the content to
include. This leads to Jolak’s [84] definition of the modeling process as
“the process of creating systematic and abstract representations of a concept
by choosing what to represent and how to represent it”.

These two processes are iterative and intertwined, so that it is di�cult
to consider them separately. Thus, in this thesis, the notion of software

1https://www.uml.org/what-is-uml.htm

2.3. Challenges of Software Assistants for Software Modeling 23

modeling refers to these intertwined design and modeling processes. The
representation of a part of a mental model as a model artifact allows
for creation of a partial solution, which fosters the refinement of the
problem, and leads to new problems that are then considered. This is
the very principle of problem-solving activities that we present in the
following section.

A creative problem-solving task

The purpose of software modeling is to produce a solution to a prob-
lem [34]. This problem is typically represented by a set of constraints
which includes financial, technical or managerial constraints. Then, it
is the software designers’ work to provide a description of how these
constraints and users’ needs are met with their solution. The software
modeling process is therefore essentially a problem-solving task. It
involves the designer in evaluating di↵erent options, and in making
choices using decision criteria that may be complex [34].

This constant decision-making and problem-solving process is al-
ready expressed by Fox and Kessler [60] in 1967 who state that “obviously,
the designer of a software support system faced with these impossible ob-
jectives finds his life to be one of constant decision making as he comes up
with the compromises that give the best possible approach to this solution.”
This problem-solving task is further complicated by the fact that the
modeling activity consists of a creative activity, as stated by Budgen [34],
which calls for new and adapted solutions to the problem [45, 25]. Thus,
the nature of the problem to solve then completely changes, and falls
into the category of ill-structured problems.

Ill-structured problems

Bonnardel and Zenasni [25] state that from a cognitive point of view, a
main characteristic of creative design activities is that the initial state
of the problem is ill-structured, which applies to software modeling. At
the initial state, such problems cannot be completely circumscribed,
because their deep understanding requires several iterations between
the analysis of the problem and the proposal of partial solutions. Then,
it is only through during the problem-solving process that software en-
gineers refine their mental representation of both problem and solution
spaces iteratively and simultaneously, in a process called co-evolution
[48]. Budgen refers to these problems as wicked problems [34].

Form the work of [170, 64, 63], Darses et al. [45] identified the char-
acteristics of ill-structured problems, which precisely apply to software

24 CHAPTER 2. Supporting software modeling: context and challenges

modeling, as follows:

• Problems tend to be large and complex. By this we mean that they
are not generally confined to local problems, and that the variables
and their interrelationships are too numerous to be broken down
into independent subsystems.

• A consequence of this complexity is that the resolution of these
problems requires the pooling of multiple skills, which necessi-
tates collaborations within the same team.

• The solutions to a design problem are more or less acceptable:
there is no single right solution.

• We cannot distinguish two consecutive phases: analysis of the
problem, then resolution of this problem. The two phases interact:
there is no the problem that precedes the solution.

• There is no predetermined design resolution path: one knows a
certain number of useful procedures and methodologies, one can
rely on similar projects already dealt with or on existing prototypes,
but each time one has to recombine, if not reinvent, strategies to
elaborate a solution.

• The evaluation of solutions is di�cult to achieve other than through
mental simulation, on the basis of graphic representations or mod-
els that often poorly reflect reality. It is limited by the fact that the
generation of all possible solutions is impractical and that there
is no objective metric (set of criteria). As it is often deferred to
the establishment of the final solution, the possible questioning of
design choices can be very costly.

The ill-structured nature of the software modeling prob-
lem completely conditions the work presented in this thesis.
As there is no single solution, and there is no one method
to create the perfect software design, assistance systems for
software modeling–and more generally for creative problem-
solving tasks– do not compete in the race for certification, nor
for the quest ofmaximumprecision, which animates the current
context of artificial intelligence. Instead, these systems should
support the user in identifying partial solutions, sometimes in-
correct solutions, which are the key to the better understanding
of the problem space, and finally lead to the design of an accept-
able solution.

2.4. Conclusion 25

Risks and constraints

In 1970, J. Christopher Jones, one of the pioneering design methodolo-
gists, stated the following about software design [85]. “The fundamental
problem is that designers are obliged to use current information to predict a
future state that will not come about unless their predictions are correct. The
final outcome of designing has to be assumed before the means of achieving
it can be explored: the designers have to work backwards in time from an
assumed e↵ect upon the world to the beginning of a chain of events that will
bring the e↵ect about.” This quote perfectly highlights the main risk of
software engineers to fail in making the right design decisions at the
right time, and then direct the project towards failure when it comes to
software construction or testing. Current software design methodolo-
gies such as the agile method, allow for more flexibility and thus, the
opportunity to fix some of the bad decisions before it grows irreversible.
However, these methodologies have a very little e↵ect on the design of
systems that are to evolve over time, and whose bad initial design may
prevent or greatly impact the development of future functionality.

Risks may also appear more easily when conceiving critical sys-
tems, for which any design decision must be explainable and traceable.
In these cases more than ever, the system designers must respect the
standards imposed by the specification agencies, by the companies, by
the teams, in addition to adapting to the project constraints. These
constraints can be budgetary, human, or technical and come from the
software engineer’s company in charge of building the solution. The
customer’s needs provide specifications that the solution must meet, and
also add more constraints to match.

These constraints and risks add additional pressure on the software
developer in charge of making design decisions. Thus, to support the
software modeling process, assistance systems must take risk and con-
straints into account, and inform users of their competence to assist
them in these complex tasks.

2.4 Conclusion

This chapter has clarified our theoretical vision of software assistants
for software engineering and for software modeling. We first defined
software assistants, a new type of software systems that aim to assist
users through the use of knowledge and well-designed interactions.

26 CHAPTER 2. Supporting software modeling: context and challenges

Then, to determine if software assistants could be appropriate solutions
to tackle modeling issues, we provided a detailed description of software
assistants for software modeling and confronted them to the literature
about software modeling issues.

We highlighted that the literature depicts a strong need for more
support in broadening the adoption on modeling methodologies, the
mastery of modeling languages, and the use of modeling tools. All
previous issues relate to users and knowledge, whether it is about model-
ing knowledge, language syntax knowledge, or tool-related knowledge
or expertise, which qualifies modeling assistants as ideal solutions to
address the modeling issues identified in the existing literature.

Finally, we provided a detailed description of the nature of the mod-
eling task. This enabled to precisely identify the challenges that software
assistants shall embrace to qualify as a solution for modeling assistance.
We claim that the nature of the modeling task totally conditions the
way that assistance should be provided for the modeling task, due to its
creative, risky, and ill-structured characteristics.

As software assistants appear as potential solutions to support soft-
ware modeling, we investigated the existing literature about software
assistance. We analyzed the Software Engineering literature to identify
their common design characteristics in order to better understand how
to build such systems. As stated in this chapter, the research e↵ort about
applying digital assistance technologies to software engineering appears
limited. Thus, in order to build a clear understanding of the research
landscape on software assistants for software engineering (including
software modeling), we have carried out a systematic mapping study, to
have a reliable picture of the literature. This work is presented in the
following chapter.

Chapter3
Software Assistants for
software engineering in
literature

This chapter reports on a Systematic Mapping Study (SMS) on software
assistants for software engineering, which led to a journal article that has
been submitted and is currently under review. We conducted the full protocol
of this systematic mapping study, and our journal article was written with
Loli Burgueño, and reviewed by Xavier Le Pallec, Sébastien Gérard, and
Jordi Cabot. This work contributes to our e↵ort in understanding the current
context, e.g., the current state of the literature about software assistants, as
part of our human-centered research approach. Results indicate that the
modeling-related tasks do not have su�cient support in the literature, and
draw a global overview of the research landscape about software assistants
for software engineering.

3.1 Related works

This section positions our work with respect to systematic literature
reviews, mapping studies and surveys on topics related to software
assistants and software engineering.

To the best of our knowledge, there is no study with the same focus
as ours. On the contrary, the available studies either focus on one
specific kind of assistant-related approach and study its application in

27

28 CHAPTER 3. Software Assistants for software engineering in literature

the Software Engineering life cycle, or focus on one of its stages and
identify the assistant-related approaches and systems. Let us list and
describe them below.

Some related works aim to investigate the use of one specific ap-
proach during the various stages of Software Engineering. For instance,
Gasparic et al. [61] conducted a systematic literature review on Recom-
mender Systems for Software Engineering (RSSE). They identified 47
implemented systems in papers published before 2013, and analyzed
their inputs, their outputs, the e↵ort required from engineers, and the
benefits they provide to their users. Their results showed that RSSE
mainly supports reuse, debugging, implementation, and maintenance
phases/activities, which we also cover in this study (see our inclusion
criteria in section 3.2.2). They found that most RSSEmainly recommend
source code, and only some of them digital documents. Our work dif-
fers from theirs in several aspects. Firstly, the RSSE that the authors
have studied qualify as one of the types of software assistants that we
consider in this systematic mapping study – as long as they present
at least a fully implemented prototype of the assistant. Secondly, our
research questions are broader. For instance, we elaborate on aspects
such as the nature and the environment of the software assistant which
both condition how the knowledge should be presented. Finally, our
inclusion time frame from 2010 to 2020 updates the overview of the
trends of RSSE.

In 2021, Almonte et al. conducted a systematic mapping study [7]
about recommender systems in Model-Driven Engineering (MDE). The
study targets the MDE tasks that might be subject to recommendations,
the applicable recommendation techniques and how recommender sys-
tems are evaluated. On the contrary, our work broadens the scope of
this study, focusing not only on recommender systems for MDE (which
is a subfield of Software Engineering), but on fully implemented soft-
ware assistants for software design and construction. Savchenko et al.
carried out a systematic mapping study [158] about Smart Tools in Soft-
ware Engineering with the goal to answer the question “how could the
technological innovations a↵ect the software development ecosystems
and software processes?”, and studied the state of the art between 2015
and 2019. While the authors try to disclose the impact of software in-
novations in businesses, our work puts the emphasis on the software
assistants themselves (i.e., how they are built, with which tasks they
help engineers, how users interact with software assistants, etc.).

Di↵erent studies also investigated the way Machine Learning (ML)
has been applied in Software Engineering. Borges et al. [26] collected

3.2. Research Method 29

177 studies from 1992 to 2019 in two groups: (i) Software Quality
and Software Engineering Management (40 papers) and (ii) Software
Quality and Software Test (15 papers). They conclude that Software
Quality is the most frequent Software Engineering Body of Knowledge
(SWEBOK) knowledge area target for both clusters (51%) and that ML
is mainly used to make predictions in Software Engineering. A similar
study by Shafiq et al. [164] shows that based on 227 articles about
ML for Software Engineering from 1991 to 2019, 21 were focusing on
requirements, 39 on architecture and design, 21 on implementation, 119
on quality assurance and analytics and 9 on maintenance. Our study is
richer and broader in the sense that we do not only focus on assistants
empowered with ML techniques, and more specific in the sense that
we are only interested in working assistants and ignore theoretical and
unimplemented approaches.

Other mapping studies focused on the use of tools during one specific
task of Software Engineering. For instance, Iung et al. [81] reported on
the tools to enable domain-specific language development. Sebastian et
al. [161] investigated code generation using model-driven architecture,
and identified implemented systems enabling code generation. Similarly,
Brunschwig et al. [32] provided an overview of tools to support software
modeling on mobile devices.

To the best of our knowledge, there is no previous systematic map-
ping study on understanding and classifying implemented and ready-to-
use software assistants to support software development tasks without
restricting the techniques used to achieve this goal. With this work, we
aim to fill the gap and summarize implemented Software Assistants for
Software Engineering systems that were presented in scientific venues.

3.2 Research Method

This study follows the guidelines proposed by Petersen et al. [135] to
conduct Systematic Mapping Studies (SMS). A pilot study was conducted
on a small number of articles to assess the suitability of the criteria and
the method, which led to discussions and updates on the protocol. This
section describes the di↵erent steps of the exploration phase as defined
in the final version of the protocol.

3.2.1 Research questions
In this section, we define the research questions that drive this systematic
mapping study, and provide details about our intention behind each one

30 CHAPTER 3. Software Assistants for software engineering in literature

of them.

• RQ1: What are the tasks that software assistants help users achieve,
in which environments do they operate and which languages do they
support? With this research question, we aim to identify which
parts of the software design, construction and maintenance are
best supported by assistants, as well as trends in the supported
environments and languages.

• RQ2: How do software assistants assist users? This question aims
to identify the di↵erent types of assistants (as perceived by their
users) and the way they present information to the user.

• RQ3: What kind of software technologies are used to embed knowledge
in software assistants? This question investigates how software
assistants are equipped with knowledge to support users. This
includes analysing their data usage as well as finding whether they
exploit Machine Learning (ML) techniques.

• RQ4: To what extend are software assistants automated? To answer
this question, we modeled interaction schemes for each software
assistant in our set of primary studies in order to assess their level
of automation and their trigger.

3.2.2 Inclusion and exclusion criteria
The inclusion criteria define the scope of our systematic mapping study
and enable us to identify papers which will help build answers to the
research questions. We focus on those papers that:

1. are written in English, peer-reviewed, and published between
January 2010 and July 20201,

2. focus on at least one of the these knowledge areas from the SWE-
BOK [27]:

• Software Design subject, which relates to creating and checking
software designs.

• Software Construction subject, which includes program editors,
compilers and code generators, interpreters and debuggers.

1Motivated by the background provided in Chapter 2, e.g., the recent emergence of
bots, and knowledge-engineering technologies. Software assistants were expected for
2020, so we study the last 10 years to evaluate their evolution.

3.2. Research Method 31

• Software Maintenance subject, which covers artifacts visualiza-
tion and re-engineering.

• Socio-Cultural systems for software engineering, which cover
socio-cultural aspects such as social networking as identified
in [140].

3. focus on the assistance of the population involved in the four
processes in the previous item.

Exclusion criteria enabled us to filter out irrelevant papers. Papers
featuring one of the following characteristics were excluded:

• does not provide assistance for at least one of the considered soft-
ware engineering tasks;

• does not introduce an implemented and ready to use software
assistant—i.e., we discarded papers that only introduce a new
algorithm or technique that according to the authors could be
integrated into a software assistant, but it does not provide a
software assistant in itself;

• does not claim to have, describe or provide screenshots of the user
interface;

• is a survey, a systematic literature review, or a mapping study.

3.2.3 Search Process and Paper selection
The search process was conducted automatically by querying the DBLP
computer science bibliography2 website through its Application Program-
ming Interface (API) with a custom script. Our algorithm searched for
each keyword in Table 3.3 present in the title of papers that belong to
any of the conference proceedings of Table 3.1 and journals of Table 3.2.
The keyword was built to cover the notion of assistance and its synonyms
for Software Engineering. This resulted in 377 queries (29 venues ⇥
13 keywords) to the API, formatted as follows: KEYWORD+venue:VENUE:.
An index of venue codes for the API and the full list of queries are
available online on our website[156].

The venues were collectively selected by the five authors, taking into
account conferences and journals based on their peer-reviewing process
and their themes about software engineering, software assistance, or
both. Keywords were chosen in a similar manner to convey the notion

2https://dblp.org

32 CHAPTER 3. Software Assistants for software engineering in literature

of assistance. Some of the keywords take advantage of the default
completion feature provided by the DBLP’s API. For instance, the use
of facilitat enabled us to retrieve titles containing words like facilitate,
facilitating or facilitator.

The automated search was performed on the 31st of July 2020 on
the DBLP’s API and retrieved 4,621 items. At the time of the query, we
checked that each venue listed in Table 3.1 and Table 3.2 was indexed
and that it featured at least one record for the last ten years.

Table 3.1 – Selected conferences

Acronym Name

CHI Conference on Human Factors in Computing Systems
ICSE International Conference on Software Engineering
ASE International Conference on Automated Software Engineering
SAC Symposium On Applied Computing

TOOLS Technology of Object-Oriented Languages and Systems
ESEC/FSE Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering
CAiSE International Conference on Advanced Information Systems Engineering

IUI International Conference on Intelligent User Interfaces
PETRA Pervasive Technologies Related to Assistive Environments
AAMAS International Conference On Autonomous Agents and Multi-Agent Systems
CSCWD International Conference on Computer Supported Cooperative Work in Design

ER International Conference on Conceptual Modeling
MoDELS International Conference on Model Driven Engineering Languages and Systems

IJCAI International Joint Conference on Artificial Intelligence
ECOOP European Conference on Object-Oriented Programming

OOPSLA Object-Oriented Programming, Systems, Languages & Applications

Table 3.2 – Selected journals

Editor Name
ACM Transactions on Software Engineering and Methodology

Elsevier Science of Computer Programmin
Elsevier Electronic Notes in Theoretical Computer Science
Elsevier Data and Knowledge Engineering
Elsevier Journal of Systems and Software
Elsevier Information and Software Technology
Springer Journal of Intelligent Information Systems
Springer Software and Systems Modeling

IEEE Transactions on Software Engineering
IEEE Software
PeerJ Computer Science

We observed that the resulting list of papers contained a substantial
number of articles from socio-medical disciplines. To avoid these, we
identified the set of keywords frequently used in socio-medical disci-

3.2. Research Method 33

Table 3.3 – Search keywords

Search keywords
assist, recommend, help, facilitat, enhanc, answer, empower,
augment, aid, suggest, repair, fix, support

plines and not in software engineering. These are captured in Table 3.4,
which also includes keywords derived from the exclusion criteria men-
tioned in Section 3.2.2. We used these keywords to prune the list of
papers by automatically discarding those whose titles contained any of
these keywords. This automatic pruning phase removed 1,235 articles
and left 3,386 to be processed manually by the authors.

Table 3.4 – Pruning keywords

Pruning keywords
systematic literature review, mapping study, survey, elderly,
health, medical, autism, clinical, desease, home, impairment,
older, living, assistive, deaf, colorblind, disabilities, medication

As part of our protocol, all the authors defined and agreed on the
fact that papers should be discarded or kept according to the decision
diagram presented in Figure 3.1.

Before manually checking all the papers, and in order to ensure that
the criteria was understood equally by the authors and did not lead to
subjective interpretations, two authors used the defined criteria and,
supported by the algorithm in Fig. 3.1, they worked independently to
perform the exclusion/inclusion phase on a subset of 10% of all these
3,386 articles, i.e., on 338 papers.

Then, we computed the Inter-Rater Reliability (IRR) using a two-
way mixed, single score ICC(C,1) check for consistency. We obtained
ICC(C,1) = 0.868 (95%-Confidence Interval: 0.838 < ICC(C,1) < 0.894)
which indicates a good reliability [90], and therefore the same under-
standing of the criteria defined.

Finally, one of these two authors performed the exclusion of the rest
of the papers, applying the algorithm of Fig. 3.1 to the reading of the
title, the abstract and finally the full paper. It resulted on the exclusion
of 3,224 papers based on their title, 88 papers based on their abstract,
and 52 papers based on their full content.

34 CHAPTER 3. Software Assistants for software engineering in literature

Figure 3.1 – Inclusion-exclusion decision algorithm specification for the
reading of title, abstract, and full paper.

3.2.4 Snowballing

Those papers that passed both inclusion and exclusion criteria were
exploited during the snowballing step. The stage consisted in reading
the articles, especially their related work section, to identify and add
to our corpus candidate software assistants that had either not been
obtained during our search or that were discarded by mistake in the
exclusion process. The snowballing phase mitigated the threat to validity
concerning the absence of a conference or a journal in the initial venues
list (Table 3.1 and Table 3.2) as it gathered new papers regardless of their
origin. Each newly selected article was manually tested against inclusion
and exclusion criteria, to maintain the consistency of our corpus.

We performed the snowballing phase twice. Once on the original
set of papers, and then again on the papers discovered during the first
snowballing phase. We did not carry out a third snowballing phase
because we observed a large number of articles already overlapping

3.2. Research Method 35

previously identified articles.
These two snowballing steps led to the gathering of 15 and 10 new

articles, respectively, increasing the final number of retained articles to
47, to which we will refer as primary studies. Fig. 3.2 summarizes the
whole search and assessment process.

Figure 3.2 – Exploration results.

3.2.5 Data extraction
The data we extracted from each article is:

1. the source (journal or conference), the publication year, the title
and authors;

2. the name of the tool, if provided;

3. the supported language(s);

4. the execution environment of the assistant;

5. a summary of the description and goal of the assistant as provided
by the authors;

6. the datasources exploited by the assistant;

7. whether the assistant is a Recommender System (RS)—i.e., it pro-
vides recommendations—for software engineering or not;

8. if the assistant is a RS: the nature of the output, the explanation
system, the confidence indicator, and the feedback system;

36 CHAPTER 3. Software Assistants for software engineering in literature

9. whether the assistant uses machine learning;

10. the automation levels of the assistant;

11. the high-level user-assistant interaction scheme;

12. whether a user study had been conducted;

13. whether a replication package was provided for the evaluation;

14. whether the source code of the assistant was provided.

Elements 1, 2, 5, 9, 12, 13, and 14 can be directly extracted from the
paper. Elements 3, 4, and 6 refer to the actual contribution presented
in the paper at the time it was written, and does not take future work
and directions into account (i.e., if the tool works for Java but the paper
says that it could also work for C or that it is extensible to C, we do not
consider C).

The concept of recommender system for software engineering used
in 7 is based on the definition adopted by Robillard et al. in their book
[146]: [...] a software application that provides information items estimated
to be valuable for a software engineering task in a given context. Elements in
8 relate to the way the RS supports human cognition to achieve certain
tasks, hence we study (i) the nature of the output, i.e., whether the
RS presents the information textually, graphically, or both [112]; (ii) the
explanation system, i.e., the means with which it explains why an item
is recommended (if any) [141]; (iii) the confidence indicator, i.e., how it
shows how confident it is about a recommendation (if any) [124]; and (iv)
the feedback system, i.e., the way it enables users to provide feedback
about a recommendation (if any) [124].

Element 10 relies on the Parasuraman and Sheridan [130] framework
for evaluating the automation levels of a system. They propose a model
based on the four stages of human information processing to analyze the
automation of a system over four di↵erent aspects: information acquisi-
tion, information analysis, decision selection, and action implementation. In
order to measure the automation level for each of these four steps, we
apply the 10-levels automation scale to each step as suggested in [130].
For 11, we inferred the interaction schemas between the assistant and
the user as UML activity diagrams from the tool screenshots provided
in the papers and the description of the User Interface (UI). In each dia-
gram, we distinguish activities according to one of the four automation
aspects they belong to.

3.3. Results: Analysis and classification of software assistants 37

3.3 Results: Analysis and classification of soft-
ware assistants

This section presents the results of the data analysis we conducted on
the dataset of primary studies, which are also available online [156].

3.3.1 Selected papers

This section gathers statistics about the selected papers. Figure 3.3
illustrates the number of publications on software assistants published
between 2010 and July 2020 (month in which we performed our search).
On the left, it shows the variation in the number per year. We can observe
that the general tendency goes down over time, reaching a maximum
in 2012 with 10 papers and a minimum in 2016 with only one paper
published. Figure 3.3b shows the venues in which our selected papers
have been published. It is worth noting that there is no dedicated venue
for the topic of software assistants and that these papers have been
published in general SE conferences. It is also interesting to see how
most of these papers were published in the International Conference
on Software Engineering (ICSE) followed by the Conference on Human
Factors in Computing Systems (CHI), which are both very prestigious
conferences.

3.3.2 Analysis and classification results

This section is devoted to answer our research questions (cf. Section 3.2.1).

RQ1: What are the tasks that the assistants help their users achieve,
in which environments do they operate and which languages do they
support?

To answer this research question, we relied on the description and goal
of the assistant that we extracted from each paper as provided by its
authors. From these details, we obtained information about the tasks
that each assistant supports and identified the 27 tasks are listed in
the second column of Table 3.5. Then, we grouped those tasks into
12 coarse-grained categories to capture their purpose. These purposes
are: API/code search, Code completion & Recommendation, Code Met-
rics, Code Visualization & Understanding, Command Recommendation,
Find Collaborators, Interface Prototyping, Modeling, Refactoring, Fix &
Repair, Resource Identification, and Version Control System (VCS).

38 CHAPTER 3. Software Assistants for software engineering in literature

(a) Number of publications per year and type

(b) Number of publications per venue

Figure 3.3 – Number of publications

Figure 3.4 presents the number of assistants dedicated to each pur-
pose. We can observe how some important e↵orts have been put into
the creation of assistants for API/Code search, Code visualization & Un-
derstanding and Fix & Repair, while only isolated works have published
assistants for purposes such as Interface Prototyping.

Among the wide variety of tasks, looking at Table 3.5, we can high-
light that the Recommendation of Code Blocks from Queries is the most
popular (supported by 6 assistants), followed by assistants for Enhance-
ment of Default Code Completion Systems, Code Augmentation with
Indicators, and the Suggestion of Code Fixes (supported by 4 assistants
each). It is also worth noting how textual languages (i.e., coding) are
very well supported across the whole development process—covering
the tasks of finding code ideas and code excerpts, writing, refactoring
and debugging/fixing as well as providing metrics— while graphical
and modeling languages are under-represented.

We also extracted from each paper the environment in which the
assistants work and the language (or syntax) that they support. The
results can be found in the third and fourth columns of Table 3.5 and
in Fig. 3.5. A star (⇤) means that the assistant supports all languages

3.3. Results: Analysis and classification of software assistants 39

Figure 3.4 – Number of assistants per purpose

supported by the IDE. The most popular environment by far is the
Eclipse IDE with 23 out of the 47 assistants. In fact, out of all the
assistants, 30 of them (64%) are part of an IDE. The second most popular
environment is the Web Browser (12 out of 47 – 26%) and standalone
applications (4 out of 51 – 9%). There is no clear correlation between
the environments and the tasks towards which the assistants help.

With respect to the languages supported, Java has a strong monopoly
with 32 out of the 47 studied assistants (68%). It is worth noting that
only 3 assistants support the top-3 Programming, Scripting, and Markup
Languages according to the Stack Overflow 2020 survey of Most Popular
Technologies3, which are JavaScript, HTML/CSS, and SQL; and only two
assistants support modeling languages (BPMN and XMI models).

RQ2: How do software assistants assist users?

To answer this research question, we have identified the di↵erent types of
assistants as perceived by its users and have studied, for each assistant,
three Human-Computer Interactions (HCI) indicators, and the nature
of the output that they provide.

Types of assistants We have identified that there are three main ac-
tions that assistants perform internally. The first one—and the one that
every assistant integrates—is to analyze information and display the
result of the analysis. The second is to help the user make a decision by
suggesting one or several alternatives. The third is to perform an action

3https://insights.stackoverflow.com/survey/2020#
most-popular-technologies

40 CHAPTER 3. Software Assistants for software engineering in literature

(a) Number of assistants per language

(b) Number of assistants per environ-
ment

Figure 3.5 – Number of publications

based on a decision when required. Based on these three actions, we
have classified the assistants and have obtained three di↵erent types as
presented in Table 3.6. They are:

• Informer System, which helps towards reaching awareness about
the work in progress or the environment. It takes raw data and
information as input, analyze and/or aggregate it, and display the
results without any side e↵ect.

• Passive Recommender System (Passive RS), whose aim is to help
the user make a decision during a software engineering task. To be
able to provide meaningful potential decisions, it takes raw data
or information as input, process and analyze the inputs, and even-
tually produce one or several alternatives for the current decision-
making problem.

3.3. Results: Analysis and classification of software assistants 41

• Active Recommender System (Active RS), which extends the Pas-
sive RS by enabling the assistant to perform or implement the
result of the decision.

Figure 3.6 shows the number of assistants of each type grouped by
purpose.

Figure 3.6 – Number of of assistant types for identified purposes

We have observed that only 21% of the assistants are informer sys-
tems (10 out of 47), 45% of them are Passive RS (21 out of 47), and
16% are Active RS (16 out of 47). This means that almost half of the
assistants are Passive Recommender Systems, i.e., assistants that help
make decision but do not o↵er the possibility to implement it. Corre-
lating this with the set of purposes of assistants that we have identified,
we can observe that all existing assistants for Code Metrics are of type
Informer, while there are no informer systems for purposes such as
API/Code search, Repair & Fix, Code completion & Recommendation
and Resources Identification. This has some logic given that in these
categories, the tasks that the assistants perform are likely to require
making decisions and, in occasions, taking actions, too.

Human-Computer Interactions (HCI) indicators The communica-
tion between informer systems and users is unidirectional and users are
simply consumers. Unlike informer systems, both passive and active
recommender systems and users interact. We have evaluated whether
and how active and passive recommender systems implement three
Human-Computer Interaction indicators: confidence, explanations and
feedback.

For confidence, we have observed that the assistants either provide a
confidence score (i.e., a single value) or they do not provide a confidence

42 CHAPTER 3. Software Assistants for software engineering in literature

(a) Feedback

(b) Confidence

(c) Explanations

Figure 3.7 – Number of assistants per HCI indicator

indicator at all. Figure 3.7b shows the number of passive and active
recommender systems for each group and we can observe how the
majority of assistants do not provide any measure of the confidence of
their recommendations.

The case is even more accentuated in the case of explanations. Fig-
ure 3.7c shows that only 1 assistant out of the 37 (2.7%) provides ex-
planations. This means that, even if some assistants present confidence
metrics (e.g., precision), they still act as black-boxes and do not explain
the reason behind their suggestions.

We have observed that only three recommender systems [115, 29,
138] include a feedback system and, therefore, let their users provide
feedback, as Fig. 3.7a presents. In [29] the recommender system allows
users to rate the quality of the suggestions using a rating bar. In [115],
the system lets the users reject or modify the suggestions keeping track

3.3. Results: Analysis and classification of software assistants 43

of these actions. Finally, in [138], the authors created a recommender
that, by using a sensitivity feedback system, lets users adjust the recom-
mendation confidence threshold.

(a) Number of assistants grouped by type

(b) Number of assistants grouped by purpose

Figure 3.8 – Nature of the output provided by the assistants

Nature of the output provided by the assistants We have analyzed
what the nature of the output that the assistant provide to the users look
like and have identified that these outputs are: textual, graphical, textual
& graphical, and by means of annotations or highlights. Figure 3.8
presents the nature of the output of the 47 considered assistants grouped
by type of assistant and by its purpose. It is worth noticing that there
are no informer systems that provide only textual information and that
most of them display its results graphically. Unlike informer systems,
both passive and active recommender systems, usually display their
recommendations textually. These points are supported by the purposes
of those assistants, for instance, an assistant that recommends code
is likely to show code (text), and an informer assistant that is created
for code visualization and understanding is likely to present its results

44 CHAPTER 3. Software Assistants for software engineering in literature

graphically.

RQ3: What kind of software technologies are used to embed knowl-
edge in software assistants?

Figure 3.9 – Machine Learning usage

To answer this research question, we have studied whether the assis-
tants embed Machine Learning techniques to simulate intelligence and
human-like decisions/actions, andwhat sources of information/knowledge
they use.

In Fig. 3.9, we can see that none of the informers nor passive recom-
mender systems use machine learning and that, surprisingly, only one
active recommender system uses it. It uses logistic regression to learn
how to rank the recommended alternatives before presenting them to
the users.

Table 3.8 lists all datasources exploited by the 47 software assistants
under study. We have grouped all these datasources in di↵erent cate-
gories (column 2) and in two groups: local (LOC) and remote (REM), as
shown in column 1.

Figure 3.10 presents details about the datasources used aggregated
by assistant type. We can see that informer systems do not usually use
remote datasources, which is in line with what could be expected as
these analyze data at hand to inform about the status of a particular
environment. In those cases in which a remote repository is used, these
contain information about the working environment (versioning reposi-
tory, bug tracking platform) and are never general knowledge sources.
It is also worth noticing that passive RS use more knowledge sources
than active RS.

RQ4: To what extend are software assistants automated?

In order to answer this research question, from each primary study, we
extracted user-assistant interaction schemes in the form of UML activity
diagrams. The full set of the interaction schemes that we extracted is

3.3. Results: Analysis and classification of software assistants 45

Figure 3.10 – Datasource usage by assistant type

available online[156]. From these schemes, we noticed that systems
were either triggerred manually by the user, or automatically by the
system: 50% of informer systems and passive recommender systems are
system-triggered, while only 23% of active recommender systems are
system-triggered.

Automation levels were extracted from these schemes based on the
indications provided in [130].

Figure 3.11 presents the extracted automation patterns. We can
observe how the analysis is always fully automated—this was a require-
ment imposed by our characterization of assistants, since without this
step, a piece of software would not be considered an assistant but a tool.
On the contrary, the decision making process is never automated and the
final decision is always made by the user. This means that there is not a
single assistant that acts autonomously without “consulting” first—the
fact that assistants are designed and created this way could be related
to acceptability and trust issues. We would also like to point to the fact
that information acquisition is always automated for informer systems,
which confirms their role to present relevant information without having
the user indicate what to take as input. Figure 3.12 presents the number
of assistants that implement these patterns aggregated by assistant type.

46 CHAPTER 3. Software Assistants for software engineering in literature

Figure 3.11 – Automation patterns

Figure 3.12 – Number of assistants implementing each automation pat-
tern

3.4 Limitations and Threats to Validity

This section presents a discussion about the construct validity, the exter-
nal validity, and the internal validity of the presented results.

3.4.1 External validity

The external validity is concerned with whether we can generalize the
results outside the scope of our study. We identify three potential threats
to external validity for our results.

Firstly, we have restricted the scope of our study to articles published
from 2010 onwards and covering the following subjects [27]: Software
Design Tools, Software Construction Tool and Software Maintenance
Tools, and the extended subject of Socio-Cultural systems according to
[140]. This naturally limits the generality of our conclusions to other
phases of the software engineering process.

Another threat to external validity relates to our primary studies.
This review presents 47 software assistants identified with the protocol
in Section 3.2. First, it is possible that some existing assistants were

3.4. Limitations and Threats to Validity 47

missed, for instance, because they are not published in research papers
or did not match our queries. To mitigate this concern as much as
possible, our search contained a large set of keywords with wildcards
to maximize matches. Second, our search was limited to the number of
peer-reviewed venues that guarantee the quality of the resulting articles,
but we may have missed some papers that are not published in these
venues or indexed in dblp.org. To mitigate these concerns, a snowballing
phase composed by two iterations was conducted.

Finally, the last threat to external validity is linked to the nature
of the considered systems. This work studies implemented prototypes
or mature systems that can actually be used and tested. Therefore, it
excludes articles presenting new algorithms and techniques which are
not part of a usable software. This ensures a focus on systems that are
really and directly ready to use by software engineers, but may have
missed promising potential assistants that are not mature as of today.

We consider that this study has been validated through its system-
atic protocol and by the di↵erent reviews and discussions internally
conducted by the authors. This work also provides all the required
information for the mapping study to be replicated, which may reduce
some external validity concerns.

3.4.2 Construct validity

Construct validity refers to using the right tools and tests to get the right
measures.

In the context of this systematic mapping study, the most critical
point was the extraction of information from the articles. To the extent
of our knowledge, the protocols and tools that we used and explained in
Section 3.2 are the most appropriate.

Most of the extracted data represents nominal variables, with no
intrinsic ordering. This is the case, for instance, of the papers’ metadata,
supported languages, or even datasources, which cannot be framed
within a specific scale. For the identification of other variables such
as the characteristics of the recommender systems (e.g., the nature of
the output, the explanation system, the confidence indicator, and the
feedback system), we relied on the classification of design decisions
proposed by Mens and Lozano [112], and for the automation level we
used the scales in [185] to match the needs of the analysis.

48 CHAPTER 3. Software Assistants for software engineering in literature

3.4.3 Internal validity

Internal validity is defined as the extent to which the observed results
are reliable and lack methodological errors.

The search process relies on an algorithm which performs automated
queries, and hence prevents any human error. The exclusion process is
the most sensitive part of the exploration protocol. It was conducted
manually, and resulted in the rejection of 3,513 papers. In order to limit
the subjectivity of this treatment, the exclusion was conducted by only
one of the authors, following a rigorous protocol defined in section 3.2.
Additionally, before performing the exclusion, an Inter-Rater Reliability
score was computed with another author to verify compliance with the
criteria.

The data extraction was also performed manually, and consisted
in reading all the considered papers and filling in a table with the
criteria defined in the protocol. This could lead to errors due to human
misinterpretation of the content of the article, missing information
or grey areas of the article. However, the content of the articles was
su�cient to obtain all the required information. In addition, articles
whose information was considered ambiguous were checked at least
twice, at di↵erent times, in order to minimize errors due to fatigue.

3.5 Discussion, open lines of work and chal-
lenges

In this section, we summarize the main findings for each research ques-
tion, and identify eventual research challenges that could drive innova-
tion in the field of software assistants for software design, construction
and maintenance.

3.5.1 R.Q. 1: What are the tasks that the assistants help
their users achieve, inwhich environments do they
operate and which languages do they support?

We found that most software assistants focus on helping software en-
gineers with code-related tasks. Assistance with other tasks such as
modeling, finding collaborators or learning IDE commands remains
anecdotal. This shows that the literature focuses more on supporting
software construction tasks rather than software design or maintenance
tasks. Hence, we identify assistance systems for software design as

3.5. Discussion, open lines of work and challenges 49

an open line for research, to support a broader variety of tasks and
participants within the software development life cycle.

68% (32 over 47) of the software assistants support Java, while most
of the other identified programming languages are only supported by
one assistant over 47. Therefore, 40 over 47 (85%) software assistants
are mainly integrated in Eclipse IDE, or are not part of any specific
development environment (respectively, 49% and 36%). One reason for
this distribution could be the large availability of resources for Eclipse
plugin development, Eclipse mainly being used as a Java IDE. This tech-
nical motivation, however, might take the research away from the actual
practices and needs of software engineers. Stack Overflow surveys from
2018 to 2020 show that Java is only the 5th most commonly used pro-
gramming language, behind JavaScript, HTML/CSS or Python. Eclipse
is the 8th most commonly used IDE4, behind Visual Studio or IntelliJ.
Although these historical technologies remain important, new research
work must lead innovation on these popular technologies and their in-
herent technical and human issues. Thus, another research challenge
consists in bringing existing or new assistance mechanisms to these
increasingly popular environments and languages.

It is worth noting that most of the software assistants created as stan-
dalone application or websites have an alternative integrated to an IDE
for the same task (see Table 3.5). The papers presenting these systems
do not provide an explanation for this design decision, which might
also be justified by the ease of development of a website or standalone
application compared to an IDE-embedded solution. However, repeated
changes of work environment (e.g., switching from the IDE to the web
browser) have been correlated with interruptions in the cognitive pro-
cess, which in turn are correlated with productivity losses [15, 131].
Such human-centric considerations might also be taken into account,
in addition to the quality of the algorithm, in order to create truly e�-
cient systems. The following research question emphasizes this notion,
while showing that the existing literature performs poorly on such HCI
aspects.

3.5.2 R.Q. 2: How do software assistants assist users?

This systematic mapping study identified three major types of assis-
tants which respectively have increasing competences: Informer Sys-
tems, Passive Recommender Systems, and Active Recommender Systems.
Some tasks call for one specific assistant type, such as providing code

42020 survey do not provide information about IDE.

50 CHAPTER 3. Software Assistants for software engineering in literature

metrics, which only requires Informer Systems. Other tasks require
recommender systems, which could in turn be passive or active. Unfortu-
nately, papers featuring Passive Recommender Systems did not justify
the reason why they do not implement the related action mechanism,
which stands for Active in Active Recommender Systems. This calls for
further work in the direction of exploring how passive recommender
systems can be turned into active recommender systems (if applicable)
by coming up with a set of actions to perform and execution capabilities.

The acceptability and usability of information systems strongly relies
on the relation of trust between one user and the system [14]. This
confidence is obtained, among other methods, by allowing the user
to understand how the system works and to control it to influence its
behavior [41]. Our results aboutHCI indicators clearly state that the user
interfaces of recommender systems hardly support these human aspects.
When analyzing the 37 identified recommender systems, 27% display a
confidence indicator for their results, 8% allow users to provide feedback
on their recommendations, and less than 3% provide an explanation
about their recommendations. Studying these HCI aspects, such as
how information is presented, how transparency is achieved, and how
users control the system, is one major research challenge for software
assistants, in order to make algorithms part of a whole user experience [69,
73].

3.5.3 R.Q. 3: What kind of software technologies are used
to embed intelligence in software assistants?

Software assistants must hold a minimal degree of human-like intelli-
gence to be able to perform data analysis and produce new information.
This is achieved by implementing hard coded rules and algorithms,
which exploit popular technologies and libraries to produce results,
with or without the need of external data or knowledge. Our analysis
shows that only one software assistant out of the 47 fully implemented
systems we studied exploits machine learning techniques. This enables
this particular system to change its behavior by learning from examples.
While the identified papers do not motivate their choice not to embed
machine learning, artificial intelligence or even cognification mecha-
nisms, one open line of work would be to investigate the use of such
techniques to support software assistants adaptability regarding user
preferences and profiles.

In order to perform analysis and provide recommendations, software
assistants exploit data which they obtain locally and/or remotely. Local

3.5. Discussion, open lines of work and challenges 51

information represent the artifacts edited by software engineers (e.g.,
the source code), the state and history of their IDE, and eventually other
client-side information. Remote information describes the data created
by co-workers, third-parties or the community (e.g., source code, the
content of company databases or model repositories) as well as answers
to questions on social community websites (e.g., Stack Overflow), or
available documentation (e.g., system requirements). Our results first
show that, as expected, Informer Systems mainly use data from local
sources (almost 85% of their datasources usage). However, it appears
that Passive Recommender Systems tend to exploit much more data
from remote data sources than Active Recommender Systems (58% ver-
sus 29%). Based on the nature of this data, one may think that current
Passive Recommender Systems are likely to be more accurate and “intel-
ligent” than the existing Active Recommender Systems since they are
exploiting external knowledge more heavily. One potential reason to
justify this result could be the e↵ort required to build that extra step
that makes a Passive Recommender system into an Active Recommender
System. This leads to another identified research challenge which is to
investigate how to facilitate the integration and exploitation of commu-
nity data, information and knowledge into the analysis algorithms of
software assistants with the goal to empower them.

Remote datasources rely on the availability of artifacts and knowl-
edge created by the community. Aggregating these elements creates
a global knowledge database which references many general concepts,
sometimes called background knowledge. This background knowledge
can help software engineers deal with common issues, related to gen-
eral concepts. Building curated and reliable code and data repositories
represents another open challenge for the research in software assistants.

3.5.4 R.Q. 4: To what extend are software assistants au-
tomated?

We have considered the automation of the software assistants in two dis-
tinct phases: (i) the activation of the system, i.e., the trigger mechanism
and (ii) the behavior of the system once started. Our results show that
software assistants are either triggered manually by the user (User Event
trigger) or automatically by the system (System Event trigger). Only 23%
of Active Recommender Systems are triggered automatically, compared
to 50% of Informer Systems and Passive Recommender Systems. This
may be due to the fact that Active Recommender Systems can create,
modify or delete content, thus, presenting more risks to be automated,

52 CHAPTER 3. Software Assistants for software engineering in literature

as it is the case for other AI-empowered systems [55].
The extracted automation patterns for each system revealed that

software assistants follow one or two interaction patterns according to
their type. To date, no software assistant is completely automated from
information acquisition to action implementation. This implies that
software engineers are always involved in interacting with the system.

Information analysis is fully automated for all software assistants,
which aligns with our definition of software assistant. When supported
(only for Active Recommender Systems), action implementation is fully
automated. Information acquisition is fully automated for Informer
Systems, while it could either be poorly automated or fully automated
for recommender systems. It is worth noting that only systems with a
fully automated information acquisition step are triggered automatically,
while the others require the users to trigger them manually. When sup-
ported (for Recommender Systems), decision selection remains the least
automated part of the process, being poorly automated. The poor au-
tomation of these steps might be the consequence of technical limitations
(such as user intent acquisition, or knowledge access) or acceptability
issues (users might want to keep control over the system). We identify
these concerns as another research challenge, which consists in exploring
new automation configurations for software assistants, while studying
its impact on acceptability.

We encourage researchers to think outside the box and assess new
interaction patterns for software assistants. We believe that this classifi-
cation might be useful to tool vendors who want to include assistance
systems into their software solution. Exploiting existing interaction
patterns is in line with Jakob’s law [123], which states that users prefer a
new system to work the same way as all the other systems they already
know.

More details about the interaction patterns of the 47 software assis-
tant under study are available online [156].

3.6 Conclusions

Since 2010, many types of assistants have become mainstream. For
instance, voice assistants like Amazon Alexa and Apple’s Siri and the
exponential adoption of chatbots in e-commerce. In this chapter, we have
studied whether this same trend is happening in software engineering,
i.e., whether assistants are becoming a mainstream tool to speed up
software development projects. And if so, what the most popular types
of assistants are and how they work.

Contribution from our research approach 53

We have observed that the number of research articles introducing
fully-finished and ready-to-use software assistants for software design,
construction and maintenance tends to decrease. Furthermore, the
assistants featured in our set of primary studies are not very well aligned
with the software engineers’ workflows and preferred programming
languages and development environments. We also identified that these
works do not take advantage from the recent progress of research in the
fields ofML or HCI for information systems. This potentially reduces
the e↵ectiveness of the created systems, while limiting their usability
and thus their acceptability. Both problems are even more important
as the number of smart IDEs from industry continues to increase (e.g.,
IntelliCode5, Kite6, Codota7, TabNine8), in contrast to the number of
related research papers.

Thus, research in the field of software assistants for software engi-
neering seems to lag behind the practices and techniques available to
date. We see this as a strong opportunity to develop a new generation
of assistants that embraces some of the new research results (e.g., ML-
based recommenders) and adapts them keeping in mind the findings
challenges we described above.

At the same time, we think it is important to pay attention to the
evaluation of this new breed of assistants. Rigorous research requires
the replicability of the published work in order to compare and evaluate
new solutions within the same field. This does not seem to be the case
yet in this domain. Only 11 articles out of the 47 primary studies have
made a dataset available to provide a benchmark for future comparisons.
Finally, another important weakness that we have detected is that only
45% of these user-centric systems conducted an evaluation with real
users.

Contribution from our research approach

This chapter aimed to investigate the existing literature about software
assistants for software engineering, to identify their common design
characteristics and better understand the literature landscape. At this
point of our research approach, two grey areas still challenge the validity
of software assistants as a solution to modeling problems. Clarifying
these two points would drive our understanding of the context of use and

5https://visualstudio.microsoft.com/services/intellicode/
6https://kite.com/
7https://www.codota.com/
8https://tabnine.com/blog/deep

54 CHAPTER 3. Software Assistants for software engineering in literature

the user requirements, the first two steps of our user-centered research
approach.

First of all, the limited presence of modeling assistants in the lit-
erature (2 out of 47) may indicate the low interest of the community
or of the practitioners for this kind of systems. The low interest of
practitioners would invalidate the chance of software assistants to pro-
pose a concrete solution to modeling problems. Hence, to validate our
approach, it is necessary to collect the feedback about practitioners to
better understand their need for assistance.

In Chapter 2, we showed that software assistants were a viable so-
lution to the modeling problems identified in the literature. However,
beyond identifying modeling issues, research papers did not propose
concrete ways to build software assistants for software modeling. The
results of our systematic mapping study did not indicate precise design
patterns to follow for the design of modeling assistants. Thus, in order to
create modeling assistants tailored to users, it is necessary to investigate
how they would like to be assisted.

To address these two aspects, the next chapter presents a study of
the software modeling population based on interviews. It describes our
protocol and results for the interviews of 16 modeling expert practition-
ers.

Contribution from our research approach 55

Table 3.5 – Assistant purposes and specific tasks

Purpose Specific task Environment Lang./Syntax # Primary
Studies

API/Code search Enhances default code completion system Eclipse IDE Java 1 [8]
Recommends code blocks from text query Flex Builder IDE Flex Builder* 1 [29]

Web browser Java 4 [189, 38,
195, 192]

jQuery 1 [196]
Recommends new features with code Web browser Java 1 [110]

Code completion Enhances default code completion system Eclipse IDE Java 4 [197, 121,
155, 49]

& recommend. Recommends code blocks from code analysis Eclipse IDE Java 1 [177]
Code metrics Augments code with indicators Brackets IDE Javascript 1 [98]

Eclipse IDE Java 2 [19, 42]
Impromptu IDE Impromptu* 1 [176]

Code visualization Displays code call graphs Eclipse IDE Java 1 [94]
& understanding Displays library dependencies of project Web browser Java 1 [17]

Finds code responsible for graphical behaviour Standalone App. Java 1 [87]
Folds less informative code regions Web browser Java 1 [59]
Proposes new code navigation system XCode IDE XCode* 1 [86]
Represents code as UML models Web browser Java 1 [50]
Suggests code locations to explore Eclipse IDE Java 1 [96]

Command Recommends tool commands to use Eclipse IDE N.A. 1 [187]
recommendation
Find collaborators Suggests potential collaborators Standalone App. All 1 [175]

Web browser Java 1 [179]
Interface prototyping Suggests examples for interface prototyping Web browser N.A. 1 [95]
Modeling Provides a model search engine Web browser XMI models 1 [103]

Recommends business process model chunks Standalone App. BPMN 1 [91]
Refactoring Suggests code refactorings Eclipse IDE Java 2 [115, 180]

IntelliJ IDEA IDE Java 1 [168]
Repair & Fix Recommends error-related resources Visual Studio IDE Visual Studio* 1 [89]

Recommends model fixes Eclipse IDE UML 1 [125]
Recommends Q&A posts Eclipse IDE Java 2 [43, 143]
Suggests code fixes Eclipse IDE Java 2 [153, 118]

Web browser C++ 1 [70]
Java 1 [70]

Resource Recommends code-related resources Eclipse IDE Java 1 [159]
identification Recommends error-related resources IntelliJ IDEA IDE Java 1 [139]

JSON 1 [139]
XML 1 [139]

Recommends libraries to add for project Eclipse IDE Java 1 [122]
Recommends Q&A posts Eclipse IDE Eclipse* 1 [10]

Java 1 [138]
Version Control Displays VCS potential conflicts Eclipse IDE All 1 [71]
System (VCS) Standalone App. All 1 [31]

Table 3.6 – Software Assistant types

Type Analyze &
Display Help Deciding Perform

Actions

Informer S Yes No No

Passive RS Yes Yes No

Active RS Yes Yes Yes

56 CHAPTER 3. Software Assistants for software engineering in literature

Table 3.7 – Assistant types for specific tasks

Purpose Specific task Type # Primary studies

API/Code search Enhances default code completion system Passive RS 1 [8]
Recommends code blocks from text query Active RS 1 [29]
Recommends code blocks from text query Passive RS 5 [196, 192, 38, 189, 195]
Recommends new features with code Passive RS 1 [110]

Code completion Enhances default code completion system Active RS 4 [155, 197, 49, 121]
& recommendation Recommends code blocks from code analysis Passive RS 1 [177]

Code metrics Augments code with indicators Informer S 4 [42, 19, 98, 176]
Code visualization Displays code call graphs Passive RS 1 [94]
& understanding Displays library dependencies of project Informer S 1 [17]

Finds code responsible for graphical behaviour Passive RS 1 [87]
Folds less informative code regions Informer S 1 [59]
Proposes new code navigation system Informer S 1 [86]
Represents code as UML models Informer S 1 [50]
Suggests code locations to explore Active RS 1 [96]

Command recommen. Recommends tool commands to use Passive RS 1 [187]
Find collaborators Suggests potential collaborators Passive RS 2 [175, 179]

Interfaces prototyping Suggests examples for interface prototyping Active RS 1 [95]
Modeling Provides a model search engine Passive RS 1 [103]

Recommends business process model chunks Active RS 1 [91]
Refactoring Suggests code refactorings Active RS 3 [180, 115, 168]
Repair & Fix Recommends error-related resources Passive RS 1 [89]

Recommends model fixes Active RS 1 [125]
Recommends Q&A posts Passive RS 2 [43, 143]
Suggests code fixes Active RS 3 [118, 153, 70]

Useful resources Recommends code-related resources Passive RS 1 [159]
identification Recommends error-related resources Passive RS 1 [139]

Recommends libraries to add for project Active RS 1 [122]
Recommends Q&A posts Passive RS 2 [10, 138]

VCS Displays VCS potential conflicts Informer S 2 [31, 71]

Contribution from our research approach 57

Table 3.8 – Datasources description

Type Category Datasource # Primary Studies

LOC Execution environment JVM Access 2 [87] [19]
Access to runtime environment 1 [176]
ByteCode Access 1 [87]
Java Binaries 1 [49]

IDE IDE Access 32

[42] [118] [168] [96] [197]
[155] [91] [87] [122] [180]
[139] [8] [115] [153] [177]
[98] [89] [121] [187] [19]
[138] [31] [49] [50] [94]
[176] [70] [10] [17] [86]

[71] [159]
IDE Cache 1 [42]
Tool commands registry 1 [187]

Local sources and versionning Sources + Versionning local 32

[42] [118] [168] [96] [197]
[155] [91] [87] [122] [180]
[139] [8] [115] [153] [177]
[98] [89] [121] [187] [19]
[138] [31] [49] [50] [94]
[176] [70] [10] [17] [86]

[71] [159]
Assistant local storage Collection Database 1 [96]
Web browser content Access to webbrowser request and content 3 [139] [98] [159]

Access to internet web searches 1 [189]
Access to Web Browser Editor 1 [95]

REM Bug tracking platform Bug Report access & failing test 1 [153]
Runtime Execution Traces 1 [42]

Code/Model/Q&A repository Stack Overflow database 7 [43] [196] [38] [89] [138]
[143] [10]

Source Code Corpus 4 [155] [122] [177] [121]
API Libraries 3 [192] [189] [38]
Model Corpus 2 [91] [103]
Android Sources 1 [195]
API Sentence Model 1 [155]
Bytes.com access 1 [89]
Codeguru.com access 1 [89]
Daniweb.com access 1 [89]
DevShed access 1 [89]
Feature Request List 1 [192]
Fix Library 1 [70]
Github Rest API 1 [179]
Source Forge code repository 1 [175]
Web pages corpus 1 [95]

Documentation repository Documentation Access 3 [192] [189] [38]
Android Doc 1 [195]
Software Documentation 1 [110]

Search engine Google 3 [29] [138] [143]
Bling access 2 [138] [143]
Blekko access 1 [138]
Yahoo access 1 [143]

Versionning repository Specific Source Code Repository Access 7 [192] [125] [110] [8] [31]
[59] [71]

Closed feature request repo 1 [192]
Wordnet Wordnet 3 [195] [91] [49]

58 CHAPTER 3. Software Assistants for software engineering in literature

Chapter4
The need for assistance in
software modeling practice

While software assistants theoretically appear as potential solutions to tackle
modeling issues, this remains to be proved empirically. For modeling as-
sistants to be tailored to users’ needs, we first need to collect the modeling
engineers’ needs and expectations about modeling assistance. Addressing
these two issues is part of our user-centred research approach, that first con-
sists in (i) understanding and specifying the context of use of the system and
(ii) specifying the user requirements.

This chapter presents the results of a series of interviews conducted with
16 software modeling experts as a first qualitative research e↵ort investigating
the need for assistance in modeling. It allowed us to gather user requirements
about the design of software modeling assistants, but also enabled us to
strengthen our understanding of modeling assistance. From the analysis of
our conversations, we formulate a set of 12 hypotheses, which pave the way
for the design of user-tailored modeling assistance systems and call for further
evaluation. This work led to the writing of a journal article that has been
submitted, and which is currently under review.

4.1 Study design

In this chapter, we investigate the position of software modeling experts
about modeling assistance and software modeling assistance. To do
so, we planned multiple interview sessions with experts from various

59

60 CHAPTER 4. The need for assistance in software modeling practice

companies and business domains. In this section, we introduce our
research questions, and present the research method that we followed
for this study. We conducted 16 structured interviews with modeling
experts, exploiting a questionnaire of 49 items to address our 5 research
questions.

4.1.1 Research questions
Our work aims to answer the five following research questions. Ques-
tions 1 to 4 were split in several subquestions to refine their goal, and to
present the results in a clear and organized manner.

• R.Q. 1: Does the profile of the participants meet the profile of software
modellers as presented in the literature?

– R.Q. 1.1: How often do they model?

– R.Q. 1.2: What are the tools they use?

– R.Q. 1.3: What kind of diagrams do they realize?

– R.Q. 1.4: Why do they model?

– R.Q. 1.5: What are the most challenging aspects of modeling for
them?

• R.Q. 2: What do software modeling experts expect from the ideal
software modeling assistant?

– R.Q. 2.1: Do they need help when modeling?

– R.Q. 2.2: How could the ideal software modeling assistant help
them?

– R.Q. 2.3: What makes a good software modeling assistant?

• R.Q. 3: How would software modeling experts like to interact with the
ideal software modeling assistant?

– R.Q. 3.1: How should the system be triggered?

– R.Q. 3.2: Should the system indicate how confident it is?

– R.Q. 3.3: Should the system explain its suggestions?

– R.Q. 3.4: Should the system provide a feedback mechanism?

– R.Q. 3.5: Could the system display wrong suggestions?

• R.Q. 4: How could a software modeling assistant help experts’ col-
leagues?

4.1. Study design 61

– R.Q. 4.1: How are participants solicited by their colleagues to
help them?

– R.Q. 4.2: How do participants feel about their colleagues’ trust
in their answers?

– R.Q. 4.3: Could a software modeling assistant act like partici-
pants to help colleagues?

• R.Q. 5: What limitations could prevent the development of the ideal
software modeling assistant?

4.1.2 Research method
We performed a qualitative research study based on structured inter-
views. We report on our research approach by describing its (i) design
and planning, (ii) data collection, and (iii) data coding.

Study design and planning

We conducted a semi-structured interview study as a preliminary means
to identify opportunities and challenges to assist modeling practitioners.
Interviews allowed us to achieve this qualitative research e↵ort while
collecting more data from participants than questionnaires. To this
end, we built the guide of the interview exploiting techniques from
design thinking [92] and created 50 mostly open-ended questions (see
Table 4.8) to stimulate participants’ thinking and discussion around
our four research questions. We encouraged participants to provide the
maximum amount of details for all their answers before starting the
interview session.

The estimated time of the session was 90 minutes to let participants
talk as much as possible. Before scheduling the interview session, partici-
pants had to fill a non-disclosure agreement ensuring the confidentiality
of the collected content as well as their anonymity. Due to health-related
restrictions in place at the time of the study design, the interviews were
designed to be conducted via video and audio conferencing. The sessions
were audio-recorded for them to be transcribed and analyzed. Two test
sessions were conducted with two colleagues who have industry experi-
ence to test the technical set-up and the questionnaire. The wording of
some questions was modified to facilitate their understanding.

Participants were gathered according to their profile, which should
match the following criteria:

• At least a 5 years experience in software modeling,

62 CHAPTER 4. The need for assistance in software modeling practice

• Performs software modeling with UML regularly and eventually
with other modeling languages,

• Software architect, functional manager, or any other position re-
lated to the functional, process, or business aspects of software.

The call to participate in our experiment was first sent by email on
a mailing list of corporate human resources contacts internal to the
university. We also conducted searches on LinkedIn1 in order to contact
as many practitioners as possible who fit the profile we were looking for.

Data collection

Invitations to join our study were sent during the month of February
2021. We sent an invitation email through an industry mailing list of
the University of Lille and directly contacted 44 LinkedIn profiles. At
the end of the invitation process, 16 practitioners matched the profile
and signed the non-disclosure agreement. As the participants were all
native French speakers, the questions and answers were given in French.
The interviews were conducted in March 2021 in a virtual setting using
videoconferencing tools such as Zoom2, Microsoft Teams3, or Google
Meet4, depending on the participant’s company agreements.

The sessions of questions took 83 minutes on average and were
followed by a debriefing time of 13 minutes on average. This debriefing
moment was dedicated to answering all questions of the practitioners
about the research we are conducting and collecting their informal
feedback about our questions. A single author, Maxime Savary-Leblanc,
conducted the interviews to ensure the consistency of the protocol. In
total, 25 hours and 42 minutes of discussion were recorded, from which
22 hours and 13minutes –dedicated to the questions– had been exploited
in this study. To allow a detailed analysis of the responses, the recordings
were transcribed into text by a specialized company.

Data analysis

We analyzed the transcripts and used NVivo5, a text-coding software
enabling fine-grained coding for qualitative analysis. The coding phase

1https://www.linkedin.com/
2https://zoom.us
3https://www.microsoft.com/fr-fr/microsoft-teams/
4https://meet.google.com
5https://ritme.com/software/nvivo/

4.2. Results 63

was performed manually since searching for keywords could be insu�-
cient, due to practitioners referring to a same idea in di↵erent ways. For
each interview question, codes were created to comprehensively repre-
sent the ideas and opinions expressed by the participants. To conduct
the qualitative analysis of the data, we coded as much text as possible
related to the questions. The uncoded parts of the text represent ele-
ments of communication management or elements that are not related
to the questions. This is the case for the presentation of the participant’s
professional background at the beginning of the session.

The questions asked in the sessions were intended to stimulate the
participants’ thinking and imagination. Some participants needed more
time to think about their answers, others thought orally. Thus, the cod-
ing allowed us to analyze the presence or absence of ideas and arguments
in the participants’ speech, but does not allow us to draw conclusions
about the strength of an idea based on the number of times it appears
in the speech. In this chapter, the strength of an argument or idea is
represented by the number of participants referring to it. However, since
the analysis is qualitative, this process is only used to order the ideas
or identify possible trends, and should not be considered as providing
meaningful statistics.

4.2 Results

This section presents the results of the data coding and analysis. We
first introduce the demographics about participants, and report on the
results following the research questions of Section 4.1.1.

4.2.1 Demographics
Questions A1 to A4 of the questionnaire allowed us to collect general
information on the participants. This information is presented in Table
4.1 and allows us to draw up a general profile of the respondents. The
participants in the study have a median modeling experience of between
10 and 15 years, and represent a cumulative experience of between 200
and 270 years. The distribution between small and large companies
appears to be relatively even, and the median is located at companies
with 50 to 100 employees. Note that this value represents the company
where the participant is an employee. Thus, freelance workers are
counted as companies with less than 10 employees but may have much
larger companies as clients. This is the case for profiles P3, P8 and P9,
who work for clients with over 100 employees. Despite our e↵orts in

64 CHAPTER 4. The need for assistance in software modeling practice

Figure 4.1 – Overview of the panel of participants

searching for candidates, the population represented is predominantly
male (14 out of 16). 13 out of 16 participants rate their UML proficiency
at least 4 out of 5 on a 5-point Likert scale, which is in line with the
selection criteria. The remaining 3 participants felt that they did not
meet the standard strictly enough to give themselves a higher score.
As the participants evaluated their communication skills themselves,
they might have overestimating or underestimating their skills, which
influences the presented results. However, this enables us to assume
that all participants have a su�cient command of UML to answer our
questions. Our panel of participants covers many domains in industrial
production and service delivery. The domain of finance, insurance and
pensions is particularly represented as it covers many entities, such as
banks, supplementary pension organizations, or governmental public
actors.

4.2.2 R.Q. 1: Does the profile of the participants meet
the profile of software modellers as presented in
the literature?

In this section, we report on questions A6 to B4 (see Table 4.8), which
investigated the general modeling practice of the participants, in order
to better understand their profile. We present results about how often
they model, and with what tools. We also introduce results about what
kind of diagrams they realize, what they are aimed for, and report the
aspects of modeling that they find the most challenging.

4.2. Results 65

13

7 7

4

2 2
1 1 1 1 1

W
hiteboard

Paper

Pow
erPoint

Visio
LibreO

ffice

PlantU
M

L

A
rchim

ate

D
iagram

s

draw.io

LucidChart

M
iro

0

2

4

6

8

10

12

N
u

m
be

r
o

f
pa

rt
ic

ip
an

ts

(a) Informal modeling media

4

3

1 1 1 1

4

2

1 1 1 1 1 1 1 1 1 1 1 1 1

Papyrus

M
icrosoft Visio

M
icrosoft Pow

erpoint

IBM
 RSA

A
rchim

ate

Cam
eo System

s M
odeler

Capella

diagram
s.net

IBM
 D

oors

draw.io

LucidChart

O
beo solutions

PlantU
M

L

Pow
er A

M
C

PTC Integrity M
odeler

IBM
 Rhapsody

Sim
ulink

Sirius

O
beo Sm

art EA

IBM
 Rational Rose

Visual Paradigm

0

1

2

3

4 Drawing

Formal

N
um

be
r

of
 p

ar
ti

ci
pa

nt
s

(b) Formal modeling tools

Figure 4.2 – Formal and informal modeling media

66 CHAPTER 4. The need for assistance in software modeling practice

Id Gender Age Company
size Domain Position Modeling

experience
UML
level

P1 F 33 50-100 Automotive, aerospace, System Modeling Engineer 5-10 5
energy or construction

P2 M 55 50-100 Automotive, aerospace, Head of R&D +20 4
energy or construction

P3 M 46 -10 Construction materials Entreprise Architect +20 5
P4 M 46 +100 Banking, insurance, pensions Chief Architect 10-15 3
P5 M 41 -10 Telecoms Chief Technical O�cer 15-20 4
P6 F 42 +100 Banking, insurance, pensions Information System Architect 10-15 4
P7 M 43 +100 Banking, insurance, pensions Project Manager 5-10 4
P8 M 44 -10 Machine manufacturing System Architect 15-20 4
P9 M 31 -10 Banking, insurance, pensions Project Manager 5-10 4
P10 M 56 +100 Research Head of R&D lab 15-20 4
P11 M 42 50-100 IT services Head of Business +20 5
P12 M 35 10-50 Automotive, aerospace, Project Manager 10-15 2

energy or construction
P13 M 47 +100 Banking, insurance, pensions IS Manager 10-15 4
P14 M 42 +100 Banking, insurance, pensions Head of Data Architecture 5-10 3
P15 M 51 +100 Banking, insurance, pensions Architecture governance +20 4
P16 M 34 -10 Automotive, aerospace, Modeling technical adviser 10-15 4

energy or construction

Table 4.1 – Summary of participant’s profiles

R.Q. 1.1: How often do they model?

Questions A10 and B1 were intended to measure how frequently partic-
ipants practice informal and formal modeling. Interviewees were asked
to choose between daily,multiple times a week,multiple times a month, and
never. Figure 4.3 presents the frequency results for the 16 practitioners
for both informal and formal modeling. We refer to formal modeling
as modeling with dedicated tools, with respect to the UML standard, to
produce diagrams intended to be reused and stored, as opposed to informal
modeling, that we define as informally sketching pieces of diagrams, on
any media, that are not intended to be reused over time. Some participants
informed us that their modeling workload fluctuates depending on the
weeks and projects they are working on. In this case, we asked them
to smooth their response so that it is representative of their work in
general. 12 participants our of 16 (75%) practice formal modeling regu-
larly, at least multiple times a week while 10 participants (62%) do so
with informal modeling. We note that the 4 practitioners who perform
formal modeling monthly or less are all managers in charge of one or
several teams of employees. Their relationship to modeling is then made
through the collaborators they supervise and their response should not
be interpreted as not using formal modeling in their work.

R.Q. 1.2: What are the tools they use?

Questions A11 and B2 enabled us to list the media that participants
exploit to createUMLmodels. Both questions di↵erentiate media used to

4.2. Results 67

4

8

3

1

6

4

6

0
Daily Multiple times

a week
Multiple times

a month
Never

0

1

2

3

4

5

6

7

8 Formal modeling
Informal modeling

N
um

be
r o

f p
ar

tic
ip

an
ts

Figure 4.3 – Participants’ frequency of both informal and formal model-
ing

produce informal models from formal models as respectively presented
in Figure 4.2a and 4.2b. When producing informal models, participants
prefer to use non-digital media such as whiteboard (13 out of 16) or
paper (7 out of 16). 11 practitioners use software tools to draw informal
diagrams such as Microsoft Powerpoint (7 out of 16), or LibreO�ce (2
out of 16). They also use diagram-drawing tools such as Microsoft Visio,
diagrams.net or draw.io.

We have identified 21 software tools that allow participants to build
formal UML models. Two of the top-3 most used tools (Microsoft Visio
and Powerpoint, respectively 4 and 3 participants) are diagram-drawing
software that allow for the creation of informal diagrams that do not nec-
essarily respect the UML standards. Participants P5 and P15 switched
from formal software to this kind of more simple tools because they
identify most of formal modeling software as real mazes, e.g., tools too
complex to use for them. We identified 6 drawing tools, and 15 formal
modeling tools in interviewees’ answers. The participants who chose
drawing tools justify this choice by the ease of collaborative work, their
light and mobile client, and their a↵ordability. Participants using formal
modeling tools cited the imposed choice of the client or company as
the main reason, followed by the open-source nature of the software,
or its strict compliance with the standard. The high price of many of
these tools is also cited as a reason for not being allowed to change, as

68 CHAPTER 4. The need for assistance in software modeling practice

companies do not want to pay for several di↵erent licenses.

R.Q. 1.3: What kind of diagrams do they realize?

Class
Sequence

Activity

Use case

State machine

Component

Collaboration

Requirement

Deployment

0

10

20

30

40

50

60

70

80

90

Our study
Petre
Hutchinson et al.

%
 o

f p
ar

tic
ip

an
ts

Figure 4.4 – Types of UML diagrams that participants use

Study participants were mainly selected because of their use of UML.
Thus, question A7 was aimed to identify the UML diagrams they exploit
at work. Figure 4.4 compares the declared usage of diagrams from our
study with the results of studies by Petre [136] and Hutchinson et al.
[77]. The study of Petre focused on understanding the use of UML in
practice while Hutchinson et al. provide an overview of modeling in
MDE approaches. The percentage value in the figure represents the
amount of practitioners who use each type of UML diagram. In our
study, 11 practitioners use class diagrams, 10 use sequence diagrams,
8 use use case diagrams, 7 use state machine diagrams), and 6 use
component diagrams. The use of other kinds of UML diagrams remains
more sparse according to the considered study. 2 participants (P1 and
P2) also declared using SysML IBD and BDD diagrams regularly.

4.2. Results 69

75%

44%

25%

13% 13%

74%

65%

73%
68%

42%

Vehicle for
communication

Capture and
document
designs

Analysis and
understanding

Code
generation

Simulation
0

10

20

30

40

50

60

70
Our study
Hutchinson et al.

%
 o

f p
ar

tic
ip

an
ts

Figure 4.5 – Modeling goals of the participants

R.Q. 1.4: Why do they model?

The purpose of question A8 was to understand why participants create
models. We coded the results of this question using the classification
of Hutchinson et al. [77], established from a previous study. Figure 4.5
introduces why our practitioners use models, and compares our results
with the results from their study about MDE.

Our expert modelers mainly use models as a vehicle for communi-
cation (12 out of 16). The focus is then mainly on reaching agreement
between the di↵erent team members as described by participant P5
who uses UML “to exchange so to communicate with other teams, to share
information, to have an unambiguous format, to be understandable by all,
to agree on a vision of a requirement and more generally of a business”. As
another participant summarized, they “model to share, to make sure every-
one understands the same thing. So it’s overall for communication purposes”.
7 practitioners (44%) use models to capture and document software
designs while creating requirements or software documentation. The
first purpose of creating these documents is to enable the development
of the solution, as pointed out by participant P9 who describes that
“the second big use [of models] is to provide these diagrams - when they are

70 CHAPTER 4. The need for assistance in software modeling practice

Task # Domain
knowledge

Corporate
methodology Notation Tool

usage
Modeling
know-how

Adapt level of detail to the recipient of the model 7 X
Understand the domain and the client 7 X
Layout diagrams 5 X
Tools too complex to use 5 X
Modify an element in an existing model 4 X
Creating many elements is tedious 2 X
Keep the models up to date 2 X X
Reuse models 2 X X
Choose the right model elements 1 X
Know the best way to use the tool 1 X
Split and architect the model 1 X X
Make a model that is su�cient for understanding 1 X X
Copy and paste is complicated 1 X
Mastery of UML 1 X
Lack of active support for modeling 1 X X
Lack of guidance during modeling 1 X X
Poor ergonomics of the tool 1 X
Use templates 1 X
Do not forget elements in the large models 1 X X
Respect the UML notation 1 X
Adapt to time and budget constraints 1 X
Use a drawing tool to model 1 X

Total of respondents 10 4 3 11 8

Table 4.2 – Most challenging aspects of modeling according to our par-
ticipants

validated by the management - to the developers, to software engineers who
are going to rely on them”. In more critical environments, these docu-
ments can be created in response to a strong need for validation, as in
the case of participant P10, who recalls that for “space projects, you have
to follow very specific protocols, they require an absolutely crazy amount
of documentation, of tests, of things, of validation, the SRS, the software
requirement, then the software validation, then the tests. There, I’m quoting
the important documents, but the document that describes the design, that
is, what is the architecture and the design that meets the requirements, the
specifications, this document uses a lot of UML.” Our participants more
rarely use models to analyze and understand a system (3 practitioners),
to generate code (2 practitioners), or to run simulations (2 practitioners).

R.Q. 1.5: What are themost challenging aspects ofmodeling for them?

As a first step to understand how expert practitioners could be assisted
when modeling, we identified the tasks that they perceive as di�cult.
Question B4 was about identifying and listing these challenging tasks.
When unclear, we asked participants to refine and detail their answer.
We collected 22 tasks that are perceived di�cult, and grouped them into
five categories according to their nature as shown in Table 4.2.

Tool usage relates to all tasks that are directly related to themodeling

4.2. Results 71

tool, such as creating or editing model elements in a diagram.
Domain knowledge gathers tasks related to the knowledge and un-

derstanding of domain-specific concepts that are necessary to the con-
struction of the model. It covers the general understanding of the field
that the practitioners are working for, as well as the mastery of the
concepts that should be represented in the diagram they conceive.

Modeling know-how refers to the tasks that compose the essential
complexity of the modeling activity, which is inevitable, which relates
to the very nature of a task, and which cannot be removed. For instance,
choosing what to model, or deciding of the model architecture, are tasks
that rely on the modeler’s experience and are the core of the modeling
activity.

Corporate methodology covers tasks that are included in company-
internal processes. In some companies, operations on models must
follow internal guidelines about where to store data, the amount of
metadata to include, or naming or modeling conventions. Such guide-
lines set contraints on the modeling tasks that engineers should perform.

Notation relates to tasks requiring the knowledge and the mastery
of the UML notation, such as mapping a concept or a rule to the right
diagram element.

Participants most complain about the general tool usage (11 out of
16, 69%) and especially about tools being too complex (5 out of 16),
with bad ergonomics (1 out of 16). Modeling tools are perceived by
participants P5 and P13 as “real mazes” with way too many features
for their needs. Some specific features are also pointed out such as the
layouting (5 out of 16), the editing of existing model elements (4 out of
16), the synchronization of models (2 out of 16), and their reuse (2 out
of 16).

Tasks related to domain knowledge also appear di�cult for 10 out
of 16 participants. During the interviews, practitioners identified two
distinct challenges which fall into this category. The first is to gather
and understand the customer’s need, comprehensively and accurately
enough to enable the creation of the model. For example, participant
P8 says that the most complicated part is “understanding the customer.
Even though I have 20 years of experience in modeling, it really takes a huge
intellectual e↵ort. The problem is not in the modeling, but in understanding
what the customer is saying in order to translate what the customer is saying
into UML. Yes, for me, understanding the need is the most di�cult.” The
second challenge is to have general knowledge of the modeling domain.
Access to this knowledge can be complex because it can be distributed

72 CHAPTER 4. The need for assistance in software modeling practice

between di↵erent human or IT resources.
8 participants identify tasks related to modeling know-how as chal-

lenges during modeling activity. The biggest challenge is to adapt the
level of detail of the model to its recipient. This is a challenge faced
by participant P3, who thinks that “the di�culty lies in knowing how
the model will be perceived by the person on the other side. In fact, a UML
model, for example, I’m going to send it to a technician who will understand
it, but I’m going to send it to a business that won’t necessarily understand
everything. If I send it to a manager, it’s even worse, it depends on the
manager.” Participant P15 also shares this point of view by stating that
“the di�culty is finding the right level of abstraction to go and talk to our
di↵erent stakeholders. What is the right level of abstraction to go and talk
to the business? What is the right level of abstraction to discuss with the
architects? What is the right level of abstraction to discuss with the people
in charge of operations? Everyone has their own habits, their own way of
looking at the same subject. The operations guy doesn’t care about the busi-
ness division, it’s not his problem. He wants to know physically on which
machine the component is running and when the machine breaks down, does
he have redundancy? His concern is not at all at the same level of detail as
the business. The business doesn’t care where the component is instantiated
for instance.”

One practitioner also pointed out the di�culty to design and orga-
nize the model, while another reported on the complexity of conceiving
models that are su�cient for understanding.

4.2.3 R.Q. 2: What do software modeling experts expect
from the ideal software modeling assistant?

Part B of the questionnaire was focused on practitioners’ need for help
when modeling, either it is from their colleagues or a digital assistance
system. In this section, we report on questions B5 to B11, which investi-
gate how practitioners would welcome such a computerized system, by
assessing if they could perceive it as something useful, understanding
what they expect from it, and collecting their ideas about what it could
do.

R.Q. 2.1: Do they need help when modeling?

During the interviews, several practitioners asked for clarification on
the concept of help in order to answer question B5. We therefore defined
help for the practitioners as the intervention of a third party in order
to accelerate their work or to unblock a situation. Thus, any person

4.2. Results 73

answering the participant’s questions during the modeling process is
considered as assistance.

4

6

3 3

Daily Multiple times
a week

Multiple times
a month

Less than once a month
0

1

2

3

4

5

6

N
um

be
r o

f p
ar

tic
ip

an
ts

Figure 4.6 – Participants’ need for help when modeling

Figure 4.6 shows the frequency of participants’ need for assistance.
More than half of interviewees (10 out of 16) regularly require help
while 3 participants use help less than once a month. This help is mainly
related to mastering the business domain as presented in Table 4.3. 9
out of 16 participants required help in understanding the domain and
business processes, and 4 participants required help in ensuring the
completeness of the model on the same topics. Some participants also
required help when searching for useful resources (2 out of 16), learning
how to use the modeling tool (2 out of 16), and exploiting the UML
syntax the right way (2 out of 16).

R.Q. 2.2: How could the ideal softwaremodeling assistant help them?

Question B7 introduces the notion of software modeling assistant and
was intended to understand practitioners’ opinions on the usefulness
of such a system. We defined a software modeling assistant (or simply
assistant during the interviews) as software capable of helping them,
without further precision in order not to bias the answers. The objec-
tive was to understand whether a computer system could provide the

74 CHAPTER 4. The need for assistance in software modeling practice

Aspect of the assistance # of participants

Understanding of domain and business processes 9
Domain completeness of the model 4
Locate useful information 2
Usage of modeling tool 2
Usage of UML 2
Decision-making with the client 1
Impact study of changes 1
Collaborative modeling 1
Peer review and validation 1

Table 4.3 – Aspects of participants’ required modeling assistance

assistance mentioned in Section 4.2.3. 11 out of 16 practitioners (69%)
consider that a modeling assistant could help them with these topics
today, given the current state of technology and data stored in computer
systems. The five other practitioners do not indicate that they would
not like to be assisted, but rather mention limitations (detailed in Sec-
tion 4.2.5) that still prevent such system to exist for them. However,
when asked to overlook the current technological limitations, 100% of
practitioners envision a system that can help them. Thus, 100% of our
participants would welcome a modeling assistant to support their work,
provided that the system o↵ers the expected functionality, and works in
the expected way.

Questions B10 and B11 asked participants to imagine what assis-
tance features they would like to have when they model. A total of 21
features were mentioned (identified in Table 4.4), covering 4 of the 5
task categories identified in Section 4.2.2. Only the Modeling know-how
is not represented in the listed features. All participants (16 out of 16)
imagined features related to tool usage. Such functionalities are mainly
intended to reduce the modeling e↵ort or the modeling time. Among
the most cited features, 6 practitioners would like the assistant to be
able to generate diagrams autonomously. This refers to the ability of
the system to create an initial diagram about a business domain, with
recommended elements already added, as a template. Participant P13
imagines a system capable of “automatically generating the diagrams, I
don’t need to do it again since I have already entered the data, through other
diagrams and according to the existing”. For participants P8 or P15, it is
more a question of refining or transforming the model to another repre-
sentation. For them, “if the assistant existed, ideally it would allow, from
the model that was originally made, to be able to generate almost another
model, a little more precise, technical, of implementation”.

4.2. Results 75

5 participants would like to be provided with model templates when
starting modeling. Participants also imagined an assistant that could
layout diagrams autonomously (4 out of 16), or that could ensure the
consistency of several models or diagrams (4 out of 16). In addition,
some practitioners suggested di↵erent ways to interact with the model-
ing tool, such as being able to hand-draw diagrams to be formalized in
the tool, modeling with the voice, or modeling with a text editor.

15 out of 16 practitioners imagined features related to domain knowl-
edge and notation. This covers the two most popular features of the list
aboutmodel completeness andmodel correctness. 11 participants imagined
that the ideal modeling assistant could be able to detect what is missing
from a model, and to add new model elements in an auto-completion
manner. For example, participant P4 would like the system to be able to
“complete my model and o↵er the possibility of making choices, i.e., to choose
whether or not to include this concept, in fact to add and take on aspects
that we quickly forget, security aspects, because behind it all we come with a
particular background, we are never omniscient about all aspects and so at
times when we are going to model, we will have a particular concern in mind.
The assistant must therefore be there to enable us not to forget the really pure
IT type aspects, the security type, the data type, the type of how I can make
my application more resilient”.

In a similar fashion, 10 participants would like their modeling assis-
tant to be able to detect model inconsistencies, to assess and validate the
model and, if necessary, suggest how to fix such errors. Both features
provide assistance about the domain by suggesting elements or assessing
rules that practitioners might have forgotten, while helping on coping
with the notation by preventing the misuse of incompatible syntax ele-
ments. Some participants also imagine the assistant as a peer, which is
capable of advising them on best practices (4 out of 16), or answering
questions on the business domain (2 out of 16).

10 participants require assistance on the corporate methodology. The
features that fall into this category profile an assistant capable of pro-
viding active help with internal methodology practices (4 out of 16), the
choice of model elements to create (3 out of 16), or the choice of the
diagram to create (3 out of 16).

12 participants out of 16 also think that a digital modeling assistant
could be useful when working along with the client in a meeting or a live
modeling session. Table 4.5 presents the features that they would like to
use in such situations. Firstly, practitioners would like to use di↵erent
ways to interact with the tools such as speech-driven modeling (4 out
of 16) or hand drawing on whiteboards (2 out of 16). Secondly, they

76 CHAPTER 4. The need for assistance in software modeling practice

Feature # Domain
knowledge

Corporate
methodology Notation Tool

usage

Complete/detect what is missing in the model 11 X X
Validate/detect what is wrong with the model 10 X X
Generate/make diagrams for me 6 X
Prepare diagrams (with templates) 5 X
Layout the diagram autonomously 4 X
Ensure consistency between multiple diagrams/models 4 X
Advise on good practices 4 X X X
Adapt menus and options to the current context 3 X X X
Suggest what type of diagram to make 3 X X X
Answer questions about the domain 2 X
Recognize and formalize hand-drawn models 1 X
Propose layers for the objects in the diagram 1 X
Support speech-driven modeling 1 X
Modeling by writing wysiwyg text 1 X
Advise on business process modeling order 1 X X
Suggest resources to read or people to contact 1 X X
Repair models 1 X
Suggest ways to better use the too 1 X
Adapt the precision of the tool to my level of modeling 1 X
Evaluate the impact of a change on a model 1 X
Draw informal diagrams in the modeling tool 1 X

Total of respondents 16 15 10 15 16

Table 4.4 – Participants’ features for their ideal modeling assistant

would like the assistant to guide the client when conceiving the system
with questions, or steps to follow (2 out of 16). Finally, participants
also would like the system to listen to the conversation, and be able
to generate reports about the meeting (2 out of 16), explain previous
design decisions (1 out of 16), or provide metrics about the evolution of
the model (1 out of 16).

Feature # of participants

Support speech-driven modeling 4
Recognize and formalize hand-drawn models 2
Generate reports about the meeting 2
Guide the client with questions or steps to follow 2
Explain design choices made in previous meetings 1
Identify wrong design decisions 1
Propose a diagram template based on a general topic 1
Layout the diagram quickly 1
Generate metrics about the evolution of the model 1

Table 4.5 – Features for the ideal modeling assistant with a client

R.Q. 2.3: What makes a good software modeling assistant?

Questions B8 and B9 were designed to identify aspects that may influ-
ence how participants perceive the assistant. Practitioners first listed

4.2. Results 77

Figure 4.7 – Participants’ answers to what makes a good or bad software
modeling assistant.

what makes the assistant good for them, and then had to list characteris-
tics (di↵erent from those already listed) that make the assistant bad. We

78 CHAPTER 4. The need for assistance in software modeling practice

note that these characteristics had to be imagined and applied to a mod-
eling assistant that does not exist. Thus, the practitioners’ ideas reflect
the features they thought of, and not necessarily the reality of practice.
Figure 4.7 presents the 33 features mentioned by the participants, which
we have grouped into 5 categories: usability, skills, added value, user
adaptability, and context understanding.

The usability of the modeling assistant influences the perceived
quality of the modeling assistant for 9 participants. This includes the
way the software is used but also its behavior towards the user. 9
participants think that the skills of the assistant influence its quality,
such as if it makes mistakes, misunderstands the user, or does not respect
the modeling language. 5 participants care about the added value of
the assistant to judge if the system is good or bad. Their reflection is
mainly about saving time and taking over tasks for them. The fact of
adapting its behaviour to the user is important for 5 practitioners, for
whom the assistant must conform to their way of working, include them
in the decision process, but above all adapt to their habits and needs.
Finally, for 6 participants, a good assistant must understand the work
context, learn from the domain, understand the issues, and understand
what the user wants to do.

4.2.4 R.Q. 3: Howwould softwaremodeling experts like
to interact with the ideal software modeling assis-
tant?

The modeling assistant is a system that aims to help users, by advising
them about things, doing tasks for them, or both. To do so, it must
take part in the overall task at a specific moment, and might identify
things to do, how to do them, make decisions, and apply actions if
necessary. For all these subtasks, the system can have di↵erent levels of
automation, ranging from non-automated (not helping the user), to fully
automated (not involving the user in the task), separated by di↵erent
intermediate levels of automation [130]. Among these intermediate
levels there are those where the system proposes alternatives among
which the user must choose. In this section, we report on questions C2 to
C11, which aim to identify the desired level of automation as well as to
understand how the participants would like to interact and collaborate
with the modeling assistant. Figure 4.8 introduces the results for the
five subquestions of this section.

4.2. Results 79

Figure 4.8 – Overview of the results of R.Q. 3 subquestions

R.Q. 3.1: How should the system be triggered?

Questions C2 and C3 sought participants’ opinions on how to activate
the modeling assistant. 13 practitioners would like the system to be able
to trigger itself without their explicit request, i.e., proactively. However,
once triggered, the system should be controlled by the user and should
not act on its own without prior validation. The 3 participants who
want a reactive assistant, i.e., one that reacts to their request, do not
give any justification except for their personal preference on how to
interact. They declare that they “hate systems that manifest themselves by
saying what they should do”. We note that 3 (di↵erent) participants took
as a counter-example of good interaction Clippy, the famous Microsoft
software assistant that appeared in the versions of O�ce from 1996
onwards. Clippy quickly became notorious for interrupting when it
was not wanted; it failed to model user goals correctly, and it failed as a
communicator [166, 18].

R.Q. 3.2: Should the system indicate how confident it is?

Question C6 was intended to understand whether participants would
like to have an indication of the confidence that a modeling assistant
might place in its suggestions. The question was about whether or
not to display a confidence indicator when making a suggestion. 12
participants would like to see a visual indication with the system’s

80 CHAPTER 4. The need for assistance in software modeling practice

suggestion that expresses the confidence level of the system, such as
percentages or colors. In their opinion, this indication could increase the
transparency of the system, and improve their use of the tool. Participant
P8 states that “if the tool is not certain to be able to do it right, I’d prefer
it tells me it isn’t sure it can do it. There’s nothing worse than finding out
later that the tool is really messing up”. Participant P3 said that “if it
says I’m confident in 40 percent, then I’ll know that every time I’ve used
40 percent, it’s been wrong, so I won’t take the 40 percent, I’ll take another
value. On the other hand, if each time it has made a proposal to me at
40 %, it has always had good advice, in that case I will take its proposal
because I am quite confident about what it is capable of giving me. So it’s
also a learning process between the human and the machine on its level of
confidence which corresponds to a level of confidence, in me, too”. Of the
4 participants who did not wish to see the level of trust, 3 nuanced
their remarks by indicating that even if they did not wish to see the
level of confidence explicitly, the system should organize its proposals
and/or actions according to it. A list of proposals should thus be sorted
according to the level of confidence, even if it does not appear.

R.Q. 3.3: Should the system explain its suggestions?

In the case where the modeling assistant makes suggestions, 16 out of
16 participants would like to have an indication of why the suggestion
was made. Four of them qualified their answer by indicating that this
explanation should be provided on demand, if they decide to do so,
but not automatically every time. Practitioners mention wanting this
explanation in order to understand the origin of a proposal (7 out of 16),
to learn from the assistant (5 out of 16), to evaluate and compare one’s
work to proposals (4 out of 16), to better choose a proposal (3 out of 16),
and finally to identify the sources of information behind the proposal
(1 out of 16). Participant P9 sees these explanations as a way to solidify
the relationship of trust between the user and the machine, and finds it
essential “that it can ’justify’ itself in the sense that for example it says "I
understood your request in this way, I propose this, do you agree or not?",
always with the idea of learning and enriching because I know that many
users want to understand, have the hand on the output, or do not trust. So it
is to reassure them, to perpetuate the action of the bot”.

R.Q. 3.4: Should the system provide a feedback mechanism?

As discussed by participant P9 in the previous section, these practition-
ers may not agree with the suggestions of the assistant, which might not

4.2. Results 81

be fitting their work context. Questions C10 and C11 ask whether in this
case participants would like to be able to indicate their disagreement or
simply ignore the incorrect suggestions. 13 participants indicated that
they wanted a feedback mechanism to influence the system for learning
purposes. The participant P5 even considers this feedback phase nor-
mal because “it’s personalization, that’s the goal of these assistants, at the
beginning we don’t know each other and all the elements I’ll be able to give it
about my preferences or my needs, it will only improve the following because
the choices it will give me will be conditioned by what I will have given it”.

3 participants did not want to be able to give feedback on the pro-
posals, each citing a di↵erent reason. A first practitioner thinks that
the system should be able to learn by itself, another thinks that the
repetition allows the practitioner to doubt the work in progress, and a
last one simply thinks that it would not be useful.

R.Q. 3.5: Could the system display wrong suggestions?

When working with the practitioner, it is possible that the assistant
makes bad suggestions that are not appropriate for the current time
or context. Questions C8 and C9 address the acceptability of these
incorrect suggestions. When asked, 16 out of 16 participants said they
were willing to see incorrect suggestions, under certain conditions. Two
of them would only want to see them on demand, and one would only
want to see them depending on what stage of modeling they were in.
Participant P13 discusses the inclusion of bad suggestions by saying that
“It’s kind of like Netflix, sometimes I wish they would o↵er me things that are
out of my habit and sometimes I’m really glad they do because I really want
to see something in my habit so it’s true that it’s kind of complicated”.

The conditions cited for being able to post bad alternatives primarily
relate to the presence of a good alternative in the list of proposals. Thus,
2 participants want a good alternative among the first 3, 3 participants
want one among the first 5, or 1 participant wants one among the first
10. Other participants (4 out of 16) do not focus on the number, but ask
to be able to delete them, by giving their feedback, if they are displayed.

4.2.5 R.Q. 4: How could a software modeling assistant
help experts’ colleagues?

While in the previous research questions we investigate how participants
would like to be assisted, participants sometimes have to act as assistants,
especially with their colleagues. This section presents the results of the
part D of the questionnaire, which focuses on the notion of assisting

82 CHAPTER 4. The need for assistance in software modeling practice

colleagues. These questions aimed to understand if and how an assistant
might help participants’ colleagues, based on their experience.

R.Q. 4.1: How are participants solicited by their colleagues to help
them?

In response to question D1, 9 participants report being asked to do
something at least once a month by their colleagues, 5 report being
asked to do it several times a week, and 2 report being asked to do it
every day.

Table 4.6 presents the general tasks for which participants are so-
licited. Six of the eight tasks identified can be classified in the five
categories mentioned in Section 4.2.2, and correspond to tasks that can
be performed alone. Indeed, 10 participants assist their colleagues on
Domain Knowledge notions (it includes finding useful resources), 5 help
on tasks intrinsic to modeling know-how, 3 answer questions on tool
usage, 2 help with scoring, and 2 help with following the corporate
methodology. Only the tasks of answering questions about a diagram
that has been made (2 out of 16) and collaborative modeling (1 out of
16) cannot be done alone, and require the support of another actor.

Task # of participants

Understand domain concepts and processes, and how to model them 9
Structure the diagram 5
Use the modeling tool 3
Answer questions about a diagram a participant made 2
Use the modeling language 2
Follow the corporate modeling methodology 2
Do collaborative modeling 1
Find useful resources 1

Table 4.6 – Tasks on which participants help colleagues

When called upon by someone making a model, 3 said they were
called to correct the model or propose new solutions, 5 only to evalu-
ate the model and give feedback, and 7 to do both depending on the
time. Only one practitioner (P13) did not answer this question, as his
colleagues never make models.

R.Q. 4.2: How do participants feel about their colleagues’ trust in
their answers?

Questions D6 and D7 identified that participants mainly feel that their
colleagues trust their answers. When asked why colleagues use them,

4.2. Results 83

practitioners identified five areas that they felt created this trusting
relationship. First, their high number of years of experience seems
to be one of the main criteria for 10 participants. Their position in
the company as a reference in modeling, as the sole modeler or as a
supporter of the modeling process is also a reason for 6 practitioners. 2
practitioners believe that their reliability (they do not leave the colleague
without anything, and will help them to have a solution in the end)
contributes to establishing the trust relationship. The way they work,
by projecting themselves as non-experts, by challenging the colleague
without giving them a ready-made solution, or by proposing new ideas
out of the box, is a reason for their solicitation for 2 practitioners. Finally,
human qualities such as openness, availability, or reactivity are criteria
that play a role in solicitation for 1 practitioner.

R.Q. 4.3: Could a digital assistance system for modeling act like par-
ticipants to help colleagues?

After the participants clarified how they help their colleagues in section
D of the interview, the rest of the questionnaire was designed to under-
stand if they thought a modeling assistant could help their colleagues in
the same way they do. 8 out of 16 participants think this possible, and 2
more participants think that is possible, but not as well as they do.

15 out of 16 practitioners, however, identified features that could
be implemented to help their colleagues. This di↵erence means that
participants feel that today, software is unable to help their colleague
as they think it can. The identified features are presented in Table
4.7. It can be seen that 9 out of 12 features were already mentioned
in Table 4.4 which presented the features they hoped for in their own
software assistant. The new functionalities concern the presentation and
explanation of example diagrams, andmodel instantiation to understand
how it works and generate metrics.

R.Q. 5: What limitations could prevent the development of the ideal
software modeling assistant?

During the interview, some participants were cautious about the possi-
bility of creating the modeling assistant they imagined. This is notably
the case for question B7 presented in Section 4.2.3, where 5 practitioners
question the possibility of developing a wizard that could help them
with the issues they have raised. Question D8, presented in Section
4.2.5, also highlights that 6 participants believe that it is impossible for
a software assistant to help their colleagues on the same issues that they

84 CHAPTER 4. The need for assistance in software modeling practice

Feature # Already identified

Validate/detect what is wrong with the model 7 X
Complete/detect what is missing in the model 7 X
Guide on the corporate modeling methodology 2 X
Prepare diagrams (with templates) 2 X
Suggest resources to read or people to contact 2 X
Explain examples of diagrams 2
Instantiate the model to obtain metrics 2
Help with the use of the modeling language 1 X
Suggest ways to better use the tool 1 X
Layout the diagram autonomously 1 X
Answer questions about the domain 1 X
Suggest diagrams that might interest practitioners 1

Table 4.7 – Features to assist participants’ colleagues

do. One participant mentions the maturity of the technologies, and in
particular that “to imagine that an assistant can, all by itself, create the
content of the model, I think we are looking at least 10 or 15 years ahead”.

For all of these participants, the problem cited is business expertise,
including understanding the customer’s needs and the business ecosys-
tem. They believe that “this is information that only the customer has”,
that “The only person who could help me is the customer because it’s not
technical”, and that “the main problem is that the assistant doesn’t have the
knowledge of the customer’s need so it won’t be able to propose”. According
to these participants, this problem of acquiring the customer need is the
main blocking point to designing a modeling assistant. The aspect of
integrating the solution into the business ecosystem is also addressed
as a limitation “because the questions are functional, that is, often it is not
a question about the substance of the schema, it is a question between the
ecosystem and the schemas”. One participant insists that “on business
analysis, as I do it, I find it very hard to believe that an assistant would be
able to help me”.

The results from all the questionnaire entries enable us to draw an
overview of the practitioners opinions and work habits. In the next
section, we build upon the presented results to provide a discussion
about the reasons and the consequences of our findings.

4.3. Discussion 85

4.3 Discussion

The aim of this section is to analyse the results, compare our observations
to the literature, and identify trends or lines of research to explore. We
present this discussion in the order of the research questions presented
in Section 4.1.1.

4.3.1 R.Q. 1: Does the profile of the participants meet
the profile of software modellers as presented in
the literature?

The profile of the respondents indicates that they are senior model-
ers, practicing formal and informal modeling on a regular basis, and
therefore have experience with recurring field issues. Our sample of
participants mainly uses modeling at work as a communication and
documentation tool, but not in a model-centered approach like MDE
or MBSE. Indeed, our participants mostly practice UML modeling in a
limited formalism, adapted to their needs. When asked about formal
modeling, the majority of them mention numerous drawing tools such
as Microsoft Powerpoint or Microsoft Visio, which reflects their lack of
interest in strict compliance with the UML standard. We also note that,
given the number of modeling tools mentioned, there does not seem to
be a consensus on the use of a tool in the industry. The choice of the tool,
most often imposed by the company, poses first of all interoperability
problems well known by the community. But this great diversity of tools
also complicates the modeling task for the engineer, who must learn to
use a new software before working in a new company. Our participants’
responses are representative of the known use of UML diagram types,
sharing the 5 most used diagram types with the Hustchinson et al. MDE
study [77] and the Petre UML study [136].

Participants also identified items that they find complicated during
the modeling process. These are not necessarily tasks that they have
di�culty with, but only tasks that carry the complexity of modeling
in their opinion. We cross-referenced this list with the list of potential
di�culties with modeling from the Forward et al. study [58]. Important
overlapping problems include keepingmodels up to date, the complexity
and cumbersomeness of modeling tools, and the use of UML. Our study
also highlights additional issues, first of all related to the essential
complexity of the modeling work. The activity of adapting the content of
the model to the profile and skills of the recipient in order to ensure that
it is understood is identified by the most participants as a complicated

86 CHAPTER 4. The need for assistance in software modeling practice

point. This can be explained by the modeling usage profile of our panel
and the culture of their company. Our participants mainly use modeling
in a non-formal way, in companies where the modeling culture is not
very strong. Indeed, not all stakeholders can read and understand
diagrams in the same way. Thus, special care must be taken to create a
diagram that can be useful and usable for the targeted parties. The other
main emerging issue is business domain knowledge. This is distilled in
almost all the answers of our interviewees and takes a central place in
the subject of software modeling assistance. It will be discussed in more
detail in the following section.

Participants range in age from 31 to 56, work in a variety of sectors,
for companies of various sizes, and thus create an evenly distributed
panel of respondents. Furthermore, our results indicate that the profile
of our sample of practitioners seems consistent with the literature about
UML and modeling tool users. Thus, the convergence of ideas between
several participants appear as a criterion that suggests their potential
generalizability. In the remainder of this section, we will formulate
several hypotheses, based on the convergent ideas of our panel. These
hypotheses call for further work to study their validity on larger samples,
in a controlled environment, during quantitative experiments.

4.3.2 R.Q. 2: What do software modeling experts expect
from the ideal software modeling assistant?

It appears that modeling practitioners expect assistance. Although only
9 out of 16 call upon the help of another collaborator on a regular basis,
all of our participants identified features that they would like to be
assisted with in their work. Since these features were imagined as part
of a software system, this indicates that participants project themselves
into using a software assistant in their daily work. In general, the
respondents showed a very strong attraction to a software assistant that
could help them during the interviews. We thus formulate Hypothesis
1.

Hypothesis 1
Modeling experts want to be assisted in their work. They are ready
to welcome a software modeling assistant for this purpose.

The 22 functionalities identified in Table 4.4 provide research and
development avenues for researchers and companies responsible for
modeling tools. These results do not indicate that a super-assistant

4.3. Discussion 87

should have this many features, but rather open the door to the creation
of multiple assistants to address one or more of the features identified.
100% of the practitioners would like to be assisted in the use of the
tool, an issue well known to the modeling community. Assistance in
the use of the modeling language is also mentioned by 15 of the 16
participants, which is in line with several studies on UML. This can be
explained by the frequent use of less formal drawing tools, which do not
impose any constraint on the use of a modeling language, leaving the
user to choose the concepts to be created and connected in the diagram.
The freedom thus o↵ered by the modeling tool can appear as a setback
when it comes to respecting a syntax or a meta model in a more formal
way. 10 participants ask for less freedom when it comes to respecting
the enterprise modeling methodology. In particular, they would like
to benefit from methodological guidance in the tool, allowing them to
apply the internal best practices and the business modeling process in
the best possible way.

The two most mentioned functionalities are centered around busi-
ness domain knowledge. This overlaps with the main aspect on which
practitioners call for external help when modeling. A total of 13 prac-
titioners mention an intelligent model analysis system that produces
metrics or reports on what is missing or invalid in the model. These re-
ports would be generated using the system’s internal knowledge, which
could compare their work to its knowledge base. Following the reading
of these reports, these participants would like to have the possibility
to act accordingly, and to benefit from systems able to suggest how to
complete or correct their models. Thus, we formulate hypotheses 2 and
3.

Hypothesis 2
Modeling experts want to have analysis reports about their models.
These could include what is missing in the model, but also what is
functionally or syntactically inconsistent.

Hypothesis 3
Modeling experts want to benefit from modeling recommendation
systems, suggesting new elements to add to the model, or corrections
to apply to the model.

We also note that regarding the business domain, participants men-
tioned functionalities that are not directly related to a modeling task, but

88 CHAPTER 4. The need for assistance in software modeling practice

rather to background tasks related to the acquisition of knowledge allow-
ing to model. These tasks, such as advising on best practices, answering
business questions, or suggesting resources to read or people to contact,
are usually performed outside the modeling tool. These issues are often
time consuming, and require the intervention of other stakeholders to
be resolved. The identification of such tasks by the participants suggests
that the disruptive interaction they impose in their current form hinders
the practitioners, and leads us to the formulation of hypothesis 4.

Hypothesis 4
Modeling experts want to be able to access business information
more easily, without having to rely on external stakeholders in a
systematic way. This information could be integrated into their
modeling environment.

We propose in Figure 4.7 the exhaustive list of the criteria of good
or bad assistant as evoked by the participants. Although not all the
criteria are precise, and some are too general to be useful, this grid can
be used as a first approach to evaluate the quality of a product assistant.
By applying these remarks to their prototype or system, researchers or
industrialists can identify areas for improvement regarding the users’
perception of the usability of the assistant, its skills, its added value,
its adaptability to the user, and its understanding of the context. The
notions of usability and user adaptability concern the human-machine
interaction aspects of the assistant, whereas skills, added value and
contextual understanding refer more to the knowledge and content
of the assistant. Modeling experts want to be able to access business
information more easily, without having to rely on external stakeholders
in a systematic way. This information could be integrated into their
modeling environment.

Hypothesis 5
The interactions and behavior of the assistant, as well as the knowl-
edge and skills he or she holds, each influence the perceived quality
of the assistant. A good assistant fulfills criteria of usability, compe-
tence, added value, adaptation to the user, and understanding of the
work context

4.3. Discussion 89

4.3.3 R.Q. 3: Howwould softwaremodeling experts like
to interact with the ideal software modeling assis-
tant?

Building the most accurate system may not be the top priority when
dealing with software modeling assistance. While much research mea-
sures the accuracy of assistants, especially recommendation systems, our
results indicate that other criteria should be studied first to maximize
the acceptability and usability of the systems created. Indeed, 16 of the
16 practitioners we interviewed are willing to be suggested bad alter-
natives, as long as the system’s behavior allows them to refute them, or
to find good ones quickly. These aspects of behavior, reflecting the way
the user interacts with the system, seem to take priority over accuracy
when practitioners describe the ideal system. The lack of consideration
of these user interface issues seems to explain why so few recommen-
dation systems for software engineering have been adopted so far [117].
This observation is corroborated by hypothesis 5, which emphasizes the
notion of human-computer interaction in what makes a good modeling
assistant.

The answers of our participants, almost unanimously, enable us
to draw the big picture of what they expect in terms of interaction
about distraction, scrutability, transparency, and assessability [117, 182].
These criteria allow the establishment of trust between the recommender
system and the user, which promotes usability but also the perception of
the quality of the system [182]. Applying these criteria could therefore
promote the adoption of the concerned modeling assistant.

Hypothesis 6 (Distraction)
The modeling expert assistant should be able to manifest itself, o↵er-
ing a non-disruptive interaction such as a notification or annotation.
This feature must be able to be disabled, and the assistant triggered
on demand.

Hypothesis 7 (Understandability and transparency)
The modeling expert assistant shall order its proposals according to
a confidence score, which shall be displayed. The confidence score
should be hidden on demand.

90 CHAPTER 4. The need for assistance in software modeling practice

Hypothesis 8 (Assessability and transparency)
The modeling expert assistant must be able to explain why a proposal
was made. This explanation must be able to be displayed either all
the time or only on demand.

Hypothesis 9 (Scrutability and control)
The modeling expert assistant must allow the user to refute its pro-
posals, and must be able to learn about the user’s needs based on
these interactions.

4.3.4 R.Q. 4: How could a software modeling assistant
help experts’ colleagues?

All the participants indicated that they help their colleagues at least once
a month, by acting as an assistant to evaluate or correct the work pre-
sented. It appears from the interviews that the majority of the assisted
colleagues are less experienced than our participants, and can therefore
be considered as average (non-expert) software engineers. Our practi-
tioners seem to think that their colleagues are confident in their answers
mainly because of their high number of years of experience. Knowing
that the correction or suggestion originates from an experienced prac-
titioner seems to influence the confidence the respondent has in the
proposal. This is in line with the results of Chopra and Wallace [41]
which indicates that displaying the source of information participates in
the construction of information trustworthiness.

Hypothesis 10 (Trustworthiness)
The modeling assistant must indicate the sources of information used
to create the proposed alternatives.

Although half of the practitioners interviewed felt that an assistant
would not be able to help their colleagues as they do, they profiled the
assistant that could still help them. Table 4.7 shows that 9 of the 12
features identified are identical to those mentioned for the participants’
modeling assistant. Similarly, the majority of tasks on which participants
help their colleagues (shown in Table 4.6) are similar to those where
participants need help (shown in Table 4.2). These results suggest the
generalizability of our findings to a broader portion of the modeling

4.3. Discussion 91

community. However, participants identify the need to present more
examples, and to further explain the diagrams to their less experienced
colleagues. We thus formulate hypotheses 11 and 12.

Hypothesis 11 (Generalisability)
The modeling wizard for experts can also be useful for beginner and
intermediate software engineers practicing modeling.

Hypothesis 12 (Examples and explanations)
The modeling assistant for junior and intermediate software engi-
neers needs to provide more explanations and examples.

R.Q. 5: What limitations could prevent the development of the ideal
software modeling assistant?

A significant part of the participants indicated their skepticism about the
possibility of creating the assistant they imagined. This feeling is mainly
justified by the fact that, according to them, the assistant could (i) never
have the same business knowledge as the customer and (ii) never have
the knowledge of the entire ecosystem in which the new solution must
be integrated. This remark raises di↵erent points concerning knowledge
acquisition and indicates possible avenues to explore to improve the
potential of the assistant. First of all, even if the assistant has knowl-
edge about the business domain of the solution to be implemented, only
the customer is the stakeholder aware of the real need that justifies
the implementation of the new system. In fact, one way to increase
the potential of the assistant would be to involve the customer in the
operation of the assistant. This could be done by using technologies
already explored in research such as the analysis of software specifica-
tions [1], the use of chatbots [51] gathering knowledge from customer,
or by listening and analyzing conversations during meetings with the
customer as discussed by our participants (see Section 4.2.3). The so-
lution must also be integrated into an ecosystem with its technical and
functional constraints, and its specificities. The new system must then
comply with these specifications, which often go beyond the framework
of the project and apply to the entire company. In the same way, the use
of specification analysis and documentation techniques internal to the
company could be a first step towards understanding this global context.
However, as mentioned by our participants, there is often a gap between

92 CHAPTER 4. The need for assistance in software modeling practice

the documentation of business processes and reality. In this case, the
use of probes and bugs at key stages in the company, coupled with big
data analysis techniques, could allow the collection of data that could
be exploited by the assistant to refine its knowledge of the company.

Alongside the problem of data collection, there is also the problem of
the maturity of the technologies that will enable the expected function-
alities. Participants mentioned a set of functionalities ranging from the
implementation of new interaction methods to the intelligent analysis of
models, leading to advice and recommendations. Even if some of these
functionalities have already been discussed in the scientific literature
[12, 77], almost none of them is industrialized and available in a mod-
eling tool to our knowledge. More generally, the participants evoke an
intelligent system able to learn from their behavior, from their feedback,
to give explanations for its proposals, and to intervene at the right time
without disturbing the user. The competition of these functionalities
raises problems, such as the general topic of explainability of artificial
intelligence systems, or the design of interfaces of recommendation sys-
tems for software engineering. Finally, the results of Section 4.2.2 show
the great diversity of tools used in companies. Creating a system that
is both available to the largest number of practitioners and integrated
with the modeling tool (mentioned in the points making the system a
good assistant) would imply developing a system for many platforms,
sometimes inaccessible because private.

4.4 Threats to validity

In this section, we outline the main threats related to the validity of our
study, and the steps we took to mitigate them.

Size of the sample. The work reported here is indicative, resulting
from a first qualitative research e↵ort to understand software modeling
experts better. It identifies and confirms trends and challenges in the
practice of modeling, and paves the way to the understanding of the
concept of engineer assistance in software modeling. However, we
acknowledge that our participant sample is not large enough to claim
comprehensiveness, as our results might exclude potential ideas and
challenges. We attempted to mitigate this threat to validity by gathering
participants from a broad range of small and large companies, business
domains, and years of experience. We also restricted the sampling to
one participant per company, in order not to influence the results about
in-organization practices. Our results for research question 1 suggest
that our sample is representative of practitioner populations studied in

4.4. Threats to validity 93

other works, which may also help mitigate this threat.
Researcher bias. Researcher bias refers to any kind of negative

influence of the researchers’ knowledge, or assumptions, of the study,
including the influence of their assumptions of the design, analysis, or
sampling strategy. This threat applies particularly to our interview-
centered approach, during which the participant and the researcher are
brought to exchange and react to each other’s words. In order to limit the
influence of an external opinion as much as possible during the session,
the interviewer had to follow the question protocol as presented in Table
4.8, where all interventions were defined beforehand. In some cases,
the researcher could use prompts to clarify the participant’s opinion,
without expressing or introducing new vocabulary words. In order to
further mitigate this threat, only one researcher conducted the entire
interviews, to prevent the way questions were asked from becoming
influencing factors.

Respondant bias. This threat refers to a situation where respondents
do not provide honest responses for any reason, which may include them
perceiving a given topic as a threat, or them being willing to please the
researcher with responses they believe are desirable. In the call for
participation to our study, participants were provided with a 2-line
abstract of our research works and a website of one of our project about
models and artificial intelligence. This information was necessary to
give credibility to our experiment and to encourage participants to get
involved. However, this was the only information provided to the user
beforehand, which does not mention any opinion on the issues discussed
in the session. The interviews were confidential, which allowed the
participants to talk about any topic without limits.

In addition, we designed the questionnaire to focus on the tasks
and avoid value judgments about the participants, in order to limit
self-evaluation bias. We also mixed the style of questions (open-ended,
closed-ended, fill-in-the-blank, to-do lists) to avoid participant boredom
over the duration of the interview. The oral interview format helped to
limit the interpretation bias of the questions, by being able to clarify
or rephrase the questions when a participant did not understand. The
order of the questions could not be randomized, so as not to bias the
participant’s answers, especially about the notion of assistance.

Confirmation bias. This threat relates to researchers interpreting
the data to support their hypothesis, by potentially omitting data that
does not favour their hypothesis. In this study, we recorded the interview
sessions and had them professionally transcribed to text. Then, we
manually coded each text file with a dedicated tool, that enables to

94 CHAPTER 4. The need for assistance in software modeling practice

identify non-coded text portions, and to create reusable codes for each
question. In this chapter, we present all results that were coded in the
project, and thus mitigate the confirmation bias.

4.5 Conclusion

The main purpose of this study was to identify and characterize the need
for assistance of modeling practitioners. Our results seem to indicate the
strong interest of practitioners towards software systems able to help
them, which we call software modeling assistants. The answers to the
di↵erent research questions allow us to propose a set of requirements
that the implementation of a software modeling assistant should satisfy,
in terms of functionalities, behavior, and interactions.

The ideas discussed in this chapter are a step forward towards solv-
ing the issues related to modeling tools, that are well known in the
community.

These preliminary guidelines can be used by the editors of modeling
tools, but also by anyone who would like to develop complementary
systems to these tools. They are a first contribution to the field of
modeling assistance, and need to be studied in more detail, especially in
empirical user experiments to evaluate them. In order to generalize these
results, a shorter questionnaire, based on the formulated hypotheses, can
be conducted on a larger scale online, in a quantitative research e↵ort.
Our work paves the way for a more detailed study of the modeling
practitioner population, in order to understand their needs, and to be
able to address the challenges they face. In the following chapter, we
confront our results from both a systematic mapping study and these
interviews, to build the big picture of our vision of modeling assistance.

4.5. Conclusion 95

Question

I am going to ask you some open-ended questions about mod-
eling. The goal is to improve our knowledge of how you model
and work. I invite you to take your time to answer. No aspect
of your work is obvious, and pretend I don’t know anything
about the di↵erent tasks you talk about. If a question I ask you
is not clear, feel free to ask for a rephrasing.

A1 Can you briefly introduce yourself, talking about your educa-
tion, your career and your di↵erent positions.

A2 What is your current position and responsibilities?
A3 How long have you been doing software modeling?
A4 From 1 to 5, how would you rate your mastery of UML?

A5

To start, let’s get some context. Tell me about one of your last
and most significant modeling experiences. Tell me from start
to finish, how it started, everything you had to do, with whom,
with what, in a chronological way. How it starts, and then. . . "
I’m going to ask you some questions to clarify. They may
repeat information that you have already given, so please feel
free to elaborate.

A6 Can you summarize the representative workflow of your gen-
eral modeling work?

A7 What kind of diagrams/models do you make?

A8 For what purpose do you model? What do you do with these
models?

A9 What modeling language(s) do you use?
A10 How often do you make diagrams informally?

A11 When you do, what media do you use (paper, board, computer)
to model?

A12 Who do you collaborate with to model?
A13 What means of discussion do you use (in person, by e-mail...)?

A14 What kind of situation are you in when you start modeling?
At what point in your project, in your work?

A15 How often do you model for areas you know well?

A16 Are you modeling for a client? If so, do you discuss with the
client before modeling or during the modeling process?

A17
What are the di↵erences in your workflow between a project
where you were super comfortable and another where you
were much less so?

B1 How often do you practice formal software modeling?
B2 What tools do you use to model?

96 CHAPTER 4. The need for assistance in software modeling practice

B3 Why these tools?

B4 Complete this sentence: the most complicated points for me
during modeling are: ...

B5 How often do you need help with modeling?
B6 What do you need help with?
B7 Do you think a software assistant could provide this help?

B8 Complete the sentence: to help me model, an assistant is good
if: ...

B9 Complete the sentence: to help me model, an assistant is bad
if: ...

B10 Imagine that an assistant exists to help you model. In the ideal,
best of all worlds, what should it be able to do?

B11
If you had to choose three features, what features should a soft-
ware assistant implement to help you? List them in descending
order

C1

Imagine the interface of your modeling tool and imagine that
[FUNCTIONALITY 1] is available in the tool. Describe pre-
cisely how you would like to use it, each step to do in the
tool, each click, on which element... Imagine you are using it,
describe how it happens.
(Do it for the 3 features)

C2 In these features, is it up to you to request for assistance or for
the assistant to show up by itself?

C3 In your opinion, to what extent should a software assistant be
able to manifest itself to o↵er you help?

C4 Do you think this is feasible? Why or why not?

C5 If a software assistant were to help you with business domain
issues during modeling, how could this be done?

C6

Imagine an assistant that makes several proposals to answer a
problem. The assistant o↵ers you one or more alternatives. To
what extent should it, if at all, indicate the level of confidence
it has in these alternatives? Why or why not? In what way?

C7 Would you like it to explain why an alternative is being pro-
posed? How would you like it?

C8
Let’s say an assistant o↵ers you several alternatives for an ac-
tion. What percentage of the alternatives that are not suitable
for you at all would you accept to see?"

C9 What are the conditions that would allow the system to display
alternatives that are not suitable for you?

C10 To what extent would you like to be able to indicate that some
alternatives do not suit you at all?

4.5. Conclusion 97

C11 How would you like to be able to indicate that some alterna-
tives are not suitable for you at all?

D1 How often are you asked to answer questions from your col-
leagues about modeling?

D2 What modeling elements are these questions about?
D3 How are you solicited? (verbally, by email, etc...)
D4 Is it to evaluate their solution or propose new solutions?
D5 How do you answer questions? (call, email, links, etc...)

D6 Do you think your colleagues trust your answers? Why do
they call on you?

D7 Do your colleagues ask you to justify your answers with
""Why?""? How do you do it? What do you think is the reason?"

D8 To what extent do you think a Software Assistant could do the
job you are asked to do?

D9 What would be the necessary conditions / limitations?

D10 If you had to choose three, what features should a Software
Assistant implement to help your colleagues?

D11 Do you think an assistant could be useful during meetings
with the client? What could it do?

E1
Thank you for your answers, is there anything you would like
to add? Is there anything else you want to talk about or do you
have any questions?

Table 4.8 – Interview questionnaire

98 CHAPTER 4. The need for assistance in software modeling practice

Chapter5
The big picture of software
modeling assistance

This chapter draws upon the results of the three previous chapters to depict
the current state of practice of software modeling assistants. It compares the
observations of the literature with those of our interviews conducted with
modeling professionals, highlighting the breaks but also the synergies between
expectations and practice. From this analysis, we identify the key notions of
modeling assistance, which should then be applied to the design of modeling
software assistants, the next step of our user-centered approach.

5.1 Expectations vs. Reality

The need for assistance in software modeling. The interviews con-
ducted with 16 software modeling experts seem to confirm the strong
interest of modeling practitioners towards software systems able to help
them in their work, as stated by hypothesis 1 from Chapter 4. Indeed, 16
practitioners identified features on which they would like to be assisted,
and a mean of 12 of them think a software assistant could actually help
them on these features in the current state of technology and data avail-
ability. However, our mapping study of software assistants in software
engineering only revealed 2 systems addressing modeling assistance
in the literature. This shows a clear break between the expectations of
modeling engineers, and the response of research to understand how to
assist the modeling task in all its specificity and provide prototypes to

99

100 CHAPTER 5. The big picture of software modeling assistance

evaluate their approach.
In a pragmatic perspective, it is possible that this lack of research

e↵ort may be justified by the low profitability of the work produced.
Thus, the justification would be that research in this field "does not pay".
However, working groups, such as that of Mussbacher et al. [119] in
2020, have indicated the need to conduct work in this direction. It is then
possible that the problem is not about the motivation of researchers, but
about the availability of resources to conduct such research, a common
problem in the academic world. In this case, these problems could
also be of interest to the editors of modeling tools who are concerned
with improving their tools to handle concrete problems encountered by
practitioners in companies.

Types of assistants. The mapping study presented in Chapter 3 of
the thesis introduced 3 types of assistants: Informers (10 out of 47, 21%),
Passive Recommenders (21 out of 47, 45%), and Active Recommenders
(16 out of 47, 34%). This appears mainly inline with hypotheses 2 and
3 from Chapter 4, resulting from our interviews. Such systems can
then be able to provide analysis reports with metrics (informers), but
also recommendations about what to fix or add in the model (passive
and active recommender systems). Nevertheless, this analysis must be
nuanced given the low proportion of assistants dedicated to modeling.
While software assistants exist in software engineering to meet this kind
of needs, the creation of such systems for modeling remains anecdotal.

Human-Computer Interactions (HCI) indicators. The largest dis-
crepancy between the literature and the interview results was in the
HCI indicators. While 100% of the 16 practitioners interviewed stated
that they would like an explanation of why the alternatives of a recom-
mender are suggested, only 1 assistant in the literature o↵ers this service
(less than 3 percent). Practitioners justify that such explanations would
impact their creativity while enabling them to learn. Indeed, based on
the explanations, one recommendation that was not likely to fit their
needs at first glance could reveal its potential. It may open the way
for new ideas and directions to explore, and it is why 16 out of the 16
practitioners would accept to see bad recommendations. Bad recommen-
dations are bad from one perspective, and might fit the project when
following another design approach.

Similarly, 81% of the practitioners (13 or of 16) would like to be
able to give feedback to the system to make it learn or refute proposals,
whereas only 3 out of 37 systems (8%) allow this in the literature. Finally,
while 15 out of the 16 practitioners expect the system to use a confidence
indicator to sort the recommendations, and 12 of them want to see it

5.2. Key notions in modeling assistance 101

explicitly, only 10 systems out of 37 implement it in the literature (27%).
Feedback and confidence indicators both relate to the notion of trust,
as stated by the practitioners. These elements could indeed help them
develop a better relationship with the assistant by tailoring it to their
needs, but also to understand better its behaviour.

Trigger. From the interviews, we learned that the majority of practi-
tioners would like the assistant to trigger itself automatically but in a
non-disruptive way. In the mapping study, we noted that 23% of Active
Recommender Systems are triggered automatically, compared to 50%
of Informer Systems and Passive Recommender Systems. In practice,
as stated by hypothesis 6 from Chapter 4, modeling assistants should
be able to manifest itself, as well as being triggered on demand. This
emphasizes the need for thorough assistant interaction and automation
design. The trigger but also the work scope of the assistant should be
designed according to the goal of the system and the task of the user.
If not, the user-assistant relationship might end up prematurely, as for
Clippy, the Microsoft O�ce assistant [166, 18] which was jumping in at
the wrong time, with incorrect predictions of users’ intents.

5.2 Key notions in modeling assistance

The work carried out in the first part of this thesis, of (i) understanding
the modeling task, (ii) studying the literature on software assistants in
software engineering, and (iii) understanding the need of assistance of
modeling engineers, allowed us to highlight the fundamental character-
istics governing modeling assistance in a global way. In this section, we
summarize the role of the four key notions of modeling assistance: trust,
creativity, recommendations, and automation.

5.2.1 Trust

Trust was the most mentioned concept in the interviews with practition-
ers. Our conversations with these modeling experts highlighted the need
to create a relationship of trust between them and the assistance actor
in order for the latter to be e↵ective. An established relationship of trust
seems to make the software engineer accept bad recommendations more
easily, for example by providing explanations. One possibility to foster
trust appears to be through the transfer of authority from a colleague, if
they have the status of an expert in the field. It also seems to be earned
by accepting feedback if a proposal is not really relevant to the context.

102 CHAPTER 5. The big picture of software modeling assistance

In these cases, the software engineer seems to be able to modify the way
their interlocutor thinks and proposes alternatives.

5.2.2 Creativity
The modeling task is a creative task, as explained in Chapter 2. Thus, tak-
ing part in the modeling process requires the ability to generate creative
ideas. Practitioners mentioned this creative process when justifying why
they would accept bad recommendations. Original ideas, unexpected
propositions, or sometimes completely unrelated ideas have the power
to stimulate thinking, and help new creative solutions to a problem
emerge. At best, assistance actors should foster the software engineer’s
creativity when possible, to facilitate the generation of design ideas. In
any case, the modeling assistance shall not prevent the expression of
creativity.

5.2.3 Recommendations
Whether it is to mention what is wrong with the model, or to propose
new solutions, modeling assistance involves recommendations. This can
be recommending resources to read, people to contact, fixes, things to
add, or even code to reread as potentially wrong or problematic. In all
cases, data analysis is combined with knowledge to produce one or more
alternatives, which are then ranked. The assistance actor then chooses to
explicitly propose one or more suggestions, or to implicitly use them to
take one or more actions. Hence, in order to provide modeling assistance,
one must be able to provide recommendations.

5.2.4 Automation
In its broad definition, automation refers to the way in which help is
requested, but also to the sequence of interaction between the helper
and the helpee. It also takes into account the resources and information
that will be shared during the help request. It is important that all
of these aspects are clear before asking for help. For example, the
software engineer may not want to share his or her confidential work
with an outside party who cannot guarantee confidentiality. Similarly,
it is unlikely that a modeler would seek help from a colleague who
would completely change the layout of his work environment before
providing assistance. In case of the interviews, practitioners mentioned
Clippy the assistant as something not to commit again, and insisted
on their preferences about triggers and interactions. Thus, modeling

5.3. Towards formalizing modeling assistants 103

assistance can only occur if the automation of that assistance is clearly
communicated beforehand and adapted to the task the software engineer
seeks to perform.

5.3 Towards formalizing modeling assistants

The above notions characterize modeling assistance from a global point
of view. In particular, they apply to human assistance, which can be
provided by interviewing practitioners and their colleagues. To design
software assistants capable of providing such assistance, it is then neces-
sary to investigate how these key notions can be applied in the software
domain to create systems acting as peers. In the next part of the the-
sis, we propose a survey of the literature concerning the application
of these four notions to software systems design, and put these results
in perspective to propose an architectural framework for the design of
software assistants for modeling.

104 CHAPTER 5. The big picture of software modeling assistance

Part II

Designing Software
Assistants for Software

Modeling

Chapter6
Identifying design
constraints from the
literature

The first part of this thesis report highlighted that software assistants were
candidate solutions to tackle modeling problems. Chapter 2 demonstrated
that the modeling issues from the literature require knowledge and well-
designed user interactions to be addressed, and that software assistants can
provide these by nature. Chapter 3 then outlined that software assistants
are rarely exploited to support modeling activities in software engineering.
Nevertheless, results from Chapter 4 tended to indicate that modeling practi-
tioners call for more software assistants to support them in their modeling
tasks, provided that they respect design constraints. This call from end-users
to be supported in their work emphasized the relevance of our user-centred
approach to design modeling assistants. Chapter 5 outlined the road ahead
for the reality of the implemented software assistants to catch up with users’
expectations, and most importantly identified the four pillars on which mod-
eling assistance must rely.

The identification of these notions covers the first two phases of our user-
centred approach, about (i) understanding and specifying the context of use
of the system, and (ii) specifying the user requirements. The next step of
the process is (iii) to produce design solutions to meet user requirements, as
defined in Section 1.3.1. However, as we conduct a research user-centred
approach, it is necessary to produce solutions that are both tailored to end-

107

108 CHAPTER 6. Identifying design constraints from the literature

users’ requirements but also inline with the state of the research.
The purpose of this second part is to bridge the second and third steps of

our user-centred approach, with elements from the research literature. In this
part, we present how the literature in computer and cognitive science guides
the implementation of the four key notions of modeling assistance within
software modeling assistants. This results in the identification of constraints
from the literature to design software modeling assistants. From these design
constraints, we finally propose a formal framework, to guide the design of
software assistants for software modeling.

In this chapter, we identify the elements of the literature that allow us
to define systems that promote (i) trust and (ii) user creativity. Then, we
detail how to apply these notions to (iii) recommendation systems adapted to
modeling, (iv) whose automation is consistent with the supported tasks.

6.1 Enabling trust in human-assistant collabo-
ration

6.1.1 The need for trust in modeling assistants

What is trust?

The Oxford dictionary [127] defines trust as the “firm belief in the reliabil-
ity, truth, or ability of someone or something; confidence or faith in a person
or thing, or in an attribute of a person or thing”. Simon [169] defines trust
as “the belief that another individual, organization or institution will act in
a manner consistent with what is expected of it”. In practice, trust governs
most of our daily interactions, both with humans and with physical or
software systems. It is also preponderant in the first impression that we
make during our first interactions with these actors [183]. Trust cannot
be forced or imposed: it is voluntary, spontaneous and natural; it is
co-constructed in the bilateral relations that are established between in-
dividuals or between groups [11] It cannot also be produced, but results
from the alignment of di↵erent factors in the relationship between the
trustor and the trustee.

Maurel and Chebbi [109] state that three main types of trust emerge
from the study of the literature. Interpersonal trust happens between
individuals, regardless of their title or position. This trust has both a↵ec-
tive and cognitive bases. Organizational trust occurs when members of
an organization choose to engage in collective action as representatives
of their respective organizations when more than one organization is in-
volved (inter-organizational trust) or of their administrative unit within

6.1. Enabling trust in human-assistant collaboration 109

the organization (intra-organizational trust). Social or institutional trust
is based on a formal social structure, i.e., the legal and regulatory frame-
work that governs each society, or the normative context of a discipline.

Trust is characterized by a dependency (sometimes reciprocal), as
well as a certain vulnerability between the partners. One or more of
these actors have expectations about the behavior of the others in order
to establish a relationship of trust. These expectations may relate to the
sharing of values common to individuals, social groups, or a company,
but also to the objectives of the task to be carried out. The notion of trust
is di�cult to quantify - if it ever is. It is the result of a perception, and is
therefore a subjective concept whose criteria are specific to individuals
and their own characteristics. These are particularly based on cognitive
factors, such as intelligence or knowledge, and conative factors, such as
their personality traits. However, it seems that depending on the nature
of the task and the actors, the notion of trust can be refined.

Understanding trust for modeling assistants

The general definition of trust presented above is not applicable as such
to software design. Even more precisely, the question of the definition
of trust for the global domain of software engineering remains di�cult
to address. In this domain, two main types of relationships are to be
considered: human-human and human-machine. Our work about soft-
ware assistants only addresses the latter, and especially the relationship
between the software engineer and their work tool in the context of a
software modeling task. Although there are only a few studies about
the general concept of trust in software engineering1, many studies
have aimed at answering the question of trust for more restricted do-
mains. In particular, di↵erent studies discussed trust according to the
type of software system considered. In their framework for trust in
electronic environment, Chopra and Wallace [41] evoke trust criteria
by distinguishing several types of systems such as information systems,
e-commerce systems, or online dating systems.

A very limited research has been conducted to study trust for soft-
ware assistants, if none. However, our vision of software assistants relies
on gathering knowledge to be processed, adapted, and presented to the
user as described in Section 2.3.1. This kind of software system aim-
ing to provide the user with valuable information is regularly called

1In the last year, a lot of new e↵orts and projects to study trust in Software Engineering,
such as trust for AI-based system started to emerge. However, this remains limited,
compared to the state of the literature from the 20 last years.

110 CHAPTER 6. Identifying design constraints from the literature

Information Systems. As software assistants can be generalized to in-
formation system, we exploit the literature about trust for information
systems. This is inline with the work of Boell and Cecez-Kecmanovic
[23] who gathered 34 definitions of information systems and deeply
analyzed their characteristics. Thus, according to their process view of
an information system, a software assistant is “a work system whose pro-
cess and activities are devoted to processing information, that is, capturing,
transmitting, storing, retrieving, manipulating, and displaying information”.
From the technology view, a software assistant is “a system that utilises
computer hardware and software; manual procedures; models for analysis,
planning, control and decision making; and a database.” Consequently,
fostering trust in software assistants can be achieved by exploiting the
trust characteristics for information systems.

Previous research indicates that trust in technology is an essential
antecedent to its adoption. [14]. This means that if designers are to
make e↵ective use of a recommender system (a software assistant is
a recommender system in a way), they must have a su�cient degree
of trust in it. However, the nature of the task to be assisted is key to
the understanding of users’ trust needs. Indeed, assistance systems (as
information systems) can be deployed for a wide variety of applications,
from the most critical to the most anecdotal. For example, a system that
allows to decide what action to take to solve a critical problem of flying
an airplane contrasts with a system that allows the recommendation of
movies to watch on Netflix. In these two cases, the user’s expectations are
respectively robustness, accuracy and a very low error rate for the first
one, against novelty, diversity, and a larger error tolerance for the second
one. Our work focuses on assisting the modeling task, as described
in Section 2.3.3. The nature of this task implies that the assistance
system –the software assistant– is perceived as a bonus in the existing
environments. Thus, the fulfillment of the modeling task does not rely
on the availability of a software assistant, but might rather be facilitated
when using one.

As a consequence, users do not have high expectations about the
availability, the robustness or the reliability of the system, as they could
have for critical systems. These previous characteristics are called infor-
mation system trustworthiness characteristics by Chopra and Wallace [41],
due their link with the system considered as a whole service. Instead,
users expect the system to be able to come up with new, interesting
and/or original ideas. Hence, when assisting modeling –a creative task–
trust is mainly built on the information itself, and not on the information
system as a whole software service. This statement implies that aspects

6.1. Enabling trust in human-assistant collaboration 111

related to trust in information systems as described by [41], such as the
availability, the robustness, the reliability, the safety of the system, or
the system being free from malicious code, will not be considered as
major factors influencing trust in modeling assistants and will not be
further discussed in this section.

In their framework for trust in electronic environments, Chopra and
Wallace define trust in information as "the willingness to rely on a specific
other, based on confidence that one’s trust will lead to positive outcomes".
Thus, we state that trust in modeling assistants will rely on the informa-
tion these systems are able to provide. This includes the information
itself, but also the mechanisms to adapt it to users’ needs. The following
section explores this direction, by providing a clear overview of how
information-related and system adaptability characteristics influence
the growth of trust.

Note that both information and knowledge are used in this section, re-
ferring to the same concept. Software assistants manipulate and produce
knowledge; the use of information or information systems is constrained by
the name of such systems in the community. An explanation about the
di↵erence between information and knowledge is provided in Section
2.2.2.

6.1.2 A metamodel of trust in recommender systems for
creative tasks

Because recommender systems are information systems, we gathered ar-
ticles linking both information and trust [41] [73] and cross-referenced
them against literature pertaining to trust and evaluation of recom-
mender systems [142] [182]. To analyse the contents of all these papers,
we constructed a model (shown in Figure 6.1), which represents a con-
solidated conceptual model of trust in recommender systems.

Characterizing user’s attitude towards the system

When using a recommender system, users develop a relationship with
that system, and hence adopt a specific attitude towards it. Our study of
the literature shows that this attitude is tight to di↵erent characteristics
related to the user and influenced by the system.

• Trust indicates whether or not users find the whole system trust-
worthy.

• Confidence/Persuasion refers to the recommender’s ability to con-
vince users of the information or products recommended to them.

112 CHAPTER 6. Identifying design constraints from the literature

Figure 6.1 – A conceptual model of trust for recommender systems.

• Overall satisfaction determines what users think and feel while
using a recommender system. It gives users an opportunity to
express their preferences and opinions about a system in a direct
way.

• Loyalty refers to the system’s ability to make the user use it and
no other one when performing a task.

When assisting creative task, one mistake is to only pursue system
accuracy and performance, what is done for a lot of artificial intelligence
systems, at the expense of the characteristics listed above. The very
notion of precision for a modeling recommendation is complex to grasp.
As there is no single way to model a system but at least several, the
accuracy of a recommendation gets totally subjective, depending on the

6.1. Enabling trust in human-assistant collaboration 113

engineer, the context, or the business domain. A good recommendation
for one engineer may be wrong for another, provided that their design
approach is di↵erent. Thus, in the case of creative tasks, and especially
software design, accuracy or performance are criteria to take into ac-
count, but at the same level as others that influence trust, persuasion,
satisfaction, and loyalty.

Trust resulting from the general perception of the system

Figure 6.1 demonstrates the influence of perceived usefulness (including
information quality), perceived transparency, perceived control, and per-
ceived ease of use on trust. Perceived usefulness refers to the quality and
relevance of the presented information. Perceived transparency repre-
sents the ease of understanding of how the system works. Perceived
control captures the ability to adapt, while perceived ease of use relates
to how easily a random user can start interacting with the system. To-
gether, they influence theGeneral Perception of the System, including trust.
These four characteristics can, in turn, be influenced by information-
trustworthiness characteristics, system adaptability characteristics, or
both.

Information-trustworthiness characteristics, such as accuracy or cur-
rency, are essential to the development of an impression of perceived
usefulness. Others, such as believability/explicability or attractiveness,
can also strengthen the impression of perceived transparency. Our study
of the literature identified the following information-trustworthiness
criteria:

• Accuracy. The extent to which each recommendation matches the
current element for which recommendations are requested.

• Currency/Novelty. The extent to which each proposed alternative
is commonly used in similar contexts.

• Coverage/Diversity. The extent to which the full set of suggestions
covers the di↵erent possible modeling paths, semantics of the
objects, or user styles.

• Attractiveness. The extent to which each suggestion might be
interesting for the user. It includes matching users’ preferences,
but also company-internal good practices, or general modeling
good practices such as design patterns.

• Explicability. The extent to which the presence of each alternative
in the list of suggestions can be explained, based on explanation

114 CHAPTER 6. Identifying design constraints from the literature

elements that resonate in the current context. It refers to the reason
why the element is in the list.

• Believability. The extent to which the user can be convinced of
the relevance of each suggestion in the list. This criterion may refer
to authority figures (such as company experts), or user statistics to
convince. It transcribes the reason why you might want to select
this alternative.

• Context compatibility. The extent to which each alternative fits
the current context, including the whole model and user’s intents.

System characteristics relate to system features that are responsible
for creating and displaying recommendations. Interfaces with explana-
tions can influence the perceived transparency. Some algorithms might
accept feedback from the user and enable user’s perceived control. The
metamodel presented in Figure 6.1 relies on the following characteristics
of system adaptability:

• Algorithm tunability. This characteristic transcribes the ability
of the algorithm to be adjusted by the user, to change and refine
its behaviour, and the recommendations it produces.

• Display tailorability. The extent to which the user interface views
can be customized by each user, so they can create a visual envi-
ronment that fits their expectations.

• Data manageability. The extent to which the database of the
system can be trimmed, updated, or augmented by the users.

In this thesis, we focus on the influence of perceived usefulness,
perceived transparency, perceived control, and perceived ease of use
towards increasing the trustworthiness potential of our system. In
particular, we address the following characteristics: information trust-
worthiness, information transparency, system transparency, system control,
and system ease of use.

The impact of individual social and cultural backgrounds

Although the nature of a system, its components, and its operations
naturally influence whether or not a trust relationship is established
with the user, other factors can complicate the development of this
relationship. The previous sections have highlighted the characteristics
of the information system that can influence trust, notably through the

6.1. Enabling trust in human-assistant collaboration 115

information presented by the system. However, in the human-system
relationship, the characteristics of the human also a↵ect the perception
of trust.

In their paper, Baer et al. [13] show that the social context has a sub-
stantial impact on dyadic trust. This social context includes the status,
defined as the prestige, respect, and admiration that individuals enjoy
in the eyes of others by Lount and Pettit [100]. In their paper, Lount
and Pettit observed that the possession of high status led individuals
to be trusted more. Personnality traits are recognized as a factor that
might influence users’ propensity to trust other colleagues or systems
that they interact with [39]. This is for instance the case of openness
to experience, one of the five domains of the Big Five personality traits
model [46], which appears to be positively correlated to trusting others
more [6]. This propensity to trust can also vary according to the cul-
tural background of users. In their study, Miller and Mitamura [114]
observed that the notion of trust and risk was perceived di↵erently
between participants from America and Japan.

These observations from the literature complicate the generalizability
of the impact of trust factors in a system on the actual trust relationship
established. Depending on the target population, but also on the profile
of the users, the criteria mentioned above may have a di↵erent impact,
more or less important. These observations also have an impact on the
evaluation process of the trust relationship. The empirical validation
process of the results on trust, which is generally based on questionnaires
capturing the users’ feelings, must be thought out and tailored to the
target population of the experiment.

6.1.3 Approach to design trust-fosteringmodeling assis-
tants

Our assistant cannot produce trust, as it is something that emerges or
not, or can be borrowed from another source of authority [117]. Thus, to
address trust issues, we can only create an environment that enables the
growth of the user-system trust relationship.

Our approach investigates the design of software assistants for soft-
ware modeling. Thus, due to the software-focused aspect of our ap-
proach, we only consider trust characteristics that actually are addressed
from the software. This implies that external factors that might influ-
ence the development of trust between users and modeling assistants
are out of our scope.

Hence, we exclude user-related trust aspects such as the social or

116 CHAPTER 6. Identifying design constraints from the literature

cultural background, as presented in the previous section, from our
consideration in this manuscript. As a consequence, software assistants
should be designed by taking into account the assistant-oriented criteria
that influence the user’s general perception of the system as follows:

Information trustworthiness. To foster trust, we conclude that soft-
ware assistants for modeling should be designed to express the accu-
racy, the currency or novelty, the coverage or diversity, the attractiveness,
the explicability, the believability, and the context compatibility of in-
formation to perceive information trustworthiness.

System adaptability. The system should also enable algorithm tun-
ability, display tailorability, and data manageability for the user to
perceive system transparency and controlability.

6.2 Addressing creativity issues

As discussed in Section 2.3.3, the modeling task is a complex design task,
for which software engineers call on their creativity to produce software
systems that matches the design constraints. In this section, we clarify
the creativity definition for software modeling, and identify architecture
guidelines from the literature to build software that fosters creativity.

6.2.1 Framing creativity for software modeling

Creativity is one of those concepts that have led to an enormous pro-
duction of papers in the literature, at some point that there is even an
Encyclopedia of Creativity [150], and a Handbook of Creativity [171].
Today, this notion is a research topic in itself that still fuels scientific
debates. However, there is a consensual definition accepted by most re-
searchers in the field. Creativity is the ability to produce something that
is both (i) new and (ii) adapted to the context in which it occurs [102]. A
production that is (i) new is by definition original and unexpected, dis-
tinguishing itself from what the subject or others have already produced.
This novelty can be minimal, di↵ering only slightly from previous solu-
tions, or present a significant break with previous achievements [172].
However, the creative output cannot only be new but must also be (ii)

6.2. Addressing creativity issues 117

adapted, satisfying the di↵erent constraints related to the context for
which it is designed. There are also other characteristics that influence
judgments about the creativity of a production, such as the technical
quality of the solution or the importance of the solution in relation to
the needs of society.

In software engineering, creativity as defined above can sometimes be
complicated to detect. Indeed, the lessons learned since the beginning of
computer science have led researchers and practitioners to develop ways
to avoid falling into both financial and technical pitfalls. For instance,
the definition of development cycles and specific methodologies such
as the agile method have aimed to standardize and structure the stages
of the software life cycle, in order to control the risks and minimize the
chances of failure of the project. The frameworks aim at standardizing
the way of designing the architecture of systems of a given type, as
does this thesis for software modeling assistants. In the same way, best
practice rules aim at standardizing the way of coding (naming conven-
tions, code layout, and many others) within a community of software
engineers, a company, or even a project team. All these resources aim at
unifying the way of solving problems in software engineering, seem to
go against the notion of novelty mentioned before, and thus against the
very notion of creativity. In practice, they just add new constraints that
creative solutions must match.

Designers have to adapt to time constraints, financial constraints,
constraints emanating from the customer’s needs, but also constraints re-
lated to the existing ecosystem in which the solution must be integrated,
related to the experience of the modeling team, or related to the require-
ments of the business domain and its possible approval organizations
[12, 178, 165]. These technical, financial, and human imperatives set up
a perimeter that delimits the boundaries of the acceptable novelty of the
solution. The designers of software systems must then work within this
perimeter to find a solution that maximizes the respect of the constraints.
It is during this maximization process that creativity emerges for the
software design task and more specifically for the software modeling
task. As presented in Section 2.3.3, the designer explores the problem
space and then the solution space in a progressive and iterative way in
order to produce his model, as synthesized in Figure 6.2. The constant
evaluation of this temporary model then allows its refinement, which in
turn leads to the emergence of new problems to solve. The designer’s
ability to be creative during this process is then essential to the discovery
of an optimal architecture in the solution space of the design problem.
In software design, creativity can then be assimilated to the designer’s

118 CHAPTER 6. Identifying design constraints from the literature

ability to combine technical bricks, business concepts, and good architec-
ture practices to solve these successive problems, within the perimeter
delimited by the project constraints.

Figure 6.2 – Iterative alignment of problem and solution spaces, adapted
from [99]

6.2.2 Understanding creativity characteristics for soft-
ware support

In order to support the development of creativity through software tools,
it is necessary to identify the factors that influence it. Since 1980, the
idea of creativity arising from several characteristics has been called the
multi-faceted approach to creativity. This approach describes creativity
as dependent on cognitive, conative, a↵ective, and environmental factors,
presented in Figure 6.3. These four main factors have been identified as a
result of much work in the area of understanding creativity as identified
in the book by Lubart et al. [102]. According to them, each individual
has a particular profile on these di↵erent factors. Thus, the creativity
potential of an individual in various fields of activity results from the
combination of these di↵erent factors in the social and technical context
of the project.

6.2. Addressing creativity issues 119

Figure 6.3 – Main factors for creative production, from [102]

Cognitive factors

Cognitive factors include the notions of intelligence and knowledge of
the software engineer. From the perspective of Batey et al. and Lubart
et al. [16, 102], the intellectual abilities considered essential in the
creative act are those that serve (i) to identify, define, and redefine
the problem (or task), (ii) to identify information in the environment
that is relevant to the problem, (iii) to observe similarities between
di↵erent domains that shed light on the problem, (iv) to group together
various pieces of information that, when combined, will form a new
idea, (v) to generate several possibilities, (vi) to self-assess one’s progress
towards the problem, and (vii) to disengage from an initial idea in order
to explore new paths. Knowledge, on the other hand, refers to the
information stored in the software engineer’s memory, which results
from their education and past experience. According to many authors,
creativity can only be exercised once a certain level of knowledge is
reached. This knowledge allows to understand situations and not to
reinvent what already exists, but also to take into account and to take

120 CHAPTER 6. Identifying design constraints from the literature

advantage of events observed by chance [102].

Conative factors

The literature has identified three conative factors influencing creativity.
First, personality characteristics refer to characteristics that are relatively
constant over time in relation to the individual [78]. It has been shown
that personality traits related to perseverance, tolerance of ambiguity,
openness to new experiences, or risk-taking have a positive influence on
an individual’s creative potential. Next, cognitive styles are described as
the di↵erent ways in which individuals prefer, or tend to perform their
mental actions. For example, we can di↵erentiate between the global
style, where an individual focuses on the general aspects of a task, and
the detailed work style, where an individual focuses on the details of
the task. The study of these di↵erent styles, although very recent, has
shown that the global style seems to be more conducive to creativity.
Finally, the individual’s motivation seems to have a di↵erent impact on
creativity depending on its nature [102]. If intrinsic motivation, relating
to the internal desires of the person satisfied by the accomplishment
of the task, seems to positively influence creativity, it is not the case of
extrinsic motivation. Extrinsic motivation, stimulated for example by
obtaining a reward following the task, seems to have a negative e↵ect on
creativity.

A↵ective factors

Di↵erent approaches have aimed at understanding the relationship
between feelings and creativity in research, such as the naturalistic
approach and the experimental approach. Although numerous and
informative, the results of these di↵erent types of research are some-
times divergent and make it di�cult to interpret them. These studies
have focused on the impact of positive emotions on creativity, and have
confronted the points of view of di↵erent researchers [102].

Environmental factors

Although the study of the creative environment is relevant to the field
of creativity, Lubart et al. [102] report that less than 5% of articles are
referenced by the word environment and less than 1% by the keyword
social environment. The notion of creative environment can refer to
several systems studying the environment of the individual at di↵erent
scales. Bronfenbrenner [30] defined four levels of environments called

6.2. Addressing creativity issues 121

microsystems, mesosystems, exosystems, and macrosystems. The levels re-
spectively consider more environmental factors, from local to global. For
instance, microsystems relate to the study of the subjects’ evolution in in-
dividual communities to which they belong, while mesosystems consider
the interactions of these various communities brought together, such
as combining religious education with school. The two other systems
broaden the scope even more, to embrace many more environmental
variables.

In our case, we are interested in the more local environment, only
related to the work context and the work team and thus focus on mi-
crosystems. These microsystems include the social groups in which the
individual participates, and more particularly the team in which the
individual works. This team can be made up of human collaborators,
but also of machines, with which the individual weaves a working and
a↵ective relationship. Lubart et al. [102] state that the probability of
innovating at work will be facilitated if the work is done in a struc-
ture that allows and encourages the creativity of each of its members.
They identify that this encouragement can be achieved, for example, by
o↵ering access to databases and information at work.

Which characteristics do software assistants for software modeling
support ?

The factors of creativity discussed above can thus all have an influence
on the overall expression of an individual’s creativity. Our description
of the modeling task in Section 2.3.3, however, highlights di↵erent
constraints on this creative design activity, such as its work-related
and ill-structured nature. Moreover, the use of a modeling software
assistant, intervening as an external actor di↵erent from the actual
individual performing the task, limits the creative factors that can be
addressed. It seems unlikely that the assistant can intervene correctly on
the conative and a↵ective factors that are mostly related to personality
traits, personal cognitive styles, or feelings. On the other hand, the
nature of the cognitive and environmental factors are compatible with
the capabilities of the assistant.

Cognitive factors refer to the notions of intelligence and knowledge.
For several years now, the notion of artificial intelligence has fully taken
its place within the software engineering community, at the origin of sys-
tems aiming to carry out so-called intelligent tasks generally performed
by humans. These systems are becoming increasingly commonplace and
the research e↵ort in this field has never been so sustained. However,
the objective of creating intelligent systems is slightly diverging towards

122 CHAPTER 6. Identifying design constraints from the literature

a definition that leaves room for humans. The notions of collective intel-
ligence [107] or augmented intelligence [44, 149] have made their entry
into the scientific community. Instead of doing in place of humans, these
new systems aim at doing with humans, helping them on increasingly
complex tasks. This new paradigm of collaboration is intended to take
advantage of the thinking capacity of both the human and the machine,
in synergy, in order to increase the intelligence potential of the pair.
Modeling assistants share this objective, to augment users by support-
ing their potential for confidence, instead of replacing them. This is
achieved by making knowledge from various sources and domains avail-
able in an easily accessible way. Thus, the assistant might also help with
the tasks related to the notion of intelligence mentioned above, such
as grouping together similar pieces of information, or proposing new
possibilities or avenues of work, by presenting this knowledge in forms
that encourage reflection according to the individual.

In these cases, the assistant must be integrated into the user’s working
environment, for example by being integrated into the modeling tool.
The system can then influence the general relationship that the user
develops with the modeling tool, while allowing the development of an
a↵ective relationship between it and the user. This relationship can for
example be expressed through the user’s pleasure in using the assistant.
For this, the assistant must be compatible with the users’ working style,
by adapting to their habits and way of working.

The identification of these characteristics of creativity allows us to
define guidelines for the support of creativity within Software Assistants
for Software Modeling (SASM).

6.2.3 Software characteristics to support creativity
We gathered several papers [74, 24, 193, 145, 167, 188] presenting frame-
works or guidelines for defining software systems capable of supporting
the creativity of their users. The results presented in these articles
matches the study of the factors of creativity that can be influenced by
software assistants presented in the previous section. In this section, we
present the four main identified axes of creativity support for model-
ing assistants knowledge availability, knowledge representation, supporting
users’ paths and styles, and usability and transparency.

Knowledge availability

One of the system prerequisites to support creativity is the availability
of knowledge. Hewett and Wang et al. [74, 188] suggest the use of a

6.2. Addressing creativity issues 123

Company-internal
Knowledge

Background
Knowledge

User-specific
Knowlege

Figure 6.4 – The three levels of knowledge for modeling assistants.

knowledge base to facilitate its access. This knowledge can be varied and
can come from di↵erent data sources. In the case of modeling assistants,
this knowledge can take the form of models that have already been built,
but it can also come from the analysis of documentation or requirements.
To support the reflection and analogy process in the creative process,
Bonnardel and Marmèche [24] suggest to vary the sources and domains
of knowledge.

Thus, we propose that the knowledge base be built around three lev-
els of knowledge as presented in Figure 6.4. The background knowledge
is composed of general knowledge on various domains and common
concepts. The company-internal knowledge allows to refine the concepts
specific to the company and its field of activity. The user-specific knowl-
edge is specific to users and carries the knowledge of their working habits.
We formulate the following requirement for modeling assistants.

Knowledge base. The modeling assistants must feature a knowledge
base built around three levels of background, company-internal, and
user-specific knowledge.

As specified by Resnick et al. [145], the knowledge base must be
large enough to allow a real exploration of the solution domain in the
business domain but also elsewhere. The size of this exploration space
must be communicated to the user for the sake of transparency.

In order to feed this database, the system must be able to collect data
during its operation. Hewett [74] mentions in particular the process

124 CHAPTER 6. Identifying design constraints from the literature

of acquiring feedback from the user. This collection must be simple,
integrated into the work process and non-disruptive. In the same way,
the authors mention the need to be able to access, archive, and analyze
the communications of software engineers in order to extract the con-
textual information necessary for the acquisition of knowledge about
the project. The models produced by the users, but also their team, the
company, or a community of developers must be recovered and progres-
sively integrated into the knowledge base. These di↵erent techniques
make it possible to feed the base on the three levels of knowledge to
keep it up to date.

Knowledge availability. The modeling assistant must set up a sys-
tem to guarantee the availability of knowledge. This may be achieved
through the retrieval of edited models, but also from the analysis of
work artifacts, and professional communications.

Knowledge representation

Beyond making knowledge available, the modeling assistant must help
the user to accomplish cognitive tasks related to creativity. These tasks
rely on the ability of the software engineers to put their personal knowl-
edge and external knowledge into perspective, in order to navigate
through the di↵erent possible solutions. In this case, the assistant has
a determining role in the way of presenting the knowledge to the user,
through its interface. Wang et al. [188] insist on the importance of the
choice of the data representation according to the task to be supported.

Knowledge representation choice. The choice of the knowledge
representation in the user interface of the modeling assistant must
be made according to the software engineering task that is aimed to
be supported.

Three of the considered papers [74, 193, 188] highlight the fact that
in order to support creativity, a software system should ideally be able
to propose an interface allowing to change the point of view on the
knowledge.

Knowledge representation switch. The interface of the assistant
must allow the user to navigate between several representations of
knowledge, in di↵erent forms.

6.2. Addressing creativity issues 125

These same three articles mention the problem of accessing and
manipulating these representations during creative work. In a physical
environment, working with a whiteboard, pens, markers, and sheets
of paper, for example, enables people to arrange their workspace as
they wish. For instance, software engineers can place several sheets of
paper next to each other on their desk to visualize di↵erent documents,
while exploiting on the whiteboard, where they can easily write, erase,
or trace elements. The immediacy of access to di↵erent representations,
as well as the ease of arranging the workspace, are problems that can be
transposed to the software assistant. Thus, we formulate the following
requirement.

Ease of knowledge access. The modeling assistant should allow a
fast and easy access to the knowledge, and should allow a simultane-
ous display of several knowledge representations.

Supporting users’ paths and styles

Rather than supporting the conative factors of creativity, the assistant
can instead adapt to them to enable a much more tailored user experi-
ence. Each individual has their own way of working, such as starting
from the global to the detailed, or vice versa. Some designers will prefer
to sketch the whole model before detailing it, and others will take care to
specify each model element before moving on to another. These habits,
which are unique to each individual, can quickly be undermined if the
system (i) does not allow for customization or (ii) imposes too many
constraints on the user.

In his paper on the design of computer-based environments to sup-
port creativity, Hewett [74] evokes the notion of tailorable environment.
In order to adapt to the user, the assistant must not be designed as a
monolithic block, impossible to adjust. This notion of adjustment refers
to the graphical aspect (placement of the assistant views), to the access
to its functionalities (keyboard shortcuts, menu entries), but also to its
internal functioning. Users should be able to adjust the behavior of
the system according to their needs and to their liking, for example to
receive more or less recommendations, or to ignore certain elements if
they are sure of themselves.

126 CHAPTER 6. Identifying design constraints from the literature

Tailorable environment. The modeling assistant should be ad-
justable according to the user’s preferences and needs on the aspects
of triggering, display, and internal behaviour.

At the same time, in addition to being configurable, the assistant
must allow the user freedom. As mentioned in the previous section,
the solution space for the creative problem is limited by many project
constraints. The software engineer must then find a solution within this
space, even if it sometimes means to think beyond, to think outside the box
related to the notion of functional fixedness. The software system must
allow the user to carry out these problem/solution iterations, without
technical or syntactic constraints, during this stage of the modeling
process [74, 145].

User freedom. The assistant should allow users to conduct their
creative process as they like, and should not impose any constraints
on the travels in and out the solution space.

Ensuring usability

Resnick et al. [145] refer to the notion of accessibility with the expression
low threshold, high ceiling. This first implies that the assistant must
allow any beginner to use it in a simple way to accomplish tasks (low
threshold). This accessibility is emphasized by Hewett [74], who suggests
to provide a user manual for the assistant in a systematic way to the user.
At the same time, the assistant should not limit users and allow them
to perform more complex tasks if they wish (high ceiling). However,
Resnick et al. recommend keeping the assistant simple and even simpler.
In other words, the assistant should only be able to perform a limited
number of tasks. Supporting more tasks would then require to define
several assistants, that could be installed according to the need. We
formulate the following requirement.

Low threshold, high ceiling. The modeling assistant should be
accessible to beginners, while allowing experts to perform their
modeling tasks. The number of features of the assistant should be
restricted to the very minimum, matching the requirements of one
modeling task.

Beyond its accessibility, the assistant must be transparent about its

6.3. Building a Recommender System for modeling 127

scope of action and its interoperability. For example, it must indicate
whether the knowledge can be used in other tools, but also whether
the system can allow modeling for other domains, for other types of
diagrams.

System interoperability. The modeling assistant should support
interoperability, by being compatible with di↵erent modeling tools
or di↵erent business domains.

6.3 Building a Recommender System for mod-
eling

Recommender Systems aim to reduce information overload by retrieving
the most relevant information and services from a huge amount of data
[101]. Their main feature lies in their ability to adapt to the user and the
context to generate personalized recommendations. Modeling assistants
are expected to manage a huge quantity of knowledge, from di↵erent
domains and scopes. Then, they propose new features exploiting this
knowledge to their users. A fundamental and unavoidable component
of software assistants for software modeling is therefore a recommen-
dation system. Whether they are fully autonomous, or they let users be
part of the decision process, software assistants rely on recommender
systems that enable them to handle the concept of choice and alternative
selection. However, all recommendation approaches might not fit the
requirements of recommending for modeling. In this section, we discuss
how multi-criteria recommender systems appear as the most suitable
systems for supporting modeling, and then we elaborate on how to
design them based on frameworks from the literature.

6.3.1 Single-criterion recommendation approaches for
modeling

Most recommender systems implement one of the following three com-
mon recommendation methods: collaborative filtering [160], content-
based techniques [132], or knowledge-based techniques [36].

Collaborative filtering methods rely on a database of rating from
various users. It is based on the assumption that if two people agreed
in the past, they are likely to agree in the future. Then, it finds people
sharing most of the current user’s opinions (based on previous ratings),

128 CHAPTER 6. Identifying design constraints from the literature

and use people ratings about a concept X to predict the current user’s
opinion about X.

In content-based techniques, the system tries to identify common
characteristics between the elements that the user liked, and exploit
these characteristics to predict new elements that might match the user’s
expectations.

Knowledge-based recommender systems exploit explicit information
from the user and item characteristics to identify elements of interest.
This kind of approach allows users to define constraints on the expected
suggestions, which are exploited to produce the recommendations.

Each one of the previous approaches has advantages and limitations,
which include overspecialization, cold-start issues, and scalability issues
[101]. Beyond these technical issues, these recommendation methods
either rely on (i) the assumption that the recommendation is a matter of
taste or opinion, (ii) the possibility to identify common characteristics
between alternatives, or (iii) the users’ ability to identify and define
constraints on the recommendations they expect. While these are an
option for di↵erent domains such as online shopping, movies, video
games, or real estate recommendations, this is an issue for the appli-
cation of these recommendation approaches to modeling. Firstly, (i) a
design decision or the choice of the elements of a diagram is hardly or
not at all a matter of personal taste of the engineer but is governed by
budgetary constraints, be they financial, human or technical. Secondly,
(ii) the making of such decisions depends on the context, the scope of
the diagram, the recipients of the documents produced, or the criticality
of the system to be implemented. Thus, during the same work session,
the engineer may exhibit antithetical behaviors when producing two
di↵erent artifacts, in the same work environment. It is then impossible
to identify characteristics common to the choices made by the user. Fi-
nally (iii) the problem-solving aspect of the modeling task implies that
users do not necessarily have an idea on how to solve a problem, and are
therefore not able to define what they expect from the recommendation
system. To solve these problems, di↵erent advanced recommendation
approaches have been proposed including Multi-Criteria Rating Recom-
mender Systems (MCRS), which allow to consider several aspects of a
context to produce suggestions [108].

6.3.2 Multi-Criteria Rating Recommender Systems
Multi-Criteria Rating Recommender Systems (MCRS) are systems that
involve multiple criteria in selecting the final set of ranked recommenda-
tions. Adomavicius and Kwon [4] identify multiple selection techniques,

6.3. Building a Recommender System for modeling 129

such as rating-based, multi-objective optimization, or outranking rela-
tions. To fully support creativity, no single recommendation approach
is su�cient. This means that, in the context of software modeling, the
generation of a recommendation set cannot be achieved by means of
simple logic. Instead, it must be based on the notion of proximity to an
objective. Because of this and because the quality of a recommendation
depends on more than one measurable criterion, we chose to build our
system as an MCRS.

In their systematic review of MCRS, Adomavicius and Kwon [4]
apply Roy’s methodology for analysing multi-criteria decision-making
problems [148] to MCRS design:

1. Defining the object of decision. The system scope needs to be
delimited first. This is done by identifying the potential solutions
(i.e., alternatives).

2. Defining a consistent family of criteria. A set of functions (i.e.,
criteria) must then be identified and described in order to assess
each alternative over the di↵erent parameters a↵ecting the choice
of recommendation.

3. Developing a global preference model. The role of the global
preference model is to combine all criteria into a single model
that is used to make the final selection from among candidate
alternatives.

In defining our approach, we applied the above methodology to our
MBSE problem.

6.3.3 Defining the object of decision
Determining the object of decision is the way to define the scope of our
system. This is necessary to more precisely define its inner mechanisms.
In our approach, the object of decision consists of determining all con-
text elements that might be involved in deciding whether a candidate
alternative represents an appropriate recommendation. In the context of
MBSE, we propose to define the object of decision as the combination
of the following characteristics of a recommendation: its Nature, its Model
Scope, its View Scope, and its Target. To support the understanding of
these di↵erent concepts, let us assume that for example, we aim to de-
sign a recommender system that suggests class attributes in UML class
diagrams.

The Nature of a recommendation refers to the information it conveys,
that is, the modeling language meta-type of the recommended element.

130 CHAPTER 6. Identifying design constraints from the literature

In our example, this is the UML meta-type Attribute. For the Model
Scope of a recommendation, we define the set of elements from the mod-
eling language that can own, in their containment hierarchy, elements
of the recommendation Nature. In our example, the Model Scope of the
system consists of the following meta-types set: {Class, Package}, both
of which can own attributes in their hierarchy. View Scope represents
the top-level view in which the elements of the recommendation Nature
are represented. For our example, the View Scope is a Class Diagram.
Finally, Target designates the user for whom the recommendations are
intended and personalized. Users of our example system are expected to
be users of modeling tools, possibly with some previous experience, their own
personal preferences, and with individual degrees of willingness to extend
trust in given situations. The latter psychological trait is referred to as
the propensity to trust [41].

Adomavicius and Kwon [4] require that the definition of the object
of decision should indicate how recommendation alternatives are to be
selected through a decision process. This is done by means of a description,
which specifies each alternative in terms of how it performs for each
of the multiple criteria. This procedure ensures that only elements
that perform well on one or more criteria will be considered as suitable
candidates. This provides the first mechanism for exclusion of elements
from the recommended set of alternatives. Ranking, sorting, and choice
approaches [4] were discarded because they needlessly consider all the
elements, which is unrelated to semantics and which can also cause
performance issues. Instead, potential recommendation candidates
are determined solely according to the description decision process.
Consequently, we define the object of the decision of our modeling
assistants as follows:

Object ofDecision Elements (i) selected by theirNature or their pres-
ence in the hierarchy of elements from the Model Scope, represented
in the View Scope, and tailored to the Target users.

We can apply this definition to our example system. Then, we de-
scribe the object of decision of our example as attributes (i) selected by
their nature or their presence in the hierarchy of classes or packages, (ii)
represented in class diagrams, and (iii) tailored to the user of the modeling
tool, who may have previous experience, personal preferences, and various
levels of propensity to trust.

6.3. Building a Recommender System for modeling 131

6.3.4 Criteria Identification

Our analysis of several publications identified that the confidence poten-
tial of a recommender system was a function of the general perception
that the user has of the system (see 6.1.2). More specifically, the percep-
tion related to information and the perception related to the interface
and interactions both appear to be correlated with the notion of trust in
recommender systems. Because they characterize information, identifi-
cation criteria depict the information-related perception of the system.
In this section, we focus on how to identify a family of criteria that pro-
motes the perception of information trustworthiness and information
transparency.

The transparency of a process, situation, or statement is defined in
the Collins Dictionary as its "quality of being easily understood or recog-
nized, for example [. . .] because it is expressed in a clear way". Information
transparency would be achieved by making the inner mechanisms of
our system easily understandable to end-users. Therefore, information
transparency calls for explanation. Because of the multi-criteria nature
of our system, transparency can be realized by means of a two-step expla-
nation: users need to first understand what each criterion individually
stands for, and then how the di↵erent criteria are aggregated into a final
ranking. While this last step will be addressed in Section 6.3.5, the first
step requires the criterion definition to cover explainability. We propose
that each criterion is described by a concise rationale, which includes
only the amount of technical detail tailored to the level of technical
expertise of the end user. Thus, the first semantic constraint on criterion
definition is:

Criterion Constraint 1: explainability
A criterion shall be described through a rationale that is easily un-
derstandable by the recommendation target.

Section 6.3.2 introduced the six information trustworthiness char-
acteristics for recommender systems: accuracy, currency/novelty, cover-
age/diversity, believability/explicability, context compatibility, and attrac-
tiveness. These factors, also referred to as information quality character-
istics, are qualities that information must reflect in order to improve
the general perception of users about the system. Expressing them
through criteria would positively influence the relationship of trust of
users towards the system. Therefore, the second constraint on criterion
definition is:

132 CHAPTER 6. Identifying design constraints from the literature

Criterion Constraint 2: trustworthiness
A criterion shall reflect at least one of the following information
trustworthiness characteristics: accuracy, currency/novelty, cover-
age/diversity, believability/explicability, context compatibility, and
attractiveness.

The suitability of a recommendation is clearly dependent on its
context. ForUML attributes, the class that is being described, the content
of the class diagram, or the profile of the user, are all di↵erent elements
that must be taken into account to provide coherent and meaningful
recommendations. Such context elements are accurately identified in the
previous definition of the object of decision of our system. Consequently,
the third constraint on criterion definition is:

Criterion Constraint 3: context
A criterion shall exploit information from at least one of the four
components of the object of decision. This relates to the nature of
the recommended alternatives, their presence in the hierarchy of
elements from the Model Scope, represented in the View Scope, and
tailored to the Target users.

6.3.5 Utility Function
In defining what makes a good explanation in recommender systems,
Tintarev and Mastho↵ [182] argue that "justifying [a] recommendation
is just half of the solution, the second half is to make it scrutable". To
that end, in this section we first select an aggregation method that
enhances system transparency. Then we emphasize support for context
adaptability, and, finally, propose a determination process that allows
system control through scrutability.

Utility Function selection

Adomavicius and Kwon [4] identify two major techniques for dealing
with multi-criteria ratings to produce an overall rating: heuristic-based
and model-based techniques. Heuristic-based techniques compute the
score of each item for a given user, based on data derived from observing
that user, using some heuristic assumption. To perform matching opera-
tions, these techniques often require specific knowledge about multiple
users, based on their profile and from collaborative filtering. In contrast,

6.3. Building a Recommender System for modeling 133

model-based techniques generate a predictive model, typically using
statistical or machine-learning methods that best explain the observed
data. Once the model becomes available, they use it to estimate the score
of individual recommendations.

In the case of software assistants, the lack of data about the profiles
of all users rules out heuristic-based techniques. On the other hand,
model-based techniques using machine-learning methods enable the
system to learn directly from the user, resulting in finely-tuned data.
Consequently, we take a machine-learning model-based approach to
determine the overall utility function. Note that, for greater system
transparency, the aggregation process must be explainable. Therefore,
rather than relying exclusively on machine-learning processes, which
are rarely fully explainable2, we define the utility function as a weighted
sum of criteria rating functions.

We define this function as follows:

Aggregation function.

Let (w1,w2, ...,wn) 2 [0;1]n where
P

nwn = 1,

overall : A ! [0;1]
a 7! P

nwn ⇥ sn

with s1, s2, ..., sn the individual scores for the n criteria
w1,w2, ...,wn the weights for the n individual scores
A the set of recommender alternatives

(6.1)

The weights w1, w2, ..., wn can either be manually defined by the
designer of the assistant, by the user who can experiment with di↵erent
configurations, or determined through a machine learning process.

Context adaptability

Adomavicius and Kwon [5] also note that the aggregation function can
have di↵erent scopes: total (i.e., when a single aggregation function is
learned based on the entire data set), user-based, or item-based (i.e.,
when a separate aggregation function is learned for each user or item).
Thus, it is possible to define di↵erent contexts in case when only a subset

2A dedicated research community is very active in exploring this topic. Thus, this may
change in the future.

134 CHAPTER 6. Identifying design constraints from the literature

of the criteria is useful to compute the overall score. For instance, the
overall score for recommending alternatives in a model containing only
one element might take less criteria into account than recommending for
a model with dozens of elements, which is more complete and precise.

Consequently, we refine the overall utility function, by taking into
account the context k. We define the function overallk as:

Context adaptability for aggregation functions.

overallk(a) =
X

n

wn,k ⇥ sn (6.2)

Then, there are as many overall functions as there are di↵erent
contexts. The weights for each function must be defined separately, to
ensure the consistency of the calculation in each of the di↵erent contexts.

Utility function determination

The quality of a recommender system depends primarily on its ability to
propose items that the user is likely to choose rather than items the user
is unlikely to choose. Therefore, a high-quality recommender system
must fit user preferences. Our system o↵ers the possibility to reflect
these preferences by assigning values to the weights of the four overall
utility functions. This can be done manually, but finding suitable values
would likely lead to suboptimal results. Instead, assistant designers may
choose a machine-learning approach to automatically determine these
weights.

Supervised learning is a common technique for inferring user prefer-
ences. Based on labelled data created by the user, supervised learning
enables the system to adapt its inner mechanisms to reflect a user’s
decision rationale as closely as possible but without expressing it explic-
itly. To gather labelled data for the modeling assistant, the following
scenario can be conducted. A list of unranked candidates —potential
recommendations— is displayed for each situation. Using this interface,
the user is asked to remove all attributes that do not fit semantically in
the presented context. Once this is completed, the user is then asked to
create a ranked list of the top 10 best recommendations from the dis-
played elements. This task should be repeated for multiple situations in
di↵erent contexts a su�cient number of times in order to collect enough
information to determine the four utility functions. Once this data is
collected, it is used to calculate the weights in such a way that they

6.4. Designing automation 135

maximize the recommender evaluation metrics, that must be selected
and computed.

Instead of gathering labelled data before the first use of the system,
the assistant can be set up to collect labelled data on the fly, from
monitoring the real-time usage of the system. This would imply a cold
start phase, when the system exploits generic weights, before they are
refined at the point when the user interacted enough with the assistant.

6.4 Designing automation

Let us assume that you join a new IT company, and integrate a new
software development team. On your first day at the o�ce, you will
probably want to know how the team works, and how you will fit
in the team workflow. For instance, you might want to clarify what
tasks are in your scope, what you are responsible for, what resources
you can get from your colleagues, but also the way you collaborate
with your colleagues. Thus, from your perspective, you know what is
on your grounds, and what takes place elsewhere, done by someone
else. From this point of view, anything that you do not do yourself is
automated, achieved by another system –your colleagues–, which might
share resources with you, expect inputs from you, and produce outputs
for you. This distribution within the team is the result of decades of
learning and observing work teams. Optimizing the composition of
teams is the role of managers who take into account the experience,
skills but also the personality of employees to create successful teams.

As software assistants aim to act like a peer to software engineers,
all the previous concerns apply to the design of the human-assistant
collaboration. This set of concerns relate to the automation of the system,
as it describes the way it is triggered, the way the user can hand-over the
system, the way it gathers information from the user or the environment.
This automation can be assessed through di↵erent scales available in
the literature [185]. Our mapping study results introduced in Chapter
3 especially exploits the 4-aspects 10-points automation scale from the
work of Parasuraman [130]. In Chapter 4, we highlighted the need
for thorough automation design due to the observed inconsistencies
between the available implemented systems and software modelers
expectations. Thus, we base the automation design of the assistant on
the dedicated framework A-RCRAFT [28, 129] which is, to the extent
of our knowledge, the only available user-centered automation design
framework.

The A-RCRAFT framework is a Generic Framework for Automation

136 CHAPTER 6. Identifying design constraints from the literature

Analysis and Design. It serves as guidelines to conceive a system whose
goal is clear to the user, and which integrates well with the user’s work-
flow. It provides support for the analysis of automation design over the
five following aspects of automation that have to be identified at design
time.

Allocation of functions and tasks. When conceiving the software
system, the designer should clearly define which functions will be
allocated to the system and which tasks will be allocated to the user.

This task distribution should be made clear to the users before they
access the system, so they have a clear idea of how the system will
integrate their workflow. This enables users to have clear vision of their
task scope, and build expectations on the behaviour of the system in
terms of what it will do, and what it will not.

Allocation of authority. This covers the identification of which
entity is allowed to trigger or prevent functions/tasks execution.

Users of the software system should know how the system works,
and how they can stop it, if they can. More precisely, users should know
in advance what starting the system will trigger, and the actions they
will be able to perform to pause or stop the execution of the system. For
instance, if the system requires a long analysis when starting, which
cannot be interrupted, and which freezes the environment, this should
be announced beforehand.

Allocation of responsibility. This refers to understanding which
entity is responsible for the outcome of the execution of the func-
tions/tasks.

This aspect especially aims to identify who will be held responsible
of any undesired outcomes of the system in case of incident. In the case
of modeling assistants, it is likely that the responsibility will be allocated
to the user of the assistant, e.g., the software modeler.

Formalizing these design constraints 137

Allocation of resources. This refers to identifying which resource
(e.g., diagrams, preferences, documents) is allocated to which entity
in terms of production, modification or sharing with the other entity.

Users must know the consequences of integrating a modeling assis-
tant into their working environment to evaluate the potential risks. It
should be made clear whether the system had read-only permissions,
or can write and edit artifacts in the modeling environment. In the
meantime, the system should indicate all its information and knowledge
sources, to prevent any privacy breach.

Handover and takeover.
When designing the system, control transitions sequences must be
defined clearly, as well as which entity can trigger them.

Users of the software assistant should know how the system has to
be triggered and how the system will let them take back the control of
the environment. According to results of our interviews in Chapter 4,
the system should be able to manifest itself, o↵ering a non-disruptive
interaction such as a notification or annotation. However, whether
this behaviour can be adapted or not, whether the trigger is manual
or automatic, the information should be clearly communicated to the
user, and designed to o↵er the less disruptive interaction possible. In
the case of software assistants, it is unlikely that the system will gain
full handover the system, as the interaction between the user and the
assistant should not disrupt the user’s workflow.

Formalizing these design constraints

This chapter identified the major design constraints for software mod-
eling assistants, related to trust, creativity, recommender systems, and
automation. These apply to modeling assistants due to the creative and
problem-solving nature of the modeling task, and provide a first e↵ort
to frame their design. In the following chapter, we combine these con-
straints and define a formal framework for designing software assistants
for software modeling.

138 CHAPTER 6. Identifying design constraints from the literature

Chapter7
A framework for designing
SASM

Based on the big picture of software modeling assistants that we draw in
Chapter 5 and the design constraints identified in Chapter 6, we propose a
general framework for designing Software Assistants for Software Modeling
(SASM). This framework builds on all the work presented so far in this thesis
manuscript. It aims to turn software assistants from potential solutions
to concrete solutions to the modeling problems discussed in the previous
chapters. Modeling assistants as presented in this chapter are hence a concrete
solution to modeling issues as identified by the practitioners and in the
literature.

We built our SASM design framework following the ISO/IEC/IEEE
42010 standard [80], which defines the notion of architecture framework and
describe its content. This chapter covers the di↵erent steps of the architecture
construction as imposed in the standard. It features guidelines for require-
ment elicitation, and provide structural and functional models to define the
architecture of new assistants.

7.1 SASM framework definition

At this stage of our approach, we have identified software assistants as
a coherent potential solutions to many problems in software modeling.
In order for such solutions to truly address these problems, it must
echo the four key notions of modeling assistance. To this end, the

139

140 CHAPTER 7. A framework for designing SASM

Figure 7.1 – Conceptual model of an architecture description from ISO
42010:2011 [80]

previous chapter established a set of design constraints obtained from
the literature that translate these key notions. The objective of this
framework is then to link all these individual constraints into a unique
document that structures and guides the design of software assistants
for software modeling.

The ISO/IEC/IEEE 42010:2011 standard on architecture description
for systems and software engineering introduces the several components
required to define an architecture framework, as presented in Figure 7.1.
Thus, to define our SASM framework, we introduce (i) the architecture
rationale for the system, (ii) the system stakeholders, (iii) the system
concerns, (iv) the association between concerns and stakeholders (v)
the architecture viewpoints, and (vi) the correspondence rules of the
architecture description.

The architecture rationale presents the overall approach for the design

7.2. Architecture rationale 141

of modeling assistants. It summarizes the main characteristics that the
assistants designed with the framework express.

The system stakeholders section introduces the actors involved in the
life cycle of the assistant to be developed. As the framework should
communicate information useful to each stakeholder, identifying them is
the prerequisite to determining the design guidelines that the framework
should include.

Based on the established list of stakeholders, the ISO standard re-
quires system concerns to be listed in the framework. These concerns
express the questions that each stakeholder might have about the as-
sistant to be designed. Such questions have then be answered in the
rest of the framework definition. These concerns are associated to their
corresponding stakeholders in a dedicated section.

Finally, we introduce the architecture views that answer the previous
system concerns. In this section, each concern is echoed in one or
more architecture view, that describe how to design the system from
a functional, a structural, an infrastructure, or a system requirements
viewpoint. These architecture views are the core definition of how to
design software assistants for software modeling. In a dedicated section,
we link each concern to its corresponding architecture views.

7.2 Architecture rationale

This framework allows to design software assistants for software modeling
defined as (i) software bots augmented with knowledge, (ii) aiming at
cognitively assisting on one or several specific tasks (iii) in the context
of software modeling.

Due to the nature of the task to be assisted, our framework proposes
to design software assistants able to support the notions of creativity
by reinforcing the trust relationship between human and assistant. The
system design is based on a 3-tier architecture composed of an informa-
tion repository, a knowledge back-end, and one or more user interfaces
acting as clients of the back-end. The information repository relies on
a knowledge base, built from the agglomeration of three levels of (i)
general, (ii) company specific, and (iii) user specific knowledge, col-
lected via a dedicated system. The knowledge back-end is implemented
around a multi-criteria recommendation system generating suggestions,
allowing the system to propose or make choices in an autonomous or
semi-autonomous way. Finally, the one or several user interfaces must
be integrated as well as possible with the development tools and must
respect the design constraints favoring the development and the ex-

142 CHAPTER 7. A framework for designing SASM

pression of trust, which is also built in the first two components of the
system.

7.3 System stakeholders

In this section, we identify the di↵erent stakeholders of the system,
according to their role, as suggested in the ISO 42010 standard. Thus,
we present the di↵erent groups of stakeholders and highlight their roles
in Table 7.1 Note that, in some companies, some employees might qualify
for several roles in this list. Our system being based on the exploitation
of knowledge, each of the stakeholders of the system is able to maintain
the system, and add or update knowledge, whether technical, functional,
or on the internal processes of the company.

Modeling engineers. They are the main users of the system, they
are the ones that the assistant aims to help during modeling tasks. They
are in charge of modeling the system in a general way, on all its aspects,
functional and technical.

Functional analysts. They are in charge of the functional aspects of
the solution to be designed. They know the client’s needs and transcribe
them into software requirements that can be presented as models. They
might also analyze the design models to check the consistency of the
solution according to the client’s needs.

Domain experts. They hold the precise knowledge of the business
domain concepts, and can answer questions from other stakeholders on
these aspects. They are particularly involved in checking the validity of
the relationships between the multiple business elements of the model.

Client. They are at the origin of the need to create the solution. They
are the ones who fund the project and carry the knowledge related to
this need, which must then be expressed as a requirement to frame the
solution to be created. Thus, they can potentially help the assistant by
clarifying their need, to help it better capture the intentions of the users.

Company head. These are the people in charge of the team that has
to produce the software solution. They are concerned with the potential
benefits of using the software assistant, but also the potential negative
impacts of adding such a system to their employees’ work environment.

Toolsmiths. They are the designers of the assistant, in charge of
developing and maintaining the system.

7.4. System concerns 143

Stakeholders Users Owners Developers Maintainers

Modeling engineers x x
Functional analysts x x
Domain experts x
Company head x x
Toolsmiths x x x
Client x

Table 7.1 – Role of stakeholders

7.4 System concerns

As requested by the ISO standard, the framework should identify the
systems concerns, which are grouped under 5 categories (i) the purposes
of the system, (ii) the suitability of the architecture for achieving the
system’s purposes, (iii) the feasibility of constructing and deploying
the system, (iv) the potential risks and impacts of the system on its
stakeholders throughout its life cycle, and (v) the maintainability and
evolvability of the system.

The purposes of the system

This is related to the nature of the system. Software assistants for soft-
ware modeling aim at supporting modeling. This can be done through 5
aspects (as identified in Chapter 4) in supporting domain knowledge,
corporate methodology, modeling notation, tool usage, or modeling
know-how.

S.C. 1: How does the system assist modeling?

The suitability of the architecture for achieving the system’s purposes.

Chapter 6 identified the constraints to match for the system to be able to
provide modeling assistance. Concerns related to the suitability of the
architecture for supporting modeling are then related to trust, creativity,
multi-criteria recommender systems, as criteria of a good assistants
listed in Chapter 4 (usability, skills, added value, user adaptability, and
context understanding).

S.C. 2: How does the system build trust with users?

S.C. 2.1: How does the system enable user control?

144 CHAPTER 7. A framework for designing SASM

S.C. 2.2: How does the system handles information-trustworthiness
characteristics?

S.C. 3: How does the system support creativity?

S.C. 3.1: How does the system ensure knowledge availability?

S.C. 3.2: How does the system generate knowledge representa-
tions?

S.C. 3.3: How does the system adapt to users’ paths and styles?

S.C. 3.4: How does the system achieve usability, transparency,
and interoperability?

S.C. 4: How does the system implement a multi-criteria recommender
system?

S.C. 5: How does the system respect the good assistant requirements?

S.C. 5.1: How does the system demonstrate usability?

S.C. 5.2: What skills does the system have?

S.C. 5.3: What is the added value of the system?

S.C. 5.4: How does the system adapt to the user?

S.C. 5.5: How does the system adapt to the context?

The feasibility of constructing and deploying the system

This section relates to the technical aspects of the solution, including
how to make knowledge available, but also the required infrastructure
to deploy the modeling assistant, and to integrate the assistant within
the modeling tool.

S.C. 6: How does the system ensure data accessibility?

S.C. 7: What is the required infrastructure to operate the system?

S.C. 8: How can the system be integrated in a modeling tool?

The potential risks and impacts of the system to its stakeholders
throughout its life cycle

This section identifies the concerns related to the influence of the system
on the modeling time and e↵ort, as well as the potential impact of the
learning on user learning and users’ workflow.

7.5. Concerns/stakeholders association 145

S.C. 9: How does the system aim to reduce the modeling time?

S.C. 10: How does the system aim to reduce the modeling e↵ort?

S.C. 11: How does the system integrates to the user’s modeling work-
flow?

S.C. 12: How does the system can help users learn?

Maintainability and evolvability of the system

As the assistant is a knowledge-based system, major concerns are related
to the management of the system when deployed in production. Di↵er-
ent stakeholders should then be responsible for curating the knowledge,
so it remains up-to-date with accurate concepts.

S.C. 13: Can new knowledge be integrated to the system at any time?

S.C. 14: Can knowledge be updated in the system at any time?

S.C. 15: Can system knowledge be retrieved from new/multiple soft-
ware clients?

7.5 Concerns/stakeholders association

In this section, we provide the association rules between the concerns
and the stakeholders, as presented in Table 7.2. We detail this distribu-
tion according to each group of stakeholders.

End-users. This includes software modelers, domain experts, and
functional analysts. Their concerns relate to how the assistant might
help them in their daily tasks, and on how it might empower them to
save time and e↵ort. They also care about how the system integrates
their workflow, and if it requires a lot of work to be operated. They
expect to use a good system (see Chapter 4), that might teach them new
insights.

Client. Clients care about the quality of the produced solution, as
well as the overall cost of the production. They might be involved in
using the system to define or refine their needs and expectations.

Company head. They can show interest in providing assistance to
their employees if the impact on them is positive, i.e., if it saves them
time or e↵ort, and increases their productivity. The improvement of
the quality of the software produced can also be a leverage argument

146 CHAPTER 7. A framework for designing SASM

with their customers. Company heads are concerned with the logisti-
cal aspects of the system’s implementation, particularly the technical
constraints and the infrastructure to be made available.

Toolsmiths. The framework is mainly aimed at helping the creators
of modeling assistant to define their system. To do so, they must respect
the criteria of trust, creativity, the framework of multi-criteria recom-
mender system. Moreover, in order to maximize the acceptability of
their solution, they must respect the criteria of good assistant. They
must set up the mechanisms to ensure the availability and updating of
knowledge using the system, setting up the infrastructure.

Concern End-users Client Company head Toolsmiths

Purposes of the system
S.C. 1 x
Suitability of the architecture
S.C. 2 x
S.C. 3 x x
S.C. 4 x
S.C. 5 x x
Feasibility of constructing and deploying
S.C. 6 x
S.C. 7 x x
S.C. 8 x
Risks and impacts
S.C. 9 x x x
S.C. 10 x x x
S.C. 11 x x x
S.C. 12 x x x
Maintainability and evolvability
S.C. 13 x x x
S.C. 14 x x x
S.C. 15 x x x

Table 7.2 – Association of stakeholders and concerns

7.6 Architecture viewpoints

The aim of architecture viewpoints is to answer the system concerns
raised in Section 7.4. Each concern is addressed in one or more archi-

7.6. Architecture viewpoints 147

tecture viewpoints, as shown in Table 7.2, to ensure the suitability and
robustness of the proposed architecture. In this section, we present
and describe the three viewpoints of our framework as the requirements
viewpoint, the functional architecture viewpoint, the system requirements
viewpoint, and the structural architecture viewpoint.

7.6.1 Functional architecture viewpoint

In this section, we define the architecture from a functional viewpoint
with the architecture view presented in Figure 7.2. This architecture view
consists of a UML class diagram featuring the functional components of
the system, whether they represent tasks, software, hardware, people,
or concepts.

This view is centered on the modeling assistant, which is mainly com-
posed of one or several assistance features. These features address one
or several modeling challenges which emerge during one or several mod-
eling tasks. The challenges may concern di↵erent aspects of modeling,
which echoes S.C. 1. The modeling tasks are described by several task
characteristics such as the time, the e↵ort, the context understanding, the
knowledge, or the new ideas that they require. The system helps the
completion of these tasks with one or several assistance features, which
then aim to reduce the modeling time (S.C. 9) or the modeling e↵ort
(S.C. 10), what constitutes its added value (S.C. 5.3).

From a functional point of view, the system supports creativity by
embedding knowledge. Knowledge is made available (S.C. 3.1, S.C. 6)
through the knowledge base, administered by one or several stakehold-
ers. This is made possible by letting them providing feedback from the
recommendations, or by importing external data or knowledge directly
into the knowledge base. This mechanism ensures that new knowledge
can explicitly integrated to the system or updated at any time (S.C. 13,
S.C. 14).

Figure 7.2 introduces skills criteria that the system should own (S.C.
5.2). The assistant should be reputed for its accuracy and performance
on performing one or several tasks. Its behaviour shall be predictable,
so stakeholders know when to use it or not. The system adapts to the
context of use (S.C. 5.5) by being integrated in the modeling tool and
being able to analyze the context, composed of the user intent, the task
history, and the models created by the stakeholders in the editor.

148 CHAPTER 7. A framework for designing SASM

7.6.2 Structural architecture viewpoint

In this section, we define the architecture from a structural viewpoint,
presented in Figure 7.3. This architecture view consists in a UML class
diagram featuring the structure of a software assistant, based on three
main parts, the information repository, the knowledge back-end, and the
user interface.

The system assists modeling (S.C.1) by presenting knowledge repre-
sentations to the user from a knowledge display that shall be a part of the
user interface. These knowledge representations can be integrated into
di↵erent representation contexts and fit di↵erent representation forms to
support creativity (S.C. 3.2). This display adapts from the context (S.C.
5.5), according to the elements it gathers from the user interface through
its context collector. It might also be tuned manually with display filter
controls, to allow the users to customize their environment (S.C. 2.1, S.C.
3.3, S.C. 5.4), thus integrate better their modeling workflow (S.C. 11).

As identified in Chapter 4, the user interface shall own usability
characteristics such as action freedom to let the user work without too
much constraints, workflow integration to not disrupt the user while
working, and shall ensure the simplicity of the interactions it features.
This addresses usability concerns mentioned in S.C. 3.4 and S.C. 5.1. The
user interface aims to be integrated in the modeling tool as a modeling
tool plugin (S.C. 8), but may also be represented as an external interface,
such as a standalone application. Then, the plugin must embed all
components of the User Interface (UI) the display filter controls and the
trigger controls views, the knowledge display, and the context collector.

The knowledge representations shall provide an explanation about
the suggestions, which includes one or several information trustworthi-
ness characteristics (S.C. 2.2). These characteristics enable the system
to build a trust relationship with the users, as well as ensuring trans-
parency (S.C. 3.4). Explaining why suggestions are proposed serves a
mentoring purpose and might help users learn new insights about the
domain or modeling good practices (S.C. 12).

The information repository is composed of a knowledge base, fed by a
data collector, and managed through an administration interface. The data
collector browses both internal datasources and external datasources, as
configured by the system maintainers, to constitute the knowledge base
(S.C. 3.1). Thus, at any time, knowledge can be integrated or updated
to the system (S.C. 13, S.C. 14). This includes for instance the models
edited by the employees of a company using the assistant and feeding a
company-internal model repository.

The knowledge back-end is the component that exploits the knowledge

7.6. Architecture viewpoints 149

base, which provides input information for the production of knowledge
useful to the user of the assistant. Note that the knowledge base contains
knowledge when seen from their originating context. From the assistant
point of view, it acts as information —which is not linked to a context —,
which is transformed into knowledge by the multi-criteria recommender
system (S.C. 3.1). The recommendations generated by the recommender
algorithm are then exposed through an API, which guarantees knowl-
edge accessibility (S.C. 6).

Several user control mechanisms are implemented throughout the
components to ensure proper user adaptability (S.C. 2.1, S.C. 5.4). This
enables a general tailorability of the system, which can be adapted to
cover various needs and expectations (S.C. 3.3). The 3-tier architecture
presented in this architecture view support the interoperability of the
system (S.C. 15). Indeed, as multiple user interfaces can be plugged
into the knowledge back-end, both back-end and information repository
can be share among di↵erent assistants, to cover a broader number of
assistance features.

7.6.3 Infrastructure viewpoint
In this section, we define the architecture from a infrastructure view-
point, presented in Figure 7.4. This architecture view consists in a UML
composite structure diagram exhibiting the infrastructure of a software
modeling assistant.

The software assistant is based on a 3-tier architecture featuring
an information repository, a knowledge back-end, and one or several user
interfaces. In order to ensure interoperability, the information repository
and the knowledge back-end should be deployed in two isolated servers
(S.C. 3.4, S.C. 7). This enables the reusing of some components of
the system to deploy other software assistants. It also augments the
robustness and the reliability of the whole system. Software assistants
can either share the same knowledge back-end, and then exploit the
same recommendations and integrate them in their assistance features,
or share the same knowledge. In the latter case, the two systems exploit
di↵erent recommender systems to support di↵erent modeling assistance
features.

7.6.4 System requirements viewpoint
This architecture view consists of a table, listing functional design re-
quirements to build software assistants for software modeling. Based
on the design constraints identified in Chapter 6, we provide a set of

150 CHAPTER 7. A framework for designing SASM

requirements that either cover the whole system, or only apply to one
specific component of our 3-tier structural architecture. These con-
straints are distributed as shown in Table 7.3, and are detailed in this
section.

S.R. 1. Information trustworthiness. The modeling assistant shall
be designed to express the accuracy, the currency or novelty, the coverage
or diversity, the attractiveness, the explicability, the believability, and the
context compatibility of information to perceive information trustworthi-
ness.

S.R. 2. System adaptability. The modeling assistant shall enable
algorithm tunability, display tailorability, and data manageability for the
user to perceive system transparency and controlability.

S.R. 3. Knowledge base. The modeling assistants shall feature a
knowledge base built around background knowledge, company-internal
knowledge, and user-specific knowledge.

S.R. 4. Knowledge availability. The modeling assistant shall set
up a system to guarantee the availability of knowledge. This may be
achieved through the retrieval of edited models, but also from the analy-
sis of work artifacts, and professional communications.

S.R. 5. Knowledge representation choice. The choice of the knowl-
edge representation in the user interface of the modeling assistant shall
be made according to the software engineer task that is aimed to be
supported.

S.R. 6. Knowledge representation switch. The interface of the as-
sistant shall allow the user to navigate between several representations
of knowledge, in di↵erent forms.

S.R. 7. Ease of knowledge access. Themodeling assistant shall allow
a fast and easy access to the knowledge, and should allow a simultaneous
display of several knowledge representations.

S.R. 8. Tailorable environment. The modeling assistant shall be
adjustable according to the user’s preferences and needs on the aspects
of triggering, display, and internal behaviour.

S.R. 9. User freedom. The modeling assistant shall allow users to
conduct their creative process as they like, and should not impose any
constraints on the travels in and out the solution space.

S.R. 10. Low threshold, high ceiling. The modeling assistant shall
be accessible to beginners, while allowing experts to perform their mod-
eling tasks. The number of features of the assistant should be restricted
to the very minimum, matching the requirements of one modeling task.

S.R. 11. System interoperability. The modeling assistant shall sup-
port interoperability, by being compatible with di↵erent modeling tools

7.6. Architecture viewpoints 151

Scope Requirements

Cross-component

• S.R. 1. Information trustworthiness (S.C. 2.2)

• S.R. 2. System adaptability (S.C. 2.1, S.C. 3.3)

• S.R. 11. System interoperability (S.C. 3.4)

• S.R. 18. Allocation of functions and tasks (S.C. 11)

Information repository
• S.R. 3. Knowledge base (S.C. 3.1)

• S.R. 4. Knowledge availability (S.C. 3.1)

Knowledge back-end

• S.R. 12. Object of decision (S.C. 4)

• S.R. 13. Criterion explainability (S.C. 4)

• S.R. 14. Criterion trustworthiness (S.C. 4)

• S.R. 15. Criterion context-accuracy (S.C. 4)

• S.R. 16. Aggregation function (S.C. 4)

• S.R. 17. Context adaptability for aggregation functions
(S.C. 4)

User interface

• S.R. 5. Knowledge representation choice (S.C. 3.2)

• S.R. 6. Knowledge representation switch (S.C. 3.2)

• S.R. 7. Ease of knowledge access (S.C. 3.1)

• S.R. 8. Tailorable environment (S.C. 3.3)

• S.R. 9. User freedom (S.C. 3.3)

• S.R. 10. Low threshold, high ceiling (S.C. 3.4, S.C. 11)

• S.R. 19. Allocation of authority (S.C. 3.4, S.C. 11)

• S.R. 20. Allocation of responsability (S.C. 3.4, S.C. 11)

• S.R. 21. Allocation of resources (S.C. 3.4, S.C. 11)

• S.R. 22. Handover and takeover (S.C. 3.4, S.C. 11)

Table 7.3 – Framework system requirements viewpoint

152 CHAPTER 7. A framework for designing SASM

or di↵erent business domains.
S.R. 12. Object ofDecision. The software assistant shall recommend

elements (i) selected by their Nature or their presence in the hierarchy
of elements from the Model Scope, represented in the View Scope, and
tailored to the Target users.

S.R. 13. Criterion explainability. A recommendation criterion shall
be described through a rationale that is easily understandable by the
recommendation target.

S.R. 14. Criterion trustworthiness. A recommendation criterion
shall reflect at least one of the following information trustworthiness
characteristics: accuracy, currency/novelty, coverage/diversity, believ-
ability/explicability, context compatibility, and attractiveness.

S.R. 15. Criterion context-accuracy. A recommendation criterion
shall exploit information from at least one of the four components of
the object of decision.

S.R. 16. Aggregation function. The aggregation function of the
multi-criteria recommender system shall be defined as follows

Let (w1,w2, ...,wn) 2 [0;1]n where
P

nwn = 1,

overall : A ! [0;1]
a 7! P

nwn ⇥ sn

with s1, s2, ..., sn the individual scores for the n criteria
w1,w2, ...,wn the weights for the n individual scores
A the set of recommender alternatives

(7.1)

S.R. 17. Context adaptability for aggregation functions. The ag-
gregation function of the recommender system shall be defined for each
context k as follows

overallk(a) =
X

n

wn,k ⇥ sn (7.2)

S.R. 18. Allocation of functions and tasks. When conceiving the
software system, the designer shall clearly define which functions will
be allocated to the system and which tasks will be allocated to the user.

S.R. 19. Allocation of authority. When conceiving the software
system, the designer shall clearly identify which entity is allowed to
trigger or prevent functions/tasks execution.

S.R. 20. Allocation of responsibility. When conceiving the software
system, the designer shall clearly identify which entity is responsible for

7.7. Correspondence rules 153

the outcome of the execution of the functions/tasks.
S.R. 21. Allocation of resources. When conceiving the software

system, the designer shall clearly identify which resource (e.g., dia-
grams, preferences, documents) is allocated to which entity in terms of
production, modification or sharing with the other entity.

S.R. 22. Handover and takeover. When designing the system,
control transitions sequences shall be defined clearly, as well as which
entity can trigger them.

7.7 Correspondence rules

This section introduces the correspondence rules between system con-
cerns and architecture views, as presented in Table 7.4. Anwsers to each
system concerns are provided in the identified architecture views.

154 CHAPTER 7. A framework for designing SASM

Figure 7.2 – Framework functional viewpoint

7.7. Correspondence rules 155

Figure 7.3 – Framework structural viewpoint

156 CHAPTER 7. A framework for designing SASM

Figure 7.4 – Framework infrastructure viewpoint

7.7. Correspondence rules 157

Concern Functional Structural Infrastructure Requirements

Purposes of the system
S.C. 1 x x
Suitability of the architecture
S.C. 2.1 x x
S.C. 2.2 x x
S.C. 3.1 x x x
S.C. 3.2 x x
S.C. 3.3 x x
S.C. 3.4 x x x
S.C. 4 x
S.C. 5.1 x
S.C. 5.2 x
S.C. 5.3 x
S.C. 5.4 x
S.C. 5.5 x x
Feasibility of constructing and deploying
S.C. 6 x x
S.C. 7 x
S.C. 8 x
Risks and impacts
S.C. 9 x
S.C. 10 x
S.C. 11 x x
S.C. 12 x
Maintainability and evolvability
S.C. 13 x x
S.C. 14 x x
S.C. 15 x

Table 7.4 – Correspondence between system concerns and architecture
viewpoints

158 CHAPTER 7. A framework for designing SASM

Part III

Validating our approach:
preliminary work and

discussion

Chapter8
Designing a software
modeling assistant

Chapter 7 defines a framework to develop software assistants for software
modeling. As a first e↵ort in validating this framework, we follow its ap-
proach for designing one modeling assistant. More specifically, we follow
the guidelines to build a system that is able to suggest class attributes and
relationships for UML class diagrams within the Papyrus modeling tool1.
In this chapter, we describe the system according to the four architecture
views, we provide an overview of how the modeling assistant addresses system
design concerns, and we detail the design of the multi-criteria recommender
system.

8.1 Modeling assistant design

As a first e↵ort in validating the framework, we define one specific
modeling assistant. We decided to address UMLmodeling as it is a topic
we investigated in our interviews from Chapter 4. More particularly,
the assistant focuses on the creation on UML class diagrams, as it is the
most used representation in the UML ecosystem [136].

From all the language elements belonging to class diagrams, we
decided to address the creation of classes and class attributes. The
assistants consists in a recommender for UML class diagrams, which

1https://www.eclipse.org/papyrus/

161

162 CHAPTER 8. Designing a software modeling assistant

suggests new ideas of classes and attributes to add in the diagram,
and eventually adds them if requested. Therefore, the system mainly
provides conceptual assistance, focusing more on the mastery of the
business domain than on the mastery of the modeling language or tool.
As a reminder, this assistance feature was the most requested by the
modeling experts in the interviews conducted in Chapter 4.

In this section, we describe the modeling assistant from the four
architecture functional, structural, infrastructure, and requirements views
defined in the formal framework. We also provide an overview of how
the assistant addresses the system concerns identified in the framework.

8.1.1 Functional architecture description
In this section, we exploit the functional architecture viewpoint from the
formal framework. We describe how each concept presented in this
artifact is reflected in the design of our instance of modeling assistant.

Assistance feature

The overall task of creating UML class diagrams embeds a large number
of sub-tasks, such as the following:

1. Perform ideation to identify suitable classes to add to the diagram

2. Perform ideation to identify suitable attributes to add to a specific
class

3. Perform ideation to identify suitable relationships between classes

4. Manually add a class to the diagram, by selecting the class creation
tool, drawing it, and typing its name.

5. Manually add an attribute to a specific class, by selecting the
attribute tool, selecting the class, and typing all required attribute
information

6. Manually add a relationship between two existing classes, by se-
lecting the proper tool for the relation type, and selecting the
source and target classes

7. Layout the classes in the diagram

8. Layout the relationships connectors, with their names and multi-
plicities

8.1. Modeling assistant design 163

Our system aims at providing two main assistance features which consist
in recommending (i) class attributes and (ii) class relationships for a
UML class diagram. These two features address the sub-tasks 1 to 6
listed previously, which require cognitive e↵ort related to ideation, and
time to create elements and perform ideation.

Knowledge base

The knowledge base is created from the models extracted from the
GenMyModel public repositories2.

Behaviour

The assistant is not able to delete elements from the model other than
ones it created to ensure that it does not interfere with user intents. It
has write permission on the diagram but only adds elements on the
explicit request from the user to do so.

Context

The system collects information about the currently edited model, and
monitors the classes selected in the editor to provide dedicated recom-
mendations. The assistant retrieves the whole model from the editor
and provides it to the knowledge back-end when requesting recommen-
dations.

8.1.2 Structural architecture description
In this section, we describe how each of the three components presented
in the structural architecture viewpoint of the framework is reflected in
the design of our instance of modeling assistant.

User interface

The user interface will be integrated within the Papyrus modeling tool,
and is accessible through a key binding + . It features a knowledge
display representing the currently edited class, with a list of recommen-
dations for class attributes and class relationships, and an explanation
interface. The displayed knowledge is then filtered according to the
edited class. Users might adjust the detail of information that is dis-
played, to get more or less details about the suggestions.

2https://www.genmymodel.com

164 CHAPTER 8. Designing a software modeling assistant

The assistant does not constrain the users in their actions, as it starts
only when explicitly requested. Moreover, users can adjust the recom-
mendations before adding them, by changing the type or the multiplicity
of the class attributes, or by changing the type of the relationship. The
assistant mainly relies on three basic interaction inputs with (i) a key
binding to start the system, (ii) a mouse scroll to browse the recommen-
dation lists, (iii) clicks to switch between recommendation lists, and to
add a recommended element to the model.

The assistant features an explanation interface, describing the ratio-
nal behind the individual recommendation scores from the recommen-
dation algorithm. It displays contextualized information about statistics
that were computed to perform ranking and sorting. This explanation
addresses aspects of accuracy, transparency, believability, and explain-
ability. The nature of the individual scores expresses currency/novelty,
and context compatibility.

Information repository

The data collector of our assistant gathers models from the GenMyModel
repositories, as well as local models stored in a dedicated folder. These
models are mapped to a graph and stored in a graph database, that
provides API access, and a user interface for management.

Knowledge back-end

The knowledge back-end consists of two four-criteria recommender
systems that respectively act for attributes and relationships recommen-
dations. They are both exposed on a same API endpoint that enables the
retrieval of modeling recommendations. The weights of the aggregation
functions can be set manually, or learned with machine learning from
user-labelled data.

The tailorability of the system is ensured by (i) the data management
interface provided by the information repository, (ii) the weight setup
mechanism in the recommender system, and (iii) the display filter in the
user interface.

8.1.3 Infrastructure description

The system will be deployed on one server, hosting the information
repository and the knowledge back-end. This choice is guided by cost
constraints, and hence limits the robustness of the system. Consequently,

8.1. Modeling assistant design 165

the knowledge base will be unavailable to knowledge back-ends other
than the one designed for the prototype.

8.1.4 System requirements description
In this section, we detail the characteristics of the system over each of
the 22 system requirements from the framework defined in Chapter 7.

S.R. 1. Information trustworthiness. Information trustworthiness
characteristics are expressed through the user interface in the Papyrus
plugin. This explanation provided in the knowledge display addresses
aspects of accuracy, transparency, believability, and explainability. The
nature of the individual scores expresses currency/novelty, and context
compatibility, as described in Section 8.2.

S.R. 2. System adaptability. Users of the modeling assistant can
adapt the system to their needs by integrating their own models into
the knowledge base, by influencing the aggregation functions of the
recommender based on data that they can label, and by choosing the
information they want to display in the Papyrus plugin.

S.R. 3. Knowledge base. The assistant exposes a knowledge base
embedding models from several anonymous users.

S.R. 4. Knowledge availability. The knowledge base contains more
than 100,000 models, retrieved from the GenMyModel public reposito-
ries.

S.R. 5. Knowledge representation choice. The recommendations
are provided through the knowledge display under di↵erent representa-
tions. They are first grouped in two lists for attributes and relationships.
Each representation is also detailed in the explanation display with
rationales about the reason why it is being suggested.

S.R. 6. Knowledge representation switch. The user can easily
switch between the list representation of suggestions and the detail
view of each recommendation. The explanation is accessible in the same
view, by hovering over the elements in the list.

S.R. 7. Ease of knowledge access. Accessing the recommendations
requires 2 actions from the users. They must first select the class that
they want recommendations for, and start the assistant by triggering the
keyboard shortcut.

S.R. 8. Tailorable environment. The modeling assistant features
filters to show or hide details about each recommendation. This mecha-
nism allows users to make the display lighter or more complex as they
wish.

S.R. 9. User freedom. As it is triggered manually, the assistant does
not constrain users to a specific workflow. Thus, users can work the way

166 CHAPTER 8. Designing a software modeling assistant

they are used to, and benefit from the assistance feature whenever they
want, without any previous disruption.

S.R. 10. Low threshold, high ceiling. The modeling assistant pro-
vides lists of recommendations for class attributes and relationships,
and integrates the UML concepts of multiplicity, types, and relation
types. Thus, it is accessible to users with a basic understanding of the
UML syntax. It proposes two main assistance features which remain
only focused on the edition of a UML class in the modeling tool. In the
meantime, modeling experts might use these features in their tasks, as
clearly indicated in Chapter 4.

S.R. 11. System interoperability. The modeling assistant owns
knowledge from thousands of models that cover a broad variety of do-
mains and concepts. Multiple user interfaces can connect to the exposed
knowledge back-end API. This allows for the creation of di↵erent assis-
tance features exploiting the same recommendations, or the integration
of the same assistance features in other modeling tools.

S.R. 12, 13, 14, 15, 16, 17. Recommender system These require-
ments are addressed in Section 8.2.

S.R. 18. Allocation of functions and tasks. The user is responsible
for opening the user interface of the system, selecting accurate recom-
mendations to add to the model, triggering the add action, and closing
the user interface. The system is responsible for starting when requested,
retrieving context elements to compute recommendations, computing
recommendations, displaying it to the user, and adding elements to the
model when requested.

S.R. 19. Allocation of authority. The user has full authority to turn
the system on and o↵, and has the choice to continue or stop to use the
system at any time.

S.R. 20. Allocation of responsibility. The user is fully responsible
for the outcomes of the use of the software assistant to edit models. The
recommendations are provided for informational purposes, and do not
necessarily reflect best practices or the design direction to be explored.

S.R. 21. Allocation of resources. The software assistant has full
write permissions on the edited model, in order to perform the requested
edition operations. It monitors the elements selected in the active mod-
eling editor of the modeling tool, to contextualize its recommendations.

S.R. 22. Handover and takeover. When requesting to add or remove
an element from the model, the modeling assistant takes over the control
of the modeling tool. It can not be stopped during this edition operation.
When completed, it hands over the control to the user, who can continue
to use the system or stop it.

8.1. Modeling assistant design 167

8.1.5 System concerns overview
Table 8.1 summarizes the design solutions provided in the four architec-
ture descriptions, to build an overview of our modeling assistant.

System concern Design solution

S.C. 1. How does the system
assist modeling?

The system provides two main assistance features by sug-
gesting class attributes to add for a specific class in a
UML class diagram, and suggest class relationships to
add in a UML class diagram. It o↵ers the possibility to
add suggested elements automatically to the model if
requested.

S.C. 2.1. How does the sys-
tem enable user control?

The system allows user to integrate their own models
into the knowledge base. Its behaviour can be adjusted
by modifying the weights of the recommendation aggre-
gation functions manually, or through machine learning
based on user-custom labelled data. The user interface of
the assistant can be arranged to show or hide some details
about the recommendations.

S.C. 2.2. How does the
system handle information-
trustworthiness characteris-
tics?

The system features an explanation interface which is
mainly responsible for expression of the accuracy, the
transparency, the believability, and the explainability of
each suggestion. The nature of the individual recommen-
dation criteria expresses currency/novelty. Some of these
characteristics are also expressed through the use of vi-
sual confidence score indicators displayed for each item
in the recommendation lists.

S.C. 3.1. How does the sys-
tem ensure knowledge avail-
ability?

The system collects the models from the public reposi-
tories of GenMyModel, an online modeling tool, which
contain more than 100,000 models. These models are in-
tegrated to the knowledge with those specifically defined
by the user, to ensure data manageability.

S.C. 3.2. How does the sys-
tem generate knowledge rep-
resentations?

The system monitors the actions of the user to deter-
mine the selected elements in the editor. When a class is
selected, the assistant plugin requests recommendation
from the knowledge back-end. These recommendations
are displayed upon user request and presented in the
knowledge display. Knowledge is represented as list of
recommendations, and as explanations for each element
of the list. Visual indicators are also used to provide
another knowledge representation to contextualize each
considered recommendation.

S.C. 3.3. How does the sys-
tem adapt to users’ paths
and styles?

The system does not impose any change on the workflow
to be operated. It starts upon user request and provides
recommendation in a asynchronous manner. When in-
stalled, the assistant may not be used, and is transparent
to the user in that case. Its behaviour can be tailored ac-
cording to the description of S.C. 2.1. It proposes di↵erent
knowledge representations as detailed in S.C. 3.2.

168 CHAPTER 8. Designing a software modeling assistant

S.C. 3.4. How does the sys-
tem achieve usability, trans-
parency, and interoperabil-
ity?

The system relies on a keyboard shortcut to be triggered,
and relies on 2 major mouse interactions click and scroll.
The shortcut should be clearly reminded to the user to
ensure usability. Being manually triggered, the system
does not disrupt the user with unwanted solicitations.
The transparency is achieved through the explanation
interface which details the reason why each suggestion
is included in the recommendation list. Our assistant
can operate over di↵erent business domains, and can be
extended with di↵erent assistant plugins from di↵erent
modeling tools, which supports interoperability.

S.C. 4. How does the system
implement a multi-criteria
recommender system?

Detailed in Section 8.2.

S.C. 5.1. How does the sys-
tem demonstrate usability?

See S.C. 3.4.

S.C. 5.2. What skills does the
system have?

The system implements a multi-criteria recommender
system to produce recommendation that fit best the mod-
eling context and users’ needs. It has been tested so it
does not unexpectedly edit the diagrams. Results of the
recommender algorithm evaluation are provided in Chap-
ter 10.

S.C. 5.3. What is the added
value of the system?

The modeling assistant aims at identifying potentially
missing model elements for both modeling beginners
and experts. It provides new design ideas by suggesting
relationships and attributes, and thus supports creativity
through the evocation process. As the system is able to
add element to the model, it might help save the required
time and e↵ort to produce these elements manually.

S.C. 5.4. How does the sys-
tem adapt to the user?

See S.C. 3.3.

S.C. 5.5. How does the sys-
tem adapt to the context?

The system monitors the actions of the user to determine
the selected elements in the editor. It exploits the content
of the currently edited model, which is transmitted to the
knowledge back-end to produce recommendations.

S.C. 6. How does the system
ensure data accessibility?

The modeling assistant exposes the knowledge back-end
API, which enables any client to retrieve modeling recom-
mendations about UML class attributes and UML class
relationships.

S.C. 7. What is the required
infrastructure to operate the
system?

Themodeling assistant information repository and knowl-
edge back-end are hosted on a remote server, which is
requested by the assistant clients.

S.C. 8. How can the system
be integrated in a modeling
tool?

The assistant clients are integrated into the Papyrus mod-
eling tools as Eclipse plugins, reacting to actions per-
formed in the active Papyrus editor.

8.2. Designing the multi-criteria recommender system 169

S.C. 9. How does the system
aim to reduce the modeling
time?

The modeling assistant provides new ideas for the design
of software solutions as modeling recommendations. This
might help reduce the time spent on the ideation process
of the modeling task. In the meantime, the assistant
is able to add elements to the model, that might take
time to create. Hence, it may reduce the time to create
model elements. These enhancements shall however be
evaluated through empirical evaluations.

S.C. 10. How does the sys-
tem aim to reduce the mod-
eling e↵ort?

See S.C. 9.

S.C. 11. How does the sys-
tem integrates to the user’s
modeling workflow?

See S.C. 3.3.

S.C. 12. How does the sys-
tem can help users learn?

The modeling assistant provides explanations about the
reason why each alternative is presented in the recom-
mendation list. Such explanations might help the user
learn about domain rules, modeling good practices, or
other design approaches.

S.C. 13. Can new knowledge
be integrated to the system
at any time?

The data collector of the modeling assistant retrieves mod-
els from the GenMyModel public repositories and from
a specific local folder defined by the user. Hence, at any
time, users can add new models in the knowledge base,
by starting the data collector process.

S.C. 14. Can knowledge be
updated in the system at any
time?

By triggering the data collector application, the knowl-
edge base is rebuilt from scratch. Thus, its content can be
updated easily by updating the models and starting the
data collection process.

S.C. 15. Can system knowl-
edge be retrieved from
new/multiple software
clients?

The architecture of the modeling assistant is based on
client-server communications. Thus, as stated in S.C. 3.4,
the knowledge back-end can be requested from di↵erent
clients regardless of their origin.

Table 8.1 – Modeling assistant design overview from the concerns per-
spective

8.2 Designing themulti-criteria recommender
system

Our modeling assistant relies on a recommendation engine that sug-
gests UML class relationships and class attributes. To define this rec-
ommender system, we exploit the guidelines provided in the formal
framework. It introduces several requirements about the design of the
assistant’s recommender, that guides its definition. Thus, we define
the object of decision, the family of criteria, and the utility function
following the framework guidelines.

170 CHAPTER 8. Designing a software modeling assistant

In this section, we first introduce a formal background for criteria
description. Then, we describe the object of decision, and we provide
formal descriptions of the four criteria that compose our multi-criteria
recommender system for recommending UML class attributes for UML
classes. In this manuscript, we do not describe the recommender for
UML class relationships which mimics the behaviour of this recom-
mender system.

8.2.1 Formal background
To emphasize information trustworthiness and transparency using the
Multi-Criteria Rating Recommender Systems (MCRS) constructionmethod-
ology [4], we define a criterion as a combination of the following three
elements: (i) a rationale, (ii) a selection filter, and (iii) a ranking function.
Note that, since our system is rating-based, the ranking function is a
rating function.

Preliminary concepts

The Recommendation Class (RC) is the class for which attribute recom-
mendations are to be provided. The following sets are defined:

• M the set of all models in the database,

• M(c) the singleton model that owns class c. Note that M(c) =
{M(c)}, where M(c) is the only model that owns class c.

• |M(c)| the set of all class names of classes in M(c).

• C the set of classes from all models inM.

• C|c| the set of classes from all models inM that have the same name
as c.

• C(a), a 2 A the singleton containing the only class that owns at-
tribute a. Note that C(a) = {C(a)}, where C(a) is the only class that
owns attribute a.

• C(|a|) the set of classes that own an attribute that has the same
name as a. By extension, we denote the set of classes that own
attributes with the same name by a1, a2, ..., an. C(|a1|, |a2|, ..., |an|) .

• Let X ⇢ C. Then |X | is the set of the names of classes in X.

• A the set of attributes of all classes in C.

8.2. Designing the multi-criteria recommender system 171

• Ac the set of attributes owned by class c.

• Let X ⇢A. Then |A| is the set of the names of attributes in X.

Rating functions

According to the constraints on a family of criteria, we define the rating
function r. Let a be a candidate attribute for RC, crit the criterion
specified by r. We define rcrit,RC as follows:

rcrit,RC : |A| ! [0;1]
|a| 7! r(|a|) (8.1)

We also define the following constraint on the nature of rRC . Let a1, a2
be two attribute candidates for RC. Then

a1 performs better than
a2 on crit for RC , rcrit,RC (|a1|) > rcrit,RC (|a2|) (8.2)

8.2.2 Object of decision and criteria identification

Define the object of decision

The System Requirement 12 from the system requirement viewpoint of
the framework recommends the description of the object of decision of
the recommender system as follows.

S.R. 12. Object ofDecision. The software assistant shall recommend
elements (i) selected by their Nature or their presence in the hierarchy
of elements from the Model Scope, represented in the View Scope, and
tailored to the Target users.

Our modeling assistant aims to recommend attributes for classes in
UML class diagrams. Thus, the nature of the alternatives to be suggested
is attributes. The model scope refers to the direct or indirect owners of
attributes, and then map to classes or packages. The view scope is the
UML views in which the alternatives are represented, which corresponds
to UML class diagrams. Finally, the target users are users of the modeling
tool, who may have previous experience, personal preferences, and various
levels of propensity to trust. Consequently, we define the object of decision
of our recommender system as follows

Modeling assistant’s object of decision. The software assistant rec-
ommends attributes (i) selected by their nature or their presence in the
hierarchy of classes or packages, (ii) represented in class diagrams, and
(iii) tailored to the user of the modeling tool, who may have previous

172 CHAPTER 8. Designing a software modeling assistant

experience, personal preferences, and various levels of propensity to
trust.

Identifying candidate criteria

The System Requirement 13 from the system requirement viewpoint of the
framework requires each criterion to be translatable to a text rationale.
Then, the requirement 14 states that each criterion shall reflect at least
one of the listed information trustworthiness characteristics. Finally, the
requirement 15 imposes each criterion to exploit information from at
least one of the four component of the object of decision.

To identify criteria that might fit the purpose of our recommender
system to suggest UML class attributes, we combine these three re-
quirements as one table. Table 8.2 presents the rationales for the nine
candidate criteria that were identified by applying this methodology.
In this table, lines are defined by each of the characteristic of infor-
mation trustworthiness, columns are determined by each of the four
components of the object of decision, and cells are filled with potential
recommendation criteria.

Ideally, all of the criteria should be selected for determining the final
recommendations set. However, practice has demonstrated that collect-
ing all required data in a systematic, reliable and automated manner
is impractically complex. Multiple prior works [41] [182] outline these
challenges and validate the common practice of selecting a coherent
subset from all possible criteria according to the goals of the system.
Based on the data we have at hand and for the first prototype, we decide
to implement criteria based on rationales CR2, CR3, CR4 and CR5 re-
spectively as criteria C1, C2, C3, and C4. In the next sections, we detail
the rationale and the score formula for each of these four criteria.

8.2.3 In-class recurrence criterion (C1)

We define criterion C1, which refers to in-class recurrence, based on
criterion rationale CR2. In the following, the term ’owner class’ of an
attribute refers to the class that directly owns that attribute.

Rationale. The attribute is often present in classes with the same
name as the owner class.

Selection filter. Attributes owned by classes with the same name as
RC.

Rating approach. The most frequently occurring candidate gets
the highest score and the least frequently occurring candidate gets the

8.2. Designing the multi-criteria recommender system 173

Table 8.2 – Criteria identification grid

Nature Model Scope View Scope Target
Accuracy Ø CR1: The attribute

is semantically close
to the concept repre-
sented by the owner
class (i.e., the class that
owns the attribute).

Ø Ø

Currency, Nov-
elty

Ø CR2: The attribute is
often present in classes
named as the owner
class.CR3: The at-
tribute is only present
in classes named as
the owner class.

Ø Ø

Coverage,
Diversity

Ø Coverage results from the definition of a low enough acceptability
threshold on measurable scores based on each defined criterion so
that a reasonably broad range of quality-varying recommendation
are provided.

Believability,
Explicability

Ø Ø Ø CR7: The attribute is
often used by trusted
persons or in trusted
repositories to describe
the owner class.

Context Com-
patibility

Ø CR4: The attribute
is often present with
the other attributes of
the owner class. CR5:
The attribute often de-
scribes a class named
as the owner class in
similar models.

CR6: The attribute of-
ten describes a class
named as the owner
class in similar class di-
agrams.

CR8: The attribute
fits an end-user’s ex-
perience, desires and
moods (be surprised,
be e�cient, ...).

Attractiveness Ø Ø Ø CR9: The attribute
meets an end-user’s
formatting prefer-
ences.

lowest non-null score. Candidates that do not appear in a class with the
same name as the owner class get a null score.

Rating function. Let occ be a function that, for attribute a in class c,
returns occ|c|(|a|) the occurrence number of attributes named |a| in classes
named |c|. Let card(X) denote the cardinality of set X, then

occ|c|(|a|) = card(
n
a
��� |a| 2 |C|c||

o
) (8.3)

Let occ(|a|) be the number of occurrences of attributes named |a| in
all classes of C:

occ(|a|) = card(
n
a
��� |a| 2 |C|

o
) (8.4)

174 CHAPTER 8. Designing a software modeling assistant

Finally, we define rC1,RC as follows:

rC1,RC (|a|) =

8>>>><>>>>:

occ|RC |(|a|)
max
b2C(|a|)

⇣
occ|RC |(|b|)

⌘ if C(|a|) , ;

0 else

(8.5)

8.2.4 In-class exclusivity criterion (C2)

We define criterion C2, which refers to in-class exclusivity, based on
criterion rationale CR3.

Rationale. The attribute is only present in classes with the same
name as the owner class.

Selection filter. Attributes owned by classes with the same name as
RC.

Rating approach. Candidates which only appear in classes with the
same name as the owner class get the highest score. Those that appear
equally in all classes of the data set get the lowest score. Candidates that
never appear in a class with the same name as the owner class get a null
score.

Rating function. We then define the in-class exclusivity rating func-
tion as follows:

rC2,RC (|a|) =

8>>><>>>:

occ|RC |(|a|)
occ(|a|) if A , ;

0 else
(8.6)

8.2.5 Attribute synergy criterion (C3)

We define criterion C3, which refers to attribute synergy, based on
criterion rationale CR4.

Rationale. The attribute is often present along with other attributes
of the owner class.

Selection filter. Attributes connected to attributes owned by RC
through their presence in a common class. Common classes are those
classes that share the same name.

Rating approach. The more often a candidate and an attribute of
RC appear together in a class, the higher the score. The more that a
candidate appears together with di↵erent attributes of RC, the higher
the score. Candidates which never appear together in a class get a null
score.

8.2. Designing the multi-criteria recommender system 175

Rating function. We define the attribute synergy rating function as
follows:

rC3,RC (|a|) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

P
b2ARC

card(C(|a|, |b|)

!

card
⇣
ARC

⌘
· card

S

b2ARC

C(|a|, |b|)
!

if
S

b2ARC

C(|a|, |b|) , ; and ARC , ;

0 else

(8.7)

8.2.6 Context similarity criterion (C4)

We define criterion C4, which refers to context similarity, based on
criterion rationale CR5.

Rationale. The attribute often describes a class named the same as
the owner class in similar models.

Selection filter. Attributes owned by classes named |RC | in models
which share at least two common classes with M(RC).

Rating approach. Candidates from models that share the highest
number of classes with M(RC) get the highest score. Candidates from
models which have no class in common get a null score.

Rating function. We define comRC (a) as the number of classes other
than RC that are common to the model owning candidate a and M(RC).

comRC (a) = card
⇣
|M(C(a))|\ |M(RC)|)� 1 (8.8)

The candidate set can now be defined as follows:

candC4(RC) =
n
a 2A

��� |C(a)| = |RC |, comRC (a) > 0
o

(8.9)

Next, we define contextRC (|a|) as the total number of classes in com-
mon between M(RC) and all models containing a class named |RC | that
owns an attribute named |a|.

contextRC (a) =
X

|p|=|a|
p2candC4(RC)

comRC (p) (8.10)

Finally, for normalisation purposes (as required by rating function
constraints) we define

176 CHAPTER 8. Designing a software modeling assistant

rC4,RC (|a|) =

8>>>>>><>>>>>>:

contextRC (a)
max

b2candC4(RC)
(contextRC (b))

if candC4(RC) , ;

0 else

(8.11)

8.2.7 Utility Function

The framework that we exploit formally defines the aggregation function
of the recommender system through System Requirement 16. It consists
in the weighted sum of all considered criteria. Thus, we define the utility
as follows:

Let (a,b,c,d) 2 [0;1]4 where a+ b + c + d = 1,

overallRC : |A| ! [0;1]
|p| 7! a⇥ s1 + b ⇥ s2 + c ⇥ s3 + d ⇥ s4

with s1 = rC1,RC (|p|), s2 = rC2,RC (|p|),
s3 = rC3,RC (|p|), s4 = rC4,RC (|p|)

(8.12)

The machine-learning process is used to determine the values of the
weights a, b, c, and d.

Context adaptability

In the context of recommending UML attributes for classes, we identify
four di↵erent possible Contexts. The system will provide recommenda-
tions for the following:

• Context 1: A class owning no attributes and no other classes in
the model.

• Context 2: A class owning one or more attributes and no other
classes in the model.

• Context 3: A class owning no attributes in a model but containing
one or more other classes.

• Context 4: A class owning one or more attributes in a model and
also containing one or more other classes.

8.2. Designing the multi-criteria recommender system 177

Each of the above contexts has access to di↵erent information so
that not all of the criteria can be applied equally to all of them. For
instance, the context similarity criterion C4 relies on the presence of
other classes in the diagram and is, therefore, not applicable to contexts
1 and 2. Consequently, we define the overall utility function in context
k overallk,RC as:

overallk,RC (|p|) = ak ⇥ s1 + bk ⇥ s2 + ck ⇥ s3 + dk ⇥ s4 (8.13)

This results in four di↵erent utility functions corresponding to the
four di↵erent contexts. They are determined individually in the course
of the machine-learning process.

Utility function determination

The aggregation functions require their weights to be defined to compute
overall recommendation scores. However, these scores can hardly be
defined manually. Indeed, it is di�cult to evaluate to what extent a score
should have more weight than another one when computing the overall
score. For instance, it is di�cult to decide objectively if the exclusivity
of an attribute in a class should prevail over the semantic proximity of
this attribute with the other attributes of the class when calculating the
global score (s2 vs s3 in the attribute recommender defined in Section
8.2). This problem is similar to the case where a software engineer would
be asked to set the weights of each neuron in a neural network.

The use of machine learning is a solution to this weight definition
issue. This mechanism allows the inference of the weights of each
neuron from data labelled by users of the system. In the case of our
software assistant, each of the four individual scores represents a neuron,
connected to a single output neuron, which corresponds to the general
confidence level of the system towards the recommendation.

The system is usually trained by minimizing a metric that measures
the output error. This process is feasible when the output of the neural
network can be determined and predicted in advance, to generate train-
ing data. In the modeling task, the goal of the assistant is not to provide
the correct answer, but to provide useful and interesting ideas for the
users. In order to be able to perform the learning process of the assistant,
we therefore asked potential users of the system to prepare annotated
data, which we exploited with machine learning. This operation is one
of the main steps required to implement our modeling assistant. Each
of these steps is explained in the following chapter.

178 CHAPTER 8. Designing a software modeling assistant

Chapter9
Prototyping the software
modeling assistant

Chapter 8 provided the functionnal, structural, infracture, and requirements
specifications for the construction of the modeling assistant prototype. In
this chapter, we report on the technical implementation of the system as a
prototype, based on the previous design artifacts. In each section, we detail
the structure of each major component of the architecture.

9.1 Architecture overview

Figure 9.1 presents the overall architecture of our system. It respects
the 3-tier architecture defined in the framework, by implementing a
user interface, the knowledge back-end, and the information reposi-
tory. The information repository relies on a standalone Neo4j1 graph
database, which exposes a management interface. It is fed by the data
collector, which is a Java SpringBoot2 application, that gathers models
from local and remote model repositories and integrates them in the
knowledge base. The knowledge back-end implements the multi-criteria
recommender system as a Java SpringBoot application. It communicates
through Cypher queries with the Neo4j database that is hosted on the
same server. The Java application features a learning mechanism that
is able to exploit user-labeled data to infer the aggregation functions

1https://neo4j.com
2https://spring.io/projects/spring-boot

179

180 CHAPTER 9. Prototyping the software modeling assistant

Figure 9.1 – The overall architecture of our prototype modeling assistant

weights with machine-learning. The user interface of the prototype con-
sists of a Papyrus plugin that is embedded in the Eclipse environment.
It communicates with the knowledge back-end through HTTP requests
to retrieve recommendations to display.

This prototype is currently available online. It is deployed on a
remote server, which hosts the Neo4j database and the knowledge back-
end, executed in Docker3 containers. A Continuous Integration/Continuous
Delivery (CI/CD) pipeline is responsible for making the latest updates
on the back-end available to the end-users of the assistant. The Papyrus
plugin can be installed from the online update site4. The server is also
available online, and access can be granted to the recommender system.

9.2 Building the knowledge base

This knowledge is created by the data collector, which embeds a model
processor, whose role is to store the knowledge from the UML models of

3https://www.docker.com
4https://software-assistant.univ-lille.fr/modeling-assistant/composite/

9.3. Implementing the knowledge back-end 181

Figure 9.2 – Example of class and attribute nodes metadata in the graph
database

models repositories into the knowledge base. It consists of a Java Spring-
Boot application that converts xmi-structured models into subgraphs,
and integrates them into the graph knowledge base. The models are
analyzed when parsed and filtered or curated according to custom rules
to avoid the use of toy models or the integration of misspelled names.
The system also stores model meta-data in the subgraph such as the
detected language of the model, its origin, or the type of each attribute
to enable more precise filtering and explanations, as shown in Figure
9.2.

All subgraphs are stored in the knowledge base which relies on a
standalone Neo4j graph database. It provides a web sandbox interface
to perform manual queries, inspect the graph, and manage data, and a
bolt API endpoint to expose a read/write to the data collector and the
knowledge back-end. Knowledge retrieval is made through the use of
Cypher queries, which enable to retrieve the data required to compute
each individual score. An example of Cypher query is presented in
Figure 9.3.

The instance contains knowledge extracted from around 116,000
UML models from GenMyModel public repositories. It represents more
than 800,000 UML classes and more than 1,000,000 relationships be-
tween classes. The knowledge base server is hosted online on the same
physical server as the recommendation engine, and is accessible with
restrictions with a token granted upon request. A local knowledge base
could be deployed on the private servers of a company to store sensi-
tive knowledge from corporate domain-specific models. This domain-
specific knowledge base could then complement our general base by
receiving mirrored queries, and enable the system to provide more
precise recommendations for specific business domains.

9.3 Implementing the knowledge back-end

This section details the behaviour of the application acting as the knowl-
edge back-end. It reports on how recommendation score formulas are
implemented, and provides an overview on how machine-learning is

182 CHAPTER 9. Prototyping the software modeling assistant

Figure 9.3 – Example of Cypher query

9.3. Implementing the knowledge back-end 183

integrated to the modeling assistant.

9.3.1 Multi-criteria recommender system

The recommendations are produced and exposed through an API by the
same Java SpringBoot application, that acts as the knowledge back-end.

This application implements the multi-criteria recommender system
that is described in Section 8.2. Thus, it (i) communicates with the
information repository, it (ii) computes attributes and classes individual
recommendations scores, (iii) it aggregates individual scores into overall
scores, and (iv) formats the results as a JSON file to be exploited by the
clients. To retrieve the information from the knowledge base to compute
the four scores, the application uses five Cypher queries for attributes
recommendation, and five for classes recommendation. These queries
are sent to the graph database using the Bolt protocol5, operating over
a TCP connection or a WebSocket. Each query is executed in a RxJava
26 flow, so that all queries can be executed in parallel. The results of
these queries are transformed to Java objects by the Neo4j Object Graph
Mapper7 connector.

Each individual score is computed in the same RxJava flow than its
related graph query to exploit multi-threading and reduce recommenda-
tion time. Scores are computed according to their descriptions in Section
8.2, and are linked to explanation elements related to the nature of the
score. For instance, the individual score about context similarity will
hold information about the classes that are shared between the source
model and the currently edited model.

When all individual scores are available, the system analyzes the
input request and determines the input context. This enables the system
to select the correct aggregation function to compute the overall score.
The aggregation function weights are determined according to each
context, during the machine learning process that is described in Section
9.3.2. After calculating each overall score, recommendations are sorted
in a descending order, from the highest overall score to the lowest. Only
the 15 best recommendations are returned in the JSON response.

To produce recommendations, the system takes requests as input
with the target class name (e.g., the class for which the user wants rec-
ommendations), the current attributes names of this class, and the name
of the other classes in the model. The computed recommendations are

5https://boltprotocol.org
6http://reactivex.io
7https://neo4j.com/developer/neo4j-ogm/

184 CHAPTER 9. Prototyping the software modeling assistant

Figure 9.4 – Example of a recommender system query

returned in the JSON syntax, as presented in Figure 9.4.

9.3.2 Machine-learning mechanism

We implemented the machine learning mechanism as a linear optimi-
sation feature. To infer the weights, we generate the di↵erent weight
combinations for each context, with a predefined step. For instance, with
a step of 0.1, each weight varies from 0 to 1, by take values 0, 0.1, 0.2, ...,
1. For each generated combination, we compute the MTP@5 precision
metric such as described in Section 10.1.2. The target combination is the
one that maximizes the precision metric.

This algorithm is implemented with Java, as a feature of the knowl-
edge back-end. The data gathering details are provided in Chapter
10.

9.4 Integrating the assistant into Papyrus

As a means to provide users with recommendations, our modeling as-
sistant implements a user interface. This interface consists of a Papyrus
plugin, that is able to display in-editor suggestions. In this section,

9.4. Integrating the assistant into Papyrus 185

we report on the implementation of the plugin, and describe the user
interface.

9.4.1 Creating the Papyrus assistant plugin

For the recommendations to be directly exploited by software engineers,
they must be presented in a user interface. As part of our solution, we
propose a plugin integrated to the Papyrus modeling tool that we call
our Papyrus client. As it is fully integrated into this modeling tool, our
client can directly add the chosen recommendations, such as new classes,
attributes, or relationships into the model which is instantly updated in
the editor. As the update is bidirectional, manual changes in the model
from the editor trigger the update of the recommendations.

The client relies on the plugin mechanism for the Eclipse framework,
is coded in Java, and is available as an update site for a user to install
it in their own Papyrus environment. When a user clicks a class in the
editor, the plugin retrieves the edited model as well as the selected class
to form a recommendation query as shown in Fig. 9.4 (1) and (2). The
query is sent to the recommendation engine which returns a response
JSON object as depicted in (3).

The user interface is displayed as an overlay panel when triggered
the key binding + . It can be decomposed into 3 distinct parts:
the class overview, the recommendation panel, and the explanation area.

9.4.2 Designing the user interface

The class overview

The user interface of the assistant features a clone of the class for which
recommendations are provided. It enables users to stay aware of the
current state of the class, while allowing the system to draw visual
indicators within the class representation. Figure 9.5 (1) shows an
overview for the class Square, which owns one attribute width, with
multiplicity 1, public visibility and type Integer.

The first visual indicator is a pie chart located in the upper-right
corner of the class. It represents the value of the score S1 (see Section
8.2) for the attribute hovered in the recommendation panel. The second
visual indicator consists of horizontal bars located under each attribute
of the recommendation overview. It describes the strength of the synergy
between the attribute hovered in the recommendation panel and each
attribute own by the currently edited class.

186 CHAPTER 9. Prototyping the software modeling assistant

Figure 9.5 – The interface of the modeling assistant.

9.4. Integrating the assistant into Papyrus 187

Figure 9.6 – The anatomy of an attribute recommendation entry.

The recommendation panel

Figure 9.5 (2a) and (2b) respectively show the attributes and the rela-
tionships recommendation panels. These two views are accessible by
choosing the corresponding tab, and both present recommendation ele-
ments as a scrollable and clickable list. A click on the checkbox of an
entry triggers the addition or the deletion of this element in the model.

Each line of the panel shares the same anatomy, as described for an
attribute in Figure 9.6. The checkbox triggers model update, the four
vertical progress bars represents the normalized values of each of the in-
dividual scores described in Section 8.2. The following numerical value
is the overall confidence score, based on the aggregation of the individ-
ual scores. The default type of the attribute is the most recommended
one. This can be edited by clicking the type label and selecting another
type from those provided in the selector menu, ranked according to the
recommendation data. Multiplicity is set to 1 by default and can be
edited as well, but no recommendation is provided. Relationship entries
only di↵er by the relationship type selector, which contains recommen-
dations for relation type similarly to attribute types (see Figure 9.5 (2a)
and (2b)). Attribute visibility, and relationship name and multiplicities
are not yet supported by our modeling assistant.

The explanation area

The user interface features an explanation area which provides detailed
information about the currently hovered entry. This information (as
displayed in Figure 9.5 (3a) (3b)) includes an explanation for each of
the individual score in the current context, and the number of analyzed
classes and models. The purpose of these explanations is (i) to enable

188 CHAPTER 9. Prototyping the software modeling assistant

users to increase their knowledge due to the experience acquired by
the system through the analyzed models, and (ii) to better understand
the inner mechanisms of our recommender system. This is a step to-
wards improving system transparency to increase its trustworthiness
and acceptability [73].

An early validation of the formal framework

Validating conceptual frameworks is not an obvious task. In their study,
Meseguer [113] defined validation as a global term encompassing both
verification and evaluation. Verification refers to completely examin-
ing the system against its specifications, while validation consists in
examining whether a particular design meet its intended purpose and
perform as expected. In their book, Jabareen [82] mentions the process
of validating the conceptual framework as follows “the aim in this phase
is to validate the conceptual framework. The question is whether the proposed
framework and its concepts make sense not only to the researcher but also to
other scholars and practitioners. Does the framework present a reasonable
theory for scholars studying the phenomenon from di↵erent disciplines? Val-
idating a theoretical framework is a process that starts with the researcher,
who then seeks validation among outsiders”.

Two common procedures for validating conceptual frameworks emerge
from the existing literature: comparison or instantiation. Comparison
relies on the availability of other frameworks with which to compare the
proposed framework. Then, an analysis can be performed to highlight
benefits and issues with the di↵erent considered approaches. Instan-
tiation refers to exploiting case studies to design systems according
to the studied framework, and demonstrating that the created system
meets the expectations. The strength of this validation approach hence
depends on the selected case studies.

As a first validation step, we demonstrated that the formal frame-
work defined in Chapter 7 successfully enabled the design and the
implementation of an instance of a modeling assistant. As a step fur-
ther towards validation, the next chapter introduces the evaluation of
the recommendation algorithm and two case studies that highlight the
accuracy of the system.

Chapter10
Early evaluation of our
system

Chapter 8 and 9 detailed the design and the implementation of a proto-
type modeling assistant, based on the formal framework defined in Chapter
7. To conclude on the performance, potential benefits, or influence of this
prototype, empirical evaluations must be conducted. This thesis does not
present the results of such user experiments, that are planned to be conducted
as future work. Nevertheless, this chapter introduces the evaluation of the
recommender system based on user-labelled training and testing datasets,
and introduces two case studies to demonstrate the behaviour of the system.

10.1 Evaluation of themodeling recommender
system

The preliminary evaluation of our approach is based of assessing im-
provements in the quality of the recommendations, as well as the ade-
quacy of system control, information transparency, and system trans-
parency. To the best of our knowledge, no similar approach can be
found in the literature. A replication package containing the labelled
data, the original files and the metrics source code is available online1.
The evaluation involved data from over 95,000 models, di↵erent from
the data set used for the implementation of the system in the previous

1https://hufamo.univ-lille.fr/modeling-assistant

189

190 CHAPTER 10. Early evaluation of our system

Figure 10.1 – The web data-labelling interface

chapter. This new data set contained approximately 634,000 classes
and 616,000 attributes. The models were also retrieved from the Gen-
MyModel2 public repositories by courtesy of Axellience. For quality
purposes, we only selected models greater than a minimum size (over
10 kilobytes).

10.1.1 Data gathering

We collected labelled data through a dedicated web interface during a
preference-elicitation phase. This interface, as presented in Figure 10.1,
first presents multiple situations where class diagrams with recommenda-
tion target class are presented one at a time. A list of unranked candidates
—potential recommendations— is displayed for each situation. Using
this interface, the user is asked to remove all attributes that do not fit
semantically in the presented situation. Once this is completed, the user
is then asked to create a ranked list of the top 10 best recommendations
from the displayed elements. This task should be repeated for multiple
situations in di↵erent contexts a su�cient number of times in order to
collect enough information to determine the four utility functions. Once
this data is collected, it is used to calculate ak , bk , ck , dk weights from
the aggregation functions in such a way that they maximize the Mean
Top Average Precision metric defined in Section 10.1.2.

2https://www.genmymodel.com

10.1. Evaluation of the modeling recommender system 191

We gathered 9,858 labelled attributes from 30 participants: 9 senior
and 4 junior researchers, 3 senior and 12 junior developers from industry,
and 2M.Sc. students. Prior to starting the labelling exercise, participants
were asked to answer questions about their familiarity with UML and
the extent of their modeling work. On average, participants estimated
their knowledge of UML class diagrams to range between fair and good
(mean: 3.5 on 5-point Likert scale, std. deviation: 1.0). This assured
us that participants had a relatively good understanding of the context
and consequently, and that the information gathered was semantically
meaningful. Participants were asked to respond to up to 20 examples
of di↵erent situations: 5 per context. In order to minimize the impact
of participant fatigue on the results, the 20 examples were randomly
displayed and participants were allowed to respond in several sessions.

10.1.2 Evaluation metrics
To more accurately evaluate the attribute recommendations, we com-
pared the ranked results of our system with the ranked preferences as
chosen by the users who created their top-5 ranked list. Consequently,
we computed metrics for just the top-5 recommended attributes; i.e., the
five attributes with the highest scores.

Precision@5 (P@5) is the proportion of recommended items that a
user deemed as belonging in the top-5 list of relevant attributes. In our
case, relevant attributes were those that were not excluded by the user
from the candidate list.

P@5(set) =
n° of relevant items in system top-5

5
(10.1)

TopPrecision@5 is the proportion of recommended items in the top-
5 list provided by the recommender system that are also included in the
top-5 set chosen by the user.

TP@5(set) =
n° of common items in user and system top-5

5
(10.2)

TopAveragePrecision@5 (TAP@5) takes ranking into consideration
in evaluating the mean average precision of the top-5 of the system.
Mean Average Precision (MAP) is a popular metric for measuring rec-
ommendation algorithms in information retrieval. We defined TAP@5
as follows:

TAP@5(set) =
5X

n=1

P(n)⇥ pos(n)
R

(10.3)

192 CHAPTER 10. Early evaluation of our system

Table 10.1 – Labelled data distribution

General Ctx. 1 Ctx. 2 Ctx. 3 Ctx. 4
Training 8,146 2,462 2,338 1,765 1,581

(205 sets) (50 sets) (43 sets) (59 sets) (53 sets)
Testing 1,712 544 562 303 303

(40 sets) (11 sets) (10 sets) (9 sets) (10 sets)
Total 9,858 3,009 2,900 2,068 1,884

(245 sets) (61 sets) (53 sets) (68 sets) (63 sets)

where pos(k) indicates whether the element from system top-5 in posi-
tion k matches the position of the element in a user’s top-5 list, while R
refers to the number of elements for which pos(k) = 1; P(k) is the ratio of
correctly recommended elements over top-k recommended elements.

These metrics can be computed for each ranked set of attributes.
Therefore, as users provided several sets of attributes, we considered the
means of these metrics as follows:

Mm(S) =
X

s2S

m(s)
N

(10.4)

where m is the metric for which the mean is calculated (i.e., MP, MTP,
and MTAP); S is the data set for which the mean was computed, and N
is the number of elements in S .

10.1.3 Metrics results

We obtained 245 sets of labelled data from users, which constitute a
corpus of 9,858 attributes distributed for training and testing phases,
as presented in Table 10.1. We trained our overall rating functions
with 81% (205 sets) of the total labelled data set and obtained the
functions presented in Table 10.2. The goal of the training was set to
the maximization of the MTP@5 metric, as it is the most representative
possible improvement of our system when compared to unassisted user
selections.

The added value of using machine-learning is demonstrated by the
evolution of the metrics before and after the machine-learning process.
Both situations only di↵er in the the values and distribution of weights
in the utility functions. We set up the initial configuration (i.e., before
ML) by setting the weight values to be equal. For instance, we define
the initial aggregation function for Context 4 as overall4 = 0.25 ⇥ s1 +
0.25⇥ s2+0.25⇥ s3+0.25⇥ s4. The final configuration corresponds to

10.1. Evaluation of the modeling recommender system 193

Table 10.2 – Learned overall functions

Context Overall Function
Context 1 0.80⇥ s1+0.20⇥ s2
Context 2 0.03⇥ s1+0.01⇥ s2+0.96⇥ s3
Context 3 0.51⇥ s1+0.03⇥ s2+0.46⇥ s4
Context 4 0.56⇥ s1+0.03⇥ s2+0.29⇥ s3+0.12⇥ s4
Table 10.3 – Testing data set metrics measures

Metric General Ctx. 1 Ctx. 2 Ctx. 3 Ctx. 4

Initial MP@5 87.0% 83.6% 90.0% 84.4% 90.0%
Initial MTP@5 34.7% 23.6% 38.7% 36.7% 40.0%
Initial MTAP@5 27.8% 4.5% 22.5% 11.1% 35.0%

Final MP@5 91.5% 92.7% 90.0% 93.3% 90.0%
(+4.5%) (+9.1%) (-) (+8.9%) (-)

Final MTP@5 51.0% 56.4% 49.3% 52.2% 46.0%
(+16.3%) (+32.7%) (+10.7%) (+15.5%) (+6.0%)

Final MTAP@5 42.5% 50.0% 35.0% 50.8% 45.0%
(+14.7%) (+45.5%) (+12.5%) (+39.7%) (+10.0%)

the application of the utility functions defined in Table 10.2.
We evaluated the overall utility functions on a specific testing data

set, which represents 19% of the full labelled data set, (see Table 10.1).
The other 81% were used for training purposes. The results of the
metrics evaluation are presented in Table 10.3.

10.1.4 Discussion

The initial general MP@5 is pretty high (87.0%). The low impact of the
learning process on this score (+4.5%) indicates that the di↵erent criteria
already strongly converge to recommend user-relevant attributes, and
that the impact of the weights on the overall rating functions are, in that
case, secondary. The impact of the supervised-learning process becomes
more important according to the desired quality of the recommendations.
Indeed, the initial low value of MTP@5 increases from 34.7% to 51.0%
after the learning process. This means that, on average, more than two
attributes of the 5 first recommendations of the system are attributes that
participants included in their top-5 best recommendations. Following
the learning step, MTP@5 shows the most significant increase among all
metrics (+16.3%). The utility functions were defied so as to optimize this
metric. MTAP@5 takes di↵erences in recommendations ranking between

194 CHAPTER 10. Early evaluation of our system

system and user top-5 into account. Only high-quality recommendations
increase this metric, which explains why it has the lowest initial values
for all contexts. With a final value of 42.5%, MTAP@5 indicates that,
on average, more than 2 attributes of the 5 first recommendations are
in participants’ top-5, likely to be in top positions and ordered as the
participants expected.

The empirical results obtained indicate that our approach provides
acceptable results (on average, more than 4 recommended attributes out
of 5 are deemed relevant, and also 2 recommendations out of 5 appear
in users’ top-5 rankings). However, as pointed out earlier, it is too early
to make any firm conclusions about the e↵ectiveness of our approach
compared to alternatives until further evaluations are performed. In
addition, we can draw the following conclusions from the evaluation:

• The initial e↵ectiveness measure that we proposed here looks as if
it could serve as a common metric for future related work.

• The defined criteria do seem to reflect information trustworthi-
ness. Moreover, the rationale behind them can be easily explained,
which means that they do support information transparency.

• The linear utility function approach we used allows any overall
score to be traced to each criterion used to derive it. This enables
users to understand the inner mechanisms of the system and thus
supports system transparency.

• The utility function can either be set manually or defined using
supervised-learning. These settings allow users to have control
over the results that are presented giving them control of the
system.

10.2 Use cases

In this section, we introduce two use cases in which we demonstrate the
behaviour of the system. For both scenarios, let us say that this expert
exactly knows what she wants to model, and then uses the modeling
tool to digitalize the model into one class diagram. We assume that she
uses the Papyrus modeling tool with our modeling assistant. To mimic
the constraints on model elements to create, we use the class diagram
in Figure 10.2 as the diagram that should be replicated. Fixed names
and relationships act as the modeling constraints the architect wants to
respect. This diagram is extracted from [93], one of the best-seller UML
course books.

10.2. Use cases 195

Figure 10.2 – The diagram to replicate in the use cases.

10.2.1 Case 1: the general knowledge base
In this first use case, we make the assumption that the user has never
modeled the domain concepts she has to represent. Therefore, no model
concerning details about the business logic is integrated in the general
knowledge base that the recommender system exploits. To build the
diagram, we first created the class, tried to add its attributes based on
the recommendations, and then tried to add relationships based on the
recommendations. If no suggestion was correct, we created the missing
element manually, and repeated the same pattern until the diagram was
complete. Note that when accepting a relationship recommendation, the
system automatically creates the class if it is not yet in the diagram.

Out of the 35 model elements to replicate, the system was able to
recommend 10 elements correctly (29%), 3 elements with the same sense
but not the exact same name (8%), and could not recommend the 22
other elements (63%). This distribution is represented in Fig. 10.3 (a).

10.2.2 Case 2: adding domain-specific knowledge
This case presents the behaviour of the system when the knowledge
base includes the domain concepts that the architect wants to model. To
simulate this situation, we created the diagram of Figure 10.2 as an xmi

196 CHAPTER 10. Early evaluation of our system

Figure 10.3 – Exact recommendations (green/circle), approximate
recommendations (orange/triangle), and not recommended elements
(red/square) in both use cases.

An early evaluation of the system 197

file, store it in a local folder, and run the model processor (see Figure
9.1) to integrate it among the 100,000+ models of the knowledge base.
This illustrates the behaviour of a system featuring a company-specific
model repository. Then, we reproduced the model creation steps of the
first use case.

Out of the 35 model elements to replicate, the system was now able
to recommend 29 elements correctly (83%), and could not recommend
the 6 other elements (17%). This distribution is represented in Fig. 10.3
(b).

10.2.3 Discussion
The e�ciency of the system depends on the set of models on which
it is based. As a starting point, we provide a general knowledge base
enabling the assistant to support the modeling of general concepts. The
system can then be extended with domain-specific models to learn about
business logic and provide recommendations more suitable for industry,
as illustrated in the case studies. Feeding the system with one new class
diagram led to increase the ratio of correct recommendations by 54%.
Moreover, even wrong or approximate recommendations could help
beginners and experts strengthen the completeness of their model, by
suggesting new or forgotten directions to explore. As discussed in [157],
this recommendation approach might be generalizable to other types of
diagrams.

An early evaluation of the system

This chapter presented two directions for evaluating the prototype pro-
posed in Chapters 8 and 9. It first presented an evaluation of the core
recommender system, by assessing its suggestions over user-labelled
data. The results of this study demonstrated that the defined criteria
seem to enable the computation of accurate recommendations. The
aggregation method also enables information-trustworthiness to be ex-
pressed because of to the linear combination of individual scores. The
case studies show that the general knowledge base of the prototype
allows for modeling recommendations across multiple domains, with a
lower recommendation rate. It emphasizes the need for companies to
make their internal models available to the system, so it can unleash its
recommendation power.

These results seem to indicate that the prototype might empower
users with modeling recommendation and hence boost their creativity

198 CHAPTER 10. Early evaluation of our system

or productivity, while reducing the time and e↵ort required to produce
models. However, such results are still to prove with proper empirical
evaluations with users. These experiments are planned to be conducted
as future work, as described in the conclusion of the thesis.

Conclusion

In this section, we conclude on the results presented in the thesis. We
first summarize the research approach that has been followed, then
we present the main results echoing the thesis research questions, and
finally we identify new research lines for future work.

Research approach rationale

The purpose of this thesis was to study the possibility of augmenting
software modeling engineers with software assistants. To this end, we
sought to identify aspects of modeling that could be assisted, and inves-
tigated how these problems could be assisted. In our research approach,
we first tried to define software assistants for modeling, in order to
study their ability to address modeling problems. We then defined the
nature of the modeling task and identified the problems related to it that
are evoked in the literature. This work highlighted the complexity of
assisting the modeling task, due to its creative and ill-structured nature,
as well as the limited scientific resources available on the foundations of
software modeling assistance. To better understand how this assistance
was realized in the research landscape, we also conducted a systematic
mapping study on software assistants in software engineering. This
study revealed the low presence of implemented and usable assistants,
capable of helping in modeling. Thus, to better understand how to build
useful software assistants, both in terms of functionality and the way
they help, we conducted a series of interviews with modeling experts.
These discussions have allowed us to outline ways to support modeling
for beginners as well as for experts, and to provide indications on how to
interact with them. Due to to the exploratory work of this first part, we
have been able to draw a big picture of modeling assistance in general,
and to identify the four main notions on which software assistance to
modeling is based.

199

200 Conclusion

The second part of the thesis relies on the conclusions of this big
picture, to formalize the design of software assistance for modeling.
We first identified the resources in the literature that address the key
notions of modeling from the big picture, concerning Trust, Creativ-
ity, Recommendations, and Automation. The theoretical papers and
frameworks gathered allowed us to build a series of constraints to the
design of computer systems capable of providing modeling assistance,
with respect to these 4 key notions. From these constraints, we then
defined a conceptual framework according to the ISO 42010 standard
aiming at guiding the design of software assistants for modeling. This
framework provides four architecture viewpoints, allowing to describe
the architecture and the specifications of the system to be designed.

In the third part of the thesis, we have evaluated the validity of this
framework, by proposing a first validation e↵ort in two steps. First, we
described the specifications of the system from the framework defined
in the second part, and technically implement the prototype assistant.
The realization of this prototype of assistant first tested the capacity
of the framework to be used to define functional and usable systems.
In a second step, we exploited this prototype to conduct preliminary
performance evaluation experiments. Although they are only indicative
and require further empirical work with users, these experiments indi-
cated the performance of the prototype in providing recommendations
deemed accurate by users.

Main results

Our results highlight the need for modeling engineers using modeling
tools to benefit from assistance. At the same time, we reveal a gap in
the literature regarding software assistance for modeling. Our work
aims to fill this gap, paving the way for the study and design of more
modeling assistants, both in research and in industry. The results of the
thesis allow to identify the main functionalities of modeling assistants
to be investigated as research lines or implemented as prototypes. In
order to realize these systems, we propose a framework for the design of
software assistants for modeling, allowing to guide the creation of such
systems. Finally, we propose a modeling assistant to help the design of
UML class diagrams by recommending attributes and relationships for
UML classes.

Main results 201

Research questions

In this section, we present how the results presented in this manuscript
address the thesis research questions.

T.R.Q. 1. What is a software assistant for software modeling? A
software assistant for software modeling is a software bot that provides
users with valuable knowledge to help them identify, understand, or
solve a modeling problem. Modeling assistants may help users make
a decision and eventually perform a task according to this decision
with a certain degree of autonomy because of this knowledge. Their
outcomes might not be deterministic, as they adapt to each problem and
context. They might be used to automate manual tasks to save time and
reduce e↵ort, but they must be able to come up with new information
and ideas and that may be valuable to increase the knowledge of the
user. Modeling assistants consist in complete and ready-to-use software
systems, accessible through a user interface (to be able to provides users
with valuable knowledge).

T.R.Q. 2. Are there software assistants for software engineering
(and software modeling) in the literature? Our study of the literature,
through a systematic mapping study, identified 47 software assistants
for software design, software construction, software maintenance, and
cross-cutting socio-cultural systems such as networking tools. Among
them, only 2 out of 47 systems were aimed at supporting software
modeling. This demonstrates the poor e↵ort of the scientific literature
to develop modeling assistants prototypes, that are required to conduct
empirical experiments with users.

T.R.Q. 3. What are the common characteristics of software assis-
tants for software engineering from the literature? According to the
results of our systematic mapping study, software assistants for software
engineering could be classified in three main groups informers, passive
recommenders, and active recommenders based on their skills. These
systems mainly appear to not allow users to provide feedback on the
potential recommendations they generate, to not provide explanations
with their suggestions, and to rarely indicate how much confident they
are with their suggestions. Software assistants for software engineering
tend to feature one of five general automation patterns about their inter-
actions. It appears that they never make decisions fully autonomously
and require the user to take part in the decision selection process.

T.R.Q. 4. Are there identifiable ways of designing software assis-
tants for software engineering that emerge from the literature? To
the extent of our knowledge, no previous research work intended to
provide guidelines for designing software assistants for software engi-

202 Conclusion

neering. No specific correlation emerged during the result analysis of
our systematic mapping study, which tends to indicate that no specific
design approach could have been identified. Moreover, the previous
research question highlighted that aspects such as the design of in-
teractions, with the handling of Human-Computer Interactions (HCI)
indicators are rarely considered when conceiving the assistants identi-
fied in the literature. This highlights that, while there seem to exist no
framework to design software assistants for software engineering, these
systems are designed with a poor consideration for aspects related to
human factors.

T.R.Q. 5. Are the software assistants available in the literature in
line with the expectations of modeling practitioners? Our interviews
with experts enabled us to collect modeling engineers’ needs and ex-
pectation about modeling assistance. The results of this work led to the
identification of 21 potential assistance features to support engineers
in their work. Practitioners emphasized the need for proper interaction
and automation design, and highlighted the need for the assistants to
implement a confidence indicator system, an explanation interface, a
user-feedback collector. This clearly breaks with the observed state of
the software assistant literature, as discussed in T.R.Q. 3 and 4. The
poor availability of modeling assistants also clashes with the engineers’
stated need for assistance. Thus, research appears to not be ready for
providing modeling assistants to practitioners, or support their design.
If, by chance an modeling assistant can be exploited from the litera-
ture, it is likely that it will not match practitioners’ expectations about
interactions and automation.

T.R.Q. 6. What are the key concepts in modeling assistance? Our
work expresses an original vision of modeling assistance, which is based
on trust, creativity, recommendations, and automation notions that are
already anchored in the software engineering landscape. Among the
four key notions of modeling assistance, we consider the notions of rec-
ommendations or automation which are common subjects in the scientific
computer science community, and which are even research fields in their
own right. The notion of trust is recently emerging in computer science,
especially due to trust issues with artificial intelligence. These problems
are at the origin of the emergence of research domains such as the AI
explainability, or the creation of consortia of academics and industri-
alists aiming at studying this issue. Finally, we deal with the creativity
issue which is rarely treated in the computer science community. This
thesis has brought to light elements of the literature on creativity from
psychology, applicable to computer science tasks. The creative nature of

Future work 203

the modeling task conditions the design of software systems aiming to
integrate it. We hope that our work will help to address the skepticism
of the computer science community towards creativity, and especially
the doubts expressed about the ability of a software assistant to support
creativity. These notions of trust and creativity, both human characteris-
tics, justify the necessity and the soundness of our user-centred research
approach.

T.R.Q. 7. What are the guidelines to follow when designing soft-
ware assistants for software modeling? The second part of this thesis
aimed at providing a conceptual framework to design software assistants
for software modeling. The framework is defined in Chapter 7 accord-
ing to the ISO 42010 standard. We define four architecture viewpoints
about the functional architecture, the structural architecture, the required
infrastructure for the system, and a set of 22 functional system require-
ments to design the assistant and its features. As a tutorial for using
the framework, these guidelines are applied to the design of prototype
modeling assistant in the third section of the thesis.

Future work

In this section, we identify directions to extend the work presented
in this thesis. We first mention the future directions related to the
prototype that has been presented, and then list the potential research
lines related to our framework for software modeling assistants.

As we mentioned in Chapter 10, our modeling assistant prototype
calls for further evaluation and validation. We are particularly inter-
ested on assessing the impact of the system on users’ productivity, and
creativity. Measuring these two user-related characteristics requires
the prototype to be tested during a controlled empirical experiment.
Productivity may for instance be assessed through a read-and-reproduce
experiment, where participants are provided with existing diagrams
that they are requested to reproduce. The time required to accomplish
the task can then be measured for participants with and without the
assistant. Creativity may be assessed through an idea-generation experi-
ment, where participants are required to produce the maximum number
of di↵erent versions of the same system. The experiment then should
in turn be conducted with and without the assistant, to compare the
number of versions produced with and without assistance.

As the system should foster the trust relationship, we also aim at
evaluating how users perceive the trustworthiness of the system. As-
sessing trust remains a complex topic. However, several research e↵orts

204 Conclusion

recommended the use of surveys and polls to assess users’ opinion and
perception about the trust relation they established with the system.

The prototype assistant is freely available, deployed on an online
server, and can be downloaded from our update site to be integrated to
Papyrus. We plan to maintain the prototype and integrate more knowl-
edge into the knowledge base. This first could be achieved by adding
more external repositories to the data collector. We have already con-
ducted experiments aiming at collecting xmi files representing models (i)
from public repositories on GitHub3, and (ii) from computer-generated
images of diagrams obtained by searching on Google. These projects
have shown satisfactory results and are to be integrated into the model-
ing assistant prototype. The second option to collect more knowledge is
to implement a mechanism to store the recommendation choices made
by the user. This would enable us to build diagrams from users’ choices,
that could be included in the knowledge base as a local data repository.

With more users, we could refine the aggregation functions and thus
refine its behaviour. New criteria could be added to the system, to take
advantage of the metadata of our knowledge, such as the author, the
model data, or its source.

Besides the prototype-related directions, another research line fo-
cuses more on the HCI aspect, and relates to the evaluation of the expla-
nation interface. It consists in investigating if the color indicators, the
textual rationales, the icons, and the interactions are well understood,
and adapted to the users. This is inline with our user-centred research
approach to design systems tailored to the users’ needs, and would also
lead to a deeper understanding of the modeling tool users’ cognitive
processes.

This manuscript presented research conducted by interviewing 16
modeling practitioners, as a first qualitative e↵ort to better understand
their need for modeling assistance. As another research line, we aim
to strengthen the outcomes of this study by conducting further quan-
titative research. We plan to publish an online survey, built on the
results of our qualitative results, to collect more data and thus assess the
generalizability of the hypotheses we formulated.

One of our research directions is to strengthen the validation of
our framework. To do so, we plan to exploit it to define new software
assistants that might help with the design of other diagrams, with UML
or other languages. Indeed, the knowledge in the knowledge base in
language-independent, and thus can be applied to a broad variety of
cases. For instance, we could define modeling assistants supporting

3https://github.com

Future work 205

SysML, or completely informal modeling.
We also aim to investigate the use of software assistants during other

phases of software design. Our interviews with practitioners highlighted
the need for assistance in phases other than model edition. This includes
brainstorming sessions, or meeting with clients. These phases share the
creativity and problem-solving characteristics of the modeling task, and
hence might qualify for the integration of software assistants similar
to modeling assistants, which could integrate knowledge during their
tasks.

206 Conclusion

Bibliography

[1] Sallam Abualhaija, Chetan Arora, Mehrdad Sabetzadeh, Lionel
C. Briand, and Eduardo Vaz. “A machine learning-based ap-
proach for demarcating requirements in textual specifications”.
In: IEEE 27th International Requirements Engineering Conference
(RE). 2019, pp. 51–62.

[2] Phillip L. Ackerman and Margaret Beier. “Knowledge and intel-
ligence”. In: Handbook of understanding and measuring intelligence.
2005, pp. 125–139.

[3] Russell L. Acko↵. “From data to wisdom”. In: Journal of applied
systems analysis 16 (1989), pp. 3–9.

[4] Gediminas Adomavicius and YoungOk Kwon. “Multi-criteria rec-
ommender systems”. In: Recommender Systems Handbook. 2015,
pp. 847–880.

[5] Gediminas Adomavicius and YoungOk Kwon. “New recommen-
dation techniques for multicriteria rating systems”. In: IEEE
Intelligent Systems 22 (2007), pp. 48–55.

[6] Gene M. Alarcon, August Capiola, and Marc D. Pfahler. “Chap-
ter 7 - The role of human personality on trust in human-robot
interaction”. In: Trust in Human-Robot Interaction. 2021, pp. 159–
178.

[7] Lissette Almonte, Esther Guerra, Iván Cantador, and Juan de
Lara. “Recommender systems in model-driven engineering”. In:
Software and Systems Modeling (2021).

[8] MuhammadAsaduzzaman, Chanchal K. Roy, Kevin A. Schneider,
and Daqing Hou. “FEMIR: A tool for recommending framework
extension examples”. In: 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). 2017, pp. 967–
972.

207

208 Bibliography

[9] Colin Atkinson and Thomas Kühne. “Reducing accidental com-
plexity in domain models”. In: Software and Systems Modeling 7
(2008), pp. 345–359.

[10] Alberto Bacchelli, Luca Ponzanelli, and Michele Lanza. “Harness-
ing Stack Overflow for the IDE”. In: 3rd International Workshop on
Recommendation Systems for Software Engineering (RSSE). 2012,
pp. 26–30.

[11] Reinhard Bachmann and Akbar Zaheer. Handbook Of trust re-
search. 2006.

[12] Omar Badreddin, Rahad Khandoker, Andrew Forward, Omar
Masmali, and Timothy C. Lethbridge. “A decade of software de-
sign and modeling: A survey to uncover trends of the practice”.
In: ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS). 2018, pp. 245–255.

[13] Michael D. Baer, Fadel K. Matta, Ji Koung Kim, David T. Welsh,
and Niharika Garud. “It’s not you, it’s them: Social influences on
trust propensity and trust dynamics”. In: Personnel Psychology
71 (2018), pp. 423–455.

[14] Tammy Bahmanziari, J. Michael Pearson, and Leon Crosby. “Is
trust important in technology adoption? A policy capturing ap-
proach”. In: Journal of Computer Information Systems 43 (2003),
pp. 46–54.

[15] Brian P. Bailey, Joseph A. Konstan, and John V. Carlis. “The
e↵ects of interruptions on task performance, annoyance, and
anxiety in the user interface”. In: International Conference on
Human-Computer Interaction (HCI). 2001, pp. 593–601.

[16] Mark Batey and Adrian Furnham. “Creativity, intelligence, and
personality: A critical review of the scattered literature.” In:
Genetic, Social, and General Psychology Monographs 132 (2006),
pp. 355–429.

[17] Veronika Bauer and Lars Heinemann. “Understanding API usage
to support informed decision making in software maintenance”.
In: 2012 16th European Conference on Software Maintenance and
Reengineering. 2012, pp. 435–440.

[18] Nancy Baym, Limor Shifman, Christopher Persaud, and Kelly
Wagman. “Intelligent failures: Clippy memes and the limits of
digital assistants”. In: AoIR Selected Papers of Internet Research
(2019).

Bibliography 209

[19] Fabian Beck, Oliver Moseler, Stephan Diehl, and Günter Daniel
Rey. “In situ understanding of performance bottlenecks through
visually augmented code”. In: 21st International Conference on
Program Comprehension (ICPC). 2013, pp. 63–72.

[20] Claire Bélisle. “Literacy and the digital knowledge revolution”.
In: Digital Literacies for Learning. 2006, pp. 51–67.

[21] Denys Bernard. “Cognitive interaction: Towards "cognitivity"
requirements for the design of virtual assistants”. In: IEEE In-
ternational Conference on Systems, Man, and Cybernetics (SMC).
2017, pp. 210–215.

[22] Barry Boehm. “A view of 20th and 21st century software engi-
neering”. In: 28th International Conference on Software Engineer-
ing (ICSE). 2006, pp. 12–29.

[23] Sebastian K. Boell and Dubravka Cecez-Kecmanovic. “What is
an Information System?” In: 48th Hawaii International Conference
on System Sciences (HICSS). 2015, pp. 4959–4968.

[24] Nathalie Bonnardel and Evelyne Marmèche. “Towards support-
ing evocation processes in creative design: A cognitive approach”.
In: International Journal of Human-Computer Studies 63 (2005),
pp. 422–435.

[25] Nathalie Bonnardel and Franck Zenasni. “The impact of technol-
ogy on creativity in design: An enhancement?” In: Creativity and
Innovation Management 19 (2010).

[26] Olimar Borge., Julia Couto, Duncan Ruiz, and Rafael Priklad-
nicki. “How machine learning has been applied in software engi-
neering?” In: 22nd International Conference on Enterprise Informa-
tion Systems (ICEIS). 2020, pp. 306–313.

[27] Pierre Bourque, Richard E. Fairley, and IEEE Computer Society.
Guide to the software engineering body of knowledge (SWEBOK(R)):
Version 3.0. 2014.

[28] Elodie Bouzekri, Célia Martinie, Philippe Palanque, Katrina At-
wood, and Christine Gris. “Should I add recommendations to my
warning system? The RCRAFT framework can answer this and
other questions about supporting the assessment of automation
designs”. In: Human-Computer Interaction (INTERACT). 2021,
pp. 405–429.

210 Bibliography

[29] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R.
Klemmer. “Example-centric programming: integrating web search
into the development environment”. In: SIGCHI Conference on
Human Factors in Computing Systems. 2010, pp. 513–522.

[30] Urie Bronfenbrenner. The ecology of human development: experi-
ments by nature and design. 1979.

[31] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin.
“Proactive detection of collaboration conflicts”. In: 19th ACM SIG-
SOFT symposium and the 13th European conference on Foundations
of software engineering (ESEC/FSE). 2011, pp. 168–178.

[32] Léa Brunschwig, Esther Guerra, and Juan de Lara. “Modelling
on mobile devices”. In: Software and Systems Modeling (2021).

[33] Evgeniy Bryndin. “Collaboration of intelligent interoperable
agents Via smart interface”. In: International Journal on Data
Science and Technology 5 (2019), p. 66.

[34] David Budgen. Software design. 2003.
[35] David Budgen, Andy J. Burn, Pearl Brereton, Barbara Kitchen-

ham, and Rialette Pretorius. “Empirical evidence about the UML:
a systematic literature review”. In: Software: Practice and Experi-
ence 41 (2011), pp. 363–392.

[36] Robin Burke. “Knowledge-based recommender systems”. In: En-
cyclopedia of library and information systems. 2000, p. 2000.

[37] Jordi Cabot, Robert Clarisó, Marco Brambilla, and Sébastien
Gérard. “Cognifying model-driven software engineering”. In:
Software Technologies: Applications and Foundations. 2018, pp. 154–
160.

[38] Liang Cai, Haoye Wang, Qiao Huang, Xin Xia, Zhenchang Xing,
and David Lo. “BIKER: a tool for Bi-information source based
API method recommendation”. In: 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 2019, pp. 1075–
1079.

[39] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. “A prelim-
inary analysis on the e↵ects of propensity to trust in distributed
software development”. In: IEEE 12th International Conference on
Global Software Engineering (ICGSE). 2017, pp. 56–60.

[40] Michel R. V. Chaudron, Werner Heijstek, and Ariadi Nugroho.
“How e↵ective is UML modeling ?” In: Software and Systems Mod-
eling 11 (2012), pp. 571–580.

Bibliography 211

[41] Kari Chopra and William Alan Wallace. “Trust in electronic
environments”. In: 36th Annual Hawaii International Conference
on System Sciences. 2003, 10 pp.–-.

[42] Jürgen Cito, Philipp Leitner, Christian Bosshard, Markus Knecht,
Genc Mazlami, and Harald C. Gall. “PerformanceHat: augment-
ing source code with runtime performance traces in the IDE”. In:
40th International Conference on Software Engineering: Companion
Proceeedings (ICSE). 2018, pp. 41–44.

[43] Joel Cordeiro, Bruno Antunes, and Paulo Gomes. “Context-based
recommendation to support problem solving in software de-
velopment”. In: 3rd International Workshop on Recommendation
Systems for Software Engineering (RSSE). 2012, pp. 85–89.

[44] James M. Corrigan. “Augmented intelligence — The new AI —
Unleashing human capabilities in knowledge work”. In: 34th
International Conference on Software Engineering (ICSE). 2012,
pp. 1285–1288.

[45] Françoise Darses, Françoise Détienne, and Willemien Visser. “As-
sister la conception: perspectives pour la psychologie cognitive
ergonomique”. In: ÉPIQUE 2001, Actes des journées d’étude en
psychologie ergonomique (2019).

[46] Boele De Raad. The big five personality factors: The psycholexical
approach to personality. 2000.

[47] Brian Dobing and Je↵rey Parsons. “How UML is used”. In: Com-
munications of the ACM 49 (2006), pp. 109–113.

[48] Kees Dorst and Nigel Cross. “Creativity in the design process:
co-evolution of problem–solution”. In: Design Studies 22 (2001),
pp. 425–437.

[49] Ekwa Duala-Ekoko and Martin P. Robillard. “Using structure-
based recommendations to facilitate discoverability in APIs”.
In: 25th European Conference on Object-Oriented Programming
(ECOOP). 2011, pp. 79–104.

[50] Mickaël Duruisseau, Jean-Claude Tarby, Xavier Le Pallec, and
Sébastien Gérard. “VisUML: A live UML visualization to help
developers in their programming task”. In: Human Interface and
the Management of Information. Interaction, Visualization, and
Analytics. 2018, pp. 3–22.

212 Bibliography

[51] Ferliana Dwitama and Andre Rusli. “User stories collection
via interactive chatbot to support requirements gathering”. In:
Telecommunication Computing Electronics and Control (TELKOM-
NIKA) 18 (2020), p. 870.

[52] Akil Elkamel, Mariem Gzara, and Hanêne Ben-Abdallah. “An
UML class recommender system for software design”. In:ACS/IEEE
International Conference on Computer Systems and Applications
(AICCSA). 2016, pp. 1–8.

[53] Thomas Erickson, Catalina M. Danis, Wendy A. Kellogg, and
Mary E. Helander. “Assistance: The work practices of human ad-
ministrative assistants and their implications for IT and organi-
zations”. In: ACM Conference on Computer Supported Cooperative
Work (CSCW). 2008, pp. 609–618.

[54] Linda Erlenhov, Francisco Gomes de Oliveira Neto, Riccardo
Scandariato, and Philipp Leitner. “Current and future bots in
software development”. In: IEEE/ACM 1st International Workshop
on Bots in Software Engineering (BotSE). 2019, pp. 7–11.

[55] Robert Feldt, Francisco Gomes de Oliveira Neto, and Richard
Torkar. “Ways of applying artificial intelligence in software en-
gineering”. In: 6th International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering. 2018, pp. 35–41.

[56] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and
Alessandro Flammini. “The rise of social bots”. In: Communica-
tions of the ACM 59 (2016), pp. 96–104.

[57] Stephen Fiore, J. Elias, Eduardo Salas, N.W. Warner, and M.P.
Letsky. “From data, to information, to knowledge: Measuring
knowledge building in the context of collaborative cognition”.
In: Macrocognition Metrics and Scenarios: Design and Evaluation
for Real-World Teams (2010), pp. 179–200.

[58] Andrew Forward and Timothy C. Lethbridge. “Problems and
opportunities for model-centric versus code-centric software de-
velopment: A survey of software professionals”. In: International
Workshop on Models in Software Engineering (MiSE). 2008, pp. 27–
32.

[59] Jaroslav Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Mil-
tiadis Allamanis, Mirella Lapata, and Charles Sutton. “TASSAL:
autofolding for source code summarization”. In: 38th Interna-
tional Conference on Software Engineering Companion (ICSE). 2016,
pp. 649–652.

Bibliography 213

[60] D. Fox and J. L. Kessler. “Experiments in software modeling”.
In: Proceedings of the Fall Joint Computer Conference (AFIPS Fall).
1967, pp. 429–436.

[61] Marko Gasparic and Andrea Janes. “What recommendation sys-
tems for software engineering recommend: A systematic liter-
ature review”. In: Journal of Systems and Software 113 (2016),
pp. 101–113.

[62] Andreas Girgensohn, David Redmiles, and Frank M. Shipman.
“Agent-based support for communication between developers
and users in software design”. In:Ninth Knowledge-Based Software
Engineering Conference (KBSE). 1994, pp. 22–29.

[63] Vinod Goel and Peter Pirolli. “The structure of design problem
spaces”. In: Cognitive Science 16 (1992), pp. 395–429.

[64] James G. Greeno. “Natures of problem-solving abilities”. In:
Handbook of learning and cognitive processes: V. Human informa-
tion. 1978, pp. 239–270.

[65] Martin Grossman, Jay E. Aronson, and Richard V. McCarthy.
“Does UML make the grade? Insights from the software devel-
opment community”. In: Inf. Softw. Technol. 47 (2005), pp. 383–
397.

[66] Nielsen Norman Group. Design Thinking 101. https://www.
nngroup.com/articles/design-thinking/.

[67] Jonathan Grudin. “Computer-supported cooperative work: His-
tory and focus”. In: Computer 27 (1994), pp. 19–26.

[68] Jonathan Grudin and Richard Jacques. “Chatbots, humbots, and
the quest for artificial general intelligence”. In: Conference on
Human Factors in Computing Systems (CHI). 2019, pp. 1–11.

[69] Robert J. Hall. “Trusting your assistant”. In: 11th Knowledge-
Based Software Engineering Conference (KBSE). 1996, pp. 42–51.

[70] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R.
Klemmer. “What would other programmers do: suggesting solu-
tions to error messages”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 2010, pp. 1019–1028.

[71] Lile Hattori and Michele Lanza. “Syde: a tool for collaborative
software development”. In: 32nd ACM/IEEE International Confer-
ence on Software Engineering (ICSE). 2010, pp. 235–238.

214 Bibliography

[72] Regina Hebig, Truong Ho Quang, Michel R. V. Chaudron, Gre-
gorio Robles, and Miguel Angel Fernandez. “The quest for open
source projects that use UML: Mining GitHub”. In: ACM/IEEE
International Conference on Model Driven Engineering Languages
and Systems (MODELS). 2016, pp. 173–183.

[73] Morten Hertzum. “The importance of trust in software engineers’
assessment and choice of information sources”. In: Information
and Organization 12 (2002), pp. 1–18.

[74] Thomas T. Hewett. “Informing the design of computer-based
environments to support creativity”. In: International Journal of
Human-Computer Studies 63 (2005), pp. 383–409.

[75] Qingning Huo, Hong Zhu, and S. Greenwood. “A multi-agent
software engineering environment for testing Web-based appli-
cations”. In: 27th Annual International Computer Software and
Applications Conference (COMPAC). 2003, pp. 210–215.

[76] John Hutchinson, Jon Whittle, and Mark Rouncefield. “Model-
driven engineering practices in industry: Social, organizational
and managerial factors that lead to success or failure”. In: Science
of Computer Programming 89 (2014), pp. 144–161.

[77] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar
Kristo↵ersen. “Empirical assessment of MDE in industry”. In:
33rd International Conference on Software Engineering (ICSE).
2011, pp. 471–480.

[78] Michel Huteau. Les Conceptions cognitives de la personnalité. 1985.

[79] ISO. “ISO 9241-210 Ergonomics of human-system interaction
– Part 210: Human-centred design for interactive systems.” In:
(2019).

[80] ISO/IEC/IEEE. “Systems and software engineering – Architec-
ture description”. In: ISO/IEC/IEEE 42010:2011(E) (Revision of
ISO/IEC 42010:2007 and IEEE Std 1471-2000) (2011), pp. 1–46.

[81] Aníbal Iung, João Carbonell, LucianoMarchezan, Elder Rodrigues,
Maicon Bernardino, Fabio Paulo Basso, and Bruno Medeiros.
“Systematic mapping study on domain-specific language de-
velopment tools”. In: Empirical Software Engineering 25 (2020),
pp. 4205–4249.

[82] Yosef Jabareen. “Building a conceptual framework: Philosophy,
definitions, and procedure”. In: International Journal of Qualita-
tive Methods 8 (2009), pp. 49–62.

Bibliography 215

[83] Nick Jennings and Michael Wooldridge. “Software agents”. In:
IEEE Review 42 (1996), pp. 17–20.

[84] Rodi Jolak. “Understanding and Supporting Software Design
in Model-Based Software Engineering”. PhD thesis. Chalmers
University of Technology and University of Gothenburg, 2020.

[85] John Chris Jones. Design methods: Seeds of human futures. 1970.
[86] Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn Hart-

mann, and Jan Borchers. “Stacksplorer: call graph navigation
helps increasing code maintenance e�ciency”. In: 24th annual
ACM symposium on User Interface Software and Technology (UIST).
2011, pp. 217–224.

[87] Andrew J. Ko and Brad A. Myers. “Extracting and answering why
and why not questions about Java program output”. In: ACM
Transactions on Software Engineering and Methodology 20 (2010),
4:1–4:36.

[88] Dimitrios S. Kolovos, LouisM. Rose, NicholasMatragkas, Richard
F. Paige, Esther Guerra, Jesús Sánchez Cuadrado, Juan De Lara,
István Ráth, Dániel Varró, Massimo Tisi, and Jordi Cabot. “A
research roadmap towards achieving scalability in Model Driven
Engineering”. In:Workshop on Scalability in Model Driven Engi-
neering (BigMDE). 2013.

[89] Oleksii Kononenko, David Dietrich, Rahul Sharma, and Reid
Holmes. “Automatically locating relevant programming help
online”. In: IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). 2012, pp. 127–134.

[90] Terry K. Koo and Mae Y. Li. “A guideline of selecting and report-
ing intraclass correlation coe�cients for reliability research”. In:
Journal of Chiropractic Medicine 15 (2016), pp. 155–163.

[91] Agnes Koschmider, Thomas Hornung, and Andreas Oberweis.
“Recommendation-based editor for business process modeling”.
In: Data & Knowledge Engineering 70 (2011), pp. 483–503.

[92] Carine Lallemand and Guillaume Gronier. Méthodes de design
UX: 30 méthodes fondamentales pour concevoir des expériences opti-
males. 2nd ed. 2018.

[93] Craig Larman. Applying UML and patterns: an introduction to
object oriented analysis and design and interative development. 2012.

[94] Thomas D. LaToza and Brad A. Myers. “Visualizing call graphs”.
In: 2011 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 2011, pp. 117–124.

216 Bibliography

[95] Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen Brafman,
and Scott R. Klemmer. “Designing with interactive example
galleries”. In: SIGCHI Conference on Human Factors in Computing
Systems. 2010, pp. 2257–2266.

[96] Seonah Lee, Sungwon Kang, and Matt Staats. “NavClus: A graph-
ical recommender for assisting code exploration”. In: 2013 35th
International Conference on Software Engineering (ICSE). 2013,
pp. 1315–1318.

[97] Timothy C. Lethbridge. “What knowledge is important to a soft-
ware professional?” In: Computer 33 (2000), pp. 44–50.

[98] Tom Lieber, Joel R. Brandt, and Rob C. Miller. “Addressing mis-
conceptions about code with always-on programming visualiza-
tions”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. 2014, pp. 2481–2490.

[99] Tilmann Lindberg, Christoph Meinel, and Ralf Wagner. “Design
thinking: A fruitful concept for IT development?” In: Design
Thinking: Understand – Improve – Apply. 2011, pp. 3–18.

[100] Robert B. Lount Jr. and Nathan C. Pettit. “The social context of
trust: The role of status.” In: Organizational Behavior and Human
Decision Processes 117 (2012), pp. 15–23.

[101] Jie Lu, DianshuangWu,MingsongMao,WeiWang, and Guangquan
Zhang. “Recommender system application developments: A sur-
vey”. In: Decision Support Systems 74 (2015), pp. 12–32.

[102] Todd Lubart, Christophe Mouchiroud, Sylvie Tordjman, and
Franck Zenasni. Psychologie de la créativité. 2003.

[103] Daniel Lucrédio, Renata P. deM. Fortes, and JonWhittle. “MOOGLE:
a metamodel-based model search engine”. In: Software and Sys-
tems Modeling 11 (2012), pp. 183–208.

[104] AlexanderMaedche, Christine Legner, Alexander Benlian, Benedikt
Berger, Henner Gimpel, Thomas Hess, Oliver Hinz, StefanMorana,
and Matthias Söllner. “AI-based digital assistants”. In: Business
and Information Systems Engineering 61 (2019), pp. 535–544.

[105] Alexander Maedche, Stefan Morana, Silvia Schacht, Dirk Werth,
and Julian Krumeich. “Advanced user assistance systems”. In:
Business and Information Systems Engineering 58 (2016), pp. 367–
370.

Bibliography 217

[106] Thomas W. Malone. “How can human-computer “Superminds”
develop business strategies?” In: The Future of Management in an
AI World: Redefining Purpose and Strategy in the Fourth Industrial
Revolution. 2020, pp. 165–183.

[107] Thomas W. Malone and Michael S. Bernstein. Handbook of Collec-
tive Intelligence. 2015.

[108] Nikos Manouselis and Constantina Costopoulou. “Analysis and
classification of multi-criteria recommender systems”. In: World
Wide Web 10 (2007), pp. 415–441.

[109] Dominique Maurel and Aïda Chebbi. “La perception de la con-
fiance informationnelle. Impacts sur les comportements infor-
mationnels et les pratiques documentaires en contexte organisa-
tionnel”. In: Communication and Organisation 42 (2012), pp. 73–
90.

[110] Collin McMillan, Negar Hariri, Denys Poshyvanyk, Jane Cleland-
Huang, and Bamshad Mobasher. “Recommending source code
for use in rapid software prototypes”. In: 34th International Con-
ference on Software Engineering (ICSE). 2012, pp. 848–858.

[111] Michael F. McTear. “The rise of the conversational interface: A
new kid on the block?” In: Future and Emerging Trends in Lan-
guage Technology. Machine Learning and Big Data. 2017, pp. 38–
49.

[112] Kim Mens and Angela Lozano. “Source code-based recommen-
dation systems”. In: Recommendation Systems in Software Engi-
neering. 2014, pp. 93–130.

[113] Pedro Meseguer. “Towards a conceptual framework for expert
system validation”. In: AI Communication 5 (1992), pp. 119–135.

[114] Alan S. Miller and Tomoko Mitamura. “Are Surveys on Trust
Trustworthy?” In: Social Psychology Quarterly 66 (2003), pp. 62–
70.

[115] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh,
Kalyanmoy Deb, and Mel Ó Cinnéide. “Recommendation system
for software refactoring using innovization and interactive dy-
namic optimization”. In: 29th ACM/IEEE international conference
on Automated software engineering (ASE). 2014, pp. 331–336.

[116] Gail C. Murphy. “Beyond integrated development environments:
Adding context to software development”. In: IEEE/ACM 41st
International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER). 2019, pp. 73–76.

218 Bibliography

[117] Emerson Murphy-Hill and Gail C. Murphy. “Recommendation
delivery - Getting the user interface just right”. In: Recommenda-
tion Systems in Software Engineering. 2014.

[118] Kivanç MuÊlu, Yuriy Brun, Reid Holmes, Michael D. Ernst, and
David Notkin. “Improving IDE recommendations by consider-
ing global implications of existing recommendations”. In: 34th
International Conference on Software Engineering (ICSE). 2012,
pp. 1349–1352.

[119] Gunter Mussbacher, Benoit Combemale, Jörg Kienzle, Silvia
Abrahão, Hyacinth Ali, Nelly Bencomo, Márton Búr, Loli Bur-
gueño, Gregor Engels, Pierre Jeanjean, Jean-Marc Jézéquel, Thomas
Kühn, SébastienMosser, Houari Sahraoui, Eugene Syriani, Dániel
Varró, and Martin Weyssow. “Opportunities in intelligent mod-
eling assistance”. In: Software and Systems Modeling (2020).

[120] Farzaneh Nasirian, Mohsen Ahmadian, and One-Ki (Daniel) Lee.
“AI-based voice assistant systems: Evaluating from the interac-
tion and trust perspectives”. In: 23rd Americas Conference on
Information Systems (AMCIS). 2017.

[121] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen,
and Tien N. Nguyen. “GraPacc: A graph-based pattern-oriented,
context-sensitive code completion tool”. In: 34th International
Conference on Software Engineering (ICSE). 2012, pp. 1407–1410.

[122] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massi-
miliano Di Penta. “CrossRec: Supporting software developers by
recommending third-party libraries”. In: Journal of Systems and
Software 161 (2020), p. 110460.

[123] Jakob Nielsen. “End of web design”. In: Nielsen Norman Group
(2000).

[124] John O’Donovan and Barry Smyth. “Trust in recommender sys-
tems”. In: 10th international conference on Intelligent User Inter-
faces (IUI). 2005, pp. 167–174.

[125] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, and Timo
Kehrer. “ReVision: a tool for history-based model repair rec-
ommendations”. In: 40th International Conference on Software
Engineering: Companion Proceeedings (ICSE). 2018, pp. 105–108.

[126] Harold Ossher, William Harrison, and Peri Tarr. “Software engi-
neering tools and environments: A roadmap”. In: Conference on
The Future of Software Engineering. 2000, pp. 261–277.

[127] Oxford English dictionary (Online).

Bibliography 219

[128] Mert Ozkaya and Ferhat Erata. “Understanding practitioners’
challenges on software modeling: A survey”. In: Journal of Com-
puter Languages 58 (2020).

[129] Philippe Palanque. “Ten objectives and ten rules for designing
automations in interaction techniques, user interfaces and inter-
active systems”. In: Proceedings of the International Conference on
Advanced Visual Interfaces. 2020.

[130] Raja Parasuraman, Thomas B. Sheridan, and Christopher D.
Wickens. “A model for types and levels of human interaction
with automation”. In: IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans 30 (2000), pp. 286–297.

[131] Chris Parnin and Spencer Rugaber. “Resumption strategies for
interrupted programming tasks”. In: IEEE 17th International
Conference on Program Comprehension. 2009, pp. 80–89.

[132] Michael J. Pazzani and Daniel Billsus. “Content-based recom-
mendation systems”. In: The Adaptive Web: Methods and Strategies
of Web Personalization. 2007, pp. 325–341.

[133] Kari Pearlson and Carol Saunders. Managing using information
systems: A strategic approach. 2013.

[134] Sara Pérez-Soler, Esther Guerra, and Juan de Lara. “Collaborative
modeling and group decision making using chatbots in social
networks”. In: IEEE Software 35 (2018), pp. 48–54.

[135] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. “Guide-
lines for conducting systematic mapping studies in software
engineering: An update”. In: Information and Software Technology
64 (2015), pp. 1–18.

[136] Marian Petre. “UML in practice”. In: International Conference on
Software Engineering (ICSE). 2013, pp. 722–731.

[137] Elena Planas and Jordi Cabot. “How are UML class diagrams
built in practice? A usability study of two UML tools: Magicdraw
and Papyrus”. In: Computer Standards Interfaces 67 (2020).

[138] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Michele Lanza. “Mining StackOverflow to turn
the IDE into a self-confident programming prompter”. In: 11th
Working Conference on Mining Software Repositories (MSR). 2014,
pp. 102–111.

220 Bibliography

[139] Luca Ponzanelli, Simone Scalabrino, Gabriele Bavota, Andrea
Mocci, Rocco Oliveto, Massimiliano Di Penta, and Michele Lanza.
“Supporting software developers with a holistic recommender
system”. In: IEEE/ACM 39th International Conference on Software
Engineering (ICSE). 2017, pp. 94–105.

[140] Javier Portillo-Rodríguez, Aurora Vizcaíno, Mario Piattini, and
Sarah Beecham. “Tools used in global software engineering: A
systematic mapping review”. In: Information and Software Tech-
nology 54 (2012), pp. 663–685.

[141] Pearl Pu and Li Chen. “Trust building with explanation inter-
faces”. In: 11th International Conference on Intelligent User Inter-
faces (IUI). 2006, pp. 93–100.

[142] Pearl Pu, Li Chen, and Rong Hu. “A user-centric evaluation
framework for recommender systems”. In: 5th ACM conference
on Recommender systems (RecSys). 2011, pp. 157–164.

[143] MohammadMasudur Rahman, Shamima Yeasmin, and Chanchal
K. Roy. “Towards a context-aware IDE-based meta search engine
for recommendation about programming errors and exceptions”.
In: IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering (CSMR-WCRE). 2014, pp. 194–203.

[144] Paul Ralph. “Comparing two software design process theories”.
In: Global Perspectives on Design Science Research. 2010, pp. 139–
153.

[145] Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, Ben Shneider-
man, Randy Pausch, Ted Selker, and Mike Eisenberg. Design
principles for tools to support creative thinking. Tech. rep. 2005.

[146] Martin P. Robillard and Robert J. Walker. “An introduction to
recommendation systems in software engineering”. In: vol. Rec-
ommendation Systems in Software Engineering. 2014, pp. 1–
11.

[147] Jennifer Rowley. “The wisdom hierarchy: representations of the
DIKW hierarchy”. In: Journal of Information Science 33 (2007),
pp. 163–180.

[148] Bernard Roy. Multicriteria methodology for decision aiding. 2013.

[149] Yong Rui. “From artificial intelligence to augmented intelli-
gence”. In: IEEE MultiMedia 24 (2017), pp. 4–5.

[150] Mark A. Runco and Steven R. Pritzker. Encyclopedia of creativity.
1999.

Bibliography 221

[151] Ioana Rus. “Guest editors’ introduction: Knowledgemanagement
in software engineering”. In: IEEE Software 19 (2002), pp. 26–38.

[152] Safdar Aqeel Safdar, Muhammad Zohaib Iqbal, and Muhammad
Uzair Khan. “Empirical evaluation of UML modeling tools–A
controlled experiment”. In: Modelling Foundations and Applica-
tions. 2015, pp. 33–44.

[153] Ripon K. Saha, Hiroaki Yoshida, Mukul R. Prasad, Susumu Toku-
moto, Kuniharu Takayama, and Isao Nanba. “Elixir: an auto-
mated repair tool for Java programs”. In: 40th International Con-
ference on Software Engineering: Companion Proceeedings (ICSE).
2018, pp. 77–80.

[154] Rosa San Segundo. “A new concept of knowledge”. In: Online
Information Review 26 (2002), pp. 239–245.

[155] André L. Santos, Gonçalo Prendi, Hugo Sousa, and Ricardo
Ribeiro. “Stepwise API usage assistance using n-gram language
models”. In: Journal of Systems and Software 131 (2017), pp. 461–
474.

[156] Maxime Savary-Leblanc, Loli Burgueño, Xavier Le-Pallec, Sébastien
Gérard, and Jordi Cabot. SLR data tables and resources. https://software-
assistant.univ-lille.fr. 2021.

[157] Maxime Savary-Leblanc, Xavier Pallec, and Sébastien Gérard. “A
recommender system to assist conceptual modeling with UML”.
In: International Conference on Software Engineering and Knowl-
edge Engineering (SEKE). 2021.

[158] Dmitrii Savchenko, Jussi Kasurinen, and Ossi Taipale. “Smart
tools in software engineering: A systematic mapping study”. In:
42nd International Convention on Information and Communica-
tion Technology, Electronics and Microelectronics (MIPRO). 2019,
pp. 1509–1513.

[159] Nicholas Sawadsky, Gail C. Murphy, and Rahul Jiresal. “Reverb:
Recommending code-related web pages”. In: 35th International
Conference on Software Engineering (ICSE). 2013, pp. 812–821.

[160] J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen.
“Collaborative filtering recommender systems”. In: The Adaptive
Web: Methods and Strategies of Web Personalization. 2007, pp. 291–
324.

[161] Gabriel Sebastián, Jose A. Gallud, and Ricardo Tesoriero. “Code
generation using model driven architecture: A systematic map-
ping study”. In: Journal of Computer Languages 56 (2020).

222 Bibliography

[162] Ángel Mora Segura and Juan de Lara. “Extremo: An Eclipse
plugin for modelling and meta-modelling assistance”. In: Science
of Computer Programming 180 (2019), pp. 71–80.

[163] Nigel Shadbolt, EnricoMotta, and A. Rouge. “Constructing knowledge-
based systems”. In: IEEE Software 10 (1993), pp. 34–38.

[164] Saad Shafiq, Atif Mashkoor, Christoph Mayr-Dorn, and Alexan-
der Egyed. Machine learning for software engineering: A systematic
mapping. 2020.

[165] Patrick C. Shih, Gina Venolia, and Gary M. Olson. “Brainstorm-
ing under constraints: why software developers brainstorm in
groups”. In: 25th BCS Conference on Human-Computer Interaction
(BCS-HCI). 2011, pp. 74–83.

[166] Proceedings of the 1st International Workshop on Bots in Software
Engineering (BotSE). 2019.

[167] Ben Shneiderman. “Creating Creativity: User Interfaces for Sup-
porting Innovation”. In: ACM Transactions on Computer-Human
Interaction (TOCHI) 7 (2000), pp. 114–138.

[168] Alejandra Siles Antezana. “TOAD: A tool for recommending
auto-refactoring alternatives”. In: IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE).
2019, pp. 174–176.

[169] Eric Simon. “La confiance dans tous ses états”. In: Revue française
de gestion 33 (2007).

[170] Herbert A. Simon. “The structure of ill structured problems”. In:
Artificial Intelligence 4 (1973), pp. 181–201.

[171] Handbook of creativity. 1999.

[172] Robert J. Sternberg, Todd I. Lubart, James C. Kaufman, and Jean
E. Pretz. “Creativity.” In: The Cambridge handbook of thinking and
reasoning. 2005, pp. 351–369.

[173] Margaret-Anne Storey, Alexander Serebrenik, Carolyn Penstein
Rosé, Thomas Zimmermann, and James D. Herbsleb. “BOTse:
Bots in software engineering (Dagstuhl Seminar 19471)”. In:
Dagstuhl Reports 9 (2020), pp. 84–96.

[174] Margaret-Anne Storey and Alexey Zagalsky. “Disrupting devel-
oper productivity one bot at a time”. In: 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(FSE). 2016, pp. 928–931.

Bibliography 223

[175] Didi Surian, Nian Liu, David Lo, Hanghang Tong, Ee-Peng Lim,
and Christos Faloutsos. “Recommending people in developers’
collaboration network”. In: 2011 18th Working Conference on
Reverse Engineering (WCRE). 2011, pp. 379–388.

[176] Ben Swift, Andrew Sorensen, Henry Gardner, and John Hosking.
“Visual code annotations for cyberphysical programming”. In:
1st International Workshop on Live Programming (LIVE). 2013,
pp. 27–30.

[177] Watanabe Takuya and Hidehiko Masuhara. “A spontaneous code
recommendation tool based on associative search”. In: 3rd Inter-
national Workshop on Search-Driven Development: Users, Infras-
tructure, Tools, and Evaluation (SUITE). 2011, pp. 17–20.

[178] Antony Tang and Hans van Vliet. “Modeling constraints im-
proves software architecture design reasoning”. In: Joint Working
IEEE/IFIP Conference on Software Architecture European Confer-
ence on Software Architecture (WICSA-ECSA). 2009, pp. 253–256.

[179] Cédric Teyton, Jean-Rémy Falleri, Floréal Morandat, and Xavier
Blanc. “Find your library experts”. In: 20th Working Conference
on Reverse Engineering (WCRE). 2013, pp. 202–211.

[180] Andreas Thies and Christian Roth. “Recommending rename
refactorings”. In: 2nd International Workshop on Recommendation
Systems for Software Engineering (RSSE). 2010, pp. 1–5.

[181] John C. Thomas, Alison Lee, and Catalina Danis. “Enhancing
creative design via software tools”. In: Communications of the
ACM 45 (2002), pp. 112–115.

[182] Nava Tintarev and Judith Mastho↵. “A survey of explanations in
recommender systems”. In: 2007 IEEE 23rd International Confer-
ence on Data Engineering Workshop. 2007, pp. 801–810.

[183] Suzanne Tolmeijer, Ujwal Gadiraju, Ramya Ghantasala, Akshit
Gupta, and Abraham Bernstein. “Second chance for a first im-
pression? Trust development in intelligent system interaction”.
In: 29th ACM Conference on User Modeling, Adaptation and Per-
sonalization (UMAP). 2021, pp. 77–87.

[184] Sven Tuzovic. “Talk to me – The rise of voice assistants and
smart speakers: A balance between e�ciency and privacy”. In:
Handbook of Digital Marketing and Social Media. 2021.

224 Bibliography

[185] Marialena Vagia, Aksel A. Transeth, and Sigurd A. Fjerdingen.
“A literature review on the levels of automation during the years.
What are the di↵erent taxonomies that have been proposed?” In:
Applied Ergonomics 53 (2016), pp. 190–202.

[186] Ragnhild Van Der Straeten, Tom Mens, and Stefan Van Baelen.
“Challenges in model-driven software engineering”. In: Models
in Software Engineering. 2009, pp. 35–47.

[187] Petcharat Viriyakattiyaporn and Gail C. Murphy. “Improving
program navigation with an active help system”. In: Conference
of the Center for Advanced Studies on Collaborative Research (CAS-
CON). 2010, pp. 27–41.

[188] Kai Wang and Je↵rey V. Nickerson. “A literature review on in-
dividual creativity support systems”. In: Computers in Human
Behavior 74 (2017), pp. 139–151.

[189] Lijie Wang, Lu Fang, Leye Wang, Ge Li, Bing Xie, and Fuqing
Yang. “APIExample: An e↵ective web search based usage exam-
ple recommendation system for java APIs”. In: 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
2011, pp. 592–595.

[190] Jon Whittle, John Hutchinson, Mark Rouncefield, Håkan Bur-
den, and Rogardt Heldal. “Industrial adoption of Model-Driven
Engineering: Are the tools really the problem?” In: ACM/IEEE
International Conference on Model Driven Engineering Languages
and Systems (MODELS). 2013, pp. 1–17.

[191] Michael Wooldridge. “Intelligent agents: The key concepts”. In:
Multi-Agent Systems and Applications II. 2002, pp. 3–43.

[192] Congying Xu, Bosen Min, Xiaobing Sun, Jiajun Hu, Bin Li, and
Yucong Duan. “MULAPI: A tool for API method and usage lo-
cation recommendation”. In: IEEE/ACM 41st International Con-
ference on Software Engineering: Companion Proceedings (ICSE).
2019, pp. 119–122.

[193] Yasuhiro Yamamoto and Kumiyo Nakakoji. “Interaction design
of tools for fostering creativity in the early stages of information
design”. In: International Journal of Human-Computer Studies 63
(2005), pp. 513–535.

[194] Zhiqiang Yan, Remco Dijkman, and Paul Grefen. “Business pro-
cess model repositories – Framework and survey”. In: Information
and Software Technology 54 (2012), pp. 380–395.

Bibliography 225

[195] Weizhao Yuan, Hoang H. Nguyen, Lingxiao Jiang, and Yuting
Chen. “LibraryGuru: API recommendation for Android devel-
opers”. In: 40th International Conference on Software Engineering:
Companion Proceeedings (ICSE). 2018, pp. 364–365.

[196] Alexey Zagalsky, Ohad Barzilay, and AmiramYehudai. “Example
Overflow: Using social media for code recommendation”. In: 3rd
International Workshop on Recommendation Systems for Software
Engineering (RSSE). 2012, pp. 38–42.

[197] Cheng Zhang, Juyuan Yang, Yi Zhang, Jing Fan, Xin Zhang, Jian-
jun Zhao, and Peizhao Ou. “Automatic parameter recommenda-
tion for practical API usage”. In: 34th International Conference on
Software Engineering (ICSE). 2012, pp. 826–836.

226 Bibliography

Bibliography 227

228 Bibliography

Index

Information about the concepts listed below can be found at the
indicated pages.

A
accuracy, 81, 113, 131, 147
adaptability (system), 116, 150
added value, 88
a↵ective factors, 118, 120
aggregation function, 133, 152
algorithm tunability, 114
A-RCRAFT, 136
attractiveness, 113, 131
augmented intelligence, 122
authority (allocation), 136, 152
automation, 45, 102, 108, 135

B
believability, 114, 131
Bolt, 183

C
cognitive

factors, 118, 119, 121
styles, 120

collective intelligence, 122
conative factors, 118, 120
concerns (system), 143
confidence, 111
confidence indicator, 41, 79, 89
context, 88, 147, 148

adaptability, 133, 152
compatibility, 114, 131

control
system, 114

coverage, 113, 131
creative problem solving, 23
creativity, 102, 108, 116

characteristics, 118
definition, 116
in software design, 118

criteria
context-accuracy, 152
explainability, 152
family of, 129
identification, 131
rating scores, 172
trustworthiness, 152

currency, 113, 131
Cypher, 179

D
data manageability, 114
datasources, 148
dbpl, 32
display tailorability, 114
distraction, 89
diversity, 113, 131

229

230 Index

E
ease of use (system), 114
Eclipse, 185
environment tailorability, 126,

150
environmental factors, 118, 120
evolvability, 145
exosystems, 121
explanation, 42, 80, 90, 91, 148,

187
explicability, 113, 131

F
feedback, 42, 80, 147
functional architecture, 147
functions (allocation), 136, 152

G
GenMyModel, 163, 181
graph, 181

H
handover, 137, 153

I
ill-structured problems, 23, 121
information

repository, 148, 149
systems, 110
trustworthiness, 90, 114,

116, 131, 148, 150
informer systems, 40
infrastructure, 149
intelligence, 121
interoperability, 127, 149, 150
interviews, 59, 61
ISO

9241-210, 5
42010, 139

iterative alignment, 117, 118

J
Java, 39, 179

JSON, 183

K
knowledge, 15, 121

availability, 122, 124, 150
back-end, 148, 149
base, 123, 147, 148, 150
display, 148
domain, 71, 75
ease of access, 88, 125, 150
levels of, 123
representation, 122, 124,

148
representation choice, 124,

150
representation switch, 124,

150

L
labelled data, 191
loyalty, 112

M
machine learning, 44, 177, 184,

192
macrosystems, 121
maintainability, 145
mesosystems, 121
microsystems, 121
model

completeness, 75
correctness, 75

modeling assistance
features, 74, 147
need for, 99

N
Neo4j, 179
novelty, 113, 131
NVivo, 62

O
object of decision, 129, 130, 152

Index 231

openness to experience, 115

P
Papyrus, 161
performance, 147
personality traits, 115
persuasion, 111
plugin, 184
practitioners, 59
prototype, 179

Q
qualitative research, 61

R
recommender systems, 87, 102,

108, 127, 162
active, 41
collaborative filtering, 127
content-based, 128
info.-trustworthiness, 113
knowledge-based, 128
limitations, 128
metrics, 191
multi-criteria, 128
passive, 40
single-criterion, 127
system adaptability, 113

requirements (system), 149
resources (allocation), 137, 153
responsibility (allocation), 136,

152
risk, 25, 115, 144
RxJava, 183

S
satisfaction, 112
software

agents, 14
bots, 14
design vs modeling, 22

software assistants, 15

for software modeling, 17
in software engineering, 27
interactions, 88, 100
trigger, 79, 101
types, 100

software engineering
tools, 13

software modeling
formal, 67
informal, 67
know-how, 71
methodology, 71
notation, 71
practice, 19
task, 21, 147
tool usage, 71
tools, 20, 66, 147

SpringBoot, 179
stakeholders, 142, 147
structural architecture, 148
supervised learning, 134

T
takeover, 137, 153
threshold

low, high ceiling, 126, 150
transparency, 89, 122

information, 114
system, 114

trust, 101, 108, 111, 115
definition, 108
in collaboration, 82
interpersonal, 108
metamodel, 111
organizational, 108
social, 109

U
update site, 180
usability, 88, 122, 126, 148
use cases, 194
user

232 Index

freedom, 126, 148, 150
intent, 147
interface, 148

user-centred design, 5
user-interface, 185
utility function, 132

determination, 134

selection, 132

V
viewpoint (architecture), 146

X
xmi, 181

Contents

Abstract ix

Acknowledgements xiii

Acronyms xvii

Summary xix

List of Tables xxi

List of Figures xxiii

1 Introduction 1
1.1 Global context . 1
1.2 Thesis directions . 2

1.2.1 Software assistants 2
1.2.2 Current software modeling issues 3
1.2.3 A solution to software modeling issues 3

1.3 Research methodology 4
1.3.1 Research approach 4
1.3.2 Thesis research questions 7
1.3.3 Structure of the thesis manuscript 9

I The current state of software modeling assistance 11

2 Supporting software modeling: context and challenges 13
2.1 Tool support in Software Engineering 13
2.2 A new wave of assistance systems: Software Assistants 15

2.2.1 Software Assistants 15
2.2.2 Knowledge provided by software assistants . . 15

233

234 Contents

2.3 Challenges of Software Assistants for Software Modeling 17
2.3.1 Software Assistants for Software Modeling . . . 17
2.3.2 Addressing modeling issues 18
2.3.3 The nature of the modeling task 21

2.4 Conclusion . 25

3 Software Assistants for software engineering in literature 27
3.1 Related works . 27
3.2 Research Method . 29

3.2.1 Research questions 29
3.2.2 Inclusion and exclusion criteria 30
3.2.3 Search Process and Paper selection 31
3.2.4 Snowballing . 34
3.2.5 Data extraction 35

3.3 Results: Analysis and classification of software assistants 37
3.3.1 Selected papers 37
3.3.2 Analysis and classification results 37

3.4 Limitations and Threats to Validity 46
3.4.1 External validity 46
3.4.2 Construct validity 47
3.4.3 Internal validity 48

3.5 Discussion, open lines of work and challenges 48
3.5.1 R.Q. 1 . 48
3.5.2 R.Q. 2 . 49
3.5.3 R.Q. 3 . 50
3.5.4 R.Q. 4 . 51

3.6 Conclusions . 52
Contribution from our research approach 53

4 The need for assistance in software modeling practice 59
4.1 Study design . 59

4.1.1 Research questions 60
4.1.2 Research method 61

4.2 Results . 63
4.2.1 Demographics 63
4.2.2 R.Q. 1 . 64
4.2.3 R.Q. 2 . 72
4.2.4 R.Q. 3 . 78
4.2.5 R.Q. 4 . 81

4.3 Discussion . 85
4.3.1 R.Q. 1 . 85
4.3.2 R.Q. 2 . 86

Contents 235

4.3.3 R.Q. 3 . 89
4.3.4 R.Q. 4 . 90

4.4 Threats to validity . 92
4.5 Conclusion . 94

5 The big picture of software modeling assistance 99
5.1 Expectations vs. Reality 99
5.2 Key notions in modeling assistance 101

5.2.1 Trust . 101
5.2.2 Creativity . 102
5.2.3 Recommendations 102
5.2.4 Automation 102

5.3 Towards formalizing modeling assistants 103

II Designing Software Assistants for Modeling 105

6 Identifying design constraints from the literature 107
6.1 Enabling trust in human-assistant collaboration . . . 108

6.1.1 The need for trust in modeling assistants . . . 108
6.1.2 A metamodel of trust in RS 111
6.1.3 Approach to design trust-fostering assistants . 115

6.2 Addressing creativity issues 116
6.2.1 Framing creativity for software modeling . . . 116
6.2.2 Understanding creativity characteristics . . . 118
6.2.3 Software characteristics to support creativity . 122

6.3 Building a Recommender System for modeling 127
6.3.1 Single-criterion recommendation approaches . . 127
6.3.2 Multi-Criteria Rating Recommender Systems . 128
6.3.3 Defining the object of decision 129
6.3.4 Criteria Identification 131
6.3.5 Utility Function 132

6.4 Designing automation 135
Formalizing these design constraints 137

7 A framework for designing SASM 139
7.1 SASM framework definition 139
7.2 Architecture rationale 141
7.3 System stakeholders 142
7.4 System concerns . 143
7.5 Concerns/stakeholders association 145
7.6 Architecture viewpoints 146

236 Contents

7.6.1 Functional architecture viewpoint 147
7.6.2 Structural architecture viewpoint 148
7.6.3 Infrastructure viewpoint 149
7.6.4 System requirements viewpoint 149

7.7 Correspondence rules 153

III Validating our approach: preliminary work 159

8 Designing a software modeling assistant 161
8.1 Modeling assistant design 161

8.1.1 Functional architecture description 162
8.1.2 Structural architecture description 163
8.1.3 Infrastructure description 164
8.1.4 System requirements description 165
8.1.5 System concerns overview 167

8.2 Designing the multi-criteria recommender system . . 169
8.2.1 Formal background 170
8.2.2 Object of decision and criteria identification . . 171
8.2.3 In-class recurrence criterion (C1) 172
8.2.4 In-class exclusivity criterion (C2) 174
8.2.5 Attribute synergy criterion (C3) 174
8.2.6 Context similarity criterion (C4) 175
8.2.7 Utility Function 176

9 Prototyping the software modeling assistant 179
9.1 Architecture overview 179
9.2 Building the knowledge base 180
9.3 Implementing the knowledge back-end 181

9.3.1 Multi-criteria recommender system 183
9.3.2 Machine-learning mechanism 184

9.4 Integrating the assistant into Papyrus 184
9.4.1 Creating the Papyrus assistant plugin 185
9.4.2 Designing the user interface 185

An early validation of the formal framework 188

10 Early evaluation of our system 189
10.1 Evaluation of the modeling recommender system . . 189

10.1.1 Data gathering 190
10.1.2 Evaluation metrics 191
10.1.3 Metrics results 192
10.1.4 Discussion . 193

Contents 237

10.2 Use cases . 194
10.2.1 Case 1: the general knowledge base 195
10.2.2 Case 2: adding domain-specific knowledge . . 195
10.2.3 Discussion . 197

An early evaluation of the system 197

Conclusion 199
Research approach rationale 199
Main results . 200

Research questions . 201
Future work . 203

Bibliography 207

Index 229

Contents 233

238 Contents

