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Chapter 1

Introduction

1.1 Homogenization of heterogeneous materials prop-

erties

1.1.1 Heterogeneous materials

A heterogeneous material is one that is composed of sub domains with different materials

(phases), such as a composite, or the same material in different states, such as a polycrys-

tal. According to the review article [2], heterogeneous materials can be divided into porous

and non-porous materials.

Porous materials at their turn can be divided into three main groups: fabrics, agglom-

erates, and aggregates. Aggregates (see Fig.1.1-(a)) are composed of stacked individual

particles that are surrounded by a network of inter-particle spaces. Aggregates encompass

a diverse range of coarse particle materials, such as sand, rice, gravel, crushed stone, and

slag. Agglomerates are collections of solid primary particles of any size or shape that are

kept together by adhesive and/or cohesive forces. Agglomerates are by definition mul-

tiphase materials, containing at least one fluid phase in the interstitial volume between
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main particles [3]. Cellular materials can be described as a type of agglomerate. Cellular

materials consist mainly of polyhedral cells with solid edges or faces [4]. Cellular materials

are further divided into open-cell structures (see Fig.1.1-(b)) (only cell edges exist in the

material microstructure) and closed-cell structures (see Fig.1.1-(c)) (contain cell faces that

separate each cell from its neighbours in the material microstructure). Fabrics are generally

divided into woven bodies made by processes such as weaving, knitting, and sewing and

non-woven bodies in which the fibers are mechanically, chemically or physically bonded into

a possibly random web structure. Fabrics are generally divided into woven structures and

non-woven structures. Woven structures are generally made of woven, knitted, stitched or

knitted. Woven structures are inherently made of fibre and have a layered character, which

can be divided into 2D woven (see Fig.1.1-(d)) and 3D woven structures (see Fig.1.1-(e))

depending on the direction of processing. 2D weave structures can be divided into plain,

twill and satin weave. 3D weave structures can be divided into interlaced or interlocked

fabrics. Ansar et al. [7] gives an review of modelling of 3D woven composites. Non-woven

structures are made by mechanically, chemically or thermally bonding their fibres into a

random web structure. By changing the material, the bonding mechanism or the bonding

point and fibre density, the non-wovens can be tailored to different requirements and thus

used in a variety of applications.

Non-porous materials are further classified as polycrystals, bicontinuous composites, and

matrix-inclusion materials. A polycrystal (see Fig.1.1-(f)) is made up of numeros crystal-

lites with varying crystal orientations separated by grain boundaries. Metals, their alloys,

ceramic materials, rocks, and ice are mostly polycrystalline. Bicontinuous composites (see

Fig.1.1-(e)) comprise two solid phases, each spatially continuous and forming an interpen-

etrating network, such as carbon/silica composite [8] or nanoporous titanium-based com-

posites [6]. Matrix-inclusion composites (see Fig.1.1-(f)) are defined by non-overlapping

particles embedded in an interconnected matrix.
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(a) Olivine (b) Open-cell foam (c) Closed-cell foam

(d) 2D woven fabric (From Tex-
gen)

(e) 3D woven fabric (From Tex-
gen)

(f) YAG(Y3AL5O12) ceramics
after thermal etching [5]

(g) Carbon epoxy bicontinuous
composite [6].

(h) Fiber-reinforced
composite[2]

Figure 1.1: Example of heterogeneous materials.
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1.1.2 Homogenization methods

Materials exhibit different properties for different physical contexts, including mechanical

[9], thermal [10, 11], and electrical [12] properties.

Material’s mechanical properties define the material’s behavior under the action of a load-

ing external force, generally including elasticity, strength, plasticity, toughness.

Thermal characteristics refer to a material’s response to temperature variations and heat

application. This response may take the form of an increase in temperature, a phase

change, a change in length or volume, the commencement of a chemical reaction, or some

other change in physical or chemical properties. They include thermal conductivity, heat

capacity, and thermal expansion (thermo mechanical property).

Electrical properties reflect materials ability to conduct electricity. Resistivity, electrical

conductivity are all examples of electrical properties.

The main purpose of homogenization is to determine the <<equivalent>> properties of

heterogeneous materials based on the knowledge of their components properties and spacial

arrangement. This makes it possible to replace the composite medium with an equivalent

homogeneous medium at the macroscopic level.

In general, there are two classes of methods to estimate the equivalent properties of mate-

rials: analytical and numerical ones. The analytical methods were the first homogenization

approaches to be proposed, leading to several expressions to estimate equivalent proper-

ties of a heterogeneous medium. Mean field methods are one type of analytical methods.

These methods consider the immersion of inclusions with simple geometries into an infinite

matrix or effective medium and require simple microstructural informations such as the

volume fraction and mean morphology of the inclusions [2].

Among the mean-field homogenization techniques, a distinction can be made between the

bounding method and the estimated mean-field method [13]. The bounding method gen-

erally gives an acceptable range of valid attributes. For example: Voigt [14] and Reuss

[15] estimates. They determine the upper and lower bounds of a material’s equivalent
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properties. Hashin and Shtrikman [16] used the variational theorem to derive bounds on

the equivalent properties of macroscopically homogeneous and isotropic two-phase mate-

rials. For other related models, a review is presented by Pietrak et al. [17]. The second

class of method gives approximate valid attributes. For example: Maxwell model [18] or

Maxwell-Eucken model [19], the Mori-Tanaka mean field [20, 21], the self-consistent method

[22, 23, 24]. The Mori-Tanaka mean field is achieved by averaging the effective fields acting

on each heterogeneity as a field on a matrix. The self-consistent method was originally

proposed for use with crystalline aggregates [22, 23]. It was later extended by Hill [24] for

multiphase materials. Many researchers have also successfully applied mean-field meth-

ods to heterogeneous materials such as porous materials [25, 26], particulate composites

[27, 28], fibre-reinforced composites [29, 30, 31] and polycrystals [32, 33].

Typically, Mean field methods are only accurate for assessing equivalent properties when

the volume fraction of the inclusion phase is small. For inclusions, phases are limited to

simple mathematical morphologies, i.e., spheres, ellipsoids, etc [2]. As a result, analytical

methods are insufficient for estimating the equivalent properties of materials with complex

microstructures and morphologies, such as nanostructured materials or advanced compos-

ites. Numerical methods are therefore very helpful in practically obtaining the equivalent

properties. With the computational homogenization methods, we need to consider a char-

acteristic sample of the material whose homogenized properties are expected to coincide

with the material’s ones. Since computation of large volumes is often prohibitive, we need

to create a model sufficiently large to provide accurate results and small enough so that

computations can be carried out with reasonable time and memory, such a model is called

Representative Volume Element (RVE) [34]. In order to satisfy the assumption that the

average properties of the RVE are equal to the average properties of a given heterogeneous

material, the RVE must contain sufficient microstructural information. Furthermore the

RVE is the smallest equivalent material volume element in the composite [35]. Currently,

computational homogenization methods have become powerful approaches to determine

the properties of heterogeneous materials due to the relative speed of its calculation, the
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accuracy of its results, and its application to potentially any heterogeneous material. Such

computational methods include Finite Element Method, Fast Fourier Transform, Boundary

Element Method, Finite Different Method, Phase Field, etc.

1.2 Computational homogenization of heterogeneous

materials

1.2.1 Representative models for the material architecture

The structure of a material is generally obtained from design assumptions, the observation

of manufactured samples or sample computations. Once the material structure has been

determined, a digital representative model needs to be built for further study.

CAD models

There are many available computational tools to generate CAD models for various kinds

of heterogeneous materials. Popular in the composites world are WiseTex [36], TexGen

[37], and Texmind braider [38]. These are powerful and efficient softwares that can handle

textile reinforcement of any structure, including unidirectional (UD), non-crimped fabrics

(NCF) and 3D, and all feature cell meshing [39]. In addition to the tools mentioned above,

several researchers have proposed methods for CAD modelling. For example, Wedling et al.

[39] proposed a novel CAD modeling method of the geometry of interlock fabrics unit cells.

Chen et al. [40] also propose a CAD modelling approach for Complex Woven Fabrics. For

CAD modelling of polycrystalline materials, Neper [41] is a powerful tool for polycrystal

generation and meshing. Some researchers have also proposed some CAD modelling for

polycrystalline materials, such as Ghosh et al. [42] provided a robust CAD-based approach

for modelling the three-dimensional microstructures of polycrystalline metals using crys-
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tallographic data acquired using a focused ion beam (FIB)–scanning electron microscopy

(SEM) system. For porous materials, Kou et al. [43, 44] proposed a CAD-based approach

for irregular porous structures. There are other software such as Surface Evolver [45] for the

study of surfaces formed by surface tension and other energies, which can handle arbitrary

topologies, volume constraints, boundary constraints, boundary contact angles, crystal

quilt functions, gravity, etc. As can be seen from the brief review above, most constructive

CAD modelling methods are able to represent only some of the various architectures that

can be found in real world materials.

Models based on conformal meshes

In a volume mesh-based model, a heterogeneous material is represented as a collection

of polyhedra. They are conformal in the sense that the boundaries of all elements are

expected to represent faithfully the interfaces between the different phases involved. For

meshing, the following widely used methods have been proposed by several researchers:

the model meshed by the Delaunay triangulation method [46, 47] shown in Fig.1.2-(a).

Fig.1.2-(b) and (c) show the model meshed by the Quadtree and Octree methods [48, 49].

Lo [50] provided a comprehensive review of the above common mesh generation techniques

for general applications. These most frequently used approaches prioritize geometric and

topological compatibility, with geometric compatibility guaranteeing that the mesh roughly

matches the geometry of the target model and topological compatibility ensuring that the

elements have the proper adjacency [51]. However, for some heterogeneous materials,

traditional meshing methods are often difficult to implement, such as 3D woven fiber

structures, where it is often not feasible to avoid distorted elements when using traditional

meshing methods, and a lot of time has to be invested in handcrafting high quality meshes

[52]. Therefore some researchers have proposed different meshing methods for different

heterogeneous materials, such as Grail et al. [53] who created a new automated method

for the mesoscale representation of textile composites unit cells to generate smooth Finite
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(a) The Delaunay triangulation
method

(b) The Quadtree method (c) The Octree method

Figure 1.2: Mesh generation techniques

Element meshes. Wintiba et al. [54] developed an automated program for the generation

and conformal discretization of 3D woven composites RVEs. Rassineux [55] presented a

methodology to create conformal tetrahedral meshes of realistic complex woven unit cells.

In the field of polycrystalline materials, Quey [41] proposed a method for the generation

and meshing of large-scale three-dimensional random polycrystals. Resk [56] developed

an adaptive mesh refinement and automatic reshaping scheme to study crystal plasticity

with an anisotropic mesh refinement strategy based on the level set description. S2M is a

well-established software for generating conformal meshes for polycrystalline materials.

Voxel based models

Voxel based modeling is a way of representing three-dimensional objects on regular hexa-

hedral cells. Due to their inherent discrete nature, they are naturally suited to scientific

analysis and visualization involving volumes. Voxel modeling becomes more accurate as

the size of voxels gets smaller and often requires relatively large amount of memory to han-

dle the discretized data. With the increased affordability of computers with large memory,

this defect tends to become less penalizing. More importantly, voxel models can effectively

represent the complex internal geometrical details of solid models and allow to easily han-

dle internal properties that are anisotropic or heterogeneous. Models that are difficult to
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realize in traditional modeling schemes, such as the human body [57] and internal organs,

are easily realized with voxel models[58, 59]. Generally, x-ray tomography and magnetic

resonance imaging equipment can be used to obtain the data. Overall, the advantages

of voxel modeling include simplicity, intuitive representation, identical complexity for all

objects, model heterogeneity that can be easily incorporated into the analysis. Disadvan-

tages include fixed discretization topology and size, large memory requirements, and lack

of geometric representation. Due to the advantages of voxel, numerous researchers have

chosen voxel models for heterogeneous materials. For example, Lebensohn et al. [60] first

extended voxel-based FFT-based approach to crystal viscoplasticity. Kim et al. [61] pre-

sented a novel voxel-based meshing and analysis techniques based on bilinear and trilinear

elements to construct textile composites. Lebensohn et al. [62] proposed a voxel-based fast

fourier transform-based modeling for the determination of micromechanical fields in poly-

crystals. Segurado et al. [63] simulated the deformation of polycrystalline nanostructured

Ti with a voxel-FE model. Kabel et al. [64] proposed a method which use of composite

voxels in FFT-based homogenization. Mareau et al. [65] presented different composite

voxel approaches to inelastic heterogeneous materials with multiple length scales. Sossou

et al. [66] developed a voxel-based modeling framework for modeling and rapidly simulat-

ing the behavior of smart materials. Phung et al. [67] developed a voxel-based meshing

framework for modelling crack extension in heterogeneous materials. Berbenni et al. [68]

proposed a voxel-based fast Fourier transform-based mesoscale field dislocation mechanics

study of grain size effects and reversible plasticity in polycrystals. Marano et al. [69] used

a voxel model and an FFT-based approach to investigate the effect of strain gradients on

crystal plasticity.

1.2.2 Computational homogenization methods

Once the model has been obtained by the above method, it can be calculated using a compu-

tational homogenisation method, such as Finite Element Method, Fast Fourier Transform,
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Boundary Element Method, Finite Different Method, Phase Field, etc.

Finite Element Method

The Finite Element Method (FEM) is a highly effective and commonly used numerical

calculation method. FEM is based on the variational principle and the weighted residue

method. The primary solution idea is to divide the computational domain into a finite

number of non-overlapping cells. Within each cell, select some suitable nodes as interpo-

lation points for the solution function. The PDE is solved discretely with the help of the

variational principle or the weighted residual method.

The advantage of the Finite Element Method is that it is highly versatile, popular and

well documented. There is a lot of very good available open source as well as commercial

softwares. The disadvantage is, for example, that the model must be meshed in order to

perform finite element calculations. And the cost of meshing is too high for some complex

structures. The implicit form of the FEM, depending on the particular conditions and the

solver used, has a time complexity of O(n2 − n3). This complexity also limits the use of

very large meshes [70].

The Finite Element Method has been used by many researchers to calculate the prop-

erties of heterogeneous materials. For instance, Hollister and Kikuchi [71] used Finite

Element Method to compare homogenization and standard mechanics RVE based analy-

ses for periodic porous composites. Hollister and Kikuchi [72] provided a finite element

homogenization method that can be adapted to analyse bone tissue. Smite et al. [73]

proposed a Finite Element homogenization method to predict the mechanical behaviour

of non-linear heterogeneous systems. Kanit et al. [74] determined the size of representa-

tive volume elements of the random composite and applies FEM to calculate the effective

physical properties of the material. Fritzen et al. [75] investigated the effective material

response of ductile metals with spherical pores with volume fractions between 0.1% and

30%. Dirrenberger et al. [76] calculated the elastic modulus of three auxetic periodic

26



microstructures using Finite Element combined with periodic homogenization technique.

Khdir et al. [77] discussed a method for estimating the effective elastic–plastic response of

random two-phase composite media using a computer homogenization technique. Florez

et al. [78] investigated sintered porous media’s equivalent thermal conductivity. They

demonstrated that the geometry of the solid matrix in a porous medium has a relevant

effect. El Moumen et al. [79] calculated the equivalent thermal conductivity of porous

materials at the microscopic scale using numerical homogenization techniques and mor-

phological analysis. Vel et al. [80] presented a FEM based homogenization method for the

thermomechanical analysis of real polycrystalline material microstructures obtained using

electron backscatter diffraction techniques. Kaddouri et al. [81] estimated the effective

thermal conductivity of random two-dimensional two-phase heterogeneous materials using

a numerical homogenization technique. Sukiman et al. [82] calculated the effective thermal

and mechanical properties of randomly oriented short and long fiber composites. Signor et

al. [83] studied the thermal conductivity with the change of porosity for sintered silver by

using Finite Element analysis in a realistic 3D microstructure. Torquato [84] used Finite

Element homogenization method for predicting transport properties in hyper homogeneous

porous media. Qing et al. [85, 86] proposed a quantitative technique for evaluating the

influence of crack evolution on the equivalent thermal conductivity of porous sintered sil-

ver, and also proposed a numerical approach based on specific microstructural features to

calculate the equivalent thermal conductivity by taking into account the aging response.

Fast Fourier Transform

The Fast Fourier Transform (FFT) is a fast method for computing the discrete Fourier

transform (DFT) using a computer [87]. In particular, the more sampling points N that

is transformed, the more significant the savings in the computational effort of the FFT

algorithm, i.e., O(NlogN) of time instead of O(N2) of time [87]. The principle of the Fast

Fourier Transform algorithm is to implement large-scale transformations by means of many

27



small and more easily performed transformations, reducing the operational requirements

and increasing the speed with which they can be performed. The advantages of Fast

Fourier Transform are its excellent numerical performance (the algorithm scales to n log

n), its reduced computational cost compared to FE and its ability to increase the speed

of simulations by several orders of magnitude [88]. The disadvantage of the FFT method

is that its convergence rate and accuracy are highly dependent on the contrast between

the phases represented in the domain [89]. It requires that the signal must be smooth.

In the real world, most of the signals we collect are non-stationary and non-linear. In

the field of homogenization, the Fast Fourier Transform homogenization approach, first

introduced by Moulinec and Suquet [90] for the purpose of studying composite materials, is

a handy method for determining the effective properties of heterogeneous materials having

periodic microstructures. Lebensohn et al. [60] first extended this FFT-based approach

to crystal viscoplasticity. In a subsequent study, this FFT-based method was extended to

predicting the elastoviscoplasticity of polycrystalline materials in two and three dimensions

[91, 92, 93, 94, 95]. Kabel et al. [64] proposed a method which use of composite voxels in

FFT-based homogenization. Li et al. [96] applied the FFT-based homogenization method

to composite laminates. Monchiet et al. [97] applied FFT-based homogenization methods

to nonlinear composites.

Boundary Element Method

The Boundary Element Method (BEM) is a more accurate and efficient method developed

after the Finite Element method. The most significant feature of boundary elements is that,

in contrast to the Finite Difference or Finite Element methods, the methodology of formu-

lating boundary value problems as boundary integral equations describes problems only

by equations with known and unknown boundary states [98]. The Boundary Elements

Method has become a powerful alternative to the Finite Element method, particularly

where the domain extends to infinity. The most important feature of this method is that
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it only requires discretization of surfaces rather than volumes. As a result, the code of the

Boundary Elements Method is easier to use with existing solid modelers and mesh gener-

ators. This advantage is particularly important for design, as the process usually involves

a series of modifications, Boundary Elements Method meshes can be easily generated and

design changes do not require complete re-division, which is more difficult to do with Finite

Elements [99]. If the boundary is not smooth but contains corners and edges, or when the

boundary conditions are discontinuous then the solution to the boundary value problem

contains singularities at the boundary. In addition, pure BEM cannot solve problems with

inhomogeneities or non-linear differential equations. These are the main difficulties with

the BEM. More information on the principles, advantages, and disadvantages of the BEM

can be found in this article [100].

On the other hand, there has been much research activity in the use of BEM to assess

the equivalent properties of heterogeneous materials, such as the BEM-based homogeniza-

tion method proposed by Okada et al. [101, 102] for heterogeneous elastic materials with

periodic microstructures and granular composites to obtain the corresponding effective

mechanical properties, respectively. Galvis et al. [103] evaluated the macroscopic elastic

properties of hexagonal closed package (HCP) and face centered cubic (FCC) polycrystals

using the BEM. Procházka et al. [104] applied a BEM-based homogenization method to

study composites with randomly distributed fibres. Kamiński [105] applied a BEM-based

homogenization method to study periodic linear elastic fibre composites.

Finite Difference Method

The Finite Difference Method (FDM) was one of the first method used in computer nu-

merical simulation of PDE and is still widely used today [106]. The method divides the

solution domain into a difference grid, using a finite number of grid nodes instead of a

continuous solution domain. The Finite Difference Method uses methods such as Taylor

series expansion to discretize the derivatives in the control equations by replacing the dif-
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ference quotient of the function values at the grid nodes, thus creating a system of algebraic

equations with the values at the grid nodes as the unknowns.

The advantages of the Finite Difference Method are the direct transformation of differential

problems into algebraic problems, the absence of the need to construct form functions, the

absence of unitary and integral analysis, the simplicity of mathematical modeling, the ease

of programming, and the ease of parallelism. The disadvantage is that irregular areas are

cumbersome to deal with, e.g. using jagged shapes to represent curved shapes.

Abudull and E [107] developed the Finite Difference heterogeneous multiscale method

(FD-HMM) for solving multiscale parabolic problems. The method is based on the hetero-

geneous multiscale method (HMM) and heterogeneous discretization, specifically focused

on fine scales representing the size of tiny regions in the spatial domain. FD-HMM con-

sists of two parts: a macroscopic solution generated on a coarse grid using the known

data extracted from the microscopic model solution, and a microscopic solution that is

solved from the original equations over a sparse (heterogeneous) spatial domain. Chen

et al. [108, 109] used FD-HMM to handle the issues associated with unsaturated water

flow in random porous material and later improved the FD-HMM scheme to simulate not

only steady saturated flow problems in geostatistical stochastic porous media, but also

transient saturated flow problems. Jaworska et al. [110] used meshless Finite Difference

method for two-scale analysis of heterogeneous materials. Orive et al. [111] presented a

method of the homogenization of the Finite Difference schemes approximating a family of

elliptic equations with rapidly oscillating coefficients.

Other computational homogenization methods

In addition to the computational homogenisation methods described above there are other

methods such as phase field, Generalized Method of Cells, High-Fidelity Generalized

Method of Cells, and Variational Asymptotical Method for Unit Cell Homogenization.

The Phase field method is a mathematical approach to interfaces based on Ginzburg-
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Landau theory [112]. One of its key ideas is to use the gradient of the order parameter

to trace the interface, which has the advantage of not displaying the traced interface and

saves a lot of effort in handling the interface grid. A disadvantage is that the phase field

method requires prior knowledge of the material properties of the system under study,

such as density, heat capacity and latent heat, among other properties. However, some

properties are difficult to obtain experimentally such as interfaces and kinetic growth co-

efficients. Furthermore in the field of homogenization, the Voigt/Taylor model and the

Reuss/Sachs model are the two classical homogenization assumptions explored so far in

phase field theory, and Ammar et al. [113] then first combined the phase field approach

and the homogenization method to model the phase transformation in elastoplastic media.

The generalized method of cells (GMC) [114] is a semi-analytical technique for determining

the effective characteristics of composites. This approach discretizes a representative vol-

ume element (RVE) of the composite into a regular grid of subcells. Integrals over subcell

boundaries are used to satisfy equilibrium and compatibility on an average basis across

subcells. One advantage of GMC over other numerical techniques is that it can calculate

the entire set of a composite’s effective elastic properties in a single step rather than solving

a series of boundary value problems with varying boundary conditions [115]. In the field

of homogenization, this method has also been used by several researchers, such as Green-

gard et al. [116] who used this method for the numerical evaluation of the elastic field of

two-phase composites. Moghaddam [117] created a multi-scale computational model using

Generalized Method of Cells (GMC) homogenization for multi-phase single crystal metals.

The High-Fidelity Generalized Method of Cells (HFGMC) is a micromechanics technique

that can be used to simulate nonlinear composite materials [118]. In contrast to the Gen-

eralised Method of Cells, HFGMC provides the necessary shear-coupling between the local

normal and shear deformation fields and the macroscopically applied average strains [119].

This method’s core computing effort is spent solving sets of simultaneous linear algebraic

equations repeatedly in order to determine local/global field quantities and effective qual-

ities for heterogeneous materials with a periodic microstructure [120]. The advantage of
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HFGMC is that the microstructure of the composite can be selectively geometrically re-

fined as few number of rectangular subcells is sufficient to generate the effective linear and

nonlinear response for the overall composite with high accuracy [121]. The disadvantage is

that when dealing with non-linear materials, the computational running time becomes too

long, especially when representing more detailed microstructures [120]. HFGMC has been

performed to model different physical effects in periodic composites, such as viscoelastic-

viscoplastic micromechanics [122], damage evolution effects [123], etc.

Variational Asymptotical Method for Unit Cell Homogenization (VAMUCH) is a general-

purpose micromechanics algorithm based on Finite Elements. It is based on the varia-

tional asymptotic method [124] for homogenising heterogeneous materials. It can be used

to calculate the material properties of arbitrary microstructures of arbitrary heterogeneous

materials. The advantages of this method are that it has inherent variational proper-

ties, can be solved directly using numerical methods and, secondly, can calculate material

properties in different directions simultaneously, making it more efficient than the Finite

Element micromechanics method which requires repeated runs under different loading con-

ditions. Variational Asymptotical Method for Unit Cell Homogenization approach was first

proposed by Yu et al. [125] for periodic heterogeneous materials and has since been de-

veloped for predicting the thermoelastic properties of heterogeneous materials [126] and

for predicting the conductivity of composites [127]. It has since been developed by other

researchers to predict the effective properties of heterogeneous materials, such as elastic

[128], elasto-viscoplastic [129], hyperelastic [130], etc. For the GMC, HFGMC, VAMUCH

and other methods mentioned above, YU et al. [131] has done a critical assessment on the

predictive power of the micromechanical models.

32



1.3 Homogenization of voxel based REV with the FDM

1.3.1 Objective and technical support of the thesis

This work uses voxels as a representative model for heterogeneous materials for several

reasons. Firstly, because the current understanding of the internal structure of some real

materials relies heavily on techniques such as magnetic resonance imaging (MRI) and com-

puted tomography (CT), and visualisation of these raw data acquired from CT or MRI

scanners is output as voxels. For the simulation of numerical models, voxels play a major

role in a phase-field simulation of grain growth. For example, Chang et al. [132] presented

a voxel-based phase field simulation to investigate the effect of strong nonuniformity in

grain boundary energy on 3-D grain growth behavior. Rehn et al. [133] used a 3D voxel-

based phase-field model to investigate grain growth in porous microstructures during final

stage sintering. In addition to this, voxel has also shown great competence in the geometric

modelling of numerical models. For example, Hello et al. [134] used voxel-FE models for

the numerical simulation of any kind of material architectures (polycrystalline aggregates,

woven composites, particles reinforced composites). Therefore, the use of voxels as a rep-

resentative model for heterogeneous materials is definitely the best choice for this work.

The commonly used Finite Element Method is not the best choice when using voxelized

mesh as a premise. This is because the Finite Element method does not take advantage of

voxel discretization. In terms of convergence speed, the use of voxel is not as fast as with

conformal mesh. There is no advantage in terms of computation time for large problems,

and the sparse matrices generated have more non-zero terms and are more memory inten-

sive. For other methods, the FFT method presupposes periodicity, i.e. the microstructure

is regarded as the fundamental unit of an infinitely periodic medium [135], which strongly

limits the use of the method since the internal structure of most real materials is random

and not periodic. For the BEM method, it deals well with isotropic problems, but is too

complicated for anisotropic problems. The solution matrix resulting from the Boundary
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Element formulation is unsymmetric and fully populated with non-zero coefficients. Al-

though the Boundary Element method requires only a relatively small number of nodes

and elements to achieve the same accuracy as the Finite Element solution, it still occupies

a large amount of memory when faced with very large problems. So the Finite Difference

method is definitely the more suitable method for this work, because of its natural suitabil-

ity for voxelized mesh. Secondly, with the enhancement of computing power of computers

and owing to the natural advantage of FDM in parallel computing, the proposed method is

scalable in terms of computational efficiency. Moreover, depending on the different Finite

Difference models, it can be made to deal with very large problems with far fewer non-zero

terms in the sparse matrix than the FEM.

Heterogeneous materials are increasingly used for their superior overall properties, such as

porous media, which are widely used in the electronics and biomedical industries, so deter-

mining the equivalent thermal conductivity (ETC) of heterogeneous materials is essential

for the correct design of industrial equipment that may be subjected to severe thermal

loads during use. The high cost of using the Finite Element Method in the face of some

large problems has prompted the search for alternatives to the Finite Element Method.

Therefore, in this thesis, the thermal problem will be taken as the central problem and the

Finite Difference Method will be used to deal with the anisotropic diffusion problem. The

main objective of the paper is to present a numerical method and software for calculat-

ing the equivalent thermal conductivity of heterogeneous material is proposed, based on a

voxelized mesh, using Finite Difference Method (FDM).

1.3.2 Outline of the thesis

This thesis is organized as follows:

In Chapter 2, the Günter scheme, a Finite Difference model applicable to anisotropic dif-

fusion, is introduced and a three-dimensional extension of the model is given. An overview

of homogenisation theory is also given and the approach of some researchers to loading
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periodic and mixed homogeneous boundary conditions is summarised.

In Chapter 3, a 5-point model and an integral model (2D) inspired by Gunther’s model

is developed. The method of loading periodic and mixed uniform boundary conditions for

the Günter scheme is also presented.

In Chapter 4, results are shown comparing the Finite Difference method with the Finite

Element method and Finite Element + pixel (voxel) for different RVEs where the shapes of

inclusions in the RVEs include crosses, circles, ellipses, spheres and cylinders. Applications

to sintered silver materials are also shown.

Chapter 5 focuses on some complementary studies, including the dynamic model of our

method and the ADI method, and the thesis concludes with a summary and discussion in

Chapter 6.
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Chapter 2

Theoretical background

2.1 Introduction

Following on from the previous chapter where we introduced the different numerical meth-

ods for computational homogenization and the main purpose of the thesis, in this chapter,

the focus will be on the theoretical background of the thesis. First of all, the thermal

problem will be the main object of study of the thesis, as it is more suitable as a beginning

of a new approach. Therefore, in this chapter, the main physical parameters in the ther-

mal problem will be presented. The equivalent thermal conductivity of heterogeneous and

complex materials is investigated by introducing homogenisation theory. To achieve the

above, the Günter scheme will be used as the central finite difference model for this thesis,

as it deals well with discontinuous thermal conductivity problems and shows great stabil-

ity and sufficient accuracy in simulating anisotropic diffusion. Therefore, in this chapter,

the two-dimensional formulation of the Günter scheme for isotropic diffusion as well as

for anisotropic diffusion is re-demonstrated. The corresponding three-dimensional model

extensions and homogenisation theories are also given. The different topics detailed are as

follow:
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Section 2.1 introduces the basic formulation of the thermal problem, the physical parame-

ters used and the isotropic and anisotropic thermal conductivity tensor that we use. Section

2.2 re-demonstrates Günter’s symmetric two-dimensional model and gives the extension of

the three-dimensional model. Section 2.3 focus on the homogenization method we use and

the choice of boundary conditions.

2.2 Thermal problems

In this work, the main objective is to study the equivalent properties of heterogeneous

materials. Then the finite difference method is chosen as the core of the numerical approach

and the anisotropic diffusion problem is taken as the main object of study. For diffusion

problems, it has a wide range of applications, including thermal problems, plasma problems,

image processing, etc. First, this work will consider the steady-state thermal problem.

2.2.1 Fields

Temperature field

Temperature field (T ) is a collection of temperatures at various points in the object at

various times. In general the temperature field of an object is a function of coordinates

and time, i.e.

T = f (x; y ; z; t) (2.1)

The temperature field can be divided into two categories depending on whether it varies

with time: steady state temperature and non-steady state temperature. The unit is Kelvin

(K).
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Temperature Gradient

Temperature Gradient (∇T ) is the rate of change of temperature with position in a given

direction. It is measured in Kelvins per metre (K=m). Example in Cartesian coordinates

system.

∇T =

266664
@T
@x

@T
@y

@T
@z

377775 (2.2)

Heat flux

The heat flux (q) is the heat energy per unit of time that flows through a surface of unit

area. It is a vector field, its unit in the international system of units is Watt per square

metre (W=(m2)).

2.2.2 Thermal conductivity

Thermal conductivity is defined mathematically by Fourier’s law. It is a parameter that

indicates a substance’s capacity to transmit heat through a medium.

Thermal conductivity tensor

In the study of heat conduction in solids, isotropic thermal conductivity tensor is often

used, that is, the thermal conductivity does not depend on the direction. i.e.

D =

266664
D11 0 0

0 D11 0

0 0 D11

377775 (2.3)
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However, there are numerous natural and synthetic materials whose thermal conductivity

varies with direction, forming anisotropic materials. For example, thermal conductivity

in wood varies along the grain, through the grain, and circumferentially, while thermal

conductivity in laminates varies across and along the laminate.

Crystals can be classified according to their symmetry into seven main systems: triclinic,

monoclinic, orthorhombic, hexagonal, tetragonal, trigonal, and cubic systems [1]. The

cubic system is same as isotropic thermal conductivity tensor. In triclinic system, con-

ductivity coefficients are not constrained by symmetry considerations. There are nine

components and they can be non-zero, and we have

D =

266664
D11 D12 D13

D21 D22 D23

D31 D32 D33

377775 (2.4)

In monoclinic system, due to symmetry considerations, some of the components become

zero. Hence, we obtain

D =

266664
D11 D12 0

D21 D22 0

0 0 D33

377775 (2.5)

In orthorhombic system, the conductivity coefficients are given as follows:

D =

266664
D11 0 0

0 D22 0

0 0 D33

377775 (2.6)

In trigonal, tetragonal, and hexagonal system, we have

D =

266664
D11 0 0

0 D11 0

0 0 D33

377775 (2.7)
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In cubic system, we have

D =

266664
D11 0 0

0 D11 0

0 0 D11

377775 (2.8)

Onsager’s [136] principles of irreversible thermodynamics demonstrate that when the fluxes

(i.e., q) and forces (i.e., ∇T ) are linearly linked to one another as indicated by Eq.2.13, the

phenomenological coefficients follow the reciprocity relation. Casimir [137] discusses how

Onsager’s reciprocity relation is applied to the thermal conductivity coefficients related

with heat conduction in anisotropic materials. As a result, it is reasonable to assume that

the conductivity coefficients Di j obey the reciprocity relation

Di j = Dj i i ; j = 1; 2; 3 (2.9)

Additionally, as noted in [138], irreversible thermodynamics dictates that the coefficients

D11, D22, and D33 be positive, i.e.

Di i > 0 (2.10)

Hence the magnitude of the coefficients Di j is constrained by the requirement [136] for

i 6= j .

Di iDj j > D2
i j For i = 1; 2; 3 (2.11)

Examples of material’s thermal conductivity

Below are the thermal conductivity of several common metallic isotropic materials and the

woven composites.
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Table 2.1: Thermal conductivity of metallic materials

Materials
20◦C

Density Specific heat Thermal conductivity
(kg=m3) Cp(J=(kg ·K)) D(W=(m ·K))

Pure aluminum 2710 902 236
aluminum alloy (92Al-8Mg) 2610 904 107
aluminum alloy (87Al-13Si) 2660 871 162
Silver 10500 234 427
Gold 19300 127 315
Fine copper 8930 386 398
Copper alloy (60Cu-40Ni) 8920 410 22.2
Pure iron 7870 455 81.1

Table 2.2: Thermal conductivity of woven composites

Materials
Temperature Density

In-surface
thermal

conductivity

Out-surface
thermal conductivity

T (◦C) (kg=m3) D(W=(m ·K)) D(W=(m ·K))
C/C-Sic (2D) 25 1600-2000 10.0-20.0 5.0-10.0
C/C-Sic (3D) 25 1600-2000 10.0-20.0 5.0-10.0

carbon-fiber/epoxy
woven composites

25 1300-1700 0.40-1.60 1.50-4.50

Table 2.3: Thermal conductivity for some Crystal at 30◦C [1]

Crystal system D11, D22(W=(m ·K) D33(W=(m ·K)
Quartz Trigonal 6.5 11.3
Calcite Trigonal 4.2 5.0

Bismuth Trigonal 9.2 6.7
Graphite Hexagonal 355 89

2.2.3 Equations

With the steady diffusion equation, we have:

div(−→q ) = Q (2.12)
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where Q is a a heat source, q the heat flux. According to Fourier’s law, in the case of

isotropic diffusion, the heat flux can be expressed as:

−→q = −D · ∇T (2.13)

where T represents temperature, D the thermal conductivity independent of direction, and

q the heat flux.

In the case of anisotropic solids, for a three-dimensional problem, the heat flux is composed

of q1, q2, and q3 along the directions in the rectangular coordinate system Ox, Oy, and Oz.

The general expression involving the heat flux, thermal gradient, and conductivity tensor

is given by:

266664
q1

q2

q3

377775 = −

266664
D11 D12 D13

D21 D22 D23

D31 D32 D33

377775 ·
266664
@T
@x

@T
@y

@T
@z

377775 (2.14)

2.3 Finite Difference Method for media with hetero-

geneous conductivity

Support operator method (SOM), regarded as one of the most powerful tools in solving

anisotropic diffusion problems within the framework of finite difference methods, is also

known as the mimetic finite difference method (MFDM). It was developed by Shashkov

and Steinberg [139, 140], and they constructed discrete analogs of invariant differential

operators like the divergence and gradient. With this method, operators must satisfy dis-

crete analogs of the integral identities that associate the differential operators with their

adjoints. Hyman et al.[141] incorporated the boundary conditions (Dirichlet, Neumann,

and Robin conditions) into the MFDM on non-smooth logical rectangular grids. Morel et

al. [142, 143, 144] used the MFDM to derive a cell-centered diffusion differencing scheme
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that gives a sparse matrix representation. In contrast, the traditional method of support

operators gives a dense matrix representation. Günter et al.[145] offer two discretiza-

tion techniques(Asymmetric and symmetric schemes) on rectangular grids that employ the

finite-difference method and SOM conditions. They take a cautious approach by discretiz-

ing fluxes on the dual mesh. The Günter scheme, originally applied to magnetized plasma

simulations, reduces the spurious vertical diffusion observed in standard finite difference

simulations when the anisotropy becomes large due to its discretization of the parallel

operator [145]. Thanks to Günter’s model, several researchers have studied the diffusion

problem in magnetized plasma. For example, Günter [146] applies her scheme and ex-

plicit/implicit domain decomposition techniques to the problem of time-dependent heat

conduction in a two-dimensional strongly anisotropic medium (magnetized plasma), using

a spatial derivative formulation that avoids contamination of the vertical direction by par-

allel heat flow. Holzl et al. [147] performed numerical simulations of diffusive heat transfer

between magnetic islands and extremely random layers. Van es et al.[148] developed sev-

eral discretization schemes and applied them to the anisotropic heat diffusion equation

on a non-aligned grid. Soler et al. [149] proposed a new conservative finite-difference

scheme using non-aligned Cartesian grids and interpolations aligned along a parallel dif-

fusion direction for anisotropic elliptic problems in bounded domain. In addition to the

above-mentioned researchers, some new approaches have been proposed for anisotropic

diffusion. For example, Yang et al. [150] proposed two Tailored Finite Point Methods

(TFPM) for the diffusion equation, which are valid for strongly anisotropic tensor diffu-

sion and interfacial layers. The five-point scheme uses the values on the grid points and

their derivatives. The second scheme constructs a four-point scheme for each cell based on

the interface conditions. And later, Yang et al. [151] applied this method to on misaligned

grids. Chamarthi et al. [152] presented a high order finite difference solver for anisotropic

diffusion problems based on the first-order hyperbolic system method. Feng et al. [153]

proposed a sixth order compact finite difference scheme on uniform Cartesian grids for the

Poisson interface problem with singular sources.

44



The Günter symmetry scheme will be used as the core method in this work due to its

powerful ability to solve anisotropic diffusion problems. At the same time this method

discretizes the fluxes on a dual grid located at the center of the cell, and this coincides

with our method of determining the thermal conductivity of the voxelized grid.

2.3.1 2D scheme

There are two schemes that are presented in Günter’s article [145], the asymmetric scheme

and the symmetric scheme. The former defines the solution point on the boundary and

the latter defines the solution point at the centre of the cell. Since we have chosen voxel

discretization, where a voxel represents only one material when defining the material, the

asymmetric model is not applicable to this work due to the inability to identify the material

attribution of the points on the boundary. So the symmetric model will be used. Here is

an attempt to re-demonstrate the Günter scheme formulation using interpolation.

Symmetric scheme of Günter

i,j+1

i,j i+1,j

i+1,j+1

i+1/2,j+1/2

Δx

Δy

Figure 2.1: Interpolation scheme
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The first finite-difference scheme is shown in Fig. 2.1 In an isotropic case, first of all, we

use the interpolation method through the points (i, j), (i+1, j),(i+1, j+1), et (i, j+1).

T (x; y) = a1 + a2x + a3y + a4xy; x ∈ [0;∆x ]; y ∈ [0;∆y ] (2.15)

0BBBBBBB@

1 0 0 0

1 ∆x 0 0

1 ∆x ∆y ∆x∆y

1 0 ∆y 0

1CCCCCCCA
·

0BBBBBBB@

a1

a2

a3

a4

1CCCCCCCA
=

0BBBBBBB@

Ti ;j

Ti+1;j

Ti+1;j+1

Ti ;j+1

1CCCCCCCA
(2.16)

Then, we can get the coefficient a1,...a4:

a1 = Ti ;j ;

a2 =
Ti+1;j −Ti ;j

∆x
;

a3 =
Ti ;j+1−Ti ;j

∆y
;

a4 =
Ti+1;j+1−Ti+1;j −T i ; j + 1 + Ti ;j

∆x∆y
;

(2.17)

With the coefficient a1,...a4, we can obtain the temperature and temperature gradient at

any point within the boundary.

T (x; y) = Ti ;j +
Ti+1;j −Ti ;j

∆x
x +

Ti ;j+1−T i ; j

∆y
y +

Ti+1;j+1−T i + 1; j − T i ; j + 1 + T i ; j

∆x∆y
xy;

@T

@x
(x; y) =

Ti+1;j −Ti ;j

∆x
+

Ti+1;j+1−Ti+1;j −Ti ;j+1 + Ti ;j

∆x∆y
y;

@T

@y
(x; y) =

Ti ;j+1−Ti ;j

∆y
+

Ti+1;j+1−Ti+1;j −Ti ;j+1 + Ti ;j

∆x∆y
x

(2.18)

Finally we get the same gradient formula as Günter at the central point of cell:

@T

@x
|i+ 1

2
;j+ 1

2
=
Ti+1;j+1 + Ti+1;j − Ti ;j+1 − Ti ;j

2∆x
;

@T

@y
|i+ 1

2
;j+ 1

2
=
Ti ;j+1 + Ti+1;j+1 − Ti+1;j − Ti ;j

2∆y
:

(2.19)
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and similar formulas for @T
@x
|i+ 1

2
;j− 1

2
; @T
@y
|i+ 1

2
;j− 1

2
; @T
@x
|i− 1

2
;j+ 1

2
; @T
@y
|i− 1

2
;j+ 1

2
; @T
@x
|i− 1

2
;j− 1

2
; @T
@y
|i− 1

2
;j− 1

2
.

According to Fig.2.2, the diffusion tensor is applied to obtain the heat flux at the central

i,j+1 i+1,j+1

i+1,j

Di+1/2,j+1/2

Di+1/2,j-1/2

q=-D· ΔT

Δ·q

Figure 2.2: Symmetric scheme

point of cell.

−→q = −D · ∇T; qi+ 1
2
;j+ 1

2
= −Di+ 1

2
;j+ 1

2
·
„
@T

@x
|i+ 1

2
;j+ 1

2
;
@T

@y
|i+ 1

2
;j+ 1

2

«T

(2.20)

Finally, with the heat flux, the formulation of the thermal conduction operator is:

∇ · −→q =
qx;i+ 1

2
;j+ 1

2
+ qx;i+ 1

2
;j− 1

2
− qx;i− 1

2
;j+ 1

2
− qx;i− 1

2
;j− 1

2

2∆x
+

qy;i+ 1
2
;j+ 1

2
+ qy;i− 1

2
;j+ 1

2
− qy;i+ 1

2
;j− 1

2
− qy;i− 1

2
;j− 1

2

2∆y

(2.21)
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And we can get the final descriptions as:

∇ · −→q = −((
`
∆y 2 + 2∆x∆y + ∆x2

´
Ti+1;j+1 +

`
∆y 2 −∆x2

´
Ti+1;j

+
`
∆x2 −∆y 2

´
Ti ;j+1 +

`
−∆y 2 − 2∆x∆y −∆x2

´
Ti ;j) Di+1=2;j+1=2

+(
`
∆y 2 −∆x2

´
Ti+1;j +

`
∆y 2 − 2∆x∆y + ∆x2

´
Ti+1;j−1

+
`
−∆y 2 + 2∆x∆y −∆x2

´
Ti ;j +

`
∆x2 −∆y 2

´
Ti ;j−1) Di+1=2;j−1=2

+(
`
∆x2 −∆y 2

´
Ti ;j+1 +

`
−∆y 2 + 2∆x∆y −∆x2

´
Ti ;j

+
`
∆y 2 − 2∆x∆y + ∆x2

´
Ti−1;j+1 +

`
∆y 2 −∆x2

´
Ti−1;j) Di−1=2;j+1=2

+(
`
−∆y 2 − 2∆x∆y −∆x2

´
Ti ;j +

`
∆x2 −∆y 2

´
Ti ;j−1

+
`
∆y 2 −∆x2

´
Ti−1;j +

`
∆y 2 + 2∆x∆y + ∆x2

´
Ti−1;j−1) Di−1=2;j−1=2)=(4∆x2∆y 2)

(2.22)

By simplifying we get the final relation in Table. 2.4 for isotropic case.

Table 2.4: 2D coefficient for Ti ;j with isotropic conductivity

j

Coef i
i − 1 i i + 1

j+1
(0:25=∆x2 + 0:25=∆y2)

Di−1=2;j+1=2

(−0:25=∆x2 + 0:25=∆y2)
(Di−1=2;j+1=2 + Di+1=2;j+1=2)

(0:25=∆x2 + 0:25=∆y2)
Di+1=2;j+1=2

j
(0:25=∆x2 − 0:25=∆y2)

(Di−1=2;j−1=2 + Di−1=2;j+1=2)

(0:25=∆x2 + 0:25=∆y2)
(−Di−1=2;j−1=2−Di−1=2;j+1=2

−Di+1=2;j−1=2−Di+1=2;j+1=2)

(0:25=∆x2 − 0:25=∆y2)
(Di+1=2;j−1=2 + Di+1=2;j+1=2))

j-1
(0:25=∆x2 + 0:25=∆y2)

Di−1=2;j−1=2

(−0:25=∆x2 + 0:25=∆y2)
(Di−1=2;j−1=2 + Di+1=2;j−1=2)

(0:25=∆x2 + 0:25=∆y2)
Di+1=2;j−1=2

In the case of anisotropic solids, first of all, the diffusion tensor is:

D(x) =

264D11(x) D12(x)

D21(x) D22(x)

375 (2.23)

Then, with the new diffusion tensor, the heat flow is:

−→q = −D · ∇T;

264qx;i+ 1
2
;j+ 1

2

qy;i+ 1
2
;j+ 1

2

375 = −

264D11(x) D12(x)

D21(x) D22(x)

375 ·
264@T@x |i+ 1

2
;j+ 1

2

@T
@y
|i+ 1

2
;j+ 1

2

375 (2.24)
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Finally, the formulation of finite difference in thermal conduction is :

∇ · −→q = −(
`
∆x2 Ti+1;j+1−∆x2 Ti+1;j +∆x2 Ti ;j+1−∆x2 Ti ;j

´
D22i+1=2;j+1=2

+ (∆x∆y Ti+1;j+1 +∆x∆y Ti+1;j −∆x∆y Ti ;j+1−∆x∆y Ti ;j) D21i+1=2;j+1=2

+ (∆x∆y Ti+1;j+1−∆x∆y Ti+1;j +∆x∆y Ti ;j+1−∆x∆y Ti ;j) D12i+1=2;j+1=2

+
`
∆y 2 Ti+1;j+1 +∆y 2 Ti+1;j −∆y 2 Ti ;j+1−∆y 2 Ti ;j

´
D11i+1=2;j+1=2

+
`
−∆x2 Ti+1;j +∆x2 Ti+1;j−1−∆x2 Ti ;j +∆x2 Ti ;j−1

´
D22i+1=2;j−1=2

+ (−∆x∆y Ti+1;j −∆x∆y Ti+1;j−1 +∆x∆y Ti ;j +∆x∆y Ti ;j−1) D21i+1=2;j−1=2

+ (∆x∆y Ti+1;j −∆x∆y Ti+1;j−1 +∆x∆y Ti ;j −∆x∆y Ti ;j−1) D12i+1=2;j−1=2

+
`
∆y 2 Ti+1;j +∆y 2 Ti+1;j−1−∆y 2 Ti ;j −∆y 2 Ti ;j−1

´
D11i+1=2;j−1=2

+
`
∆x2 Ti ;j+1−∆x2 Ti ;j +∆x2 Ti−1;j+1−∆x2 Ti−1;j

´
D22i−1=2;j+1=2

+ (∆x∆y Ti ;j+1 +∆x∆y Ti ;j −∆x∆y Ti−1;j+1−∆x∆y Ti−1;j) D21i−1=2;j+1=2

+ (−∆x∆y Ti ;j+1 +∆x∆y Ti ;j −∆x∆y Ti−1;j+1 +∆x∆y Ti−1;j) D12i−1=2;j+1=2

+
`
−∆y 2 Ti ;j+1−∆y 2 Ti ;j +∆y 2 Ti−1;j+1 +∆y 2 Ti−1;j

´
D11i−1=2;j+1=2

+
`
−∆x2 Ti ;j +∆x2 Ti ;j−1−∆x2 Ti−1;j +∆x2 Ti−1;j−1

´
D22i−1=2;j−1=2

+ (−∆x∆y Ti ;j −∆x∆y Ti ;j−1 +∆x∆y Ti−1;j +∆x∆y Ti−1;j−1) D21i−1=2;j−1=2

+ (−∆x∆y Ti ;j +∆x∆y Ti ;j−1−∆x∆y Ti−1;j +∆x∆y Ti−1;j−1) D12i−1=2;j−1=2

+
`
−∆y 2 Ti ;j −∆y 2 Ti ;j−1 +∆y 2 Ti−1;j +∆y 2 Ti−1;j−1

´
D11i−1=2;j−1=2)=(4∆x2∆y 2)

(2.25)

By simplifying we get the final relation:
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Table 2.5: 2D coefficient for Ti ;j with anisotropic conductivity

j

Coef i
i − 1 i i + 1

j+1

−D11i−1=2;j+1=2 =(4∆x2)

−D22i−1=2;j+1=2 =(4∆y2)
+(D12i−1=2;j+1=2

+ D21i−1=2;j+1=2)=(4∆x∆y)

(D11i−1=2;j+1=2 + D11i+1=2;j+1=2)

=(4∆x2)−
(D22i−1=2;j+1=2 + D22i+1=2;j+1=2)

=(4∆y2)+
(D21i+1=2;j+1=2−D12i+1=2;j+1=2)
−D21i−1=2;j+1=2 + D12i−1=2;j+1=2)

=(4∆x∆y)

−D11i+1=2;j+1=2 =(4∆x2)

−D22i+1=2;j+1=2 =(4∆y2)
+(D12i+1=2;j+1=2

+ D21i+1=2;j+1=2)=(4∆x∆y)

j

−(D11i−1=2;j−1=2 + D11i−1=2;j+1=2)

=(4∆x2)+
(D22i−1=2;j−1=2 + D22i−1=2;j+1=2)

=(4∆y2)+
(D21i−1=2;j+1=2 + D12i−1=2;j−1=2)
−D21i−1=2;j−1=2−D12i−1=2;j+1=2)

=(4∆x∆y)

(D11i+1=2;j+1=2 + D11i+1=2;j−1=2

+ D11i−1=2;j−1=2 + D11i−1=2;j+1=2)

=(4∆x2)+
(D22i+1=2;j+1=2 + D22i+1=2;j−1=2

+ D22i−1=2;j−1=2 + D22i−1=2;j+1=2)

=(4∆y2)+
(D21i+1=2;j+1=2 + D12i+1=2;j+1=2

−D21i+1=2;j−1=2−D12i+1=2;j−1=2

−D21i−1=2;j+1=2−D12i−1=2;j+1=2

+ D21i−1=2;j−1=2 + D12i+1=2;j+1=2

=(4∆x∆y)

−(D11i+1=2;j−1=2 + D11i+1=2;j−1=2)

=(4∆x2)+
(D22i+1=2;j+1=2 + D22i+1=2;j−1=2)

=(4∆y2)+
(D21i+1=2;j+1=2 + D12i+1=2;j−1=2)
−D21i+1=2;j−1=2−D12i+1=2;j+1=2)

=(4∆x∆y)

j-1

−D11i−1=2;j−1=2 =(4∆x2)

−D22i−1=2;j−1=2 =(4∆y2)
+(D12i−1=2;j−1=2

+ D21i−1=2;j−1=2)=(4∆x∆y)

(D11i+1=2;j−1=2 + D11i−1=2;j−1=2)

=(4∆x2)−
(D22i+1=2;j−1=2 + D22i−1=2;j−1=2)

=(4∆y2)−
(D21i+1=2;j−1=2−D12i+1=2;j−1=2)
−D21i−1=2;j−1=2 + D12i−1=2;j−1=2)

=(4∆x∆y)

−D11i+1=2;j−1=2 =(4∆x2)

−D22i+1=2;j−1=2 =(4∆y2)
+(D12i+1=2;j−1=2

+ D21i+1=2;j−1=2)=(4∆x∆y)

Gradient operator

i,j+1

i,j i+1,j

i+1,j+1

i+1/2,j+1/2

Δx

Δy

i-1,j+1

i-1,j

i-1,j-1 i,j-1 i+1,j-1

A1

A2

A3

A4

i-1/2,j+1/2

i-1/2,j-1/2 i+1/2,j-1/2

Figure 2.3: Integral scheme for gradient operator

Due to the heterogeneous material, the thermal conduction does not vary linearly so the

interpolation method is not applicable in this case. In this regard, the 9-points integral

method is used to solve for the temperature gradient at the grid points.
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Although the temperature gradient is not continuous for the whole region, it is still con-

tinuous within each pixel (voxel). So we can still use interpolation to derive the equation

for the temperature gradient within each of the four pixels (voxels) from the temperature

values on the grid.

With Fig.2.3, we can obtain the formula for the temperature gradient within each pixel.

@T

@x

˛̨̨
A1

(x; y) =
Ti ;j −Ti−1;j

∆x
+

Ti ;j −Ti ;j−1−Ti−1;j + Ti−1;j−1

∆x∆y
y (2.26)

@T

@y

˛̨̨
A1

(x; y) =
Ti ;j −Ti ;j−1

∆y
+

Ti ;j −Ti ;j−1−Ti−1;j + Ti−1;j−1

∆x∆y
x (2.27)

@T

@x

˛̨̨
A2

(x; y) =
Ti ;j −Ti−1;j

∆x
+

Ti ;j+1−Ti ;j −Ti−1;j+1 + Ti−1;j

∆x∆y
y (2.28)

@T

@y

˛̨̨
A2

(x; y) =
Ti ;j+1−Ti ;j

∆y
+

Ti ;j+1−Ti ;j −Ti−1;j+1 + Ti−1;j

∆x∆y
x (2.29)

@T

@x

˛̨̨
A3

(x; y) =
Ti+1;j −Ti ;j

∆x
+

Ti+1;j −Ti+1;j−1−Ti ;j + Ti ;j−1

∆x∆y
y (2.30)

@T

@y

˛̨̨
A3

(x; y) =
Ti ;j −Ti ;j−1

∆y
+

Ti+1;j −Ti+1;j−1−Ti ;j + Ti ;j−1

∆x∆y
x (2.31)

@T

@x

˛̨̨
A4

(x; y) =
Ti+1;j −Ti ;j

∆x
+

Ti+1;j+1−Ti+1;j −Ti ;j+1 + Ti ;j

∆x∆y
y (2.32)

@T

@y

˛̨̨
A4

(x; y) =
Ti ;j+1−Ti ;j

∆y
+

Ti+1;j+1−Ti+1;j −Ti ;j+1 + Ti ;j

∆x∆y
x (2.33)

Through integral, we can get:

1

|Atotal |

Z
Atotal

@T

@x
dAtotal =

1

|Atotal |
` Z

A1

@T

@x

˛̨̨
A1

(x; y)dA1 +

Z
A2

@T

@x

˛̨̨
A2

(x; y)dA2

+

Z
A3

@T

@x

˛̨̨
A3

(x; y)dA3 +

Z
A4

@T

@x

˛̨̨
A4

(x; y)dA4

´
(2.34)

Finally, we can obtain:

@T

@x

˛̨̨
i ;j

=

@T
@x

˛̨̨
i−1=2;j−1=2

+ @T
@x

˛̨̨
i−1=2;j+1=2

+ @T
@x

˛̨̨
i+1=2;j−1=2

+ @T
@x

˛̨̨
i+1=2;j+1=2

4
(2.35)

@T

@y

˛̨̨
i ;j

=

@T
@y

˛̨̨
i−1=2;j−1=2

+ @T
@y

˛̨̨
i−1=2;j+1=2

+ @T
@y

˛̨̨
i+1=2;j−1=2

+ @T
@y

˛̨̨
i+1=2;j+1=2

4
(2.36)
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In the same way, we can also get the descriptions of approximation for heat flux as:

qx |i ;j =
qx

˛̨̨
i−1=2;j−1=2

+ qx

˛̨̨
i−1=2;j+1=2

+ qx

˛̨̨
i+1=2;j−1=2

+ qx

˛̨̨
i+1=2;j+1=2

4
(2.37)

qy |i ;j =
qy

˛̨̨
i−1=2;j−1=2

+ qy

˛̨̨
i−1=2;j+1=2

+ qy

˛̨̨
i+1=2;j−1=2

+ qy

˛̨̨
i+1=2;j+1=2

4
(2.38)

2.3.2 3D scheme

After re-demonstrating the 2D model, we can use the same method to implement the 3D

extension.

Figure 2.4: Illustration of the 3D finite difference scheme based on voxel grid

symmetric scheme

Take the 1/8 model as an example. First, a cartesian coordinate system {−→ex ;−→ey ;−→ez } is

defined in Fig.2.4. The subscripts {i ; j; k} denote the spatial discretized grid points along

the directions {x; y ; z}, respectively. The gradient of the temperature ∆T at the center
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point (x; y ; z) = (i + 1=2; j − 1=2; k + 1=2) can be expressed as:

@T

@x

˛̨̨
i+ 1

2
;j− 1

2
;k+ 1

2

=
1

4∆x
· (Ti+1;j−1;k+1 + Ti+1;j−1;k + Ti+1;j;k+1 + Ti+1;j;k

− Ti ;j−1;k+1 − Ti ;j−1;k − Ti ;j;k+1 − Ti ;j;k)

@T

@y

˛̨̨
i+ 1

2
;j− 1

2
;k+ 1

2

=
1

4∆y
· (Ti+1;j;k+1 + Ti+1;j;k + Ti ;j;k+1 + Ti ;j;k

− Ti+1;j−1;k+1 − Ti+1;j−1;k − Ti ;j−1;k+1 − Ti ;j−1;k)

@T

@z

˛̨̨
i+ 1

2
;j− 1

2
;k+ 1

2

=
1

4∆z
· (Ti+1;j;k+1 + Ti+1;j−1;k+1 + Ti ;j;k+1 + Ti ;j−1;k+1

− Ti+1;j;k − Ti+1;j−1;k − Ti ;j;k − Ti ;j−1;k)

(2.39)

By inserting these terms into the first formula of Eq.2.13 and applying the diffusion

tensor D, we obtain the heat flux −→q at the center point:

−→q i+ 1
2
;j+ 1

2
;k+ 1

2
= −Di+ 1

2
;j+ 1

2
;k+ 1

2
·
„
@T

@x

˛̨̨
i+ 1

2
;j+ 1

2
;k+ 1

2

;
@T

@y

˛̨̨
i+ 1

2
;j+ 1

2
;k+ 1

2

;
@T

@z

˛̨̨
i+ 1

2
;j+ 1

2
;k+ 1

2

«T

(2.40)

To take the divergence over the heat flux, we have the 3D formulation of the thermal

conduction problem:

∇ · −→q =
1

4∆x
· (qx;i+ 1

2
;j+ 1

2
;k+ 1

2
+ qx;i+ 1

2
;j+ 1

2
;k− 1

2
+ qx;i+ 1

2
;j− 1

2
;k+ 1

2
+ qx;i+ 1

2
;j− 1

2
;k− 1

2

− qx;i− 1
2
;j+ 1

2
;k+ 1

2
− qx;i− 1

2
;j− 1

2
;k+ 1

2
− qx;i− 1

2
;j+ 1

2
;k− 1

2
− qx;i− 1

2
;j− 1

2
;k− 1

2
)+

1

4∆y
· (qy;i+ 1

2
;j+ 1

2
;k+ 1

2
+ qy;i− 1

2
;j+ 1

2
;k+ 1

2
+ qy;i+ 1

2
;j+ 1

2
;k− 1

2
+ qy;i− 1

2
;j+ 1

2
;k− 1

2

− qy;i+ 1
2
;j− 1

2
;k+ 1

2
− qy;i− 1

2
;j− 1

2
;k+ 1

2
− qy;i+ 1

2
;j− 1

2
;k− 1

2
− qy;i− 1

2
;j− 1

2
;k− 1

2
)+

1

4∆z
· (qz;i+ 1

2
;j+ 1

2
;k+ 1

2
+ qz;i− 1

2
;j+ 1

2
;k+ 1

2
+ qz;i+ 1

2
;j− 1

2
;k+ 1

2
+ qz;i− 1

2
;j− 1

2
;k+ 1

2

− qz;i+ 1
2
;j+ 1

2
;k− 1

2
− qz;i+ 1

2
;j− 1

2
;k− 1

2
− qz;i− 1

2
;j+ 1

2
;k− 1

2
− qz;i− 1

2
;j− 1

2
;k− 1

2
)

(2.41)

The expansion of Eq. 2.41 is given in Appendix A.
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By simplifying we get the final relation in Table.2.6 for isotropic case.

Table 2.6: 3D Günter scheme’s coefficient for Ti ;j with isotropic conductivity

i-1 i i+1

k+1 j+1

-Di− 1
2
;j+ 1

2
;k+ 1

2

(1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))

(-Di+ 1
2
;j+ 1

2
;k+ 1

2

-Di− 1
2
;j+ 1

2
;k+ 1

2
)

(1/(16∆z2)+1/(16∆y2)
-1/(16∆x2))

-Di+ 1
2
;j+ 1

2
;k+ 1

2

(1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))

k+1 j

(-Di− 1
2
;j+ 1

2
;k+ 1

2

-Di− 1
2
;j− 1

2
;k+ 1

2
)

(1/(16∆z2)-1/(16∆y2)
+1/(16∆x2))

(-Di+ 1
2
;j+ 1

2
;k+ 1

2

-Di+ 1
2
;j− 1

2
;k+ 1

2

-Di− 1
2
;j+ 1

2
;k+ 1

2

-Di− 1
2
;j− 1

2
;k+ 1

2
)

(1/(16∆z2)-1/(16∆y2)
-1/(16∆x2))

(-Di+ 1
2
;j+ 1

2
;k+ 1

2

-Di+ 1
2
;j− 1

2
;k+ 1

2
)

(1/(16∆z2)-1/(16∆y2)
+1/(16∆x2))

k+1 j-1

-Di− 1
2
;j− 1

2
;k+ 1

2

(1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))

(-Di+ 1
2
;j− 1

2
;k+ 1

2

-Di− 1
2
;j− 1

2
;k+ 1

2
)

(1/(16∆z2)+1/(16∆y2)
-1/(16∆x2))

-Di+ 1
2
;j− 1

2
;k+ 1

2

(1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))

k j+1

(-Di− 1
2
;j+ 1

2
;k+ 1

2

-Di− 1
2
;j+ 1

2
;k− 1

2
)

(-1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))

(-Di+ 1
2
;j+ 1

2
;k+ 1

2

-Di− 1
2
;j+ 1

2
;k+ 1

2

-Di+ 1
2
;j+ 1

2
;k− 1

2

-Di− 1
2
;j+ 1

2
;k− 1

2
)

(-1/(16∆z2)+1/(16∆y2)
-1/(16∆x2))

(-Di+ 1
2
;j+ 1

2
;k+ 1

2

-Di+ 1
2
;j+ 1

2
;k− 1

2
)

(-1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))

k j

(-Di− 1
2
;j+ 1

2
;k+ 1

2

-Di− 1
2
;j− 1

2
;k+ 1

2

-Di− 1
2
;j+ 1

2
;k− 1

2

-Di− 1
2
;j− 1

2
;k− 1

2
)

(-1/(16∆z2)-1/(16∆y2)
+1/(16∆x2))

(Di+ 1
2
;j+ 1

2
;k+ 1

2

+Di+ 1
2
;j− 1

2
;k+ 1

2

+Di− 1
2
;j+ 1

2
;k+ 1

2

+Di− 1
2
;j− 1

2
;k+ 1

2

+Di+ 1
2
;j+ 1

2
;k− 1

2

+Di+ 1
2
;j− 1

2
;k− 1

2

+Di− 1
2
;j+ 1

2
;k− 1

2

+Di− 1
2
;j− 1

2
;k− 1

2
)

(+1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))

(-Di+ 1
2
;j+ 1

2
;k+ 1

2

-Di+ 1
2
;j− 1

2
;k+ 1

2

-Di+ 1
2
;j+ 1

2
;k− 1

2

-Di+ 1
2
;j− 1

2
;k− 1

2
)

(-1/(16∆z2)-1/(16∆y2)
+1/(16∆x2))

k j-1

(-Di− 1
2
;j− 1

2
;k+ 1

2

-Di− 1
2
;j− 1

2
;k− 1

2
)

(-1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))

(-Di+ 1
2
;j− 1

2
;k+ 1

2

-Di− 1
2
;j− 1

2
;k+ 1

2

-Di+ 1
2
;j− 1

2
;k− 1

2

-Di− 1
2
;j− 1

2
;k− 1

2
)

(-1/(16∆z2)+1/(16∆y2)
-1/(16∆x2))

(-Di+ 1
2
;j− 1

2
;k+ 1

2

-Di+ 1
2
;j− 1

2
;k− 1

2
)

(-1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))

k-1 j+1

-Di− 1
2
;j+ 1

2
;k− 1

2

(1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))

(-Di+ 1
2
;j+ 1

2
;k− 1

2

-Di− 1
2
;j+ 1

2
;k− 1

2
)

(1/(16∆z2)+1/(16∆y2)
-1/(16∆x2))

-Di+ 1
2
;j+ 1

2
;k− 1

2

(1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))

k-1 j

(-Di− 1
2
;j+ 1

2
;k− 1

2

-Di− 1
2
;j− 1

2
;k− 1

2
)

(1/(16∆z2)-1/(16∆y2)
+1/(16∆x2))

(-Di+ 1
2
;j+ 1

2
;k− 1

2

-Di+ 1
2
;j− 1

2
;k− 1

2

-Di− 1
2
;j+ 1

2
;k− 1

2

-Di− 1
2
;j− 1

2
;k− 1

2
)

(1/(16∆z2)-1/(16∆y2)
-1/(16∆x2))

(-Di+ 1
2
;j+ 1

2
;k− 1

2

-Di+ 1
2
;j− 1

2
;k− 1

2
)

(1/(16∆z2)-1/(16∆y2)
+1/(16∆x2))

k-1 j-1

-Di− 1
2
;j− 1

2
;k− 1

2

(1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))

(-Di+ 1
2
;j− 1

2
;k− 1

2

-Di− 1
2
;j− 1

2
;k− 1

2
)

(1/(16∆z2)+1/(16∆y2)
-1/(16∆x2))

-Di+ 1
2
;j− 1

2
;k− 1

2

(1/(16∆z2)+1/(16∆y2)
+1/(16∆x2))
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In the case of anisotropic solids 3D, the diffusion tensor is:

D(x) =

266664
D11(x) D12(x) D13(x)

D21(x) D22(x) D23(x)

D31(x) D32(x) D33(x)

377775 (2.42)

Then, with the new diffusion tensor, the heat flow is:

−→q = −D · ∇T;

266664
qx;i+ 1

2
;j+ 1

2
;k+ 1

2

qy;i+ 1
2
;j+ 1

2
;k+ 1

2

qz;i+ 1
2
;j+ 1

2
;k+ 1

2

377775 = −

266664
D11(x) D12(x) D13(x)

D21(x) D22(x) D23(x)

D31(x) D32(x) D33(x)

377775 ·
266664
@T
@x
|i+ 1

2
;j+ 1

2
;k+ 1

2

@T
@y
|i+ 1

2
;j+ 1

2
;k+ 1

2

@T
@z
|i+ 1

2
;j+ 1

2
;k+ 1

2

377775
(2.43)

Finally, the expansion of Eq. 2.41 with anisotropic conductivity is given in Appendix B.

By simplifying we get the final relation in Table.2.7 for anisotropic case
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Table 2.7: 3D Günter scheme’s coefficient for Ti ;j with anisotropic conductivity
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2.4 Homogenization

The main purpose of homogenization is to determine the <<equivalent>> properties of

heterogeneous materials based on the knowledge of their components properties and spa-

cial arrangement.

The classical homogenization technique aims at replacing the actual non-homogeneous

composite with a fictitious homogeneous component for the purpose of calculating the

effective properties of the composite component through the knowledge of its topologi-

cal structure. To achieve homogenization we need to build two scales: macroscopic and

microscopic scales with a ”Representative Volume Element” (RVE) and an ”equivalent

homogeneous medium” (EHM), respectively [154].

2.4.1 General principles

Representative Volume Element

Since calculations for large volumes are often prohibitive the definition of the RVE is very

important. Over the past decades many researchers have given definitions: Hill [34] noted

that the RVE must contain sufficient microstructural information and therefore include

samples with heterogeneity such as voids, fibers, inclusions, grains, etc. According to Dru-

gan and Willis [35], the RVE is the smallest material volume element in the composite for

which the conventional spatially constant ”overall modulus” macroscopic constitutive rep-

resentation is an accurate enough model to describe mean constitutive response. Kanit et

al. [74] state that the size of the RVE must be considered in terms of five parameters: prop-

erty contrast, physical properties, component volume fraction, relative accuracy required

for effective property estimation, and the number of realizations of the microstructure rel-

evant to the calculation. It is also pointed out that for all types of boundary conditions,

when the RVE is too small, the estimation of the effective properties is biased.
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Hill Lemma

Hill’s lemma [34], alternatively referred to as the macrohomogeneity or Hill–Mandel con-

dition, says that the average of the product of the stress ff and strain " tensors in any

Representative Volume Element (RVE) (micro level) equals the product of their averages

(macro level). It establishes the necessary and sufficient criteria for the equivalence of

elastic materials’ energy and mechanical properties.

< ff : " >=< ff >:< " > (2.44)

For thermal problem:

< q : ∇T >=< q >:< ∇T > (2.45)

Spatial average

The spatial averages of the local heat flux and temperature gradient are defined by:

< q >=
1

|Ω|

Z
Ω

q(x)dV < ∇T >=
1

|Ω|

Z
Ω

∇T (x)dV (2.46)

Where |Ω| is the total volume of the RVE, q(x) and T (x) can be determined by applying a

given temperature boundary condition; < q > and < ∇T > can be calculated by integrat-

ing the corresponding local fields over the domain Ω, then dividing it by the total volume.

With voxel(pixel) models, the integration operation is reduced to the multiplication of each

q(x) and ∇T (x) by the volume fraction.

For a 2D case, if the point is in the corner, the volume fraction is ∆x∆y=(4 ∗ (Lx ∗ Ly )).

If the point is on edge, the volume fraction is ∆x∆y=(2 ∗ (Lx ∗ Ly )). If the point is inside,

the volume fraction is ∆x∆y=(Lx ∗ Ly ), where Lx and Ly represent the model length, re-

spectively.

For a 3D case, if the point is in the corner, the volume fraction is ∆x∆y∆z=(8∗(Lx∗Ly∗Lz)).
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If the point is on edge, the volume fraction is ∆x∆y∆z=(4 ∗ (Lx ∗ Ly ∗ Lz)). If the point

is on face, the volume fraction is ∆x∆y∆z=(2 ∗ (Lx ∗ Ly ∗ Lz)). If the point is inside, the

volume fraction is ∆x∆y∆z=(Lx ∗Ly ∗Lz), where Lx , Ly and Lz represent the model length,

respectively.

Consequently, the macroscopic equivalent thermal conductivity D∗ is defined such that:

< q >= −D∗· < ∇T > (2.47)

To numerically obtain each component of the tensor D∗ in Eq.2.47, the RVE needs to

be simulated three times by applying boundary conditions in three orthogonal directions,

respectively. Then, in the two-dimensional mode, we can obtain the following equation:

−

266666664

< ∇T 1
x > < ∇T 1

y > 0 0

0 0 < ∇T 1
x > < ∇T 1

y >

< ∇T 2
x > < ∇T 2

y > 0 0

0 0 < ∇T 2
x > < ∇T 2

y >

377777775
·

266666664

D∗11

D∗12

D∗21

D∗22

377777775
=

266666664

< q1
x >

< q1
y >

< q2
x >

< q2
y >

377777775
(2.48)

and in the three-dimensional mode, we can obtain the following equation:

−

2666666664

<∇T 1
x> <∇T 1

y> <∇T 1
z> 0 0 0 0 0 0

0 0 0 <∇T 1
x> <∇T 1

y> <∇T 1
z> 0 0 0

0 0 0 0 0 0 <∇T 1
x> <∇T 1

y> <∇T 1
z>

<∇T 2
x> <∇T 2

y> <∇T 2
z> 0 0 0 0 0 0

0 0 0 <∇T 2
x> <∇T 2

y> <∇T 2
z> 0 0 0

0 0 0 0 0 0 <∇T 2
x> <∇T 2

y> <∇T 2
z>

<∇T 3
x> <∇T 3

y> <∇T 3
z> 0 0 0 0 0 0

0 0 0 <∇T 3
x> <∇T 3

y> <∇T 3
z> 0 0 0

0 0 0 0 0 0 <∇T 3
x> <∇T 3

y> <∇T 3
z>

3777777775
·

26666666666666666666666664

D∗11

D∗12

D∗13

D∗21

D∗22

D∗23

D∗31

D∗32

D∗33

37777777777777777777777775

=

26666666666666666666666664

< q1
x >

< q1
y >

< q1
z >

< q2
x >

< q2
y >

< q2
z >

< q3
x >

< q3
y >

< q3
z >

37777777777777777777777775
(2.49)
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Voigt-Reuss analytical estimates

Voigt and Reuss [155, 156] can be used to estimate the equivalent properties by supplying

analytical upper and lower bound for thermal conductivity. For example, with a composite

material which is consist of matrix and fiber inclusions.

Voigt can offer the upper bound.

Dhom = DmVm +Df Vf (2.50)

Reuss can provide the lower bound.

Dhom−1

= D−1
m Vm +D−1

f Vf (2.51)

where Dhom, Dm, and Df represent the thermal conductivity of the homogenized material,

matrix, and inclusion, respectively, Vm and Vf denotes the volume fraction of matrix, and

inclusion, respectively.

Boundary conditions

In order to study the thermal behavior of inhomogeneous materials in great detail, we

need to specify the appropriate boundary conditions for the solid elements. In the choice

of the boundary conditions, standard boundary conditions include kinematically uniform

(KUBC), statically uniform (SUBC), and periodicity (PBC). Uniform displacement–traction

(orthogonal mixed) boundary conditions (MUBC) are less well-known. They were intro-

duced by Hazanov and Amieur [157], Hazanov [158]. Nemat-Nasser and Hori [159]. dis-

covered that SUBC results in lower estimations of their macroscopic stiffness, while KUBC

results in greater values. Suquet [160] showed that PBC-based forecasts lie between these

two extremes. Ostoja-Starzewski [161] showed that the predictions of MUBC boundary

conditions are between those obtained with SUBC and KUBC. However, Hazanov [158]
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proposed that mixed homogeneous boundary conditions must be orthogonal and can be

achieved only in materials having at least orthogonal elastic symmetry, with the orthog-

onal axes aligned with the hexahedral volume elements’ symmetry axes. Pahr et Zysset

[162] discovered that when a periodic and orthotropic microstructured material is used, the

proposed mixed boundary conditions have the exact same effective elastic properties as pe-

riodic boundary conditions, and are thus referred to as ”periodicity compatible” mixed

uniform boundary conditions (PMUBCs). Thus, we use periodic boundary conditions for

composites with anisotropic conductivity and periodic structure; for composites with non-

periodic structure and orthotropic conductivity, we use MUBC boundary conditions.

KUBC

Boundary conditions of uniform displacement in elasticity case (Dirichlet, kinematics,

KUBC):

ui(x) = "0
i j · xj(x); ∀x ∈ @Ω (2.52)

Boundary conditions of uniform gradient of temperature in thermal case.

T (x) = Tg 0
i · xj(x); ∀x ∈ @Ω (2.53)

SUBC

Boundary conditions of uniform traction in elasticity case (Neumann, static, SUBC):

ti(x) = ff0
i j · nj(x) ∀x ∈ @Ω (2.54)
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Boundary conditions of uniform heat flux in in thermal case.

Q = q0
i · nj(x) ∀x ∈ @Ω (2.55)

MUBC

Boundary conditions of uniform displacement-traction in elasticity case (mixed orthogonal,

MUBC):

(ui(x)− "0
i j · xj(x)) · (ti(x)− ff0

i j · nj(x)) = 0; ∀x ∈ @Ω (2.56)

Boundary conditions of uniform gradient of temperature-heat flux in thermal case:

(T (x)− Tg 0
i · xj(x)) · (Qi(x)− q0

i · nj(x)) = 0; ∀x ∈ @Ω (2.57)

where "0
i j , ff

0
i j , Tg

0
i , and q0

i are used to indicate constant tensors.

PBC

In the case of periodic microstructures, periodic boundary conditions (PBC) may be used.

For elasticity case:

ui(x)k+ − ui(x)k− = "0
i j∆x

k ; ∀x ∈ @Ω (2.58)

For thermal case:

T (x)k+ − T (x)k− = Tg 0
i ∆xk ; ∀x ∈ @Ω (2.59)

where k+ and k− denote a pair of parallel boundary surfaces, ∆xk denotes the constant

distance between parallel planes.
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2.4.2 Computational homogenization

PBC

Periodic boundary conditions have been widely used in the field of homogenization, Tian

[163, 164, 165] details the method of adding periodic boundary conditions, summarized as

follows:

When a material’s microstructure is geometrically periodic, an RVE modeling approach

exploits the periodicity by simulating the material as an endless repeat of the smallest

periodic unit cell. For example in figure 2.5, PBCs are imposed between face ABCD and

face A’B’C’D’, between face ABB’A’ and face DCC’D’ and face ADD’A’ and BCC’B’.

Y

X

Z

A B

CD

A' B'

C'D'

Figure 2.5: RVE with periodic boundary conditions

Then we have PBC equations for faces:
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ui(BCC
′B′)− ui(ADD′A′) = ∆x"0

ix (2.60)

ui(ADCB)− ui(A′D′C ′B′) = ∆y"0
iy (2.61)

ui(ABB
′A′)− ui(DCC ′D′) = ∆z"0

iz (2.62)

for edges:

ui(AA
′)− ui(DD′) = ∆z"0

iz (2.63)

ui(CC
′)− ui(DD′) = ∆x"0

ix (2.64)

ui(BB
′)− ui(CC ′) = ∆z"0

iz (2.65)

ui(AB)− ui(A′B′) = ∆y"0
iy (2.66)

ui(A
′B′)− ui(D′C ′) = ∆z"0

iz (2.67)

ui(DC)− ui(D′C ′) = ∆y"0
iy (2.68)

ui(BC)− ui(AD) = ∆x"0
ix (2.69)

ui(AD)− ui(A′D′) = ∆y"0
iy (2.70)

ui(B
′C ′)− ui(A′D′) = ∆x"0

ix (2.71)

for vertex:

ui(A)− ui(D) = ∆z"0
iz (2.72)

ui(C)− ui(D) = ∆x"0
ix (2.73)

ui(B)− ui(C) = ∆z"0
iz (2.74)

ui(A
′)− ui(D′) = ∆z"0

iz (2.75)

ui(C
′)− ui(D′) = ∆x"0

ix (2.76)

ui(B
′)− ui(C ′) = ∆z"0

iz (2.77)

ui(D)− ui(D′) = ∆y"0
iy (2.78)
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In equations 2.61–2.78, ∆x , ∆y and ∆z denote the x, y, and z lengths of the RVE, re-

spectively. The subscript i indicates a direction between the coordinates x, y, and z. "0
ix ,

"0
iy and "0

iz are macroscopic strains used to specify particular boundary conditions, i.e.,

∆x"0
ix , ∆y"0

iy and ∆z"0
iz can be globally defined by the variation of the length or shear

displacement of the RVE model. The PBC for temperature is similarly created. Equations

2.61–2.78 are modified by substituting the temperature change T for ui . The following are

the precise implementation equations for the periodic boundary condition used to predict

the equivalent thermal conductivity of composites:

Face-BCC’B’ and Face-ADD’A’:

TFace−BCC′B′ − TFace−ADD′A′ = ∆Tx (2.79)

Face-ADCB and Face-A’D’C’B’:

TFace−ADCB − TFace−A′D′C′B′ = ∆Ty (2.80)

Face-ABB’A’ and Face-DCC’D’:

TFace−ABB′A′ − TFace−DCC′D′ = ∆Tz (2.81)

Edge-AA’, Edge-BB’, Edge-CC’ and Edge-DD’:

TEdge−AA′ − TEdge−DD′ = ∆Tz

TEdge−CC′ − TEdge−DD′ = ∆Tx

TEdge−BB′ − TEdge−CC′ = ∆Tz (2.82)
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Edge-AB, Edge-DC, Edge-D’C’ and Edge-A’B’:

TEdge−AB − TEdge−A′B′ = ∆Ty

TEdge−AB − TEdge−DC = ∆Tz

TEdge−DC − TEdge−D′C′ = ∆Ty (2.83)

Edge-BC, Edge-B’C’, Edge-A’D’ and Edge-AD:

TEdge−BC − TEdge−AD = ∆Tx

TEdge−BC − TEdge−B′C′ = ∆Ty

TEdge−B′C′ − TEdge−A′D′ = ∆Tx (2.84)

Vertice-A, Vertice-B, Vertice-C and Vertice-D:

TV ertice−A − TV ertice−D = ∆Tz

TV ertice−C − TV ertice−D = ∆Tx

TV ertice−B − TV ertice−C = ∆Tz (2.85)

Vertice-A’, Vertice-B’, Vertice-C’ and Vertice-D’:

TV ertice−A′ − TV ertice−D′ = ∆Tz

TV ertice−C′ − TV ertice−D′ = ∆Tx

TV ertice−B′ − TV ertice−C′ = ∆Tz (2.86)

Vertice-B and Vertice-B’:

TV ertice−B − TV ertice−B′ = ∆Ty (2.87)

where ∆Tx , ∆Tyand ∆Tz are the temperature difference between Face-BCC’B’ and Face
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ADD’A’, between Face-ADCB and Face-A’D’C’B’ and between Face-ABB’A’ and Face-

DCC’D’, respectively. In order to calculate the components (Di j) of the composite’s equiv-

alent thermal conductivity tensor, the RVE must be numerically simulated three times

using suitable magnitudes ∆Tx , ∆Ty and ∆Tz .

In anisotropic case, the thermal conductivity tensor D∗ has 9 components. To calculate

the components D∗11, D∗21, D∗31, the following values could be applied:

∆Tx 6= 0; ∆Ty = 0; and ∆Tz = 0 (2.88)

To calculate the components D∗12, D∗22, D∗23:

∆Tx = 0; ∆Ty 6= 0; and ∆Tz = 0 (2.89)

To calculate the components D∗13, D∗23, D∗33:

∆Tx = 0; ∆Ty = 0; and ∆Tz 6= 0 (2.90)

In isotropic case, the tensor D∗ is diagonal and can be reduced as D∗ = k∗I, where the k∗

is the scalar thermal conductivity, and our research is based on this isotropic situation.

MUBC

When the material’s microstructure is not periodic, we can use the MUBC boundary

condition. However, due to the applicability of MUBC, this boundary condition is limited

to isotropic and orthotropic thermal conductivity. For example in the same figue 2.5,

Dirichlet boundary conditions are imposed between face ADD’A’ and face B CC’BB’.

Neumann boundary conditions are imposed between face ADCB and face A’D’C’B’ and

between face ABB’A’ and face DCC’D’.
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Then we have MUBC equations for face:

ui(BCC
′B′) = "0

ix · xx(BCC ′B′)

ui(ADD
′A′) = "0

ix · xx(ADD′A′)

ui(ADCB) = ff0
iy · ny (ADCB)

ui(A
′D′C ′B′) = ff0

iy · ny (A′D′C ′B′)

ui(ABB
′A′) = ff0

iz · nz(ABB′A′)

ui(DCC
′D′) = ff0

iz · nz(DCC ′D′) (2.91)

for edges:

ui(AA
′) = "0

ix · xx(AA′) ui(DD
′) = "0

ix · xx(DD′)

ui(AD) = "0
ix · xx(AD) ui(A

′D′) = "0
ix · xx(A′D′)

ui(BB
′) = "0

ix · xx(BB′) ui(CC
′) = "0

ix · xx(CC ′)

ui(BC) = "0
ix · xx(BC) ui(B

′C ′) = "0
ix · xx(B′C ′)

ti(AB) = ff0
iy · ny (AB) + ff0

iz · nz(AB)

ti(A
′B′) = ff0

iy · ny (A′B′) + ff0
iz · nz(A′B′)

ti(DC) = ff0
iy · ny (DC) + ff0

iz · nz(DC)

ti(D
′C ′) = ff0

iy · ny (D′C ′) + ff0
iz · nz(D′C ′)

(2.92)

for vertices:

ui(A) = "0
ix · xx(A) ui(B) = "0

ix · xx(B)

ui(C) = "0
ix · xx(C) ui(D) = "0

ix · xx(D)

ui(A
′) = "0

ix · xx(A′) ui(B
′) = "0

ix · xx(B′)

ui(C
′) = "0

ix · xx(C ′) ui(D
′) = "0

ix · xx(D′) (2.93)
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In equations 2.91-2.93, "0
ix is macroscopic strain and ff0

iy and ff0
iz are macroscopic stress. In

thermal, when we use the MUBC boundary condition to solve for the homogenized heat

conductivity coefficient, we usually use the specified temperature as the thermal boundary

condition in one direction and the adiabatic condition in the other two directions, where

the heat flux is set to 0 (as if it were insulated). Therefore, the boundary conditions of

MUBC are:

Face-ADD’A’ and Face-BCC’B’:

TFace−ADD′A′ = Tlef t

TFace−BCC′B′ = Tr ight (2.94)

Face-ADCB and Face-A’D’C’B’:

qFace−ADCB · ny = 0

qFace−A′D′C′B′ · ny = 0 (2.95)

Face-ABB’A’ and Face-DCC’D’:

qFace−ABB′A′ · nz = 0

qFace−DCC′D′ · nz = 0 (2.96)

Edge-AD, Edge-DD’, Edge-D’A’, Edge-AA’:

TEdge−AD = TEdge−DD′ = TEdge−D′A′ = TEdge−AA′ = Tlef t (2.97)

Edge-BC, Edge-CC’, Edge-B’C’, Edge-BB’:

TEdge−BC = TEdge−CC′ = TEdge−B′C′ = TEdge−BB′ = Tr ight (2.98)
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Edge-AB, Edge-DC, Edge-D’C’ and Edge-A’B’:

qEdge−AB · ny = 0 qEdge−AB · nz = 0

qEdge−DC · ny = 0 qEdge−DC · nz = 0

qEdge−D′C′ · ny = 0 qEdge−D′C′ · nz = 0

qEdge−A′B′ · ny = 0 qEdge−A′B′ · nz = 0 (2.99)

Vertice-A, Vertice-D, Vertice-D’ and Vertice-A’:

TV ertice−A = TV ertice−D = TV ertice−D′ = TV ertice−A′ = Tlef t (2.100)

Vertice-B, Vertice-C, Vertice-B’ and Vertice-C’:

TV ertice−B = TV ertice−C = TV ertice−C′ = TV ertice−B′ = Tr ight (2.101)

In order to calculate the component of the equivalent thermal conductivity tensor of the

composite (Di j), the model requires three numerical simulations using suitable magnitudes

∆Tx , ∆Ty and ∆Tz as in the case of periodic boundary conditions.

2.5 Numerical solvers

When we have completed the above section, we will have a complete system of linear equa-

tions and the final result is obtained by solving these equations. The methods for solving

algebraic equations are generally divided into direct and iterative solutions.

The direct method is a method which, after a finite number of steps of arithmetic opera-

tions, leads to an exact solution of a system of linear equations (if there are no rounding

errors in the calculation). It is commonly used to solve systems of low-order dense matrix
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equations and some large systems of sparse matrix equations (e.g. large systems of band

equations).

The iterative method is a method of approximating the exact solution of a system of linear

equations step by step using some kind of limit process. Advantages: few storage units,

simple programming, the original coefficient matrix remains constant throughout the com-

putation, etc.; Disadvantages: convergence and convergence speed problems exist. It is

often used to solve large systems of sparse matrix equations [166].

Common direct methods include Gaussian elimination, QR decomposition, LLT decompo-

sition, LDLT decomposition, LU decomposition, etc. Common iterative methods include

Conjugate Gradient, Least Squares Conjugate Gradient, BiCGSTAB. The types of solu-

tions for these methods are described in detail in Chapter 3, HPC.

In this work, the Eigen library is used to develop software as it encompasses a variety of

direct and iterative solvers.

2.6 Conlusion

In this chapter, we focus on the description of some common physical parameters in ther-

mal problems and on the reproduction of isotropic and anisotropic expressions for the

Günter scheme, as well as the extensions of the corresponding three-dimensional models.

A summary of homogenization theory is presented, focusing on Hill Lemma, boundary

conditions, analytical methods, and loading methods for MUBC, and periodic boundary

conditions. Finally, a brief introduction to common matrix solving methods is given.
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Chapter 3

Extension of FD models and

implementation of boundary

condition

3.1 Introduction

In this chapter, we focus on our approach, where Section 3.2 introduces our own model

developed after being inspired by the Günter scheme, including the 5-point model and

the integral model. Secondly, in Section 3.3, we describe in detail our method of loading

periodic boundary conditions when using the Günter scheme and the method of making

it matrix symmetric and loading various MUBC boundary conditions. Finally, in Section

3.4, we introduce the high-performance computing methods we use, mainly focusing on the

CPU method, the two solvers we choose, Eigen and Pardiso, and their comparison.
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3.2 Extented FD models based on Günter’s method

5-point scheme on 2D

Loading the boundary conditions by the Günter model, we found that both PBC and

MUBC have situations that lead to matrix singularities. Compared with the classical 5-

point difference model, we conjecture that the problem is caused by corner points, so we

build the difference model in Figure 10, a 5-point model similar to the Günter model.

Interpolation method:

i,j+1

i+1,j

ki+1/2,j+1/2

ki+1/2,j-1/2

Figure 3.1: 5-point scheme

T (x; y) = a1 + a2x + a3y; x ∈ [0;∆x ]; y ∈ [0;∆y ] (3.1)

266664
1 0 0

1 ∆x 0

1 0 ∆y

377775 ·
266664
a1

a2

a3

377775 =

266664
Ti ;j

Ti+1;j

Ti ;j+1

377775 (3.2)
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Then, we can get the coefficient a1,...a3:

a1 = Ti ;j ;

a2 =
Ti+1;j

∆x
− Ti ;j

∆x
;

a3 =
Ti ;j+1

∆y
− Ti ;j

∆y
;

(3.3)

The gradients are determined at the centre:

@T

@x
|i+ 1

2
;j+ 1

2
=
Ti+1;j − Ti ;j

∆x
;

@T

@y
|i+ 1

2
;j+ 1

2
=
Ti ;j+1 − Ti ;j

∆y
;

@T

@x
|i+ 1

2
;j− 1

2
=
Ti+1;j − Ti ;j

∆x
;

@T

@y
|i+ 1

2
;j− 1

2
=
Ti ;j − Ti ;j−1

∆y
;

@T

@x
|i− 1

2
;j+ 1

2
=
Ti ;j − Ti−1;j

∆x
;

@T

@y
|i− 1

2
;j+ 1

2
=
Ti ;j+1 − Ti ;j

∆y
;

@T

@x
|i− 1

2
;j− 1

2
=
Ti ;j − Ti−1;j

∆x
;

@T

@y
|i− 1

2
;j− 1

2
=
Ti ;j − Ti ;j−1

∆y

(3.4)

We may obtain the heat flux by equation 2.20 and the final description for isotropic using

the same procedure 2.21 as for the symmetric scheme :

∇ · −→q = −(((∆y 2 + ∆x∆y) Ti+1;j +(∆x∆y + ∆x2) Ti ;j+1 +(−∆y 2 − 2∆x∆y −∆x2) Ti ;j)

Di+1=2;j+1=2 +((∆y 2 −∆x∆y) Ti+1;j +(−∆y 2 + 2∆x∆y −∆x2) Ti ;j +(∆x2 −∆x∆y)

Ti ;j−1) Di+1=2;j−1=2 +((∆x2 −∆x∆y) Ti ;j+1 +(−∆y 2 + 2∆x∆y −∆x2) Ti ;j

+(∆y 2 −∆x∆y) Ti−1;j) Di−1=2;j+1=2 +((−∆y 2 − 2∆x∆y −∆x2) Ti ;j +(∆x∆y + ∆x2)

Ti ;j−1 +(∆y 2 + ∆x∆y) Ti−1;j) Di−1=2;j−1=2)=(2∆x2∆y 2)

(3.5)

By simplifying we get the final relation: With equation 2.24 and 2.21, we can get the
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Table 3.1: coefficient for Ti ;j of 5-point isotropic scheme

j

Coef i
i − 1 i i + 1

j+1
(0:25=∆x2 + 0:25=∆y2)

Di−1=2;j+1=2

(−0:25=∆x2 + 0:25=∆y2)
(Di−1=2;j+1=2 + Di+1=2;j+1=2)

(0:25=∆x2 + 0:25=∆y2)
Di+1=2;j+1=2

j
(0:25=∆x2 − 0:25=∆y2)

(Di−1=2;j−1=2 + Di−1=2;j+1=2)

(0:25=∆x2 + 0:25=∆y2)
(−Di−1=2;j−1=2−Di−1=2;j+1=2

−Di+1=2;j−1=2−Di+1=2;j+1=2)

(0:25=∆x2 − 0:25=∆y2)
(Di+1=2;j−1=2 + Di+1=2;j+1=2))

j-1
(0:25=∆x2 + 0:25=∆y2)

Di−1=2;j−1=2

(−0:25=∆x2 + 0:25=∆y2)
(Di−1=2;j−1=2 + Di+1=2;j−1=2)

(0:25=∆x2 + 0:25=∆y2)
Di+1=2;j−1=2

descriptions for anisotropic :

∇ · −→q = −(
`
∆x2 Ti ;j+1−∆x2 Ti ;j

´
k22i+1=2;j+1=2 + (∆x∆y Ti+1;j −∆x∆y Ti ;j) k21i+1=2;j+1=2

+ (∆x∆y Ti ;j+1−∆x∆y Ti ;j) k12i+1=2;j+1=2 +
`
∆y 2 Ti+1;j −∆y 2 Ti ;j

´
k11i+1=2;j+1=2

+
`
∆x2 Ti ;j−1−∆x2 Ti ;j

´
k22i+1=2;j−1=2 + (∆x∆y Ti ;j −∆x∆y Ti+1;j) k21i+1=2;j−1=2

+ (∆x∆y Ti ;j −∆x∆y Ti ;j−1) k12i+1=2;j−1=2 +
`
∆y 2 Ti+1;j −∆y 2 Ti ;j

´
k11i+1=2;j−1=2

+
`
∆x2 Ti ;j+1−∆x2 Ti ;j

´
k22i−1=2;j+1=2 + (∆x∆y Ti ;j −∆x∆y Ti−1;j) k21i−1=2;j+1=2

+ (∆x∆y Ti ;j −∆x∆y Ti ;j+1) k12i−1=2;j+1=2 +
`
∆y 2 Ti−1;j −∆y 2 Ti ;j

´
k11i−1=2;j+1=2

+
`
∆x2 Ti ;j−1−∆x2 Ti ;j

´
k22i−1=2;j−1=2 + (∆x∆y Ti−1;j −∆x∆y Ti ;j) k21i−1=2;j−1=2

+ (∆x∆y Ti ;j−1−∆x∆y Ti ;j) k12i−1=2;j−1=2

+
`
∆y 2 Ti−1;j −∆y 2 Ti ;j

´
k11i−1=2;j−1=2)=(2∆x2∆y 2)

(3.6)

By simplifying we get the final relation:

Table 3.2: coefficient for Ti ;j of 5-point anisotropic scheme

j

Coef i
i − 1 i i + 1

j+1
−(D22

i+ 1
2
;j+ 1

2
+ D22

i− 1
2
;j+ 1

2
)=(2∆y2)

+(D12
i− 1

2
;j+ 1

2
−D12

i+ 1
2
;j+ 1

2
)=(2∆x∆y)

j

(D21
i− 1

2
;j+ 1

2
−D21

i− 1
2
;j− 1

2
)=(2∆x∆y)

−(D11
i− 1

2
;j+ 1

2
+ D11

i− 1
2
;j− 1

2
)=(2∆x2)

(D11
i+ 1

2
;j+ 1

2
+ D11

i+ 1
2
;j− 1

2
D11

i− 1
2
;j+ 1

2
+ D11

i− 1
2
;j− 1

2
)=(2∆y2)

+(D21
i+ 1

2
;j+ 1

2
+ D12

i+ 1
2
;j+ 1

2
−D21

i+ 1
2
;j− 1

2
−D12

i+ 1
2
;j− 1

2
−D21

i+ 1
2
;j− 1

2
−D12

i+ 1
2
;j− 1

2
+D21

i− 1
2
;j− 1

2
+ D12

i− 1
2
;j− 1

2
)=(2∆x∆y)

+(D22
i+ 1

2
;j+ 1

2
+ D22

i+ 1
2
;j− 1

2
D22

i− 1
2
;j+ 1

2
+ D22

i− 1
2
;j− 1

2
)=(2∆x2)

(D21
i+ 1

2
;j− 1

2
−D21

i+ 1
2
;j+ 1

2
)=(2∆x∆y)

−(D11
i+ 1

2
;j+ 1

2
+ D11

i+ 1
2
;j− 1

2
)=(2∆x2)

j-1
−(D22

i+ 1
2
;j− 1

2
+ D22

i− 1
2
;j− 1

2
)=(2∆y2)

+(D12
i+ 1

2
;j− 1

2
−D12

i− 1
2
;j− 1

2
)=(2∆x∆y)
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Integral scheme

Since we cannot find the value of heat flow at the point, we choose the integral method to

circumvent this problem by solving for ∇q through the integral property.

Z
S

∇qdS =

I
l

q · ndl (3.7)

As shown in Fig.3.2, we have selected three different integration domains for the calculation,

(a) for the square integration domain, (b) for the diamond integration domain, and (c) for

the circular integration domain. In the three schemes, a is the parameter that controls the

square, rhombus, and circle, a ∈ (0; min(dx; dy)].

i,j+1

i,j

i,j-1

i+1,j

i+1,j-1

i+1,j+1i-1,j+1

i-1,j

i-1,j-1

a

a

q1y·n q3y·n

q1x·n

q2y·n q4y·n

q1x·n q4x·n

q3x·n

(a) Square

i,j+1

i,j

i,j-1

i+1,j

i+1,j-1

i+1,j+1i-1,j+1

i-1,j

i-1,j-1

a

a

q1·n

q2·n

q3·n

q4·n

(b) Rhombus

i,j+1

i,j-1

i+1,j

i+1,j-1

i+1,j+1i-1,j+1

i-1,j

i-1,j-1

i,ja
a

q1·n

q2·n

q3·n

q4·n

(c) Circle

Figure 3.2: integral model

We establish the coordinate system with the point (i, j) as the origin and obtain the

following temperature expression (T(x,y)) by interpolation:

„
Ti ;j

dx dy
− Ti ;j−1

dx dy
− Ti−1 ;j

dx dy
+

Ti−1 ;j−1

dx dy

«
xy +

„
Ti ;j

dy
− Ti ;j−1

dy

«
y +

„
Ti ;j

dx
− Ti−1 ;j

dx

«
x + Ti ;j„

Ti ;j+1

dx dy
− Ti ;j

dx dy
− Ti−1 ;j+1

dx dy
+

Ti−1 ;j

dx dy

«
xy +

„
Ti ;j+1

dy
− Ti ;j

dy

«
y +

„
Ti ;j

dx
− Ti−1 ;j

dx

«
x + Ti ;j„

Ti+1 ;j

dx dy
− Ti+1 ;j−1

dx dy
− Ti ;j

dx dy
+

Ti ;j−1

dx dy

«
xy +

„
Ti ;j

dy
− Ti ;j−1

dy

«
y +

„
Ti+1 ;j

dx
− Ti ;j

dx

«
x + Ti ;j„

Ti+1 ;j+1

dx dy
− Ti+1 ;j

dx dy
− Ti ;j+1

dx dy
+

Ti ;j

dx dy

«
xy +

„
Ti ;j+1

dy
− Ti ;j

dy

«
y +

„
Ti+1 ;j

dx
− Ti ;j

dx

«
x + Ti ;j

(3.8)
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The following heat flow expression can be obtained by Eq.3.8:

q1 =

264−Di− 1
2
;j− 1

2

““
Ti ;j

dx dy
− Ti ;j−1

dx dy
− Ti−1 ;j

dx dy
+

Ti−1 ;j−1
dx dy

”
y +

Ti ;j

dx
− Ti−1 ;j

dx

”
−Di− 1

2
;j− 1

2

““
Ti ;j

dx dy
− Ti ;j−1

dx dy
− Ti−1 ;j

dx dy
+

Ti−1 ;j−1
dx dy

”
x +

Ti ;j

dy
− Ti ;j−1

dy

”
375

q2 =

264−Di− 1
2
;j+ 1

2

““
Ti ;j+1

dx dy
− Ti ;j

dx dy
− Ti−1 ;j+1

dx dy
+

Ti−1 ;j
dx dy

”
y +

Ti ;j

dx
− Ti−1 ;j

dx

”
−Di− 1

2
;j+ 1

2

““
Ti ;j+1

dx dy
− Ti ;j

dx dy
− Ti−1 ;j+1

dx dy
+

Ti−1 ;j
dx dy

”
x +

Ti ;j+1

dy
− Ti ;j

dy

”
375

q3 =

264−Di+ 1
2
;j− 1

2

““
Ti+1 ;j

dx dy
− Ti+1 ;j−1

dx dy
− Ti ;j

dx dy
+

Ti ;j−1
dx dy

”
y +

Ti+1 ;j

dx
− Ti ;j

dx

”
−Di+ 1

2
;j− 1

2

““
Ti+1 ;j

dx dy
− Ti+1 ;j−1

dx dy
− Ti ;j

dx dy
+

Ti ;j−1
dx dy

”
x +

Ti ;j

dy
− Ti ;j−1

dy

”
375

q4 =

264−Di+ 1
2
;j+ 1

2

““
Ti+1 ;j+1

dx dy
− Ti+1 ;j

dx dy
− Ti ;j+1

dx dy
+

Ti ;j

dx dy

”
y +

Ti+1 ;j

dx
− Ti ;j

dx

”
−Di+ 1

2
;j+ 1

2

““
Ti+1 ;j+1

dx dy
− Ti+1 ;j

dx dy
− Ti ;j+1

dx dy
+

Ti ;j

dx dy

”
x +

Ti ;j+1

dy
− Ti ;j

dy

”
375

(3.9)

With different integration domains, we end up with the same expression which includes

coefficient a.

Table 3.3: coefficient for Ti ;j of integral isotropic scheme

i-1 i i+1

j+1 -(a2*D
i− 1

2
;j+ 1

2
*Ti−1;j+1)/(dx*dy)

+(a2*D
i+ 1

2
;j+ 1

2
*Ti ;j+1)/(dx*dy)-(a*Di+ 1

2
;j+ 1

2
*Ti ;j+1)/dy

+(a2*D
i− 1

2
;j+ 1

2
*Ti ;j+1)/(dx*dy)-(a*Di− 1

2
;j+ 1

2
*Ti ;j+1)/dy

-(a2*D
i+ 1

2
;j+ 1

2
*Ti+1;j+1)/(dx*dy)

j

+(a2*D
i− 1

2
;j+ 1

2
*Ti−1;j )/(dx*dy)

-(a*D
i− 1

2
;j+ 1

2
*Ti−1;j )/dx

+(a2*D
i− 1

2
;j− 1

2
*Ti−1;j )/(dx*dy)

-(a*D
i− 1

2
;j− 1

2
*Ti−1;j )/dx

-(a2*D
i+ 1

2
;j+ 1

2
*Ti ;j )/(dx*dy)+(a*D

i+ 1
2
;j+ 1

2
*Ti ;j )/dy

+(a*D
i+ 1

2
;j+ 1

2
*Ti ;j )/dx-(a

2*D
i+ 1

2
;j− 1

2
*Ti ;j )/(dx*dy)

+(a*D
i+ 1

2
;j− 1

2
*Ti ;j )/dy+(a*D

i+ 1
2
;j− 1

2
*Ti ;j )/dx

-(a2*D
i− 1

2
;j+ 1

2
*Ti ;j )/(dx*dy)+(a*D

i− 1
2
;j+ 1

2
*Ti ;j )/dy

+(a*D
i− 1

2
;j+ 1

2
*Ti ;j )/dx-(a

2*D
i− 1

2
;j− 1

2
*Ti ;j )/(dx*dy)

+(a*D
i− 1

2
;j− 1

2
*Ti ;j )/dy+(a*D

i− 1
2
;j− 1

2
*Ti ;j )/dx

+(a2*D
i+ 1

2
;j+ 1

2
*Ti+1;j )/(dx*dy)

-(a*D
i+ 1

2
;j+ 1

2
*Ti+1;j )/dx

+(a2*D
i+ 1

2
;j− 1

2
*Ti+1;j )/(dx*dy)

-(a*D
i+ 1

2
;j− 1

2
*Ti+1;j )/dx

j-1 -(a2*D
i− 1

2
;j− 1

2
*Ti−1;j−1)/(dx*dy)

+(a2*D
i+ 1

2
;j− 1

2
*Ti ;j−1)/(dx*dy)-(a*Di+ 1

2
;j− 1

2
*Ti ;j−1)/dy

+(a2*D
i− 1

2
;j− 1

2
*Ti ;j−1)/(dx*dy)-(a*Di− 1

2
;j− 1

2
*Ti ;j−1)/dy

-(a2*D
i+ 1

2
;j− 1

2
*Ti+1;j−1)/(dx*dy)

It is worth noting that by changing the size of a we can obtain different expressions,

where when a=min(dx,dy) we obtain the Günter formula, and when a is wirelessly close

to 0 we can obtain the classical 5-point finite difference model.
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3.3 Imposition of BC on FD pixel/voxel models

The three boundary conditions KUBC, SUBC, and MUBC, use fundamentally the Dirichlet

boundary condition and the Neumann boundary condition, so in this Section, we will

describe how the Dirichlet and Neumann boundary conditions are loaded.

3.3.1 Dirichlet boundary condition

This condition gives the value that the unknown function needs to take on the boundary.

Using Fig.3.3-(a) as an example, we load Dirichlet boundary conditions on the left and

right boundaries, i.e. the left and right boundary values are Tlef t and Tr ight . We can

obtain the following:

Ti = Tlef t i ∈ [0; 3]

Tj = Tr ight j ∈ [12; 15]

(3.10)

3.3.2 Neumann boundary condition

The Neumann boundary condition specifies the differentiation of the solution of the differ-

ential equation on the boundary, generally given the value of the heat flux at the boundary.

Using Fig.3.3-(b) as an example, it is known that Φq = 0 at the top boundary, when the

thermal conductivity is isotropic and orthotropic, so for points within the top bound we

have @T
@x
|x;j = 0. We can load Neumann boundary conditions using the following method.
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(a) MUBC Pixel

Φq

Ti,j

Ti,j-1

Ti,j-2

Ti,j+1

Ti+1,j

Ti-1,j+1 Ti+1,j+1

Ti-1,j

Ti-1,j-1 Ti+1,j-1
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Di-1/2,j-5/2 Di+1/2,j-5/2

(b) Neumann boundary conditions

Figure 3.3: MUBC boundary conditions

Virtual point method

Taking Fig.3.3-(b), the points Ti−1;j+1, Ti ;j+1, Ti+1;j+1 are all virtual points. With central

difference, we have:

@T

@x
|i ;j =

Ti ;j+1 − Ti ;j−1

2∆y
= 0 (3.11)

Loading the Neumann boundary conditions and the equation of equilibrium at point 7 in

Fig. 3.3-(a) as an example, with the coefficients in Table 2.4, we can obtain the following
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results using the virtual point method.

coefi−1;j−1T2 + coefi−1;jT3 + coefi−1;j+1T3′ + coefi ;j−1T6 + coefi ;jT7

+coefi ;j+1T7′ + coefi+1;j−1T10 + coefi+1;jT11 + +coefi+1;j+1T11′ = 0 (3.12)

Φq = 0 =⇒ T3′ − T2 = 0 T7′ − T6 = 0 T11′ − T10 = 0 (3.13)

Bringing Eq.3.13 to Eq.3.12, we obtain the final equation:

(coefi−1;j−1 + coefi−1;j+1)T2 + coefi−1;jT3 + (coefi ;j−1 + coefi ;j+1)T6

+coefi ;jT7 + (coefi+1;j−1 + coefi+1;j+1)T10 + coefi+1;jT11 = 0 (3.14)

Neumann alone

In this method, we impose boundary conditions without using virtual points and without

loading the equilibrium equations on the boundary. For example, for point (i,j) in Fig.3.3-

(b), we know the value of heat flow on the boundary, and according to Equation 2.20,

we use Forward or Backward differences instead of central differences. Second, for the

conductivity Di ;j , we can use Di−1=2;j−1=2 and Di+1=2;j−1=2 to do the arithmetic average.

Forward difference:

@T

@x
|i ;j =

−3Ti ;j + 4Ti+1;j − Ti+2;j

2∆x
(3.15)

Backward difference:

@T

@x
|i ;j =

3Ti ;j − 4Ti−1;j + Ti−2;j

2∆x
(3.16)

That is, taking the point 7 in Fig.3.3-(a) as an example, we have the following equation:

Φq = 0 =⇒ 3T7 − 4T6 + T5

2∆y
= 0 (3.17)
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Neumann without virtual point 1

This method loads Neumann boundary conditions and equilibrium equations on the bound-

ary without using the virtual points.

∇ · −→q =
@qx
@x

+
@qy
@y

(3.18)

For the part @qx
@x

, we can find it by the central difference, using qxi−1=2;j and qxi+1=2;j . For

the part @qy
@y

, when the conductivity is isotropic or orthotropic, @qy
@y

= −Di ;j @
2Ti ;j
@y2 . Similarly

Di ;j can be found by arithmetic averaging.
@2Ti ;j
@y2 can be obtained from Taylor’s formula by

the following equation

@2Ti ;j
@y 2

=
8Ti ;j−1 − Ti ;j−2 − 7Ti ;j − (6∆y)@T

@y
|i ;j

2∆y 2
(3.19)

Bringing Eq.3.19 into Eq.3.18, combined with Φq = 0, the final equation is as follows:

∇ · −→q =
−Di+1=2;j−1=2(Ti+1;j − Ti ;j) +Di−1=2;j−1=2(Ti ;j − Ti−1;j)

∆x2

−
(Di+1=2;j−1=2 +Di−1=2;j−1=2)

2

8Ti ;j−1 − Ti ;j−2 − 7Ti ;j
2∆y 2

(3.20)

Neumann without virtual point 2

The difference between this method and the previous one is the part of solving for @qy
@y

. For

example in Fig.3.3-(b), in this method, we use the Forward or Backward differences formula

to solve for @qy
@y

using qyi;j , qyi;j−1, qyi ;j−2. Where qi ;j is obtained by Neumann boundary con-

dition, qyi;j−1 and qyi;j−2 are obtained by qyi−1=2;j−1=2, qyi+1=2;j−1=2, qyi−1=2;j−3=2, qyi+1=2;j−3=2,

qyi−1=2;j−5=2 and qyi+1=2;j−5=2 by arithmetic averaging, respectively.
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Combined with Φq = 0, the final equation is as follows:

∇ · −→q =
−Di+1=2;j−1=2(Ti+1;j − Ti ;j) +Di−1=2;j−1=2(Ti ;j − Ti−1;j)

∆x2

+(−(qyi−1=2;j−1=2 + qyi+1=2;j−1=2 + qyi+1=2;j−3=2 + qyi−1=2;j−3=2)

+(qyi+1=2;j−3=2 + qyi−1=2;j−3=2 + qyi−1=2;j−5=2 + qyi+1=2;j−5=2)=4)=(2∆y)

(3.21)

Neumann without virtual point 3

The difference between this method and method 2 is in solving the @qy
@y

part. For example

in Fig.3.3-(b), in this method, we will use the new formula obtained from Taylor’s formula

instead of the forward or backward difference formula.

@q

@y
|i ;j =

8qi ;j − 9qi ;j−1=2 + qi ;j−3=2

3∆y
@q

@y
|i ;j =

−8qi ;j + 9qi ;j+1=2 − qi ;j+3=2

3∆y

(3.22)

Where qi ;j is obtained by Neumann boundary condition, qi ;j−1=2 and qi ;j−3=2 are obtained

by qi−1=2;j−1=2, qi+1=2;j−1=2, qi−1=2;j−3=2, qi+1=2;j−3=2 by arithmetic averaging, respectively.

Combined with Φq = 0, the final equation is as follows:

∇ · −→q =
−Di+1=2;j−1=2(Ti+1;j − Ti ;j) +Di−1=2;j−1=2(Ti ;j − Ti−1;j)

∆x2

+(−9
(qyi−1=2;j−1=2 + qyi+1=2;j−1=2)

2
+

(qyi+1=2;j−3=2 + qyi−1=2;j−3=2)

2
)=(3∆y)

(3.23)

3.3.3 MUBC on pixel models

As Fig.3.3-(a) shows the 4*4 pixel schematic diagram of MUBC boundary conditions. The

numbering of 0-15 in the figure is the point numbering, and 0’-15’ are the virtual points

outside the boundary. We take the Günter isotropic scheme as an example of loading fixed

temperatures (Tr ight ; Tlef t) on the left and right sides and insulation (Φq = 0) on the top

and bottom sides. When loading the MUBC boundary condition, we need to load both
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Dirichlet and Neumann boundary condition on the boundary. As shown in Fig.3.3-(a), the

square is loaded with the equilibrium equation introduced by Table 2.4, and taking point

5 as an example, we can obtain the following:

coefi−1;j−1T0 + coefi−1;jT1 + coefi−1;j+1T2 + coefi ;j−1T4 + coefi ;jT5

+coefi ;j+1T6 + coefi+1;j−1T8 + coefi+1;jT9 + +coefi+1;j+1T10 = 0

(3.24)

The circle and star are loaded with the Dirichlet boundary condition and Neumann bound-

ary condition, respectively. Using the virtual point method as an example, we end up with

the following total matrix.

2666666666664

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 −0:5 0 0 1 0 0 0 0 −0:5 0 0 0 0 0 0
−0:5 0 −0:5 0 0 2 0 0 −0:5 0 −0:5 0 0 0 0 0

0 −0:5 0 −0:5 0 0 2 0 0 −0:5 0 −0:5 0 0 0 0
0 0 −0:5 0 0 0 0 1 0 0 −0:5 0 0 0 0 0
0 0 0 0 0 −0:5 0 0 1 0 0 0 0 −0:5 0 0
0 0 0 0 −0:5 0 −0:5 0 0 2 0 0 −0:5 0 −0:5 0
0 0 0 0 0 −0:5 0 −0:5 0 0 2 0 0 −0:5 0 −0:5
0 0 0 0 0 0 −0:5 0 0 0 0 1 0 0 −0:5 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3777777777775
·

2666666666666664

T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15

3777777777777775
=

266666666666664

Tlef t
Tlef t
Tlef t
Tlef t

0
0
0
0
0
0
0
0

Tr ight
Tr ight
Tr ight
Tr ight

377777777777775
(3.25)

It is worth noting that this virtual point method can be used for the 5-point scheme,

but is not fully applicable to the Günter scheme. In the steady-state case, due to the

specialization of the Günter model (inclusion of corner points), the virtual point method

does not apply to the 2-D SUBC boundary condition and leads to matrix singularities that

prevent the matrix from being solved using direct methods. In the 3D case, both the MUBC

boundary condition and the SUBC boundary condition lead to matrix singularities. To

solve this problem we can either choose the transient mode to solve, as detailed in Chapter

4, or use other methods to load the Neumann boundary conditions.
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3.3.4 PBC on pixel models

Fig.3.4-(a) shows the schematic diagram of periodic boundary conditions for a 4*4 pixel

model with 36 points, where 20 virtual points and 16 unknown points Ti ;j , i=0,1,2,3,

j=0,1,2,3. Since the final matrix system formed Ax=b has only one index for the vector x

consisting of unknown points, we number the unknown points in the way as follows:

p = i ∗ (Ny + 1) + j (3.26)

We take the Günter model as an example, given the temperature at point 0 (Tlef t), the

temperature gradient in the x-direction is not 0 (Tgx 6= 0), and the temperature gradient

in the y-direction is 0 (Tgy= 0), where 0-15 numbers are the model point numbers and

0’-15’ are the virtual point numbers. The square is loaded with the equilibrium equation

introduced by Table 2.4, and taking point 10 as an example, we can obtain the following:

coefi−1;j−1T5 + coefi−1;jT6 + coefi−1;j+1T7 + coefi ;j−1T9 + coefi ;jT10

+coefi ;j+1T11 + coefi+1;j−1T13 + coefi+1;jT14 + coefi+1;j+1T15 = 0

(3.27)

The circle is loaded with the periodic boundary condition, we can obtain the following:

T3 − T0 = 0 T12 − T0 = Tgx ∗ Lx T15 − T0 = Tgx ∗ Lx (3.28)

where Tgx is the temperature gradient in the x-direction and Lx is the length of model.

The star is loaded with the periodic boundary condition and the equilibrium equation

and taking point 1 as an example, we can obtain the following using the imaginary point
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method.

coefi−1;j−1T8′ + coefi−1;jT9′ + coefi−1;j+1T10′ + coefi ;j−1T0 + coefi ;jT1

+coefi ;j+1T2 + coefi+1;j−1T4 + coefi+1;jT5 + coefi+1;j+1T6 = 0 (3.29)

T8 − T8′ = Tgx ∗ Lx T9 − T9′ = Tgx ∗ Lx T10 − T10′ = Tgx ∗ Lx (3.30)

Bringing Eq.3.30 to Eq.3.29, we obtain the final equation:

coefi−1;j−1T8 + coefi−1;jT9 + coefi−1;j+1T10 + coefi ;j−1T0 + coefi ;jT1

+coefi ;j+1T2 + coefi+1;j−1T4 + coefi+1;jT5 + coefi+1;j+1T6

= Tgx ∗ Lx ∗ (coefi−1;j−1 + coefi−1;j + coefi−1;j+1) (3.31)
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Figure 3.4: Periodic boundary conditions

Finally, with conductivity Di ;j = 1, ∆x = ∆y = 1, we can get the matrix equation
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Ax=b:

26666666666664

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 −0:25 −0:25 −0:25 0 −0:25 0 0 0 0 0
0 0 1 0 −0:25 −0:25 0 0 0 −0:25 0 −0:25 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −0:25 0 1 0 0 0 0 −0:25 −0:25 0 0 −0:25 0 0
0 0 −0:25 0 0 2 0 0 −0:25 0 −0:5 −0:25 0 0 −0:25 0
0 −0:25 0 0 0 0 2 0 −0:25 −0:5 0 −0:25 0 −0:25 0 0
0 −0:25 0 0 0 0 0 1 0 −0:25 −0:25 0 0 0 −0:25 0
0 −0:25 0 0 0 −0:25 −0:25 0 1 0 0 0 0 0 −0:25 0
0 0 −0:25 0 −0:25 0 −0:5 −0:25 0 2 0 0 0 0 −0:25 0
0 −0:25 0 0 −0:25 −0:5 0 −0:25 0 0 2 0 0 −0:25 0 0
0 0 −0:25 0 0 −0:25 −0:25 0 0 0 0 1 0 −0:25 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 −0:25 0 −0:25 0 0 0 −0:25 −0:25 0 1 0 0
0 0 0 0 0 −0:25 0 −0:25 −0:25 −0:25 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

37777777777775
·

2666666666666664

T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15

3777777777777775
=

26666666666664

Tlef t
−2∆Tx
−2∆Tx

0
0
0
0
0
0
0
0
0

∆Tx
2∆Tx
2∆Tx
∆Tx

37777777777775
(3.32)

where ∆Tx = Tgx ∗ Lx

3.3.5 Symmetrization

Under the boundary conditions of PBC, the matrix is asymmetric due to the presence of

virtual grid points. In this case, we cannot use iterative solutions to solve the matrix,

which will greatly reduce our solving speed, especially when dealing with 3D problems. So

we propose a method to make the matrix symmetric by transforming it. First, we found

the reason for the matrix asymmetry, in Fig.3.4-(a), taking point 4 as an example, point 4

is related to its surrounding points:

coefi−1;j−1T2 + coefi−1;jT0 + coefi−1;j+1T1 + coefi ;j−1T6 + coefi ;jT4

+coefi ;j+1T5 + coefi+1;j−1T10 + coefi+1;jT8 + coefi+1;j+1T9

= Tgy ∗ Ly ∗ (coefi−1;j−1 + coefi ;j−1 + coefi+1;j−1)

(3.33)

With point 6, we have the quation:

coefi−1;j−1T1 + coefi−1;jT2 + coefi−1;j+1T3 + coefi ;j−1T5 + coefi ;jT6

+coefi ;j+1T7 + coefi+1;j−1T9 + coefi+1;jT10 + coefi+1;j+1T11 = 0

(3.34)

We find that there is T6 in Eq.3.33, but there is no T4 in Eq.3.34, which leads to matrix

asymmetry. But due to the periodic boundary condition we have T7 − T4 = Tgy ∗ Ly , so
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bringing this relation to Eq.3.34, we can obtain the relation that satisfies the requirement:

coefi−1;j−1T1 + coefi−1;jT2 + coefi−1;j+1T3 + coefi ;j−1T5 + coefi ;jT6

+
coefi ;j+1

2
T7 +

coefi ;j+1

2
T4 + coefi+1;j−1T9 + coefi+1;jT10 + coefi+1;j+1T11

= −Tgy ∗ Ly
coefi ;j+1

2

(3.35)

The next step is the adjustment of the coefficients to make them equal. It is worth noting

that there are several special points in the matrix A where there is a multiplicative rela-

tionship that cannot reach symmetry requires special treatment, namely point 1, 2, 4, 7,

8, 11, 13, 14. Taking point 1 as an example, if we follow the previous treatment of point

4, there will be a 2-fold relationship that cannot reach symmetry, so we directly replace

point 4 in the point 1 relationship with point 7 to obtain the following formula.

coefi−1;j−1T8 + coefi−1;jT9 + coefi−1;j+1T10 + coefi ;j−1T0 + coefi ;jT1

+coefi ;j+1T2 + coefi+1;j−1T7 + coefi+1;jT5 + coefi+1;j+1T6

= Tgx ∗ Lx ∗ (coefi−1;j−1 + coefi−1;j + coefi−1;j+1) + Tgy ∗ Ly ∗ coefi+1;j−1 (3.36)

To summarize, we take Fig3.4-(b) as an example and transform the matrix to make it

symmetric by the following steps:

• Divide by 2 in the overall formula for the points in the circle and the star.

• Add relationship to the points in the square.

• Reset relationship to the points in the star.
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Finally we can obtain a symmetric matrix with conductivity Di ;j = 1, ∆x = ∆y = 1 as

follows:

26666666666664

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 −0:5 0 −0:5 0 −0:5 0 −0:5 0 0 0 0 0
0 0 2 0 0 −0:5 0 −0:5 0 −0:5 0 −0:5 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 −0:5 −0:5 0 2 0 0 0 0 −0:5 −0:5 0 0 0 0 0
−0:5 0 −0:5 0 0 2 0 0 −0:5 0 −0:5 0 0 0 0 0

0 −0:5 0 −0:5 0 0 2 0 0 −0:5 0 −0:5 0 0 0 0
0 −0:5 −0:5 0 0 0 0 2 0 −0:5 −0:5 0 0 0 0 0
0 0 0 0 0 −0:5 −0:5 0 2 0 0 0 0 −0:5 −0:5 0
0 0 0 0 −0:5 0 −0:5 0 0 2 0 0 −0:5 0 −0:5 0
0 0 0 0 0 −0:5 0 −0:5 0 0 2 0 0 −0:5 0 −0:5
0 0 0 0 0 −0:5 −0:5 0 0 0 0 2 0 −0:5 −0:5 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 −0:5 0 −0:5 0 −0:5 0 −0:5 0 0 2 0 0
0 0 0 0 0 −0:5 0 −0:5 0 −0:5 0 −0:5 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

37777777777775
·

2666666666666664

T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15

3777777777777775
=

26666666666664

Tlef t
−∆Tx
−∆Tx
Tlef t

0
0
0
0
0
0
0
0

Tlef t+∆Tx
∆Tx
∆Tx

Tlef t+∆Tx

37777777777775
(3.37)

3.3.6 PBC on voxel models

The method of loading periodic boundary conditions under the voxel model is similar to

that of the pixel, except that the 2D pixel model is a 9-point model with periodic boundary

conditions loaded on 4 corner points and 4 edges, while the 3D voxel model is a 27-point

model with periodic boundary conditions to be loaded on 8 vertices, 12 angles, and 6 faces.

As shown in Fig3.5, it is a 4x4x4 voxel grid with 216 points, where 152 virtual points and

64 unknown points Ti ;j;k , i=0,1,2,3, j=0,1,2,3, k=0,1,2,3. Since the final matrix system

formed Ax=b has only one index for the vector x consisting of unknown points, we number

the unknown points in the way as follows:

p = k ∗ (Nx + 1) ∗ (Ny + 1) + i ∗ (Ny + 1) + j (3.38)

In Fig.3.5, we are given a temperature at point 0 with a non-zero temperature gradient

in the X direction (Tgx 6= 0), a temperature gradient in the Y direction (Tgy= 0), and a

temperature gradient in the Z direction (Tgz= 0). The square is loaded with the equilib-

rium equation introduced by Table 2.6. We can obtain the following equation using point
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Figure 3.5: PBC on 4x4x4 voxel
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21 as an example.

coefi−1;j−1;k−1T0 + coefi−1;j;k−1T1 + coefi−1;j+1;k−1T2 + coefi ;j−1;k−1T4 + coefi ;j;k−1T5

+coefi ;j+1;k−1T6 + coefi+1;j−1;k−1T8 + coefi+1;j;k−1T9 + coefi+1;j+1;k−1T10 + coefi−1;j−1;kT16

+coefi−1;j;kT17 + coefi−1;j+1;kT18 + coefi ;j−1;kT20 + coefi ;j;kT21 + coefi ;j+1;kT22

+coefi+1;j−1;kT24 + coefi+1;j;kT25 + coefi+1;j+1;kT26 + coefi−1;j−1;k+1T32 + coefi−1;j;k+1T33

+coefi−1;j+1;k+1T34 + coefi ;j−1;k+1T36 + coefi ;j;k+1T37 + coefi ;j+1;k+1T38 + coefi+1;j−1;k+1T40

+coefi+1;j;k+1T41 + coefi+1;j+1;k+1T42 = 0

(3.39)

The circle is loaded with the periodic boundary condition, we can obtain the following:

T3 − T0 = 0 T12 − T0 = Tgx ∗ Lx T15 − T0 = Tgx ∗ Lx

T48 − T0 = 0 T51 − T0 = 0 T60 − T0 = Tgx ∗ Lx T63 − T0 = Tgx ∗ Lx
(3.40)

The star is loaded with the periodic boundary condition and the equilibrium equation and

taking point 1 as an example, we can obtain the following using the virtual point method.

coefi−1;j−1;k−1T40′ + coefi−1;j;k−1T41′ + coefi−1;j+1;k−1T42′ + coefi ;j−1;k−1T32′ + coefi ;j;k−1T33′
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+coefi ;j+1;k−1T34′ + coefi+1;j−1;k−1T36′ + coefi+1;j;k−1T37′ + coefi+1;j+1;k−1T38 + coefi−1;j−1;kT8′

+coefi−1;j;kT9′ + coefi−1;j+1;kT10′ + coefi ;j−1;kT0 + coefi ;j;kT1 + coefi ;j+1;kT2

+coefi+1;j−1;kT4 + coefi+1;j;kT5 + coefi+1;j+1;kT6 + coefi−1;j−1;k+1T24′ + coefi−1;j;k+1T25′

+coefi−1;j+1;k+1T26′ + coefi ;j−1;k+1T16 + coefi ;j;k+1T17 + coefi ;j+1;k+1T18 + coefi+1;j−1;k+1T20

+coefi+1;j;k+1T21 + coefi+1;j+1;k+1T22 = 0

(3.41)

T40 − T40′ = Tgx ∗ Lx T41 − T41′ = Tgx ∗ Lx T42 − T42′ = Tgx ∗ Lx

T32 − T32′ = 0 T33 − T33′ = 0 T34 − T34′ = 0

T36 − T36′ = 0 T37 − T37′ = 0 T38 − T38 = 0

T8 − T8′ = Tgx ∗ Lx T9 − T9 = Tgx ∗ Lx T10 − T10′ = Tgx ∗ Lx

T24 − T24′ = Tgx ∗ Lx T25 − T25′ = Tgx ∗ Lx T26 − T26′ = Tgx ∗ Lx

(3.42)

3.3.7 MUBC on voxel models

Fig.3.6 shows a 4x4x4 voxel grid, where we are given temperatures on the left and right

sides as Tlef t and Tr ight and insulation in the other directions, i.e. Φq = 0, and we take

the same numbering as for the periodic boundary conditions. Here we use the Neumann

without virtual point 1 method as an example. The square is loaded with the equilibrium

equation introduced by Table 2.6. We can also get Eq.3.39 on point 21. The circle is loaded

with the periodic boundary condition, we can obtain the following:

T (0; j; k) = Tlef t

T (3; j; k) = Tr ight

(3.43)
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The star was loaded with Neumann boundary conditions and equilibrium equations. Using

point 6 as an example, we can obtain the following relationship.

∇ · −→q =
@qx
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2∆z2

(3.44)

3.4 Code and HPC

HPC, shortened for high-performance computing, refers to the utilization of pooled comput-

ing capacity to execute data-intensive computations that cannot be performed on ordinary

workstations, such as simulation, modeling, and rendering. We frequently encounter situa-

tions when dealing with various computing problems where a general-purpose computer is

unable to complete the task in a reasonable amount of time due to a large amount of com-

putation required, or where the amount of data required and the available resources make

the computation impossible. HPC techniques efficiently circumvent these restrictions by

utilizing specialized or high-end hardware or by combining the processing capacity of many

units. The primary rationale for utilizing HPC is to make use of the rising amount of com-

puting power accessible to individuals as the number of central processing units (CPUs)

and nodes continue to grow. With sufficient computing power, more operations may be

performed per unit of time, improving the computational speed of a given model. There

are two primary approaches to high-performance computing: conventional CPU clusters

and GPGPU. This article focuses mostly on the CPU direction, testing, and comparing

current solvers.
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3.4.1 Code

First of all, the software we have created is in C++. The software process is illustrated in

Fig.3.7, starting with the reading of the input file, which can be divided into two types.

One type of input file uses the classical RVE included in the software, which contains the

model size, the delineation of pixels (voxel meshes), the thermal conductivity of the matrix,

and the inclusion, the choice of boundary conditions, and the method of solving the matrix.

The second type of RVE is a more complex calculation, where the input file differs from

the first one in that the material number of each pixel (voxel) is given and the thermal

conductivity of each material. After reading the input file, the software will create a sparse

matrix based on the choice of the input file. And in the next step, the matrix is solved

according to the chosen method of joining the matrices, and the temperature gradient,

heat flow values, and other parameters are solved by the calculated temperature solution.

Finally, the different parameters of the solution are rooted and the VTK visualization file

is created which can be used in ParaView for subsequent analysis.

Read input file

Classical RVE Special RVE

Sparse matrix 
     coding

Solving Output file

Direct 
Method

Iterative 
Method

Figure 3.7: Coding process

3.4.2 Solvers

There are many libraries of linear operations available in C++, which is why we have

chosen C++ as our development language. So, in the process of software development, we
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can use them to improve our software. Since our matrix is a sparse, large-scale matrix, we

need the solver to have the following characteristics:

• The solution method has high performance. Because the dimension of our sparse

matrix is relatively large, the solution’s version is more elevated.

• An efficient matrix storage method for storing sparse and intermediate calculation

results.

• The solution process is stable, and the result is correct.

In this part, we tested the speed of different solvers of Eigen and Pardiso. My computer

processor is an Intel Core i7-8700 with 6 Cores and 12 threads.

Eigen

Eigen is a well-known library of linear operations models. Eigen supports dense matrix

and sparse matrix operations and has built-in solvers for both matrices. In addition to

its direct solver and iterative solver, Eigen can also connect third-party solvers such as

SuperLU, PastixLU, SPQR.

The advantages of Eigen:

• Eigen is free.

• Eigen does not need to be installed. Just load the header file while using it

• Eigen is small.

• Eigen is cross-platform and is currently used on several different operating systems,

hardware platforms, and compilers.

• Eigen, compared to some other C++ template libraries, is relatively easy on the

compiler.
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The different solvers of Eigen

Since our matrix is a large-scale sparse matrix, in Eigen, there are several methods avail-

able to solve linear systems when the coefficient matrix is sparse. So we can choose the

appropriate solver depending on the type and size of our matrix to get good performance.

Integrated direct solver:

Classify Solver Type Matrix Type

SimplicialLLT Direct Factorization LLt SDP

SimplicialLDLT Direct Factorization LLt SDP

SparseLU Factorization LU Square

SparseQR QR All Factorization, rectangular

Note: SimplicialLDLT is often better than SimplicialLLT. SimplicialLDLT is recommended

for very rare and not too significant problems. SparseLU is optimized for small and large

problems with irregular patterns. SparseQR is recommended for least squares problems,

has a basic rank revealing function.

Integrated iterative solvers:

Classify Solver Type Matrix Type

ConjugateGradient Classic iterative CG SDP

LeastSquaresCG
CG for the

rectangular least squares problem
Rectangular

BiCGSTAB Gradient bi-conjugate stabilized iterative Square

Note: Iterative solvers support preconditioners, for example: DiagonalPreconditioner,

LeastSquareDiagonalPreconditioner, IncompleteLUT etc. CG is recommended for large

symmetrical problems. LeastSquaresCG solves for min|A′Ax − b|2 without forming A′A.

To speed up the convergence of BiCGSTAB, use preconditioner IncompleteLUT.

99



Pardiso

The Pardiso [167, 168] software package is a high-performance, robust, memory efficient,

and easy-to-use software for solving large asymmetric and unsymmetrical linear systems

of equations on shared memory and distributed memory architectures. The solver uses a

combination of left and right level 3 BLAS supernode techniques and parallels LU, LDLT,

or LLT factorization to improve the performance of sparse sequential and parallel numerical

factorization. The Pardiso function interface supports several types of matrices, including

real, complex, symmetric, and asymmetric matrices.

The advantages of Pardiso:

• Pardiso is free for academics.

• pardiso shows an excellent efficiency of computation and parallelism.

The different Pardiso solvers

Compared to Eigen, Pardiso has only two solvers. The first is the direct solver based on

the LU factorization. The second is the classic iterative CG-based iterative solver. The

difference is that Pardiso’s direct solver uses the METIS command algorithm to reduce the

LU factor filling and can realize multi-threaded calculations.

3.5 Conclusion

In this chapter, we first introduce two new models inspired by the Günter model: the

5-point model and the integral model. The 5-point model does not have the problem of

loading boundary conditions and is simple to implement. On the other hand, the integral

model can be obtained by changing the parameters to obtain various models (including
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the Günter model).

Secondly, we propose methods for loading MUBC and periodic boundary conditions, where

we present several methods for loading Neumann boundary conditions, and also solve

the problem of matrix singularities caused by the Günter model when loading Neumann

boundary conditions using the virtual point method. In addition, a symmetry method

is provided in which the matrix is changed to be symmetric under periodic boundary

conditions, which can then be solved iteratively.

Finally, the software encoding process is given, along with the two decoders we use (Eigen

and Pardiso). Different solution methods within the two decoders are also presented.
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Chapter 4

Comparison of numerical results and

the application of REV to complex

heterogeneous materials

4.1 Introduction

In chapter 2 we introduce the two-dimensional Günter model and the extension to the

three-dimensional model. In chapter 3 we present methods for loading periodic boundary

conditions and for mixing homogeneous boundary conditions. Our main objective is to deal

with homogenization, which means solving for the equivalent properties of the composite,

and for the moment we only consider the thermal case.

In this chapter, we present our numerical results, which include different classical hetero-

geneous structural models in 1D-2D-3D. We also present the results of the finite element

method and the analytical solution for comparison. We verify the accuracy of our model

calculations by comparing the calculated temperature fields, temperature gradients and

heat flows under different models. The equivalent thermal conductivity of these classical
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heterostructure models at different volume fractions is calculated and compared with the

finite element results and the analytical solutions of Voigt and Reuss.

4.2 Numerical tests

In this section, various test cases of the diffusion equation are compared with the analyti-

cal solution for errors, including homogenized cases, heterogeneous cases with anisotropic

diffusion without source term, and with source term.

4.2.1 Homogenized case with Scalar coefficient and source term

We consider a simple steady diffusion problem with scalar coefficient given in [152] with

the following parameter:

D =

264Dxx 0

0 Dyy

375 =

26410‚ 0

0 1

375 ; S =
(Dxx +Dyy )

2
sin(ıx)sin(ıy) (4.1)

where D is diffusion tensor, S is source terme and ‚ is varied from 0 to 9.

Texact(x; y) =
1

2ı2
sin(ıx)sin(ıy); x; y ∈ [0; 1]; (4.2)
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Figure 4.1: Solution contours by scheme Günter and order of accuracy obtained by scheme
Günter and 5-point for homogenized case

Fig4.1-(a) shows the solution contours for ‚ = 2 by scheme Günter with 50*50 pixels.

The order of accuracy by scheme Günter and 5-point is shown in Fig4.1-(b), where the

trend curve of scheme Günter is y = 2:00706743∗x+ 0:53021597, and y = 2:00175996∗x−

0:08163459 for scheme 5-point. This proves that both schemes are order 2 on the homog-

enized case. Fig4.1-(c) shows that the error remains invariant as the Dxx value increases,

with Dxx values varying from 100 to 109. This indicates that the rate of convergence for

both models is independent of anisotropy.

4.2.2 Heterogeneous case with orthotropic tensor coefficient and

without source term

Second, we consider a simple stable diffusion problem with the following orthogonal tensor

coefficients.

D =

264xy 0

0 y3

x

375 (4.3)

With the exact soulution is given by:

Texact(x; y) =
x

y
; x; y ∈ [1; 2]; (4.4)
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Fig4.2-(a) shows the solution contours by scheme Günter with 50*50 pixels. The order of
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Figure 4.2: Solution contours by scheme Günter and order of accuracy obtained by scheme
Günter and 5-point for heterogeneous case with orthotropic tensor coefficient

accuracy by scheme Günter and 5-point is shown in Fig4.2-(b), where the trend curve of

scheme Günter is y = 2:00504838 ∗ x − 2:0953677, and y = 2:0301038 ∗ x − 3:80366709 for

scheme 5-point. This proves that both schemes are order 2 on the heterogeneous case with

orthotropic tensor coefficient.

4.2.3 Heterogeneous case with anisotropic tensor coefficient and

source term

Next, we consider a simple stable diffusion problem with the following anisotropic tensor

coefficients and source term given in [169].

D =

264y 2 + (x + 1)2 −xy

−xy (y + 1)2

375 (4.5)
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With the exact solution is given by:

Texact(x; y) = 1− tanh(100((x − 0:5)2 + (y − 0:5)2); x; y ∈ [0; 1]; (4.6)

And source term is given by:

S = 100(1− A2)(200AB + C) (4.7)

A = tanh(100((x − 0:5)2 + (y − 0:5)2) (4.8)

B = −4x3(x + 1) + (4y 2 − 4y + 3)x2 + 2(y + 1)x − 4y 3(y + 1) + 2(y 2 + y − 1) (4.9)

C = x(4x + 7) + y(6y + 7) (4.10)

Fig4.3-(a) shows the solution contours by scheme Günter with 80*80 pixels. The order of
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Figure 4.3: Solution contours by scheme Günter and order of accuracy obtained by scheme
Günter and 5-point for heterogeneous case with anisotropic tensor coefficient

accuracy by scheme Günter and 5-point is shown in Fig4.3-(b), where the trend curve of

scheme Günter is y = 1:97419847 ∗ x + 1:64916095, and y = 1:58745224 ∗ x + 0:82616242

for scheme 5-point. This proves that scheme Günter is order 2 on the heterogeneous case

with anisotropic tensor coefficient and scheme 5-point is less than order 2.
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4.2.4 Heterogeneous case II with anisotropic tensor coefficient

and source term

As in the previous case, we found that the 5-point model is smaller than second order when

the anisotropic tensor is coefficient. So we choose the following case to verify it again.

D =

26410‚(y 2 + (x + 1)2) −xy

−xy (y + 1)2

375 (4.11)

With the exact solution is given by:

Texact(x; y) = sin(ıx)sin(ıy); x; y ∈ [0; 1]; (4.12)

And source term is given by:

S = ((ı210‚ + ı2)sin(ıx)y 2 + 2ı2sin(ıx)y + (ı210‚x2 + 2ı210‚x + ı210‚ + ı2)

sin(ıx) + ((ı − 2ı10‚)x − 2ı10‚)cos(ıx))sin(ıy) + ((2ı2xcos(ıx)− ısin(ıx))y

−2ısin(ıx))cos(ıy)

(4.13)

Fig4.4-(a) shows the solution contours by scheme Günter with 80*80 pixels. The order
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Figure 4.4: Solution contours by scheme Günter and order of accuracy obtained by scheme
Günter and 5-point for heterogeneous case II with anisotropic tensor coefficient
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of accuracy by scheme Günter and 5-point is shown in Fig4.4-(b) with ‚ = 9, where the

trend curve of scheme Günter is y = 1:99126055 ∗ x + 0:46986783, and y = 2:00058108 ∗

x − 0:20330788 for scheme 5-point. This proves that both schemes are order 2 with ‚ = 9.

Fig4.4-(c) shows that the error remains invariant as the Dxx value increases, with Dxx

values varying from 100 to 109. This indicates that the rate of convergence for scheme

Günter is independent of anisotropy, but the convergence rate of the 5-point scheme is

only related to anisotropy when ‚ < 2.

4.3 1D problem

First, we take a 1D model with PBC (T0 = 0; T gx = 1) as an example to compare our

method with FEM. As shown in Fig.4.5, there is a one-dimensional model consisting of

three line segments, where the thermal conductivity of the segment consisting of points 0

and 1 and points 2 and 3 is Dm = 1, and the thermal conductivity of the segment consisting

of points 1 and 2 is Df = 100.

0 1 2 3Dm Df Dm

Figure 4.5: 1D model

Table 4.1: Comparison of the results of FDM and FEM

Temperature Temperature gradient Heat Flux
point FDM FEM FDM FEM FDM FEM

0 0 0 1.4925 1.4925 -1.4925 -1.4925
1 0.49751 0.4951 0.75373 0.75373 -1.4925 -1.4925
2 0.50249 0.50249 0.75373 0.75373 -1.4925 -1.4925
3 1 1 1.4925 1.4925 -1.4925 -1.4925

As shown in Table 4.1, by comparing the results it was found that the two methods

109



obtained exactly the same results. This also proves the feasibility of our method in one-

dimensional problems.

4.4 Two-dimensional pixel models with PBC

In this section, we compare FDM results for periodic boundary conditions with the ana-

lytical solution, FEM and FEM+pixel, respectively. The FDM approach is validated by

comparing the temperature field, temperature gradient field, heat flow field, and equivalent

thermal conductivity and convergence rate.

4.4.1 Layered composite with analytical results

Fig.4.6-(a) shows a slat consisting of a heterogeneous material in the format of 3*1 pixels,

where Ω denotes a field consisting of a heterogeneous material(the matrix Ω \ Ωf ib and

the fiber Ωf ib). A temperature of 0 is imposed at point 0, and then a periodic boundary

condition is imposed on the boundary with the following thermal boundary value problem:

8>>>>>>>><>>>>>>>>:

div−→q = 0 in Ω

T = 0 on point 0

TΓl
− TΓr = 1 on Γr , Γl

TΓt − TΓb
= 0 on Γt , Γb

(4.14)

With isotope thermal conductivity:

D =

8><>:
1 in Ω \ Ωf ib

100 in Ωf ib

(4.15)

110



Fig.4.6-(b) and (c) show the obtained temperature fields and temperature gradients, re-

spectively. The final equivalent thermal conductivity can be obtained with the 3*1 pixel

as follows:

Deq =

2641:49254 0

0 34

375 (4.16)

The correctness of our results is verified after estimation by the voigt and Reuss analytical

methods introduced in Chapter 2.

0°C

(a)

Temperature (°C)
0 1

(b)

Tgx (°C/m)
0.754 1.4921.1

(c)

Ω

Ωfib

0
0.5

ΓrΓl

Γt

Γb

Figure 4.6: 3*1 pixel model of Slat

Table 4.2 shows the equivalent thermal conductivity values of the slat model for different

volume fractions of fiber with 25*25 pixels. where the values of Dxx and Dyy are obtained

from our method and the values of Voigt and Reuss are from the analysis method. Com-

paring the results computed by our method exactly match the analytical method, which

proves the accuracy of our method. It is worth noting that when dividing the pixels, it is

necessary to make the boundaries of the pixels coincide with the fiber boundaries.

Table 4.2: Equivalent thermal conductivity of layered composite

volume
fraction
of fiber

0.04 0.12 0.2 0.28 0.36 0.44 0.52 0.6 0.68 0.76 0.84

Dxx 1.04123 1.13482 1.24688 1.38351 1.55376 1.77179 2.06101 2.46305 3.05998 4.03877 5.93824
Dyy 4.96 12.88 20.8 28.72 36.64 44.56 52.48 60.4 68.32 76.24 84.16
Voigt 4.96 12.88 20.8 28.72 36.64 44.56 52.48 60.4 68.32 76.24 84.16
Reuss 1.04123 1.13482 1.24688 1.38351 1.55376 1.77179 2.06101 2.46305 3.05998 4.03877 5.93824
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4.4.2 FDM/FEM comparison

In this section, for a static heat conduction problem, we compare the distributions of

temperature (T), temperature gradient (Tgx), and heat flow (Hfx) calculated by FDM and

FEM in the corresponding meshes, and compare the thermal conductivity cases for both

isotropic and anisotropic cases. The results of the FEM part are calculated by Comsol

software. For periodic boundary conditions, Comsol software has an existing module,

the principle is T (x0) − T (x1) = ∆T , for the two-dimensional model we can specify the

corresponding two edges as periodic, in order to ensure the accuracy of the results, we

choose to mesh one of the edges first and then copy the mesh to the corresponding edge

to ensure that the mesh points correspond to each other after the mesh. Finally, we

choose ParaView to visualize the temperature field, temperature gradient, and heat flow

to compare the two methods and calculate the above values on the path middle (y=0.5)

and path diagonal (y=x) respectively.

In two-dimensional situations, we consider a domain defined by simple geometric shapes

such as circular inclusion, cross, ellipse, and bcc. For the choice of thermal conductivity,

we choose Df =Dm = 100 instead of specific material parameters for the convenience of

calculating isotropic conditions.

Dm =

2641 0

0 1

375 Df =

264100 0

0 100

375 (4.17)

For the anisotropic thermal conductivity we choose the following:

Dm =

2645 3

3 8

375 Df =

264250 150

150 400

375 (4.18)
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Figure 4.7: Simple geometric shapes

Fig.4.7-(a) shows that a cross is defined by the coordinates of its center and the length

l of its sides. For example, if the center of the cross inclusion is of side length l = 0:3,

then the volume fraction is  = 0:5556. (b), (c), (d) show three spherical filler structures,

where the radius of the spherical filler in (b) and (d) is 0.3, and the semi-long axis of the

elliptical filler in (c) is 0.3 and the semi-short axis is 0.15.

Isotropic cross case

Fig.4.8 shows the comparison of overall trends of the isotropic case of one cross inclusion

of side length equal to 0.3 for thermal periodic boundary value problem. The structure

contains 2025 pixel cells by FDM and 2025 quadrilateral finite elements by FEM and FEM+

pixels. The results obtained by the FEM and FEM+ pixels are identical due to the overlap

of the pixel mesh with the fiber boundaries we used. By comparing the temperature field

and the temperature gradient field (see (a)-(f)), we find that the distributions obtained by

the three methods are quite consistent. If we compare the distributions of the heat flux

fields (see (g)-(i)), we can see that the general trend is consistent, except that the values of

the intersections obtained by FEM and FEM+pixel are much smaller than FDM’s at the

intersections of the models. The comparison of path data of the isotropic case of one cross

inclusion of side length equal to 0.3 for thermal periodic boundary value problem is shown

in Fig.4.9. The comparison shows that the values of all three methods match well for the
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Figure 4.8: Comparison of overall trends of the isotropic case of one cross inclusion of
side length equal to 0.3 for thermal periodic boundary value problem. Temperature field
computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field computed
by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM, (h) FEM,
(i) FEM+Pixel.
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Figure 4.9: Comparison of path data of the isotropic case of one cross inclusion of side
length equal to 0.3 for thermal periodic boundary value problem. path middle(y = 0:5):
(a) Temperature, (c) Temperature gradient, (e) Heat flux. path diagonal(y = x): (b)
Temperature, (d) Temperature gradient, (f) Heat flux
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y=0.5 and y=x paths, but in the comparison of heat flow values (see (f)), both FEM and

FEM+pixel fall off significantly at the inflection points but do not appear in the FDM.

Table 4.3: Equivalent thermal conductivity of isotropic cross

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 2025 37.6957 6.8193e-9 5.4789e-9 37.6957 0
FDM 2025 37.6830 3.1910e-14 1.9564e-14 37.6830 0.0003

FEM+pixel 2025 37.6957 6.8193e-9 5.4789e-9 37.6957 0

Table 4.3 shows the equivalent thermal conductivity of isotropic cross. According to

the table, it can be found that for the cross model, when the input thermal conductivity

is isotropic, the final equivalent thermal conductivity is isotropic. Secondly, the equivalent

thermal conductivity obtained for the FDM is also very close to the values of the FEM

and FEM+pixel for the case of 2025 cells.

Anisotropic cross case

Fig.4.10 shows the comparison of overall trends of the anisotropic case of one cross inclusion

of side length equal to 0.3 for the thermal periodic boundary value problem. The structure

contains 2025 pixel cells for the FDM and 2025 quadrilateral finite elements for the FEM

and FEM+pixels. By comparing the temperature field and the temperature gradient field

(see (a)-(f)), we find that the distributions obtained by the three methods are quite consis-

tent. If we compare the distribution of the heat flux field (see (g)-(i)), we can see that the

general trend is consistent, except that the values of the intersections obtained by FEM

and FEM+pixel are much smaller than those of FDM in the model, but the difference in

the inflection points is changed from four to two compared to the isotropic model. The

comparison of path data of the anisotropic case of one cross inclusion of side length equal

to 0.3 for thermal periodic boundary value problem is shown in Fig.4.11. The comparison

shows that the data on all paths match well, including the heat flow comparison, which
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Figure 4.10: Comparison of overall trends of the anisotropic case of one cross inclusion of
side length equal to 0.3 for thermal periodic boundary value problem. Temperature field
computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field computed
by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM, (h) FEM,
(i) FEM+Pixel.
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Figure 4.11: Comparison of path data of the anisotropic case of one cross inclusion of
side length equal to 0.3 for thermal periodic boundary value problem. path middle(y =
0:5): (a) Temperature, (c) Temperature gradient, (e) Heat flux. path diagonal(y = x): (b)
Temperature, (d) Temperature gradient, (f) Heat flux
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does not show the same drop-off as the isotropic model because the path diagonal avoids

the different point on the path.

Table 4.4: Equivalent thermal conductivity of anisotropic cross

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 2025 82.3292 24.1298 24.1298 126.9628 0
FDM 2025 82.2766 24.0740 24.0740 126.8848 0.0006

FEM+pixel 2025 82.3292 24.1298 24.1298 126.9628 0

Table 4.4 shows the equivalent thermal conductivity of anisotropic cross. According to

the table, it can be found that for the cross model, when the input thermal conductivity is

anisotropic, the final equivalent thermal conductivity is anisotropic. Secondly, the equiv-

alent thermal conductivity obtained for the FDM is also very close to the values of the

FEM and FEM+pixel for the case of 2025 cells.

Isotropic disk case

Fig.4.12 shows the convergence analysis of one disk inclusion of radius equal to 0.3.

Fig.4.12-(a) shows the trend of the equivalent thermal conductivity as the DOF increases

(denser grid), and Fig.4.12-(b) shows the error variation of both methods, FDM and

FEM+pixel, with the FEM value as the reference, as well as the geometric error. The

comparison shows that superior to the pixel grid characteristics, the geometric error is

more significant for the FDM and FEM+pixel methods when the DOF is less. Secondly,

in Fig.4.12-(b), the trend line expression for FDM is y = −0:54366665 ∗ x − 0:0731229,

whereas, for FEM+pixel, the trend line expression is y = −0:54472008 ∗ x + 0:04362687.

Although the slope difference between the two is not significant, the intercept of FDM is

smaller than that of FEM+pixel, implying that FDM has a faster convergence rate than

FEM+pixel.

Fig.4.13 shows the comparison of overall trends of the isotropic case of one disk inclu-

sion of radius equal to 0.3. The FDM and FEM+pixel contain 2025 cells, and 2257 cells
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Figure 4.12: Convergence analysis of one disk inclusion of radius r= 0.3

are wrapped in the FEM. The variations in the temperature field are shown in (a), (b),

and (c), it is clear that the overall trend of variation is identical for all three techniques.

(d)-(i) illustrate the temperature gradient and heat flow fields, respectively, and it can be

seen that the overall trend is similar for all three methods, with the errors concentrated

primarily in the region between the inclusion and matrix phases, which is primarily caused

by the thermal conductivity discontinuity.

The comparison of path data of the isotropic case of one disk inclusion of radius r equal

to 0.3 for thermal periodic boundary value problem is shown in Fig.4.14. We have mainly

chosen the two paths with y = 0:5 and y = x for comparison. When the temperatures

on the paths in (a) and (b) are compared, it is clear that the three approaches agree well.

Comparing temperature gradients along the paths depicted in (c) and (d) reveals that the

differences are mostly concentrated at the intersections of the inclusion and matrix phases.

In the comparison of heat flux depicted in (e) and (f), (d) shows similar results for FDM and

FEM+pixel on the points between the inclusion and matrix phases, but with differences

from the FEM results. This disparity also causes a discrepancy between the FEM results

and the other two methods for points within the inclusion phase. However, the FDM is

slightly better than the FEM+pixel. Whereas (e) shows more FEM+pixel problems at

corner points, showing significant differences, FDM does not show such problems.
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Figure 4.13: Comparison of overall trends of the isotropic case of one disk inclusion of radius
equal to 0.3 for thermal periodic boundary value problem. Temperature field computed
by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field computed by:(d) FDM,
(e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM, (h) FEM, (i) FEM+Pixel.
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Figure 4.14: Comparison of path data of the isotropic case of one disk inclusion of radius
equal to 0.3 for thermal periodic boundary value problem. path middle(y = 0:5): (a) Tem-
perature, (c) Temperature gradient, (e) Heat flux. path diagonal(y = x): (b) Temperature,
(d) Temperature gradient, (f) Heat flux.
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Table 4.5: Equivalent thermal conductivity of isotropic disk case

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 2257 1.7688 5.1364e-9 4.2535e-9 1.7688 0
FDM 2025 1.7955 3.9454e-14 8.1789e-14 1.7955 0.0151

FEM+pixel 2025 1.8009 5.8125e-10 3.5436e-10 1.8009 0.0182

Table 4.5 shows the homogenised thermal conductivity obtained with the above mesh

and by comparison we find that the FDM is still slightly better than the FEM+pixel.

secondly, the final equivalent thermal conductivity is obtained isotropic when the disc

model’s input thermal conductivity is isotropic.

Anisotropic disk case
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Figure 4.15: Convergence analysis with disk’s radius equal to 0.3 with anisotropic thermal
conductivity

Fig.4.15 shows the convergence analysis of one disk inclusion of radius equal to 0.3.

Fig.4.15-(a) shows the trend of the equivalent thermal conductivity as the DOF increases

(denser grid), and Fig.4.15-(b) shows the variation in error for both methods, FDM and

1283 using the FEM values as a reference and also showing the geometric error, where the

expression for the error trend line for FDM is y = −0:55026384 ∗ x − 0:04117075 and the
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expression for the error trend line for FEM+pixel is y = −0:5401708 ∗ x + 0:0136426. The

comparison shows that the anisotropic model exhibits similar results as isotropic: with

increasing DOF, FDM and FEM+pixel converge together. However, FDM has a little

faster convergence rate than FEM+pixel (in terms of slope and intercept of the trend

line, FDM is superior to FEM+pixel). Moreover, whether the thermal conductivity of the

model is anisotropic or isotropic does not have a significant effect on the convergence rate

(Between the two, there is no discernible variation in slope).

Fig.4.16 shows the comparison of the temperature field, temperature gradient field, and

heat flux field for the thermal periodic boundary value problem. The FDM and FEM+pixel

contain 4225 cells, and 4724 cells are wrapped in the FEM.

In the comparison of the temperature field (see (a), (b), and (c)), the images obtained

for the three methods all show the same trend and are clearly different from the isotropic

model. (d)-(i)illustrate the change in temperature gradient and heat flux. We find that

the trends change in the same way for all three methods, with the differences mainly

concentrated in the region between the inclusion and matrix phases.

The comparison of path data of the anisotropic case of one disk inclusion of radius r equal

to 0.3 for thermal periodic boundary value problem is shown in Fig.4.17. We choose paths

with y = 0:5 and y = x respectively to compare, where (a) and (b) indicate the temperature

change over the path, and it can be seen that the results of the three methods agree well.

Secondly, when comparing the path data for the temperature gradients in (d) and (e), the

changes occur mainly at the junction of the inclusion and matrix phases. However, among

the differences between the three methods, the data for FDM are mainly between FEM

and FEM+pixel, indicating that FDM is still better than FEM+pixel. In the comparison

of the path data for heat flow in (e) and (f), we observe that the error components of

the three methods drop as the grid density is increased relative to the isotropic model.

However, FEM+pixel retains a significant inaccuracy near the inflection point, whereas

FDM does not.

Table 4.6 shows the homogenised thermal conductivity obtained with the above mesh
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Figure 4.16: Comparison of overall trends of the anisotropic case of one disk inclusion
of radius equal to 0.3 for thermal periodic boundary value problem. Temperature field
computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field computed
by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM, (h) FEM,
(i) FEM+Pixel.
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Figure 4.17: Comparison of path data of the anisotropic case of one disk inclusion of
radius equal to 0.3 for thermal periodic boundary value problem. path middle(y = 0:5):
(a) Temperature, (c) Temperature gradient, (e) Heat flux. path diagonal(y = x): (b)
Temperature, (d) Temperature gradient, (f) Heat flux.
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and by comparison we find that the FDM is still slightly better than the FEM+pixel.

secondly, the final equivalent thermal conductivity is obtained anisotropic when the disc

model’s input thermal conductivity is anisotropic.

Table 4.6: Equivalent thermal conductivity of anisotropic disk case

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 4724 8.8025 3.7809 3.7809 13.2840 0
FDM 4225 8.8844 3.7786 3.7786 13.3964 0.0093

FEM+pixel 4225 8.9046 3.7736 3.7736 13.4310 0.0116

Isotropic ellipse case

0 20000 40000 60000 80000
Numbe r of DOF

1 .50

1 .55

1 .60

1 .65

1 .70

1 .75

1 .80

1 .85

Eq
ui

va
le

nt
 t

he
rm

al
 c

on
du

ct
iv

it
y 

(W
.m

-1
.K

-1
)

FEM
FDM
FEM with Pixe l

(a) Convergence comparison

2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0
Log 1 0 (Numbe r of DOF)

3 .5

3 .0

2 .5

2 .0

1 .5

1 .0

0 .5

Lo
g 1

0
(E

rr
or

)

Error Ge ome try
Error FDM
Error FEM with Pixe l
Line ar (Error FDM)
Line ar (Error FEM with Pixe l)
Line ar (Error Ge ome try)

(b) Error comparison

Figure 4.18: Convergence analysis with the long axis of the ellipse equal to 0.6

Fig.4.18 shows the convergence analysis for an elliptical inclusion with a long axis equal

to 0.6. Fig.4.12-(a) shows the trend of the equivalent thermal conductivity with increasing

DOF (denser mesh) and Fig.4.12-(b) shows the variation of the error for the two methods,

FDM and FEM+pixel, with the FEM value as reference, and geometric errors, where the

expression for the error trend line for FDM is y = −0:52663042 ∗ x − 0:31565342 and the

expression for the error trend line for FEM+pixel is y = −0:4708604 ∗ x − 0:38608868.

A comparison of the trend line expressions shows that even though the intercepts of the

127



Temperature(°C)
0 0.5 1

(a) (b) (c)

Tgx(°C/m)

(d) (e) (f)

3.920.037

Heat flux(W/m^2)
(g) (h) (i)

-3.9 -2 -0.037

Figure 4.19: Comparison of overall trends of the isotropic case of one ellipse inclusion of
the long axis equal to 0.6 for thermal periodic boundary value problem. Temperature field
computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field computed
by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM, (h) FEM,
(i) FEM+Pixel.

128



0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
x dis tance

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

Te
m

pe
ra

tu
re

FDM path m iddle
FEM+pixe l path m iddle
FEM path m iddle

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
x dis tance

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

Te
m

pe
ra

tu
re

FDM path diagonal
FEM+pixe l path diagonal
FEM path diagonal

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
x dis tance

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

4 .0

Tg
x

FDM path m iddle
FEM+pixe l path m iddle
FEM path m iddle

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
x dis tance

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2
Tg

x

FDM path diagonal
FEM+pixe l path diagonal
FEM path diagonal

(e) (f)

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
x dis tance

4 .5

4 .0

3 .5

3 .0

2 .5

2 .0

H
fx

FDM path m iddle
FEM+pixe l path m iddle
FEM path m iddle

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
x dis tance

4 .0

3 .5

3 .0

2 .5

2 .0

1 .5

1 .0

0 .5

H
fx

FDM path diagonal
FEM+pixe l path diagonal
FEM path diagonal

(a) (b)

(c) (d)

Figure 4.20: Comparison of path data of the isotropic case of one ellipse inclusion of the
long axis equal to 0.6 for thermal periodic boundary value problem. path middle(y =
0:5): (a) Temperature, (c) Temperature gradient, (e) Heat flux. path diagonal(y = x): (b)
Temperature, (d) Temperature gradient, (f) Heat flux.
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two methods, FDM and FEM+pixel, are not very different, the slope of FDM is slightly

smaller than that of FEM+pixel, so FDM is superior to FEM+pixel.

Fig.4.19 shows the comparison of overall trends of the isotropic case of one ellipse inclusion

of the long axis equal to 0.6 for the thermal periodic boundary value problem. The FDM

and FEM+pixel contain 2025 cells, and 2015 cells are wrapped in the FEM.

The temperature changes are shown in (a)-(c), all three methods produce the same overall

full trend change. The variation of the temperature gradient and heat flux is shown in

(d)-(i), respectively. They show that the overall trend variation is the same for all three

methods, but the discontinuity in thermal conductivity causes errors at the junction be-

tween the inclusion and matrix phases.

The comparison of path data of the isotropic case of one ellipse inclusion of the long axis

equal to 0.6 for thermal periodic boundary value problem is shown in Fig.4.20. We have

selected paths with y = 0:5 and y = x respectively for comparison. The comparison of

temperatures on the paths shown in (a) and (b) illustrates the consistency of the three

methods in terms of temperature results. In the comparison of the paths of the temper-

ature gradients (see (c) and (d)), it can be seen that the values of FDM at the interface

between the inclusion and matrix phases are between those of FEM and FEM+pixel. FDM

produces outcomes that are more similar to FEM than those of FEM+pixel. FEM+pixel

has a more significant inaccuracy outside the inflection point than FDM. In the compar-

ison of the path data for the heat flow, it can be seen that both FDM and FEM+pixel

approaches are similar.

Table 4.7 shows the equivalent thermal conductivity of the above models, and according

to the results, it can be found that for the elliptical model, the final equivalent thermal

conductivity results are orthogonal when the input thermal conductivity is isotropic. Sec-

ondly, based on the analysis of the errors, it can be seen that the FDM is slightly better

than the FEM.
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Table 4.7: Equivalent thermal conductivity of isotropic ellipse case

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 2015 1.5330 4.7753e-8 4.7976e-8 1.2305 0
FDM 2025 1.5520 2.3884e-15 1.5306e-14 1.2377 0.0124

FEM+pixel 2025 1.5550 1.6371e-10 2.4327e-10 1.2391 0.0144
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Figure 4.21: Convergence analysis with the long axis of the ellipse equal to 0.6 with
anisotropic thermal conductivity

The convergence analysis of the elliptical inclusion with the long axis equal to 0.6 is shown in

Fig.4.21. Fig.4.21-(a) shows the trend of the equivalent thermal conductivity with increas-

ing DOF (denser mesh) and Fig.4.21-(b) shows the variation of the error for the two meth-

ods, FDM and FEM+pixel, with the FEM value as reference, and geometric errors, where

the expression for the error trend line for FDM is y = −0:51048679∗x−0:41514744 and the

expression for the error trend line for FEM+pixel is y = −0:46713003∗x−0:44146675. The

comparison shows that the convergence rates of the anisotropic and each isotropic models

are almost the same, and secondly, the slope and intercept show that the convergence rate

of the FDM is due to the FEM+pixel.
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Figure 4.22: Comparison of overall trends of the anisotropic case of one ellipse inclusion of
the long axis equal to 0.6 for thermal periodic boundary value problem. Temperature field
computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field computed
by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM, (h) FEM,
(i) FEM+Pixel.
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Figure 4.23: Comparison of path data of the anisotropic case of one ellipse inclusion of
the long axis equal to 0.6 for thermal periodic boundary value problem. path middle(y =
0:5): (a) Temperature, (c) Temperature gradient, (e) Heat flux. path diagonal(y = x): (b)
Temperature, (d) Temperature gradient, (f) Heat flux.
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Fig.4.22 shows the comparison of overall trends of the anisotropic case of one ellipse inclu-

sion of the long axis equal to 0.6 for the thermal periodic boundary value problem. The

FDM and FEM+pixel contain 9025 cells, and 9265 cells are wrapped in the FEM.

Fig.4.22-(a)-(c) show the temperature variation, the overall trend is clearly different from

the isotopic variation, and secondly, there is good agreement between the results of the

three methods. The change in temperature gradient and heat flux is shown in (d)-(i), com-

paring the previous isotropic model. The results of the three methods agree better when

the mesh density is increased. However, some errors still occur at the junction between the

inclusion and matrix phases.

The comparison of path data of the anisotropic case of one ellipse inclusion of the long axis

equal to 0.6 for thermal periodic boundary value problem is shown in Fig.4.23. Comparing

the temperatures along the paths demonstrates that the three approaches accord pretty

well. When the temperature gradients along the paths are compared, it is clear that all

locations match precisely, except those between the inclusion and matrix phases. When

examining the heat flow throughout the path, it can be seen that as the mesh density

increases, the spots within the inclusion phase of the FDM and FEM+pixel model more

closely resemble the FEM. However, the FEM+pixel generates far more significant inac-

curacies at the inflection points.

Table 4.8 shows the equivalent thermal conductivity of the above models. When the in-

put thermal conductivity for the elliptical model is anisotropic, we discover that the final

equivalent thermal conductivity derived is also anisotropic. Secondly, the error of the FDM

is still smaller than that of the FEM+pixel.

Table 4.8: Equivalent thermal conductivity of anisotropic ellipse case

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 9265 7.6708 3.4101 3.4101 9.6658 0
FDM 9025 7.6919 3.4121 3.4121 9.6975 0.0028

FEM+pixel 9025 7.7065 3.4106 3.4106 9.7041 0.0047
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Isotropic one disk and four sectors case

Fig.4.24 shows the convergence analysis of One disk and four sectors inclusions of radius

equal to 0.3. Fig.4.24-(a) shows the trend of the equivalent thermal conductivity as the

DOF increases (denser grid), and Fig.4.24-(b) shows the error variation of both methods,

FDM and FEM+pixel, with the FEM value as the reference, as well as the geometric

error, where the expression for the error trend line for FDM is y = −0:37051867 ∗ x −

0:50371727 and the expression for the error trend line for FEM+pixel is y = −0:3708148 ∗

x − 0:26168334. It can be seen that the FDM and FEM+pixel fluctuate more when the

DOF is small (larger grid), and this is due to the geometric error caused by the pixel grid

characteristics (see Fig.4.24-(b)). Secondly, according to the expression of the trend line, it

can be seen that even though the slopes of FDM and FEM+pixel are similar, the intercept

of FDM is significantly smaller than that of FEM+pixel, indicating that the convergence

rate of FDM is better than that of FEM+pixel.

The comparison of overall trends of the isotropic case of one disk and four sectors inclusions
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Figure 4.24: Convergence analysis of one disk and four sectors inclusions of radius r= 0.3

of radius r equal to 0.3 for thermal periodic boundary value problem is shown in Fig.4.25.

Among them, 5625 pixel cells are included in FDM and FEM+pixel, and 6784 quadrilateral

cells are included in FEM.
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Fig.4.25-(a)-(c) illustrate the changes in the temperature field, and it is clear that the

overall trend is the same for all three methods. (d)-(i) illustrate the variation of temperature

gradient and heat flux, respectively. The comparison demonstrates that the overall trend is

the same for all three methods, but there are differences between the inclusion and matrix

phases.

Fig.4.26 illustrates the comparison of path data of the isotropic case of one disk and four

sectors inclusions of radius equal to 0.3 for thermal periodic boundary value problem, and

the comparison is made between the paths y = 0:5 and y = x . The temperatures on the

paths shown in (a) and (b) demonstrate the consistency of the three methods in solving for

temperature. In the comparison of temperature gradients on the path (see (c) and (d)), we

find that FDM is slightly better than FEM+pixel. Even though there are some differences

between the three at the point between the inclusion and matrix phases, FEM+pixel has

a significant error at the inflection point. (e) and (f) illustrate the comparison of heat

flow on the paths, and it can be seen that the value of FDM remains between FEM and

FEM+pixel in the different sections of the three methods, indicating that FDM is superior

to FEM+pixel and that FEM+pixel has a more significant difference value at the inflection

point.

The comparable thermal conductivity of the models mentioned above is compared in Table

4.9. The comparison demonstrates that when the input thermal conductivity is isotropic,

the resulting equivalent thermal conductivity is similarly isotropic, and the FDM value is

higher than the FEM+pixel value.

Table 4.9: Equivalent thermal conductivity of isotropic one disk and four sectors case

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 6784 3.6708 4.7092e-8 3.6482e-9 3.6708 0
FDM 5625 3.7122 1.6851e-13 5.241e-14 3.7122 0.0113

FEM+pixel 5625 3.7532 5.6434e-8 2.4563e-9 3.7532 0.0225
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Figure 4.25: Comparison of overall trends of the isotropic case of one disk and four sectors
inclusions of radius equal to 0.3 for thermal periodic boundary value problem. Tempera-
ture field computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field
computed by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM,
(h) FEM, (i) FEM+Pixel.
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Figure 4.26: Comparison of path data of the isotropic case of one disk and four sectors
inclusions of radius equal to 0.3 for thermal periodic boundary value problem. path mid-
dle(y = 0:5): (a) Temperature, (c) Temperature gradient, (e) Heat flux. path diagonal(y
= x): (b) Temperature, (d) Temperature gradient, (f) Heat flux.
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Anisotropic one disk and four sectors case

Fig.4.27 shows the convergence analysis of one disk and four sectors inclusions of radius

equal to 0.3 with anisotropic thermal conductivity. Fig.4.27-(a) shows the trend of the

equivalent thermal conductivity as the DOF increases (denser grid), and Fig.4.27-(b) shows

the error variation of both methods, FDM and FEM+pixel, with the FEM value as the

reference, as well as the geometric error where the expression for the error trend line for

FDM is y = −0:37636693 ∗ x − 0:54754198 and the expression for the error trend line for

FEM+pixel is y = −0:21501066∗ x −1:01621897. By comparing the trendline expressions,

it can be seen that even though the intercept of FEM+pixel is smaller, its slope differs

from that of FDM, so it is still FDM that has a better convergence rate than FEM+pixel.

The comparison of overall trends of the anisotropic case of one disk and four sectors
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Figure 4.27: Convergence analysis of one disk and four sectors inclusions of radius r= 0.3
with anisotropic thermal conductivity

inclusions of radius equal to 0.3 for thermal periodic boundary value problem is shown

in Fig.4.28. FDM and FEM+pixel include 24025 pixel cells, while FEM contains 28702

quadrilateral cells.

After increasing the number of cells, all three methods show the same trend in the

comparison of the temperature (see (a)-(c)), temperature gradient (see (d)-(f)), and heat
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Figure 4.28: Comparison of overall trends of the anisotropic case of one disk and four
sectors inclusions of radius equal to 0.3 for thermal periodic boundary value problem.
Temperature field computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient
field computed by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g)
FDM, (h) FEM, (i) FEM+Pixel.
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Figure 4.29: Comparison of path data of the anisotropic case of one disk and four sectors
inclusions of radius equal to 0.3 for thermal periodic boundary value problem. path mid-
dle(y = 0:5): (a) Temperature, (c) Temperature gradient, (e) Heat flux. path diagonal(y
= x): (b) Temperature, (d) Temperature gradient, (f) Heat flux.
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flow fields (see (g)-(i)), and the difference values in the temperature gradient and heat flow

fields become insignificant, appearing only at the point between the inclusion phase and

the matrix phase.

Fig.4.29 illustrates the comparison of path data of the anisotropic case of one disk and

four sectors inclusions of radius equal to 0.3 for thermal periodic boundary value problem.

After increasing the number of cells, the data fit well on all paths, but FEM+pixel still

has large discrepancy values at the inflection points.

The following Table 4.10 compares the comparable thermal conductivity of the models

mentioned above. The comparison demonstrates that while the input thermal conductivity

is anisotropic, the resulting equivalent thermal conductivity is similarly anisotropic, and

the FDM value is still greater than the FEM+pixel value.

Table 4.10: Equivalent thermal conductivity of anisotropic one disk and four sectors case

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 28702 20.2356 9.5355 9.5355 24.8120 0
FDM 24025 20.3124 9.5112 9.5112 24.8886 0.0038

FEM+pixel 24025 20.4105 9.5332 9.5332 24.9964 0.0086

4.5 Two-dimensional pixel model with MUBC

Due to the limitations of mixed uniform boundary conditions (MUBC), these boundary

conditions are not fully applicable to anisotropic problems, so for the model shown in

Fig.4.7, we have only compared the FDM, FEM, and FEM+pixel methods for the isotropic

case and the anisotropic case, and select the following data as input thermal conductivity.

For the isotropic thermal conductivity we choose the following:

Dm =

2641 0

0 1

375 Df =

264100 0

0 100

375 (4.19)
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For the orthotropic thermal conductivity we choose the following:

Dm =

2645 0

0 8

375 Df =

264250 0

0 400

375 (4.20)

4.5.1 FDM/FEM comparison

Isotropic cross case

The comparison of the overall trend of a cross-inclusion with side length equal to 0.3 for the

thermal MUBC boundary value problem in the isotropic case is shown in Fig.4.30, where

(a)-(c) represents the temperature field variation, (d)-(f) represents the temperature gra-

dient field variation, and (g)-(i) represents the heat flow field variation (all three methods

contain 2025 cells). To begin, in the scenario where the grid border corresponds with the

inclusive phase boundary, the findings for FEM and FEM+pixel are identical. Second, it

can be seen that the findings for the isotropic case are the same for the mixed uniform and

periodic boundary conditions. Thirdly, the overall trend is the same for all three ways,

regardless of whether it is the temperature field, the temperature gradient field, or the heat

flow field, with the exception of the cross model’s four inflection points.

The orthotropic instance of one cross inclusion with a side length of 0.3 is illustrated in

Fig.4.312 for the thermal MUBC boundary value problem. We have compared primarily

two pathways at y = 0.5 and y = x. It can be seen that the path comparison yields the same

conclusions as Fig.4.30, where the temperature results on the paths of the three methods

perfectly overlap, and where the temperature gradient and heat flow results on the paths

perfectly overlap at all points, except for the values of the cross model’s inflection points.
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Figure 4.30: Comparison of overall trends of the isotropic case of one cross inclusion of
side length equal to 0.3 for thermal MUBC boundary value problem. Temperature field
computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field computed
by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM, (h) FEM,
(i) FEM+Pixel.
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Figure 4.31: Comparison of path data of the isotropic case of one cross inclusion of side
length equal to 0.3 for thermal MUBC boundary value problem. path middle(y = 0:5):
(a) Temperature, (c) Temperature gradient, (e) Heat flux. path diagonal(y = x): (b)
Temperature, (d) Temperature gradient, (f) Heat flux.
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Table 4.11: Equivalent thermal conductivity of isotropic cross with MUBC

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 2025 37.6957 6.8193e-9 5.4789e-9 37.6957 0
FDM 2025 37.6830 3.1910e-14 1.9564e-14 37.6830 0.0003

FEM+pixel 2025 37.6957 6.8193e-9 5.4789e-9 37.6957 0

Table 4.11 shows the equivalent thermal conductivity of isotropic cross with MUBC.

According to this table, we find that in the isotropic case the results for the mixed uniform

boundary condition are identical to those for the periodic boundary condition.

Orthotropic cross case

Fig.4.32 shows the comparison of overall trends of the orthotropic case of one cross inclu-

sion of side length equal to 0.3 for the thermal MUBC boundary value problem. Fig.4.33

shows the comparison of path data of the orthotropic case of one cross inclusion of side

length equal to 0.3 for thermal MUBC boundary value problem. All three of these methods

contain 5625 cells.

We can see that the overall trend is comparable in the orthotropic and isotropic cases, and

the results derived are similar, i.e. the three methods produce the same variance in the

temperature field, and the temperatures on the paths are fairly similar. For the variation

of the temperature gradient field and the heat flow field, the differences also exist only at

the four inflection points with the cross model.

Table 4.12: Equivalent thermal conductivity of orthotropic cross with MUBC

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 5625 98.2706 -1.3997e-8 -4.0531e-8 151.9848 0
FDM 5625 98.2630 -1.6352e-8 -1.1531e-8 151.9726 7.7337e-5

FEM+pixel 5625 98.2706 -1.3997e-8 -4.0531e-8 151.9848 0
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Figure 4.32: Comparison of overall trends of the orthotropic case of one cross inclusion of
side length equal to 0.3 for thermal MUBC boundary value problem. Temperature field
computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field computed
by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM, (h) FEM,
(i) FEM+Pixel.
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Figure 4.33: Comparison of path data of the orthotropic case of one cross inclusion of
side length equal to 0.3 for thermal MUBC boundary value problem. path middle(y =
0:5): (a) Temperature, (c) Temperature gradient, (e) Heat flux. path diagonal(y = x): (b)
Temperature, (d) Temperature gradient, (f) Heat flux.

148



Isotropic disk case

The convergence of one disk inclusion of radius 0.3 with isotropic thermal conductivity

input for the mixed uniform boundary conditions (MUBC) is shown in Fig.4.34. As the

DOF increases (denser grid), the equivalent thermal conductivity obtained for FDM and

FEM pixel increasingly approaches the value obtained for FEM, and the value of FDM is

always between FEM and FEM+pixel (see Fig.4.34-a). The error comparison in Fig.4.34-b

is illustrated using the FEM values as a reference. The coefficients for the linear trend

lines in Fig.4.34-b are listed in Table 4.13. The comparison demonstrates that the different

Neumann loading methods do not affect the pace of convergence. For the isotropic disc

model, FDM is superior to FEM+pixel in terms of trend line coefficients.
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Figure 4.34: Convergence analysis with disk’s radius equal to 0.3 with isotropic thermal
conductivity

Table 4.13: Coefficient of linear trend line for the isotropic disk model

y=ax+b FDM 0 FDM 1 FDM 2 FDM 3 FDM 4 FEM+pixel Geometry
a -0.60725365 -0.60337053 -0.60490769 -0.60534945 -0.60669458 -0.57979198 -0.88877376
b 0.10134371 0.08756823 0.09272454 0.09427982 0.09977462 0.13237423 0.66552513

The temperature field variation (see (a), (b), and (c)), the temperature gradient field

variation (see (d), (e), and (f)), and the heat flow field variation (see (g), (h), and (i))
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Figure 4.35: Comparison of overall trends of the isotropic case of one disk inclusion of radius
equal to 0.3 for thermal MUBC boundary value problem. Temperature field computed
by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field computed by:(d)
FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM, (h) FEM, (i)
FEM+Pixel.
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Figure 4.36: Comparison of path data of the isotropic case of one disk inclusion of radius
equal to 0.3 for thermal MUBC boundary value problem. path middle(y = 0:5): (a) Tem-
perature, (c) Temperature gradient, (e) Heat flux. path diagonal(y = x): (b) Temperature,
(d) Temperature gradient, (f) Heat flux.

151



Table 4.14: Equivalent thermal conductivity of an isotropic disk case with MUBC

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 1764 1.7688 9.0216e-9 3.6979e-9 1.7688 0
FDM 1600 1.7759 3.1629e-12 1.3452e-12 1.7759 0.00403

FEM+pixel 1600 1.7853 3.7623e-10 4.1777e-10 1.7853 0.00935

for an isotropic disk inclusion with a radius of 0.3 are depicted in Fig.4.35, where FDM

and FEM+pixel each have 1600 cells and FEM has 1764 cells. Comparing the overall

trends reveals that while all three methods exhibit a similar overall trend, the temperature

gradient field and heat flow field in the region between the inclusion phase and matrix

phase with the FEM method exhibit differences, primarily due to thermal conductivity

discontinuities.

We used data from the paths with y = 0.5 and y = x to perform the comparison displayed

in Fig.4.36. The comparison of temperatures on the paths (a) and (b) indicates the three

techniques’ agreement in terms of temperature values. The comparison of temperature

gradient (see (c) and (d)) and heat flow path data (see (e) and (f)) reveals that the primary

differences with FEM are concentrated in the region between the inclusion and matrix

phases. However, the overall comparison is better for FDM than FEM+pixel, primarily

because FEM+pixel has a tremendous difference value at the inflection point, whereas

FDM has a much smaller difference value.

The equivalent thermal conductivity of an isotropic disk case with MUBC is shown in Table

4.14; we obtained a similar conclusion with PBC, namely that when the input thermal

conductivity is isotropic, the final equivalent thermal conductivity is also isotropic. FDM

produces superior results to FEM+pixel.

Orthotropic disk case

The convergence of one disk inclusion of radius 0.3 with orthotropic thermal conductivity

input for the mixed uniform boundary conditions (MUBC) is shown in Fig.4.37. As DOF
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increases, both FDM and FEM+pixel converge gradually towards the FEM value, and

FDM is always between FEM and FEM+pixel. Fig 4.37-b illustrates a comparison of the

errors using FEM values as a reference, and by comparing the trend line coefficients in Table

4.15, we can see that the convergence rates for the various loading Neumann’s methods are

quite similar and that for the orthotropic disc model, FDM’s method is always superior to

FEM+pixel. Whereas for the disc model, the ultimate convergence rate is slightly variable

for varied input thermal conductivities (isotropic versus orthotropic).
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Figure 4.37: Convergence analysis with disk’s radius equal to 0.3 with orthotropic thermal
conductivity

Table 4.15: Coefficient of linear trend line for the orthotropic disk model

y=ax+b FDM 0 FDM 1 FDM 2 FDM 3 FDM 4 FEM+pixel Geometry
a -0.60191387 -0.58978822 -0.59453232 -0.59771438 -0.59906097 -0.57286603 -0.88877376
b 0.07773614 0.03096675 0.04862944 0.06104253 0.06665823 0.09260261 0.66552513

The temperature field, temperature gradient field, and heat flow field for an orthotropic

disk model are shown in Fig.4.38. The FDM and FEM+pixel have 3600 cells each, while

the FEM has 4042 cells. The comparison shows that the overall trend is similar to the

isotropic case, i.e. the temperature field follows exactly the same trend, the overall trend

in the temperature gradient field and the heat flow field is approximately the same but

there are differences in the region between the inclusion phase and the matrix phase.
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Figure 4.38: Comparison of overall trends of the orthotropic case of one disk inclusion
of radius equal to 0.3 for thermal MUBC boundary value problem. Temperature field
computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field computed
by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM, (h) FEM,
(i) FEM+Pixel.
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Figure 4.39: Comparison of path data of the orthotropic case of one disk inclusion of
radius equal to 0.3 for thermal MUBC boundary value problem. path middle(y = 0:5):
(a) Temperature, (c) Temperature gradient, (e) Heat flux. path diagonal(y = x): (b)
Temperature, (d) Temperature gradient, (f) Heat flux.
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Fig.4.39 illustrates a comparison of the path data (y = 0:5 and y = x) for the pictures in

Fig.4.38, demonstrating that the three approaches agree well when comparing the temper-

ature path. In the comparisons of temperature gradient and heat flow, it can be observed

that as the number of cells rises, the FEM+pixel values converge to the FDM values. How-

ever, the FEM+pixel still exhibits a considerable value difference at the inflection point.

The equivalent thermal conductivity of the above models is compared in Table 4.16 using

the MUBC boundary conditions. The comparison demonstrates that when the input ther-

mal conductivity is orthotropic, the disc model also has an orthotropic equivalent thermal

conductivity. Secondly, FDM is superior to FEM+pixel in terms of inaccuracy.

Table 4.16: Equivalent thermal conductivity of an orthotropic disk case with MUBC

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 4042 8.9974 6.0216e-9 5.2314e-9 13.6238 0
FDM 3600 9.0668 1.2366e-10 2.5367e-10 13.7222 0.00771

FEM+pixel 3600 9.0894 5.3792e-10 2.1014e-9 13.7573 0.01022

Isotropic ellipse case

The convergence analysis with the long axis of the ellipse equal to 0.6 with isotropic thermal

conductivity is shown in Fig.4.40. By increasing the DOF, the FDM and FEM+pixel

gradually converge towards the FEM (see Fig.4.40-a). The comparison of errors using the

FEM values as a reference is shown in Fig.4.40-b. According to the trend line coefficients

in Table 4.40, the FDM converges much quicker than the FEM+pixel under the isotropic

elliptical model and at a slightly different rate than the disc model.

Table 4.17: Coefficient of linear trend line for the isotropic ellipse model

y=ax+b FDM 0 FDM 1 FDM 2 FDM 3 FDM 4 FEM+pixel Geometry
a -0.55525695 -0.56054928 -0.55770636 -0.55518292 -0.55702431 -0.47442006 -0.66190383
b -0.15879611 -0.13766961 -0.14912848 -0.15901608 -0.1517911 -0.25934387 0.27896002

Fig.4.41 shows the comparison of the temperature field, temperature gradient field, and

heat flux field for the thermal periodic boundary value problem. The FDM and FEM+pixel
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Figure 4.40: Convergence analysis with the long axis of the ellipse equal to 0.6 with isotropic
thermal conductivity

contain 1225 cells, and 1257 cells are wrapped in the FEM.

Temperature variations are shown in Fig.4.41 (a)-(c) and the overall trend shows that all

three methods agree well in the comparison of the temperature fields. The temperature

gradients and heat flow are compared in (d)-(i). The results indicate that the overall trends

are comparable for the three approaches, with the most significant changes occurring be-

tween the inclusion and matrix phases.

Fig.4.42 compares the path data for the temperature field, temperature gradient field, and

heat flow field in Fig.4.41. comparison of temperatures along the lines illustrated in (a)

and (b) demonstrates the consistency of the three approaches for calculating temperatures.

(c)-(f) illustrate the temperature gradient and heat flow on the paths, respectively, where

the differences between the three methods are most pronounced at the intersections of the

inclusion and matrix phases, and where the FEM+pixel can exhibit significant differences,

with the overall comparison indicating that the FDM is superior to the FEM+pixel.

Table 4.18 shows the equivalent thermal conductivity of an isotropic ellipse case with

MUBC. We achieved the same conclusions as to the PBC, namely that when the elliptical

filler model’s input thermal conductivity is isotropic, the final equivalent thermal conduc-

tivity is orthotropic. It can be seen from the error comparison that the FDM value is
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Figure 4.41: Comparison of overall trends of the isotropic case of one ellipse inclusion of
the long axis equal to 0.6 for thermal MUBC boundary value problem. Temperature field
computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field computed
by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM, (h) FEM,
(i) FEM+Pixel.
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Figure 4.42: Comparison of path data of the isotropic case of one ellipse inclusion of the
long axis equal to 0.6 for thermal MUBC boundary value problem. path middle(y = 0:5):
(a) Temperature, (c) Temperature gradient, (e) Heat flux. path diagonal(y = x): (b)
Temperature, (d) Temperature gradient, (f) Heat flux.

159



superior to the FEM+pixel value.

Table 4.18: Equivalent thermal conductivity of an isotropic ellipse case with MUBC

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 1257 1.5330 2.8993e-7 8.4788e-8 1.2305 0
FDM 1225 1.5436 3.1092e-13 1.2073e-13 1.2444 0.0069

FEM+pixel 1225 1.5518 3.2252e-9 9.8487e-10 1.2467 0.0123

Orthotropic ellipse case
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Figure 4.43: Convergence analysis with the long axis of the ellipse equal to 0.6 with or-
thotropic thermal conductivity

Table 4.19: Coefficient of linear trend line for the orthotropic ellipse model

y=ax+b FDM 0 FDM 1 FDM 2 FDM 3 FDM 4 FEM+pixel Geometry
a -0.55214852 -0.55865893 -0.55326616 -0.54663055 -0.55308127 -0.46282871 -0.66190383
b -0.19898609 -0.17299922 -0.194714 -0.22070744 -0.19532906 -0.3348816 0.27896002

The convergence analysis with the long axis of the ellipse equal to 0.6 with orthotropic

thermal conductivity is shown in Fig.4.43. As the DOF rises, both FDM and FEM+pixel

gradually converge towards FEM, but the value of FDM is always between FEM and

FEM+pixel (see Fig.4.43-a). Fig.4.43-b compares the FDM and FEM+pixel errors using

the FEM values as a reference. Comparing the trend line parameters in Table 4.19 reveals
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that for the elliptical model, alternative loading Newman techniques and input thermal

conductivities (isotropic or anisotropic) have no effect on the rate of convergence. However,

it is evident that the FDM has a faster convergence rate than the FEM+pixel and that

the FDM advantage is more significant for the elliptical model than for the disc model.

The variations in the temperature field, temperature gradient field, and heat flow field

for an orthotropic ellipse model are shown in Fig.4.44. The FDM and FEM+pixel have

2500 cells each, whilst the FEM has 2428 cells.

The overall comparison does not differ significantly from the isotropic model described

above. The overall trends in the results for the temperature, temperature gradient, and

heat flow fields obtained by the three methods are generally the same, but there are still

differences between the inclusion and matrix phases.

Fig.4.45 illustrates the comparison of the path data in Fig.4.44, demonstrating that the

three approaches agree well when comparing the temperatures on the paths in (a) and

(b). The comparison of temperature gradients and heat flow in (c)-(f) demonstrates that

as the number of cells increases, the FEM+pixel value eventually converges to the FDM

value. However, there are still significant differences at the inflection points. The overall

comparison is still better for FDM than for FEM+pixel.

Table 4.20 shows the equivalent thermal conductivity of an orthotropic ellipse case with

MUBC. The findings indicate that while the input thermal conductivity is orthotropic, the

end equivalent thermal conductivity is similarly orthotropic. The FDM is still superior to

the FEM+pixel when the cell count is increased.

Table 4.20: Equivalent thermal conductivity of an orthotropic ellipse case with MUBC

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 2428 7.8935 1.5548e-8 7.8910e-8 9.7269 0
FDM 2500 7.9321 1.7834e-11 9.3702e-12 9.6855 0.0049

FEM+pixel 2500 7.9622 5.95586e-9 3.38902e-10 9.6972 0.0087
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Figure 4.44: Comparison of overall trends of the orthotropic case of one ellipse inclusion of
the long axis equal to 0.6 for thermal MUBC boundary value problem. Temperature field
computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field computed
by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM, (h) FEM,
(i) FEM+Pixel.
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Figure 4.45: Comparison of path data of the orthotropic case of one ellipse inclusion of the
long axis equal to 0.6 for thermal MUBC boundary value problem. path middle(y = 0:5):
(a) Temperature, (c) Temperature gradient, (e) Heat flux. path diagonal(y = x): (b)
Temperature, (d) Temperature gradient, (f) Heat flux.

163



Isotropic one disk and four sectors case

The convergence analysis of One disk and four sectors inclusions of radius r= 0.3 with

isotropic thermal conductivity is shown in Fig.4.46. (a) demonstrates that the FDM and

FEM+pixel values gradually converge to the FEM value as the DOF increases. The FDM

value is always immediately between the FEM FEM+pixel values, and the curves derived

using the various loading Neumann’s methods overlap precisely. (b) illustrates a compar-

ison of the FDM and FEM+pixel errors using the FEM values as a reference, with the

trend line’s coefficients presented in Table 4.21. By comparing the coefficients, we discover

that while the slope of FDM’s trend line is slightly less than that of FEM+pixel, its inter-

cept is significantly smaller, implying that FDM’s convergence rate is superior to that of

FEM+pixel.
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Figure 4.46: Convergence analysis of One disk and four sectors inclusions of radius r= 0.3
with isotropic thermal conductivity

Table 4.21: Coefficient of linear trend line for the isotropic One disk and four sectors model

y=ax+b FDM 0 FDM 1 FDM 2 FDM 3 FDM 4 FEM+pixel Geometry
a -0.46541913 -0.46543143 -0.46923851 -0.46832579 -0.46855954 -0.51671966 -0.7652408
b -0.08140349 -0.07921326 -0.0616676 -0.0665609 -0.06503834 0.41195521 0.18567703

The variation of the temperature field (see (a), (b) and (c)), temperature gradient field

(see (d), (e), and(f)), and heat flow field (see (g), (h), and(i)) in the isotropic case of a disc

164



Temperature(°C)
0 0.5 1

(a) (b) (c)

(d) (e) (f)

Tgx(°C/m)
0.033 2 3.7

Heat flux(W/m^2)
(g) (h) (i)

-5.9 -3 -0.059

Figure 4.47: Comparison of overall trends of the isotropic case of One disk and four sectors
inclusions of radius equal to 0.3 for thermal MUBC boundary value problem. Tempera-
ture field computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient field
computed by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g) FDM,
(h) FEM, (i) FEM+Pixel.
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Figure 4.48: Comparison of path data of the isotropic case of One disk and four sec-
tors inclusions of radius equal to 0.3 for thermal MUBC boundary value problem. path
middle(y = 0:5): (a) Temperature, (c) Temperature gradient, (e) Heat flux. path
diagonal(y = x): (b) Temperature, (d) Temperature gradient, (f) Heat flux.
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Table 4.22: Equivalent thermal conductivity of an isotropic One disk and four sectors case
with MUBC

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 1883 3.6708 4.6623e-8 8.3775e-8 3.6708 0
FDM 1600 3.6768 1.0934e-09 2.2057e-10 3.6768 0.0016

FEM+pixel 1600 3.7551 2.4192e-10 3.3040e-10 3.7551 0.0230

and four quarter discs of radius equal to 0.3 for the inclusions is shown in Fig.4.47. The

FDM and FEM+pixel have 1600 cells each, while the FEM has 1883 cells. By comparison,

we observe that the overall trend changes are the same for all three methods, whether in

the temperature field, the temperature gradient field, or the heat flow field, but there are

differences in the region between the inclusion phase and the matrix phase for the temper-

ature gradient field and the heat flow field, due to discontinuities in thermal conductivity.

For the path data comparison (see Fig.4.48), we used data from paths with y = 0:5 and

y = x . Whereas (a) and (b) illustrate temperature comparisons along the pathways, it

is clear that the three methodologies agree pretty well. The comparison of temperature

gradients in (c) and (d) demonstrates a distinction between the inclusion phase and the

matrix phase. The heat flow comparisons in (e) and (f) demonstrate that the FDM values

are substantially closer to the FEM values than the FEM+pixel values. The FEM+pixel

values appear to have a more significant difference value at some inflection points.

Table 4.22 shows the equivalent thermal conductivity of an isotropic One disk and four

sectors case with MUBC. We obtain the same results as the periodic boundary condition,

in that when the input thermal conductivity is isotropic, the final equivalent thermal con-

ductivity is also isotropic. Secondly, the FDM results are significantly better than the

FEM+pixel results for the one disk and four sectors model.

Orthotropic one disk and four sectors case

The convergence analysis of one disk and four sectors inclusions of radius r= 0.3 with

orthotropic thermal conductivity is shown in Fig.4.49. where (a) depicts the change in
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equivalent thermal conductivity, i.e., the FDM and FEM+ pixel values gradually converge

to the FEM value as the DOF increases, the FDM value is always between the FEM and

FEM+ pixel values, and the curves derived using the various loading Neumann methods

perfectly overlap. (b) compares the FDM and FEM+ pixel errors using the FEM values

as a reference, and the trend line’s coefficients are presented in Table 4.23. By comparing

the coefficients, we discover that the slope of the trend line is somewhat smaller than in

the isotropic case and that the intercept is also slightly more significant, indicating that

the rate of convergence is slightly slower in the orthotropic case than in the isotropic case.

In comparison to FEM+pixel, while the slope of the trend line of FDM is slightly less than

that of FEM+pixel, its intercept is much less, implying that FDM has a higher convergence

rate than FEM+pixel.
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Figure 4.49: Convergence analysis of one disk and four sectors inclusions of radius r= 0.3
with orthotropic thermal conductivity

Table 4.23: Coefficient of linear trend line for the orthotropic one disk and four sectors
model

y=ax+b FDM 0 FDM 1 FDM 2 FDM 3 FDM 4 FEM+pixel Geometry
a -0.45436224 -0.45559613 -0.45868457 -0.45747664 -0.45765636 -0.50867393 -0.7652408
b -0.13628578 -0.12835056 -0.1140718 -0.12042247 -0.11912843 0.37046881 0.18567703

Fig.4.50 show the variation of the temperature field, temperature gradient field, and

heat flow field in the orthotropic case of one disk and four sectors inclusions of radius r
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Figure 4.50: Comparison of overall trends of the orthotropic case of one disk and four
sectors inclusions of radius equal to 0.3 for thermal MUBC boundary value problem. Tem-
perature field computed by:(a) FDM, (b) FEM, (c) FEM+Pixel. Temperature gradient
field computed by:(d) FDM, (e) FEM, (f) FEM+Pixel. Heat flux field computed by:(g)
FDM, (h) FEM, (i) FEM+Pixel.
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Figure 4.51: Comparison of path data of the orthotropic case of one disk and four
sectors inclusions of radius equal to 0.3 for thermal MUBC boundary value problem.
path middle(y = 0:5): (a) Temperature, (c) Temperature gradient, (e) Heat flux. path
diagonal(y = x): (b) Temperature, (d) Temperature gradient, (f) Heat flux.
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equal to 0.3. The FDM and FEM+pixel contain 6400 cells and the FEM contains 7484

cells. By comparison, we observe that the overall trend for the orthotropic example re-

mains constant for all three techniques. The overall trend graph becomes smoother as the

number of cells increases. However, there are some distinctions between the inclusion and

base phases in this region.

We opted to compare data on the y = 0:5 and y = x pathways (see Fig.4.51). The com-

parison of (a) and (b) demonstrates the uniformity of the three approaches for determining

the temperatures. Second, when the path data for the temperature gradient and heat flow

are compared in (c)-(e), the value of FEM+pixel, while gradually approaching the FEM

and FDM values as the number of cells increases, nevertheless results in a high difference

value at the inflection point.

Table 4.24: Equivalent thermal conductivity of an orthotropic one disk and four sectors
case with MUBC

Number
of cells

Dxx Dxy Dyx Dyy
Error of

Dxx

FEM 7484 20.5418 1.5279e-8 1.2570e-8 25.1330 0
FDM 6400 20.6068 1.4852e-08 7.5961e-9 25.1867 0.0032

FEM+pixel 6400 20.8319 3.2252e-9 7.3518e-10 25.4296 0.0141

Table 4.24 shows the equivalent thermal conductivity of an orthotropic one disk and four

sectors case with MUBC. After comparison, we can deduce that when the input thermal

conductivity of a disk and four sector model is orthotropic, the final equivalent thermal

conductivity is orthotropic. When the errors are compared to the FEM values, it is clear

that the FDM values are far smaller than the FEM+pixel values.

4.6 Evolution of the equivalent thermal conductivity

In this section we will compare the variation of the equivalent thermal conductivity with

volume fraction for various 2D models with different boundary conditions. For the different
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Figure 4.52: Evolution of the equivalent thermal conductivity as a function of the volume
fraction for the various 2D models with periodic boundary conditions.
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Figure 4.53: Evolution of the equivalent thermal conductivity as a function of the volume
fraction for the various 2D models with MUBC boundary conditions.
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model choices we still select the model in Fig.4.7 and vary the volume fraction by changing

the size of the fiber.

Fig.4.52 and Fig.4.53 show the variation of equivalent thermal conductivity with volume

fraction for various 2D models under periodic boundary conditions and MUBC boundary

conditions, respectively. The periodic boundary condition includes isotropic and anisotropic

input thermal conductivity cases, while the MUBC boundary condition includes isotropic

and orthotropic input thermal conductivity cases. It can be seen that the equivalent ther-

mal conductivity obtained by all three methods after convergence agrees well for either

boundary condition under these displayed models.
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Figure 4.54: Evolution of the equivalent thermal conductivity as a function of the volume
fraction for the various 2D models with different boundary conditions.

Fig.4.54 shows the evolution of the equivalent thermal conductivity as a function of
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the volume fraction for the various 2D models with different boundary conditions. The

four models depicted in the figure were computed using FDM loaded with MUBC, PBC,

and KUBC boundary conditions. Additionally, estimates for Voigt and Reuss are included.

The comparison shows that the equivalent thermal conductivity of all models becomes more

significant as the volume fraction of fiber increases, which is logical. Secondly, the equiv-

alent thermal conductivity results obtained for different boundary conditions are between

the estimates given by Voigt and Reuss. Additionally, it can be seen that the solutions

obtained for the KUBC boundary conditions are more significant than the results for PBC

and MUBC (more pronounced for the cross and Disk and 4 sectors model and less so for

Disk and Ellipse model), which is also consistent with the results from Suquet [160] and

Ostoja-Starzewski [161] mentioned in their paper. Finally, in the isotropic case, the PBC

results are almost indistinguishable from the MUBC results.

4.7 Three-dimensional model

In this section, we will compare FDM, FEM, and FEM+voxel under the 3D model. We

have chosen mainly spherical and cylindrical fillings as representatives for the convergence

analysis of FDM and FEM+voxel, the comparison of temperature fields, temperature gra-

dient fields, heat flow fields, and equivalent thermal conductivity for the three methods

FDM, FEM, and FEM+voxel. Since there is no difference between the results for PBC

and MUBC in an isotropic medium, the data can be seen as either of these two boundary

conditions in the next isotropic comparison.

4.7.1 3D Layered composite model

Fig.4.55-(a) shows the 3D Layered composite model, with the dimensions of inclusion equal

to L/3. We can use Voigt’s and Reuss’s values to find the analytical solution of the ETC for
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this layered composite, i.e. 34 and 1.49254, respectively. Fig.4.55-(b) et (c) show schematic

diagrams of the temperature and heat flow fields at a 3*3*3 voxel grid, respectively. The

final ETC result calculated by our method is

Deq =

266664
1:49254 −1:50257e − 30 −5:41358e − 15

−3:28429e − 46 34 −2:36658e − 30

1:83186e − 15 −1:57772e − 30 34

377775 (4.21)

The data prove that our method and the analytical solution give identical results. Table

4.25 shows the equivalent thermal conductivity of 3D layered composite. The pairwise

results show that for different volume fractions of the inclusion, our method is exactly the

same as the analytical solution found by Voigt and Reuss.

(a) Layered composite model

Temperature
0 0.5 1

(b) Temperature

-1.5 -1.5 -1.5
Heat flux(W/m^2)

(c) Heat flux

Figure 4.55: 3D layered composite model

Table 4.25: Equivalent thermal conductivity of 3D layered composite

volume
fraction
of fiber

0.04 0.12 0.2 0.28 0.36 0.44 0.52 0.6 0.68 0.76 0.84

Dxx 1.04123 1.13482 1.24688 1.38351 1.55376 1.77179 2.06101 2.46305 3.05998 4.03877 5.93824
Dyy 4.96 12.88 20.8 28.72 36.64 44.56 52.48 60.4 68.32 76.24 84.16
Dzz 4.96 12.88 20.8 28.72 36.64 44.56 52.48 60.4 68.32 76.24 84.16
Voigt 4.96 12.88 20.8 28.72 36.64 44.56 52.48 60.4 68.32 76.24 84.16
Reuss 1.04123 1.13482 1.24688 1.38351 1.55376 1.77179 2.06101 2.46305 3.05998 4.03877 5.93824
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4.7.2 Ball

Fig.4.56 shows the convergence analysis of the ball inclusion model, which includes the

variation of ETC with increasing DOF, and the error analysis at different R/L using

the FEM values as reference. As can be seen in the variation of the equivalent thermal

conductivity shown in (a), (c), (e), (g), (i), (k), and (m), the FDM and FEM+voxel

gradually converge towards the FEM value as the DOF increases. However, the FDM

value remains closer to the FEM and FEM+voxel values.

(b), (d), (f), (h), (j), (l) and (n) show the error analysis for different radii with FEM

as a reference, respectively, and it can be seen through the images that the errors for

FDM are all smaller than those for FEM+voxel. The trend line parameters for FDM and

FEM+voxel are shown in Table 4.26 The comparison shows that the rate of convergence

varies slightly with the radius of the sphere, but in most cases, the slope of the trend line

is smaller for FDM than for FEM+voxel, which means that FDM converges faster. In a

small number of cases, although the slope of the trend line is similar to that of FEM+pixel,

the intercept is much smaller than that of FEM+voxel, which means that the convergence

speed of FDM is ultimately faster.

Table 4.26: Comparison of trendline parameters for Ball inclusion model with different
R/L

R/L 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Slope of FDM -0.3287 -0.36850 -0.3469 -0.3241 -0.35286 -0.3034 -0.3567
Slope of FEM
+voxel

-0.2866 -0.2137 -0.3348 -0.3214 -0.3712 -0.3265 -0.3670

Intercept of FDM -1.1906 -0.7613 -0.6071 -0.5393 -0.1906 -0.3751 0.0294
Intercept of FEM
+voxel

-1.1227 -1.2342 -0.3505 -0.2599 0.1484 0.0033 0.3600

Fig.4.57 shows an overall comparison of the temperature field, temperature gradient

field, and heat flow field for the ball inclusion model as well as a comparison of the cross-

sectional data. The structure contains 8000 cubic voxel cells by FDM and FEM+voxel, and

60374 tetrahedral finite elements by FEM. The data structure for FEM and FEM+voxel
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Figure 4.56: Comparison of convergence at different R/L of ball model.
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Figure 4.57: Ball inclusion model with radius/L equal to 0.25 for thermal MUBC boundary
value problem. Temperature field computed by: (a) FDM, (b) FEM, (c) FEM+Pixel.
Temperature field in cross section xOz computed by: (d) FDM, (e) FEM, (f) FEM+Pixel.
Temperature gradient field computed by:(g) FDM, (h) FEM, (i) FEM+Pixel. Temperature
gradient field in cross section xOz computed by:(j) FDM, (k) FEM, (l) FEM+Pixel. Heat
flux field computed by:(m) FDM, (n) FEM, (o) FEM+Pixel. Heat flux field in cross section
xOz computed by:(m) FDM, (n) FEM, (o) FEM+Pixel.
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is taken from Ansys, where the temperature values are taken from the nodes and the tem-

perature gradient and heat flow values are taken from the cell centroids. The comparison

shows that the overall images of the temperature field, temperature gradient field, and

heat flow field of the three methods match well and do not differ significantly. On the

cross-section xOz, the temperature results agree well. For the temperature gradient and

heat flow values in section xOz, it can be seen that the overall trend is the same, but due

to the voxel grid, there are differences between the FDM and FEM+voxel and FEM values

in the region between the inclusion and matrix phases. However, comparing FDM and

FEM+voxel, the differences are smaller.

Fig.4.58 shows the variation of ETC with a different fraction of the ball inclusion model.
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Figure 4.58: ETC with different fraction of ball inclusion model.

The comparison shows that both FDM and FEM+voxel can represent the ETC variation

of the sphere inclusion model with different volume fractions relatively accurately, as does

FEM. However, it can be seen that the FDM is significantly closer to the FEM values for

larger volume fractions at the same number of voxel cells.

4.7.3 Cylinder

Fig.4.59 shows the convergence analysis of the cylindrical inclusion model, which includes

the variation of the ETC with increasing DOF, and the error analysis at different R/L
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using the FEM values as reference. (a), (c), (e), (g), (i), (k), and (m) show the variation of

ETC at different R/L. It can be seen that the ETC of the FRM+voxel method gradually

converges to the value of FDM as the DOF increases, and the value of FDM is always

between that of FEM and FEM+voxel. The error analysis in (b), (d), (f), (h), (j), (l) and

(n) shows that the FDM values are almost always below the FEM+voxel values, which

means that the errors in the FDM are all smaller than those in the FEM+voxel. In Table

4.27, which shows the trend line parameters for both FDM and FEM+voxel methods at

different R/L, it can be seen that the slope of FDM is smaller than that of FEM+voxel

in most cases. Even though the slope of FDM is similar to that of FEM+voxel in the

remaining cases, the intercept of FDM is smaller than that of FEM+voxel, which means

that the convergence rate of FDM is better than that of FEM+voxel for different R/L

cases. Secondly, we can also see that the convergence speed of the same method is slightly

different at different R/L.

Table 4.27: Comparison of trendline parameters for Cylindre inclusion model with different
R/L

R/L 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Slope of FDM -0.3525 -0.6052 -0.2941 -0.5224 -0.4359 -0.5807 -0.4396
Slope of FEM
+voxel

-0.3660 -0.5477 -0.3308 -0.3511 -0.4078 -0.4744 -0.4111

Intercept of FDM -0.6632 0.5845 -0.7150 0.2399 0.20779 0.8697 0.5125
Intercept of FEM
+voxel

-0.3977 0.3994 -0.3003 -0.2908 0.2768 0.52634 0.5333

Fig.4.60 and Fig.4.61 show an overall comparison of the temperature field, temperature

gradient field, and heat flow field for the spherical inclusion model, as well as a comparison

of the cross-sectional data. The structure contains 8000 cubic voxel cells by FDM and

FEM+voxel, and 59889 tetrahedral finite elements by FEM. The data structure for FEM

and FEM+voxel is taken from Ansys, where the temperature values are taken from the

nodes and the temperature gradient and heat flow values are taken from the cell centroids.

The comparison of the Dirichlet boundary conditions imposed in the x-direction in Fig4.60

shows that both the overall trend and the cross-sectional temperatures match well in the
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Figure 4.59: Comparison of convergence at different R/L of cylinder model.
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Figure 4.60: Cylinder model with radius/L equal to 0.25 for thermal MUBC boundary
value problem with Dirichlet en X-direction. Temperature field computed by: (a) FDM,
(b) FEM, (c) FEM+Pixel. Temperature field in cross section xOz computed by:(d) FDM,
(e) FEM, (f) FEM+Pixel. Temperature gradient field computed by: (g) FDM, (h) FEM,
(i) FEM+Pixel. Temperature gradient field in cross section xOz computed by:(j) FDM, (k)
FEM, (l) FEM+Pixel. Heat flux field computed by:(m) FDM, (n) FEM, (o) FEM+Pixel.
Heat flux field in cross section xOz computed by:(m) FDM, (n) FEM, (o) FEM+Pixel.
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Figure 4.61: Cylinder model with radius/L equal to 0.25 for thermal MUBC boundary
value problem with Dirichlet en Z-direction. Temperature field computed by:(a) FDM, (b)
FEM, (c) FEM+Pixel. Temperature field in cross section xOz computed by:(d) FDM, (e)
FEM, (f) FEM+Pixel. Temperature gradient field computed by: (g) FDM, (h) FEM, (i)
FEM+Pixel. Temperature gradient field in cross section xOz computed by: (j) FDM, (k)
FEM, (l) FEM+Pixel. Heat flux field computed by:(m) FDM, (n) FEM, (o) FEM+Pixel.
Heat flux field in cross section xOz computed by:(m) FDM, (n) FEM, (o) FEM+Pixel.
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comparison of the temperature fields of the three methods, with no significant differences.

For the comparison of temperature gradients and heat flow values, it can be seen that

the overall trend is consistent, but due to the voxel grid, the two methods, FDM and

FEM+voxel, still differ from the FEM values in the region between the inclusion and matrix

phases. However, comparing FDM and FEM+voxel, the differences are smaller. The

Dirichlet boundary condition in Fig4.61 is applied in the z-direction and the comparison

shows that in this direction the three methods agree very well in both the temperature

and temperature gradient fields and the heat flow field, the only remaining difference being

that in the heat flow field comparison the surface of the cylinder is serrated rather than

circular as in the finite element method due to the voxel. The overall comparison between

FDM and FEM+voxel is identical. Fig.4.62 shows the variation of ETC with a different
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Figure 4.62: ETC with different fraction of cylinder inclusion model.

fraction of the cylinder inclusion model. The value of the ETC shown here is taken from

Dxx or Dyy , while the FDM and FEM+voxel values are identical for the value of Dzz .

The comparison shows that both FDM and FEM+voxel can represent the ETC variation

of the cylinder inclusion model with different volume fractions relatively accurately, as

does FEM. Intersecting the ball inclusion model, the difference between the FDM and

FEM+voxel methods is smaller for larger volume fractions with the same number of voxel

cells under the cylinder inclusion model.
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4.8 Application to REV of complex heterogeneous ma-

terials

4.8.1 sintered silver

As low-temperature sintering of silver nanoparticles is becoming a reliable technology for

solder die attachment of electronic and optical components [170], it becomes necessary to

develop numerical approaches with the ability to predict correctly the thermal performance

of such materials. Therefore, in this section, our method is applied to the sintered silver

model and compared with the equivalent thermal conductivity obtained from the FEM.

Geometrical model

We consider for the sake of simplicity three typical types of lattice structures: simple

cubic crystal form (SC), body-centered cubic crystal form (BCC), and face-centered cubic

crystal form (FCC), and their conjugated structures. The theoretical geometric models

are shown in Fig.4.63, where the spherical particles in Fig.4.63a-c can represent either

atomic/molecular clusters at mesoscopic scale, or stacked granules at the macroscopic scale.

The spheres keep in touch or overlap with each other (marked in color) to meet practical

situations: for example, in a mechanical system with large number of loose particles, they

are deformed due to squeezing actions and therefore form contact surfaces; in a heat transfer

system, the clusters of sintered silver will fuse together and penetrate into each other with

the increase of sintering time, and the porosity of the overall structure reduces as the

overlap area increases. Consequently, the use of these simple basic models can provide

references for complex structures. In our case, these ideal arrangements of particles offer

good approximations for real powder compacts prepared by sintering and serve to illustrate

different packing factors of the particles with more or less porous silver particle networks

[170].
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It is noted that the ideal geometrical models that we considered possess the property

of spatial periodicity. The representative cell can be obtained by cutting out along the

orthogonal edges illustrated in Fig.4.63d-f. In the subsequent study, the side length of

the cell is taken to be the unit length LSC = LBCC = LFCC = 1. They are composed of

two phases: a solid part consisting of silver contacting balls and a remaining void part

filled with air. To calculate the equivalent thermal conductivity under normal conditions,

it is necessary to ensure that the solid phases are connected as a single entity. However,

considering only the solid phases will lead to the porosity of the studied structures varying

only within a small range. Hence, in order to verify the robustness of our developed

algorithm, their conjugated structure are also considered (see Fig.4.63g-i), i.e., the gas

phase and solid phase are swapped to obtain a broader range of porosity.

Results and comparisons

Convergence analysis The convergence analysis is applied to a case of the unit BCC

structure, where the sphere radius are all equal to 0.46, thus resulting in a volume fraction

of 79.89%. The boundary conditions we used are PBC such that ∆Tx = 1, ∆Ty = 0, and

∆Tz = 0. We fix the temperature of one vertex on the left side to 19◦C so that the right

side is 20◦C (room temperature). The thermal conductivity of silver is 429 W· m−1·K−1

and that of air is 0.0257 W· m−1·K−1. To study the convergence of thermal conductivity,

different refinements of mesh-grid are used, i.e. from 10 thousand to 2 million elements.

The results are shown in Table 4.28 and in Fig.4.64.

Table 4.28: Convergence results of different mesh levels by FED and FEM.

Number of voxel cells by FDM 15625 91125 274625 614125 1953125
Equivalent thermal conductivity 233.092 232.035 229.258 226.226 224.789

Number of finite elements 17677 36961 132968 446553 2348718
Equivalent thermal conductivity 227.54 226.1 224.38 223.86 223.35
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LSC

LSC

(a) (b) (c)

LBCC
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LFCC
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LSC LBCC LFCC

Figure 4.63: Illustration of geometrical models considered: (a)-(c) structures of simple
cubic (SC), body-centered cubic (BCC) and face-centered cubic (FCC), the colored parts
indicate the overlaps; (d)-(f) the corresponding periodical unit cells; (g)-(i) the correspond-
ing conjugated structure models.
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Figure 4.64: Convergence analysis with the volume fraction of silver equal to 79.89%

According to Fig.4.64, we find that firstly, the equivalent thermal conductivity exhibits

some fluctuations but they are reasonable. These small fluctuations can be explained by

the nature of voxel meshing which results in slight variations of the volume fraction of silver

when the mesh density is increased. Secondly, the convergence rate of the finite difference

method is very close to that of FEM, which shows the stability and robustness of the

FD algorithm. Finally, when we compare the equivalent thermal conductivity obtained

for a number of elements greater than 500 thousand elements, the results remain nearly

unchanged (226 W· m−1·K−1 by FDM, 224 W· m−1·K−1 by FEM) and the error between

the two methods is less than 1%.

Thereafter, we will use the FD system that we developed to calculate and compare

the temperature field and the heat flow field for different geometrical models at different

porosities.

Simulation results of local fields To proceed with the comparison of local fields, sev-

eral geometrical models are selected as examples in this section. The first one is the SC

model with the volume fraction of silver equal to 67:18%, which is shown in Fig.4.65 (corre-

sponding to a sphere radius equal to 0:55). The overall temperature field (see Fig.4.65a for

FDM, Fig.4.65b for FEM) and heat flux field (see Fig.4.65c for FDM, Fig.4.65d for FEM)
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as well as their middle cross sections (see Fig.4.65e-h) are displayed. The unit structure is

divided into 45× 45× 45 = 91125 cubic voxel cells by FDM, while it is divided into 31460

tetrahedral finite elements by FEM. We can see from the figure that the distributions of the

temperature and the heat flux fields by the two methods are comparable and consistent,

which demonstrates again the validity of the FD system we developed in this study.

The results for the SC conjugated model are shown in Fig.4.66. The fraction of silver

is 32:82%. The numbers of voxel cells and that of finite elements are the same as in the

non-conjugated model. It can be seen that the temperature and the heat flux fields in

this situation by the two methods are also matched and coordinated, which shows the

effectiveness of the FD algorithm in the conjugated model.

Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0 -1400 -1200 -1000 -800 -600 -400 -200 -0.0081

Heat flux (W·m-2)
-180 -140 -100 -60 -20 -0.0081

Figure 4.65: SC model with the volume fraction of silver equal to 67:18%: (a) temperature
field by FDM, (b) temperature field by FEM, (c) heat flux field by FDM, (d) heat flux
field by FEM, (e) temperature field in cross section xOy by FDM, (f) temperature field in
cross section xOy by FEM, (g) heat flux field in cross section xOy by FDM, (h) heat flux
field in cross section xOy by FEM.

The second model is the BCC structure with the volume fraction of silver equal to

79:89%, which is shown in Fig.4.67 (corresponding to a sphere radius equal to 0:46). The

structure contains 91125 cubic voxel cells by FDM, and 36961 tetrahedral finite elements by

FEM. Meanwhile, Fig.4.68 displays the BCC conjugated model with the fraction of silver
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Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0 -790 -650 -550 -450 -350 -250 -150 -50 -0.008

Figure 4.66: SC conjugated model with the volume fraction of silver equal to 32:82%: (a)
temperature field by FDM, (b) temperature field by FEM, (c) heat flux field by FDM, (d)
heat flux field by FEM, (e) temperature field in cross section xOy by FDM, (f) temperature
field in cross section xOy by FEM, (g) heat flux field in cross section xOy by FDM, (h)
heat flux field in cross section xOy by FEM.

being 20:11%. Both the temperature field and the heat flux field exhibit good agreement

in terms of trends and values.

Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0 -480 -400 -300 -200 -100 6.6

Figure 4.68: BCC conjugated model with the volume fraction of silver equal to 20:11%: (a)
temperature field by FDM, (b) temperature field by FEM, (c) heat flux field by FDM, (d)
heat flux field by FEM, (e) temperature field in cross section xOy by FDM, (f) temperature
field in cross section xOy by FEM, (g) heat flux field in cross section xOz by FDM, (h)
heat flux field in cross section xOz by FEM.
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-720 -500 -400 -300 -200 -100 0 6.6

-320 -250 -100 -50 2.2

Temperature (°C)
19 19.2 19.4 19.6 19.8 20.0 -600

Heat flux (W/m^2)

-200 -150
Heat flux (W/m^2)
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Figure 4.67: BCC model with the volume fraction of silver equal to 79:89%: (a) temper-
ature field by FDM, (b) temperature field by FEM, (c) heat flux field by FDM, (d) heat
flux field by FEM, (e) temperature field in cross section xOy by FDM, (f) temperature
field in cross section xOy by FEM, (g) heat flux field in cross section xOy by FDM, (h)
heat flux field in cross section xOy by FEM.

Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0 -710 -600 -500 -400 -300 -200 -100 1.2

Figure 4.69: FCC model with the volume fraction of silver equal to 88:07%: (a) temperature
field by FDM, (b) temperature field by FEM, (c) heat flux field by FDM, (d) heat flux
field by FEM, (e) temperature field in cross section xOy by FDM, (f) temperature field in
cross section xOy by FEM, (g) heat flux field in cross section xOy by FDM, (h) heat flux
field in cross section xOy by FEM.
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Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0 -330 -250 -150 -50 -0.0063-200 -100

-94 -80 -70 -60 -50 -40 -30 -20 -10 -0.0063
Heat flux (W·m-2)

Figure 4.70: FCC conjugated model with the volume fraction of silver equal to 11:93%: (a)
temperature field by FDM, (b) temperature field by FEM, (c) heat flux field by FDM, (d)
heat flux field by FEM, (e) temperature field in cross section xOy by FDM, (f) temperature
field in cross section xOy by FEM, (g) heat flux field in cross section xOy by FDM, (h)
heat flux field in cross section xOy by FEM.

The third geometrical model is the FCC structure with the volume fraction of silver

equal to 88:07%, which corresponds to a sphere radius equal to 0:38. The structure contains

91125 cubic voxel cells by FDM, and 35340 tetrahedral finite elements by FEM. The results

of local fields are shown in Fig.4.69, and the FCC conjugated model with the fraction

of silver equal to 20:11% is analyzed in Fig.4.70. one can find similar trends with the

previous geometries, thus similar conclusions can be drawn. To sum up, the developed

FDM algorithm can treat a series of situations and has some advantages such as: (1) it

uses simple rule of voxel meshing to reduce the computational time; (2) it has a good

anti-sawtooth ability and can get rid of the constraint of the interface between the silver

and the air; (3) FDM can obtain comparable results as the finite element method.
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Evolution of the equivalent thermal conductivity

In this section, we calculate the equivalent thermal conductivity of the aforementioned

models by using Eq.2.47 for various volume fraction of silver. To make the volume fraction

of silver vary in a given unit cell (SC, BCC or FCC), the positions of the corresponding

silver particles are kept unchanged while their radii are uniformly increased to reduce

the voids. The results of the simulations are shown in Fig.4.71. We draw the following

observations:

(1) The equivalent thermal conductivities of SC, BCC, FCC, and their conjugated

models increase with the increase of the silver fraction. This is consistent with the fact

that the conductivity of silver (429 W· m−1·K−1) is larger than the air’s one (0.0257 W·

m−1·K−1).

(2) From Fig.4.71a,c,e, one can find that as the silver volume fraction increases, a better

agreement between the FDM and the FEM results is found. The largest difference between

the two methods in the three models occurs for the lowest values of the silver volume

fraction when the silver particles are just contacting each other in the respective unit cells

(i.e. the radius of spherical silvers for SC model is 0.5, for BCC model is
√

3=4 ≈ 0:433,

for FCC model is
√

2=4 ≈ 0:354; and the corresponding volume fraction of silver for SC

model is 0.555, for BCC model is 0.713, for FCC model is 0.779). This is caused by

the inherent property of the voxel meshing which has poor capabilities for approximating

curved surfaces like those of the spherical silver particles. Voxel meshing produces sawtooth

shaped surfaces when mesh density is small. By increasing the mesh density, the values of

FDM gradually tend to those of FEM. It is to say that the FDM is more sensitive to lower

volume fractions of silver, especially when the spheres are merely contacting.

(3) In contrast, from Fig.4.71b,d,f, one could not find the similar sensitivities. It is

because for the conjugated models, the silvers regions are connected in a different way.

The conjugated connections ensure that the silver phase forms always a contiguous part.
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Figure 4.71: Evolution of the equivalent thermal conductivity as a function of the volume
fraction for the various models. The star symbols represent the values obtained by FEM.
The cross symbols, the circle markers, the triangle-down markers correspond to the values
of FDM with 45× 45× 45, 85× 85× 85 and 125× 125× 125 voxels, respectively. The tree
markers designate the values calculated by theoretical formula of Maxwell.
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Consequently, the volume fraction of silver can take values in a wider range (i.e. from 0 to

1). We can see that the results obtained from FDM for different mesh densities and from

FEM are superimposed very well at both low and high fraction values. We also introduce

Maxwell’s analytic formula [18]:

Deq
Dm

= 1 +
3ffi

(Df +2Dm

Df−Dm
)− ffi

(4.22)

where Dm represents the thermal conductivity of matrix, Df the thermal conductivity of

fillers, Deq the equivalent conductivity of the whole structure, and ffi is the volume fraction

of fillers. This formula is valid only in the case of low ffi according to Pietrak et al. [17]

(under about 25%). It corresponds to the situation when the volume fraction of silver is

above 75%. When comparing all the three results, it turns out that the FDM and the FEM

curves can fit well with the Maxwell’s formula not only in the expected fraction, but also

between 50% and 75%. This proves the accuracy and effectiveness of the finite difference

algorithm, even in a sparse mesh density of 453.

Fig.4.72 compares the equivalent thermal conductivity of SC, BCC and FCC models.

one can find that the value of this property for the SC structure is larger than the ones for

the BCC/FCC structures for an identical fraction of silver (or porosity). It indicates that

changing the inner organization pattern of a structure can significantly impact its thermal

property.

Fig.4.73 compares the equivalent thermal conductivities of the non-conjugated models

with those of the corresponding conjugated models. It can be found that the results for

the conjugated structures are larger than the ones for the non-conjugated structures for

the three models, when making the comparison at the same porosity. This confirms that

the conjugated structures are more conductive. By altering the topology or morphology of

a structure, the thermal property can thus be changed greatly.
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Figure 4.72: Comparison of the equivalent thermal conductivity between the SC, BCC and
FCC models.
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(a) SC and SC conjugated models
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(b) BCC and BCC conjugated models
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(c) FCC and FCC conjugated models

Figure 4.73: Comparison of equivalent thermal conductivity between the non-conjugated
and the conjugated models.
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Stochastic granular models

To further test the usability of the developed FD algorithm in other situations, we addi-

tionally consider a kind of stochastic models. Fig.4.74 illustrates the geometrical models of

the stochastic structure. The structures are set to unit size and composed of two phases:

silver and air. In order to make the spherical silver particles connect with each other to

form a continuous entirety, an overlap is proposed herein (for example, this can mimic the

neck formation between silver nanoparticles after the sintering process). The generation

method of these spheres is discussed in [170, 171]. Here, 56 spheres are generated, and

their radii obey a normal distribution. In Figs.4.74, three cases are considered: Case 1 is a

stochastic model with minimal overlap between particles, having an average particle radius

of 0.139 and a standard deviation of 0.026 (silver fraction = 0.663); Case 2 is a stochastic

model with a larger overlap, having an average particle radius of 0.146 and a standard

deviation of 0.028 (silver fraction = 0.734); and Case 3 is the conjugated structure of Case

2 with an average particle radius of 0.059 and a standard deviation of 0.011, i.e., keeping

the silver fraction constant (silver fraction = 0.734) and replacing the silver phase with

air and the air phase with silver (this can mimic the situation of air bubbles in solids).

To ensure the periodicity of these models, spheres that go out from one surface will be

enforced to re-enter from the opposite surface. The simulation results of the equivalent

thermal conductivity are shown in Table 4.29.

Table 4.29: Comparison of the equivalent thermal conductivity for random models with
FDM and FEM.

Mean value —
of sphere radius

Standard deviation
ff of sphere radius

Silver
fraction

Dxx by FDM Dxx by FEM
Relative

error
Case 1

(Silver spheres)
0.139 0.026 0.663 188.8 178.3 5.87%

Case 2
(Silver spheres)

0.146 0.028 0.734 248.9 239.8 3.66%

Case 3
(Air spheres)

0.059 0.011 0.734 278.9 278.3 0.216%

By comparing Case 1 and Case 2, we find that the equivalent thermal conductivity

obtained by the two methods are very similar, and the finite difference method is closer

to the finite element method as the overlap portion increases. This result also verifies our
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Figure 4.74: Geometrical illustration of three random models. (a) case 1: volume fraction
of silver = 66.3%, (b) case 2: volume fraction of silver = 73.4% , (c) case 3: conjugated
structure with volume fraction of silver = 73.4% (i.e. the silver is for the matrix, and the
air is for the sphere inclusion).

conclusion in the previous section that the voxelized mesh does not simulate the interfaces

well when the material with a larger thermal conductivity has a narrow connection area. By

comparing the equivalent thermal conductivity in Case 2 and Case 3, it can be found that

the FD simulation of the conjugated structure is better than that of the normal structure

when the silver fraction remains the same. The relative errors of the three cases are all

below 6%.

Fig.4.75 shows the random model with the fraction of silver equal to 73:4% (corre-

sponding to an average radius of 0:146 and a standard deviation of 0:028). The structure

contains 614125 cubic voxel cells by FDM, and 473920 tetrahedral finite elements by FEM.

By comparing the temperature fields (see Fig.4.75a,b,e,f), we find that the distributions

obtained by the two methods are quite consistent. If comparing the distribution of the heat

flux field (see Fig.4.75c,d,g,h), it is shown that the overall trend is the same, but in some

junctions between different silver spheres, the finite element method is slightly better than

the finite difference method, which is caused by the voxelized mesh, as the silver sphere

connections inside the random system are more complex and require a more dense mesh

to approximate finely the curved interfaces at these locations.

Fig.4.76 shows the conjugated random model with the fraction of silver equal to 73:4%
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(corresponding to an average radius of 0:059 and a standard deviation of 0:011). The

structure contains 614125 cubic voxel cells by FDM, and 94396 tetrahedral finite elements

by FEM. From the figures we can see that both the distributions of the temperature and

of the heat flux fields by the two methods are almost identical.

Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0

Heat flux (W·m-2)

-1000 -800 -600 -400 -200 0 110-1220

-850 -700 -500 -100 10-300

Figure 4.75: Stochastic model with the volume fraction of silver equal to 73:4%: (a)
temperature field by FDM, (b) temperature field by FEM, (c) heat flux field by FDM, (d)
heat flux field by FEM, (e) temperature field in cross section xOz by FDM, (f) temperature
field in cross section xOz by FEM, (g) heat flux field in cross section yOz by FDM, (h)
heat flux field in cross section yOz by FEM.
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Temperature (°C) Heat flux (W·m-2)
(c)(a) (b) (d)

(e) (f) (g) (h)

19 19.2 19.4 19.6 19.8 20.0 -600 -500 -400 -300 -200 -100 0.49-770

Heat flux (W·m-2)
-610 -500 -400 -300 -200 -100 -0.027

Figure 4.76: Stochastic conjugated model with the volume fraction of silver equal to 73:4%:
(a) temperature field by FDM, (b) temperature field by FEM, (c) heat flux field by FDM,
(d) heat flux field by FEM, (e) temperature field in cross section xOz by FDM, (f) temper-
ature field in cross section xOz by FEM, (g) heat flux field in cross section yOz by FDM,
(h) heat flux field in cross section yOz by FEM.

4.9 Comparison of solvers

4.9.1 The different solvers of Eigen

By comparison, we select SparseLU as our direct solver, ConjugateGradient as our iterative

solver, and BiCGSTAB if our matrix is asymmetric. By default, iterations start with x = 0

as the initial estimate of the solution. We can control the startup using the solveWith-

Guess method. In addition, in the iterative solver, if we compile user code with OpenMP

enabled, we can take advantage of multithreading.

Then we compare SparseLU, ConjugateGradient, ConjugateGradient with initial assump-

tion, ConjugateGradient with DiagonalPreconditioner, and ConjugateGradient with Diag-

onalPreconditioner with initial assumption with different threads.

Fig.4.77 shows the solution speed for different iterative solutions with different threads.
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Figure 4.77: Comparison between Eigen solvers
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where (a)-(d) are CG, CG with an initial guess, CG with diagonal preconditioner, CG with

diagonal preconditioner and initial guess, respectively. We can find that although Eigen

can use multi-threads, it does not parallelize very well, and with 4 threads the parallel

speed is the fastest. In Eigen, the direct solver cannot use multi-threads. Then, we will

compare the speed of the direct solver and the different iterative solvers under 4 threads.

With Fig.4.78, we can see that when the DOF is less than 105, the speed of the iterative
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103
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m
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CG
CGD
CG_is
CGD_is
sparseLU

Figure 4.78: comparison different solvers

solver is higher than that of the direct solver. As the DOF increases, the speed of the

direct solver will get closer to the iterative solver, but at the same time, the direct solver

will hit the upper limit of the calculation due to the excessive DOF. At the same time, we

found that the preprocessor had little effect on the iterative solver. The initial assumption

had a significant influence on the iterative solver; we only divide the temperature evenly

at each point, increasing the speed by about 30%. It also shows that if the initial value

closer to the result can be found, the rate of the iterative solver will increase even more.
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Figure 4.79: Comparison between Pardiso solvers

4.9.2 The different solvers of Pardiso

According to Figures 4.79, we found that Pardiso has high parallelism. Based on the

configuration of our computer, 4 and 6 threads show the best running efficiency, Compared

with the single thread, as the DOF increases, the computational speed can be increased

by 60%.
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Figure 4.80: Dc and cg solver comparison under 4 and 6 threads

With Figure 4.80, we have seen that first of all, whether it is an iterative solution or

a direct solution, the speed of the 4 threads is faster than that of the 6 threads. Second,

204



when DOF is less than 306, the rate of the iterative solution and the direct solution is

almost the same. However, as the DOF gets larger, the speed of the direct solution is

slightly faster than that of the iterative solution.

4.9.3 Comparsion Eigen and Pardiso

First of all, both solvers are free for academics. Secondly, Pardiso uses the CSR format

to input a sparse matrix. CSR matrix compression: Three arrays are used to represent a

two-dimensional matrix. The three one-dimensional arrays of CSR are represented by A,

IA, and JA, respectively. NNZ represents the number of non-zero elements of the sparse

matrix M (mxn). A (non-zero values), IA (the extents of rows), JA (column indices). Eigen

can use a variety of methods to input sparse matrices. One is to create a list of triplets

with an element type and then convert it to a sparse matrix. The so-called triplets are a

non-zero-valued data structure defined in Eigen for storing sparse matrices. The storage

format is (i, j, value). Three parameters are commonly used to create functions, namely

rows, columns, and values. In addition to using Triplet, a more ”simple and rude” method

is to call the member function .insert() of the sparse matrix to directly insert the value.

The advantage of this is that there is no need to create a new Triplet object and list, which

may have higher performance and less memory usage. It should be noted that the method

of directly inserting numerical values requires pre-setting the number of non-zero entries

in the matrix. Otherwise, every time a numerical value is inserted, Eigen will reapply for

space to save, which consumes a lot of time.

Comparsion speed of Eigen and Pardiso

With Figure 4.81, we see that the computation speed of Pardiso is much higher than that

of Eigen. Eigen is faster than Pardiso only when the DOF is less than 1e4, but since the

time is too short (much less than 1 second), the difference is not large. However, as the
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Figure 4.81: Comparison Eigen and Pardiso under 4threads

DOF gets larger, the computational time of Pardiso and Eigen is no longer an order of

magnitude. Compared to Eigen, Pardiso is 92% faster.

4.10 Conclusion

In this chapter, we present our numerical results, comparing the results obtained by FDM,

FEM, and FEM with pixel (voxel) for different models with periodic boundary condi-

tions and mixed homogeneous boundary conditions. Through extensive comparisons, it

is demonstrated that our FDM method outperforms FEM with pixel (voxel) in terms of

convergence speed and that the results are more closely matched to those of FEM.

Applying our method to solving the equivalent thermal conductivity of sintered silver, we

use a spherical filler model to model the sintered silver structure, consisting of two phases:

silver and air. Three typical geometries (SC, BCC, FCC models) and stochastic models are

analyzed. Comparisons are carried out with the finite element method. The following con-

clusions can be summarized. First, our proposed algorithm yielded comparable results with

the FEM, whether dealing with the classical SC, BCC, FCC models, or complex stochastic

models. Second, the calculation of the equivalent thermal conductivity of the conjugated
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structures is more accurate than the typical structures for all geometrical models that we

used. Finally, the FDM is more effective in dealing with conjugated structures because it

is less sensitive to the density of mesh. This point indicates that the developed FDM is

suitable for handling this type of material.

Finally, in the comparison between Eigen and Pardiso, it can be seen that Eigen is gener-

ally parallelized, in contrast, Pardiso can be well parallelized and Pardiso is much faster

than Eigen as the DOF increases.
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Chapter 5

Complementary research

5.1 Transient model

Due to the peculiarities of our finite-difference model, the matrix will be singular if the

virtual point approach is used to load the Neumann boundary conditions. We can either

utilize another method provided in the preceding section to load the Neumann boundary

conditions or calculate using a transient model to fix this concern.

In comparison to the transient state, the steady-state has the advantage that it can be

solved directly, and there is no time term truncation mistake, but the drawback is that the

solution’s uniqueness is in doubt. On the contrary, the benefit of the transient state is that

it does not need consideration of the solution’s existence. Generally, the matrix properties

are superior to those of the steady-state matrix. The downside is that iterative calculation

requires a large number of time steps, and there is a time term truncation error.

The two spatial dimensional thermal conduction equation with isotropic conductivity

(2D) can be written as:

@T (x; y ; z; t)

@t
= D[

@2T (x; y ; z; t)

@x2
+
@2T (x; y ; z; t)

@y 2
] (5.1)
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where D is conductivity.

5.1.1 Euler explicit scheme

T n+1
i ;j − T ni;j = (flx‹

2
x + fly‹

2
y )T ni;j (5.2)

where n is the index of the time step,flx = D∆t=∆x2; fly = D∆t=∆y 2,

‹x2T ni;j = Ti+1;j+1 + 2Ti+1;j + Ti+1;j−1 − 2Ti ;j+1 − 4Ti ;j − 2Ti ;j−1 + Ti−1;j+1 + 2Ti−1;j + Ti−1;j−1

‹y 2T ni;j = Ti+1;j+1 + 2Ti ;j+1 + Ti−1;j+1 − 2Ti+1;j − 4Ti ;j − 2Ti−1;j + Ti+1;j−1 + 2Ti ;j−1 + Ti−1;j−1

Note that there is only one unknown in each equation concerning point (i,j). Therefore,

there is no matrix inversion needed. The truncation error is O(∆t) + O(∆x2).

Stability analysis

Substitute in the equations the solution of the form T nj = –nexp(ixik).

(–n+1 − –n)exp(ixjk) = flx–
nexp(ixjk)[exp(−i∆xk)− 2 + exp(i∆xk)]

–− 1 = flx [exp(−i∆xk)− 2 + exp(i∆xk)]

– = 1− 4flx sin2(∆xk=2)

–| < 1→ flx < 1=2

(5.3)

In the same way, stability condition 2D and 3D: flx + fly < 1=2, flx + fly + flz < 1=2.

The advantage of the Euler explicit scheme is that it does not require matrix inversion,

which significantly reduces calculation and calculation time. But the disadvantage is that

the limitation of stability conditions makes it too many iterations when solving significant

problems, resulting in too long solution time.

Fig.5.1 shows the temperature variation results of the disk model obtained by the Euler

explicit scheme. The structure contains 900 pixel cells, and when the step size is set to
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1e-6, 171250 iterations are required to achieve a tolerance of 1e-6.
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Figure 5.1: Disk model with Euler explicit scheme

5.1.2 Euler implicit scheme

T n+1
i ;j − T ni;j = (flx‹

2
x + fly‹

2
y )T n+1

i ;j (5.4)

Each equation has five unknowns at point (i,j). This method involves large-scale matrix

inversion, and the truncation error is O(∆t) + O(∆x2).

Stability analysis

same as Euler explicit scheme.

(–n+1 − –n)exp(ixjk) = flx–
n+1exp(ixjk)[exp(−i∆xk)− 2 + exp(i∆xk)]

–− 1 = flx–[exp(−i∆xk)− 2 + exp(i∆xk)]

– =
1

1 + 4flx sin2(∆xk=2)
< 1(always stable)

(5.5)

The advantage of this method is that due to unconditional stability, there is no limit in the

step size. However, the disadvantage is that when solving large-scale problems, the space

and time occupied by matrix inversion are too large.

The temperature variation results of the disk model obtained using the Euler implicit
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technique are shown in Fig.5.2. The structure has 900 pixel cells. When the step size is

set to 0.002, 430 iterations are required to reach a tolerance of 1e-6.
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Figure 5.2: Disk model with Euler implicit scheme

5.1.3 Crank-Nicolson method

Crank and Nicolson have developed a new method that takes advantage of both implicit

and explicit. Thus, they obtained:

T n+1
i ;j − T ni;j =

flx
2

(‹2
xT

n
i;j + ‹2

xT
n+1
i ;j ) +

fly
2

(‹2
yT

n
i;j + ‹2

yT
n+1
i ;j )

(1− flx
2
‹2
x −

fly
2
‹2
y )T n+1

i ;j = (1 +
flx
2
‹2
x +

fly
2
‹2
y )T ni;j

(5.6)

Although the Crank-Nicolson (CN) scheme is unconditionally stable and it is considered to

have very high numerical accuracy and has improved the convergence speed compared to

the implicit algorithm. However, this method also needs to solve a vast spare irreducible

matrix. Consider a two-dimensional grid of size (nx+1)by (ny+1), the number of variables

required by the system is N=(nx+1)(ny+1), which involves a matrix of N*N size to solve,so

that the CN scheme can hardly be used for practical problems.

The temperature variation results of the disk model obtained using the Crank-Nicolson

scheme are shown in Fig.5.3. The structure has 900 pixel cells. When the step size is set

to 0.002, 426 iterations are required to reach a tolerance of 1e-6.
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Figure 5.3: Disk model with Crank-Nicolson scheme

5.1.4 ADI method

As the heat conduction problem changes from one-dimensional to multi-dimensional, the

order of the formed algebraic equations has increased by one or two orders of magnitude.

How to solve these algebraic equations economically and effectively has become an impor-

tant issue. Although the explicit format does not have the problem of solving algebraic

equations, its stability conditions greatly limit the time step. When solving large-scale

problems, the limited time step causes too many iterations, which seriously affects the

solution time. When adopting the implicit format and semi-implicit format of the second-

order intercept, the value of each node must be solved at the same time in each time layer.

For three-dimensional problems, this consumes a lot of computer memory and calculation

time. To alleviate this difficulty, Peaceman, Rachford [172], and Douglas[173] proposed the

ADI method. Basiclly, when using this kind of method to solve the problem of unsteady

heat conduction, a three-dimensional problem can be transformed into three concatenated

one-dimensional implicit format problems.
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Peaceman-Rachford method

First, the factorized form of 5.6 can be written to be:

(1− flx
2
‹2
x )(1− fly

2
‹2
y )T n+1

i ;j = (1 +
flx
2
‹2
x )(1 +

fly
2
‹2
y )T ni;j (5.7)

The Peaceman–Rachford’s ADI method has no dissipation and divides 5.7 into two sub-

steps as:

(1− fly
2
‹2
y )T

n+1=2
i ;j = (1 +

flx
2
‹2
x )T ni;j

(1− flx
2
‹2
x )T n+1

i ;j = (1 +
fly
2
‹2
y )T

n+1=2
i ;j

(5.8)

This algorithm divides the time step from n to n+1 into two sub-time stages: n to

n+1/2 and n+1/2 to n+1. In the first step, use the implicit format to solve in the x-

direction, and make the y-direction use the explicit format to solve. In the second step,

similarly use the x directions to solve the problem with the implicit form.

Fig.5.4 shows the temperature variation results of the disk model obtained by the Peaceman-

Rachford method. The structure contains 900 pixel cells, and when the step size is set to

0.002, 412 iterations are required to achieve a tolerance of 1e-6.
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Figure 5.4: Disk model with Peaceman-Rachford method
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Douglas-Gunn method

Douglas and Gunn developed another ADI method based on scheme Crank-Nicolson; this

method is solved by two sub-steps:

(1− flx
2
‹2
x )T

n+1=2
i ;j = (1 +

flx
2
‹2
x + fly‹

2
y )T ni;j

(1− fly
2
‹2
y )T n+1

i ;j = (1 +
flx
2
‹2
x +

fly
2
‹2
y )T ni;j +

flx
2
‹2
xT

n+1=2
i ;j

(5.9)

After simplification, 5.9 can be written as:

(1− flx
2
‹2
x )T

n+1=2
i ;j = (1 +

flx
2
‹2
x + fly‹

2
y )T ni;j

(1− fly
2
‹2
y )T n+1

i ;j = T
n+1=2
i ;j − fly

2
‹2
yT

n
i;j

(5.10)

Compared with the Crank-Nicolson method, the ADI method significantly saves com-

puting time and computing space. Consider a 2-D mesh with sizeN=(nx+1)(ny+1). In

the first step, there are ny+1 values, and each value takes O(nx+1) times to solve the

system. So for a complete ADI iteration, it takes O(2*(nx+1)(ny+1)) time. And for the

general problem, it takes O(I2N)=O(N), where I is the number of iterations to achieve a

steady-state.

Fig.5.5 shows the temperature variation results of the disk model obtained by the Douglas-

Gunn method. The structure contains 900 pixel cells, and when the step size is set to

0.002, 412 iterations are required to achieve a tolerance of 1e-6.

Although the transient state can solve the matrix dissatisfaction, the final result can be

obtained. However, we spent more time on iteration. Compared with our ultimate goal of

solving homogenization, it is evident that steady-state calculation is more suitable for us

and more effective. But ADI’s idea is also used for steady-state. This idea can be a more

clever parallel algorithm to save running time.
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Figure 5.5: Disk model with Douglas-Gunn Method

5.2 Alternating direction iteration

The ADI method to solve unsteady heat conduction is discussed from the perspective of a

discrete format. ADI constructs a way of solving algebraic equations of multi-dimensional

problems that combine direct and iterative methods. In other words, we can use the

alternate direction implicit form, which solves the non-steady-state problem, to solve the

steady-state problem, which is essentially the same. In the non-steady-state situation,

the one-time level is advanced, which is equivalent to completing a level of iteration in the

steady-state problem. In conventional iterative methods, such as Jacobi iteration or Gauss-

Seidel iteration, the scanning direction in each iteration remains unchanged, that is, row

by row or column by column. After scanning the entire field, one iteration is completed.

Repeat this method until the iteration is completed after convergence. If scanning in

alternate directions is used, the convergence speed can often be accelerated. One scan is

performed row by row (or column by column), and then a scan is performed column by

column (or row by row), and two full-field scans form one iteration. In this way, we can use

the alternating direction iteration method to solve the steady-state problem and effectively

improve the solution speed and reduce the computer memory consumed by the solution.

Fig.5.6 shows the temperature variation results of the disk model obtained by ADI

method. The structure contains 900 pixel cells, and there is no need to set a step size here,
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31 iterations are required to achieve a tolerance of 1e-6.
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Figure 5.6: Disk model with ADI
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Chapter 6

Conclusion and perspectives

In this work, firstly, in Chapter 2, the physical parameters commonly found in heat conduc-

tion problems are introduced and the Günter model is re-demonstrated and an extension

of the three-dimensional model is given, as well as an overview of homogenization theory,

and summarise some of the ways in which researchers have loaded periodic boundary con-

ditions and mixed uniform boundary conditions.

In Chapter 3, we develop new models inspired by the Günter model. The first is a 5-point

model which, in contrast to the Günter model, does not choose corner points that would

lead to matrix singularity problems. It was tested as a second-order model like the Günter

model, but it has the advantage of being used for fewer points and is more pronounced in

the 3D model. Moreover, this model is straightforward to construct, and no matrix sin-

gularity arises for any of the boundary conditions tested. The second model is an integral

model, in which we experimented with various integration models (triangle, rectangle, and

circle) and came up with the same difference formula containing a coefficient a. We can

generate different difference formulas by altering the size of the coefficient a, for example,

when a=0, which yields the standard 5-point difference formula, and when a=min(dx,dy),

which yields the Günter model. The advantage of this model is that it simply requires a

change to generate a new model. Additionally, this chapter discusses Dirichlet boundary
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conditions and various loading methods for Neumann boundary conditions for the purpose

of resolving the final matrix singularity problem. Additionally, methods for loading pe-

riodic boundary conditions are described, as well as a variation method that permits the

matrix to remain symmetrical after loading periodic boundary conditions.

Chapter 4 compares FDM, FEM, and FEM+pixel (voxel). The results demonstrate that

the FDM approach beats the FEM+pixel(voxel) method in both convergence speed and

accuracy. Additionally, the approach has been applied to the REV of complicated hetero-

geneous materials, such as sintered silver, with the following results. First, our proposed

algorithm yielded comparable results with the FEM, whether dealing with the classical SC,

BCC, FCC models, or complex stochastic models. Second, the calculation of the equiva-

lent thermal conductivity of the conjugated structures is more accurate than the typical

structures for all geometrical models that we used. Finally, the FDM is more effective in

dealing with conjugated structures because it is less sensitive to the density of mesh. This

point indicates that the developed FDM is suitable for handling this type of material. A

comparison between Eigen and Pardiso is given at the end and it can be seen that Eigen

is usually parallel. In contrast, Pardiso can be well parallelized and shows a much higher

speed than Eigen when dealing with large solving problems.

In Chapter 5, we present complementary research, mainly consisting of dynamic models

attempted to solve the matrix singularity problem, including the Euler explicit scheme, the

Euler implicit scheme, the Crank-Nicolson method et ADI method. All of these schemes

solve the matrix singularity problem. For example, the explicit scheme does not require a

matrix solution but has a strict step size requirement. The rest of the methods are all im-

plicit schemes, with ADI speed being the only priority. Finally, we introduce an alternating

direction iteration method, which uses alternating direction iteration to solve steady-state

problems, effectively increasing the solution speed and reducing the amount of computer

memory consumed by the solution.

In the following, we give our perspectives. In Chapter 3,1 we give the new models developed

after receiving inspiration from the Günter model, and so far the new models developed
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are all second-order models. Work on the extension of the new models can continue, for

example, with the development of fourth-order models.

Secondly, in this area of ADI parallel computing, the construction of a 3D model has not

yet been completed for this thesis, and this part will also be continued as a postdoctoral

project. Using ADI parallelism, the computation of some very large problems has been

realized.

221



222



Appendix A

3D isotropic scheme

∇ · −→q = ((((Ti+1;j+1;k+1 + Ti+1;j;k+1 − Ti ;j+1;k+1 − Ti ;j;k+1 + Ti+1;j+1;k + Ti+1;j;k − Ti ;j+1;k − Ti ;j;k) ∆y 2

+ (Ti+1;j+1;k+1 − Ti+1;j;k+1 + Ti ;j+1;k+1 − Ti ;j;k+1 + Ti+1;j+1;k − Ti+1;j;k + Ti ;j+1;k − Ti ;j;k) ∆x2)∆z2

+ (Ti+1;j+1;k+1 + Ti+1;j;k+1 + Ti ;j+1;k+1 + Ti ;j;k+1 − Ti+1;j+1;k − Ti+1;j;k − Ti ;j+1;k − Ti ;j;k) ∆x2∆y 2)

Di+1=2;j+1=2;k+1=2

+(((Ti+1;j;k+1 + Ti+1;j−1;k+1 − Ti ;j;k+1 − Ti ;j−1;k+1 + Ti+1;j;k + Ti+1;j−1;k − Ti ;j;k − Ti ;j−1;k) ∆y 2

+ (−Ti+1;j;k+1 + Ti+1;j−1;k+1 − Ti ;j;k+1 + Ti ;j−1;k+1 − Ti+1;j;k + Ti+1;j−1;k − Ti ;j;k + Ti ;j−1;k) ∆x2)∆z2

+ (Ti+1;j;k+1 + Ti+1;j−1;k+1 + Ti ;j;k+1 + Ti ;j−1;k+1 − Ti+1;j;k − Ti+1;j−1;k − Ti ;j;k − Ti ;j−1;k) ∆x2∆y 2)

Di+1=2;j−1=2;k+1=2

+(((−Ti ;j+1;k+1 − Ti ;j;k+1 + Ti−1;j+1;k+1 + Ti−1;j;k+1 − Ti ;j+1;k − Ti ;j;k + Ti−1;j+1;k + Ti−1;j;k) ∆y 2

+ (Ti ;j+1;k+1 − Ti ;j;k+1 + Ti−1;j+1;k+1 − Ti−1;j;k+1 + Ti ;j+1;k − Ti ;j;k + Ti−1;j+1;k − Ti−1;j;k) ∆x2)∆z2

+ (Ti ;j+1;k+1 + Ti ;j;k+1 + Ti−1;j+1;k+1 + Ti−1;j;k+1 − Ti ;j+1;k − Ti ;j;k − Ti−1;j+1;k − Ti−1;j;k) ∆x2∆y 2)

Di−1=2;j+1=2;k+1=2

+(((−Ti ;j;k+1 − Ti ;j−1;k+1 + Ti−1;j;k+1 + Ti−1;j−1;k+1 − Ti ;j;k − Ti ;j−1;k + Ti−1;j;k + Ti−1;j−1;k) ∆y 2

+ (−Ti ;j;k+1 + Ti ;j−1;k+1 − Ti−1;j;k+1 + Ti−1;j−1;k+1 − Ti ;j;k + Ti ;j−1;k − Ti−1;j;k + Ti−1;j−1;k) ∆x2)∆z2
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+ (Ti ;j;k+1 + Ti ;j−1;k+1 + Ti−1;j;k+1 + Ti−1;j−1;k+1 − Ti ;j;k − Ti ;j−1;k − Ti−1;j;k − Ti−1;j−1;k) ∆x2∆y 2)

Di−1=2;j−1=2;k+1=2

+(((Ti+1;j+1;k−1 + Ti+1;j;k−1 − Ti ;j+1;k−1 − Ti ;j;k−1 + Ti+1;j+1;k + Ti+1;j;k − Ti ;j+1;k − Ti ;j;k) ∆y 2

+ (Ti+1;j+1;k−1 − Ti+1;j;k−1 + Ti ;j+1;k−1 − Ti ;j;k−1 + Ti+1;j+1;k − Ti+1;j;k + Ti ;j+1;k − Ti ;j;k) ∆x2)∆z2

+ (Ti+1;j+1;k−1 + Ti+1;j;k−1 + Ti ;j+1;k−1 + Ti ;j;k−1 − Ti+1;j+1;k − Ti+1;j;k − Ti ;j+1;k − Ti ;j;k) ∆x2∆y 2)

Di+1=2;j+1=2;k−1=2

+(((Ti+1;j;k−1 + Ti+1;j−1;k−1 − Ti ;j;k−1 − Ti ;j−1;k−1 + Ti+1;j;k + Ti+1;j−1;k − Ti ;j;k − Ti ;j−1;k) ∆y 2

+ (−Ti+1;j;k−1 + Ti+1;j−1;k−1 − Ti ;j;k−1 + Ti ;j−1;k−1 − Ti+1;j;k + Ti+1;j−1;k − Ti ;j;k + Ti ;j−1;k) ∆x2)∆z2

+ (Ti+1;j;k−1 + Ti+1;j−1;k−1 + Ti ;j;k−1 + Ti ;j−1;k−1 − Ti+1;j;k − Ti+1;j−1;k − Ti ;j;k − Ti ;j−1;k) ∆x2∆y 2)

Di+1=2;j−1=2;k−1=2

+(((−Ti ;j+1;k−1 − Ti ;j;k−1 + Ti−1;j+1;k−1 + Ti−1;j;k−1 − Ti ;j+1;k − Ti ;j;k + Ti−1;j+1;k + Ti−1;j;k) ∆y 2

+ (Ti ;j+1;k−1 − Ti ;j;k−1 + Ti−1;j+1;k−1 − Ti−1;j;k−1 + Ti ;j+1;k − Ti ;j;k + Ti−1;j+1;k − Ti−1;j;k) ∆x2)∆z2

+ (Ti ;j+1;k−1 + Ti ;j;k−1 + Ti−1;j+1;k−1 + Ti−1;j;k−1 − Ti ;j+1;k − Ti ;j;k − Ti−1;j+1;k − Ti−1;j;k) ∆x2∆y 2)

Di−1=2;j+1=2;k−1=2

+(((−Ti ;j;k−1 − Ti ;j−1;k−1 + Ti−1;j;k−1 − Ti ;j;k − Ti ;j−1;k + Ti−1;j;k + Ti−1;j−1;k + Ti−1;j−1;k−1) ∆y 2

+ (−Ti ;j;k−1 + Ti ;j−1;k−1 − Ti−1;j;k−1 − Ti ;j;k + Ti ;j−1;k − Ti−1;j;k + Ti−1;j−1;k + Ti−1;j−1;k−1) ∆x2)∆z2

+ (Ti ;j;k−1 + Ti ;j−1;k−1 + Ti−1;j;k−1 − Ti ;j;k − Ti ;j−1;k − Ti−1;j;k − Ti−1;j−1;k + Ti−1;j−1;k−1) ∆x2∆y 2)

Di−1=2;j−1=2;k−1=2)=(16∆x2∆y 2∆z2)

(A.1)
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Appendix B

3D anisotropic scheme
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Titre : Calcul de l’homogénéisation de la conductivité thermique des matériaux hétérogènes par la méthode des
différences finies

Mots clés : Matériaux hétérogènes Méthode des différences finies conductivité thermique

Résumé : De nos jours, les matériaux hétérogènes sont
de plus en plus utilisés pour leurs propriétés générales
supérieures, comme les milieux poreux, qui sont largement
utilisés dans les industries électroniques et biomédicales.
La détermination de la conductivité thermique équivalente
(CTE) des matériaux hétérogènes est donc essentielle pour
la conception correcte des équipements industriels qui peu-
vent être soumis à des charges thermiques sévères pendant
leur utilisation.
L’objectif principal de cette thèse est de calculer
l’homogénéisation de la conductivité thermique de
matériaux hétérogènes en utilisant la méthode des
différences finies (FDM). Voxel a été choisi pour la
modélisation des matériaux hétérogènes et le schéma de
Günter sera employé comme technique principale pour
les problèmes de diffusion thermique anisotrope. Le
système de Günter bidimensionnel est redémontré dans
cette thèse, ainsi qu’une extension au modèle tridimension-
nel, de même que des méthodes pour charger des condi-
tions aux limites périodiques et uniformes mixtes. Les trois
méthodes (FDM, FEM, et FEM+pixel(voxel)) sont com-
parées pour des RVEs 2D tels que des croix, des cercles et
des ellipses et pour des RVEs 3D tels que des sphères et des
cylindres. On découvre que la méthode FDM développée

produit des résultats qui sont cohérents avec ceux de FEM
et FEM+pixel(voxel) et que la méthode FDM surpasse
FEM+pixel(voxel) en termes de vitesse de convergence.
Cette méthode a également été appliquée à des matériaux
en argent fritté pour l’étude de la conductivité thermique
équivalente. Des comparaisons entre les deux méthodes
(FDM et FEM) sont effectuées pour les cellules unitaires
classiques telles que le cubique simple, le cubique centré
sur le corps et le cubique centré sur la face, ainsi que
pour le modèle stochastique à base d’argent. L’algorithme
de différences finies développé est valide, et des résultats
cohérents sont obtenus. En plus du schéma de Günter, un
modèle à 5 points et un modèle intégral ont également été
développés en s’inspirant du schéma de Günter.
Pour le calcul haute performance, la bibliothèque Eigen et
la bibliothèque Pardiso sont également détaillées dans la
thèse. Ces deux bibliothèques contiennent à la fois des so-
lutions directes et itératives pour la résolution d’équations
linéaires. Cependant, alors qu’Eigen ne permet le calcul
parallèle que de la solution itérative, Pardiso permet le
calcul parallèle des deux approches, et le parallélisme est
nettement supérieur à celui d’Eigen. Alors que Eigen est
plus simple à construire et plus puissant, Pardiso est plus
rapide pour traiter les problèmes complexes.

Title: Computation homogenization of heterogeneous materials’ thermal conductivity by the Finite Difference Method

Keywords: Heterogeneous materials Finite Difference Method thermal conductivity

Abstract: Nowadays, heterogeneous materials are in-
creasingly used for their superior overall properties, such
as porous media, which are widely used in the electronics
and biomedical industries, so determining the equivalent
thermal conductivity (ETC) of heterogeneous materials is
essential for the correct design of industrial equipment that
may be subjected to severe thermal loads during use.
The main objective of this thesis is to calculate the ho-
mogenization of the thermal conductivity of heteroge-
neous materials using the finite difference method. Voxel
was chosen for modeling heterogeneous materials and the
Günter scheme will be employed as the primary tech-
nique for anisotropic thermal diffusion problems. The
two-dimensional Günter system is re-demonstrated in this
thesis, along with an extension to the three-dimensional
model, as well as methods for loading periodic and mixed
uniform boundary conditions. The three methods (FDM,
FEM, and FEM+pixel(voxel)) are compared for 2D RVEs
such as crosses, circles, and ellipses and for 3D RVEs such
as spheres and cylinders. It is discovered that the devel-
oped FDM produces results that are consistent with those

of FEM and FEM+pixel(voxel) and that the FDM outper-
forms FEM+pixel(voxel) in terms of convergence speed.
This method has also been applied to sintered silver ma-
terials for the study of equivalent thermal conductivity.
Comparisons between the two methods (FDM and FEM)
are carried out for the classical unit cells such as simple cu-
bic, body-centered cubic, and face-centered cubic, as well
as the silver-based stochastic model. The developed finite
difference algorithm is valid, and consistent results are ob-
tained. In addition to the Günter scheme, a 5-point model
and an integral model have also been developed inspired
by the Günter scheme.
For high-performance computing, the Eigen library and
the Pardiso library are also detailed in the thesis. Both li-
braries contain both direct and iterative solutions for solv-
ing linear equations. However, while Eigen allows for par-
allel computation of only the iterative solution, Pardiso
allows for parallel computation of both approaches, and
the parallelism is significantly superior than that of Eigen.
While Eigen is more straightforward to construct and more
powerful, Pardiso is faster at tackling complex problems.
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