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Abstract

Humans and many animals can see the world and understand it effortlessly which gives

hope that visual perception could be realized by computers and Artificial Intelligence. More

importantly, living beings acquire such an understanding of the visual world autonomously,

without the intervention of a supervisor explicitly telling them what, where or who is to

be seen. This suggests that visual perception can be achieved without too much explicit

human supervision but simply by letting systems observe large amounts of visual inputs. In

particular, this manuscript tackles the problem of self-supervised learning which consists

in training deep neural networks without using any human annotations. Typically, neural

networks require large amounts of annotated data, which have limited their applications in

fields where accessing annotations is expensive or difficult. Moreover, manual annotations

are biased towards a specific task and towards the annotators own biases, which can

result in noisy and unreliable signals. Training systems without annotations could lead to

better, more generic and robust representations. In this manuscript, we present different

contributions to the fast-growing field of self-supervised visual representation learning.

In particular, we start by extending a promising category of self-supervised approaches,

namely deep clustering, which trains deep networks while simultaneously mining groups

of visually consistent images in a data collection. We then identify the limits of deep

clustering methods such as their difficulty to scale to very large datasets or the fact that they

are prone to trivial solutions. As a result, we propose novel and improved self-supervised

methods that outperform their supervised counterparts on several benchmarks and exhibit

interesting properties. For example, the resulting self-supervised networks contain generic

representations that transfer well to different datasets and tasks. We also find that they

contain explicit information about the semantic segmentation of an image. Finally, we

make an effort throughout this manuscript to assess our self-supervised models in the wild,

by training them on hundreds of millions of random unlabeled images from the Internet.

Keywords: self-supervised learning, computer vision, unsupervised learning, deep learn-

ing, artificial intelligence.
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Résumé

Les humains et de nombreux animaux peuvent voir le monde et le comprendre sans

effort, ce qui laisse espérer que la perception visuelle pourrait être réalisée par les ordi-

nateurs et l’intelligence artificielle. Plus important encore, les êtres vivants acquièrent

une telle compréhension du monde visuel de manière autonome, sans l’intervention d’un

superviseur externe leur disant explicitement quoi, où ou qui doit être vu. Cela suggère que

la perception visuelle peut être obtenue sans trop de supervision humaine explicite mais

simplement en laissant les systèmes observer par eux-mêmes de grandes quantités d’entrées

visuelles.

En particulier, ce manuscrit aborde le problème de l’apprentissage auto-supervisé. Cela

consiste à entraîner des systèmes de réseaux de neurones profonds sans utiliser aucune anno-

tation humaine. En règle générale, les réseaux de neurones nécessitent de grandes quantités

de données annotées, ce qui a limité leurs applications dans les domaines où l’accès à ces

annotations est coûteux ou difficile. De plus, les annotations manuelles sont biaisées vers

une tâche spécifique et vers les propres biais de l’annotateur, ce qui peut entraîner des

signaux bruités et peu fiables. Il en résulte que les systèmes d’entraînement n’utilisant pas

d’annotations pourraient conduire à de meilleures représentations, plus génériques et plus

robustes. Dans ce manuscrit, nous présenterons différentes contributions au domaine en

pleine croissance de l’apprentissage auto-supervisé de représentations visuelles.

Nous commencerons par étudier une catégorie prometteuse d’approches auto-supervisées,

à savoir le clustering profond, qui permet d’entraîner des réseaux de neuronnes tout en

trouvant des groupes d’images visuellement cohérents dans une collection de données.

Nous identifierons ensuite les limites de ces méthodes de clustering profond telles que

leur difficulté à passer à l’échelle ou le fait qu’elles sont souvent sujettes à des solutions

triviales. En conséquence, nous proposerons de nouvelles méthodes auto-supervisées

qui surpassent leurs homologues supervisées sur plusieurs benchmarks et présentent des

propriétés intéressantes. Par exemple, les réseaux auto-supervisés ainsi obtenus contien-

nent des représentations génériques qui transfèrent bien pour résoudre diverses tâches sur

vii



viii RÉSUMÉ

d’autres ensembles de données. Ils contiennent également des informations explicites sur

la segmentation sémantique d’une image. Finalement, nous évaluerons également nos

modèles auto-supervisés sur des données brutes, en les entraînant sur des centaines de

millions d’images non supervisées sélectionnées aléatoirement sur Internet.

Mots-clés: apprentissage auto-supervisé, vision par ordinateur, apprentissage non-supervisé,

apprentissage profond, intelligence artifielle.
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Chapter 1

Introduction

1.1 Visual Representation Learning

Designing data representation is a major component of many Artificial Intelligence (AI)

systems and has evolved significantly in the last decades. The performance of a system de-

pends heavily on the quality of the data representation it is given in input. For example, as

humans, arithmetic will be more easily and quickly performed if quantities are represented

with Arabic numerals rather than binary representations or Roman numerals. Likewise, in

Machine Learning (ML), input representations play a central role. For example when a

simple machine learning system is tasked to identify the risk for prostate cancer [Stamey

et al., 1989], it does not interact with the patient directly. Instead, it inputs a set of different

variables such as clinical and demographic conditions gathered by a specialist. This set of

variables constitutes the patient representation seen by the ML algorithm, which can then

make prediction by learning how these different variables interact with each other. However,

simple ML algorithms do not act on the representation itself. In this manuscript instead, we

will consider more advanced AI systems, able to build their own internal representations

from raw input data.

Visual representations. Although studying representations is important in all domains

of AI, we focus primarily on computer vision applications in this manuscript and more

particularly on image recognition. Generally speaking, our goal is to improve the visual

perception of AI systems, with the hope that it matches, or even outperforms, the natural

ability of humans to perceive the visual world. Indeed, most living beings can see the

world and understand it effortlessly without requiring tremendous amounts of energy, which

motivates that visual perception could be realized by a computer. Intuitively, we would like

1



2 CHAPTER 1. INTRODUCTION

an AI to reproduce the mental representations that we spontaneously have when looking

at a scene. These high-level mental representations allow us to reason and understand

what/where/how/who is represented in front of our eyes.

In computer vision, we refer to the representations extracted from raw images by visual

representations, features or descriptors. Examples of such features can be specific structures

and patterns, like edges, points or objects. They can also be given by a feature extractor

function (or “encoder”) that maps raw pixel values to a vector of fixed dimension which

plays the role of the image representation. Good image featurization is difficult because it

is not a well defined problem: it is not clear what information exactly needs to be extracted

nor how to extract it. For example, let us imagine we want to create an application that

detects dogs in images. Then, it might be a good idea to have the presence of muzzle in the

image as a feature. However, describing precisely a muzzle in an image is tedious: it has

a well defined shape but muzzle realizations in pixels are infinite due to varying lighting

conditions, shadows, occlusions, etc.

The first generation of methods tackling the difficult problem of visual representations

includes involved algorithms such as SIFT [Lowe, 2004] and HOG [Dalal and Triggs,

2005] that were obtained by manual design. These handcrafted extraction pipelines produce

features with desirable properties like invariance to scale, illumination or rotation.

Deep learning. Another solution is to learn the visual representations directly from the

data. A major shift of paradigm from machine learning to deep learning is to not only

learn how to make prediction given a representation but to learn this representation itself

from raw inputs, in an end-to-end fashion. Such learned representations usually result in

much better performance compared to the handcrafted ones. They are also inherently more

dynamic: deep learning models can learn automatically the set of features useful for a new

given task while it can take years for researchers to discover these descriptors by successive

trials and errors. Actually, the ability to learn and extract representations is directly baked

in the deep neural network architectures used in deep learning. For example, a multi-layer

perception (MLP) maps input to output by composition of successive parametrized simple

functions. As a result, the output of each function (or “layer”) can be thought of as a new

representation of the input, which is then fed to the following layer. This way, the AI

system can discover for itself intermediate representations that are useful for solving the

considered task as illustrated in Figure 1.1. For example, the “XOR” classification problem

is a well-known task that cannot be solved by a linear model. Yet, a very simple deep

network, namely a MLP, can solve this problem since it has the ability to learn how to

transform the data into an intermediate hidden representation that is linearly separable.







1.2. WHY LEARNING WITHOUT LABELS? 5

work performed in this thesis is part of a general effort within the research community to

improve self-supervised representation learning.

1.2 Why Learning Without Labels?

The goal of self-supervised representation learning is to automatically uncover some

structure and understanding from images without having to label them one by one with

human annotators. This setting might seem artificial, after all there already are large and

richly annotated datasets like ImageNet [Deng et al., 2009]. In this section, we argue

that studying self-supervised learning is important for several theoretical and practical

considerations.

Towards true intelligence. When observing a collection of images, as humans we natu-

rally and autonomously remark that similar structures, concepts and patterns appear across

images without the intervention of a supervisor telling us what is to be seen. For instance,

when observing photographs of an unknown object, we will be able to recognize it in future

photographs, though not to name it, without being explicitly told that these are images

representing the same object. Intuitively, we hypothesize that a truly intelligent system

should be able to learn and reason about the visual world without the intervention of explicit

human supervision, but simply by letting the AI observe and perceive the world. This

way, studying self-supervised approaches could be a step towards more intelligent and

autonomous systems.

Data biases. Another consideration is the fact that annotating data is inherently an ill-

defined and ambiguous process. Indeed, there are usually several forms of valid annotations

and the arbitrary decisions taken by the annotator in the process induce noise and biases

in the dataset. A self-supervised approach should suffer less from this inevitable bias and

unreliable signal introduced by collecting supervised data. However, using self-supervised

methods can remove the bias in the annotations only and will not impact the biases present

in the images themselves. Overall, we hypothesize that pre-training systems without any

annotations could lead to more generic and robust representations.

Labels are expensive. From a down-to-earth perspective we observe that getting anno-

tations is almost always expensive, which encourages the development of methods that

train without them. Self-supervised training allows to acquire representations from any
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specific domain without requiring the tedious design of a large fully-supervised dataset for

the considered domain.

For example, in histopathology, we surprisingly observe that most works in the liter-

ature [Courtiol et al., 2018] have been relying on the visual representations learned on

ImageNet, an object-centric dataset with an over-representation of dogs [Deng et al., 2009].

A natural assumption would be to think that features learned on natural-looking images

mostly representing dogs are unlikely to transfer well to the medical domain due to the

evident discrepancy between the considered domains. However, in the absence of large

annotated datasets of histopathology data and in the absence of mature self-supervised

approaches capable of successfully leveraging unlabeled data, this has been the most com-

monly adopted solution so far [Courtiol et al., 2018]. Hence, we hypothesize that designing

better self-supervised approaches could lead to major performance leaps in similar fields

where accessing annotations is difficult.

In addition, self-supervised learning may be a more dynamic and flexible strategy

compared to the supervised approach. Whenever we encounter a new domain or modality,

relying on supervised learning means that we need to constitute a new large annotated

dataset. Let us imagine a new image capture modality appears, for instance RGB + a

weak sense of depth (this is what dual-lens cameras on mobile phones produce). It would

be extremely tedious to select and re-annotate the million of ImageNet images for this

modality. Overall, the need for large amounts of annotations have limited the applications

of neural networks, which calls for improving methods that work without labels.

Tons of unlabeled data. Last but not least, it is worth noting that unlabeled, raw data

already exist in tremendous quantities on the Internet: for example, millions of images are

uploaded on social media platforms every single day. Leveraging this data with supervised

learning would require an unrealistic amount of manual annotations, despite the expert

knowledge in crowd-sourcing accumulated by the community over the years. This is not

scalable. Another way of using this data is to replace manual annotations by raw metadata,

like hashtags or localization coordinates prediction. For example using raw metadata

as a supervisory signal has been shown to perform well [Joulin et al., 2016, Sun et al.,

2017], even surpassing ImageNet pre-training when trained on billions of images [Mahajan

et al., 2018]. However, metadata are not always available, and when they are, they do not

necessarily cover the full extent of a dataset. All in all, this motivates the design of methods

that can be trained on internet-scale datasets with no supervision at all.



1.3. OUTLINE AND CONTRIBUTIONS 7

1.3 Outline and Contributions

Let us outline the organization of the manuscript: after a detailed overview of the

different methods for visual self-supervised representation learning in Chapter 2, we

present the different contributions conducted during this PhD program to the fast-growing

field of self-supervised learning.

1.3.1 Deep clustering for representation learning on uncurated data

As we will detail in Chapter 2, most of the research in self-supervised learning has

primarily focused on the design of new pretext tasks [Doersch et al., 2015, Dosovitskiy

et al., 2016, Noroozi and Favaro, 2016, Zhang et al., 2016]. Several interesting observations

and results have emerged from these works but they have not exhibited features competitive

with supervised representations obtained from labels classification. This suggests that the

task of labels classification is sufficient for pre-training networks, provided that suitable

labels are available. We note that in a supervised dataset, the labels partition the images

into different groups (i.e. the classes). Based on this observation, in Chapter 3 we build

upon self-supervised methods that aim at discovering such groups automatically by means

of clustering. More precisely, our work revisits the DeepCluster framework which was

published prior to the beginning of this PhD program in Caron [2018], Caron et al. [2018].

DeepCluster is a simple clustering method that jointly learns the parameters of a neural

network and the cluster assignments, or “pseudo-labels” of the resulting features. Promising

performance was reported in Caron et al. [2018] but most experiments and explorations were

conducted in a highly controlled setting by training on ImageNet, a curated dataset made of

carefully selected images to form well-balanced and diversified classes [Deng et al., 2009].

Simply discarding the labels does not undo this careful selection, as it only removes part of

the human supervision. Because of that, previous works that have experimented with non-

curated raw data report a degradation of the quality of features [Caron et al., 2018, Doersch

et al., 2015]. The first contribution of this manuscript is to explore visual representations

learning from unlabeled and non-curated datasets with deep clustering. We focus on the

YFCC100M dataset [Thomee et al., 2015] as a source of uncurated data which contains 99
million images from the Flickr photo-sharing website. This dataset is unbalanced, with a

“long-tail” distribution of hashtags contrasting with the well-behaved label distribution of

ImageNet. For example in YFCC100M, guenon and baseball correspond to labels with

1300 associated images in ImageNet, while there are respectively 226 and 256, 758 images

associated with these hashtags in YFCC100M. Our goal in Chapter 3 is to understand if

trading manually curated data for scale leads to an improvement in the feature quality.
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Outline. We start Chapter 3 by giving some preliminaries on DeepCluster [Caron et al.,

2018], a method for self-supervised representation learning with clustering published just

before this PhD program. Then, we extend DeepCluster to the large-scale training on

uncurated data which results in the improved DeeperCluster model. Finally, we establish

the limitations of deep clustering, which we will tackle in the following chapter.

Publication. Chapter 3 is largely based on the paper “Unsupervised pre-training of

image features on non-curated data”, Mathilde Caron, Piotr Bojanowski, Julien Mairal

and Armand Joulin, International Conference on Computer Vision, ICCV 2019 (see [Caron

et al., 2019]). The code to reproduce results presented in this chapter is publicly available

at https://github.com/facebookresearch/deepcluster and at https:

//github.com/facebookresearch/DeeperCluster.

1.3.2 Overcoming deep clustering limitations with SwAV

Models combining representation learning and clustering, i.e. Deep(er)Cluster, learn

good representations that improve the performance of neural networks on downstream tasks

compared to training from scratch as detailed in Chapter 3. However, deep clustering in

its original formulation yields a number of major limitations. Among these is the lack of

scalability. Indeed, before each epoch a new clustering is performed to provide pseudo-

labels to use during the epoch. This iterative process relies on the size of dataset and does

not scale to very large-scale trainings where only one or two epochs are typically performed.

A straightforward way to overcome this limitation would be to use an online version of k-

means [Zhan et al., 2020]. However, similarly to Asano et al. [2020] and Chen et al. [2020d],

we have been questioning the very importance of k-means clustering into our model. Other

limitations include the use of empirical tricks to avoid trivial parametrizations or the fact that

dependence in data augmentation is crucial but only implicitly and not properly accounted

for. We address these different limitations by designing a new model, SwAV, that learns

features by directly comparing the descriptors of different crops of a same image. We impose

an equipartition constraint of the descriptors thanks to Optimal Transport [Cuturi, 2013] to

prevent all images in a mini-batch to collapse to the same representation. Specifically, SwAV

simultaneously clusters the data while enforcing consistency between cluster assignments

produced for different augmentations (or “views”) of the same image. We validate our

model by improving the self-supervised state of the art on ImageNet, as well as surpassing

supervised pre-training on a large benchmark of transfer tasks and datasets.

Outline. Chapter 4 introduces SwAV, a method for online self-supervised learning based

on matching distorted views of a same image. First, we present the method and probe its

https://github.com/facebookresearch/deepcluster
https://github.com/facebookresearch/DeeperCluster
https://github.com/facebookresearch/DeeperCluster
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performance on ImageNet before assessing SwAV in a more realistic scenario by training

on 1 billion uncurated images from Instagram.

Publication. Chapter 4 is primarily based on the paper “Unsupervised learning of visual

features by contrasting cluster assignments”, Mathilde Caron, Ishan Misra, Julien Mairal,

Priya Goyal, Piotr Bojanowski and Armand Joulin, Conference on Neural Information

Processing Systems, NeurIPS 2020 (see [Caron et al., 2020]). Code and models for SwAV

can be found at https://github.com/facebookresearch/swav. This chapter

also contains pieces of work publicly available in the technical report “Self-supervised Pre-

training of Visual Features in the Wild”, Priya Goyal, Mathilde Caron, Benjamin Lefaudeux,

Min Xu, Pengchao Wang, Vivek Pai, Mannat Singh, Vitaliy Liptchinsky, Ishan Misra, Ar-

mand Joulin and Piotr Bojanowski (see [Goyal et al., 2021]). Note that we also conducted

and published an extension of SwAV to semi-supervised learning in “Semi-Supervised

Learning of Visual Features by Non-Parametrically Predicting View Assignments with

Support Samples”, Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski,

Armand Joulin, Nicolas Ballas and Michael Rabbat, International Conference on Computer

Vision, ICCV 2021 (see [Assran et al., 2021]) which we do not present in this manuscript

for conciseness.

1.3.3 Improving self-supervised learning with vision transformers

In Chapter 5, we take an orthogonal direction by exploring if we can use the progress

in network architectures to improve self-supervised representations. Indeed, transform-

ers [Vaswani et al., 2017] have recently emerged as an alternative to convolutional neural

networks (convnets) for visual recognition [Dosovitskiy et al., 2020, Touvron et al., 2020,

Zhao et al., 2020]. Their adoption has been coupled with a training strategy inspired by

natural language processing (NLP), that is, pre-training on large quantities of data and

finetuning on the target dataset [Devlin et al., 2018, Radford et al., 2019]. The resulting

Vision Transformers (ViT) [Dosovitskiy et al., 2020] are competitive with convnets but,

they currently do not have substantial benefits over convnets: they are computationally more

demanding, require more training data, and there is no evidence of particular properties

arising in their features.

In this final contribution in Chapter 5, we question if a reason for these setbacks has

been the use of supervision when pre-training these networks on images and explore self-

supervised pre-training as an alternative. The motivation is that a core feature of BERT

pre-training [Devlin et al., 2018] is the use of a self-supervised task where the network

learns to predict masked words in a sentence. These words provide a richer signal to learn

https://github.com/facebookresearch/swav
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from than a single label per sentence. The problem is similar in the case of images since

image-level supervision often reduces the diversity in an image to a single concept from

a predefined set of a few thousand categories [Russakovsky et al., 2015]. However, as

shown in Dosovitskiy et al. Dosovitskiy et al. [2020], directly using the BERT pretext

task has limited success and may not be the optimal strategy for images. We address

this problem by investigating if self-supervised methods originally designed for convnets

provide additional benefits to the features produced by ViTs. During this process, we have

identified interesting properties that do not emerge with supervised ViTs, nor with convnets:

— Self-supervised ViT features explicitly contain the scene layout and, in particular,

object boundaries. This information is directly accessible in the self-attention modules

of the last block.

— Self-supervised ViT features perform particularly well with a basic nearest neighbors

classifier (k-NN) without any finetuning, linear classifier nor data augmentation,

achieving 78.3% top-1 accuracy on ImageNet.

Outline. Chapter 5 starts by introducing a new method for self-supervised learning,

DINO, specifically designed to work well with vision transformers. We then expose

different interesting properties that emerge when training vision transformers in a self-

supervised setting. Overall we find that combining vision transformers and self-supervised

learning bring considerable boosts of performance in the standard benchmark and reveals

intriguing properties.

Publication. Chapter 5 is based on the paper “Emerging properties in self-supervised

vision transformers”, Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien

Mairal, Piotr Bojanowski and Armand Joulin, International Conference on Computer Vi-

sion, ICCV 2021 (see [Caron et al., 2021]). The code is available at https://github.

com/facebookresearch/dino.

Finally, to wrap up, we summarize in Chapter 6 our contributions and give a (subjective)

overview of the current challenges in self-supervised learning.

https://github.com/facebookresearch/dino
https://github.com/facebookresearch/dino


Chapter 2

Related work

Self-supervised representation learning lives at the intersection of two broad domains

of deep learning: unsupervised learning and representation learning. In the words of

Goodfellow et al. [2016], the former refers to most attempts to extract information from

a distribution that do not require human labor to annotate examples. On the other hand,

the latter is the problem of learning a good feature extractor from the data. By “good”, we

mean a function that produces general-purpose visual representations useful for solving

downstream tasks. In our work, we choose to instantiate this featurization function with a

parametrized deep neural network and we task ourselves to learn its parameters (or weights)

without using any manual annotations.

The prominent way of learning the weights of a neural network is to minimize a cost

function using mini-batch stochastic gradient descent [Bottou, 2012] and backpropagation

to compute the gradients of the cost with respect to the network weights [LeCun et al.,

1998]. In the supervised case, this cost (or task, loss, objective) function is largely defined

by the annotations and simply measures how well the output of the network matches the

annotated ground truth. However, in the absence of annotations, defining a learning task is

an open problem.

A solution is to use a surrogate (or pretext) task automatically generated from unlabeled

data. When trained for this task, the network shall hopefully acquire an understanding of

the structure of the scene and objects present in the images and, as a result, produce features

that perform well on downstream tasks [Ahmed et al., 2008]. In this section, we give a

non-exhaustive overview of the numerous methods developed in the image recognition

literature to tackle the challenging problem of designing good label-free pretext tasks.

11
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2.1 Generating Images

First of all, a classical unsupervised task is to ask a deep model to reconstruct its

input data, and even to generate new probable inputs. We refer to this class of methods

as generative approaches since they output in the image space and directly model the

data generating function. Intuitively, the generative surrogate task of “predicting the data”

should encourage the model to understand the data and build useful representations of it.

For example, as humans, painting an existing, or imaginary, house requires some mental

representation of what a house is and of its structure. Likewise, fitting the data generating

distribution shall require a deep model to uncover some underlying structure of the data

and to build rich, abstract representations of it. In this section, we briefly describe popular

generative models like autoencoders or generative adversarial networks.

2.1.1 Autoencoders

A quintessential example of an unsupervised representation learning approach is the

autoencoder model [Bengio et al., 2007, Hinton and Salakhutdinov, 2006, Huang et al.,

2007, Masci et al., 2011, Vincent et al., 2008]. It is composed of two parts: an encoder that

maps some given input to an intermediate representation, and a decoder that inputs this

representation and outputs back into the input space. The two networks are trained together

with a reconstruction objective. In other words, the encoded-then-decoded output has be as

close as possible as the original input. It is important to constrain somehow the intermediate

representation otherwise both networks could trivially learn the identity mapping. Examples

of such constraints include dimension bottleneck [Hinton and Salakhutdinov, 2006], data

corruption as in denoising autoencoders [Vincent et al., 2008] or information bottleneck as

in variational autoencoders (VAE) [Kingma and Welling, 2013].

Interestingly, VAEs belong to a class of generative approaches, namely the latent

variable models, that propose to explain entirely the data through different and distinct

factors of variations. Such factors may be the nature of the represented object, the lighting

conditions or the angle of the camera for example. The factors of variations, or latent

variables, can be directly viewed as representations of the data as they have the power

of describing any image from the data generating function. Follows the conditional

independence assumption which states that all pixels of an image can be generated at once

(i.e. independently from each other) given the knowledge of the image’s corresponding

latent variables. This is in contrast with the autoregressive models which we mention later

in Section 2.1.3 that generate each pixel sequentially given all the previously generated

pixels.
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2.1.2 Generative adversarial networks

Another latent variable based generative model is the popular generative adversarial

network (GAN) proposed by Goodfellow et al. [2014]. A GAN is made up of two neural

networks, namely the generator and the discriminator, that compete against one another.

The generator produces images given vectors of the latent space while the discriminator

has to determine whether the images it sees are real (i.e. come from the dataset) or not

(i.e. have been generated by the generator). This way, the generator is encouraged to

produce realistic images in order to fool the discriminator. Interestingly, some experiments

on GANs by Radford et al. [2015] have shown that their latent space captures semantic

variations in the data distribution and that the representations learned by the generator and

discriminator can be transferred to other visual tasks. However, the performance gains are

(arguably) moderate. Moreover, it is unclear in a GAN what component of the model to

re-use as a feature encoder (the generator maps from latent space to image space and the

discriminator is trained to separate real from generated images). To overcome this difficulty,

Donahue et al. [2016] and Dumoulin et al. [2016] concurrently propose to enhance the

representation learning capacity of the original GAN by adding an auxiliary encoder, which

acts as a feature encoder. The purpose of this encoder is to predict directly from images

their corresponding semantic representations in the latent space. In other words, it learns

the inverse mapping of the generator, which allows to produce competitive visual features.

More recently, GAN implementation and training have improved drastically thanks to

thorough and large-scale explorations [Brock et al., 2018]. As expected, this has also led to

improved performance for their internal representations [Donahue and Simonyan, 2019].

2.1.3 Autoregressive models

Autoregressive methods drop the latent variables strategy and simply generate pixels

sequentially based on the previously generated pixels. A successful implementation with

convolutional neural networks is the Pixel-CNN of Oord et al. [2016]. Recently, Chen et al.

[2020a] have proposed to train a transformer [Vaswani et al., 2017] for the autoregressive

next pixel prediction task. The resulting representations have been the most competitive

within the generative representation learning family so far.

Overall, generative modeling is a promising and fruitful direction in unsupervised repre-

sentation learning. However, fitting the data generating function is a very complex learning

task with a number of considerable challenges (see [Lucas, 2020] for a comprehensive

overview). Moreover, we may wonder if being able to predict everything is necessary to

learn useful visual representations. For example, the fact that in the supervised case, labels

classification is enough to bring about good representations motivates the development of
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not need to be provided by annotators. Intuitively, performing well on the surrogate col-

orization task requires a semantic understanding of the extent of objects and scenes present

in the images, which encourages the network to learn high level features. However, color

does not always exist in images (in the medical domain for example) and consequently

Zhang et al. [2017] have proposed to recast colorization to the more generic scenario of

cross-channel prediction.

2.2.2 Spatial cues

Another landmark strategy in self-supervised learning is to manipulate and exploit the

spatial layout of images to generate surrogate tasks [Doersch et al., 2015]. For instance,

inspired by word2vec [Mikolov et al., 2013] in NLP, Doersch et al. [2015] propose to

train a network to predict the relative position of a pair of patches from the same image

as illustrated in the middle panel of Figure 2.1. Intuitively, this difficult task should force

the network to learn rich representations of object parts and their spacial arrangement. For

example, being able to predict that a car wheel patch is usually located below a windscreen

patch requires some understanding of the concept of vehicles. A number of follow-up

works [Kim et al., 2018, Lee et al., 2017, Mundhenk et al., 2018, Santa Cruz et al., 2017]

have proposed several extensions and refinements along the seminal work of Doersch et al.

[2015]. Of particular interest, Noroozi and Favaro [2016] extend the relative patch position

prediction task to 9 patches, sampled on a 3 ◊ 3 grid in the image. The task of the network

is to predict the permutation applied to the set of shuffled patches. Goyal et al. [2019]

show that making this task even more complex by increasing the number of possible patch

permutations usually improves the quality of the resulting representations.

Another self-supervised approach exploiting spatial cues is the inpainting task (see

right panel of Figure 2.1). Pathak et al. [2016] propose to train a network to generate an

image region from its surroundings. A network encodes the context of the image into a

compact latent representation while a decoder inputs that latent representation and fills in

the missing image patch pixels. The connection between these two networks is performed

with a channel-wise fully connected layer that allows propagation of information across

channels. The authors use a combination of two different losses: (i) a reconstruction loss

that tends to give blurry patches since it is safer to predict the mean of the distribution, and

(ii) an adversarial loss that encourages sharpest and more realistic results.

Overall, these works exploiting spatial layout in images have particularly inspired one

of the contribution of this thesis, the multi-crop training, which we present in Chapter 4

(see Section 4.2.4).
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prediction, Agrawal et al. [2015] train a network to predict the camera transformation

between pairs of images. Another example is the work of Jayaraman and Grauman [2015]

that learn image embedding from unlabeled video. Starting from egocentric video together

with observer ego-motion signals, they train a system on a “view prediction” task, to learn

equivariant visual features that respond predictably to observer ego-motion. In this target

equivariant feature space, pairs of images related by the same ego-motion are related by the

same feature transformation too. Similarly, Xiong et al. [2021] encourage the features to

obey the same flow transformation as input image pairs.

Taking a different approach, Wang and Gupta [2015] propose a task where patches from

a same video should be close in feature space. More precisely, from an anchor patch in a

video, they form a positive pair by tracking it along thirty consecutive frames and form a

negative pair with a random (or more sophistically selected) patch. The task of the network

is to bring the positive pair closer together and to pull away the negative pair. The work of

Wang and Gupta [2015] echoes the view-invariant features paradigm which we describe

later in Section 2.3 and uses motion as a way of generating different “views” of a common

concept.

A different approach is that of Pathak et al. [2017] who use motion to mine unsupervised

segmentations from videos. Then, a deep network is trained to predict those “ground truth”

segmentations from images. As shown in the corresponding paper and in Figure 2.2 (right),

the unsupervised segmentations are noisy and of quite poor quality. However, because they

do not exhibit consistent or systematic error patterns, they may be seen as perturbations

around a good quality segmentation. The motivation of Pathak et al. [2017] is to hypothesize

that a deep network will not fit this noise but output something closer to the underlying

correct segmentation. This is qualitatively verified in Figure 2.2 (right) where we observe

that the learned segmentations are of better quality that the noisy ground-truth segmentations

used during training.

Though promising, a pitfall of these approaches relying on motion is the dependency

on auxiliary information or offline algorithms, which might make them impractical in

some cases. For example, if metadata about the camera is not de facto present in a visual

collections, it might turn out to be as least as tedious to collect as the manual annotations

used in supervised learning.

2.2.5 Other cues

Many other cues have been exploited in order to design self-supervised tasks, for

example audio [Owens et al., 2016], counting instances [Noroozi et al., 2017] or physical

interaction [Pinto et al., 2016]. Interestingly, Li et al. [2016] leverage the first generation of

handcrafted visual representations to learn representations with deep networks. Concretely,
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they build a graph of nearest neighbors on SIFT [Lowe, 1999] and Fisher Vector [Sánchez

et al., 2013] descriptors. From this graph, they infer positive image pairs from cycle

consistency and negative image pairs from large geodesic distances (accumulated weights

along the shortest path between the two considered nodes). The task of the network is to

learn an embedding in which images semantically similar (positive pairs) are close while

images semantically different (negative pairs) are distant.

2.2.6 Combining cues

The nature of what the features capture and focus on is likely to differ from a self-

supervised surrogate task to another. As a result, different strategies for combining multiple

cues have been explored [Doersch and Zisserman, 2017, Wang et al., 2017]. Wang et al.

[2017] propose to construct an affinity graph with two types of edges: inter-instance in-

variance (similar viewpoint) and intra-instance invariance (similar instance). Inter-instance

edges are found with the relative patch prediction task of Doersch et al. [2015] while

intra-instance edges are mined through tracking a patch along thirty frames of a video like

in Wang and Gupta [2015]. From this affinity graph, they infer positive (resp. negative)

pairs that need to be brought together (resp. pulled away) by the network. Doersch and

Zisserman [2017] also aim at leveraging the diversity of the learned representation by com-

bining different pretext tasks. A novelty in the approach of Doersch and Zisserman [2017]

is to use a form of regularization that encourages the network to separate group of features

useful for different tasks. In other words, the network determines which combination of

layers to use for each of the pretext tasks.

Overall, we have described a number of diverse self-supervised tasks proposed in

the literature in the past years. Lastly, we will describe in more details self-supervised

approaches that encourage view-invariant representations [Dosovitskiy et al., 2014]. This

paradigm has been the most successful lately [Caron et al., 2020, Chen et al., 2020b, Grill

et al., 2020, Misra and Maaten, 2020] and is the seed to most of the contributions presented

in this manuscript [Caron et al., 2018, 2019, 2020, 2021].

2.3 View-Invariant Features

The seminal work of Dosovitskiy et al. [2014] propose to learn representations that

model view-invariant factors. This is motivated by the fact that the way we view a scene

does not usually affect its semantic content. For example, the meaning or purpose of an

image of a dog is most of the time preserved regardless of the position of the camera
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2.3.1 Original parametric implementation

Dosovitskiy et al. [2014, 2016] implement the view-invariant paradigm as an instance

classification approach. The problem is formulated as an “N -way” classification problem

where N is the size of the dataset. In other words, each image acts as a distinct class

and a deep network is trained to discriminate between them up to data augmentations.

More concretely, let us denote by fθ the neural network mapping, where ◊ is the set of

corresponding parameters. We refer to the vector obtained by applying this mapping to

an image as feature or representation. Given a training set X = {x1, x2, . . . , xN} of N
images, we recall that our goal is to find a parameter ◊

ú such that the mapping fθú produces

good general-purpose features. In the context of supervised learning, each image xn is

associated with a label yn in [0, k ≠ 1] which represents the image’s membership to one of

k possible predefined classes. A parametrized classifier gW predicts the correct labels on

top of the features fθ(xn). The parameters W of the classifier and the parameter ◊ of the

mapping are then jointly learned by minimizing the following per-example negative log

likelihood loss on temperature-softmax outputs:

min
θ,W

≠gW (fθ(xn))yn
/· + log

k≠1
ÿ

j=0

exp
1

gW (fθ(xn))j /·

2

(2.1)

Note that we explicit here the per-example loss only and in practice we minimize its

expectation over the training dataset. In the work of Dosovitskiy et al. [2014], a random

transformation t is applied to each original dataset image xn. We denote by T the set of all

possible data transformations. Overall, the following per-example instance classification

objective is minimized:

min
θ,W

Et≥T

S

U≠gW (fθ(t(xn)))n /· + log
k≠1
ÿ

j=0

exp
1

gW (fθ(t(xn)))j /·

2

T

V , (2.2)

where the label yn of each transformed image is simply the id n of the original image.

Explicitly learning a classifier gW to discriminate between all images does not scale

well with the number of images N . For example on ImageNet, W would be of size

1, 281, 167 ◊ d where d is the feature dimension. To overcome this major limitation, a

number of approaches propose to use a noise contrastive estimator (NCE) [Gutmann and

Hyvärinen, 2010] to directly compare instances instead of classifying them [Wu et al.,

2018]. These methods are collected under the umbrella of “contrastive” representation

learning.
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2.3.2 Contrastive implementations

Contrastive methods drop learning a parametrized instance-level classifier gW altogether.

Instead, the task becomes to retrieve positive pairs of features out of a pool of negative

pairs. Concretely, given an anchor feature representation fθ(t(xn)), a positive pair is

formed by featurizing a different view of the same instance xn (denoted v+). Negative pairs

are formed by featurizing a set v≠ of k different instances from the dataset. Contrastive

implementations like that of Wu et al. [2018], He et al. [2020] or Chen et al. [2020b]

minimize a per-example objective of the following form:

min
θ,W

Et≥T

S

U≠fθ(t(xn))|v+/· + log
ÿ

vœv≠

exp (fθ(t(xn))|v/·)

T

V , (2.3)

where the different feature vectors are normalized. This loss can be interpreted as the

log loss of a “|v≠| + 1”-way softmax-based classifier that tries to classify the anchor as

v+. This contrastive implementation requires comparing features from a large number of

images simultaneously and different strategies have been proposed to that end. For example,

Wu et al. [2018] store positive element v+ and negative elements v≠ into a memory bank

composed of computations from the previous epochs. As a result, this approach relies on

the size of the dataset and does not scale to very large-scale trainings. He et al. [2020]

propose an online memory bank strategy as a workaround. Computations from the previous

iterations are stored in a rolling memory bank. Positive and negatives features are computed

with an auxiliary dedicated momentum network which is an exponential moving average

version of the main network. This ensures consistency between the features of the memory

bank. Another approach is to simply use the examples from the same mini-batch as positive

and negatives [Chen et al., 2020b]. Contrastive loss functions can also be based on other

forms, such as margin-based losses and variants of NCE losses [Bachman et al., 2019,

Henaff, 2020, Hjelm et al., 2018, Oord et al., 2018, Tian et al., 2020a, Wang and Gupta,

2015].

2.3.3 Other implementations

A caveat of the contrastive approach is that it requires comparing features from a large

number of images simultaneously to have good performance. Interestingly, a number of

approaches have implemented the “view-invariant” principle without falling back on the

contrastive formulation. Among these methods are the SwAV and DINO contributions

presented respectively in Chapters 4 and 5.

At the root of this thesis is the work of Bojanowski and Joulin [2017] which implements

the instance discrimination problem by means of discriminative clustering [Bach and
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Harchaoui, 2008]. Discriminative clustering optimizes a grouping of the data into distinct

clusters that, if used as pseudo-labels to learn a classifier, produces the maximum of

separability (as measured by the loss value at an optimal classifier). Note that it is crucial to

add constraints to avoid the trivial solution where all examples have the same pseudo-label.

Different classifiers can be used, leading to different implementations of the discriminative

clustering framework. For instance, Bach and Harchaoui [2008] use a linear classifier with

a ridge regression loss. Bojanowski and Joulin [2017] use a deep network that classifies

into a set of N fixed targets uniformly arranged on the unit sphere in feature space. This

way, the loss encourages representations to be uniformly spread out in the feature space.

The approach iterates between training the network to classify the examples into their

assigned targets and obtaining new target assignments for the representations. As different

views are used for assigning and predicting the targets, the model trains implicitly for

view-invariant representations. This work has influenced greatly the contributions presented

in this manuscript (Chapters 3 and 4).

Interestingly, recent works have shown that we can instantiate the view-invariant learn-

ing paradigm without explicitly discriminating between images. Grill et al. [2020] propose

a metric-learning formulation called BYOL, where features are trained by matching them

to representations obtained with a momentum encoder. It has been shown that methods like

BYOL work even without a momentum encoder, at the cost of a drop of performance [Chen

and He, 2020, Grill et al., 2020]. We note that the contribution presented in Chapter 5

completes the interpretation initiated in BYOL of self-supervised learning as a form of

Mean Teacher self-distillation [Tarvainen and Valpola, 2017] with no labels. Several other

works echo this direction, showing that one can train features by using whitening [Ermolov

et al., 2020] or redundancy reduction of the features [Zbontar et al., 2021]. The latter work

proposes a loss function that measure the cross-correlation matrix between the representa-

tions of two distorted versions of a sample, and makes it as close to the identity matrix as

possible. This causes the embedding vectors of distorted versions of a sample to be similar,

while minimizing the redundancy between the components of these vectors.

2.3.4 Grouping variants

We have seen that most of the implementations of the view-invariant paradigm follow a

per-instance discrimination framework. However, pulling representations from different

instances apart can imper the learned embeddings if it turns out that these instances are

actually semantically similar. This limitation was already identified in the analysis of

Dosovitskiy et al. [2014]. As a workaround, they propose to use clustering to group the

instances with strong similarities into a single pseudo-class instead of having a pseudo-class

per instance as in their original formulation. Their results show that this variant improves
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performance of the model and foresee that potentially, using even more data or performing

clustering and network training within a unified framework could further improve the

quality of the learned features. This analysis has influenced greatly the development of

deep clustering approaches which we detail in Chapter 3.

Other works propose to model inter-examples similarities thanks to clustering. Some

methods rely explicitly on a clustering loss [Asano et al., 2020, Caron et al., 2018, Xie

et al., 2016, Yang et al., 2016] to learn simultaneously image features and clusters. The

approach of Yang et al. [2016] iterates over a clustering and a training stages. The former

optimizes a grouping of the representations given by the network. The latter trains the

network to classify the images into the pseudo-labels given by the group assignments. Yang

et al. [2016] use agglomerative clustering, which starts with a large number of very small

clusters and merges them progressively. However, Douze et al. [2017] show that this choice

of clustering method is not optimal when working with large-scale datasets.

2.3.5 Importance of spatial cues

An effective direction to improve performance of the view-invariant paradigm is to

consider transformations targeting distortions of the spatial layout of an image (i.e. cropping

and scaling for example). Indeed, many works have exploited spatial cues to induce desired

invariants or properties in the representations [Hjelm et al., 2018, Misra and Maaten, 2020,

Oord et al., 2018]. For example, Hjelm et al. [2018] and Bachman et al. [2019] define

a surrogate task where local representations of an image (i.e. representation of a small

image portion) need to be predicted from a global image descriptor (i.e. representation

of a large portion) obtained with another view of that image. Besides, Oord et al. [2018]

and Hénaff et al. [2019] encourage matching of adjacent non-overlapping views of a same

image. Interestingly, Chen et al. [2020b] highlight the importance of the random scaling and

cropping data augmentation (torchvision.transforms.RandomResizedCrop

in PyTorch [Paszke et al., 2019]) and show that using it to generate different matching

views naturally encompasses the two learning tasks above (i.e. “global-to-local” and

“adjacent” view predictions) and many more. Intuitively, encouraging “crop-invariant”

features is an interesting idea. Concretely, it means that a crop of an image needs to

be predicted from another crop of the same image. To do so, the network has to either

output a constant representation for every possible input (which is prevented by different

constraints or designs) or to actually output a representation about that image. Importantly,

this representation needs to be about the image in general and not just about the particular

considered crop since it then needs to be predicted from another completely independent

crop of that same image. Based on that observation, one contribution of this thesis is to

encourage holistic “local-to-global” matching of the views, which we show to be very



24 CHAPTER 2. RELATED WORK

effective for downstream classification tasks (see details of multi-crop in Section 4.2.4).

2.3.6 Other variants and refinements

Finally, a number of variants and refinements have been proposed to the original

view-invariant self-supervised paradigm. For instance, some works [Kalantidis et al.,

2020, Zhuang et al., 2019] propose different strategies to mine hard negatives in the

contrastive learning implementation (Section 2.3.2). Other works ablate and analyze the

different invariant injected through the data augmentation pipeline [Purushwalkam and

Gupta, 2020, Tian et al., 2020b] or propose to match more elaborate representations, e.g.,

Bag-of-Words [Gidaris et al., 2020a,b]. Other related directions, beyond the scope of

this manuscript, are the focus on designing dense local representations [Jabri et al., 2020,

Pinheiro et al., 2020], or the use of different modalities as a way of generating the different

“views” of a common concept [Alayrac et al., 2020, Wang and Gupta, 2015].



Chapter 3

Deep Clustering

We have seen in Chapter 2 that research in self-supervised learning has primarily

mainly focused on generative modeling [Radford et al., 2015] or on designing surrogate

tasks for which the labels can be computed automatically by manipulation of the input

data [Doersch et al., 2015, Dosovitskiy et al., 2016, Noroozi and Favaro, 2016, Zhang

et al., 2016]. These works pioneered the field of visual self-supervision but, at the time of

their publication, showed moderate results compared to that of pre-training with supervised

ImageNet classification. This suggests that the task of classification is promising for

representation learning, given that labels are provided to that end.

A trivial but important observation is to see that the labels of ImageNet partitions the

dataset into distinct groups (i.e. the classes). The seed of this chapter is to ask whether we

can find those groups automatically by means of clustering. As a matter of fact, clustering,

a class of unsupervised learning methods, has been extensively applied and studied in

computer vision. However, only little work has been done to adapt it to the end-to-end

training of visual features on large scale datasets. In this chapter, we start by giving some

preliminaries on deep clustering with DeepCluster, a clustering method presented at ECCV

in Munich [Caron et al., 2018] (prior to the PhD program) that jointly learns the parameters

of a neural network and the cluster assignments of the resulting features.

Second, we study representation learning with deep clustering in an uncurated sce-

nario. We train our model on 96 million images from YFCC100M [Thomee et al., 2015],

achieving state-of-the-art results among unsupervised methods on standard benchmarks,

which confirms the potential of self-supervised learning in a realistic scenario, when only

uncurated raw data are available. This effort was presented at ICCV in Seoul [Caron et al.,

2019] and is the base of this chapter.

25
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3.1 Introduction

3.1.1 Self-supervised representation learning with clustering

Pre-trained convolutional neural networks, or convnets, have become the building

blocks in most computer vision applications [Carreira et al., 2016, Chen et al., 2016, Ren

et al., 2015, Weinzaepfel et al., 2013]. They produce excellent general-purpose features

that can be used to improve the generalization of models learned on a limited amount

of data [Sharif Razavian et al., 2014]. The existence of ImageNet [Deng et al., 2009],

a large fully-supervised dataset, has been fueling advances in pre-training of convnets.

However, Stock and Cisse [2018] have presented empirical evidence that the performance

of state-of-the-art classifiers on ImageNet is largely underestimated, and little error is left

unresolved. This explains in part why the performance has been saturating despite the

numerous novel architectures proposed in recent years [Chen et al., 2016, Dosovitskiy

et al., 2020, El-Nouby et al., 2021, He et al., 2015, Huang et al., 2016]. As a matter

of fact, ImageNet is relatively small by today’s standards; it “only” contains a million

images that cover the specific domain of object classification. A natural way to move

forward is to build a bigger and more diverse dataset, potentially consisting of billions

of images. This, in turn, would require a tremendous amount of manual annotations,

despite the expert knowledge in crowd-sourcing accumulated by the community over the

years. Replacing labels by raw metadata leads to biases in the visual representations with

unpredictable consequences [Misra et al., 2016b]. This calls for methods that can be trained

on internet-scale datasets with no supervision.

Unsupervised learning has been widely studied in the Machine Learning commu-

nity [Friedman et al., 2001], and algorithms for clustering, dimension reduction or density

estimation are regularly used in computer vision applications [Joulin et al., 2010, Shi and

Malik, 2000, Turk and Pentland, 1991]. For example, the “bag of features” model uses

clustering on handcrafted local descriptors to produce good image-level features [Csurka

et al., 2004]. A key reason for their success is that they can be applied on any specific

domain or dataset, like satellite or medical images, or on images captured with a new

modality, like depth, where annotations are not always available in quantity. Several works

have shown that it was possible to adapt unsupervised methods based on density estimation

or dimension reduction to deep models [Goodfellow et al., 2014, Kingma and Welling,

2013], leading to promising all-purpose visual features [Bojanowski and Joulin, 2017,

Donahue et al., 2016]. Despite the primeval success of clustering approaches in image

classification, very few works [Xie et al., 2016, Yang et al., 2016] have been proposed

to adapt them to the end-to-end training of convnets, and never at scale. An issue is that

clustering methods have been primarily designed for linear models on top of fixed features,
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Figure 3.1 – Illustration of DeepCluster. We iteratively cluster deep features and use the

cluster assignments as pseudo-labels to learn the parameters of the convnet.

and they scarcely work if the features have to be learned simultaneously. For example,

learning a convnet with k-means would lead to a trivial solution where the features are

zeroed, and the clusters are collapsed into a single entity.

In preliminaries, we review DeepCluster, a self-supervised approach that show that it

is possible to obtain useful general-purpose visual features with a clustering framework.

DeepCluster, summarized in Figure 3.1, consists in alternating between clustering of

the image descriptors and updating the weights of the convnet by predicting the cluster

assignments. For simplicity, we focus on k-means in this chapter, but other clustering

approaches can be used, like Power Iteration Clustering (PIC) [Lin and Cohen, 2010]. The

overall pipeline is sufficiently close to the standard supervised training of a convnet to

reuse many common tricks [Ioffe and Szegedy, 2015]. Despite its simplicity, DeepCluster

achieves significantly higher performance than the state of the art among self-supervised

methods on standard transfer tasks at the time of the publication (i.e. 2018).

3.1.2 Training on uncurated data

However, these first results are obtained by training DeepCluster on ImageNet (without

labels). Designing large fully-annotated datasets like ImageNet has required a significant

effort from the community, not only due to the cost of manual labeling but also due to

the compilation and cleansing of the data. As a result, we discuss the use of ImageNet,

a highly curated dataset, as a training set for unsupervised models. It contains properly

cropped images of a pre-selected number of classes, and nothing else. As it is designed for

a fine-grained classification task, this dataset provides well-balanced and diversified data.

Discarding the labels does not undo this careful selection, and only removes part of the

human supervision.

The challenge tackled is this chapter is to learn good general-purpose representations
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captures finer relations between images when the number of clusters scales with the dataset

size. Clustering approaches infer target labels at the same time as features are learned.

Thus, target labels evolve during training, making clustering-based approaches unstable.

Furthermore, these methods are sensitive to data distribution as they rely directly on cluster

structure in the underlying data. Explicitly dealing with unbalanced category distribution

might be a solution but it assumes that we know the distribution of the latent classes. We

design our method without this assumption. On the other hand, other methods use pretext

task by predicting pseudo-labels automatically extracted from input signals [Doersch et al.,

2015]. For instance, methods like RotNet [Gidaris et al., 2018] (described in Section 2.2.3),

leverage intra-image statistics to build supervision, which are often independent of the data

distribution. However, the dataset size has little impact on the nature of the task and on

the performance of the resulting features. A solution to leveraging larger datasets require

manually increasing the difficulty of the self-supervision task [Goyal et al., 2019]. Our

approach automatically increases complexity through the clustering strategy.

Our approach, DeeperCluster, automatically generates targets by clustering the features

of the entire dataset, under constraints derived from the rotation prediction pretext task.

Due to the “long-tail” distribution of raw non-curated data, processing huge datasets and

learning a large number of targets is necessary, making the problem challenging from a

computational point of view. For this reason, we propose a hierarchical formulation that is

suitable for distributed training. This enables the discovery of latent categories present in

the “tail” of the image distribution.

3.1.3 Related work

Several approaches related to our work learn deep networks with no supervision and are

detailed in Chapter 2. Here, we give a brief overview of methods that combine clustering

and unsupervised learning with deep networks or approaches that train on large-scale

uncurated data.

Clustering and deep unsupervised learning. Coates and Ng [2012] also use k-means to

pre-train convnets, but learn each layer sequentially in a bottom-up fashion, while we do it

in an end-to-end fashion. Other clustering losses [Dosovitskiy et al., 2014, Liao et al., 2016,

Xie et al., 2016, Yang et al., 2016] have been considered to jointly learn convnet features

and image clusters but they have never been tested on a scale to allow a thorough study on

modern convnet architectures. Liao et al. [2016] combines the autoencoder reconstruction

loss (detailed in Section 2.1.1) with a clustering regularization term. They benchmark

different clustering strategies: Spatial clustering corresponds to the grouping of the pixels in
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a given layer over all localizations and examples; channel co-clustering allows to group the

different feature maps (channels) in a given layer across examples; and sample clustering

refers to the clustering of the set of representations given by a network over the whole

dataset. Of particular interest, Yang et al. [2016] iteratively learn convnet features and

clusters with a recurrent framework. Their model offers promising performance on small

datasets but may be challenging to scale to the number of images required for convnets to

be competitive. Closer to our work, Bojanowski and Joulin [2017] learn visual features on

a large dataset with a loss that attempts to preserve the information flowing through the

network [Linsker, 1988]. Their approach discriminates between all images in a similar way

as exemplar SVM [Malisiewicz et al., 2011], while we are simply clustering them.

Learning on non-curated datasets. Some methods [Chen and Gupta, 2015, Gomez

et al., 2017, Ni et al., 2015, Tian et al., 2021] aim at learning visual features from non-

curated data streams. They typically use metadata such as hashtags [Joulin et al., 2016, Sun

et al., 2017] or geolocalization [Weyand et al., 2016] as a source of noisy supervision. In

particular, Mahajan et al. [2018] train a network to classify billions of Instagram images into

predefined and clean sets of hashtags. They show that with little human effort, it is possible

to learn features that transfer well to ImageNet, even achieving state-of-the-art performance

if finetuned. As opposed to our work, they use an extrinsic source of supervision that had

to be cleaned beforehand.

3.2 Preliminaries: DeepCluster

We start this chapter by re-introducing the DeepCluster framework which is the seed to

the contributions presented in the following of the chapter.

3.2.1 DeepCluster methodology

After a short introduction to the supervised learning of convnets, we describe the

DeepCluster approach as well as the specificities of its optimization.

Preliminaries. Modern approaches to computer vision, based on statistical learning,

require good image featurization. In this context, convnets are a popular choice for mapping

raw images to a vector space of fixed dimension. When trained on enough data, they

constantly achieve the best performance on standard classification benchmarks [He et al.,

2015, Krizhevsky et al., 2012]. We denote by fθ the convnet mapping, where ◊ is the set of

corresponding parameters. We refer to the vector obtained by applying this mapping to an
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image as feature or representation. Given a training set X = {x1, x2, . . . , xN} of N images,

we want to find a parameter ◊
ú such that the mapping fθú produces good general-purpose

features.

These parameters are traditionally learned with supervision, i.e. each image xn is

associated with a label yn in {0, 1}k. This label represents the image’s membership to one

of k possible predefined classes. A parametrized classifier gW predicts the correct labels on

top of the features fθ(xn). The parameters W of the classifier and the parameter ◊ of the

mapping are then jointly learned by optimizing the following problem:

min
θ,W

1

N

N
ÿ

n=1

¸ (gW (fθ(xn)) , yn) , (3.1)

where ¸ is the multinomial logistic loss, also known as the negative log-softmax function.

This cost function is minimized using mini-batch stochastic gradient descent [Bottou, 2012]

and backpropagation to compute the gradient [LeCun et al., 1998].

Unsupervised learning by clustering. When ◊ is sampled from a Gaussian distribution,

without any learning, fθ does not produce good features. However the performance of such

random features on standard transfer tasks, is far above the chance level. For example, a

multi-layer perceptron classifier on top of the last convolutional layer of a random AlexNet

achieves 12% in accuracy on ImageNet while the chance is at 0.1% [Noroozi and Favaro,

2016]. The good performance of random convnets is intimately tied to their convolutional

structure which gives a strong prior on the input signal. The idea of this work is to exploit

this weak signal to bootstrap the discriminative power of a convnet. We cluster the output

of the convnet and use the subsequent cluster assignments as “pseudo-labels” to optimize

Eq. (3.1). This deep clustering (DeepCluster) approach iteratively learns the features and

groups them.

Clustering has been widely studied and many approaches have been developed for

a variety of circumstances. In the absence of points of comparisons, we focus on a

standard clustering algorithm, k-means. Preliminary results with other clustering algorithms

indicates that this choice is not crucial. k-means takes a set of vectors as input, in our case

the features fθ(xn) produced by the convnet, and clusters them into k distinct groups based

on a geometric criterion. More precisely, it jointly learns a d ◊ k centroid matrix C and the

cluster assignments yn of each image n by solving the following problem:

min
CœRd◊k

1

N

N
ÿ

n=1

min
ynœ{0,1}k

Îfθ(xn) ≠ CynÎ2
2 such that y€

n 1k = 1. (3.2)

Solving this problem provides a set of optimal assignments (yú
n)nÆN and a centroid matrix
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Cú. These assignments are then used as pseudo-labels; we make no use of the centroid

matrix.

Overall, DeepCluster alternates between clustering the features to produce pseudo-labels

using Eq. (3.2) and updating the parameters of the convnet by predicting these pseudo-labels

using Eq. (3.1). This type of alternating procedure is prone to trivial solutions; we describe

how to avoid such degenerate solutions in the next section.

Avoiding trivial solutions. The existence of trivial solutions is not specific to the unsu-

pervised training of neural networks, but to any method that jointly learns a discriminative

classifier and the labels. Discriminative clustering suffers from this issue even when ap-

plied to linear models [Xu et al., 2005]. Solutions are typically based on constraining or

penalizing the minimal number of points per cluster [Bach and Harchaoui, 2008, Joulin and

Bach, 2012]. These terms are computed over the whole dataset, which is not applicable

to the training of convnets on large scale datasets. In the following paragraphs, we briefly

describe the causes of these trivial solutions and give simple and scalable workarounds.

A discriminative model learns decision boundaries between classes. An optimal deci-

sion boundary is to assign all of the inputs to a single cluster [Xu et al., 2005]. This issue is

caused by the absence of mechanisms to prevent from empty clusters and arises in linear

models as much as in convnets. A common trick used in feature quantization [Johnson et al.,

2017] consists in automatically reassigning empty clusters during the k-means optimization.

More precisely, when a cluster becomes empty, we randomly select a non-empty cluster

and use its centroid with a small random perturbation as the new centroid for the empty

cluster. We then reassign the points belonging to the non-empty cluster to the two resulting

clusters.

If the vast majority of images is assigned to a few clusters, the parameters ◊ will

exclusively discriminate between them. In the most dramatic scenario where all but one

cluster are singleton, minimizing Eq. (3.1) leads to a trivial parametrization where the

convnet will predict the same output regardless of the input. This issue also arises in

supervised classification when the number of images per class is highly unbalanced. For

example, metadata, like hashtags, exhibits a Zipf distribution, with a few labels dominating

the whole distribution [Joulin et al., 2016]. A strategy to circumvent this issue is to sample

images based on a uniform distribution over the classes, or pseudo-labels. This is equivalent

to weight the contribution of an input to the loss function in Eq. (3.1) by the inverse of the

size of its assigned cluster.
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Implementation details. For comparison with previous works at the time of the publica-

tion of DeepCluster paper, we use a standard AlexNet [Krizhevsky et al., 2012] architecture.

It consists of five convolutional layers with 96, 256, 384, 384 and 256 filters; and of three

fully connected layers. We remove the Local Response Normalization layers and use batch

normalization [Ioffe and Szegedy, 2015]. We also consider a VGG-16 [Simonyan and

Zisserman, 2014] architecture with batch normalization. Unsupervised methods often do

not work directly on color and different strategies have been considered as alternatives [Do-

ersch et al., 2015, Noroozi and Favaro, 2016]. We apply a fixed linear transformation based

on Sobel filters to remove color and increase local contrast [Bojanowski and Joulin, 2017,

Paulin et al., 2015]. We train DeepCluster on ImageNet [Deng et al., 2009] unless men-

tioned otherwise. It contains 1, 281, 167 images uniformly distributed into 1, 000 classes.

We cluster the central cropped images features and perform data augmentation (random

horizontal flips and crops of random sizes and aspect ratios) when training the network.

This enforces invariance to data augmentation which turn out to be crucial for DeepCluster

and relates to the view-invariant self-supervised paradigm [Dosovitskiy et al., 2014] detailed

in Section 2.3. The network is trained with dropout [Srivastava et al., 2014], a constant step

size, an ¸2 penalization of the weights ◊ and a momentum of 0.9. Each mini-batch contains

256 images. For the clustering, features are PCA-reduced to 256 dimensions, whitened

and ¸2-normalized. We use the k-means implementation of Johnson et al. [2017]. Note

that running k-means takes a third of the time because a forward pass on the full dataset is

needed. One could reassign the clusters every n epochs, but we found out that our setup

on ImageNet (updating the clustering every epoch) was nearly optimal. On Flickr, the

concept of epoch disappears: choosing the trade-off between the parameter updates and the

cluster reassignments is more subtle. On ImageNet, we train the models for 500 epochs,

which takes 12 days on a Pascal P100 GPU for AlexNet. We select hyperparameters on a

down-stream task, i.e., object classification on the validation set of PASCAL VOC with no

fine-tuning.

3.2.2 Probing DeepCluster on ImageNet

We compare our approach to previous state-of-the-art models on standard benchmarks

on Pascal VOC dataset before studying the behavior of DeepCluster during training. Finally,

we qualitatively assess the filters learned with DeepCluster. Note that in this section all

models are trained on ImageNet without labels which is a highly curated dataset. While it

provides a controlled setting, allows easier comparison with previous state of the art and

helps understanding the impact of the labels on the performance of a network, one has to

keep in mind the limitations of such a setting as described in Section 3.1.2. We study the

uncurated scenario in the following section of this chapter (i.e. Section 3.3).
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Classification Detection Segmentation

Method FC6-8 ALL FC6-8 ALL FC6-8 ALL

ImageNet labels 78.9 79.9 – 56.8 – 48.0
Random-rgb 33.2 57.0 22.2 44.5 15.2 30.1
Random-sobel 29.0 61.9 18.9 47.9 13.0 32.0

Pathak et al. [2016] 34.6 56.5 – 44.5 – 29.7
Donahue et al. [2016]ú 52.3 60.1 – 46.9 – 35.2
Pathak et al. [2017] – 61.0 – 52.2 – –

Owens et al. [2016]ú 52.3 61.3 – – – –

Wang and Gupta [2015]ú 55.6 63.1 32.8† 47.2 26.0† 35.4†

Doersch et al. [2015]ú 55.1 65.3 – 51.1 – –

Bojanowski and Joulin [2017]ú 56.7 65.3 33.7† 49.4 26.7† 37.1†

Zhang et al. [2016]ú 61.5 65.9 43.4† 46.9 35.8† 35.6
Zhang et al. [2017]ú 63.0 67.1 – 46.7 – 36.0
Noroozi and Favaro [2016] – 67.6 – 53.2 – 37.6
Noroozi et al. [2017] – 67.7 – 51.4 – 36.6

DeepCluster 72.0 73.7 51.4 55.4 43.2 45.1

Table 3.1 – Comparing DeepCluster with the state of the art. Comparison of Deep-

Cluster to state-of-the-art (prior to 2018) self-supervised feature learning on classification,

detection and segmentation on PASCAL VOC. Description of the concurrent self-supervised

approaches are detailed in Chapter 2. ú indicates the use of the data-dependent initialization

of Krähenbühl et al. [2015]. †: numbers for other methods produced by us.

(NMI), defined as:

NMI(A; B) =
I(A; B)

Ò

H(A)H(B)

where I denotes the mutual information and H the entropy. This measure can be applied to

any assignment coming from the clusters or the true labels. If the two assignments A and B
are independent, the NMI is equal to 0. If one of them is deterministically predictable from

the other, the NMI is equal to 1. Figure 3.3(a) shows the evolution of the NMI between the

cluster assignments and the ImageNet labels during training. It measures the capability of

the model to predict class level information. Note that we only use this measure for this

analysis and not in any model selection process. The dependence between the clusters and

the labels increases over time, showing that our features progressively capture information
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Clustering algorithm Classification Detection Segmentation

FC6-8 ALL FC6-8 ALL FC6-8 ALL

DeepCluster k-means 72.0 73.7 51.4 55.4 43.2 45.1

DeepCluster PIC 71.0 73.0 53.6 54.4 42.4 43.8

Table 3.2 – Impact of changing the clustering algorithm. Evaluation of PIC versus

k-means for DeepCluster on PASCAL VOC transfer tasks.

related to object classes.

Number of reassignments between epochs. At each epoch, we reassign the images to a

new set of clusters, with no guarantee of stability. Measuring the NMI between the clusters

at epoch t≠1 and t gives an insight on the actual stability of our model. Figure 3.3(b) shows

the evolution of this measure during training. The NMI is increasing, meaning that there

are less and less reassignments and the clusters are stabilizing over time. However, NMI

saturates below 0.8, meaning that a significant fraction of images are regularly reassigned

between epochs. In practice, this has no impact on the training and the models do not

diverge.

Choosing the number of clusters. We measure the impact of the number k of clusters

used in k-means on the quality of the model. We report the same down-stream task as in

the hyperparameter selection process, i.e. mAP on the PASCAL VOC 2007 classification

validation set. We vary k on a logarithmic scale, and report results after 300 epochs in

Figure 3.3(c). The performance after the same number of epochs for every k may not

be directly comparable, but it reflects the hyper-parameter selection process used in this

work. The best performance is obtained with k = 10, 000. Given that we train our model

on ImageNet, one would expect k = 1000 to yield the best results, but apparently some

amount of over-segmentation is beneficial.

Second, we report in Table 3.2 the results for the different PASCAL VOC transfer tasks

with a model trained with the PIC version of DeepCluster. For this set of transfer tasks,

the models trained with k-means and PIC versions of DeepCluster perform in comparable

ranges.
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If vi is a local maximum (ie. ’j ”= i, vj Æ vi), then no edge starts from it. The

clusters are given by the connected components of GÕ. Each cluster has one local

maximum.

An advantage of PIC clustering is not to require the setting beforehand of the number of

clusters. However, the parameter ‡ influences the number of clusters: when it is larger, the

edges become more uniform and the number of clusters decreases, and the other way round

when ‡ increased. In the following, we set ‡ = 0.2.

First, we give an insight about the distribution of the images in the clusters. We show

in Figure 3.4(a) the sizes of the clusters produced by the k-means and PIC versions of

DeepCluster at the last epoch of training (this distribution is stable along the epochs). We

observe that k-means produces more balanced clusters than PIC. Indeed, for PIC, almost

one third of the clusters are of a size lower than 10 while the biggest cluster contains

roughly 3000 examples. In this situation of very unbalanced clusters, it is important in our

method to train the convnet by sampling images based on a uniform distribution over the

clusters to prevent the biggest cluster from dominating the training.

Stopping criterion. We monitor how the features learned with DeepCluster evolve along

the training epochs on a down-stream task: object classification on the validation set of

PASCAL VOC with no fine-tuning. We use this measure to select the hyperparameters

of our model as well as to check when the features stop improving. In Figure 3.4(b), we

show the evolution of both the classification accuracy on this task and a measure of the

clustering quality (NMI between the cluster assignments and the true labels) throughout

the training. Unsurprisingly, we notice that the clustering and features qualities follow a

similar dynamic.

Influence of data pre-processing with Sobel filtering In this section we experiment

with our method on raw RGB inputs and evaluate the impact of the Sobel filtering. The

difficulty of learning convnets on raw images has been noted before [Bojanowski and Joulin,

2017, Doersch et al., 2015, Noroozi and Favaro, 2016, Paulin et al., 2015]. We provide

some insights into the reasons why Sobel filtering (illustrated in Figure 3.5) is crucial to

obtain good performance with our method.

In our preliminary experiments we have observed that the performance of DeepCluster

on raw RGB images degrades significantly. For example, training a MLP on top of the

DeepCluster frozen pre-trained features on an AlexNet (following the experiment protocol

of Noroozi and Favaro [2016]) lead to 44.0% top-1 accuracy with Sobel filtering and

37.1% without (≠6.9%). In order to better understand why this happens, in Figure 3.6 we

randomly select a subset of 3000 clusters and sort them by standard deviation to their mean

color. If the standard deviation of a cluster to its mean color is low, it means that the images
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RGB Sobel

Figure 3.5 – Illustration of Sobel filtering. Visualization of two images pre-processed

with Sobel filter. Sobel gives a 2 channels output which at each point contain the vertical

and horizontal derivative approximations.

of this cluster tend to have a similar colorization. Indeed, we show in Figure 3.6 (right)

examples of these clusters that have a low standard deviation to the mean color. We observe

in Figure 3.6 (left) that the clustering on features learned with DeepCluster focuses much

more on color than the clustering performed on other self-supervised approach (namely

RotNet [Gidaris et al., 2018]). Indeed, clustering by color and low-level information

produces balanced clusters that can easily be predicted by a convnet. As a result, clustering

by color constitutes a solution to DeepCluster formulation. However, as we want to avoid

an uninformative clustering essentially based on colors, we remove some part of the input

information by feeding the network with the image gradients instead of the raw RGB image

(see Figure 3.5). Interestingly, we have observed that using Sobel filter during RotNet

training has almost no impact. Finally, note that more recent approaches replace Sobel

filtering by strong color jittering augmentation [Chen et al., 2020b].

Visualizing first layer filters. Figure 3.7 shows the filters from the first layer of an

AlexNet trained with DeepCluster on raw RGB images and images pre-processed with a

Sobel filtering. As shown in the left panel of Figure 3.7, most filters capture only color

information that typically plays a little role for object classification [Van De Sande et al.,

2010]. Filters obtained with Sobel pre-processing act like edge detectors.
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Figure 3.7 – Visualizing first layer filters. Filters from the first layer of an AlexNet trained

on unsupervised ImageNet on raw RGB input (left) or after a Sobel filtering (right).

3.3.1 DeeperCluster methodology

In this section, we describe how we extend deep clustering in order to scale up to

large numbers of uncurated images and targets. To that end, we propose to combine self-

supervised learning based on pretext tasks (for intra-image modeling) and on clustering

(for inter-image modeling).

Combining pretext tasks and clustering. We assume that the inputs x1, . . . , xN are

rotated images, each associated with a target label rn encoding its rotation angle and a

cluster assignment yn. The cluster assignment changes during training along with the visual

representations. We denote by R the set of possible rotation angles and by Y , the set of

possible cluster assignments. A way of combining rotation prediction with deep clustering

is to add the corresponding losses. However, summing these losses implicitly assumes

that classifying rotations and cluster memberships are two independent tasks, which may

limit the signal that can be captured. Instead, we work with the Cartesian product space

R ◊ Y , which can potentially capture richer interactions between the two tasks. We get the

following optimization problem:

min
θ,W

1

N

N
ÿ

n=1

¸(rn ¢ yn, Wfθ(xn)), (3.3)

where ¸ is a loss function. Note that any clustering or self-supervised approach with a

multi-class objective can be combined with this formulation. For example, we could use a

self-supervision task that captures information about tiles permutations [Noroozi and Favaro,

2016] or frame ordering in a video [Wang and Gupta, 2015]. However, this formulation

does not scale in the number of combined targets, i.e., its complexity is O(|R||Y|). This

limits the use of a large number of cluster or a pretext task with a large output space [Zhang
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Figure 3.8 – Visualizing filters from deeper layers. Filter visualization and top 9 activated

images (immediate right to the corresponding synthetic image) from a subset of 1 million

images from YFCC100M for target filters in the last convolutional layer of a VGG-16
trained with DeepCluster.

et al., 2019]. In particular, if we want to capture information contained in the tail of the

distribution of non-curated dataset, we may need a large number of clusters. We thus

propose an approximation of our formulation based on a scalable hierarchical loss that it is

designed to suit distributed training.

Scaling up to large number of targets. Hierarchical losses are commonly used in lan-

guage modeling where the goal is to predict a word out of a large vocabulary [Brown et al.,

1992]. Instead of making one decision over the full vocabulary, these approaches split the

process in a hierarchy of decisions, each with a smaller output space. For example, the

vocabulary can be split into clusters of semantically similar words, and the hierarchical

process would first select a cluster and then a word within this cluster.

Following this line of work, we partition the target labels into a 2-level hierarchy where

we first predict a super-class and then a sub-class among its associated target labels. The first
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Figure 3.9 – Visualizing filters from deeper layers with human attributes. Filter visu-

alization by learning an input image that maximizes the response to a target filter [Yosinski

et al., 2015] in the last convolutional layer of a VGG-16 convnet trained with DeepCluster.

Here, we manually select filters that seem to trigger on human characteristics (eyes, noses,

faces, fingers, fringes, groups of people or arms).

level is a partition of the images into S super-classes and we denote by yn the super-class

assignment vector in {0, 1}S of the image n and by yns the s-th entry of yn. This super-class

assignment is made with a linear classifier V on top of the features. The second-level of the

hierarchy is obtained by partitioning within each super-class. We denote by zs
n the vector

in {0, 1}ks of the assignment into ks sub-classes for an image n belonging to super-class s.

There are S sub-class classifiers W1, . . . , WS , each predicting the sub-class memberships

within a super-class s. The parameters of the linear classifiers (V, W1, . . . , WS) and ◊ are

jointly learned by minimizing the following loss function:

1

N

N
ÿ

n=1

C

¸

1

V fθ(xn), yn

2

+
S

ÿ

s=1

yns¸ (Wsfθ(xn), zs
n)

D

, (3.4)

where ¸ is the negative log-softmax function. Note that an image that does not belong to

the super-class s does not belong either to any of its ks sub-classes.

Choice of super-classes. A natural partition would be to define the super-classes based

on the target labels from the self-supervised task and the sub-classes as the labels produced

by clustering. However, this would mean that each image of the entire dataset would be
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W1, . . . , WS are only shared within a communication group. Each communication group s
deals only with the subset of images and the rotation angle associated with the super-class

s.

Distributed k-means. Every T epochs, we recompute the super and sub-class assign-

ments by running two consecutive k-means on the entire dataset. This is achieved by first

randomly splitting the dataset across different GPUs. Each GPU is in charge of computing

cluster assignments for its partition, whereas centroids are updated across GPUs. We reduce

communication between GPUs by sharing only the number of assigned elements for each

cluster and the sum of their features. The new centroids are then computed from these

statistics. We observe empirically that k-means converges in 10 iterations. We cluster 96M

features of dimension 4096 into m = 4 clusters using 64 GPUs (1 minute per iteration).

Then, we split this pool of GPUs into 4 groups of 16 GPUs. Each group clusters around

23M features into 80k clusters (4 minutes per iteration).

Implementation details. The loss in Eq. (3.4) is minimized with mini-batch stochastic

gradient descent [Bottou, 2012]. Each mini-batch contains 3072 instances distributed across

64 GPUs, leading to 48 instances per GPU per mini-batch. We use dropout, weight decay,

momentum and a constant learning rate of 0.1. We reassign clusters every 3 epochs. We

use the Pascal VOC 2007 classification task without finetuning as a downstream task to

select hyper-parameters. In order to speed up experiments, we initialize the network with

RotNet trained on YFCC100M. Before clustering, we perform a whitening of the activations

and ¸2-normalize each of them. We use standard data augmentations, i.e., cropping of

random sizes and aspect ratios and horizontal flips [Krizhevsky et al., 2012]). We use the

VGG-16 architecture [Simonyan and Zisserman, 2014] with batch normalization layers.

We pre-process images with a Sobel filtering. We train our models on the 96M images from

YFCC100M [Thomee et al., 2015] that we managed to download. We use this publicly

available dataset for research purposes only.

3.3.2 Results

In this set of experiments, we compare RotNet, DeepCluster and DeeperCluster perfor-

mance when trained on curated and non-curated datasets. We also evaluate the impact of

the size of the dataset and number of clusters in DeeperCluster.

Comparison with RotNet and DeepCluster. In Table 3.3, we compare DeeperCluster

with DeepCluster and RotNet when a linear classifier is trained on top of the last convo-

lutional layer of a VGG-16 on several datasets. For reference, we also report previously
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Method Data ImageNet Places VOC2007

Supervised ImageNet 70.2 45.9 84.8

Wu et al. [2018] ImageNet 39.2 36.3 -

RotNet [Gidaris et al., 2018] ImageNet 32.7 32.6 60.9
DeepCluster ImageNet 48.4 37.9 71.9

RotNet [Gidaris et al., 2018] YFCC100M 33.0 35.5 62.2
DeepCluster YFCC100M 34.1 35.4 63.9

DeeperCluster YFCC100M 45.6 42.1 73.0

Table 3.3 – Comparison between DeeperCluster, RotNet and DeepCluster when pre-

trained on curated and non-curated dataset. We report the accuracy on several datasets

of a linear classifier trained on top of features of the last convolutional layer. All the

methods use the same architecture. DeepCluster does not scale to the full YFCC100M

dataset, we thus train it on a random subset of 1.3M images.

published numbers Wu et al. [2018] with a VGG-16 architecture. We do not perform any

finetuning or layer selection. We average-pool the features of the last layer resulting in rep-

resentations of 8192 dimensions. Our approach outperforms both RotNet and DeepCluster,

even when they are trained on curated datasets (except for ImageNet classification task

where DeepCluster trained on ImageNet yields the best performance). More interestingly,

we see that the quality of the dataset or its scale has little impact on RotNet while it has

on DeepCluster. This is confirming the intuition that pretext tasks methods based on data

manipulation are more robust than clustering to a change of dataset distribution.

Influence of dataset size and number of clusters. To measure the influence of the

number of images on features, we train models with 1M, 4M, 20M, and 96M images and

report their accuracy on the validation set of the Pascal VOC 2007 classification task (FC68

setting). We also train models on 20M images with a number of clusters that varies from 10k

to 160k. For the experiment with a total of 160k clusters, we choose m = 2 which results

in 8 super-classes. In Figure 3.11, we observe that the quality of our features improves

when scaling both in terms of images and clusters. Interestingly, between 4M and 20M

of YFCC100M images are needed to meet the performance of our method on ImageNet.

Augmenting the number of images has a bigger impact than the number of clusters. Yet,

this improvement is significant since it corresponds to a reduction of more than 10% of the

relative error w.r.t. the supervised model.
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tag: cat tag: elephantparadelondon tag: always device: CanoScan

GPS: (43, 10) GPS: (≠34, ≠151) GPS: (64, ≠20) GPS: (43, ≠104)

Figure 3.13 – Cluster visualizations. We randomly select 9 images per cluster and indicate

the dominant cluster metadata. The bottom row depicts clusters pure for GPS coordinates

but unpure for user IDs. As expected, they turn out to correlate with tourist landmarks. No

metadata is used during training.

Yet, in its current form, the proposed approach has some major limitations which we detail

in the following.

Limited scalability. A first limitation of Deep(er)Cluster is its inefficiency and limited

scalability. Indeed, as shown in Eq. (3.1), both a linear classifier gW and the network

weights ◊ are trained to classify the images into their corresponding pseudo-label between

two assignments. Intuitively, this classification layer represents prototypes for the different

pseudo-classes. However, since there is no mapping between two consecutive cluster

assignments, the prototypes learned for an assignment becomes irrelevant for the following

one and hence need to be learned again from scratch. In practice, we indeed re-set the

classification layer gW to random weights whenever we have a new set of pseudo-labels.

This considerably disrupts the stability of the network training, makes it quite inefficient

and, as a result, less scalable.

Overall, the approach is not much scalable beyond the results that we have already

shown with DeeperCluster. Indeed, we have seen that it is possible to train the models on

large dataset such as YFCC100m but that is very costly and going beyond this scale would
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be quite tedious with the current model. The main problem is that our approach depends

directly on the size of the dataset. The approach alternates between some epochs of training

and a clustering phase that is very costly since it requires to perform a forward pass on the

entire dataset to collect the descriptors to cluster. This iterative process relies on the notion

of epoch and on the size of the dataset. Indeed, to have good performance, we need to iterate

a consequent number of times in order to refine the pseudo-labels regularly. If the dataset is

not too large, like when training on ImageNet, we can refine the pseudo-labels between

each epoch: this happens hundreds of time in a typical training. Now let us imagine we

have a huge dataset where we can only afford a couple of passes on the dataset. This means

that the pseudo-labels will be refined only a handful of times. Worse, if we have an even

bigger dataset where we can only afford two passes, then the pseudo-labels are basically

never refined. During the whole training (which consists in only one epoch in this case),

we train with the first pseudo-labels which have been obtained from a randomly initialed

network. As these pseudo-labels are likely to be semantically very poor, the resulting

features will surely be pretty bad as well. Overall, a natural way to overcome the limitation

of limited scalability is to adapt the method to work with an online version of k-means

as done by Zhan et al. [2020] for example. However, given that we have observed in

Table 3.2 that the choice of the clustering algorithm does not impact the performance much,

similarly to Asano et al. [2020] and Chen et al. [2020d] we question the role of k-means

and clustering altogether in DeepCluster.

Do we really need k-means? We remark that k-means clustering provide two distinct

outputs: (i) the cluster assignments that we use as pseudo-labels (i.e. yn œ {0, 1}k in

Eq. (3.2)) and (ii) a set of centroids (i.e. C œ R
d◊k in Eq. (3.2)). However, we make no

use of the latter and only care about the former. This means that we are using only one

component of k-means. Follows that we intuit that using k-means, an extremely simple

clustering algorithm, might already be an overkill and we could find a simpler way to obtain

the pseudo-labels that we use during training. We will see in the following chapter that we

can directly use the output of the deep network to provide pseudo-labels, without resorting

to an external clustering algorithm.

Empirical tricks to avoid trivial solution. As detailed previously in Section 3.2.1, our

formulation is prone to trivial solution and to the “collapse” of the network to a constant

output (thus all images have the same representation). We use heuristics to avoid this

situation but it would be desirable to have a more principled formulation that prevents

collapse by design.
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Random flips Cropping Performance

1 Default Horizontal Random cropping and scaling 12.5%

2 Vertical Random cropping and scaling 11.1%

3 7 Random cropping and scaling 12.4%

4 Horizontal Random cropping 3.5%

5 Vertical Random cropping 3.5%

6 7 Random cropping 2.1%

7 Horizontal 7 0.9%

8 Vertical 7 0.9%

9 7 7 0.6%

Table 3.4 – Impact of data augmentation (random flips and cropping). We report the

performance of different models, measured as the proportion of intra-class edges into a

nearest neighbor graph on the descriptors on ImageNet. DeepCluster models are trained for

50 epochs on ImageNet without labels with AlexNet. We observe that random cropping

and scaling is crucial for the method to learn semantic representations.

Implicit importance of data augmentation. Last but not least, we describe a final major

limitation: we have presented data augmentation merely as an implementation detail in this

chapter while it turns out to be a crucial component of the method. Indeed, let us conduct a

final experiment where we ablate the different data transformations used during DeepCluster

training. In Table 3.4, we experiment with three different flips: vertical, horizontal (both

occurring with a probability of 0.5) and no flip. We also benchmark three different types

of cropping: (i) (default cropping) a crop of random size (0.08 to 1.0 of the original size)

and random aspect ratio (of 3/4 to 4/3 of the original aspect ratio), (ii) crop of fixed size

with a random localization and (iii) no cropping, i.e. we take a central crop, as used for

the clustering phase. We observe in Table 3.4 that the only configurations giving good

features are that using random cropping and scaling (rows 1, 2 and 3). This transformation

is thus crucial for DeepCluster. We also notice that flipping does not play a key role and

that we could remove it. Using vertical flip degrades the performance which is consistent

with the method of Gidaris et al. [2018] that trains the network to be discriminative to this

transformation rather than invariant.

Overall, this dependence in the data augmentation reinforces the interpretation of our

framework as a variant of the view-invariant paradigm as described in Section 2.3.4. In the

following chapter, we will make data cropping more central to the model which will allow

us to have substantial boosts of performance.
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Chapter 4

The Self-Supervised SwAV Approach

In this chapter, we present a new method for self-supervised representation learning,

SwAV, that overcomes the difficulties and limitations of both deep clustering (as detailed

in Section 3.4) and contrastive representation learning (as mentioned in Section 2.3.2).

Compared to deep clustering, SwAV works online (i.e. at the mini-batch level), scales to

unlimited amount of data, has guarantees that prevent mode collapse and does not rely on

an external clustering algorithm. Compared to contrastive methods, SwAV does not rely

on “negative samples” which makes it more practical since it works without requiring a

large memory bank [He et al., 2020, Wu et al., 2018] nor large mini-batches [Chen et al.,

2020b]. SwAV yields excellent results when trained on ImageNet without labels, achieving

75.3% top-1 accuracy with a standard ResNet-50 [He et al., 2016] on the ImageNet linear

evaluation protocol [Zhang et al., 2016]. This performance was more than 4 points above

the state of the art at the time of the publication. Perhaps more importantly, SwAV features

transfer very well to various downstream tasks, outperforming supervised features on

classification and detection tasks on all the considered datasets. This work was presented at

NeurIPS in 2020 [Caron et al., 2020].

Similarly to our previous study on deep clustering (see Section 3.3), we assess SwAV at

scale when trained on uncurated data. We consider billions of Instagram images and train

a very deep network with billions of parameters. This effort was described in a technical

report (see Goyal et al. [2021]).

4.1 Introduction

As detailed in the first parts of this manuscript (see Chapter 1 and Chapter 2), self-

supervised learning aims at obtaining features without using manual annotations and has

rapidly been closing the performance gap with supervised pretraining in computer vi-

53
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sion [Caron et al., 2018, Chen et al., 2020b, He et al., 2020, Misra and Maaten, 2020].

Many successful methods build upon the instance discrimination task that considers each

image of the dataset (or “instance”) and its transformations as a separate class [Dosovit-

skiy et al., 2016] (see a review in Section 2.3). This task yields representations that are

able to discriminate between different images, while achieving some invariance to image

transformations. Contrastive formulations of this view-invariant paradigm rely on a combi-

nation of two elements: (i) a contrastive loss [Hadsell et al., 2006] and (ii) a set of image

transformations. The contrastive loss removes the notion of instance classes by directly

comparing image features while the image transformations define the invariances encoded

in the features. Both elements are essential to the quality of the resulting networks [Chen

et al., 2020b, Misra and Maaten, 2020] and our work improves upon both the objective

function and the transformations.

The contrastive loss explicitly compares pairs of image representations to push away

representations from different images while pulling together those from transformations, or

views, of the same image. Since computing all the pairwise comparisons on a large dataset

is not practical, most implementations approximate the loss by reducing the number of

comparisons to random subsets of images during training [Chen et al., 2020b, He et al.,

2020, Wu et al., 2018]. An alternative to approximate the loss is to approximate the task—

that is to relax the instance discrimination problem [Dosovitskiy et al., 2014]. For example,

clustering-based methods discriminate between groups of images with similar features

instead of individual images [Caron et al., 2018]. The objective in clustering is tractable,

but has its own limitations as detailed in Section 3.4. For instance, it does not scale well

with the dataset as it requires a pass over the entire dataset to get image cluster assignments

that are used as pseudo-labels during training. In this chapter, we use a different paradigm

and propose to compute pseudo-labels in a much simpler fashion: the pseudo-label used as

target for a view is directly the normalized output of another view of the same image. This

formulation encourages distorted views of a same image to match in feature space while

not relying on explicit pairwise feature comparisons as in the contrastive implementations.

Specifically, we propose a simple “swapped” prediction problem where we predict the

pseudo-label (or “assignment”) of a view from the representation of another view. We learn

features by Swapping Assignments between multiple Views of the same image (SwAV).

Unlike deep clustering, the features and the pseudo-labels are learned online, allowing our

method to scale to potentially unlimited amounts of data. Compared to contrastive methods,

SwAV works with small and large batch sizes, does not rely on direct feature comparisons

(i.e. “positives” and “negatives”) and hence does not need a large memory bank [Wu et al.,

2018] nor a momentum encoder [He et al., 2020].

Besides this scalable implementation of the view-invariant paradigm, we also propose

an improvement to the image transformations. Most methods are trained to align the
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representations of two independent and identically distributed views of an image. We

hypothesize that this is sub-optimal for two reasons. First, there has been evidence that

comparing more views than two during training improves the resulting model [Misra

and Maaten, 2020]. Second, matching views from different distributions (as opposed

to “identically distributed”) could be a way to enforce desired properties in the learned

representations. We propose that some views have access to only a narrow, local crop of the

original image while other views cover a global and large area of that image. Thus, SwAV

learns to extrapolate and generalize from the local view to the global content of the image,

hence encouraging holistic representations. This strategy, called multi-crop, is simple and

boosts considerably the performance of different self-supervised methods.

We validate our contributions by evaluating our method on several standard self-

supervised benchmarks. Overall, in this chapter, we present the following contributions:

— We propose a new and scalable implementation of the view-invariant self-supervised

paradigm that improves performance by +2% on ImageNet over contrastive implemen-

tations. Unlike contrastive methods, it works in both large and small batch settings

without a large memory bank or a momentum encoder.

— We introduce the multi-crop strategy to increase the number of views of an image with

limited computational or memory overhead. Multi-crop encourages local-to-global

matching of the representations. We observe a consistent improvement of between 2%
and 4% on ImageNet with this strategy on several self-supervised methods.

— Combining both technical contributions into a single model, SwAV, we improved

the performance of self-supervised methods by +4.2% on ImageNet. Our features

outperform supervised ImageNet pretraining on multiple downstream tasks. At the time

of the publication, this was the first method to do so without finetuning the features, i.e.,

only with a linear classifier on top of frozen features.

— We explore if self-supervision lives to its expectation by training large models on

random, uncurated images with no supervision. Our final SwAV model trained with

a RegNetY [Radosavovic et al., 2020] with 1.3B parameters on 1B random images

achieves 84.2% top-1 accuracy confirming that self-supervised learning works in a real

world setting.

4.2 SwAV Methodology

Our goal is to learn visual features in an online fashion without supervision. To that

effect, we propose a new, online implementation of the view-invariant paradigm (introduced

in Section 2.3) which consists in learning representations that are invariant to distortions

of the input sample. Our formulation aims primarily at overcoming both the limitations
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of the contrastive-based implementations, that rely on direct feature comparison, and of

the clustering-based methods [Asano et al., 2020, Caron et al., 2018] like DeepCluster (see

Chapter 3), that are offline. This means that they alternate between a cluster assignment step

where image features of the entire dataset are clustered, and a training step where the cluster

assignments, i.e., “pseudo-labels” are predicted for different image views. Unfortunately,

these methods are not suitable for online learning as they require multiple passes over the

dataset to compute the image features necessary for clustering.

In this section, we describe an alternative implementation where we directly use the

output of the network as a pseudo-label to predict from another view of the same image.

We enforce explicit constraints on these pseudo-labels to prevent the network from learning

a constant mapping. Indeed, if the network outputs a constant pseudo-label regardless of its

input then it is of course trivial to predict.

4.2.1 Matching views through pseudo-labeling

SwAV works by computing a pseudo-label from an augmented version of the image

and predicting it from other augmented versions of the same image. More precisely,

given an input image, we take two different random augmentations of that same image,

resulting in crops xt and xs. The augmented views are mapped to a K-dimensional vector

representation by applying a non-linear mapping fθ parameterized by ◊. We denote by

z = fθ(x) the output of the network which we interpret as a vector of scores for K latent

pseudo-classes or “clusters”. To transform this vector of scores into a soft pseudo-label

over K dimensions, we adjust it based on constraints on the other mini-batch scores in

order to prevent the collapse of the representations. We will explicit these constraints and

describe the adjustment process in the following paragraph, but for now let us denote by qt

the resulting adjusted and normalized pseudo-label obtained from zt. We train the network

to predict this pseudo-label qt from the representation of another view zs. A probability

distribution ps is obtained by normalizing zs with a standard softmax function:

p(i)
s =

exp(z(i)
s /·)

qK
k=1 exp(z

(k)
s /·)

, (4.1)

with · > 0 a temperature parameter that controls the sharpness of the output distribution.

We minimize the cross-entropy loss w.r.t. the parameters ◊ of the feature encoder and

considered the pseudo-label qt fixed (i.e. we apply a stop-gradient operator):

min
θ

H(qt, ps), (4.2)

where H(q, p) = ≠
qK

i=1 q(i) log p(i).
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4.2.2 Online pseudo-labels with optimal transport

In order to make our method online, we compute the pseudo-labels using only the image

features within a batch. We enforce that all the examples in a batch are equally partitioned

into the K different dimensions or “clusters”. This equipartition constraint ensures that the

pseudo-labels for different images in a batch are distinct, thus preventing the trivial solution

where every image has the same pseudo-label. We denote by B the mini-batch of feature

vectors Z = [z1, . . . , zB] and by Q = [q1, . . . , qB] the desired matrix of pseudo-labels. We

establish the following constraints for Q:

Q =
Ó

Q œ R
K◊B
+ | Q1B = 1K , Q€1K = 1B

Ô

, (4.3)

where 1K denotes the vector of ones in dimension K. These constraints mean that each qn

should sum to 1 (i.e. it can be interpreted as an assignment over the K dimensions) and

that, on average, each dimension “is used B
K

times in the batch”. As we derive Q from Z,

we want Q to stay as close to Z as possible while satisfying the constraints above. More

precisely, we have the following problem:

max
QœQ

Tr
1

Q€Z
2

+ ÁH(Q), (4.4)

where H is the entropy function, H(Q) = ≠
q

ij Qij log Qij and Á is a parameter that

controls the smoothness of the solution Q. We observe that a strong entropy regularization

(i.e. using a high Á) generally leads to a trivial solution where all samples collapse into an

unique uniform pseudo-label. Hence in practice we keep Á low.

Once a continuous solution Qú to Prob. (4.4) is found, a discrete pseudo-label can be

obtained by using a rounding procedure [Asano et al., 2020]. However, in our setting we

find that using the discrete pseudo-label performs worse than using the soft continuous ones

(we lose 0.5% in the linear evaluation on ImageNet). An explanation is that the rounding

needed to obtain discrete assignments is a more aggressive optimization step than gradient

updates. While it makes the model converge rapidly, it leads to a worse solution. We thus

preserve the soft pseudo-label Qú instead of rounding it. These soft assignments Qú are

the solution of Prob. (4.4) over the set Q and takes the form of a normalized exponential

matrix [Cuturi, 2013]:

Qú = Diag(u) exp (Z/Á) Diag(v), (4.5)

where u and v are re-normalization vectors in RK and RB respectively. The re-normalization

vectors are computed using a small number of matrix multiplications using the iterative

Sinkhorn-Knopp algorithm [Cuturi, 2013]. In practice, we observe that using only 3 it-

erations is fast and sufficient to obtain good performance. Indeed, this algorithm can be

efficiently implemented on GPU, and the alignment of 4K features to 3K codes takes 35ms
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in our experiments. Interestingly, the parameter Á plays a similar role of controlling the

smoothness of the exponential in Eq. (4.5) as the temperature · in Eq. (4.2).

Overall, the optimal transport algorithm Cuturi [2013] used to adjust the scores Z is

implemented simply with the following PyTorch style code.

# Z is B-by-K

# eps is Sinkhorn regularization parameter

Q = exp(Z / eps)

for _ in range(num_iters): # 1 iter of Sinkhorn

# total weight per dimension (or cluster)

c = sum(Q, dim=0, keepdim=True)

Q /= c

# total weight per sample

n = sum(Q, dim=1, keepdim=True)

# Q sums to 1 for each sample (assignment)

Q /= n

return Q

As a matter of fact, when performing a single Sinkhorn iteration (num_iters=1) this

is equivalent to taking a softmax function in the batch dimension and the implementation

can be highly simplified:

Q = softmax(Z / eps, dim=0)

Q /= sum(Q, dim=1, keepdim=True)

Intuitively, the softmax operation on the batch axis allows to select for each dimension

(or “cluster”) its best match within the batch.

4.2.3 Working with small batches

When the number B of batch features is too low, our constraint to equally partition

the batch into the K prototypes does not really make sense anymore. Therefore, when

working with small batches, we use features from the previous batches to augment the size

of Z in Prob. (4.4). This is similar to the memory bank mechanism used in contrastive

methods He et al. [2020], Wu et al. [2018]. Then, we only use the pseudo-labels of the

batch features in our training loss. In practice, we store around 3K features, i.e., in the same

range as the number of code vectors. This means that we only keep features from the last

15 batches with a batch size of 256, while contrastive methods typically need to store the

last 65K instances obtained from the last 250 batches to maintain good performance [He

et al., 2020].
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4.2.4 Multi-crop: local-to-global matching

As noted in prior works [Chen et al., 2020b, Misra and Maaten, 2020] and as observed

in our previous experiments of Section 3.4, comparing random crops of an image plays a

central role by capturing information in terms of relations between parts of a scene or an

object. Instead of sampling a pair of matching views identically distributed as in Chen et al.

[2020b], He et al. [2020], Wu et al. [2018], we design a cropping strategy that encourage

local-to-global correspondences in the features. This way, the task of the network is to

extrapolate a situation from a narrow restrained view. More precisely, from a given image,

we generate a set V of different views. This set contains two global views, xg
1 and xg

2 and

several local views of smaller resolution. Only the global views are used to compute a

pseudo-label which then needs to be predicted from each of the other views of the same

image. We minimize the per-example following loss:

min
θ

ÿ

xtœ{x
g
1
,x

g
2
}

ÿ

xsœV
xs ”= xt

H(q(xt), p(xs)). (4.6)

This loss is general and can be used on any number of views, even only 2. However, we

find that using 2 global views at resolution 2242 covering a large (for example greater than

50%) area of the original image, and several local views of resolution 962 covering only

small areas (for example less than 50%) of the original image brings considerable boosts

of performance. We refer to this setting as the basic parametrization of SwAV, unless

mentioned otherwise. As a matter of fact, using low resolution images ensures only a small

increase in the compute cost.

4.2.5 Implementation details

We implement in SwAV the generic implementation improvements used in Sim-

CLR [Chen et al., 2020b], i.e., LARS [You et al., 2017], cosine learning rate [Loshchilov

and Hutter, 2016] and the MLP projection head [Bachman et al., 2019]. We train SwAV

with stochastic gradient descent using large batches of 4096 different instances. We dis-

tribute the batches over 64 V100 16Gb GPUs, resulting in each GPU treating 64 instances.

The temperature parameter · is set to 0.1 and the Sinkhorn regularization parameter Á is

set to 0.05 for all runs. We use a weight decay of 10≠6 and a learning rate of 4.8 which is

linearly ramped up during the first 10 epochs. We find empirically that freezing the last

layer of the network during the first epoch of training improves stability. We synchronize

batch-normalization layers across GPUs using the optimized implementation with kernels

through CUDA/C-v2 extension from apex 1. We also use apex library for training with

1. github.com/NVIDIA/apex

github.com/NVIDIA/apex
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mixed precision [Micikevicius et al., 2017]. Overall, thanks to these training optimiza-

tions (mixed precision, kernel batch-normalization and use of large batches), 100 epochs

of training for our best SwAV model take approximately 6 hours. Similarly to previous

works [Chen et al., 2020b,e, Li et al., 2020], we use a projection head consisting of a

2-layer MLP on top of the backbone features. Note that SwAV is more suitable for a

multi-node distributed implementation compared to contrastive approaches SimCLR or

MoCo. The latter methods require sharing the feature matrix across all GPUs at every

batch which might become a bottleneck when distributing across many GPUs. On the

contrary, SwAV requires sharing only matrix normalization statistics (sum of rows and

columns) during the Sinkhorn algorithm. For multi-crop, we perform crops of random

sizes, scales and aspect ratios. Specifically we use the RandomResizedCrop method

from torchvision.transforms module of PyTorch with s=(0.14, 1) scaling

parameters for the global views and s=(0.05, 0.14) parameters for the local ones.

Then, we resize global views to 224 ◊ 224 pixels, unless specified otherwise (we use

160 ◊ 160 resolutions in some of our experiments). Local views are resized to 96 ◊ 96 reso-

lution. Finally, we apply random horizontal flips, color distortion and Gaussian blur to each

resulting crop, exactly following the SimCLR implementation [Chen et al., 2020b]. Our

code is publicly available at https://github.com/facebookresearch/swav.

4.3 Main Results

We analyze the features learned by SwAV trained on ImageNet without labels by

transfer learning on multiple datasets.

4.3.1 Evaluating the unsupervised features on ImageNet

We evaluate the features of a ResNet-50 [He et al., 2016] trained with SwAV on

ImageNet by two experiments: linear classification on frozen features and semi-supervised

learning by finetuning with few labels. When using frozen features (Figure 4.1 (left)),

SwAV outperforms the state of the art by +4.2% top-1 accuracy and is only 1.2% below

the performance of a fully supervised model. Note that we train SwAV during 800 epochs

with large batches (4096). We refer to Figure 4.2 (right) for results with shorter trainings

and to Table 4.3 for experiments with small batches.

On semi-supervised learning (see Table 4.1), SwAV outperforms other self-supervised

methods and is on par with state-of-the-art semi-supervised models [Sohn et al., 2020],

despite the fact that SwAV is not specifically designed for semi-supervised learning. Note

that in Assran et al. [2021], we extend SwAV methodology to a semi-supervised setting,

https://github.com/facebookresearch/swav
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1% labels 10% labels

Method Top-1 Top-5 Top-1 Top-5

Supervised 25.4 48.4 56.4 80.4

Methods using

label-propagation
UDA [Xie et al., 2020a] - - 68.8 88.5

FixMatch [Sohn et al., 2020] - - 71.5 89.1

Methods using

self-supervision only

PIRL [Misra and Maaten, 2020] 30.7 57.2 60.4 83.8

PCL [Li et al., 2020] - 75.6 - 86.2

SimCLR [Chen et al., 2020b] 48.3 75.5 65.6 87.8

SwAV 53.9 78.5 70.2 89.9

Table 4.1 – Semi-supervised learning on ImageNet with a ResNet-50. We finetune the

model with 1% and 10% labels and report top-1 and top-5 accuracies. We use the same

splits as Chen et al. [2020b].

compare the performance of SwAV features with ImageNet supervised pre-training and

with self-supervised features available at the time of SwAV publication. First, we report the

linear classification performance on the Places205 [Zhou et al., 2014], VOC07 [Everingham

et al., 2010], and iNaturalist2018 [Van Horn et al., 2018] datasets. Our method outperforms

supervised features on all three datasets. We observe that SwAV is the first self-supervised

method to surpass ImageNet supervised features on these datasets. Second, we report

network finetuning on object detection on VOC07+12 using Faster R-CNN [Ren et al.,

2015] and on COCO [Lin et al., 2014] with DETR [Carion et al., 2020]. DETR is a recent

object detection framework that reaches competitive performance with Faster R-CNN while

being conceptually simpler and trainable end-to-end. We use DETR because, unlike Faster

R-CNN [He et al., 2019], using a pretrained backbone in this framework is crucial to obtain

good results compared to training from scratch [Carion et al., 2020]. In Table 4.2, we show

that SwAV outperforms the supervised pretrained model on both VOC07+12 and COCO

datasets. Note that this is line with previous works that also show that self-supervision

can outperform supervised pretraining on object detection [Gidaris et al., 2020a, He et al.,

2020, Misra and Maaten, 2020]. Overall, our SwAV ResNet-50 model surpasses supervised

ImageNet pretraining on all the considered transfer tasks and datasets. We have released

this model so other researchers might also benefit by replacing the ImageNet supervised

network with our model.
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Linear Classification Object Detection

Places205 VOC07 iNat18 VOC07+12 COCO COCO

(Faster R-CNN R50-C4) (Mask R-CNN R50-FPN) (DETR)

Supervised 53.2 87.5 46.7 81.3 39.7 40.8

Self-supervised methods

Gidaris et al. [2020a] 45.0 64.6 - - -

He et al. [2020] 46.9† 79.8† 31.5† 81.5 -

Misra and Maaten [2020] 49.8 81.1 34.1 80.7 -

Li et al. [2020] 49.8 84.0 - - -

Gidaris et al. [2020a] 51.1 79.3 - 81.3 -

Chen et al. [2020b] 53.3† 86.4† 36.2† - -

Chen et al. [2020e] 52.9† 87.1† 38.9† 82.5 39.8 42.0†

SwAV 56.7 88.9 48.6 82.6 41.6 42.1

Table 4.2 – Transfer learning on downstream tasks. Comparison between features from

ResNet-50 trained on ImageNet with SwAV or supervised learning. We also report numbers

from other self-supervised methods available at the time of SwAV publication († for numbers

from other methods run by us). We consider two settings. (1) Linear classification on top

of frozen features. We report top-1 accuracy on all datasets except VOC07 where we report

mAP. (2) Object detection with finetuned features on VOC07+12 trainval using Faster

R-CNN [Ren et al., 2015] and on COCO [Lin et al., 2014] using Mask R-CNN [He et al.,

2017] or DETR [Carion et al., 2020]. We report the most standard detection metrics for

these datasets: AP50 on VOC07+12 and AP on COCO.

4.3.3 Training with small batches

We train SwAV with small batches of 256 images on 4 GPUs and compare with MoCov2

and SimCLR trained in the same setup. In Table 4.3, we see that SwAV maintains state-

of-the-art performance even when trained in the small batch setting. Note that SwAV only

stores a queue of 3, 840 features. In comparison, to obtain good performance, MoCov2

needs to store 65, 536 features while keeping an additional momentum encoder network.

When SwAV is trained using 2◊160 + 4◊96 crops, SwAV has a running time 1.2◊
higher than SimCLR with 2◊224 crops and is around 1.4◊ slower than MoCov2 due to

the additional back-propagation [Chen et al., 2020e]. Hence, one epoch of MoCov2 or

SimCLR is faster in wall clock time than one of SwAV, but these methods need more

epochs for good downstream performance. Indeed, as shown in Table 4.3, SwAV learns

much faster and reaches higher performance in 4◊ fewer epochs: 72% after 200 epochs
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Method Mom. Encoder Stored Features multi-crop epoch batch Top-1

SimCLR 0 2◊224 200 256 61.9
MoCov2 65, 536 2◊224 200 256 67.5
MoCov2 65, 536 2◊224 800 256 71.1
SwAV 3, 840 2◊160 + 4◊96 200 256 72.0
SwAV 3, 840 2◊224 + 6◊96 200 256 72.7
SwAV 3, 840 2◊224 + 6◊96 400 256 74.3

Table 4.3 – Training in small batch setting. Top-1 accuracy on ImageNet with a linear

classifier trained on top of frozen features from a ResNet-50. All methods are trained with

a batch size of 256. We also report the number of stored features, the type of cropping used

and the number of epochs.

(102 hours) while MoCov2 needs 800 epochs to achieve 71.1%. Increasing the resolution

and the number of epochs, SwAV reaches 74.3% with a small batch size, a small number of

stored features and no momentum encoder. Finally, note that SwAV can be combined with

a momentum mechanism and we leave these explorations to the next chapter.

4.4 Ablation Study and Analyses

Improving deep clustering approaches. In this section, we re-implement and improve

two clustering-based models in order to assess if they can compete with well-known con-

trastive methods such as SimCLR [Chen et al., 2020b]. In particular, we consider two

clustering-based models: DeepCluster-v2 and SeLa-v2, which are obtained by applying var-

ious training improvements introduced in other self-supervised learning papers to DeepClus-

ter of Caron et al. [2018] and SeLa of Asano et al. [2020]. Among these improvements are

the use of stronger data augmentation [Chen et al., 2020b], MLP projection head [Bachman

et al., 2019], cosine learning rate schedule [Misra and Maaten, 2020], use of temperature-

based softmax [Wu et al., 2018], memory bank [Wu et al., 2018], multi-clustering [Asano

et al., 2020], etc. The implementation of DeepCluster-v2 is publicly available at https:

//github.com/facebookresearch/swav/main_deepclusterv2.py. Be-

sides, we also improve DeepCluster model by introducing explicit comparisons to k-means

centroids, which increase stability and performance. Indeed, a main issue in DeepCluster is

that there is no correspondence between two consecutive cluster assignments. Hence, the

final classification layer learned for an assignment becomes irrelevant for the following one

and thus needs to be re-initialized from scratch at each epoch. This considerably disrupts

https://github.com/facebookresearch/swav/main_deepclusterv2.py
https://github.com/facebookresearch/swav/main_deepclusterv2.py
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Method multi-crop time / 100 epochs peak memory / GPU

SimCLR 2 ◊ 224 4h00 8.6G

SwAV 2 ◊ 224 4h09 8.6G

SwAV 2 ◊ 160 + 4 ◊ 96 4h50 8.5G

SwAV 2 ◊ 224 + 6 ◊ 96 6h15 12.8G

Table 4.4 – Computational cost. We report time and GPU memory requirements based on

our implementation for different models trained during 100 epochs.

regularly update centroids and cluster assignments for each image.

As a matter of fact, DeepCluster-v2 can be interpreted as a special case of our proposed

swapping mechanism: swapping is done across epochs rather than within a batch. Given

a crop of an image DeepCluster-v2 predicts the assignment of another crop, which was

obtained at the previous epoch. SwAV swaps assignments directly at the batch level and

can thus work online.

Applying the multi-crop strategy to different methods. In Table 4.2 (left), we report

the impact of applying our multi-crop strategy on the performance of a selection of other

methods. We see that the multi-crop strategy consistently improves the performance for

all the considered methods by a significant margin of 2≠4% top-1 accuracy. Interestingly,

multi-crop seems to benefit more clustering-based methods than contrastive methods. We

note that multi-crop does not improve the supervised model.

Impact of longer training. In Figure 4.2 (right), we show the impact of the number of

training epochs on performance for SwAV. We train separate models for 100, 200, 400
and 800 epochs and report the top-1 accuracy on ImageNet using the linear classification

evaluation. We train each ResNet-50 on 64 V100 16GB GPUs and a batch size of 4096.

While SwAV benefits from longer training, it already achieves strong performance after

100 epochs, i.e., 72.1% in 6h15.

Running times. In Table 4.4, we report compute and GPU memory requirements based

on our implementation for different settings. As described in Section 4.2.5, we train each

method on 64 V100 16GB GPUs, with a batch size of 4096, using mixed precision and

apex optimized version of synchronized batch-normalization layers. We report results

with ResNet-50 for all methods. In Figure 4.3, we report SwAV performance for different

training lengths measured in hours based on our implementation. We observe that after

only 6 hours of training, SwAV outperforms SimCLR trained for 1000 epochs (40 hours





68 CHAPTER 4. THE SELF-SUPERVISED SWAV APPROACH

Method Frozen Finetuned

Random weights 15.0 76.5

SimCLR [Chen et al., 2020b] 60.4 77.2

SwAV 66.5 77.8

Table 4.6 – Pretraining ResNet-50 with SwAV on uncurated data from Instagram.

Top-1 accuracy on ImageNet for pretrained models on an uncurated set of 1B random

Instagram images. We compare ResNet-50 pretrained with either SimCLR or SwAV on

two downstream tasks: linear classification on frozen features or finetuned features.

4.5.1 Scaling self-supervised learning

Scaling the data. First, we pre-train SwAV on an uncurated dataset of 1 billion random

public non-EU images from Instagram by keeping the same architecture as in our previous

experiments, i.e., ResNet-50. This is to test if SwAV can serve as a pre-training method

for supervised learning. In Table 4.6, we measure the performance of ResNet-50 models

when transferring to ImageNet with frozen or finetuned features. We compare SwAV with

a randomly initialized network and with a network pre-trained on the same data using

SimCLR [Chen et al., 2020b].

First, we observe that SwAV maintains a similar gain of 6% over SimCLR as when

pre-trained on ImageNet (see Figure 4.1), showing that our improvements do not depend

on the data distribution. We also see that pre-training with SwAV on random images

significantly improves over training from scratch on ImageNet (+1.3%). This result is in

line with Caron et al. [2019] and He et al. [2020]. This preliminary experiment motivates

the exploration of the limits of pre-training as we increase not only the dataset size but also

the model capacity. We consider the variants of the ResNeXt architecture [Xie et al., 2017]

as in Mahajan et al. [2018] and also models from the RegNet family [Radosavovic et al.,

2020] which we describe in the following paragraph.

Scale efficient model family: RegNetY. Scaling data and model capacity jointly requires

using architectures that are efficient in terms of both memory and runtime. RegNets are a

family of models designed for this purpose and we briefly describe them in this paragraph.

We refer to Radosavovic et al. [2020] for more details. RegNets are a family of architectures

defined by a design space of convnets consisting of 4 stages, with each stage containing a

series of identical blocks, while keeping the structure of their blocks fixed – namely the

residual bottleneck block of He et al. [2016]. Here, we focus on the RegNetY architectures,

that add a Squeeze-and-excitation op [Hu et al., 2018] to the standard RegNets to further
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Pretraining Arch. #param Top-1

Same architecture

Scratch RX101-32x8d 91M 79.6

Hashtag pred. [Mahajan et al., 2018] RX101-32x8d 91M 82.6

SwAV RX101-32x8d 91M 81.6

Different architectures

Hashtag pred. [Mahajan et al., 2018] RX101-32x48d 831M 85.4

SwAV RG128 693M 83.8

SwAV RG256 1.3B 84.2

Table 4.7 – Comparison with weakly-supervised pretraining on curated data. We

compare pretraining a ResNeXt101-32dx8d with self-supervision on random images

with pretraining on filtered images labeled with hashtags that are similar to ImageNet

classes [Mahajan et al., 2018]. We report top-1 accuracy on ImageNet with finetuning. For

completeness, we also report the best performance reported with larger architectures.

improve their performance. The RegNetY model family is parameterized by 5 parameters,

allowing the search of a good instance with a certain number of FLOPs with reasonable

resources. The models we used were all searched on ImageNet using the same procedure

as Radosavovic et al. [2020]. We believe our results can further be improved by searching

for RegNetYs directly on our self-supervised pre-training task. Our model of focus is

the RegNetY-256GF architecture. Its parametrization is given by the scaling rules of

RegNets [Radosavovic et al., 2020]:

w0 = 640, wa = 230.83, wm = 2.53, group width = 373

It has 4 stages with stage depths (2, 7, 17, 1) and stage widths (528, 1056, 2904, 7392),

leading to a total of 695.5M parameters. It takes 6125ms for a single training iteration over

8, 704 images on 512 V100 32GB NVIDIA GPUs. Training this model on 1 billion images

requires 114, 890 training iterations for a batch size of 8, 704 images, summing to 8 days of

training over 512 GPUs.

4.5.2 Comparing to weakly-supervised pre-training

Many online images have some metadata, e.g., hashtags or geo-localization, that can be

leveraged during pre-training. In particular, Mahajan et al. [2018] show that pre-training by

predicting a curated set of hashtags can greatly improve the quality of the resulting visual
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features. Their approach requires to filter images and only works in the presence of textual

metadata. In Table 4.7, we compare our SwAV pre-training on random images to theirs

on the same architecture, a ResNeXt101-32x8d, with finetuning. For completeness, we

also report their best number with their largest architecture. First, we observe that both

pre-trainings improve top-1 accuracy over a model trained from scratch, showing in general

the benefits of pre-training. Our approach is also in the same ballpark as theirs even though

we do not rely on data curation nor supervision. Note that, when the features are frozen,

their approach maintains high performance on ImageNet, with 81.6% top-1 accuracy while

our model performance drops significantly. This result is not surprising: they pre-train

on data that follows the same concepts as ImageNet classes and thus the learned features

are more aligned with the target distribution. Since we pre-train our model on random

images, we require a full-finetuning step of 35 epochs to adapt to the target distribution.

This experiment shows that the benefits of pre-training with finetuning exist even if the

features come from a different image distribution.



Chapter 5

Self-Supervised Vision Transformers

Like the contributions presented in this manuscript so far, most of the research in

self-supervised learning has been conducted on convolutional networks (convnets). In

this final chapter, we explore if self-supervised learning provides new properties to Vision

Transformer (ViT) [Dosovitskiy et al., 2020] that stand out compared to convnets. Beyond

the fact that adapting self-supervised methods to this architecture works particularly well,

we make the following observations: first, self-supervised ViT features contain explicit

information about the semantic segmentation of an image, which does not emerge as clearly

with supervised ViTs, nor with convnets. Second, these features are also excellent k-NN

classifiers, reaching 78.3% top-1 on ImageNet with a small ViT. Our study also underlines

the importance of momentum encoder [He et al., 2020], multi-crop training [Caron et al.,

2020], and the use of small patches with ViTs. We implement our findings into a simple

self-supervised method, called DINO, which we interpret as a form of self-distillation with

no labels. We show the synergy between DINO and ViTs by achieving 80.1% top-1 on

ImageNet in linear evaluation with ViT-Base. This chapter is based on a work published at

ICCV 2021 (see Caron et al. [2021]).

5.1 Introduction

Transformers [Vaswani et al., 2017] have recently emerged as an alternative to convnets

for visual recognition [Dosovitskiy et al., 2020, Touvron et al., 2020, Zhao et al., 2020].

Their adoption has been coupled with a training strategy inspired by natural language

processing (NLP), that is, pretraining on large quantities of data and finetuning on the

target dataset [Devlin et al., 2018, Radford et al., 2019]. The resulting Vision Transform-

ers (ViT) [Dosovitskiy et al., 2020] are competitive with convnets but, they have not yet

delivered clear benefits over them: they are computationally more demanding, require more

71
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training data, and their features do not exhibit unique properties.

In this paper, we question whether the muted success of Transformers in vision can be

explained by the use of supervision in their pre-training. Our motivation is that one of the

main ingredients for the success of Transformers in NLP was the use of self-supervised

pretraining, in the form of close procedure in BERT [Devlin et al., 2018] or language

modeling in GPT [Radford et al., 2019]. These self-supervised pretraining objectives use

the words in a sentence to create pretext tasks that provide a richer learning signal than the

supervised objective of predicting a single label per sentence. Similarly, in images, image-

level supervision often reduces the rich visual information contained in an image to a single

concept selected from a predefined set of a few thousand categories of objects [Russakovsky

et al., 2015].

While the self-supervised pretext tasks used in NLP are text specific, many existing

self-supervised methods have shown their potential on images with convnets [Caron et al.,

2020, Chen et al., 2020b, Grill et al., 2020, He et al., 2020]. They typically share a similar

structure but with different components designed to avoid trivial solutions (collapse) or to

improve performance [Chen and He, 2020]. In this work, inspired from these methods, we

study the impact of self-supervised pretraining on ViT features. Of particular interest, we

have identified several interesting properties that do not emerge with supervised ViTs, nor

with convnets:

— Self-supervised ViT features explicitly contain the scene layout and, in particular,

object boundaries. This information is directly accessible in the self-attention modules

of the last block.

— Self-supervised ViT features perform particularly well with a basic nearest neighbors

classifier (k-NN). For instance, a small ViT achieves 78.3% top-1 accuracy on

Imagenet with a k-NN classifier on frozen features, without any finetuning, linear

classifier nor data augmentation. This property is not as prominent when using

convnets, nor when training ViT networks with other self-supervised components.

The emergence of segmentation masks seems to be a property shared across self-

supervised methods. However, the good performance with k-NN only emerge with DINO.

Another finding from our study is the importance of using smaller patches with ViTs to

improve the quality of the resulting features.

Overall, our findings about the importance of certain components for ViT lead us to

design a simple self-supervised approach that can be interpreted as a form of knowledge

distillation [Hinton et al., 2015] with no labels. The resulting framework, DINO, simplifies

self-supervised training by directly predicting the output of a teacher network—built

with a momentum encoder—by using a standard cross-entropy loss. Interestingly, our

method can work with only a centering and sharpening of the teacher output to avoid
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Figure 5.1 – Self-distillation with no labels. We illustrate DINO in the case of one single

pair of views (x1, x2) for simplicity. The model passes two different random transformations

of an input image to the student and teacher networks. Both networks have the same

architecture but different parameters. The output of the teacher network is centered with

a mean computed over the batch. Each networks outputs a K dimensional feature that is

normalized with a temperature softmax over the feature dimension. Their similarity is then

measured with a cross-entropy loss. We apply a stop-gradient (sg) operator on the teacher

to propagate gradients only through the student. The teacher parameters are updated with

an exponential moving average (ema) of the student parameters.

collapse, while other popular components such as predictor [Grill et al., 2020], equipartition

constraints [Caron et al., 2020] or contrastive loss [He et al., 2020] add little benefits in

terms of stability or performance. Of particular importance, our framework is flexible and

works on both convnets and ViTs without the need to modify the architecture, nor adapt the

internal normalizations [Richemond et al., 2020].

We further validate the synergy between DINO and ViT by outperforming previous

self-supervised features on the ImageNet linear classification benchmark with 80.1% top-1

accuracy with a ViT-Base with small patches. We also confirm that DINO works with

convnets by matching the state of the art with a ResNet-50 architecture. Finally, we

discuss different scenarios to use DINO with ViTs in case of limited computation and

memory capacity. In particular, training DINO with ViT takes just two 8-GPU servers

over 3 days to achieve 76.1% on ImageNet linear benchmark, which outperforms self-

supervised systems based on convnets of comparable sizes with significantly reduced

compute requirements [Caron et al., 2020, Grill et al., 2020].
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5.2 Related work

As we interpret our method as a kind of unsupervised self-distillation, we give a brief

overview of related work about supervised knowledge distillation. We also quickly review

the Vision Transformer architecture.

5.2.1 Self-training and knowledge distillation.

Self-training aims at improving the quality of features by propagating a small initial set

of annotations to a large set of unlabeled instances. This propagation can either be done

with hard assignments of labels [Lee et al., 2013, Xu et al., 2020, Yalniz et al., 2019] or with

a soft assignment [Xie et al., 2020b]. When using soft labels, the approach is often referred

to as knowledge distillation [Buciluǎ et al., 2006, Hinton et al., 2015] and has been primarily

designed to train a small network to mimic the output of a larger network to compress

models. Xie et al. [2020b] have shown that distillation could be used to propagate soft

pseudo-labels to unlabeled data in a self-training pipeline, drawing an essential connection

between self-training and knowledge distillation. Our work builds on this relation and

extends knowledge distillation to the case where no labels are available. Previous works

have also combined self-supervised learning and knowledge distillation [Chen et al., 2020c,

Fang et al., 2021, Noroozi et al., 2018, Shen et al., 2021], enabling self-supervised model

compression and performance gains. However, these works rely on a pre-trained fixed

teacher while our teacher is dynamically built during training. This way, in our work,

knowledge distillation instead of being used as a post-processing step to self-supervised

pre-training, is directly cast as a self-supervised objective. Finally, our work is also related

to co-distillation [Anil et al., 2018] where student and teacher have the same architecture

and use distillation during training. However, the teacher in co-distillation is also distilling

from the student, while it is updated with an average of the student in our work.

5.2.2 Vision transformers

The Transformer architecture has originally been proposed in the context of machine

translation by Vaswani et al. [2017]. Since its introduction, this architecture has been

successfully applied to sentence representation [Devlin et al., 2018], language model-

ing [Radford et al., 2019] and more recently speech recognition [Baevski et al., 2020].

While there have been many attempts at adapting the Transformer architecture to im-

ages [Child et al., 2019, Cordonnier et al., 2020, Parmar et al., 2018], it is only recently that

standard Transformers have obtained competitive results on challenging image classification

datasets [Dosovitskiy et al., 2020, Zhao et al., 2020]. In particular, Dosovitskiy et al. [2020]
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model blocks dim heads #tokens #params im/s

ResNet-50 – 2048 – – 23M 1237

ViT-S/16 12 384 6 197 21M 1007

ViT-S/8 12 384 6 785 21M 180

ViT-B/16 12 768 12 197 85M 312

ViT-B/8 12 768 12 785 85M 63

Table 5.1 – Networks configuration. “Blocks” is the number of Transformer blocks, “dim”

is channel dimension and “heads” is the number of heads in multi-head attention. “# tokens”

is the length of the token sequence when considering 2242 resolution inputs, “# params”

is the total number of parameters (without counting the projection head) and “im/s” is the

inference time on a NVIDIA V100 GPU with 128 samples per forward.

show that a patch based Transformer is particularly suited for image classification. While

these models originally required a lot of annotated data, Touvron et al. [2020] show that

they also achieve competitive performance when trained on ImageNet alone by means of

strong regularization and by guiding their training with a convnet through distillation.

Overall, we refer the reader to Vaswani et al. [2017] for details about Transformers

and to Dosovitskiy et al. [2020] for its adaptation to images. In this chapter, we follow

the implementation used in DeiT [Touvron et al., 2020]. We summarize the configuration

of the different networks used in this chapter in Table 5.1. The ViT architecture takes as

input a grid of non-overlapping contiguous image patches of resolution N ◊ N . In this

paper we typically use N = 16 (“/16”) or N = 8 (“/8”). The patches are then passed

through a linear layer to form a set of embeddings. We add an extra learnable token to

the sequence [Devlin et al., 2018, Dosovitskiy et al., 2020]. The role of this token is to

aggregate information from the entire sequence. We refer to this token as the class token

[CLS] for consistency with previous works [Devlin et al., 2018, Dosovitskiy et al., 2020,

Touvron et al., 2020], even though it is not attached to any label nor supervision in our case.

The set of patch tokens and [CLS] token are fed to a standard Transformer network with a

“pre-norm” layer normalization [Chen et al., 2018, Klein et al., 2017]. The Transformer

is a sequence of self-attention and feed-forward layers, paralleled with skip connections.

The self-attention layers update the token representations by looking at the other token

representations with an attention mechanism [Bahdanau et al., 2014].
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5.3 DINO Methodology

5.3.1 SSL with knowledge distillation

The framework used for this work, DINO, shares the same overall structure as most

recent self-supervised approaches [Caron et al., 2020, Chen et al., 2020b, Chen and He,

2020, Grill et al., 2020, He et al., 2020] following the view-invariant paradigm described in

Section 2.3. However, our method shares also similarities with knowledge distillation [Hin-

ton et al., 2015] and we present it under this angle. We illustrate DINO in Figure 5.1 and

propose a pseudo-code implementation in Algorithm 1.

Knowledge distillation is a learning paradigm where we train a student network gθs
to

match the output of a given teacher network gθt
, parameterized by ◊s and ◊t respectively.

Given an input image x, both networks output probability distributions over K dimensions

denoted by Ps and Pt. The probability P is obtained by normalizing the output of the

network g with a softmax function. More precisely,

Ps(x)(i) =
exp(gθs

(x)(i)/·s)
qK

k=1 exp(gθs
(x)(k)/·s)

, (5.1)

with ·s > 0 a temperature parameter that controls the sharpness of the output distribution,

and a similar formula holds for Pt with temperature ·t. Given a fixed teacher network gθt
, we

learn to match these distributions by minimizing the cross-entropy loss w.r.t. the parameters

of the student network ◊s:

min
θs

H(Pt(x), Ps(x)), (5.2)

where H(a, b) = ≠a log b.

In the following, we detail how we adapt the problem in Eq. (5.2) to self-supervised

learning. First, we construct different distorted views, or crops, of an image with multi-crop

strategy (see Section 4.2.4). More precisely, from a given image, we generate a set V of

different views. This set contains two global views, xg
1 and xg

2 and several local views of

smaller resolution. All crops are passed through the student while only the global views are

passed through the teacher, therefore encouraging “local-to-global” correspondences. We

minimize the loss:

min
θs

ÿ

xœ{x
g
1
,x

g
2
}

ÿ

xÕœV
xÕ ”= x

H(Pt(x), Ps(x
Õ)). (5.3)

This loss is general and can be used on any number of views, even only 2. However,

we follow the standard setting for multi-crop by using 2 global views at resolution 2242

covering a large (for example greater than 50%) area of the original image, and several

local views of resolution 962 covering only small areas (for example less than 50%) of
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Algorithm 1 DINO PyTorch pseudo-code w/o multi-crop.

# gs, gt: student and teacher networks
# C: center (K)
# tps, tpt: student and teacher temperatures
# l, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples

x1, x2 = augment(x), augment(x) # random views

s1, s2 = gs(x1), gs(x2) # student output n-by-K
t1, t2 = gt(x1), gt(x2) # teacher output n-by-K

loss = H(t1, s2)/2 + H(t2, s1)/2
loss.backward() # back-propagate

# student, teacher and center updates
update(gs) # SGD
gt.params = l*gt.params + (1-l)*gs.params
C = m*C + (1-m)*cat([t1, t2]).mean(dim=0)

def H(t, s):
t = t.detach() # stop gradient
s = softmax(s / tps, dim=1)
t = softmax((t - C) / tpt, dim=1) # center + sharpen
return - (t * log(s)).sum(dim=1).mean()

the original image. Both networks share the same architecture g with different sets of

parameters ◊s and ◊t. We learn the parameters ◊s by minimizing Eq. (5.3) with stochastic

gradient descent.

Teacher network. Unlike knowledge distillation, we do not have a teacher gθt
given

a priori and hence, we build it from past iterations of the student network. We study

different update rules for the teacher in Section 5.6.2 and show that freezing the teacher

network over an epoch works surprisingly well in our framework, while copying the student

weight for the teacher fails to converge. Of particular interest, using an exponential moving

average (EMA) on the student weights, i.e., a momentum encoder [He et al., 2020], is

particularly well suited for our framework. The update rule is ◊t Ω ⁄◊t + (1 ≠ ⁄)◊s, with ⁄

following a cosine schedule from 0.996 to 1 during training [Grill et al., 2020]. Originally

the momentum encoder has been introduced as a substitute for a queue in contrastive

learning [He et al., 2020]. However, in our framework, its role differs since we do not have

a queue nor a contrastive loss, and may be closer to the role of the mean teacher used in

self-training [Tarvainen and Valpola, 2017]. Indeed, we observe that this teacher performs

a form of model ensembling similar to Polyak-Ruppert averaging with an exponential

decay [Polyak and Juditsky, 1992, Ruppert, 1988]. Using Polyak-Ruppert averaging for

model ensembling is a standard practice to improve the performance of a model [Jean et al.,

2014]. We observe that this teacher has better performance than the student throughout the

training, and hence, guides the training of the student by providing target features of higher

quality. This dynamic was not observed in previous works [Grill et al., 2020, Richemond
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et al., 2020].

Network architecture. The neural network g is composed of a backbone f (ViT [Doso-

vitskiy et al., 2020] or ResNet [He et al., 2016]), and of a projection head h: g = h ¶ f .

The features used in downstream tasks are the backbone f output. The projection head

consists of a 3-layer multi-layer perceptron (MLP) with hidden dimension 2048 followed

by ¸2 normalization and a weight normalized fully connected layer [Salimans and Kingma,

2016] with K dimensions, which is similar to the design from SwAV [Caron et al., 2020].

We have tested other projection heads and this particular design appears to work best for

DINO. We do not use a predictor [Chen and He, 2020, Grill et al., 2020], resulting in the

exact same architecture in both student and teacher networks. Of particular interest, we

note that unlike standard convnets, ViT architectures do not use batch normalizations (BN)

by default. Therefore, when applying DINO to ViT we do not use any BN also in the

projection heads, making the system entirely BN-free.

Avoiding collapse. Several self-supervised methods differ by the operation used to avoid

collapse, either through contrastive loss [Wu et al., 2018], clustering constraints [Caron

et al., 2018, 2020], predictor [Grill et al., 2020] or batch normalizations [Grill et al.,

2020, Richemond et al., 2020]. While our framework can be stabilized with multiple

normalizations [Caron et al., 2020], it can also work with only a centering and sharpening

of the momentum teacher outputs to avoid model collapse. As shown experimentally in

Section 5.6.3, centering prevents one dimension to dominate but encourages collapse to the

uniform distribution, while the sharpening has the opposite effect. Applying both operations

balances their effects which is sufficient to avoid collapse in presence of a momentum

teacher. Choosing this method to avoid collapse trades stability for less dependence over

the batch: the centering operation only depends on first-order batch statistics and can be

interpreted as adding a bias term c to the teacher: gt(x) Ω gt(x) + c. The center c is

updated with an exponential moving average, which allows the approach to work well

across different batch sizes as shown in Section 5.6.5:

c Ω mc + (1 ≠ m)
1

B

B
ÿ

i=1

gθt
(xi), (5.4)

where m > 0 is a rate parameter and B is the batch size. Output sharpening is obtained by

using a low value for the temperature ·t in the teacher softmax normalization.
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5.3.2 Implementation and evaluation protocols

In this section, we provide the implementation details to train with DINO and present

the evaluation protocols used in our experiments.

Implementation details. We pretrain the models on the ImageNet dataset [Russakovsky

et al., 2015] without labels. We train with the adamw optimizer [Loshchilov and Hutter,

2018] and a batch size of 1024, distributed over 16 GPUs when using ViT-S/16. The

learning rate is linearly ramped up during the first 10 epochs to its base value determined

with the following linear scaling rule [Goyal et al., 2017]: lr = 0.0005 ú batchsize/256.

After this warm-up, we decay the learning rate with a cosine schedule [Loshchilov and

Hutter, 2016]. The weight decay also follows a cosine schedule from 0.04 to 0.4. The

temperature ·s is set to 0.1 while we use a linear warm-up for ·t from 0.04 to 0.07 during

the first 30 epochs. We follow the data augmentations of BYOL [Grill et al., 2020] (color

jittering, Gaussian blur and solarization) and multi-crop [Caron et al., 2020] with a bicubic

interpolation to adapt the position embeddings to the scales [Dosovitskiy et al., 2020,

Touvron et al., 2020]. The code and models to reproduce our results is publicly available at

https://github.com/facebookresearch/dino.

Evaluation protocols. Standard protocols for self-supervised learning are to either learn

a linear classifier on frozen features [He et al., 2020, Zhang et al., 2016] or to finetune

the features on downstream tasks. For linear evaluations, we apply random resize crops

and horizontal flips augmentation during training, and report accuracy on a central crop.

For finetuning evaluations, we initialize networks with the pretrained weights and adapt

them during training. However, both evaluations are sensitive to hyperparameters, and

we observe a large variance in accuracy between runs when varying the learning rate for

example. We thus also evaluate the quality of features with a simple weighted nearest

neighbor classifier (k-NN) as in Wu et al. [2018]. We freeze the pretrain model to compute

and store the features of the training data of the downstream task. The nearest neighbor

classifier then matches the feature of an image to the k nearest stored features that votes

for the label. We sweep over different number of nearest neighbors and find that 20 NN

is consistently working the best for most of our runs. This evaluation protocol does not

require any other hyperparameter tuning, nor data augmentation and can be run with only

one pass over the downstream dataset, greatly simplifying the feature evaluation.

https://github.com/facebookresearch/dino
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Method Arch. Param. im/s Linear k-NN

Supervised RN50 23 1237 79.3 79.3

SCLR [Chen et al., 2020b] RN50 23 1237 69.1 60.7

MoCov2 [Chen et al., 2020e] RN50 23 1237 71.1 61.9

InfoMin [Tian et al., 2020b] RN50 23 1237 73.0 65.3

BarlowT [Zbontar et al., 2021] RN50 23 1237 73.2 66.0

OBoW [Gidaris et al., 2020b] RN50 23 1237 73.8 61.9

BYOL [Grill et al., 2020] RN50 23 1237 74.4 64.8

DCv2 [Caron et al., 2020] RN50 23 1237 75.2 67.1

SwAV [Caron et al., 2020] RN50 23 1237 75.3 65.7

DINO RN50 23 1237 75.3 67.5

Supervised ViT-S 21 1007 79.8 79.8

BYOLú [Grill et al., 2020] ViT-S 21 1007 71.4 66.6

MoCov2ú [Chen et al., 2020e] ViT-S 21 1007 72.7 64.4

SwAVú [Caron et al., 2020] ViT-S 21 1007 73.5 66.3

DINO ViT-S 21 1007 77.0 74.5

Comparison across architectures

SCLR [Chen et al., 2020b] RN50w4 375 117 76.8 69.3

SwAV [Caron et al., 2020] RN50w2 93 384 77.3 67.3

BYOL [Grill et al., 2020] RN50w2 93 384 77.4 –

DINO ViT-B/16 85 312 78.2 76.1

SwAV [Caron et al., 2020] RN50w5 586 76 78.5 67.1

BYOL [Grill et al., 2020] RN50w4 375 117 78.6 –

BYOL [Grill et al., 2020] RN200w2 250 123 79.6 73.9

DINO ViT-S/8 21 180 79.7 78.3

SCLRv2 [Chen et al., 2020c] RN152w3+SK 794 46 79.8 73.1

DINO ViT-B/8 85 63 80.1 77.4

Table 5.2 – Linear and k-NN classification on ImageNet. We report top-1 accuracy for

linear and k-NN evaluations on the validation set of ImageNet for different self-supervised

methods. We focus on ResNet-50 and ViT-small architectures, but also report the best

results obtained across architectures. ú are run by us. We run the k-NN evaluation for

models with official released weights. The throughput (im/s) is calculated on a NVIDIA

V100 GPU with 128 samples per forward. Parameters (M) are of the feature extractor.
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5.4 Comparing with SSL Frameworks on ImageNet

We first validate the DINO framework used in this study with the standard self-

supervised benchmark on ImageNet. We consider two different settings: comparison

with the same architecture and across architectures.

Comparing with the same architecture. In top panel of Table 5.2, we compare DINO

with other self-supervised methods with the same architecture, either a ResNet-50 [He et al.,

2016] or a ViT-small (which follows the design of DeiT-S [Touvron et al., 2020]). The

choice of ViT-S is motivated by its similarity with ResNet-50 along several axes: number

of parameters (21M vs 23M), throughput (1237/sec VS 1007 im/sec) and supervised

performance on ImageNet with the training procedure of Touvron et al. [2020] (79.3% VS

79.8%). First, we observe that DINO performs on par with the state of the art on ResNet-50,

validating that DINO works in the standard setting. When we switch to a ViT architecture,

DINO outperforms BYOL, MoCov2 and SwAV by +3.5% with linear classification and

by +7.9% with k-NN evaluation. More surprisingly, the performance with a simple k-NN

classifier is almost on par with a linear classifier (74.5% versus 77.0%). This property

emerges only when using DINO with ViT architectures, and does not appear with other

existing self-supervised methods nor with a ResNet-50.

Comparing across architectures. On the bottom panel of Table 5.2, we compare the

best performance obtained across architectures. The interest of this setting is not to compare

methods directly, but to evaluate the limits of a ViT trained with DINO when moving to

larger architectures. While training a larger ViT with DINO improves the performance,

reducing the size of the patches (“/8” variants) has a bigger impact on the performance.

While reducing the patch size do not add parameters, it still leads to a significant reduction

of running time, and larger memory usage. Nonetheless, a base ViT with 8 ◊ 8 patches

trained with DINO achieves 80.1% top-1 in linear classification and 77.4% with a k-NN

classifier with 10◊ less parameters and 1.4◊ faster run time than previous state of the

art [Chen et al., 2020c].

5.5 Properties of Self-Supervised ViT

We evaluate properties of the DINO features in terms of nearest neighbor search,

retaining information about object location and transferability to downstream tasks.
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ROx RPar

Pretrain Arch. Pretrain M H M H

Sup. [Revaud et al., 2019] RN101+R-MAC ImNet 49.8 18.5 74.0 52.1

Sup. ViT-S/16 ImNet 33.5 8.9 63.0 37.2

DINO ResNet-50 ImNet 35.4 11.1 55.9 27.5

DINO ViT-S/16 ImNet 41.8 13.7 63.1 34.4

DINO ViT-S/16 GLDv2 51.5 24.3 75.3 51.6

Table 5.3 – Image retrieval. We compare the performance in retrieval of off-the-shelf

features pretrained with supervision or with DINO on ImageNet and Google Landmarks v2

(GLDv2) dataset. We report mAP on revisited Oxford and Paris. Pretraining with DINO

on a landmark dataset performs particularly well. For reference, we also report the best

retrieval method with off-the-shelf features [Revaud et al., 2019].

5.5.1 Nearest neighbor retrieval with DINO ViT

The results on ImageNet classification have exposed the potential of our features for

tasks relying on nearest neighbor retrieval. In this set of experiments, we further consolidate

this finding on landmark retrieval and copy detection tasks.

Image Retrieval. We consider the revisited [Radenović et al., 2018a] Oxford and Paris

image retrieval datasets [Philbin et al., 2008]. They contain 3 different splits of gradual

difficulty with query/database pairs. We report the Mean Average Precision (mAP) for the

Medium (M) and Hard (H) splits. In Table 5.3, we compare the performance of different

off-the-shelf features obtained with either supervised or DINO training. We freeze the

features and directly apply k-NN for retrieval. We observe that DINO features outperform

those trained on ImageNet with labels.

An advantage of SSL approaches is that they can be trained on any dataset, without

requiring any form of annotations. We train DINO on the 1.2M clean set from Google

Landmarks v2 (GLDv2) [Weyand et al., 2020], a dataset of landmarks designed for retrieval

purposes. DINO ViT features trained on GLDv2 are remarkably good, outperforming

previously published methods based on off-the-shelf descriptors [Revaud et al., 2019, Tolias

et al., 2015].

Copy detection. We also evaluate the performance of ViTs trained with DINO on a copy

detection task. We report the mean average precision on the “strong” subset of the INRIA
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Method Arch. Dim. Resolution mAP

Multigrain [Berman et al., 2019] ResNet-50 2048 2242 75.1

Multigrain [Berman et al., 2019] ResNet-50 2048 largest side 800 82.5

Supervised [Touvron et al., 2020] ViT-B/16 1536 2242 76.4

DINO ViT-B/16 1536 2242 81.7

DINO ViT-B/8 1536 3202 85.5

Table 5.4 – Copy detection. We report the mAP performance in copy detection on Copy-

days “strong” subset [Douze et al., 2009]. For reference, we also report the performance

of the multigrain model [Berman et al., 2019], trained specifically for particular object

retrieval.

Copydays dataset [Douze et al., 2009]. The task is to recognize images that have been

distorted by blur, insertions, print and scan, etc. Following prior work Berman et al. [2019],

we add 10k distractor images randomly sampled from the YFCC100M dataset [Thomee

et al., 2015]. We perform copy detection directly with cosine similarity on the features

obtained from our pretrained network. The features are obtained as the concatenation of

the output [CLS] token and of the GeM pooled [Radenović et al., 2018b] output patch

tokens. This results in a 1536d descriptor for ViT-B. Following Berman et al. [2019], we

apply whitening on the features. We learn this transformation on an extra 20K random

images from YFCC100M, distinct from the distractors. Table 5.4 shows that ViT trained

with DINO is very competitive on copy detection.

Image classification. In Table 5.5, we evaluate the frozen representations given by

ResNet-50 or ViT-small pre-trained with DINO with two evaluation protocols: linear or

k-NN. For both evaluations, we extract representations from a pre-trained network without

using any data augmentation. Then, we perform classification either with weighted k-NN

or with a linear regression learned with cyanure library [Mairal, 2019]. In Table 5.5 we

see that ViT-S accuracies are better than accuracies obtained with RN50 both with a linear

or a k-NN classifier. However, the performance gap when using the k-NN evaluation is

much more significant than when considering linear evaluation. For example on ImageNet

1%, ViT-S outperforms ResNet-50 by a large margin of +14.1% with k-NN evaluation.

This suggests that transformers architectures trained with DINO might offer more model

flexibility that benefits the k-NN evaluation. K-NN classifiers have the great advantage

of being fast and light to deploy, without requiring any domain adaptation. Overall, ViT

trained with DINO provides features that combine particularly well with k-NN classifiers.
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Logistic k-NN

RN50 ViT-S ∆ RN50 ViT-S ∆

Inet 100% 72.1 75.7 3.6 67.5 74.5 7.0

Inet 10% 67.8 72.2 4.4 59.3 69.1 9.8

Inet 1% 55.1 64.5 9.4 47.2 61.3 14.1

Pl. 10% 53.4 52.1 -1.3 46.9 48.6 1.7

Pl. 1% 46.5 46.3 -0.2 39.2 41.3 2.1

VOC07 88.9 89.2 0.3 84.9 88.0 3.1

FLOWERS 95.6 96.4 0.8 87.9 89.1 1.2

Average ∆ 2.4 5.6

Table 5.5 – k-NN and linear evaluation for ViT-S/16 and ResNet-50 pre-trained with

DINO. We use ImageNet-1k [Russakovsky et al., 2015] (“Inet”), Places205 [Zhou et al.,

2014], PASCAL VOC [Everingham et al., 2010] and Oxford-102 flowers (“FLOW-

ERS”) [Nilsback and Zisserman, 2008]. ViT trained with DINO provides features that are

particularly k-NN friendly.

Class Representation As a final study of the k-NN property, we propose to look at the

distribution of ImageNet concepts in the feature space from DINO. We represent each

ImageNet class with the average feature vector for its validation images. We reduce the

dimension of these features to 30 with PCA, and run t-SNE with a perplexity of 20, a

learning rate of 200 for 5000 iterations. We present the resulting class embeddings in

Figure 5.2. Our model recovers structures between classes: similar animal species are

grouped together, forming coherent clusters of birds (top) or dogs, and especially terriers

(far right).

5.5.2 Discovering the semantic layout of scenes

As shown qualitatively in Figure 5.3, our self-attention maps contain information about

the segmentation of an image. In this study, we measure this property on a standard

benchmark as well as by directly probing the quality of masks generated from these

attention maps.

Video instance segmentation. In Table 5.6, we evaluate the output patch tokens on the

DAVIS-2017 video instance segmentation benchmark [Pont-Tuset et al., 2017]. We follow

the experimental protocol in Jabri et al. [2020] and segment scenes with a nearest-neighbor
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Method Data Arch. (J &F)m Jm Fm

Supervised

ImageNet INet ViT-S/8 66.0 63.9 68.1

STM [Oh et al., 2019] I/D/Y RN50 81.8 79.2 84.3

Self-supervised

CT [Wang et al., 2019] VLOG RN50 48.7 46.4 50.0

MAST [Lai et al., 2020] YT-VOS RN18 65.5 63.3 67.6

STC [Jabri et al., 2020] Kinetics RN18 67.6 64.8 70.2

DINO INet ViT-S/16 61.8 60.2 63.4

DINO INet ViT-B/16 62.3 60.7 63.9

DINO INet ViT-S/8 69.9 66.6 73.1

DINO INet ViT-B/8 71.4 67.9 74.9

Table 5.6 – DAVIS 2017 Video object segmentation. We evaluate the quality of frozen

features on video instance tracking. We report mean region similarity Jm and mean contour-

based accuracy Fm. We compare with existing self-supervised methods and a supervised

ViT-S/8 trained on ImageNet. Image resolution is 480p.

Cifar10 Cifar100 INat18 INat19 Flwrs Cars INet

ViT-S/16

Sup. [Touvron et al., 2020] 99.0 89.5 70.7 76.6 98.2 92.1 79.9

DINO 99.0 90.5 72.0 78.2 98.5 93.0 81.5

ViT-B/16

Sup. [Touvron et al., 2020] 99.0 90.8 73.2 77.7 98.4 92.1 81.8

DINO 99.1 91.7 72.6 78.6 98.8 93.0 82.8

Table 5.7 – Transfer learning by finetuning pretrained models on different datasets.

We report top-1 accuracy. Self-supervised pretraining with DINO transfers better than

supervised pretraining.

5.5.3 Transfer learning on downstream tasks

In Table 5.7, we evaluate the quality of the features pretrained with DINO on different

downstream tasks. We compare with features from the same architectures trained with

supervision on ImageNet. We follow the protocol used in Touvron et al. [2020] and finetune

the features on each downstream task. We observe that for ViT architectures, self-supervised
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Pretraining

method data res. tr. proc. Top-1

Pretrain on additional data

MMP JFT-300M 384 [Dosovitskiy et al., 2020] 79.9

Supervised JFT-300M 384 [Dosovitskiy et al., 2020] 84.2

Train with additional model

Rand. init. - 224 [Touvron et al., 2020] 83.4

No additional data nor model

Rand. init. - 224 [Dosovitskiy et al., 2020] 77.9

Rand. init. - 224 [Touvron et al., 2020] 81.8

Supervised ImNet 224 [Touvron et al., 2020] 81.9

DINO ImNet 224 [Touvron et al., 2020] 82.8

Table 5.8 – ImageNet classification with different pretraining. Top-1 accuracy on Ima-

geNet for supervised ViT-B/16 models using different pretrainings or using an additional

pretrained convnet to guide the training. The methods use different image resolution (“res.”)

and training procedure (“tr. proc.”), i.e., data augmentation and optimization. “MPP” is

Masked Patch Prediction.

First, we observe that in the absence of momentum, our framework does not work (row

2) and more advanced operations, SK for example, are required to avoid collapse (row 9).

However, with momentum, using SK has little impact (row 3). In addition, comparing rows

3 and 9 highlights the importance of the momentum encoder for performance. Second, in

rows 4 and 5, we observe that multi-crop training and the cross-entropy loss in DINO are

important components to obtain good features. We also observe that adding a predictor

to the student network has little impact (row 6) while it is critical in BYOL to prevent

collapse [Chen and He, 2020, Grill et al., 2020].

Relation to SwAV. In Table 5.10, we further evaluate the differences between DINO and

SwAV: the presence of the momentum encoder and the operation on top of the teacher

output. In absence of the momentum, a copy of the student with a stop-gradient is used.

We consider three operations on the teacher output: Centering, Sinkhorn-Knopp or

a Softmax along the batch axis. The Softmax is similar to a single Sinkhorn-Knopp

iteration as detailed in Section 4.2.2. First, these ablations show that using a momentum

encoder significantly improves the performance for ViT (3 versus 6, and 2 versus 5).

Second, the momentum encoder also avoids collapse when using only centering (row 1).



5.6. ABLATION STUDY AND ANALYSES OF DINO 91

Method Mom. SK MC Loss Pred. k-NN Lin.

1 DINO 7 CE 7 72.8 76.1

2 7 7 CE 7 0.1 0.1

3 CE 7 72.2 76.0

4 7 7 CE 7 67.9 72.5

5 7 MSE 7 52.6 62.4

6 7 CE 71.8 75.6

7 BYOL 7 7 MSE 66.6 71.4

8 MoCov2 7 7 INCE 7 62.0 71.6

9 SwAV 7 CE 7 64.7 71.8

SK: Sinkhorn-Knopp, MC: Multi-Crop, Pred.: Predictor

CE: Cross-Entropy, MSE: Mean Square Error, INCE: InfoNCE

Table 5.9 – Important component for self-supervised ViT pretraining. Models are

trained for 300 epochs with ViT-S/16. We study the different components that matter for

the k-NN and linear (“Lin.”) evaluations. For the different variants, we highlight the

differences from the default DINO setting. The best combination is the momentum encoder

with the multi-crop augmentation and the cross-entropy loss. We also report results with

BYOL [Grill et al., 2020], MoCo-v2 [Chen et al., 2020e] and SwAV [Caron et al., 2020].

In the absence of momentum, centering the outputs does not work (4) and more advanced

operations are required (5, 6). Overall, these ablations highlight the importance of the

momentum encoder, not only for performance but also to stabilize training, removing the

need for normalization beyond centering.

Relation to MoCo-v2 and BYOL. In Table 5.11, we present in further details the impact

of ablating components that differ between DINO, MoCo-v2 and BYOL: the choice of

loss, the predictor in the student head, the centering operation, the batch normalization

in the projection heads, and finally, the multi-crop augmentation. The loss in DINO is

a cross-entropy on sharpened softmax outputs (CE) while MoCo-v2 uses the InfoNCE

contrastive loss (INCE) and BYOL a mean squared error on l2-normalized outputs (MSE).

No sharpening is applied with the MSE criterion. Though, DINO surprisingly still works

when changing the loss function to MSE, but this significantly alters the performance (see

rows (1, 2) and (4, 9)). We also observe that adding a predictor has little impact (1, 3).

However, in the case of BYOL, the predictor is critical to prevent collapse (7, 8) which

is consistent with previous studies [Chen and He, 2020, Grill et al., 2020]. Interestingly,

we observe that the teacher output centering avoids collapse without predictor nor batch
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Method Loss multi-crop Center. BN Pred. Top-1

1 DINO CE 76.1

2 – MSE 62.4

3 – CE 75.6

4 – CE 72.5

5 MoCov2 INCE 71.4

6 INCE 73.4

7 BYOL MSE 71.4

8 – MSE 0.1

9 – MSE 52.6

10 – MSE 64.8

Table 5.11 – Relation to MoCo-v2 and BYOL. We ablate the components that differ

between DINO, MoCo-v2 and BYOL: the loss function (cross-entropy, CE, versus InfoNCE,

INCE, versus mean-square error, MSE), the multi-crop training, the centering operator, the

batch normalization in the projection heads and the student predictor. Models are run for

300 epochs with ViT-S/16. We report top-1 accuracy on ImageNet linear evaluation.

epochs. We observe that the performance greatly improves as we decrease the size of the

patch. It is interesting to see that performance can be greatly improved without adding

additional parameters. However, the performance gain from using smaller patches comes at

the expense of throughput: when using 5◊5 patches, the throughput falls to 44 im/s, vs 180

im/s for 8◊8 patches.

5.6.2 Impact of the choice of teacher network

In this ablation, we experiment with different teacher network to understand its role in

DINO. We compare models trained for 300 epochs using the k-NN protocol.

Building different teachers from the student. In Figure 5.7 (right), we compare dif-

ferent strategies to build the teacher from previous instances of the student besides the

momentum teacher. First we consider using the student network from a previous epoch as

a teacher. This strategy has been used in a memory bank [Wu et al., 2018] or as a form

of clustering hard-distillation [Asano et al., 2020, Caron et al., 2018, Chen et al., 2020d].

Second, we consider using the student network from the previous iteration, as well as a copy

of the student for the teacher. In our setting, using a teacher based on a recent version of the
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·t 0 0.02 0.04 0.06 0.08 0.04 æ 0.07

k-NN top-1 43.9 66.7 69.6 68.7 0.1 69.7

Table 5.12 – Impact of teacher target sharpening. Sharpening plays a crucial role in

preventing collapse. Hence, DINO is particularly sensitive to collapse at the beginning of

training. Our experiments seem to suggest to seek for the maximum temperature that does

not collapse.

of training. Finally, note that · æ 0 (extreme sharpening) correspond to the argmax

operation and leads to one-hot hard distributions.

m 0 0.9 0.99 0.999

k-NN top-1 69.1 69.7 69.4 0.1

Table 5.13 – Impact of online centering. We study the impact of the smoothing parameters

in the update rule for the center c used in the output of the teacher network (see Eq. (5.4)).

The convergence is robust to a wide range of smoothing, and the model only collapses

when the update is too slow, i.e., m = 0.999.

5.6.4 Compute requirements

In Table 5.14, we detail the time and GPU memory requirements when running ViT-

S/16 DINO models on two 8-GPU machines. We report results with several variants of

multi-crop training, each having a different level of compute requirement. We observe in

Table 5.14 that using multi-crop improves the accuracy / running-time trade-off for DINO

runs. For example, the performance is 72.5% after 46 hours of training without multi-crop

(i.e. 2◊2242) while DINO in 2◊2242 + 10◊962 crop setting reaches 74.6% in 24 hours

only. This is an improvement of +2% while requiring 2◊ less time, though the memory

usage is higher (15.4G versus 9.3G). We observe that the performance boost brought with

multi-crop cannot be caught up by more training in the 2◊2242 setting, which shows the

value of the “local-to-global” augmentation. Finally, the gain from adding more views

diminishes (+.2% form 6◊ to 10◊ 962 crops) for longer trainings.

Overall, training DINO with Vision Transformers achieves 76.1 top-1 accuracy using

two 8-GPU servers for 3 days. This result outperforms state-of-the-art self-supervised

systems based on convolutional networks of comparable sizes with a significant reduction
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100 epochs 300 epochs

multi-crop top-1 time top-1 time mem.

2◊2242 67.8 15.3h 72.5 45.9h 9.3G

2◊2242 + 2◊962 71.5 17.0h 74.5 51.0h 10.5G

2◊2242 + 6◊962 73.8 20.3h 75.9 60.9h 12.9G

2◊2242 + 10◊962 74.6 24.2h 76.1 72.6h 15.4G

Table 5.14 – Time and memory requirements. We show total running time and peak

memory per GPU (“mem.”) when running ViT-S/16 DINO models on two 8-GPU machines.

We report top-1 ImageNet val acc with linear evaluation for several variants of multi-crop,

each having a different level of compute requirement.

of computational requirements [Caron et al., 2020, Grill et al., 2020]. Our code is available

to train self-supervised ViT on a limited number of GPUs.

5.6.5 Training with small batches

bs 128 256 512 1024

top-1 57.9 59.1 59.6 59.9

Table 5.15 – Effect of batch sizes.

Top-1 with k-NN for models trained

for 100 epochs without multi-crop.

In Table 5.15, we study the impact of the batch size on the features obtained with DINO.

We also study the impact of the smooth parameter m used in the centering update rule

of Eq. (5.4) in Table 5.13. We scale the learning rate linearly with the batch size [Goyal

et al., 2017]: lr = 0.0005 ú batchsize/256. Table 5.15 confirms that we can train models

to high performance with small batches. Results with the smaller batch sizes (bs = 128)

are slightly below our default training setup of bs = 1024, and would certainly require to

re-tune hyperparameters like the momentum rates for example. Note that the experiment

with batch size of 128 runs on only 1 GPU. We have explored training a model with a batch

size of 8, reaching 35.2% after 50 epochs, showing the potential for training large models

that barely fit an image per GPU.

5.6.6 Ablation study on the projection head

Similarly to other self-supervised frameworks, we observe that using a projection

head [Bachman et al., 2019] improves greatly the accuracy of our method. The projection
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head starts with a n-layer multi-layer perceptron (MLP). The hidden layers are 2048d and

are with Gaussian error linear units (GELU) activations. The last layer of the MLP is

without GELU. Then we apply a ¸2 normalization and a weight normalized fully connected

layer [Chen and He, 2020, Salimans and Kingma, 2016] with K dimensions. This design

is inspired from the projection head with a “prototype layer” used in SwAV [Caron et al.,

2020]. We do not apply batch normalizations. In this set of experiments, we study the

effect of the l2-normalization bottleneck, the number of linear layers in the projection

head, the output dimension K, the choice of activation unit and the impact of adding batch

normalizations.

BN-free system. Unlike standard convnets, ViT architectures do not use batch normal-

izations (BN) by default. Therefore, when applying DINO to ViT we do not use any BN

ViT-S, 100 epochs heads w/o BN heads w/ BN

k-NN top-1 69.7 68.6

also in the projection heads. In this table we evaluate the impact of adding BN in the heads.

We observe that adding BN in the projection heads has little impact, showing that BN is not

important in our framework. Overall, when applying DINO to ViT, we do not use any BN

anywhere, making the system entirely BN-free. This is a great advantage of DINO + ViT to

work at state-of-the-art performance without requiring any BN. Indeed, training with BN

typically slows down trainings considerably, especially when these BN modules need to be

synchronized across processes [Caron et al., 2019, 2020, Grill et al., 2020, He et al., 2020].

L2-normalization bottleneck in projection head. We illustrate the design of the pro-

jection head with or without l2-normalization bottleneck in Figure 5.9. We evaluate the

# proj. head linear layers 1 2 3 4

w/ l2-norm bottleneck – 62.2 68.0 69.3

w/o l2-norm bottleneck 61.6 62.9 0.1 0.1

accuracy of DINO models trained with or without l2-normalization bottleneck and we vary

the number of linear layers in the projection head. With l2 bottleneck, the total number

of linear layers is n + 1 (n from the MLP and 1 from the weight normalized layer) while

without bottleneck the total number of linear layers is n in the head. In this table, we report

ImageNet top-1 k-NN evaluation accuracy after 100 epochs pre-training with ViT-S/16.

The output dimensionality K is set to 4096 in this experiment. We observe that DINO

training fails without the l2-normalization bottleneck when increasing the depth of the

projection head. L2-normalization bottleneck stabilizes the training of DINO with deep

projection head. We observe that increasing the depth of the projection head improves
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Figure 5.9 – Projection head design w/ or w/o l2-norm bottleneck.

accuracy. Our default is to use a total of 4 linear layers: 3 are in the MLP and one is after

the l2 bottleneck.

Output dimension. In this table, we evaluate the effect of varying the output dimension-

ality K. We observe that a large output dimensionality improves the performance. We note

K 1024 4096 16384 65536 262144

k-NN top-1 67.8 69.3 69.2 69.7 69.1

that the use of l2-normalization bottleneck permits to use a large output dimension with

a moderate increase in the total number of parameters. Our default is to use K equals to

65536 and d = 256 for the bottleneck.

GELU activations. By default, the activations used in ViT are Gaussian error linear units

(GELU). Therefore, for consistency within the architecture, we choose to use GELU also

ViT-S, 100 epochs heads w/ GELU heads w/ ReLU

k-NN top-1 69.7 68.9

in the projection head. We evaluate the effect of using ReLU instead of GELU in this table

and observe that changing the activation unit to ReLU has relatively little impact. It is

likely that re-tuning the hyperparameters would allow to recover the 0.8% performance gap

between our default and the heads with ReLU.
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crops 2 ◊ 2242 2 ◊ 2242 + 6 ◊ 962

eval k-NN linear k-NN linear

BYOL 66.6 71.4 59.8 64.8

SwAV 60.5 68.5 64.7 71.8

MoCo-v2 62.0 71.6 65.4 73.4

DINO 67.9 72.5 72.7 75.9

Table 5.16 – Multi-crop applied to different self-supervised frameworks. We report

top-1 accuracy on ImageNet for different methods using two different configurations of

multi-crop: (i) 2 ◊ 2242 refers to 2 global crops and no local crops, (ii) 2 ◊ 2242 + 6 ◊ 962

refers to 2 global crops and 6 local crops of resolution 96 by 96 pixels.

5.6.7 Ablation study on multi-crop

In this section, we study a core component of DINO: multi-crop training which we

introduced in previous Chapter 4 (see Section 4.2.4).

Range of scales in multi-crop. We use the RandomResizedCrop in PyTorch for

generating the different views. We sample two global views with scale range (s, 1) before

(0.05, s), (s, 1), s: 0.08 0.16 0.24 0.32 0.48

k-NN top-1 65.6 68.0 69.7 69.8 69.5

resizing them to 2242 and 6 local views with scale sampled in the range (0.05, s) resized to

962 pixels. Note that we arbitrarily choose to have non-overlapping scaling range for the

global and local views following the original design of SwAV. However, the ranges could

definitely be overlapping and experimenting with finer hyperparameters search could lead

to a more optimal setting. In this table, we vary the parameter s that controls the range of

scales used in multi-crop and find the optimum to be around 0.3 in our experiments. We

note that this is higher than the parameter used in SwAV which was of 0.14.

Multi-crop in different self-supervised frameworks. Finally, we compare the impact

of multi-crop with ViT trained with different recent self-supervised learning frameworks,

namely MoCo-v2 [Chen et al., 2020e], BYOL [Grill et al., 2020] and SwAV [Caron et al.,

2020]. For fair comparisons, all models are pretrained either with two 2242 crops or with

multi-crop [Caron et al., 2020] training, i.e. two 2242 crops and six 962 crops for each

image. We report k-NN and linear probing evaluations after 300 epochs of training. In

Table 5.16, we observe that multi-crop does not benefit all frameworks equally, which has
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been ignored in benchmarks considering only the two crops setting [Chen and He, 2020].

The effectiveness of multi-crop depends on the considered framework, which positions

multi-crop as a core component of a model and not a simple “add-ons” that will boost

any framework the same way. Without multi-crop, DINO has better accuracy than other

frameworks, though by a moderate margin (1%). Remarkably, DINO benefits the most

from multi-crop training (+3.4% in linear eval). Interestingly, we also observe that the

ranking of the frameworks depends on the evaluation protocol considered.
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Chapter 6

Conclusion

In conclusion, we summarize the contributions presented in this manuscript before

giving an overview of some of the open problems and challenges in the field of self-

supervised learning.

6.1 Summary of Contributions

Deep clustering. In Chapter 3, we have introduced deep clustering and presented an

extension to this framework: the DeeperCluster method. DeeperCluster iterates between

clustering with k-means the features produced by the network and updating its weights by

predicting the cluster assignments as pseudo-labels. If trained on large uncurated datasets

like YFCC100M for example, it achieves high performance on several standard transfer

tasks. Indeed, DeeperCluster outperforms the state of the art at the time of the publication

and is getting very close to supervised methods, while not surpassing them. We have

identified at the end of Chapter 3 the main limitations of deep clustering (see Section 3.4)

that we would need to overcome with the goal of eventually outperforming supervised

pre-training. These limitations include inefficiency, limited scalability, under-explored

dependence in the data transformations and use of empirical tricks to avoid feature collapse.

SwAV. Subsequently, in Chapter 4, we have proposed a new and improved model for

self-supervised learning, SwAV, that overcomes the limitations of deep clustering. As a

matter of fact, SwAV also overcomes the problems posed by the popular contrastive imple-

mentations described in Section 2.3.2. SwAV is an implementation of the view-invariant

feature learning paradigm (introduced in Section 2.3) that, unlike contrastive methods,

does not rely on direct feature comparison. This makes it more practical as it does not
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need “negative pairs”, large mini-batches or memory banks. Within our SwAV framework,

we also introduce multi-crop training which encourages the emergence of holistic repre-

sentations through a local-to-global matching. We show with extensive experiments that

multi-crop allows important performance gains. At the time of its publication in Caron

et al. [2020], SwAV is state-of-the-art on ImageNet among the self-supervised learning

methods. Perhaps more importantly, we show that SwAV features transfer very well to

several downstream tasks on different datasets, outperforming supervised features on all

the considered transfer benchmarks. Finally, we have assessed SwAV in an uncontrolled

setting by training on uncurated “in the wild” images. We have shown in this context the

importance of scaling both dataset size and model capacity to make up for the lack of

curation. Our final large-scale SwAV model, trained with a 1.3B parameters architecture

on 1B random images from Instagram, achieves 84.2% top-1 accuracy on ImageNet. This

confirms that self-supervised learning can work in a real world setting to some extent.

Self-supervised transformers. Finally, in Chapter 5, we have shown the potential of

self-supervised pre-trained Vision Transformers, achieving performance that are compa-

rable with the best convnets specifically designed for this setting while using much less

parameters. We have also seen emerged two properties that can be leveraged in future

applications: the quality of the features in k-NN classification has a potential for image

retrieval, matching or similarity search. Second, the presence of information about the

scene layout in the features can also benefit weakly supervised or fully unsupervised image

segmentation. However, the main result of Chapter 5 is to show that we have evidence

that self-supervised learning could be the key to developing a BERT-like model based on

transformer architectures, which would allow to push the limits of visual features.

6.2 Open Problems in Self-Supervised Learning

The last decade has seen tremendous progress in self-supervised learning. At this point

in time and at the end of this manuscript, one is entitled to ask if this is a solved field. Our

(subjective) answer to that is a clear no because much remains to be done to tackle the open

challenges raised by self-supervised learning. Also, we remark that most of the research so

far has been conducted in very controlled settings, still far from real-world applications.

In this final section, we give an overview of some of the open questions and remaining

challenges in self-supervised learning.
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6.2.1 Self-supervised versus supervised pre-training

First of all, in this manuscript (see Sections 4.3.2 and 5.5.3 for example), consistently

with other works in the self-supervised community [He et al., 2020, Misra and Maaten,

2020], we have seen that self-supervised pre-training leads to better performance on down-

stream tasks compared to supervised methods. However, these results might not imply that

we can replace supervised pre-training with self-supervised one just yet. This is because

at the moment, the current self-supervised systems are much slower than the supervised

ones to learn representations of equal quality. Self-supervised models require much more

compute and epochs to reach convergence compared to supervised training on ImageNet.

The performance improvements observed with self-supervised learning is probably not

significant enough to justify the need for such an increase in the compute requirements. At

this stage, if there are some labels available then it is likely better to use them. Hopefully,

future improvements will make self-supervised pre-training more efficient and, as a result,

more accessible to the community.

Actually, improving pre-training efficiency has been the focus of a collaboration con-

ducted during the time of the PhD program but not presented in this manuscript (see As-

sran et al. [2021]). In this work, we propose a semi-supervised approach inspired by

SwAV [Caron et al., 2020], that achieves state-of-the-art performance on ImageNet with

either 10% or 1% of the training instances labeled while using only 200 epochs of training,

which is 4◊ less than previous works. These results suggest that, at least in the short term,

the best way to go might not be purely self-supervised but to better leverage small amount

of annotated data.

6.2.2 Towards real-world self-supervised learning

In this section, we mention several directions to make self-supervised learning work in

more realistic scenario.

Uncurated data. A major limitation of the current self-supervised systems is that they

are typically trained in the highly controlled setting of using ImageNet without labels.

However, as mentioned at length in this manuscript, this does not reflect a real-world

situation of unsupervised learning since removing the labels only removes part of the

human supervision. We have shown in Sections 3.3 and 4.5 some trainings on raw, “never-

before-labeled” images but the conclusions of our study is arguably slightly underwhelming.

Indeed, our results show that it is possible to learn good representations from uncurated

data but they also exhibit a strong diminishing return with the dataset scale. It is possible
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that we would need to completely re-think our current self-supervised frameworks to make

systems work better in uncontrolled settings with long tail distributions.

Actually, the current most successful methods are all declination of the same view-

invariant paradigm, which might have led recently to certain performance saturation in the

benchmarks. Ways to move forward might be to seek progress in orthogonal directions

(this is what we propose in Chapter 5 by considering self-supervised features with Vision

Transformers) or to explore different and original self-supervised paradigms.

Unsupervised recognition tasks. The well-known recipe used in this manuscript to

solve visual tasks is twofold: first a network is pre-trained without using any annotations

before being transferred to a downstream task. While the first stage does not rely on

annotations, the second one often still requires a lot of labels, especially when transferring

to dense recognition tasks. Indeed, even if networks trained with this paradigm have

shown good performance on dense-level recognition problems such as object detection,

they need to be heavily adapted to these tasks, which is not practical in real applications. In

contrast, we have seen in Chapter 5 that it is possible to obtain excellent performance for

ImageNet classification task without any finetuning (see Section 5.4), which is akin to a

zero-shot setting. This probably can be explained by the fact that methods developed in

this manuscript work with holistic image representations, which are especially suited for

global tasks like classification. This raises the question if we can obtain similar zero-shot

results on dense tasks. Our preliminary results in Chapter 5 suggest that unsupervised dense

segmentation, matching or localization might be possible, which can represent promising

future directions.

Multi-modal learning. The models developed in this manuscript operate on unlabeled

images only. However most real applications are multi-modal in the sense that they

deal with data coming from different modalities. For example a video uploaded on a

social media platform will usually come with one of several additional data stream like

a soundtrack, a caption, some hashtags, geolocalization coordinates, emojis, etc. This

motivates for developing better multi-modal systems capable of ingesting different media

of data. Intuitively, these plural modalities should complement one another and could allow

to learn richer and more generic representations.

6.2.3 Is self-supervised learning fully unsupervised?

Finally, we can question if the research in self-supervised learning is really fully

unsupervised. In some aspects, we can argue that self-supervised learning still relies on

some human labor and is not totally label-agnostic. For example, we still use a significant
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amount of labels during hyperparameter searches and model explorations to develop self-

supervised systems.

Handcrafted data transformations. In most modern and successful self-supervised ap-

proaches, the data augmentation scheme strongly drives the performance of the system.

Indeed, the details of view generation are crucial and require a careful design. For ex-

ample, Chen et al. [2020b] have conducted extensive ablations on the data augmentation

pipeline which has boosted considerably the performance on ImageNet pre-training. These

optimized pipelines are tuned on a certain kind of data and downstream tasks and are not

likely to transfer to other domains (medical images for example). In addition, they are very

handcrafted. We can criticize that the labor needed to annotate the data is being replaced

by a different kind of labor which consists in manually tuning the data transformations to

the considered task and application. It would be interesting to automate the search for an

optimal data augmentation pipeline, in a similar manner as Auto-augment [Cubuk et al.,

2018] in supervised learning.

Model selection. In standard supervised learning, model selection is usually performed

by looking at the loss value on a held-out validation set. In self-supervised learning though,

the loss is not necessarily aligned with the final objective which is to learn representations

useful for downstream tasks. Thus, the model is typically validated by looking at the

transfer performance of the network to supervised downstream tasks. As a result, the

current self-supervised methods still use some supervision in a sense, and might actually be

over-fitted to the supervised task used for validation. A future and challenging research

question could be to find ways to select self-supervised models without using supervision.
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