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The Role of Progress-Based Intrinsic Motivation

in Learning

A B S T R A C T

Intrinsic motivation – the desire to do things for their inherent joy and
pleasure – has received its first share of scientific attention over 70

years ago, ever since we saw monkeys solving puzzles for free. Since
then, research on intrinsic motivation has been steadily gaining mo-
mentum. We have come to understand, in the context of learning and
discovery, that intrinsic motivation (namely, intrinsically motivated
information-seeking) is foundational for the biological and technologi-
cal success of our species. But where does intrinsic motivation to learn
and seek information come from? Today, with the thriving synergy be-
tween perpetually advancing fields of psychology, neuroscience, and
computer science, we are well positioned to investigate this question.

The Learning Progress Hypothesis (LPH) proposes that humans are
motivated by feelings of and/or beliefs about progress in knowledge
(including progress in competence). In artificial learners, progress-
based intrinsic motivation enables autonomous exploration of the
environment (including the agent’s own body), resulting in better
performance, more efficient learning, and richer skill sets. Due to simi-
lar computational challenges facing artificial and biological learners,
researchers have proposed that progress-based intrinsic motivation
might have evolved in humans to help us transition from babies with
few skills and little knowledge to knowledgeable grownups capable of
performing many sophisticated tasks. The Learning Progress Hypoth-
esis (LPH) is attractive, not only because it is consistent with several
studies of human curiosity, but also because it resonates with existing
theories on metacognitive self-regulation in learning. However, the LPH

has not been extensively studied using behavioral experimentation.
This thesis provides an empirical examination of the LPH. We in-

troduce a novel experimental paradigm where participants explore
multiple learning activities, some easy, others difficult. The activities
involve guessing the binary category of randomly presented stimuli.
To let their intrinsic motivation shine, we did not provide any material
incentives encouraging specific behaviors or strategies – we simply
observed which activities people engaged in and how their knowl-
edge about these activities unfolded over time. We present statistical
analyses and a computational model that support the LPH.

This thesis also suggests ideas for future investigations into progress-
based motivation. These ideas are inspired by a pilot study in which
we asked participants to practice a naturalistic sensorimotor skill (a
video game) over the course of 3 sessions spanning 5 days. At the end
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of each session, participants reported their subjective judgments of
past and future progress, as well as their evolving beliefs about their
perceived competence, self-efficacy beliefs, and intrinsic motivation. In
support of the LPH, participants’ subjective judgments correlated with
the objective improvement. However, contrary to the LPH’s prediction,
objective and subjective progress measures did not show reliable rela-
tionships with verbal and behavioral measures of intrinsic motivation.
Instead, progress measures were in strong relationships with beliefs
about task learnability, which in turn predicted intrinsic motivation.
Based on these findings, we suggest a novel mechanism in which
learning progress interacts with intrinsic motivation via subjective
beliefs.

We conclude the thesis with an extended discussion of our find-
ings, where we examine some limitations of our experiments and
propose promising future steps. In summary, we believe the behav-
ioral paradigms introduced in this thesis should be reused to not only
replicate our results, but also to advance the scientific research of
intrinsically motivated information-seeking.

Keywords: intrinsic motivation / information-seeking / learning
progress / curiosity / interest / self-regulated learning / active learn-
ing

Flowers Laboratory | INRIA

200 Av. de la Vieille Tour, 33405 Talence, France

iii

https://flowers.inria.fr/
https://www.inria.fr/fr


Le rôle de la motivation intrinsèque basée sur

le progrès dans l’apprentissage

R É S U M É

La motivation intrinsèque - le désir de faire les choses pour la joie
et le plaisir inhérent qu’ils procurent - a suscité l’intérêt des cher-
cheurs pour la première fois il y a plus de 70 ans, en voyant des
singes résoudre des énigmes gratuitement. Depuis, la recherche sur
la motivation intrinsèque n’a cessé de prendre de l’ampleur. Dans le
contexte de l’apprentissage et des comportements de découverte, il
est aujourd’hui entendu , que la motivation intrinsèque (c’est-à-dire la
recherche intrinsèquement motivée d’informations) est fondamentale
au progrès biologique et technologique de notre espèce. Mais d’où
vient la motivation intrinsèque pour apprendre et pour rechercher des
informations ? Aujourd’hui, avec la synergie florissante entre les do-
maines en constante évolution de la psychologie, des neurosciences et
de l’informatique, nous sommes en capacité d’étudier cette question.

L’hypothèse de progrès d’apprentissage (Learning Progress Hypothesis,
ou LPH en anglais) propose que les humains sont motivés par leurs
sentiments et/ou croyances relatifs à leurs progrès de connaissances
(y compris les progrès dans les compétences). Chez les apprenants ar-
tificiels, la motivation intrinsèque basée sur le progrès d’apprentissage
permet une exploration autonome de l’environnement (y compris le
propre corps de l’agent), ce qui se traduit par de meilleures perfor-
mances, un apprentissage plus efficace et un ensemble de compétences
plus riches. En raison des défis informatiques similaires auxquels sont
confrontés les apprenants artificiels et biologiques, des chercheurs
ont proposé que la motivation intrinsèque basée sur le progrès ait pu
évoluer chez l’Homme, pour nous aider à passer de bébés avec peu
de compétences et peu de connaissances, à des adultes bien informés
capables d’effectuer de nombreuses tâches sophistiquées. La LPH est
attrayante, non seulement parce qu’elle est cohérente avec plusieurs
études sur la curiosité humaine, mais aussi parce qu’elle résonne
avec les théories existantes sur l’autorégulation métacognitive dans
l’apprentissage. Cependant, la LPH n’a pas été largement étayée par
l’expérimentation comportementale.

Cette thèse propose un examen empirique de la LPH. Nous introdui-
sons un nouveau paradigme expérimental où les participants explorent
plusieurs activités d’apprentissage, certaines faciles, d’autres difficiles.
Les activités consistent à deviner la catégorie binaire de stimuli pré-
sentés au hasard. Pour laisser briller leur motivation intrinsèque, nous
n’avons fourni aucune incitation matérielle encourageant des compor-
tements ou des stratégies spécifiques - nous avons simplement observé
dans quelles activités les personnes s’engageaient et comment leurs
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connaissances sur ces activités se développaient au fil du temps. Nous
présentons des analyses statistiques et un modèle de calcul prenant
en charge la LPH.

Des idées pour de futures investigations sur la motivation basée sur
le progrès sont également proposées dans cette thèse. Ces idées sont
inspirées d’une étude pilote dans laquelle nous avons demandé aux
participants d’ entraîner une compétence sensorimotrice écologique
(un jeu vidéo) au cours de 3 sessions réparties sur 5 jours. À la fin de
chaque session, les participants ont rapporté leurs jugements subjectifs
sur les progrès passés et futurs, mais aussi leurs croyances dans
le temps concernant leur compétence perçue et leur auto-efficacité,
et leur motivation intrinsèque. À l’appui de la LPH, les jugements
subjectifs des participants étaient en corrélation avec l’amélioration
objective. Cependant, contrairement à la prédiction de la LPH, les
mesures de progrès objectives et subjectives n’ont pas montré de
relations fiables avec les mesures verbales et comportementales de la
motivation intrinsèque. Au lieu de cela, les mesures de progrès étaient
en forte relation avec les croyances sur l’apprentissage des tâches,
qui à leur tour prédisaient la motivation intrinsèque. Sur la base de
ces résultats, nous suggérons un nouveau mécanisme dans lequel les
progrès d’apprentissage interagissent avec la motivation intrinsèque
via des croyances subjectives.

Nous concluons la thèse par une discussion approfondie de nos
résultats, où nous examinons certaines limites de nos expériences et
proposons des étapes futures prometteuses. En résumé, nous pensons
que les paradigmes comportementaux introduits dans cette thèse
devraient être réutilisés non seulement pour reproduire nos résultats,
mais aussi pour faire avancer la recherche scientifique sur la recherche
d’informations intrinsèquement motivée.

Mots-clés : motivation intrinsèque / recherche d’informations / pro-
grès de l’apprentissage / curiosité / intérêt / apprentissage autorégulé
/ apprentissage actif
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R É S U M É L O N G

Au cours des trois dernières décennies, le domaine multidisciplinaire
des sciences cognitives a connu une intégration approfondie entre
l’intelligence artificielle (en particulier l’apprentissage automatique),
la psychologie et les neurosciences. Cela est dû en partie au sujet pour-
suivi par ces trois sous-disciplines connues sous le nom d’apprentissage
actif - le processus dans lequel un agent exerce un contrôle sur les si-
tuations d’apprentissage qu’il rencontre. Il est de plus en plus reconnu
que l’apprentissage actif est essentiel pour rendre les agents artificiels
plus autonomes. Parallèlement, les psychologues et neuroscientifiques
s’intéressent de plus en plus aux processus décisionnels responsables
de l’allocation des ressources cognitives (par exemple, l’attention). Le
défi pour les chercheurs en cognition artificielle et humaine a été de
comprendre comment l’apprentissage actif peut être organisé pour
permettre une acquisition de connaissances efficace et ouverte dans le
contexte d’environnements complexes et de ressources limitées.

Un concept crucial invoqué dans la littérature sur l’apprentissage ac-
tif est la motivation intrinsèque. La motivation intrinsèque fait référence
à un type particulier d’incitation (ou de récompense) pour s’engager
dans des situations d’apprentissage spécifiques. Elle peut être opposée
à la motivation extrinsèque, qui oblige les agents à s’engager dans des
situations d’apprentissage sur la base de leur utilité extrinsèque, car
s’engager dans ces situations aide les agents à atteindre un résultat
dissociable. La curiosité et l’intérêt sont depuis longtemps reconnus
comme des manifestations de la motivation intrinsèque chez l’Homme.
Lorsque nous sommes curieux ou intéressés, nous sommes motivés
à rechercher des informations sans nous attendre à ce qu’elles nous
apportent de la nourriture ou de l’argent - nous voulons simplement
savoir et apprendre.

Cette thèse porte sur les mécanismes de l’apprentissage intrinsè-
quement motivé chez l’Homme. Les apprenants actifs améliorent
leurs connaissances en recherchant et en traitant des informations.
La recherche humaine d’informations intrinsèquement motivée est
organisée, comme en témoignent des curiosités spécifiques et des inté-
rêts pour des sujets particuliers. Cependant, nous manquons toujours
d’une description complète de ce qui détermine la curiosité humaine
et l’intérêt pour le monde, qui offrent bien plus que ce que tout in-
dividu peut éventuellement apprendre. Qu’est-ce qui détermine la
curiosité ou l’intérêt des humains lorsqu’ils sont libres d’explorer le
monde ?

Une proposition convaincante, issue de l’intelligence artificielle,
soutient que les humains sont motivés à s’engager dans des situa-
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tions d’apprentissage censées améliorer leurs connaissances. Cette
idée - connue sous le nom de l’hypothèse de progrès d’apprentissage (ou
Learning Progress Hypothesis, ou LPH, en anglais) - est plutôt nuan-
cée. Premièrement, il existe différents types de connaissances que les
apprenants capables, comme les humains, peuvent espérer amélio-
rer. Deuxièmement, il existe plusieurs façons d’estimer l’amélioration
des connaissances. Enfin, il existe plusieurs possibilités quant à la
façon dont les jugements sur l’amélioration des connaissances peuvent
affecter la motivation à s’engager dans des situations d’apprentissage.

Cette thèse poursuit deux objectifs principaux. Premièrement, elle
vise à présenter et à discuter des preuves empiriques de la LPH. Deuxiè-
mement, elle vise à explorer le mécanisme potentiel par lequel les
jugements de progrès sont représentés et comment ces jugements
interagissent avec la motivation à poursuivre des activités non instru-
mentales.

Nous commençons par identifier les fonctions computationnelles
de la motivation intrinsèque (Chapitre 2). Une fonction importante est
d’aider les apprenants autonomes à accumuler des répertoires vastes et
variés de compétences. Les apprenants autonomes sont confrontés au
problème de la génération, de la sélection et de l’apprentissage de leurs
propres tâches. Dans des environnements suffisamment complexes,
l’espace des tâches est vaste et hiérarchisé (c’est-à-dire que certaines
tâches ne peuvent être accomplies que si l’apprenant a maîtrisé des
tâches de niveau inférieur, par exemple, apprendre à marcher avant
de pouvoir s’approcher de différents objets). Un bon système de
motivation intrinsèque garantit que l’agent tente des tâches adaptées
à ses capacités actuelles, et en même temps pousse les agents à se
mettre au défi au-delà de ce qui est déjà familier.

Ensuite, dans le Chapitre 3, nous discutons plus en détail les raisons
pour lesquelles l’accumulation de connaissances (y compris l’accumu-
lation de compétences) est avantageuse d’un point de vue évolutif
et passons en revue la littérature psychologique et neuroscientifique
sur l’apprentissage intrinsèquement motivé chez l’Homme. Là, nous
discutons des preuves existantes en faveur de l’idée que les humains
valorisent l’information comme un bien en soi (c’est-à-dire au-delà de
sa valeur instrumentale). Nous examinons ensuite les facteurs situation-
nels qui déclenchent la recherche d’informations non instrumentales
(c’est-à-dire la curiosité et l’intérêt) et expliquons les mécanismes af-
fectifs/motivationnels par lesquels la valeur intrinsèque de l’informa-
tion renforce le processus d’acquisition autonome des connaissances.
Ici aussi, nous fournissons une introduction complète de la LPH et
évaluons certains travaux existants sur la recherche d’informations
relatives à cette hypothèse. De plus, nous identifions le manque de
preuves empiriques pour la LPH, préparant ainsi le terrain pour les
expériences comportementales décrites dans les chapitres suivants.
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Le Chapitre 4 introduit un nouveau paradigme comportemental
conçu pour capturer le processus d’apprentissage autorégulé par
lequel les humains explorent un espace de tâches. La tâche expérimen-
tale consiste en 4 activités d’apprentissage dans lesquelles l’apprenant
peut acquérir une règle de généralisation pour catégoriser les exem-
plaires de l’ensemble des stimuli de l’activité. Chaque activité est
représentée par un ensemble de stimuli composé de stimuli visuels, re-
présentés comme des personnages de monstres de dessins animés, qui
varient selon une ou deux dimensions. Chaque ensemble de stimuli
est associé à une règle de catégorisation unique (que les participants
ne connaissent pas à l’avance, mais peuvent apprendre en interagis-
sant avec l’activité correspondante). Les activités varient en difficulté,
allant d’une activité très simple où les stimuli peuvent être classés
en fonction d’une seule dimension variable, à une activité plus dif-
ficile où les stimuli varient selon deux dimensions qui déterminent
conjointement la catégorie du stimulus. Fondamentalement, l’une des
activités est non généralisable, car elle n’a pas de règle pour la catégo-
risation des stimuli. Cette activité impossible à apprendre a été incluse
pour représenter des tâches de la vie réelle qui sont concevables, mais
qui ne fournissent aucun progrès d’apprentissage car elles sont soit
trop difficiles, soit carrément impossibles. Les participants ont eu un
nombre limité d’interactions avec les activités, mais ils étaient libres
de choisir l’activité à entreprendre à tout moment.

Dans cette étude, nous montrons que les individus varient considéra-
blement dans leurs styles d’exploration. Fait important, de nombreux
participants ont décidé de se mettre au défi d’aller au-delà des acti-
vités faciles à apprendre et ont passé du temps sur des problèmes
plus difficiles. De plus, en utilisant un modèle choix-utilité multivarié
et les données de choix d’activité, nous avons ajusté la sensibilité de
chaque participant à la compétence et aux progrès d’apprentissage.
Nos comparaisons de modèles révèlent que les participants avaient
tendance à choisir des activités basées sur ces deux composantes,
fournissant un soutien empirique a la LPH. Nous montrons également
que les participants qui étaient particulièrement sensibles aux progrès
d’apprentissage apprenaient mieux les activités apprenables en évitant
l’activité impossible.

Dans notre seconde expérimentation (Chapitre 5), nous nous sommes
attachés à approfondir le mécanisme métacognitif sous-jacent au calcul
des progrès d’apprentissage. Nous introduisons un autre paradigme
comportemental où les participants sont chargés de pratiquer une
activité sensorimotrice présentée comme un jeu vidéo, appelée Lunar
Lander. Notre tâche tente d’émuler le processus d’apprentissage natu-
raliste, dans lequel une activité est pratiquée sur plusieurs sessions et
peut être interrompue par d’autres tâches quotidiennes. Ainsi, nous
avons demandé aux participants de pratiquer le jeu sur 3 sessions
réparties sur 5 jours. Au cours de chaque séance d’entraînement, nous
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avons enregistré les taux de réussite des participants, ainsi que d’autres
mesures comportementales potentiellement utiles. Après chaque ses-
sion, nous avons administré un questionnaire sondant les participants
sur leurs sentiments concernant le progrès (ou détérioration) de la
compétence, les auto-évaluations de la compétence, diverses croyances
sur l’apprentissage de la tâche et la motivation intrinsèque concer-
nant la tâche. Aussi, à la fin de chaque session, les participants se
voyaient proposer une pratique facultative. Cela a servi de mesure
comportementale de la motivation intrinsèque - accepter une pratique
facultative ne fournit aucune incitation, autre que de profiter du jeu
ou de s’améliorer.

Les résultats de cette étude montrent que les gens sont sensibles aux
progrès objectifs des compétences lorsqu’ils portent des jugements
subjectifs sur les progrès. Nous montrons également que l’améliora-
tion subjective et objective est fortement corrélée avec les croyances
subjectives sur l’apprentissage de la tâche - à savoir que la pratique
de la tâche peut éventuellement conduire à la maîtrise, et que les
participants finiraient par apprendre la tâche. Alors que la corrélation
entre l’amélioration subjective / objective et la motivation intrinsèque
était faible et incohérente, cette dernière était fortement corrélée aux
croyances en matière d’apprentissage. Cela suggère que l’effet des
perceptions subjectives des progrès d’apprentissage est médiatisé par
des croyances explicites en matière d’apprentissage - une hypothèse
qui mérite d’être approfondie par des études complémentaires Enfin,
nous montrons que le taux de réussite et les croyances d’apprentissage
peuvent ensemble prédire la motivation intrinsèque, telle que mesurée
par l’acceptation de la pratique facultative. Précisément, nos résultats
suggèrent qu’une mauvaise performance sur une tâche peut entraîner
un engagement plus motivé intrinsèquement dans la tâche si elle est
considérée comme apprenable.

Dans le Chapitre 6, nous fournissons une discussion approfondie
des contributions empiriques à la lumière de l’ensemble de la thèse.
Nous évaluons de manière critique les deux paradigmes comportemen-
taux et suggérons des poursuites de travail pour les recherches futures.
Un élément important à retenir pour l’avenir est d’être conscient des
multiples processus d’apprentissage qui se déroulent en parallèle lors
de l’exploration autorégulée des activités d’apprentissage. Nous ap-
pelons également à des études plus approfondies des mécanismes
métacognitifs basés sur la performance des jugements de progrès, et
identifions deux défis importants que ces études impliquent. L’un des
défis consiste à comprendre les principes généraux qui sous-tendent
la représentation des tâches (c’est-à-dire comment les apprenants
représentent leur compétence dans des tâches qui fournissent des
retours épars et/ou fortement biaisés). Un autre défi consiste à com-
prendre l’étendue temporelle des jugements de progrès (c’est-à-dire
à quel(s) point(s) de référence les apprenants comparent-ils leurs
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niveaux actuels de performance). Dans l’ensemble, cette thèse peut
être considérée comme un tremplin vers une étude plus approfondie
de la motivation intrinsèque basée sur le progrès pour la recherche
d’informations.
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1
S H O RT O V E RV I E W O F T H E T H E S I S

1.1 introduction

The excellence of human mind reflects the complexity of our en-
vironment. While complex, our plane of existence is governed by
persistent physical laws, biological constraints, and social conventions.
The essence of human intelligence, individual and cultural, is the
ability to represent some of these regularities so that we can use them
to our advantage. In that sense, humans are not born intelligent, but
we come into the world with a capacity to grasp certain aspects of the
immense complexity that surrounds us. We explore. We discover. We
learn.

We learn the regularities of the world by observing it. However,
mere observation would not get us this far. Our embodiment is crucial:
we causally interact with our environments, and our interactions
produce a special kind of regularities – those between our actions
and observations. Learning how our actions affect our observations
enables us to seek information and not merely absorb it. The world is
far too complex to be represented entirely in our minds. Active control
of sensory experience, that is information-seeking, helps us to allocate
our limited cognitive resources efficiently across different domains of
the world’s structure.

Human information-seeking is organized. That is, we do not seek
any kind of information, but instead tend to pursue specific pieces
that we expect to be satisfactory. Satisfaction that we derive from
information can be explained in various ways. One way is to assume
that it derives from states that are clearly beneficial. For example,
knowing where to get water might be satisfactory because it helps us
to stay hydrated. However, sometimes information we expect to satisfy
us seems to do little except make us informed. Where is the benefit
of knowing what the other side of the moon looks like? This thesis
attempts to gain insights for understanding why and how information
can satisfy us when it has not extrinsic implications.

The pursuit of information for its inherent ability to make un-
known things known is sometimes called non-instrumental information-
seeking, because the sought out information does not appear to be
instrumental towards anything other than learning from that informa-
tion. Accordingly, motivation to seek non-instrumental information
is called intrinsic, because the seeking is of information is motivated
by what information can offer a good in itself. Humans recognize
when they seek information in an intrinsically motivated way. When

1
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this happens, we say that we are curious or interested. Whereas it is
easy to defend the affirmation that curiosity and interest do not occur
randomly and are not directed towards random pieces of informa-
tion, it is much more difficult to tell, in a general way, when they
occur and what they are about. To gain insights into non-instrumental
information-seeking, this thesis will explore causes and consequences
of mental states identified as curiosity and interest.

Scientific research of curiosity (and interest) has a long history and
a broad interdisciplinary outreach. Perhaps because the human mind
is so self-reflective and inquisitive, people have pondered about where
the desire to know comes from way before science was established
as a method for inquiry. Today, we find curiosity studied by scholars
from all kinds of fields, including philosophy, psychology, biology,
neuroscience, economics, and artificial intelligence. This speaks to the
undeniable importance and complexity of the subject. The current state
of scientific affairs makes the study of curiosity ever more exciting
and promising. The synergy between relatively recent technological
advents in neuroscience and computer science put us right on the
verge of understanding the nuts and bolts of curiosity and interest.

With an increasing appreciation for why non-instrumental information-
seeking is biologically adaptive (i.e., its function) comes a need to char-
acterize the cognitive mechanisms that conform to the implied func-
tions. The ultimate task is to compose a detailed neuro-computational
story describing how incoming sensory information interacts with
the existing knowledge to engender the subsequent motivation for
constructing and executing behavioral interventions. For completeness,
the story also needs to include an account of how the information
gathered through these behavioral interventions is evaluated with
respect to goals and needs of an individual. We might still be far away
from a complete story, but some important parts have already been
drafted. Inspired by the existing work, this thesis aims to contribute to
the developing narrative by proposing tentative computational and al-
gorithmic accounts of motivational and evaluative processes involved
in intrinsically motivated information-seeking.

Much of the research on curiosity and interest is purely epistemic –
scholars genuinely want to know why they want to know. However,
understanding the mechanisms of curiosity and intrinsic motivation
has several utilitarian ends. One of them is to develop artificial intelli-
gence systems capable of autonomous and open-ended development1.
The past couple of decades have made remarkable achievements in
designing algorithms that learn to perform specific tasks really well,
often on a superhuman level. Combining these learning algorithms
with mechanisms of intrinsic motivation holds a promise of producing

1 As we hope to demonstrate in our further discussions, developing autonomous
intelligent machines can also be viewed as a purely epistemic exercise. The goal of
creating a truly intelligent robot, for example, can be motivated by the very challenge
of the task itself, rather than to use this robot for something utiliterian.
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truly intelligent systems that can autonomously learn multiple tasks
equally well. Another important domain of applying the mechanistic
understanding of curiosity and interest is education. Curiosity and in-
terest have many positive effects on learning and persistence. Knowing
how curiosity and interest develop may help us design environments,
interventions, and pedagogical guidelines that promote learning at
schools and universities. Thus, in addition to potentially revealing
deep insights about the human nature, understanding how curiosity
(and interest) works may help us build better technology and better
society. Of course, the concrete objectives (see below) of this thesis
are much humbler in scope, but we believe they are important steps
(however small) on the journey towards greater aspirations.

This thesis has two main goals. First, we want to present and discuss
some original evidence for the so-called Learning Progress Hypoth-
esis (LPH), which concerns the computational mechanism underly-
ing intrinsically motivated learning. Initially inspired by work in
developmental robotics, this hypothesis states that the motivation to
engage in a particular learning activity depends on how much cog-
nitive improvement that activity is thought to offer. Assuming that
cognitive-improvement judgments come from a metacognitive process
of self-modeling, the second goal of this thesis is to advance novel
propositions regarding the process by which improvement judgments
arise and how they influence motivation.

1.2 methods and contributions

Our approach relies on behavioral experimentation inspired by ideas
from the computational literature on intrinsic motivation. Accordingly,
we begin by reviewing the diversity of computational mechanisms and
functions of intrinsically motivated artificial agents (Chapter 2). This
step allows us to accomplish several things. First, we introduce the
functional perspective on intrinsic motivation (what can intrinsic moti-
vation do? What problems can it solve?). Second, we identify various
assumptions and limitations associated with different approaches to
implementing intrinsic motivation in artificial agents. Additionally, the
principled classification of artificial systems according to mechanistic
and functional dimension allows us to recognize the relatively less
popular computational aspects of intrinsically motivated information-
seeking, suggesting interesting research directions.

We then proceed by discussing the relevant background details
of behavioral and neuroscientific research that motivate the central
hypothesis of this thesis (Chapter 3). Specifically, we first review a
substantial body of evidence promoting the idea that humans value
information due to its inherent ability to reduce uncertainty and
improve generalizable knowledge. Later, we identify the gap in our
understanding of the mechanisms by which intrinsically motivated
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(i.e., curiosity- or interest-driven) information-seeking contributes to
continual knowledge accumulation in humans. Finally, we call upon
the previously proposed yet very modestly contested hypothesis that
human motivation might be driven by learning progress.

After setting the scene, we bring forth the original contributions
of this thesis. We report on two behavioral experiments relying on
two original behavioral paradigms, respectively. Each paradigm was
designed to capture a specific facet of self-regulated learning. Both
experiments were administered online, allowing us to efficiently collect
the data. The first experiment was administered through the Amazon
Mechanical Turk platform, enabling us to crowdsource a large number
of participants in a short period of time. For the second experiment, we
designed our own platform for remote experimentation. This platform
enabled us to gain absolute control over the experimental procedure,
which was needed as the experiment required participants to carry
out a task on three separate days.

In the first experiment (Chapter 4), we were interested in what
determines activity choices in humans in a non-instrumental context.
To this end, we asked participants to explore a set of learning activities
with varying degrees of complexity. Importantly, participants were
free to choose to engage in any activity at any given time. We recorded
people’s responses in each activity, along with which activities they
chose. Participants were paid for participation, but none of their
behavior within the task influenced the amount of compensation.
To analyze the data, we relied (mostly) on regression analyses and
frequentist hypothesis testing. Additionally, the chapter proposes and
discusses different variants of a computational model of trial-by-trail
choice utility, inspired by the relevant work on the multi-armed bandit
problem. The models were based on multiple utility components
measuring latent intrinsic rewards. We fitted our models (separately
for each participant) using numerical optimization implemented in a
popular open-source software library. Finally, we relied on the Akaike
Information Criterion to compare different model forms in order to
infer which model provides the best account of our data. Although
nuanced, our analyses lend empirical support for the progress-based
motivation in self-regulated exploration and motivate the search for
more specific process accounts. The exact details of our methodology
in this study can be found in Chapter 4.

The second experiment (Chapter 5) is a stepping stone towards
a detailed process account of progress-based motivation, explaining
(1) how progress is computed and represented in a real-world sen-
sorimotor learning activity, and (2) what is the mechanism by which
this (potentially conscious) representation affects motivation. To begin
addressing these questions, we designed and piloted a naturalistic
video-game control task in which we can closely track participants’
performances during learning. In order to explore performance-related
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factors potentially influencing progress judgments, we asked partici-
pants to report their subjective feelings of improvement throughout
practice, which spanned several minutes across three days. We broke
down the practice time into multiple bouts in order to evaluate the
fidelity of self-reported improvement judgments over different time
periods. In addition to soliciting improvement judgments, we mea-
sured people’s perceptions of task load, different aspects of situation
intrinsic motivation, and situational learning/achievement beliefs. Be-
ing an exploratory study, we mostly relied on correlational analyses
and frequentist hypothesis testing of regression models. Our analyses
demonstrate the metacognitive sensitivity to feedback-based progress
and the relationships between progress, beliefs about learning, and
intrinsic motivation. Another significant finding of this study high-
lights the importance of considering the relationship between intrinsic
motivation and competence-related aspects of the self-concept. Further
details about this study are provided in Chapter 5.

Finally, in Chapter 6, we provide an extended discussion reflecting
on our results in the context of the state-of-the-art. We critically exam-
ine the conclusions drawn from our studies and evaluate the potential
of both behavioral paradigms for future research. Specifically, we call
for a more precise and transparent control of different kinds of learn-
ing processes induced by experimental tasks that provide behavioral
autonomy (e.g., what kinds of knowledge structures are involved?
what kinds of objective are pursued?). We also motivate further re-
search on feedback-based metacognitive evaluation of competence
progress, and emphasize two important challenges for this research:
(1) to understand the process of subjective task representation, and (2)
to understand the temporal extent of progress computation.





Part I

S TAT E O F T H E A RT



2
C O M P U TAT I O N A L M O D E L S O F I N T R I N S I C A L LY
M O T I VAT E D E X P L O R AT I O N

Although defining learning can be controversial (Barron et al., 2015),
in this chapter, we shall adopt a straightforward formulation from
ML (machine learning; Jordan and Mitchell, 2015), where learning is
defined as improvement on a task (or a set of tasks) with experience.
An artificial agent is said to have improved on a task if – according
to some well-defined criterion – it is able to perform the task better
than it did prior to receiving learning experience. Thus, what drives
improvement is a combination of the experience that comes in the
form of data that the agent can represent and the learning algorithm
(also called learning, or update rule) that specifies how the agent’s
innards change by processing the incoming data.

For a long time, major machine learning (ML) paradigms have been
elaborating increasingly efficient and powerful learning algorithms
that optimize pre-specified task criteria. For example, all traditional
algorithms of supervised learning (SL) and unsupervised learning (UL)
depend on a formally defined objective function which evaluates the
agent’s responses to stimuli and thus drives structural changes that
result in better responses in the future. While these algorithms can
learn many different tasks (e.g. image classification, natural language
processing, visual scene parsing etc.), they are typically trained on
datasets and objective functions assigned by the engineer. On the other
hand, active learning agents (Cohn, Ghahramani, and Jordan, 1995;
Thrun, 1994) feature algorithms that actively sample the data they
learn from. This is particularly the case in reinforcement learning (RL)
(Sutton and Barto, 2018) where agents have control over the sampled
data by virtue of causal interactions with their environments. Here,
learning is driven by an evaluative objective criterion which comes in
the form of a reward function. Like in SL and UL, what the agent ends
up learning is determined by a predefined criterion, but additional
complications arise because of the need to sample experiences that
help the agent improve. In realistic settings, only a tiny fraction of all
possible experiences are relevant, which can be further complicated
by the sparsity or deceptiveness of rewards (see Oudeyer, 2018).
Sampling relevant experiences while avoiding noise is an important
problem which will receive much attention in this chapter.

In contrast to ML agents that learn externally assigned tasks, biologi-
cal agents, particularly humans, often have autonomy not only in how
they choose experiences to learn tasks, but also in choosing what tasks
(i.e., goals) to learn. Moreover, we often seek information when we

8
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become curious/interested without being told what to be curious/in-
terested about. Seeking information out of curiosity, rather than to
achieve a separable outcome like food or money, is characterized in
psychology as intrinsically motivated (Harlow, Harlow, and Meyer,
1950; Ryan and Deci, 2000). Intrinsically motivated behavior – includ-
ing information-seeking – also includes pursuing self-selected goals
that do not have proximal benefits for biological fitness (e.g., learn-
ing tango or climbing Everest). In addition to information-seeking
phenomena like curiosity and interest, intrinsic motivation is also
linked to other hallmarks of human behavior, such as creativity (Gross,
Zedelius, and Schooler, 2020) and play (Chu and Schulz, 2020a).

Similarly to humans but unlike the traditional ML systems men-
tioned above, intrinsically motivated artificial agents control what
they learn through autonomous and non-instrumental sampling of
learning experiences. This sampling is achieved by considering various
features of what we call learning situations. To understand what we
mean by "learning situations" better and to illustrate how they relate
to various mechanisms and functions of intrinsic motivation, consider
the following scenarios:

• A robot trying random actions in its environment

• A rat exploring a maze to get familiar with its environment

• A toddler trying to build the tallest possible tower with toy
blocks

• A curious student raising his hand to pose a question to her
teacher

• A infant looking at where her mother is pointing

• A philosopher considering what book to read

All of these scenarios describe an agent interacting with its environ-
ment and thereby engaging in a learning situation1. What differenti-
ates these learning situations is the mechanism by which information
happens to be sampled. We can identify two core components of
computational mechanisms of curiosity-driven exploration. The first
component is the interface through which agents actively sample
learning situations, i.e. the space in which they can make choices. The
second component is the principle by which agents rank learning
situations within this space. We describe these components more thor-
oughly in Section 2.1 (Mechanisms), but the examples above already
illustrate that agents can sample learning situations completely at ran-
dom (like the robot), by considering what actions to take (like the rat),
what goals to pursue (like the toddler), or whom to ask (the student).

1 Of course, the agent may not learn upon every single interaction with the environment,
but any interaction creates a situation where learning could happen.
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Moreover, decisions between alternative actions, goals, or social peers,
may be based on prior knowledge (in case of the philosopher), driven
by competence (in case of the toddler), or influenced externally, e.g.,
by others (in case of the infant). Note different mechanisms illustrated
by the examples imply distinct consequences, suggesting that they
may serve distinct functions. In Section 2.2 (Functions), we organize
these functions along the axis of causal proximity to evolutionary fit-
ness: from the rat exploring a maze to the philosopher pondering the
most obscure questions. Finally, in Section 2.3 (Usages) we discuss the
relationships between artificial intelligence (AI) and psychology and
briefly survey some of the use cases for various intrinsically motivated
algorithms outside the realm of AI research.

2.1 mechanisms

As mentioned in the introduction, researchers in AI have proposed
a wealth of algorithms for intrinsically-motivated exploration. These
algorithms differ by how they address two related subproblems:

1. How to parameterize learning situations?

2. How to choose learning situations?

The first subproblem is addressed by defining the choice space
to drive exploration (Moulin-Frier and Oudeyer, 2013). Intuitively, a
choice space serves as a basis for accessing and assessing different
learning situations. Actualizing choices in a choice space results in
agent-environment interactions from which the agent can learn. This
chapter reviews three kinds of choice spaces that consist of either
actions, goal states, or social partners. These choice spaces correspond
to different ways in which learning situations can be parameterized.
Parameterizing learning situations on the basis of actions lets the agent
consider what can be learned by performing these actions; parameter-
izing learning situations on the basis of goals lets the agent consider
what can be learned by pursuing goals; parameterizing learning situ-
ations on the basis of social partners lets the agent consider what can
be learned by interacting with others. We discuss the main ways in
which choice spaces are specified and how they differ in Section 2.1.1
(Mechanisms/Exploration Bases).

Given a fully specified choice space, the agent can make decisions
within that space. Specifying this decision-making process addresses
the second subproblem. Agents choose what to learn by following a
certain strategy by which they assign “interestingness” to the avail-
able choices, thereby determining which learning situations are more
likely to be approached. For example, choices can be driven by fea-
tures of learning situations, such as the amount of knowledge a sit-
uation might bring or how novel it is; they can also be made com-
pletely at random e.g., Colas, Sigaud, and Oudeyer, 2018; Colas et al.,



2.1 mechanisms 11

2020. We provide a brief survey of these methods in Section 2.1.2
(Mechanisms/Exploration Strategies).

2.1.1 Exploration Bases

We stated before that a learning situation arises whenever an agent
interacts with its environment. Active interactions entail that the agent
has to decide how to act in a given context, and upon deciding and
acting, gets to observe the effects of its actions. How the agent explores,
therefore, depends primarily on how the agent contextualizes its
interactions. Specifically, the agent can explore by considering what
actions to take, what goals to pursue, or what social partners to engage.
Sets of actions, goals, or social partners provide a basis for comparing
potential interactions. The rest of this section reviews different ways
in which such bases are defined, used, and represented.

2.1.1.1 Exploring by Choosing Actions

One family of approaches considers agents which observe the current
state of the environment as a context, choose actions to execute, and
observe the resulting following state. Here, the objective of exploration
is to select the actions which generate informative data for learning an
internal model of causal dynamics through SL, UL or RL. For example,
several SL-based robotic agents (Baranes and Oudeyer, 2009; Caligiore
et al., 2008; Lefort and Gepperth, 2015; Oudeyer, Kaplan, and Hafner,
2007; Saegusa et al., 2009) maintain world models representing their
knowledge about either forward dynamics (inferring future states
from specific actions), or inverse dynamics (inferring the right actions
to bring about specific states), or both. These systems learn from obser-
vations borne out of the actions they choose. Therefore, exploration of
learning situations in these approaches corresponds to making choices
in the action space. Examples of action-space exploration can also be
found in RL settings (Bellemare et al., 2016; Bougie and Ichise, 2020a;
Burda et al., 2018; Haber et al., 2018; Jaderberg et al., 2016; Pathak
et al., 2017; Singh et al., 2010; Tang et al., 2017). In intrinsically mo-
tivated RL, agents learn behavioral policies by maximizing intrinsic
rewards (e.g., rewards based on state novelty as in (Tang et al., 2017);
on model prediction error as in (Pathak et al., 2017); or on surprise
as in (Berseth et al., 2021)). In these systems, actions that bring about
rewarding states get reinforced. Thus, the agent collects learning data
(state transitions) by ranking actions according to their capacity to
yield intrinsic rewards.

2.1.1.2 Exploring by Choosing Goals

Another family of approaches considers agents making choices in
a goal space instead of an action space. In the general case, such
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agents learn to represent and sample their own goals, i.e., they are
autotelic (Colas et al., 2021b). This family of approaches is referred to
as Intrinsically Motivated Goal-Exploration Processes (or IMGEP for
short; (Colas et al., 2021b; Forestier et al., 2020)). Here, the notion of
a goal is generalized: it refers to any set of constraints on any set of
future sensorimotor representations (Colas et al., 2021b). This abstract
conceptualization enables researchers to express all kinds of goals,
ranging from particular world states (e.g., coordinates of the agent’s
hand must be equal to a specific x, y, and z), to constraints on entire
behavioral trajectories and their linguistic descriptions (e.g., "water
the plant and then feed the dog"; (Colas et al., 2020)). In all cases,
goals are specified by two essential components: (1) goal representa-
tion that specifies the criteria and (2) goal-achievement function that
signals whether the criteria are met. Goals are usually represented as
numerical vectors (sometimes called goal embeddings) that comprise
abstract goal spaces from which specific goals can be sampled, while
goal achievement is evaluated using logical operations.

Examples of IMGEPs can be found in SL and UL contexts (Baranes,
2013; Forestier et al., 2020; Jordan and Rumelhart, 1992; Laversanne-
Finot, Péré, and Oudeyer, 2018; Moulin-Frier and Oudeyer, 2013;
Reinke, Etcheverry, and Oudeyer, 2020; Rolf, Steil, and Gienger, 2010;
Takahashi et al., 2017). In these frameworks, agents autonomously
engage in learning situations by attempting to reach self-selected goals.
Note that this process is markedly different from the one described
above, where the agent accesses learning situations by choosing among
the available actions. In IMGEPs, the agent can consider any goal it
may imagine, not just the states that its actions may bring about.

The domain of goal-conditioned RL works with agents that learn
action policies conditioned on goals. These agents base their actions
not only on the current state (as in traditional RL) but also the goal
encoding, which means they can act differently in the same situation
depending on what they are after (Schaul et al., 2016). Intrinsically mo-
tivated goal-conditioned RL builds upon that framework and allows
agents to generate their own goals (see Colas et al., 2021b, for a recent
review). Some notable examples include (Colas, Sigaud, and Oudeyer,
2018; Colas et al., 2019, 2020; Nair et al., 2018; Pong et al., 2020). While
there is a great deal of variability among strategies for sampling in-
teresting goals (see Section 2.1.2, Mechanisms/Exploration Strategies),
all of these goal-oriented agents make decisions in a goal space rather
than in an action space. Goal-oriented intrinsically motivated learning
has a number of advantages compared to action-oriented intrinsically-
motivated learning: it improves the performance and convergence
time when learning inverse models in high-dimensional spaces with
highly non-linear mappings (Baranes, 2013), it automatically generates
learning curricula from easy to more complex skills (Moulin-Frier,
Nguyen, and Oudeyer, 2014); finally, it enables hindsight learning
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(Andrychowicz et al., 2018; Colas et al., 2019; Forestier et al., 2020).
We discuss these positive practical implications in more detail in
Section 2.2, Functions.

2.1.1.3 Exploring by Choosing Social Partners

A few contributions have explored how IM can be coupled with social
interaction. The SGIM-ACTS architecture (Nguyen and Oudeyer, 2012)
considers an IM agent that is able to choose whether and when to
learn from a social peer or by autonomous goal generation, from
which social peer to learn, and what to ask the chosen social peer.
Interacting with the social peer becomes part of the choice space where
the agent makes decisions hierarchically: it first decides to interact or
to self-explore its own goals, then which social peer or self-generated
goal to focus on. The SGIM-ACTS framework was also applied to
agents equipped with a realistic computer model of the human vocal
tract and was able to reproduce the main developmental stages of
infant vocal development (Moulin-Frier, Nguyen, and Oudeyer, 2014).

More recent contributions consider social influence as intrinsic mo-
tivation for achieving coordination and communication in multi-agent
RL (Jaques et al., 2019). Other work in multi-agent RL have theorized
and demonstrated how competition and cooperation display intrinsic
dynamics, resulting in a naturally emergent curriculum (Baker et al.,
2020; Leibo et al., 2019).

In humans, not only does the choice of a social partner can be
intrinsically motivated, but the social partner can also influence intrin-
sic motivation. As humans often model the behavior of social peers,
curiosity of a social partner can "spread" onto the learner, making
them more likely to seek for information (Gordon, Breazeal, and Engel,
2015). This interplay between the curiosity of the agent and the behav-
ior of a curious social partner has not yet been modeled in artificial
systems. However, it can be a part of the mechanism which enables
agents to modulate their own exploratory behavior, not by sampling
instructions or directions from their peers, but by inferring mimicking
their motivations.

2.1.1.4 Representing Choice Spaces

Precisely what do choices in choice spaces represent? In the case of
action-space exploration, actions can represent micro-actions respon-
sible for transitions between temporally adjacent momentary states,
like pixel images (e.g., Bellemare et al., 2016; Pathak et al., 2017). In
this case, the agent can only learn from short-term transitions which
limits their ability to efficiently learn regularities spanning larger time
scales2. However, the agent can sample learning situations by making

2 Model-free RL agents (e.g., Bellemare et al., 2016; Pathak et al., 2017) do not learn
from the transitions per se – they learn from rewards. Specifically, the agent usually
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decisions in the space of macro-actions (e.g., action-policies), rather
than micro-actions, which enables exploration of more temporally
extended effects of its actions (see Baranes, 2013).

In the case of goal sampling, the choice space can correspond to
the entirety of the state space in which goals correspond to any rep-
resentable state. This can be problematic for very high-dimensional
spaces (see Kovač, Laversanne-Finot, and Oudeyer, 2020). Consider
an example where the state space is a space of pixel images. Most
(random) samples from such a space are white-noise images (Nair
et al., 2018). Analogously, blindly picking letters from the alphabet will
produce mostly gibberish. One solution to this problem is to define
the goal space as some high-level feature space (also called latent
or embedding space) of the raw-image space (e.g., Laversanne-Finot,
Péré, and Oudeyer, 2021). Following the letter-picking analogy, this
would correspond to composing and sampling from a higher-level
space of syllables, words, or phrases, or sentences, which is more
likely to produce meaningful strings. Thus, goal spaces can be fur-
ther differentiated according to their modality (e.g., images, sounds,
proprioceptive states) and internal organization (low-level or abstract
states). When the goal space is defined over some abstraction over
the raw sensory experience (e.g., 2D positions of objects vs raw pixel
images) further design choices become relevant. One needs to consider
whether to assume that this abstract space is given to the agent (e.g.,
Forestier et al., 2020), or whether the agent needs to learn a latent
goal space from scratch (e.g., Laversanne-Finot, Péré, and Oudeyer,
2021; Nair et al., 2018). Note that learning of a latent goal-space adds
another level of complexity to the autonomous learning process.

2.1.2 Exploration Strategies

Given a well-defined choice space for exploration, what strategies can
an artificial agent follow to decide which learning situations are more
or less interesting? Comprehensive reviews of different approaches
can be found elsewhere (Aubret, Matignon, and Hassas, 2019; Linke
et al., 2020; Mirolli and Baldassarre, 2013; Oudeyer and Kaplan, 2007),
so we only provide a short survey of different approaches with a focus
on their diversity rather than precise implementations.

We group existing approaches into three main categories: undi-
rected, knowledge-based, and competence-based exploration. While
all learning situations are equally interesting in undirected exploration,
directed exploration strategies scale interestingness with the agent’s
abilities. Directed exploration can be divided into two broad classes:

learns a value function V, mapping states to their expected cumulative reward.
Even if the transitions are momentary, the agent can still maximize their long-term
cumulative reward using techniques like bootstrapping (Sutton and Barto, 2018).
Another exception is when the world model is represented by a recurrent neural
network (RNN; Takahashi et al., 2017) as RNNs can encode time series.



2.1 mechanisms 15

knowledge-based and competence-based strategies (Oudeyer and Ka-
plan, 2007). Sometimes the distinction between the two can be subtle
because knowledgeable systems can also be competent and compe-
tent systems can be knowledgeable (Mirolli and Baldassarre, 2013).
The point of divergence for these families of mechanisms is that to a
knowledge-based system, the interestingness of a learning situation is
determined by its relation to the system’s knowledge. On the other
hand, to a competence-based system, a given learning situation may
be more or less interesting because it relates to the system’s ability to
reach a specific self-generated goal.

2.1.2.1 Undirected Exploration

Undirected exploration (sometimes random or uniform exploration)
refers to a strategy that assigns interest uniformly across the choice
space (making all learning situations equally interesting). The effec-
tiveness of this simple strategy is inconsistent across different settings.
When applied to action-space exploration, for example, undirected
exploration is only effective for simplistic problems (Baranes, 2013;
Benureau and Oudeyer, 2016), for example, when the environment
provides dense rewards or when actions have simple and consistent ef-
fects. In more challenging settings, where the mapping between actions
and their effects exhibits a combination of non-linearity, stochasticity,
and redundancy, motor exploration is not sufficient for effective learn-
ing, but goal exploration could be (Moulin-Frier and Oudeyer, 2013).
This is largely because learning how to reach goals contributes to the
agent’s competence and thus its ability to control the environment,
while learning about various outcomes of all of one’s actions in all
possible contexts may be worthless in practice (Mirolli and Baldassarre,
2013). Besides, trying out random actions from a particular state may
be futile for reaching certain hard-to-reach regions of the state space.
Think of how hard it would be to learn how to drive from home to
work by performing random actions (you would end up crashing your
car most of the time). If instead you were to learn how to drive to
various places from home (your driveway, a corner shop, a nearby gas
station) your chances of finding your way to your office eventually
would be much higher.

Despite its simplicity, random goal exploration has proven to be
surprisingly efficient, leading to some forms of novelty search as an
emergent feature and surpassing directed approaches operating in the
action space in the learning of redundant inverse mappings (Benureau
and Oudeyer, 2016; Colas, Sigaud, and Oudeyer, 2018). Because it is
simple and computationally cheap, random goal exploration is often
combined with other strategies, either to jumpstart the primary mode
of directed exploration by collecting initial data, or sometimes as a
complementary strategy at a certain level of hierarchical sampling
decisions in modular spaces (e.g., Forestier et al., 2020), and sometimes



16 computational models of intrinsically motivated exploration

as an epsilon-greedy strategy (see Sutton and Barto, 2018) to balance
between random and directed exploration (e.g., Colas et al., 2019). Still,
in many situations, undirected exploration may not be as efficient or
effective as more sophisticated guided exploration approaches. For
example, random (goal) exploration performs poorly when the space
of effects has a hierarchical structure, so that certain states are only
accessible through reaching some prerequisite states (e.g., Forestier
et al., 2020). An agent exploring goals randomly is unlikely to ever
get to practice these “out-of-reach” goals, unless there is a mechanism
for imagining them that leverages structured representations of goals,
such as natural language encodings (e.g., Colas et al., 2020).

2.1.2.2 Knowledge-Based Exploration

Knowledge-based exploration is perhaps the most diverse family of
intrinsically motivated strategies. Not only are there many ways in
which one can characterize a relation between learning situations and
the agent’s knowledge, but there are many kinds of knowledge that
agents represent. For example, an agent can maintain a predictive
causal model of the effects of its actions and have a metacognitive
monitoring system track errors that this predictive model commits.
Equipped with such a system, the agent can measure the interesting-
ness of actions based on, for example, outcome prediction error of
the forward model (Gordon and Ahissar, 2012; Saegusa et al., 2009).
Specifically, the agent can be more (or less) interested in taking actions
for which the forward model does not accurately predict the conse-
quences (known as prediction-error strategy). Alternatively, the agent
can track changes in prediction accuracy (a strategy known as learning
progress; e.g. Kim et al., 2020; Oudeyer, Kaplan, and Hafner, 2007;
Schmidhuber, 1991b). Here the agent would be more interested in
actions, for which the predictions get more accurate with time. While
the measure of interestingness in these approaches is based on the
predictions from a forward model, exploring agents can also monitor
the behavior of an inverse dynamics model (Haber et al., 2018; Pathak
et al., 2017).

Following the temporal derivative of prediction error, rather than
its instantaneous values, protects the agent from spending time on
uncorrelated regions of the sensorimotor space. To explain, agents that
are motivated to take actions with unpredictable consequences can get
stuck in a situation where action predictability does not improve, e.g.,
trying to predict the next image on a TV-screen showing white noise.
Agents sensitive to prediction-error dynamics, on the other hand, will
eventually associate the "noisy TV" with low LP and lose interest in the
futile activity. An alternative clever solution to the "noisy TV" problem
is to explore in a choice space is to focus on prediction errors that
are due to the agent’s actions rather than the stochasticity inherent in
the environment. Pathak et al. (2017) achieved this by using a space
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of latent features encoding parts of the sensory space that the agent
can control. The space was obtained by learning to predict actions
from temporally adjacent states (an inference known as the inverse-
dynamics problem). The correct action can only be reliably inferred
from state features that actually change due to that action. Thus, if
the agent is set up to be curious about actions that result in erroneous
predictions of the next latent feature (instead of the next raw state),
it will tend to reproduce unpredictable but controllable actions. This
approach provides a remedy for the noisy-TV problem, but does not
escape a other perils of unpredictability. For example, if the agent
can control the TV by switching what appears on the screen but has
no control over what the new frame shows, it will be distracted by
this "unpredictable-TV" (Burda et al., 2018). LP based solutions are
generally better at protecting agents against different "unpredictability
traps" (Kim et al., 2020; Kovač, Laversanne-Finot, and Oudeyer, 2020).

A distinct subclass of knowledge-based strategies relies on knowl-
edge about frequencies of observed states. In so-called count-based
approaches (Bellemare et al., 2016; Tang et al., 2017), this knowledge
is represented explicitly, allowing the agent to selectively explore over-
or under-visited states. Other systems in this subclass of approaches
incorporate different variants of autoencoder networks to learn latent
spaces (Bougie and Ichise, 2020a; Twomey and Westermann, 2018)
or generative models (Nair et al., 2018; Pong et al., 2020) of states
observed by the agent. Specifically, Twomey and Westermann (2018)
defined several interestingness measures based on backpropagation
computation of their category-learning neural network, including
measures of weight update, prediction error, and activation-function
derivative (which model, respectively, the system’s curiosity, novelty,
and plasticity). Bougie and Ichise (2020) introduced auxiliary tasks of
image reconstruction with context-based autoencoders and defined
an intrinsic reward measure derived from reconstruction errors from
these tasks. Others employed variational autoencoders to estimate
valid-state distributions in order to guide exploration (Nair et al., 2018;
Pong et al., 2020). Although these models do not explicitly encode
state visitation counts, the interestingness measures defined on their
basis are related to frequencies of the observed states. Autoencoder
prediction error, for instance, should decrease with repeated exposure
to a given state. Variational autoencoders additionally represent the
statistics of the latent space – a feature that can be used to estimate
the likelihood of any state (including completely novel states) given
what has been observed in the past.

2.1.2.3 Competence-Based Exploration

Another family of strategies assigns interestingness based on compe-
tence. These approaches do not need to assume any explicit world-
dynamics knowledge model (although they can), so they can be readily
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incorporated in model-free learning systems without the need to in-
troduce any auxiliary tasks. Competence-based exploration strategies
are especially well-suited for intrinsically motivated agents that ex-
plore self-imposed goals, since the notion of competence corresponds
naturally to goal achievement. A simple competence-based heuristic
in a goal-oriented context is to sample goals according to the agent’s
ability to achieve them. For example, Bougie and Ichise reward the
agent in a given state based on how incompetent the agent perceives
itself to be in that state (Bougie and Ichise, 2019). Here the agent
generates its data set by taking interest in actions that lead it to states
at which it deems itself incompetent, i.e. by choosing actions that
maximize incompetence. In a different approach, Florensa and col-
leagues leveraged the generative power of adversarial networks for
generating goals, which the agent evaluates based on the probability
of reaching them (Florensa et al., 2018). Thanks to this evaluation, their
agent can prioritize goals of intermediate difficulty, thereby avoiding
goals that it already knows how to achieve and goals that it knows
it cannot achieve. Santucci et al. compared the efficacy of several in-
terestingness measures for autonomous mastering a set of tasks that
included unreachable distractor tasks. The best-performing measure
that allowed their agent to learn all learnable tasks in the least amount
of time was based on competence prediction-error (Santucci, Baldas-
sarre, and Mirolli, 2013). Several other teams have explored modular
goal spaces using measures of competence progress (Colas et al., 2019;
Forestier et al., 2020; Stout and Barto, 2010). Agents in these stud-
ies were incentivized to sample goals from the predefined regions
(modules) of the goal space where competence was either improving
or deteriorating. Oudeyer and colleagues used a similar competence
progress-based strategy but in settings where the singular goal-space
was progressively modularized (Baranes, 2013; Moulin-Frier, Nguyen,
and Oudeyer, 2014).

2.2 functions

The previous section reviewed the diversity of approaches to speci-
fying intrinsically-motivated mechanisms in AI. We have mentioned
in the introduction that these mechanisms are useful for autonomous
learning in the absence of externally assigned objectives, but what spe-
cific functional consequences do different intrinsic motivation mecha-
nisms confer? This section focuses on the functional aspects of intrin-
sically motivated systems addressing the question of how different
intrinsic-motivational systems are useful for both artificial and biolog-
ical agents.

Singh et al. provide a useful connection between the concepts of
extrinsic and intrinsic motivation and the concepts of primary and
secondary rewards (Singh et al., 2010). While the reception of pri-
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mary rewards (e.g., related to nutrients, sex, or pain) contributes to an
agent’s survival and, thus, its reproductive success, secondary rein-
forcers signal anticipation of primary rewards, but are neutral a priori
and have to be learned. In RL, outputs of the reward function can be
analogous to primary reward signals, because the reward function
is given to the agent. However, value functions evaluate states based
on their learned expected cumulative reward, and therefore outputs
of the value function are analogous to secondary reinforcers. In this
formulation, intrinsic motivators (e.g., novelty, uncertainty, learning
progress etc.) are primary reinforcers because their "rewardingness" is
a given. On the other hand, predictors of intrinsic primary reinforcers
can acquire rewarding qualities through the learning of secondary
reinforcers, in the same way as non-rewarding states gain value due
to extrinsic reinforcers. Therefore, intrinsic primary rewards differ
from extrinsic primary rewards, mostly due to their causal proximity
to evolutionary success. As it is often the case in biology (Dobzhan-
sky, 1973), it is sensible to analyze the functional aspect of artificial
intrinsic-motivational mechanisms in light of evolution – an exercise
that allows us to consider the possible bio-ecological roles of engi-
neered curiosity-driven systems.

In what follows, we build upon Singh et al.’s framework as well as
the taxonomy of mechanisms we proposed in the previous section in
order to extract key functional aspects of intrinsic motivation in both
biological and artificial agents. We start from the more evolutionarily
proximal functions (direct procurement of primary rewards) and grad-
ually consider increasingly distal ones (learning of internal models,
goal discovery, and cultural innovation).

procurement of extrinsic primary rewards In relatively
dense primary-reward environments, unstructured random explo-
ration in the action space is sufficient to efficiently elicit extrinsic
primary rewards (as it is the case in some standard AI benchmarks
based on video games, e.g., Mnih et al., 2015). This points to the most
proximal function of intrinsic motivation: the generation of diverse
sensorimotor experiences. The direct benefit of generating diverse
experiences is to increase the probability of eliciting primary extrinsic
rewards. However, the diversity generated by random exploration is
usually not sufficient in sparser reward environments (e.g., Pathak
et al., 2017). Knowledge-based exploration can increase the diversity
of learning experiences by guiding exploration based on different
measures of interestingness. Discovering extrinsic primary rewards
such as food, water, or shelter through exploration is clearly linked to
the agent’s well-being.

learning internal models A more distal function of intrinsic
motivation is the learning of internal models of the agent-environment
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interaction (e.g. forward or inverse models) that can enhance the
agent’s decision-making abilities. Learning such a model can be for-
malized as an UL or an SL problem and strongly relies on the informa-
tion contained in the training dataset. Autonomous agents generate
this dataset by interacting with the environment, and the key role of
intrinsic motivation is to generate informative training data. Research
in intrinsically motivated SL extensively studied two main cases. On
the one hand, knowledge-based approaches have proven to be efficient
in generating informative data for learning forward models (Oudeyer,
Kaplan, and Hafner, 2007). On the other hand, competence-based
approaches have proven to be more efficient than knowledge-based
approaches for learning inverse models (Baranes, 2013). RL agents can
also benefit from internal models, be it in the form of a value function
and an action policy in model-free RL (Pathak et al., 2017), or in the
form of a world-dynamics model (forward or inverse) in model-based
RL (Haber et al., 2018). Understanding how the world works per se
does not put proverbial food in the agent’s mouth, but it allows the
agent to act more intelligently in novel situations and plan ahead in
order to obtain what it needs more reliably.

goal discovery The third level of functions we propose is related
to the discovery and learning of novel goals and the associated skills
to achieve them. This is the main function of competence-based ap-
proaches, where exploration is guided by the pursuit of self-imposed
goals. These approaches can automatically organize exploration from
simple to more complex skills (Forestier et al., 2020; Gordon and
Ahissar, 2012; Pong et al., 2020), as well as discover the full range
of the achievable behavioral repertoire, possibly in an open-ended
manner (Colas et al., 2019). There are multiple functional advantages
to discovering and mastering novel goals that are not extrinsically
rewarding. First, in environments where eliciting extrinsic primary
rewards require the acquisition of complex skills (e.g., hunting), it is
crucial to structure learning in a curriculum from simple (e.g., loco-
motion) to more complex skills (shooting a projectile). Complex skill
sets often display a hierarchical structure, where mastering easier ones
is prerequisite for acquiring more complex ones. Second, the ability
to autonomously explore and discover new goals and skills provides
a crucial advantage in changing environments. For example, paleo-
climatological data provides evidence for strongly varying climate
conditions in the Rift Valley of East Africa, approximately 7 million
years ago, and it is hypothesized that the ability to rapidly and flexibly
reorganize a diverse behavioral repertoire was a key requirement to
adapt to such unprecedented conditions (Potts, 2013). Thus, the ability
to autonomously generate and master novel goals and thereby acquire
a diverse repertoire of complex skills provides a crucial advantage for
a species’ success in such settings of strong environmental variability
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(see Nisioti and Moulin-Frier, 2020, for a recent proposition to apply
this principle in AI).

cultural innovation Finally, the fourth and most distal level of
functions we propose concerns cultural innovation. Several theoretical
contributions proposed a potential role of curiosity-driven exploration
in both language acquisition (Oller, 2000) and evolution (Oudeyer and
Smith, 2016). From a sensorimotor perspective, active exploration can
spontaneously generate diverse behaviors from modality-independent
and task-independent internal drives. Such spontaneous behavior can
result in vocal activity that may have bootstrapped the emergence of
communication. This hypothesis is supported by computational simu-
lations showing a role of curiosity-driven exploration in vocal devel-
opment (Moulin-Frier, Nguyen, and Oudeyer, 2014), social affordance
discovery (Oudeyer and Kaplan, 2006), and active control of the emerg-
ing conventions in social lexicon (Schueller, Loreto, and Oudeyer,
2018). From a cognitive perspective, compositional language itself
is a powerful cognitive tool for imagining novel out-of-distribution
goals in competence-based intrinsic motivation (Colas et al., 2020).
Moreover, recent contributions in multiagent RL have shown how an
auto-curriculum of increasingly complex behaviors displaying features
of open-ended innovation can emerge from agents’ co-adaptation in
mixed cooperative-competitive environments (Baker et al., 2020). Such
mechanisms are potential precursors of cultural evolution in the hu-
man species. Cultural evolution has triggered increasingly complex
technological innovation across generations (Fogarty and Creanza,
2017). A prime example of this is the industrial revolution, which has
resulted in a rapid acceleration of the global population growth in the
19th century (Lucas, 2004).

2.3 usages

Other than helping artificial agents explore learning situations in
abstract task-independent contexts, how can intrinsically-motivated
learning algorithms be used? We identify two main directions in
which such algorithms can have high impact. On the one hand, they
can be a great tool for advancing research in cognitive psychology
and neuroscience. Outside cognitive research, these algorithms can
be applied directly to problems that require intelligent automated
exploration. We review both of these domains of application in the
rest of this section.

2.3.1 Cognitive Modeling

The notion of intrinsically-motivated exploration in psychology has
been developing – for the most part – independently of AI (Ka-
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plan and Oudeyer, 2007). Psychological investigations can be traced
back to psycho-physiological perspectives on exploration in the early
1940s (Hull, 1943). Since then, psychological views on curiosity and
information-seeking have undergone multiple changes (Bazhydai,
Twomey, and Westermann, 2020; Loewenstein, 1994) and are now
becoming more integrated with the computational perspective (Got-
tlieb et al., 2013; Kaplan and Oudeyer, 2007). On the other hand, early
formulations of intrinsic motivation in AI were either “discovered
by accident” (Andreae, 1977, p. 5) or influenced by relatively distant
research areas, like biological autopoiesis (Maturana and Varela, 1980)
and aesthetic information theory (Nake, 1974, as cited in Schmidhu-
ber, 1991a), yet not the aforementioned psychological literature (see
Kaplan and Oudeyer, 2007, for a historical overview). Over the course
of history, psychology and AI have actually been converging on simi-
lar ideas for why certain behaviors could be intrinsically rewarding:
due to some kind of mismatch between bottom-up observations and
top-down predictions (Kaplan and Oudeyer, 2007).

Evolutionary implications of artificial intrinsic-motivational systems
discussed earlier (Section 2.2, Functions) raise the need to seriously
consider them as candidate models for human non-instrumental learn-
ing. A major advantage that comes naturally with these systems is
their precise formulation. Such a formal description unambiguously
discloses crucial structural and functional properties of the system
in question, and thus enables to advance the related theory more
efficiently (McClelland, 2009).

Cognitive models based on exploring artificial agents are becom-
ing increasingly frequent. For instance, Moulin-Frier, Nguyen, and
Oudeyer (2014) explained the progression of human vocal behavior
through distinct developmental stages as an intrinsically motivated,
goal-exploration process based on competence-progress motivation.
Such computational accounts of curiosity-driven learning have led
to novel hypotheses about the mechanisms of intrinsic motivation
in humans (Kaplan and Oudeyer, 2007) and the role of curiosity in
the evolution of language (see Oudeyer and Smith, 2016). Gordon
and colleagues implemented an intrinsically motivated RL agent to
account for multiple features of the development of exploratory whisk-
ing behavior in rats (Gordon, Fonio, and Ahissar, 2014; Gordon and
Ahissar, 2012). More recently, Twomey and Westermann (2018) used an
actively exploring autoencoder network to hypothesize an algorithmic-
level description of visual exploration in infants. Poli et al. (2020)
compared several knowledge-based sampling strategies to predict
visual-attention control in infants. Moreover, computational models of
intrinsic motivation are invoked to explain self-determined instrumen-
tal (Gershman, 2018b) and non-instrumental (Ten et al., 2021) choices
in human adults.
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This chapter relates several mechanistic implementations of curiosity-
driven exploratory systems to a common underlying structure. This
can be beneficial for revealing potential theoretical and empirical gaps
in the scientific understanding of human information-seeking. For
instance, while information-seeking literature is brimming with work
investigating episodic curiosity-driven sampling over short time scales
corresponding to exploration by sampling micro-actions, fewer stud-
ies have looked at time-extended exploration of learning activities. Take a moment to

appreciate the
semantic distinction
between "action"
and "activity".

Motivation to engage in time-extended learning activities cannot be
easily reduced to unpredictability or information-gains conferred by
the decisions to pursue them. For example, taking a math course is
difficult to explain in terms of the uncertainty or information-gain
expected from the act of enrolling into a course or attending a class.
Some of the long term engagement in learning activities can be at least
partially explained by goal pursuit (e.g., wanting to be good at math),
but often times such activities are engaged because of the inherent fun
or enjoyment expected from them.

Our taxonomy identifies a salient dimension of variability among
computational models of curiosity-driven exploration: the choice space
through which agents sample learning situations. This aspect of ex-
ploratory mechanisms is not discussed explicitly in psychology. What
choice spaces are used by computational cognitive models of human
exploration? The dominant formal framework of human inquiry – the
so-called Optimal Experiment Design (OED, Coenen, Nelson, and
Gureckis, 2019) – concerns situations in which humans evaluate a set
of potential queries (i.e., actions) to decide which query to execute.
In comparison, hardly any studies investigate intrinsically motivated
exploration of goals. Specifically, how humans generate and choose
new goals in unfamiliar environments? In that regard, the IMGEP
(Forestier et al., 2020) framework offers means to model goal-based
exploration in humans.

2.3.2 Practical Applications

Functional diversity of intrinsic-motivational mechanisms makes them
useful for practical applications, such as automated knowledge dis-
covery and education. Mechanisms of intrinsic motivation help au-
tonomous agents learn in settings with complex sensorimotor spaces
and sparse or non-existent rewards. They are crucial for building
autonomous control systems that can learn efficiently in open-ended
environments. The practical effectiveness of these mechanisms has
been recently demonstrated in studies of automated discovery in com-
plex systems, where curious agents learn to control diverse effects in
complex non-linear settings, such as smartphone applications (Pan et
al., 2020), continuous cellular automata (Etcheverry, Moulin-Frier, and
Oudeyer, 2021), and real-world chemical systems (Grizou et al., 2020).
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Automated discovery can have a high societal impact by assisting
both scientific research and artistic creation. In another line of work,
artificial intrinsic motivation has been used to foster generalization
in deep RL agents by guiding them through automatic-curriculum
learning (Portelas et al., 2020b). Moreover, since one of the functions
of curiosity-driven systems is knowledge acquisition, directed explo-
ration strategies of such systems can be used to assist learners when
they behave suboptimally. Importantly, such intelligent tutoring sys-
tems can be tailored to the current levels of knowledge or competence
of individual learners (Clément, Oudeyer, and Lopes, 2016) and have
shown promising results in pedagogical settings (Clément et al., 2015;
Delmas et al., 2018), where they assist learners in selecting topics and
exercises that maximize their individual learning progress.

2.4 conclusion

The goal of this chapter was to familiarize the reader with the diversity
of computational mechanisms and possible evolutionary functions
of curiosity-driven exploration. We identified an important problem
facing autonomous agents that have control over their learning experi-
ences. Specifically, such agents must decide how to sample learning
data in the absence of externally imposed tasks. We briefly reviewed
several ways in which artificial agents choose actions, goals, or social
peers in order to engage in learning situations. We presented distinct
families of exploration strategies, including undirected, knowledge-
based, competence-based and socially-influenced approaches. We then
discussed how these mechanisms can contribute to evolutionary suc-
cess at different levels: by helping agents to approach primary re-
wards, acquire world models, discover goals, and bootstrap a cultural
repertoire. Finally, we provided some contemporary examples of how
intrinsic motivation algorithms are used in practical applications as
well as in cognitive research.

We hope that this concise bird’s-eye perspective – organized along
the proposed mechanistic, functional, and pragmatic dimensions of
curiosity-driven exploration – can serve as a stepping stone towards
a unified taxonomy of this fascinating and important field. Recently,
Gordon (2020) proposed a related framework that organizes different
curiosity-driven artificial systems along hierarchical levels of cogni-
tive development. In this framework, curious artificial agents can be
understood as instantiations of a so-called "curiosity loop" (Gordon
and Ahissar, 2012) consisting of an embodied learner, an action/goal
selection mechanism, and an intrinsic reward. Thus, specific curiosity
loops operate at different levels of an autonomous-learning hierarchy,
where each level is associated with a specific function, including ex-
ploration of the self, exploration of the environment, object interaction,
and social interaction.
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We believe that our taxonomical organization and the "curiosity
loops" framework are highly complementary. For instance, our tax-
onomy highlights the parameterization of choice spaces for decision-
making (the action selection component in a curiosity loop), pointing
out not only the diversity of mechanisms, but also the common un-
derlying structure. At the same time, the consideration of the learner
component’s learning problem in Gordon’s (2020) framework enables
to draw more fine-grained functional distinctions between different
agents. Specifically, at different points of the developmental trajectory,
the learner might prioritize learning different aspects of the world
structure, which leads to the acquisition of increasingly complex world
models, from self-models, to models of objects, to models of other
sentient beings.
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E L E M E N T S O F I N F O R M AT I O N - S E E K I N G

Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?

— T. S. Eliot (2014)

The above quote from T.S. Eliot is one of the earliest sources that
inspire the famous Data ̸=Information ̸=Knowledge ̸=Wisdom model
(DIKW) – a framework that draws distinctions and defines relation-
ships between the concepts of data, information, knowledge, and
wisdom (Sharma, 2008). While the DIKW model is tossed around
in the context of business administration, distinguishing between in-
formation and knowledge is also important for the scientific study
of information-seeking. This chapter reviews the current literature
(mostly) about non-instrumental information-seeking and presents a
theoretical perspective, arguing that what makes information inher-
ently valuable for curious beings like humans is its implications for
knowledge (and perhaps, wisdom).

3.1 information and information-seeking

Sense organs are ubiquitous in the living world. Indeed, they are
so useful that not only animals but plants, fungi, and many other
organisms have evolved them (Bourret, 2006; Braunsdorf, Mailänder-
Sánchez, and Schaller, 2016; Schwab, 2018; Trewavas, 2005). Moreover,
humans endow their tools with artificial sensors to make them more
responsive and thus "smarter". It is no mystery why sensors are so
powerful: they inform their owners about what is "out there" so that
they can adapt their behavior accordingly. Information, then, is the
basis of intelligent behavior. It is also a central concept in this thesis,
so we need to establish what it means more precisely.

Information is an important concept across many disciplines. Even
though precise definitions differ, it is possible to identify three major
conceptual stances on what information means (Adriaans and van
Benthem, 2008). According to one perspective, information refers to
declarative descriptions of the mentally represented world, which can
be obtained, for example, through empirical observation, linguistic
communication, or "armchair" deduction. This is the sense in which
the word ’information’ tends to be used in lay conversation. Another
view characterizes information in terms of uncertainty. Here, infor-
mation is viewed as an abstract communication process by which
uncertainty about some random event can be reduced. This formu-
lation is commonly adopted in Information Theory (Shannon, 1948).

27



28 elements of information-seeking

Finally, there is an approach that treats information as the complexity
of the simplest possible representation of an object in a given (i.e.,
fixed) system. This is a "Kolmogorov-complexity" stance on informa-
tion (Kolmogorov, 1965). It underlies the intuition that simple objects
require less information to be described in, say, natural language or
neural code, compared to complex objects.

While these three perspectives may seem quite far apart, they are
demonstrably and rather intricately connected (Adriaans and van
Benthem, 2008). This is particularly clear when we consider how these
stances converge within a single information-processing sequence
of events, such as sensing. Through senses and neural substrates,
organisms can systematically represent entities in the environment
(stance 3) thereby reducing uncertainty about presence or absence of
particular stimuli (stance 2) and forming an internal description of the
surrounding world (stance 1). In other words, sensing is a process of
representing, communicating, and interpreting information1

Since the world is so incredibly complex, there is probably more
potentially observable and thinkable information in it then organisms
can possibly represent and process (Kolmogorov, 1965). Given the
limited computational resources, the overabundance of potential in-
formation in the world means that it needs to be somehow funneled
for senses to be useful (Gottlieb and Oudeyer, 2018). Mechanical fea-
tures of sense organs responsible for domain specialization (e.g., light,
sound, pressure) and sensitivity to specific intensity ranges within
domains (e.g., Schwab, 2018) can be viewed as passive, structural
funnels of information. Another, active kind of funneling is enabled
by the ability to selectively expose one’s external and internal sensors
to specific stimulation via actions such as movement (e.g. Gottlieb
et al., 2013) and neuromodulation (e.g., Yu and Dayan, 2005). This ac-
tive sensing behavior can be characterized as information-seeking. How
do organisms control their behavior to expose themselves to "good"
information?

3.2 value of information

Information is beneficial only insofar as it communicates what the
organisms should care about. Thus, information-seeking must be
deployed strategically and ultimately optimize the biological fitness
of a species. Individual organisms, of course, do not know how to
optimize this global fitness function directly (Berge and van Hezewijk,
1999; Gottlieb et al., 2013; Singh et al., 2010). Instead, phenotypes
implementing biologically advantageous behavioral tendencies emerge
through evolution and ontogenetic development. Information-seeking

1 Mnemonic retrieval of information can be viewed as a kind of "internal sensing" by
which one system "observes" and/or encodes information from another, all within
the same brain.



3.2 value of information 29

is likely to be one such tendency, but it is not necessarily obvious how
information that organisms seek contributes to the biological fitness
of their species.

It is easy to see why information-seeking is biologically advan-
tageous in instrumental contexts. Instrumental information-seeking
includes behaviors driven by extrinsically valuable states that cannot be
achieved by sensory stimulation alone. For example, although foraging
for food (or tracking a predator) requires seeking information, the
ulterior biologically rewarding end is the consumption of nutrients (or
avoidance of predation) – something that cannot be achieved solely
by observing or thinking about food (or predators). However, some-
times, information is sought in the apparent absence of an extrinsically
valuable state. Valuable states that lack extrinsic value are intrinsically
valuable by definition. Information-seeking that is driven by such
states is called non-instrumental.

The most recent evidence for the intrinsic value of information
comes from neuroscience. It has revealed common substrates for pro-
cessing intrinsically and extrinsically rewarding stimuli. This work
has relied on different variants of the "observing task", where a subject
decision-maker can choose to observe or forego information about the
outcome of a maximally uncertain gamble (reviewed in Cervera, Wang,
and Hayden, 2020; Kidd and Hayden, 2015). One early study showed
that consuming a water-reward and observing information about
the upcoming water-reward is processed by the same structure in the
macaque monkey brain (Bromberg-Martin and Hikosaka, 2009). Specif-
ically, the well-studied "reward-signaling" dopaminergic (DA) neurons
of the midbrain (Schultz, Dayan, and Montague, 1997) responded to
more-than- and less-than-expected amounts of water in the same way
they responded to information about the corresponding amounts of
water (Bromberg-Martin and Hikosaka, 2009). Moreover, some neurons
in the lateral habenula (LHb) region encoded information prediction
errors (IPEs) similarly to how these neurons encoded prediction errors
about extrinsic rewards: their activity was increased when less than
expected information was promised to the subjects, and it decreased
when they were promised more information than expected (Bromberg-
Martin, 2011). In another study, Blanchard et al. found that distinct
subpopulations of neurons in the orbitofrontal cortex (OFC) orthogo-
nally encoded the potential amount of water-reward and the validity
of the related cue, i.e., its "informativeness" with respect to an extrinsic
reward (Blanchard, 2015). These results demonstrate that informative
states (or stimuli) can be valued for their inherent property of reducing
uncertainty, regardless of the extrinsic consequences.

The encoding of informativeness by the OFC is especially revealing
in light of recent integrative accounts of this cortical structure. One
contemporary view suggests that the OFC functions like a "map" (or,
perhaps, more like a GPS tracker) that tells an organism where it is
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positioned in the so-called task space (Wilson et al., 2014). Specifically,
the OFC is proposed to combine multimodal sensory information to
represent the organism’s current state in relation to the goal(s) of the
task at hand. The same sensory context can be used to generate model-
based predictions of future states for which the OFC can represent
their implied value (see Stalnaker, Cooch, and Schoenbaum, 2015, for
details). Outside the narrow settings of specific laboratory tasks, the
OFC might have an even more general function. It might provide a
substrate for incorporating incoming sensory information into the
process of arbitrating between competing high-level goals (Fine and
Hayden, 2022) – goals that ultimately serve transient yet consistent
biological and psychological needs (Juechems and Summerfield, 2019).
According to Fine and Hayden (2022), the value of states encoded
by the OFC might actually represent state proximity to the current
goal. The authors propose that OFC is the apex of the goal-abstraction
hierarchy that cascades down from abstract needs to high-level goals
to low-level actions. At each level of this extended premotor hierarchy,
the cortex implements a goal-selection policy that chooses lower-level
goals/actions to optimize higher-level objectives, given the current
context. These contemporary accounts have intriguing implications.
First, they suggest that the valuation of informativeness at the level of
the OFC (e.g. Blanchard, 2015) encodes proximity to fundamental needs,
implying that being informed is a basic motive. Second, they suggest
that states of being informed can enter the lower premotor levels as
goals. That is, states of being informed can be pursued independently
of extrinsically rewarding states. Finally, these considerations imply
that being informed can compete with other fundamental goals such
having food or staying warm.

One of the observing task’s main takeaways is that the brain pro-
cesses non-instrumental information similarly to how it deals with
information about extrinsically valuable stimuli (e.g., as if it was expe-
riencing water consumption). This suggests that information about an
upcoming reward and information from the reward itself have similar
roles. The most salient role of information from rewards is to drive
learning (Schultz, 2016). That is, information generated from the re-
ward consumption (e.g., the sweetness or bitterness of food) is used
to adjust context-dependent predictions (e.g., the sight of food) and
reinforce or suppress the preceding appetitive behavior. The study
by Bromberg-Martin and Hikosaka (2009) suggests that the brain
might similarly reinforce or suppress non-instrumental information-
sampling behaviors and maintain a model for predicting when and
how much of such information can be expected.

But how does the intrinsic value of information elevate biological
fitness? For example, does the "observing task" demonstrate an evolu-
tionary adaptive behavior? One possibility is that advance information
about upcoming rewards is useful for arbitrating between alternative



3.2 value of information 31

goals that the organism might be pursuing, which is conducive to
allostatic regulation – a process through which organisms prepare for
future challenges before they arise (Fine and Hayden, 2022; Sterling,
2012). Concretely, inferring that the food is coming enables individuals
to focus their mental activity on tasks other than foraging or prepare
for the expected food delivery.

More fundamentally, information is useful because it contributes to
generalizable declarative knowledge about the environment (including
the organism’s own body). One salient function of such knowledge is
to enable effective planning. Planning can be understood as a hierar-
chical optimization of lower-level actions with respect to higher-level
goals (Fine and Hayden, 2022). Simply put, planning is a process of
breaking down a high-level objective (e.g., buy food) into progres-
sively lower-level actions (e.g., arrive at supermarket → ... → drive
to supermarket → ... → find keys → ...). Hierarchical breakdown of
high-level objectives is a central principle in hierarchical reinforcement
learning (Pateria et al., 2021) and sensorimotor control (Todorov and
Jordan, 2002). Planning depends on the ability to anticipate future
states, because at any given level of the hierarchy, the best action is
determined by the corresponding sensory context (e.g., predicting that
the shortest path will be jammed might cause you to take a longer
path). The ability to accurately predict future states, and, therefore,
plan, improves with knowledge. And since the same piece of knowl- Recall that "robust

achievement of
arbitrary goals" was
the central problem
facing intrinsically
motivated artificial
agents in Chapter 2

edge can be used to plan out different goals, declarative knowledge
accumulation via non-instrumental information-seeking is conducive
to robust achievement of arbitrary goals.

Whereas declarative knowledge accumulation is clearly beneficial,
it is not the only adaptive functional consequence of the value of
information. In fact, declarative knowledge accumulation alone does
not guarantee the generation of adaptive behaviors (Mirolli and Bal-
dassarre, 2013). The problem is that while all declarative knowledge
is potentially useful, not all such knowledge is useful in practice. Sev-
eral authors proposed that a major benefit of value of information
is that it facilitates acquisition of skills (i.e., procedural knowledge;
Gottlieb et al., 2013; Mirolli and Baldassarre, 2013). But how could
non-instrumental information-seeking promote skill acquisition? To
answer this question, it is helpful to think of information (abstractly)
as uncertainty reduction. Under this perspective, learning a skill can
be conceived as a process of reducing the uncertainty (i.e., seeking
information) regarding which actions to take in order to achieve a goal
(Gottlieb and Oudeyer, 2018). One might argue that the value of such
information is instrumental towards achieving a certain goal, and thus
does not demonstrate the usefulness of valuing of information as a
terminal end. However, the subtle point is that knowing how to achieve
a goal might be more important than achieving the goal itself, which
is consistent with the idea that competence proper is a fundamental
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psychological need in humans (Deci and Moller, 2005). Thus, non-
instrumental information-seeking can be conducive to accumulation of
diverse sets of skills, especially if organisms are motivated to playfully
explore arbitrary goals (Chu and Schulz, 2020a).

The idea that non-instrumental information-seeking increases bio-
logical fitness through accumulation of knowledge (declarative and
procedural) is intriguing because it provides a biological explanation
for phenomena like curiosity, interest, and exploratory play (Chu and
Schulz, 2020b; Gottlieb and Oudeyer, 2018; Murayama, FitzGibbon,
and Sakaki, 2019). However, this idea only describes the phyloge-
netic mechanism by which organisms can evolve non-instrumental
information-seeking behavior. It does not describe the actual fea-
tures and computational principles enabling knowledge acquisition
for the individual. That is, it does not tell us how non-instrumental
information-seeking is initiated, sustained, and terminated. The rest
of this thesis will revolve around the work – including the original
contributions in Chapters 4 and 5 – aiming to elucidate how intrinsi-
cally motivated information-seeking operates to enrich knowledge in
a useful way. We will begin by discussing a contemporary perspective
on the situational determinants of curiosity and interest. We will then
deliberate on how the affective and motivational aspects of curiosi-
ty/interest can reinforce information-seeking behaviors, thus setting
the stage for the central hypothesis of this thesis – the idea that the
motivation to pursue information comes from the expected gains in
knowledge.

3.3 curiosity and interest

The terms curiosity and interest lack universally agreed upon technical
definitions (Dubey and Griffiths, 2020; Kidd and Hayden, 2015; Mu-
rayama, FitzGibbon, and Sakaki, 2019). It is still possible to delineate
features of two distinct motivational states that the two labels map
onto. For example, an aversive state experienced as deprivation and
wanting to resolve one’s salient awareness of ignorance can be con-
trasted with an appetitive state experienced as positive anticipation
or the actual enjoyment of learning something new. It is tempting to
call the former "curiosity" and the latter "interest", but let us refrain
from committing to specific definitions and use these terms rather
informally. Both curiosity and interest play important roles in the
continuous process by which humans acquire knowledge (Murayama,
FitzGibbon, and Sakaki, 2019). Although they coincide more often than
not, motivational states differ in what triggers them, what neural and
behavioral responses ensue, and how they are affectively experienced
(Day, 1982; Grossnickle, 2016; Hidi and Renninger, 2019; Litman, 2019;
Shin and Kim, 2019).
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3.3.1 Situational determinants

Throughout history, researchers have proposed different explanations
for what triggers the motivation to seek information in the absence
of extrinsic value. These include conflict (Berlyne, 1954a), ambiguity
(Ellsberg, 1961), incongruity/dissonance (Festinger, 1962; Hunt, 1960),
knowledge-gap (Loewenstein, 1994), unpredictability (Shin and Kim,
2019), and more (see Bazhydai, Twomey, and Westermann, 2020;
Loewenstein, 1994; Oudeyer and Kaplan, 2007, for a review). A com-
mon denominator for all of these proposals seems to be uncertainty.
Indeed, uncertainty appears to be a necessary ingredient for sparking
curiosity2. One reason for the diversity of propositions is that uncer-
tainty comes in many "shapes" and "sizes" (Payzan-LeNestour and
Bossaerts, 2011).

For instance, Yu and Dayan (2005); (2003) proposed a qualitative
distinction between expected and unexpected uncertainty. According
to their account, expected uncertainty arises when an agent holds
ambivalent expectations about any particular future outcome (conflict
in predictions) or holds ambivalent beliefs about potential causes of
an observed outcome (ambiguity of explanation). Unexpected uncer-
tainty arises when an agent observes an outcome or explanation that
violates its learned expectations or beliefs. The authors speculated
that expected and unexpected uncertainty are processed differently
by the brain. Expected uncertainty is associated with the arousal of
cholinergic activity resulting in elevated levels of acetylcholine (ACh),
while unexpected uncertainty corresponds to the arousal of the nora-
drenergic system resulting in higher levels of norepinephrine (NE). As
we discuss below, expected and unexpected uncertainties are transient
states in the spiral of learning. A recent computational theory of ex-
ecutive function holds that expected uncertainty is also signaled by
NE, which serves a dual function of invigorating effort and enhancing
sensory processing (Silvetti et al., 2021).

The status of expected and unexpected uncertainty as triggers of
curiosity is yet to be systematically investigated empirically, there are
clues to suggest that both might be involved. Diminished curiosity
was observed in patients with a probable early Alzheimer’s disease
(Daffner et al., 1992). These patients spent less time looking at curiosity-
inducing stimuli compared to healthy controls. Alzheimer’s disease
is associated with severe damage to the cholinergic system (Ferreira-
Vieira et al., 2016) involved in the processing of expected uncertainty
(Yu and Dayan, 2005). On the other hand, activity in one of the main
noradrenergic structures, the locus coeruleus (LC), correlates with
heightened arousal, pupil dilation, and more efficient learning (Breton-
Provencher, Drummond, and Sur, 2021) – prominent associates of
curiosity. Moreover, LC interacts with the major DA structure in the

2 I hope you can agree that the idea of a curious omniscient being is oxymoronic.
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ventral tegmental area (VTA) and can even disseminate dopamine in
addition to NE across the brain (Ranjbar-Slamloo and Fazlali, 2020).
As discussed above, dopamine is involved in reward anticipation and
reward processing, and is a major component of the ’wanting’ system
in the brain (Berridge, 2007).

Pertinent to the current discussion is Shin and Kim’s (Shin and Kim,
2019) distinction between two kinds of uncertainty: unpredictability
and incongruity. Triggering the so-called forward curiosity, unpre-
dictability corresponds to states of not knowing "when, where, or how
an event has occurred or will occur" (Shin and Kim, 2019, p. 13). On
the other hand, incongruity causes backward curiosity, and it arises
in situations that violate expectations. It should be clear from this
characterization that unpredictability and incongruity are similar (if
not equivalent) to expected and unexpected uncertainty, respectively.

Whether a person experiences a state of forward or backward curios-
ity depends on whether information is anticipated "forwardly" or con-
templated "backwardly". This implies that while unpredictability and
incongruity arise in two different situations, they can fluidly morph
into one another. Suppose I am scammed into buying a "loaded" coin
that is falsely advertised to turn up heads 99.9% of the time. If I am
indeed fooled, my expected uncertainty about any future toss of that
coin is low. If I then observe 8 out of 10 unexpected tails, not only
will I be surprised by this incongruent event, but I will also update
my belief about the coin so that the expected uncertainty about fu-
ture tosses will increase (I will appreciate their unpredictability). This
example illustrates that the term "unexpected uncertainty" conflates
two distinct concepts. The "unexpected" part refers to the surprise (see
Barto, Mirolli, and Baldassarre, 2013) caused by an observation that is
incongruent with expectation. Furthermore, the "uncertainty" part is
rather ambiguous. It does not specify whether it refers to the expected
uncertainty that follows a surprising event (i.e., expected uncertainty)
or the uncertainty in knowledge that generates the expectation.

To avoid confusion, we will abandon this misleading expected-
unexpected dichotomy. To adopt a less ambiguous terminology, we
first need to introduce another prominent distinction that differen-
tiates between aleatoric and epistemic uncertainty (Hüllermeier and
Waegeman, 2021). The Latin word "aleatory" refers to gambling ac-
tivity (especially dice playing), so aleatoric uncertainty refers to the
knowingly irreducible uncertainty of an expected event (e.g., expecting
randomness of a die roll). Epistemic uncertainty, on the other hand,
refers to the uncertainty in expectation, as opposed to uncertainty of
expectation. For a Bayesian inference aficionado, the distinction is easy
to appreciate by thinking about the uncertainty expected in the data
by a given generative model (aleatoric) and the uncertainty of the pri-
or/posterior distribution of model parameters (epistemic). "Aleatoric
uncertainty" corresponds completely to the previously introduced
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"unpredictability" and "expected uncertainty". Epistemic uncertainty,
by contrast, refers unambiguously to the uncertainty in knowledge. In
sum, we will use the following terminology:

• Unpredictability (or aleatoric/expected uncertainty; also ambi-
guity) will refer to uncertainty about a future event (e.g., not
knowing how a coin will land) or past event (e.g., not knowing
who dropped a coin)

• Incongruity/surprise will refer to an event of observing some-
thing that violates expectation (e.g., observing 20 heads in a row
using an ordinary coin)

• Epistemic uncertainty will refer to uncertainty about an expec-
tation itself (e.g., being unsure if a coin is fair)

We believe that epistemic uncertainty is not given as much attention in
curiosity research as aleatoric uncertainty and surprise. We will come
back to this point later when we discuss the idea that uncertainty
reduction reinforces uncertainty-seeking behaviors, thereby directing
learners towards states in which their knowledge can improve.

As Shin and Kim (2019) note, unpredictability and incongruity have
different relationships with curiosity. Unpredictability has an inverted
U-shape relationship with (forward) curiosity (Berlyne, 1954a; Day,
1982; Loewenstein, 1994), while incongruity has a positive monotonic
relationship with (backward) curiosity (Horstmann, 2015). The mono-
tonic relationship between incongruity/surprise and curiosity is easier
to understand. Surprise signals the inadequacy of one’s knowledge,
so it makes sense for organisms to minimize it, for example, by being
curious and seeking information (Schwartenbeck et al., 2019). This is
in line with Friston’s (2009) free-energy principle – a mathematical
theory of the sustainability of life itself. Surprise minimization is a
biological implementation of this principle. Several empirical studies
have demonstrated the positive relationship between surprise and
curiosity using a range of behavioral paradigms (Berlyne, 1954b; Itti
and Baldi, 2009; Poli et al., 2020).

The prediction of an inverted U-shape relationship between unpre-
dictability/uncertainty and forward curiosity is less intuitive. In a
nutshell, it maintains that prior knowledge determines the subjective
intensity of curious states in a nonlinear way: one is predicted to be
most motivated to obtain information if one has some incomplete
idea as to what this information might be (intermediate uncertainty);
conversely, curiosity is predicted to be low when one already has all
the relevant knowledge (low uncertainty) or when one has too little
knowledge (high uncertainty). The prediction that perfect knowledge
should spark no curiosity is trivial, but it is not obvious why very poor
knowledge is unlikely to result in curiosity. Yet, there is considerable
evidence supporting this prediction (Baranes, Oudeyer, and Gottlieb,
2015; Berlyne, 1954b; Day et al., 1972; Kang et al., 2009; Loewenstein,
1994).
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While researchers seem to agree on the general prediction, the pro-
posed mechanisms may vary considerably. For example, Loewenstein’s
(Loewenstein, 1994) proposed mechanism is based on awareness. He
argues that poor knowledge prevents an individual from attending
to the knowledge gap because information that is known is relatively
more salient than information that could be known. This idea resonates
with the Dunning-Kruger effect that describes a tendency of ignorant
people (not to be conflated with unintelligent people) to be unaware of
their deficiencies in knowledge (Dunning, 2011). Note, however, that
this mechanism does not describe a direct link between curiosity and
uncertainty. Rather, it shows how the latter relates to the former via
the mediating effect of awareness. On the other hand, Berlyne’s (1954)
conflict-based mechanism proposes a direct interaction between uncer-
tainty and curiosity. Conflict is the "disagreement" between competing
behavioral/internal responses to a stimulus (Berlyne, 1954a, 1957).
Highly unfamiliar stimuli fail to arouse conflict because there are no
sufficiently activated responses to clash with each other. Curiosity is
maximal when there are several equipotential responses. Berlyne’s
proposal sits well with Hebb’s physiological theory of arousal (Hebb,
1955). Specifically, Hebb’s notion of disturbances in activation patterns
of acquired cortical representations – what he calls phase sequences
and cell assemblies, respectively (Hebb, 2002) – seems to correspond
to Berlyne’s concept of conflict. One proposed source of such distur-
bances is an "unfamiliar combination of familiar things (fear of the
strange)" (Hebb, 2002, p. 250), which can disrupt normal responses to
either of the familiar things, i.e., create conflict. Hebb’s physiological
theory, in turn, is in line with the Yu and Dayan’s more recent and
more precise theories of uncertainty processing in the brain (Yu and
Dayan, 2005; Yu and Dayan, 2003).

Theoretical and empirical studies above show us how quantita-
tive variability in situational unpredictability is related to forward
curiosity, but the precise mechanism(s) underlying this relationship
remain speculative and await empirical validation. Additionally, while
Yu and Dayan’s account explains how uncertainty and incongruity
can be computed, neurophysiological implementation of uncertainty
representation is yet to be fully specified (although many important
advances have been achieved in the previous decade; see Kepecs
and Mainen, 2012; Ma and Jazayeri, 2014; van Bergen et al., 2015).
Furthermore, although the involvement of cholinergic and noradren-
ergic systems is likely, we still lack the description of precise neural
pathways from uncertainty and surprise processing to subsequent
motivational and affective responses that we experience as curiosity.
These are promising avenues for future research on neural mechanisms
of curiosity.

If curiosity and interest are signaled by uncertainty, what might
generate specific types of uncertainty in the first place? So far, we
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have reviewed two propositions concerning two types of uncertainty.
Expected uncertainty arises as a result of conflict or ambiguity between
competing representations. Epistemic uncertainty follows surprising
observations that violate expectations. Let us now speculate over how
these ideas might relate to other important determinants of curiosity
implicated in the literature: namely, novelty and complexity (Berlyne,
1966; Dubey and Griffiths, 2020).

In general, uncertainty is a product of perception of stimuli (or
events) that we encounter. While researchers often talk about incon-
gruity, ambiguity, complexity and novelty as properties of stimuli,
psychologically, these terms refer to representational states. They are
what individuals perceive from the observed stimuli through the sub-
jective lenses of their prior knowledge. Observers’ context-dependent
expectations and the stimuli under observation jointly determine the
state of their perceptual system. It is possible to conceptually map
different states of the perceptual system onto the corresponding con-
structs implicated in the induction of uncertainty. While these are
speculative ideas about the potential representation of different kinds
of uncertainty in the perceptual system, we think these ideas merit
further discussion, because they provide a basis to formalize and unify
concepts whose relationships have been implied but to this day remain
tacit.

To start our (speculative) conceptual unification, we need a simple
model of perception. Consider a few generic details of contemporary
neuro-computational models of perception. These models character-
ize perception as a hierarchical inferential process (McClelland et al.,
2014; Olshausen, 2013; Quian Quiroga, 2016, e.g., ). In such accounts,
objects are perceived as concepts through a sequence of inferences
on progressively more abstract neuronal representations. Low-level
neural populations encode less abstract features (e.g., surfaces, edges,
edge orientations) while more abstract neurons encode more abstract
features (e.g., shapes, concepts). Neurons within the same process-
ing level are mutually inhibitory, creating within-level competition;
neurons on different levels are mutually excitatory, resulting in the
bidirectional spread of activation. Perceptual inference consists of par-
allel integrative guesswork executed at different levels of abstraction:
at any given step of encoding, a neuron has to "decide" whether to fire
or not based on the bottom-up inputs it receives as data, top-down
inputs it receives as context-dependent expectations, and same-level
inputs from competing units. To exemplify, one might perceive the
same footprint (same sensory image) as belonging to a dog or a
wolf, depending on whether it is encountered in a city park or in a
wild forest. An unambiguous perception of a stimulus is achieved by
the complete agreement between the bottom-up and top-down input
streams, so that the competition at the same level reaches a unanimous
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consensus. However, there are several ways in which this harmony
can be disrupted:

• There might be a strong prior expectation (strong top-down
priming) of one feature and a strong bottom-up evidence for
another feature. Intuitively, this seems to correspond to a state of
surprise. Surprising observations can signal epistemic uncertainty
which, in turn, can attenuate expectations and thus increase
unpredictability. Suppose someone told you, "Every night before
going to bed, I go to the bathroom and brush my iguana". The
beginning of a sentence creates a strong expectation for the word
"teeth", but the actual ending is surprising. At the risk of abusing
this already ridiculous example, we further remark that after
learning about the person’s nocturnal rituals, you might think
him somewhat unpredictable.

• The bottom-up signaling might strongly activate several com-
peting higher-level representations. We can say that the data or
observation is ambiguous. In a very early investigation (Berlyne,
1958), participants looked longer at stimuli that combined visual
features of two distinct objects (i.e., were perceptually ambigu-
ous; e.g., a chimera with a camel back, dog head, and elephant
legs). To provide a more bona fide example, think of a person
who shares a flat with two other people. The sound of someone
coming in through the front door would suggest that it is either
one of two people, but the information would be ambiguous and
perhaps compel the person to peek outside their room.

• The bottom-up data might activate a large number of repre-
sentations at a relative mid-level of the abstraction hierarchy
which fails to converge on a single representation due to the
lack of input from the higher-level. This might indicate the lackRelative novelty

refers to a novel
combination of

familiar features
(Barto, Mirolli, and

Baldassarre, 2013)

of high-level encoding of the stimulus, i.e., that the individual
has not acquired an efficient way to represent it. Such stimuli
might be perceived as complex (but also, relatively novel; see the
next bullet-point). A good example of this is perceiving a string
of Chinese characters as complex (e.g., 复 杂 的 3). The simple
strokes that go into this string are relatively high-level visual
features, but they are not further compressed into a word or
concept representation. Presumably, a literate Chinese speaker
do not perceive this string to be as complex as those who cannot
read and speak Chinese.

• Similarly to complexity representation, the bottom-up data might
not sufficiently activate a high-level encoding, while activating
relatively few mid-level representations. This could indicate

3 If you are curious about this complex stimulus, this is how Google translates the
English word "complex"
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relative novelty without complexity. Alternatively, one could
conceive novelty as residual competition at some level of encod-
ing due to the lack of convergence at higher-levels. For example,
someone who cannot read Cyrillic and does not know Russian,
the character string сложный might appear novel. Like
in the example with Chinese characters, this string consists of
fewer simple features that are arranged in a somewhat more
familiar way. Both 复 杂 的 and сложный are relatively
novel, but the latter should appear less complex to a literate
English speaker who does not know Chinese or Russian. This
suggests how relative novelty and complexity might be related.

Having discussed the situational factors influencing curiosity/in-
terest, we can now turn to how this state is experienced. We can
identify two distinct experiential aspects. The affective/emotional
aspect pertains to how the state of curiosity/interest is experienced
from a subjective (phenomenological) view-point. The motivational
aspect concerns what the individual does as he or she experiences
curiosity/interest.

3.3.2 Affect and Motivation

Curiosity, is often assumed to be the motivation to reduce an aversive
state. From early on, it has been conceptualized as a drive that people
are motivated to eliminate (Berlyne, 1954a; Loewenstein, 1994). Obser-
vations that uncertainty can induce fear and anxiety (Carleton, 2016;
Hebb, 2002) lend further support of this view. However, like any other
state, uncertainty must undergo a cognitive appraisal that determines
the affective profile of the ensuing motivational state (Anderson et al.,
2019).

If deemed irrelevant by the appraisal process, uncertainty may fail
to elicit any affective response. There are many things about which we
are knowingly ignorant; and even if we have some faint knowledge
about such things, we do not necessarily react to our ignorance pos-
itively or negatively. I doubt that not knowing the first letter of my
great-grandfather’s name provokes any kind of emotion in the reader.
Besides, if uncertainty was anxiety or fear-inducing, young children
would have to be in a constant emotional distress. In order to elicit any
affective response, the situation’s personal relevance – its significance
for one’s goals and needs – must be evaluated (Cunningham and
Brosch, 2012; Lazarus, 1991). Accounts that portray uncertainty as
anxiety-inducing assume the presence of perceived threats (Grupe and
Nitschke, 2013). Without referring to peoples’ current goals and needs,
it is impossible to make a general statement about how they feel about
uncertainty.

If the perceived uncertainty is somehow relevant to the individual,
it may be accompanied by positive or negative feelings. For instance,
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participants in Noordewier and van Dijk’s (2017) study reported posi-
tive feelings about curiously anticipating an intriguing video clip, but
only when they expected to watch it after only one minute of waiting,
in contrast to those who expected a 30-minute delay and experienced
their curiosity negatively (but see van Lieshout, de Lange, and Cools,
2020). These discrepancies are in line with a more recent theory of I/D-
type curiosity (Litman, 2019), which maintains that curiosity can be
experienced as a feeling of deprivation (D-type) or a feeling of interest
(I-type). The D-type curiosity is associated with negative affect, while
the I-type is experienced positively. The I/D-type taxonomy resonates
with contemporary views on curiosity and interest (e.g., Hidi and
Renninger, 2019; Murayama, FitzGibbon, and Sakaki, 2019; Shin and
Kim, 2019), which propose that there are two distinct affective states
that fuel information-seeking behavior. One state is accompanied by
an unpleasant feeling of a knowledge-gap and another is characterized
by a pleasant anticipation of learning. Although distinct, these states
tend to coincide with one another (Hidi and Renninger, 2019).

A useful framework for understanding affective and motivational
states underlying non-instrumental information-seeking is the incen-
tive motivation theory (Berridge, 2009; Robinson et al., 2016). The
theory revolves around a distinction between systems of "wanting"
and "liking", also referred to as incentive salience and hedonic impact,
respectively. Traditionally, the two terms are marked with quotes to
distinguish them from more intuitive, everyday meanings of wanting
and liking. Incentive salience ("wanting") refers to the visceral desire
usually directed at a specific state or stimulus. Notably, "wanting" isIntentionality refers

to the contents or
representational

targets of certain
mental states, their

"aboutness" or
"directedness".

distinguished from cognitive desire – a more explicit and intentional
kind of wanting that involves conscious thoughts about the object
of desire and its emotional significance, akin to goal representation.
On the other hand, hedonic impact ("liking") refers to the objective
hedonic responses to stimuli such as activation of hedonic "hotspots",
certain facial expressions, and other physiological manifestations of
pleasure (Berridge and Kringelbach, 2015). As such, hedonic impact is
distinguished from the conscious feelings of liking. Normally, "want-
ing" coincides with cognitive desire and both are intricately related
to "liking" and the concurrent conscious hedonic experience. While
the unconscious "wanting" and "liking" systems might be phylogeneti-
cally and ontogenetically older, conscious desires and feelings confer
additional evolutionary value by enabling more flexible and allostatic
behavior (Damasio and Carvalho, 2013).

Incentive salience and hedonic impact are implemented by anatomi-
cally overlapping but functionally distinct systems in the brain (Berridge,
Robinson, and Aldridge, 2009). The "wanting" system resides in the
circuitry that includes midbrain DA nuclei and their mesolimbic pro-
jections. It is responsible for maintaining seeking behaviors that can be
directed towards rewards and reward-conditioned cues, but can also
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be completely non-intentional (Berridge, 2009). The "liking" system
includes relatively small neuronal populations distributed through-
out the frontal and insular cortices and the midbrain (Berridge and
Kringelbach, 2015). It functions to communicate value of experienced
states to other systems in the brain (Damasio and Carvalho, 2013).
These distinct functions, as one might expect, are highly complemen-
tary: hedonic responses of "liking" signal what the organism should
"want". However, the activity of the two motivational components is
dissociable, which can lead to confusing behaviors, such as "wanting"
something without "liking" it or "liking" something without having
"wanted" it. Since voluntary information-seeking is a type of moti-
vated behavior, the incentive motivation theory has a potential to
explain why people can be "seduced" by either pleasant or unpleasant
information (FitzGibbon, Lau, and Murayama, 2020).

Incentive motivation theory has gradually replaced the previously
dominant drive theories of motivation on the grounds that drive reduc-
tion is a weak (negative) reinforcer at best (Berridge, 2018). According
to the incentive motivation theory, while the unpleasantness of a drive
(e.g., a feeling of deprivation) can be experienced – and to a high
degree – it does not spark or fuel motivation, but serves to inten-
sify it. Recall that the affect associated with the "wanting" state is
determined by an independent appraisal process. This implies that
"wanting" information is not an inherently unpleasant feeling, as drive
theories of curiosity (Berlyne, 1954a; Loewenstein, 1994) have assumed.
Thus, information-seeking is incentivized by information and can be
modulated by uncertainty that can be affectively positive, negative,
or neutral. Crucially, the desired information does not have to be
available to activate the "wanting" system (just like we don’t need to
see a cup of coffee in order to start craving one). As mentioned earlier,
incentive salience can be initiated by learned associations between
rewarding stimuli and arbitrary cues.

Uncertainty can be regarded as a cue that triggers the "wanting"
system, while information that resolves uncertainty can be viewed
as an input to "liking" system. As noted above, the degree of un-
certainty can have a moderating effect on the intensity of "wanting".
Several empirical findings support this view. In addition to the "ob-
serving task" study reviewed earlier (Bromberg-Martin and Hikosaka,
2009), Aron et al. (2004) found a correlation between categorization
uncertainty and midbrain activity. Gruber et al. (Gruber, Gelman, and
Ranganath, 2014) reported a positive relationship between curiosity
ratings about trivia questions and activation levels in the DA midbrain
and the nucleus accumbens (NAc). White et al. (White et al., 2019) used
single-cell recordings to show graded activity related to reward uncer-
tainty in the dorsal striatum (DS) and the ventral pallidum (VP), both
involved in incentive salience (Smith et al., 2009; Volkow et al., 2002).
These are only indirect clues that raise the appeal of the idea that



42 elements of information-seeking

uncertainty moderates information-"wanting". Not all imaging studies
on human curiosity report associations between uncertainty/curiosity
and the incentive salience system (Jepma, 2012; van Lieshout et al.,
2018). To make things clearer, we need more research focusing on the
relationships between degrees of uncertainty, curiosity, and incentive
salience.

How does uncertainty get associated with information to become
a cue for information-"wanting"? The answer to this question might
explain individual differences in personality traits like tolerance to
uncertainty (Hillen et al., 2017), need for cognition (Cacioppo and
Petty, 1982), developed individual interests (Hidi and Renninger,
2006) and more. The mechanism proposed by the incentive motivation
theory is conditioning (we might as well call it reinforcement learning
(RL); Maia, 2009; Murayama, FitzGibbon, and Sakaki, 2019). Actions
that reduce a previously registered state of uncertainty are reinforced
by "liked" states or stimuli and discouraged by "disliked" ones. The
agent can thus develop abstract generalizable strategies (e.g., read
a book, search in Google, ask a parent, etc.) to obtain information
cued by uncertainty in various contexts. Interestingly, the theory of
incentive motivation suggests that through this associative process,
uncertainty itself can eventually become the target of "wanting" so
that the agent will be willing to work to get to this state. However, it
should be emphasized that it is the initial "liking" of information that is
rewarding, and as such, it is the foundation of motivated information-
seeking in response to uncertainty. An intriguing and empirically
testable prediction follows: without a sufficiently frequent pairing of
uncertainty and "liked" information, no appreciation of uncertainty
states can develop in a non-instrumental setting.

3.4 "liking" information

Let us now take a step back and recall the idea that valuing non-
instrumental information is biologically adaptive because it enables
individuals to enrich procedural knowledge, resulting in large and di-
verse skill sets. The motivational mechanism of uncertainty-triggered,
non-instrumental information-seeking provides a plausible but not
very detailed explanation for how the knowledge accumulation pro-
cess is instantiated in humans, and perhaps other animals. To render
a more complete picture, we need to understand the sufficient con-
ditions for "liking" information. This is by no means an unexplored
territory, as researchers have proposed several potential explanations.
It is important to mention that different propositions reviewed below
are compatible and should not be regarded as alternative explana-
tions of motivated information-seeking. A more productive mindset
is to consider how different aspects of informational appeal jointly
determine situational curiosity and the development of more per-
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sistent interests (see Bromberg-Martin and Sharot, 2020; Daddaoua,
Lopes, and Gottlieb, 2016; FitzGibbon, Komiya, and Murayama, 2021;
Kobayashi et al., 2019).

One proposition is that information is "liked" because it induces an
inherently pleasing anticipation about a desired event in the future –
a phenomenon known as savoring (Loewenstein, 1987). The preference
to learn about upcoming rewards has been empirically demonstrated
in humans (Iigaya et al., 2016; Kobayashi et al., 2019; van Lieshout
et al., 2018) and other animals, including monkeys (Bromberg-Martin,
2011; Bromberg-Martin and Hikosaka, 2009; Daddaoua, Lopes, and
Gottlieb, 2016), and pigeons (Gipson et al., 2009; Spetch et al., 1990).
For instance, when presented with two options for requesting a time-
delayed rewards (one more probable and one less probable), pigeons
prefer the less probable option when it offers the chance to learn with
certainty about the delayed outcome (Gipson et al., 2009; Spetch et al.,
1990). For a more intuitive understanding, imagine you were offered
two lottery tickets, A and B. A has a 50% chance of winning $100

while B has a 75% chance. B seems like a no-brainer. However, you
can take ticket A (but not ticket B) to a fortune-teller, who will tell you
in advance whether it is a winning ticket or not. Does it make ticket A
more attractive? What if you had to wait a week, or a month, or a year
until the draw? Pigeons were shown to choose "ticket A". Sometimes,
if they have to wait long enough, they can even prefer a 50% reward
to a certain reward (Spetch et al., 1990). Informally, the "savoring"
account of this phenomenon holds that (under certain conditions) the
inherent value of the reward-predicting cue outweighs the value of
the reward itself.

Similar savoring phenomena were demonstrated in monkeys (Dad-
daoua, Lopes, and Gottlieb, 2016) and humans (Iigaya et al., 2016). In
Daddaoua, Lopes, and Gottlieb (2016), monkeys sampled a redundant
reward-predicting cue even when it carried no added predictive benefit
(i.e., the reward was anticipated with certainty in the first place). The
authors explain in this behavior in terms of conditioning (RL) based
on a composite reward function consisting of Pavlovian, operant, and
informational value components. Like in the previous research, the
monkeys searched for information more vigorously, when they were
uncertain about it. Iigaya et al. (2016) offered adult male participants
an opportunity to sample valid advance information about the presen-
tation of an extrinsic (graphic) reward after a delay. When the delay
was short, participants did not care to sample advance information;
however, the tendency to request the informative cue increased with
the delay in reward presentation. This effect was non-monotonic due
to the temporal discounting of the reward value. The authors explain
the preference for advance information about a delayed uncertain
reward in terms of reward-prediction errors (RPEs) that boost the tem-
porally discounted anticipatory utility. In a related human behavior
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study, Kobayashi et al. (2019) participants could choose to partially
reveal a two-part monetary prize by either maximally reducing uncer-
tainty about the total amount or by savoring the greater part of the
prize expected with certainty. The majority (though not all) of partici-
pants chose to savor4 the highly paying part of the prize and remain
ignorant about the less lucrative part. The authors account for the
diversity of informational preference using a choice-utility model with
two free parameters describing a preference for uncertainty reduction
or anticipatory savoring, respectively. All three of the aforementioned
studies propose very different computational accounts for the savoring
phenomenon. Future work should aim at unifying these accounts in a
single framework that accounts for similar but not identical behaviors
displayed in different studies of anticipatory utility of information.

The "savoring" account of "liking" information can be viewed as
an instance of a broader phenomenon: information can be "liked" for
its pleasing implications. For example, some pieces of information
support desirable beliefs that people are personally invested in (e.g.,
confirmation bias Nickerson, 1998). Let us call it the "hedonic value"
conjecture. The taste for self-pleasing information might have adaptive
value beyond knowledge acquisition, for example, by virtue of elevat-
ing self-efficacy (Bandura, 1977) (the subjective belief of achieving cer-
tain outcomes in certain situations) for accomplishing desirable tasks
(Bromberg-Martin and Sharot, 2020). This idea is certainly plausible,Note:, no single

"conjecture" can
account for all of

motivated
information-seeking.

but the "hedonic value" conjecture is insufficient for explaining many
instances of non-instrumental information-seeking where information
does not inherently imply anything positive for the individual. One
example is counter-factual information: humans (FitzGibbon, Komiya,
and Murayama, 2021) and monkeys (Wang and Hayden, 2019) sample
information about what happened in the past to learn what could have
happened in the present – something that can actually induce negative
feelings of regret. Other examples include related behaviors such as
explanation-seeking (Coenen, Nelson, and Gureckis, 2019; Liquin and
Lombrozo, 2020) and exploratory play (Chu and Schulz, 2020a; Cook,
Goodman, and Schulz, 2011). Upon encountering observations that are
surprising or have ambiguous causal precedence, humans engage in
investigatory activity aimed to resolve the ambiguity. We seem to seek
observations that convey accurate rather than pleasing information
about the world. Intuitively, "liking" such information should facilitate
autonomous knowledge acquisition.

To advance the idea that "liking" knowledge-enhancing information,
we need to characterize what we mean by "knowledge" more precisely.
In cognitive-computational literature, knowledge is instantiated in
the parameters of formal cognitive models. Two broad classes of

4 Interestingly, when the outcomes were framed as monetary losses, rather than gains,
fewer participants chose the high-loss option which is consistent with the notion of
anticipatory dread – the counterpart of savoring.
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models dominate the field: probabilistic models (Griffiths et al., 2010)
based on the assumptions about the computational problems facing
intelligent systems, and connectionist models (McClelland et al., 2010)
based on algorithmic and implementational constraints of intelligent
systems. Regardless of the modeling approach, knowledge in these
computational systems serves the same purpose: enabling inferences
under uncertainty. These inferences can be perceptual (what is "out
there"? what am I hearing/feeling/looking at etc.?), causal (what has
led to the current state?), predictive (what will be the next state?), or
instrumental (what to do to get to the desired state?), to name a few5.
Importantly, inferences are improved by generalization from data (i.e.,
induction).

Following this more precise characterization, we can now introduce
the "epistemic value" conjecture – information is "liked" when it im-
proves knowledge. To improve knowledge is to improve the accuracy of
knowledge-based inferences. We have mentioned before that aleatoric
uncertainty, or unpredictability, refers to "irreducible uncertainty",
which is how it is often characterized (Hüllermeier and Waegeman,
2021; Kendall and Gal, 2017). While there is a certain sense in which
this characterization is undeniable, we can also say that we "reduce"
the uncertainty of a die roll or a coin toss by observing their outcomes.
In this sense, reducing aleatoric uncertainty is much simpler than
reducing epistemic uncertainty, as it can be done in a relatively short
period of time. On the other hand, epistemic uncertainty consists of
multiple episodes of aleatoric uncertainty reduction, just like learning
that a coin is fair involves multiple coin tosses. Epistemic uncertainty
reduction appears to be better aligned with the "epistemic value"
conjecture than does aleatoric uncertainty reduction. Curiosity experi-
ments often measure uncertainty to relate it to people’s self-reported
ratings (of curiosity), but they do not always explicitly state which
kind of uncertainty is being studied. As we briefly discuss in the next
section, this can lead to confusion and incompatibility in results.

3.5 learning progress hypothesis

The "epistemic value" conjecture is closely related to the concept of LP

originating in AI (e.g., Oudeyer, Kaplan, and Hafner, 2007; Schmid-
huber, 1991b). LP-inspired intrinsic-reward functions push agents to
progressively explore their environments by engaging in learning sit-
uations (see Chapter 2) where their knowledge is improving. Thus,
despite revolving around the principle of prediction-error reduction,
LP-based reward functions are similar to other so-called heterostatic
adaptive reward functions, like competence-progress or information-

5 The limited number of query-forming words (see Chu and Schulz, 2020a) suggests
that there is a finite amount of inference classes that people might make, so it might
be useful to taxonomize them.
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gain motivations (Oudeyer and Kaplan, 2007). At a higher level, all of
these reward functions are designed to encourage agents to explore
states where their knowledge is improving.

By re-engaging in situations where their predictions or competence
are improving, artificial agents are able to efficiently address two
non-trivial computational challenges of open-ended learning (Gottlieb
et al., 2013). The first challenge is the virtually infinite amount of
things one can learn and the concurrent limited amount of resources
individual organisms possess. Given an ability to perceive the similar-
ity of various sensorimotor contexts, LP-guided agents can fragment
the vast learning space and delineate "progress niches" inside it that
are appropriate for their level of knowledge or ability (e.g. Etchev-
erry, Moulin-Frier, and Oudeyer, 2021; Forestier et al., 2020; Oudeyer,
Kaplan, and Hafner, 2007). The second challenge is the prevalence of
uncorrelated events and unreachable goals that agents cannot learn
or learn to achieve in principle. The strategy of pursuing LP helps
agents divert their resources from trying to improve predictability of
uncorrelated variables and attempting to reach states that agents are
not ready to or will never be able to reach. Furthermore, progress-
based heuristics for time allocation across multiple tasks have been
shown to be optimal in certain conditions (Lopes and Oudeyer, 2012;
Son and Sethi, 2006). Thus, LP-based motivation presents a potential
solution to tough computational challenges faced by artificial and
biological agents alike (Gottlieb and Oudeyer, 2018; Gottlieb et al.,
2013; Oudeyer, 2018).

Following the advancements in implementing self-organized explo-
ration in robots, Kaplan and Oudeyer (2007) put forth the the Learning
Progress Hypothesis (LPH). In a nutshell, the original LPH contends
that the human brain features a system for detecting reduction of
prediction errors that signify "progress niches" – sets of sensorimotor
states that promise to improve the brain’s forward-predictive knowl-
edge. However, there are numerous ways in which knowledge im-
provement can be formalized (Graves et al., 2017; Linke et al., 2020;
Oudeyer and Kaplan, 2007; Santucci, Baldassarre, and Mirolli, 2013)
and over the years, the notion of LP has broadened to include other
signals that indicate knowledge improvement. The "epistemic value"
conjecture introduced in this chapter is entirely consistent with this
broader notion of LP. Thus, the LPH which we will advance in this
thesis proposes that the brain monitors its own knowledge and that
states that are associated with knowledge-improvement (e.g., uncer-
tainty reduction, prediction-error reduction, competence gain, etc.)
are intrinsically valuable, and thus motivating. Whereas the origi-
nal LPH involves prediction errors as the metric of knowledge and
prediction-error reduction as the metric of learning, our "epistemic
value" conjecture refrains from specifying representational details.
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Knowledge-improvement expectations are also tightly related to
the concept of self-efficacy (Bandura, 1977). Evidence for improving
performance – a form of LP called competence progress (see Oudeyer
and Kaplan, 2007) – might foster feelings of self-efficacy which bear
on the psychological need for competence (Blain and Sharot, 2021)
postulated by the Self-Determination Theory (Ryan and Deci, 2000).
According to this view, mastery-oriented effort is fueled by self-efficacy
beliefs that are, in turn, supported by LP. This self-efficacy account of
intrinsic motivation adds potentially important details to the current
theoretical perspective. The relationship between LP and self-efficacy
will be discussed in more detail in Chapter 5.

Before proceeding to discussing the work that supports the LPH, let
us first discuss how it relates to exploration in instrumental settings.
It is worth examining information-seeking in instrumental contexts
because it might have similar mechanisms with non-instrumental
information-seeking (Gottlieb and Oudeyer, 2018; Gottlieb et al., 2020).
In the so-called "multi-armed bandit" task (see Averbeck, 2015), par-
ticipants sample from 2 or more sources of stochastic rewards, called
"bandits". Of interest is how participants use their finite sampling
opportunities to maximize the amount of total reward. On any given
sampling trial, they can sample from bandits that they believe are
most rewarding (i.e., exploit) or try less familiar ones in order to learn
more about them (i.e., explore). Several studies report that it is com-
mon for people to explore bandits that they are least certain about
(Gershman, 2018a; Schulz et al., 2019; Speekenbrink and Konstantini-
dis, 2015). Importantly, the uncertainty pursued by participants is the
posterior (epistemic) uncertainty regarding expected-value estimates
of the bandits, not the irreducible expected (aleatoric) uncertainty of
independent bandit outcomes (Schulz and Gershman, 2019). Epistemic
uncertainty is always reducible (Hüllermeier and Waegeman, 2021),
even if a bandit is unpredictable. Moreover, it is typical to assume
uninformative or weakly informative priors about the expected values
of the bandits. Therefore, a bandit of maximal (reducible) uncertainty
offers the most LP, because low-entropy priors (more strongly held
beliefs) are less likely to be influenced by new data compared to less in-
formative priors. Thus, uncertainty maximization strategies observed
in instrumental exploration contexts of multi-armed bandits seems
compatible with the LPH.

Several results from research on non-instrumental information-
seeking are also compatible with the LPH. For instance, van Lieshout
et al. (2018) had participants play multiple trials of risky lotteries.
Participants could sample accurate information about the amount
of a given lottery in advance by paying a known price. The results
showed a monotonic relationship between uncertainty of a lottery and
the requesting of information. Since the experimenters delivered the
promised information reliably upon request, participants could expect
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to improve their prediction about the upcoming reward. That is to
say, all learning situations encountered in the study were knowingly
learnable. Therefore, maximal-uncertainty lotteries can be reasonably
speculated to correspond to learning situations with the highest ex-
pected LP. However, it should be noted that these results are also
compatible with another information-sampling strategy, which pre-
dicts that decision-makers are most curious about maximally uncertain
situations.

In contrast to the results from van Lieshout et al. (2018) suggest,
studies using trivia questions (Baranes, Oudeyer, and Gottlieb, 2015;
Kang et al., 2009) report a non-monotonic inverted-U relationship be-
tween uncertainty in knowing the answer and self-reported curiosity –
participants were more interested in questions for which they reported
intermediate certainty of knowing the answer. This finding is also con-
sistent with the LPH, as it predicts the strongest motivation for seeking
intermediate-complexity stimuli (Baranes, Oudeyer, and Gottlieb, 2014;
Oudeyer, Gottlieb, and Lopes, 2016a). The apparent contradiction with
van Lieshout et al. (2018) can be explained by noting the crucial dif-
ferences in experimental stimuli. Learning situations in the lottery
task are unrelated to participants’ broader knowledge beyond the
experiment or even individual trials. In contrast, trivia facts typically
make us more knowledgeable, regardless of whether they are learned
inside or outside the lav. Since committing declarative propositions
to memory (i.e., learning them) depends on prior knowledge (Brod,
Werkle-Bergner, and Shing, 2013), intermediate-confidence questions
could induce maximal curiosity because their answers are more likely
to be committed to memory (thus promising more LP), compared to
the answers to maximally uncertain questions.

While findings from both trivia-question and lottery tasks are com-
patible with the LPH, they are not designed to probe knowledge acqui-
sition over extended periods of time, as it happens in natural settings.
There are several studies compatible with the LPH that investigate
time-extended information-seeking. For instance, Gerken, Balcomb,
and Minton (2011) showed that infants attend to stimulus sets with
learnable structure longer compared to sets with unlearnable structure.
Kidd, Piantadosi, and Aslin (2012) showed that infants look longer at
sequences of intermediate-complexity compared to highly predictable
and excessively unpredictable sequences. In a similar study, Poli et al.
(2020) provide a more direct support to the LP-based engagement by
showing that infants’ tend to look away from stochastic sequences
when they no longer update an assumed predictive model. Geana et al.
(2016) showed that human adults rate invariant and random-uniform
number generators as more boring than random-but-predictable num-
ber generators based on normal distributions. Leonard et al. (2021)
showed that young children who saw evidence for gradual improve-
ment were more likely to stick to a challenging task compared to
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children whose improvement record was held constant. While these
studies support the LPH, they measure task engagement by first forcing
learning situations on participants and then observing how partic-
ipants disengage. On the other hand, the LPH predicts how people
decide to actively engage in learning activities.

A few studies have examined the relationship between free active en-
gagement in time-extended learning tasks and variables closely linked
to LP. Son and Metcalfe (2000) gave participants multiple biographical
texts to explore over a fixed amount of time. Before free exploration,
participants sampled each text and provided metacognitive judgments
for how easy they thought the texts were. Participants spent more time
on and gave priority to texts that they judged to be easier. Metcalfe and In metacognition

research, a JOL is a
self-reported
confidence in
retrieving a stimulus
in the future.

Kornell (2005) subsequently reported a positive correlation between
study time and a crude temporal derivative of explicit JOLs: people
spent more time studying Spanish-English word pairs for which their
judgments of learning were increasing. Interestingly, Metcalfe and Ko-
rnell’s Region of Proximal Learning theory (Metcalfe and Kornell, 2005)
predicts learning activities are given priority with respect to their JOL,
similarly to how uncertainty can cue and modulate the motivation
for information-seeking. Their theory also predicts that perseverance
on a learning activity is determined by a temporal derivative of JOL,
which resonates with the idea that low-LP do not arouse interest. While
Metcalfe and colleagues’ work is clearly related to the LP-hypothesis,
task designs in the reviewed studies did not permit a close tracking of
learning rates and task engagement.

It is still unclear whether the human brain hosts a mechanism (or
several mechanisms) to compute LP and generate the motivation for
seeking it. Considering the necessary computational features of LP

algorithms as well as a number of studies that are compatible with
their operation, studying the role of LP in a dedicated task is an impor-
tant step in advancing our understanding of intrinsically motivated
information-seeking. In Chapter 4, we report an original study that
introduces a behavioral paradigm for studying the process of learn-
ing of multiple non-instrumental activities as it unfolds concurrently
with active exploration. Using a computational model of trial-by-trial
choice utility, we demonstrate that humans do show sensitivity to LP

while exploring multiple learning activities. Next in Chapter 5 (also
in Chapter 6), we explore the potential metacognitive mechanisms
for LP computation and consider a belief-based process by which LP

representation shapes the intrinsic motivation to practice a real-world
sensorimotor task.
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P R O G R E S S - B A S E D E X P L O R AT I O N I N H U M A N S

4.1 introduction

As explained extensively in Chapter 2, curiosity is a fundamental drive
in human behavior and a topic of great interest in neuroscience and
cognitive psychology. The vast majority of recent research on curiosity
has operationalized it as intrinsically motivated information demand,
using tasks in which participants can request information about future
events but do not have the opportunity to exploit (act on) the informa-
tion. The studies have shown that humans and other animals seek to
obtain information as a good in itself and this preference is encoded in
neural systems of reward and motivation, suggesting that information
is rewarding independently of material gains (Bromberg-Martin and
Hikosaka, 2009; Duan et al., 2020; Kang et al., 2009; Lau et al., 2020).

While these findings tap into the intrinsic motivation behind curios-
ity, they are yet to capture the full scope of curiosity-driven investi-
gations (Gottlieb and Oudeyer, 2018). Specifically, in natural settings,
humans investigate questions on much longer time scales relative to
those tested in the laboratory. In contrast with tasks of information de-
mand in which participants request information about brief unrelated
events – e.g., a forthcoming reward or a trivia question – in natural
behavior, learners maintain sustained focus on specific activities such
as reading an article, conducting an online search, or taking a course.
Operating from early infant development (Bazhydai, Twomey, and
Westermann, 2020), this ability for sustained investigations may under-
lie the most important ecological role of curiosity, as it allows people
to develop individual interests and skills and, ultimately, discover
explanatory models and latent structures of the world (Dubey and
Griffiths, 2020; Hidi and Renninger, 2019; Schwartenbeck et al., 2019).

Very little is known about how people self-organize investigations
to achieve learning on longer time scales. Natural environments afford
a practically infinite number of activities that a curious learner can in
principle investigate. However, given the limited time and resources
available for investigation, the learner must carefully select which
activity to engage with to enable discovery. Formal treatment of this
“strategic student” problem prescribe how learners should allocate
study time to maximize learning across a set of the activities (Lopes
and Oudeyer, 2012; Son and Sethi, 2006) but show that the optimal
allocation is very sensitive to the shape of the expected learning
trajectory, which is not available to learners in practice (Son and Sethi,
2006).

52
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Figure 4.1: Task design and difficulty manipulation. a, Trial structure during
free play. The panels show 3 example free-choice trials consisting
of 3 steps each. Each trial began with a choice among 4 "monster
families" depicted as visual icons (1). This was followed by the
presentation of a randomly drawn individual from that family
and a prompt to guess which of two possible foods the individual
liked to eat (2). After guessing (2), the participant received im-
mediate feedback (3) and the next trial began. Participants were
free to repeat the previously sampled activity (e.g., trial t + 2
in this figure) or switch to any other monster family (e.g., trial
t + 1) as they wished. b, Performance during the forced-choice
familiarization stage. Each box plot shows the percent correct (PC)
during the 15 familiarization trials in which participants had to
play each activity for the internal goal (IG) (blue; N = 186) and
external goal (EG) (red; N = 196) groups. Horizontal bars inside
boxes show the median values across all participants in a group;
box boundaries show the 1st and the 3rd quartiles; whiskers show
sample minima and maxima. Image credits (Fig. 1, a): monster
character designs by macrovector/Freepik; food-item designs by
brgfx/Freepik.

A common proposal for how people resolve this conundrum is that
they prioritize study items based on their perceived difficulty, i.e., their
perceived level of knowledge or competence on a task, but the precise
form of this prioritization is under debate. Several studies have shown
that people prioritize tasks with high difficulty or high uncertainty
(Loewenstein, 1994; Schulz et al., 2019). In contrast, an expanding
literature proposes that people prefer intermediate difficulty (Berlyne,
1960) in a range of conditions including curiosity about trivia questions
(Baranes, Oudeyer, and Gottlieb, 2015; Kang et al., 2009), choices
among sensorimotor activities (Baranes, Oudeyer, and Gottlieb, 2014),
infant attention (Kidd, Piantadosi, and Aslin, 2012) and aesthetic
appreciation (Gold et al., 2019; Tsutsui and Ohmi, 2011).

Strategies that prioritize high versus intermediate difficulty activi-
ties may have different computational bases and ecological roles. A
preference for high difficulty tasks may emerge from computational
architectures that assign intrinsic utility to prediction errors or uncer-
tainty, thus motivating agents to venture beyond familiar activities
(Bellemare et al., 2016; Dayan and Sejnowski, 1996; Pathak et al., 2017;
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Schulz et al., 2019). In contrast, a strategy prioritizing activities with
intermediate difficulty may emerge from control architectures based
on learning progress (LP; Colas et al., 2019; Graves et al., 2017; Kaplan
and Oudeyer, 2007; Kim et al., 2020; Schmidhuber, 2010; Twomey and
Westermann, 2018) that monitor the temporal derivative of perfor-
mance - e.g., percent correct (PC) - and generate intrinsic rewards for
activities in which the agent’s performance changes with practice.

LP-based algorithms are particularly important in naturalistic envi-
ronments because they allow agents to avoid not only highly familiar
tasks but also unlearnable tasks – i.e., activities that are intrinsically
random or cannot be mastered with the learners’ current knowledge
or skills (Forestier et al., 2020; Kim et al., 2020; Oudeyer, Kaplan, and
Hafner, 2007). Unlike PC-based algorithms that steer agents toward
tasks of maximum difficulty, LP-based algorithms help to avoid ran-
dom or too-difficult activities. Moreover, these algorithms provide
realistic solutions for optimizing study time allocation - by maximiz-
ing the progress that an agent experiences in practice without precise
knowledge of one’s future learning curve (Lopes and Oudeyer, 2012;
Son and Sethi, 2006) - and have been applied to automate curriculum
learning in difficult machine learning problems (Graves et al., 2017;
Matiisen et al., 2019; Portelas et al., 2020a) and personalize sequences
of learning activities in educational technologies (Clément et al., 2015;
Mu et al., 2018; Oudeyer, Gottlieb, and Lopes, 2016b).

Despite the potential importance of LP-based control strategies,
there is no empirical evidence of whether, and how, people use such
strategies. In the studies conducted so far, people were asked to
estimate the difficulty of study materials based on their familiarity
with the topic (e.g., biographical text or foreign vocabulary; Son and
Metcalfe, 2000). However, no study has tested whether participants
can dynamically monitor their performance on an arbitrary activity
and use dynamic estimates of PC or its temporal derivative (LP) as
predicted by computational algorithms.

Here, we examined this question using computational modeling and
a behavioral task in which people self-organized their study curricula
based on trial-by-trial feedback about their performance on a set of
novel activities. We provide direct evidence that humans show bona
fide sensitivity to LP – the change in performance on novel activities –
which coexists with a sensitivity to PC and steers people away from
unlearnable tasks consistent with computational theories.

4.2 results

We analyzed data from 382 participants who performed an online
task in which they could freely engage with a set of learning activities
(Fig. 4.1, a). Each trial started with a free-choice panel prompting
the participant to choose one of 4 activities depicted as families of
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Figure 4.2: Free play behavior. a, The fraction of participants selecting each
learning activity in the EG (N = 196) and IG (N = 186) groups
(respectively, top and bottom panels) as a function of trial number
during the free play stage (no smoothing) demonstrate that group
differences in choice patterns persisted throughout the task. b,
Histograms of difficulty-weighted final percent correct (dwfPC) for
each instruction group. The EG group (N = 196) achieved better
dwfPC scores than the IG group (N = 186), but the distributions
were broad and overlapping, highlighting important individual
variability. The difference between groups was significant with
both dwfPC and unweighted average PC scores.

“monsters” (Fig. 4.1, a, (1)). After making a choice, the participant
received a randomly drawn member from the chosen family, made a
binary guess about which food that member liked to eat (Fig. 4.1, a,
(2)), and received immediate feedback regarding their guess (Fig. 4.1,
a, (3)). To understand how participants self-organized their learning
curriculum, we required them to complete 250 trials but did not
impose any other constraint on their choice of activity.

Our key questions were (1) how people self-organize their explo-
ration over a set of activities of variable difficulty, and (2) whether
they spontaneously adopt learning maximization objectives when
they do not receive explicit instructions. To examine these questions,
we manipulated the difficulty of the available activities as a within-
participant variable, and the instructions that participants received as
an across-participant variable. Difficulty was controlled by the com-
plexity of the categorization rule governing the food preferences. In
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the easiest activity (A1), individual monster-family members differed
in only one feature and that feature governed their food preference
(e.g., a red monster with big flame liked fries and a red monster with
small flame liked salad; 1-dimensional categorization). In the next
easiest level (A2), family members varied along two features, but only
one feature determined preference (1-dimensional with an irrelevant
feature). In the most difficult learnable activity (A3) food preferences
were determined by a conjunction of 2 variable features (2-dimensional
categorization). Finally, the 4

th activity (A4) was random and unlearn-
able: individual monsters had two variable features, but their food
preferences were assigned randomly each time a new monster was
sampled, and were thus unpredictable with either a rule-based or rote
memorization strategy.

Learning objectives were manipulated across two randomly selected
participant groups. Participants assigned to the “external goal” group
(EG; N = 196) were asked to maximize learning across all the activities
and were told that they will be tested at the end of the session. In
contrast, participants in the “internal goal” group (IG, N = 186) were
told to choose any activity they wished with no constraint except for
completing 250 trials. Except for this difference in instructions (and the
fact that the EG group received the announced test), the two groups
received identical treatments. Each group started with 15 forced-choice
familiarization trials on each activity, followed by a 250-trial free-play
stage, and gave several subjective ratings of the activities before and
after the free play stage (see Appendix 4.B, Self-reported Ratings).

Performance on the forced-choice familiarization stage verified that
these manipulations worked as intended. The EG and IG groups had
equivalent performance during this stage (Fig. 4.1, b; mixed-design
ANOVA on percent correct (PC) with group and difficulty as factors;
EG vs IG, F(1, 380) = 1.829, p = .177; group × difficulty interaction,
F(3, 1140) = 0.820, p = .483). For both EG and IG participants, per-
formance on each activity was significantly different from all others,
suggesting that both groups could use performance feedback as an
index of activity difficulty (Fig. 4.1, b; mixed-design ANOVA, main
effect of activity, F(3, 1140) = 158.400, p < .001; post-hoc pairwise
Tukey’s HSD tests between all activity levels within each group were
significant with all p-values smaller than p = .01). Additional evidence
from the ratings obtained at the end of the task showed that the EG

and IG groups provided similar retrospective ratings of time spent,
progress made and interest in learning activities (Appendix 4.B.1),
suggesting that they had equivalent engagement and self-monitoring
while performing the task.
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4.2.1 Self-challenge

Despite their equivalent learning ability, EG and IG participants showed
different choice patterns and substantial individual variability in the
extent to which they challenged themselves and mastered the available
tasks.

Analysis of group-level activity choices showed that, while the EG

group focused strongly on the most difficult activity (the unlearn-
able activity that had the lowest PC), the IG group showed a more
uniform preference with only a slight bias toward the easiest activ-
ity (Fig. 4.2, a). Across the entire session, the EG group had signif-
icant below-chance time allocation to the two easiest activities and
above-chance allocation to the random (lowest-PC) activity (relative
to 25%; linear model with sum contrasts: A1: 20.61%, t(1520) =

−3.002, p = .003; A2: 19.29%; t(1520) = −3.910, p = .048; A4:
36.92%; t(1520) = 8.156, p < .001). In contrast, the IG group had
a significant above-chance allocation for the easiest (A1) activity
(A1: 33.00%, t(1520) = 5.330, p < .001) while spending less time
on other activities (A2: 21.42%; t(1520) = −2.387, p = .017; A3:
22.16%; p > .05; A4: 23.43%; p > .05; Fig. 4.2, a). According to a signifi-
cant interaction between instruction-group × activity-type interaction,
revealed by a 2-way mixed design ANOVA of time allocation, these
differences were reliable (F(3, 1140) = 14.578, p < .001).

Consistent with their higher self-challenge, average learning achieved
by the end of the free-play stage was greater in the EG relative to
the IG group (Fig. 4.2, b). A measure of difficulty-weighted final PC

(dwfPC: the average PC in the last 15 trials spent on each activity
scaled by its difficulty rank (see Section 4.4.2.1, Methods/Difficulty-
weighted final performance) was significantly higher for the EG group
(M = 0.756, SD = 0.127) relative to the IG group (Fig. 4.2, b; M =

0.721, SD = 0.126; t(379.4) = 2.679, p = 0.008, Welch two-sample
t-test), and the same result held if we used unweighted average PC
(EG: M = 0.787, SD = .118; IG M = 0.756, SD = 0.120; t(378.1) =

2.539, p = .011, Welch two-sample t-test).
Notwithstanding these group-level differences, participants showed

substantial individual variability and, importantly, a subset of those in
the IG group adopted levels of self-challenge similar to the EG group.
To investigate this variability we categorized each participant based
on the number of activities they mastered to a learning criterion - i.e.,
whether they mastered 1, 2 or all 3 learnable activities (NAM1, NAM2 or
NAM3; see Section 4.4.2.2, Methods/NAM designation). The dwfPC score
within each NAM group was not affected by instructions, showing that
the NAM designation effectively captured the variability in learning
achievement (Fig. 4.3, a; pairwise contrasts IG vs. EG conditioned on
NAM were nonsignificant, p > .05, at all levels of NAM).
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Figure 4.3: Individual variability within groups. a, Final performance was
the same across instruction groups when accounting for the
number of activities mastered (NAM). As expected, the NAM desig-
nation captured well the learning achievement of our participants.
In light of b, this demonstrates that many participants achieved
a high performance across learning activities, even without an
explicit instruction to learn. b, Distributions of participants mas-
tering 1, 2, or 3 activities in each instruction group. Whereas half
of the participants in the EG group achieved high performance
across learnable tasks, a sizable portion of the IG participants
(almost 1/3) were motivated enough to self-challenge and learn
without being asked to do so. Only 8 participants in the EG and
9 participants in the IG group failed to master even one activ-
ity. Thus, 99 participants mastered only 1 activity (NEG = 42;
NIG = 57), 126 mastered two (NEG = 58; NIG = 68), and 140

mastered all three (NEG = 88; NIG = 52) c, Time allocation pat-
terns differed by instruction and level of achievement. The three
panels show the average time allocation patterns in IG (N = 177)
and EG (N = 188) groups observed over the free-play trials sep-
arately for each level of NAM (from left to right, NAM1, NAM2,
and NAM3). Circle (EG) and square (IG) symbols represent the
average percentage of time spent on an activity in the respective
NAM-instruction group; error bars indicate the standard error; the
horizontal dashed lines show random time allocation (25%). Time
allocation was consistent across the levels of NAM towards harder
activities in the EG group. In contrast, only the best learners in
the IG group displayed a similar preference, whereas NAM1 NAM2

participants tended towards easier activities.
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Importantly, despite not being instructed to study for a test, 64.52%
of IG participants mastered more than one activity (NAM2 and NAM3)
and 29.59% mastered all 3 activities (Fig. 4.3, b). These percentages
were comparable to learning achievements in the EG group, where
74.49% mastered at least 2 activities, and 36.56% mastered all three.
The relative proportions of participants at each achievement level were
comparable between the two groups across a range of mastery criteria
(see Appendix 4.C, for a detailed analysis). Thus, while changing the
criterion modified the number of participants who achieved mastery,
it left intact the relative fractions of NAM subgroups in the IG and EG

groups. This shows that our conclusions are independent of a specific
definition of mastery.

While NAM1 and NAM2 participants in the IG group showed choices
consistent with the group average – favoring the easiest activity –
NAM3 participants showed a distinct preference for A3 and A4 activi-
ties that more closely resembled the EG group (Fig. 4.3, c). A two-way
mixed ANOVAs of time allocation in the IG group showed a significant
main effect of activity (F(3, 525) = 8.847, p < .001) and a highly sig-
nificant interaction between activity and NAM (F(3, 525) = 14.791, p <

.001). In the EG group there was also a significant main effect of activity
(F(3, 525) = 19.407, p < .001) and a significant interaction with NAM

(F(3, 525) = 7.197, p < .001). As Fig. 4.3 (c) shows, while participants
in NAM1 and NAM2 groups differed in activity selection across the
instruction conditions, those who mastered all 3 learnable activities
allocated their time similarly. Importantly, a sizeable fraction of the
IG group behaved in the same way as people who were instructed to
learn and prepare for a test.

To further examine the relationship between learning achievement
and activity choices, we created an index of self-challenge (SC) mea-
suring the extent to which each participant tended to challenge them-
selves. This index was defined as the recent PC of the activity selected
on each trial, normalized to the entire range of PC levels the participant
experienced so far (see Section 4.4.2.3, Methods/Self-challenge index).
Thus, SC values close to 0 denote participants who tended to choose
the easiest of the activities they experienced; SC close to 1 denote
participants who tended to choose the most difficult activities; and
SC near 0.5 denote participants who preferred activities of intermedi-
ate difficulty. Supplementary analyses verified that the SC index is a
more efficient measure of the tendency to choose challenging activities
compared to simple contrasts between pairs of activities (Appendix
4.D).

Plotting dwfPC versus SC (Fig. 4.4) reveals two important insights.
First, dwfPC has a strong inverted-U relationship with SC, suggesting
that the best learning outcomes were associated with intermediate SC.
An additive model of dwfPC that included both linear and quadratic
SC-index terms (as well as control variables of initial performance and
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Figure 4.4: Relationship between self-challenge and final performance. The
scatter plot shows the difficulty-weighted final score (dwfPC; y-
axis) as a function of the self-challenge index (SC; x-axis). Each
point is one participant. Colors indicate the number of activities
mastered: NAM1, N = 99 (NEG = 42; NIG = 57); NAM2, N =
126 (NEG = 58; NIG = 68); and NAM3, N = 140 (NEG = 88;
NIG = 52); filled and unfilled circles indicate, respectively, EG

(N = 188) and IG (N = 177) groups. The black curve shows the
line of best fit from a linear-quadratic regression model, with
95% confidence intervals represented by the strip surrounded by
black dashed lines. The marginal histograms on the top show the
distributions of SC scores for each NAM (color) and group (solid
and dashed traces). SC was higher for EG relative to IG groups in
participants who mastered only 1 or 2 activities (NAM1 and NAM2),
and was equivalent, with intermediate values, for participants
who mastered all 3 activities (NAM3; top histogram).

instruction) was superior to its counterpart with only a linear term,
∆AIC = 11.775). The linear-quadratic model accounted for a significant
fraction of variance (R2

adjusted = .159, F(4, 360) = 18.238, p < .001)
and produced a significant negative coefficient for the quadratic term
(−0.016, t(360) = −1.966, p < .001). We replicated this finding
when we repeated the analysis using unweighted final PC scores
(R2

adjusted = .191, F(4, 360) = 13.642, p < .001, with the coefficient for
the quadratic term = −0.017, t(360) = −3.561, p = .007) and when
replacing SC with pairwise contrast of activity choices (Appendix 4.D.1,
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b). This shows that the finding was not an artifact of the specific ways
we measured PC or SC.

Second, participants with different instructions and learning achieve-
ments fell on different portions of the inverted-U curve. Participants
who did not master all 3 activities (NAM1 and NAM2) fell on the
rising and falling arms of the inverted-U curve if they were in, re-
spectively, the IG or the EG group (Fig. 4.4). These participants had
equivalent dwfPC but higher SC in the EG relative to the IG group
(multiplicative linear model; NAM1, t(359) = 2.856, p = .005; NAM2

(t(359) = 4.377, p < .001; Tukey’s HSD; see the marginal histograms
in Fig. 4.4). Thus, EG participants who failed to master all 3 tasks did
so because they over-challenged themselves and those in the IG group
did so because they under-challenged themselves. In contrast, partici-
pants who mastered all 3 activities were at the top of the inverted-U
curve and had equivalent (intermediate) SC in the IG and EG groups
(Fig. 4.3, c; no significant pairwise contrasts between EG and IG for
NAM3, t(359) = 1.236, p = .217; see the top marginal histogram).
Thus, consistent with the activity preferences (Fig. 4.3, c): a subset
of participants spontaneously adopted intermediate self-challenge
strategies and maximized learning regardless of external instructions.

4.2.2 Computational Modeling and Sensitivity to Learning Progress

While empirical studies demonstrate preferences for activities of in-
termediate complexity, they have yet to report specific sensitivity to
LP. One study (Son and Metcalfe, 2000) reports that people choose
study words that are judged to have intermediate difficulty, but did
not measure dynamic sensitivity to LP - the change in performance
over time - either alone or in combination with PC.

To examine this question, we fit the participants’ activity choices
by leveraging the formalism of intrinsically motivated reinforcement
learning models (Colas et al., 2019; Graves et al., 2017; Linke et al.,
2020; Lopes and Oudeyer, 2012). Such models typically include three
major components: (1) a space of learning activities, (2) an intrinsic
utility function for each activity, associated with a decision-making
mechanism, modeling how they are sampled, and (3) a model of learn-
ing mechanisms that improve skills after practicing an activity. Here,
we already know the space of learning activities and we can observe
the evolution of performance as learners engage in the activities. Thus,
we can ask which intrinsic utility function could best explain the par-
ticipants’ choices. To do so, we consider a standard softmax model (in
a bandit setting (Linke et al., 2020), in which the utility of an activity
is a linear combination of PC and LP:

Ui,t = wPC × PCi,t + wLP × LPi,t (4.1)
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PC and LP were dynamically evaluated for each activity i at each
trial t based on the recent feedback history. PC was defined as the
number of correct guesses over the last 15 trials of activity i, and LP

was defined as the difference in PC between first versus second parts
of the same interval. We fitted each participants’ data (excluding 8 EG

and 9 IG participants who did not master even a single activity) as a
probabilistic (softmax) choice over 4 discrete classes, using maximum
likelihood estimation with 3 free parameters - the softmax temperature
(capturing choice stochasticity) and weights wPC, wLP indicating the
extent to which each participant was sensitive to, respectively, PC and
LP (Section 4.4.2.4, Methods/Computational modeling). Appendix 4.E.1
illustrates the model fitting procedure for an example participant’s
data.

Note that we use a fixed-size memory to compute LP and PC. The
memory size of 15 recent trials was chosen to match the number of
practice trials, but there are no reasons to assume that this is a veridi-
cal temporal extent of self-assessments. We explore a more flexible
approach with freely parameterized LP and PC computation (and ad-
ditional components based on performance variance) in Section 4.G.
While parameterizing PC/LP computation and adding more utility
components provides improves fit, increasingly complex models are
hard to interpret. Therefore, we stick to simpler models for the remain-
der of this chapter.

The bivariate form of the model that included both LP and PC

(Eq. (4.13)) provided a superior fit to the data in both EG and IG groups.
The bivariate model average AIC score (M = 491.992, SD = 200.389)
was lower than that of an alternative model based on random selection
(M = 693.147; SD = 0.0; the baseline model yields the same likelihood
regardless of participants’ choices; see Eq. (4.6)) and, importantly,
also outperformed univariate models that included only LP or only
PC terms (Fig. 4.5, a). A 2-way ANOVA of AIC scores showed a
significant effect of model form (F(2, 1089) = 43.992, p < .001), a
marginal effect of instruction (p = .054), but no interaction between
model form and EG/IG groups (p = .716). The bivariate model had
the lowest AIC scores in a large majority of participants in both
groups (EG: 70.74%; IG: 74.01%). Finally, in each group, the bivariate
model had a significantly lower AIC relative to each participant’s
next-best model (Wilcoxon signed-rank test, EG: mean difference =

21.503, SD = 41.433; Z(188) = 55, p < .001; IG: mean difference
= 21.882, SD = 45.383; Z(177) = 46, p < .001) and was at least 2

AIC points away from the next-best model in a majority of participants
(EG: 58.51%; IG: 62.71%).

The fact that the bivariate model fits free-choice data better than uni-
variate models provides direct evidence that participants are sensitive
to LP – a heuristic for the temporal derivative of PC – above and beyond
overall error rates. Importantly, the lack of interaction between model
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form and instruction shows that participants do not need to be explic-
itly instructed to maximize learning to demonstrate sensitivity to LP.
Additional analyses showed that the PC and LP coefficients remained
important even after including a term representing task familiarity
(the reciprocal of novelty) in the utility function. As discussed in Ap-
pendix 4.F (Familiarity component), we focus on models without
the familiarity term because in our task, novelty/familiarity is defined
only by past choices and is thus circular if used to model choices.
Modeling familiarity accounts for choice autocorrelation, but does not
explain it. We note, however, that in computational RL studies (Bougie
and Ichise, 2020b; Pathak et al., 2017), measures of competence (like
our PC measure) are used as a proxy for novelty preference that guides
agents towards unfamiliar states.

As a final validation of our models, we conducted model simulations
of time-allocation using the coefficients fitted by the bivariate models.
We simulated activity choices over 250 trials in each NAM and EG/IG

group using the observed success rates in conjunction with the fitted
coefficients (randomly sampled with replacement over 500 iterations).
As shown in Fig. 4.5 (b), the simulations reproduced the main patterns
of time allocation, including the preference for activity A4 in the EG

and IG NAM3 groups, and the preference for activity A1 in the NAM1

and NAM2 IG groups (see Fig. 4.3, c, for comparison), confirming that
the bivariate models captured the main features of the empirical data.

Computational theories suggest that sensitivities to PC and LP will
have distinct contributions to activity choices and learning. While a
sensitivity to PC can motivate people to learn by steering them away
from overly easy activities, a sensitivity to LP may protect them from
focusing on overly difficult or impossible activities. Several aspects of
the wPC and wLP coefficients in our task support these hypotheses.

First, wPC and wLP coefficients were uncorrelated and showed dif-
ferent effects of instructions, suggesting that they capture different
influences on choice strategies. We found no correlation between
the wPC and wLP coefficients in the IG group (Pearson correlation
of normalized coefficients, IG group: r(186) = −.077, p = .298); EG

group: r(175) = .062, p = .399; the normalization procedure is de-
scribed in Section 4.4.2.4, Methods/Computational modeling). More-
over, the PC coefficients were on average positive in the IG group and
negative in the EG group (consistent with the groups’ relative pref-
erences for easier versus harder activities) while the LP coefficients
showed no effects of instructions (mean normalized PC coefficient in
IG: Mnorm = 0.255, SD = 0.724; in EG: Mnorm = −0.232, SD = 0.741;
1-way ANOVA, F(1, 363) = 40.240, p < .001; mean normalized LP co-
efficient in IG: Mnorm = 0.079, SD = 0.640; in EG: Mnorm = 0.062, SD =

0.631; 1-way ANOVA, F(1, 363) = 0.065, p = .799).
Additional analyses supported the view that while both PC and LP

coefficients correlate with higher self-challenge (Appendix 4.D.1, c),
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Figure 4.5: Computational modeling results. a, The bivariate models had
better AIC scores both across and within groups (NEG = 188;
NIG = 177), compared to random-choice and univariate base-
lines univariate models. Box boundaries represent the 1st and the
3rd quartiles, and the lines inside show median scores; whiskers
represent the full sample range. The dotted red line shows the
AIC of the random-choice model. b, Fitted coefficients reproduce
choice patterns across instruction and NAM groups. The panels
show the average time allocation patterns obtained by simulating
activity choices over 250 trials using N = 500 randomly sampled
coefficients from the pool of all fitted bivariate models. c, Models
of two distinct activity-selection strategies. The top row shows
the joint distributions of normalized bivariate-utility coefficients.
Subsets of these distributions whose data is presented below are
highlighted with solid colors. These subsets were formed by first
grouping all fitted models into three segments along ŵPC and
ŵLP, and then selecting groups corresponding to PC-driven and
LP-driven profiles. Sample sizes of each subset are shown their
respective subpanels. The bottom row shows mean relative fre-
quencies of selecting each activity in the corresponding subset of
participants depicted immediately above. LP-driven participants
sampled the unlearnable activity (A4) in relative moderation
compared the PC-driven group. d, LP-driven participants selected
allocated time more efficiently for learning and had better learn-
ing outcomes. The top row shows fractions of participants in the
two groups that reached an objective criterion of 13/15 trials on
the hardest learnable activity (A3) at least once in the experiment.
The middle row shows the relative preference for activity A4 over
A3, defined as the difference between fractions of participants
(that still have not mastered A3) who selected A4 minus the frac-
tion selecting A3. The bottom row shows average SC scores in the
two groups (shaded regions indicate the standard error).

a sensitivity to LP can steer people away from unlearnable activities.
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We first conducted a group-level analysis of the correlation between
the coefficients and two model-free measures of task choices: the
difference between the time devoted to A3 versus easier activities
(indexing the tendency to choose more challenging learnable activities)
and the difference between the time devoted to activity A4 relative to
the other activities (indexing the tendency to choose the unlearnable
activity). Across all participants, lower PC coefficients coincided with a
preference for choosing both A3 and A4, but ŵLP coefficients correlated
only with a preference for the learnable, A3 activity (Appendix 4.H.1).

To more closely examine the specific contribution of LP sensitivity
we focused on two subsets of participants whose choices were driven
predominantly by, respectively, PC or LP. As shown in Fig. 4.5 (c, top),
PC-driven participants had negative PC coefficients but near-zero LP

coefficients and LP-driven participants had positive LP coefficients but
near-zero PC coefficients (see Section 4.4.2.4, Methods/Computational
modeling, for more details on the grouping procedure). While both
groups preferred more difficult activities, the preference for A4 was
lower in LP-driven relative to PC-driven participants. Linear regres-
sion models of time allocation as a function of activity (A3 or A4)
and type of drive showed that PC-driven people engaged in activ-
ity A4 more often relative to A3 in both the EG and IG groups (EG:
slope = 76.485, t(104) = 7.019, p < .001; IG: slope = 83.941, t(72) =
5.199, p < .001) but this preference was lower or absent in LP-driven
participants as shown by its negative interaction with the type of
drive (EG: interaction slope = −47.628, t(104) = −2.726, p < .001; IG:
interaction slope = −125.179, t(72) = −5.764, p < .001).

Importantly, the lower preference for A4 enhanced learning out-
comes in the LP-driven relative to the PC-driven group. As shown in
Fig. 4.5 (d), after approximately trial 80, PC-driven participants showed
a prominent increase in choices of A4 in favor of A3 but this was not
seen in the LP-driven participants (Fig. 4.5, d, middle row, captured
as a decline in SC in the latter group (Fig. 4.5, d, bottom row). At
around the same time, the fraction of participants mastering A3 in the
LP-driven group exceeded that in the PC-driven group (Fig. 4.5, d, top
row). By the end of the free-play stage, the probability of mastering
at least 2 activities was 90.48% in the LP-driven group versus 70.59%
the PC-driven group, and the probability of mastering all 3 tasks was,
respectively, 64.29% versus 34.98%. Thus, consistent with theoretical
predictions, LP-driven choices increase the efficiency of active learning
by steering participants away from unlearnable activities.

4.3 discussion

While the ability to self-organize study time is critical for learning
success, finding an efficient organization poses a daunting compu-
tational challenge. Prominent theories such as the free energy prin-
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ciple postulate that animals are intrinsically motivated to optimize
their explanatory models of the environment (Collins, Cavanagh, and
Frank, 2014; Schwartenbeck et al., 2019). However, the strategies for
optimal exploration that are proposed by these theories are limited
to highly simplified laboratory conditions while being typically too
complex to be computed in real-world situations (Cohen, McClure,
and Yu, 2007). Similarly, mathematical models prescribing how stu-
dents should allocate study time across competing activities show
that optimal allocation is strongly sensitive to the precise shape of the
learning trajectory, but this shape is typically unknown to the learner
in advance (Son and Sethi, 2006).

LP-based algorithms solve this conundrum by generating intrinsic
rewards for activities in which learning recently occurred in practice,
and thus provide a uniquely powerful means to optimize choices of
study activity using a biologically plausible mechanism. And yet, it
is unknown whether or how such choice strategies influence human
behavior. Here we use a free-choice paradigm in which participants
allocate study time based on dynamic feedback history and provide
direct empirical evidence that humans are sensitive to LP.

Converging evidence suggests that humans tend to choose activities
of intermediate complexity in a range of disparate settings - e.g., when
spontaneously allocating visual attention in infancy (Kidd, Piantadosi,
and Aslin, 2012) or declaring aesthetic preference (Gold et al., 2019;
Sauvé and Pearce, 2019; Tsutsui and Ohmi, 2011). Our present re-
sults show that the preference for intermediate complexity extends to
choices of learning activities (see also Baranes, Oudeyer, and Gottlieb,
2014) and, most importantly, that it may be a manifestation of an
underlying LP-based mechanism. Thus, the ubiquitous preference for
intermediate complexity reported in different settings may reflect an
underlying mechanism that steers organisms toward activities that
provide learning maximization.

Two major ideas in the literature postulate that exploration is struc-
tured based on the learner’s competence (prediction errors or error
rates) or, alternatively, based on changes in competence over time
(learning progress). However, whereas these strategies are typically
framed as mutually exclusive alternatives, (Kaplan and Oudeyer, 2003,
2007; Mirolli and Baldassarre, 2013; Santucci, Baldassarre, and Mirolli,
2013) our findings suggest that these two factors are uncorrelated and
can jointly shape activity choices and contribute to different aspects
of an investigative policy. A sensitivity to PC – with a preference for
higher error rates – motivates people to explore more difficult unfa-
miliar activities, while a sensitivity to LP - the temporal derivative of
PC - allows people to avoid unlearnable activities.

The properties of PC- and LP-based control mechanisms in our data
suggests that the relative influence of each type of control may depend
on the set of available learning activities. Here we used a relatively
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simple setting in which the available activities can be quickly mastered,
and found that a PC-based strategy strongly contributed to the drive to
choose challenging activities rather than stick with already-mastered
tasks. However, if the environment is replete with challenging and
unlearnable tasks, e.g., during realistic scientific investigation, an LP-
based strategy may be more critical for steering learners toward tasks
where progress is made as proposed in artificial curiosity (Colas et al.,
2019; Kaplan and Oudeyer, 2007; Schmidhuber, 2010).

Our results also pertain to the relation between extrinsic and intrin-
sic motivation - and specifically the debate whether extrinsic rewards
bolster (Duan et al., 2020) or suppress (Murayama et al., 2019) the
intrinsic motivation to learn. Our findings suggest that the answer
is more complex, as external objectives both enhanced and impaired
different aspects of our learners’ study strategy. On one hand, external
objectives motivated participants to greater self-challenge, as people
who were told to study for a test showed a greater tolerance for errors
and better learning outcomes than those who did not. On the other
hand, external instructions dampened learning achievement by induc-
ing some participants to labor in vain on a random activity rather than
learnable activity.

It is important to note that, while previous studies pitted intrinsic
motivation against extrinsic monetary incentives (e.g., Murayama et
al., 2019), the extrinsic motivation for the EG group in our task came
from the specification of a learning objective. In addition, rather than
rewarding participants for individual correct answers, our external
instruction specified the end-goal but not the local strategy for achiev-
ing the goal; this allowed people to choose their activities and commit
errors in the short term, in the interest of maximizing learning in
the long term. This greater autonomy, we believe, contributed to the
synergism we observed, whereby externally imposed goals enhanced
the eventual learning outcomes, rather than hindering them. Our find-
ings support two key postulates of Self-Determination Theory stating
that intrinsic and extrinsic motivations are not dichotomous but fall
on a continuum, and that a sense of agency is a strong factor that
motivates people to internalize and meet externally imposed goals
(Ryan and Deci, 2020). Thus, the most critical question may not be
whether external objectives have beneficial or detrimental effects - but
how to balance these objectives to support the investigative strategy
that is most efficient in a particular context.

Last but not least, by examining investigations on longer time-scales,
our results bear on the increasingly recognized distinction between
momentary curiosity and sustained learning and interest (Hidi and
Renninger, 2019; Murayama, FitzGibbon, and Sakaki, 2019). Beyond
the brief satisfaction offered by fleeting (diversive) curiosity, long-term
sustained interest, and the willingness to exert sustained effort in
pursuit of such interests, can have profound influence on the life-
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long acquisition of competence and skills (Hidi and Renninger, 2019;
Hidi and Renninger, 2006). Hidi and Renninger (2019); (2006) pro-
posed a four-stage model of interest development, whereby situational
interests is initially triggered and sustained (or dampened) by the
environment but with time gives way to well-developed interest in
which people spontaneously generate new questions and initiate in-
vestigations (Son and Metcalfe, 2000). The fact that many people in
our IG group mastered two or more tasks and reported subjective in-
terest proportional to their time allocation (Appendix 4.B.1), suggests
that the activities we provided may have triggered their situational
interest in the absence of explicit instructions to learn. The fact that
higher achievements were more common in the EG group suggests
that external instructions help support that fledgling interest. Thus,
important questions for future research concern the relation between
the mechanisms by which people self-organize their activities, their
subjective feelings of interest and the impact of both factors on the
development of lifelong interests and skills.

4.4 methods

4.4.1 Participants and Procedure

Four-hundred participants (including 208 female, 187 male, and 5

participants of undisclosed gender) were recruited for the study on the
online platform Amazon Mechanical Turk. Participants were between
19 and 71 years of age, with an average age of 36.15 years, SD =

10.54). All participants provided informed consent. All the procedures
were approved by the Institutional Review Board of the University of
Rochester.

All participants were told that the experiment will last 45 min to 1

hour and, upon completion, they will be compensated $1 regardless
of performance. This scheme was consistent with prevailing rates on
Amazon MTurk and with our goals of minimizing the role of mon-
etary incentives and avoiding biasing participants toward activities
with consistently high performance. All participants were asked to
complete the task on their own in a quiet environment and eliminate
external distractions (e.g., turn off cell phones, TV sets, music players,
etc.). After receiving detailed written instructions, each participant
completed 4 task modules in sequence: (1) 15 forced-choice familiariza-
tion trials with each activity; (2) rating of prospective learnability for
each task (see below); (3) a free-play stage with 250 trials of free-choice
of activity; (4) 6 additional subjective ratings (see below).

Before delivery of the instruction, participants were randomly as-
signed to either EG or IG group The groups received identical treat-
ments except for the initial instruction. The IG participants received
a task description that did not communicate any expectations or ob-
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jectives on the part of the experimenters: “In each family there are
several individuals, and the appearance of an individual might predict
what food they like to eat. When you interact with a monster family,
different individuals will be presented to you. For each individual, two
food items will be displayed, and you can click on the one you think
it prefers. You will receive feedback whether your guess was correct
or not”, which was followed by brief descriptions of familiarization,
free-choice, and questionnaire stages. The EG participants’ instructions
were identical, except for two additional sentences that included an
explicit prescription of a learning goal: “In the main section of the task,
we ask you to play for 250 trials and try to maximize your learning
about all the 4 families” followed by information on the post-session
testing module re-emphasizing their objective: “We will briefly test
how well you learned to predict the food preferences within each fam-
ily”. After the free-play stage, participants in the EG group received
the announced test (between steps 3 and 4) consisting of 15 forced-
choice trials on each activity. (However, in our analyses we used the
last 15 trials on the free-play stage rather than the test data, as the
latter were not available for the IG group). Participants in both groups
also provided several ratings of the activities, described in detail in
Appendix 4.B.

4.4.2 Data analyses

All the t-tests reported throughout this chapter (including the Ap-
pendix) are two-tailed. We excluded a total of 18 participants – 5 in
the EG and 13 in the IG group – who did not appear to be sufficiently
engaged in the task based on a response bias criterion (see supplemen-
tary Appendix 4.A.1 for more details). This criterion measured the
participants’ tendency to choose a single response category in each
activity (i.e., always guessing the same food item, regardless of the
stimulus).

4.4.2.1 Difficulty-weighted final performance

Difficulty weighted final PC (dwfPC) is a weighted average of each
participant’s final PC (fPC) on the learnable activities over the last
15 trials played on the activity. The weights are equal to the activity
rank (1, 2 and 3) divided by the sum of the ranks (6). Thus, dwfPC for
participant i is dwfPCi =

1
6 fPCi,A1 +

1
3 fPCi,A2 +

1
2 fPCi,A3. (Here and

in all subsequent analyses we chose a 15-trial time window that was
equal to the number of familiarization trials each participant played).

4.4.2.2 NAM designation

We divided participants into discrete groups based on the number
of activities on which they reached a mastery criterion. The data
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presented in this article are based on a criterion of 13/15 correct
trials (86.7% correct), which, in a binomial distribution with discrete
outcomes, corresponds to p = .0037 of arising by chance. Additional
analyses verified that the conclusions are robust over a range of criteria
(see Appendix 4.C.1). Ten participants (5/154 in the IG group and
5/176 in the EG group) did not master any activity and were excluded
from NAM-related analyses and computational modeling.

4.4.2.3 Self-challenge index

For each participant, we defined a self-challenge (SC) index for each
trial t and activity i as:

SCt,i = 1 −
PCt,i − min

∀k∈K
PC:t,k

max
∀k∈K

PC:t,k − min
∀k∈K

PC:t,k
(4.2)

where PCt,i is the recent PC of the selected activity the participant se-
lected on trial t (measured over the last 15 trials on that activity, includ-
ing familiarization trials) and where min∀k∈K PC:t,k and max∀k∈K PC:t,k
are the minimum and maximum PC experienced by the participant
over the entire set of trials (including both free- and forced choice)
prior to trial t and over the entire set of activities K. Thus, SC val-
ues close to 1 indicate a tendency to select activities that yield the
minimum PC (“over-challenging”) and values closer to 0 indicate a
tendency to select activities with the highest PC (“under-challenging”).
To get a single SC index for each participant, we averaged each par-
ticipants’ the trial-wise SC scores across the entire free-play stage.
Supplementary analyses verified that the SC index was a better, more
concise measure of the preference for challenging tasks relative to the
pairwise preferences between different combinations of activities (see
Appendix 4.D.1).

4.4.2.4 Computational modeling

To understand which intrinsic utility function could best explain the
task sampling behavior, we consider a model in the bandit setting
((Linke et al., 2020)), where an intrinsic utility function for each task,
measuring its value, is used to decide which task to sample probabilis-
tically. The sampling mechanism used here is the softmax function,
following prior models of human decision-making in (Nussenbaum
and Hartley, 2019). This softmax function simultaneously translates
the underlying choice utilities into selection probabilities and scales
the correspondence between utility and probability:

pt(choicei) =
eUi,t×τ

∑∀k∈K eUk,t×τ
(4.3)

Ui is the subjective value of choice i, and k indexes the utilities of all
items in the set of available activities K (including i); the parameter τ,
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known as temperature, controls how strongly the item values deter-
mine the probability of their selection. U was defined for each trial as
described in the Results section (Computational modeling and sensi-
tivity to LP), as a linear combination of two quantities that represent
two aspects of learning: competence and change in competence. Both
signals were defined for a retrospective time window of the last 15

trials played on the activity chosen at trial i (including familiarization
trials early in the free-play epoch):

PCi,t =
1
15

t

∑
t′=t−15

yt′ (4.4)

LPi,t =

∣∣∣∣( 1
10

t−5

∑
t′=t−15

yt′
)
−

(1
9

t

∑
t′=t−9

yt′
)∣∣∣∣ (4.5)

where yt′ equals 1 or 0 if the participant guessed, respectively, correctly
or in error at time t′. Hence, PC was defined as the proportion of correct
guesses over the last 15 trials, while LP was defined as the absolute
value of the difference in PC over the first 10 and the last 9 of the same
stretch of 15 trials. This implementation of PC and LP signals is similar
to machine learning models in (Colas et al., 2019; Linke et al., 2020;
Oudeyer, Kaplan, and Hafner, 2007). In particular, one follows these
computational approaches in using the absolute value of LP, which
was shown to enable learners to detect tasks where performances
decrease, e.g., due to forgetting, and re-gain interest to re-focus on
them (Colas et al., 2019).

An individual set of parameters was estimated for each participant
by minimizing the negative sum of log likelihood values over the free
play trials (see (Daw et al., 2011)). Assuming that choice probabilities
on a trial come from a categorical probability distribution, the likeli-
hood of a model equals the probability (provided by the model) of the
observed choice. The categorical distribution is a special case of the
multinomial probability distribution, which provides the probabilities
of K discrete outcomes in a single sample. Thus, the likelihood of a
model that predicts choices with probabilities pt is:

L(pt|choicei) = f (choicei|pt) =
K

∏
j=1

pt(choicej)
[i=j] (4.6)

Where pt is a vector of probabilities at time t associated with K items
indexed by j, and the term [j = i] evaluates to 1 when i is the ac-
tivity that was chosen and to 0 otherwise. Thus, at the level of a
single trial, higher likelihood is attributed to the model that assigns
higher utility to the option chosen on the subsequent trial. For two
and more trials, the likelihood of a model increases with the utility of
the observed choices across trials. Therefore, in a maximum-likelihood
model, a highly positive coefficient for a given learning signal reflects
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a tendency to choose options with higher values along that signal.
Conversely, a highly negative coefficient for a feature indicates a ten-
dency to choose options that have lower values along that feature,
while coefficients close to zero reflect the indifference to the feature.
The total likelihood of observing all choices from a participant is given
by the product of likelihoods from individual trials, ∏T

t L(pt|choice).
We take a logarithm of each individual trial’s likelihood value in order
to compute the overall model likelihood per individual as the sum of
single-trial log likelihoods, ∑T

t log L(pt|choice), rather than their prod-
uct. Finally, we maximized this summed likelihood by minimizing its
negative value using the L-BFGS-B nonlinear numerical optimization
method (Byrd et al., 1995). The same optimization tool was used in the
extended computational modeling described in the next section (??).

Values of the estimated parameters vary not only due to different
choice data between participants, but also as a function of initialization
of starting values in the parameter space. Because of this variability, we
estimated a model multiple times for each participant using different
parameter initializations for every fit, until a convergence criterion
was reached. The utility parameters were initialized from a random
uniform distribution between -1 and 1, and softmax temperature
was randomly sampled from [0, 100]. Convergence was reached by
repeatedly fitting a model with different random initializations until
50 maximum likelihood models were found. Concretely, the algorithm
updated the current "best model" each time a model better the current
best was found, and stopped when it found a model just as good as
the current best 50 times.

For analyses of the relation between the coefficients, instructions
and choices, we normalized each coefficient pair [wPC, wLP] by their
Euclidean norm, allowing us to interpret the coefficients as relative
preferences for PC and LP, respectively.

To select participants driven predominantly by PC or LP (Fig. 4.5,
c and d), we categorized all participants into equally-spaced bins
(bin1 = [−1.00,−0.33); bin2 = [−0.33, 0.33); bin3 = [0.33, 1.00]) along
each (normalized) coefficient. The PC-driven group (Fig. 4.5, c, left)
had negative PC coefficients but near-zero influence of LP (intersection
of bin1 along PC and bin2 along LP i.e., ŵLP ≈ 0, ŵPC ≈ −1), while
the LP-driven group (Fig. 4.5, c, right) had a high preference for LP but
little preference to PC (ŵLP ≈ 1, ŵPC ≈ 0).
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Figure 4.A.1: Exclusion analyses. Distribution of response bias scores (N =
400) used to exclude participants who were disengaged in
performing the task. Vertical bars underneath the plot show
individual data-points. The exclusion criterion, depicted as a
vertical dashed line, was set to 2 standard deviations.

We excluded 15 participants (11 in EG and 4 in IG group) based on a
response bias criterion that characterized the level of engagement in
the task. Response bias was defined as:

response bias =
1
K

K

∑
k=1

max(pk, 1 − pk) (4.7)

where K = 4 is the number of learning activities and max(pk, 1 − pk)

denotes the relative frequency of the more frequently chosen response
category in activity k. It corresponds to the participant’s tendency to
choose one kind of response across all trials.

Fig. 4.A.1 shows the joint distribution of response bias scores in
our sample, grouped by instruction. The figure also shows the ex-
cluded participants and the exclusion criterion. The vast majority of
participants were below 0.7 which corresponded to 2 standard de-
viations above the mean. Relative to the included participants, the
excluded ones had significantly shorter reaction times to choose a cat-
egory (M = 1023.89, SD = 720.770 vs M = 1472.44, SD = 360.020;
t(23.99) = −4.484, p < .01, Welch two-sample test) and signifi-
cantly lower difficulty-weighted final percent-correct scores (dwfPC;
M = .689, SD = .090 vs M = .704, SD = .080; Welch two-sample test,
t(19.93) = −2.361, p = .029), suggesting that they responded in a
stereotyped fashion without being engaged in the task.

73
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4.b self-reported ratings

We collected self-reported ratings about all 4 activities at two different
points of the task. Immediately after the familiarization stage (see
Methods in the main article), participants were asked to report a
single judgment of prospective learnability for each task:

• Prospective learnability: Before continuing, please rate each mon-
ster family based on how much you think you can learn about
its food preferences during the rest of the task ([1] Definitely
cannot learn more – [10] Definitely can learn more)

After responding to the first post-familiarization question, partic-
ipants proceeded to play out the free-choice stage, after which we
collected 6 additional ratings:

• Interest: Rate each monster family based on how much you were
interested in discovering what they preferred eating ([1] Less
interested – [10] More interested)

Table 4.A.1: Results of quadratic-regression fits of average SC on activity
preference for each pairwise preference of a harder over easier
activity.

coef t p

A2 - A1

intercept 0.452 69.079 < .01

pref 0.033 5.636 < .01

pref2 -0.060 -17.615 < .01

A3 - A1

intercept 0.426 59.860 < .01

pref 0.078 12.060 < .01

pref2 -0.034 -8.470 < .01

A3 - A2

intercept 0.408 48.276 < .01

pref 0.048 6.163 < .01

pref2 -0.016 -4.383 < .01

A4 - A1

intercept 0.397 62.827 < .01

pref 0.126 23.322 < .01

pref2 -0.004 -1.096 = .274

A4 - A2

intercept 0.383 50.161 < .01

pref 0.100 14.971 < .01

pref2
0.009 2.373 = .019

A4 - A3

intercept 0.372 44.348 < .01

pref 0.058 7.736 < .01

pref2
0.02 5.232 < .01

Note: t-tests compare coefficient values against 0 (df = 362)
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Figure 4.B.1: Analyses of interest ratings. a, Histograms of the raw retrospec-
tive interest ratings (1 to 10; collected after the free-play stage)
for each activity in the IG (left; N = 186) and EG (right; N = 196)
groups show that both groups had modes for the highest rating
(10). b, Relationship between self-reported interest (y-axis) and
number of trials for which an activity was chosen (x-axis). c,
Relationship between self-reported interest (y-axis) and overall
activity accuracy (x-axis). Note, in b and c, raw data points are
presented for each instruction group (red for EG and blue for
IG); regression lines are fitted separately for each group; error
bands correspond to 95% confidence intervals for the linear
predictions.

• Complexity: Rate each monster family based on how complex
you thought they were ([1] Less complex – [10] More complex)

• Rule: Rate each monster family based on how likely you think
it had a rule for food preferences ([1] Definitely no rule – [10]
Definitely a rule)

• Potential future learning: Rate each monster family based on how
much more you think you could learn if you had more time to
play with it ([1] Definitely could not learn more – [10] Definitely
could learn more)

• Time spent: Rate each monster family based on how much time
you spent on them ([1] Less time – [10] More time)

• Progress made: Rate each monster family based on how much
progress you felt you made for learning their food preferences
([1] Less progress – [10] More progress)

The subjective reports enabled us to assess how participants felt
about various aspects of our task. Specifically, we were interested in
two questions: and (2)
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• How well did participants track their performance and choices
during free exploration? Analyses of the progress ratings showed
that participants had some awareness of their performance in
both the EG and IG groups. Across participants and activities,
self-reported Progress made was significantly correlated with
true progress made (the difference between PC on the last 15 and
first 15 trials on each activity; EG: r(750) = .286, p < .001; IG:
r(706) = .427, p < .001). Similarly, self-reported Time spent was
highly correlated with the true number of trials played (Pearson
correlations, EG: r(750) = .336, p < .001; IG: r(706) = .476, p <

.001). Thus, participants in both EG and IG groups accurately
evaluated the relative time allocation and the progress they
made across learning activities.

• How interested were they in the activities? Although partici-
pants dutifully completed the requested 250 trials of the task,
they could have, in principle, reported that they were not at all
interested in the activities. Contrary to this view, the distribution
of Interest ratings showed a strong peak at the highest rating (10)
and the average ratings were above 5 even for the activities with
the lowest average ratings in each group (A4 in IG: M = 5.371, SD
= 3.432, and A1 in EG: M = 5.934, SD = 3.118; Fig. 4.B.1, a). Im-
portantly, interest ratings scaled with the number of trials spent
on each activity above and beyond the success rates (Fig. 4.B.1,
b). A linear regression model of mean-centered interest rating
as a function of the total time spent on an activity (controlling
for overall accuracy (PC over 250 trials) and the instruction re-
ceived, IG vs EG), showed that ratings were reliably predicted
by the actual time spent in both the IG and EG groups (slope
for IG group = 7.966, t(1454) = 15.204, p < .001; interaction
slope = -2.941, t(1454) = −3.957, p < 0.001). Importantly, this
relation was independent of any effect of PC, suggesting that
interest reflected more than mere success rates. Moreover, the
correlation between PC and interest ratings was not significant in
the IG group (slope = 0.379, t(1454) = 0.646, p = .518; Fig. 4.B.1,
b), and negative in the EG group (interaction slope = -2.941,
t(1454) = −3.957, p < .001; Fig. 4.B.1, b), suggesting that par-
ticipants had an interest in the task that was above and beyond
maximizing correct feedback.

4.c mastery points

The learning criterion we present in the main text was based on people
achieving 13 of 15 consecutive correct trials on an activity, which is
equivalent to PC = 86.7% (probability p = 0.0037 of occurring by
chance, assuming a binomial distribution with n = 15). To ensure
that our conclusions were robust to choice of criterion, we repeated
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Figure 4.C.1: Mastery criteria Fractions of participants mastering each ac-
tivity as a function of mastery criterion and group. Changing
the criterion does not change the relative proportions of partici-
pants mastering each activity.

the analyses with criteria of 10, 11, 12, 13, and 14 correct trials out of
15. As expected, the fraction of people mastering each task declined
as the criterion increased but, critically, the relative frequencies of
the NAM designations between EG and IG groups do not change
(Fig. 4.C.1). To test this, we performed a logistic regression of reaching
the criterion (0 or 1) as a function of criterion and group (EG/IG). We
performed a separate regression for each learning activity. We used
repeated contrasts for the criterion factor to compare the fractions of
participants mastering a task between the adjacent levels of the factor
(i.e., comparing 10 vs 11, 11 vs 12, and so on), and regular treatment
contrasts to compare fractions between groups.

The regressions produced no significant interactions between group
and criterion (all p > .05) with only one exception: the mastery crite-
rion of 14/15 correct was significantly less likely to be reached com-
pared to 13/15 in the IG group (slope = -1.035, Z(1909) = −4.155, p <

.001) and even less likely in the EG group (interaction slope = -0.802,
Z(1909) = −2.252, p < .024). These results show that the differences
between instruction groups were mostly stable over a range of criteria
(as shown in Fig. 4.C.1). The positive result for the 14/15 vs 13/15

contrast shows that exceptionally high performance (PC = 94%) was
more likely to be reached on the easiest task and that EG participants
seemed less interested in reaching this level of accuracy. Despite this
effect, these mostly nonsignificant results show that an important
observation holds across a range of mastery criteria: a significant frac-
tion of the IG group achieved mastery without being instructed to
maximize learning.

4.d the self-challenge index

We conducted several analyses that established that our SC measure
captured the tendency to choose more difficult activities (Fig. 4.D.1, a),
did not bias our conclusions (Fig. 4.D.1, a), and showed the expected
correlations with the model coefficients (Fig. 4.D.1, c).
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As shown in Fig. 4.D.1 (a), the SC index showed a positive corre-
lation with all possible pairwise measures of the preference for the
harder activities, confirming that it measured self-challenge. However,
several of these relationships were non-linear, indicating that pairwise
differences do not fully capture the choices in our 4-alternative task
(see Table 4.A.1 for full details on the regression fits). Specifically,
the preferences for activities with moderate difficulty (A2 or A3) had
an inverted U-shape trend indicating that, if these preferences were
too strong, they implied lower SC by virtue of withdrawal from the
most difficult activity. Similarly, the contrast of A4 vs A3 showed an
upright U-shaped profile, indicating that a lower preference for A4

can correspond with higher SC if people strongly prefer A3 over A1

and A2. Thus, in our 4-alternative choice experiment, the SC index is
a more parsimonious measure of the preference for challenging tasks
relative to measures of preference between specific pairs of tasks.

As additional confirmation, we verified that the inverted-U relation-
ships between SC and dwfPC shown in the main text (4) was replicated
if we replaced SC with the preference for A3 or A4 (Fig. 4.D.1, b). In
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Figure 4.D.1: Understanding the self-challenge index. a, Correlation be-
tween behavioral preferences for harder activities (x-axes)
and average SC (y-axis). Each point indicates one participant
(pooled across groups: EG, N = 188 and IG, N = 177). In each
panel, the x-axis is constructed so that positive values show
preference for the more difficult of the two contrasted activi-
ties. b, Correlation between time allocation scores (x-axis) and
difficulty-weighted final performance (dwfPC; y-axis). c, Corre-
lations between the normalized fitted coefficients (x-axes) and
average SC (y-axis). In all the panels, red lines show fits of
linear-quadratic regressions with error-bands (shaded regions)
indicating 95% confidence intervals (details for the fits in a are
provided in Table 4.A.1).
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case of A3’s time allocation, the linear-quadratic model was better
than its non-quadratic counterpart (∆AIC = 22.238) and showcased
a significant negative coefficient for the quadratic term (slope = -
0.016, t(361) = −4.979, p < .001). A similar linear-quadratic model
featuring time allocation for activity A4 was also better than the
corresponding non-quadratic model (∆AIC = 26.178) and likewise
had a significant coefficient for its quadratic term (slope = -0.026,
t(361) = −5.383, p < .001). Together, the results from Fig. 4.D.1, (a,
b), demonstrate that SC served as a parsimonious measure of activity
preferences and did not bias the results we report.

Finally, we examined how SC was related to the fitted (bivariate)
computational-model coefficients (Fig. 4.D.1, c). SC was negatively
correlated with wPC (slope = -0.153, t(361) = −21.999, p < .001),
consistent with our intuitions that choosing activities with lower PC

corresponds to self-challenging choices. The regression also showed a
positive correlation with wLP (slope = 0.042, t(361) = 4.954, p < .001),
consistent with the prediction that a sensitivity to LP guides learners
to venture beyond what’s easy and familiar, and choose moderately
challenging activities.

4.e individual model fit : a case study

Fig. 4.E.1 demonstrates our model fitting procedure and model-based
simulations for one participant’s data. Panels a and b show, respec-
tively, the participant’s values of percent correct (PC) and learning
progress (LP) values over time. PC and LP remained constant if the
participant did not choose a task, explaining the long horizontal lines
on the plots. Panel c shows the dynamic utility for each task based
on the participant’s fitted coefficients (given in the equation). Panel
d shows the probabilities of choosing each task, simulated using the
corresponding utility and the softmax function with the best-fit tem-
perature parameter.

In this particular model, the participant’s choices were characterized
by a preference towards activities with high LP and low PC, which
results in a model that predicted high probabilities of choosing A3

and A4 activities. Activities A1 and A2, which had consistently high
PC values generated low utility and were infrequently chosen. This
model captures well the transition from A4 to A3 around trial 100,
where the utility of A4 started dropping as a result of a low LP signal
and a corresponding plateauing of the PC signal (Fig. 4.E.1, a, b, and
d).

4.f familiarity component

The model comparisons from the main text show that on average,
the bivariate utility function (PC + LP) explains participant’s choices
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better than the univariate models. The measures of PC and LP capture
different aspects of competence that were hypothesized to function
as intrinsic reward signals for a freely exploring learner. Different
analogs of these measures have been widely used in the computa-
tional literature on intrinsically motivated learning, e.g., (Bougie and
Ichise, 2019; Colas et al., 2019). These measures can be characterized as
competence-based measures, because they track the information about
one’s competence in performing a task. There are other important
families of approaches which we did not include in our study. For
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Figure 4.E.1: Individual model fit. The x-axis shows 250 trials of free play.
Each of the first four subfigures shows the choice features
of each activity through time. a, normalized recent percent
correct (PC); b, normalized recent learning progress (LP); c,
utility computed as a linear combination of PC and LP. The
utility equation shows coefficients normalized by the Euclidean
norm of the wPC and wLP coefficients; d, choice probabilities
given by a softmax function at the fitted temperature param-
eter, τ = 84.98; e, empirical data that the model was fitted to.
The colored bar represents the observed sequences of activity
choices (A3→A4→A1→A2→A4→A3) and the black vertical
sticks show correct responses.
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Figure 4.F.1: Model comparisons with familiarity component. Distributions
of AIC scores for all model subsets of the full trivariate model
PC + LP + exposure (EXP), where EXP represents count-based
task familiarity. The box-plot box boundaries represent the 1st
and the 3rd quartiles; middle bars represent sample medians;
whiskers show sample minima and maxima. The random (base-
line) model has AIC = 693.147 and no variance. Individual data
points (N = 365 per model form) are shown in the overlaid
strip-plots.

instance, we did not include any predictive knowledge-based mea-
sures, which would require to explicitly model the participants’ beliefs
about food preferences. This is an interesting direction for future work,
but these kinds of models entail considerable additional complexity
that is outside the scope of our investigation. However, we could test
another kind of knowledge-based curiosity measure, which does not
require an internal predictive model. In computational literature, this
approach is referred to as a count-based, because it relies on state
visitation counts (Bellemare et al., 2016). State visitation counts can be
interpreted as state familiarity (the opposite of novelty).

Due to the reasoning laid out below, we did not include the measure
of familiarity in the main report of model comparisons, even though it
is a central idea behind some approaches to intrinsically motivated ex-
ploration. The rationale for omitting this component from the reported
analyses was our focus on the roles of learning-based heuristics in the
self-determined selective engagement in one of several learning activi-
ties. The familiarity measure, as defined below, is based directly on
the participant’s choices and as such is completely orthogonal to the
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dynamics of a learner’s competence. Since a single episodic sampling
of a learning activity contributes to the measured familiarity of all
activities equally, familiarity measured this way does not merely cor-
relate with activity choices, it is completely determined by them. Such
a measure of familiarity is a good predictor of the choice of activity,
but it does not explain the choice very well. Thus, even if familiarity
was an important component for the utility-based prediction (which is
indeed the case), it would not be a good explanatory variable, because
it itself is determined by choices.

Here we discuss a more extensive model comparisons exercise
which included the additional familiarity component on top of those
reported in the main text. We operationalized familiarity as exposure
(EXP) to a learning activity, defined as a min-max normalized count
of choice of activity. Specifically, we simply counted the number of
times an activity was chosen by a participant on each trial of free play,
and then re-scaled the counts to be between 0 and 1, using min-max
normalization (this normalization was also applied to all PC and LP

before fitting the models):

norm(countt,i) =
countt,i − min(counts)

max(counts)− min(counts)
(4.8)

Where countt,i is the number of times on which activity i was
selected prior to trial t, and max(counts) and min(counts) denote,
respectively, the maximum and minimum counts across all tasks and
trials.

The EXP measure was added to the set of potential utility function
components for all-subsets model comparisons. Fig Fig. 4.F.1. presents
the distributions of AIC scores of each subset of variables included
in the model. The full-form trivariate model (EXP + PC + LP) had the
lowest AIC on average (M = 438.068, SD = 212.092). Thus, even when
familiarity was included in the mix, both PC and LP were still important
factors in increasing model likelihood. These results further support
the importance of learning-based heuristics for the self-determined
choice of activity. At the individual level, when compared to all of
the other 6 model forms, the trivariate model (EXP + PC + LP) had
the lowest AIC score in only 49.59% of participants (Fig. 4.D.1) and
was at least 2 points less than any other model in only 38.90% of
individuals. Moreover, the median AIC scores of the trivariate model
and the next best fitting model among individuals was nonsignificant
(Z(365) = 181, p = .917). These results show that although the EXP

component provided some further improvement in likelihood over
other models, this improvement was not very substantial: the PC + LP

bivariate were, on average, significantly better than univariate models,
as reported in the main text.

On the other hand, models that included both PC and LP components
(i.e., EXP + PC + LP and PC + LP) had the lowest AIC in 73.42% of cases.
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Furthermore, compared to any univariate model – including the EXP-
only model – the bivariate (PC + LP) model showed reliably better
AIC scores (Z(365) = 365, p = .021, Wilcoxon signed-rank test).
Notwithstanding the predictive power of the EXP component alone, PC

and LP components remain important predictors of self-determined
activity choices.

4.g extended model exploration

The computational modeling section in the main part (Chapter 4)
considers particular forms of PC and LP based on fixed-size memory of
recent accuracy (see Section 4.4.2.4, Methods/Computational Modeling).
However, it is not obvious how much of past history humans consider
when estimating their competence and progress in activities like the
ones used in our study. Moreover, it is possible that other aspects of
performance history (e.g., performance variability) are also relevant
to choice utility. Therefore, we conducted additional analyses that
explored a larger space of models. Our model space was based on
a set of four variables corresponding to different types of intrinsic
rewards:

• Competence (Mt|α) defined as the exponentially weighted mean
of correct responses over time.
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• Change in competence (∆Mt|α,c) defined as the difference between
competence over a recent versus distant past (one form of learn-
ing progress).

• Uncertainty (Vt|α) defined as the exponentially weighted variance
of received feedback over time.

• Change in uncertainty (∆Vt|α,c) defined as the difference between
uncertainty over a recent versus distant past (another form of
learning progress).

We defined competence (M) and uncertainty (V) as exponentially-
weighted mean (Eq. (4.9)) and variance (Eq. (4.10)) of the incom-
ing feedback, respectively (see finch2009incremental). In our context,
exponential-weighting is recency-weighting: allows us to parameterize
not only the amount of past history that influences an estimate, but
also the extent to which older observations are discredited. Formally,
we defined M and V as follows:

Mt|α = Mt−1 + α(xt − Mt−1) (4.9)

Vt|α = (1 − α)(Vt−1 + α(xt − Mt−1)
2) (4.10)

Here, α ∈ [0, 1] is a recency-weight parameter that controls the
extent to which the latest feedback, yt, influences the current estimates
M and V. We use the "t|α" notation to indicate that the corresponding
quantity is parameterized by α. The change in each of these estimates
is computed by taking the absolute difference between the current
estimate (respectively, Mt|α and Vt|α) and the estimates Mt|c·α and Vt|c·α
computed with a smaller recency-weight c · α, where c ∈ [0, 1]. Scaling
down the α parameter by c produces estimates that are relatively more
representative of the more distant past. The contrast between two
estimates representing different time scales provides an estimate of
the temporal derivative (or a slope) of the recent estimate. Taking
the absolute value of the contrasts causes the utility model to be
attracted to positive and negative changes in performance. Therefore,
we can compute changes in competence (∆M) and uncertainty (∆V)
as follows:

∆Mt|α,c = |Mt|α − Mt|c·α| (4.11)

∆Vt|α,c = |Vt|α − Vt|c·α| (4.12)

.
Like in the previous models, each of these four variables represents

a separate utility component. These components greatly extend the
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space of hypotheses about how a learner might compute a given as-
pect of his or her performance, not only because we consider more of
them, but also because each component features one or two contin-
uous free parameters. These parameters, of course, are not the only
hypotheses we are seeking to evaluate. Our focus is on assessing what
combination(s) of the four features – however they are parameterized
– best explains how people self-organize their activities. As before, we
define a set of linear utility functions:

Ui,t = β1Mi,t|α + β2Vi,t|α + β3∆Mi,t|α,c + β4∆Vi,t|α,c (4.13)

where i indexes a learning activity. Equation (4.13) represents many
different utility models, some of which exclude some or all of the
features by settng the corresponding β coefficient to a constant value
of 0. Thus, the set of 4 task-performance features gives us 16 hypothesis
spaces of variable dimensionality; each hypothesis space is spanned
by combinations of free parameters β as well as the recency-weighting
parameter α and a scaling parameter c where it is applicable.

Since we were chiefly interested in unconstrained behavior for this
set of analyses, we modeled only the IG group’s choices.

We fitted each of the 16 models forms of the variable set to each
participant’s data (note that the null model that excludes all the utility
components corresponds to a uniform-choice model with 0 parame-
ters). The fitted models can be compared within each participant (but
not across participants) using the AICc1 scores. Figure 4.G.1 presents
the distributions of AICc scores of all models, grouped by model form
(Fig. 4.G.1, a) and the frequencies with which various model forms had
minimum AICc scores within participants. Across participants, the
most frequently encountered best model was a trivariate-utility model
that included the M, ∆M and ∆V components. It was also the model
with the lowest median AICc. However, other models forms were also
frequently found to be the best models and in general, multivariate
models with 3 to 4 components explained participants’ choices better
than models with fewer components.

We also compared 4 bivariate model forms with the fixed-size
memory bivariate model form (PC + LP) in order to examine whether
fitting the time horizons of competence and LP computations lets us
fit the choices better. The 4 bivariate models from the present study
included the following utility compositions: M + ∆M; M + ∆V; V +
∆M; and V + ∆V. One of these model forms had lower AICc than a
fixed-size memory model in 65.41% of participants. Compared to all
model forms from the extended model space (i.e. univariate, bivariate,
and larger), the bivariate fixed-size memory model provided worse fit
in 91.82% of participants.

1 We use AICc instead of AIC because we introduced additional parameters whilst
using the same amount of data. This is a conservative precaution rather than a
categorically necessary correction.
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4.h model coefficients and learnability preferences
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Figure 4.H.1: Model coefficients and learnability preferences. Each point is
one participant in the IG (blue, N = 177) and EG (red, N = 188)
group. The y-axis shows the difference between the number of
trials a participant chose A3 minus the average number of trials
spent on A1 and A2; the bottom row compares the random
activity to all other activities. The x-axis shows the normalized
wPC and wLP coefficients from the bivariate models. The lines
represent linear models of activity difficulty preference as a
function of normalized coefficients (each line pair fitted sepa-
rately for the corresponding subplot; shaded regions represent
95% confidence intervals). wPC coefficients (negative values in-
dicating the tolerance for errors) were associated with choices
of harder activities regardless of their learnability (left column).
In contrast, wLP coefficients (indicating more sensitivity to per-
formance derivatives) were positively related to a preference
for a harder activity only when that activity was learnable (top
right), but not when it was unlearnable (bottom right).

As we discuss in the main text, PC and LP may play distinct roles
in self-regulated learning. While PC can help learners identify chal-
lenging activities, LP can be used to avoid unlearnable activities. To
examine this idea further, we analyzed how the wPC and wLP coeffi-
cients (normalized to reflect relative preferences as explained in the
text) correlated with individual preferences for challenging over easier
activities when the more challenging activity was, respectively, learn-
able or unlearnable. As a simple measure of the tendency to choose
more challenging learnable activities, we computed the difference be-
tween the number of trials a participant devoted to activity A3 relative
to the average amount of trials spent on easier activities (A1 and A2,
Fig. 4.H.1, top row). As a measure of the tendency to choose the more
challenging random activity, we computed the difference between the
number of trials devoted to activity A4 relative to the average amount
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of time spent on other activities (A1, A2, and A3; Fig. 4.H.1, bottom
row).

The wPC coefficients showed negative correlations with both mea-
sures, suggesting that they captured the participants’ tendency to
choose more difficult tasks regardless of learnability (Fig. 4.H.1, left).
Both the preference for A3 and the preference for A4 showed nega-
tive correlations with wPC (A3 vs A1&A2; IG slope = 56.969, t(361) =
−8.255, p < .001; A4 vs A1-A3 slope = 86.684, t(361) = −13.822, p <

.001).
In contrast, in the IG group, the wLP coefficients showed a positive

relationship with the preference for A3 (slope = 25.060, t(361) =

2.817, p = .006), but no relationship with the preference for A4

(p = .356; Fig. 4.H.1, right), suggesting that people with higher wLP

coefficients tended to prefer the more difficult activity only if that ac-
tivity was learnable. The EG group showed no significant relationship
between wLP coefficients and either measure of preference.

Given the predictions of the LP hypothesis, one might expect to
actually find a negative relationship between LP and a preference
for an unlearnable task, not just a lack of a relationship. Indeed,
one of the appeals of the LP heuristic is that it protects the learner
from fixating on low-performance activities when it is not worth it.
While we did not find evidence strongly supporting or refuting this
prediction, we identify two ways in which it can be obtained. First, it
is possible that our rather restricted operationalization of LP was not
optimal for differentiating between activities A3 and A4, which were
indeed very similar in terms of their recent-feedback patterns. The LP

signal was especially noisy compared to the relatively clear PC signal.
Investigating a wider scope of models with alternative formulations
of LP could be useful for testing the predicted preference for learnable
vs unlearnable tasks. Another approach would be to implement an
experimental setting similar to ours, but with a larger amount of
difficult learnable and unlearnable tasks. Such a setting would be
more effective in showing whether sensitivity to LP helps to avoid
activities that are impossible to learn.
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M E TA C O G N I T I V E M E C H A N I S M S O F P R O G R E S S
J U D G M E N T S

5.1 introduction

In Chapter 2, we reviewed the basic elements and the functional
diversity of computational mechanisms of intrinsically motivated ex-
ploration. We saw that exploratory sampling of learning situations
through actions, goals, or social interactions enables artificial agents to
efficiently diversify their experiences, learn internal models, develop
rich skill-sets, and even contribute to cultural evolution. Later, in Chap-
ter 3, we discussed why information can be inherently valuable for
biological organisms and how uncertainty can motivate information-
seeking. This discussion has led us to a proposition that some form of
learning progress (LP, i.e., a knowledge-acquisition signal) can poten-
tially account for many intrinsically-motivated information-seeking
behaviors. Finally, in Chapter 4, we presented experimental evidence
for this idea by comparing different models of trial-by-trial utility of
multiple learning activities. Our results revealed great individual dif-
ferences, especially when participants were not prescribed a concrete
goal to pursue. Generally, activity choices were best explained by a
bivariate utility model combining recent competence and change in
competence. Amidst this behavioral diversity, we found that a non-
trivial proportion of participants tended to engage in challenging
activities and that those who spent less time "laboring in vain" (i.e.
showed sensitivity to LP) achieved better results.

There are several related studies that support the idea that LP serves
to motivate task engagement. A common approach (that we also adopt
in our study in Chapter 4) is to measure/manipulate task difficulty
and examine how it relates to task engagement. For example, Son and
Metcalfe (2000) studied how self-reported ease-of-learning judgments
for various texts predicted how much time and in what order par-
ticipants would study them. In a later study, Gerken, Balcomb, and
Minton (2011) measured objective complexity of experimental stimuli
and tested its relationship with attention. Poli et al. (2020) took a step
further by proposing how several candidate mechanisms processed
stimuli of different complexity and examining how their outputs re-
lated to looking time. Leonard et al. (2021) manipulated performance
feedback to control how children perceived their task progression and
observed whether they were willing to persevere. While these studies
may suggest hints for how LP can be measured objectively, they do
not make explicit claims about the algorithmic implementation of the

89
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underlying subjective computation. However, to understand human
self-directed learning, we need to infer how humans represent and
compute LP. As the computational literature suggests (Graves et al.,
2017; Linke et al., 2020; Oudeyer and Kaplan, 2007), there are many
ways LP can be computed. Not only do these computational models
give rise to different patterns of exploration when simulated in their
respective environments, they also make different assumptions about
the underlying processes and representations (see the discussion in
Chapter 6). A mechanistic understanding of LP computation implies
knowing how these representations form and interact to produce LP

judgments.
If we want to leverage the relationship between LP and motivation

in, for example, educational or organizational contexts, understand-
ing the (possibly biased) formation of progress judgments might be
very useful. Of course, one does not absolutely need to understand
how something works in order to control it, but a mechanistic under-
standing of a system allows making profound improvements in its
operation (more efficiently). That is, we could help pupils, students,
and employees get motivated by relying on heuristics gained through
experience, but we could also understand more precisely how LP judg-
ments form and how they relate to motivation. That would enable
designing interventions targeting specific aspects of the process.

LP is essentially a metacognitive computation: it requires reflexive
inferences about one’s own knowledge/ability. Human metacognition
is notoriously faulty (Fischhoff, Slovic, and Lichtenstein, 1977; Kruger
and Dunning, 1999) and subject to systematic biases (Kornell and
Hausman, 2017; Rozenblit and Keil, 2002; Yan, Bjork, and Bjork, 2016).
Very little research has been done to investigate whether subjective LP

estimation is also prone to imperfect metacognition. The only studies
(to the best of our knowledge) that did investigate this problem directly
(Townsend and Heit, 2011a,b) report the lack of a relationship between
objective improvement and subjective improvement judgments. A
related study (Kornell and Hausman, 2017) showed that participants
failed to use explicit past-improvement information to inform their
prediction of future performance given additional practice. Faulty
metacognition challenges the LP hypothesis introduced in Chapter 3.
On the one hand, there are good reasons to believe that LP-based self-
regulation is optimal for learning multiple tasks (Lopes and Oudeyer,
2012; also see Dubey and Griffiths, 2020; Son and Sethi, 2006) and that
humans are sensitive to LP Poli et al., 2020; Ten et al., 2021. On the
other hand, as metacognition research suggests, LP judgments could
be biased and thus ineffective or even counterproductive for efficient
learning. This dissonance provides further motivation for inferring
how LP gets computed.

In the next sections, we describe a pilot study that is part of a big-
ger research project aiming to elucidate how humans compute and
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represent LP. Our approach combines two central elements. First, we
attempt to emulate the naturalistic learning process unfolding during
the practice of a video-game task. Video games are real-life activi-
ties that typically require time-extended practice and can be closely
monitored even outside the lab. Second, using verbal questionnaires,
we repeatedly query different kinds of subjective LP judgments and
different aspects of participants’ motivation.

Before proceeding further, we need to highlight the distinction be-
tween the so-called retrospective and prospective judgments of progress.
Retrospective judgments refer to inferences about past performance,
while prospective judgments reflect expectations about future per-
formance. Presumably, these two types of LP judgments are related:
retrospective assessments of a learning trajectories should contribute
to future expectations.

Prospective LP judgments are likely based on a diverse set of inter-
acting factors and processes. This reasoning is based on the theory
of a closely related concept of self-efficacy (Bandura, 1977), defined
as a belief that "one can successfully execute the behavior required
to produce [certain] outcomes" (Bandura, 1977, p. 193). Thus, both
self-efficacy and prospective LP reflect future expectations about task
achievement. The difference is that unlike self-efficacy beliefs, prospec-
tive LP judgments involve a comparison between current and predicted
task competence. This implies that prospective LP judgments could be
based on self-efficacy beliefs. Bandura proposed several qualitatively
different sources that contribute to one’s predictive beliefs about being
able to perform a task in the future, including (1) emotional arousal,
(2) verbal persuasion, (3) vicarious experiences, and (4) performance
accomplishments. Emotional arousal refers to feelings of stress or
anxiety associated with a task. Such aversive feelings can decrease
expectations of success and promote task avoidance. Verbal persuasion
refers to communicative influences by social partners. For example,
one can become convinced in being able to accomplish something by
receiving enthusiastic support from others. Vicarious experiences refer
to observations of task attempts by others. This is a highly complex
category of factors because it involves social modeling and social
comparisons. Finally, performance accomplishments refer to one’s
first-hand achievements (or failures) in a task. While Bandura’s theory
does not mention retrospective LP, others have proposed that it may
elevate self-efficacy (Blain and Sharot, 2021).

5.2 empirical (pilot) study of improvement judgments

One approach to study the computational tenets of metacognitive judg-
ments of improvement is to observe how subjective self-evaluations
change over the course of practicing a skill. Most of the research
on metacognition, as the name might suggest, involves cognitive or
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perceptual tasks and much less attention is given to self-monitoring
during time-extended learning. Yet in the real world, we encounter
learning activities and set goals that require relatively long-term en-
gagement. To increase the ecological validity of the results, we want
to emulate a learning process which is extended in time, interrupted
by other daily activities, and does not include advanced exogenous
information on one’s performance. To meet these demands, we have
designed a sensorimotor learning activity presented to participants as
a video game, called Lunar Lander. The goal of the game is to guide
a spacecraft (the "lander") onto a landing platform in a controlled
manner, so that it does not crash on impact with the ground or go
off-screen. To probe participants’ subjective judgments about their
performance and motivation, we solicited the corresponding verbal
reports.

The goals of the pilot run of our study were (1) to assess the ef-
fects of game initialization parameters on task achievement, (2) to
explore the relationships between several performance measures and
improvement judgments, and (3) to explore the relationships between
improvement judgments and motivation.

5.2.1 Lunar Lander Task

The task is based on a famous arcade video game called "Lunar Lan-
der". Using the Box2D physics engine in JavaScript, we implemented a
custom version of the game (see Fig. 5.1) in order to control the game
difficulty and to be able to record the game play. Like the original, our
version features a controllable spacecraft and a randomly generated
uneven terrain (Fig. 5.1). The game is played across multiple trials.
Within a single trial, there is a constant gravity vector that can point
directly downward or be slanted to the side in order to create an
impression of constant wind. We used a variable time differential to
simulate the game physics. This ensured that the animation adapts
to the user display’s frame rate in order to keep the gameplay consis-
tent across users (Fiedler, 2004). Thus, game states were sampled at a
constant rate of 80 Hertz.

Each trial of the game ends in one of three outcomes. The spacecraft
can go off-screen, in which case, the player is informed that the lander
has been lost. The body of the spacecraft can make contact with the
ground, in which case is informed that the lander has been crashed.
Finally, if the spacecraft can be landed by being carefully placed onto
the landing platform (landing pods down) and being kept there for
3 seconds, in which case the player is informed that the lander has
successfully landed. The legs of the lander to which the landing pods
attach are implemented as spring joints that can be compressed under
a force. Thus, the momentum of the spacecraft must be controlled
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Action 1
Linear acceleration

Action 2
CW rotation
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CCW rotation
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Body
Crash landing
at high speed
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Figure 5.1: The Lunar Lander task description. a, A single frame from a
game trial. The spacecraft 1 is controlled by the player to land it
onto the platform 2 and avoid crashing into the terrain 3 . The
crashing event is triggered whenever the body of the lander (see
b) collides with any other object in the environment, including the
spacecraft’s own landing pads. b, The spacecraft (consisting of the
body, two spring joints, and two landing pads) can be controlled
by 3 actions: linear acceleration, and clockwise/counterclockwise
rotation. c, Successful landing requires placing the spacecraft
(landing pads down) at a sufficiently low speed. Even if a player
successfully drives the spacecraft to the landing platform, exceed-
ingly high speed causes the spring joints to compress, resulting
in a crash.

upon landing, even if the spacecraft descends in an upright angle;
otherwise the legs will over-compress and the lander will crash.

The spacecraft can be controlled by 3 actions (4, if we count do-
ing nothing as an action). Players can rotate the lander clockwise or
counter-clockwise and propel it linearly in the direction of the lon-
gitudinal axis. Under the hood, actions apply impulse to different
points on the spacecraft body. Since there is no friction, stopping or
slowing down the angular motion of the body in one direction re-
quires applying an impulse in the opposite direction. Pressing and
holding an action key amounts to applying the corresponding impulse
on each cycle of the physics simulation, making the spacecraft gain
momentum very quickly. Mastering the game requires learning to con-
trol the spacecraft, which entails understanding the effects of actions
in various contexts. Specifically, learning the game physics requires
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improving predictions about the velocity of the spacecraft, given the
applied actions and the existing momentum.

There are many parameters that determine the difficulty of the game.
In this pilot study, we experimented with only two of them. First, we
randomized the initialization distance between the lander and the
platform. Traversing more space was assumed to be more challenging.
We also randomized the gravity of the environment, parameterized
by constant vertical and horizontal forces on the lander. By increasing
the horizontal force, we created a wind effect that drags the lander to
one side of the screen and not just downwards.

5.2.2 Subjective Improvement and Motivation

The task was practiced across three sessions, each on a different day. To
measure subjective LP, we asked participants to report their judgments
related to improvement after each session. Participants provided their
judgments on a visually presented numerical scale. We used 1-item
questionnaires to measure 4 different kinds of performance improve-
ment. First, we asked participants to provide a subjective comparison
between their current level of performance (after a session was fin-
ished) and their level of performance at the beginning of each session.
Additionally, we collected prospective LP judgments by instructing
participants to report how much they thought they would improve
after practicing an additional session in the future. After some of the
sessions, we also asked participants to compare how well they thought
they did on the session that has just concluded against the session
that came before it. Lastly, on the very last practice session, we asked
participants to compare their performance on this final session against
their performance during the very 1st session. We provide the actual
questionnaire items used in our pilot study in Section 5.2.5.

It is possible that improvement judgments are based on performance
indicators that can be directly observed by the experimenters and
participants alike (e.g. success rate). However, it is also feasible that
LP judgments are based on more privately accessible information,
such as subjective feelings of competence or effort. Thus, we also
tracked subjective judgments of task load, including competence,
effort, and task demands. Thus, we administered the NASA task-
load index (NASA-TLX) at the end of each practice session. NASA-TLX

(Hart and Staveland, 1988) measures 7 components of the task load,
including:

1. Mental demand
2. Physical demand
3. Temporal demand
4. Performance
5. Effort
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intrinsic motivation measures In order to assess the poten-
tial effects of LP judgments and other subjective/objective measures
of performance on motivation, we used the Situated Motivated Strate-
gies (SIMS) instrument (Guay, Vallerand, and Blanchard, 2000), which
measures 4 distinct components of motivation:

1. Intrinsic Motivation (IM)
2. Identified Regulation (IR)
3. External Regulation (ER)
4. Amotivation (Am)

The SIMS-IM component assesses the extent to which an activity is eval-
uated as interesting, pleasant, and fun. The SIMS-IR subscale measures the
importance of the activity to the individual. The score on the SIMS-ER scale
indicates the extent to which the individual feels coerced into doing the
activity (by external forces). Finally, SIMS-Am measures the individual’s un-
willingness to participate in an activity. SIMS was proposed as an alternative
to the Intrinsic Motivation Inventory (IMI) (McAuley, Duncan, and Tammen,
1989), criticized for certain conceptual issues (Guay, Vallerand, and Blan-
chard, 2000). Despite these issues IMI components have good psychometric
characteristics and can provide useful measurements beyond intrinsic moti-
vation. While the pilot study reported below does not rely on IMI, it certainly
has utility for future work.

Another tool for measuring various aspects of motivation in learning is
Motivated Strategies for Learning Questionnaire (MSLQ; Duncan et al., 2015).
The full version has many subscales that were not relevant for our study, but
it is possible to selectively use only a subset of all scales. We were interested
in measuring the following:

1. Extrinsic Goal Orientation (EGO)
2. Task Value (TV)
3. Control of Learning Beliefs (CLB)
4. Self-Efficacy for Learning and Performance (SELP)

The Motivated Strategies for Learning Questionnaire (MSLQ)-EGO subscale
measures how much learners desire to accomplish goals that are separa-
ble from mastering the activity per se (e.g., demonstrating competence to
others). MSLQ-TV captures the extent to which learners believe the learning
or accomplishing task to be somehow beneficial for them. Task value is
sometimes considered a component of the intrinsic motivation construct (e.g.
McAuley, Duncan, and Tammen, 1989). By reporting MSLQ-CLB, learners
indicate how much they believe that effort in learning results in mastery.
Finally, MSLQ-SELP reflects the belief that a task can be mastered eventually,
time constraints aside. One challenge of adopting MSLQ subscales is that
they were originally designed for classroom settings. Many questions ask the
respondents about courses/classes, their contents, assignments, teachings
etc. Therefore, we had to adapt some of the questions to our context. Full
lists of SIMS, MSLQ, and NASA-TLX questions can be found in Section 5.2.5.

In addition to the self-reported measures of motivation, we used a be-
havioral measure of intrinsic motivation using the free-choice technique.
After finishing the "main" task (in our case, the game practice and question-
naires) participants are offered a free choice between concluding the session
or engaging in additional game practice. Crucially, optional practice is not
required which is communicated to the participants. Voluntary engagement
in additional practice indicates intrinsic motivation.
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5.2.3 Procedure

Session 1 
(Day 1) Game practice Questionnaire Free choice

Session 2 
(Day 2) Game practice Questionnaire Free choice

Session 3 
(Day 5) Game practice Questionnaire Free choice

Figure 5.2: Pilot experiment procedure. Participants completed 3 sessions,
each on a different day (top row). Each session consisted of
game practice, followed by a questionnaire, and a free choice
task (bottom row).

We asked participants (N = 54) to practice the game over 3 sessions that
spanned 5 days. We used a fixed schedule for all participants: session 1

was completed on day 1, session 2 on day 2, and session 3 on day 5. Thus,
there was 1 day between sessions 1 and 2; and 3 days between sessions 2

and 3. Each session consisted of 3 phases: task practice, questionnaire, and
free-choice task (Fig. 5.2). The study was approved by Inria’s Operational
Committee for the Evaluation of Legal and Ethical Risks (OCELER).

Participants played multiple trials of Lunar Lander during the task practice
phase. As a precaution from a potential floor/ceiling effect, we asked some
participants to practice for 10 minutes, and others for 20 minutes, in each
session. In the beginning of each session, participants read through the same
instructions about the goal, the rules, and the controls of the game.

After finishing the practice phase, participants were asked to fill in a
questionnaire consisting of performance-improvement, NASA-TLX, SIMS, and
MSLQ questions. After finishing the questionnaire phase, participants were
informed that they have finished the session and that they could practice
more if they wanted or move on from our task.

5.2.4 Findings

5.2.4.1 Task achievement

To get a general sense for the difficulty of the game, we analyzed the success
rates across the three practice sessions for the two session-duration conditions
(10 minutes and 20 minutes). We fitted a logistic regression of binary trial
outcome (success vs. crash/off-screen) as a function of session duration,
session number, and their interaction (setting the 10-minute session 2 as the
reference group). As shown in Fig. 5.3, success rates in 20-minute sessions
were higher compared to 10-minute sessions. The logistic model predicted
the odds of success in a 20-minute (second) session to be 3.924 times higher
compared to a 10-minute (second) session (odds ratio (OR) = 3.924, 95%
CI = [3.017, 5.105], z(4654) = 10.189, p < .001). Success odds were also
significantly different across sessions: compared to the 2nd (10-minute)
session, participants were less likely to land during the 1st (10-minute)
session (OR = 0.244, 95% CI = [0.174, 0.343], z(4654) = −8.137, p < .001)
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Figure 5.3: Success rates across sessions and session durations. The points
represent success rates in the 10-minute (blue) and the 20-minute
(orange) condition. Error bars show 95% CI (the increasing inter-
vals for later sessions are due to participant dropout). Success
rates increased steadily in both 10-minute and 20-minute con-
ditions. More time per session allowed participants to perform
better, but performance increased almost linearly with each suc-
cessive practice session, regardless of the duration. Low levels of
success in the 10-minute group suggests a floor effect.

and more likely to land in the 3rd (10-minute) session (OR = 2.32, 95%
CI = [1.538, 3.505], z(4654) = 4.008, p < .001). There was no interaction
between session duration and session number, suggesting that participants
improved consistently across sessions within each session-duration group.
The analysis also advises against restricting the practice to 10 minutes per
session, especially for the 1st session. where only about 5% of all trials
were successful. This floor effect might complicate assessing the relationship
between performance improvement and subjective judgments of LP.

Next, we looked at the effects of game initialization parameters on success
(see Fig. 5.4). We fitted a logistic regression of trial outcome as a function of
two initialization variables: the absolute wind speed and the initialization
distance to the platform; we also included the trial number (cumulative across
sessions) as a control variable. To compare the effects, we standardized the
regression coefficients by z-scoring the covariates. We only included trials
from participants who had at least one successful attempt across all sessions
played. All three predictors had coefficients significantly different from zero.
Thus, accounting for the increasing odds of success over time (OR = 1.627,
95% CI= [1.518, 1.743], z(3, 3623) = 13.871, p = 001), participants were less
likely to land under a stronger wind (OR = 0.821, 95% CI= [0.762, 0.884],
z(3623) = −5.249, p < .001) and when initialized farther from the target (OR

= 0.882, 95% CI= [0.819, 0.949], z(3623) = −3.339, p < .001).
The results reported in this section provide empirical validation for the

predicted relationship between the two game-initialization parameters and
task difficulty. Thus, it is viable to manipulate these parameters in the future,
if we want to control how people learn the task. Figures 5.3 and 5.4 (C) also
confirm that participants were able to improve over time (at least on a group
level), making it viable to study subjective improvement judgments.



98 metacognitive mechanisms of progress judgments

0.4
0
0.8

0
1.2

1
1.6

0
2.0

1
2.4

0
2.8

3
3.2

1
3.5

9
4.0

0

Absolute wind speed

0.175

0.200

0.225

0.250

0.275

Su
cc

es
s r

at
e

A

34
7.9
39

4.4
43

3.9
46

9.5
50

3.4
54

0.0
58

6.9
63

5.7
68

8.3
81

6.6

Initialization distance

0.22

0.24

0.26

0.28

B

11 21 32 43 56 72 94 12
0
15

3
29

2

Trial number

0.1

0.2

0.3

0.4

C

Figure 5.4: Success rate covariates. The three panels show the proportion
of successful trials across respective covariates quantized into
10 bins (values on the x-axes show quantile upper bounds). a
shows the negative correspondence between success rate and the
absolute value of the wind parameter. b shows the negative rela-
tionship between success rate and initialization distance between
the lander and the platform. c shows how average success rates
increased over time across sessions. In the range of the first 300

trials, the population-level success rate appears to be increasing
linearly with the number of attempts.

5.2.4.2 Judgments of improvement

At the end of each game-practice session, we asked participants several
questions about their subjective improvement. One question probed the ret-
rospective improvement judgment: "Rate how much your current level of
performance has changed compared to the beginning of today’s session". Partici-
pants responded by moving an interactive slider along a discrete 11-point
semantic differential scale ranging between two polar response categories:
"Much worse" (-5) and "Much better" (5); putting the slider at the center
of the scale was assumed to indicate the reporting of no perceived change
in performance. The same response scale was used to yield a prospective
improvement judgment, prompted by "Rate how much you expect to im-
prove over the next session". We explored how self-reported feelings of
retrospective and prospective improvement related to different aspects of
performance.

Fig. 5.5 shows the joint sample distribution between retrospective and
prospective improvement judgments. There were a total of 63 observations (22

out of 85 prospective-improvement judgments were lost due to data collection
error). The marginal histograms show that improvement judgments were
mostly positive. However, participants judged their future improvement
more variably, compared to how they thought they had previously improved,
as indicated by a longer tail into the negative range of the prospective
judgment scale. Spearman’s correlation coefficient between prospective and
retrospective judgments was moderate (rSpearman(61) = .491, p < .001). Thus,
retrospective feelings of improvement seem to explain some of the variance
in prospective progress judgments.

Next, we investigated how the dynamics of task-achievement feedback
related to the subjective judgments of improvement. For each subject and
for each session, we calculated the success rate in the first and the second
half of the session and then subtracted the latter from the former (a positive
difference indicates improvement). Fig. 5.6 depicts relationships between
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Figure 5.5: Retrospective and prospective judgments. The central panel
shows the joint distribution of retrospective and prospective im-
provement judgments. Marker saturation indicates the amount
of overlapping data points. The line represents a fitted linear
regression of prospective judgments on retrospective judgments
(the shaded area shows the 95% CI of the model). Marginal his-
tograms on the top and right panels show relative frequencies of
self-reported scores (in percentage units).

retrospective/prospective improvement judgments and changes in success
rates in the corresponding session. Increasing rates of success predicted the
retrospective improvement judgments, but not the prospective improvement
judgments (see explanation for Fig. 5.6).

In addition to asking participants to rate their improvement within a single
session, we asked them to provide more judgments about a more extended
period of time. After sessions 2 and 3, we asked participants to compare
their performance on the most recent session with their performance on a
session just before it (improvement over consecutive sessions). After the 3rd
(and last) practice session, we asked participants to also report how their
subjective performance improved relative to "the start of the experiment".
Due to participant dropout on sessions 2 and 3, we did not collect as much
data on these judgments, yet the smaller sample sizes (N = 39 for session
2, and N = 13 for session 3) were sufficient to reveal some significant
relationships between changes in objective and subjective self-assessments
of competence and their corresponding subjective evaluations (Fig. 5.7, top
row). Objective improvement between consecutive sessions was defined as
the difference between the success rate in the session that had just concluded
and the session before it (positive values indicate improvement; e.g., on
session 2, this measure compares the success rate on session 2 vs session 1).
Objective improvement between session 1 and 3 was defined similarly by
subtracting the success rate on session 1 from the success rate on session
3. As the top row of Fig. 5.7 illustrates, participant’s subjective judgments
corresponded relatively well with their objective improvement. We can also
see a ceiling effect for the subjective ratings, which could be obscuring the
true effect size. At this point, it is difficult to say whether these longer-term
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Figure 5.6: Increasing success rate predicts self-reported past improvement,
but not the expected future improvement. The circles repre-
sent individual data points. The lines represent linear regression
models of retrospective and prospective improvement ratings,
respectively. The shaded regions represent 95% CI of the mod-
els’ predictions. Objective performance improvement, indexed
by increasing success rates, reliably predicted the retrospective
judgments (slope = 4.728, 95% CI = [2.298, 7.158], t(83) = 3.870,
p < .001) but not the prospective judgments (slope = 0.811, 95%
CI = [−2.723, 4.345], t(61) = 0.459, p = .648).

judgments are better correlated with objective performance than judgments
about within-session learning, but we can say that they are at least as well
correlated. To determine the time-extent of improvement judgments that are
most accurate in relation to success rate, future iterations of the study might
benefit from a better-designed instrumentation and a more appropriate scale
for measuring subjective improvement.

Since we did not collect subjective competence ratings during the self-paced
practice, we could not assess the relationship between the "micro-dynamics"
of subjective competence judgments within sessions and the improvement
judgments at the end of each session. However, we did ask people to reflect
on their perceived competence once after each practice session using an
item from the NASA-TLX instrument. Like with success rates, we calculated
two kinds of contrasts of self-reported competence scores: one comparing
scores from consecutive sessions (Fig. 5.7, bottom left), and one comparing
sessions 1 and 3 (Fig. 5.7, bottom right). We then explored how improvement
judgments related to differences in objective and subjective measures of com-
petence. As shown in Tab. 5.1, when considered separately, subjective and
objective competence differences predicted the corresponding improvement
judgments. However, when included in the same model, the results were
different for the shorter term improvement judgments (consecutive sessions)
compared to the longer-term ones (session 1 vs session 3). Specifically, when
modeling self-reported improvement between consecutive sessions, objective
difference in success rates appears to be a better predictor (β = 1.003, 95%
CI = [0.282, 1.724], t(36) = 2.821, p = .008) than the difference in subjective
competence judgments (β = 0.384, 95% CI = [-0.337, 1.105], t(36) = 1.081,
p = .287). Neither predictor was significantly different from 0 when regress-
ing the improvement judgments for sessions 1 and 3, but the very limited
sample size for this analysis prevents us from drawing any conclusions.
These results suggest that people’s retrospective judgments of session-to-
session improvement are better calibrated to the objective improvement than
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Judgment
timescale

Difference in β 95% CI t p

Consecutive
sessions

Success rate 1.288 [0.805, 1.771] 5.406 <.001

Subjective
competence

1.129 [0.604, 1.655] 4.359 <.001

Sessions 1

and 3

Success rate 0.989 [0.318, 1.660] 3.244 .008

Subjective
competence

0.901 [0.177, 1.624] 2.740 .019

Table 5.1: Standardized coefficient values from linear regressions predicting
subjective improvement judgments (separately for 2 timescales)
from differences in success rates or self-reported competence judg-
ments. For the timescale of consecutive sessions (improvement/d-
ifferences regarding performance on two consecutive sessions), the
degrees of freedom for the t test are (1, 37). For the longer timescale
(sessions 1 and 3) the degrees of freedom are (1, 11).

to the change in subjective competence. Interestingly, self-reported prospec-
tive improvement (predicted for the next session) was significantly correlated
with the session-to-session change in subjective competence (Spearman’s
ρ(23) = .445, 95% CI = [.041, .724], p = .026), but not with the corresponding
change in objective success rates (p = .155). It is not obvious why prospec-
tive judgments should be better calibrated with the change in subjective
competence ratings, while retrospective judgments should be better aligned
with objective improvement. This pattern of findings calls for replication and
further research, especially considering past research (Townsend and Heit,
2011b) that presents results conflicting with ours.

Before proceeding to the next set of results, we would like to note that out
of 46 participants, 14 (30.43%) reported positive improvement despite failing
to succeed even once1. Some participants reported positive improvement
while showing a negative change in their success rate. This could be inter-
preted in at least two different ways. One possibility is that while people base
recent improvement judgments on success-rate dynamics, their self-reported
ratings of improvement are unreliable due to metacognitive miscalibration.
Another explanation is that improvement self-reports can be accounted for by
something other than task-achievement feedback. Either way, there is a need
to investigate the residual variation in improvement judgments that is beyond
what can be explained by changing success rates or subjective performance
evaluations. For if we want to assess metacognitive accuracy – we need to
identify the set of valid objective measures that subjective improvement is
based on, and there are no a priori reasons to assume that this set includes
only the task-achievement feedback. Investigating how LP judgments arise,
especially prior to witnessing task achievement, is an important direction for
future research.

1 We report the results from 46 (not 54) participants, because 8 out of 54 participants
dropped out immediately after completing the 1st game practice without filling in
the questionnaires.
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Figure 5.7: Subjective and objective changes in competence between ses-
sions predict self-rated improvement. The circles represent indi-
vidual data points.The lines represent linear regression models of
retrospective shorter-term and longer-term improvement ratings,
respectively. The shaded regions represent 95% CI of the models’
predictions. The top row plots differences in success rates against
the corresponding improvement ratings. The bottom row shows
how difference in subjective competence evaluations relate to
judgments of improvement. When considered separately, objec-
tive success-rate difference and subjective-competence difference
are significantly correlated with improvement judgments, regard-
less of whether the difference/improvement judgment concerns
consecutive sessions or sessions 1 and 3. However, when factored
in together, objective success rate appears to be a better predictor
for the shorter term judgment.

Here, we experimented with several performance-relevant variables. For
each trial, we computed the weighted-average2 distance, vertical speed, and
horizontal speed, and then regressed these variables on the trial number
in order to obtain slope coefficients describing how each variable changed
throughout sessions. For instance, a negative slope for the weighted-average
distance variable would indicate that the average-distance to the platform
decreased over the course of the session, potentially signaling gradual im-
provement in performance. When considered together with success-rate
difference scores, weighted-average distance and vertical/horizontal speeds
were not reliably associated with judgments of improvement. This negative

2 More weight was assigned to values closer to the end of a trial
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result motivates a search for performance indicators that learners might use
in order to self-assess beyond success rates. An intriguing lead to pursue in
the future is the subjective evaluation of sensorimotor control – people might
report improvement when they feel more control.

5.2.4.3 Motivation and Learning Beliefs

Next, we explored how different operationalizations of LP, such as changes in
objective/subjective competence and subjective improvement judgments, re-
lated to various attitudes regarding our sensorimotor game-task. Specifically,
we computed Spearman’s correlation coefficients between each measure of
LP and different motivational and attitudinal variables measured by SIMS and
MSLQ (see Fig. 5.8). As it is impossible to infer causality from these correla-
tions, future iterations of the study will benefit from measuring motivation
and learning beliefs before and after task practice. Below, we provide only
speculative interpretations of the results presented by the figure.
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Figure 5.8: Correlations between different operationalizations of LP and
motivation. Each cell shows the value of a Spearman’s correla-
tion coefficient. ’.’ indicates that the p-value for the coefficient
is between .05 and .10; ’*’ indicates a p-value of less than .05;
’**’ indicates a p-value of less than .01. The solid black vertical
line separates SIMS items (1st 4 columns) from MSLQ items (last
4 columns); the solid black horizontal line separates objective
behavioral measures of LP from measures based on subjective rat-
ings. The dashed horizontal line separates the plain success-rate
measure from the rest of the variables since it is not a measure of
LP.

We were mainly interested in the relationship between LP and intrinsic
motivation. Our data did not show many significant correlations between
the SIMS’s Intrinsic Motivation (SIMS-IM) measure and any of our measures
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of LP. Despite the lack of statistical significance, SIMS-IM scores yielded
consistently positive correlation coefficients across different measures of
improvement. However, even if the lack of statistical significance is due to
the limited sample size, the correspondence between intrinsic motivation
and subjective/objective improvement appears to be moderate at best. This
result suggests that the relationship between LP and (intrinsic) motivation –
if anything – is not as straightforward as sometimes conceived (e.g., Oudeyer,
Gottlieb, and Lopes, 2016a).

Our measures of LP correlated more strongly and consistently with 3 out
of 4 subscales from MSLQ. There were several positive correlations with the
Extrinsic Goal Orientation (MSLQ-EGO) subscale, which measures the extent
to which task performance is motivated by extrinsic ends (e.g. impressing
or surpassing others, getting a high score). These correlations suggest that
participants who wanted to do well in the game showed greater objective
improvement and were largely aware of it.

Several measures of LP also predicted two distinct kinds of beliefs about
learning: Control of Learning Beliefs (MSLQ-CLB) and Self-Efficacy for Learn-
ing and Performance (SELP). The first measure reflects a learner’s beliefs
that being successful in the task depends on his or her efforts. It could be
that objective/subjective LP fuels such beliefs, but the reverse causality is
also possible: believing that one is in control of one’s learning could enhance
learning. The same is true for the relationship between the self-efficacy and
LP: improving on a task might reinforce the belief that one can eventually
perform the task well, but such a belief can also invigorate the learning
process. Of course, it is also possible that beliefs about the control of learning
and self-efficacy have reciprocal relationships with LP whereby LP strength-
ens learning beliefs, which boost motivation, which contributes to LP (see
Zimmerman, Schunk, and DiBenedetto, 2017, for a similar view).

Additional analyses lend some support to the reciprocity between LP

on self-efficacy. First, the MSLQ-SELP rating given at the end of session 1

was a reliable predictor of the objective improvement from session 1 to
session 2 (slope = 0.070, 95% CI = [0.032, 0.108], t(2, 23) = 3.827, p =
.001). Second, the objective improvement from session 1 to session 2 was a
reliable predictor of the MSLQ-SELP rating given after the 2nd practice session
(slope = 0.907, 95% CI = [0.981, 4.049], t(23) = 3.391, p = .003), even when
controlling for the same rating from the previous session. Thus, while self-
efficacy for learning beliefs predicted future improvement, improvement also
predicted the updated self-efficacy beliefs, even when accounting for the old
beliefs. Similar analyses did not provide the same support for the reciprocity
between LP and beliefs about learning control. While the MSLQ-CLB ratings
from session 1 predicted improvement from session 2 to session 1, this
improvement measure failed to predict the 2nd session’s ratings beyond
what the 1st session’s ratings predicted.

Most measures from the two motivational questionnaires were highly
correlated (see Fig. 5.9). Interestingly, MSLQ-EGO did not correlate with SIMS-
Am or SIMS-ER. In fact, the highest correlation coefficient between MSLQ-EGO
and any SIMS measure was with SIMS-IM. MSLQ-TV showed an expected
pattern of correlations (negative with SIMS-Am, positive with SIMS-IR and
SIMS-IM), given that task value is sometimes considered a component of
intrinsic motivation.

Perhaps most intriguingly, each of the learning-belief measures correlated
strongly with the SIMS-IM scores (MSLQ-CLB: Spearman’s ρ(83) = 0.401, 95%
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Figure 5.9: Correlations between SIMS and MSLQ measures. Each cell shows
the value of a Spearman’s correlation coefficient. ’*’ indicates a
p-value of less than .05; ’**’ indicates a p-value of less than .01

CI = [0.197, 0.571], p < .001; MSLQ-SELP: Spearman’s ρ(83) = 0.552, 95% CI
= [0.370, 0.693], p < .001; Fig. 5.9), suggesting that learning beliefs might
mediate the effect of LP on intrinsic motivation. Specifically, LP might only
increase the intrinsic motivation for performing/learning a task if it feeds the
belief that the task can and eventually will be learned. This could potentially
explain why we failed to observe strong and reliable correlations between
our measures of LP and SIMS-IM.

The last set of results concerns a strong predictor of motivation and
learning beliefs that is not a measure of LP. Our data showed that plain
success rates, measured as the proportion of successful trials in a session,
predicted most of SIMS and MSLQ components (see last row of Fig. 5.8). Specif-
ically, success rates were negatively correlated with amotivation (SIMS-Am;
Spearman’s ρ(83) = −0.233, 95% CI = [−0.428,−0.018], p = .031), and
positively correlated with SIMS-IM (Spearman’s ρ(83) = 0.374, 95% CI =
[0.168, 0.550], p < .001), extrinsic goal orientation (MSLQ-EGO; Spearman’s
ρ(83) = 0.513, 95% CI = [0.324, 0.662], p < .001), task value (MSLQ-TV; Spear-
man’s ρ(83) = 0.256, 95% CI = [0.052, 0.456], p = .014), MSLQ-CLB (Spear-
man’s ρ(83) = 0.480, 95% CI = [0.286, 0.636], p < .001), and MSLQ-SELP
(Spearman’s ρ(83) = 0.693, 95% CI = [0.547, 0.799], p < .001).

Session-wise success rates also predicted whether a participant would
accept the free choice of additional practice after finishing the main practice
and the questionnaire. This was shown by a logistic regression of the event
of accepting optional practice as a function of success rate (OR = 0.033, 95%
CI = [0.003, 0.395], z(1, 83) = −2.689, p = .007). Thus, higher success rate
decreased the odds of accepting optional practice. This seems puzzling, given
that success rate was positively related to motivation and learning attitudes.
How could higher success rate be associated with a lesser tendency to engage
in optional practice, yet predict higher subjective motivation and learning
beliefs? Notably, none of the SIMS, MSLQ, or LP measures reliably predicted
the acceptance of optional practice on their own. However, when considered
in a multiple logistic regression together with success rate, several measures
obtained significant coefficients, including SIMS-Am, SIMS-IR, SIMS-IM, MSLQ-
TV, and MSLQ-SELP (summarized in Table 5.2). This pattern indicates while
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Measure bSR pSR bMA pMA

SIMS-Am -4.151 .003 -0.480 .027

SIMS-IR -4.322 .004 0.562 .012

SIMS-IM -4.837 .002 0.486 .016

MSLQ-TV -4.567 .003 0.549 .016

MSLQ-SELP -6.555 .000 0.631 .003

Table 5.2: Models of optional additional practice acceptance. Each row
presents the coefficient estimates (and their p-values) of two pre-
dictors. One predictor is always success rate (SR) while the other
predictor is a motivational/attitudinal measure (MA) indicated by
the rows of the ’Measure’ column.

motivational/attitudinal variables fail to account for variation in the odds
of accepting optional practice, they do account for the residual variation
after regressing the odds of optional practice on success rate. One plausible
interpretation of this is that success rate and motivation/attitudes jointly
influence behavior: if the learner performs poorly on the task, they will be
compelled to engage in it if they identify with (SIMS-IR) or value (MSLQ-TV)
the task, if they think the task is fun (SIMS-IM), or if they believe they can
eventually perform well (MSLQ-SELP). Conversely, if a learner believes in the
eventual mastery, or find the activity fun or otherwise personally important,
their re-engagement will be facilitated by poor performance.

5.2.5 Discussion

Our pilot study pursued a number of different goals. One of them was to
test our study procedure. Additionally, we aimed to assess the effects of
game initialization parameters on task achievement. Task validation aside,
we wanted to explore the relationships between possible performance mea-
sures and subjective improvement judgments, and subjective and objective
improvement and motivation. The results provide important lessons and
pose intriguing questions for future work.

task validation We have obtained some understanding of how sev-
eral game parameters affect task-achievement rates. Manipulating difficulty
is important for testing hypotheses about the causal relationships between
learning dynamics and motivation/attitudes. Measuring difficulty objectively
entails observing how representative groups of people perform a task with
given parameters. Our results provide useful approximations of the effect
sizes of distance and wind parameters on task achievement. We also gained
a sense of the general learning trajectory and individual variability for the
task. This knowledge can be used for manipulating group-level learning
profiles in independent-group designs. For example, it would be informative
to observe subjective improvement judgments and motivation to persist in
groups where landing is made virtually impossible, or conversely, where the
task can be mastered in very few trials.
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determinants of improvement judgments Our exploration
of the determinants of subjective LP judgments showed that people might
rely on the dynamics of objective success rate and/or subjective competence
when verbally reporting their improvement. We hypothesized and tested
several other propositions as to what information participants might use
to come up with LP judgments, but failed to identify variables that would
explain variation in subjective LP above and beyond what is explained by
success-rate dynamics. Furthermore, changes in success rates correlated with
improvement judgments better, compared to changes in subjective evalua-
tions of self-competence. This is not fully consistent with some of the existing
research (Townsend and Heit, 2011a,b) that reports the absence of correlation
between changes in objective performance scores and subjective improve-
ment judgments. There are, of course, many potentially important differences
between our study and Townsend and Heit’s work that can potentially ac-
count for the divergence. Most pertinently, Townsend and Heit measured
objective performance (or competence) as the percentage of items recalled in
the learning set, which might be far from how learners subjectively repre-
sent competence in a list-memorization task. In our task, on the other hand,
success rate might be the most intuitive indicator of competence because the
task requires acquiring procedural knowledge. Measures of LP based on the
researcher’s performance standards may differ from what people naturally
consider when inferring how well they are doing and if they are improv-
ing. This points to the importance of understanding how learners evaluate
their performance subjectively. Understanding the mechanistic processes
behind subjective representation of competence is not only an interesting
and relatively unexplored territory, but it is also key to controlling subjective
judgments of improvement in applied contexts.

As we briefly mentioned earlier, self-evaluation of sensorimotor control is
a viable way to gauge one’s competence continuously on a sensorimotor task
when binary feedback is highly skewed. We have not explored this idea in our
pilot study, but it is a promising direction to follow. There are several ways to
measure control. For example, we could interleave practice trials with control-
testing trials where we ask participants to follow specific trajectories as closely
as possible using the same game physics and controls. Alternatively, if we
want to keep the learning process naturalist, we can closely track participants
actions (key presses and key-press durations) together with game states
(velocity vectors, lander positions) in order to measure, offline, if participants
took appropriate actions in certain situations.

temporal extent of improvement judgments In addition
to exploring what information supports inferences about one’s progress,
we examined how competence changes over different temporal intervals
correlated with the corresponding self-reported judgments of improvement.
The original intention behind examining different time intervals was to
evaluate whether judgments of some duration(s) would be better calibrated
with reality than others, but our analyses failed to reveal such differences. The
reported improvement judgments of different temporal sizes were similarly
correlated with the corresponding objective improvement measures. Thus,
when asked to describe their own learning in the past, participants seem
equally good at characterizing their improvement over arbitrary time periods.
It remains to be shown if there is a "basic" temporal interval which people
tend to use naturally to gauge improvement for self-regulated learning (also,
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if this temporal interval is flexible) or if multiple temporal intervals jointly
determine an overall estimate of LP. To evaluate the credibility of these
hypotheses, we might benefit from controlling the participants’ learning
trajectories, so that improvements computed on different temporal intervals
do not agree with each other (e.g., improving within session, but getting
worse compared to previous session).

subjective competence , learnability, and task-engage-
ment Some interesting implications followed our analyses of the interplay
between metacognition, learnability beliefs, and motivation. Specifically, suc-
cess rate and self-efficacy beliefs jointly predicted whether optional practice
would be taken or foregone. This finding resonates with the interpretation of
the bivariate choice-utility model from our previous study (see Chapter 4),
where we proposed that learning progress (LP) and percent correct (PC) could
have distinct roles in self-regulated learning. Judgments of competence (e.g.,
success rate, or PC) could serve to guide learners toward challenging tasks;
expectations of improvement (e.g., self-efficacy beliefs partially determined
by LP) could be used to gauge task learnability and prevent learners from
laboring in vain. In line with the previous study, our pilot study suggests
that the tendency to engage in optional practice correlates negatively with
success rates and positively with learnability beliefs (MSLQ-SELP). That is,
participants were more likely to voluntarily re-engage in the task when their
performance was poor and when they thought the task could be eventually
learned. This metacognitive regulation based on two kinds of signals (com-
petence and progress) also resonates with the "Region of Proximal Learning"
theory (Metcalfe and Kornell, 2005; Metcalfe, Schwartz, and Eich, 2020),
which holds that information-seeking is predicated on two judgments: of
whether the answer is known and whether there is enough subjective evi-
dence for the eventual acquisition of the answer. While this theory describes
the decision-making process in semantic information-seeking, it is similar to
our two-factor models. In both cases, the (intrinsic) motivation to engage in
the task depends on (1) whether it is believed to be achieved and (2) whether
it is believed to be achievable.

subjective improvement, learnability, and motivation

Finally, we explored how different operationalizations of LP, including objec-
tive and subjective variables, relate to motivational and attitudinal measures
from SIMS and MSLQ. While LP seems to correlate rather weakly with intrinsic
motivation, we found it to be a good predictor of beliefs about learning
control and self-efficacy. Research in motor-learning regulation (Lewthwaite
and Wulf, 2017; Wulf and Lewthwaite, 2016) convincingly shows that in-
creasing self-efficacy and intrinsic motivation has positive effects not only
on sensorimotor performance, but also on sensorimotor learning and reten-
tion. For example, selectively providing feedback information about the best
versus the worst practice attempts enhances self-efficacy and intrinsic moti-
vation during skill acquisition and results in better learning and retention
of the skill (Abbas and North, 2018). Our findings are complementary to
this literature. First, they suggest that better learning might strengthen the
beliefs that the task can and will be learned, both of which correlate with
intrinsic motivation. Second, while the cited literature studies the effects
of motivation/attitudes on sensorimotor acquisition/retention proper, we
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demonstrate how motivation/attitudes contribute to learning by guiding
decision-making for task engagement.

Our findings about the relationships between LP, beliefs about learning
control, self-efficacy, and intrinsic motivation fit well within rich theoret-
ical frameworks of Bandura’s Self-Efficacy Expectations (Bandura, 1977),
Dweck’s Growth Mindset (Yeager and Dweck, 2012), and Ryan and Deci’s
Self-Determination Theory (Ryan and Deci, 2017). We have already discussed
how retrospective LP judgments relate to their prospective counterparts and
self-efficacy. A similar integration has been also suggested by others Blain
and Sharot, 2021. However, the link with the growth mindset theory is an
original contribution of this thesis. This link was revealed by the association
between LP and learning-control beliefs. Growth mindset refers to a set of
beliefs that portray intellect and ability as malleable, especially with hard
work and perseverance (Yeager and Dweck, 2012). One glance at the ques-
tionnaire items of MSLQ-CLB (see Section 5.B) makes it clear that this subscale
measures "beliefs about effort", an important aspect of the growth mindset.
Thus, LP can be conceived as a basis of learnability beliefs such as self-efficacy
(for learning) expectations and growth mindset. Learnability beliefs might
elevate intrinsic motivation by promising to satisfy the psychological need for
competence (see Deci and Moller, 2005). That is, the belief in the effectiveness
of one’s toils and self-belief in the eventual task achievement imply that one
can eventually become competent on that task.

In summary, in addition to validating the experimental procedure and the
behavioral task, our pilot study has challenged past research, and inspired
novel hypotheses about the self-feeding process of intrinsically motivated
learning, which we summarize in Fig. 5.10. Pursuing future research sug-
gested by the present discussion seems to be a promising direction toward a
mechanistic understanding of intrinsically motivated learning.
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Figure 5.10: Sketch of a cognitive-mechanistic process of competence-based
intrinsically motivated learning. Task practice is cognitively
monitored to produce judgments of LP. These improvement judg-
ments feed beliefs about the task learnability. Notably, metacog-
nitive evaluation of the first-hand learning experience is only
one of many factors (de-emphasized in gray) that can contribute
to learnability beliefs (as proposed, for example, by Bandura,
1977; Limeri et al., 2020).
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Below are the questionnaire items used in the pilot study.

5.a situated intrinsic motivation scale (sims)

Responses were recorded on a 7-point Likert scale (1="Not at all", 2="Very
little", 3="A little", 4="Moderately", 5="Enough", 6="A lot", 7="Exactly") indi-
cating the extent to which the respondent agrees with the reason for engaging
in the learning activity. Specifically, the prompt for every item read: "Read
each item carefully. Using the scale below, please indicate how much each
item describes the reason why you are engaged in this activity (i.e., Lunar Lander
game)".

• Amotivation

– I do this activity but I am not sure if it is worth my time
– I don’t know; I don’t see what this game brings me
– There may be good reasons for practicing this game, but person-

ally I don’t see any
– I keep practicing, but I am not sure I should continue

• External Regulation

– Because I feel that I have to do it
– Because I am supposed to do it
– Because I don’t have any choice
– Because it is something that I have to do

• Identified Regulation

– Because I believe that this game is important for me
– It is for my own good
– Because I think that this activity is good for me
– Because I feel like playing this game

• Intrinsic Motivation

– Because I feel good when playing this game
– Because this game is fun
– Because I think that this activity is pleasant
– Because I think that this game is interesting

5.b motivated strategies for learning questionnaire (mslq)

Responses were recorded on a 7-point semantic differential scale (1="Not at
all true for me", 7="Very true for me") indicating how much the respondents
agreed with a given statement. The instructions for responding to this ques-
tionnaire’s items read: "The following questions ask about your motivation
for and attitudes about practicing the Lunar Lander game. Remember there
are no right or wrong answers, just answer as accurately as possible. Use the
scale below to answer the questions. If you think the statement is very true
of you, place the slider at the rightmost position (Very true for me); if a
statement is not at all true of you, place the slider at the leftmost position
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(Not at all true for me). If the statement is more or less true of you, place the
slider somewhere in-between to best indicate how you feel."

• Extrinsic Goal Orientation

– I want to do well in this game because it is important to show
my ability to others

– If I can, I want to get better scores in this game than most of the
participants.

– The most important thing for me is improving my overall score
point average, so my main concern in this game is getting a good
score

– Getting a good score in this game is the most satisfying thing for
me

• Task Value

– Understanding the purpose of this learning activity is important
to me

– I like this kind of game
– I think learning to play this game is useful for me
– I am very interested in this kind of game
– It’s important for me to learn to play this game
– I think I will be able to use what I learn in this game in other

situations

• Control of Learning Beliefs

– If I don’t understand how to succeed in this game, it is because I
didn’t try hard enough

– If I try hard enough, then I will understand how to succeed in
the game

– It is my own fault if I don’t learn how to succeed in the game
– If I learn in appropriate ways, then I will be able to succeed in

the game

• Self-Efficacy for Learning and Performance

– I’m certain I can master skills this game teaches
– I expect to do well in this game
– I’m confident I can do an excellent job in this game
– I’m confident I can master the most complex version of this game
– I’m confident I can learn the basic skills this game requires
– I’m certain I can play the most difficult mode in the game
– I believe I will achieve good results in this game

5.c nasa task load index (tlx)

Responses were recorded on a 20-point semantic differentiation scale (1="Very
low", 2="Very high").

• Frustration

– How insecure, discouraged, irritated, stressed, and annoyed were
you while playing the game?

• Effort

– How hard did you have to work to perform at your level of
performance in the game?
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• Performance

– How successful were you in the game?

• Temporal demand

– How hurried or rushed was the pace of the game?

• Physical demand

– How physically demanding was the game?

• Mental demand

– How mentally demanding was the game?

5.d improvement judgments

Responses were recorded on an 11-point semantic differentiation scale
(1="Much worse", 11="Much better") and translated into scores ranging
between -5 and 5 (0 indicating no improvement).

• Within-session improvement

– Rate how much you current level of performance has changed
compared to the beginning of today’s session

• Improvement between consecutive sessions

– Rate how much you current level of performance has changed
compared to the previous session

• Improvement between sessions 1 and 3

– Rate how much you current level of performance has changed
compared to the very first session of the experiment

• Prospective improvement

– Rate how much you expect to improve over the next session
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D I S C U S S I O N



6
D I S C U S S I O N

6.1 thesis summary

The general objective of this thesis was to investigate the cognitive and
motivational mechanisms enabling humans to actively explore the world
efficiently. To familiarize ourselves with the scope of existing computational
models, we first looked at the problem of autonomous learning in artificial
agents. Not only do they need to decide how to act, and thus what to
experience, in order to accomplish the task at hand, but they also need
to generate, select, and pursue their own tasks. This is because genuinely
autonomous machine learning systems do not have pre-specified sets of
tasks granted to them. Artificial agents approach the problem by following
intrinsic rewards. These rewards, in a sense, are task independent – they
serve to reinforce behaviors that expand the agent’s general intellectual
capacity, for example, to predict, to plan, and to accomplish more tasks. We
have reviewed a broad variety of intrinsically motivated AI systems and, in
doing so, identified the main dimensions of variability among the existing
architectures and provided a unifying framework to make sense of their
diversity.

In the following chapter (Chapter 3), we provided an in-depth discussion
on the functional significance of non-instrumental information-seeking in
biological organisms, specifically in humans. There, we presented the idea
that the evolutionary function of intrinsically motivated information-seeking
is to facilitate the accumulation of (declarative and procedural) knowledge.
Better knowledge allows organisms to plan actions for various tasks. More-
over, the pursuit of knowledge pushes individuals to explore novel tasks
and acquire diverse repertoires of skills. Further, we identified the gap in our
understanding of the ontogenetic mechanisms underlying this knowledge ac-
cumulation process. We advanced the proposition that affective/motivational
states, colloquially referred to as curiosity and interest, arise in response
to different kinds of uncertainty, and how non-instrumental information-
seeking behaviors can be reinforced by uncertainty reduction events that
signal learning progress (LP) (the Learning Progress Hypothesis, or LPH).

The experimental contributions of this thesis reported in Part ii presented
original empirical evidence for the LPH (Chapter 4) and explored the ef-
fects of LP on motivation via metacognition (Chapter 5). In the former, we
demonstrated that time allocation during self-regulated learning of multiple
activities is best explained by a combination of factors corresponding to the
current level of competence (percentage of correct responses) and recent
LP. This was shown by AIC-based analyses of models fitted to trial-by-trial
choices at the participant level. Our bivariate model suggested that percent
correct (PC) and LP could play distinct roles in self-directed exploration (driv-
ing learners towards challenging activities and informing learners about
learnability, respectively).

The (pilot) study reported in Chapter 5 was motivated by noting various
shortcomings of metacognition revealed by metacognition research. Present-
ing LP computation as a metacognitive evaluation of one’s own learning
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dynamics, we wondered how can people follow this theoretically important
quantity, if they might not be able to reliably represent it in the first place?
Thus, we set out to study whether people are consciously aware of their
LP and if so, how do they actually compute it? We looked at several poten-
tial indicators of performance, out of which the change in success rate was
most strongly related to subjective improvement judgments. This finding
suggests that (in a specific learning setting) people are indeed aware of their
performance improvement (or deterioration) and that they might base their
representation of it on success rate dynamics. Being a largely exploratory
effort, this study proposed multiple novel directions, which we are excited to
pursue in the future. For instance, our inclusion of measures of learning and
self-efficacy beliefs helped us to hypothesize a detailed view of the process
by which direct experience from practicing a task influence the motivation
for the continued engagement in that task. Namely, competence progress
could be a factor contributing to the learner’s beliefs about his or her ability
to eventually solve the task at hand. Such beliefs can be feasibly formalized,
through existing belief-representation frameworks (e.g., Bayesian models),
into a unifying concept of "self-model". This opens up an exciting prospect of
bridging together fabulously rich and insightful strands of psychological re-
search on self-efficacy (Bandura, 1977), self-concept (Markus and Wurf, 1987),
cognitive evaluation (Deci and Ryan, 1985), and growth mindset (Yeager and
Dweck, 2012).

6.2 limitations and future directions

6.2.1 The "Free Exploration" Paradigm

A notable contribution of this thesis is the introduction of a flexible exper-
imental "free exploration" paradigm defined by a number of key features.
First, it is crucial to enable participants to freely choose among multiple
learning activities in order to capture their exploratory behavior. Second, it
is important to be able to systematically measure performance in order to
track the participants’ learning trajectories. Finally, it is critical to manipulate
both difficulty and learnability of the activities in order to examine relation-
ships between the relevant learning dynamics and task engagement. Other
parameters in the experimental setup are flexible. These degrees of freedom
inspire interesting questions for future investigations. We believe that such
investigations should be pursued, not only to replicate our results, but also
to fill in some residual gaps.

While our task takes a step towards a more naturalistic lab setting by
giving people the freedom to choose their own learning activities, it lacks
several important facets of autonomous learning in real life. For example,
we supply a rather small set of unique learning activities. Outside the lab,
learners may need to choose between a much larger set of activities, some of
which may be similar in difficulty and learnability (e.g., Baranes, Oudeyer,
and Gottlieb, 2014). Future studies will benefit from showing preferences for
activities associated with certain features (e.g., PC or LP) and a simultaneous
indifference to activities that are similar in terms of those features. Another
interesting direction that can be easily implemented in our paradigm is to
allow people to learn about individual families more autonomously. People
learn differently when they are able to select their own training data (Markant
and Gureckis, 2013), so it is intriguing to see how self-regulated learning in
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our paradigm will unfold under conditions of more autonomy. Finally, it
would be very informative for the developmental literature to try out our
paradigm on populations of both much younger and much older age groups.

Notably, our "free exploration" paradigm provides the means for modeling
the evolution of both aleatoric and epistemic uncertainty1. Measures of
PC and LP featuring in our choice utility model, however, provide only
indirect indicators of the latent uncertainty (and its dynamics) that could
underlie activity choices. All participants in our study were informed that
food preferences could depend on the monsters’ appearance. This detail
justifies the assumption that they represented a set of hypotheses about the
potential rules determining correct responses. Further assuming a particular
representation of the hypothesis space (e.g., Markant and Gureckis, 2013;
Tenenbaum, 1999), it is possible to model the trajectories of epistemic (which
hypothesis is more likely?) and aleatoric (which food item is more likely?)
uncertainties directly. Thus, a detailed modeling of the knowledge-acquisition
process itself might enable us to find a stronger support for the LPH laid
out in Chapter 3 (Section 3.5). Additionally, it will enable us to investigate
the possible knowledge-transfer process by which insights obtained in one
activity influence the hypothesis distribution in other activities. Our task can
be easily extended to permit such detailed modeling of the learning process.
For example, by having participants provide graded confidence ratings on
their guesses (e.g., Martí et al., 2018), we can infer the latent states of the
assumed hypothesis spaces.

An important criticism can be raised regarding our interpretation of the
observation that many people identified the random-feedback activity as the
most complex, yet rated it as interesting and spent a lot of time engaging it.
We inferred that this behavior reflected a preference towards activities that
are the most challenging (in terms of percent correct, or PC), rather than those
on which they might be learning. However, our approach does let us rule out
another possibility. Since determining whether an activity is unlearnable is a
learning activity of its own, the sampling of the random-feedback activity
could reflect progress-based motivation for reducing epistemic, rather than
aleatoric uncertainty. That is, people might have been interested to know
if the random-feedback activity is in fact random. One objection to this
alternative explanation is that the random activity was sampled a lot more in
the group that received an explicit instruction to learn as much as possible
about the food preferences of the monsters, not about whether activities were
solvable. Presumably, this instruction (as well as the fact that 3 out of 4

activities were rule-based) constraints the hypothesis generation process
to output hypotheses about food preferences and not about whether such
preferences exist. Still, we cannot be certain as to how participants interpreted
our instruction; nor can we completely discredit the possibility that people
were distracted from the assigned task in favor of their epistemic goal.
Besides, many participants in the group without an externally prescribed
goal showed a similar pattern of task-engagement. Furthermore, it seems
rather plausible that had we informed these challenge-seeking participants
that their favorite activity was random and unlearnable, they would lose

1 Some authors argue for the importance of further distinguishing epistemic uncertainty
into parametric uncertainty (the same sense in which we use the term) and uncertainty
of parametric volatility (how parameters themselves change; Payzan-LeNestour and
Bossaerts, 2011). While we do not invoke the same distinction, the "free exploration"
paradigm can easily incorporate activities on which the rules change over time.
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their interest. This is an important limitation that should be addressed in the
future.

These considerations call for a more detailed view of different kinds of
learning processes (different kinds of epistemic uncertainty) involved in our
task, and, perhaps, in free exploration in general (see Haber et al., 2018).
The obvious learning process is learning about the food preferences. While
guessing food preferences of individual monsters, participants were also
forming generalizations about monster families in the form of hypothesized
categorization rules. In parallel with this epistemic process, it is possible that
participants were also maintaining a self-model of competence in each activity.
Arguably, our model of choice utility reflects this self-learning process better
than the food-preference learning process, because PC and LP are feedback-
based measures that directly indicative of the level of competence, rather than
the fidelity of hypotheses about food preferences per se (see our discussion
below). Someone with a perfect knowledge of food preferences could, in
principle, have minimal PC by always choosing the knowingly wrong option.
Adopting an inclusive definition of LP as a knowledge improvement signal
(as we did in Chapter 3) compels us to consider the possibility that any or
both of these concurrent learning processes could supply LP and motivate
activity engagement. A recent model of self-model prediction-errors can
potentially explain the peculiar Aha! moments (Dubey et al., 2021) that, at
least anecdotally, can energize epistemic pursuits. It is easy to see that the two
learning processes are related: better understanding of the latent rule allows
for more accurate responses. Future studies dissociating these processes
will be useful in understanding their respective effects on motivation and
task engagement. One approach is to directly manipulate the feedback that
participants receive on the random task (e.g., increase the positive feedback
rate independently of the sampled monsters). Alternatively, it is possible
to provide deceptive verbal feedback independent of the accuracy feedback
(e.g., "You are doing much better", when in reality the success rate stays the
same).

6.2.2 The "Lunar Lander" Experiment

The experimental setup from Chapter 5 – let us call it the "time-extended
skill acquisition" paradigm – also offers exciting opportunities for future
research. The most important step would be to run another iteration of this
experiment. The pilot study recruited an adequate number of participants,
but many have dropped out due to the longitudinal nature of the experiment.
This was partly due to the malfunctioning of the automatic reminder system
in the beginning of data collection. To explain, in order to encourage full
participation, we have set up a system to send email reminders to participants
prior to when they would be required to join another session. For the pilot
study, we decided to prevent participants, who failed to comply with the
schedule, from logging into our platform, because we wanted to control the
inter-session intervals. In the hindsight, this decision resulted in discarding
potentially useful data which could be used in exploratory analyses such
as our pilot study. Clearly, the future studies using the "time-extended skill
acquisition" paradigm should sample more participants and plan ahead for
the potential participant dropout.

Another important limitation of this study is in the use of novel ques-
tionnaire items for soliciting progress judgments. Because no previous work
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has attempted to create a reliable psychometric instrument for measuring
progress judgments, we had to use our own questions and scales. While our
results support the validity of our scales (people’s objective and subjective
improvement correlated), we do not know the extent to which these ques-
tions/scales are reliable. This raises the need for developing a more precise
psychometric tool for gauging progress judgments through verbal report.
This could be done in a future study dedicated to instrument development,
where many alternative formulations of questions/scales measuring the same
construct are administered. Luckily, the field of psychometric measurement
offers practical guidelines (Irwing, Booth, and Hughes, 2018).

6.2.3 Mechanisms of Progress Computation

In Chapter 5, we introduced an experimental setup that holds the potential
to enable modeling subjective beliefs that form on the basis of objective
performance dynamics. While the pilot study trying out this paradigm
pursued its own objectives of validating the task/procedure and exploring
hypotheses, the ultimate motivation is to investigate the following related
questions: what information are LP judgments based on and how does the
brain access and represent this information?

Computational literature offers a host of algorithms that could potentially
account for the actual psychological mechanism (Graves et al., 2017; Linke
et al., 2020; Oudeyer and Kaplan, 2007; Twomey and Westermann, 2018). All
of these algorithms assume an interaction between two modules. One module
– let’s call it the task module – is a mechanism that learns to perform a task
at hand. It serves to convert sensory/mnemonic inputs into responses (e.g.,
motor action, perceptual inference, categorization, recall) that satisfy certain
ends. The second module – the meta-module – evaluates the task module in
order to inform decisions pertaining to active learning and/or task selection.
The meta-module is not concerned with reaching specific goal-states like task
modules are, but it can be crucial for goal selection and planning.

Before considering different algorithmic approaches for metacognitive LP

computation, we would like to briefly discuss what functions LP represen-
tation might serve. As we have mentioned throughout this thesis, LP can
be useful as an intrinsic reward to guide the autonomous enrichment of
declarative and procedural knowledge. While declarative and procedural
knowledge are inextricably related (Berge and van Hezewijk, 1999), they can
be distinguished in terms of what they do. Declarative knowledge describes
how the world is, was, or will/would be, so it is used primarily to infer
states of the world (including the body). In contrast, procedural knowledge
provides imperatives for actions, so it is used to control behavior (including
mental actions). Different forms of LP can be conceived (see Oudeyer and
Kaplan, 2007) to specifically promote the development of either declarative or
procedural knowledge. For instance, if a system is set up to value and pursue
improvements in prediction, it will tend to enhance its capacity to model
the world (i.e., serve an epistemic function), without necessarily acquiring
procedural knowledge; conversely, if a system is set up to value and pursue
improvements in control (i.e., serve a pragmatic function), it will tend to
accumulate skills, without necessarily enriching its declarative knowledge as
much as it could (Mirolli and Baldassarre, 2013). The following presentation
of different computational mechanisms of progress estimation should be
read with the aforementioned functional distinctions in mind.
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There are numerous ways how the interactivity between the task-module
and the meta-module can be set up for LP computation. We can identify
two distinct families of mechanisms. The first family assumes that the meta-
module computes LP based on the task module’s performance. We will refer
to this family of mechanisms as feedback-based mechanisms. Here, as far as
the meta-module is concerned, the task module is essentially a black box, so
it is the meta-module’s job to infer how this black box learns by observing
its achievements and failures. The second family – introspective mechanisms
– assumes that LP is computed by observing the structural changes in the
task module itself. Here, the meta-module has elevated access to the task
module’s "innards", so it is no longer considered a black box. This privileged
access allows the meta-module to observe and quantify changes in the task
module’s structure as it is learning. The next section reviews a few examples
representing feedback-based and introspective mechanisms, respectively.

6.2.3.1 Introspective Mechanisms

Introspective approaches to computing LP are based on the model of the
learning process of the task module. In contrast to the feedback-based mech-
anisms, where the meta-module observes consequences of the task module’s
behavior, the introspective accounts require specifying how the task module
itself adapts to its task demands. How LP is computed depends entirely on
the details of the learning mechanism specified for the task module.

A commonly used approach to estimating LP in AI, is to compute a tem-
poral derivative of the task module’s error trajectory. It should be noted
immediately that whereas error could be considered to be feedback, it is not
the same kind of feedback used by feedback-based mechanisms. Here, the
error is an essential aspect of the learning algorithm (i.e., its loss or cost)
used by the task module to update its parameters. For example, in an early
algorithm by Schmidhuber (1991) estimates LP as:

LP(t) = oC(t)− o′C(t) (6.1)

where oC(t) is an estimated reliability of the task module – or the "confidence"
at time t of the meta-module in the task module’s ability to predict; the term
o′C(t) denotes the estimate of the task-module’s reliability. In a nutshell, this
algorithm drives the agent to explore states where the meta-module "thinks"
prediction error reliability changes (Schmidhuber, 1991b).

In a similar algorithm, by Oudeyer, Kaplan, and Hafner (2007), LP is
defined as:

LP(t) = eR(t)− eR(t − τ) (6.2)

where eR(t) is the average prediction error of the task module prior to time
t; the parameter τ controls the temporal reference point to which eR(t) is
compared. The original algorithm also parameterizes the computation of
the prediction-error averages to control their smoothness. Importantly, LP is
computed separately for different regions, indexed by R, of the sensorimotor
space to prevent the agent from "fabricating" progress by alternating between
attempting unrelated low- and high-error tasks in an undifferentiated space.
Like in Schmidhuber’s algorithm, the mean error term eR(t) can also be
construed as the meta-module’s confidence in the task module.

Another example is a connectionist model of infant categorization from
Twomey and Westermann (2018). The model features an autoencoder neural
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network for compressing stimulus representations into a relatively small
set of features. These compressed feature representations are not given,
but have to be learned from observing stimuli – here, instances of a latent
structure. When an autoencoder "understands" the latent structure well, it can
encode the full representation into a compact format and then decode it back
into the full representation. Latent representations are learned by adjusting
connection weights in the network via backward propagation of error –
a mismatch between the encoded and the decoded representation. Based
on this architecture, Twomey and Westerman compared several intrinsic-
motivation signals that could inform how the network should choose stimuli
to learn from. One of the signals was the total amount of weight adaptation
in the network. For a single weight connecting an input neuron to an output
neuron, the update is given by:

∆w = (i − o)o(1 − o) (6.3)

where i is the target activation and o is the actual activation of the output
neuron. Total weight adaptation can be obtained by summing over the abso-
lute values of individual weight updates. Since knowledge in connectionist
systems resides in connection weights, this measure can be regarded as a
version of LP because weights are adjusted to minimize the network’s error
(i.e., improve the network’s knowledge). Thus:

LP = ∑
w∈w

|∆w| (6.4)

where w is a vector of all weights in the network.
Yet another example of an introspective mechanism comes from a study

by Graves and colleagues (Graves et al., 2017). The authors investigated the
effects of different LP measures on automated curriculum learning – a process
by which a meta-module autonomously selects data to train the task module.
The task module was a Bayesian neural network with probabilistic weight
parameters (Blundell et al., 2015). In contrast to traditional neural networks,
Bayesian neural networks feature a multivariate parametric distribution
for their connection weights. Instead of optimizing the weights themselves,
Bayesian neural networks learn by optimizing distributional parameters. In
(Graves et al., 2017), network parameters were optimized with respect to
the minimum description length objective (see Graves, 2011). Based on these
specifications, one version of LP – called variational complexity gain – was
defined as a decrease in model complexity:

LP = DKL(Pϕ′ ||Qψ′)− DKL(Pϕ||Qψ) (6.5)

where DKL(Pϕ||Qψ) is the Kullback-Leibler divergence between the varia-
tional posterior distribution Pϕ and the prior distribution Qψ. The terms
Pϕ′ and Qϕ′ refer to the posterior and prior after the projected update from
the data. In the context of variational optimization of the minimum descrip-
tion length objective, the LP definition from above is interpreted as model
complexity gain, which occurs only when data is compressed by a greater
amount (Graves et al., 2017). In practice, when minimizing the variational
free energy loss function, the model complexity term, DKL(Pϕ||Qψ), increases
in proportion to the model’s ability to generalize from a learning example.
That is, model complexity tends to increase when the network is able to
derive generalizable knowledge from an observation.

Poli et al. (2020) studied a probabilistic model of infant attention in a
task where a visual cue stochastically appeared in one of four locations
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on the screen according to a fixed discrete probability distribution. Infants
could learn this distribution by observing multiple cue presentations, and
looked away once the distribution was learned. The authors modeled the
task module as a probabilistic predictor of the cue location that optimally
changed its predictions on each bout of cue presentation via sequentially up-
dated Bayesian inference. They defined LP as the KL divergence between the
prior distribution of cue locations before cue presentation and the posterior
distribution after cue presentation:

LP = DKL(pj||pj−1) (6.6)

where pj is the posterior distribution of the parameters determining the pre-
diction on trial j, and pj−1 is the prior. This form of LP can be interpreted as
the degree to which predictions of the task module change. The mechanism
may seem less introspective compared to the previous two because Bayesian
cognitive models are typically characterized as computational-level models
– i.e. black boxes with known functions but unspecified mechanisms. How-
ever, we still classify this model as introspective, because the meta-module
observes changes in the parameters of the task module, rather than the dy-
namics of the evaluative feedback on these parameters. What makes this LP

mechanism work in practice is the fact that posterior updating never worsens
the inferences of the task module (at least in the setup of the study).

6.2.3.2 Feedback-based Mechanisms

The temporal derivation approach has also been used to compute competence
progress – an estimation of change in the agent’s ability to reach its goals
in a specific task space. Goal-achievement feedback is different from error
feedback from the previous section, as it is not essential for learning a model
for prediction. For instance, a model-free RL agent Colas et al. (2019) learned
several tasks modeling environmental dynamics. The authors defined LP as
follows:

LP(n) = |cR(n)− cR(n − τ)| (6.7)

where cR(n) is the subjectively estimated competence of the agent in a dis-
crete task space, indexed by R; n is the number of self-evaluations performed
to estimate the competence score. Subjective competence is evaluated by
weighting binary goal-achievement outcomes in a task space by recency and
taking the average of the weighted scores2. Competence is computed for all
n self-evaluation trials and again for a more recent n − τ portion of these
trials, and the two estimates are compared. Note that this formulation takes
the absolute value of the derivative. While not essential to the definition of
LP, this implementation raises the question of whether improvement and
deterioration in performance are equivalent for motivation and what their
differences might be. In Colas et al. (2019), taking the absolute value of the
competence differential allowed the agent to actively practice tasks on which
it was getting worse over time (e.g. due to forgetting), which ensured that
the overall competence was maximized.

In the above approach, the agent has to infer its own competence. The
resulting estimate can be interpreted as the agent’s subjective belief about

2 Colas et al. (Colas et al., 2019) used a queue-based implementation, but the effect of
the computation is the same as taking a recency-weighted average of a binary vector.
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its competence. This interpretation is compatible with the notion that LP is
a subjective belief-updating process. The above mechanism relies on point-
estimate representations that do not account for belief uncertainty. On the
other hand, psychological literature suggests that beliefs can have varying
degrees of uncertainty. If the computation of LP involves belief comparison,
then belief uncertainty should have a considerable footprint on the process.

Probabilistic beliefs (that one can accomplish a task) can be characterized
by more or less confidence and change as a result of self-monitoring. The
evolution of such beliefs can be expressed in terms of posterior probability.
For example, suppose that an agent represents a state space, a subset of
which is a state-achievement event A that has a probability of occurring,
P(A). This probability can be framed as the subjective belief that the event A
can be reached by the agent; we might as well call it the agent’s confidence
in achieving A. Confidence can be updated by observing a history of state-
achievement events from the past D:

P(A|D) =
P(D|A)P(A)

P(D|A)P(A) + P(D|Ac)P(Ac)
(6.8)

where Ac denotes the complement of A. This equation prescribes an optimal
way to update a binary state-achievement belief by combining the prior
expectation P(A) with the normalized likelihood of that belief P(D|A). Both
of these components reflect the agent’s uncertain knowledge about its abilities
to predict the future or reach specific goal states.

The prior confidence P(A) biases how the observed data influences the
posterior. For example, imagine that while estimating confidence, all that the
agent observes is external binary feedback on some goal-achievement task.
Now, consider the following priors and likelihood values:

Belief (B) P(B) P(D = success|B) P(D = fail|B)
A .99 .90 .10

Ac .01 .05 .95

The posterior from a ’success’ outcome will be .9994 (an increase of .0094),
while a ’fail’ outcome will give us a posterior of .9124 (a decrease of .0776).
Thus, high prior confidence in accomplishing the task results in asymmetric
updates for different outcomes. Incidentally, the surprise from observing a
failure while strongly expecting success is much higher than the surprise
from observing a success. The strong-expectation prior can be contrasted
with the maximally uncertain prior, P(A) = .5: the posteriors will change
by +.45 and -.40, for ’success’ and ’fail’ outcomes, respectively. In this case,
the update is larger and relatively less asymmetric. Such dynamics are not
captured by point-estimate heuristic methods.

Note that to compute the posterior P(A|D), the agent needs to represent
a contingency table of its past attempts. This entails storing the counts of
successes and failures across beliefs that assume that A can and cannot be
reached. An alternative approach is to represent subjective competence as the
parameter q of the Bernoulli distribution, therefore, P(A|q) = q. This way,
competence is an uncertain quantity that changes according to observations:

p(q|D) =
P(D|q)p(q)∫ 1

0 P(D|q)p(q)dq
(6.9)

To update the prior p(q), it suffices to remember the binary outcome of
the most recent attempt, since the likelihood can be computed from q itself:
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P(D|q) = qD(1 − q)(1−D); there is no need to tally up the outcomes and
store the entire history of task attempts. Assuming that p(q) is given by the
Beta distribution, we get a well-known Beta-Binomial Bayesian model that
can be readily applied to empirical data to test assumptions about prior
expectations and confidence updating.

In the simple examples above, the agent only considers binary feedback
data to update its beliefs. While performance feedback affects subjective
confidence judgments (Martí et al., 2018; Rouault, Dayan, and Fleming,
2019), other factors relating to task performance might be at play, especially
when external feedback is sparse (e.g., Holm, Wadenholt, and Schrater, 2019;
Locke, Mamassian, and Landy, 2020; Rouault, Dayan, and Fleming, 2019) or
heavily skewed (e.g. receiving only negative feedback). For instance, when
trying to answer a question, one might consider the utility of self-generated
candidate answers or the amount of question-cued information in order to
judge whether one is getting close to the answer (see Coenen, Nelson, and
Gureckis, 2019). Feelings of knowing (Koriat, 1993), tip-of-the-tongue states
(Schwartz and Metcalfe, 2011), and Aha! moments (Dubey et al., 2021) are
good examples of people estimating how close they are to accomplishing a
task before it is accomplished. Other examples include complex sensorimotor
skills (e.g., juggling), in which it is useful to be able to track one’s proximity
to the desired behavior. In a recent visuomotor task, participants tracked
the invisible center of a flickering dot-cloud (Locke, Mamassian, and Landy,
2020). The authors showed that participants monitored the distance between
the target and the cursor to make judgments about their performance. Such
continuous evaluations are useful for assessing one’s progress when binary
feedback is not available or skewed. This implies that feelings of progress
may be supported not only by monitoring the success rate, but also the
proximity to success.

6.2.3.3 Open Challenges

Given the diversity of computational mechanisms of LP, which approaches
can we expect to be better suited for cognitive modeling? While not necessar-
ily incompatible with introspective mechanisms, feedback-based approaches
seem to present a stronger case for warranting further investigation for a
number of reasons. First, as we hope our examples demonstrate, models
based on introspective mechanisms require making non-trivial assumptions
about the learning mechanism of the task module. This is not an inherent
flaw, but it makes these models more difficult to justify and interpret. Second,
we know that people rely on exogenous achievement feedback during com-
petence evaluation (Martí et al., 2018, also, our study in Chapter 4). While
self-evaluation without feedback is possible and often a reality, receiving it
makes us more confident in our evaluations (Rouault, Dayan, and Fleming,
2019). Accordingly, people often actively seek out performance feedback,
even when it is costly (FitzGibbon, Komiya, and Murayama, 2021; Holm,
Wadenholt, and Schrater, 2019). Moreover, when clear binary achievement
feedback is not available, people use performance correlates that are avail-
able to infer their competence (Locke, Mamassian, and Landy, 2020). Finally,
feedback-based metacognition explains how procedural knowledge – which
is tacit, and thus difficult to introspect directly – is evaluated.

The consideration of feedback-based mechanisms above raises two impor-
tant questions. First, how do people determine task-achievement parameters
and set competence standards? None of the models discussed so far specify
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how to select performance parameters for progress monitoring, yet it is
crucial to understand this process if we want to unravel how people evaluate
their performance and LP, when there is no useful normative feedback. The
question is especially poignant in the context of complex tasks encountered
outside psychology labs and attempted very few times in a lifetime (earning a
Ph.D. is a perfect example). Self-evaluation and progress estimation is not nec-
essarily easy (Kornell and Hausman, 2017; Raaijmakers et al., 2019; Townsend
and Heit, 2011a,b), yet these abilities seem crucial for self-regulated learning,
particularly at a young age (Oudeyer, 2018). Understanding how represen-
tations of competence standards form could help us explain the mismatch
between the theorized importance and the apparent difficulty of accurate
self-assessment for self-regulation. Considering the potentially idiosyncratic
nature of self-assessment across individuals and situations (Boekaerts, 1991),
it is feasible that some of the past metacognition work has operationalized
LP differently from how it might be represented by individuals, and thus
failed to find an association between objective measurement of progress and
subjective judgments.

The problem of lacking reliable feedback is also at the heart of intrinsically
motivated, machine learning (ML) (see Chapter 2; see also Oudeyer, 2018)
where the proposed solution is to provide the agent with intrinsic reward
functions that support learning in the absence of primary rewards. Such
intrinsic-reward functions, however, are designed to be task-independent, for
they are intended to enhance the agent’s competence in a general way. On
the other hand, evaluation of the proximity to task achievement is tied to the
task itself. Understanding how task-specific goal-proximity evaluation can be
flexibly deployed across different tasks can be especially useful in autotelic
agents that generate and pursue their own tasks (Colas et al., 2021a).

The second question concerns the temporal extent of progress judgments.
To illustrate, consider the process of learning a complex skill. As discussed in
the introduction, one might expect to improve based on many considerations,
including the retrospective feelings of progress – a comparison between the
present level of performance (i.e., competence) and a reference point in the
past. The question raised here, is how far back does the reference point go?
Setting the reference point too far back may bias the progress estimate: it will
signal positive progress even if performance stagnates; setting the reference
point too close to the current estimate may produce a noisy and unreliable
LP signal (see Fig. 6.1). We have seen examples where LP on a given task is
computed across a fixed window of time, however, other approaches are
possible.

Fixed time-window computation might be too restrictive to account for the
diversity of learning trajectories across different tasks. Shorter time windows
are more useful for easier tasks where learning progresses rapidly, while
longer time windows are more appropriate for more slowly developing skills.
Fixed time-window computation also requires ad hoc assumptions to handle
situations in which the reference point extends beyond what is available. For
example, given a time window of size τ, the learner would require at least
τ performance evaluations to compute LP, unless the parameter is allowed
to vary in the beginning. A more flexible approach would be to reset the
reference point to whenever the task is switched to. Such an approach raises
the question of how task-disengagement is decided. It turns the relationship
between LP and its temporal extent upside down: instead of LP depending on
the fixed time window, the temporal extent of LP judgments would depend
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Figure 6.1: Temporal extent of LP estimation. The plot depicts a hypothetical
learning curve on which performance increases with diminishing
returns over time. The derivative of this curve represents the
true rate of improvement. The learner does not know neither the
true learning curve nor its derivative. However, learners compare
the estimated performance values at different points in time.
Here, the dashed curve represents the box-car estimated learning
curve derived from noisy observations (black dots). Note that
learning is interrupted for an unspecified period of time (dashed
vertical line). Comparing current performance with a very distant
reference point is likely to overestimate the derivative (blue line).
Comparing it to reference points that are too close in time is
unreliable, given the noise in observations (orange line). Resetting
the reference point to the beginning of the current episode is
more likely to be accurate, if enough attempts are made during
the episode (green line).

on the rate of learning (assuming that low LP signals the need to disengage
from the current task). This temporally flexible LP estimation approach is
assumed by the psychological Region of Proximal Learning theory (Metcalfe
and Kornell, 2005), which proposes that once a task is chosen, the amount of
time spent on the task will depend on subjective LP defined as the difference
in competence at the beginning and the end of a learning episode.

6.3 concluding remarks

Having discussed our results and the residual unknowns, it is evident that
we have only started to scratch the surface of what is going on during
intrinsically motivated information-seeking. We are still far removed from a
complete understanding of the interaction between learning and motivation.
We hope that this closing chapter has highlighted some promising directions
for future work. An overarching theme of is the subjectivity (or individuality)
surrounding the process of belief formation during self-regulated learning.
Going forward, we need to pay close attention to multiple learning processes
that learners might track as they are learning; we need to be aware of the
idiosyncratic goals they might pursue; and we need to consider different
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kinds of information they might use to make inferences about their learning
dynamics.
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