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But let me be more exhaustive for those who have been the pillars of three years of coffee breaks, either physically or remotely.

Côme, thank you for continuously letting your door open (as well as your computer, sometimes). I always found you ready to answer or at least provide relevant arguments to any question I could have.

And we both know that all of them were not that clever. You also greatly improved my knowledge, not only on scientific subjects but also on a wide variety of topics, such as zoology, borderline jokes, bad faith. . . and more esoteric areas.

Speaking of esoteric topics, I cannot do without thank the oldest child I ever met. Alain, your happiness, enthusiasm but also your "interest" and sharp-mindedness have been of great support. Hope we will have that discussion on quantiles

me to apprehend all these new notions, and also for keeping me close to the concerns of the combinatorial community. Your remarks often helped me to enlarge my way of thinking, and that is of the utmost value.

Zacharie, your remarks and questions were also always relevant. Your willing and capacity to reflect on any kind of question are impressive, and perfectly illustrate the interest of having more than one member in a team.

Due to the Covid situation and the emergence of teleworking, work has inevitably encroached on my personal life. Fortunately enough, I had the chance to share this time with my Petit Babtou, who I believe sincerely supported me without any second thoughts. I will always remember your high-level insights about how making trees grow small. Thank you.

Résumé

Cette thèse a pour but d'utiliser des techniques d'apprentissage automatique pour la résolution de problèmes d'optimisation combinatoire. De par sa position de premier producteur français d'électricité, Electricité de France (EDF) doit continuellement piloter différents sites de production, ce qui se traduit mathématiquement par la résolution de problèmes linéaires en nombres entiers (en anglais Mixed Integer Linear Programming problems). A cet égard, EDF doit régulièrement résoudre des instances issues de ces problèmes, définies par des données stochastiques. Actuellement, ces instances sont résolues par un algorithme de Branch and Bound (B&B), sans tirer profit des potentielles similarités entre l'instance courante et celles résolues par le passé. Afin de conserver la garantie d'optimalité fournie par l'algorithme de B&B, nous nous proposons, pour un problème donné, d'apprendre différentes stratégies au sein de cet algorithme, comme par exemple la stratégie de branchement (sélection de variable) ou de sélection de noeud. Le principal critère utilisé afin d'évaluer la performance des stratégies proposées est la taille de l'arbre de B&B généré.

La principale approche développée dans ce travail est l'utilisation d'apprentissage par renforcement pour découvrir de telles stratégies par essais/erreurs sur les instances historiques. Afin de s'adapter à l'environnement induit par l'algorithme de B&B, nous définissons un nouveau type de transitions au sein de processus de décision markoviens (en anglais Markov Decision Processes), basées sur la structure d'arbre binaire. Par ailleurs, nous étudions différents modèles de coûts. Du point de vue de la minimisation de la taille des arbres de B&B, nous prouvons l'optimalité du modèle de coût unitaire sous le modèle de transition classique ainsi que sous le modèle de transition binaire, dans l'apprentissage non seulement de la stratégie de branchement mais également de la stratégie de sélection de noeud. Pour autant, les expérimentations menées pour la stratégie de branchement suggèrent qu'il peut être préférable d'incorporer un biais dans le modèle de coût afin d'améliorer la stabilité du processus d'apprentissage. En ce qui concerne l'apprentissage de la stratégie de sélection de noeud, R ÉSUM É nous démontrons l'optimalité d'une stratégie explicitement définie, qui peut être apprise plus efficacement de manière supervisée.

En plus des approches mentionnées, nous proposons une stratégie de décomposition-coordination afin de potentiellement permettre le passage à l'échelle de l'apprentissage par renforcement sur des problèmes de plus grande dimension. Une heuristique de branchement basée sur une représentation par graphe d'un noeud de l'arbre de B&B est également proposée. Cette représentation peut également être utilisée afin de guider automatiquement la décomposition précédemment mentionnée. Enfin, nous présentons une approche dédiée à l'apprentissage de perturbations de la fonction objectif, afin notamment de briser d'éventuelles sources de symétrie. Les différentes méthodes proposées sont évaluées sur des problèmes réels, fournis par EDF. Pour chaque problème, deux configurations sont envisagées afin de renforcer la robustesse des résultats fournis. Un résumé plus conséquent en français est fourni en annexe.

Mots-clés : Apprentissage, MILP, Problèmes répétés 8

Abstract

This thesis aims at using machine learning techniques in the context of combinatorial optimization.

In its capacity of main french electricity producer, Electricité de France (EDF) has to handle different production sites on a regular basis, mathematically transposed as Mixed Integer Linear Programming problems. In this context, EDF needs to frequently solve instances of these problems, defined by some stochastic data. Currently, these instances are solved using the Branch and Bound algorithm (B&B), without leveraging the potential similarity between one instance and those already solved in the past. To retain the optimality guarantee provided by the B&B algorithm, we propose to learn inner strategies of this algorithm, such as node selection and branching (variable selection), for a given problem. The main criterion chosen to evaluate the efficiency of the designed strategies is the size of the corresponding B&B tree.

The main approach developed in this work is to use reinforcement learning to discover such strategies by trials-and-errors on historical instances. To properly adapt to the B&B environment, we define a new kind of tree-based transitions, and elaborate on different cost models in the corresponding Markov Decision Processes. Regarding the problem of B&B tree size minimization, we prove the optimality of the unitary cost model under both classical and tree-based transitions, either for branching or node selection. However, we experimentally show for variable selection that it may be beneficial to incorporate some bias so as to improve the learning stability. Regarding node selection, we formally exhibit an optimal strategy which can be more efficiently learnt directly by supervised learning.

In addition to these approaches, we put forward a decomposition-coordination methodology to potentially make the learning tractable for large instances. We also propose a branching heuristic based on a graph representation of a B&B node, which may be leveraged for guiding the aforementioned decomposition. Last, we present an approach for learning to disrupt the objective function in order to break potential symmetries. To assess the quality of the different methods, we test them on two real-world problems provided by EDF. For each problem, two configurations are encompassed to improve the strength of the results. This thesis is aimed at using machine learning techniques in the context of combinatorial optimization. Although interactions between the two domains were almost unexplored at the beginning of our work in the late 2010's, this field of research recently received a lot of attention and is now experiencing rapid growth. The work presented here is part of this effervescence, and hopefully may be useful to any reader interested in the topic.

In this introductory chapter, we present in a very general way the context and objectives set for this thesis. Section 1.1 introduces the setting that we consider in general terms. The objective is precised in Section 1.2, as well as the general scientific background. Last, Section 1.3 provides an overview of the document along with insights on the contributions.

Optimization of repeated problems in an industrial context

Machine learning (ML) has experienced tremendous development over the past decades, and its use in very different areas of the society is now widespread. The question of using machine learning is generally raised as soon as data can be collected or created, and patterns in their generation are to be discovered. In an industrial context, monitoring any production process generates historical and decision-related data. Therefore, it is natural to wonder whether these data can be leveraged to improve such process. As we explain in this section, this is exactly the purpose followed in this thesis in the context of energy production, provided by Electricité de France (EDF), the most important French energy producer.

In the whole document, we consider systems that are repeatedly controlled to perform well with respect to some context-dependent criteria. Formally speaking, let us write D t P D the observation of some exogenous data, or context, at time t. Facing this context, a decision maker must decide of the state of the system, by setting the value of some decision (endogenous) variables x. To ensure its feasibility, x is constrained to belong to a set X pD t q Ď X pDq, which may be dependent on the exogenous data. The decision maker is endowed with a performance -or cost -evaluation, say f : X pDq ˆD Ñ R, of any feasible point x for a given context D t . Hence, the problem of the decision CHAPTER 1. GENERAL INTRODUCTION maker can be formalized as

min xPX pDtq f px, D t q (1.1)
We call repeated problems a sequence of such problems, where only the context varies across the sequence. This is exactly the setting EDF faces on a daily (or more frequent) basis. Regularly, operators must decide of systems' states so that they behave well (and are feasible) in a given context. Let us take the simplified example of a mixed electricity plant to illustrate it. Assume that such plant can produce electricity by means of a boiler and a set of photovoltaic panels, and that it must provide a given amount of energy so that the daily demand of the area is satisfied. The setting of the plant, i.e. the planning and division of the production among the two sources should be determined for the next 24 hours. Here, the objective of the operator should be to satisfy the demand while minimizing its cost. The context may comprise heterogeneous data, such as the demand level at any moment of the next 24 hours, production costs for each equipment, weather forecasts, etc. The feasibility set varies with the context, as both the demand and the production capacity of the photovoltaic panels fluctuate. Besides, the performance evaluation of a given planning is also dependent on the context as production costs may vary. This situation is illustrated in Chapter 3, introducing the two problems considered in this work.

As we will see in the following, one knows how to solve the optimization problems (1.1) considered in this thesis. Hence, the challenge is not to find a solution of such problem but rather to find it quickly, or efficiently, using learning methods. Schematically, a generic algorithm is used for solving (1.1), which does not take into account that it may have already been run in the past, facing a very similar context. A simple question then arise: can we learn from past experiences to modulate the algorithm in order to make it more efficient in the future?

1.2 Problem statement and objectives

Mixed Integer Linear Programming and Branch and Bound

We focus on a particular subclass of the generic minimization problems formulated as (1.1), namely Mixed Integer Linear Programming problems (MILPs). More precisely, we will only consider binary An immediate observation is that we restrict our work to linear objectives and constraints (except for the binary constraints). Although such choice is a restriction, it still enables to encompass a large variety of real-world problems. Indeed, many non-linear problems are in practice linearized in some way to be more easily solved.

The problem obtained when relaxing the binary constraints is called linear relaxation. It is a linear problem (LP), hence convex and solvable in polynomial time. The introduction of the binary (and more generally integer) constraints breaks the convexity of the problem and makes it NP-hard in the general case. As unfortunate as it may be, binary variables allow to model a plethora of real-world problems and thus are widely used in practice. For instance, they make it possible to consider on/off and start/stop variables, and more generally any type of discontinuous phenomena.

Various problems written as (1.2) have been identified in the combinatorial optimization community as being actually solvable in polynomial time, and specific algorithms have been designed accordingly.

However, real-world applications are often more complex than problems considered in the literature, leaving the decision maker with non-polynomial generic algorithms. One of the most used of such algorithms is Branch and Bound (B&B) [START_REF] Land | An automatic method for solving discrete programming problems[END_REF], along with its many variants.

B&B is a tree search algorithm designed to handle the integrity constraints in p, using the fact that one knows how to solve efficiently its linear relaxation. The feasible set is recursively partitioned and explored along the tree, each node being associated to an LP. In the simplest case, this LP is equivalent to the LP of its direct ascendant augmented with an additional branching constraint of the form x j " k with j P J a binary variable and k P t0, 1u. The root node's LP is equivalent to the linear relaxation of p. As an LP is a subproblem of its ascendants in the B&B tree, its value is a valid dual bound which allows for pruning when it is greater (in the minimization case) than the current incumbent's value -or primal bound, i.e. the best value associated to an integer solution discovered earlier in the tree, if any. Likewise, feasible and infeasible nodes can be fathomed (the subsequent subtrees are then pruned). An illustration is given in Figure 1.1.

The expansion of the tree is mainly governed by two sequential strategies, namely the branching strategy (or variable selection strategy) and the node selection strategy. Branching refers to the selection of the branching constraints used to create child nodes, e.g. x j " 0 and x j " 1 for binary simple disjunctions, while node selection defines the visiting order of the open nodes -i.e. neither visited nor fathomed.

The process ends when each node has been visited or fathomed, guaranteeing the incumbent to be an optimal solution if any. Note that in many applications, the decision maker may not be interested in finding an optimal solution, and nodes may be pruned by bound as soon as their LP value is close enough from the incumbent's value. In this document, we only consider the case where instances are solved to optimality. P .11.
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Problem formulation

As B&B is an enumeration procedure, it usually struggles to handle large problems since the number of nodes to explore may grow exponentially with the problem size. Over the past decades, many techniques have been put forward to make the search more efficient. The majority of them are heuristics, empirically tuned on different sorts of problems. The result of all these years of incremental improvements is that current commercial solvers are now very versatile and generic tools, but also abstruse and difficult to tune for specific problems. As a consequence, learning methods may be relevant for adapting the algorithm to the problem at hand. For instance, one may try to find the CHAPTER 1. GENERAL INTRODUCTION most suited solver configuration for the problem at hand. Alternatively, we can wonder whether it is possible to discover new B&B strategies for such problem. The latter option has been chosen in this work, based on the seminal question:

Given a real-world problem, can we leverage historical instances to design from scratch B&B strategies able to solve new instances of such problem while producing the smallest trees?

This formulation already separates our work from the majority of the approaches developed in the literature.

First, the focus is put on the discovery of strategies demonstrating high performance for the specific problem considered. In this regard, we differ from the approaches devoted to mimic the behaviour of existing heuristic strategies, initially designed to perform well on heterogeneous problems1 . Of course, the goal is to develop a learning methodology which may be applied to design specific strategies for any MILP problem leading to repeated instances.

Second, we are interested in designing strategies dedicated to one specific problem, giving rise to repeated instances. It means that only the context (D t in Equation (1.1)) changes across the considered instances, the evaluation function f and the feasible mapping X p.q being invariant. In the setting of Equation (1.2), it corresponds to the case where the instance data A, b, c vary across instances while keeping a similar structure: the dimensions are invariant, as well as the physical meaning of the constraints (hence the null coefficients, or at least the vast majority of them). Considering the previous example, we wish to discover a strategy designed to perform well on any instance corresponding to the considered plant. Thus, its topology does not evolve with the context.

Last, we mainly aim to develop strategies from scratch, i.e. without using any solver's dependent statistic. This choice is not only a practical choice but also a philosophical one. On the one hand, it is appealing for industrial companies to develop proprietary algorithms and free themselves from external contingencies. On the other hand, the objective is to discover strategies based on problem-specific correlations. Therefore, heuristic scores may not be fully appropriate and raw observations hopefully should be sufficient.

Let us consider a problem P of fixed dimension, for instance a production planning problem for a given horizon and a specific equipment -a fixed number of production units with constant characteristics. Such a problem is perceived as an infinite support for instances p P P, which differ according to their associated context, i.e. their associated data A, b, c such as prices, demand, etc.

Instance data can be seen as the outcome of a random variable, distributed according to some unknown joint probability distribution. With no loss of generality, one can directly consider the instances of a given problem as random variables, drawn from a distribution L. From a generic standpoint, we want in this setting to discover some strategy π P so as to obtain the best performance µ in average, that is

π P P arg min πPΠ E p"L rµ pp, πqs (1.3) 
Here, Π refers to some set of strategies related to the B&B procedure and, as aforementioned, µ pp, πq is the size of the B&B tree produced when solving instance p using the strategy π.

Learning methodology and experimental design

Equation (1.3) casts our problem as a black-box optimization problem, where the objective is to find the minimum of the function

µ P : $ & % Π Ñ R π Þ Ñ E p"L rµ pp, πqs
Such function is referred to as a black-box function as its analytic form is unknown.

Addressing directly this black-box optimization problem may appear intractable, due to the computational cost of approximating even a unique evaluation of the black-box function µ P -direct evaluation is not possible due to the infinite size of P. Besides, the search space Π might be to large to be explored in this framework.

When considering sequential strategies Π, an alternative to black-box optimization is reinforcement learning (RL), which aims to learn some approximation of π P by trials and errors. A cost model is to be defined to favour actions which are expected to bring the learnt strategy closer to π P and, endowed with such a cost model, a strategy is learnt on training instances for a given problem's support P.

The latter approach is the one principally followed in this work.

CHAPTER 1. GENERAL INTRODUCTION

As learning methods often depend on random factors (such as training instances, initialization, exploration, etc.), results of any experiment involving learning are averaged over at least 25 random seeds. On each seed, training and testing data are randomly sampled from either real-world or simulated data. This technique, known as Monte Carlo Cross Validation [START_REF] Martens | Multivariate calibration[END_REF], is a common practice in machine learning and allows to produce results robust to random factors and data shifts.

For comparable methods, we present in this document results obtained using a unique set of hyperparameters, such as learning rates, buffer sizes, epochs, etc. This set of parameters was obtained after multiple trials, and is not tuned to one specific problem. As a consequence, these results may be improved by fine tuning those parameters for each application. This choice was made to enable a fair comparison between the different approaches. With the same objective of comparing like with like,

we perform experiments with a frozen configuration of the CPLEX's B&B, where presolve and cuts are disabled. For the sake of clarity, training curves are smoothed as soon as learning involves an iterative procedure.

Overview and contributions

We give here a detailed overview of this manuscript and precise the contributions. We highlight the different lines of research and provide some context related to their definition. Note that the outline of the document does not follow any chronological order. From a general standpoint, we focused on the learning of B&B strategies such as branching and node selection so as to keep the advantages provided by the B&B algorithm, especially the guarantee of optimality. These two strategies have been selected due to their core position in the B&B algorithm. Note that one could be interested in learning directly (near-)optimal solutions. However, providing solutions from a black-box model without any guarantee (either of optimality or explainability) may be questioned in an industrial context, which explains our choice.

Chapter 2 provides the background necessary to understand the manuscript. As the subject of the thesis is at the intersection of machine learning and combinatorial optimization, some basic notions from both domains are introduced. A particular emphasis is given to reinforcement learning notions.

As for combinatorial optimization, we mainly introduce the reader to the most known B&B strategies.

A brief review of the literature related to the use of learning methods for combinatorial optimization is also presented.

Chapter 3 presents the real-world problems used to perform the experiments displayed in this work.

The associated industrial contexts as well as mathematical formulations are given, and some observations are made to help the reader grasp the differences between the considered problems. Characteristics' variations are considered to enrich the experiments.

Part 2: Learning Oracle Strategies in a Branch and Bound Algorithm

This part contains the main axes developed in this document. Although the first idea followed during this thesis was to learn off-line a surrogate model for some expensive heuristic, it was abandoned in favour of a reinforcement learning approach. Indeed, the reinforcement paradigm matches perfectly with our objective, and was completely unexplored at this time.

Chapter 4 proposes a RL methodology aiming at discovering new branching strategies in a Branch and Bound algorithm. A particular care is taken to the selection of the Markov Decision Process, where states are associated with the B&B nodes and actions are the branching decisions. Taking some distance with the classic RL theory, we consider a new kind of tree-based transitions to better suit the structure of the environment. We show that these transitions may exhibit unfortunate theoretical limitations, and provide sufficient conditions on the environment to cancel them. We explain how RL allows to encompass strategies which may otherwise require too much computation. Different cost models are considered and we show that the unitary cost model is the most suited to our objective of tree size minimization, both under classic and tree-based transitions -under the aforementioned conditions.

To improve the performances, we digress from these theoretical recommendations and propose a biased but more robust cost model, coupled with a discount factor. Both numerical and rational justifications for this choice are given. seems natural, all the more so because the learning task should be easier in this setting. Indeed, we

show that both the state space and action space are smaller than the one considered in Chapter 4.

However, we explain why such approach may not be the best to discover an optimal strategy. We exhibit sufficient conditions for the definition of an intractable yet known optimal strategy, which can be directly learnt off-line by supervised learning. The question of the sample efficiency is addressed and the reinforcement learning approach is improved using oracle demonstrations.

Chapter 6 proposes different ways of combining the approaches of Chapter 4 and Chapter 5 so as to learn simultaneously branching and node selection strategies.

Part 3: Exploiting the Problems' Structure

This Part comes as a complement of Part 2. It briefly presents different approaches to design strategies by leveraging the problem's structure. Compared with Part 2, we do not aim here to take full control of inner B&B strategies to obtain oracle decisions.

Chapter 7 proposes a branching heuristic based on a graph representation of the problem. Using a proxy for the variables' mutual influence, most influential variables are selected at the root node and used for the first branching decisions. Experiments suggest that such heuristic may decrease the tree size, especially for the hardest instances of the considered problems. The interest in graph embedding for MILPs or B&B nodes in the recent literature echoes our heuristic approach.

Chapter 8 tackles the practical problem of the decomposition of large problems into smaller subproblems. As reinforcement learning suffers from the curse of dimensionality regarding the state-action space, decomposition may allow to improve its scalability. We use a Relax and Fix scheme to only solve subproblems of lower dimension. Unfortunately, Relax and Fix comes at the price of the loss of the optimality guarantee offered by B&B, and may even be unable to solve some instances. We propose to branch on coupling variables to strengthen the Relax and Fix procedure. One possible application of this scheme may be to use the methods developed in Chapter 4, 5 and 6 to learn strategies only on subproblems.

Chapter 9 focuses on adding small disruptions to objective functions so as to break potential symmetries in the problem. We use a black-box optimization framework to explore potential perturbations in an iterative fashion. As the work presented in this thesis is at the intersection of machine learning and combinatorial optimization, we briefly introduce in this chapter different notions from these two fields. Section 2.1 provides basic notions in supervised learning, with a focus put on imitation learning and neural networks. In Section 2.2, we introduce the reinforcement learning paradigm, which has a central role in this work. Last, Section 2.3 briefly presents Branch and Bound strategies and recent attempts of using machine learning in this context.

Supervised learning

The field of machine learning is extremely vast, with many subtleties and paradigms. We refer to the book of C. Bishop [START_REF] Bishop | Pattern recognition[END_REF] for a comprehensive introduction to machine learning, with a nice statistical learning coloration. In this section, we try to keep the introduction concise and focus only on the main notions necessary to read this document.

A general overview

Supervised Learning (SL) is the name given to the problem of estimating a mapping between two random variables using observations from a limited number of training samples. The realizations of the (almost always) multivariate input random variable are called features while those of the output random variable are designated as labels. Denoting respectively X and Y the features and labels random variables, we write X and Y the sets where their realizations lie and P their unknown joint probability distribution. Then, the aim of SL is to find a mapping f : X Ñ Y following some criterion.

To do so, one is equipped with a loss function l : Y ˆY Ñ R, where lpy 1 , y 2 q quantifies the cost of predicting y 2 when y 1 occurs. For instance, one of the most commonly used loss is the squared error lpy 1 , y 2 q " ||y 1 ´y2 || 2 2 . Considering a set of prediction functions F, a classic objective in SL is to find a predictor with minimal risk under the unknown probability distribution P :

f ˚P arg min f PF R P pf q " E pY,Xq"P rlpY, f pXqqs (2.1)
As the probability distribution P is unknown, such optimal predictor cannot be found by solving directly (2.1), and a common practice is then to solve its empirical counterpart

f ˆP arg min f PF R ˆnpf q " 1 n n ÿ i"1 l pY i , f pX i qq (2.2)
where pX i , Y i q i"1,...,n are the observed training samples. Such procedure is called Empirical Risk Minimization (ERM). If one assumes that the samples pX i , Y i q i"1,...,n are drawn independently from one another (the samples are then called i.i.d. for independent and identically distributed) and that E pY,Xq"P r|l pY, f pXqq|s ă `8, then the Strong Law of Large Numbers gives the almost sure convergence R ˆnpf q a.s.

ÝÝÝÑ nÑ8 R P pf q
This convergence justifies the use of the ERM paradigm and, often, the need for a large amount of data to yield an efficient predictor.

We call classification (resp. multivariate classification) the task of finding such predictor in this supervised setting when Y " t0, 1u (resp. Y " t0, 1u K with K ą 1) and regression (resp. multivariate regression) when Y " R (resp. Y " R K with K ą 1).

Without diving into too many details, some remarks can be made according to the degrees of freedom left to anyone practicing SL. Of course, one of the main levers is designing and selecting the pertinent features X. This is not trivial in general and demands a good understanding of the studied phenomenon -this point is discussed a little further in Section (2.1.3). The next point is the choice of a function space F, with a plethora of possibilities -linear, non-linear, kernel-based, with or without differentiable parameters, etc. Last but not least, the relevance of a given loss function l may depend on the considered application and should transcript the final goal at stake. However, such goal is often not well defined and the squared distance is a common default choice -R P is called in this case the Mean Squared Error (MSE).

All these considerations often determine the ability of the predictor to generalize over unseen data or, on the contrary, its tendency to overfit the training set, i.e. to specialize on training instances at the cost of lower performances on unseen data. This can be illustrated through the bias-variance decomposition of the MSE, as one can show under standard assumptions that E pY,Xq"P " pY ´f pXqq 2

ı " E pY,Xq"P rpY ´f pXqqs 2 `VpY,Xq"P pf pXqq `σ2

(2.3)
where the three terms are respectively piq the squared bias of the predictor, piiq the variance of the predictor and piiiq the irreducible error, that is the variance of some random noise around observations.
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The more richer the features and the function space F, the lower the bias. However, a low bias implies that the predictor represents well the oscillations in the training set, which generally comes with a high variance and a poor generalization ability (overfitting).

Imitation learning

Imitation learning (IL) is a specific case of SL dedicated to learning sequential control strategies from expert demonstrations, and potentially through interactions with an environment. The two main differences between IL and vanilla SL as presented above is the structure of the set Y, which is now a structured set of trajectories (sequences of observations), and the violation of the i.i.d. hypothesis.

We introduce here three of the main contributions in this field of research. For the sake of simplicity and conciseness, we do not focus on the convergence properties of these approaches.

Let us change a bit the terminology introduced above and consider a set of states S at which actions from set A should be taken. We call environment the whole system which samples states in S conditionally to some previous states and taken actions. An agent can then build trajectories through interactions with this environment by producing a sequence of actions when facing consecutive sampled states. We write π θ : S Ñ A a policy parametrized by θ P Θ a function which selects an action π θ psq when facing state s.

As an example, one can think of a robot (agent) who can move in four directions (actions) in a maze (environment). The consequence of an action (transition) is governed by the environment (the robot does not progress if it tries to go through a wall and move otherwise).

In this setting, Behavioral Cloning (BC) [START_REF] Pomerleau | Alvinn: An autonomous land vehicle in a neural network[END_REF] Although BC is expected to perform well when one is able to decently approach π ˚by π θ , two linked concerns may legitimately be raised at this point. First, learning from the expert's distribution does not tell anything about the actions that should be taken outside of the induced trajectories. Hence this approach may suffer from overfitting: what if deviations from P ˚lead to unexplored states? Second, BC focuses on mimicking the actions of the expert, without having the possibility to take into account the cost associated to the trajectories produced by the agent. The following approaches seek to solve these drawbacks inherent to BC.

In essence, the limitations of BC can be summed up to the question of controlling the agent's risk R P θ pθq while learning from R P ˚pθq, where P θ denotes the states distribution when following policy π θ . This is typically handled, if possible, by interacting directly with the environment so as to gather information on R P θ pθq. Many strategies have been designed to take into account the potential misalignment between P θ and P ˚, as well as the cost associated to the actions selected by the agent (see for example [START_REF] Daumé | Search-based structured prediction[END_REF][START_REF] Ross | Efficient reductions for imitation learning[END_REF][START_REF] Ross | A reduction of imitation learning and structured prediction to no-regret online learning[END_REF][START_REF] He | Imitation learning by coaching[END_REF][START_REF] Ross | Reinforcement and imitation learning via interactive no-regret learning[END_REF]). For the sake of conciseness, we only present here the two most pertinent algorithms according to the work presented in this thesis.

Dataset Aggregation, or DAgger [START_REF] Ross | A reduction of imitation learning and structured prediction to no-regret online learning[END_REF], is a simple algorithm designed to learn the expert's policy on the agent's distribution. As described in Algorithm 1 (some slight modifications are brought to line up with notations), the method assumes that the expert can be invoked at any visited state. In an iterative manner, trajectories are sampled using the current agent's policy and ps, π ˚psqq pairs are collected from these samples. Stacking those samples in a growing dataset, a classifier is learnt at each iteration on the whole set of experiences collected from the first iteration. Thus, at iteration i of Algorithm 1, the agent is calibrated by estimating the solution of the theoretical program All the methods aforementioned undergo a common limitation. As they essentially learn to mimic the expert's behaviour on some given distribution, they are not expected to achieve better results than such expert. As a consequence, they should only be used when one has at its disposal a well-performing expert. Alternatively, the discovering of new policies, which potentially outperform that of the expert, is the object of Reinforcement Learning, another learning paradigm introduced in Section 2.2.

θ i P arg min θPΘ i´1 ÿ j"0 E s"P θ j rlpπ ˚psq, π θ psqqs (2.

A particular function space: neural networks

As mentioned earlier, both the chosen function space F and the design of pertinent features are key components in SL in order to make meaningful predictions. The growing enthusiasm observed over the past few decades around neural networks is mainly due to their ability to blur the frontier between these two components.

Taking its origins in biological systems modeling, a neural network is a non-linear function f θ : X Ñ Y parametrized by a weight vector θ, where X Ă R q and Y Ă R K with q (resp. K) the input (resp. output) dimension. The versatility of neural networks lies in the possibility to create an arbitrary CHAPTER 2. BACKGROUND complex non-linear link between inputs and outputs while still allowing to use efficient optimization techniques to learn their weights. We introduce here the reader to some basic notions related to neural networks.

MultiLayer Perceptron (MLP)

An MLP is an acyclic (referred to as feedforward) directed graph pV, Eq where a path exists from any input nodes X Ă V to at least one of the output nodes f pXq Ă V . Conversely, any output nodes is linked to at least one input node by some path. Nodes of such graph are organized in consecutive layers as illustrated in Figure 2.1 and are called artificial neurons, with edges only linking nodes of a layer to nodes of the next one. Writing |L| the number of neurons in the L-th layer, the latter can be seen as a function f pLq : R |L´1| Ñ R |L| for 1 ď L ď N and f p0q " Id R q with N the number of layers (except from the input layer). Thus, the neural network output can be rewritten

f θ pXq " f pN q ˝f pN ´1q ˝¨¨¨˝f p1q ˝f p0q pXq (2.9) 
with θ a weight vector made explicit later on. ). We refer to [START_REF] Liu | A survey of deep neural network architectures and their applications[END_REF] for a non-exhaustive introduction to the bestiary of most-used neural networks.

As briefly mentioned earlier, one of the greatest strengths of neural networks is that their construction as a composition of non-linear functions allows them to build complex and abstract representations of the inputs in a relevant way for the considered problem. Hidden layers, and more generally deep architectures (with numerous hidden layers), act as "useful, multistage, feature extractors with little prior knowledge" [START_REF] Lecun | Deep learning[END_REF]. Thus, if the architecture is well chosen for the task at hand, one may provide raw inputs (e.g. images) and let the neural network build its own features.

Universal approximation theorem and beyond

Although many complex architectures have been created to handle different kinds of problems, the most powerful theoretical result related to neural networks concerns a basic MLP with a single hidden layer. This result, known as the universal approximation theorem, has been shown in 1991 [START_REF] Hornik | Approximation capabilities of multilayer feedforward networks[END_REF] and generalized a similar result from [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF]. Presented in Theorem 2.1.1, it states that any continuous function on a real compact set can be approximated by a single-layer MLP at any given precision (the more precise, the more neurons needed). This result has a direct implication: for any SL problem, one can reduce the empirical error on training set to 0 using such a neural network. Of course, this would lead the model to overfit and show poor generalization performance. This bias-variance tradeoff, previously introduced, sheds light on the common practice for trying to minimize the bias while using the simplest neural network so as to reduce the model variance. Different strategies have been developed to reduce the variance of neural networks, such as weight regularization (for instance L1 or L2 regularization), dropout [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF], early stopping [START_REF] Prechelt | Early stopping-but when?[END_REF], or simply downsizing the architecture.

Theorem 2.1.1. Let CpK q q be the set of continuous functions on a given compact set K q Ă R q , f P CpK q q and ϕ : R Ñ R an activation function which is bounded, continuous and non-decreasing.

Then for any ε ą 0, there exist H P N,

´wp1q ki ¯k"1,...,H i"1,...,q P R Hq , ´wp2q 1k ¯k"1,...,H P R H , ´bp1q k ¯k"1,...,H P R H such that @x P K q , ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ˜H ÿ k"1 w p2q 1k ϕ ˜q ÿ i"1 w p1q ki x i `bp1q k ¸¸´f pxq ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ ď ε Note here that, in Theorem 2.1.1, f θ pxq " ř H k"1 w p2q 1k ϕ ´řq i"1 w p1q ki x i `bp1q k ¯" Id ´řH k"1 w p2q 1k o p1q k `0ī
s the output of an MLP as defined above with N " 2, ϕ the activation function for any unit in the hidden layer, H hidden units, no bias and the identity activation for the output layer.

Parameters estimation: backpropagation

In addition to their ability to approximate any arbitrary complex function, neural networks have gained a huge popularity due to the efficiency of existing calibration methods. Although many variants have been proposed, they are mainly built upon Stochastic Gradient Descent (SGD) originated in [START_REF] Kiefer | Stochastic estimation of the maximum of a regression function[END_REF],

which performs the following update

θ Ð θ ´α 1 m m ÿ i"1 ∇ θ l pY i , f θ pX i qq (2.11)
where α is the learning rate, l is a differentiable loss function and pX i , Y i q m i"1 is a random batch sampled from training data. SGD is particularly well suited for neural networks as the derivative of the loss function with respect to the weights of the network ∇ θ l is efficiently computed by the backpropagation algorithm [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF] as presented below.

Backpropagation lies on the fact that any derivative BlpY i ,X i q Bw pLq jk can be computed using quantities derived in the calculation of the next layer's derivatives. Therefore, backpropagation works by computing first last layer's derivatives and iterating backward to progressively calculate those in previous layers. We detail here the derivatives without any bias for the output layer and for an arbitrary layer L as a function of quantities calculated when deriving those of layer L `1. To alleviate the notations, let us write l i " l pY i , f θ pX i qq, a " ϕ pLq ´apLq j ¯(2.12)

Using the chain rule, we have for the output layer

Bl i Bw pN q 1k " Bl i Bo pN q 1 Bo pN q 1 Bw pN q 1k " Bl i Bo pN q 1 Bo pN q 1 Ba pN q 1 Ba pN q 1 Bw pN q 1k " Bl i Bo pN q 1 ϕ pN q 1 ´apNq 1 ¯opN´1q k where o pN q 1 " f θ pX i q.
Considering now an inner layer L, let us compute the derivative of the loss with respect to a weight in such layer, assuming that we have computed the terms Although SGD is convenient for calibrating neural networks as backpropagation provides an efficient way of computing derivatives, it is important to note that l is a highly non-convex function of θ.

As a consequence, the procedure may (and a priori does) get stuck in the potentially vast amount of saddle points or local minima. However, the analysis in [START_REF] Choromanska | The loss surfaces of multilayer networks[END_REF] suggests that the probability of falling into a bad local minima with respect to learning performances quickly decreases with the neural network size.

CHAPTER 2. BACKGROUND

Reinforcement learning

As briefly discussed in the introduction, reinforcement learning (RL) deals with finding good sequential control strategies. In this regard, it shares the same purpose as IL. However, contrary to the supervised setting, RL aims at discovering such controls without any labeled samples. Instead, policies are learnt through trials and errors and the learner has to discover how to map situations to actions in order to minimize some numerical cost -although the RL community often reasons in terms of maximizing a reward, we rather use costs in this document as it is more suited with our purpose.

Of course, as policies may have long-lasting impacts, actions may affect the immediate cost signal but also any subsequent ones. For instance, in an attempt to learn to play Draughts, one may consider to assign a reward (resp. a cost) of 1 (resp. -1) for each capture of an adverse piece and -1 (resp. 1) for a loss of a piece.

RL is at the intersection between psychology of animal learning, optimal control (and thus dynamic programming) and machine learning. It has emerged in the late 1980s especially with the works of Richard Sutton [START_REF] Sutton | Learning to predict by the methods of temporal differences[END_REF] and Chris Watkins [START_REF] Watkins | Learning from delayed rewards[END_REF] and has been since then a really active and prolific field of research, with many applications in various domains such as games, robotics, finance, etc. The interested reader will find a nice introduction to RL in [START_REF] Sutton | Reinforcement learning: An introduction[END_REF], which is a classic reference in this field. In the current section, we introduce some fundamental notions, necessary to grasp the specifics of some later developments.

Formal definition of the RL problem

As previously mentioned, RL is about learning policies in order to minimize some numerical cost.

It is common to formalize this problem in terms of optimal control of a Markov Decision Process (MDP), originally introduced by Bellman in 1957 [START_REF] Bellman | A markovian decision process[END_REF].

An RL system is defined by an agent (or controller) and an environment (or controlled system).

The agent interacts at discrete time steps with the environment by performing actions in given states and, subsequently, the environment provides the agent with a new state through a transition. In addition, the environment may give costs (or rewards) as a (in)direct consequences of state-action pairs. The well-known Figure 2.2, adapted from [START_REF] Sutton | Reinforcement learning: An introduction[END_REF], illustrates such system. At time t, the agent faces state s t and selects an action a t through a possibly stochastic policy π t where π t pa|sq is the probability of performing action a at state s. At next state, the agent receives a cost C t`1 in pair with a new state s t`1 . We then define a generic setting where the objective of the agent is to minimize the total discounted amount of costs received during a complete sequence of actions. In the following, we assume that the immediate cost is deterministic with respect to a state-action pair.

Agent

Environment A process is said to be markovian if the probability of observing a state at time t `1 only depends on the state-action pair at time t, that is T ps 1 |s, aq " P `st`1 " s 1 |s t " s, a t " a ˘" P `st`1 " s 1 |s t " s, a t " a, s t´1 , . . . s 1 , a t´1 , . . . , a 1 ˘(2.13)

action a t s t`1 C t`1 state s t cost C t
Consider now an MDP ă S, A, T, c, γ ą where S is the set of states, A the set of actions, T the transition probabilities, c a bounded cost model and γ P r0, 1s a discount factor. A value function V π associated to a policy π is defined as the expected sum of discounted costs that the agent will collect if it follows policy π from the current state s t :

V π ps t q " E ∆ π « 8 ÿ k"0 γ k C t`k`1 |s t ff (2.14)
where ∆ π is the state distribution when following policy π and C t is the cost received at time t -by assumption it is a random variable if and only if the policy or the transitions are stochastic. In pair with this value function, the action-value function, or Q-value function, is defined as

Q π ps t , a t q " E ∆ π « 8 ÿ k"0 γ k C t`k`1 |s t , a t ff (2.15)
These functions satisfy recursive relationships called the Bellman equations:

V π ps t q " ÿ aPA πpa|s t q ÿ sPS T ps|s t , aq rcps t , aq `γV π psqs (2.16a)

Q π ps t , a t q " ÿ sPS T ps|s t , a t q « cps t , a t q `γ ÿ aPA πpa|sqQ π ps, aq ff (2.16b)
with cps, aq the cost associated with the state-action pair ps, aq.

In this setting, we can formally define the objective of the agent as finding an optimal policy which is better than any other in any state, i.e. which achieves a lower value for any state. Thus, writing π such optimal policy and V ˚" V π ˚the associated value function, the RL task is to find

V ˚psq " min πPΠ V π psq (2.17)
for some given set of policies Π, and such optimal value function also satisfies a Bellman recursion

V ˚ps t q " ÿ aPA πpa|s t q ÿ sPS T ps|s t , aq rcps t , aq `γV ˚psqs (2.18) 
Likewise, one can define the optimal Q-function Q ˚, which satisfies a similar Bellman equation. Searching for an optimal policy or an optimal value function is then equivalent, as a greedy policy with respect to an optimal value function is an optimal policy by definition.

In the following, we introduce some exact methods to derive such optimal policies (or value functions). However, in most applications, those exact methods are not tractable and one must leave it to approximations.

Exact methods

A common way of introducing RL methods is to begin with dynamic programming, as it allows for understanding the nature of learning through trials and errors and the need for approximation methods.

Dynamic programming is a methodology designed to solve optimal control problems developed since the late 1950s, assuming perfect knowledge on the environment (transitions and costs). The two most referred dynamic programming methods are policy iteration and value iteration (VI). We introduce here only VI, which is a special case of policy iteration. The reader may refer to [START_REF] Sutton | Reinforcement learning: An introduction[END_REF] for a more complete introduction to dynamic programming methods in this setting. Let us now consider the sequence pV k q kPN defined by V k`1 " BV k with V 0 any value function, perceived here as a vector in R |S| .

max aPA ⃓ ⃓ ⃓ ⃓ ⃓ ÿ s 1 PS T ps 1 |s, aq " `c ps, aq `γV 1 `s1 ˘˘´`c ps, aq `γV 2 `s1 ˘˘ı ⃓ ⃓ ⃓ ⃓ ⃓ ď γ max aPA ⃓ ⃓ ⃓ ⃓ ⃓ ÿ s 1 PS T ps 1 |s, aq `V1 `s1 ˘´V 2 `s1 ˘˘⃓ ⃓ ⃓ ⃓ ⃓ ď γ max s 1 PS ⃓ ⃓ V 1 `s1 ˘´V 2 `s1 ˘⃓ ⃓ max aPA ⃓ ⃓ ⃓ ⃓ ⃓ ÿ s 1 PS T ps 1 |s, aq ⃓ ⃓ ⃓ ⃓ ⃓ ď γ max s 1 PS ⃓ ⃓ V 1 `s1 ˘´V 2 `s1 ˘⃓ ⃓ as T is
Such sequence pV k q is bounded since c is bounded and γ P r0, 1q gives:

||V k || 8 " max sPS ˇˇˇˇm in aPA # cps, aq `γ ÿ s 1 PS T ps 1 |s, aqV k´1 ps 1 q + ˇˇˇď ||c|| 8 `γ||V k´1 || 8 max sPS ˇˇˇˇm in aPA ÿ s 1 PS T ps 1 |s, aq ˇˇˇď ||c|| 8 `γ||V k´1 || 8 ď γ k ||V 0 || 8 `||c|| 8 k´1 ÿ i"0 γ i ď ||V 0 || 8 `||c|| 8 1
´γ Besides, the sequence pV k q is Cauchy for the L 8 norm as, for any k ě p:

||V k ´Vp || 8 ď γ||V k´1 ´Vp´1 || 8 ď ¨¨¨ď γ p ||V k´p ´V0 || 8 ÝÑ k,pÑ`8 0
since pV k q is bounded and B is a contraction for γ P r0, 1q.

As the space R |S| equipped with the L 8 norm is a Banach space, the sequence pV k q converges. Let us write V 8 its limit. By passage to the limit in V k`1 " BV k we have V 8 " BV 8 . Thus, by uniqueness of the fixed point for B, we have lim

kÑ`8 V k " lim kÑ`8 pBq k V 0 " V ˚.
Starting from an arbitrary value function, value estimations are updated for each state by selecting the lowest evaluated action through the Bellman recursion. VI is guaranteed to converge at a geometric rate and may, in practice, obtain good performances after only few iterations. However, it suffers heavily from the curse of dimensionality, as one step of the algorithm requires |S| 2 |A| evaluations. Indeed, a single update operates on each state and scans over each state-action pair from each point.

In addition, applying the dynamic programming operator requires to know the transitions and cost model, which is a requirement rarely met in practice.

Another way of finding the optimal value function is to solve directly the Bellman equation at optimality if the environment's dynamics are known. As the optimal value function is the unique fixed point of the dynamic programming operator, it satisfies the equation

V ˚psq " min aPA ÿ s 1 PS T ps 1 |s, aq " cps, aq `γV ˚ps 1 q ‰ (2.20)
for any state s. This is a non-linear system of |S| equation with |S| unknowns and thus can be solved using any methods for solving such systems as soon as S is finite. Such approach does not rely on the discount factor but turns out to be intractable in practice for much smaller state spaces than dynamic programming methods. Likewise, one can cast the search of V ˚into a linear system with |S| unknowns and |S| |A| constraints (see for instance [START_REF] De Farias | The linear programming approach to approximate dynamic programming: Theory and application[END_REF], page 20). The linear programming approach thus has the same limitations as the former, which lets dynamic programming be the only tractable approach in practice.

Approximations

In many applications, approximations may be needed for two main reasons. First, the environment may not be known, hence preventing from applying exact methods such as the aforementioned approaches. In this case, the learner should make use of approximations for value estimations, as example using Monte Carlo methods or Temporal-Difference learning (TD-learning [START_REF] Sutton | Learning to predict by the methods of temporal differences[END_REF]), learning from raw experiences to estimate the expectation in the VI update. Second, when the state and action sets are too large to be maintained and fully estimated by VI or approximated tabular methods (such as TD-learning), one may also use function approximation to learn a surrogate mapping, e.g. for the Qvalue function Q π . In both cases, the convergence speed depends on the ability of the learner to search efficiently the state space, which comes by estimating properly the according values. To achieve this in the most efficient way, a balance has to be found between exploration of new states and exploitation of states with a high estimated value. This trade-off is called the exploration/exploitation dilemma and exclusively arises in RL by opposition with other forms of learning. A common way of dealing with this trade-off is to perform ε-greedy exploration, which consists in selecting random actions with probability ε to explore the state-action space, with potentially a decreasing exploration probability ε over time.

We introduce here the tabular versions of Sarsa (originally named MCQ-L [START_REF] Rummery | On-line Q-learning using connectionist systems[END_REF]) and Q-learning [START_REF] Watkins | Learning from delayed rewards[END_REF] as well as an approximated counterpart using function approximation, necessary to understand further developments.

TD methods are iterative procedures with updates based on a difference between two value estimates at different times, e.g. of the form V ps t q ´V ps t`1 q. Instead of updating the values for the entire state space, iterations are performed only on explored states where value estimates are available. Updates are said to be on-policy when they exclusively depend on explored state-action pairs, and off-policy when they depend on estimates of non-explored pairs.

Sarsa is an on-policy TD algorithm, whose updates are Qps t , a t q Ð Qps t , a t q `α TD-error hkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkj rcps t , a t q `γQps t`1 , a t`1 q ´Qps t , a t qs (2.21a)

ðñ Qps t , a t q Ð p1 ´αqQps t , a t q `α rcps t , a t q `γQps t`1 , a t`1 qs (2.21b)

The learnt Q-function here approximates at each step the value corresponding to the current policy guiding the exploration. On the contrary, Q-learning aims at learning directly the optimal Q-function pairs. The calibration of this parameter is crucial as it may have a huge impact on the convergence of the learning procedure.

Q
When the state space is too large, this procedure may turn out to be ineffective and one may intent to recognize patterns in the Q-function instead of trying to estimate each visited point independently.

Rather than using a tabular representation of the Q-function, the state space is embedded in a feature space ϕ pSq and the Q-function is approximated by a surrogate Q-function Q ˆp., .; θq : ϕ pSq ˆA Ñ R whose weights θ are learnt through interactions with the environment. This general framework is called fitted Q-iteration and was proposed in [START_REF] Ernst | Tree-based batch mode reinforcement learning[END_REF], later adapted to the use of neural networks in the Neural Fitted Q-iteration approach (NFQ, [START_REF] Riedmiller | Neural fitted q iteration-first experiences with a data efficient neural reinforcement learning method[END_REF]). As mentioned in the latter, using neural networks to approximate Q-functions (sometimes referred to as Q-networks) may be risky as a weight update from CHAPTER 2. BACKGROUND a specific location in the state space may have an influence on the estimations in any other regions due to the global representation mechanism in an MLP. To overcome this issue, the authors used batch learning and experience replay [START_REF] Lin | Self-improving reactive agents based on reinforcement learning, planning and teaching[END_REF], i.e. sampling from previously collected experiences rather than performing on-line learning. As pointed out in the Deep Q-Network (DQN) seminal paper [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF],

experience replay also allows to break the samples' correlation induced by control problems, hence getting closer from the i.i.d. hypothesis usually made in SL (see Section 2.1.1). DQN, synthesized in Algorithm 3, is one of the most famous RL algorithms using neural networks, the main differences with NFQ being the use of a replay buffer of fixed size, the use of convolutional layers and the iterative training of a single neural network without restarting from scratch its calibration during the learning process. To encourage the independence of learning samples, DQN also introduces the use of a temporarily fixed parameter for building the Q-learning updates. As an approximation for the exact Q-learning updates (2.22a), the theoretical loss used for computing neural network updates at any iteration i of the M learning steps is

L DQN i pθ i q " E ps,a,c,s 1 q"∆ i « ˆc `γ" min a 1 Q ˆps 1 , a 1 ; θ í q ı ´Q ˆps, a; θ i q ̇2ff (2.23)
where c is the cost obtained from state-action pair ps, aq, θ í is the fixed parameter periodically updated and ∆ i is a probability distribution over the experiences in the replay buffer.

Algorithm 3 DQN Algorithm

Initialization: Initialize replay buffer B Initialize a Q-network Q ˆp., .; θ 0 q and set θ 0 " θ 0 Procedure:

for e " 1 to M do: Draw an initial state s 1 for t " 1 to T do: With probability ε select a random action a t otherwise select a t " arg min a Q ˆps t , a; θ t q Observe the transition and store ps t , a t , c t , s t`1 q in B Sample a random minibatch of transitions ps j , a j , c j , s j`1 q from B Update θ i to θ i`1 following the gradient derived from Equation (4.11) using the sampled minibatch Periodically set θ í`1 to either θ i`1 or θ í end for end for Output:

Final parameter θ N As the optimal value function is unlikely to be found in real applications, one may ask what guarantee do we have on a policy which is greedy with respect to a suboptimal value function Q.

Corollary 2 in [START_REF] Singh | An upper bound on the loss from approximate optimal-value functions[END_REF] showed that the following bound holds

V π psq ď V ˚psq `2 1 ´γ ||Q ´Q˚| | 8 , @s P S (2.24)
where V π psq is the value of state s when following the greedy policy π with respect to Q. In words, a greedy policy with respect to some approximated Q-function will perform well provided that the approximation is good enough. However, one has usually no control over the term ||Q ´Q˚| | 8 , especially when facing large state spaces.

Some challenges in RL

We briefly discuss here some open challenges in the RL field as they will appear in different ways in this document.

Regardless the tuning of hyper-parameters associated with the elected learning model, the choice of the discount factor γ and that of the learning rate α have often more to do with art than science.

Historically introduced with respect to common practice in economics, a discount factor γ set in p0, 1q is also theoretically justified as it constitutes a sufficient condition for the value functions to be defined in infinite-horizon MDPs (cf. the infinite sum in Equations (2.14) and (2.15)) and as it enables to obtain the maximum-norm contraction property of the dynamic programming operator (Lemma 2.2.1).

However, few is known about how to fix its value. Some studies suggest that using on purpose a low discount factor allows to reduce the variance of the targets by tightening the approximate error bound [START_REF] Petrik | Biasing approximate dynamic programming with a lower discount factor[END_REF] and may act as a regularizer to the loss function [START_REF] Amit | Discount factor as a regularizer in reinforcement learning[END_REF]. It even may increase the performance of dynamic programming methods when the reward (or cost) signal is sparse [START_REF] Petrik | Biasing approximate dynamic programming with a lower discount factor[END_REF]. Even in episodic

MDPs where the natural discount factor is 1, one may thus find it useful to set a lower value. In [START_REF] François-Lavet | How to discount deep reinforcement learning: Towards new dynamic strategies[END_REF],

the authors suggest that coupling an increasing discount factor with a decreasing learning rate stabilizes the DQN algorithm and allows for better performances.

A long-lasting challenge in RL is the so-called credit assignment problem, already highlighted by CHAPTER 2. BACKGROUND Minsky [START_REF] Minsky | Steps toward artificial intelligence[END_REF] in the early 60s. It corresponds to the difficulty of identifying and thus crediting more the important decisions in a given sequence. A typical situation where the credit assignment problem arises is the case of sparse (rare) rewards, for instance in a long-lasting game as chess or go. When the only reward is given at the end of the game as a binary signal "won" or "lost", how can the agent identify the important choices among the great number of made decisions during the play? The common strategy to soften this issue is to break the task into multiple sub-tasks, thus producing more frequent reward or cost signals.

Last but not least, RL techniques often face a low sample efficiency, in the sense that they require a lot of training data before achieving good performances in the considered task. As an example, AlphaZero [START_REF] Silver | Mastering the game of go without human knowledge[END_REF], which is one of the most famous RL achievements, played 29 million games of go before defeating the earlier state-of-the-art program AlphaGo Master (from [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF]). In the Atari video game benchmark, DQN's results [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF] were obtained using 50 million frames for training.

To increase the sample efficiency, one may focus on two components: the exploration policy and the learning strategy from collected experiences. Improving from ε-greedy exploration, different lines of research (see for instance [START_REF] Tang | # exploration: A study of count-based exploration for deep reinforcement learning[END_REF][START_REF] Burda | Exploration by random network distillation[END_REF]) suggest that guiding the exploration toward promising and/or uncertain locations of the state space might increase the sample efficiency of deep reinforcement learning methods, following the optimism in the face of uncertainty principle of Upper Confidence Bounds [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF]. Random methods have also been proposed to improve exploration, for instance in [START_REF] Fortunato | Noisy networks for exploration[END_REF][START_REF] Osband | Deep exploration via bootstrapped dqn[END_REF].

Regarding the use of collected experiences, we can mention here prioritized experience replay [START_REF] Schaul | Prioritized experience replay[END_REF],

which is an extension of the previously mentioned experience replay [START_REF] Lin | Self-improving reactive agents based on reinforcement learning, planning and teaching[END_REF]. In the former setting, learning occurs on previously collected samples using a weighting scheme, favouring the samples with high TDerrors. Finally, expert knowledge may, if possible, be leveraged to improve the sample efficiency by modifying the process to acquire training data (e.g. exploration) and the way to use it. Originally used only for pre-training an agent [START_REF] Atkeson | Robot learning from demonstration[END_REF] (see also [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF]), expert's demonstrations have also been used throughout the whole training process, for instance to shape rewards [START_REF] Brys | Reinforcement learning from demonstration through shaping[END_REF] or add a supervised loss on demonstrations [START_REF] Hester | Deep q-learning from demonstrations[END_REF]. In such approaches, demonstration data are collected once and for all before interacting with the environment, and the expert is not re-invoked during training. By contrast, [START_REF] Nair | Overcoming exploration in reinforcement learning with demonstrations[END_REF] combines RL with a behavioral cloning loss on interactive expert's demonstrations, observed on the agent's state distribution. In [START_REF] Chen | Active deep q-learning with demonstration[END_REF], the authors actively invoke the expert at exploration time.

Learning in the Context of Branch and Bound

As mentioned in the introduction, our aim is to leverage learning techniques as introduced above in the context of repeated MILPs, in particular using B&B. In this section, we first overview some of the basic components or notions related to B&B. Second, we present some of the recent attempts to leverage machine learning for strategies in the B&B algorithm. Last, we widen the scope to mention some other learning approaches, related in some ways with B&B.

Branch and Bound strategies

As presented in the introduction (see Section 1.2.1, page 23), B&B is an algorithm designed to handle the non-convexity of MILPs induced by the integrity constraints through a divide and conquer approach, relying on the exploration of successive partitions of the feasible set. Such exploration is controlled by different kinds of strategies, such as variable selection (also known as branching), node selection, bounding, cutting, etc. Due to a lack of mathematical understanding of the dynamic nature of such strategies, state-of-the-art solvers use hand-made strategies, empirically tuned on classic benchmarks from literature (e.g. [START_REF] Koch | Miplib 2010[END_REF]). Hence, they are called heuristics, in the sense that they do not guarantee any optimality with respect to the size of the tree produced by the B&B procedure. The plethora of existing heuristics reflects the difficulty of the task, and their efficiency heavily depends on the problem to be solved.

We give here an overview of existing methods designed over the past few years to improve the efficiency of the B&B algorithm. It is not meant at all to be exhaustive, simply to introduce notions that may have some relevance in the understanding of the present document. A more in-depth review can be found in [START_REF] Morrison | Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning[END_REF].

Presolve

Presolve is one of the most efficient techniques used in modern solvers to speed up B&B procedures and increase their ability to solve MILPs [START_REF] Achterberg | Mixed integer programming: Analyzing 12 years of progress[END_REF]. It consists in transforming the considered problem into a different but equivalent one, hopefully easier to solve. Presolve may for instance imply reformulation, bound strengthening and information extraction for later use, depending on the considered solver.

As our aim is to develop techniques independent of software considerations, presolve will not be encompassed in the present work.

Node selection

Node selection selects at each iteration of a B&B algorithm one node to visit amongst the set of current open nodes. This strategy holds the responsibility for finding early good feasible solutions, that allows to prune other nodes by bound. The complexity of such strategy is its need for arbitrating between regions of the search space which are expected to contain feasible solutions and nodes with good dual bounds. In other words, it must find some balance between the probability of a node to contain a feasible solution and the expected value of such solution. Different kinds of node selection strategies are available in modern solvers, and many implement hybrid versions of the three presented below.

Depth-First Search (DFS) always selects (one of) the deepest open node(s) at each iteration. The two main advantages of DFS are to allow warm starting with low memory usage (the current optimal basis can be used to warm-start subsequent LP solves using the simplex algorithm) and to find hopefully quickly a feasible solution so as to be in a position to prune early by bound. On the other hand, DFS may spend a lot of time in regions of the search space while encountering only poor primal bounds.

Breadth-First Search (BrFS) proceeds in opposition with DFS by exploring a node at some depth only if all the nodes at a lower depth have been visited. Contrary to DFS, it is designed to handle imbalanced search spaces. However, it generally produces large trees as feasible solutions generally lies in deep nodes.

Best-First Search (BFS) is perhaps more relevant and used. It selects the open node which has the best "quality" in some sense, one of the most common quality measure being the dual bound.

Variable selection (branching)

Branching is about finding shortest paths. Conditionally to a given node selection strategy, branching governs how quick trajectories in a B&B tree will end, either by finding feasible solutions, suboptimal or infeasible nodes. The difficulty here is double. First, a single branching choice impacts any trajectories running from the current node, and a choice that is good for one of them is not ensured to be efficient for the rest. Hence, branching decisions have to find a balance between all the trajectories rooted in the current node. Second, the three ways of ending a trajectory make the characterization of branching efficiency difficult. As suggested in [START_REF] Achterberg | Mixed integer programming: Analyzing 12 years of progress[END_REF], variable branching may be one of the most important strategies in B&B algorithms. We only present here some of the most used binary branching CHAPTER 2. BACKGROUND rules, i.e. rules which partition a feasible set into two mutually exclusive sets.

Most-Fractional Branching (or Most-Infeasible Branching) is undoubtedly one of simplest used branching rule, as it consists in selecting the variable whose fractional value (in the corresponding LP solution)

is closest to 0.5.

Pseudo-Cost Branching (PCB) is introduced in [START_REF] Bénichou | Experiments in mixed-integer linear programming[END_REF] and refers to a heuristic measure of the importance of branching candidates, by trying to assess the change in the LP value consecutively to the branching decision. This score is based on historic observations made in the B&B tree.

Strong Branching (SB), first referred without either definition or citation in [START_REF] Applegate | Finding cuts in the tsp (a preliminary report)[END_REF] and first used in CPLEX 7.5, follows the same goal as PCB but in a more brute-force manner, by actually computing the change in the objective value. Let us write z the LP value at the current node and z 0 j (resp. z 1 j ) the LP values at child nodes when branching on x j " 0 (resp. x j " 1). The SB rule then selects a binary variable in arg max jPJ score `z0 j ´z, z 1 j ´z˘. Different scoring functions can be considered, the product being of common practice, supported by the results in [START_REF] Achterberg | Constraint integer programming[END_REF].

Various other heuristics have been proposed over the past few years, and the most used are hybrid versions of those aforementioned (see for instance reliability branching [START_REF] Achterberg | Branching rules revisited[END_REF] and PCB with SB initialization [START_REF] Linderoth | A computational study of search strategies for mixed integer programming[END_REF]). Additionally, Hybrid Branching [START_REF] Achterberg | Hybrid branching[END_REF] incorporates conflict clauses' lengths and values in the branching decision, which can be seen as estimates for the probability to yield infeasible nodes after branching. We shall also cite here [START_REF] Patel | Active-constraint variable ordering for faster feasibility of mixed integer linear programs[END_REF] which, rather than estimating the change in the objective value, focuses on the number of active constraints.

Cutting

In LP-based B&B, the procedure lies on the bounds provided by LP relaxations to prune nodes.

Cutting strategies intend to strengthen these linear relaxations by solving a separation problem, i.e.

finding inequalities (cutting planes) valid for the convex hull of all feasible integer points but violated by the optimal solution of the current LP relaxation. These cuts may be either local -valid only for the current subtree, or global -valid for any feasible integer solution of the LP associated to root node.

Cutting strategies are not encompassed in the present work, but an interested reader may look into

Gomory cuts [START_REF] Gomory | An algorithm for the mixed integer problem[END_REF] amongst others, which has the advantage of being available at low cost.

CHAPTER 2. BACKGROUND

Decomposition methods

In practice, many problems arise with a very large number of variables. Facing such problems, the number of nodes necessary to obtain an optimality guarantee may be prohibitively large. However, one may take advantage of the specific structure of the problem. From a generic standpoint, decomposition methods aim at solving a Master Problem (MP), which is a lower constrained version of the original problem but which may be significantly easier to solve. The solution of such problem is then refined in an iterative manner by solving one (or many) subproblem(s) until some optimality criterion is met. The two most known techniques in this regard are column generation [START_REF] Lübbecke | Column generation[END_REF] and Benders decomposition [START_REF] Benders | Partitioning procedures for solving mixed-variables programming problems[END_REF].

Metrics

Different metrics may be encompassed to compare any of the aforementioned strategies. The following metrics are among the most used in the literature. They are briefly presented with some explanation of our interest with one of them particularly.

The most widespread metric used to compare B&B methods is undoubtedly the time needed to complete the procedure (i.e. proving infeasibility or finding an optimal solution and proving its optimality).

It is used for instance in CPLEX reports, but also in the vast majority of integer programming articles.

Duration time is particularly well suited for comparing different configurations of a single solver, or again to compare the performances of different solvers. Indeed, those are designed to have a high performance with respect to this metric, since it is often what clients are looking for. Hence it is fair to compare them using this criterion.

History of combinatorial optimization has been built by the ability of solving more and more challenging problems. Hence, a classic metric is the number of instances of a given problem to be solved optimally in a specific amount of time. This metric is out of place in this work as we will focus on problems which are already solved in reasonable time with existing B&B implementations.

In the same spirit, one can also use the number of visited nodes during the B&B procedure to compare different strategies. It is also a commonly used metrics, and one of its main advantages is to be independent on hardware or implementation specifics. As the number of nodes will be our metric of interest, it deserves a little further discussion. On the one hand, it can be a deceiving metric by concealing the computation time. A famous example of such phenomenon is SB, which performs generally quite well with respect to the number of nodes but turns out to be affected with a high processing time. On the other hand, it truly reflects the ability of a strategy to partition and search effectively the feasible set of a given problem. In addition, it allows for a fair comparison against commercial solvers' strategies as they accumulate a long history of computational improvements, out of reach from individual works.

Last but not least in some industrial settings, the evolution of the bounds (primal and dual) throughout the search can also be used to compare strategies. Although the number of nodes is our main metric of interest, we may refer to gap metrics as it is often an interesting criterion in an industrial context, where obtaining early good solutions may be relevant.

Let us define specifically the metrics and related notions used in this work. The root node of a B&B tree is considered to be at depth 0, and a node is naturally at depth d `1 of the tree if its parent is at depth d. We write |T | the size (number of nodes) of a B&B tree T , defined as the number of expanded or fathomed nodes during the search, i.e. inner and leaf nodes. The size of a dive (or trajectory) toward some node ζ is the number of nodes visited from the root node to ζ. Writing dpζq the depth of node ζ, the trajectory towards ζ is therefore of size dpζq `1.

The primal integral [START_REF] Berthold | Measuring the impact of primal heuristics[END_REF] is defined, when discretizing time by the iterations of the B&B algorithm, as

T ÿ t"0 Γpx t ˜q (2.25)
where T is the number of iterations at the considered time of evaluation, x t ˜is the best integer solution found at iteration t and

Γpx t ˜q " $ ' & ' % 1 if c J x ˚.c J x t ˜ă 0 or if no integer solution has been found ⃓ ⃓ ⃓c J x ˚´c J x t ˜⃓ ⃓ ⃓ |c J x t ˜| else (2.26)
with x ˚an optimal solution for the considered MILP. A common related measure is the primal-dual integral defined as

T ÿ t"0 c J x t ˜´z t (2.27)
where z t is the minimum over all the dual bounds found at iteration t.

Machine learning and inner Branch and Bound strategies

As presented above, many components of B&B solvers are empirically-tuned heuristics. In a context where one needs to solve many combinatorial problems on a regular basis, ML appears as a natural tool to improve upon such heuristics. The literature on this topic is quite limited as interactions between ML and combinatorial optimization is an emerging field of research, and the reader may be interested in two relevant surveys [START_REF] Bengio | Machine learning for combinatorial optimization: a methodological tour d'horizon[END_REF][START_REF] Lodi | On learning and branching: a survey[END_REF], introducing both methodological concepts and literature overviews.

Here, we present a non-exhaustive list of approaches related to B&B inner strategies (namely branching, node selection and cutting), focusing on their goals and learning methodology.

Variable selection

We start by introducing the lines of research regarding the learning of a branching strategy, as this is the most used approach in the literature -it is also often considered as one of the most important components in B&B solvers [START_REF] Achterberg | Mixed integer programming: Analyzing 12 years of progress[END_REF][START_REF] Alvarez | A supervised machine learning approach to variable branching in branch-and-bound[END_REF].

As referred in [START_REF] Lodi | On learning and branching: a survey[END_REF] from [START_REF] Alvarez | Computational and theoretical synergies between linear optimization and supervised machine learning[END_REF], learning a branching (or other) heuristic seems natural as both learning and heuristically-based decisions aim at mapping some characterization of a state (features, node description) to either take a decision (classification, variable selection). The vast majority of the approaches regarding learning to branch use imitation learning, and more specifically BC (see Section 2.1.2). In [START_REF] Khalil | Learning to branch in mixed integer programming[END_REF], the authors learn by BC to rank the candidate variables at each node using SVM rank [START_REF] Joachims | Optimizing search engines using clickthrough data[END_REF], considering SB as an expert. Still using BC, [START_REF] Alvarez | A supervised machine learning approach to variable branching in branch-and-bound[END_REF] learns the SB score (regression) using extremely randomized trees [START_REF] Geurts | Extremely randomized trees[END_REF]. Simplifying the decision task by casting it into a classification scheme, [START_REF] Gasse | Exact combinatorial optimization with graph convolutional neural networks[END_REF] uses BC to directly learn SB decisions by means of a Graph Neural Network (see [START_REF] Cappart | Combinatorial optimization and reasoning with graph neural networks[END_REF] for a recent review on the use of GNNs in combinatorial optimization). A similar scheme is followed in [START_REF] Zarpellon | Parameterizing branch-and-bound search trees to learn branching policies[END_REF] with respect to the SCIP [START_REF] Gleixner | The scip optimization suite 6[END_REF] default branching rule. All these approaches learn off-line the branching rule, in the sense that they first collect data using the expert's strategy, learn a surrogate decision rule on this collected data and then use it at test time on new instances. On the contrary, [START_REF] Alvarez | Online learning for strong branching approximation in branch-and-bound[END_REF] learns online SB scores through linear regression.

We can easily understand why IL is that much leveraged for learning the variable selection strategy.

First, one does not know how to solve the problem of finding an efficient branching scheme, for the simple reason that one does not know how to set this problem -define a proper tractable objective.

Therefore, it is natural to mimic the empirically efficient heuristics. Second, it happens that one of the best performing branching heuristics SB, see Section 2.3.1 comes with an extremely high computational cost. Machine learning is then a way to pay this cost off-line during training rather than online, at testing time.

Despite that, one may try to discover new strategies, or at least parametrize existing ones. This is the optic followed in [START_REF] Balcan | Learning to branch[END_REF], where the branching decision is a convex combination of two SB-like heuristic branching schemes. In this setting, the authors propose to learn the optimal weights for a given problem. In the same spirit, [START_REF] Di Liberto | Dash: Dynamic approach for switching heuristics[END_REF] does not propose to follow a combination of scores, but rather to dynamically (potentially at each node) select the heuristic to follow by clustering the B&B nodeseach cluster has been associated to a best performing heuristic.

Node selection

Learning node selection strategies has turned out to be less attractive, undoubtedly due to the belief that branching has more impact on the tree size. Again, IL has been leveraged to learn such strategies. In contrast with the previous paragraph, the selected experts are not aforementioned heuristics anymore. In [START_REF] Yilmaz | A study of learning search approximation in mixed integer branch and bound: Node selection in scip[END_REF], the authors leverage BC to learn a node selection and pruning strategy which dives towards a good solution and discard unpromising nodes. DAgger is used in [START_REF] He | Learning to search in branch and bound algorithms[END_REF] to learn a strategy which also couples both node selection and pruning, thus loosing the guarantee of optimality provided by the B&B procedure. According to the authors, the observed speedup gains mainly come from their pruning strategy.

Cut selection

This work will not treat cut selection, but cutting strategies have been learnt in a relevant fashion and thus deserve to be mentioned here. Again with the aim of assuming off-line the cost of an expensive heuristic, SL is used in [START_REF] Baltean-Lugojan | Selecting cutting planes for quadratic semidefinite outer-approximation via trained neural networks[END_REF] to learn on randomly generated data scores for cuts based on objective improvement. More related with our aim, [START_REF] Tang | Reinforcement learning for integer programming: Learning to cut[END_REF] uses RL to select among Gomory cuts. The authors take as a reward the gap between objective values with and without the selected cut. The RL framework allows them to take into account ahead consequences of cuts due to the recursive nature of value functions (see Section 2.2). Their agent takes the form of a policy network in some latent space trained by Evolutionary Strategies [START_REF] Salimans | Evolution strategies as a scalable alternative to reinforcement learning[END_REF], the probabilities of candidate cuts being derived from the outputs in this space. This latent space allows them to handle the varying size of their action set.

Widening the scope

Of course, many other ways of leveraging machine learning for combinatorial optimization have been explored. A large part of the literature has focused on learning specific algorithms dedicated to classic combinatorial problems, such as the traveling salesman problem [START_REF] Khalil | Learning combinatorial optimization algorithms over graphs[END_REF][START_REF] Bello | Neural combinatorial optimization with reinforcement learning[END_REF][START_REF] Vinyals | Pointer networks[END_REF]. Even when considering only B&B methods, plenty of decisions might be learnt without having to take into account the dynamics inherent to inner strategies. For instance, [START_REF] Fischetti | Learning milp resolution outcomes before reaching time-limit[END_REF] proposes to learn the probability of an instance to be solved before some time limit. In [START_REF] Iommazzo | A learning-based mathematical programming formulation for the automatic configuration of optimization solvers[END_REF], the authors propose to learn to tune the MILP solver's best configuration for each instance of a given problem. In a more generic way, [START_REF] Hutter | Algorithm runtime prediction: Methods & evaluation[END_REF] predicts the run-time of different combinatorial algorithms, which allows for example to select online among a pool of algorithms to solve a specific instance. With a similar aim, [START_REF] Kruber | Learning when to use a decomposition[END_REF] uses classification to decide which (if any) decomposition should be applied to best exploit the model structure. Perhaps more aggressively, some studies suggest to directly predict the integer solution through classification [START_REF] Rachelson | Combining mixed integer programming and supervised learning for fast re-planning[END_REF][START_REF] Bertsimas | The voice of optimization[END_REF],

which may turn out to be intractable for complex problems.

Chapter 3

Use Cases As explained in the introduction, our aim is to learn strategies for a given problem, in order to solve efficiently future instances of such problem. To evaluate our methods, we will focus on two different problems arising in EDF activities. This chapter is dedicated to the introduction of these two problems, described and mathematically defined. The mixed integer linear programming formulations presented here are those used in the experiments and are representative of EDF formulations. Furthermore, we introduce some variations in the characteristics of these problems in order to allow more comprehensive experiments.

Microgrid

Problem description

The first problem used in our experiments, schematically displayed in Figure 3.1, consists in the optimization of a gas microgrid. This is a Unit Commitment problem [START_REF] Padhy | Unit commitment-a bibliographical survey[END_REF], where the objective is to coordinate the production units to meet a heat demand for a given discrete time horizon t1, . . . , T u while minimizing the costs. To this end, the system considered is composed of two parallel asymmetric boilers, which directly produce heat from gas acquired at a non-stationary cost, and a cogeneration unit, producing both heat and electricity. The heat produced by the three different units can be stored before being used to satisfy the demand, at the cost of linear losses through time. As for the electricity produced by the cogeneration unit, it is to be sold on the electricity market, with varying prices through time. All the units have different and fixed characteristics, such as energy efficiency (affine here, sometimes piecewise linear in practice), production capacities and starting costs. The cogeneration unit has an additional max-up constraint, meaning that it cannot be used continually for too many time steps. This problem will be referred to as the microgrid problem in this document. For a given configuration (which will be explicitly identified by its naming), the context or varying data across instances consist in gas prices, electricity prices, and heat demand for each time step of the discrete planning horizon. These three sequences fully identify an instance for a given problem, any other characteristic being fixed as part of the problem definition.

Gas supply

Gas boiler 2

Gas boiler 1

Gas cogeneration

Heat storage Heat demand Electricity market Note that many variations of the unit commitment problem have been studied in the literature, due to its importance in the production industry. The complexity of such problems depend on their structure, but its has been shown that dynamic coupling constraints, similar to max-up constraints, can be sufficient to prove NP-hardness [START_REF] Bendotti | On the complexity of the unit commitment problem[END_REF].

Problem formulation

We present here the MILP formulation of the microgrid problem used in the experiments. We write it keeping unspecified the number of units for the sake of clarity, denoting I the set of units and

E Ă I that of cogenerators.
Varying data (across instances of a same problem), noted in uppercase font and indexed by the time step, are historical gas prices G t , electricity prices E t and heat demand D t for each time step t P t1, . . . , T u with T the planning horizon.

Decision variables, identified by lowercase roman letters, are binary or continuous. The binary variables consist in the indicators x i,t of units' state (1 if it is on and 0 otherwise) at a given time t with i P I the unit identifier, and the starting and stopping indicators s i,t and z i,t respectively, with s i,t " 1 (resp.

z i,t " 1) if and only if x i,t " 1 and x i,t´1 " 0 (resp. x i,t " 0 and x i,t´1 " 1). As for the continuous variables, y i,t refers to the production level of unit i and r t to the stock level at time t.

The characteristics, held constant for every instances of the corresponding problem, are referred to with greek letters -except for the number of periods, naturally written T . The terms ρ i and α i are the linear and affine components of a unit efficiency, µ is the quantity of electricity by unit of heat produced by the cogenerators, β i its starting cost, π i , π i the lower and upper production capacities, and γ the inventory value at the beginning of the period. The stock loses a proportion ∆ of its value by time unit, with a constant maximal capacity of ζ.

Given these characteristics, an instance defined by the data tG t , E t , D t u t"1,...,T is then formulated as

min x,s,z,y,r T ÿ t"1 G t ˜ÿ iPI y i,t ρ i `αx i,t ¸´E t ÿ iPE y i,t `ÿ iPI β i s i,t s.t. s i,t ´xi,t ď 0 @i P I, t P t1, . .

. , T u pc1q

x i,t ´xi,t´1 ´si,t ď 0 @i P I, t P t2, . . . , T u pc2q

x i,t `si,t`1 ď 1 @i P I, t P t1, . . . , T ´1u pc3q z i,t`1 ´xi,t ď 0 @i P I, t P t1, . . . , T ´1u pc4q

x i,t ´xi,t`1 ´zi,t`1 ď 0 @i P I, t P t1, . . . , T ´1u pc5q

x i,t `zi,t ď 1 @i P I, t P t1, . . . , T u pc6q π i x i,t ď y i,t @i P I, t P t1, . . . , T u pc7q π i x i,t ě y i,t @i P I, t P t1, . . . , T u pc8q p1 ´∆qr t ´rt`1 `ÿ iPI y i,t " D t @t P t1, . . . , T ´1u pc9q

r t ď ζ @t P t1, . . . , T u pc10q r 1 " γ pc11q p1 ´∆qr T `ÿ iPI y i,T ´DT " γ pc12q s i,t ´zi,t`1 ´zi,t`2 ď 0 @i P E, t P t1, . . . , T ´2u pc13q x i,1 `xi,2 `xi,3 ď 2 @i P E pc14q 
x i,t , s i,t , z i,t P t0, 1u @i P I, t P t1, . . . , T u pc15q y i,t , r t P R `@i P I, t P t1, . .

. , T u pc16q

Constraints (c1´3) define the start variables. Due to (c1), a unit i can be at a starting state only if it is on, when constraints (c2) imply that it is necessarily at starting state at time t if it is on at time t and off at time t´1. Besides, (c3) prevent an on state from preceding a start state. Constraints (c4´6) define the stop variables in a similar manner. Constraints (c7) (resp. (c8)) prevent the production level of some unit to exceed (resp. be lower than) its capacity if the unit is at on state. If the unit is off, these two constraints force the production level to be null. The demand satisfaction is enforced by constraints (c9), equalizing the demand level to the production level plus or minus the stock flow.

This stock has a maximal capacity defined by constraint (c10) and an initial value given in (c11). The constraint (c12) enforces a constant terminal value for the inventory. The max-up constraints (c13) state that if a cogenerator starts a time t, it must either be stopping at time t `1 or t `2. These constraints are completed by (c14) at the beginning of the period, stating that a cogenerator cannot be up during the first three time steps.

Configurations

In order to make more comprehensive experiments, we consider different configurations of the microgrid problem. First, we make the time horizon vary to induce different problem dimensions.

Concretely, we will perform experiments with T P t6, 8, 12u. Second, we tune the efficiency characteristics of the two parallel boilers, so as to handle different degrees of symmetries in the formulation. This setting gives rise to two problems, the one with asymmetric boilers being referred to as micro_asym and the more balanced one, i.e. with more alike boilers' characteristics, referred to as micro_bal.

Apart from this difference, the two problems are identical and the instances are built from the same data. Table 3 To give some insights about the computational difficulty of solving these problems under these conditions, Figure 3.2 displays some statistics observed on the configurations encompassed in this work.

Naturally, we observe in Figure 3.2a that the tree sizes are positively correlated with the problem's dimension. For a given time horizon, both micro_asym and micro_bal are intrinsically of comparable difficulty, the main difference being the ability of CPLEX to find early good solutions in the asymmetric configuration -see Figure 3.2b.

Although these configurations may be similar for the considered solver, learning may be harder to perform on micro_bal due to the higher degree of variability in the solutions induced by its more symmetrical structure. To illustrate this point, we consider the stability score σ j for a binary variable j P J defined as

σ j " 2 N ⃓ ⃓ ⃓ ⃓ ⃓ ⃓ N ÿ i"1
x i,j ´0.5

⃓ ⃓ ⃓ ⃓ ⃓ ⃓ (3.1)
where N is the number of considered instances and x i the optimal solution found by CPLEX on instance i. This score is defined such that σ j equals one if the variable has always the same value in the found solutions and gets closer to zero as the variability increases. Figure 3.2d represents the empirical cumulative distribution of this score across the binary variables. We see for example that, for micro_bal_T12, around 40% of the variables have a score under 0.5 (cf. the black dot), which means that 40% of the variables takes some value at optimality for at most 75% of the instances, and the other value for the other 25%. In the case of micro_asym_T12, only 15% exhibits such level of variability. Thus, the higher the curve, the more variability, and we see that micro_bal solutions vary more.

This score does not fully reflect the variability of the solutions, as 100% of the variables could have a null score in the case of only two distinct integer solutions x ˚and 1 ´x˚, each one being found 50% of the time. Thus, Table 3.2 completes this score by giving the ratio of the number of distinct near-optimal integer solutions found over the number of considered instances. These solutions are obtained by setting the relative tolerance gap to 1% when collecting the pool of solutions for each instance. Here again, we see that micro_bal offers much more variability. 

Hydroelectric valley

Problem description

The second use case, presented in Figure 3.3, is also a unit commitment problem, this time applied to the management of a hydroelectric valley. The objective is to minimize the costs on a discrete time horizon, selling the energy produced by hydroelectric plants. A valley consists of reservoirs and power units, where the units are powered by the flow incoming from the upstream reservoir. The flow may then continue to the next (downstream) reservoir, creating a chain of interconnected units and reservoirs. Note that in the literature, this problem may be referred to as the hydro-chain scheduling problem or again hydro valley problem.

Many valley topologies can be encompassed, from different flow sources to pumping facilities allowing for water circuits. Here, we consider a simple linear valley, to be optimized for 12 time steps.

The units generate power by controlled water flow from the upstream reservoir through an ordered set of turbines, referred to as unit's components. These components also determine the level of primary and secondary spinning reserves, encouraged by the regulator. Flow variations are constrained, and some management constraints are imposed on the components' pilotage. Last, the reservoirs' volumes are constrained to fit a mid-term and end-of-period water level policy.

This problem will be referred to as the hydro problem in this document. For a given configuration (which will be explicitly identified by its naming), the context or varying data across instances are the reservoirs' policy volume constraints and electricity prices (power, primary and secondary reserves). Red cells represent the varying data, grey indicates constraints and blue the production units.

Problem formulation

We present here the MILP formulation of the hydro problem used in the experiments. N refers to the number of units.

Varying data, again noted in uppercase font and indexed by the time step, are simulated market prices P t , primary and secondary prices P 1 t , P 2 t , and volume bounds at mid-period V i,T {2 , V i,T {2 and at the end of the period V i,T , V i,T for each unit i P t1, . . . , N u.

The binary variables consist in the state (on or off) of each individual unit component x i,j,t for unit i at time t and their starting indicators s i,j,t , j P t1, . . . , M i u being here the identifiers of the M i components of unit i. The continuous variables are the power, primary and secondary reserves, respectively y i,t , p i,t and z i,t , produced by unit i at time t, the flow going through units f i,t and reservoirs' volume

v i,t .
The characteristics of the valley, denoted with Greek letters -except for the time horizon, comprise component efficiencies for power generation pρ j q, primary reserves pρ 1 j q and secondary reserves pρ 2 j q. If component j of unit i is at on state, a flow α i,j runs through it, and the variations of this flow across to consecutive time steps are lower (resp. upper) bounded by η i (resp. η i ). Reservoir i has limited capacities ν i and ν i , its initial volume is denoted ν i,0 , the time between two time steps is ∆ and δ i is the constant natural inflow at unit i.

An instance defined by the varying data

␣ P t , P 1 t , P 2 t , V i,T {2 , V i,T {2 , V i,T , V i,T ( i"1,...,N t"1,...,T is then for- mulated as min x,s,v,f,y,p,z ´N ÿ i"1 T ÿ t"1 `Pt y i,t `P 1 t p i,t `P 2 t z i,t s.t. y i,t " M i ÿ j"1
ρ j x i,j,t @i P t1, . . . , N u , t P t1, . . . , T u pc1q

p i,t " M i ÿ j"1 ρ 1 j x i,j,t @i P t1, . . . , N u , t P t1, . . . , T u pc2q z i,t " M i ÿ j"1 ρ 2 j x i,j,t @i P t1, . . . , N u , t P t1, . . . , T u pc3q f i,t " M i ÿ j"1 α i,j
x i,j,t @i P t1, . . . , N u , t P t1, . . . , T u pc4q

η i ď f i,t ´fi,t´1 ď η i @i P t1, . . . , N u , t P t2, . .

. , T u pc5q

x i,j,t ě x i,j`1,t @i P t1, . . . , N u , j P t1, . . . , M i ´1u , t P t1, . . . , T u pc6q

x i,j,t ´xi,j,t`1 ´xi,j,t´1 ě ´1 @i P t1, . . . , N u , j P t1, . . . , M i u , t P t2, . . . , T ´1u pc7q

x i,j,t ´xi,j,t`1 ´xi,j,t´1 ď 0 @i P t1, . . . , N u , j P t1, . . . , M i u , t P t2, . . . , T ´1u pc8q s i,j,0 ě x i,j,0 @i P t1, . . . , N u , j P t1, . . . , M i u pc9q s i,j,t ě x i,j,t ´xi,j,t´1 @i P t1, . . . , N u , j P t1, . . . , M i u , t P t2, . . . , T u pc10q

v 1,1 " ν 1,0 `∆ pδ 1 ´f1,1 q pc11q v i,1 " ν i,0 `∆ pδ i `fi´1,1 ´fi,1 q @i P t2, . . . , N u pc12q v 1,t " v 1,t´1 `∆ pδ 1 ´f1,t q @t P t2, . . . , T u pc13q v i,t " v i,t´1
∆ pδ i `fi´1,t ´fi,t q @i P t2, . . . , N u , t P t2, . . . , T u pc14q

ν i ď v i,t ď ν i @i P t1, . . . , N u , t P t1, . . . , T u pc15q V i,T {2 ď v i,T {2 ď V i,T {2 @i P t1, . . . , N u pc16q V i,T ď v i,T ď V i,T @i P t1, . .

. , N u pc17q

x i,j,t , s i,j,t P t0, 1u @i P t1, . . . , N u , j P t1, . . . , M i u , t P t1, . . . , T u pc18q

v i,t , f i,t , y i,t , p i,t , z i,t P R `@i P t1, . . . , N u , t P t1, . .

. , T u pc19q

Constraints (c1´4) define the impact of components on production, reserves and flow, while constraints (c5) limit the flow variations. Constraints (c6) impose an order on the set of a unit's components, and constraints (c7 ´8) forbid frequent start-ups and stops of the turbines. The start variables are defined by constraints (c9 ´10). Reservoirs' volume is defined in constraints (c11 ´14) by inflows and outflows, while the mid-period and end-of-period policies are defined in (c16 ´17).

Configurations

Unlike microgrid, the main lever considered for controlling the dimension of the hydro problem is the number of hydroelectric power plants. We mainly perform experiments with one and two plants, that is N P t1, 2u. The second source of heterogeneity introduced is that we consider a problem with a fixed (resp. variable) volume policy, i.e. volume bounds, referred to as hydro_fix (resp. hydro_var).

Note that the number of turbines per unit is not the same between these two problems. Table 3.3

summarizes the problem's dimensions.

As observed in Figure 3.4, hydro_var is not only more intrinsically difficult to solve, both in terms of B&B nodes and ease of finding good solutions, but also more heterogeneous regarding the optimal solutions found by CPLEX. This is true at the variable level (Figure 3.4d) but also at the solution level (Table 3.4). Thus, learning is expected to be more difficult on hydro_var problems. Mathematically, the feasible set for hydro_fix is stable across instances due to the fixed volume policy. [START_REF] Khalil | Learning to branch in mixed integer programming[END_REF][START_REF] Balcan | Learning to branch[END_REF][START_REF] Kılınç-Karzan | Information-based branching schemes for binary linear mixed integer problems[END_REF][START_REF] Fischetti | Branching on nonchimerical fractionalities[END_REF], allowing for a strict comparison between policies, independently from interactions with other strategies inherent to the selected solver.

Problem

As for the notations, we write ζ a Branch and Bound node, defined by the linear relaxation of the original MILP problem and an additional set of constraints induced by the ascendant nodes and the branching decision at its parent node. In the following, the LP of a node will refer to this linear relaxation. Note that we arbitrarily do not include the primal bound if any in the definition of a node. We write Dpζq " tD 0 pζ, jq, D 1 pζ, jqu the direct children of ζ after branching on variable j. Here, D 0 pζ, jq (resp. D 1 pζ, jq) refers to the node defined by the LP of ζ augmented with the constraint tx j " 0u (resp. tx j " 1u).

Consistently with the notations of Algorithm 4, we refer to the sets of non-leaf and leaf nodes once the tree is fully expanded as N π and L π when following the strategy π P Π, where Π is some set of strategies of interest. Note here that these two sets form a partition of T π . Likewise, we write In this context, with Π a set of policies of interest (branching strategies, node selection strategies or both), we define our global objective as

N π t , L π t , O π t ,
min πPΠ E p"L r|T π ppq|s (3.2)
where T π ppq refers to the tree produced by strategy π. Again, the tree size is used as a proxy for computational efficiency and independent of hardware considerations, and optimal policies for (3. Algorithm 4 Branch and Bound algorithm (two policies, minimization case)

Input:

A MILP instance p and ζ 0 its linear relaxation A global strategy π " pπ N , π V q with π N a node selection strategy and π V a branching strategy Initialization:

Iteration : t Ð 0 Solution and primal bound:

x Ð None ; β π t Ð 8 Sets of open, non-leaf and leaf nodes : O π t Ð tζ 0 u ; N π t Ð H ; L π t Ð H Procedure: while O π t ‰ H: t Ð t `1 ; β π t Ð β π t´1
Node selection:

ζ t Ð a node in O π t´1 using the node selection strategy π N O π t Ð O π t´1 z tζ t u Leaf assessment: If ζ t is either MILP-feasible or LP-infeasible or LP-feasible with objective β ˜t ě β π t : L π t Ð L π t´1 Y tζ t u ; N π t Ð N π t´1 If ζ t is MILP-feasible with objective β ˜t ă β π t and value x t : β π t Ð β ˜t ; x Ð x t Branching: Else (if ζ t is not a leaf): N π t Ð N π t´1 Y tζ t u ; L π t Ð L π t´1
Select a binary ariable j t using the branching strategy π V and update

O π t Ð O π t´1 Y tD π 0 pζ t , j t q, D π 1 pζ t , j t qu end while Output: x ; β ˚" β π t ; N π " N π t ; L π " L π t ; T π " N π Y L π Chapter 4
Learning a Dynamic Branching Policy 

CHAPTER 4. LEARNING A DYNAMIC BRANCHING POLICY

This chapter is dedicated to the learning of the branching strategy in Algorithm 4. For the sake of simplicity, we denote Π the set of all possible branching strategies and the letter π will refer to a branching policy in the following.

Branching governs the creation of recursive disjunctive sets, at the core of the divide and conquer B&B methodology. Various studies suggest that it plays a crucial, if not the most important, role in the building of B&B trees [START_REF] Achterberg | Mixed integer programming: Analyzing 12 years of progress[END_REF][START_REF] Alvarez | A supervised machine learning approach to variable branching in branch-and-bound[END_REF], which explains our interest in learning such strategies. In that matter, it is worth noting that the majority of the approaches involving the learning of B&B strategies is dedicated to branching (see Section 2.3.1). To illustrate the importance of branching, Figure 4.1 shows an histogram of tree sizes generated by random branching decisions on a given instance and compares it to the size of a tree produced by CPLEX. Throughout this chapter, the focus will be put on discovering oracle branching strategies, i.e. strategies which produce minimal trees for a given node selection strategy. To do so, we have no choice but to take into account their dynamic nature. A simple way of understanding the importance of dynamics is to consider the depth of a single dive towards a given solution x for different branching strategies in Algorithm 4. In this setting, the node selection strategy is to select the deepest node which corresponds to solution x, i.e. at iteration t selecting the node D k pζ t´1 , j t´1 q where j t´1 is the branching decision at the previous iteration and k " x j t´1 . Let us investigate on the example (4.1) the problem of finding the sequence of branching decisions which minimizes the length of such dive towards the solution py " 1 R n , z " 0 R n q. Figure 4.2 illustrates all the possible paths through branching decisions towards py " 1 R n , z " 0 R n q for the case n " 2. Writing 1 t,y the indicator of branching on a y variable in iteration t of Algorithm 4, the dive length

$ ' ' ' ' ' & ' ' ' ' ' % max y,z n ÿ i"1 py i `zi q s.t. y i `zi ď 1.2 @ i P t1, . . . , nu y P t0, 1u n , z P t0, 1u n (4.1) begin -,-,-,- 1,-,-,- -,1,-,- -,-,0,- -,-,-,0 -,-,0,0 1,-,0,- 1,-,-,0 -,1,0,- -,1,-,0 -,-,0,0 1,1,0,- 1,1,-,0 1,-,0,0 -,1,0,0 1,1,0,0 end 
T towards py " 1 R n , z " 0 R n q satisfies the inequality T ě n `řT t"1 1 t,y
, equality holding when the branching strategy never selects a variable already fixed by previous branching decisions. Here, an optimal branching strategy is characterized by always branching on a not-fixed z variable. Indeed, fixing y variables do not set z variables to their optimal value (neither to a feasible value, the constraint y i " 1 pushing the LP value of z i to 0.2), whereas fixing z i " 0 pushes y i to 1. It illustrates the fact that, even for the simple case of a diving strategy, the quality of a branching decision depends on every other branching decisions in the trajectory. When considering complete B&B trees, things become more complex and may depend on any other decisions in any of the other branches of the tree.

In order to capture this dynamic nature, we first generalize in Section 4.1 classic existing branching heuristics, which intent to produce long-term strategies by short-term decisions. To overcome the computational complexity of the proposed alternative, we propose a novel reinforcement learning framework adapted to the B&B environment to learn these strategies. Theoretical aspects and limitations of RL in this setting are studied and illustrated. Section 4.2 considers and compares two special cases, where a simple cost model is used and is proven to be optimal in some sense. Special care is given to the use of a discount factor, and a biased but more robust cost model is proposed. In Section 4.3, some variations around the presented methodology are given.

Learning dynamic heuristic strategies 4.1.1 Positioning

As mentioned in Chapter 2, branching strategies are heuristically designed in off-the-shelf solvers.

Despite their huge impact on the B&B procedure and the considerable amount of research dedicated to design such policies, we still struggle to characterize good branching strategies. One of the main difficulties when building strategies in B&B is their dynamic nature, as illustrated above. Especially, the impact of a branching decision often depends on remote choices, either made earlier or later on.

In this section, we hence aim at incorporating dynamic considerations into heuristic branching.

One of the most famous branching strategies is SB (see Section 2.3.1). Even if the SB rule is based on a heuristic score, it has shown a great ability to produce small B&B trees. The main source of its efficiency is the fact that this heuristic score is derived on potential child nodes. In other words, SB uses some kind of knowledge about the immediate future outcomes ahead of the current branching decision. This knowledge comes with a high computational cost, since it requires to compute all (or some part of) these potential outcomes. To limit this cost, strategies with no look-ahead are often preferred in practice, such as Pseudo-Cost or Most Fractional Branching. In the following, we address the challenge of learning branching policies with look-ahead, like SB. Such an approach has been studied in different papers (see for instance [START_REF] Alvarez | A supervised machine learning approach to variable branching in branch-and-bound[END_REF][START_REF] Gasse | Exact combinatorial optimization with graph convolutional neural networks[END_REF]), where SB is learnt by imitation (see Section 2.1.2 for an introduction to IL). However, rather than focusing only on SB or heuristics with no look-ahead, we learn more long-term policies by introducing the notion of h-ahead branching heuristics. We adopt CHAPTER 4. LEARNING A DYNAMIC BRANCHING POLICY an RL paradigm in order to learn the dynamics of the branching policy, using some information about future consequences of already made choices.

Markov Decision Process formulation

Before diving into the question of designing and learning strategies, let us formalize a branching policy using an MDP formulation. We define such episodic MDP when solving an instance p as a tuple ă S, A, T, c, γ ą, where the environment is set by Algorithm 4 and which consists of: a set of states S: a state s t P S is a tuple pp, t, H t q where t is an iteration of Algorithm 4 and H t is the history of any decisions or observations made so far, including the node selection performed at iteration t. A B&B node ζps t q is associated to a state s t and corresponds to the node visited at iteration t. Note here that the mapping from states to B&B nodes is not an injection: many states can be associated to a single B&B node. Conversely, a unique B&B node is associated to a state. Note that S is finite provided that one cannot branch on an already fixed variable: indeed in that case, the number of disjunctive sets, primal bounds and visiting orders is finite. a set of actions A " J . At each state, except for states corresponding to leaf nodes, a branching decision has to be made amongst the set of binary variables at the current node. Note that transitions are considered deterministic but unknown. A sufficient condition for this hypothesis to be verified is Hypothesis 4.1.1, see below. If it was not for the deterministic hypothesis, these transition functions would nevertheless still be markovian by construction as

tj t u Y H t Ď H t 1 for any t ă t 1 .
Note that one should add a fictitious action for states associated to leaf nodes to properly define transitions (and cost functions). We chose not to do so as it would only make the notations more cumbersome. a bounded cost function c : S ˆJ Ñ R which depends on the objective set for the strategy to be learnt.

a discount factor γ P r0, 1s.

This finite MDP is episodic as one can bound the number of iterations in Algorithm 4 by 2 n`1 ´1 provided that the branching policy does not select the same variable twice in a single branch of the tree. We call trajectory-based transition a deterministic function of the form T : S ˆJ Ñ S ; T ps t , a t q " s t`1 which gives the next visited state from a state-action pair, with ζps t q " ζ t and ζ pT ps t , a t qq " ζ t`1 where t corresponds to an iteration of Algorithm 4. Such transition corresponds to the usual type of time-indexed transition functions considered in classic RL tasks.

Definition 4.1.2. Tree-based transition

We call tree-based transition a deterministic transition of the form T π : S ˆJ Ñ S ˆS ; T π ps t , a t q " pD π 0 ps t , a t q, D π 1 ps t , a t qq where t corresponds to an iteration of Algorithm 4. The notation D π k ps, jq refers to the state associated to the node D k pζpsq, jq when following policy π. Here, the transition function provides two different states, their visiting time depending on both the branching and the node selection strategy. The represented tree is a B&B tree, where the number associated to each node is its visiting time. A tree-based transition function maps ps 2 , a 2 q to ps 4 , s 7 q, whereas a classic trajectory-based transition maps ps 2 , a 2 q to s 3 .

Remark 1. Similar notations, different meanings

At this point, it is important to make the distinction between the notations D k pζ, jq and D π k ps, jq with ζ the B&B node associated to state s. The former is a B&B node, whereas the latter is a state. As the state comprises any information obtained before processing its associated node, we may have D π 1 k ps, jq ‰ D π 2 k ps, jq for two different strategies π 1 and π 2 , even if their associated B&B node is D k pζ, jq.

h-ahead branching heuristic

Using the introduced formalism, we define h-ahead branching heuristics, a class of decision functions which makes it possible to generalize any classic branching heuristics by incorporating future knowledge. These heuristics can also be perceived as the generalization of the look-ahead strategies presented in [START_REF] Glankwamdee | Lookahead branching for mixed integer programming[END_REF] and [START_REF] Gilpin | Information-theoretic approaches to branching in search[END_REF], where the authors propose either to apply the SB rule on both child and grandchild nodes or to hybridize it with a look-ahead score based on the entropy in potential child nodes.

Definition 4.1.3. h-ahead branching heuristic

Let us denote D π,h ps, jq the set of states encountered in the subtree of depth h ą 0 rooted in s when branching on variable j and following branching strategy π P Π. This set corresponds to states reached from s in less than h `1 tree-based transitions when following policy π. We define an h-ahead cost ν h ps, j, πq for variable j at state s as ν h ps, j, πq " ν 0 ps, jq `ν1 ´Dπ,h ps, jq ¯(4.2) with ν 0 : S ˆJ Ñ R and ν 1 : PpSq Ñ R two score functions.

An h-ahead branching heuristic π h : S Ñ J is then defined as the branching decision minimizing the potential h-ahead cost:

π h psq " arg min jPJ ´min πPΠ ν h ps, j, πq ¯(4.3)
Note that, in Definition 4.1.3, the future information comes from the descendant states D π,h ps, jq.

Even though information from next iterations could have been used instead (thus using trajectory-based transitions), this definition with tree-based transitions still remains quite general and embraces well-known heuristics. For example, Most Fractional is a 0-ahead branching heuristic with ν 0 ps, jq "

⃓ ⃓ ⃓x s j ´0.5 ⃓ ⃓
⃓ and ν 1 " 0, where x s is the LP solution associated to s. Likewise, Strong Branching is a 1-ahead branching heuristic with ν 0 " 0 and ν 1 pD 0 ps, jq, D 1 ps, jqq " scorepz D 0 ps,jq ´zs , z D 1 ps,jq ´zs q, where z s refers to the LP value at ζpsq. Note here that, in these two cases, these static heuristics do not need to perform the optimization over the set of branching policies Π in Equation (4.3).

The interest of an h-ahead heuristic is straightforward. Rather than simply branching on a variable with a high heuristic score at current node, it seems appealing to select variables that also lead to high potential child nodes.

Unfortunately, following an h-ahead branching heuristic comes at a prohibiting computational cost.

As an illustration, computing such heuristic at the root node by exploring all the available branching policies in Equation (4.3) requires in the worst case to build ś h´1 k"0 pn ´kq 2 k subtrees of depth h. As introduced in Section 2.3.1, ML can be leveraged to learn off-line an expensive branching strategy. However, such brute force approach can hardly be transposed when considering h-ahead heuristics, as it turns out to be way too computationally expensive even for low values of h. Indeed, as displayed in Algorithm 5, it would require to run an h-ahead branching policy on training instances, collect stateaction pairs and the associated h-ahead heuristic outcomes, then learn a mapping f θ : S Ñ J between them (it is a classification task as defined in Section 2.1.1). Running an exact h-ahead branching policy then requires to suffer the full cost of exploring over Π in Equation (4.3).

Besides, a subtle point should be highlighted here. When considering h-ahead heuristics as defined in Definition 4.1.3, dynamics are only partially taken into account, as following an h-ahead heuristic does not ensure that consecutive choices are coherent with each other. More specifically, an action is selected at some state to obtain the minimal cost provided that the policy yielding min πPΠ ν h ps, j, πq is followed in descendant states in Equation (4.3). However, this is not guaranteed. In other words, one needs to ensure consistency of h-ahead heuristics through transitions before minimizing the cost over the set of branching strategies Π. A similar remark can be done regarding the fact that vanilla SL methods as presented in Algorithm 5 learn on the state distribution produced by the true heuristic and thus not on the distribution produced by the learnt one. Although using IL methods such as dataset aggregation (see Section 2.1.2) instead of vanilla SL would solve this issue, it would also heavily suffer from the computational cost previously mentioned. These considerations motivate our choice to use reinforcement learning, where the two minimization steps in Equation (4.3) are somehow merged into one.

Algorithm 5 Brute force training algorithm for h-ahead heuristic branching

Input: an h-ahead cost function ν h and its associated heuristic π h Initialization:

An 

Reinforcement learning with tree-based transition

As introduced in Section 2.2, reinforcement learning is a framework designed to solve dynamic control problems. Rather than fully exploring the set Π at each state and then learning from the entire dataset as required by SL, we learn in an iterative manner the sum of future costs associated to an evolving policy. It allows to guide the aforementioned exploration towards "interesting" parts of Π by learning from experiments. In the following, we consider tree-based transitions, which follow the B&B tree structure, to keep consistency with the nature of branching heuristics.

Value functions under tree-based transitions

Formally, let us write cps, jq the cost associated to a state-action pair and consider branching policies of the form π :

$ ' & ' % S Ñ J s Þ Ñ πpsq " arg min jPJ Q π ps, jq (4.4)
Q π is the Q-value function associated to the branching policy π, defined as the discounted sum of costs occurring in state-action pairs visited by π through tree-based transitions from the state-action ps, jq:

Q π : $ ' & ' % S ˆJ Ñ R s, j Þ Ñ Q π ps, jq " cps, jq `ÿ s 1 PD π,n ps,jq γ dps 1 q´dpsq cps 1 , πps 1 qq (4.5)
where dpsq is the depth of the node ζpsq and γ P r0, 1s is a discount factor. In this setting, the discount factor gives more weight to the closest descendant states, i.e. the ones with low depths. Note here the fundamental difference with Q-functions under standard trajectory-based transitions, which are defined as the discounted sum of future costs.

We see that Q π can be perceived as an n-ahead score, and the only difference between an h-ahead branching heuristic and the branching policy π defined by (4.4) is the optimization over Π -see (4.3).

Instead, the branching policy is now parametrized by itself.

The value function V π associated to Q π is defined as

V π : $ ' & ' % S Ñ R s Þ Ñ V π psq " Q π ps, πpsqq " cps, πpsqq `ÿ s 1 PD π,n ps,πpsqq γ dps 1 q´dpsq cps 1 , πps 1 qq (4.6)
and, due to the tree structure of our environment, these two functions satisfy the Bellman equations

V π psq " c ps, πpsqq `γ" V π pD π 0 ps, πpsqqq `V π pD π 1 ps, πpsqqq ı (4.7) Q π ps, jq " c ps, jq `γ" Q π pD π 0 ps, jq, πpsqq `Qπ pD π 1 ps, jq, πpsqq ı (4.8)
where D π 0 ps, πpsqq and D π 1 ps, πpsqq are the child states of s when following strategy π. They are both indexed by π as they are visited at iterations which depend on the branching policy, and consequently the information they contain may differ even for two strategies π 1 , π 2 selecting the same action at s, i.e. such that π 1 psq " π 2 psq (see Remark 1).

Finding an optimal policy

As introduced in Section 2.2, the objective of reinforcement learning is then to find an optimal policy with respect to these value functions, i.e. π ˚such that, for any s P S, we have

V π ˚psq " V ˚psq " min πPΠ V π psq (4.9)
This objective is the reason why we adopt the RL paradigm to learn look-ahead branching strategies rather than applying SL to h-ahead branching heuristics. To derive the score associated to a single branching decision in a h-ahead heuristic, one needs to search over the entire set Π, and this exhaustive search is to be repeated for each individual state. In RL, an optimal policy is defined on the entire state space, allowing the search to be done once at a higher level. This allows the learnt policy to be dynamically coherent, contrary to h-ahead heuristics where the optimizations are performed independently at each state.

Remark 2. An optimal policy for a heuristic cost model does not yield an oracle strategy At this point, is is worth noting that finding such optimal policy a priori does not bring any guarantee on finding an oracle strategy. Although this approach allows to take into account branching dynamics due to the discounted sum in Equation (4.5), considering a cost c corresponding to a "classic" heuristic such as SB do not ensure to minimize the tree size. We introduce in Section 4.2 a particular setting which offers such a guarantee, thus reconciling the notions of optimal policy and oracle strategy.

In classic RL, the optimal policy π ˚is derived from the optimal value function V ˚, which is the unique fixed point of the dynamic programming operator (Theorem 2.2.1). However, as stated in Proposition 4.1.1, the choice of tree-based transitions prevents us from deriving an optimal policy in the same way.

Proposition 4.1.1. Without additional assumptions, an optimal policy π ˚(in the sense of Equation (4.9)) cannot be defined by setting π ˚psq " arg min jPJ c ps, jq `γ" V ˚pD 0 ps, jqq `V ˚pD 1 ps, jqq ı .

Proof . We have

V π ˚psq " V ˚psq ðñ π ˚psq " arg min jPJ ! min πPΠ ! cps, jq `γ" V π pD π 0 ps, jqq `V π pD π 1 ps, jqq ı)) ðñ π ˚psq " arg min jPJ ! cps, jq `γ min πPΠ ! V π pD π 0 ps, jqq `V π pD π 1 ps, jqq
))

However, we give in the proof of Proposition 4.2.2, page 106, a counter-example where Proposition 4.1.1 states that knowing the optimal value function V ˚is not sufficient to derive an optimal policy π ˚as the equality

arg min jPJ ! cps, jq `γ min πPΠ ! V π pD π 0 ps, jqq `V π pD π 1 ps, jqq
V ˚psq " min jPJ cps, jq `γ" V ˚pD 0 ps, jqq `V ˚pD 1 ps, jqq ‰
is not satisfied in this setting. Note that considering trajectory-based transitions would not induce such inconsistency as it allows to recover the classic RL framework.

Finding a surrogate policy

Since the cost model c is heuristic, an optimal policy π ˚would probably not be an oracle strategy anyway. Then, looking for π ˚is not a requirement and we will instead settle for seeking the surrogate policy π ˜psq " arg min jPJ c ps, jq `γ" V " pD " 0 ps, jqq `V " pD " 1 ps, jqq ı with V " the solution of the dynamic programming equation

V " psq " min jPJ c ps, jq `γ" V " pD " 0 ps, jqq `V " pD " 1 ps, jqq ı (4.10) 
To do so, we first show that V " can be derived exactly by slightly modifying the classic theoretical dynamic programming procedure introduced by Theorem 2.2.1, page 47. This is stated in Theo- Let us denote Sps, jq " ␣ s j P S, ζps j q P Dpζpsq, jq ( the set of states associated to a child node of ζpsq for a given branching variable j P J . For any s P S, we write s j 1,0 , s j 1,1 (resp. s j 2,0 , s j 2,1 ) the arbitrary states in Sps, jq involved in the derivation of B ˜V1 psq (resp. B ˜V2 psq). We have

⃓ ⃓ ⃓B ˜V1 psq ´B ˜V2 psq ⃓ ⃓ ⃓ " ˇˇˇm in jPJ ! c ps, jq `γ" V 1 ´sj 1,0 ¯`V 1 ´sj 1,1 ¯ı) ´min jPJ ! c ps, jq `γ" V 2 ´sj 2,0 ¯`V 2 ´sj 2,1 ¯ı) ˇˇď max jPJ ⃓ ⃓ ⃓c ps, jq `γ" V 1 ´sj 1,0 ¯`V 1 ´sj 1,1 ¯ı ´c ps, jq ´γ" V 2 ´sj 2,0 ¯`V 2 ´sj 2,1 ¯ı⃓ ⃓ ⃓ ď γ max jPJ ˇˇV 1 ´sj 1,0 ¯`V 1 ´sj 1,1 ¯´V 2 ´sj 2,0 ¯´V 2 ´sj 2,1 ¯ˇď 2γ max jPJ s j 1 Pts j 1,0 ,s j 1,1 u s j 2 Pts j 2,0 ,s j 2,1 u ˇˇV 1 ´sj 1 ¯´V 2 ´sj 2 ¯ˇď 2γ||V 1 ´V2 || 8 Theorem 4.1.1.
V " is the unique solution of Equation (4.10) and can be found as V " " lim kÑ`8

B ˜kV 0 with V 0 any value function, B ˜any tree dynamic programming operator and γ P r0, 0.5q.

Proof of Theorem 4.1.1. The proof follows that of Theorem 2.2.1, with some minor changes.

By definition, V " is a solution of Equation (4.10). The uniqueness is induced by the contraction property of operator B ˜.

Let us now consider the sequence pV k q kPN defined by V k`1 " B ˜Vk with V 0 any value function, perceived here as a vector in R |S| . Similarly as in the proof of Lemma 4.1.1, s j k,0 and s j k,1 refer to the states involved in the derivation of B ˜Vk psq.

The sequence pV k q is bounded since c is bounded and γ P r0, 0.5q gives:

||V k || 8 " max sPS ˇˇˇˇm in jPJ cps, jq `γ" V k´1 ps j k,0 q `Vk´1 ps j k,1 q ı ˇˇˇď ||c|| 8 `2γ||V k´1 || 8 ď p2γq k ||V 0 || 8 `||c|| 8 k´1 ÿ i"0 p2γq i ď ||V 0 || 8 `||c|| 8 1 ´2γ
Besides, the sequence pV k q is Cauchy for the L 8 norm as, for any k ě p:

||V k ´Vp || 8 ď 2γ||V k´1 ´Vp´1 || 8 ď ¨¨¨ď p2γq p ||V k´p ´V0 || 8 ÝÑ k,pÑ`8 0
since pV k q is bounded and B ˜is a contraction for γ P r0, 0.5q.

As the space R |S| equipped with the L 8 norm is a Banach space, the sequence pV k q converges. Let us write V 8 its limit. By passage to the limit in V k`1 " B ˜Vk we have V 8 " B ˜V8 . Thus, by uniqueness of the fixed point for B ˜, we have lim

kÑ`8 V k " lim kÑ`8 pB ˜qk V 0 " V " .
Note here the condition γ P r0, 0.5q, necessary for obtaining the contraction property of the tree dynamic programming operator and for the dynamic programming sequence to be Cauchy. This theoretical remark will be echoed later on regarding practical considerations.

Learning a surrogate policy

Unfortunately, the complexity of one single step of the algorithm described in Theorem 4.1.1 is Op2 |S| |J |q, which prevents us from using it in practice. Thus, we turn to approximation procedures and more specifically Approximate Q-learning (see Section 2.2.3).

The Q-function defined in Equation (4.5) is approximated by a neural network Q ˆp., .; θq parametrized by a weight vector θ, and following the DQN method [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF], the iterative fitting procedure would be governed by steps towards reducing the empirical equivalent of the theoretical DQN loss function 

L DQN i pθ i q " E s,j"∆ i « ˆcps, jq `γ" min j 1 Q ˆpD π θ í 0 ps, jq, j 1 ; θ í qm in j 1 Q ˆpD π θ í 1 ps, jq, j 1 ; θ í q ı ´Q ˆps, j; θ i q ̇2ff (4.
L i pθ i q " E s,j"∆ i " ´Qπ θ í ps, jq ´Q ˆps, j; θ i q ¯2ȷ (4.12)
In this setting, the agent's policy is to select the action with the minimal predicted cost:

π θ psq " arg min jPJ Q ˆps, j; θq (4.13)
The base training procedure is described in Algorithm Note that we give a strictly positive cost to non-leaf nodes so as to encourage the agent to encounter leaves. Therefore, this cost pushes the agent to branch on variables which produce either a large change of the dual bound or leaf nodes.

Second, we define a heuristic cost based on the Most-Fractional Branching strategy:

cps, jq " $ ' & ' % 0 if ζpsq is a leaf node 1 |J | ÿ j 1 PJ min ␣ x ˚psq j 1 ; 1 ´x˚p sq j 1 ( otherwise (DBc)
where x ˚psq is the LP solution associated with state s. This heuristic encourages the agent to minimize the mean distance of the binary variables to their bounds.
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Last, we consider a simpler version of the previous heuristic by taking cps, jq "

$ ' & ' % 0 if ζpsq is a leaf node 1 ´1 |J | ÿ j 1 PJ 1 `min ␣ x ˚psq j 1 ; 1 ´x˚p sq j 1 ( " 0 ˘otherwise (NBc)
which tends to minimize the number of fractional variables.

Remark 3. Cost associated to leaf nodes

In the three heuristic costs defined above, a null value is associated to leaf nodes. Not only this is natural as one often seeks to find early leaf nodes, but it also allows these strategies to be more versatile than their "blind" counterparts. Let us consider the strong branching heuristic. In SB, which can be considered as a 1-ahead branching heuristic (see Section 4.1.3), the only objective is to make the LP objective vary, with the aim of pruning by bound. Hence, SB is not designed to favour infeasible nodes. When considering SBc, nodes with high dual bounds (in the minimization case) are encouraged, as much as infeasible nodes due to their null cost. A similar practice can be found in the look-ahead SB proposed in [START_REF] Glankwamdee | Lookahead branching for mixed integer programming[END_REF], where the authors take into account the pruning objective in their score.

As mentioned in Section 1.2.3, the question of discovering the optimal set of parameters for the chosen approach and problem is not considered in these experiments. We rather compare the different approaches using a unique configuration. The architecture and features use in any of the following experiments are briefly discussed in Section 4.3.2. Unless mentioned otherwise, we set in the remaining experiments the node selection strategy to a DFS strategy where the priority is given to the child node which fixes the branching variable to the bound closest from its LP value. Concretely, if variable j is chosen for branching at some node ζ with LP solution x ˚, node D 0 pζ, jq is visited before D 1 pζ, jq if x j ă 0.5 and conversely. This choice is made to fairly compare the branching strategies. When observing the errors made by the Q-network (see Figure 4.6), we notice that the agent systematically underestimates the Q-function. However, this bias is not necessarily harmful, as the most important in RL is to properly rank the different actions and not to precisely estimate their value.

In this regard, we see when comparing Figure 4.6a and Figure 4.4e that the bias grows in absolute value when the performance improves. We also note that the bias is naturally more important near the root node than in the rest of the tree (see Figure 4.7), as the number of visited samples is lower for these states. To mitigate this effect, more weight has been put in the training loop on the samples near root nodes. However, it does not fully compensates this difference (see Section 4.3, page 132 for some additional comments on this question). The poor performances of the agents under heuristic cost models on relatively easy problems highlight the lack of mathematical understanding of the branching dynamics, and suggest that classic heuristics are poor approximations of optimal choices. In the following, we provide theoretical and empirical justifications for using the unitary cost model.

Reinforcement learning with oracle cost

In the previous section, we used RL to learn a branching strategy by defining a heuristic cost model in the considered MDP. As mentioned earlier, it does not guarantee to find an oracle strategy,

i.e. optimal with respect to our global objective of minimizing the tree size (3.2). Incidentally, this approach did not produce satisfactory results as shown in the previous section. In the following, we show that solving the MDP with a unitary cost model yields an oracle strategy and conversely.

We shall say that such unitary cost is an oracle cost. This property is always valid under classical trajectory-based transitions but requires a depth-first search node selection strategy to hold under tree-based transitions. Next, we elaborate on the effect of the γ parameter and propose to use a non-oracle cost model to make the learning task easier. Finally, we offer some insights on different variations around the proposed methodology.

Oracle cost with trajectory-based transitions

Identifying an oracle strategy

As said above, we consider a unitary cost model, setting cps, jq " 1 for any state-action pair.

Coupling it with a trajectory-based transition, we obtain the following Bellman equations for the value functions Note that, when setting γ " 1, we have

V π γ ps t q " 1 `γV π γ pT
V π 1 ps t q " ˇˇ␣s t 1 P T π ; t 1 ě t ( ˇˇ(4.16)
which is the number of iterations of Algorithm 4 left from current state.

We show in Proposition 4.2.1, this value function V π γ is consistent with the global objective (3.2), in the sense that an optimal policy for the MDP yields a minimum for the tree size and conversely. Proposition 4.2.1. A policy is optimal for the value function V π γ defined by Equation (4.14) if and only if it is an oracle strategy.

Proof . Let us first show it when γ " 1. At any iteration of Algorithm 4, the size of the tree following policy π from state s t can be written T π t " t ´1 `V π 1 ps t q. Hence, minimizing the tree size from any state is equivalent to minimizing the value function, which gives

arg min πPΠ T π t " arg min πPΠ V π 1 ps t q Q π
The result also stands for γ P r0, 1q as V π 2 1 ps t q ď V π 2 1 ps t q ðñ V π 2 γ ps t q ď V π 2 γ ps t q where the index indicates the discount factor value. Indeed, writing T 1 , T 2 the number of iterations necessary to close all open nodes from s t following π 1 , π 2 , we have

V π 1 1 ps t q ď V π 2 1 ps t q ðñ T 1 ď T 2 ðñ T 1 ÿ t"0 γ t ď T 2 ÿ t"0 γ t ðñ V π 1 γ ps t q ď V π 2 γ ps t q
Thus, the discount factor does not affect the argmin computation.

Compared with the heuristic strategies learnt in the previous section, we now have the guarantee of finding an oracle strategy when finding an optimal policy π ˚. Besides, using trajectory-based transitions allows us to design an exact algorithm to find an optimal policy for value functions defined by (4.14). The following theorem formally states this point, and is a direct application of Theorem 2.2.1 in our setting.

Theorem 4.2.1. Omitting the reference to the discount factor γ, an optimal policy π ˚can be defined by π ˚psq " arg min jPJ V ˚pT ps, jqq and the optimal value function is V ˚" lim kÑ`8

B k V 0 with V 0 any value function and γ P r0, 1q.

Proof of Theorem 4.2.1. The proof is identical to that of Theorem 2. 

Credit assignment problem

Despite the coherence of the designed value function with respect to the global objective (3.2), using it without taking into account the tree structure of the environment appears to be quite inefficient. Our explanation for this failure is that this value function is not sufficiently informative and localized, and therefore suffers from credit assignment. As presented in Section 2.2, a problem of credit assignment traditionally arises in RL when the rewards are rare, causing difficulties in affecting a pertinent value to individual state-action pairs. More generally, we face such issue when the value of a state-action pair depends on numerous future choices, which implies troubles in assessing its actual value.

An example of such credit assignment issue is given in Figure 4.10 when considering the value function (4.16) induced by trajectory-based transitions with a unitary cost model. Let us assimilate B&B nodes to states and focus on the actions taken at the two children of the root node, s l (left node) and s r (right node). Noting j i k the action at node s k (k P tl, ru) in Figure 4.10.iq, we have ps r , j a r q " ps r , j b r q, ps l , j b l q " ps l , j c l q. Omitting the reference to the policy, we have when γ " cps, jq " 1 for any state-action pair ps, jq: Qps l , j a l q " 8 ă 10 " Qps l , j b l q. So state-action ps l , j a l q is better evaluated than ps l , j b l q which seems natural as it allows to produce a smaller tree under s l . However, we have Qps l , j a l q " 8 " Qps l , j c l q, although ps l , j c l q " ps l , j b l q. This instability is due to a change in policy at s r . This example illustrates the fact that a Q-function is less stable, more sensitive to changes in policy when it depends on long trajectories, hence making it difficult for an agent to precisely assess the value of a specific state-action pair. This example has two interests. First, it allows to highlight the fact that designing a value function in line with a global objective does not naturally comes with an easy learning task, as illustrated in the experiments displayed in Figure 4.9, and that some improvements may be brought upon it. Second, it

gives the intuition that focusing on the subtree under a state-action pair may be more stable, as the incoherence presented in Figure 4.10 disappears if one considers the subtree size instead of the global size. Next section is about considering such value function using tree-based transitions and ensuring that, in a specific setting, it still comes with the oracle property of minimizing the tree size.

Oracle cost with tree-based transitions

So far, we defined a value function in line with the objective of minimizing the tree size while considering trajectory-based transitions. Acknowledging a credit assignment issue, we use in the following tree-based transitions to define a new value function and a setting in which an optimal policy is also an oracle strategy and conversely.

Impact of tree-based transitions on value functions

Using a unitary cost model as in the previous section, the Bellman equations (4.7) and (4.8) give the following value functions

V π psq " 1 `γ" V π pD π 0 ps, πpsqqq `V π pD π 1 ps, πpsqqq ı (4.17) Q π ps, jq " 1 `γ" Q π pD π 0 ps, jq, πpsqq `Qπ pD π 1 ps, jq, πpsqq ı (4.18)
When setting γ to 1, V π psq is the size of the subtree rooted in the B&B node ζpsq associated to s when following policy π. Likewise, Q π ps, jq is the size of the subtree rooted in ζpsq when branching on variable j at this node.

Let us compare value functions (4.14) and (4.17) to see why using tree-based transitions partially solves the credit assignment problem inherent to trajectory-based transitions pointed out in In this matter, preferring tree-based transitions over trajectory-based transitions matches the remark of Newel, cited by Minsky in its seminal paper [START_REF] Minsky | Steps toward artificial intelligence[END_REF]: "it is extremely doubtful whether there is enough information in win, lose, or draw when referred to the whole play of the game to permit any learning at all over available time scales ... For learning to take place, each play of the game must yield much more information. This is [...] achieved by breaking the problem into components." When considering a unitary cost model under tree-based transitions, we break the problem of minimizing the tree size into the many sub-problems of minimizing the subtree sizes. 

Reconciling optimal and oracle strategies

Even if tree-based transitions allow to reduce the credit assignment issue, we would enjoy to have both stability and the oracle property at the same time. In fact, we show that an optimal policy for the value function (4.17) is not anymore an oracle strategy in general (Proposition 4.2.2). Nonetheless, Proposition 4.2.4 asserts that it is the case when considering DFS node selection strategies, allowing to reconcile optimal and oracle strategies.

Proposition 4.2.2. An optimal policy π ˚for the value function (4.17) is not necessarily an oracle strategy.

Proof . Setting γ " 1, let us build an example where minimizing the subtree does not produces a minimal tree when following a naive Breadth-First Search (BrFS) node selection strategy.

The idea to produce this example is the following. We build a problem where an optimal solution can only be found in one side of the tree. Then, we design a case where taking a detour (branching on an unnecessary variable to find the optimum) allows to obtain quickly a bound which enables pruning on the non-optimal side of the tree. If one wants to minimize the subtree on the optimal side, the early bound is not found and the global tree is bigger.

max x,y,z 3x 1 ´0.2x 2 `3 ÿ i"1 y i `0.005 3 ÿ k"1 z k s.t. x 1 `zk ď 1.5 , k P t1, 2, 3u pc1q 
x 1 `yi ď 1 , i P t1, 2, 3u pc2q 
x 1 `3 ÿ i"1 y i ď 2.4 pc3q 
x 2 ´x1 ď 0 pc4q x 2 `zk ď 1 , k P t1, 2, 3u pc5q 
x 1 `x2 `yi ě 0.1 , i P t1, 2, 3u pc6q 
y i `3 ÿ k"1 z k ď 1.2 , i P t1, 2, 3u pc7q 
x i P t0, 1u , y k P t0, 1u , z k P t0, 1u , i P t1, 2u , k P t1, 2, 3u pc8q 
(4.19)
Using Algorithm 4 to solve problem (4.19), we consider the case where the first branching decision is on x 1 . From this initial move, we build in Figure 4.12 two B&B trees, with or without the imperative to minimize subtrees using a naive BrFS node selection strategy from left to right. We see that the tree obtained when minimizing each subtree (left tree) is bigger than a minimal tree (right tree). Let us explicit why these trees are minimal. First, notice that the optimal solution tx 1 " 1, x 2 " 0, y " z " 0u is unique by construction and belongs to the subtree of node 2.

If one wants to minimize the subtrees, this solution must, if possible, be found in a single dive under node 2. Besides, the slackness in constraints pc1q and pc7q requires to branch on each z variable to find this solution. Thus the branching strategy in aq produces a minimal subtree under node 2. As no primal bound is found before finding the solution and a solution exists in the subtree of node 3, minimizing the subtree under this node is achieved by a single dive. The same reasoning at each node guarantees that we minimized each subtree in tree aq.

The minimal tree bq is obtained by taking a detour in the path to the optimal solution so as to prune entirely the subtree of node 3. As the detour is of minimal length (it only adds two nodes to the subtree of node 2), we know that tree bq is minimal. we have (i) min π V π ps 1 1 q " min π V π ps 1 2 q

(ii) For any state s P S, the dynamic programming equation

V ˚psq " min jPJ 1 `γ" V ˚pD 0 ps, jqq `V ˚pD 1 ps, jqq ı holds.
Proof . Due to the DFS node selection strategy, the primal bounds at s 1 1 and s 1 2 are equal since the full subtree rooted in s has been expanded between the visits of ζ and ζ 1 , no matter the branching policy.

As ζ 1 " ζps 1 1 q " ζps 1 2 q, taking the same sequence of branching decisions under s 1 1 and s 1 2 will lead to the same subtree in Algorithm 4 due to Hypothesis 4.1.1, which gives piq.

Consider with no loss of generality that the first visited child is the one corresponding to the constraint tx j " 0u, we have by definition, for any state s P S:

V ˚psq " min π 1 ,π 2 PΠ jPJ ! 1 `γ" V π 1 pD π 1 0 ps, jqq `V π 2 pD π 1 1 ps, jqq ı)
when π 1 (resp. π 2 ) is the branching policy under the first (resp. second) visited child. Due to piq,

min π 2 PΠ V π 2 pD π 1
1 ps, jqq is independent of π 1 , which gives piiq.

Proposition 4.2.4. When following a DFS node selection strategy, a policy is optimal for the value function (4.17) with γ " 1 if and only if it is an oracle strategy.

Proof . Let s t be a state associated to a non-leaf node ζps t q in a B&B tree. Due to DFS, the subree rooted in ζps t q will be fully expanded at iteration t π 1 1 when following π 1 before visiting any node of O " O t π 1 1 " O t z tζps t qu. Thus, V π 1 ps t q is the subtree size rooted in ζps t q when following π 1 in this subtree and we can write V π 2 t π 1 1 pO|π 1 q the number of nodes in the subtrees rooted in O when following π 2 . By Proposition 4.2.3, we have for any valid branching policy π 1 1 :

min π 2 V π 2 t π 1 1 pO|π 1 q " min π 2 V π 2 t π 1 1 1 pO|π 1 1 q " V π 2 t
pOq. As a consequence, writing V t pπ 1 , π 2 q the size of the tree obtained by following π 1 and π 2 after s t , we have arg min

π 1 ! min π 2 ␣ V t pπ 1 , π 2 q ( ) " arg min π 1 ! min π 2 ␣ t ´1 `V π 1 ps t q `V π 2 t π 1 1 pO|π 1 q ( ) " arg min π 1 ! V π 1 ps t q `min π 2 ␣ V π 2 t π 1 1 1 `O|π 1 1 ˘() " arg min π 1 ! V π 1 ps t q `V π 2 t pOq ) " arg min π 1 ! V π 1 ps t q )
Minimizing the tree size is then equivalent to minimizing the subtree size at each state, which implies that an optimal policy is an oracle strategy and reciprocally.

At this point, we showed that considering DFS node selection strategies allows to learn an oracle strategy by considering a unitary cost model and tree-based transitions. Using DFS allows in a way to make the tree-based MDP consistent with our objective of tree size minimization. The difference with trajectory-based transitions is a more localized, hence stable, value function, which should alleviate the credit assignment issue. Note that the learning task has not fundamentally changed though: instead of learning to build small trees, we will rather learn to build... smaller trees.

Remark 4. The oracle property is only valid for γ " 1

Contrary to the previous result using trajectory-based transitions, Proposition 4.2.4 is only valid when setting the discount factor to 1. This is due to the fact that, when considering tree-based transitions, the equivalence V π 1 1 ps t q ď V π 2 1 ps t q ðñ V π 1 γ ps t q ď V π 2 γ ps t q in the proof of Proposition 4.2.1 does not hold anymore. This is illustrated in the next section (see Figure 4.17b) by comparing wide and deep trees. We exhibit a case where V π 1 1 psq ă V π 2 1 psq and V π 1 γ psq ą V π 2 γ psq with γ P p0, 1q.

We investigate in Section 4.2.3 the impact of the discount factor on the learning procedure in our specific environment. From the theoretical standpoint, the following theorem states that one can 109 CHAPTER 4. LEARNING A DYNAMIC BRANCHING POLICY design a dynamic programming algorithm to obtain the optimal value function only for cases where γ P r0, 0.5q. Note here the difference with the generic case, where an optimal policy could not be obtained (see Proposition 4.1.1). This result is due to the use of a DFS node selection strategy which gives us the dynamic programming equation in Proposition 4.2.3 and can be generalized to any cost model with tree-based transitions. As in classical RL (see Chapter 2), one may still obtain the optimal value function and policy without any condition on γ by solving a linear system as the MDP is finite.

Theorem 4.2.2. Omitting the reference to the discount factor γ, an optimal policy π ˚can be defined when following a DFS node selection strategy by π ˚psq " arg min jPJ V ˚pD 0 ps, π ˚psqqq`V ˚pD 1 ps, π ˚psqqq and the optimal value function is

V ˚" lim kÑ`8
B ˜kV 0 with V 0 any value function and γ P r0, 0.5q.

Proof of Theorem 4.2.2. This is the same proof as in Theorem 4.1.1, substituting V ˚for V " thanks to Proposition 4.2.3 and replacing cps, jq by 1.

As previously, the theoretical algorithm described in Theorem 4.2.2 is not applicable in practice, and we use Algorithm 6 as an approximation procedure. As for assessing the performance of a greedy policy with respect to a value function, we obtain in Proposition 4.2.5 a similar bound (up to a factor 2 on γ) as in classical RL -see Chapter 2. Thus, using tree-based transitions does not alter the usual guarantees on the performance of a greedy policy.

Proposition 4.2.5. Let π be a greedy policy with respect to a Q-value function Q and L Q the loss function such that L Q psq " Q ˜πps, πpsqq ´Q˚p s, π ˚psqq for all state s P S, with Q ˜πps, πpsqq the evaluation of following π from s. L Q is then the loss in value of state s resulting from following π instead of an optimal policy π ˚. Then, if |Q ˚ps, aq ´Q ˜πps, aq| ď ε for all s P S, we have

L Q psq ď 2ε 1 ´2γ
Proof . Let z P arg max sPS L Q psq. Consider the optimal action a " π ˚pzq and the greedy action b " πpzq at state z, and z 1 , z 2 (resp. z 3 , z 4 ) the child states of z when following π (resp. π ˚). By definition of a greedy policy, we have Q ˜πps, bq ď Q ˜πps, aq 110 CHAPTER 4. LEARNING A DYNAMIC BRANCHING POLICY Since Q ˚ps, aq ´ε ď Q ˜πps, aq ď Q ˚ps, aq `ε for all s P S, we also have

Q ˚pz, bq ´ε ď Q ˚pz, aq `ε ðñ cpz, bq `γ" V ˚pz 3 q `V ˚pz 4 q ‰ ´ε ď cpz, aq `γ" V ˚pz 1 q `V ˚pz 2 q ‰ `ε
ðñ cpz, bq ´cpz, aq ď 2ε `γ" V ˚pz 1 q `V ˚pz 2 q ´V ˚pz 3 q ´V ˚pz 4 q ‰ As V ˚psq " Q ˚ps, π ˚psqq for any s P S, the maximal loss is then

L Q pzq " Q ˜πpz, πpzqq ´Q˚p z, π ˚pzqq " cpz, bq ´cpz, aq `γ" Q ˜πpz 3 , πpz 3 qq `Q ˜πpz 4 , πpz 4 qq ´Q˚p z 1 , π ˚pz 1 qq ´Q˚p z 2 , π ˚pz 2 qq ‰ ď 2ε `γ" Q ˜πpz 3 , πpz 3 qq `Q ˜πpz 4 , πpz 4 qq ´Q˚p z 3 , π ˚pz 3 qq ´Q˚p z 4 , π ˚pz 4 qq ‰ ď 2ε `2γL Q pzq Then, L Q pzq ď 2ε 1 ´2γ

Experiments

The first point to assess is the relevance of tree-based transitions. Further experiments will be presented later on. This result comes as a validation of our decision of considering tree-based transitions and confirms that they allow to ease the learning task, especially by reducing the credit assignment problem. We already saw the theoretical interest of a lower discount factor γ P r0, 0.5q, allowing to design an exact dynamic programming procedure in Theorem 4.2.2 to obtain optimal value functions. As Algorithm 6 is an approximate version of such procedure, it may suggest that setting γ ă 1 may have some advantages. In the following, we explicit the practical impact of the discount factor γ and propose a more general value function to strengthen such impact.

Discount factor in classical trajectory-based transitions

From a theoretical and exact standpoint, the discount factor is not justified as soon as the MDP is episodic or finite, as it may alter the optimal policy -see Remark 4. From a practical standpoint however, the discount factor is commonly used in trajectory-based transitions for giving more importance to rewards closer to the current state. This may be desirable, as the observed long-term outcomes have a lower probability to happen under the optimal policy than short-term observations. Let us elaborate on this point and consider our setting, where a state can only be reached from a unique predecessor (recall that a state comprises any information collected so far). Assuming that the current policy is of the form π " βπ ˚`p1 ´βqU J ztπ ˚u which is interpreted here as a probability β P r0, 1s to select the optimal action and 1 ´β to select uniformly a sub-optimal one. Then, if we observe a sequence ts 0 , s 1 , . . . , s t u, we have by hypothesis the probability of reaching s t starting from s 0 and following the optimal policy π ˚pps t |s 0 , π ˚q " β t (4.20)

which is a decreasing function of t. Thus, long-term observations should be less trusted than closer ones, which justifies the use of the discount factor in the value function. Such reasoning is independent of the stochasticity or episodic nature of the considered MDP, which are the classical justifications for the discount factor, and hence applies to our setting.

Another point stemming from Equation (4.20) is that the ratio pps t 1 |s 0 ,π ˚q ppst|s 0 ,π ˚q with t ď t 1 is an increasing function of β. It illustrates that long-term observations are less reliable when the policy is far from the optimal one. Thus, the discount factor also smooths the value function to make it less dependent on the quality of the current policy, which provides more stable targets during the agent training from Algorithm 6, especially in the early episodes. This simple reasoning allows to understand why the discount factor may be beneficial from a practical In addition to limiting the scale of the value function, it also naturally decreases both the average and standard deviation of states' values. Especially, Proposition 4.2.7 asserts that the moments of such values are upper bounded by a constant when using a discount factor lower than 1, whereas they grow linearly and exponentially with the maximal depth when setting γ " 1.

Proposition 4.2.7. Let s be the root node of a B&B full-width tree T of size N " 2 p`1 ´1. When setting γ " 1, the mean value of states encountered in such tree asymptotically grows linearly with its depth p, while its variance grows exponentially. On the opposite, they both are upper bounded by a constant when using γ P r0, 1q and γ P r0, 1 ? 2 q respectively. Proof . We write in the following µ γ and σ 2 γ the empirical mean and variance in a full-width tree of size N " 2 p`1 ´1 when using the discount factor γ.

For γ " 1, the value of a state at depth d is 2 p´d`1 ´1, which yields

µ 1 " 1 N p ÿ d"0 2 d p2 p´d`1 ´1q " 1 N " p ÿ d"0 2 p`1 ´p ÿ d"0 2 d ı " pp `1q 2 p`1 N ´1 N p2 p`1 ´1q " p2 p`1 `1 N " p 2 p`1 ´1 N `p `1 N " p `p `1 N " Oppq σ 2 1 " 1 N p ÿ d"0 2 d p2 p´d`1 ´1 ´µ1 q 2 " 1 N ˜p ÿ d"0 2 d p2 p´d`1 ´1q 2 ¸´µ 2 1 (classical variance reformulation) " ´µ2 1 `1 N p ÿ d"0 2 d ´22p´2d`2 `1 ´2p´d`2 " ´µ2 1 `1 N " 2 p`1 ˜p ÿ d"0 2 p´d`1 ¸`N ´2p`2 pp `1q ı " ´µ2 1 `1 N " 2 p`1 ˜p`1 ÿ d"1 2 d ¸`N ´2p`2 pp `1q ı " ´µ2 1 `1 N " 2 p`2 N `N ´2p`2 pp `1q ı " ´µ2 1 `1 N " 2 p`2 N `N ´2N pp `1q ´2pp `1q ı " 2 p`2 ´2p ´1 ´µ2 1 ´2 p `1 N " Op2 p q
For γ P r0, 0.5q Y p0.5, 1q (the case γ " 0.5 is omitted for the sake of simplicity), the value of a state at depth d is p2γq p´d`1 ´1 2γ´1 , which gives

116 CHAPTER 4. LEARNING A DYNAMIC BRANCHING POLICY µ γ " 1 N p ÿ d"0 2 d p2γq p´d`1 ´1 2γ ´1 " 1 p2γ ´1qN " 2 p`1 ˜p ÿ d"0 γ p´d`1 ¸´N ı " 1 p2γ ´1qN " 2 p`1 ˜p`1 ÿ d"1 γ d ¸´N ı " 1 p2γ ´1qN " 2 p`1 γ 1 ´γp`1 1 ´γ ´N ı " 1 p2γ ´1qN " N γ 1 ´γp`1 1 ´γ `γ 1 ´γp`1 1 ´γ ´N ı " O ˆ1 p2γ ´1q ˆγ 1 ´γ ´1̇̇" O p1q 
When considering γ P r0, 0.5q Y p0.5, 1 ?

2 q, we have

σ 2 γ " 1 N p ÿ d"0 2 d ˆp2γq p´d`1 ´1 2γ ´1 ´µγ ̇2 " 1 N ˜p ÿ d"0 2 d ˆp2γq p´d`1 ´1 2γ ´1 ̇2¸´µ 2 γ " ´µ2 γ `1 N p2γ ´1q 2 p ÿ d"0 2 d p2γq 2p´2d`2 `2d ´2p`2 γ p´d`1 " ´µ2 γ `1 N p2γ ´1q 2 " 2 p`1 ˜p ÿ d"0 p2γ 2 q p´d`1 ¸`N ´2p`2 p ÿ d"0 γ p´d`1 ı " ´µ2 γ ``1 N p2γ ´1q 2 " 2 p`1 ˜p`1 ÿ d"1 p2γ 2 q d ¸`N ´2p`2 p`1 ÿ d"1 γ d ı " ´µ2 γ `1 N p2γ ´1q 2 " 2 p`1 2γ 2 1 ´p2γ 2 q p`1 1 ´2γ 2 `N ´2p`2 γ 1 ´γp`1 1 ´γ ı " ´µ2 γ `1 N p2γ ´1q 2 " N 2γ 2 1 ´p2γ 2 q p`1 1 ´2γ 2 `2γ 2 1 ´p2γ 2 q p`1 1 ´2γ 2 `N ´2N γ 1 ´γp`1 1 ´γ ´2γ 1 ´γp`1 1 ´γ ı " O ˆ1 p2γ ´1q 2 ˆ2γ 2 1 ´2γ 2 `1 ´2γ 1 ´γ ̇̇" Op1q
Despite the normalizing benefits induced by using a discount factor, it also comes with the risk of flattening too much the value function, then preventing from distinguishing between bad and good actions. This is illustrated by Figure 4. [START_REF] Prechelt | Early stopping-but when?[END_REF], where we see that using a too low value of γ makes it difficult to make out the values of highly different states. As pointed out in Section 4.2.2, one loses the equivalence between optimal and oracle strategies when setting a discount factor different from 1. In fact, doing so biases the value function in favor of imbalanced trees, as we will illustrate now by elaborating on two extreme cases. Let us consider the root state s w of a full-width tree of size N " 2 p`1 ´1 and the root state s d of a full-depth tree with the same size N . Here, we call full-depth a tree which, except for depth 0, only contains two nodes at each depth. When such tree is of size N , its depth is N ´1 2 . Figure 4.16 illustrates the two types of trees. We have

V 1 ps w q " V 1 ps d q " N , V γ ps w q " 1´p2γq log 2 pN `1q 1´2γ and V γ ps d q " 1 `2γ 1´γ N ´1 2 1´γ
for γ P r0, 0.5q Y p0.5, 1q. Figure 4.17a, which displays the ratio V γ ps w q{V γ ps d q as a function of γ,

shows that discounted value functions assign a higher value to full-width trees, with a non-monotonic impact. Figure 4.17b represents the difference V γ ps w q ´Vγ ps d q when V 1 ps d q " V 1 ps w q `100 and illustrates the lost of the equivalence between optimal and oracle strategies mentioned earlier. In practice, the discount factor thus encourages the agent to make choices which allow for early pruning, which is in general a safe strategy. This is all the more interesting as biasing the value function towards early pruning incorporates some short-term considerations in the value function, allowing to (a) V γ ps w q{V γ ps d q as a function of γ for trees of size V 1 ps d q " V 1 ps w q " 511.

(b) V γ ps w q ´Vγ ps d q when V 1 ps d q " V 1 ps w q `100 " N `100 for different values of N . This figure illustrates the fact that the equivalence V π1 1 ps t q ď V π2 1 ps t q ðñ V π1 γ ps t q ď V π2 γ ps t q in the proof of Proposition 4.2.1 does not hold anymore when considering tree-based transitions. 

Experiments on the discount factor for the unitary cost model under tree-based transitions

The influence of the discount factor on a unitary cost model is displayed in Figure 4.18. First, we see that low values of γ prevent the agent from learning efficiently. As explained earlier, this comes from the fact that the resulting squashing of the value function makes it less informative. Second, one can notice when observing Figure 4.18b that the discount factor may have an unexpected effect on the agent's ability to find early the optimal solution. Especially, the curves associated to the value γ " 0.8 show a decreasing tree size with an increasing primal integral value. Solving the dilemma of the discount factor for the unitary cost model

From a practical standpoint, we saw that the value function obtained when considering the unitary cost model is not particularly well suited for the learning task. Indeed, as explained earlier in the setting of tree-based transitions, choosing γ " 1 makes the value function equal to the subtree size rooted in the considered state, which implies many issues.

First, it produces a target distribution with a large support, as the value at the root node equals the tree size whereas that at a leaf node equals one. Second, this value highly varies with the quality of the agent and its ability to produce small trees. In other words, the targets pursued by the agent are permanently moving along the training process as it becomes more efficient. Third, their support (and thus the mean value) also depends on the instance sampled at a given episode, some being intrinsically more difficult to solve than others. Last but not least, the value function may vary drastically from a state to its direct child, as illustrated in Figure 4.19, which makes the function highly non-smooth in the state-space and thus makes the learning task harder. s s 1

V psq " 13

V ps 1 q " 1 At this point, we are facing some kind of a dilemma. On the one hand, we saw that a low value of gamma may be interesting as it smooths the highly volatile value function and makes it less dependent on errors made in future choices. On the other hand, a low discount factor squashes the value function and does not discriminate between full-width and full-depth trees. Besides, one loses the oracle property when setting γ ă 1 under tree-based transitions.

We solve this question by considering an h-ahead score (see Section 4.1.3) instead of a unitary cost model. By setting ν 0 " 1 and ν 1 to the cardinal function in the definition of an h-ahead heuristic, we consider the heuristic cost model cps, jq " ν h ps, j, πq " 1 `⃓ ⃓ ⃓D π,h ps, jq ⃓ ⃓ ⃓ " |T π h ps, jq|, which is the size of the subtree of depth h rooted in s when following π after branching on j. We call this cost model the subtree cost model, leading to the value function

V π h,γ psq " |T π h psq| `γ" V π h,γ pD π 0 ps, πpsqqq `V π h,γ pD π 1 ps, πpsqqq ı (4.21)
Note that by setting h " 0 we get back to our previous discounted value function under the unitary cost model. This generalization can be seen as a way of "trusting" more the impact of an action up to a certain horizon h. We see in Figure 4.20 that this new value function even strengthens the discrimination between balanced and imbalanced trees. V h,γ ps w q{V h,γ ps d q as a function of γ for trees of size V 1 ps d q " V 1 ps w q " 511, s d and s w being root states of respectively full-depth and full-width trees.

Experiments on the subtree cost model under tree-based transitions

The solution put forward to reduce the volatility of the value function and solve the discount factor dilemma was to use the value function defined in Equation (4.21), using the subtree cost model. Before doing so, note that a potential undesirable outcome of using a more short-sighted value function is given by Figure 4.21b, in which we see poorer results regarding primal integral scores. 
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As suggested above, the improvement of the performances may be due to the fact that this new value function exhibits a more stable behaviour during the learning process. Indeed, Figure 4.22 shows that both the mean and standard deviation of the targets are more stable during the learning process, which illustrates that the targets are less dependent on the agent's performances. To elaborate on that matter, Figure 4.23 displays the evolution of these two statistics by depth during the learning process. We see that the subtree cost model allows to standardize the targets along the tree and thus helps to compare actions that may be taken at different depths. Besides, Figure 4.22c highlights that our approximation of the Q-function is biased under both cost models, which does not appear as a subject of concern since the more biased model here gives the best performances. Let us now investigate on the behaviour of the agents on test instances. Figure 4.24 shows the tree sizes produced on test instances by a learnt agent under both the unitary and the subtree cost model.

We see that the gains are mostly obtained on the instances on which CPLEX has some difficulties. On the contrary, the agents often show relatively low performances on instances easily solved by CPLEX.

This observation can be explained by the fact that mechanically less samples are available for learning on "easy" instances. An exception of this fact is the case of hydro_fix_1, where almost every instances can be solved in less than 10 nodes. Note that trained agents find the according strategies and are able to almost systematically beat CPLEX (which is not so trivial as was shown in Figure 4.14c, page 113, where we saw that random strategies for this problems yield large trees).

As suggested by the training processes, we see in Table 4.1 that the subtree cost model generally produces more efficient agents, both in average and when considering only the best agents on train.

Agents are generally less efficient on test instances than on train instances, which was expected, but do not show excessive signs of overfitting. We generally compete with the branching strategy 125 CHAPTER 4. LEARNING A DYNAMIC BRANCHING POLICY of CPLEX, except on micro_bal_T12. As expected, learning an efficient strategy on this problem is more complicated than on micro_asym_T12, the higher variability in the optimal solutions making the branching dynamics more dependent to instances' data. 

Uc_tree

Remark 5. The DFS condition is not restrictive in practice

In this chapter, we used DFS so as to theoretically reconcile oracle strategies and optimal policies for the unitary cost model with tree-based transitions. Nonetheless, minimizing the subtree size is still a relevant objective when the node selection strategy is not DFS. This is illustrated in 4.2, confirm these results. Every trained agents are evaluated against CPLEX using the same node selection strategy as they do, so as to evaluate the relative performance of the agents compared to CPLEX under equal conditions. In other words, an agent under DFS is evaluated against CPLEX under DFS and conversely. When we introduced our RL methodology, we presented our loss function L i pθ i q (4.12) as a counterpart for the classic DQN loss L DQN i pθ i q (4.11) (see page 94). We justified our choice by the deterministic and episodic properties of our environment, making the Q-value observable for the current policy. 

Uc_subtree_noDFS

State representation, network architecture and training parameters

All the parameters in the results presented in this chapter and in the next two are kept identical to allow a fair comparison between the methods. We briefly describe here the features used as well as some of the hyperparameters, and discuss about different variations explored around them.

As recommended in the literature [START_REF] Khalil | Learning to branch in mixed integer programming[END_REF], we use both static (related to instances) and dynamic features (characterizing the progress of the B&B procedure) to represent states. However, we prevent ourselves from using any statistics or inference provided by the solver, as the main idea of this work is to discover strategies independently of the used commercial software.

Regarding static features, we use a 15-dimensional PCA [START_REF] Pearson | LIII. On lines and planes of closest fit to systems of points in space[END_REF] embedding of the instance data, and some standardized statistics on the objective function and constraints. As for dynamic features, they consist in a one-hot encoding of the branching state and additional statistics taken from [START_REF] Zarpellon | Parameterizing branch-and-bound search trees to learn branching policies[END_REF] such as statistics on the number of leaves, open nodes, LP values, etc., without considering solver's dependent scores.

To give an idea of the gains obtained from additional dynamic features, we compare in Figure 4.28 agents using only the branching state and static features to agents using the branching state, static and additional dynamic features. |J | units and linear activation functions. In addition, we attempted to embed the problem's structure in locally dense neural networks using constraint-wise convolutions, without any improvement of the performances. To go further in this direction, it could be interesting to use the bipartite graph convolutional neural network proposed in [START_REF] Gasse | Exact combinatorial optimization with graph convolutional neural networks[END_REF]. Likewise, dueling architectures [START_REF] Wang | Dueling network architectures for deep reinforcement learning[END_REF] have been implemented

to handle the instance-related target variability without any clear impact on the performances. Regarding the training parameters, we use a decreasing learning rate, a fixed-size buffer and a prioritized experience replay scheme such that samples in the buffer with high prediction errors are more often sampled [START_REF] Schaul | Prioritized experience replay[END_REF].

Acknowledging that choices are more important near the root node, the results presented in this chapter use a weighting scheme to prioritize the corresponding training samples. Concretely, we associate to each sample the weight ωpsq9 λ dpsq |T psq| in the loss function (4.12), with dpsq the depth of the B&B node associated to state s and |T psq| the size of the tree in which s has been sampled. Experiments are performed using λ " 0.95. This scheme gives more weight to states near the root node (when λ ă 1) and to states in small trees, as the corresponding instances are mechanically less represented in the training set.

Tuning all the hyperparameters is a hard task, all the more so because their impact varies depending on the configuration. To illustrate this point, we show in Figure 4.29 the impact of setting the λ parameter in the previous weighting scheme. We see that its effect on the training process differs not only depending on the problem but also on the cost model. 

Guiding the exploration with expert's demonstrations

When observing the tree generated during the training process of Algorithm 6, we observe as expected that the agents produce very large trees in the early episodes. As shown in Figure 4.14c, which displays an example of training process on hydro_fix_1, this can happen even if the problem is actually easy to solve. This phenomenon has two main drawbacks. Naturally, it slows down the training process. Most importantly, it makes the value function more noisy. For instance, random decisions may have drastic impacts on the subtree size and thus largely alter the value function under the unitary cost model. To alleviate this issue, one idea is to use expert's demonstrations, for instance provided by CPLEX, to guide the agent, either at exploration time or at learning time.

Expert's demonstrations at exploration time

An intuitive idea is to use the demonstrations for guiding the exploration. Instead of sampling actions randomly or following the agent's policy, some actions are taken following the expert's decisions with probability ε i at episode i. Of course, the probability of requesting the expert should be decreasing through episodes, so as to make the agent learn on its own distribution at the end of the training process. This kind of approach has been for instance used in [START_REF] Chen | Active deep q-learning with demonstration[END_REF].

Expert's demonstrations at learning time

One may also leverage these demonstrations at learning time, considering they allow to get some precious information on non-taken actions. This idea, later used in different contexts, consists in considering that the expert's choices should always be better than those of the agent. When updating the weights of the agent, we use this trick to get a gradient for both the explored actions and the expert's recommendations.

For some state s and agent's weight θ, let us note j the visited action and j ˚the expert's demonstration.

As only j has been explored, only Q π θ ps, jq can be observed, which is naturally used to get a gradient from the error Q π θ ps, jq´Q ˆps, j; θq. Here, we also use this observation to get a gradient from Q π θ ps, jqQ ˆps, j ˚; θq, only in cases where the expert's action is estimated at a higher cost that the visited one, i.e. if Q ˆps, j ˚; θq ą Q π θ ps, jq. To this end, we modify the loss function L i pθ i q (see Equation (4.12)) and rather consider L ˜ipθ i q "E s,j,j ˚"∆ i " ´Qπ θ í ps, jq ´Q ˆps, j; θ i q ¯2ȷ

`PpAqE s,j,j ˚"∆ i " U. ´Qπ θ í ps, jq ´Q ˆps, j ˚; θ i q ¯2 ˇˇA ȷ (

with A " pj ‰ j ˚q X ´Q ˆps, j ˚; θ i q ą Q π θ í ps, jq ¯and ∆ i the buffer joint distribution for states, visited actions and expert's recommendations. U " Bpε i q is a Bernoulli random variable of parameter ε i , controlling the probability of using these recommendations.

Differentiating this loss function with respect to the weight vector gives the gradient for iteration i

∇ θ i L ˜ipθ i q 9 K∇ θ i L i pθ i q `εi E s,j"∆ i "´Q π θ í ps, jq ´Q ˆps, j ˚; θ i q ¯∇θ i Q ˆps, j ˚; θ i q1 A ı (4.23)
with K some normalizing constant.

Both the approaches have pros and cons. On the one hand, using demonstrations at exploration time should allow to produce smaller trees and thus decrease the noise around the estimation of actions' values, but makes the agent learn on samples outside of its distribution. On the other hand, using them at learning time allows to obtain feedback on both selected and non-selected actions, which should increase the sample efficiency, but also assumes that experts' decisions are better than the visited actions, which may not be true.

Remark 6. Building its own expert with Monte Carlo Tree Search (MCTS)

An alternative to using CPLEX for demonstrations would be to build its own expert, using MCTS [START_REF] Kocsis | Bandit based monte-carlo planning[END_REF].

The idea of MCTS is to guide the exploration of the environment through sampling, maintaining a trade-off between exploration and exploitation. We implemented such method without success.

The size of the search space and the computational cost prevented us from testing many variations, and more work may be done in this direction in the future. As expected, we observe lower tree sizes in the early episodes when the expert is used during exploration as its decisions are better than random moves. However, the long-term gains of using the expert at the beginning of learning tends to be non significant. Especially, we observe that the guided agent under the unitary cost model (Uc_tree_cpx) faces a worsening of its performance at some point (this is really salient on Figure 4.30c). We explain this phenomenon by the following argument. We already saw that the agent tends to underestimate the targets, especially in the early phases (see Figure 4.6). When the expert becomes less active in the exploration, the actions are taken following the agent's estimations. At this moment, the less explored actions (probably not so good as less taken by the expert) appear to the agent as producing a lower cost, and thus are selected. One may then wonder why such phenomenon does not appear for the subtree cost model. Our guess is that the more homogeneous targets' distribution (see Figure 4.23) helps the agent to adapt the estimations of new actions.

Experiments

Regarding the comparison of the two methods for leveraging expert demonstrations, they appear to have similar performances. The advantage of using the expert at exploration time is to produce trees of lower sizes, thus speeding up the training process. Such observation is valid for any Approximate Q-learning framework, as one needs to select first an action in a given state to collect the associated cost. Thus, it is often recommended to design cost signals as rich as possible. In the following, we explore an idea to control the range of the neural network outputs, using the following proposition. piiiq by integrality, then D 0 pζ 1 , bq and D 1 pζ 1 , bq are pruned by bound. Indeed, as no bound better than β has been found in T a , the node ζ 1 can then also be pruned by bound. The point is then proven using the same argument as in piiq.

' Case 2: A new bound β a has been found in T a , given by the solution x ˚at node ζ a . In this setting, we build π ub exactly as in Case 1, except that we impose the first node selection decisions to lead to the node ζ a -in particular, this is achieved by visiting first the node D x b pζ, bq. Doing so, we get the same new bound β a as in T a and can apply the same reasoning as in Case 1.

In both cases, we exhibited strategies which lead to build trees smaller than T a (or with the same size) under D 0 pζ, bq and D 1 pζ, bq. Counting the initial node ζ, we obtain the proposed bound of 1`2Q π ps, aq.

Note in the previous proof that, for the inequality to hold, one needs to take control of the node selection strategy if a primal bound has been found under the current node. Omitting this point, we intend to provide some gradient on non-taken actions so as to force the predictions to respect this CHAPTER 4. LEARNING A DYNAMIC BRANCHING POLICY bound. To this end, we use the same trick as in the previous Section and modify the loss function L i pθ i q to rather consider

L ˜ipθ i q "E s,j"∆ i " ´Qπ θ í ps, jq ´Q ˆps, j; θ i q ¯2ȷ `ÿ j 1 PJ ztju PpA j 1 qE s,j"∆ i " ´1 `2Q π θ í ps, jq ´Q ˆps, j 1 ; θ i q ¯2 ˇˇA j 1 ȷ (4.24) with A j 1 " ´1 `2Q π θ í ps, jq ă Q ˆps, j 1 ; θ i q ¯.
Differentiating this loss function with respect to the weight vector gives the gradient for iteration i

∇ θ i L ˜pθ i q 9 K∇ θ i L i pθ i q `ÿ j 1 PJ ztju E s,j"∆ i "´1 `2Q π θ í ps, jq ´Q ˆps, j 1 ; θ i q ¯∇θ i Q ˆps, j 1 ; θ i q1 A j 1 ı (4.25)
with K some normalizing constant.

Equipped with this loss function, the agent receives feedbacks on non-taken actions as soon as their estimations violate the bound for the considered state. This loss function is supposed to increase the competition between actions and diminish the risk of discarding unfortunately some of them. Results under the subtree cost model are also displayed, even if the bound does not theoretically hold for the corresponding Q-function. The results are disappointing, and the agent seems to barely improve during the process. Figure 4.33 shows the predictions at root nodes for each variable, with or without enforcing the bound. It explains the bad results observed in Figure 4.32: equipped with the loss function (4.24), the agent is not able to discriminate actions anymore. A potential cause for this phenomenon could be a too high magnitude for the gradients given to non-taken actions, which could be mitigated by tuning the normalizing constant K. Note that this behaviour may also be induced by the fact that our estimator for the Q-function is biased (see Figure 4.22c). 

Some room for improvement

To conclude, we measure the room for improvement of the proposed method. To do so, we place ourselves in the idealized case where one agent is specialized on a unique instance. Figure 4.34 compares the average training process of these specialized agents with that of a single agent learning on the whole set of instances. The results are presented on the two most difficult problems considered in this chapter, that is micro_bal_12 and hydro_var_2. We see that the strategies discovered by the specialized agents are clearly outperforming that of the generic agent on micro_bal_12. This observation is mitigated by the results obtained on hydro_var_2. On this problem, we see that specialization does not allow to discover more effective policies. To ameliorate the efficiency of the search, many levers may be Chapter 5

Learning the Node Selection Strategy 

CHAPTER 5. LEARNING THE NODE SELECTION STRATEGY

In this chapter, the objective is similar to that of the previous one: learning a strategy in a B&B algorithm so as to perform well, on average, for a given MILP problem.

Here, we aim at learning the node selection strategy in Algorithm 4. The main difference with the previous chapter will lie in the fact that, under certain conditions, one can derive an expensive but tractable oracle strategy for tree size minimization. Its derivation is the purpose of Section 5.1. As this strategy cannot be used at test time, Section 5.2 proposes different ways of learning its choices, either by supervised learning or reinforcement learning. Last, Section 5.3 presents the performances of the proposed approaches.

Before diving into the specifics, it is worth highlighting that the tree size is generally less sensitive to node selection than to the branching strategy. This is illustrated in Figure 5.1, where we show the distribution of tree sizes generated by random node selection strategies on a given instance, and compare it with the heuristic used in the previous chapter and random branching strategies. 

An oracle strategy for tree size minimization

We still consider a B&B algorithm as described in Algorithm 4. Keeping the previous notations, the search space Π in Equation (3.2) now denotes the set of node selection strategies. Discovering a high-performance policy in this set will turn out to be easier than learning to branch for a fundamental reason: we know what makes a policy efficient. In the following, we explicit the exact conditions sufficient to derive an oracle node selection strategy.

A simplification hypothesis

In addition to the B&B setting defined by Algorithm 4, we make a specific assumption regarding the branching policy, stated in Hypothesis 5.1.1.

Hypothesis 5.1.1. Deterministic branching hypothesis

The branching policy is deterministic and only depends on the set of branching constraints associated to the current node.

Hypothesis 5.1.1 states that for a given B&B node, the branching policy is always the same, independently from the iteration in Algorithm 4, the current primal bound, etc. As a consequence, the node selection does not impact the set of direct children for a given non-leaf node. Concretely, let π 1 , π 2 P Π be two node selection strategies: for any non-leaf node ζ P N π 1 X N π 2 , we have D π 1 pζq " D π 2 pζq.

Note that Hypothesis 5.1.1 allow for simplifications but may not be verified in practice, for instance when the branching policy depends on the history of decisions and observations made before processing the current node in the tree. Likewise, stochastic policies violate this assumption. Note also that a similar assumption was made in the previous chapter (Hypothesis 4.1.1). Fundamentally, these hypotheses allow to prevent cases where the non-controlled policy is built either stochastically or in an adversarial fashion, for instance selecting the worst decisions only when we take the best ones.

Restriction of the search space

The two main implications of Hypothesis 5.1.1 are given by Propositions 5.1.1 and 5.1.2, which will allow us to reduce drastically the search space. Proposition 5.1.1. Under Hypothesis 5.1.1, the node selection strategy does not impact the B&B tree size once the optimal solution is found.

Proof . Let π 1 , π 2 be two node selection strategies and β π 1 t , β π 2 t their primal bounds at iteration t. The two strategies are assumed to be identical until the optimal objective value β ˚is found at iteration t ˚.

Considering a B&B node ζ such that ζ P N π 1 X N π 2 , let us show that as soon as ζ 1 P D π 1 pζq is visited at iteration t 1 ą t ˚following strategy π 1 , we have

ζ 1 P pN π 1 X N π 2 q Y pL π 1 X L π 2 q. ζ 1 P D π 1 pζq ùñ ζ 1 P N π 1 Y L π 1 .
But according to Hypothesis 5.1.1, we have D π 1 pζq " D π 2 pζq ùñ

ζ 1 P D π 2 pζq ùñ ζ 1 P N π 2 Y L π 2 . Let t 2 be the iteration at which ζ 1 is visited following π 2 . -In case ζ 1 P N π 1 , ζ 1 is neither MILP-feasible nor LP-infeasible, nor pruned by bound in T π 1 . But β π 1 t 1 " β π 2 t 2 " β ˚as t 1 ą t ˚and t 2 ą t ˚. Then ζ 1 is not pruned by bound in T π 2 , so ζ 1 R L π 2 ùñ ζ 1 P N π 2 . -In case ζ 1 P L π 1 , if ζ 1 is MILP-feasible or LP-infeasible, then ζ 1 P L π 2 . If ζ 1 is pruned by bound in T π 1 ,
so it is in T π 2 by the same argument as previously and

ζ 1 P L π 2 .
By recurrence, the two strategies end up with the same B&B tree.

The immediate interest of such observation is the following. As the node selection strategy has no impact on proving optimality, it implies that one could learn only on the choices made before reaching the optimal solution, which could theoretically allow to reduce drastically the exploration cost by stopping trees' expansion early during training. We elaborate on this point when considering learning methods.

A second consequence of Hypothesis 5.1.1 is that one can safely focus on the set of DFS node selection strategies to find an oracle policy, i.e. which produces a tree of minimal size, as stated in Proposition 5.1.2. This result justifies our choice to only consider DFS node selection strategies in the following. Of course, plenty of such strategies should turn out to perform poorly, but our hope is here to discover, among these policies, one which is optimal or, at least, near optimal. Exhibition of a better strategy Let us build a DFS policy π 1 which will perform at least as good as π. We write ζ φptq a node visited at time t following π 1 , and β π t (resp. β π 1 t ) the primal bound at iteration t following π (resp. π 1 ).

As T π is fully expanded, there exists a node ζ j P L π such that an optimal MILP solution is found at ζ j , which depth is noted dpζ j q " d ˚. such that φp0q " 0, φpd ˚q " j, and ζ φpi`1q P D π pζ φpiq q for all i ă d ˚. Note that this is possible due to Hypothesis 5.1.1, which ensures branching consistency between π and π 1 . This first dive gives

␣ ζ φp0q , . . . , ζ φpd ˚´1q ( " N π 1 d ˚Ă N π , ␣ ζ φpd ˚q( " L π 1 d ˚`1 Ă L π and β π 1 t ď min tβ π t 1 , t 1 ď T u for any t ą d ˚.
The tree T π 1 corresponding to policy π 1 will then be built by making the following node selections tt iteration t:

-if t ď d ˚: set φptq as previously defined;

-if t ą d ˚: set φptq P arg max ζ ! dpζq|ζ P O π 1 t´1 ) ; -select node ζ φptq .
By construction, this strategy satisfies DFS. Hence, we just need to prove that

⃓ ⃓ ⃓T π 1 ⃓ ⃓ ⃓ ď |T π |.
Let us prove that T π 1 Ď T π by using the same arguments as in the proof of Proposition 5.1.1 from a different starting point.

Set of non-leaf nodes First, let us show by induction that

N π 1 Ă N π .
Initialization: ζ 0 is the root node for both strategies, so it belongs to N π 1 X N π -the case 

ζ 0 P L π 1 X L π is

Set of leaf nodes We now show that

L π 1 Ă N π Y L π .
Let ζ P L π 1 . By construction, there exists a node ζ 1 P N π 1 such that ζ P D π 1 pζ 1 q. As we just showed,

N π 1 Ă N π so ζ 1 P N π .
Due to the Hypothesis 5.1.1, we have that

ζ P D π pζ 1 q, hence ζ P N π Y L π . Conclusion We proved that N π 1 Y L π 1 Ď N π Y L π and thus T π 1 Ď T π . Since N π 1 X L π 1 " H, we
have the desired result

⃓ ⃓ ⃓T π 1 ⃓ ⃓ ⃓ ď |T π |.
As a consequence, one can always build a DFS strategy which produces a tree at least as small as that of any given node selection strategy. Applying such construction to an optimal node selection strategy justifies the result.

Before discussing the advantages of the restriction to strategies obeying to DFS, let us first define the considered MDP ă S ˆJ , A, T, C, γ ą corresponding to a DFS node selection policy. We use consistent notations with respect to the MDP presented in the previous chapter (see Section 4.1.2) to facilitate comparisons.

-a finite set of states S ˆJ : a state ps t , j t q P S ˆJ is a tuple ppp, t, H t q, j t q where t is an iteration of Algorithm 4 and H t is the history of any decisions or observations made so far. A B&B node ζps t q is associated to any state ps t , j t q and corresponds to the node visited at iteration t. j t P J is the output of the branching strategy for the current node, left to the solver.

-a set of actions A " t0, 1u. Under DFS in Algorithm 4, the node selection strategy at iteration t comes down to either selecting the unique deepest node in O π t when ζ t´1 P L π t , or choosing one of the two children of the last visited node ζ t´1 . If ζ t´1 P N π t and j t´1 is the outcome of an exogenous branching strategy, the action a t " 0 (resp. a t " 1) will correspond to the selection of the child node D 0 pζ t´1 , j t´1 q (resp. D 1 pζ t´1 , j t´1 q). When the deepest node is unique, that is to say when a leaf node is visited at iteration t ´1, selection is not considered as an action but rather as part of the transitions. Indeed, the action is totally determined by the DFS requirement. Thus, we will only consider states corresponding to non-leaf nodes in the following.

-a transition function T ps t , a t q assumed to be deterministic (and thus markovian): the next node to visit is fully determined by the action as leaf assessment is deterministic, and so is the branching policy by Hypothesis 5.1.1. Again, this transition would also be markovian by CHAPTER 5. LEARNING THE NODE SELECTION STRATEGY construction without any assumption on branching as tj t u Y H t Ă H t 1 for any t ă t 1 . Either trajectory-based or tree-based transitions may be considered.

-a discount factor γ P r0, 1s.

-a bounded cost function c : S ˆJ ˆA Ñ R which depends on the objective set for the strategy to be learnt.

The advantages of enforcing DFS are twofold.

First, as shown when constructing the MDP, it reduces the action set to a set of cardinal 2, which decreases drastically the search space S ˆJ ˆA. Note that it also allows the action set to be fixed, which would not trivially be the case otherwise. Indeed, without any assumption, we would have a varying action set A t " O t as in [START_REF] He | Learning to search in branch and bound algorithms[END_REF].

Second, using DFS will make it possible to reduce the credit assignment problem, exactly as in the previous chapter (see Section 4.2.2), by confining an action's effect on a subset of the search spaceconcretely the subtree.

Exhibition of an oracle strategy

In this setting, it is possible to build an oracle strategy as stated in Proposition 5.1.3, whenever the problem has a unique optimal solution x ˚. Such a strategy is obtained by first performing a dive towards x ˚, and more generally due to Proposition 5.1.1 the following policy π ˚is an oracle strategy:

π ˚: $ & % S ˆJ Ñ A " t0, 1u
ps t , j t q Þ Ñ π ˚ps t , j t q " x st pj t q

(5.1)

where x st is an optimal solution of the sub-problem associated to s t .

Proposition 5.1.3. Under Hypothesis 5.1.1, executing first the dive to the optimal solution x ˚is an oracle strategy provided the optimal solution is unique.

Proof . It directly comes from the proof of Proposition 5.1.2 as the mentioned π 1 is a direct dive toward the unique optimal solution. Note here that the result does not hold if we do not have the uniqueness of the solution, and diving to an optimal solution of minimal depth is not sufficient to ensure the minimality of the tree (think of a tree where diving first to an optimal solution at depth d allows to entirely prune the branch of an optimal solution at depth d ´1). However, one can show that a tree built from such strategy has at worst n more nodes than the minimal tree.

Even though the statement of Proposition 5.1.3 is simple and intuitive, finding such a strategy is NP-hard as it requires to actually solve the considered MILP instance. As a consequence, this strategy cannot be used directly, since there is no interest in producing a minimal tree for solving a problem if it has already been solved. However, assessing if an action is an oracle choice is expensive but tractable off-line, as it only requires to check if it can lead to an optimal solution for the corresponding subproblem. At worst, such verification costs one call to the B&B procedure and may thus be leveraged for learning. This is an important difference with Chapter 4 regarding learning the branching policy, where assessing the optimality of a choice (in the sense of the minimization of the tree) would have required an exponential number of B&B calls.

A parallel may be drawn between the oracle defined in Equation (5.1) and the BFS node selection strategy -see Section 2.3.1. BFS selects the open node with the lowest LP value (in the minimization case), the idea being to obtain early a good primal bound. The oracle strategy aforementioned has the same objective, except that it knows exactly where the best primal bound can be found. In the following, we propose different approaches for learning oracle strategies, with or without using demonstrations from the exhibited oracle.

At this point, it may be relevant to point out that the oracle strategy is not necessarily unique, whether DFS is enforced or not. Indeed, first visiting nodes which cannot be pruned by bound does not harm the tree size.

Learning approaches

As proposed in [START_REF] Yilmaz | A study of learning search approximation in mixed integer branch and bound: Node selection in scip[END_REF][START_REF] He | Learning to search in branch and bound algorithms[END_REF], behavioral cloning and dataset aggregation are two imitation learning paradigms appropriate for learning a node selection strategy from demonstrations. We compare these approaches with a RL alternative and leverage the binary nature of our action space and propose a way of using demonstrations in RL to increase the sample efficiency.

According to Proposition 5.1.1 and acknowledging that choices are more important near the root node than in deeper nodes, we use the following weighting scheme when learning from training samples

ω δ ps t q " $ & % δ dpstq if β t ą β 0 if β t " β ˚(5.2)
with δ P r0, 1s a hyperparameter and dps t q the depth of the node associated to state ps t , j t q. In this section, ϕ refers to a state embedding function.

Behavioral cloning

Behavioral cloning (see Section 2.1.2) simply consists in learning the behavior of the oracle on its own distribution. As the oracle policy π ˚follows the optimal solution x s of the sub-problem associated to state s, we directly learn a mapping f θ : ϕpSq Ñ r0, 1s n between our embedding space and these solutions, e.g. parametrized by a feed forward neural network.

In this setting, behavioral cloning is then reduced to a classic multivariate supervised classification task on oracle first dives, the target classes being the optimal solution in t0, 1u with l a convex loss. ∆ ˚ppq denotes here the set of visited states by the oracle strategy on instance p before reaching the optimal solution. Note that, as the oracle knows the optimal solution, a unique target (an optimal solution) is associated to each state of a same tree. Hence, one could instead simply learn a mapping from the instances to their optimal solutions.

Seeing ∆ ˚as a probability distribution on S, the theoretical equivalent of (5.3) is

Lpθq " E st,jt"∆ ˚"ω δ ps t ql `fθ pϕps t qq, x st ˘‰ (5.4)

At testing time, the agent will then act according to the strategy π θ ps t , j t q " arg min νPt0;1u

|f θ pϕps t qqpj t q ´ν| (5.5) which simply comes down to selecting first the child node characterized by the constraint corresponding to the bound closer to the predicted value f θ pϕps t qqpj t q.

Two main drawbacks of behavioral cloning can be highlighted here. First, there is no clear reason why to chose any loss function l over another, and the usual loss functions undoubtedly do not correspond to our objective of producing minimal trees. Second, this approach comes down to learning the oracle distribution, and there is no guarantee on the performance of the learnt classifier when facing nodes which do not belong to these trajectories, i.e. that may be drawn from another distribution as the one produced by the oracle. In other words, there is a risk of overfitting in this setting, as the learnt policy may not be robust to variations from the training dataset. On the contrary, one may be tempted to exchange the optimal first dive ∆ ˚ppq for the complete tree T π ˚ppq. However, due to Proposition 5.1.1, it may lead to underfitting as the relevant choices would likely represent only a minority of the collected samples.

Dataset aggregation

The second issue raised by the behavioral cloning approach can be handled using dataset aggregation (see Section 2.1.2). Rather than learning on the samples collected by the oracle, the idea is to learn on the states visited by the agent along the training process. To do so, we use a variant of DAgger [START_REF] Ross | A reduction of imitation learning and structured prediction to no-regret online learning[END_REF] (see Section 2.1.2, Algorithm 1) authorized by the iterative training procedure of neural networks and using a replay buffer, as described in Algorithm 7. The point of such methodology is to transform the minimization of (5.4) into an iterative fitting procedure governed by the empirical equivalent of the theoretical loss

L i pθq " ÿ kďi E st,jt"∆ θ k " ω δ ps t ql `fθ pϕps t qq, x st ˘‰ (5.6)
where ∆ θ denotes the probability distribution for states under strategy π θ . The agent's policy remains the one defined by Equation (5.5). Final parameter θ N Even if our objective is to leverage oracle demonstrations to learn a near-optimal strategy, one should remember that the advantage of IL compared to vanilla SL is robustness.

An extreme case of Algorithm 7 is when our model is rich enough and the number of training iterations infinite. In such a configuration, the training loss should tend to zero provided the classifier is complex enough. Thus, the agent and oracle distributions would be aligned, which would make no difference compared with the supervised setting (i.e. learning on the oracle distribution). To improve generalization, one may authorize some random exploration during the learning phase, in order to keep learning on small variations from the optimal strategy.

A limitation of the procedure described above is the lack of consideration for the cost model associated to the MDP mentioned earlier. As the agent only learns to mimic the oracle without any information about the cost of a mistake, it will penalize equally harmless errors and those downgrading heavily the global objective (3.2). This is easily exemplified using a worst-case argument, as an error at depth d can potentially increase the global tree size by 2 n`1´d ´1. Such discrepancy is illustrated in Figure 5.2, showing that the impact of a single choice different from the oracle strategy has way more impact on the global tree size near the root node than deeper in the tree.

This issue has been highlighted in [START_REF] Ross | Reinforcement and imitation learning via interactive no-regret learning[END_REF] in a general context, the authors proposing to take this cost into account using massively the oracle -see Section 2.1.2. As calling the oracle may be quite expensive, especially in a tree-structured environment, we present in the following a reinforcement learning approach to reduce the calls to the expert. 

Reinforcement learning for node selection

In this section, the objective is to overcome the shared limitations of the two previous approaches, by reducing the calls to the oracle, which may be expensive, and taking into account a cost model associated to the MDP, in order to align with our objective of tree size minimization (3.2). To do so, we propose to adapt the RL approach presented in Chapter 4 on learning the branching strategy.

We rely on Proposition 5.2.1 to immediately transpose the procedure to the node selection setting: at state ps, jq, the value of visiting first a child node is set to the observed size of the subtree rooted in the B&B node corresponding to s. Again, this is done by considering a unitary cost model under tree-based transitions. Proposition 5.2.1 states that minimizing this cost at each state is an oracle strategy. Note here that, compared with section 5.1.3, we do not need the uniqueness of the solution to ensure the oracle property. Proof . This is essentially the same proof as that of Proposition 4. Formally, the value of an action a P t0; 1u at state ps, jq when following a policy π is denoted Q π ps, j, aq, and corresponds to the subsequent size of the subtree rooted in ps, jq. As for the branching strategy, a discounted version Q π γ ps, j, aq may be encompassed. As discussed in Section 4.2.2, the same theory can be derived in this setting and will not be repeated at this stage. Again, this cost function is approximated by a model Q ˆps, j, a; θq parametrized by a weight vector θ, and the iterative fitting procedure is governed by steps towards reducing the empirical equivalent of the theoretical loss function

L i pθ i q " E s,j,a"∆ i " ω δ psq
´Qπ θ í ps, j, aq ´Q ˆps, j, a; θ i q ¯2ȷ (5.7)

where θ í is a fixed value from previous iterations and ∆ i is the probability distribution of state-action pairs when following some previous policies. Differentiating this loss function with respect to the weight vector gives the gradient for iteration i

∇ θ i L i pθ i q9E s,j,a"∆ i
" ω δ psq ´Qπ θ í ps, j, aq ´Q ˆps, j, a; θ i q ¯∇θ i Q ˆps, j, a; θ i q ı (5.8)

In this setting and according to Proposition 5.2.1, the agent's policy is now to select the action with the minimal predicted cost:

π θ ps, jq " arg min aPt0;1u
Q ˆps, j, a; θq (5.9)

Note here the fundamental difference with previous updates from (5.4) and (5.6): ∆ θ is a distribution for ps, j, aq triplets, as the cost function can only be evaluated on taken actions in a RL setting. Thus, the exploration space (S ˆJ ˆA) is twice as big as the data space in the two previous approaches (S ˆJ ).

The training procedure is described in Algorithm 8, and is really a direct adaptation of Algorithm 6.

Algorithm 8 Training Algorithm: RL for Node Selection Initialization:

Randomly initialize θ 0 Procedure:

for i " 1 to N do: Draw randomly an instance p from the training dataset Solve p using π θ i´1 Collect dataset ␣`p s, jq, a, Q θ i´1 ps, j, aq ˘( of visited states and observed Q-values from T π θ i´1 ppq in a buffer B Update θ i´1 to θ i following the gradient derived from Equation (5.7) using data from B end for Output:

Final parameter θ N Remark 1. Benefits from Proposition 5.1.1

On the one hand, a random strategy (typically at the beginning of a learning process) will be as good as any other strategy as soon as the optimal solution is found, which reduces the occurrences of sub-optimal choices, hence the exploration cost. On the other hand, but it is really the second side of the same coin, the targets (e.g. the subtree size) will appear without any noise due to future actions in the proving phase since all actions are optimal then.

Reinforcement learning with oracle insight

An expected benefit in integrating the cost model as defined above is quantifying the intrinsic risk of different states. However, as the agent is trained on its own behaviour, without using any insight from the oracle, Algorithm 8 yields a low sample efficiency, inherent to pure RL. In the following, we propose a simple modification to the previous approach to take into account oracle insights. The trade-off between increasing the sample efficiency and limiting the number of calls to the oracle is controlled by a hyperparameter.

As the cost model defined earlier is coherent with the objective of minimizing the tree size (see Proposition 5.2.1), any oracle strategy is a minimizer for the Q-function. Thus, for any DFS node selection strategy π, the inequality Q π ˚ps, j, π ˚psqq ď Q π ps, j, aq (5.10) holds. This lower bound can be easily incorporated in the precedent learning procedure by using the same trick as in Section 4.3, i.e. by modifying the used loss function:

L i pθ i q " L i pθ i q `P pA 1 q E s,j,a"∆ i " ω δ psq U. ´Qθ í ps, j, aq ´Q ˆps, j, a ˚; θ i q ¯2⃓ ⃓ ⃓ ⃓ A 1 ȷ `P pA 2 q E s,j,a"∆ i " ω δ psq U. ´Qθ í ps, j, a ˚q ´Q ˆps, j, 1 ´a; θ i q ¯2⃓ ⃓ ⃓ ⃓ A 2 ȷ (5.11)
with U " Bpαq an independent Bernoulli random variable, A 1 " pa ‰ a ˚qX ´Qθ í ps, j, aq ă Q ˆps, j, a ˚; θ í q ānd A 2 " pa " a ˚q X ´Q ˆps, j, 1 ´a; θ í q ă Q θ í ps, j, a ˚q¯.

Differentiating this loss function with respect to the weight vector now gives the gradient for

iteration i ∇ θi ∇ θ i L i pθ i q9 K∇ θ i L i pθ i q
`αE s,j,a"∆ i " ω δ psq ´Qθ í ps, j, aq ´Q ˆps, j, a ˚; θ i q ¯∇θ i Q ˆps, j, a ˚;

θ i q1 A 1 ı `αE s,j,a"∆ i " ω δ psq ´Qθ í ps, j, a ˚q ´Q ˆps, j, 1 ´a; θ i q ¯∇θ i Q ˆps, j, 1 ´a; θ i q1 A 2 ı
(5.12) with α P r0; 1s the proportion of samples where calls to the oracle should be made to augment the gradient and K some normalizing constant.

Such modification encourages the model to satisfy the lower bound provided by any oracle (Equation (5.10)) through two additional feedbacks: piq oracle choices should have a lower cost than taken actions and piiq the non-taken actions are at least as bad as oracle choices if the latter are taken.

These feedbacks allow the agent to learn even on non-taken actions, which should increase the sample efficiency.

Note here that expert's demonstrations are used only if the agent is making mistakes in ranking the actions. Besides, Equation (5.11) does not require to compute the cost of following the oracle strategy from state s as in [START_REF] Ross | Reinforcement and imitation learning via interactive no-regret learning[END_REF]. Instead, we only need to determine if the taken action is an oracle choice or not, which does not always require a call to the B&B procedure. Besides, recreating exactly the state ps, jq may not be trivial with certain MILP solvers. It also allows to solve the corresponding sub-problem with any desired configuration of the solver, which may permit some computational gain. On the contrary, computing the cost of the oracle strategy Q π ˚ps, j, aq would require to solve the sub-problem with the exact same configuration to ensure coherence.

Experiments and discussions

In order to evaluate the sampling efficiency of the different methodologies, the behavioral cloning agent is trained sequentially, using the same number of training samples as the other competitors.

This manoeuvre does not change the fact that data are collected once and for all by observing the oracle, but allows to better evaluate the sample efficiency of dataset aggregation and reinforcement learning agents. 5.1 presents results on test instances. If we compare these results, not only on train but also on test instances, with those obtained when learning the branching strategy, we see that the performances are better here. This should not come as a surprise. First, the learning task is easier as the action space is reduced. Second, many actions do not impact the performance, according to Proposition 5.1.1. Last, we already mentioned that the branching strategy is often more important than the node selection strategy. Here, we let CPLEX make the branching decisions, which allows the errors in the node selection to be relatively benign. The fact that node selection has a lower impact on the tree size than branching is illustrated by the lower gains obtained during the learning processes than those observed in Chapter 4.

Notice here that reinforcement learning methods compare well with both BC and DA in terms of sample efficiency. This is due to the fact that our action space contains only two elements, which reduces drastically the need for exploration. Likewise, using additional gradients from the oracle strategy (RL-OR) allows to improve the sample efficiency in comparison with the RL approach without demonstrations (RL).

As expected due to the nature of the strategies, we see that they compare well with CPLEX regarding primal integral scores. We see in Table 5.1 that taking into account the cost associated to actions (as we do in RL) do not provide better generalization performances. Note that, contrary to the learning of the branching strategy, the unitary and subtree cost models have similar performances, as illustrated in Figure 5.4. 

Variations

In light of the developments made in Chapter 5 when considering the learning of the node selection strategy, different variations can be built from the direct methodology mentioned above (later referred to as RL). Since the node selection strategy has no impact on the tree size as soon as the optimal solution is found (see Proposition 5.1.1), it seems inefficient to learn node selection actions after this point. In addition, the objective of node selection under DFS has been clearly set: given a branching decision, one must prioritize the child node leading to the best solution. The variations proposed below seek to exploit such facts.

RL-2 -The first variation consists in training two agents, which act at different locations in the B&B tree. The first agent has to select both the branching variable and node priority for any node prior the discovery of an optimal solution. As for the second, it only focuses on branching decisions past this point, node priority being given by some exogenous heuristic. Of course, this strategy cannot be maintained at test time, as one does not know anymore if a feasible solution is optimal or not.

Therefore, at test time, the second agent is to take charge as soon as a feasible solution is found.

RL-DA -The oracle node selection strategy exhibited in Chapter 5 is valid for any given branching strategy. As a consequence, we naturally propose to learn separately branching and node selection, the former being learnt by an agent using an MDP as defined in Chapter 4 and the latter by imitation learning, and more precisely dataset aggregation, as proposed in Chapter 5.

RL-OR -For the same reason, one can consider to leverage oracle demonstrations for guiding a full RL approach. Considering a unique agent with the action space J ˆt0, 1u, one can obtain cost signals for non-taken actions as proposed in Chapter 5 by accounting for the fact that oracle actions should be better than selected actions (see Equation (5.11)). As an oracle decision consists in selecting the child node which contains the optimal solution under the current node, we already mentioned that using this strategy is expensive. An alternative may consist in using the optimal solution of the instance rather than that of the subproblem associated to the current node to derive the additional gradient.

This strategy is referred as RL-OR-partial in the experiments. First, we observe that RL-OR-partial discovers less efficient strategies than RL-OR. This result was expected and highlights the fact that the agent has to adapt to the case where it strays from the first optimal dive -recall that, according to Proposition 5.1.3, the oracle strategy first performs a dive toward the optimal solution.

Experiments and discussions

Next, we note that RL-2 is the worst approach. This failure may be caused by the fact that each agent has fewer samples at its disposal for learning. Another potential explanation is that the sample distribution of the second agent depends on the behavior of the first, which causes coordination issues.

The two agents which discover the best strategies are RL-DA and RL-OR, before RL. This result is in line with those observed in Chapter 5, where a similar ranking was observed. We see when looking at the primal integral scores in Figure 6.1 that performances with respect to that score are weaker than those obtained when learning the node selection only -in the experiments of Chapter 5, all the agents obtained comparable or better scores than CPLEX (see Figure 5.3). An explanation of this phenomenon may lie in the fact that the distribution of the learning samples is evolving with the branching strategy, which makes the learning task more difficult. Of course, the quality of the branching strategy may also play some role. In that matter, Figure 6.2 shows experiments on more difficult problems, and also displays as a reference the training process observed when learning CHAPTER 6. RL FOR BRANCHING AND NODE SELECTION STRATEGIES only the branching strategy. We see that we do not manage to obtain better performances when learning the full strategy compared with learning only the branching strategy. Actually, we even observe poorer performances on hydro_var_2. Except for hydro_fix_2, the primal integral scores do not decrease faster compared with branching only, which uses a stationary node selection strategy.

These difficulties are also explained by the enlargement of the search space, even in RL-DA where the node selection is learnt by dataset aggregation. Indeed, even if the state space is actually identical between RL-DA and RL-branch, the latter samples states in a more restrained area of the search space due to the stationarity of the node selection strategy. Thus, even RL-DA faces in practice a greater variance in the training samples, which can be assimilated as an increase of the search space and a greater need for generalization.

When looking into the results on test instances (Table 6.1), we see that the performances of the best agent are generally better when focusing on learning the branching strategy. Note however that it is not the case on hydro_fix_2, where the invariance of the feasible set allows an agent learning both strategies to obtain better performances. This part briefly presents some attempts to leverage the structure of the considered problems to reduce the computational effort. To this end, we encompass different approaches such as heuristic branching, decomposition techniques and objective disruption. Although these axes are independent, they all share the same interest in using the underlying structure of the considered problems.

Although the most used branching heuristics are LP-based (see Section 2.3.1), various branching strategies have been developed using a score based on the problem data. For example, orbital branching [START_REF] Ostrowski | Orbital branching[END_REF] leverages the problem information encoded in symmetry groups to build a new branching dichotomy. With a different approach, [START_REF] Kılınç-Karzan | Information-based branching schemes for binary linear mixed integer problems[END_REF] builds a set of clauses from fathomed nodes to guide the branching decision toward early infeasible or sub-optimal nodes.

In this chapter, we propose a new kind of heuristic for performing variable selection in a B&B algorithm, based on a graph representation of the problem data. This graph representation appears to partly encode the underlying structure of the problem and thus may be used for branching. Section 7.1 proposes a graph representation for any node in a B&B tree and interpret it as an influence graph. Next, Section 7.2 presents a new branching heuristic based on this graph representation of the problem data. An alternative PCA-flavoured interpretation of such heuristic is also given. Last, we conduct some experiments in Section 7.3 and discuss briefly the impact and limitations inherent in this approach.

Leveraging the problem's structure through a graph representation

Taking some distances with LP-based heuristics, we propose a branching heuristic based on the problem's structure, using a graph representation of the interactions between variables. Using this representation, we later define a heuristic which can be interpreted in two distinct ways.

Graph representation

Graphs have already been used in the literature for the design of branching heuristics. For instance, a bipartite graph is used in [START_REF] Ostrowski | Orbital branching[END_REF] to compute symmetry groups for orbital branching. Here we propose different variants of a graph representation, that we use actively for performing variable selection.

Through this representation, our conviction is that we can roughly model the influence that branching on a variable has on other variables, in the sense of its tightening impact on the LP relaxation in the corresponding dimensions. Intuitively, this influence is the result of a complex combination of various effects, induced not only by the constraints but also by the objective function. The raw matrix representation of the constraint matrix is clearly not adequate to capture these effects (for instance, it is not invariant to indices' permutation), and we believe that a graph representation is more suited We say that variable i has a non-zero local influence on variable j with respect to constraint k if

1 A ki 1 A kj " 1, with A ki the coefficient of variable i in constraint k.
At this point, the quantification of this influence ω k ij is not specified and may be any function of the problem data A, b, c -see Section 1, Problem (1.2), for notations.

Definition 7.1.2. Direct influence

We define the direct influence ω ij of variable i on variable j as the sum over the constraints of the local influences:

ω ij " 1 i‰j m ÿ k"1 ω k ij
Building on these definitions, we define the class of influence graphs, whose weight matrix is built according to the notion of influence as defined above. In the MILP setting, we say that a directed graph G " pV, E, W q is an influence graph if V " t1, ..., nu, E " V ˆV and the edges' weights W P R nˆn satisfy the definition of direct influence.

By construction, an influence graph is a primal graph for the considered instance, i.e. a graph where nodes correspond to variables and an edge may exist between two variables only if they appear in a same constraint. Note that vertices are associated to variables, both binary and continuous.

We voluntarily keep this class of influence graphs large, so as to be in a position to consider different definitions of the direct influence.

However, regardless of the quantification of the weights, the definition of local influence and the additive nature of direct influence enforce a particular structure for influence graphs. Especially, theses graphs not only naturally exhibit the block structure often observed in the constraint matrix of real-world problems, but also the interconnections between these blocks. Figure 7.1 shows examples of influence graphs for two instances of the microgrid and hydro problems. We see in these examples that the influence graph representation allows to exhibit in our problems a "ladder structure", produced by temporal and spatial interconnections between variables. We present here some examples of influence graphs, based on different definitions of local influence. Perhaps the most basic example of such graphs is obtained by defining the local influence of a variable i on variable j with respect to constraint k as

Examples of influence graphs

ω k ij " 1 A k i 1 A k j
Using this definition, we obtain the count_graph where the weight of an edge between two nodes is the number of constraints linking the two corresponding variables. In a more agnostic manner, the binary_graph is obtained by setting

ω k ij " 1 A k i 1 A k j max t1, ř m l"1 1 A l i 1 A l j u
In this setting, the weight of an edge is the indicator of an existing constraint between the two considered variables.

Remark 1. Constraint-based influence graphs and B&B tree

An influence graph is a way of representing a MILP instance. As a consequence, it can be used to represent any node in a B&B tree. Along such tree, the evolution of the influence graphs associated to nodes is governed by the branching strategy. When considering pure constraint-based influence graphs as binary_graph and count_graph, they become sparser as the nodes are deeper. When a variable is fixed, the adjacent edges are removed. If we denote W t the weight matrix of the influence graph associated to some node ζ t and W t 1 that of a descendant node, then a binary matrix B t,t 1 of dimension pm, nq exists such that W t 1 " B t,t 1 ˝Wt with ˝the Hadamard product. Especially, it implies that the adjacency matrix becomes sparser as we move down along a branch of the B&B tree.

The two graphs presented above only use the information provided by the constraints, without any consideration regarding the objective function. To encode this function in an influence graph, one can use LP-related data to weight the constraints. Rather than weighting equally the constraints, the idea is to put more mass on the binding constraints, that is to say on constraints which have a non-zero optimal value in the dual LP associated to the current node. Writing y ˚P R m the optimal solution of the dual, the binary_dual_graph puts a zero mass on non-biding constraints and the others are weighted equally:

ω k ij " 1 A k i 1 A k j 1 y k ‰0
A natural generalization is the dual_graph, obtained by setting

ω k ij " 1 A k i 1 A k j |y k | Remark 2.

Influence graphs and invariance to reformulation

Contrary to the matrix representation, influences graph are invariant to index permutations. However, we see in the examples using LP information that it is not invariant to a rescaling of the data A, b and c. To ensure a coherence in the constraints' weighting, some standardization may be performed whenever the constraint coefficients A ij appear directly in the definition of the local influence. For instance, we may apply:

-c Ð c σpcq if σpcq ‰ 0 where σpcq is the standard deviation of the coefficients in c;

-A k. Ð A k. b k for any row A k. associated to a non-zero coefficient b k ; -A k. Ð A k.
σpA k. q if σpA k. q ‰ 0 where σpA k. q is the standard deviation of the coefficients of the row A k. associated to a zero coefficient b k .

Using the graph representation for branching

Naturally, when looking at Figure 7.1, it comes that not only a variable i has a direct influence on adjacent variables, but also indirect influence on any other variable j such that a path exists from i to j in the graph. Therefore, a natural heuristic for variable selection would be to branch on the integer variable with the highest influence on other integer variables. Depending on the chosen definition of the local influence, the stress may be put on the ability to create infeasible descendant nodes or early primal solutions.

This question of Influence Maximization on graphs (IM) has been widely studied in the past decades and is still an active field of research, especially with the emergence of social networks. In addition to the adequate definition of the direct influence for the problem of interest, one of the main challenges of IM is the definition of a diffusion process of the influence (see [START_REF] Li | Influence maximization on social graphs: A survey[END_REF] for a recent survey). Note here that it has been proven for different diffusion processes that the IM problem is NP-hard.

Unfortunately, a requirement for a good branching strategy is its fast computation. Therefore, it seems useless to look for an exact solution of an ill-defined (i.e. heuristic) IM problem in this setting. This is the reason why we rather look for potentially non-accurate but fast approximation for IM.

We propose to take inspiration from [START_REF] Son | Random field ising model and community structure in complex networks[END_REF], where the authors use the MinCut algorithm for detecting influence communities in a social graph.

In the setting of variable selection, we want two variables to belong to the same community if branching on one of them has a strong impact of the second. If the influence is seen as a proxy for the tightening of the LP relaxation following a branching decision, branching consecutively on two variables of the same community would likely be inefficient. To avoid that, one can define K clusters with at most one representative by cluster and take them as candidates for branching.

Branching strategy 7.2.1 Selecting high-influential variables

As discussed above, using exact IM to perform variable selection in a B&B algorithm may be counterproductive. Therefore, we propose to approximate IM and select various high-influential variables in different locations of the influence graph.

To reach that objective, we use a two-stage approach. First, we exhibit K communities of comparable influence. This is done by approximating RatioCut through Spectral Clustering on a given influence graph, which allows to obtain clusters of comparable sizes and relatively independent from each other (see [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] for a detailed tutorial on Spectral Clustering). Next, we select in each group the integer variable with the highest total influence (see the definition below). These variables are then taken as candidates for branching, a natural ordering being given by their total influence.

Definition 7.2.1. Total influence

We define the total influence ω i of variable i as the sum over its direct influences:

ω i " ÿ j‰i ω ij
Formally, let W be the weight matrix of an influence graph associated with the current node of the B&B tree and L " D ´W the associated Laplacian with D the diagonal of W . Let V P R nˆK be the matrix obtained by stacking the K eigenvectors associated to the K lowest eigenvalues of L ordered increasingly. The influence communities pC k q K k"1 then form a partition of the index set t1, ..., nu and are obtained by performing a K-means clustering on V, i.e. is the solution of

arg min tC 1 ,...,C K uPC K ÿ k"1 ÿ v i PC k ||v i ´µk || 2 2 (7.1)
with C the set of K-partitions of the index set, pv i q i"1,...,n the rows of V and µ k " 1

|C k | ř v i PC k .
Using these clusters, the set S K of branching candidates is then defined as

S K " " arg max iPC k XJ ω i , k " 1, . . . , K * .
These variables are then ordered following the total influence of each variable: for two variables i, j P S K , we say that i is prioritized over j (written i ľ j) if it has a greater total influence

i ľ j ðñ ω i ě ω j x 2 " 0 x 3 " 0 x 3 " 1 x 2 " 1 x 1 " 0 x 2 " 0 x 3 " 0 x 3 " 1 x 2 " 1 x 1 " 1 Figure 7
.2: Branching decisions from the root node with S K " tx 1 , x 2 , x 3 u with 1 ľ 2 ľ 3.

If we consider now S K as an ordered set following the previous ordering rule, branching is performed on the first variable of such set at the current node, on the second at the immediate child nodes and so on in the subtree rooted in the current node. This is illustrated by Figure 7.2 Of course, one can set K " 1 and repeat the procedure at each node while bypassing the clustering part.

Alternative interpretation

Let us consider X P R nˆm a row-wise L 2 -standardized matrix such that the dot product W " XX J is a weight matrix associated to an influence graph. For instance, X may be the standardized version of the transpose of the constraint matrix A. A MILP instance is then represented by X as a scatter of n points living in R m . The L 2 standardization of each point can be seen as a way of uniforming the importance of each variable, thus preventing undesirable effects due to a potential bad conditioning of the problem formulation (see Remark 2).

Proposition 7.2.1. Under the above assumptions, performing a K-means clustering on the K-dimensional projection of a non-centered PCA on X is equivalent to the K-spectral clustering on W .

Proof .

Let us call P P R Kˆm the projection matrix obtained from a non-centered K-PCA on X, i.e. P obtained by solving $ & % max P PR Kˆm T r `P X J XP J s.t.

P P J " I K . (7.2)
It is well known that P is obtained by stacking the K eigenvectors associated with the K largest eigenvalues of X J X.

Let us set U " XP J P R nˆK the matrix composed of the projected points u 1 , ..., u n as rows. To assert the equivalence of the two methods, we shall demonstrate that U " V with V previously mentioned.

As stated above, V is obtained by stacking the K lowest eigenvectors of L " D ´W " D ´XX J

where D is the diagonal of XX J , hence is the solution of

$ & % min V PR nˆK T r `V J `D ´XX J ˘V s.t. V J V " I K . (7.3)
As X is row-wise standardized, we have D " I n . Then V is the solution of

$ & % max V PR nˆK T r `V J XX J V s.t. V J V " I K . ( 7.4) 
As a consequence, V is obtained by stacking the K eigenvectors associated to the K largest eigenvalues of XX J . Since we want to show that V " XP J , it is sufficient to show that if u is an eigenvector of X J X associated to the eigenvalue λ, then v " Xu is an eigenvector of XX J associated to the same eigenvalue λ. This result is trivial, since X J Xu " λu ùñ `XX J ˘Xu " λXu.

Proposition 7.2.1 has the merit to present a different representation of a MILP, not as a weighted graph but as a scatter of points assumed to live in an Euclidean space. However, a disadvantage of this representation is that incorporating LP information in the embedding is less straightforward.

Experiments

We ran experiments on the influence graphs presented above. To avoid the open question of selecting the pertinent heuristic along the Branch and Bound tree, we only use our heuristic at the root node. Hence the procedure is as previously illustrated in Figure 7.2:

1. At the root node, compute the influence graph.

2. For a given K, compute the ordered set S K .

3. On each branch, branch successively on each variables in S K .

CHAPTER 7. A GRAPH BRANCHING HEURISTIC

The averaged performances on 500 instances of microgrid and hydro problems are available in Table 7.1. More detailed results are presented in Figure 7.3. The first point that we highlight is that we did not observe any hierarchy in the performances obtained for each graph. However, the problem considered has a huge impact on the heuristic's performance. This illustrates the fact that our graphs do not fully model the influence that branching may have on each variable. For instance, if we consider two binary variables, the two constraints x i `xj " 1 and x i `xj ď 2 are equally considered in binary_graph and base_graph, which can heavily pollute the modeling.

Except for micro_asym_T24, the proposed heuristic is all the more efficient as the instances are difficult to solve for CPLEX. This is a rather encouraging result. Naturally, there is not much one can do to downsize already small trees. However, the fact that the heuristic performs relatively well on difficult instances seems to advocate that it allows to take advantage of the problem's structure. This is supported by the fact that the best value of K for each graph is generally higher when the performances on the problem are good.

The results presented here seem to advocate that MILP instances can be represented by graphs.

Actually, the interest in using graphs and especially graph neural networks to encode combinatorial tasks has now been identified by the community. A recent survey on the use of such graph neural networks for combinatorial tasks can be found in [START_REF] Cappart | Combinatorial optimization and reasoning with graph neural networks[END_REF]. 28678.8 -10728.2 (K = 2) -12786.3 (K = 1) -8748.5 (K = 1) -9020.1 (K = 1) Table 7.1: Average tree size difference between graph heuristics and CPLEX. For each problem, the best value of K is considered for each heuristic. where X G k defines the integer constraints for the set of variables

CPLEX

G k : X G k " R n G k ´|B G k | ˆt0, 1u |BG k |
with n G k the number of variables belonging to block G k and B k the indices of integer variables in this same block. The variables x C or px C k q K k"1 in problem (8.2) are the so-called coupling variables. As an example, when a complex system is to be optimized once for multiple time steps, blocks may naturally be formed by regrouping the variables corresponding to the same time step. The coupling variables are in this case the variables appearing in the constraints which link the different time steps.

The methodology presented in this Section is inspired by these structures, but does not strictly require them to be applied.

G 1 G 2 G 3 C (a)
The coupling variables tie the blocks together, general case (8.1)

G 1 G 2 G 3 C 1 C 2 (b)
The coupling variables tie consecutive blocks together, specific case (8.2) Figure 8.1: Structures of interest in the constraint matrices of the considered problems. Case 8.1b is a specific case of 8.1a.

We write S the feasible set of p and P the polytope corresponding to the feasible set of the linear relaxation of p. x C are seen here as complicating variables, in the sense that, if they were fixed, the problem would decouple as defined below. Definition 8.1.1. We say that a MILP decouples if its feasible set S can be rewritten as a cartesian product S " b K k"1 S k with K ą 1. We call decomposition an ordered partition of the index set and we say that a decomposition G " tG k u K k"1 decouples a MILP if its feasible set can be rewritten as

S " tx " rx G 1 ... x G K s , x G k P S k @k P t1, ..., Kuu.
The principal interest of a decoupling decomposition is that we have the equivalence between the two problems max

xPb K k"1 S k f J x and ř K k"1 max x G k PS k f J G k x G k .
The challenge addressed in the following is to take advantage of the structure exhibited in Equation (8.1) to heuristically solve decoupled sub-problems, in ways which do not harm too much the objective function. This comes with coordination and monitoring some trade-off between the granularity of the decomposition and the number of processed nodes.

Relax and Fix

For the sake of convenience, we introduce the notation ρ px I 1 |x I 2 " yq with y P R |I 2 | , referring to the problem p while adding the constraint x I 2 " y for some index set I 2 and relaxing the integrity constraints on any variable whose index does not belong to some index set I 1 :

ρ px I 1 |x I 2 " yq : $ ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' % max pxG i q i"1,...,K x C K ÿ i"1 f J G i x G i `f J C x C s.t. x P P x I 2 " y x I 1 P t0, 1u |I 1 | (8.3)
ρ px I 1 q will refer to the linear relaxation of p where only the binary variables in I 1 are not relaxed and ρ p.|x I 2 " yq the linear relaxation of p with the additional constraint x I 2 " y. This constraint is perceived here as a collection of individual constraints, and the reader should not be surprised to see notations such as ρ p.|x I 2 " y 2 , x I 1 " y 1 q or again ρ p.| tx I 2 " y 2 u Y tx I 1 " y 1 uq.

The Relax and Fix procedure (RF) is then a natural heuristic for finding a solution associated with, hopefully, a good lower bound. Algorithm 9 presents the basic RF procedure applied to p with any decomposition G " tG k u K k"1 which partitions the integer variables set into disjunctive sets tB k u K k"1 . By convention, we write x ˚ppq the optimal solution of a problem p obtained by any given method, and z ˚ppq its objective value, with z ˚ppq " ´8 if p is not feasible.

Algorithm 9 Relax-and-Fix: RF pp, Gq

Input:

A decomposition tG k u K k"1 for a problem p with tB k u K k"1 its associated integer sets. Initialization:

x p1q Ð x ˚pρ px B 1 qq z p1q Ð z ˚pρ px B 1 qq Procedure:
for k in 2...K:

z pkq Ð z ˚ˆρ ˆxB k | ! x B j " x pjq B j ) k´1 j"1
̇if z pkq " ´8: Return: z RF " ´8 and x RF " nan else:

x pkq Ð x ˚ˆρ ˆxB k | ! x B j " x pjq B j ) k´1 j"1 ̇ėnd if end for Return:
z RF " z pKq and x RF " x pKq .

A usual variant of RF is obtained by fixing only a subset of the integer variables of each block.

Although it increases the odds of obtaining a feasible solution, it requires the selection of a relevant subset in each block, which is an open question (see for instance [START_REF] Ferreira | Relax and fix heuristics to solve one-stage one-machine lot-scheduling models for small-scale soft drink plants[END_REF]). Note that this could be an opportunity for machine learning, but this axis is not developed here.

Considering the standard RF procedure as described in Algorithm 9, it provides a lower bound for p and turns out to reach optimality when the used decomposition decouples p. These points are stated in the following two propositions.

Proposition 8.1.1. Let z ˚be the optimal value of p. If z p1q ą ´8 , z RF ď z ˚ď z p1q holds.

Proof . Let S and S 1 be the feasible sets of respectively p and ρ px B 1 q. If z p1q ą ´8, S 1 is nonempty. As ρ px B 1 q is a relaxation of p, the two problems share the same objective function and S Ď S 1 , which implies z p1q ě z ˚. Conversely, with S k the feasible set of

ρ ˆxB k | ! x B j " x pjq B j ) k´1 j"1 ̇, we have S k " " x P S | ! x B j " x pjq B j ) k´1 j"1 * ùñ S k Ď S ùñ z ˚ě z RF .
Proposition 8.1.2. When a problem p decouples, a decomposition G exists such that RF pp, Gq is optimal.

Proof . Let S be the feasible set for p and G " tG k u K k"1 be a decoupling decomposition such that S " b K k"1 S G k and P G k is the set S G k without integrity constraints. Considering the case K " 2 and only considering bounded sets, the RF problem for p can be rewritten as

max x G 2 PS G 2 " f J G 2 x G 2 `max x G 1 PS G 1 ,yPP G 2 ␣ f J G 1 x G 1 `f J G 2 y ( ´f J G 2 y ˜*
with y ˜the solution for group G 2 in the inner problem. G decouples the inner problem when it decouples p, therefore it is equivalent to

max x G 2 PS G 2 " f J G 2 x G 2 `max x G 1 PS G 1 ␣ f J G 1 x G 1 ( `f J G 2 y ˜´f J G 2 y ˜* ðñ max x G 2 PS G 2 " f J G 2 x G 2 `max x G 1 PS G 1 ␣ f J G 1 x G 1 ( * ðñ max x G 2 PS G 2 ␣ f J G 2 x G 2 ( `max x G 1 PS G 1 ␣ f J G 1 x G 1 ( ðñ max xPS ␣ f J G 1 x G 1 `f J G 2 x G 2 ( (as G decouples p)
The result can be extended to any K ą 2 by induction.

Parallel with Lagrangian Decomposition

In the following, we introduce a link between Relax and Fix and a constrained version of Lagrangian Decomposition (LD [START_REF] Guignard | Lagrangean decomposition: A model yielding stronger lagrangean bounds[END_REF]), which will help us to introduce the philosophy of our methodology. We take K " 2 for the sake of conciseness.

Without assuming any special structure, any problem p can always be rewritten as p : 

$ & % max x f J x s.t. x P S 1 X S 2 (8.4) with S k " tx P P | x G k P X G k u for k " 1, 2 with tG 1 , G 2 u
max x pf ´λq J x | x P S 1 (˘`z ˚`␣ max x λ J x | x P S 2 (˘ă z ˚`␣ max x f J x | x P S 1 X S 2 (˘.
Taking x ˚the solution of the right-hand-side problem and acknowledging that x ˚P S 1 X S 2 , we obtain the contradiction pf ´λq J x ˚`λ J x ˚ă f J x ˚.

Note that the set Λ " R n can be safely restricted to Λ " tλ P R n , λ ě 0u.

Lagrangian decomposition has two main drawbacks. First, it gives no guarantee of finding an integer solution satisfying both S 1 and S 2 , it only aims at providing an upper bound for the solution in S. Second, the number of multipliers (the dimension of λ, n here) can be large enough to make the search over λ prohibitive.

In this context, Relax and Fix may appear as a way of tackling heuristically the first issue. Writing

p 1 : ␣ max x f J x | x P S 1 (
, RF can be formulated as

0 ˆ$ & % max x 1 2 f J x s.t. x P S 1 `2 ˆ$ ' ' ' ' & ' ' ' ' % max x 1 2 f J x s.t. x B 1 " x ˚pp 1 q B 1 x P S 2 (8.5) 
They are three differences compared with Lagrangian decomposition. First, the search for λ over R n is discarded by considering only the case λ " f 2 (or more generally λ " αf , α ą 0). Second, the constraint x B 1 " x ˚pp 1 q B 1 is added to enforce the feasibility of the potential solution. Last, the two problems are weighted so as to give all the weight to the second problem. Note that the feasibility constraint on its own already invalids the upper bound property.

We see through this comparison that Relax and Fix is a very drastic way to obtain a lower bound, especially by heavily restricting the search over the set of multipliers λ. Besides, one has no guarantee of actually finding such lower bound, as x ˚pp 1 q G 1 may not be compatible with S 2 . Therefore, such approach may not be efficient in many cases. In the following, we investigate a Relax and Fix scheme similar to Equation (8.5) but using a less restrictive multiplier set. The multipliers are seen as a potential way of guiding the solution of the first problem towards the optimal solution, giving rise to the optimization problem

max λPΛ ¨0 ˆ$ & % max x pf ´λq J x s.t. x P S 1 `1 ˆ$ ' ' ' & ' ' ' % max x f J x s.t. x B 1 " x ˚pp 1 pλqq B 1 x P S 2 ‹ ‹ ‹ ' (8.6)
where p 1 pλq refers to the first inner problem for a given value of λ. As stated in Proposition 8. 1.3, this is equivalent to p when Λ " R n .

Lemma 8.1.1. Let x P t0, 1u n ˆRm and S " ␣ x pjq P r0, 1s n ( j"1,...,q ˆF with F some countable and finite set in R m , then x P convpSq implies that an extreme point y of convpSq exists such that y :n " x :n where x :n refers to the first n coordinates of x.

Proof of Lemma 8.1.1. Let us consider wlog that x " ř q j"1 λ pjq y pjq with λ pjq P p0, 1s, ř q j"1 λ pjq ď 1, and y pjq P EpSq for any j P t1, . . . , qu with EpSq the set of extreme points of convpSq and show that j exists such that y pjq :n " x :n .

Considering the k-th coordinate with k ď n: 2. if x k " 0, take i P t1, . . . , qu, then 0 " ř q j"1 λ pjq y pjq k ě λ piq y piq k which implies y piq k " 0. Therefore y piq k " y pjq k " x k " 0 for any j " 1, . . . , q.

1. if x k " 1,
Proposition 8.1.3. Problems (8.6) and p as defined in (8.4) are equivalent when Λ " R n .

Proof . Let us denote the two inner problems in program (8.6) p 1 pλq and p 2 pλq so that it can be rewritten as max λPR n t0 ˆz˚p p 1 pλqq `1 ˆz˚p p 2 pλqqu.

First, we know that problem (8.6) yields a lower bound for p as the feasible set of p 2 pλq is a subset of S for any λ P R n . Let us show that a specific value λ ˚gives an optimal solution. By construction, x ˚P S 1 so we also have x ˚P convpS 1 q. In other words, x ˚is a convex combination of the extreme points EpS 1 q of convpS 1 q. Lemma 8.1.

1 implies that EpS 1 q X ␣ x P R n | x B 1 " x B1 ( ‰ H.
In that case, taking λ ˚such that λ j " 1 (resp. λ j " ´1q if x j " 1 (resp. x j " 0) for any j in B 1 and 0 elsewhere necessarily gives x ˚pp 1 pλ ˚qq B 1 " x B1 . As a consequence, x ˚pp 2 pλ ˚qq " x ˚by construction.

Combining Relax and Fix and Lagrangian decomposition, we obtained an equivalent formulation of any MILP which is decomposed in two subproblems, supposed to be easier to solve than p. However, the cost of such approach is that one has to search over the multipliers space Λ to guarantee optimality, which is in general a very high cost to pay. In the following, we derive an approach to reduce such search in our setting of nearly decoupled problems.

8.2 Decouple, Relax and Fix

The generic methodology

Taking as starting point the problem (8.6), we aim at reducing the search space Λ to a finite set of interesting points, if possible countable with low cardinality. This would allow us to perform a full exploration of this set, hence avoiding to rely on methods such as gradient descent, the efficiency of which may be uncertain on high dimensional spaces.

We consider in the following with no loss of generality the case of a problem p formulated as (8.1)

which we can write as

p : $ ' ' ' ' ' & ' ' ' ' ' % max pxG k q k"1...K ,x C K ÿ k"1 f J G k x G k `f J C x C s.t. x G k P S k px C q " P G k px C q X X G k x C P X C (8.7) with P G k px C q " ! x P R |G k | | A G k rx G k x C s J ď b G k ) .
The challenge addressed in the following is that of reducing the initial search space Λ " R n while keeping the solution optimal, or at least not decreasing it too much. To this end, we switch the lens used so far and, rather than using multipliers to guide the first inner problem toward the optimal solution, we will directly search over the variables' domain. We introduce in Proposition 8. 

pDRF q : max xcPX C ¨0 ˆ$ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % max x f J x s.t. x C " x c x G 2 P P G 2 px c q x G 1 P S 1 px c q `1 ˆ$ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % max x f J x s.t. x B 1 " x ˚pp 1 q B 1 x C " x c x G 2 P S 2 px c q ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' (8.8)
Proof . Let us denote p 1 px c q and p 2 px c q the two inner problems in DRF so that it can be rewritten as max xcPX C t0 ˆz˚p p 1 px c qq `1 ˆz˚p p 2 px c qqu.

First, we know that DRF yields a lower bound for p as the feasible set of p 2 px c q is a subset of S for any x c P X C . Let us show that if we take x c " x C , then pDRF q yields an optimal solution of p with

x ˚any optimal solution for p.

When considering a fixed value x c for the coupling variables, p 1 px c q can be rewritten as

max x G 1 ,x G 2 ␣ f J G 1 x G 1 `f J G 2 x G 2 `f J C x c | rx G 1 x G 2 s P S 1 px c q ˆPG 2 px c q ( and p as max x G 1 ,x G 2 ␣ f J G 1 x G 1 `f J G 2 x G 2 `f J C x c | rx G 1 x G 2 s P S 1 px c q ˆS2 px c q ( .
Hence, tG 1 , G 2 u decouples these two problems, which are thus respectively equivalent to

! f J C x c `max x G 1 ␣ f J G 1 x G 1 | x G 1 P S 1 px c q ( `max x G 2 ␣ f J G 2 x G 2 | x G 2 P P G 2 px c q ( ) and ! f J C x c `max x G 1 ␣ f J G 1 x G 1 | x G 1 P S 1 px c q ( `max x G 2 ␣ f J G 2 x G 2 | x G 2 P S 2 px c q ( ) .
The two problems in x G 1 are identical and thus yield solutions with equal objective values for a given

x c . Considering the value x C , we obtain f J G 1 x ˚pp 1 px C qq G 1 " f J G 1 x G1 and thus f J x ˚pp 2 px C qq " f J x ås the problem (8.7
) is decoupled by tG 1 , G 2 u once the coupling variables are fixed.

The only difference with RF is the introduction of the master problem over X C , which guarantees the equivalence with our initial structured problem. If we write ppx c q the problem p augmented with the constraint x C " x c , DRF applied to p with the decomposition G can be written

max xcPX C tRF pppx c q, Gqu.
To properly define a DRF procedure, one still needs to characterize the search over X C . In the following, we incorporate the RF procedure in a Branch and Bound algorithm on the set of coupling variables to solve the DRF problem (8.8). For the sake of simplicity, we restrict to the cases where the coupling variables are either binary or continuous.

Decouple, Relax and Fix with binary coupling variables

From now on, the decomposition used is the one naturally induced by the formulations (8.1) or (8.2), then RF psq will stand for RF ´s, G " tG k u K k"1 ¯with s a subproblem of p as defined in Equation ( 8 We call decoupling tree the subtree rooted in p and built from branching on the set of binary coupling variables C only. We write L C the set of leaves of such tree.

Algorithm 10 Decouple, Relax and Fix for Binary Coupling Variables (DRFB) Branch only on binary coupling variables C to build the decoupling tree by B&B. When a decoupling leaf s is met, set z s " RF psq and fathom s. Continue until the entire decoupling tree is fathomed and set L C the set of leaves. z ˚" max sPL C tz s u. Return: z ˚. We make here some remarks on this algorithm, which naturally stems from the use of B&B in our setting. Our method will rely on an exploration of a discrete subset of the space X C guided by the structure of the GRF function. To simplify the exposition, we only consider the case of a unique continuous coupling variable C " t0u. If we write α, β the bounds of x 0 , we seek a grid H in rα, βs of limited length which allows to find an optimal solution in DRF C. In other words, we want to guide the search If the locations of the flat regions were to be known, DRF C would be optimal using a non-uniform grid of size N , N being the number of plateaus. As knowing the plateau locations is unlikely, our aim is then to design a strategy for evaluating GRF on a (non-uniform) grid H whose size compares well with respect to N .

ζ 10 " ρ px B 1 |x C " 0q ζ 20 " ρ `xB 2 |x C " 0, x B 1 " x ˚pζ 10 q B 1 ζ11 " ρ px B 1 |x C " 1q ζ 21 " ρ `xB 2 |x C " 1, x B 1 " x ˚pζ 11 q B 1 p s 0 ζ 10 ζ 20 x C " 0 s 1 ζ 11 ζ 21 x C " 1
pu 1 q pu 2 q pu 3 q pu 4 q c (a) u GRF u 1 u 2 u 3 u 4 (b)
We know by Proposition 8.2.3 that a plateau associated with an optimal integer solution for B 1 exists, and this plateau is found as soon as one of its extremities is found. Our method relies on the reasons why the discontinuities of GRF appear. GRF may jump for two reasons: the integer solution becomes either piq infeasible or piiq sub-optimal after translating the constraints. Formally, for any u P rα, βs, let x ¯B1 " x ˚pρ px B 1 |x 0 " uqq B 1 . The first point of discontinuity of GRF at the right of u is u `δ for δ P p0, β ´us, with δ " min pδ 1 , δ 2 q and (i) δ 1 " min

! λ P p0, β ´uq | P x ¯B1 pu `λq " H ) (ii) δ 2 " min tλ P p0, β ´uq | Dx 1 P S 1 pu `λq, η px 1 , u `λq ą η px ¯B1 , u `λqu
Here, P x ¯B1 puq denotes the polytope of the LP ρ p.|x 0 " u, x B 1 " x ¯B1 q, and ηpx ¯B1 , uq is the optimal value of such LP: η px ¯B1 , uqq " z ˚pρ p.|x 0 " u, x B 1 " x ¯B1 qq.

We call first-order discontinuities the points satisfying piq. They are easy to exhibit, in the sense that we only need to check if a polytope is empty or not (see Remark 3), which is negligible compared with evaluating GRF . On the contrary, those satisfying piiq, referred to as second-order discontinuities, are expensive to find, as they require a MILP solving.

Algorithm 13 finds first-order discontinuities and works as follows. For any given integer solution

x ¯B1 of ρ px B 1 |x 0 " uq, the left and right discontinuity points are found by checking the emptiness of P x ¯B1 pvq with v moving away from u. At each discontinuity, a new integer solution is computed and the process is iterated until no more new points are found.

If we write N 1 ď N the number of plateaus exhibited by Algorithm 13, the latter performs in the worst case N 1 |H| emptiness checks and this number can be reduced to N 1 log 2 p|H|q using a dichotomic search.

Note that searching for the closest discontinuity points is sufficient as dompηpx, .qq is convex (see Proposition 8.2.4), which ensures that P x ¯B1 puq cannot be empty at u " u 2 and non-empty at u " u 1

Remark 4. Bound tightening

The above considerations use the bounds of the coupling variable α, β. A naive application would be to use the bounds provided by the formulation of the considered problem. However, poor bounds may be provided and thus mechanically increase the number of emptiness checks. In practice, we use a bound tightening technique, known as OBBT (Optimization Based Bounds Tightening [START_REF] Savelsbergh | Preprocessing and probing techniques for mixed integer programming problems[END_REF]).

This method consists in maximizing and minimizing the value of each variable in the linear relaxation of the initial problem.

Remark 5. Algorithm 13 does not exhibit all first-order discontinuities

Situations may arise when a first-order discontinuity appears at an integer solution associated with a second-order discontinuity, not found by Algorithm 13. This situation is illustrated in Figure 8.5.

u ηpx, uq ηpx 1 , .q ηpx 2 , .q ηpx 3 , .q α β Figure 8.5: Illustration of ηpx, .q functions for three optimal integer solutions x 1 , x 2 , x 3 . x 1 and x 3 are found by Algorithm 13 along with the associated first-order discontinuities labelled by blue crosses. However, the first-order discontinuity labelled by a red cross is not found, thus neither is x 2 . This is due to the fact that the change to the plateau corresponding to x 2 when moving along u is perceived as a second-order discontinuity by the algorithm, using either x 1 or x 3 as a starting point.

Remark 6. Approximation

The number of emptiness checks can be reduced by considering Algorithm 14, which limits the search of new points to the area between already found discontinuities (rather than considering the whole grid each time). Remark 7. ηpx, .q is concave As suggested by Figure 8.6, ηpx, .q is concave on its domain as we show here.

We know that there exists λ ě 0 such that ηpx, uq " max z ␣ c J z|z P P x X tx P R n | x 0 " uu ( can be rewritten as η s px, uq " max z ! c J z ´λ px 0 ´uq 2 |z P P x ) " min z tf pz, uq|z P P x u with P x a convex set and f concave and defined over P x . Then η px, τ u 1 `p1 ´τ qu 2 q " max zPPx f pz, τ u 1 `p1 ´τ qu 2 q ě f pz, τ u 1 `p1 ´τ qu 2 q @z P P x ě f pτ z 1 `p1 ´τ qz 2 , τ u 1 `p1 ´τ qu 2 q @z 1 , z 2 P P x as P x is convex ě τ f pz 1 , u 1 q `p1 ´τ qf pz 2 , u 2 q @z 1 , z 2 P P x as f is concave ě τ η px, u 1 q `p1 ´τ qη px, u 2 q

Generalization of DRF C to any K

We saw in the previous section that continuous coupling variables is a complication for our decoupling approach, as it requires to explore a continuous space when solving DRF . Thus, we resort to approximations by considering only a finite subset of points. Similarly, DRF highly suffers from the curse of dimensionality. Therefore, an additional approximation should be made to make DRF C tractable when K ą 2. Concretely, we regard our problems using formulation (8. 8.7. To make the parallel with B&B perfectly transparent, the tree nodes are here associated to relaxed subproblems

ρ ˆxB k | ! x B j " x pj´1q B j ) k´1 j"1
, x C k " u ̇where x pjq is the solution found in the ascendant node at depth j and u is a discontinuity point found by Algorithm 14 when considering G k as one set of a two-member partition. We use a DFS node selection, the branching strategy being defined by the order of the decomposition. Note here that, in the same way as DRF B, pruning by bound is performed in DRF C-K.

Algorithm 15 DRF C-KpG, C, k " 1, z ˚" ´8, H " Hq

Procedure: if k " K: z " z ˚pρ px G K |Hqq z ˚" max tz, z ˚u Return: z else (if k ă K): Let G 1 be the partition G 1 " ! G k ; Ť j‰k G j ) Let U be the first-order discontinuities for GRF G 1 ,C k for u in U do: Set z " z ˚pρ px B k |H Y tx C k " uuqq if z ď z ˚:
pass Ð pruning by bound or infeasibility else:

Set x puq " x ˚pρ px B k |H Y tx C k " uuqq z ů " DRF C-K ´G, C, k `1, z ˚, H Y ! x B k " x puq B k )ē nd if end for Set z ˚P min uPU z ů Return: z end if 206 CHAPTER 8. A DECOMPOSITION-COORDINATION APPROACH x C 1 x G 1 x C 2 x G 2 x C 3 x G 3 x G 4
Fixed coupling variable at a discontinuity point Solving the subproblem 

ρ ˆxB k | ! x Bj " x pj´1q Bj ) k´1 j"1 , x C k " u Ṡuboptimal or infeasible subproblem

Heuristics for decomposition

The DRF problem and its adaptations to the different cases presented above rely on a decomposition, and so is their efficiency. Of course, the problem of finding an "optimal" decomposition is not at stake, since the very notion of optimality is subject to debate when considering approximate methods. Indeed, two criteria may be taken into consideration: the number of nodes and the lower bound induced by the decomposition.

In the following, we propose heuristics for defining a decomposition which may fit the structure of problems encountered by EDF.

Temporal decomposition

The vast majority of EDF's MILPs carries an important temporal structure. A system, whatever it may be (e.g. a microgrid, a nuclear plant, a hydroelectric valley, etc.), is to be optimized over multiple time steps. In this setting, variables are often indexed by time steps and it is really natural to associate a group of variables in a decomposition with a set of time steps.

Formally, we call temporal decomposition a decomposition G " tG k u K k"1 which satisfies

`xi P G k , x j P G k 1 , k ă k 1 ˘ðñ t i ă t j
where t i refers to the time step of variable i. Sometimes, time may not be as structural as space, and using the system's units may be more justified than time steps. Hydroelectric valleys (see Section 3.2) is a sound example of such phenomenon. Consider for simplicity the case where K " T " 2 with two power units (see Figure 8.8).

If one considers a temporal decomposition, many coupling variables will appear in various locations of the valley due to the temporal inertia of the problem, specified by the water flowing and the unit temporal constraints. In the opposite, if we consider a decomposition using the power units to define blocks, the water flow between units account for the main coupling variables. Of course, the number of such variables will grow as the number of considered time steps increases, and considering such a decomposition when T is extremely high may not be wise.

In other words, time may not be considered as a relevant criterion for decomposition if it does not create a bottleneck, allowing a single (or limited amount of) variable(s) to impact two consecutive blocks, as illustrated in Figure 8.8. Keeping that in mind, an alternative for temporal decomposition is spatial decomposition, which is formally a decomposition G " tG k u K k"1 which satisfies

`xi P G k , x j P G k 1 , k ‰ k 1 ˘ðñ e i ‰ e j
where e i refers to the equipment associated with variable i.

hydro_var_3 when setting K " 2.

Generally, DRF B appears to find better solutions that DRF C. However, it fails more often to obtain a feasible solution. This can be explained by the fact that DRF B explores the entire set of possibilities for all the binary coupling variables, whereas DRF C only explores a subset of the possible values of a single coupling variable. Thus, the exploration is more thorough in the DRF B case. However, the choices made are non reversible in DRF B as we actually branch on the coupling variables, whereas DRF C fixes their value only temporarily.

Table 8.3 presents the results for DRF C-K using the spectral and spatial decompositions, where K is set to the number of units of the considered problem. We see that the effect is ambiguous, as it makes the spectral decomposition more efficient on hydro_var_3 and conversely on hydro_var_4.

Otherwise, results are less convincing but still comparable to that of Table 8.2. RF-spatial ( 297, 2.4, -0.15) ( 220, 24.8, -0.44) DRFC-spatial ( 2290, 0.0, -0.82) ( 7685, 3.6, -1.7 ) Table 8.3: Respectively nodes, proportions of unsolved instances and relative optimality gaps on hydro problems. Bold characters points out the best approaches regarding the proportion of unsolved instances, with an optimality gap lower than 5%. K is set to the number of units in hydro problems. Table 8.4 and Table 8.5 present the results when considering the same decomposition with a reversed order compared with Table 8.1 and Table 8.2 respectively. We see that it yields lower performances as it allows to find fewer solutions in case of hydro problems or higher gaps on microgrid, whether we consider RF or DRF approaches. These results confirm that the order matters in such methods, and that the natural order induced by the formulation is more relevant than the opposite. 

CHAPTER 9. PERTURBATION OF THE OBJECTIVE FUNCTION

This chapter presents an attempt to learn an efficient objective function's disruption for a given problem. First, Section 9.1 casts this objective as a black-box optimization problem and presents some observations in that matter. The impact of a disruption on the optimal value is also questioned. Section 9.2 presents the methodology used to solve this problem, especially using auto-encoders to downsize the search space and therefore to handle the curse of dimensionality. Last, Section 9.3 displays some brief experiments.

Preliminaries

Objective -BBO

One of the identified sources of difficulties for solving MILPs by means of a B&B procedure is the presence of symmetries, e.g. when the problem contains identical variables (same objective coefficients, same constraints). As explained in [START_REF] Walsh | Symmetry in Constraint Optimization[END_REF], these symmetries considerably increase the size of the search space. For instance, if a problem exhibits N interchangeable variables, breaking symmetry could reduce the size of the search space by a factor N .

A variable symmetry is a permutation of the variables that preserves the solution's value. In other words, a bijection σ : t1, . . . , nu Ñ t1, . . . , nu on the n indices of the variables exists such that if for every i, x i " d i is a solution, then x σpiq " d i is a solution as well with the same value [START_REF] Margot | Symmetry in integer linear programming[END_REF]. At a high level, one can then see objective disruptions as a way to produce an ordering for B&B nodes with same initial LP values, breaking these symmetries and thus, hopefully, producing smaller B&B trees.

Perturbing the objective function has already been identified as a way to break the symmetries of a problem. However, as pointed out in [START_REF] Margot | Symmetry in integer linear programming[END_REF], it turns out to be less efficient than problem-specific methods (see [START_REF] Rottner | Combinatorial aspects of the unit commitment problem[END_REF] for recent advances on the subject). Besides, a major inconvenient is that one cannot know in advance if the perturbation will reduce the B&B tree or if, on the contrary, it will increase its size. When facing repeated problems coming from an unknown distribution, one may be tempted to learn the optimal perturbation for this distribution. This task is naturally defined as a Black-Box Optimization (BBO) problem. Let Ω Ă R n be the set of admissible perturbations for a given instance distribution L (i.e. a given problem). Given a perturbation ε P Ω, the perturbed (or disrupted) problem refers in the following to 

$ & % Ω Ñ R ε Þ Ñ µpεq " E p"L rf pp, εqs
where f pp, εq can be any statistic (e.g. the number of nodes) produced on the instance p by applying a disruption ε on the objective function. Such definition remains valid under any configuration of the B&B solver considered. In this setting, we are looking for the optimal perturbation ε ˚which satisfies ε ˚P arg min εPΩ µpεq.

(BBO) for a given distribution L. As the analytic form of µ is obviously not known, ε ˚is to be approximated by sampling techniques.

A more ambitious objective would be to generate individual perturbations, i.e. one optimal perturbation per instance. This task would then formally be defined as finding an optimal generator γ ˚: p Þ Ñ γ ˚ppq " ε P Ω, which satisfies

γ ˚P arg min γPΓ E p"D rf pp, γppqqs (BBO2)
where Γ is some function space mapping the set of instances to Ω. for M " 500 normalized random perturbations, generated from a gaussian distribution. More formally, Figure 9.1 displays the histogram of µ ˆpε j q " 1 N ř N i"1 f pp i , ε j q with f pp, εq " |T pp,εq|´|T pp,0q|

Observations

|T pp,0q|

, |T pp, εq| denoting the size of the B&B tree for the instance p perturbed with ε and N the number of instances in the selected set. This metric will be referred as the relative performance in the following. 9.1a, i.e. to design a perturbation which performs well in average. As for (BBO), its objective is to reach similar results as those of Figure 9.1b, where the perturbation is dependent on the instance. Although this approach seems more promising, it may be harder to obtain a satisfying perturbation generator.

A major issue is to be tackled before using standard techniques to solve the optimization problem (BBO): the so-called curse of dimensionality. Indeed, BBO relies on sampling procedures in Ω, which size directly depends on the number of variables n. Hence, before applying BBO techniques, it is important to make sure that one could find a low-dimensional space where the evaluation function is smooth.

Let us leverage the problem's structure to visualize the black-box function in a low-dimensional space S Ă Ω. We take the weight matrix of an influence graph as defined previously (see Chapter 7) and draw perturbations on a η-sphere in the span of the eigenvectors associated with the two highest eigenvalues of this graph. More concretely, let W be the weight matrix of an influence graph and v 1 , v 2 the two eigenvectors associated with its two highest eigenvalues. We then consider η-spheres in the span of pv 1 , v 2 q, i.e. First, the performance of a perturbation seems to be relatively independent of its norm, at least in such low-dimensional spaces, which advocates for considering only spherical spaces. Second, the evaluation function µ appears to be relatively smooth in these low-dimensional spaces, hence allowing to encompass BBO techniques. Apart from these observations, it appeared that heterogeneous characteristics influence the performance of a perturbation. For instance, regarding the microgrid problem, disrupting only binary variables seems to be more efficient than disrupting all variables or only continuous ones. Besides, applying the same perturbation to every coefficient belonging to the same time step turned out to be as efficient as random perturbations.

Ω η " " ε P R n , ε " η cospθqv 1 `sinpθqv 2 || cospθqv 1 `sinpθqv 2 || * .

Is it legitimate to disrupt the objective function?

Let us restrict the perturbations to the η-sphere in R n , that is to say Ω " tε P R n , ||ε|| " ηu where ||.|| stands for the standard Euclidean norm. Such a choice is made as we consider that the tuning of the norm of the perturbation is independent to that of its shape (here, two colinear perturbations are said to have the same shape). In other words, we assume that if we can optimize the perturbation's shape for a given norm, the optimization process still stands for any desired norm. This assumption is based on the previous observations.

Before tackling the question of the tuning of the shape of the perturbation, it is necessary to ensure that one can disrupt the objective function without downgrading the quality of the solution. In case of a pure Binary Linear Problem (BLP), Propositions 9.1.1 and 9.1.2 state that the solution's value is kept unchanged provided that the norm of the perturbation is small enough. As a consequence, the perturbation's shape can be safely tuned as soon as one controls the norm of the perturbation.

Here, the original problem pP q and its perturbed counterpart pP ε q are written pP q

$ & % min x c J x s.t. Ax ď b, x P t0, 1u n pP ε q $ & % min x pc `εq J x s.t. Ax ď b, x P t0, 1u n (9.2)
Proposition 9.1.1. For any BLP pP q, a positive real number η exists such that for any ε lying on the hypercube Ω η " tε P R n , ||ε|| 8 ď ηu, the solution of pP q and that of the disrupted problem pP ε q have the same objective value in pP q.

Proof . Let us select an appropriate value for η and show the proposition by contradiction. We write ∆ " t´1, 0, 1u n , ∆ `" tδ P ∆, c J δ ą 0u and set η such that 0 ă η ă min αP∆ `cJ α n .

Such value trivially exists except for c " 0, but in that case the proof is direct as any feasible solution have the same objective value in pP q.

Let x ˚and x be two optimal solutions of respectively pP q and pP ε q, and assume x ‰ x ˚so that

x " x ˚`δ with δ P ∆zt0u and that c J x ˚‰ c J x.

As x ˚is the solution of pP q, we have that c J x ˚ă c J px ˚`δq since x ˚`δ is a feasible solution for both problems, so δ P ∆ `. Besides, as x is the solution of pP ε q, we have

pc `εq J x ď pc `εq J x ùñ c J δ ď ´εJ δ ď ⃓ ⃓ ⃓ε J δ ⃓ ⃓ ⃓ ď |ε| J |δ| ùñ c J δ ď n ÿ j"1 |ε j | ď nη
which is in contradiction with the definition of η.

Proposition 9.1.2. For any BLP pP q, a positive real number η exists such that for any ε lying on the ball Ω η " tε P R n , ||ε|| ď ηu, the solution of pP q and that of the disrupted problem pP ε q have the same objective value in pP q.

Proof . The proof directly stems from Proposition 9.1.1 as a non-empty hypercube always contains a non-empty ball.

In the following, Ω η will refer to the sphere of radius η.

Remark 1. Disrupting the constraints' right-hand side seems less conceivable Note that disrupting the objective function is less hazardous than disrupting the right-hand side (rhs). Indeed, the latter may discard integer solutions and potentially heavily harm the value of the found solution. Think for example of a constraint x i `xj ď 1 with i, j P J : if the disrupted rhs value was lower than 1, the solutions px i " 1, x j " 0q and px i " 0, x j " 1q would be removed from the feasible set. More generally, constraints involving integer variables are often designed to be tight so as to find earlier feasible solutions. This characteristic is hardly compatible with disruptions.

Choice of the statistic f

So far, we have not discussed the choice of the statistic f and only mentioned the absolute performance, i.e. the average node reduction. Actually, this natural idea may be a poor choice. |T pp,0q|

. It appears to be a more robust measure of performance, as it gives more weight to the easier instances, which are more numerous thus more statistically significant. However, it is important to acknowledge that this measure does not fully reflect the objective pursued in the rest of this document.

Another approach would be to consider the hardest instances as outliers and discard them from the analysis. Again, it does not seem satisfying in our context. A plethora of methodologies have been introduced on this matter (see for instance [START_REF] Boer | A tutorial on the cross-entropy method[END_REF][START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF][START_REF] Wierstra | Fitness expectation maximization[END_REF]), and we restrict ourselves to those designed to handle the case of expensive functions. In a BBO setting, we call expensive a black-box function which requires many resources (i.e. time) to be evaluated. This is the case of the performance as defined above, as it requires to solve as many MILPs as the size of the training set. BBO usually works by sampling and evaluating in an iterative manner new points in the search space. The difficulty of the task is to design an efficient sampling procedure, allowing to hopefully find the optimum in few iterations. In this context, one of the most used strategies is to use surrogate models and merit functions to guide the exploration of the search space. Let us precise these notions.

A surrogate model is a predictor h : Ω Ñ R of the black-box evaluation function µ. This predictor allows to make fast approximations of the black-box function and thus to reduce the number of expensive calls. At each iteration, new points are sampled and evaluated by the black-box function µ. This sampling is usually performed through the use of a merit function ν : Ω Ñ R, which gives a score to any new point using its expected performance based on the surrogate model h. Usually, merit functions define an exploration-exploitation trade-off, arbitrating between sampling promising points and exploring new areas of the search space. Note here the parallel with RL, where the same trade-off procedure with Dimension Reduction will require to sample in the encoding space S some points u with expected high performance and, then, decode these new points to obtain valid perturbations with the same expected performance. As a consequence, we rather care about ||ph ˝ϕ ˝ϕ´q puq ´hpuq|| 2 2 , as h˝ϕ predicts the performance of the decoded perturbation ϕ ´puq. Indeed, as the black-box function may not be smooth in Ω, the distance between perturbations and their images is not so relevant. On the contrary, one wish to ensure that, when sampling points in S, the decoded perturbation performs similarly as is expected for the encoded sample. Nonetheless, such metric contains relatively little information and does not really help to build a rich encoding. Actually, as h will be kept linear, we use the richer metric in the encoding space ||pϕ ˝ϕ´q puq ´u|| 2 2 .

Using this metric, we define a new neural network architecture, SAEL (for Supervised Auto-Encoder Looped), specially designed for our BBO task. The architecture is presented in In SAEL, the difference lies in the fact that the reconstruction loss is backpropagated through ϕ, ϕ ´and again ϕ.

Experiments

First and foremost, we investigate the coherence of the proposed models. Figure 9.5 and Figure 9.6 show the projections as well as the predicted performance for SAE and SAEL on a set of random perturbations. Figure 9.7 is the equivalent when using the less informative metric ||ph ˝ϕ ˝ϕ´q puq ´hpuq|| 2 2 for the reconstruction loss. The colors represent the actual performance µ of these perturbations. Figures 9.5a, 9.6a and 9.7a show the projections in a 2D space: u " pu 1 , u 2 q " ϕpεq. Thus, we expect to observe a colour gradient as an illustration of the appropriate structure of the embedding space.

In Figures 9.5b, 9.6b and 9.7b, the "looped" projections pϕ ˝ϕ´˝ϕ q pεq are represented. These projections are expected to be similar to the basic projections ϕpεq displayed in the previous figures. Indeed, after sampling in the 2D space S, the actual perturbations are obtained by applying ϕ ´. But the only way to ensure that these decoded new points are consistent with their expected performance estimated by h in S is to project them again in S, as it is the space in which the evaluation is smooth.

Pursuing the same objective, Figures 9.5c, 9.6c and 9.7c display the expected performance of the perturbations ph ˝ϕq pεq and their "looped" counterpart ph ˝ϕ ˝ϕ´˝ϕ q pεq. We thus expect to see points on the first bisector.

As expected, we can see that SAEL is more coherent than SAE, both in term of encoding reconstruction and predictions' stability. Our hope is then to produce perturbations which have the same value as were expected for their encodings when using SAEL, hence improving the sampling efficiency in Algorithm 18. Results are difficult to analyze. Even if we observe better performances, the little improvement obtained using SAE and SAEL compared with a random exploration questions the utility of the methodology. In addition to the high computational time needed to evaluate the black-box function, this explains why we did not investigate further on this approach and focused more on more promising ones, such as reinforcement learning.

These poor performances may come from many sources, such as the sampling method, the dimension reduction technique, or again the fact that we tested the approach on an easy-to-solve problem.

Chapter 10

Conclusion and perspectives

Although we principally investigated the reinforcement learning (RL) approach, this work has also been an opportunity to consider different paradigms, such as imitation learning, clustering and black box optimization. For each of these paradigms, the integration in the combinatorial optimization framework, and more specifically in the Branch and Bound algorithm (B&B), has faced limitations. Some of them has been lifted, but others remain. We take here a critical look at the different contributions displayed in this document and elaborate on various perspectives for future work.

A preliminary remark

Perhaps the first observation to be made is that our committed position was to omit an important characteristic of the industrial context related to the solving of repeated instances. In practice, a common scenario is to face overlapping instances. For instance, one may imagine the case where a system is optimized at time t for the period going from t to t `h, and again at time t `k for the period from t `k to t `k `h with 0 ă k ă h. In this setting, it may seem inefficient to conceal the result of the first optimization and start the second one from scratch. For instance, one idea may be to search for solutions of the second instance in some neighbourhood of the solution(s) found during the first optimization. This approach, known as reoptimization, may be combined with machine learning, for instance to guide the neighbourhood search.

Reinforcement learning for branching

As presented in this document, we rather chose to consider instances as independent outcomes of a single random variable. In this setting, we developed a reinforcement learning methodology to discover strategies by trials-and-errors on training instances. To this end, the learning task of discovering efficient B&B strategies have been cast into a Markov Decision Process (MDP). Focus is put on discovering oracle strategies, i.e. strategies which minimize the B&B tree size. In this case, learning sequential policies is generally not trivial, and the success of reinforcement learning methods often lies in an informative cost (or reward) signal and a meaningful state representation. In the context of learning the branching strategy for tree size minimization, meeting these two criteria is not a straightforward task.

Regarding the first point, different solutions have been tested. We first introduced the notion of h-ahead branching heuristics and tree-based transitions. Under tree-based transitions, we presented our generic approach as a way of learning in a tractable way these new heuristics. The choice of the cost model is often crucial in RL, and the focus is frequently put on designing heuristic intermediary costs, which allow to limit the credit assignment problem by observing as much as possible cost signals. However, we experimentally showed that costs based on classic branching heuristic scores are not suitable for our task of learning oracle strategies. This observation highlights that classic branching heuristics are based on scores which may reflect the lack of mathematical understanding of the branching dynamics. We proposed an alternative to such heuristic cost models and proved that solving the MDP with a unitary cost model yields an oracle strategy (i.e. a strategy which minimizes the B&B tree size). This property is always valid under classic trajectory-based transitions but requires a depth-first search (DFS) node selection strategy to hold under tree-based transitions.

We experimentally observed that this necessary condition is not restrictive in practice, and that using a non-DFS node selection strategy does not harm the performances. In this setting, tree-based transitions make the value of a state equals to the size of the subtree rooted in the corresponding node.

We observed better results under this setting, due to more informative cost signals which alleviate the credit assignment problem inherent to classic trajectory-based transitions. Although solving the MDP with a unitary cost model ensures to minimize the tree size, the value function exhibits a high volatility which makes the learning task difficult. To overcome this issue, we considered a generalization of this cost model which allows to stabilize the targets, and consequently improve the performances of the agent.

As for the second point, we leveraged features presented in prior related works and proposed additional features to build a meaningful state representation. However, when comparing a generic agent designed to perform well on the whole problem's distribution with the idealized case of specialized agents trained on a single instance, we see that the learnt generic strategy has difficulties to adapt to the specifics of each instance. This observation seems to advocate for a better and unified representation of a state in the specified setting. To obtain such unified representation, we tried to embed the problem's structure in the neural network architecture through constraint-wise convolutions. However, the experiments did not met the expectations associated with this representation. Although using a graph representation seems appealing, for instance by embedding this graph in a neural network (see [START_REF] Gasse | Exact combinatorial optimization with graph convolutional neural networks[END_REF][START_REF] Cappart | Combinatorial optimization and reasoning with graph neural networks[END_REF]), our experiments in that matter have not been conclusive so far. The idea, simple to express but more difficult to achieve in practice, is to provide the agent with the means to leverage the structure of the considered problem, both in terms of constraints and optimal locations in the feasible set. Through all the experiments performed, we feel that the representation of a state in the considered MDPs is something that merits to be improved in the future.

Widening the scope to node selection

The reinforcement learning methodology proposed for discovering a branching strategy has been adapted to the case of the node selection strategy and the complete strategy under DFS -both branching and node selection. Under some assumptions, we proved the oracle property of an intuitive node selection strategy, which can directly be learnt by imitation. To improve the sample efficiency of the reinforcement learning approach, we also leveraged demonstrations from this oracle strategy to give additional feedbacks on non-taken actions so as to augment the gradient provided to the agent.

The results obtained when learning only the node selection strategy appear to be better than those previously observed on the branching strategy. This is due to the fact that not only the learning task is easier (both the action and state spaces are reduced), but bad decisions are also less penalizing, the node selection strategy being generally less important than branching.

The combination of the two strategies generates open questions, such as coordination. For instance, we noticed that the agent was able to produce better primal integral scores when focusing only on node selection than when learning the complete strategy. This observation suggests that the synergy between the two policies may be improved.

Some perspectives on the reinforcement learning training process

Regarding the use of reinforcement learning for discovering B&B strategies, we already mentioned the need for improving the state representation and the potential coordination between multiple agents if any. Globally, we observe that our approach struggles to scale with the size of the problem. In that matter, one could think of different ideas to improve its scalability.

First, one could try to improve the exploration. In this work, we encompassed the use of different experts in the exploration and/or learning phase. Another approach which has been considered is to use sampling methods such as MCTS (Monte Carlo Tree Search [START_REF] Kocsis | Bandit based monte-carlo planning[END_REF]) to improve the quality of the exploration. However, the experiments performed in this direction were not conclusive and may deserve a more in-depth study. One of the main challenge faced when considering sampling techniques in this context is the dramatically huge size of the search space.

Rather than improving its quality, an orthogonal idea is to augment the amount of resources dedicated to the exploration. We attempted to use asynchronous methods, where parallel agents explore different instances simultaneously, but the learning process appeared to be destabilized by this approach. So far, we do not have insights on the causes of this phenomenon. However, this question of scaling up the samples collection for learning deserves to be looked into much deeper, as the greatest successes of reinforcement learning often involve a massive amount of data.

From a different perspective, it is tempting to use the strong temporal structure of the considered problems to improve the scalability of our methodology. For instance, one may learn strategies on low dimensional problems and marginally adapt them to bigger ones, using some kind of transfer learning [START_REF] Pan | A survey on transfer learning[END_REF]. This subject has not be treated in this work but certainly merits to be looked into.

With a similar idea of starting the learning by easy tasks, one could focus first on learning strategies at the bottom of the trees by sampling branching constraints. The number of sampled constraints would decrease through the learning process so as to gradually consider larger trees. This approach may seem natural, just as beginners first practice checkmates and endgames when learning to play chess. However, different issues may appear in our setting when considering this kind of approach.

First, the sampling of the branching constraints is crucial, as the agent should learn good strategies for states which are likely to be visited by its future versions. Besides, the scales of the target, strongly related to the tree size in our work, will probably get wider as bigger trees are considered, which may cause some troubles in the training process. This kind of issue was encountered for instance when using expert's demonstrations when learning the branching strategy.

Last, it appears naturally more complex to learn strategies at a problem level than at an instance level.

To obtain more specialized strategies, one may consider to clusterize the instances of a problem so as to train one agent per cluster. Of course, such idea would suffer from the classic pitfall of clustering, which is the use of a heuristic metric to guide the clustering. In a similar way, the training process could be focusing on a restricted number of chosen instances to decrease the variance in the samples, then progressively enlarge the scope to the rest of the training instances.

Considering more ambitious strategies

During this thesis, the focus has principally been put on the branching strategy, as it is often recognized as one of the most important strategies in B&B algorithms. It is legitimate to wonder whether there is some potential in widening the scope by considering generalized branching decisions. In our work, we designed branching policies which split some set S into the two disjunctive sets tx P S; x j " 0u and tx P S; x j " 1u when branching on variable j. When considering generalized branching strategies, child nodes can be created by general disjunctions of the form !

x P S; ř jPJ a j x j ď b

) and [START_REF] Karamanov | Branching on general disjunctions[END_REF]). Such method has the potential for drastically reducing the size of the tree, but would also heavily increase the search space in our reinforcement learning approach. Also, errors may lead to serious increases of tree sizes. To restrict the search, one may perhaps focus on partial assignments, guided by a predictor of optimal solutions.

! x P S; ř jPJ a j x j ą b ) (see

Graph branching

Using a different lens, we presented a branching heuristic based on a graph representation of a MILP, integrating the notion of variable influences. Trivially, the limitation of such approach is its heuristic nature, not only regarding the definition of influence but also the influence maximization scheme adopted. However, its capacity to drastically reduce the size of B&B trees for difficult instances is interesting, and suggests that graphs are relevant tools for encoding the structure of a problem. Note however that among the various definitions of influence experimented, there is no clear hierarchy regarding the performances. Therefore, different types of graphs may be considered to encode this structure, other than primal graphs -the results in [START_REF] Gasse | Exact combinatorial optimization with graph convolutional neural networks[END_REF] seem to advocate for using a bipartite graph. To overcome the fact that using this branching heuristic may be detrimental according to the considered instance, an option would be to learn when to use it, for instance by training a classifier (similarly to the work of [START_REF] Kruber | Learning when to use a decomposition[END_REF], where the authors train a classifier to decide whether or not a decomposition should be used). This learning could be performed at the instance level or, more ambitiously, at the node de sélection de noeud, nous démontrons l'optimalité d'une stratégie explicitement définie, qui peut être apprise plus efficacement de manière supervisée.

En plus des approches mentionnées, nous proposons une stratégie de décomposition-coordination afin de potentiellement permettre le passage à l'échelle de l'apprentissage par renforcement sur des problèmes de plus grande dimension. Une heuristique de branchement basée sur une représentation par graphe d'un noeud de l'arbre de B&B est également proposée. Cette représentation peut par ailleurs être utilisée afin de guider automatiquement la décomposition précédemment mentionnée. Enfin, nous présentons une approche dédiée à l'apprentissage de perturbations de la fonction objectif, afin notamment de briser d'éventuelles sources de symétrie.

Les différentes méthodes proposées sont évaluées sur des problèmes réels, fournis par EDF. Pour chaque problème, deux configurations sont envisagées afin de renforcer la robustesse des résultats fournis.

Les pages suivantes fournissent un résumé détaillé du contenu du présent manuscrit. La formalisation est restreinte afin de permettre un accès simple aux idées présentées. P .11.

x 2 " 1 P .01. P 101.

x 1 " 1 P 001.

x 1 " 0

x 2 " 0 

x
V ˚psq " min πPΠ V π psq
Pour atteindre cet objectif, l'algorithme DQN approxime la fonction Q-valeur optimale par un réseau de neurones Q ˆp., .; θq et met à jour les poids θ de ce réseau en minimisant à chaque itération i l'équivalent empirique de la fonction de perte L DQN i pθ i q " E ps,a,c,s 1 q"∆ i « ˆc `γ" min a 1 Q ˆps 1 , a 1 ; θ í q ı ´Q ˆps, a; θ i q ̇2ff avec c le coût observé depuis la paire état/action ps, aq, θ í une version fixée des poids mis à jour périodiquement et ∆ i la distribution de probabilité des expériences collectées dans un buffer au cours des précédentes itérations. L'inconvénient partagé par ces approches est la non prise en compte du coût associé à la prise d'une décision non oracle. Le fait que ce coût soit non constant au sein d'un même arbre de B&B nous pousse alors à étudier l'approche par renforcement pour l'apprentissage de la stratégie de sélection de noeud.

En effet, la généralisation de la méthodologie présentée au chapitre précédent possède l'avantage de naturellement prendre en compte ce coût en prédisant la taille du sous-arbre au noeud courant.

Malgré les mêmes garanties théoriques sur la capacité de l'approche par renforcement à trouver une stratégie oracle, le besoin pratique d'une meilleure efficacité d'échantillonnage nous pousse à vouloir utiliser les informations fournies par la stratégie oracle connue pour guider l'apprentissage. Nous proposons alors de modifier la fonction de perte guidant l'apprentissage par renforcement en utilisant la stratégie oracle connue pour augmenter la quantité d'information utilisée ( Équation (5.11)).

Expérimentations -Nous montrons empiriquement qu'utiliser les informations fournies par l'oracle améliore les performances de l'approche par renforcement. Pour autant, les approches supervisées R ÉSUM É SUBSTANTIEL permettent en moyenne d'obtenir de meilleurs résultats. Les stratégies découvertes, que ce soit en supervisé ou par renforcement, sont en général meilleures que celles utilisées par CPLEX.

Chapitre 6 : Apprentissage par renforcement pour la stratégie de branchement et de sélection de noeud

Nous étudions diverses approches pour combiner l'apprentissage de la stratégie de branchement et de la sélection de noeud. Tout d'abord, le cadre de RL utilisé jusqu'à présent peut aisément être élargi pour effectuer à la fois le branchement et la sélection de noeud. Il est également possible de combiner cette approche avec les informations tirées de la stratégie oracle précédemment évoquée en sélection de noeud. Enfin, nous proposons d'utiliser deux agents distincts, l'un entraîné par renforcement pour apprendre la stratégie de branchement et l'autre par imitation pour apprendre la stratégie de sélection de noeud.

Cette dernière méthodologie fournit les meilleurs résultats. Cependant, ils restent inférieurs à ceux obtenus en apprenant uniquement la stratégie de branchement, ce qui traduit un problème de coordination entre les deux agents apprenants.

Partie 3 : Exploitation de la structure des problèmes considérés

Cette partie regroupe trois approches indépendantes exploitant la structure des problèmes étudiés.

Ici, nous ne cherchons pas à garantir la découverte de stratégies oracles. Expérimentations -Dans un premier temps, nous montrons que la nouvelle fonction de perte de reconstruction améliore la stabilité de l'auto-encodeur face à un cycle complet de décodage-encodage.

Pour autant, les résultats de la procédure d'optimisation boîte noire sont décevants, non seulement en termes d'efficacité relative mais également en comparaison avec une stratégie d'échantillonnage aléatoire, non guidée par l'auto-encodeur.

Conclusion

Le travail mené tout au long de cette thèse a permis de développer une approche d'apprentissage par renforcement visant à découvrir de nouvelles stratégies de B&B, l'accent ayant été mis sur la dé- Ces améliorations participeraient notamment à la possible utilisation de la méthodologie proposée à des problèmes de plus grande dimension que ceux considérés dans ce travail.
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Chapter 5

 5 transposes the reinforcement methodology presented in Chapter 4 to the learning of the node selection strategy, the actions being the selection of the next open node to visit. Such idea 29 CHAPTER 1. GENERAL INTRODUCTION

1

 1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 A general overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 Imitation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 A particular function space: neural networks . . . . . . . . . . . . . . . . . . . 2.2 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Formal definition of the RL problem . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Exact methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.3 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.4 Some challenges in RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Learning in the Context of Branch and Bound . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Branch and Bound strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Machine learning and inner Branch and Bound strategies . . . . . . . . . . . . 2.3.3 Widening the scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2 . 2 :

 22 Figure 2.2: Illustration of agent-environment interactions in RL at time t
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 31 Figure 3.1: Schematic of a configuration for the microgrid problem. Red cells represent the varying data, grey indicates constraints and blue the production units.
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 3 USE CASES (a) Histogram of tree sizes. (b) Histogram of primal integral scores. (c) Histogram of nodes processed before finding an optimal solution. (d) Empirical cumulative probability of the stability score (3.1). This Figure is to be read as follows: on micro_bal_12, the black dot indicates that 40% of the variables has a score lower than 0.5.
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 32 Figure 3.2: Statistics on the solving of instances from the different configurations of microgrid. The numbers in parentheses are mean values for the corresponding statistics.
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 33 Figure 3.3: Schematic of the hydro problem. Red cells represent the varying data, grey indicates constraints and blue the production units.
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 34 Figure 3.4: Statistics on the solving of instances from the different configurations of hydro. The numbers in parentheses are mean values for the corresponding statistics.
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 2 are called oracle strategies. Depending on the selected strategy set Π, we propose different approaches to learn a good strategy with respect to objective (3.2). The three chapters of this part are respectively dedicated to learning the branching strategy, the node selection strategy and finally the two of them jointly.All the experimental results presented in the following chapters are averaged over 25 random splits of 200 training instances and 300 testing instances. We will refer to the term training processes to indicate the average number of nodes and primal integral scores (see Section 2.3.1, page 58) produced on training instances along any iterative learning procedure. The results presented on test instances are the average increase in terms of number of nodes compared to CPLEX (so that negative numbers correspond to an average decrease of the tree size).
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 41 Figure 4.1: Histogram of tree sizes generated by 500 random branching policies on a micro_bal_T12 instance. Node selection is performed by an identical heuristic in both cases to allow a fair comparison, and values in parentheses are the mean tree size for the random policies and the tree size for CPLEX.

Figure 4 . 2 :

 42 Figure 4.2: This graph represents all the possible branching decisions for Problem (4.1) with n " 2 under the specified node selection. The variable values are fixed by branching and node selection at any iteration of Algorithm 4, and each path is associated to a B&B dive towards p1, 1, 0, 0q.

  a transition function T assumed to be deterministic here, either trajectory-based or tree-based according to Definition 4.1.1 and 4.1.2 provided in what follows. Tree-based transitions are introduced to take into account the structure of the B&B environment and its dynamics.

  Figure 4.3 illustrates the differences between these two transition functions.

  Hypothesis 4.1.1. Deterministic node selection hypothesis The node selection policy in Algorithm 4 is deterministic: no matter the history, the node selection policy always selects the same node in a given set of open nodes. Definition 4.1.1. Trajectory-based transition
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 43 Figure 4.3: Illustration of the difference between trajectory-based and tree-based transitions.The represented tree is a B&B tree, where the number associated to each node is its visiting time. A tree-based transition function maps ps 2 , a 2 q to ps 4 , s 7 q, whereas a classic trajectory-based transition maps ps 2 , a 2 q to s 3 .

  jPJ ! cps, jq `γ min πPΠ tV π pD π 0 ps, jqqu `γ min πPΠ tV π pD π 1 ps, jqqu ) Thus the result.

  rem 4.1.1 using tree dynamic programming operators introduced by Definition 4.1.4. The Lemma 4.1.1 is necessary for deriving the proof. Definition 4.1.4. Tree dynamic programming operator We call B ˜a tree dynamic programming operator any operator over value functions defined as B ˜V psq " min jPJ c ps, jq `γ" V pD 0 ps, jqq `V pD 1 ps, jqq ı where D 0 ps, jq and D 1 ps, jq are two arbitrary states among the states associated to child nodes of ζpsq when branching on variable j. These two states may even depend on the value function V . Lemma 4.1.1. Any tree dynamic programming operator B ˜is a contraction for the L 8 norm as soon as γ P r0, 0.5q. Proof of Lemma 4.1.1. Let us show that ||B ˜V1 ´B ˜V2 || 8 ď 2γ||V 1 ´V2 || 8 for two arbitrary functions V 1 and V 2 .
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 4 Figure 4.4 displays the training processes for the three heuristic cost models mentioned above. Dueto the bad performances observed, we do not show test results for the sake of conciseness. Although the results appear disappointing, we observe that DBc is dominated by the two other cost models, both in terms of tree sizes and primal integrals. This observation is not totally surprising. On the one hand, the according Q-function contains little information as the bound distances are aggregated
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 44 Figure 4.4: Training processes: performance of the heuristic cost models under tree-based transitions.
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 45 Figure 4.5: Training processes: comparison of trajectory-based transitions (*_traj) with tree-based transitions on micro_asym_T6.
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 46 Figure 4.6: Evolution of the errors during the training process for heuristic cost models.
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 47 Figure 4.7: Evolution of the errors by depth during the training process for SBc.
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 48 the results obtained for different values of γ, and advocates for a high discount factor. As the impact of the discount factor is discussed in Section 4.2.3, we do not elaborate more on this question for the moment.

  (a) Tree sizes (b) Primal integral scores
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 48 Figure 4.8: Training processes: impact of the discount factor for NBc on micro_asym_T6.
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 21 considering dirac distributions for transition probabilities to get back to our setting of deterministic transitions.Learning the oracle strategySo far, we showed that considering trajectory-based transitions allows us to use classical dynamic programming to derive an oracle strategy. Still, the value iteration algorithm of Theorem 4.2.1 is inapplicable in practice and we must leave it to approximation algorithms, see for instance the previous section and Algorithm 6 with the adequate Q-value function (4.15). As trajectory-based transitions put us in the classical RL setting, the bound on the performance of a greedy policy with respect to a sub-optimal policy holds (see Equation(2.24)).

Figure 4 .

 4 Figure 4.9 compares the training process observed when considering the unitary cost model under trajectory-based transitions with the heuristic cost model NBc on micro_asym_T6. Due to the bad performances observed, we do not display other experiments at this point.
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 49 Figure 4.9: Training processes: comparison between the unitary cost model under trajectory-based transitions (Uc_traj) and the heuristic cost NBc under tree-based transitions on micro_asym_T6.
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 410 Figure 4.10: Illustration of the credit assignment problem induced by trajectory-based transitions. The three figures represent B&B trees, where the numbers indicate the visiting order of the nodes (the node selection follows here a DFS strategy in each tree). Red nodes correspond to B&B nodes where branching decisions are those of figure aq, blue ones are those where actions and/or B&B nodes are different in figure bq compared with aq, and green ones are those different in figure cq compared with bq.
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 410 Figure 4.10. We write here S 1 ps, πq (resp. S 2 ps, πq) the set of states where costs are used in the derivation of the value function (4.14) (resp. (4.17)) for policy π from state s. These sets represent all the descendants of s under the according transitions. We have then S 2 ps, πq Ď S 1 ps, πq as illustrated in Figure 4.11, resulting in the tree-based value function being less dependent to other choices made in the tree, hence more stable and informative.
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 411 Figure 4.11: This figure represents a B&B tree, where the numbers indicate the visiting order of the nodes. Blue nodes are the descendants of the red node under trajectory-based transitions, whereas blue nodes with red borders are the descendants of the same red node under tree-based transitions.

Figure 4 . 12 :

 412 Figure 4.12: B&B trees for optimal and oracle strategies using a BrFS node selection strategy for solving problem(4.19). The numbering corresponds to the node visiting order.
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 423 Let O t be the set of open nodes at a given iteration t of Algorithm 4 using a DFS node selection strategy and s the state corresponding to the immediately selected node ζ in this set. Let us write s 1 1 , s 1 2 the states corresponding to the first node ζ 1 in O t to be visited after s, while running respectively the branching policy π 1 and π 2 between the visits of ζ and ζ 1 . Then, under Hypothesis 4.1.1

Figure 4 .

 4 [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF] displays the performances for tree-based and trajectory-based transitions for the unitary cost model. We only display these results on an easy problem as trajectory-based transitions do not show good performances.
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 413 Figure 4.13: Training processes: comparison between tree-based transitions (Uc_tree) and trajectorybased transitions (Uc_traj) for the unitary cost model on micro_asym_T6.

Figure 4 .

 4 Figure 4.14, which shows the comparison with the SBc heuristic cost -note that DFS is not enforcedfor the heuristic cost. Here again, we observe better results. However, the comparison with CPLEX raises doubts regarding the efficiency of the approach on the more difficult problems. The contrast between the results showed by Figure4.14c and Figure4.14e is eloquent. The trained agent competes with CPLEX on the problem hydro_fix_1, on which any feasible solutions are shared across instances -see Section 3.2. On this problem, the agent manages to find sequences of branching decisions which perform extremely well on every instances. On the problem hydro_var_1, even if a random strategy produces more or less the same number of nodes in average (see the intercepts), the agent struggles to find an efficient strategy which can adapt to every instances.
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 414 Figure 4.14: Training processes: comparison of the unitary cost model (Uc_tree) with the SB-like heuristic cost (SBc) under tree-based transitions on train instances.
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 231134 On the virtue of short-sightedness: a new cost modelIn the previous section, we proposed to use a unitary cost model under tree-based transitions, which provides when solving the MDP to optimality an oracle strategy only when γ " 1 (see Proposition 4.2.4). Hence, one can legitimately wonder why even considering a discount factor lower than 1 LEARNING A DYNAMIC BRANCHING POLICY in this setting.
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 415 Figure 4.15: Root state value V γ for full-width trees of size N .

  have meaningful feedbacks even in the early stages of training -see Equation (4.20). 118 CHAPTER 4. LEARNING A DYNAMIC BRANCHING POLICY . . . . . .

Figure 4 .

 4 Figure 4.16: Full-width (left) and full-depth (right) trees, grey nodes representing leaves.
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 417 Figure 4.17: Illustrations of the impact of the discount factor on full-depth and full-width trees.

  (a) Tree sizes -micro_asym_T8 (b) Primal integral scores -micro_asym_T8 (c) Tree sizes -micro_bal_T8 (d) Primal integral scores -micro_bal_T8

Figure 4 . 18 :

 418 Figure 4.18: Training processes: impact of the discount factor (γ P t0.2, 0.5, 0.8, 1u) in the unitary cost model under tree-based transitions.

Figure 4 . 19 :

 419 Figure 4.19: Illustration of the fact that the unitary cost model produces highly non-smooth value functions. In this example, s and s 1 may be similar states with very different values.

Figure 4 .

 4 Figure 4.20: V h,γ ps w q{V h,γ ps d q as a function of γ for trees of size V 1 ps d q " V 1 ps w q " 511, s d and s w being root states of respectively full-depth and full-width trees.

Figure 4 .

 4 Figure 4.21 displays the results of such value function and compares it with the unitary cost model on more difficult problems than those used in previous experiments. The results on train instances appear systematically better when using the subtree cost model and deserve some additional investigations.

  (a) Tree sizes -micro_asym_T12 (b) Primal integral scores -micro_asym_T12 (c) Tree sizes -micro_bal_T12 (d) Primal integral scores -micro_bal_T12 (e) Tree sizes -hydro_fix_2 (f) Primal integral scores -hydro_fix_2 (g) Tree sizes -hydro_var_2 (h) Primal integral scores -hydro_var_2

Figure 4 . 21 :

 421 Figure 4.21: Training processes: comparison of the subtree cost model with γ " 0.8 and h " 6 (Uc_subtree) against the unitary cost model (Uc_tree) under tree-based transitions.

  (a) Normalized mean (b) Normalized standard deviation (c) Mean errors

Figure 4 . 22 :

 422 Figure 4.22: Evolution of target's statistics and errors during the training process on micro_asym_T6.

( a )

 a Mean for the unitary cost model (b) Mean for the subtree cost model (c) Standard deviation for the unitary cost model (d) Standard deviation for the subtree cost model

Figure 4 . 23 :

 423 Figure 4.23: Evolution of target's statistics by depth during the training process on micro_asym_T6.

Figure 4 . 24 :

 424 Figure 4.24: Tree sizes against CPLEX on test instances for an individual agent under the subtree cost model with γ " 0.8 and h " 6 (Uc_subtree) and the unitary cost model (Uc_tree) under tree-based transitions. Number in parentheses are average tree sizes.

  (a) h " 3 (b) h " 6

Figure 4 . 25 :

 425 Figure 4.25: Training processes: impact of the discount factor for different values of h in the subtree cost model under tree-based transitions on hydro_var_1.
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 4 Figure 4.26, where we observe similar training processes. Performances on test instances, displayed in Table4.2, confirm these results. Every trained agents are evaluated against CPLEX using the same

  (b) Primal integral scores -micro_asym_T12 (c) Tree sizes -micro_bal_T12 (d) Primal integral scores -micro_bal_T12 (e) Tree sizes -hydro_fix_2 (f) Primal integral scores -hydro_fix_2 (g) Tree sizes -hydro_var_2 (h) Primal integral scores -hydro_var_2

Figure 4 . 26 :

 426 Figure 4.26: Training processes: impact of the DFS restriction in the subtree cost model under treebased transitions. 129

Figure 4 .

 4 [START_REF] Lin | Self-improving reactive agents based on reinforcement learning, planning and teaching[END_REF] displays training processes when using the loss function L DQN i for different values of the discount factor γ. We see the interest of our loss function, which learns much more rapidly than its DQN counterpart. This result is due to the fact that DQN's targets are nothing but noise at the beginning of training, which explains the slower slope in the early episodes.

  (a) Tree sizes -micro_asym_T12 (b) Primal integral scores -micro_asym_T12 (c) Tree sizes -micro_bal_T12 (d) Primal integral scores -micro_bal_T12
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 427 Figure 4.27: Training processes: comparison with the DQN loss function for different values of γ.

  (a) Tree sizes -micro_asym_T12 (b) Tree sizes -micro_bal_T12

Figure 4 . 28 :

 428 Figure 4.28: Training processes: impact of the additional dynamic features. Uc_subtree_BS refers to the case where only the branching state and static features are used.

  (a) Tree sizes -micro_asym_T12 (b) Tree sizes -micro_bal_T12

Figure 4 . 29 :

 429 Figure 4.29: Training processes: impact of the λ parameter in the sample weighting scheme, with unitary (Uc_tree) and subtree (Uc_subtree) cost models under tree-based transitions. The dashed lines are associated to the value λ " 0.95 and the solid ones to λ " 1.

Figure 4 .

 4 Figure 4.30 shows the results of the two previous approaches. For these experiments, ε i linearly decreases from 0.35 to 0 and stays null in the last third of the training process, for both methods. As

CHAPTER 4 .

 4 LEARNING A DYNAMIC BRANCHING POLICY have any control on the predictions made by the agent for the non-selected actions. This can lead to the emergence of discarded actions in the case where non-visited actions have durable overestimated value predictions.

Figure 4 .

 4 Figure 4.31 displays the predictions at the root node for the chosen action on multiple episodes and that of some fixed action b. As we see, this action b would never be picked at the root node if it was not for the epsilon-greedy exploration. In addition, we observe that its predictions may reach high values without any particular good reason since this action has been at best poorly sampled during training.

Figure 4 . 31 :

 431 Figure 4.31: Predictions at root node for the chosen minimal Q-valued action and a fixed arbitrary one.

Proposition 4 . 3 . 1 .' Case 1 :

 4311 Let action a be any chosen action at state s and b any other action. Then, under the unitary cost model and tree-based transitions, a node selection strategy exists such that the following inequality holds for the unobserved optimal Q-value of action b and for any given branching policy π: Q ˚ps, bq ď 1 `2Q π ps, aq.Proof . Let us call T a the generated subtree rooted in node ζ " ζpsq of size Q π ps, aq. We must show here that there exists a strategy π ub which, selecting the action b at state s instead of a, fully expands the underlying subtree T b in less than 1 `2Q π ps, aq nodes. Let us note β the upper bound available at s and distinguish two cases. No better bound than β has been found in T a . In that case, π ub is built by following the policy used in T a under the two nodes D 0 pζ, bq and D 1 pζ, bq, starting by branching on a. Following this strategy under these two nodes, any node ζ 1 P T b has a distinct counterpart in T a , equivalent to the hypothetical node D 0 pζ 1 , bq (resp. D 1 pζ 1 , bq) when considering ζ 1 in the descendants of D 0 pζ, bq (resp. D 1 pζ, bq). Thus, π ub can be defined with a slight abuse of notations by π ub pD i ps, bqq " πpsq with i P t0, 1u. With this strategy, any node ζ 1 pruned in T a is associated to corresponding nodes in T b , equivalent to the nodes D 0 pζ 1 , bq and D 1 pζ 1 , bq (as no better bound has been found). Thus they are also pruned in T b . Indeed, if ζ 1 has been pruned piq by infeasibility, then D 0 pζ 1 , bq and D 1 pζ 1 , bq are also pruned by infeasibility since their feasibility set is included in that of ζ 1 ; piiq by bound, then D 0 pζ 1 , bq and D 1 pζ 1 , bq are also pruned by bound since, for the same reason, their relaxed optimal values are greater or equal than that of ζ 1 ;

Figure 4 .

 4 Figure 4.32 shows the resulting training process, with and without enforcing the previous bound.

Figure 4 . 32 :

 432 Figure 4.32: Training processes: failure of learning when bounding the predictions (*_bound).

Figure 4 . 33 :

 433 Figure 4.33: Example of predictions for each variable at the root node under the unit tree model, with or without predictions' bounding.
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 51 Figure 5.1: Histogram of tree sizes generated by 500 random node selection policies on an instance of micro_bal_T12. Branching is performed by CPLEX in both cases, and values in parentheses are the mean tree size for the random policies and the tree size for the heuristic. The histogram of random branching performances is also shown for the comparison.
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 512 Under Hypothesis 5.1.1, one can always build a B&B tree of minimal size following a DFS node selection strategy. Proof . Let T π " tζ 0 , ζ 1 , . . . , ζ T u be a B&B tree built using a node selection policy π, ζ t representing the t th visited node. Notations are consistent with Algorithm 4 and N π , L π form the corresponding partition of T π .
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 52 Figure 5.2: Number of nodes on a micro_bal_12 instance when diverging from oracle choices at depth d.
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 521 Under Hypothesis 5.1.1, minimizing the subtree size is an oracle strategy and conversely.

2 . 4 ,

 24 substituting Hypothesis 4.1.1 by Hypothesis 5.1.1.
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 5 Figure 5.3 displays training processes for the presented strategies under the subtree cost model (the
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 53 Figure 5.3: Training processes: comparison of node selection strategies.BC refers to the behavioral cloning approach, DA to dataset aggregation, RL to "pure" reinforcement learning and RL-OR to reinforcement learning with expert demonstrations.
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 541 Figure 5.4: Training processes: comparison between the unitary (*_unit) and subtree cost models.

Figure 6 .

 6 Figure 6.1 displays an example of training processes for the strategies mentioned above, using the subtree cost model.
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 61 Figure 6.1: Training processes: comparison of full strategies on micro_bal_T8.
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 62 Figure 6.2: Training processes: comparison of complete strategies, using a branch-only agent as benchmark (RL-branch).166

Figure 6 .Figure 6 . 3 :

 663 Figure 6.3 shows a comparison with the training processes obtained when using the unitary cost model. As for the branching case, we see that performances are lower than those obtained under the subtree cost model.

  to this end. Let us first define what we mean by influence, and then propose a class of graphs used to represent these influences for any MILP instance. Definition 7.1.1. Local influence

Definition 7 . 1 . 3 .

 713 Influence graph for MILP

  Figure 7.1: Examples of influence graphs.

Figure 7 . 3 : 1

 731 Figure 7.3: Average tree size difference between graph heuristics and CPLEX, displayed per quantile of the CPLEX's distribution. Each curve represents a pair (influence graph, K). We do not identify each graph as no pattern emerges.

  take i P t1, . . . , qu, then 1 " λ piq y piq k `řj‰i λ pjq y pjq k ùñ λ piq y piq k " 1 ´řj‰i λ pjq y pjq k . Besides, y piq k ą 0 as otherwise we would have 1 " ř j‰i λ pjq y pjq k ùñ 1 " ř j‰i λ pjq ùñ λ piq " 0 which is impossible by assumption. If y piq k ă 1, we then have λ piq ą 1 ´řj‰i λ pjq y pjq k ą 1 ´řj‰i λ pjq as y pjq k ď 1 for any j, hence ř q j"1 λ pjq ą 1 which is impossible. Therefore y piq k " y pjq k " x k " 1 for any j " 1, . . . , q.

  .7). Considering the case where coupling variables are only binary, we propose in this section an algorithm, referred to as Decouple, Relax and Fix for Binary coupling variables (DRF B) to solve the DRF problem (8.8). The search over X C is embedded in a B&B procedure by first branching on coupling variables and solving the decoupled sub-problems separately, as presented in Algorithm 10. It is illustrated in Figure 8.2. Definition 8.2.1. Decoupling tree.
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 82 Figure 8.2: Tree created by DRF B in case of a unique binary coupling variable for K " 2. Red circles represent nodes of the decoupling tree and blue triangles are rooted subproblems solved separately by Branch and Bound.

Figure 8 . 3 :

 83 Figure 8.3: Illustration of the fact that GRF is piecewise constant. Black dots in Figure 8.3a represent the feasible set for a maximisation problem, the objective direction being represented by the blue arrow.The effect of changing the value of u is a translation of some linear constraints, represented by the red lines discarding any point above. In Figure8.3b, GRF jumps whenever a new solution induced by the translated constraints is found.
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 84 Figure 8.4: This figure illustrates on a micro_asym_T12 instance the effect of fixing a unique continuous coupling variable to some value u (namely the mid-horizon inventory when considering a two-block temporal partition). LP is the value of the linear relaxation as a function of u, GRF is the value returned by Algorithm 11 (i.e. z ˚pρ px B 2 |x B 1 " y B 1 qq) and GRF-cont is the value of Algorithm 11 when adding the constraint x C " u in the second inner problem (i.e. z ˚pρ px B 2 |x B 1 " y B 1 , x C " uqq).
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 86 Figure 8.6: ηpx, uq for 250 different integer solutions of a micro_asym_T12 instance, taking the midperiod inventory level as coupling variable.
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 87 Figure 8.7: Illustration for DRF C-K with K " 4
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 288 Figure 8.8: Spatial (blue dashed line) vs temporal (red dashed line) decomposition
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  J x s.t. Ax ď b ; x P t0, 1u |J | ˆRn´|J | (9.1) One can define a black-box evaluation function µ such that µ :

Figure 9 .

 9 Figure 9.1 shows the histogram of the averaged performance over 300 instances of micro_asym_T6

  (a) Averaged relative performance by perturbation. (b) Relative performance of the best perturbation by instance.

Figure 9 . 1 :

 91 Figure 9.1: Histograms of the relative performance over 500 random perturbations on 300 instances of the micro_asym_T6 problem. The L 2 norm of the perturbations is 10 ´6.

Figure 9 .

 9 Figure 9.1 lets us think that there is actually some potential in the subject. The black-box optimization program (BBO) is typically addressed by designing a sampling scheme towards the left tail of the histogram in Figure 9.1a, i.e. to design a perturbation which performs well in average. As

Figure 9 .

 9 Figure 9.2 shows the average node reduction of such perturbations using coun_graph, for different values of η and compare it with some drawn in a random 2D space. Two observations can be made.

Figure 9 . 2 :

 92 Figure 9.2: Average nodes reduction for 2D random perturbations on the micro_asym_T6 problem

Figure 9 . 3 shows

 93 the histogram of the number of nodes for several instances of a given problem. Naturally, trying to solve the problem (BBO) using the absolute performance would lead to overfitting to the training set, as the few difficult instances (right tail) are the one with the highest potential decrease. An alternative is to consider the relative decrease as statistic of interest f pp, εq " |T pp,εq|´|T pp,0q|

Figure 9 . 3 :

 93 Figure 9.3: Histogram of the number of nodes without perturbation for 500 instances of the mi-cro_asym_T6 problem.
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 9294 Figure 9.4: Neural Network Architectures. The orange layers are output layers. In SAE, the supervised loss are backpropagated through h and ϕ, while the reconstruction information is sent through ϕ ánd ϕ.In SAEL, the difference lies in the fact that the reconstruction loss is backpropagated through ϕ, ϕ ´and again ϕ.

  (a) Encoded perturbations ϕpεq in a 2D space. (b) Encoded, decoded and reencoded perturbations pϕ ˝ϕ´φ qpεq in a 2D space.(c) Prediction's robustness to encoding/decoding.

Figure 9 . 5 :

 95 Figure 9.5: Coherence of SAE.
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 96 Figure 9.6: Coherence of SAEL.

  (a) Encoded perturbations ϕpεq in a 2D space. (b) Encoded, decoded and reencoded perturbations pϕ ˝ϕ´φ qpεq in a 2D space.(c) Prediction's robustness to encoding/decoding.
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 97 Figure 9.7: Coherence of SAEL with the less informative metric ||ph ˝ϕ ˝ϕ´q puq ´hpuq|| 2 2 in the reconstruction loss.

  (a) Performances on train instances for the best perturbation found along the training process. (b) Results on test after 10000 samples.

Figure 9 . 8 :

 98 Figure 9.8: Monte Carlo estimates for BBO relative performance on micro_asym_T6.

Partie 1 :

 1 Introduction Chapitre 1 : Introduction générale Le contexte de cette thèse CIFRE est donné par Electricité de France (EDF), qui doit régulièrement optimiser des systèmes, qu'ils soient de production, de transport, ou plus généralement d'allocation de ressources. Un même système doit donc être optimisé de manière répétée, ce qui produit des problèmes d'optimisation similaires en termes à la fois de structure et de dimensionnement. Pour un système donné, les multiples instances diffèrent du fait de la variabilité des données qui les définissent. A titre d'exemple, EDF peut être intéressée par l'optimisation journalière d'une centrale électrique. Tous les jours, un plan de production pour cette centrale doit être défini. La réalité matérielle de la centrale est supposée permanente, et il en est donc de même pour la structure du problème d'optimisation sous-jacent, le nombre et type de variables ou de contraintes. Pour autant, le contexte dans lequel le système doit être optimisé peut différer selon le jour considéré, par exemple du fait de l'évolution de la demande, des prix, des coûts, etc. Ces données variables induisent donc des instances différentes d'un même problème, associé à un système physique permanent. Concrètement, nous considérons des problèmes d'optimisation linéaire mixte en nombres entiers (en anglais Mixed Integer Linear Programming problems, MILPs), écrits p : . Ax ď b ; x P t0, 1u |J | ˆRn´|J | avec A P R mˆn , b P R m , c P R n , m le nombre de contraintes, n le nombre de variables et J l'ensemble des indices des variables binaires.Ces problèmes sont communément résolus à l'aide d'un algorithme de Branch and Bound (B&B), basé sur la connaissance d'algorithmes efficaces permettant de résoudre la relaxation linéaire de p. Un algorithme de B&B consiste en l'expansion d'un arbre, où les noeuds sont associés à des sous-problèmes relâchés de l'instance initiale p. A chaque itération de l'algorithme, la politique de sélection de noeud choisit un noeud parmi ceux n'ayant pas encore été visités. Si le sous-problème associé est infaisable ou peut être démontré sous-optimal, le noeud est fermé et un nouveau noeud doit être exploré. Dans le cas contraire, la politique de branchement sélectionne une variable binaire j P J et crée deux noeuds enfants en rajoutant respectivement au sous-problème courant les contraintes x j " 0 ou x j " 1.L'algorithme, illustré par laFigure ci-dessous, se termine en garantissant l'optimalité de la solution trouvée lorsque tous les noeuds ouverts ont été visités.P .... P ..1.

Chapitre 3 :Partie 2 :Chapitre 4 :Chapitre 5 :

 3245 Cas d'usageLes méthodes proposées sont évaluées sur deux problèmes fournis par EDF. Afin d'augmenter la robustesse des expérimentations, différentes configurations sont envisagées pour chacun des deux problèmes.Le premier problème, appelé microgrid, correspond à l'optimisation d'un réseau de chaleur et d'électricité. L'objectif est de maximiser le profit sur le marché de l'électricité tout en satisfaisant une demande en chaleur variable sur un horizon donné. Les moyens de production sont deux chaudières à gaz et une unité de cogénération, produisant simultanément de la chaleur et de l'électricité. La chaleur produite par les trois unités peut être stockée avec perte, et la cogénération ne peut être allumée que durant un certain temps.La dimension du problème microgrid est définie par le nombre de pas de temps considérés. Par ailleurs, deux configurations sont envisagées, micro_asym et micro_bal, les chaudières de la première étant plus dissemblables que celles de la seconde. Ainsi, le degré de symétries est plus élevé dans micro_bal.Pour chaque configuration, les données variables sont les prix du gaz, de l'électricité et la demande en chaleur à chaque pas de temps. Le second problème considéré, hydro, retranscrit la gestion d'une vallée hydraulique. L'objectif est de maximiser le profit sur différents marchés de l'électricité sur un horizon donné. L'énergie est produite par différentes unités de production, composées de turbines, à partir du flot descendant et contrôlé par des réservoirs. La dimension du problème hydro est définie par le nombre d'unités de production considérées. Les deux configurations envisagées, hydro_fix et hydro_var, diffèrent par leurs politiques de gestion des réservoirs. Contrairement à hydro_fix, la politique de gestion du volume des réservoirs à mi-période ainsi qu'en fin d'horizon est variable dans la configuration hydro_var. Par ailleurs, le nombre de turbines dans chaque unité de production diffère entre les deux configurations. Les données variables sont alors les différents prix de l'électricité et, pour la seconde configuration, les contraintes de volume à mi-période et en fin de période. Apprentissage de stratégies oracles dans un algorithme de B&B Dans cette partie, nous proposons d'utiliser l'apprentissage par renforcement pour découvrir des stratégies de branchement et de sélection de noeud efficaces au sein d'un algorithme de B&B. L'accent est mis sur la recherche de stratégies oracles, c'est-à-dire qui minimisent la taille des arbres générés. Nous considérons un algorithme de B&B théorique où seules les stratégies de branchement et de sélection de noeud gouvernent l'expansion de l'arbre (Algorithme 4). Les expérimentations sont effectuées en utilisant CPLEX, et les heuristiques de presolve et de génération de coupes sont désactivées pour permettre une comparaison équitable des stratégies étudiées. Apprentissage d'une stratégie de branchement dynamiqueCe chapitre vise à définir une méthodologie permettant la découverte d'une stratégie de branchement oracle. Pour ce faire, la dynamique inhérente à une telle stratégie doit être prise en compte. En effet, il est aisé de comprendre que l'efficacité d'une décision de branchement au noeud courant dépend des choix effectués dans le reste de l'arbre de B&B. Processus de décision markovien -Dans un premier temps, il convient de définir un cadre permettant l'apprentissage d'une telle stratégie. Pour ce faire, nous définissons un processus de décision markovien (MDP) ă S, A, T, c, γ ą régissant les interactions entre la stratégie de branchement et l'algorithme de B&B (environnement). L'espace d'états S est défini comme l'ensemble des possibles observations effectuées au moment de prendre une décision de branchement. Les actions A sont naturellement associées à la sélection de variables binaires (A " J ), candidates pour le branchement. Les transitions T sont supposées déterministes (Hypothèse 4.1.1) et peuvent être de deux ordres, trajectory-based (Définition 4.1.1) comme classiquement en RL ou tree-based (Définition 4.1.2). Les transitions tree-based sont ici proposées afin de mieux prendre en compte la structure d'arbre binaire de l'environnement, peu commune en RL. Le modèle de coût c reste à définir à ce stade, et le facteur d'escompte γ est un hyperparamètre à optimiser. Heuristique de branchement à horizon h (h´ahead branching heuristic) -En utilisant les transitions tree-based, nous définissons une classe de stratégies de branchement basées sur une connaissance du futur, c'est-à-dire des noeuds enfants créés consécutivement à une décision de branchement. Notamment, cette classe contient et généralise des stratégies proposées dans la littérature, comme par exemple la stratégie de Strong Branching [51]. L'intérêt de ces stratégies est justifié par le caractère dynamique de toute stratégie de branchement. Pour autant, mettre en place une heuristique de branchement à horizon h ą 1 n'est pas réaliste, et il en est de même pour l'apprentissage supervisé hors ligne de telles stratégies. Dès lors, une approche par renforcement est privilégiée. ps, jq, est un modèle oracle. Sous les transitions trajectory-based, ce résultat est inconditionnel (Proposition 4.2.1). Sous les transitions tree-based, nous montrons que l'utilisation d'une stratégie de sélection de noeud Depth-First Search (DFS) ainsi qu'un facteur d'escompte unitaire γ " 1 est une condition suffisante pour obtenir l'équivalence entre l'obtention d'une politique optimale et la définition d'une stratégie oracle (Proposition 4.2.4). Dans le MDP correspondant, la valeur d'un état est égale à la taille du sous-arbre à l'état courant généré par la politique utilisée. Cela permet notamment l'obtention de signaux plus "localisés" dans l'espace, ce qui réduit drastiquement le problème de credit assignment induit par les transitions trajectory-based. Les performances obtenues abondent dans ce sens, l'utilisation du modèle de coût unitaire et des transitions tree-based permettant d'obtenir des performances significativement meilleures. Apprentissage par renforcement avec modèle de coût biaisé -Jusqu'à présent, nous avons défini des espaces d'états et d'actions cohérents avec la politique de branchement et proposé un nouveau modèle de transitions, adapté à l'environnement induit par l'algorithme de B&B. Par ailleurs, nous avons proposé un modèle de coût qui permet non seulement de garantir théoriquement l'obtention d'une stratégie oracle, mais également d'améliorer les performances empiriques. Le dernier élément du MDP qu'il nous reste à étudier est alors le facteur d'escompte γ. Notamment, nous montrons comment l'utilisation d'un facteur d'escompte γ ă 1 permet de réduire la volatilité de la fonction valeur et donc des cibles utilisées lors de l'apprentissage. En effet, cela permet de réduire la dépendance des cibles à piq la position de l'état dans l'arbre de B&B, piiq la qualité de l'agent, et piiiq l'instance considérée. Par ailleurs, cela encourage l'agent à générer des arbres déséquilibrés, favorisant l'apparition d'arbres en profondeur et non en largeur. Pour autant, diminuer le facteur d'escompte comporte également des inconvénients. Théoriquement, l'équivalence entre politique optimale et stratégie oracle ne tient plus lorsque l'on considère γ ă 1 sous des transitions tree-based. Empiriquement, le facteur d'escompte déséquilibre la répartition des valeurs, ce qui rend difficile la différenciation des états, spécialement près du noeud racine. Pour pallier ce problème, nous proposons un nouveau modèle de coût, non oracle, qui permet l'utilisation d'un facteur d'escompte γ ă 1 et la standardisation des cibles au cours de l'apprentissage. Les expérimentations montrent que cela améliore significativement les performances, rendant les stratégies découvertes compétitives avec celles produites par CPLEX sur des instances de taille moyenne. Cependant, ces résultats passent difficilement à l'échelle du fait du fléau de la dimension, subi de manière inhérente par toute approche d'apprentissage par renforcement. Variations -De nombreuses pistes peuvent être explorées en complément du travail effectué sur le MDP, et nous en présentons quelques unes.Le choix de la fonction de perte est questionné et confirmé empiriquement par la mise en comparaison avec la fonction de perte classique de DQN. Par ailleurs, nous montrons l'importance des features utilisées pour la représentation des états. L'architecture du réseau utilisée, un MLP (Multi-Layer Perceptron) dense à 4 couches cachées, a également été investiguée sans succès. Une des raisons évoquées pour justifier la difficulté d'optimisation de l'architecture est la forte dépendance des méthodes d'apprentissage profond par renforcement (Deep Reinforcement Learning) aux nombreux hyperparamètres. Afin d'améliorer l'exploration de l'espace de recherche, nous évaluons empiriquement l'utilisation de CPLEX comme expert, au moment de l'exploration (sélection des actions durant l'apprentissage) ou de la régression (augmentation de l'information). Les stratégies obtenues ne semblent pas significativement meilleures sur les expérimentations menées. De même, l'utilisation de certaines bornes théoriques dans la fonction de perte ne permet pas d'améliorer les performances. Au contraire, les bornes utilisées empêchent l'agent d'apprendre à différencier les actions. Cela illustre notamment le fait que l'important en RL n'est pas de bien évaluer les différentes actions mais bel et bien de les classer efficacement. Enfin, nous montrons que le fait d'entraîner des agents spécialisés sur chaque instance d'un même problème est ambivalent. Sur certains problèmes, cela améliore les performances observées, comme attendu du fait de la simplification de la tâche. Sur d'autres, les performances ne sont pas significativement améliorées. Apprentissage de la stratégie de sélection de noeud Après avoir étudié l'apprentissage d'une stratégie de branchement, nous nous intéressons à l'apprentissage de la stratégie de sélection de noeud. Cet apprentissage s'avère plus aisé que celui de la stratégie de branchement, et ce pour deux raisons principales. D'une part, l'espace de recherche considéré est moins vaste. D'autre part, nous sommes en mesure d'exhiber formellement une stratégie oracle. Définition d'une stratégie oracle -Comme précédemment, nous effectuons l'hypothèse de transitions déterministes, et plus précisément celle d'une stratégie de branchement déterministe. La conséquence majeure de cette hypothèse est que l'on peut garantir l'existence et formellement exhiber une stratégie de sélection de noeud DFS oracle (Proposition 5.1.3). Dès lors, nous pouvons nous restreindre aux stratégies DFS et donc considérer un espace d'actions binaires au sein de notre MDP, une action consistant à choisir un noeud à visiter parmi les deux noeuds enfants du noeud courant. De plus, contrairement au cas de la stratégie de branchement, nous pouvons calculer hors ligne les choix oracles, comme la sélection du noeud enfant contenant la solution optimale au sous-problème associé au noeud courant. Stratégies d'apprentissage -Nous proposons d'utiliser les choix oracles de plusieurs manières. Tout d'abord, ils peuvent être utilisés hors ligne, comme déjà effectué dans la littérature [75, 76]. Un classifieur est alors entraîné pour imiter les choix oracles sur un ensemble d'états explorés en apprentissage. La distribution de ces états d'apprentissage diffèrera alors, selon qu'ils soient générés par ladite stratégie oracle (Behavioral Cloning [4]) ou bien par une politique évoluant en même temps que le classifieur (Dataset Aggregation [7]).
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 79222 Une heuristique de branchement basée sur une représentation par grapheDans ce chapitre, nous proposons une heuristique de branchement, basée sur une représentation par graphe de l'instance considérée. Le but de cette représentation par graphe est de modéliser l'influence du branchement sur chaque variable binaire sur les variables restantes. Une fois ce graphe d'influence construit, l'heuristique consistera à brancher sur les variables ayant les plus fortes influences. Graphe d'influence -Nous définissons un graphe d'influence pour un MILP comme étant un type particulier de graphe primal, c'est-à-dire où les noeuds représentent les variables et où une arête existe entre deux noeuds si les deux variables correspondantes sont présentes dans une même contrainte. Nous construisons cette classe de graphes de manière relativement large, et nous proposons alors différentes instanciations, où l'influence (le poids des arêtes) est définie en prenant en compte les coefficients de la matrice de contraintes et potentiellement une solution du problème dual relâché. Intuitivement, les définitions d'influence sont censées refléter la capacité de chaque variable à fixer les autres à leurs bornes lors d'un branchement. L'intérêt d'une telle représentation par graphe est notamment son invariance par permutation et sa capacité à modéliser des liens complexes entre les différentes variables. Il est cependant à noter que les définitions d'influence proposées sont sensibles à l'échelle des données, ce qui incite à effectuer une standardisation de ces dernières.Heuristique de branchement -Etant donné un graphe d'influence associé à un MILP, il semblerait naturel de chercher à brancher sur la variable ayant l'influence maximale. Le problème de maximisation d'influence étant en général NP-difficile, nous optons pour une méthode approchée basée sur une partition des noeuds du graphe d'influence par Spectral Clustering, visant à sélectionner plusieurs variables à forte influence. L'heuristique que nous proposons est alors définie comme suit. Soit K ě 1 le nombre de clusters désiré, une K-partition des variables binaires est générée au noeud racine, chaque cluster représentant un ensemble de variables étroitement liées. Au sein de chaque cluster, la variable de plus forte influence est sélectionnée. Les K variables ainsi définies sont ordonnées en fonction de leurs influences respectives, et la i-ième variable est alors utilisée pour le branchement en chaque noeud de l'arbre de B&B de profondeur i ´1 (cf. Figure7.2).Expérimentations -Les résultats observés sont relativement hétérogènes. En particulier, aucune hiérarchie n'est constatée entre les différentes définitions d'influence testées. Cependant, nous notons que l'heuristique proposée est généralement efficace pour les instances que CPLEX peine à résoudre, ce qui justifie l'intérêt porté dans la littérature à la représentation par graphe pour l'étude de problèmes combinatoires. Par ailleurs, il est intéressant de constater que les meilleurs résultats sont obtenus pour de grandes valeurs de K, ce qui laisse penser que la stratégie de clustering est pertinente. au sein de ce que nous appelons un arbre découplant. A chaque feuille faisable et non prouvée sousoptimale, une procédure de RF est initiée afin d'obtenir si possible une nouvelle borne.Variables couplantes continues -Dans le cas où les variables couplantes sont continues, la procédure de découplage se révèle être légèrement plus complexe. Tout d'abord, nous étudions le cas d'une décomposition en deux blocs, avec une unique variable couplante continue. L'espace X C étant dans ce cas un intervalle, nous restreignons la recherche à un sous-ensemble de points au sein de ce dernier. La sélection de ces points est basée sur le fait que la fonction GRF , définie comme GRF :$ & % X C Ñ R u Þ Ñ RF pppuq, Gqest une fonction constante par morceaux. Malgré l'existence de cas pathologiques pour lesquels certains plateaux peuvent être de mesure nulle (Proposition 8.2.2), nous restreignons la recherche d'un plateau de valeur optimale à une recherche discrète, basée sur les raisons pour lesquelles la fonction GRF présente des discontinuités. Nous identifions deux types de discontinuités : piq les discontinuités de premier ordre, induites par l'infaisabilité de la solution entière après translation des contraintes, piiq la sous-optimalité de cette solution. Les discontinuités de premier ordre sont relativement aisées à déterminer, puisqu'elles ne nécessitent que de tester la mesure nulle d'un polytope. A l'inverse, les discontinuités de second ordre requièrent la résolution d'un MILP, ce qui justifie notre choix de ne pas exhiber ces dernières. Nous proposons alors d'effectuer une recherche dichotomique sur l'intervalle X C (potentiellement réduit par bound tightening) afin de trouver ces discontinuités de premier ordre. Une telle approche se généralise difficilement à plus de deux blocs du fait du fléau de la dimension. Partant, nous proposons un algorithme arborescent permettant de restreindre la recherche. Cette restriction repose, tout comme la procédure de RF , sur la définition d'une décomposition ordonnée des variables. Expérimentations -Pour les expérimentations, nous proposons trois types de décompositions ordonnées. Les décompositions temporelle et spatiale sont basées sur la connaissance a priori de la structure des problèmes étudiés. Par ailleurs, nous proposons une décomposition spectrale, visant à créer une décomposition pertinente sans connaissance a priori. Cette décomposition est ensuite heuristiquement exploitée en maximisant les interconnections entre les différents blocs consécutifs. Les résultats des tests effectués montrent que les méthodes proposées permettent d'obtenir des bornes satisfaisantes en réduisant drastiquement le nombre de noeuds explorés comparativement à CPLEX. Par ailleurs, elles permettent de trouver plus souvent une borne par rapport à la procédure classique de RF . Bien évidemment, la décomposition choisie ainsi que l'ordre induit par cette dernière influent sur les performances observées. Perturbation de la fonction objectif Dans ce chapitre, nous étudions l'apprentissage de perturbations visant à réduire les symétries inhérentes au problème considéré. Paradigme de l'optimisation boîte noire -Soit f pp, εq une mesure évaluant l'efficacité d'appliquer la perturbation ε P Ω Ď R n à la fonction objectif du problème p, avec n le nombre de variables. L'objectif recherché est alors de découvrir en moyenne la perturbation optimale pour un problème donné, c'est-à-dire trouver le minimum de la fonction boîte noire (black-box ) µpεq " E p"L rf pp, εqs avec L la distribution inconnue des instances du problème considéré. L'ajout d'une perturbation à la fonction objectif pouvant modifier la solution trouvée, nous montrons en se restreignant aux problèmes binaires purs qu'il suffit de contrôler la norme de la perturbation pour garantir la non détérioration de la qualité de la solution trouvée. Réduction de la dimension -L'espace de recherche considéré étant une boule dans R n , nous proposons de réduire sa dimension avant d'appliquer un algorithme d'optimisation boîte noire. Dans un premier temps, nous justifions empiriquement le choix de ne considérer qu'une sphère et non une boule, la "forme" et la norme d'une perturbation apparaissant comme deux déterminants indépendants de la performance. Par ailleurs, nous proposons l'utilisation d'un auto-encodeur supervisé permettant d'encoder et de décoder les perturbations dans un espace latent de dimension réduite, tout en guidant ce mapping pour assurer que l'espace latent soit structurellement pertinent pour l'évaluation d'une perturbation. Un auto-encodeur supervisé classique est un système composé de trois fonctions : la fonction d'encodage ϕ : Ω Ñ ϕpΩq, la fonction de décodage ϕ : ϕpΩq Ñ Ω et la fonction de prédiction h : ϕpΩq Ñ R, et peut alors être entraîné grâce aux fonctions de perte supervisée l s et de reconstruction l r , par exemple : $ & % l s ph, ϕq " E ε"ρ " ||ph ˝ϕq pεq ´µpεq|| 2 l r `ϕ, ϕ ´˘" E ε"ρ " || `ϕ ˝ϕ´˘p εq ´ε|| 2 avec ρ la distribution des perturbations générées. Dès lors, nous proposons de traiter notre problème d'optimisation boîte noire en générant des perturbations au moyen d'itérations successives de la séquence piq générer des points dans l'espace latent ϕpΩq, piiq décoder ces points pour obtenir des perturbations dans Ω Ă R n , piiiq évaluer ces perturbations, pivq entraîner l'auto-encodeur supervisé en utilisant les nouvelles observations (Algorithme 18). Par ailleurs, nous questionnons la perte de reconstruction précédente. En effet, la distance euclidienne entre une perturbation et sa reconstruction ne semble pas pertinente dans notre cadre d'optimisation boîte noire. A l'inverse, il semble plus pertinent d'être capable de décoder des points de l'espace latent en perturbations ayant la même efficacité. Dès lors, nous proposons d'utiliser la perte de reconstruction l r pϕ, ϕ ´q " E ε"ρ " ||pϕ ˝ϕ´˝ϕ q pεq ´ϕ pεq|| 2 , en tirant parti du fait que la distance euclidienne dans l'espace latent est plus informationnelle que la distance dans Ω.

  couverte de stratégies oracles. Par ailleurs, il fut également l'occasion d'étudier d'autres paradigmes, comme l'apprentissage par imitation, le clustering et l'optimisation boîte noire. Concernant l'approche par renforcement, les deux principales pistes identifiées pour améliorer les R ÉSUM É SUBSTANTIEL performances de la méthodologie proposée sont l'amélioration de la représentation des états considérés ainsi que l'optimisation de la stratégie d'exploration. Ces deux pistes ne sont bien évidemment pas indépendantes, une meilleure représentation des états permettant à l'agent d'associer ou de distinguer plus facilement différentes zones de l'espace d'états, et donc d'améliorer l'échantillonnage de celui-ci, autrement dit l'exploration. Une des pistes envisagées pour améliorer la représentation des états est notamment l'utilisation de Graph Convolutional Neural Networks, ainsi qu'une construction de features spécifique au problème considéré. Afin de guider l'exploration de manière plus explicite, l'utilisation d'experts pour guider l'apprentissage pouvait être proposé, ou encore l'utilisation de méthodes d'apprentissage par transfert, permettant de généraliser des stratégies découvertes en petite dimension à des problèmes de plus grande dimension.

  Sample trajectories using π θ i´1 Get dataset D i " tps, π ˚psqqu of visited states by π θ i´1 and actions given by the expert Aggregate datasets: D Ð D Y D i Learn the parameter θ i on D following the empirical counterpart of program (2.5) Sample uniformly t P t1, . . . , T u with T the maximum length of trajectories. Start a new trajectory in some initial state drawn from initial state distribution Execute current policy π θ i´1 defined by Equation (2.7) up to time t ´1 Execute (randomly or not) some exploration action a t in current state s t at time t Execute expert from time t `1 to T and observe estimate of cost-to-go Q ŝtarting
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i on validation Although DAgger handles the problem of discrepancy between P θ and P ˚, it still reduces to iterative classification without taking into account the potential cost associated to non-expert trajectories. This limitation is the principal motivation behind AggreVate
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, presented in Algorithm 2. Rather than learning expert's actions through a vanilla classification task, they are learnt using a cost-sensitive classifier which solves the problem θ ˚P arg min θPΘ E s"P rQ ps, π θ psqqs (2.6) with Qps, aq the expected cost of taking action a at s and then following the expert policy. Program (2.6) can be reduced to classic convex optimization problems, for instance by considering an argmax regression scheme. Since Q is not known in advance, we consider Q ˆp.; θq : S ˆA Ñ R a predictor for the cost-to-go Q and policies of the form π θ psq " arg min E s"P θ j " l ´Qps, π θ j psqq, Q ˆps, π θ j psq; θq ¯ı (2.8) with l being usually a convex and differentiable loss function, e.g. MSE. i " ! ps, a, Q ˆq) of states, times, actions with expert's cost-to-go Aggregate datasets: D Ð D Y D i Learn the parameter θ i on D following the empirical counterpart of program (2.8) end for Output: best θ i on validation
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k ¯for any k P t1, . . . , |L `1|u. Still by using the chain rule, we have m ¯opL´1q l Recalling the expression (2.9), l i can be expressed as a function of the independent terms ´opL`1q k ¯k"1,...,|L`1| . Then, applying again the chain rule gives k ¯wpL`1q km which yields Bl i Bw pLq ml " ϕ pLq 1 ´apLq k ¯wpL`1q km where the terms in the sum have already been computed by assumption. Thus, the terms Bl i Bo pLq m and ϕ pLq 1 ´apLq m ¯are now available for calculations in layer L ´1.

  Turning the Bellman equations (2.16a) into an update rule, the dynamic programming operator is built as in Definition 2.2.1.

	aPA	s 1 PS ÿ	T ps 1 |s, aq	"	cps, aq `γV ps 1 q ‰	(2.19)

Definition 2.2.1. Dynamic programming operator Let V : S Ñ R be a value function and V the set of all value functions. The dynamic programming operator B : V Ñ V is defined by setting BV psq " min Note that one may define a similar dynamic programming operator for the Q-function. This operator is a maximum-norm contraction for γ P r0, 1q as stated in Lemma 2.2.1 and VI is the algorithm defined in Theorem 2.2.1. Lemma 2.2.1. The dynamic programming operator B is a contraction for the L 8 norm as soon as γ P r0, 1q. Proof of Lemma 2.2.1. Let us show that ||BV 1 ´BV 2 || 8 ď γ||V 1 ´V2 || 8 for two arbitrary functions V 1 and V 2 . For any s P S we have |BV 1 psq ´BV 2 psq| " ˇˇˇm in aPA # ÿ s 1 PS T ps 1 |s, aq " c ps, aq `γV 1 `s1 ˘ı+ ´min aPA # ÿ s 1 PS T ps 1 |s, aq " c ps, aq `γV 2 `s1 ˘ı+ ˇˇď

  ˚by performing the updates

				TD-error
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			"			ı
	Qps t , a t q Ð Qps t , a t q	`α	cps t , a t q `γ min aPA	Qps t`1 , aq ´Qps t , a t q	(2.22a)
	ðñ Qps t , a t q Ð p1 ´αqQps t , a t q	`α " cps t , a t q `γ min aPA	Qps t`1 , aq	ı	(2.22b)
	Sarsa and Q-learning are examples of model-free methods, where the updates are done using a sample-
	based estimate either of the Bellman or the dynamic programming operator image without trying to
	model the environment dynamics. We see here the importance of the exploration/exploitation trade-
	off as, in opposition with exact methods, the updates are made only on visited state-action pairs. As
	made explicit in Equations (2.21b) and (2.22b), the learning rate α governs how far the updates should
	bring the Q-function towards its images by the corresponding operator applied on visited state-action
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	Problem	# constraints # variables # binary average tree size
	micro_asym_T6	186	120	54	45.9
	micro_bal_T6	186	120	54	52.0
	micro_asym_T8	254	160	72	113.5
	micro_bal_T8	254	160	72	95.5
	micro_asym_T12	390	240	108	447.6
	micro_bal_T12	390	240	108	337.5

.1 displays the problems' dimensions as well as the average tree size of CPLEX on each configuration on 500 instances. As mentioned in the introduction (page 28), the experiments are performed with a restrained version of CPLEX's branch and bound so as to enable fair comparisons of specific strategies. 1: Dimensions of the different microgrid problems
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 3 2: Percentages of distinct near-optimal integer solutions found by CPLEX on microgrid problems.

	CHAPTER 3. USE CASES	
	Problem	Percentage (%)
	micro_asym_T6	5.17
	micro_bal_T6	17.17
	micro_asym_T8	14.07
	micro_bal_T8	31.36
	micro_asym_T12	44.32
	micro_bal_T12	99.84
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		# constraints # variables # binary average tree size
	hydro_fix_1	282	207	96	29.6
	hydro_var_1	378	303	144	442.9
	hydro_fix_2	596	366	216	446.0
	hydro_var_2	512	342	168	1628.6

3: Dimensions of the different hydro problems.

Table 3 .

 3 4: Percentages of distinct near-optimal integer solutions found by CPLEX on hydro problems. This part holds the main axes developed during this thesis. The objective is to learn strategies in a Branch and Bound algorithm. Throughout the different chapters, we consider Branch and Bound as defined in Algorithm 4, where the only degrees of freedom lie in the branching and node selection strategies. The dual bounds are provided by linear relaxations. In practice, we turn off presolve and cut generation. Such measures are common practice

	Problem	Percentage
	hydro_fix_1	6.6
	hydro_var_1	175.8
	hydro_fix_2	66.6
	hydro_var_2	282.4

  During training, each output receives gradient from errors on visited samples where the corresponding action has been selected. Draw randomly an instance p from the training dataset Solve p using π θ i´1 with ε-greedy exploration Collect dataset tps, jqu of visited states and observed Q-values from T π θ i´1 ppq in a buffer B Update θ i´1 to θ i following the gradient derived from Equation (4.12) using data

	Algorithm 6 Training Algorithm: RL for Variable Selection
	Initialization:			
	Randomly initialize θ 0
	Procedure:			
	for i " 1 to N do:	
	from B			
	end for			
	Output:			
	Final parameter θ N	
	4.1.5 Experiments	
				$
				&	0	if ζpsq is a leaf node
					(SBc)
				%	max t0.1 ; p1 ´∆0 qp1 ´∆1 qu	otherwise
	with ∆ i " min	! 1 ;	z D π i	ps,jq ´zs |zs|

6, with N the number of training episodes (or iterations). In practice, the Q-network Q ˆp., .; θq is built with |J | outputs, each output being associated 94 CHAPTER 4. LEARNING A DYNAMIC BRANCHING POLICY to a Q-value function estimation Q ˆp., j; θq.

To evaluate the proposed methodology, we test it using three different heuristic cost functions.

First, we consider a SB-like heuristic cost by taking cps, jq "

)

and z s the LP objective associated with state s. Such definition corresponds to a normalized version of SB, turned into a cost to match our minimization objective.

  ps t , πps t qqq (4.14)

	Q π γ ps

t , jq " 1 `γQ π γ pT ps t , jq, π pT ps t , jqqq

(4.15) 
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2: Number of nodes on train and test instances against CPLEX. The performances are displayed in average and for the best agent on train instances of 25 independent training processes.

  Then, one can build a first dive ␣ ζ φp0q , ζ φp1q , . . . , ζ φpd

	˚q(

  trivially omitted. Induction hypothesis: let us assume that a node ζ exists such that ζ P N π 1 X N π . Heredity: let us show that if ζ φptq P D π 1 pζq belongs to N π 1 , then ζ φptq P N π . Since the case ζ φptq P According to Hypothesis 5.1.1, ζ φptq P D π pζq, so ζ φptq P N π Y L π . Let us show that ζ φptq R L π . ζ φptq P N π 1 , so ζ φptq is neither MILP-feasible nor LP-infeasible. Besides, it was not pruned by bound in T π 1 , so it cannot be pruned by bound in T π as β π 1

	␣	ζ φpkq	(	kďd	˚has been trivially built, we omit it in the following and consider ζ φptq visited in T π 1 at a
	time t ą d ˚.

t ď β π φptq (t ą d ˚). Then ζ φptq R L π , which implies that ζ φptq P N π .

  Draw randomly an instance p from D tr Solve p using π θ i´1 Collect dataset tpps, jq, π ˚ps, jqqu of visited states from T π θ i´1 ppq and oracle actions in a buffer B Update θ i´1 to θ i following the gradient derived from Equation(5.

	Algorithm 7 Adapted Dagger Algorithm for Node Selection
	Initialization:
	Randomly initialize θ 0
	Procedure:
	for i " 1 to N do:
	6) using data
	from B
	end for
	Output:

Table 5 .

 5 1: Tree sizes comparison against CPLEX on train and test instances for the best agent on train over 25 seeds.

	CHAPTER 5. LEARNING THE NODE SELECTION STRATEGY		
		BC		DA	RL		RL-OR
		Train	Test	Train Test Train Test Train Test
	micro_asym_T8 +16% +28% -10% +8%	-4%	+6%	-2%	-1%
	micro_bal_T8 -27%	-25% -49% -36% -40% -28% -48% -24%
	micro_asym_T12	15%	27%	-16% -12% -5%	0%	-9%	-2%
	micro_bal_T12 -41%	-30% -60% -37% -24% -14% -43% -26%
	hydro_fix_2 -10%	-4%	-29% -18% -15% -15% -21% -16%
	hydro_var_2 -21%	8%	-25% -8%	0%	6%	-9%	21%

Table 6 .

 6 1: Performances on test instances against CPLEX for the best agents on train instances over 25 independent training processes.
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  a partition of the index set. The Lagrangian decomposition on the two sets S 1 , S 2 comes down to solving the problem

		pLDq : min λPΛ"R n	% ¨$ &	s.t. max x	x P S 1 pf ´λq J x	% `$ &	s.t. max x	x P S 2 λ J x	'
	It is straightforward to see that LD provides an upper bound for z ˚ppq. Let us assume that λ exists such
	that z	˚`␣						

  When considering K " 2, problem p as defined equivalently in Equations (8.7) and (8.6) is equivalent to the Decouple, Relax and Fix problem (DRF ):

	2.1 the
	generic formulation of the program we will consider in the remainder. Named Decouple, Relax and
	Fix (DRF ), this program is designed to be equivalent to the initial problem p due to the structure of
	p.
	Proposition 8.2.1.

  variable between two consecutive blocks. The others are associated to groups of the decomposition. Our belief is that this approximation should not be too harmful provided the considered coupling variable is selected carefully and implies structural asymmetries.With a slight abuse of notations, we write C k the selected coupling variable between groups k andk `1. Writing tα k , β k u K´1k"1 the associated bounds, we then explore a subset of X C "

	CHAPTER 8. A DECOMPOSITION-COORDINATION APPROACH	
	one continuous coupling K´1	
	Ś	rα k , β k s by
	k"1	
	using a B&B-like approach, presented in Algorithm 15. It progressively solves the relaxed subprob-
	lems while branching on the continuous coupling variables, as illustrated in Figure	
	2) and only consider
	205	

  Figure: Illustration d'un arbre de B&B en cours d'expansion avec t1, . . . , 4u Ď J . La stratégie de sélection de noeud doit choisir un noeud à visiter parmi les deux noeuds ouverts. Si ce noeud ne correspond pas à un problème infaisable ou ne peut pas être démontré sous-optimal, deux noeuds enfants seront créés par la politique de branchement.Actuellement, la création de l'arbre de B&B par des solveurs commerciaux est guidée par de nombreuses stratégies heuristiques. Pour prendre en compte les similarités des différentes instances d'un même problème, nous nous intéressons dans ce travail à la possibilité de créer de nouvelles stratégies de B&B, efficaces pour le problème considéré. Le critère retenu pour juger de l'efficacité d'une stratégie est la taille de l'arbre généré. C'est en effet un proxy classique du temps de calcul, communément utilisé car indépendant de l'implémentation et plus généralement de toute considération informatique. En considérant les instances d'un même problème comme les réalisations d'une variable aléatoire suivant une loi inconnue L, le problème que nous chercherons à résoudre peut se formuler comme un problème d'optimisation boîte noire où la fonction à minimiser est E p"L rµ pp, πqs avec Π l'ensemble des stratégies de B&B d'intérêt et µ pp, πq la taille de l'arbre de B&B généré sur l'instance p par la politique π.Le reste du manuscrit est construit de la manière suivante. Les Chapitres 2 et 3 introduisent les notions nécessaires pour la compréhension du document ainsi que les cas d'usage utilisés pour les expérimentations. La Partie 2, composée des Chapitres 4, 5, et 6 présente une approche basée sur R ÉSUM É SUBSTANTIEL à une politique π est définie comme l'espérance de la somme escomptée des coûts futurs que l'agent collectera en suivant la politique π depuis l'état courant s t :V π ps t q " E ∆ π k C t`k`1 |s t ff avec ∆ π la distribution des états visités en suivant π et C t le coût observé au temps t. De manière similaire, la fonction Q-valeur est définie commeQ π ps t , a t q " E ∆ π k C t`k`1 |s t , a t ffAvec ce cadre, nous pouvons formellement définir l'objectif de l'apprentissage par renforcement, qui est de trouver une politique optimale π ˚, i.e. une politique qui minimise la valeur de tout état:

	3 " 1	x 3 " 0		Noeud visité
		P ..0. Π Ñ R x 4 " 1 P ..01 µ P : $ & % 8 ÿ k"0 « 8 ÿ π Þ Ñ « k"0	P ..00 x 4 " 0	Noeud ouvert Solution Noeud infaisable Noeud sous-optimal

γ γ

Note that a non-negligible amount of time during the first year was dedicated to the learning of existing strategies. This line of research was later abandoned due to the publication of similar works in the meantime.

(a) Histogram of tree sizes. (b) Histogram of primal integral scores. (c) Histogram of nodes processed before finding an optimal solution. (d) Empirical cumulative probability of the variability score (3.1).

(a) micro_asym_T6 (b) hydro_fix_1

(a) Tree sizes (b) Primal integral scores

(a) Tree sizes -micro_asym_T12

Cette thèse a pour but d'utiliser des techniques d'apprentissage automatique pour la résolution de problèmes d'optimisation combinatoire. De par sa position de premier producteur français d'électricité, Electricité de France (EDF) doit continuellement piloter différents sites de production, ce qui se traduit mathématiquement par la résolution de problèmes linéaires en nombres entiers (en anglais Mixed Integer Linear Programming problems). A cet égard, EDF doit régulièrement résoudre des instances issues de ces problèmes, définies par des données stochastiques. Actuellement, ces instances sont résolues par un algorithme de Branch and Bound (B&B), sans tirer profit des potentielles similarités entre l'instance courante et celles résolues par le passé. Afin de conserver la garantie d'optimalité fournie par l'algorithme de B&B, nous nous proposons d'exploiter ces similarités pour un problème donné et d'apprendre différentes stratégies au sein de cet algorithme, comme par exemple la stratégie de branchement (sélection de variable) ou de sélection de noeud. Le principal critère utilisé afin d'évaluer la performance des stratégies proposées est la taille de l'arbre de B&B généré.L'approche majoritairement développée dans ce travail est l'utilisation d'apprentissage par renforcement pour découvrir de telles stratégies par essais/erreurs sur les instances historiques. Afin de s'adapter à l'environnement induit par l'algorithme de B&B, nous définissons un nouveau type de transitions au sein de processus de décision markoviens (en anglais Markov Decision Processes, MDPs), basées sur la structure d'arbre binaire. Par ailleurs, nous étudions différents modèles de coût au sein de ces MDPs. Du point de vue de la minimisation de la taille des arbres de B&B, nous prouvons l'optimalité du modèle de coût unitaire sous le modèle de transition classique ainsi que sous le modèle de transition binaire, dans l'apprentissage non seulement de la stratégie de branchement mais également de la stratégie de sélection de noeud. Pour autant, les expérimentations menées pour la stratégie de branchement suggèrent qu'il peut être préférable d'incorporer un biais dans le modèle de coût afin d'améliorer la stabilité du processus d'apprentissage. En ce qui concerne l'apprentissage de la stratégie
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Part II Learning Oracle Strategies in a Branch and Bound Algorithm standpoint even if not justified by the considered objective. Other justifications have been highlighted, for example the fact that a lower discount factor allows to tighten error bounds [START_REF] Petrik | Biasing approximate dynamic programming with a lower discount factor[END_REF] or simply to decrease the targets' standard deviation, hence the needed complexity for the Q-network [START_REF] François-Lavet | How to discount deep reinforcement learning: Towards new dynamic strategies[END_REF].

Discount factor in tree-based transitions with unitary cost model

The above reasoning still holds when considering tree-based transitions, and the discount factor still makes the value function less dependent on both the quality of the agent and remote states.

However, additional remarks can be done when considering a unitary cost model in our specific MDP with tree-based transitions.

First, let us recall that, when γ is set to 1, the value function (4.17) is the subtree size. Such value function induces a high variability in the values used for learning, highly mitigated by the use of a low discount factor. To see this, let us consider a B&B tree of size N " 2 p`1 ´1 with p ď n and let s be the state corresponding to its root node. No matter the shape of this tree, we have V 1 psq " N (the index indicates the value of γ). On the contrary, Proposition 4.2.6 gives an upper bound for V γ psq which scales much more nicely with respect to N .

Proposition 4.2.6. The discounted value function (4.17) for a state s with subtree size V 1 psq " N " 2 p`1 ´1 is upper bounded by 1´p2γq log 2 pN `1q 1´2γ for γ ‰ 0.5 and by log 2 pN `1q if γ " 0.5

Proof . A (sub)tree is said full-width when 2 d nodes are visited at depth d, except potentially for the maximal depth. When the tree size is N " 2 p`1 ´1 with p ď n, the number of nodes at each depth including the maximal one is 2 d and p " log 2 pN `1q ´1 is the maximal depth.

When using a discount factor γ ă 1, the value function is maximized when the subtree is full-width. This is obtained by solving the following MILP with γ ă 1: 

Bounding the predictions in the unitary cost model

When training an agent using the loss function L i pθ i q (see Equation (4.12)), we already mentioned that information is only propagated in the neural network through the output neurons representing the actions a which has been triggered, thus allowing to evaluate Q π θ ps, aq. Therefore, one does not triggered, such as improving the state representation, the network architecture, the hyperparameters, the exploration method, the learning process... A plethora of ideas still remain to be explored. to learn the full strategy, that is to say a policy which selects both variables and nodes. Starting from the full RL framework presented in Section 6.1, we propose in Section 6.2 variations based on the developments of Chapter 5. Section 6.3 presents some experimental results.

Unifying the branching and node selection strategies

The RL methodologies presented in Chapter 4 and Chapter 5 can be unified in a straightforward way to learn both strategies at the same time. Considering the MDP defined in Chapter 4 (Section 4.1.2), we only modify the action space. Instead of defining an action as the selection of a branching variable at the current node, we set it to the choice of both a branching variable and a child node priority. When enforcing DFS, such choice fully characterizes the two strategies.

Concretely, this is performed by considering the action space J ˆt0, 1u and an according Q-function

This setting doubles the size of the search space compared with Chapter 4, which may lead to a more tedious exploration. Let us take the example of the unit cost model under tree-based transitions to make the analogy easier with the case of learning only the branching strategy.

Consider a state s and an action selected by policy π which is "branching on variable j and visit first the child node associated to the additional constraint x j " k" with j P J and k P t0, 1u. By definition, the Q-value of this state-action pair is the subtree size rooted in the node ζpsq when following the according strategy. Note that this construction allows us to retain the oracle property of an optimal policy under DFS (see Proposition 5.2.1). For that matter, it is important to understand that the Q-value is not the subtree size rooted in the node ζ pD π k psqq but that rooted in ζpsq, as the property previously mentioned would not hold in such case.

The same remarks as those made in Chapter 4 regarding the impact of transitions on the credit assignment problem can be done, hence we do not repeat them here. Likewise, the justifications for incorporating a bias by considering the subtree cost model are identical. 

CHAPTER 8. A DECOMPOSITION-COORDINATION APPROACH

Solving MILPs can turn out to be prohibitively computationally expensive. Decomposition methods may be used to leverage the structure of a particular problem, hence alleviating the computational burden. In this chapter, we introduce a decomposition-coordination approach designed to address problems with specific structure. This structure may be known a priori or discovered through Spectral Clustering [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] on the primal graph.

First, Section 8.1 details the specific structure to be leveraged in this chapter and introduce the reader with the Relax and Fix procedure. A parallel is drawn with Lagrangian Decomposition to introduce the philosophy of our approach, detailed in Section 8.2. Finally, Section 8.3 reports some experimental results.

Decoupling problems 8.1.1 Setting

Before going through the method, let us specify the scope of problems we are interested in and, at the same time, some notations which will be useful in the remainder.

The problems considered in this document, as presented in Chapter 3, can be seen as the juxtaposition of dependent subproblems, linked through constraints involving a set of coupling variables.

Mathematically, this structure is reflected by a block-diagonal constraint matrix, as represented in Figure 8.1. Formally, such problems can be written as

or, in a more specific case, However, it is important to note that the optimality guarantee is lost as soon as some coupling variables are continuous. This is shown by the following counter example, with C " t0u, G 1 " t1u, G 2 " t2u.

x 2 `x0 ě 0.5 px 1 , x 2 q P t0, 1u 2 , x 0 P r0, 1s

The solution for RF pp, t1, 2uq is r0 1 1s with value 0, whereas the solution for p is r1 0 0s with value 0.5.

Remark 2. Primal bounds

The LP solution of any visited node in the whole procedure can be used for pruning. Let us exhibit the different cases with K " 2, taking s the subproblem associated to: Algorithm 11 Guided Relax-and-Fix (GRF G,C )

Return: z

Such approach suffers heavily from the curse of dimensionality. If we consider a uniform grid H of step-size L, the number of GRF evaluations becomes |H| " L |C| . Therefore, our interest in the following will be to reduce the decoupling grid size |H| used in DRF C. To this aim, let us exhibit some characteristics of GRF as a function of the fixed value x C " u.

Sensitivity Analysis

First, let us focus on the linear relaxation ρ p.|x C " uq of the first problem that is to be solved when calling GRF . The consequence of modifying the constraint x C " u is a translation of the right-hand side, in a single or most likely multiple constraints. Sensitivity analysis in Linear Programming tells us that the effect of such translation depends on whether the affected constraints are binding or not.

The case of a single affected constraint is simpler to interpret. If the constraint is binding, a change in u will always (except in some degenerated cases) affect the solution of ρ p.|x C " uq, decreasing its value if the constraint is tightened and vice versa. If the affected constraint is non-binding, the value may be decreased if the tightening is strong enough to make the constraint becomes binding -on the contrary, the value is not affected if the change in u is small enough. The constraints' translation is linear in u, which in turn makes the function z ˚pρ p.|x C " uqq continuous (Lipschitz continuity is stated by Theorem 2.4 in [START_REF] Mangasarian | Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems[END_REF]), piecewise linear and concave in u (see Proposition 2.3 in [START_REF] Adler | A geometric view of parametric linear programming[END_REF] and Let us see how this information can be leveraged in the context of the GRF procedure. In Algorithm 11, the only effect of a change in u which matters is its impact on the integer solution of ρ px B 1 |x C " uq. Since the constraints translation is linear and z ˚pρ px B 1 |x C " uqq is piecewise linear in u, the integer solution x ˚pρ px B 1 |x C " uqq B 1 is piecewise constant due to the integrity constraints (assuming the considered solver will always find the same solution in case multiple optimal solutions exist). As a consequence, GRF puq is also piecewise constant as the second inner problem in GRF (i.e. ρ px B 2 |x B 1 " y B 1 q) remains identical for two values of u which give the same integer solution At this point, we acknowledge that the choice of discretizing X C may harm the quality of the solution in some extreme cases. This is illustrated by Proposition 8.2.2, which states that some plateaus may actually be isolated points, even when considering the interior of X C . Proposition 8.2.2. One can build pathological cases where some plateaus of GRF measure zero. As a consequence, discretizing X C does not guarantee to find an optimal solution through DRF C.

Proof . Let us consider the problem

which is decoupled by tG 1 " t1, 2, 3u , G 2 " t4uu when u is fixed. In this case, we obtain

Exploration of X C

In order to build a relevant grid limited in size, we take advantage of the fact that GRF is piecewise constant on rα, βs. This structure is convenient for our case of study as, in this setting, a point of H does not need to be evaluated as soon as another point belonging to the same plateau has already been evaluated. Thus, the objective is to run GRF a minimal number of times per plateau. Such methodology guarantees optimality by Proposition 8.2.3 provided GRF exhibits no isolated point.

Proposition 8.2.3. Let z ˚be the optimal value for a problem p with C " t0u, then it exists u P rα, βs such that GRF puq " z ˚, with X C " rα, βs.

Proof . The problem is decoupled by tG 1 , G 2 u as soon as x C is fixed and DRF C is optimal, see Proposition 8.2.1.

Proposition 8.2.4. Let x ¯B1 be a feasible integer solution for ρ px B 1 q, then dompηpx ¯B1 , .qq is convex.

Proof . Let P x ¯B1 be the polytope of ρt.|x B 1 " x ¯B1 u, we must show that if η px ¯B1 , uq and η px ¯B1 , vq are defined, so is η px ¯B1 , τ u `p1 ´τ qvq for any τ in r0, 1s.

If η px ¯B1 , uq and η px ¯B1 , vq are defined, then a P P x ¯B1 puq and b P P x ¯B1 pvq exist. As P x ¯B1 pwq " P x ¯B1 X tx P R n | x 0 " wu for any w P rα, βs, we have y " τ a `p1 ´τ qb P P x ¯B1 by convexity of P x ¯B1 . In addition, y 0 " τ a 0 `p1 ´τ qb 0 " τ u `p1 ´τ qv, i.e. y P P x ¯B1 pτ u `p1 ´τ qvq " 

Emptiness check for polyhedra

Checking the emptiness of a polyhedron is here considered as simple in the sense that it only requires to solve a linear program. A basic way of assessing if a polyhedron is empty is to use a variant of Farkas' lemma, also know as Theorem of the Alternatives: either the system Ax ď b for x P R n has a solution, or the system A J y " 0, b J y ă 0 for y ě 0 has a solution. Then, assessing if the polyhedron P " tx P R n | Ax ď bu is empty is done by solving the second linear system.

Algorithm 14 Approximation for Algorithm 13

Input:

A coupling variable x 0 with domain rα, βs Initialization:

B " tαu, V " H while B ‰ H do:

Let u be an element of B and set

Detecting second-order discontinuities will then allow us to find the remaining discontinuities, as it will also enable to solve the problem raised in Remark 5. However, we argue that it is not a very concerning issue, as this type of discontinuities does not appear that often in practice compared to first-order ones if the problem has a significant level of constraints. This intuition is confirmed on a microgrid example in Figure 8.6.

When introducing spatial decomposition, we mentioned an intuitive criterion, similar to a "thumb rule", for using either temporal or spatial decomposition. In the following, we take further this idea of selecting the decomposition which induces few and discriminating coupling variables, by casting the decomposition process into a clustering task. In the most general case (i.e. DRF C-K), the process to be automated is then piq build a K-partition of the index set by clustering, piiq order heuristically this partition and piiiq select the coupling variables of interest. This is the object of Algorithm 16, that we explain in the following.

Partitioning the index set

We can list different attributes that we may want our decomposition to have. First, as said above, the number of coupling variables between groups should be low. Second, the groups should be of similar size to avoid solving large subproblems. Third, we want to select coupling variables which have a strong impact on the consecutive blocks. Such criteria are similar to those considered in the previous chapter. As a consequence, we propose to partition the index set again by Spectral Clustering (see Chapter 7) on a primal graph.

Selecting the coupling variables and ordering the decomposition

Let tG 1 , ..., G K u be the partition obtained by Spectral Clustering, we still need to extract relevant coupling variables and order the groups. Denoting W ij the weight between variables i and j in the considered primal graph, we define a local score

which quantifies the intensity of the links (in the sense of the considered primal graph) between G k 1 and G k 2 . We then define a non-oriented complete aggregated graph where vertices are associated to the groups G 1 , . . . , G K , the weight of an edge between two vertices associated with

The ordering is then obtained by finding the maximal hamiltonian chain on this graph, and the selected coupling variable C k 1 between two consecutive groups k 1 , k 2 is defined by

CHAPTER 8. A DECOMPOSITION-COORDINATION APPROACH

Note that the problem of finding a maximal hamiltonian chain is NP-hard. However, it can be solved by complete enumeration as, in practice, K is kept low.

Algorithm 16 Spectral Decomposition

Input:

A number groups K Procedure:

Build a primal graph of weights pW ij q n i,j"1

Apply Spectral Clustering to obtain a partition tG 1 , ..., G K u Build the aggregated graph associated to tG 1 , ..., G K u Find a maximal hamiltonian chain on the aggregated graph and set tr 1 , ..., r K u the indices of its nodes Set C r k " arg max iPGr k zBr k`1 ř

Remark 8. Some remarks on the hyperparameter K

In the previous procedure, K is considered as a given hyperparameter and a trade-off actually appears when setting its value. On the one hand, increasing the value of K allows to handle lower subproblems. On the other hand, it also increases the search space X C , which may increase the number of subproblems to solve and/or decrease the lower bound.

Experiments

To evaluate the DRF methodology, we compare the two variants DRF B and DRF C with RF and CPLEX. The three decomposition methods (temporal, spatial and spectral) are tested on mi-cro_bal_T12, micro_bal_T12, hydro_var_2, hydro_var_3 and hydro_var_4, except for the spatial decomposition which is not used on microgrid problems, as it makes less sense than for hydro problems. In DRF C, we select a unique coupling variable and look for first-order discontinuities using a grid of length 200. We heuristically select the coupling variable by maximizing the score σ uPrα,βs pρp.|x c " uqq (8.9)

with α c , β c the bounds obtained by OBBT for the coupling variable c P C and σ uPrα,βs pf puqqq the standard deviation of f values on a uniform grid over rα, βs. The idea of this heuristic is to select a coupling variable which has a strong influence on the objective. RF-spatial ( 126, 12.4, -0.41) ( 1402, 2.4, -0.12) ( 905, 13.6, -0.3 ) DRFC-spatial ( 844, 0.0, -1.15) ( 3955, 0.0, -0.77) ( 3809, 0.6, -0.7 ) Table 8.2: Respectively nodes, proportions of unsolved instances and relative optimality gaps on hydro problems. Bold characters points out the best approaches regarding the proportion of unsolved instances, with an optimality gap lower than 5%. K " 2.

We see that both DRF B and DRF C systematically decrease the proportion of unsolved instances and the gap compared to RF . These gains are obtained at the cost of a higher number of processed nodes, which is nonetheless much lower than the nodes processed by CPLEX on the majority of the problems considered. The temporal decomposition appears to have relatively more stable performances than its competitors. We note that the spectral decomposition exhibits very poor performances on CHAPTER 8. A DECOMPOSITION-COORDINATION APPROACH micro_bal_T12 micro_bal_T24 CPLEX (336, 0.0, 0.0 ) (13629, 0.0, 0.0 ) RF-temporal ( 89, 0.0, -9.85) ( 2578, 0.0, -14.76) DRFC-temporal (861, 0.0, -6.08) ( 9144, 0.0, -7.2 ) DRFB-temporal (276, 0.0, -1.76) ( 5405, 0.0, -3.0 ) RF-spectral ( 88, 0.0, -9.85) (20143, 0.0, -14.75) DRFC-spectral (805, 0.0, -6.03) (26560, 0.0, -7.2 ) Table 8.4: Results when using the reverse order compared to Table 8 appears (see [START_REF] Stulp | Policy improvement methods: Between black-box optimization and episodic reinforcement learning[END_REF] for a parallel between the two approaches).

Algorithm 17 presents a generic iterative procedure for performing BBO in the context of program (BBO).

Procedure: for t in 0, . . . , T ´1 do: Calibrate h using pε i , µpε i qq nt i"1

Sample N new points pε i q

in Ω using ν and h Compute the evaluations of the new sampled points pµpε i qq

end for Return:

The best ε obtained.

BBO techniques suffer from the curse of dimensionality as sampling must be performed in the search space Ω. To overcome this issue, we opted for projecting the perturbations into a low-dimensional and structured space S through a projection (or encoding) function ϕ ϕ :

Assuming that this projection admits a decoding function ϕ ´, the sampling is to be performed in the low-dimensional space S to mitigate the curse of dimensionality. Algorithm 18 presents the procedure we use for performing BBO with dimension reduction.

Algorithm 18 BBO with dimension reduction -Generic

Procedure: for t in 0, . . . , T ´1 do: Calibrate h using pϕ pε i q , µpε i qq nt i"1

Update ϕ and ϕ ´if needed Sample N new points pu i q

in S using ν and h and compute the corresponding perturbations pε i " ϕ ´pu i qq

Compute the evaluations of the new sampled points pµpε i qq

end for Return:

The best ε obtained.

In the following, we explore the use of auto-encoders to perform this embedding in a low-dimensional space.

Supervised auto-encoder

First, we implemented a Supervised Auto-Encoder (SAE [START_REF] Le | Supervised autoencoders: Improving generalization performance with unsupervised regularizers[END_REF]), which is an auto-encoder with the addition of a supervised loss on the representation layer. As shown in Figure 9.4a, SAE is made of an encoding function ϕ, its decoding counterpart ϕ ´and a predictor in the encoding space h. The two losses governing SAE are the supervised loss (l s ) as well as the classical reconstruction error (l r )

with ρ the distribution of the so far sampled perturbations. Thus, the calibration step in Algorithm 18 comes down to fitting the SAE model through the losses in equation (SAE).

One may wonder if the reconstruction loss of (SAE), i.e. the Euclidean distance between a perturbation and its reconstruction, is appropriate to our application. Implicitly, it means that it matters to reconstruct the perturbation in each of its coordinates. This makes sense in many applications: for instance in information retrieval or data compression, the only purpose of the encoding is to account for the variations of the data. This is not the case in our application. As stated in Algorithm 18, the BBO level. More generally, one could consider using a pool of branching heuristics as the action space in the reinforcement learning methods presented in this work. In a spirit similar to the approach introduced in [START_REF] Di Liberto | Dash: Dynamic approach for switching heuristics[END_REF], it would allow to drastically reduce the size of the action space and thus the exploration cost.

In addition, experiments showed that one can drastically reduce the tree size only by taking control of branching decisions at the beginning of the tree. To go further in the parallel with reinforcement learning, one may use the methodologies presented in Part II to learn only decisions near the root node. On the one hand, it may heavily reduce the search space and allow to consider larger problems.

On the other hand, it relies on the efficiency of the solver for any other decisions.

Decomposition-coordination by decoupling

To decrease the computational effort necessary to solve large and difficult instances, we presented a decomposition-coordination approach using the problem's structure. Doing so, we lose the optimality guarantee provided by B&B. This method relies on different heuristic choices, such as the selection of the coupling variables for which different values are to be explored. However, the choice of these variables is crucial for the method to find a good solution if any. One may think of learning this selection, but this task seems difficult for two reasons. First, doubts may be raised regarding the existence of a smooth mapping (or at least suitable for learning), between instances and relevant coupling variables. Second, two objectives have to be considered (the number of nodes and the quality of the found solution), the trade-off between the two being arbitrary.

Disrupting the objective function

Last, we addressed the problem of disrupting the objective function so as to decrease the B&B tree size. This approach can be thought as exploiting the structure of the problem, such as symmetries, to provide the B&B algorithm with an ordering for nodes with initially similar LP values. The focus has been put on the discovery of an efficient perturbation for a given problem, which produced mitigated results. We saw that the alternative of learning a generator so as to obtain an individual perturbation for each instance of a same problem is much more ambitious. This axis may call for additional research.

A last word

Through all the discussions and reflections carried out during this thesis, we touched on the plethora of possible ways to leverage machine learning in a combinatorial optimization context. This emerging CONCLUSION AND PERSPECTIVES field of research has been actively developed over the past three years, and the scientific community is now fully acknowledging its potential. Dedicated teachings, competitions, and even programming modules [START_REF] Prouvost | Ecole: A gym-like library for machine learning in combinatorial optimization solvers[END_REF] have recently been created, which reflects the enthusiasm around these questions. All these initiatives promise a durable interest in the topic, with undoubtedly answers provided to the questions raised by our work and, hopefully, new questions to come.

Apprentissage par renforcement avec transitions tree-based -Nous développons et étudions une méthodologie de renforcement sous le modèle de transition tree-based déterministe proposé plus tôt.

Nous montrons notamment que l'on ne peut obtenir une politique optimale à partir de la fonction valeur optimale, contrairement au cadre classique de l'apprentissage par renforcement (Proposition 4.1.1).

Pour autant, il est possible de redéfinir un algorithme d'itération sur les valeurs (en anglais value iteration) afin de trouver une fonction valeur approchée V " (Théorème 4.1.1), solution de l'équation de programmation dynamique

V " psq " min jPJ c ps, jq `γ" V " pD " 0 ps, jqq `V " pD " 1 ps, jqq ı Une politique gloutonne peut alors être définie par π ˜psq " arg min jPJ c ps, jq `γ" V " pD " 0 ps, jqq V " pD " 1 ps, jqq ı , avec cps, jq le coût associé au couple état/action ps, jq et D " 0 ps, jq (resp. D " 1 ps, jq) les états enfants de s associés à l'ajout de la contrainte x j " 0 (resp. x j " 1) en suivant ladite politique gloutonne.

Pour apprendre une telle politique, la taille de l'espace de recherche nous force à utiliser des approximations, basées sur la méthodologie de Q-learning approximé. La fonction Q-valeur est approchée par un réseau de neurones, entraîné pour minimiser une fonction de perte construite pour prendre en compte le caractère épisodique et déterministe du MDP précédemment défini ( Équation (4.12)).

Une fois l'apprentissage de la Q-valeur effectué (Algorithme 6), une politique gloutonne sera utilisée, définie par π θ psq " arg min jPJ Q ˆps, j; θq avec Q ˆps, j; θq la Q-valeur prédite par le réseau de neurones paramétré par θ pour le couple état/action ps, jq.

Dans un premier temps, cette approche est testée sur des modèles de coût heuristiques, basés sur des stratégies de branchement pré-existantes. Les résultats sont peu compétitifs par rapport aux performances de CPLEX, mais indiquent une supériorité des transitions tree-based. 
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Abstract : This thesis aims at using machine learning techniques in the context of Mixed Integer Linear

Programming instances generated by stochastic data. Rather than solve these instances independently using the Branch and Bound algorithm (B&B), we propose to leverage the similarities between instances by learning inner strategies of this algorithm, such as node selection and branching.

The main approach developed in this work is to use reinforcement learning to discover by trials-and-errors strategies which minimize the B&B tree size. To properly adapt to the B&B environment, we define a new kind of tree-based transitions, and elaborate on different cost models in the corresponding Markov Decision Processes. We prove the optimality of the unitary cost model under both classical and tree-based transitions, either for branching or node selection. However, we experimentally show that it may be beneficial to bias the cost so as to improve the learning stability. Regarding node selection, we formally exhibit an optimal strategy which can be more efficiently learnt directly by supervised learning.

In addition, we propose to exploit the structure of the studied problems. To this end, we propose a decomposition-coordination methodology, a branching heuristic based on a graph representation of a B&B node and finally an approach for learning to disrupt the objective function.