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versité de Lorraine

Rapporteur
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Résumé

Cette thèse a pour but d’utiliser des techniques d’apprentissage automatique pour la résolution de

problèmes d’optimisation combinatoire. De par sa position de premier producteur français d’électricité,

Electricité de France (EDF) doit continuellement piloter différents sites de production, ce qui se traduit

mathématiquement par la résolution de problèmes linéaires en nombres entiers (en anglais Mixed Inte-

ger Linear Programming problems). A cet égard, EDF doit régulièrement résoudre des instances issues

de ces problèmes, définies par des données stochastiques. Actuellement, ces instances sont résolues

par un algorithme de Branch and Bound (B&B), sans tirer profit des potentielles similarités entre

l’instance courante et celles résolues par le passé. Afin de conserver la garantie d’optimalité fournie

par l’algorithme de B&B, nous nous proposons, pour un problème donné, d’apprendre différentes

stratégies au sein de cet algorithme, comme par exemple la stratégie de branchement (sélection de

variable) ou de sélection de nœud. Le principal critère utilisé afin d’évaluer la performance des straté-

gies proposées est la taille de l’arbre de B&B généré.

La principale approche développée dans ce travail est l’utilisation d’apprentissage par renforcement

pour découvrir de telles stratégies par essais/erreurs sur les instances historiques. Afin de s’adapter

à l’environnement induit par l’algorithme de B&B, nous définissons un nouveau type de transitions

au sein de processus de décision markoviens (en anglais Markov Decision Processes), basées sur la

structure d’arbre binaire. Par ailleurs, nous étudions différents modèles de coûts. Du point de vue

de la minimisation de la taille des arbres de B&B, nous prouvons l’optimalité du modèle de coût

unitaire sous le modèle de transition classique ainsi que sous le modèle de transition binaire, dans

l’apprentissage non seulement de la stratégie de branchement mais également de la stratégie de sélec-

tion de nœud. Pour autant, les expérimentations menées pour la stratégie de branchement suggèrent

qu’il peut être préférable d’incorporer un biais dans le modèle de coût afin d’améliorer la stabilité du

processus d’apprentissage. En ce qui concerne l’apprentissage de la stratégie de sélection de nœud,
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RÉSUMÉ

nous démontrons l’optimalité d’une stratégie explicitement définie, qui peut être apprise plus efficace-

ment de manière supervisée.

En plus des approches mentionnées, nous proposons une stratégie de décomposition-coordination afin

de potentiellement permettre le passage à l’échelle de l’apprentissage par renforcement sur des prob-

lèmes de plus grande dimension. Une heuristique de branchement basée sur une représentation par

graphe d’un nœud de l’arbre de B&B est également proposée. Cette représentation peut également

être utilisée afin de guider automatiquement la décomposition précédemment mentionnée. Enfin, nous

présentons une approche dédiée à l’apprentissage de perturbations de la fonction objectif, afin notam-

ment de briser d’éventuelles sources de symétrie. Les différentes méthodes proposées sont évaluées sur

des problèmes réels, fournis par EDF. Pour chaque problème, deux configurations sont envisagées afin

de renforcer la robustesse des résultats fournis. Un résumé plus conséquent en français est fourni en

annexe.

Mots-clés : Apprentissage, MILP, Problèmes répétés
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Abstract

This thesis aims at using machine learning techniques in the context of combinatorial optimization.

In its capacity of main french electricity producer, Electricité de France (EDF) has to handle different

production sites on a regular basis, mathematically transposed as Mixed Integer Linear Programming

problems. In this context, EDF needs to frequently solve instances of these problems, defined by

some stochastic data. Currently, these instances are solved using the Branch and Bound algorithm

(B&B), without leveraging the potential similarity between one instance and those already solved in

the past. To retain the optimality guarantee provided by the B&B algorithm, we propose to learn

inner strategies of this algorithm, such as node selection and branching (variable selection), for a given

problem. The main criterion chosen to evaluate the efficiency of the designed strategies is the size of

the corresponding B&B tree.

The main approach developed in this work is to use reinforcement learning to discover such strategies

by trials-and-errors on historical instances. To properly adapt to the B&B environment, we define a

new kind of tree-based transitions, and elaborate on different cost models in the corresponding Markov

Decision Processes. Regarding the problem of B&B tree size minimization, we prove the optimality of

the unitary cost model under both classical and tree-based transitions, either for branching or node

selection. However, we experimentally show for variable selection that it may be beneficial to incorpo-

rate some bias so as to improve the learning stability. Regarding node selection, we formally exhibit

an optimal strategy which can be more efficiently learnt directly by supervised learning.

In addition to these approaches, we put forward a decomposition-coordination methodology to poten-

tially make the learning tractable for large instances. We also propose a branching heuristic based

on a graph representation of a B&B node, which may be leveraged for guiding the aforementioned

decomposition. Last, we present an approach for learning to disrupt the objective function in order to

break potential symmetries. To assess the quality of the different methods, we test them on two real-
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world problems provided by EDF. For each problem, two configurations are encompassed to improve

the strength of the results.

Keywords : Machine Learning, MILP, Repeated problems
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CHAPTER 1. GENERAL INTRODUCTION

This thesis is aimed at using machine learning techniques in the context of combinatorial opti-

mization. Although interactions between the two domains were almost unexplored at the beginning

of our work in the late 2010’s, this field of research recently received a lot of attention and is now

experiencing rapid growth. The work presented here is part of this effervescence, and hopefully may

be useful to any reader interested in the topic.

In this introductory chapter, we present in a very general way the context and objectives set for

this thesis. Section 1.1 introduces the setting that we consider in general terms. The objective is

precised in Section 1.2, as well as the general scientific background. Last, Section 1.3 provides an

overview of the document along with insights on the contributions.

1.1 Optimization of repeated problems in an industrial context

Machine learning (ML) has experienced tremendous development over the past decades, and its

use in very different areas of the society is now widespread. The question of using machine learning

is generally raised as soon as data can be collected or created, and patterns in their generation are

to be discovered. In an industrial context, monitoring any production process generates historical

and decision-related data. Therefore, it is natural to wonder whether these data can be leveraged to

improve such process. As we explain in this section, this is exactly the purpose followed in this thesis

in the context of energy production, provided by Electricité de France (EDF), the most important

French energy producer.

In the whole document, we consider systems that are repeatedly controlled to perform well with

respect to some context-dependent criteria. Formally speaking, let us write Dt P D the observation

of some exogenous data, or context, at time t. Facing this context, a decision maker must decide of

the state of the system, by setting the value of some decision (endogenous) variables x. To ensure

its feasibility, x is constrained to belong to a set X pDtq Ď X pDq, which may be dependent on the

exogenous data. The decision maker is endowed with a performance – or cost – evaluation, say

f : X pDq ˆ D Ñ R, of any feasible point x for a given context Dt. Hence, the problem of the decision
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CHAPTER 1. GENERAL INTRODUCTION

maker can be formalized as

min
xPX pDtq

fpx, Dtq (1.1)

We call repeated problems a sequence of such problems, where only the context varies across the se-

quence. This is exactly the setting EDF faces on a daily (or more frequent) basis. Regularly, operators

must decide of systems’ states so that they behave well (and are feasible) in a given context. Let us

take the simplified example of a mixed electricity plant to illustrate it. Assume that such plant can

produce electricity by means of a boiler and a set of photovoltaic panels, and that it must provide a

given amount of energy so that the daily demand of the area is satisfied. The setting of the plant,

i.e. the planning and division of the production among the two sources should be determined for the

next 24 hours. Here, the objective of the operator should be to satisfy the demand while minimizing

its cost. The context may comprise heterogeneous data, such as the demand level at any moment

of the next 24 hours, production costs for each equipment, weather forecasts, etc. The feasibility set

varies with the context, as both the demand and the production capacity of the photovoltaic panels

fluctuate. Besides, the performance evaluation of a given planning is also dependent on the context as

production costs may vary. This situation is illustrated in Chapter 3, introducing the two problems

considered in this work.

As we will see in the following, one knows how to solve the optimization problems (1.1) considered

in this thesis. Hence, the challenge is not to find a solution of such problem but rather to find it

quickly, or efficiently, using learning methods. Schematically, a generic algorithm is used for solv-

ing (1.1), which does not take into account that it may have already been run in the past, facing a

very similar context. A simple question then arise: can we learn from past experiences to modulate

the algorithm in order to make it more efficient in the future?

1.2 Problem statement and objectives

1.2.1 Mixed Integer Linear Programming and Branch and Bound

We focus on a particular subclass of the generic minimization problems formulated as (1.1), namely

Mixed Integer Linear Programming problems (MILPs). More precisely, we will only consider binary
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integers, so that our problems can be written as

p :

$

&

%

min
x

cJx

s.t. Ax ď b ; x P t0, 1u
|J |

ˆ Rn´|J |
(1.2)

with A P Rmˆn, b P Rm, c P Rn, m being the number of constraints, n the number of variables and J

the indices of binary variables.

An immediate observation is that we restrict our work to linear objectives and constraints (except for

the binary constraints). Although such choice is a restriction, it still enables to encompass a large

variety of real-world problems. Indeed, many non-linear problems are in practice linearized in some

way to be more easily solved.

The problem obtained when relaxing the binary constraints is called linear relaxation. It is a linear

problem (LP), hence convex and solvable in polynomial time. The introduction of the binary (and

more generally integer) constraints breaks the convexity of the problem and makes it NP-hard in the

general case. As unfortunate as it may be, binary variables allow to model a plethora of real-world

problems and thus are widely used in practice. For instance, they make it possible to consider on/off

and start/stop variables, and more generally any type of discontinuous phenomena.

Various problems written as (1.2) have been identified in the combinatorial optimization community

as being actually solvable in polynomial time, and specific algorithms have been designed accordingly.

However, real-world applications are often more complex than problems considered in the literature,

leaving the decision maker with non-polynomial generic algorithms. One of the most used of such

algorithms is Branch and Bound (B&B) [1], along with its many variants.

B&B is a tree search algorithm designed to handle the integrity constraints in p, using the fact

that one knows how to solve efficiently its linear relaxation. The feasible set is recursively partitioned

and explored along the tree, each node being associated to an LP. In the simplest case, this LP is

equivalent to the LP of its direct ascendant augmented with an additional branching constraint of the

form xj “ k with j P J a binary variable and k P t0, 1u. The root node’s LP is equivalent to the

linear relaxation of p. As an LP is a subproblem of its ascendants in the B&B tree, its value is a valid

dual bound which allows for pruning when it is greater (in the minimization case) than the current

incumbent’s value – or primal bound, i.e. the best value associated to an integer solution discovered

earlier in the tree, if any. Likewise, feasible and infeasible nodes can be fathomed (the subsequent
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subtrees are then pruned). An illustration is given in Figure 1.1.

The expansion of the tree is mainly governed by two sequential strategies, namely the branching strategy

(or variable selection strategy) and the node selection strategy. Branching refers to the selection of the

branching constraints used to create child nodes, e.g. xj “ 0 and xj “ 1 for binary simple disjunctions,

while node selection defines the visiting order of the open nodes – i.e. neither visited nor fathomed.

The process ends when each node has been visited or fathomed, guaranteeing the incumbent to be an

optimal solution if any. Note that in many applications, the decision maker may not be interested in

finding an optimal solution, and nodes may be pruned by bound as soon as their LP value is close

enough from the incumbent’s value. In this document, we only consider the case where instances are

solved to optimality.

P....

P..1.

P.11.

x2 “ 1

P.01.

P101.

x1 “ 1

P001.

x1 “ 0

x2 “ 0

x3 “ 1

P..0.

P..01

x4 “ 1

P..00

x4 “ 0

x3 “ 0 Visited node

Open node

Incumbent found

Infeasible node

Suboptimal node

Figure 1.1: Illustration of a B&B tree during expansion with t1, . . . , 4u Ď J . At this point, the
node selection strategy must select one of the two open nodes. If it is neither infeasible nor provably
suboptimal, two child nodes will be created by the branching strategy.

1.2.2 Problem formulation

As B&B is an enumeration procedure, it usually struggles to handle large problems since the

number of nodes to explore may grow exponentially with the problem size. Over the past decades,

many techniques have been put forward to make the search more efficient. The majority of them are

heuristics, empirically tuned on different sorts of problems. The result of all these years of incremental

improvements is that current commercial solvers are now very versatile and generic tools, but also

abstruse and difficult to tune for specific problems. As a consequence, learning methods may be

relevant for adapting the algorithm to the problem at hand. For instance, one may try to find the
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most suited solver configuration for the problem at hand. Alternatively, we can wonder whether it is

possible to discover new B&B strategies for such problem. The latter option has been chosen in this

work, based on the seminal question:

Given a real-world problem, can we leverage historical instances to design from scratch B&B

strategies able to solve new instances of such problem while producing the smallest trees?

This formulation already separates our work from the majority of the approaches developed in the

literature.

First, the focus is put on the discovery of strategies demonstrating high performance for the specific

problem considered. In this regard, we differ from the approaches devoted to mimic the behaviour of

existing heuristic strategies, initially designed to perform well on heterogeneous problems1. Of course,

the goal is to develop a learning methodology which may be applied to design specific strategies for

any MILP problem leading to repeated instances.

Second, we are interested in designing strategies dedicated to one specific problem, giving rise to re-

peated instances. It means that only the context (Dt in Equation (1.1)) changes across the considered

instances, the evaluation function f and the feasible mapping X p.q being invariant. In the setting of

Equation (1.2), it corresponds to the case where the instance data A, b, c vary across instances while

keeping a similar structure: the dimensions are invariant, as well as the physical meaning of the con-

straints (hence the null coefficients, or at least the vast majority of them). Considering the previous

example, we wish to discover a strategy designed to perform well on any instance corresponding to

the considered plant. Thus, its topology does not evolve with the context.

Last, we mainly aim to develop strategies from scratch, i.e. without using any solver’s dependent

statistic. This choice is not only a practical choice but also a philosophical one. On the one hand, it is

appealing for industrial companies to develop proprietary algorithms and free themselves from exter-

nal contingencies. On the other hand, the objective is to discover strategies based on problem-specific

correlations. Therefore, heuristic scores may not be fully appropriate and raw observations hopefully

should be sufficient.

Let us consider a problem P of fixed dimension, for instance a production planning problem

1Note that a non-negligible amount of time during the first year was dedicated to the learning of existing strategies.
This line of research was later abandoned due to the publication of similar works in the meantime.
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for a given horizon and a specific equipment – a fixed number of production units with constant

characteristics. Such a problem is perceived as an infinite support for instances p P P, which differ

according to their associated context, i.e. their associated data A, b, c such as prices, demand, etc.

Instance data can be seen as the outcome of a random variable, distributed according to some unknown

joint probability distribution. With no loss of generality, one can directly consider the instances of a

given problem as random variables, drawn from a distribution L. From a generic standpoint, we want

in this setting to discover some strategy πP so as to obtain the best performance µ in average, that is

πP P arg min
πPΠ

Ep„L rµ pp, πqs (1.3)

Here, Π refers to some set of strategies related to the B&B procedure and, as aforementioned, µ pp, πq

is the size of the B&B tree produced when solving instance p using the strategy π.

1.2.3 Learning methodology and experimental design

Equation (1.3) casts our problem as a black-box optimization problem, where the objective is to

find the minimum of the function

µP :

$

&

%

Π Ñ R

π ÞÑ Ep„L rµ pp, πqs

Such function is referred to as a black-box function as its analytic form is unknown.

Addressing directly this black-box optimization problem may appear intractable, due to the computa-

tional cost of approximating even a unique evaluation of the black-box function µP – direct evaluation

is not possible due to the infinite size of P. Besides, the search space Π might be to large to be

explored in this framework.

When considering sequential strategies Π, an alternative to black-box optimization is reinforcement

learning (RL), which aims to learn some approximation of πP by trials and errors. A cost model is to

be defined to favour actions which are expected to bring the learnt strategy closer to πP and, endowed

with such a cost model, a strategy is learnt on training instances for a given problem’s support P.

The latter approach is the one principally followed in this work.
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As learning methods often depend on random factors (such as training instances, initialization,

exploration, etc.), results of any experiment involving learning are averaged over at least 25 random

seeds. On each seed, training and testing data are randomly sampled from either real-world or sim-

ulated data. This technique, known as Monte Carlo Cross Validation [2], is a common practice in

machine learning and allows to produce results robust to random factors and data shifts.

For comparable methods, we present in this document results obtained using a unique set of hyperpa-

rameters, such as learning rates, buffer sizes, epochs, etc. This set of parameters was obtained after

multiple trials, and is not tuned to one specific problem. As a consequence, these results may be

improved by fine tuning those parameters for each application. This choice was made to enable a fair

comparison between the different approaches. With the same objective of comparing like with like,

we perform experiments with a frozen configuration of the CPLEX’s B&B, where presolve and cuts are

disabled. For the sake of clarity, training curves are smoothed as soon as learning involves an iterative

procedure.

1.3 Overview and contributions

We give here a detailed overview of this manuscript and precise the contributions. We highlight the

different lines of research and provide some context related to their definition. Note that the outline of

the document does not follow any chronological order. From a general standpoint, we focused on the

learning of B&B strategies such as branching and node selection so as to keep the advantages provided

by the B&B algorithm, especially the guarantee of optimality. These two strategies have been selected

due to their core position in the B&B algorithm. Note that one could be interested in learning directly

(near-)optimal solutions. However, providing solutions from a black-box model without any guarantee

(either of optimality or explainability) may be questioned in an industrial context, which explains our

choice.

Chapter 2 provides the background necessary to understand the manuscript. As the subject of the

thesis is at the intersection of machine learning and combinatorial optimization, some basic notions

from both domains are introduced. A particular emphasis is given to reinforcement learning notions.

As for combinatorial optimization, we mainly introduce the reader to the most known B&B strategies.
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A brief review of the literature related to the use of learning methods for combinatorial optimization

is also presented.

Chapter 3 presents the real-world problems used to perform the experiments displayed in this work.

The associated industrial contexts as well as mathematical formulations are given, and some observa-

tions are made to help the reader grasp the differences between the considered problems. Character-

istics’ variations are considered to enrich the experiments.

Part 2: Learning Oracle Strategies in a Branch and Bound Algorithm

This part contains the main axes developed in this document. Although the first idea followed

during this thesis was to learn off-line a surrogate model for some expensive heuristic, it was abandoned

in favour of a reinforcement learning approach. Indeed, the reinforcement paradigm matches perfectly

with our objective, and was completely unexplored at this time.

Chapter 4 proposes a RL methodology aiming at discovering new branching strategies in a Branch

and Bound algorithm. A particular care is taken to the selection of the Markov Decision Process,

where states are associated with the B&B nodes and actions are the branching decisions. Taking some

distance with the classic RL theory, we consider a new kind of tree-based transitions to better suit

the structure of the environment. We show that these transitions may exhibit unfortunate theoretical

limitations, and provide sufficient conditions on the environment to cancel them. We explain how RL

allows to encompass strategies which may otherwise require too much computation. Different cost

models are considered and we show that the unitary cost model is the most suited to our objective

of tree size minimization, both under classic and tree-based transitions – under the aforementioned

conditions.

To improve the performances, we digress from these theoretical recommendations and propose a biased

but more robust cost model, coupled with a discount factor. Both numerical and rational justifications

for this choice are given.

Chapter 5 transposes the reinforcement methodology presented in Chapter 4 to the learning of the

node selection strategy, the actions being the selection of the next open node to visit. Such idea
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seems natural, all the more so because the learning task should be easier in this setting. Indeed, we

show that both the state space and action space are smaller than the one considered in Chapter 4.

However, we explain why such approach may not be the best to discover an optimal strategy. We

exhibit sufficient conditions for the definition of an intractable yet known optimal strategy, which can

be directly learnt off-line by supervised learning. The question of the sample efficiency is addressed

and the reinforcement learning approach is improved using oracle demonstrations.

Chapter 6 proposes different ways of combining the approaches of Chapter 4 and Chapter 5 so as to

learn simultaneously branching and node selection strategies.

Part 3: Exploiting the Problems’ Structure

This Part comes as a complement of Part 2. It briefly presents different approaches to design

strategies by leveraging the problem’s structure. Compared with Part 2, we do not aim here to take

full control of inner B&B strategies to obtain oracle decisions.

Chapter 7 proposes a branching heuristic based on a graph representation of the problem. Using a

proxy for the variables’ mutual influence, most influential variables are selected at the root node and

used for the first branching decisions. Experiments suggest that such heuristic may decrease the tree

size, especially for the hardest instances of the considered problems. The interest in graph embedding

for MILPs or B&B nodes in the recent literature echoes our heuristic approach.

Chapter 8 tackles the practical problem of the decomposition of large problems into smaller subprob-

lems. As reinforcement learning suffers from the curse of dimensionality regarding the state-action

space, decomposition may allow to improve its scalability. We use a Relax and Fix scheme to only solve

subproblems of lower dimension. Unfortunately, Relax and Fix comes at the price of the loss of the

optimality guarantee offered by B&B, and may even be unable to solve some instances. We propose

to branch on coupling variables to strengthen the Relax and Fix procedure. One possible application

of this scheme may be to use the methods developed in Chapter 4, 5 and 6 to learn strategies only on

subproblems.
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Chapter 9 focuses on adding small disruptions to objective functions so as to break potential symme-

tries in the problem. We use a black-box optimization framework to explore potential perturbations

in an iterative fashion.
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As the work presented in this thesis is at the intersection of machine learning and combinatorial

optimization, we briefly introduce in this chapter different notions from these two fields. Section 2.1

provides basic notions in supervised learning, with a focus put on imitation learning and neural

networks. In Section 2.2, we introduce the reinforcement learning paradigm, which has a central role

in this work. Last, Section 2.3 briefly presents Branch and Bound strategies and recent attempts of

using machine learning in this context.

2.1 Supervised learning

The field of machine learning is extremely vast, with many subtleties and paradigms. We refer to

the book of C. Bishop [3] for a comprehensive introduction to machine learning, with a nice statistical

learning coloration. In this section, we try to keep the introduction concise and focus only on the main

notions necessary to read this document.

2.1.1 A general overview

Supervised Learning (SL) is the name given to the problem of estimating a mapping between two

random variables using observations from a limited number of training samples. The realizations of

the (almost always) multivariate input random variable are called features while those of the output

random variable are designated as labels. Denoting respectively X and Y the features and labels

random variables, we write X and Y the sets where their realizations lie and P their unknown joint

probability distribution. Then, the aim of SL is to find a mapping f : X Ñ Y following some criterion.

To do so, one is equipped with a loss function l : Y ˆ Y Ñ R, where lpy1, y2q quantifies the cost of

predicting y2 when y1 occurs. For instance, one of the most commonly used loss is the squared error

lpy1, y2q “ ||y1 ´ y2||22.

Considering a set of prediction functions F , a classic objective in SL is to find a predictor with minimal

risk under the unknown probability distribution P :

f˚ P arg min
fPF

RP pfq “ EpY,Xq„P rlpY, fpXqqs (2.1)

As the probability distribution P is unknown, such optimal predictor cannot be found by solving

directly (2.1), and a common practice is then to solve its empirical counterpart

f̂ P arg min
fPF

R̂npfq “
1
n

n
ÿ

i“1
l pYi, fpXiqq (2.2)

34



CHAPTER 2. BACKGROUND

where pXi, Yiqi“1,...,n are the observed training samples. Such procedure is called Empirical Risk

Minimization (ERM). If one assumes that the samples pXi, Yiqi“1,...,n are drawn independently from

one another (the samples are then called i.i.d. for independent and identically distributed) and that

EpY,Xq„P r|l pY, fpXqq|s ă `8, then the Strong Law of Large Numbers gives the almost sure conver-

gence

R̂npfq
a.s.

ÝÝÝÑ
nÑ8

RP pfq

This convergence justifies the use of the ERM paradigm and, often, the need for a large amount of

data to yield an efficient predictor.

We call classification (resp. multivariate classification) the task of finding such predictor in this su-

pervised setting when Y “ t0, 1u (resp. Y “ t0, 1u
K with K ą 1) and regression (resp. multivariate

regression) when Y “ R (resp. Y “ RK with K ą 1).

Without diving into too many details, some remarks can be made according to the degrees of

freedom left to anyone practicing SL. Of course, one of the main levers is designing and selecting the

pertinent features X. This is not trivial in general and demands a good understanding of the studied

phenomenon – this point is discussed a little further in Section (2.1.3). The next point is the choice of

a function space F , with a plethora of possibilities – linear, non-linear, kernel-based, with or without

differentiable parameters, etc. Last but not least, the relevance of a given loss function l may depend

on the considered application and should transcript the final goal at stake. However, such goal is often

not well defined and the squared distance is a common default choice - RP is called in this case the

Mean Squared Error (MSE).

All these considerations often determine the ability of the predictor to generalize over unseen data

or, on the contrary, its tendency to overfit the training set, i.e. to specialize on training instances

at the cost of lower performances on unseen data. This can be illustrated through the bias-variance

decomposition of the MSE, as one can show under standard assumptions that

EpY,Xq„P

”

pY ´ fpXqq
2
ı

“ EpY,Xq„P rpY ´ fpXqqs
2

` VpY,Xq„P pfpXqq

` σ2

(2.3)

where the three terms are respectively piq the squared bias of the predictor, piiq the variance of the

predictor and piiiq the irreducible error, that is the variance of some random noise around observations.
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The more richer the features and the function space F , the lower the bias. However, a low bias implies

that the predictor represents well the oscillations in the training set, which generally comes with a

high variance and a poor generalization ability (overfitting).

2.1.2 Imitation learning

Imitation learning (IL) is a specific case of SL dedicated to learning sequential control strategies

from expert demonstrations, and potentially through interactions with an environment. The two main

differences between IL and vanilla SL as presented above is the structure of the set Y, which is now

a structured set of trajectories (sequences of observations), and the violation of the i.i.d. hypothesis.

We introduce here three of the main contributions in this field of research. For the sake of simplicity

and conciseness, we do not focus on the convergence properties of these approaches.

Let us change a bit the terminology introduced above and consider a set of states S at which

actions from set A should be taken. We call environment the whole system which samples states in S

conditionally to some previous states and taken actions. An agent can then build trajectories through

interactions with this environment by producing a sequence of actions when facing consecutive sam-

pled states. We write πθ : S Ñ A a policy parametrized by θ P Θ a function which selects an action

πθpsq when facing state s.

As an example, one can think of a robot (agent) who can move in four directions (actions) in a maze

(environment). The consequence of an action (transition) is governed by the environment (the robot

does not progress if it tries to go through a wall and move otherwise).

In this setting, Behavioral Cloning (BC) [4] is undoubtedly the simplest form of IL as it reduces

the structured prediction problem to vanilla SL techniques. Assuming that one can sample trajectories

from some expert on the considered environment, these trajectories are treated as i.i.d. samples and

BC then performs a classification task through SL by estimating

θ˚ P arg min
θPΘ

RP ˚pθq “ Es„P ˚ rlpπ˚psq, πθpsqqs (2.4)

with π˚psq the expert’s action facing state s and P ˚ the probability distribution for states when fol-

lowing the expert.
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Although BC is expected to perform well when one is able to decently approach π˚ by πθ, two linked

concerns may legitimately be raised at this point. First, learning from the expert’s distribution does

not tell anything about the actions that should be taken outside of the induced trajectories. Hence this

approach may suffer from overfitting: what if deviations from P ˚ lead to unexplored states? Second,

BC focuses on mimicking the actions of the expert, without having the possibility to take into account

the cost associated to the trajectories produced by the agent. The following approaches seek to solve

these drawbacks inherent to BC.

In essence, the limitations of BC can be summed up to the question of controlling the agent’s risk

RPθ
pθq while learning from RP ˚pθq, where Pθ denotes the states distribution when following policy

πθ. This is typically handled, if possible, by interacting directly with the environment so as to gather

information on RPθ
pθq. Many strategies have been designed to take into account the potential mis-

alignment between Pθ and P ˚, as well as the cost associated to the actions selected by the agent (see

for example [5, 6, 7, 8, 9]). For the sake of conciseness, we only present here the two most pertinent

algorithms according to the work presented in this thesis.

Dataset Aggregation, or DAgger [7], is a simple algorithm designed to learn the expert’s policy

on the agent’s distribution. As described in Algorithm 1 (some slight modifications are brought to

line up with notations), the method assumes that the expert can be invoked at any visited state. In

an iterative manner, trajectories are sampled using the current agent’s policy and ps, π˚psqq pairs are

collected from these samples. Stacking those samples in a growing dataset, a classifier is learnt at

each iteration on the whole set of experiences collected from the first iteration. Thus, at iteration i of

Algorithm 1, the agent is calibrated by estimating the solution of the theoretical program

θi P arg min
θPΘ

i´1
ÿ

j“0
Es„Pθj

rlpπ˚psq, πθpsqqs (2.5)

37



CHAPTER 2. BACKGROUND

Algorithm 1 DAgger Algorithm

Initialization:
Initialize randomly the parameter θ0
Set D Ð H

Procedure:
for i “ 1 to N do:
Sample trajectories using πθi´1

Get dataset Di “ tps, π˚psqqu of visited states by πθi´1 and actions given by
the expert
Aggregate datasets: D Ð D Y Di

Learn the parameter θi on D following the empirical counterpart of program (2.5)
end for

Output:
Best θi on validation

Although DAgger handles the problem of discrepancy between Pθ and P ˚, it still reduces to iterative

classification without taking into account the potential cost associated to non-expert trajectories. This

limitation is the principal motivation behind AggreVate [9], presented in Algorithm 2. Rather than

learning expert’s actions through a vanilla classification task, they are learnt using a cost-sensitive

classifier which solves the problem

θ˚ P arg min
θPΘ

Es„P rQ ps, πθpsqqs (2.6)

with Qps, aq the expected cost of taking action a at s and then following the expert policy. Pro-

gram (2.6) can be reduced to classic convex optimization problems, for instance by considering an

argmax regression scheme. Since Q is not known in advance, we consider Q̂p.; θq : S ˆ A Ñ R a

predictor for the cost-to-go Q and policies of the form

πθpsq “ arg min
aPA

Q̂ps, a; θq (2.7)

The predictor is naturally trained using SL at iteration i of Algorithm 2 by solving the theoretical

(regression) problem

θi P arg min
θPΘ

i´1
ÿ

j“0
Es„Pθj

”

l
´

Qps, πθj
psqq, Q̂ps, πθj

psq; θq

¯ı

(2.8)

with l being usually a convex and differentiable loss function, e.g. MSE.
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Algorithm 2 AggreVate Algorithm

Initialization:
Initialize randomly the parameter θ0
Set D Ð H

Procedure:
for i “ 1 to N do:
for j “ 1 to m do:
Sample uniformly t P t1, . . . , T u with T the maximum length of trajectories.
Start a new trajectory in some initial state drawn from initial state distribution
Execute current policy πθi´1 defined by Equation (2.7) up to time t ´ 1
Execute (randomly or not) some exploration action at in current state st at time t
Execute expert from time t ` 1 to T and observe estimate of cost-to-go Q̂
starting at time t

end for
Get dataset Di “

!

ps, a, Q̂q

)

of states, times, actions with expert’s cost-to-go

Aggregate datasets: D Ð D Y Di

Learn the parameter θi on D following the empirical counterpart of program (2.8)
end for

Output:
best θi on validation

All the methods aforementioned undergo a common limitation. As they essentially learn to mimic

the expert’s behaviour on some given distribution, they are not expected to achieve better results than

such expert. As a consequence, they should only be used when one has at its disposal a well-performing

expert. Alternatively, the discovering of new policies, which potentially outperform that of the expert,

is the object of Reinforcement Learning, another learning paradigm introduced in Section 2.2.

2.1.3 A particular function space: neural networks

As mentioned earlier, both the chosen function space F and the design of pertinent features are

key components in SL in order to make meaningful predictions. The growing enthusiasm observed

over the past few decades around neural networks is mainly due to their ability to blur the frontier

between these two components.

Taking its origins in biological systems modeling, a neural network is a non-linear function fθ : X Ñ

Y parametrized by a weight vector θ, where X Ă Rq and Y Ă RK with q (resp. K) the input (resp.

output) dimension. The versatility of neural networks lies in the possibility to create an arbitrary
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complex non-linear link between inputs and outputs while still allowing to use efficient optimization

techniques to learn their weights. We introduce here the reader to some basic notions related to neural

networks.

MultiLayer Perceptron (MLP)

An MLP is an acyclic (referred to as feedforward) directed graph pV, Eq where a path exists from

any input nodes X Ă V to at least one of the output nodes fpXq Ă V . Conversely, any output nodes

is linked to at least one input node by some path. Nodes of such graph are organized in consecutive

layers as illustrated in Figure 2.1 and are called artificial neurons, with edges only linking nodes of a

layer to nodes of the next one. Writing |L| the number of neurons in the L-th layer, the latter can be

seen as a function f pLq : R|L´1| Ñ R|L| for 1 ď L ď N and f p0q “ IdRq with N the number of layers

(except from the input layer). Thus, the neural network output can be rewritten

fθpXq “ f pNq ˝ f pN´1q ˝ ¨ ¨ ¨ ˝ f p1q ˝ f p0qpXq (2.9)

with θ a weight vector made explicit later on.

...
...

...
...

...

hidden layers :
L P t1, 2, 3, 4u

input layer :
L “ 0

output layer :
L “ N “ 5

Figure 2.1: MLP illustration with 4 hidden layers with a single output node (univariate regression).

The interest of neural networks lies in the non-linearity of each function f pLq. Using the previous

notations, the value of the j-th neuron of the L-th layer V
pLq

j is the j-th component of f pLq ˝ f pL´1q ˝

40



CHAPTER 2. BACKGROUND

¨ ¨ ¨ ˝ f p1qpXq. Denoting o
pLq

j such value given some input X, it is defined for 1 ď L ď N as

o
pLq

j “ ϕ
pLq

j

¨

˝

|L´1|
ÿ

k“1
w

pLq

jk o
pL´1q

k ` b
pLq

j

˛

‚ (2.10)

with o
p0q

k ” Xk for k P t1, . . . , pu, w
pLq

jk P R the weight of the edge from V
pL´1q

k to V
pLq

j , b
pLq

j P R the

bias parameter for V
pLq

j and ϕ
pLq

j a non-linear activation function (such as the sigmoid, tanh, ReLu

functions and so on). In this setting, the parameter θ is the concatenation of all the weights and biases
´

w
pLq

jk , b
pLq

j

¯

L“1,...,N
k“1,...,|L´1|
j“1,...,|L|

.

The term architecture is used to describe the number and types of links between nodes, and MLPs is a

specific class among a vast amount of different architectures (residual, recurrent, convolutional, graph,

auto-encoders, generative adversarial neural networks, etc.). We refer to [10] for a non-exhaustive

introduction to the bestiary of most-used neural networks.

As briefly mentioned earlier, one of the greatest strengths of neural networks is that their construction

as a composition of non-linear functions allows them to build complex and abstract representations

of the inputs in a relevant way for the considered problem. Hidden layers, and more generally deep

architectures (with numerous hidden layers), act as “useful, multistage, feature extractors with little

prior knowledge” [11]. Thus, if the architecture is well chosen for the task at hand, one may provide

raw inputs (e.g. images) and let the neural network build its own features.

Universal approximation theorem and beyond

Although many complex architectures have been created to handle different kinds of problems,

the most powerful theoretical result related to neural networks concerns a basic MLP with a single

hidden layer. This result, known as the universal approximation theorem, has been shown in 1991 [12]

and generalized a similar result from [13]. Presented in Theorem 2.1.1, it states that any continuous

function on a real compact set can be approximated by a single-layer MLP at any given precision (the

more precise, the more neurons needed). This result has a direct implication: for any SL problem,

one can reduce the empirical error on training set to 0 using such a neural network. Of course, this

would lead the model to overfit and show poor generalization performance. This bias-variance trade-

off, previously introduced, sheds light on the common practice for trying to minimize the bias while

using the simplest neural network so as to reduce the model variance. Different strategies have been
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developed to reduce the variance of neural networks, such as weight regularization (for instance L1 or

L2 regularization), dropout [14], early stopping [15], or simply downsizing the architecture.

Theorem 2.1.1. Let CpKqq be the set of continuous functions on a given compact set Kq Ă Rq, f P CpKqq

and ϕ : R Ñ R an activation function which is bounded, continuous and non-decreasing.

Then for any ε ą 0, there exist H P N,
´

w
p1q

ki

¯

k“1,...,H
i“1,...,q

P RHq,
´

w
p2q

1k

¯

k“1,...,H
P RH ,

´

b
p1q

k

¯

k“1,...,H
P RH

such that

@x P Kq,

⃓⃓⃓⃓
⃓⃓
˜

H
ÿ

k“1
w

p2q

1k ϕ

˜

q
ÿ

i“1
w

p1q

ki xi ` b
p1q

k

¸¸

´ fpxq

⃓⃓⃓⃓
⃓⃓ ď ε

Note here that, in Theorem 2.1.1, fθpxq “
řH

k“1 w
p2q

1k ϕ
´

řq
i“1 w

p1q

ki xi ` b
p1q

k

¯

“ Id
´

řH
k“1 w

p2q

1k o
p1q

k ` 0
¯

is the output of an MLP as defined above with N “ 2, ϕ the activation function for any unit in the

hidden layer, H hidden units, no bias and the identity activation for the output layer.

Parameters estimation: backpropagation

In addition to their ability to approximate any arbitrary complex function, neural networks have

gained a huge popularity due to the efficiency of existing calibration methods. Although many variants

have been proposed, they are mainly built upon Stochastic Gradient Descent (SGD) originated in [16],

which performs the following update

θ Ð θ ´ α
1
m

m
ÿ

i“1
∇θl pYi, fθpXiqq (2.11)

where α is the learning rate, l is a differentiable loss function and pXi, Yiq
m
i“1 is a random batch sampled

from training data.

SGD is particularly well suited for neural networks as the derivative of the loss function with respect

to the weights of the network ∇θl is efficiently computed by the backpropagation algorithm [17] as

presented below.

Backpropagation lies on the fact that any derivative BlpYi,Xiq

Bw
pLq

jk

can be computed using quantities derived

in the calculation of the next layer’s derivatives. Therefore, backpropagation works by computing first

last layer’s derivatives and iterating backward to progressively calculate those in previous layers. We

detail here the derivatives without any bias for the output layer and for an arbitrary layer L as a

function of quantities calculated when deriving those of layer L ` 1. To alleviate the notations, let

us write li ” l pYi, fθpXiqq, a
pLq

j ”
ř|L´1|

k“1 w
pLq

jk o
pL´1q

k and consider a unique differentiable activation
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function by layer, so as we have

o
pLq

j “ ϕpLq
´

a
pLq

j

¯

(2.12)

Using the chain rule, we have for the output layer

Bli

Bw
pNq

1k

“
Bli

Bo
pNq

1

Bo
pNq

1

Bw
pNq

1k

“
Bli

Bo
pNq

1

Bo
pNq

1

Ba
pNq

1

Ba
pNq

1

Bw
pNq

1k

“
Bli

Bo
pNq

1
ϕpNq1

´

a
pNq

1

¯

o
pN´1q

k

where o
pNq

1 ” fθpXiq.

Considering now an inner layer L, let us compute the derivative of the loss with respect to a weight

in such layer, assuming that we have computed the terms Bli
Bo

pL`1q

k

and ϕpL`1q1
´

a
pL`1q

k

¯

for any k P

t1, . . . , |L ` 1|u. Still by using the chain rule, we have

Bli

Bw
pLq

ml

“
Bli

Bo
pLq
m

Bo
pLq
m

Ba
pLq
m

Ba
pLq
m

Bw
pLq

ml

“
Bli

Bo
pLq
m

ϕpLq1
´

apLq
m

¯

o
pL´1q

l

Recalling the expression (2.9), li can be expressed as a function of the independent terms
´

o
pL`1q

k

¯

k“1,...,|L`1|
. Then, applying again the chain rule gives

Bli

Bo
pLq
m

“

|L`1|
ÿ

k“1

Bli

Bo
pL`1q

k

Bo
pL`1q

k

Ba
pL`1q

k

Ba
pL`1q

k

Bo
pLq
m

“

|L`1|
ÿ

k“1

Bli

Bo
pL`1q

k

ϕpL`1q1
´

a
pL`1q

k

¯

w
pL`1q

km

which yields

Bli

Bw
pLq

ml

“ ϕpLq1
´

apLq
m

¯

o
pL´1q

l

|L`1|
ÿ

k“1

Bli

Bo
pL`1q

k

ϕpL`1q1
´

a
pL`1q

k

¯

w
pL`1q

km

where the terms in the sum have already been computed by assumption. Thus, the terms Bli
Bo

pLq
m

and

ϕpLq1
´

a
pLq
m

¯

are now available for calculations in layer L ´ 1.

Although SGD is convenient for calibrating neural networks as backpropagation provides an effi-

cient way of computing derivatives, it is important to note that l is a highly non-convex function of θ.

As a consequence, the procedure may (and a priori does) get stuck in the potentially vast amount of

saddle points or local minima. However, the analysis in [18] suggests that the probability of falling into

a bad local minima with respect to learning performances quickly decreases with the neural network

size.
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2.2 Reinforcement learning

As briefly discussed in the introduction, reinforcement learning (RL) deals with finding good se-

quential control strategies. In this regard, it shares the same purpose as IL. However, contrary to

the supervised setting, RL aims at discovering such controls without any labeled samples. Instead,

policies are learnt through trials and errors and the learner has to discover how to map situations to

actions in order to minimize some numerical cost – although the RL community often reasons in terms

of maximizing a reward, we rather use costs in this document as it is more suited with our purpose.

Of course, as policies may have long-lasting impacts, actions may affect the immediate cost signal but

also any subsequent ones. For instance, in an attempt to learn to play Draughts, one may consider to

assign a reward (resp. a cost) of 1 (resp. -1) for each capture of an adverse piece and -1 (resp. 1) for

a loss of a piece.

RL is at the intersection between psychology of animal learning, optimal control (and thus dynamic

programming) and machine learning. It has emerged in the late 1980s especially with the works of

Richard Sutton [19] and Chris Watkins [20] and has been since then a really active and prolific field

of research, with many applications in various domains such as games, robotics, finance, etc. The

interested reader will find a nice introduction to RL in [21], which is a classic reference in this field. In

the current section, we introduce some fundamental notions, necessary to grasp the specifics of some

later developments.

2.2.1 Formal definition of the RL problem

As previously mentioned, RL is about learning policies in order to minimize some numerical cost.

It is common to formalize this problem in terms of optimal control of a Markov Decision Process

(MDP), originally introduced by Bellman in 1957 [22].

An RL system is defined by an agent (or controller) and an environment (or controlled system).

The agent interacts at discrete time steps with the environment by performing actions in given states

and, subsequently, the environment provides the agent with a new state through a transition. In

addition, the environment may give costs (or rewards) as a (in)direct consequences of state-action

pairs. The well-known Figure 2.2, adapted from [21], illustrates such system. At time t, the agent
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faces state st and selects an action at through a possibly stochastic policy πt where πtpa|sq is the

probability of performing action a at state s. At next state, the agent receives a cost Ct`1 in pair with

a new state st`1. We then define a generic setting where the objective of the agent is to minimize the

total discounted amount of costs received during a complete sequence of actions. In the following, we

assume that the immediate cost is deterministic with respect to a state-action pair.

Agent

Environment

action
at

st`1

Ct`1

state
st

cost
Ct

Figure 2.2: Illustration of agent-environment interactions in RL at time t

RL often assumes the environment to be markovian which gives rise to the notion of MDP, defined

by its state and action sets and by the transitions between states along with the cost model. One may

also include a discount factor in the definition of an MDP.

A process is said to be markovian if the probability of observing a state at time t ` 1 only depends on

the state-action pair at time t, that is

T ps1|s, aq ” P
`

st`1 “ s1|st “ s, at “ a
˘

“ P
`

st`1 “ s1|st “ s, at “ a, st´1, . . . s1, at´1, . . . , a1
˘

(2.13)

Consider now an MDP ă S, A, T, c, γ ą where S is the set of states, A the set of actions, T the

transition probabilities, c a bounded cost model and γ P r0, 1s a discount factor. A value function V π

associated to a policy π is defined as the expected sum of discounted costs that the agent will collect

if it follows policy π from the current state st:

V πpstq “ E∆π

«

8
ÿ

k“0
γkCt`k`1|st

ff

(2.14)

where ∆π is the state distribution when following policy π and Ct is the cost received at time t – by

assumption it is a random variable if and only if the policy or the transitions are stochastic. In pair

with this value function, the action-value function, or Q-value function, is defined as

Qπpst, atq “ E∆π

«

8
ÿ

k“0
γkCt`k`1|st, at

ff

(2.15)
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These functions satisfy recursive relationships called the Bellman equations:

V πpstq “
ÿ

aPA
πpa|stq

ÿ

sPS
T ps|st, aq rcpst, aq ` γV πpsqs (2.16a)

Qπpst, atq “
ÿ

sPS
T ps|st, atq

«

cpst, atq ` γ
ÿ

aPA
πpa|sqQπps, aq

ff

(2.16b)

with cps, aq the cost associated with the state-action pair ps, aq.

In this setting, we can formally define the objective of the agent as finding an optimal policy which is

better than any other in any state, i.e. which achieves a lower value for any state. Thus, writing π˚

such optimal policy and V ˚ ” V π˚

the associated value function, the RL task is to find

V ˚psq “ min
πPΠ

V πpsq (2.17)

for some given set of policies Π, and such optimal value function also satisfies a Bellman recursion

V ˚pstq “
ÿ

aPA
πpa|stq

ÿ

sPS
T ps|st, aq rcpst, aq ` γV ˚psqs (2.18)

Likewise, one can define the optimal Q-function Q˚, which satisfies a similar Bellman equation. Search-

ing for an optimal policy or an optimal value function is then equivalent, as a greedy policy with respect

to an optimal value function is an optimal policy by definition.

In the following, we introduce some exact methods to derive such optimal policies (or value func-

tions). However, in most applications, those exact methods are not tractable and one must leave it to

approximations.

2.2.2 Exact methods

A common way of introducing RL methods is to begin with dynamic programming, as it allows for

understanding the nature of learning through trials and errors and the need for approximation methods.

Dynamic programming is a methodology designed to solve optimal control problems developed since

the late 1950s, assuming perfect knowledge on the environment (transitions and costs). The two most

referred dynamic programming methods are policy iteration and value iteration (VI). We introduce

here only VI, which is a special case of policy iteration. The reader may refer to [21] for a more

complete introduction to dynamic programming methods in this setting.
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Turning the Bellman equations (2.16a) into an update rule, the dynamic programming operator is

built as in Definition 2.2.1.

Definition 2.2.1. Dynamic programming operator

Let V : S Ñ R be a value function and V the set of all value functions. The dynamic programming

operator B : V Ñ V is defined by setting

BV psq “ min
aPA

ÿ

s1PS
T ps1|s, aq

“

cps, aq ` γV ps1q
‰

(2.19)

Note that one may define a similar dynamic programming operator for the Q-function. This

operator is a maximum-norm contraction for γ P r0, 1q as stated in Lemma 2.2.1 and VI is the

algorithm defined in Theorem 2.2.1.

Lemma 2.2.1. The dynamic programming operator B is a contraction for the L8 norm as soon as

γ P r0, 1q.

Proof of Lemma 2.2.1. Let us show that ||BV1 ´ BV2||8 ď γ||V1 ´ V2||8 for two arbitrary functions V1

and V2. For any s P S we have

|BV1psq ´ BV2psq| “

ˇ

ˇ

ˇ

ˇ

min
aPA

#

ÿ

s1PS
T ps1|s, aq

”

c ps, aq ` γV1
`

s1
˘

ı

+

´ min
aPA

#

ÿ

s1PS
T ps1|s, aq

”

c ps, aq ` γV2
`

s1
˘

ı

+

ˇ

ˇ

ˇ

ˇ

ď max
aPA

⃓⃓⃓⃓
⃓ ÿ
s1PS

T ps1|s, aq

”

`

c ps, aq ` γV1
`

s1
˘˘

´
`

c ps, aq ` γV2
`

s1
˘˘

ı

⃓⃓⃓⃓
⃓

ď γ max
aPA

⃓⃓⃓⃓
⃓ ÿ
s1PS

T ps1|s, aq
`

V1
`

s1
˘

´ V2
`

s1
˘˘

⃓⃓⃓⃓
⃓

ď γ max
s1PS

⃓⃓
V1

`

s1
˘

´ V2
`

s1
˘⃓⃓

max
aPA

⃓⃓⃓⃓
⃓ ÿ
s1PS

T ps1|s, aq

⃓⃓⃓⃓
⃓

ď γ max
s1PS

⃓⃓
V1

`

s1
˘

´ V2
`

s1
˘⃓⃓

as T is a probability distribution

Theorem 2.2.1. V ˚ is the unique fixed point of the dynamic programming operator B and can be found

as V ˚ “ lim
kÑ`8

BkV0 with V0 any value function and γ P r0, 1q.

Proof of Theorem 2.2.1. V ˚ is a fixed point for B by definition (see Equation (2.17), and the uniqueness

is induced by the contraction property of operator B.
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Let us now consider the sequence pVkqkPN defined by Vk`1 “ BVk with V0 any value function, perceived

here as a vector in R|S|.

Such sequence pVkq is bounded since c is bounded and γ P r0, 1q gives:

||Vk||8 “ max
sPS

ˇ

ˇ

ˇ

ˇ

ˇ

min
aPA

#

cps, aq ` γ
ÿ

s1PS
T ps1|s, aqVk´1ps1q

+ ˇ

ˇ

ˇ

ˇ

ˇ

ď ||c||8 ` γ||Vk´1||8 max
sPS

ˇ

ˇ

ˇ

ˇ

ˇ

min
aPA

ÿ

s1PS
T ps1|s, aq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ||c||8 ` γ||Vk´1||8

ď γk||V0||8 ` ||c||8

k´1
ÿ

i“0
γi

ď ||V0||8 `
||c||8

1 ´ γ
Besides, the sequence pVkq is Cauchy for the L8 norm as, for any k ě p:

||Vk ´ Vp||8 ď γ||Vk´1 ´ Vp´1||8 ď ¨ ¨ ¨ ď γp||Vk´p ´ V0||8 ÝÑ
k,pÑ`8

0

since pVkq is bounded and B is a contraction for γ P r0, 1q.

As the space R|S| equipped with the L8 norm is a Banach space, the sequence pVkq converges. Let us

write V8 its limit. By passage to the limit in Vk`1 “ BVk we have V8 “ BV8. Thus, by uniqueness

of the fixed point for B, we have lim
kÑ`8

Vk “ lim
kÑ`8

pBqkV0 “ V ˚.

Starting from an arbitrary value function, value estimations are updated for each state by selecting

the lowest evaluated action through the Bellman recursion. VI is guaranteed to converge at a geomet-

ric rate and may, in practice, obtain good performances after only few iterations. However, it suffers

heavily from the curse of dimensionality, as one step of the algorithm requires |S|2 |A| evaluations.

Indeed, a single update operates on each state and scans over each state-action pair from each point.

In addition, applying the dynamic programming operator requires to know the transitions and cost

model, which is a requirement rarely met in practice.

Another way of finding the optimal value function is to solve directly the Bellman equation at

optimality if the environment’s dynamics are known. As the optimal value function is the unique fixed

point of the dynamic programming operator, it satisfies the equation

V ˚psq “ min
aPA

ÿ

s1PS
T ps1|s, aq

“

cps, aq ` γV ˚ps1q
‰

(2.20)

for any state s. This is a non-linear system of |S| equation with |S| unknowns and thus can be solved
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using any methods for solving such systems as soon as S is finite. Such approach does not rely on

the discount factor but turns out to be intractable in practice for much smaller state spaces than

dynamic programming methods. Likewise, one can cast the search of V ˚ into a linear system with |S|

unknowns and |S| |A| constraints (see for instance [23], page 20). The linear programming approach

thus has the same limitations as the former, which lets dynamic programming be the only tractable

approach in practice.

2.2.3 Approximations

In many applications, approximations may be needed for two main reasons. First, the environ-

ment may not be known, hence preventing from applying exact methods such as the aforementioned

approaches. In this case, the learner should make use of approximations for value estimations, as ex-

ample using Monte Carlo methods or Temporal-Difference learning (TD-learning [19]), learning from

raw experiences to estimate the expectation in the VI update. Second, when the state and action sets

are too large to be maintained and fully estimated by VI or approximated tabular methods (such as

TD-learning), one may also use function approximation to learn a surrogate mapping, e.g. for the Q-

value function Qπ. In both cases, the convergence speed depends on the ability of the learner to search

efficiently the state space, which comes by estimating properly the according values. To achieve this in

the most efficient way, a balance has to be found between exploration of new states and exploitation of

states with a high estimated value. This trade-off is called the exploration/exploitation dilemma and

exclusively arises in RL by opposition with other forms of learning. A common way of dealing with this

trade-off is to perform ε-greedy exploration, which consists in selecting random actions with probabil-

ity ε to explore the state-action space, with potentially a decreasing exploration probability ε over time.

We introduce here the tabular versions of Sarsa (originally named MCQ-L [24]) and Q-learning [20]

as well as an approximated counterpart using function approximation, necessary to understand further

developments.

TD methods are iterative procedures with updates based on a difference between two value estimates

at different times, e.g. of the form V pstq ´ V pst`1q. Instead of updating the values for the entire state

space, iterations are performed only on explored states where value estimates are available. Updates
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are said to be on-policy when they exclusively depend on explored state-action pairs, and off-policy

when they depend on estimates of non-explored pairs.

Sarsa is an on-policy TD algorithm, whose updates are

Qpst, atq Ð Qpst, atq ` α

TD-error
hkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkj

rcpst, atq ` γQpst`1, at`1q ´ Qpst, atqs (2.21a)

ðñ Qpst, atq Ð p1 ´ αqQpst, atq ` α rcpst, atq ` γQpst`1, at`1qs (2.21b)

The learnt Q-function here approximates at each step the value corresponding to the current policy

guiding the exploration. On the contrary, Q-learning aims at learning directly the optimal Q-function

Q˚ by performing the updates

Qpst, atq Ð Qpst, atq ` α

TD-error
hkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkj

”

cpst, atq ` γ min
aPA

Qpst`1, aq ´ Qpst, atq

ı

(2.22a)

ðñ Qpst, atq Ð p1 ´ αqQpst, atq ` α
”

cpst, atq ` γ min
aPA

Qpst`1, aq

ı

(2.22b)

Sarsa and Q-learning are examples of model-free methods, where the updates are done using a sample-

based estimate either of the Bellman or the dynamic programming operator image without trying to

model the environment dynamics. We see here the importance of the exploration/exploitation trade-

off as, in opposition with exact methods, the updates are made only on visited state-action pairs. As

made explicit in Equations (2.21b) and (2.22b), the learning rate α governs how far the updates should

bring the Q-function towards its images by the corresponding operator applied on visited state-action

pairs. The calibration of this parameter is crucial as it may have a huge impact on the convergence of

the learning procedure.

When the state space is too large, this procedure may turn out to be ineffective and one may intent

to recognize patterns in the Q-function instead of trying to estimate each visited point independently.

Rather than using a tabular representation of the Q-function, the state space is embedded in a feature

space ϕ pSq and the Q-function is approximated by a surrogate Q-function Q̂p., .; θq : ϕ pSq ˆ A Ñ R

whose weights θ are learnt through interactions with the environment. This general framework is

called fitted Q-iteration and was proposed in [25], later adapted to the use of neural networks in the

Neural Fitted Q-iteration approach (NFQ, [26]). As mentioned in the latter, using neural networks to

approximate Q-functions (sometimes referred to as Q-networks) may be risky as a weight update from
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a specific location in the state space may have an influence on the estimations in any other regions

due to the global representation mechanism in an MLP. To overcome this issue, the authors used

batch learning and experience replay [27], i.e. sampling from previously collected experiences rather

than performing on-line learning. As pointed out in the Deep Q-Network (DQN) seminal paper [28],

experience replay also allows to break the samples’ correlation induced by control problems, hence

getting closer from the i.i.d. hypothesis usually made in SL (see Section 2.1.1). DQN, synthesized

in Algorithm 3, is one of the most famous RL algorithms using neural networks, the main differences

with NFQ being the use of a replay buffer of fixed size, the use of convolutional layers and the

iterative training of a single neural network without restarting from scratch its calibration during the

learning process. To encourage the independence of learning samples, DQN also introduces the use

of a temporarily fixed parameter for building the Q-learning updates. As an approximation for the

exact Q-learning updates (2.22a), the theoretical loss used for computing neural network updates at

any iteration i of the M learning steps is

LDQN
i pθiq “ Eps,a,c,s1q„∆i

«

ˆ

c ` γ
”

min
a1

Q̂ps1, a1; θ´
i q

ı

´ Q̂ps, a; θiq

̇2
ff

(2.23)

where c is the cost obtained from state-action pair ps, aq, θ´
i is the fixed parameter periodically updated

and ∆i is a probability distribution over the experiences in the replay buffer.

Algorithm 3 DQN Algorithm

Initialization:
Initialize replay buffer B
Initialize a Q-network Q̂p., .; θ0q and set θ´

0 “ θ0
Procedure:
for e “ 1 to M do:
Draw an initial state s1
for t “ 1 to T do:
With probability ε select a random action at

otherwise select at “ arg mina Q̂pst, a; θtq

Observe the transition and store pst, at, ct, st`1q in B
Sample a random minibatch of transitions psj , aj , cj , sj`1q from B
Update θi to θi`1 following the gradient derived from Equation (4.11) using the
sampled minibatch
Periodically set θ´

i`1 to either θi`1 or θ´
i

end for
end for

Output:
Final parameter θN
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As the optimal value function is unlikely to be found in real applications, one may ask what

guarantee do we have on a policy which is greedy with respect to a suboptimal value function Q.

Corollary 2 in [29] showed that the following bound holds

V πpsq ď V ˚psq `
2

1 ´ γ
||Q ´ Q˚||8 , @s P S (2.24)

where V πpsq is the value of state s when following the greedy policy π with respect to Q. In words,

a greedy policy with respect to some approximated Q-function will perform well provided that the

approximation is good enough. However, one has usually no control over the term ||Q ´ Q˚||8, espe-

cially when facing large state spaces.

2.2.4 Some challenges in RL

We briefly discuss here some open challenges in the RL field as they will appear in different ways

in this document.

Regardless the tuning of hyper-parameters associated with the elected learning model, the choice

of the discount factor γ and that of the learning rate α have often more to do with art than science.

Historically introduced with respect to common practice in economics, a discount factor γ set in p0, 1q

is also theoretically justified as it constitutes a sufficient condition for the value functions to be defined

in infinite-horizon MDPs (cf. the infinite sum in Equations (2.14) and (2.15)) and as it enables to ob-

tain the maximum-norm contraction property of the dynamic programming operator (Lemma 2.2.1).

However, few is known about how to fix its value. Some studies suggest that using on purpose a

low discount factor allows to reduce the variance of the targets by tightening the approximate error

bound [30] and may act as a regularizer to the loss function [31]. It even may increase the performance

of dynamic programming methods when the reward (or cost) signal is sparse [30]. Even in episodic

MDPs where the natural discount factor is 1, one may thus find it useful to set a lower value. In [32],

the authors suggest that coupling an increasing discount factor with a decreasing learning rate stabi-

lizes the DQN algorithm and allows for better performances.

A long-lasting challenge in RL is the so-called credit assignment problem, already highlighted by
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Minsky [33] in the early 60s. It corresponds to the difficulty of identifying and thus crediting more

the important decisions in a given sequence. A typical situation where the credit assignment problem

arises is the case of sparse (rare) rewards, for instance in a long-lasting game as chess or go. When

the only reward is given at the end of the game as a binary signal “won” or “lost”, how can the agent

identify the important choices among the great number of made decisions during the play? The com-

mon strategy to soften this issue is to break the task into multiple sub-tasks, thus producing more

frequent reward or cost signals.

Last but not least, RL techniques often face a low sample efficiency, in the sense that they require

a lot of training data before achieving good performances in the considered task. As an example,

AlphaZero [34], which is one of the most famous RL achievements, played 29 million games of go

before defeating the earlier state-of-the-art program AlphaGo Master (from [35]). In the Atari video

game benchmark, DQN’s results [28] were obtained using 50 million frames for training.

To increase the sample efficiency, one may focus on two components: the exploration policy and

the learning strategy from collected experiences. Improving from ε-greedy exploration, different lines

of research (see for instance [36, 37]) suggest that guiding the exploration toward promising and/or

uncertain locations of the state space might increase the sample efficiency of deep reinforcement

learning methods, following the optimism in the face of uncertainty principle of Upper Confidence

Bounds [38]. Random methods have also been proposed to improve exploration, for instance in [39, 40].

Regarding the use of collected experiences, we can mention here prioritized experience replay [41],

which is an extension of the previously mentioned experience replay [27]. In the former setting, learning

occurs on previously collected samples using a weighting scheme, favouring the samples with high TD-

errors. Finally, expert knowledge may, if possible, be leveraged to improve the sample efficiency by

modifying the process to acquire training data (e.g. exploration) and the way to use it. Originally

used only for pre-training an agent [42] (see also [35]), expert’s demonstrations have also been used

throughout the whole training process, for instance to shape rewards [43] or add a supervised loss

on demonstrations [44]. In such approaches, demonstration data are collected once and for all before

interacting with the environment, and the expert is not re-invoked during training. By contrast, [45]

combines RL with a behavioral cloning loss on interactive expert’s demonstrations, observed on the

agent’s state distribution. In [46], the authors actively invoke the expert at exploration time.
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2.3 Learning in the Context of Branch and Bound

As mentioned in the introduction, our aim is to leverage learning techniques as introduced above

in the context of repeated MILPs, in particular using B&B. In this section, we first overview some of

the basic components or notions related to B&B. Second, we present some of the recent attempts to

leverage machine learning for strategies in the B&B algorithm. Last, we widen the scope to mention

some other learning approaches, related in some ways with B&B.

2.3.1 Branch and Bound strategies

As presented in the introduction (see Section 1.2.1, page 23), B&B is an algorithm designed to

handle the non-convexity of MILPs induced by the integrity constraints through a divide and conquer

approach, relying on the exploration of successive partitions of the feasible set. Such exploration

is controlled by different kinds of strategies, such as variable selection (also known as branching),

node selection, bounding, cutting, etc. Due to a lack of mathematical understanding of the dynamic

nature of such strategies, state-of-the-art solvers use hand-made strategies, empirically tuned on classic

benchmarks from literature (e.g. [47]). Hence, they are called heuristics, in the sense that they do not

guarantee any optimality with respect to the size of the tree produced by the B&B procedure. The

plethora of existing heuristics reflects the difficulty of the task, and their efficiency heavily depends on

the problem to be solved.

We give here an overview of existing methods designed over the past few years to improve the efficiency

of the B&B algorithm. It is not meant at all to be exhaustive, simply to introduce notions that may

have some relevance in the understanding of the present document. A more in-depth review can be

found in [48].

Presolve

Presolve is one of the most efficient techniques used in modern solvers to speed up B&B procedures

and increase their ability to solve MILPs [49]. It consists in transforming the considered problem into a

different but equivalent one, hopefully easier to solve. Presolve may for instance imply reformulation,

bound strengthening and information extraction for later use, depending on the considered solver.

As our aim is to develop techniques independent of software considerations, presolve will not be

encompassed in the present work.
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Node selection

Node selection selects at each iteration of a B&B algorithm one node to visit amongst the set of

current open nodes. This strategy holds the responsibility for finding early good feasible solutions,

that allows to prune other nodes by bound. The complexity of such strategy is its need for arbitrating

between regions of the search space which are expected to contain feasible solutions and nodes with

good dual bounds. In other words, it must find some balance between the probability of a node to

contain a feasible solution and the expected value of such solution. Different kinds of node selection

strategies are available in modern solvers, and many implement hybrid versions of the three presented

below.

Depth-First Search (DFS) always selects (one of) the deepest open node(s) at each iteration. The two

main advantages of DFS are to allow warm starting with low memory usage (the current optimal basis

can be used to warm-start subsequent LP solves using the simplex algorithm) and to find hopefully

quickly a feasible solution so as to be in a position to prune early by bound. On the other hand, DFS

may spend a lot of time in regions of the search space while encountering only poor primal bounds.

Breadth-First Search (BrFS) proceeds in opposition with DFS by exploring a node at some depth

only if all the nodes at a lower depth have been visited. Contrary to DFS, it is designed to handle

imbalanced search spaces. However, it generally produces large trees as feasible solutions generally

lies in deep nodes.

Best-First Search (BFS) is perhaps more relevant and used. It selects the open node which has the

best “quality” in some sense, one of the most common quality measure being the dual bound.

Variable selection (branching)

Branching is about finding shortest paths. Conditionally to a given node selection strategy, branch-

ing governs how quick trajectories in a B&B tree will end, either by finding feasible solutions, sub-

optimal or infeasible nodes. The difficulty here is double. First, a single branching choice impacts any

trajectories running from the current node, and a choice that is good for one of them is not ensured to

be efficient for the rest. Hence, branching decisions have to find a balance between all the trajectories

rooted in the current node. Second, the three ways of ending a trajectory make the characterization

of branching efficiency difficult. As suggested in [49], variable branching may be one of the most im-

portant strategies in B&B algorithms. We only present here some of the most used binary branching
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rules, i.e. rules which partition a feasible set into two mutually exclusive sets.

Most-Fractional Branching (or Most-Infeasible Branching) is undoubtedly one of simplest used branch-

ing rule, as it consists in selecting the variable whose fractional value (in the corresponding LP solution)

is closest to 0.5.

Pseudo-Cost Branching (PCB) is introduced in [50] and refers to a heuristic measure of the importance

of branching candidates, by trying to assess the change in the LP value consecutively to the branching

decision. This score is based on historic observations made in the B&B tree.

Strong Branching (SB), first referred without either definition or citation in [51] and first used in

CPLEX 7.5, follows the same goal as PCB but in a more brute-force manner, by actually computing

the change in the objective value. Let us write z the LP value at the current node and z0
j (resp. z1

j )

the LP values at child nodes when branching on xj “ 0 (resp. xj “ 1). The SB rule then selects a

binary variable in arg maxjPJ score
`

z0
j ´ z, z1

j ´ z
˘

. Different scoring functions can be considered, the

product being of common practice, supported by the results in [52].

Various other heuristics have been proposed over the past few years, and the most used are hybrid

versions of those aforementioned (see for instance reliability branching [53] and PCB with SB initial-

ization [54]). Additionally, Hybrid Branching [55] incorporates conflict clauses’ lengths and values in

the branching decision, which can be seen as estimates for the probability to yield infeasible nodes

after branching. We shall also cite here [56] which, rather than estimating the change in the objective

value, focuses on the number of active constraints.

Cutting

In LP-based B&B, the procedure lies on the bounds provided by LP relaxations to prune nodes.

Cutting strategies intend to strengthen these linear relaxations by solving a separation problem, i.e.

finding inequalities (cutting planes) valid for the convex hull of all feasible integer points but violated

by the optimal solution of the current LP relaxation. These cuts may be either local – valid only for

the current subtree, or global – valid for any feasible integer solution of the LP associated to root

node.

Cutting strategies are not encompassed in the present work, but an interested reader may look into

Gomory cuts [57] amongst others, which has the advantage of being available at low cost.
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Decomposition methods

In practice, many problems arise with a very large number of variables. Facing such problems, the

number of nodes necessary to obtain an optimality guarantee may be prohibitively large. However, one

may take advantage of the specific structure of the problem. From a generic standpoint, decomposition

methods aim at solving a Master Problem (MP), which is a lower constrained version of the original

problem but which may be significantly easier to solve. The solution of such problem is then refined in

an iterative manner by solving one (or many) subproblem(s) until some optimality criterion is met. The

two most known techniques in this regard are column generation [58] and Benders decomposition [59].

Metrics

Different metrics may be encompassed to compare any of the aforementioned strategies. The fol-

lowing metrics are among the most used in the literature. They are briefly presented with some

explanation of our interest with one of them particularly.

The most widespread metric used to compare B&B methods is undoubtedly the time needed to com-

plete the procedure (i.e. proving infeasibility or finding an optimal solution and proving its optimality).

It is used for instance in CPLEX reports, but also in the vast majority of integer programming articles.

Duration time is particularly well suited for comparing different configurations of a single solver, or

again to compare the performances of different solvers. Indeed, those are designed to have a high

performance with respect to this metric, since it is often what clients are looking for. Hence it is fair

to compare them using this criterion.

History of combinatorial optimization has been built by the ability of solving more and more chal-

lenging problems. Hence, a classic metric is the number of instances of a given problem to be solved

optimally in a specific amount of time. This metric is out of place in this work as we will focus on

problems which are already solved in reasonable time with existing B&B implementations.

In the same spirit, one can also use the number of visited nodes during the B&B procedure to com-

pare different strategies. It is also a commonly used metrics, and one of its main advantages is to be

independent on hardware or implementation specifics. As the number of nodes will be our metric of

interest, it deserves a little further discussion. On the one hand, it can be a deceiving metric by con-

cealing the computation time. A famous example of such phenomenon is SB, which performs generally

quite well with respect to the number of nodes but turns out to be affected with a high processing
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time. On the other hand, it truly reflects the ability of a strategy to partition and search effectively

the feasible set of a given problem. In addition, it allows for a fair comparison against commercial

solvers’ strategies as they accumulate a long history of computational improvements, out of reach from

individual works.

Last but not least in some industrial settings, the evolution of the bounds (primal and dual) through-

out the search can also be used to compare strategies. Although the number of nodes is our main

metric of interest, we may refer to gap metrics as it is often an interesting criterion in an industrial

context, where obtaining early good solutions may be relevant.

Let us define specifically the metrics and related notions used in this work. The root node of a

B&B tree is considered to be at depth 0, and a node is naturally at depth d ` 1 of the tree if its

parent is at depth d. We write |T | the size (number of nodes) of a B&B tree T , defined as the number

of expanded or fathomed nodes during the search, i.e. inner and leaf nodes. The size of a dive (or

trajectory) toward some node ζ is the number of nodes visited from the root node to ζ. Writing dpζq

the depth of node ζ, the trajectory towards ζ is therefore of size dpζq ` 1.

The primal integral [60] is defined, when discretizing time by the iterations of the B&B algorithm, as

T
ÿ

t“0
Γpxt̃q (2.25)

where T is the number of iterations at the considered time of evaluation, xt̃ is the best integer solution

found at iteration t and

Γpxt̃q “

$

’

&

’

%

1 if cJx˚.cJxt̃ ă 0 or if no integer solution has been found⃓⃓⃓
cJx˚ ´ cJxt̃

⃓⃓⃓
|cJxt̃|

else
(2.26)

with x˚ an optimal solution for the considered MILP. A common related measure is the primal-dual

integral defined as
T
ÿ

t“0
cJxt̃ ´ z˚

t (2.27)

where z˚
t is the minimum over all the dual bounds found at iteration t.

2.3.2 Machine learning and inner Branch and Bound strategies

As presented above, many components of B&B solvers are empirically-tuned heuristics. In a con-

text where one needs to solve many combinatorial problems on a regular basis, ML appears as a
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natural tool to improve upon such heuristics. The literature on this topic is quite limited as interac-

tions between ML and combinatorial optimization is an emerging field of research, and the reader may

be interested in two relevant surveys [61, 62], introducing both methodological concepts and literature

overviews.

Here, we present a non-exhaustive list of approaches related to B&B inner strategies (namely branch-

ing, node selection and cutting), focusing on their goals and learning methodology.

Variable selection

We start by introducing the lines of research regarding the learning of a branching strategy, as this

is the most used approach in the literature – it is also often considered as one of the most important

components in B&B solvers [49, 63].

As referred in [62] from [64], learning a branching (or other) heuristic seems natural as both learn-

ing and heuristically-based decisions aim at mapping some characterization of a state (features, node

description) to either take a decision (classification, variable selection). The vast majority of the

approaches regarding learning to branch use imitation learning, and more specifically BC (see Sec-

tion 2.1.2). In [65], the authors learn by BC to rank the candidate variables at each node using

SVMrank [66], considering SB as an expert. Still using BC, [63] learns the SB score (regression)

using extremely randomized trees [67]. Simplifying the decision task by casting it into a classification

scheme, [68] uses BC to directly learn SB decisions by means of a Graph Neural Network (see [69]

for a recent review on the use of GNNs in combinatorial optimization). A similar scheme is followed

in [70] with respect to the SCIP [71] default branching rule. All these approaches learn off-line the

branching rule, in the sense that they first collect data using the expert’s strategy, learn a surrogate

decision rule on this collected data and then use it at test time on new instances. On the contrary,

[72] learns online SB scores through linear regression.

We can easily understand why IL is that much leveraged for learning the variable selection strategy.

First, one does not know how to solve the problem of finding an efficient branching scheme, for the

simple reason that one does not know how to set this problem – define a proper tractable objective.

Therefore, it is natural to mimic the empirically efficient heuristics. Second, it happens that one of

the best performing branching heuristics SB, see Section 2.3.1 comes with an extremely high com-

putational cost. Machine learning is then a way to pay this cost off-line during training rather than
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online, at testing time.

Despite that, one may try to discover new strategies, or at least parametrize existing ones. This is

the optic followed in [73], where the branching decision is a convex combination of two SB-like heuris-

tic branching schemes. In this setting, the authors propose to learn the optimal weights for a given

problem. In the same spirit, [74] does not propose to follow a combination of scores, but rather to

dynamically (potentially at each node) select the heuristic to follow by clustering the B&B nodes –

each cluster has been associated to a best performing heuristic.

Node selection

Learning node selection strategies has turned out to be less attractive, undoubtedly due to the

belief that branching has more impact on the tree size. Again, IL has been leveraged to learn such

strategies. In contrast with the previous paragraph, the selected experts are not aforementioned

heuristics anymore. In [75], the authors leverage BC to learn a node selection and pruning strategy

which dives towards a good solution and discard unpromising nodes. DAgger is used in [76] to learn a

strategy which also couples both node selection and pruning, thus loosing the guarantee of optimality

provided by the B&B procedure. According to the authors, the observed speedup gains mainly come

from their pruning strategy.

Cut selection

This work will not treat cut selection, but cutting strategies have been learnt in a relevant fashion

and thus deserve to be mentioned here. Again with the aim of assuming off-line the cost of an

expensive heuristic, SL is used in [77] to learn on randomly generated data scores for cuts based on

objective improvement. More related with our aim, [78] uses RL to select among Gomory cuts. The

authors take as a reward the gap between objective values with and without the selected cut. The RL

framework allows them to take into account ahead consequences of cuts due to the recursive nature

of value functions (see Section 2.2). Their agent takes the form of a policy network in some latent

space trained by Evolutionary Strategies [79], the probabilities of candidate cuts being derived from

the outputs in this space. This latent space allows them to handle the varying size of their action set.

60



CHAPTER 2. BACKGROUND

2.3.3 Widening the scope

Of course, many other ways of leveraging machine learning for combinatorial optimization have

been explored. A large part of the literature has focused on learning specific algorithms dedicated

to classic combinatorial problems, such as the traveling salesman problem [80, 81, 82]. Even when

considering only B&B methods, plenty of decisions might be learnt without having to take into account

the dynamics inherent to inner strategies. For instance, [83] proposes to learn the probability of an

instance to be solved before some time limit. In [84], the authors propose to learn to tune the MILP

solver’s best configuration for each instance of a given problem. In a more generic way, [85] predicts

the run-time of different combinatorial algorithms, which allows for example to select online among a

pool of algorithms to solve a specific instance. With a similar aim, [86] uses classification to decide

which (if any) decomposition should be applied to best exploit the model structure. Perhaps more

aggressively, some studies suggest to directly predict the integer solution through classification [87, 88],

which may turn out to be intractable for complex problems.
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As explained in the introduction, our aim is to learn strategies for a given problem, in order to solve

efficiently future instances of such problem. To evaluate our methods, we will focus on two different

problems arising in EDF activities. This chapter is dedicated to the introduction of these two problems,

described and mathematically defined. The mixed integer linear programming formulations presented

here are those used in the experiments and are representative of EDF formulations. Furthermore, we

introduce some variations in the characteristics of these problems in order to allow more comprehensive

experiments.

3.1 Microgrid

3.1.1 Problem description

The first problem used in our experiments, schematically displayed in Figure 3.1, consists in the

optimization of a gas microgrid. This is a Unit Commitment problem [89], where the objective is to

coordinate the production units to meet a heat demand for a given discrete time horizon t1, . . . , T u

while minimizing the costs. To this end, the system considered is composed of two parallel asymmetric

boilers, which directly produce heat from gas acquired at a non-stationary cost, and a cogeneration

unit, producing both heat and electricity. The heat produced by the three different units can be

stored before being used to satisfy the demand, at the cost of linear losses through time. As for the

electricity produced by the cogeneration unit, it is to be sold on the electricity market, with varying

prices through time. All the units have different and fixed characteristics, such as energy efficiency

(affine here, sometimes piecewise linear in practice), production capacities and starting costs. The

cogeneration unit has an additional max-up constraint, meaning that it cannot be used continually for

too many time steps.

This problem will be referred to as the microgrid problem in this document. For a given configu-

ration (which will be explicitly identified by its naming), the context or varying data across instances

consist in gas prices, electricity prices, and heat demand for each time step of the discrete planning

horizon. These three sequences fully identify an instance for a given problem, any other characteristic

being fixed as part of the problem definition.
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Gas supply Gas boiler 2

Gas boiler 1

Gas cogeneration

Heat storage Heat demand

Electricity market

Figure 3.1: Schematic of a configuration for the microgrid problem.
Red cells represent the varying data, grey indicates constraints and blue the production units.

Note that many variations of the unit commitment problem have been studied in the literature,

due to its importance in the production industry. The complexity of such problems depend on their

structure, but its has been shown that dynamic coupling constraints, similar to max-up constraints,

can be sufficient to prove NP-hardness [90].

3.1.2 Problem formulation

We present here the MILP formulation of the microgrid problem used in the experiments. We

write it keeping unspecified the number of units for the sake of clarity, denoting I the set of units and

E Ă I that of cogenerators.

Varying data (across instances of a same problem), noted in uppercase font and indexed by the

time step, are historical gas prices Gt, electricity prices Et and heat demand Dt for each time step

t P t1, . . . , T u with T the planning horizon.

Decision variables, identified by lowercase roman letters, are binary or continuous. The binary variables

consist in the indicators xi,t of units’ state (1 if it is on and 0 otherwise) at a given time t with i P I the

unit identifier, and the starting and stopping indicators si,t and zi,t respectively, with si,t “ 1 (resp.

zi,t “ 1) if and only if xi,t “ 1 and xi,t´1 “ 0 (resp. xi,t “ 0 and xi,t´1 “ 1). As for the continuous

variables, yi,t refers to the production level of unit i and rt to the stock level at time t.

The characteristics, held constant for every instances of the corresponding problem, are referred to

with greek letters – except for the number of periods, naturally written T . The terms ρi and αi are
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the linear and affine components of a unit efficiency, µ is the quantity of electricity by unit of heat

produced by the cogenerators, βi its starting cost, πi, πi the lower and upper production capacities,

and γ the inventory value at the beginning of the period. The stock loses a proportion ∆ of its value

by time unit, with a constant maximal capacity of ζ.

Given these characteristics, an instance defined by the data tGt, Et, Dtut“1,...,T is then formulated as

min
x,s,z,y,r

T
ÿ

t“1
Gt

˜

ÿ

iPI

yi,t

ρi
` αxi,t

¸

´ Et

ÿ

iPE
yi,t `

ÿ

iPI
βisi,t

s.t. si,t ´ xi,t ď 0 @i P I, t P t1, . . . , T u pc1q

xi,t ´ xi,t´1 ´ si,t ď 0 @i P I, t P t2, . . . , T u pc2q

xi,t ` si,t`1 ď 1 @i P I, t P t1, . . . , T ´ 1u pc3q

zi,t`1 ´ xi,t ď 0 @i P I, t P t1, . . . , T ´ 1u pc4q

xi,t ´ xi,t`1 ´ zi,t`1 ď 0 @i P I, t P t1, . . . , T ´ 1u pc5q

xi,t ` zi,t ď 1 @i P I, t P t1, . . . , T u pc6q

πixi,t ď yi,t @i P I, t P t1, . . . , T u pc7q

πixi,t ě yi,t @i P I, t P t1, . . . , T u pc8q

p1 ´ ∆qrt ´ rt`1 `
ÿ

iPI
yi,t “ Dt @t P t1, . . . , T ´ 1u pc9q

rt ď ζ @t P t1, . . . , T u pc10q

r1 “ γ pc11q

p1 ´ ∆qrT `
ÿ

iPI
yi,T ´ DT “ γ pc12q

si,t ´ zi,t`1 ´ zi,t`2 ď 0 @i P E , t P t1, . . . , T ´ 2u pc13q

xi,1 ` xi,2 ` xi,3 ď 2 @i P E pc14q

xi,t, si,t, zi,t P t0, 1u @i P I, t P t1, . . . , T u pc15q

yi,t, rt P R` @i P I, t P t1, . . . , T u pc16q

Constraints (c1´3) define the start variables. Due to (c1), a unit i can be at a starting state only if

it is on, when constraints (c2) imply that it is necessarily at starting state at time t if it is on at time t

and off at time t´1. Besides, (c3) prevent an on state from preceding a start state. Constraints (c4´6)

define the stop variables in a similar manner. Constraints (c7) (resp. (c8)) prevent the production

level of some unit to exceed (resp. be lower than) its capacity if the unit is at on state. If the unit is
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off, these two constraints force the production level to be null. The demand satisfaction is enforced

by constraints (c9), equalizing the demand level to the production level plus or minus the stock flow.

This stock has a maximal capacity defined by constraint (c10) and an initial value given in (c11). The

constraint (c12) enforces a constant terminal value for the inventory. The max-up constraints (c13)

state that if a cogenerator starts a time t, it must either be stopping at time t ` 1 or t ` 2. These

constraints are completed by (c14) at the beginning of the period, stating that a cogenerator cannot

be up during the first three time steps.

3.1.3 Configurations

In order to make more comprehensive experiments, we consider different configurations of the

microgrid problem. First, we make the time horizon vary to induce different problem dimensions.

Concretely, we will perform experiments with T P t6, 8, 12u. Second, we tune the efficiency characteris-

tics of the two parallel boilers, so as to handle different degrees of symmetries in the formulation. This

setting gives rise to two problems, the one with asymmetric boilers being referred to as micro_asym

and the more balanced one, i.e. with more alike boilers’ characteristics, referred to as micro_bal.

Apart from this difference, the two problems are identical and the instances are built from the same

data. Table 3.1 displays the problems’ dimensions as well as the average tree size of CPLEX on each

configuration on 500 instances. As mentioned in the introduction (page 28), the experiments are

performed with a restrained version of CPLEX’s branch and bound so as to enable fair comparisons of

specific strategies.

Problem # constraints # variables # binary average tree size

micro_asym_T6 186 120 54 45.9
micro_bal_T6 186 120 54 52.0
micro_asym_T8 254 160 72 113.5
micro_bal_T8 254 160 72 95.5
micro_asym_T12 390 240 108 447.6
micro_bal_T12 390 240 108 337.5

Table 3.1: Dimensions of the different microgrid problems

To give some insights about the computational difficulty of solving these problems under these

conditions, Figure 3.2 displays some statistics observed on the configurations encompassed in this
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work.

Naturally, we observe in Figure 3.2a that the tree sizes are positively correlated with the problem’s

dimension. For a given time horizon, both micro_asym and micro_bal are intrinsically of comparable

difficulty, the main difference being the ability of CPLEX to find early good solutions in the asymmetric

configuration – see Figure 3.2b.

Although these configurations may be similar for the considered solver, learning may be harder to

perform on micro_bal due to the higher degree of variability in the solutions induced by its more

symmetrical structure. To illustrate this point, we consider the stability score σj for a binary variable

j P J defined as

σj “
2
N

⃓⃓⃓⃓
⃓⃓ N
ÿ

i“1
x˚

i,j ´ 0.5

⃓⃓⃓⃓
⃓⃓ (3.1)

where N is the number of considered instances and x˚
i the optimal solution found by CPLEX on

instance i. This score is defined such that σj equals one if the variable has always the same value

in the found solutions and gets closer to zero as the variability increases. Figure 3.2d represents the

empirical cumulative distribution of this score across the binary variables. We see for example that,

for micro_bal_T12, around 40% of the variables have a score under 0.5 (cf. the black dot), which

means that 40% of the variables takes some value at optimality for at most 75% of the instances, and

the other value for the other 25%. In the case of micro_asym_T12, only 15% exhibits such level of

variability. Thus, the higher the curve, the more variability, and we see that micro_bal solutions vary

more.

This score does not fully reflect the variability of the solutions, as 100% of the variables could have

a null score in the case of only two distinct integer solutions x˚ and 1 ´ x˚, each one being found

50% of the time. Thus, Table 3.2 completes this score by giving the ratio of the number of distinct

near-optimal integer solutions found over the number of considered instances. These solutions are

obtained by setting the relative tolerance gap to 1% when collecting the pool of solutions for each

instance. Here again, we see that micro_bal offers much more variability.
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(a) Histogram of tree sizes.

(b) Histogram of primal integral scores.

(c) Histogram of nodes processed before finding an optimal solution.

(d) Empirical cumulative probability of the stability score (3.1). This Figure is to be read as
follows: on micro_bal_12, the black dot indicates that 40% of the variables has a score lower
than 0.5.

Figure 3.2: Statistics on the solving of instances from the different configurations of microgrid. The
numbers in parentheses are mean values for the corresponding statistics.
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Problem Percentage (%)

micro_asym_T6 5.17
micro_bal_T6 17.17
micro_asym_T8 14.07
micro_bal_T8 31.36
micro_asym_T12 44.32
micro_bal_T12 99.84

Table 3.2: Percentages of distinct near-optimal integer solutions found by CPLEX on microgrid prob-
lems.

3.2 Hydroelectric valley

3.2.1 Problem description

The second use case, presented in Figure 3.3, is also a unit commitment problem, this time applied

to the management of a hydroelectric valley. The objective is to minimize the costs on a discrete

time horizon, selling the energy produced by hydroelectric plants. A valley consists of reservoirs and

power units, where the units are powered by the flow incoming from the upstream reservoir. The flow

may then continue to the next (downstream) reservoir, creating a chain of interconnected units and

reservoirs. Note that in the literature, this problem may be referred to as the hydro-chain scheduling

problem or again hydro valley problem.

Many valley topologies can be encompassed, from different flow sources to pumping facilities al-

lowing for water circuits. Here, we consider a simple linear valley, to be optimized for 12 time steps.

The units generate power by controlled water flow from the upstream reservoir through an ordered set

of turbines, referred to as unit’s components. These components also determine the level of primary

and secondary spinning reserves, encouraged by the regulator. Flow variations are constrained, and

some management constraints are imposed on the components’ pilotage. Last, the reservoirs’ volumes

are constrained to fit a mid-term and end-of-period water level policy.

This problem will be referred to as the hydro problem in this document. For a given configuration

(which will be explicitly identified by its naming), the context or varying data across instances are the

reservoirs’ policy volume constraints and electricity prices (power, primary and secondary reserves).
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Reservoir 1 Unit 1 Reservoir 2 Unit 2 Electricity market

Figure 3.3: Schematic of the hydro problem.
Red cells represent the varying data, grey indicates constraints and blue the production units.

3.2.2 Problem formulation

We present here the MILP formulation of the hydro problem used in the experiments. N refers to

the number of units.

Varying data, again noted in uppercase font and indexed by the time step, are simulated market prices

Pt, primary and secondary prices P 1
t , P 2

t , and volume bounds at mid-period V i,T {2, V i,T {2 and at the

end of the period V i,T , V i,T for each unit i P t1, . . . , Nu.

The binary variables consist in the state (on or off) of each individual unit component xi,j,t for unit i

at time t and their starting indicators si,j,t, j P t1, . . . , Miu being here the identifiers of the Mi compo-

nents of unit i. The continuous variables are the power, primary and secondary reserves, respectively

yi,t, pi,t and zi,t, produced by unit i at time t, the flow going through units fi,t and reservoirs’ volume

vi,t.

The characteristics of the valley, denoted with Greek letters – except for the time horizon, comprise

component efficiencies for power generation pρjq, primary reserves pρ1
jq and secondary reserves pρ2

j q. If

component j of unit i is at on state, a flow αi,j runs through it, and the variations of this flow across

to consecutive time steps are lower (resp. upper) bounded by η
i
(resp. ηi). Reservoir i has limited

capacities νi and νi, its initial volume is denoted νi,0, the time between two time steps is ∆ and δi is

the constant natural inflow at unit i.
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An instance defined by the varying data
␣

Pt, P 1
t , P 2

t , V i,T {2, V i,T {2, V i,T , V i,T

(i“1,...,N

t“1,...,T
is then for-

mulated as

min
x,s,v,f,y,p,z

´

N
ÿ

i“1

T
ÿ

t“1

`

Ptyi,t ` P 1
tpi,t ` P 2

t zi,t

˘

s.t. yi,t “

Mi
ÿ

j“1
ρjxi,j,t @i P t1, . . . , Nu , t P t1, . . . , T u pc1q

pi,t “

Mi
ÿ

j“1
ρ1

jxi,j,t @i P t1, . . . , Nu , t P t1, . . . , T u pc2q

zi,t “

Mi
ÿ

j“1
ρ2

j xi,j,t @i P t1, . . . , Nu , t P t1, . . . , T u pc3q

fi,t “

Mi
ÿ

j“1
αi,jxi,j,t @i P t1, . . . , Nu , t P t1, . . . , T u pc4q

η
i

ď fi,t ´ fi,t´1 ď ηi @i P t1, . . . , Nu , t P t2, . . . , T u pc5q

xi,j,t ě xi,j`1,t @i P t1, . . . , Nu , j P t1, . . . , Mi ´ 1u , t P t1, . . . , T u pc6q

xi,j,t ´ xi,j,t`1 ´ xi,j,t´1 ě ´1 @i P t1, . . . , Nu , j P t1, . . . , Miu , t P t2, . . . , T ´ 1u pc7q

xi,j,t ´ xi,j,t`1 ´ xi,j,t´1 ď 0 @i P t1, . . . , Nu , j P t1, . . . , Miu , t P t2, . . . , T ´ 1u pc8q

si,j,0 ě xi,j,0 @i P t1, . . . , Nu , j P t1, . . . , Miu pc9q

si,j,t ě xi,j,t ´ xi,j,t´1 @i P t1, . . . , Nu , j P t1, . . . , Miu , t P t2, . . . , T u pc10q

v1,1 “ ν1,0 ` ∆ pδ1 ´ f1,1q pc11q

vi,1 “ νi,0 ` ∆ pδi ` fi´1,1 ´ fi,1q @i P t2, . . . , Nu pc12q

v1,t “ v1,t´1 ` ∆ pδ1 ´ f1,tq @t P t2, . . . , T u pc13q

vi,t “ vi,t´1∆ pδi ` fi´1,t ´ fi,tq @i P t2, . . . , Nu , t P t2, . . . , T u pc14q

νi ď vi,t ď νi @i P t1, . . . , Nu , t P t1, . . . , T u pc15q

V i,T {2 ď vi,T {2 ď V i,T {2 @i P t1, . . . , Nu pc16q

V i,T ď vi,T ď V i,T @i P t1, . . . , Nu pc17q

xi,j,t, si,j,t P t0, 1u @i P t1, . . . , Nu , j P t1, . . . , Miu , t P t1, . . . , T u pc18q

vi,t, fi,t, yi,t, pi,t, zi,t P R` @i P t1, . . . , Nu , t P t1, . . . , T u pc19q

Constraints (c1´4) define the impact of components on production, reserves and flow, while constraints

(c5) limit the flow variations. Constraints (c6) impose an order on the set of a unit’s components,
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and constraints (c7 ´ 8) forbid frequent start-ups and stops of the turbines. The start variables are

defined by constraints (c9 ´ 10). Reservoirs’ volume is defined in constraints (c11 ´ 14) by inflows and

outflows, while the mid-period and end-of-period policies are defined in (c16 ´ 17).

3.2.3 Configurations

Unlike microgrid, the main lever considered for controlling the dimension of the hydro problem is

the number of hydroelectric power plants. We mainly perform experiments with one and two plants,

that is N P t1, 2u. The second source of heterogeneity introduced is that we consider a problem with a

fixed (resp. variable) volume policy, i.e. volume bounds, referred to as hydro_fix (resp. hydro_var).

Note that the number of turbines per unit is not the same between these two problems. Table 3.3

summarizes the problem’s dimensions.

As observed in Figure 3.4, hydro_var is not only more intrinsically difficult to solve, both in terms

of B&B nodes and ease of finding good solutions, but also more heterogeneous regarding the optimal

solutions found by CPLEX. This is true at the variable level (Figure 3.4d) but also at the solution level

(Table 3.4). Thus, learning is expected to be more difficult on hydro_var problems. Mathematically,

the feasible set for hydro_fix is stable across instances due to the fixed volume policy.

Problem # constraints # variables # binary average tree size

hydro_fix_1 282 207 96 29.6
hydro_var_1 378 303 144 442.9
hydro_fix_2 596 366 216 446.0
hydro_var_2 512 342 168 1628.6

Table 3.3: Dimensions of the different hydro problems.
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(a) Histogram of tree sizes.

(b) Histogram of primal integral scores.

(c) Histogram of nodes processed before finding an optimal solution.

(d) Empirical cumulative probability of the variability score (3.1).

Figure 3.4: Statistics on the solving of instances from the different configurations of hydro. The
numbers in parentheses are mean values for the corresponding statistics.
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Problem Percentage

hydro_fix_1 6.6
hydro_var_1 175.8
hydro_fix_2 66.6
hydro_var_2 282.4

Table 3.4: Percentages of distinct near-optimal integer solutions found by CPLEX on hydro problems.
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Part II

Learning Oracle Strategies in a Branch and
Bound Algorithm
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This part holds the main axes developed during this thesis. The objective is to learn strategies in

a Branch and Bound algorithm. Throughout the different chapters, we consider Branch and Bound

as defined in Algorithm 4, where the only degrees of freedom lie in the branching and node selection

strategies. The dual bounds are provided by linear relaxations. In practice, we turn off presolve and

cut generation. Such measures are common practice [65, 73, 91, 92], allowing for a strict comparison

between policies, independently from interactions with other strategies inherent to the selected solver.

As for the notations, we write ζ a Branch and Bound node, defined by the linear relaxation of the

original MILP problem and an additional set of constraints induced by the ascendant nodes and the

branching decision at its parent node. In the following, the LP of a node will refer to this linear relax-

ation. Note that we arbitrarily do not include the primal bound if any in the definition of a node. We

write Dpζq ” tD0pζ, jq, D1pζ, jqu the direct children of ζ after branching on variable j. Here, D0pζ, jq

(resp. D1pζ, jq) refers to the node defined by the LP of ζ augmented with the constraint txj “ 0u

(resp. txj “ 1u).

Consistently with the notations of Algorithm 4, we refer to the sets of non-leaf and leaf nodes

once the tree is fully expanded as N π and Lπ when following the strategy π P Π, where Π is some

set of strategies of interest. Note here that these two sets form a partition of T π. Likewise, we write

N π
t , Lπ

t , Oπ
t , T π

t the corresponding sets at iteration t of Algorithm 4, where Oπ
t stands for the set of

open nodes at iteration t.

In this context, with Π a set of policies of interest (branching strategies, node selection strategies or

both), we define our global objective as

min
πPΠ

Ep„L r|T πppq|s (3.2)

where T πppq refers to the tree produced by strategy π. Again, the tree size is used as a proxy for

computational efficiency and independent of hardware considerations, and optimal policies for (3.2)

are called oracle strategies. Depending on the selected strategy set Π, we propose different approaches

to learn a good strategy with respect to objective (3.2). The three chapters of this part are respectively

dedicated to learning the branching strategy, the node selection strategy and finally the two of them

jointly.

All the experimental results presented in the following chapters are averaged over 25 random splits

of 200 training instances and 300 testing instances. We will refer to the term training processes to
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indicate the average number of nodes and primal integral scores (see Section 2.3.1, page 58) produced

on training instances along any iterative learning procedure. The results presented on test instances

are the average increase in terms of number of nodes compared to CPLEX (so that negative numbers

correspond to an average decrease of the tree size).

Algorithm 4 Branch and Bound algorithm (two policies, minimization case)

Input:
A MILP instance p and ζ0 its linear relaxation
A global strategy π ” pπN , πV q with πN a node selection strategy and
πV a branching strategy

Initialization:
Iteration : t Ð 0
Solution and primal bound: x Ð None ; βπ

t Ð 8

Sets of open, non-leaf and leaf nodes : Oπ
t Ð tζ0u ; N π

t Ð H ; Lπ
t Ð H

Procedure:
while Oπ

t ‰ H:
t Ð t ` 1 ; βπ

t Ð βπ
t´1

Node selection:
ζt Ð a node in Oπ

t´1 using the node selection strategy πN

Oπ
t Ð Oπ

t´1z tζtu

Leaf assessment:
If ζt is either MILP-feasible or LP-infeasible or LP-feasible with objective
β̃t ě βπ

t :
Lπ

t Ð Lπ
t´1 Y tζtu ; N π

t Ð N π
t´1

If ζt is MILP-feasible with objective β̃t ă βπ
t and value xt:

βπ
t Ð β̃t ; x Ð xt

Branching:
Else (if ζt is not a leaf):

N π
t Ð N π

t´1 Y tζtu ; Lπ
t Ð Lπ

t´1
Select a binary ariable jt using the branching strategy πV and update
Oπ

t Ð Oπ
t´1 Y tDπ

0 pζt, jtq, Dπ
1 pζt, jtqu

end while
Output:

x ; β˚ ” βπ
t ; N π ” N π

t ; Lπ ” Lπ
t ; T π ” N π Y Lπ
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Learning a Dynamic Branching Policy
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This chapter is dedicated to the learning of the branching strategy in Algorithm 4. For the sake

of simplicity, we denote Π the set of all possible branching strategies and the letter π will refer to a

branching policy in the following.

Branching governs the creation of recursive disjunctive sets, at the core of the divide and conquer

B&B methodology. Various studies suggest that it plays a crucial, if not the most important, role in

the building of B&B trees [49, 63], which explains our interest in learning such strategies. In that

matter, it is worth noting that the majority of the approaches involving the learning of B&B strategies

is dedicated to branching (see Section 2.3.1). To illustrate the importance of branching, Figure 4.1

shows an histogram of tree sizes generated by random branching decisions on a given instance and

compares it to the size of a tree produced by CPLEX.

Figure 4.1: Histogram of tree sizes generated by 500 random branching policies on a micro_bal_T12

instance. Node selection is performed by an identical heuristic in both cases to allow a fair comparison,
and values in parentheses are the mean tree size for the random policies and the tree size for CPLEX.

Throughout this chapter, the focus will be put on discovering oracle branching strategies, i.e.

strategies which produce minimal trees for a given node selection strategy. To do so, we have no

choice but to take into account their dynamic nature. A simple way of understanding the importance

of dynamics is to consider the depth of a single dive towards a given solution x for different branching

strategies in Algorithm 4. In this setting, the node selection strategy is to select the deepest node

which corresponds to solution x, i.e. at iteration t selecting the node Dkpζt´1, jt´1q where jt´1 is the

branching decision at the previous iteration and k “ xjt´1 . Let us investigate on the example (4.1)
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the problem of finding the sequence of branching decisions which minimizes the length of such dive

towards the solution py “ 1Rn , z “ 0Rnq. Figure 4.2 illustrates all the possible paths through branching

decisions towards py “ 1Rn , z “ 0Rnq for the case n “ 2.
$

’

’

’

’

’

&

’

’

’

’

’

%

max
y,z

n
ÿ

i“1
pyi ` ziq

s.t. yi ` zi ď 1.2 @ i P t1, . . . , nu

y P t0, 1u
n , z P t0, 1u

n

(4.1)

begin -,-,-,-

1,-,-,-

-,1,-,-

-,-,0,-

-,-,-,0

-,-,0,0

1,-,0,-

1,-,-,0

-,1,0,-

-,1,-,0

-,-,0,0

1,1,0,-

1,1,-,0

1,-,0,0

-,1,0,0

1,1,0,0 end

Figure 4.2: This graph represents all the possible branching decisions for Problem (4.1) with n “ 2
under the specified node selection. The variable values are fixed by branching and node selection at
any iteration of Algorithm 4, and each path is associated to a B&B dive towards p1, 1, 0, 0q.

Writing 1t,y the indicator of branching on a y variable in iteration t of Algorithm 4, the dive length

T towards py “ 1Rn , z “ 0Rnq satisfies the inequality T ě n `
řT

t“1 1t,y, equality holding when the

branching strategy never selects a variable already fixed by previous branching decisions. Here, an

optimal branching strategy is characterized by always branching on a not-fixed z variable. Indeed,

fixing y variables do not set z variables to their optimal value (neither to a feasible value, the constraint

yi “ 1 pushing the LP value of zi to 0.2), whereas fixing zi “ 0 pushes yi to 1. It illustrates the fact

that, even for the simple case of a diving strategy, the quality of a branching decision depends on every

other branching decisions in the trajectory. When considering complete B&B trees, things become

more complex and may depend on any other decisions in any of the other branches of the tree.
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In order to capture this dynamic nature, we first generalize in Section 4.1 classic existing branch-

ing heuristics, which intent to produce long-term strategies by short-term decisions. To overcome

the computational complexity of the proposed alternative, we propose a novel reinforcement learn-

ing framework adapted to the B&B environment to learn these strategies. Theoretical aspects and

limitations of RL in this setting are studied and illustrated. Section 4.2 considers and compares two

special cases, where a simple cost model is used and is proven to be optimal in some sense. Special

care is given to the use of a discount factor, and a biased but more robust cost model is proposed. In

Section 4.3, some variations around the presented methodology are given.

4.1 Learning dynamic heuristic strategies

4.1.1 Positioning

As mentioned in Chapter 2, branching strategies are heuristically designed in off-the-shelf solvers.

Despite their huge impact on the B&B procedure and the considerable amount of research dedicated

to design such policies, we still struggle to characterize good branching strategies. One of the main

difficulties when building strategies in B&B is their dynamic nature, as illustrated above. Especially,

the impact of a branching decision often depends on remote choices, either made earlier or later on.

In this section, we hence aim at incorporating dynamic considerations into heuristic branching.

One of the most famous branching strategies is SB (see Section 2.3.1). Even if the SB rule is based

on a heuristic score, it has shown a great ability to produce small B&B trees. The main source of its

efficiency is the fact that this heuristic score is derived on potential child nodes. In other words, SB

uses some kind of knowledge about the immediate future outcomes ahead of the current branching

decision. This knowledge comes with a high computational cost, since it requires to compute all (or

some part of) these potential outcomes. To limit this cost, strategies with no look-ahead are often

preferred in practice, such as Pseudo-Cost or Most Fractional Branching. In the following, we address

the challenge of learning branching policies with look-ahead, like SB. Such an approach has been

studied in different papers (see for instance [63, 68]), where SB is learnt by imitation (see Section 2.1.2

for an introduction to IL). However, rather than focusing only on SB or heuristics with no look-ahead,

we learn more long-term policies by introducing the notion of h-ahead branching heuristics. We adopt
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an RL paradigm in order to learn the dynamics of the branching policy, using some information about

future consequences of already made choices.

4.1.2 Markov Decision Process formulation

Before diving into the question of designing and learning strategies, let us formalize a branching

policy using an MDP formulation. We define such episodic MDP when solving an instance p as a tuple

ă S, A, T, c, γ ą, where the environment is set by Algorithm 4 and which consists of:

a set of states S: a state st P S is a tuple pp, t, Htq where t is an iteration of Algorithm 4 and Ht is

the history of any decisions or observations made so far, including the node selection performed

at iteration t. A B&B node ζpstq is associated to a state st and corresponds to the node visited

at iteration t. Note here that the mapping from states to B&B nodes is not an injection: many

states can be associated to a single B&B node. Conversely, a unique B&B node is associated to

a state.

Note that S is finite provided that one cannot branch on an already fixed variable: indeed in

that case, the number of disjunctive sets, primal bounds and visiting orders is finite.

a set of actions A ” J . At each state, except for states corresponding to leaf nodes, a branching

decision has to be made amongst the set of binary variables at the current node.

a transition function T assumed to be deterministic here, either trajectory-based or tree-based accord-

ing to Definition 4.1.1 and 4.1.2 provided in what follows. Tree-based transitions are introduced

to take into account the structure of the B&B environment and its dynamics. Figure 4.3 illus-

trates the differences between these two transition functions.

Note that transitions are considered deterministic but unknown. A sufficient condition for this

hypothesis to be verified is Hypothesis 4.1.1, see below. If it was not for the deterministic

hypothesis, these transition functions would nevertheless still be markovian by construction as

tjtu Y Ht Ď Ht1 for any t ă t1.

Note that one should add a fictitious action for states associated to leaf nodes to properly define

transitions (and cost functions). We chose not to do so as it would only make the notations more

cumbersome.
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a bounded cost function c : S ˆ J Ñ R which depends on the objective set for the strategy to be

learnt.

a discount factor γ P r0, 1s.

This finite MDP is episodic as one can bound the number of iterations in Algorithm 4 by 2n`1 ´ 1

provided that the branching policy does not select the same variable twice in a single branch of the

tree.

Hypothesis 4.1.1. Deterministic node selection hypothesis

The node selection policy in Algorithm 4 is deterministic: no matter the history, the node selection

policy always selects the same node in a given set of open nodes.

Definition 4.1.1. Trajectory-based transition

We call trajectory-based transition a deterministic function of the form T : S ˆ J Ñ S ; T pst, atq “

st`1 which gives the next visited state from a state-action pair, with ζpstq “ ζt and ζ pT pst, atqq “ ζt`1

where t corresponds to an iteration of Algorithm 4. Such transition corresponds to the usual type of

time-indexed transition functions considered in classic RL tasks.

Definition 4.1.2. Tree-based transition

We call tree-based transition a deterministic transition of the form T π : S ˆ J Ñ S ˆ S ; T π pst, atq “

pDπ
0 pst, atq, Dπ

1 pst, atqq where t corresponds to an iteration of Algorithm 4. The notation Dπ
k ps, jq refers

to the state associated to the node Dk pζpsq, jq when following policy π. Here, the transition function

provides two different states, their visiting time depending on both the branching and the node selection

strategy.

1

2

4 7

3

5 6

Figure 4.3: Illustration of the difference between trajectory-based and tree-based transitions. The
represented tree is a B&B tree, where the number associated to each node is its visiting time. A
tree-based transition function maps ps2, a2q to ps4, s7q, whereas a classic trajectory-based transition
maps ps2, a2q to s3.
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Remark 1. Similar notations, different meanings

At this point, it is important to make the distinction between the notations Dkpζ, jq and Dπ
k ps, jq

with ζ the B&B node associated to state s. The former is a B&B node, whereas the latter is a

state. As the state comprises any information obtained before processing its associated node, we

may have Dπ1
k ps, jq ‰ Dπ2

k ps, jq for two different strategies π1 and π2, even if their associated B&B

node is Dkpζ, jq.

4.1.3 h-ahead branching heuristic

Using the introduced formalism, we define h-ahead branching heuristics, a class of decision func-

tions which makes it possible to generalize any classic branching heuristics by incorporating future

knowledge. These heuristics can also be perceived as the generalization of the look-ahead strategies

presented in [93] and [94], where the authors propose either to apply the SB rule on both child and

grandchild nodes or to hybridize it with a look-ahead score based on the entropy in potential child

nodes.

Definition 4.1.3. h-ahead branching heuristic

Let us denote Dπ,hps, jq the set of states encountered in the subtree of depth h ą 0 rooted in s when

branching on variable j and following branching strategy π P Π. This set corresponds to states reached

from s in less than h ` 1 tree-based transitions when following policy π. We define an h-ahead cost

νhps, j, πq for variable j at state s as

νhps, j, πq “ ν0ps, jq ` ν1
´

Dπ,hps, jq

¯

(4.2)

with ν0 : S ˆ J Ñ R and ν1 : PpSq Ñ R two score functions.

An h-ahead branching heuristic πh : S Ñ J is then defined as the branching decision minimizing the

potential h-ahead cost:

πhpsq “ arg min
jPJ

´

min
πPΠ

νhps, j, πq

¯

(4.3)

Note that, in Definition 4.1.3, the future information comes from the descendant states Dπ,hps, jq.

Even though information from next iterations could have been used instead (thus using trajectory-
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based transitions), this definition with tree-based transitions still remains quite general and embraces

well-known heuristics. For example, Most Fractional is a 0-ahead branching heuristic with ν0ps, jq “⃓⃓⃓
xs

j ´ 0.5
⃓⃓⃓
and ν1 “ 0, where xs is the LP solution associated to s. Likewise, Strong Branching is a

1-ahead branching heuristic with ν0 “ 0 and ν1pD0ps, jq, D1ps, jqq “ scorepzD0ps,jq ´ zs, zD1ps,jq ´ zsq,

where zs refers to the LP value at ζpsq. Note here that, in these two cases, these static heuristics do

not need to perform the optimization over the set of branching policies Π in Equation (4.3).

The interest of an h-ahead heuristic is straightforward. Rather than simply branching on a variable

with a high heuristic score at current node, it seems appealing to select variables that also lead to

high potential child nodes.

Unfortunately, following an h-ahead branching heuristic comes at a prohibiting computational cost.

As an illustration, computing such heuristic at the root node by exploring all the available branching

policies in Equation (4.3) requires in the worst case to build
śh´1

k“0pn ´ kq2k
subtrees of depth h.

As introduced in Section 2.3.1, ML can be leveraged to learn off-line an expensive branching strategy.

However, such brute force approach can hardly be transposed when considering h-ahead heuristics, as

it turns out to be way too computationally expensive even for low values of h. Indeed, as displayed in

Algorithm 5, it would require to run an h-ahead branching policy on training instances, collect state-

action pairs and the associated h-ahead heuristic outcomes, then learn a mapping fθ : S Ñ J between

them (it is a classification task as defined in Section 2.1.1). Running an exact h-ahead branching

policy then requires to suffer the full cost of exploring over Π in Equation (4.3).

Besides, a subtle point should be highlighted here. When considering h-ahead heuristics as defined

in Definition 4.1.3, dynamics are only partially taken into account, as following an h-ahead heuristic

does not ensure that consecutive choices are coherent with each other. More specifically, an action is

selected at some state to obtain the minimal cost provided that the policy yielding minπPΠ νhps, j, πq

is followed in descendant states in Equation (4.3). However, this is not guaranteed. In other words,

one needs to ensure consistency of h-ahead heuristics through transitions before minimizing the cost

over the set of branching strategies Π. A similar remark can be done regarding the fact that vanilla SL

methods as presented in Algorithm 5 learn on the state distribution produced by the true heuristic and

thus not on the distribution produced by the learnt one. Although using IL methods such as dataset

aggregation (see Section 2.1.2) instead of vanilla SL would solve this issue, it would also heavily suffer
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from the computational cost previously mentioned. These considerations motivate our choice to use

reinforcement learning, where the two minimization steps in Equation (4.3) are somehow merged into

one.

Algorithm 5 Brute force training algorithm for h-ahead heuristic branching

Input:
an h-ahead cost function νh and its associated heuristic πh

Initialization:
An empty training dataset D Ð H

Procedure:
for every p in the training instances dataset do:
Solve p using πh and let T πh be the visited non-leaf states
Collect dataset of visited states and maximal scores for each variable:

D Ð D Y ts, πhpsqusPT πh

end for
Learn a mapping function fθ using data in D using SL (see Section 2.1.1)

Output:
fθ

4.1.4 Reinforcement learning with tree-based transition

As introduced in Section 2.2, reinforcement learning is a framework designed to solve dynamic

control problems. Rather than fully exploring the set Π at each state and then learning from the

entire dataset as required by SL, we learn in an iterative manner the sum of future costs associated to

an evolving policy. It allows to guide the aforementioned exploration towards “interesting” parts of Π

by learning from experiments. In the following, we consider tree-based transitions, which follow the

B&B tree structure, to keep consistency with the nature of branching heuristics.

Value functions under tree-based transitions

Formally, let us write cps, jq the cost associated to a state-action pair and consider branching

policies of the form

π :

$

’

&

’

%

S Ñ J

s ÞÑ πpsq “ arg min
jPJ

Qπps, jq
(4.4)

Qπ is the Q-value function associated to the branching policy π, defined as the discounted sum of

costs occurring in state-action pairs visited by π through tree-based transitions from the state-action
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ps, jq:

Qπ :

$

’

&

’

%

S ˆ J Ñ R

s, j ÞÑ Qπps, jq “ cps, jq `
ÿ

s1PDπ,nps,jq

γdps1q´dpsqcps1, πps1qq
(4.5)

where dpsq is the depth of the node ζpsq and γ P r0, 1s is a discount factor. In this setting, the discount

factor gives more weight to the closest descendant states, i.e. the ones with low depths. Note here

the fundamental difference with Q-functions under standard trajectory-based transitions, which are

defined as the discounted sum of future costs.

We see that Qπ can be perceived as an n-ahead score, and the only difference between an h-ahead

branching heuristic and the branching policy π defined by (4.4) is the optimization over Π – see (4.3).

Instead, the branching policy is now parametrized by itself.

The value function V π associated to Qπ is defined as

V π :

$

’

&

’

%

S Ñ R

s ÞÑ V πpsq “ Qπps, πpsqq “ cps, πpsqq `
ÿ

s1PDπ,nps,πpsqq

γdps1q´dpsqcps1, πps1qq
(4.6)

and, due to the tree structure of our environment, these two functions satisfy the Bellman equations

V πpsq “ c ps, πpsqq ` γ
”

V π pDπ
0 ps, πpsqqq ` V π pDπ

1 ps, πpsqqq

ı

(4.7)

Qπps, jq “ c ps, jq ` γ
”

Qπ pDπ
0 ps, jq, πpsqq ` Qπ pDπ

1 ps, jq, πpsqq

ı

(4.8)

where Dπ
0 ps, πpsqq and Dπ

1 ps, πpsqq are the child states of s when following strategy π. They are both

indexed by π as they are visited at iterations which depend on the branching policy, and consequently

the information they contain may differ even for two strategies π1, π2 selecting the same action at s,

i.e. such that π1psq “ π2psq (see Remark 1).

Finding an optimal policy

As introduced in Section 2.2, the objective of reinforcement learning is then to find an optimal

policy with respect to these value functions, i.e. π˚ such that, for any s P S, we have

V π˚

psq “ V ˚psq ” min
πPΠ

V πpsq (4.9)

This objective is the reason why we adopt the RL paradigm to learn look-ahead branching strategies

rather than applying SL to h-ahead branching heuristics. To derive the score associated to a single
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branching decision in a h-ahead heuristic, one needs to search over the entire set Π, and this exhaus-

tive search is to be repeated for each individual state. In RL, an optimal policy is defined on the

entire state space, allowing the search to be done once at a higher level. This allows the learnt policy

to be dynamically coherent, contrary to h-ahead heuristics where the optimizations are performed

independently at each state.

Remark 2. An optimal policy for a heuristic cost model does not yield an oracle strategy

At this point, is is worth noting that finding such optimal policy a priori does not bring any guar-

antee on finding an oracle strategy. Although this approach allows to take into account branching

dynamics due to the discounted sum in Equation (4.5), considering a cost c corresponding to a

“classic” heuristic such as SB do not ensure to minimize the tree size. We introduce in Section 4.2 a

particular setting which offers such a guarantee, thus reconciling the notions of optimal policy and

oracle strategy.

In classic RL, the optimal policy π˚ is derived from the optimal value function V ˚, which is the

unique fixed point of the dynamic programming operator (Theorem 2.2.1). However, as stated in

Proposition 4.1.1, the choice of tree-based transitions prevents us from deriving an optimal policy in

the same way.

Proposition 4.1.1. Without additional assumptions, an optimal policy π˚ (in the sense of Equa-

tion (4.9)) cannot be defined by setting π˚psq “ arg minjPJ c ps, jq ` γ
”

V ˚ pD˚
0 ps, jqq ` V ˚ pD˚

1 ps, jqq

ı

.

Proof . We have

V π˚

psq “ V ˚psq

ðñ π˚psq “ arg min
jPJ

!

min
πPΠ

!

cps, jq ` γ
”

V π pDπ
0 ps, jqq ` V π pDπ

1 ps, jqq

ı))

ðñ π˚psq “ arg min
jPJ

!

cps, jq ` γ min
πPΠ

!

V π pDπ
0 ps, jqq ` V π pDπ

1 ps, jqq

))

However, we give in the proof of Proposition 4.2.2, page 106, a counter-example where

arg min
jPJ

!

cps, jq ` γ min
πPΠ

!

V π pDπ
0 ps, jqq ` V π pDπ

1 ps, jqq

))

‰ arg min
jPJ

!

cps, jq ` γ min
πPΠ

tV π pDπ
0 ps, jqqu ` γ min

πPΠ
tV π pDπ

1 ps, jqqu

)

Thus the result.
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Proposition 4.1.1 states that knowing the optimal value function V ˚ is not sufficient to derive an

optimal policy π˚ as the equality

V ˚psq “ min
jPJ

cps, jq ` γ
“

V ˚pD˚
0 ps, jqq ` V ˚pD˚

1 ps, jqq
‰

is not satisfied in this setting. Note that considering trajectory-based transitions would not induce

such inconsistency as it allows to recover the classic RL framework.

Finding a surrogate policy

Since the cost model c is heuristic, an optimal policy π˚ would probably not be an oracle strategy

anyway. Then, looking for π˚ is not a requirement and we will instead settle for seeking the surrogate

policy π̃psq “ arg minjPJ c ps, jq ` γ
”

V „ pD„
0 ps, jqq ` V „ pD„

1 ps, jqq

ı

with V „ the solution of the

dynamic programming equation

V „psq “ min
jPJ

c ps, jq ` γ
”

V „ pD„
0 ps, jqq ` V „ pD„

1 ps, jqq

ı

(4.10)

To do so, we first show that V „ can be derived exactly by slightly modifying the classic theoretical

dynamic programming procedure introduced by Theorem 2.2.1, page 47. This is stated in Theo-

rem 4.1.1 using tree dynamic programming operators introduced by Definition 4.1.4. The Lemma 4.1.1

is necessary for deriving the proof.

Definition 4.1.4. Tree dynamic programming operator

We call B̃ a tree dynamic programming operator any operator over value functions defined as B̃V psq “

minjPJ c ps, jq ` γ
”

V pD0ps, jqq ` V pD1ps, jqq

ı

where D0ps, jq and D1ps, jq are two arbitrary states

among the states associated to child nodes of ζpsq when branching on variable j. These two states may

even depend on the value function V .

Lemma 4.1.1. Any tree dynamic programming operator B̃ is a contraction for the L8 norm as soon as

γ P r0, 0.5q.

Proof of Lemma 4.1.1. Let us show that ||B̃V1 ´ B̃V2||8 ď 2γ||V1 ´ V2||8 for two arbitrary functions

V1 and V2.

Let us denote Sps, jq “
␣

sj P S, ζpsjq P Dpζpsq, jq
(

the set of states associated to a child node of ζpsq

for a given branching variable j P J . For any s P S, we write sj
1,0, sj

1,1 (resp. sj
2,0, sj

2,1) the arbitrary
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states in Sps, jq involved in the derivation of B̃V1psq (resp. B̃V2psq). We have⃓⃓⃓
B̃V1psq ´ B̃V2psq

⃓⃓⃓
“

ˇ

ˇ

ˇ

ˇ

min
jPJ

!

c ps, jq ` γ
”

V1

´

sj
1,0

¯

` V1

´

sj
1,1

¯ ı)

´ min
jPJ

!

c ps, jq ` γ
”

V2

´

sj
2,0

¯

` V2

´

sj
2,1

¯ ı)

ˇ

ˇ

ˇ

ˇ

ď max
jPJ

⃓⃓⃓
c ps, jq ` γ

”

V1

´

sj
1,0

¯

` V1

´

sj
1,1

¯ ı

´ c ps, jq ´ γ
”

V2

´

sj
2,0

¯

` V2

´

sj
2,1

¯ ı⃓⃓⃓
ď γ max

jPJ

ˇ

ˇ

ˇ
V1

´

sj
1,0

¯

` V1

´

sj
1,1

¯

´ V2

´

sj
2,0

¯

´ V2

´

sj
2,1

¯ ˇ

ˇ

ˇ

ď 2γ max
jPJ

sj
1Ptsj

1,0,sj
1,1u

sj
2Ptsj

2,0,sj
2,1u

ˇ

ˇ

ˇ
V1

´

sj
1

¯

´ V2

´

sj
2

¯
ˇ

ˇ

ˇ

ď 2γ||V1 ´ V2||8

Theorem 4.1.1. V „ is the unique solution of Equation (4.10) and can be found as V „ “ lim
kÑ`8

B̃k
V0

with V0 any value function, B̃ any tree dynamic programming operator and γ P r0, 0.5q.

Proof of Theorem 4.1.1. The proof follows that of Theorem 2.2.1, with some minor changes.

By definition, V „ is a solution of Equation (4.10). The uniqueness is induced by the contraction

property of operator B̃.

Let us now consider the sequence pVkqkPN defined by Vk`1 “ B̃Vk with V0 any value function, perceived

here as a vector in R|S|. Similarly as in the proof of Lemma 4.1.1, sj
k,0 and sj

k,1 refer to the states

involved in the derivation of B̃Vkpsq.

The sequence pVkq is bounded since c is bounded and γ P r0, 0.5q gives:

||Vk||8 “ max
sPS

ˇ

ˇ

ˇ

ˇ

ˇ

min
jPJ

cps, jq ` γ
”

Vk´1psj
k,0q ` Vk´1psj

k,1q

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď ||c||8 ` 2γ||Vk´1||8

ď p2γqk||V0||8 ` ||c||8

k´1
ÿ

i“0
p2γqi

ď ||V0||8 `
||c||8

1 ´ 2γ
Besides, the sequence pVkq is Cauchy for the L8 norm as, for any k ě p:

||Vk ´ Vp||8 ď 2γ||Vk´1 ´ Vp´1||8 ď ¨ ¨ ¨ ď p2γqp||Vk´p ´ V0||8 ÝÑ
k,pÑ`8

0

since pVkq is bounded and B̃ is a contraction for γ P r0, 0.5q.

As the space R|S| equipped with the L8 norm is a Banach space, the sequence pVkq converges. Let us

write V8 its limit. By passage to the limit in Vk`1 “ B̃Vk we have V8 “ B̃V8. Thus, by uniqueness

93



CHAPTER 4. LEARNING A DYNAMIC BRANCHING POLICY

of the fixed point for B̃, we have lim
kÑ`8

Vk “ lim
kÑ`8

pB̃qkV0 “ V „.

Note here the condition γ P r0, 0.5q, necessary for obtaining the contraction property of the tree

dynamic programming operator and for the dynamic programming sequence to be Cauchy. This

theoretical remark will be echoed later on regarding practical considerations.

Learning a surrogate policy

Unfortunately, the complexity of one single step of the algorithm described in Theorem 4.1.1 is

Op2 |S| |J |q, which prevents us from using it in practice. Thus, we turn to approximation procedures

and more specifically Approximate Q-learning (see Section 2.2.3).

The Q-function defined in Equation (4.5) is approximated by a neural network Q̂p., .; θq parametrized

by a weight vector θ, and following the DQN method [28], the iterative fitting procedure would be

governed by steps towards reducing the empirical equivalent of the theoretical DQN loss function

LDQN
i pθiq “ Es,j„∆i

«

ˆ

cps, jq ` γ
”

min
j1

Q̂pD
π

θ´
i

0 ps, jq, j1; θ´
i q`

min
j1

Q̂pD
π

θ´
i

1 ps, jq, j1; θ´
i q

ı

´ Q̂ps, j; θiq

̇2
ff (4.11)

at step i, where θ´
i is some fixed parameter from previous iterations – see Section 2.2.3, page 49, for a

direct transposition. ∆i refers here to the probability distribution of state-action pairs when following

previous policies, randomness being generated by the random variable selecting the instance. The

target cps, jq ` γ
”

minj1 Q̂pD
π

θ´
i

0 ps, jq, j1; θ´
i q ` minj1 Q̂pD

π
θ´

i
1 ps, jq, j1; θ´

i q

ı

results from the Q-value

counterpart of Bellman Equation (4.10), and is required in a stochastic setting as an approximation

for Q
π

θ´
i ps, jq, which is usually an expectation over a possibly infinite process – note that a similar

parallel with Sarsa can be made here, see Section 2.2.3. However, in our deterministic and episodic

setting, this term is observable and we can actually consider the loss function

Lipθiq “ Es,j„∆i

„

´

Q
π

θ´
i ps, jq ´ Q̂ps, j; θiq

¯2
ȷ

(4.12)

In this setting, the agent’s policy is to select the action with the minimal predicted cost:

πθpsq “ arg min
jPJ

Q̂ps, j; θq (4.13)

The base training procedure is described in Algorithm 6, with N the number of training episodes (or

iterations). In practice, the Q-network Q̂p., .; θq is built with |J | outputs, each output being associated
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to a Q-value function estimation Q̂p., j; θq. During training, each output receives gradient from errors

on visited samples where the corresponding action has been selected.

Algorithm 6 Training Algorithm: RL for Variable Selection

Initialization:
Randomly initialize θ0

Procedure:
for i “ 1 to N do:
Draw randomly an instance p from the training dataset
Solve p using πθi´1 with ε-greedy exploration
Collect dataset tps, jqu of visited states and observed Q-values from T πθi´1 ppq

in a buffer B
Update θi´1 to θi following the gradient derived from Equation (4.12) using data
from B

end for
Output:
Final parameter θN

4.1.5 Experiments

To evaluate the proposed methodology, we test it using three different heuristic cost functions.

First, we consider a SB-like heuristic cost by taking

cps, jq “

$

&

%

0 if ζpsq is a leaf node

max t0.1 ; p1 ´ ∆0qp1 ´ ∆1qu otherwise
(SBc)

with ∆i “ min
!

1 ;
zDπ

i
ps,jq´zs

|zs|

)

and zs the LP objective associated with state s. Such definition

corresponds to a normalized version of SB, turned into a cost to match our minimization objective.

Note that we give a strictly positive cost to non-leaf nodes so as to encourage the agent to encounter

leaves. Therefore, this cost pushes the agent to branch on variables which produce either a large

change of the dual bound or leaf nodes.

Second, we define a heuristic cost based on the Most-Fractional Branching strategy:

cps, jq “

$

’

&

’

%

0 if ζpsq is a leaf node

1
|J |

ÿ

j1PJ
min

␣

x˚psqj1 ; 1 ´ x˚psqj1

(

otherwise
(DBc)

where x˚psq is the LP solution associated with state s. This heuristic encourages the agent to minimize

the mean distance of the binary variables to their bounds.
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Last, we consider a simpler version of the previous heuristic by taking

cps, jq “

$

’

&

’

%

0 if ζpsq is a leaf node

1 ´
1

|J |
ÿ

j1PJ
1
`

min
␣

x˚psqj1 ; 1 ´ x˚psqj1

(

“ 0
˘

otherwise
(NBc)

which tends to minimize the number of fractional variables.

Remark 3. Cost associated to leaf nodes

In the three heuristic costs defined above, a null value is associated to leaf nodes. Not only this

is natural as one often seeks to find early leaf nodes, but it also allows these strategies to be more

versatile than their “blind” counterparts. Let us consider the strong branching heuristic. In SB,

which can be considered as a 1-ahead branching heuristic (see Section 4.1.3), the only objective is to

make the LP objective vary, with the aim of pruning by bound. Hence, SB is not designed to favour

infeasible nodes. When considering SBc, nodes with high dual bounds (in the minimization case)

are encouraged, as much as infeasible nodes due to their null cost. A similar practice can be found

in the look-ahead SB proposed in [93], where the authors take into account the pruning objective

in their score.

As mentioned in Section 1.2.3, the question of discovering the optimal set of parameters for the

chosen approach and problem is not considered in these experiments. We rather compare the different

approaches using a unique configuration. The architecture and features use in any of the following

experiments are briefly discussed in Section 4.3.2. Unless mentioned otherwise, we set in the re-

maining experiments the node selection strategy to a DFS strategy where the priority is given to the

child node which fixes the branching variable to the bound closest from its LP value. Concretely, if

variable j is chosen for branching at some node ζ with LP solution x˚, node D0pζ, jq is visited be-

fore D1pζ, jq if x˚
j ă 0.5 and conversely. This choice is made to fairly compare the branching strategies.

Figure 4.4 displays the training processes for the three heuristic cost models mentioned above. Due

to the bad performances observed, we do not show test results for the sake of conciseness. Although

the results appear disappointing, we observe that DBc is dominated by the two other cost models,

both in terms of tree sizes and primal integrals. This observation is not totally surprising. On the

one hand, the according Q-function contains little information as the bound distances are aggregated
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through the mean operator. On the other hand, one can spend a lot of time in near-feasible nodes

without being in a position to prune any of them.

(a) Tree sizes – micro_asym_T6 (b) Primal integral scores – micro_asym_T6

(c) Tree sizes – micro_asym_T8 (d) Primal integral scores – micro_asym_T8

(e) Tree sizes – hydro_fix_1 (f) Primal integral scores – hydro_fix_1

Figure 4.4: Training processes: performance of the heuristic cost models under tree-based transitions.

The choice of tree-based transitions appears to be fully justified in the context of these heuristic

costs, as illustrated in Figure 4.5. This result is really natural as, except for leaf nodes which may be

encouraged in non-descendant nodes by the discovery of a good primal bound, branching decisions only
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have an impact on the descendant nodes. Hence, considering the cost associated to non-descendant

states when computing the value of some state would have no justification whatsoever.

Figure 4.5: Training processes: comparison of trajectory-based transitions (*_traj) with tree-based
transitions on micro_asym_T6.

When observing the errors made by the Q-network (see Figure 4.6), we notice that the agent

systematically underestimates the Q-function. However, this bias is not necessarily harmful, as the

most important in RL is to properly rank the different actions and not to precisely estimate their value.

In this regard, we see when comparing Figure 4.6a and Figure 4.4e that the bias grows in absolute

value when the performance improves. We also note that the bias is naturally more important near

the root node than in the rest of the tree (see Figure 4.7), as the number of visited samples is lower

for these states. To mitigate this effect, more weight has been put in the training loop on the samples

near root nodes. However, it does not fully compensates this difference (see Section 4.3, page 132 for

some additional comments on this question).
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(a) micro_asym_T6 (b) hydro_fix_1

Figure 4.6: Evolution of the errors during the training process for heuristic cost models.

(a) micro_asym_T6 (b) hydro_fix_1

Figure 4.7: Evolution of the errors by depth during the training process for SBc.

The previous results have been obtained by considering a unitary discount factor γ “ 1. Figure 4.8

displays the results obtained for different values of γ, and advocates for a high discount factor. As the

impact of the discount factor is discussed in Section 4.2.3, we do not elaborate more on this question

for the moment.
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(a) Tree sizes (b) Primal integral scores

Figure 4.8: Training processes: impact of the discount factor for NBc on micro_asym_T6.

The poor performances of the agents under heuristic cost models on relatively easy problems

highlight the lack of mathematical understanding of the branching dynamics, and suggest that classic

heuristics are poor approximations of optimal choices. In the following, we provide theoretical and

empirical justifications for using the unitary cost model.

4.2 Reinforcement learning with oracle cost

In the previous section, we used RL to learn a branching strategy by defining a heuristic cost

model in the considered MDP. As mentioned earlier, it does not guarantee to find an oracle strategy,

i.e. optimal with respect to our global objective of minimizing the tree size (3.2). Incidentally, this

approach did not produce satisfactory results as shown in the previous section. In the following,

we show that solving the MDP with a unitary cost model yields an oracle strategy and conversely.

We shall say that such unitary cost is an oracle cost. This property is always valid under classical

trajectory-based transitions but requires a depth-first search node selection strategy to hold under

tree-based transitions. Next, we elaborate on the effect of the γ parameter and propose to use a

non-oracle cost model to make the learning task easier. Finally, we offer some insights on different

variations around the proposed methodology.
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4.2.1 Oracle cost with trajectory-based transitions

Identifying an oracle strategy

As said above, we consider a unitary cost model, setting cps, jq “ 1 for any state-action pair.

Coupling it with a trajectory-based transition, we obtain the following Bellman equations for the

value functions

V π
γ pstq “ 1 ` γV π

γ pT pst, πpstqqq (4.14)

Qπ
γ pst, jq “ 1 ` γQπ

γ pT pst, jq, π pT pst, jqqq (4.15)

Note that, when setting γ “ 1, we have

V π
1 pstq “

ˇ

ˇ

ˇ

␣

st1 P T π; t1 ě t
(

ˇ

ˇ

ˇ
(4.16)

which is the number of iterations of Algorithm 4 left from current state.

We show in Proposition 4.2.1, this value function V π
γ is consistent with the global objective (3.2),

in the sense that an optimal policy for the MDP yields a minimum for the tree size and conversely.

Proposition 4.2.1. A policy is optimal for the value function V π
γ defined by Equation (4.14) if and only

if it is an oracle strategy.

Proof . Let us first show it when γ “ 1. At any iteration of Algorithm 4, the size of the tree following

policy π from state st can be written T π
t “ t ´ 1 ` V π

1 pstq. Hence, minimizing the tree size from any

state is equivalent to minimizing the value function, which gives

arg min
πPΠ

T π
t “ arg min

πPΠ
V π

1 pstq Q π˚

The result also stands for γ P r0, 1q as V π2
1 pstq ď V π2

1 pstq ðñ V π2
γ pstq ď V π2

γ pstq where the index

indicates the discount factor value. Indeed, writing T1, T2 the number of iterations necessary to close

all open nodes from st following π1, π2, we have
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V π1
1 pstq ď V π2

1 pstq

ðñ T1 ď T2

ðñ

T1
ÿ

t“0
γt ď

T2
ÿ

t“0
γt

ðñ V π1
γ pstq ď V π2

γ pstq

Thus, the discount factor does not affect the argmin computation.

Compared with the heuristic strategies learnt in the previous section, we now have the guarantee

of finding an oracle strategy when finding an optimal policy π˚. Besides, using trajectory-based

transitions allows us to design an exact algorithm to find an optimal policy for value functions defined

by (4.14). The following theorem formally states this point, and is a direct application of Theorem 2.2.1

in our setting.

Theorem 4.2.1. Omitting the reference to the discount factor γ, an optimal policy π˚ can be defined by

π˚psq “ arg minjPJ V ˚ pT ps, jqq and the optimal value function is V ˚ “ lim
kÑ`8

BkV0 with V0 any value

function and γ P r0, 1q.

Proof of Theorem 4.2.1. The proof is identical to that of Theorem 2.2.1, considering dirac distributions

for transition probabilities to get back to our setting of deterministic transitions.

Learning the oracle strategy

So far, we showed that considering trajectory-based transitions allows us to use classical dynamic

programming to derive an oracle strategy. Still, the value iteration algorithm of Theorem 4.2.1 is in-

applicable in practice and we must leave it to approximation algorithms, see for instance the previous

section and Algorithm 6 with the adequate Q-value function (4.15). As trajectory-based transitions

put us in the classical RL setting, the bound on the performance of a greedy policy with respect to a

sub-optimal policy holds (see Equation (2.24)).

Figure 4.9 compares the training process observed when considering the unitary cost model under

trajectory-based transitions with the heuristic cost model NBc on micro_asym_T6. Due to the bad

performances observed, we do not display other experiments at this point.
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(a) Tree sizes (b) Primal integral scores

Figure 4.9: Training processes: comparison between the unitary cost model under trajectory-based
transitions (Uc_traj) and the heuristic cost NBc under tree-based transitions on micro_asym_T6.

Credit assignment problem

Despite the coherence of the designed value function with respect to the global objective (3.2),

using it without taking into account the tree structure of the environment appears to be quite inef-

ficient. Our explanation for this failure is that this value function is not sufficiently informative and

localized, and therefore suffers from credit assignment. As presented in Section 2.2, a problem of

credit assignment traditionally arises in RL when the rewards are rare, causing difficulties in affecting

a pertinent value to individual state-action pairs. More generally, we face such issue when the value of

a state-action pair depends on numerous future choices, which implies troubles in assessing its actual

value.

An example of such credit assignment issue is given in Figure 4.10 when considering the value func-

tion (4.16) induced by trajectory-based transitions with a unitary cost model. Let us assimilate

B&B nodes to states and focus on the actions taken at the two children of the root node, sl (left

node) and sr (right node). Noting ji
k the action at node sk (k P tl, ru) in Figure 4.10.iq, we have

psr, ja
r q “ psr, jb

rq, psl, jb
l q “ psl, jc

l q. Omitting the reference to the policy, we have when γ “ cps, jq “ 1

for any state-action pair ps, jq: Qpsl, ja
l q “ 8 ă 10 “ Qpsl, jb

l q. So state-action psl, ja
l q is better eval-

uated than psl, jb
l q which seems natural as it allows to produce a smaller tree under sl. However, we

have Qpsl, ja
l q “ 8 “ Qpsl, jc

l q, although psl, jc
l q “ psl, jb

l q. This instability is due to a change in policy

at sr.

This example illustrates the fact that a Q-function is less stable, more sensitive to changes in policy
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when it depends on long trajectories, hence making it difficult for an agent to precisely assess the

value of a specific state-action pair.

1
2

3 4
5

6 7
9 8

aq

1
2

3
4 5

6
7

8 9
11 10

bq

1
2

3
4 5

6
7

8 9

cq

Figure 4.10: Illustration of the credit assignment problem induced by trajectory-based transitions.
The three figures represent B&B trees, where the numbers indicate the visiting order of the nodes (the
node selection follows here a DFS strategy in each tree). Red nodes correspond to B&B nodes where
branching decisions are those of figure aq, blue ones are those where actions and/or B&B nodes are
different in figure bq compared with aq, and green ones are those different in figure cq compared with
bq.

This example has two interests. First, it allows to highlight the fact that designing a value function

in line with a global objective does not naturally comes with an easy learning task, as illustrated in the

experiments displayed in Figure 4.9, and that some improvements may be brought upon it. Second, it

gives the intuition that focusing on the subtree under a state-action pair may be more stable, as the

incoherence presented in Figure 4.10 disappears if one considers the subtree size instead of the global

size. Next section is about considering such value function using tree-based transitions and ensuring

that, in a specific setting, it still comes with the oracle property of minimizing the tree size.

4.2.2 Oracle cost with tree-based transitions

So far, we defined a value function in line with the objective of minimizing the tree size while

considering trajectory-based transitions. Acknowledging a credit assignment issue, we use in the

following tree-based transitions to define a new value function and a setting in which an optimal

policy is also an oracle strategy and conversely.
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Impact of tree-based transitions on value functions

Using a unitary cost model as in the previous section, the Bellman equations (4.7) and (4.8) give

the following value functions

V πpsq “ 1 ` γ
”

V π pDπ
0 ps, πpsqqq ` V π pDπ

1 ps, πpsqqq

ı

(4.17)

Qπps, jq “ 1 ` γ
”

Qπ pDπ
0 ps, jq, πpsqq ` Qπ pDπ

1 ps, jq, πpsqq

ı

(4.18)

When setting γ to 1, V πpsq is the size of the subtree rooted in the B&B node ζpsq associated to s

when following policy π. Likewise, Qπps, jq is the size of the subtree rooted in ζpsq when branching

on variable j at this node.

Let us compare value functions (4.14) and (4.17) to see why using tree-based transitions par-

tially solves the credit assignment problem inherent to trajectory-based transitions pointed out in

Figure 4.10. We write here S1ps, πq (resp. S2ps, πq) the set of states where costs are used in the

derivation of the value function (4.14) (resp. (4.17)) for policy π from state s. These sets represent all

the descendants of s under the according transitions. We have then S2ps, πq Ď S1ps, πq as illustrated

in Figure 4.11, resulting in the tree-based value function being less dependent to other choices made

in the tree, hence more stable and informative.

In this matter, preferring tree-based transitions over trajectory-based transitions matches the remark

of Newel, cited by Minsky in its seminal paper [33]: “it is extremely doubtful whether there is enough

information in win, lose, or draw when referred to the whole play of the game to permit any learning

at all over available time scales ... For learning to take place, each play of the game must yield much

more information. This is [...] achieved by breaking the problem into components.”When considering

a unitary cost model under tree-based transitions, we break the problem of minimizing the tree size

into the many sub-problems of minimizing the subtree sizes.
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Figure 4.11: This figure represents a B&B tree, where the numbers indicate the visiting order of the
nodes. Blue nodes are the descendants of the red node under trajectory-based transitions, whereas
blue nodes with red borders are the descendants of the same red node under tree-based transitions.

Reconciling optimal and oracle strategies

Even if tree-based transitions allow to reduce the credit assignment issue, we would enjoy to have

both stability and the oracle property at the same time. In fact, we show that an optimal policy for

the value function (4.17) is not anymore an oracle strategy in general (Proposition 4.2.2). Nonetheless,

Proposition 4.2.4 asserts that it is the case when considering DFS node selection strategies, allowing

to reconcile optimal and oracle strategies.

Proposition 4.2.2. An optimal policy π˚ for the value function (4.17) is not necessarily an oracle

strategy.

Proof . Setting γ “ 1, let us build an example where minimizing the subtree does not produces a

minimal tree when following a naive Breadth-First Search (BrFS) node selection strategy.

The idea to produce this example is the following. We build a problem where an optimal solution can

only be found in one side of the tree. Then, we design a case where taking a detour (branching on an

unnecessary variable to find the optimum) allows to obtain quickly a bound which enables pruning on

the non-optimal side of the tree. If one wants to minimize the subtree on the optimal side, the early
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bound is not found and the global tree is bigger.

max
x,y,z

3x1 ´ 0.2x2 `

3
ÿ

i“1
yi ` 0.005

3
ÿ

k“1
zk

s.t. x1 ` zk ď 1.5 , k P t1, 2, 3u pc1q

x1 ` yi ď 1 , i P t1, 2, 3u pc2q

x1 `

3
ÿ

i“1
yi ď 2.4 pc3q

x2 ´ x1 ď 0 pc4q

x2 ` zk ď 1 , k P t1, 2, 3u pc5q

x1 ` x2 ` yi ě 0.1 , i P t1, 2, 3u pc6q

yi `

3
ÿ

k“1
zk ď 1.2 , i P t1, 2, 3u pc7q

xi P t0, 1u , yk P t0, 1u , zk P t0, 1u , i P t1, 2u , k P t1, 2, 3u pc8q

(4.19)

Using Algorithm 4 to solve problem (4.19), we consider the case where the first branching deci-

sion is on x1. From this initial move, we build in Figure 4.12 two B&B trees, with or without the

imperative to minimize subtrees using a naive BrFS node selection strategy from left to right. We see

that the tree obtained when minimizing each subtree (left tree) is bigger than a minimal tree (right tree).
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(a) Optimal strategy
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: pruned by bound
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(b) Oracle strategy

Figure 4.12: B&B trees for optimal and oracle strategies using a BrFS node selection strategy for
solving problem (4.19). The numbering corresponds to the node visiting order.
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Let us explicit why these trees are minimal. First, notice that the optimal solution

tx1 “ 1, x2 “ 0, y “ z “ 0u is unique by construction and belongs to the subtree of node 2.

If one wants to minimize the subtrees, this solution must, if possible, be found in a single dive under

node 2. Besides, the slackness in constraints pc1q and pc7q requires to branch on each z variable to

find this solution. Thus the branching strategy in aq produces a minimal subtree under node 2. As

no primal bound is found before finding the solution and a solution exists in the subtree of node 3,

minimizing the subtree under this node is achieved by a single dive. The same reasoning at each node

guarantees that we minimized each subtree in tree aq.

The minimal tree bq is obtained by taking a detour in the path to the optimal solution so as to prune

entirely the subtree of node 3. As the detour is of minimal length (it only adds two nodes to the subtree

of node 2), we know that tree bq is minimal.

Proposition 4.2.3. Let Ot be the set of open nodes at a given iteration t of Algorithm 4 using a DFS

node selection strategy and s the state corresponding to the immediately selected node ζ in this set. Let

us write s1
1, s1

2 the states corresponding to the first node ζ 1 in Ot to be visited after s, while running

respectively the branching policy π1 and π2 between the visits of ζ and ζ 1. Then, under Hypothesis 4.1.1

we have

(i) minπ V πps1
1q “ minπ V πps1

2q

(ii) For any state s P S, the dynamic programming equation

V ˚psq “ minjPJ 1 ` γ
”

V ˚ pD˚
0 ps, jqq ` V ˚ pD˚

1 ps, jqq

ı

holds.

Proof . Due to the DFS node selection strategy, the primal bounds at s1
1 and s1

2 are equal since the full

subtree rooted in s has been expanded between the visits of ζ and ζ 1, no matter the branching policy.

As ζ 1 “ ζps1
1q “ ζps1

2q, taking the same sequence of branching decisions under s1
1 and s1

2 will lead to

the same subtree in Algorithm 4 due to Hypothesis 4.1.1, which gives piq.

Consider with no loss of generality that the first visited child is the one corresponding to the constraint

txj “ 0u, we have by definition, for any state s P S:

V ˚psq “ min
π1,π2PΠ

jPJ

!

1 ` γ
”

V π1 pDπ1
0 ps, jqq ` V π2 pDπ1

1 ps, jqq

ı)

when π1 (resp. π2) is the branching policy under the first (resp. second) visited child. Due to piq,

minπ2PΠ V π2 pDπ1
1 ps, jqq is independent of π1, which gives piiq.
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Proposition 4.2.4. When following a DFS node selection strategy, a policy is optimal for the value

function (4.17) with γ “ 1 if and only if it is an oracle strategy.

Proof . Let st be a state associated to a non-leaf node ζpstq in a B&B tree. Due to DFS, the subree

rooted in ζpstq will be fully expanded at iteration tπ1
1 when following π1 before visiting any node of O ”

Ot
π1
1

” Otz tζpstqu. Thus, V π1pstq is the subtree size rooted in ζpstq when following π1 in this subtree

and we can write V π2
t
π1
1

pO|π1q the number of nodes in the subtrees rooted in O when following π2. By

Proposition 4.2.3, we have for any valid branching policy π1
1: minπ2 V π2

t
π1
1

pO|π1q “ minπ2 V π2

t
π1

1
1

pO|π1
1q ”

V
π˚

2
t pOq. As a consequence, writing Vtpπ1, π2q the size of the tree obtained by following π1 and π2 after

st, we have

arg min
π1

!

min
π2

␣

Vtpπ1, π2q
(

)

“ arg min
π1

!

min
π2

␣

t ´ 1 ` V π1pstq ` V π2
t
π1
1

pO|π1q
(

)

“ arg min
π1

!

V π1pstq ` min
π2

␣

V π2

t
π1

1
1

`

O|π1
1
˘ (

)

“ arg min
π1

!

V π1pstq ` V
π˚

2
t pOq

)

“ arg min
π1

!

V π1pstq

)

Minimizing the tree size is then equivalent to minimizing the subtree size at each state, which implies

that an optimal policy is an oracle strategy and reciprocally.

At this point, we showed that considering DFS node selection strategies allows to learn an oracle

strategy by considering a unitary cost model and tree-based transitions. Using DFS allows in a way to

make the tree-based MDP consistent with our objective of tree size minimization. The difference with

trajectory-based transitions is a more localized, hence stable, value function, which should alleviate the

credit assignment issue. Note that the learning task has not fundamentally changed though: instead

of learning to build small trees, we will rather learn to build... smaller trees.

Remark 4. The oracle property is only valid for γ “ 1

Contrary to the previous result using trajectory-based transitions, Proposition 4.2.4 is only valid

when setting the discount factor to 1. This is due to the fact that, when considering tree-based tran-

sitions, the equivalence V π1
1 pstq ď V π2

1 pstq ðñ V π1
γ pstq ď V π2

γ pstq in the proof of Proposition 4.2.1

does not hold anymore. This is illustrated in the next section (see Figure 4.17b) by comparing wide

and deep trees. We exhibit a case where V π1
1 psq ă V π2

1 psq and V π1
γ psq ą V π2

γ psq with γ P p0, 1q.

We investigate in Section 4.2.3 the impact of the discount factor on the learning procedure in

our specific environment. From the theoretical standpoint, the following theorem states that one can
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design a dynamic programming algorithm to obtain the optimal value function only for cases where

γ P r0, 0.5q. Note here the difference with the generic case, where an optimal policy could not be

obtained (see Proposition 4.1.1). This result is due to the use of a DFS node selection strategy which

gives us the dynamic programming equation in Proposition 4.2.3 and can be generalized to any cost

model with tree-based transitions. As in classical RL (see Chapter 2), one may still obtain the optimal

value function and policy without any condition on γ by solving a linear system as the MDP is finite.

Theorem 4.2.2. Omitting the reference to the discount factor γ, an optimal policy π˚ can be defined

when following a DFS node selection strategy by π˚psq “ arg minjPJ V ˚ pD˚
0 ps, π˚psqqq`V ˚ pD˚

1 ps, π˚psqqq

and the optimal value function is V ˚ “ lim
kÑ`8

B̃k
V0 with V0 any value function and γ P r0, 0.5q.

Proof of Theorem 4.2.2. This is the same proof as in Theorem 4.1.1, substituting V ˚ for V „ thanks

to Proposition 4.2.3 and replacing cps, jq by 1.

As previously, the theoretical algorithm described in Theorem 4.2.2 is not applicable in practice,

and we use Algorithm 6 as an approximation procedure. As for assessing the performance of a greedy

policy with respect to a value function, we obtain in Proposition 4.2.5 a similar bound (up to a factor

2 on γ) as in classical RL – see Chapter 2. Thus, using tree-based transitions does not alter the usual

guarantees on the performance of a greedy policy.

Proposition 4.2.5. Let π be a greedy policy with respect to a Q-value function Q and LQ the loss function

such that LQpsq “ Q̃
π

ps, πpsqq ´ Q˚ps, π˚psqq for all state s P S, with Q̃
π

ps, πpsqq the evaluation of

following π from s. LQ is then the loss in value of state s resulting from following π instead of an

optimal policy π˚. Then, if |Q˚ps, aq ´ Q̃
π

ps, aq| ď ε for all s P S, we have

LQpsq ď
2ε

1 ´ 2γ

Proof . Let z P arg maxsPS LQpsq. Consider the optimal action a “ π˚pzq and the greedy action

b “ πpzq at state z, and z1, z2 (resp. z3, z4) the child states of z when following π (resp. π˚). By

definition of a greedy policy, we have

Q̃
π

ps, bq ď Q̃
π

ps, aq
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Since Q˚ps, aq ´ ε ď Q̃
π

ps, aq ď Q˚ps, aq ` ε for all s P S, we also have

Q˚pz, bq ´ ε ď Q˚pz, aq ` ε

ðñ cpz, bq ` γ
“

V ˚pz3q ` V ˚pz4q
‰

´ ε ď cpz, aq ` γ
“

V ˚pz1q ` V ˚pz2q
‰

` ε

ðñ cpz, bq ´ cpz, aq ď 2ε ` γ
“

V ˚pz1q ` V ˚pz2q ´ V ˚pz3q ´ V ˚pz4q
‰

As V ˚psq “ Q˚ps, π˚psqq for any s P S, the maximal loss is then

LQpzq “ Q̃
π

pz, πpzqq ´ Q˚pz, π˚pzqq

“ cpz, bq ´ cpz, aq ` γ
“

Q̃
π

pz3, πpz3qq ` Q̃
π

pz4, πpz4qq ´ Q˚pz1, π˚pz1qq ´ Q˚pz2, π˚pz2qq
‰

ď 2ε ` γ
“

Q̃
π

pz3, πpz3qq ` Q̃
π

pz4, πpz4qq ´ Q˚pz3, π˚pz3qq ´ Q˚pz4, π˚pz4qq
‰

ď 2ε ` 2γLQpzq

Then,

LQpzq ď
2ε

1 ´ 2γ

Experiments

The first point to assess is the relevance of tree-based transitions. Figure 4.13 displays the perfor-

mances for tree-based and trajectory-based transitions for the unitary cost model. We only display

these results on an easy problem as trajectory-based transitions do not show good performances.

Further experiments will be presented later on. This result comes as a validation of our decision of

considering tree-based transitions and confirms that they allow to ease the learning task, especially

by reducing the credit assignment problem.

(a) Tree sizes (b) Primal integral scores

Figure 4.13: Training processes: comparison between tree-based transitions (Uc_tree) and trajectory-
based transitions (Uc_traj) for the unitary cost model on micro_asym_T6.
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It is also interesting to compare the unitary cost model with heuristic costs. This is the purpose of

Figure 4.14, which shows the comparison with the SBc heuristic cost – note that DFS is not enforced

for the heuristic cost. Here again, we observe better results. However, the comparison with CPLEX

raises doubts regarding the efficiency of the approach on the more difficult problems. The contrast

between the results showed by Figure 4.14c and Figure 4.14e is eloquent. The trained agent competes

with CPLEX on the problem hydro_fix_1, on which any feasible solutions are shared across instances

– see Section 3.2. On this problem, the agent manages to find sequences of branching decisions which

perform extremely well on every instances. On the problem hydro_var_1, even if a random strategy

produces more or less the same number of nodes in average (see the intercepts), the agent struggles

to find an efficient strategy which can adapt to every instances.

112



CHAPTER 4. LEARNING A DYNAMIC BRANCHING POLICY

(a) Tree sizes – micro_asym_T8 (b) Primal integral scores – micro_asym_T8

(c) Tree sizes – hydro_fix_1 (d) Primal integral scores – hydro_fix_1

(e) Tree sizes – hydro_var_1 (f) Primal integral scores – hydro_var_1

Figure 4.14: Training processes: comparison of the unitary cost model (Uc_tree) with the SB-like
heuristic cost (SBc) under tree-based transitions on train instances.

4.2.3 On the virtue of short-sightedness: a new cost model

In the previous section, we proposed to use a unitary cost model under tree-based transitions,

which provides when solving the MDP to optimality an oracle strategy only when γ “ 1 (see Proposi-

tion 4.2.4). Hence, one can legitimately wonder why even considering a discount factor lower than 1
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in this setting.

We already saw the theoretical interest of a lower discount factor γ P r0, 0.5q, allowing to design an

exact dynamic programming procedure in Theorem 4.2.2 to obtain optimal value functions. As Algo-

rithm 6 is an approximate version of such procedure, it may suggest that setting γ ă 1 may have some

advantages. In the following, we explicit the practical impact of the discount factor γ and propose a

more general value function to strengthen such impact.

Discount factor in classical trajectory-based transitions

From a theoretical and exact standpoint, the discount factor is not justified as soon as the MDP is

episodic or finite, as it may alter the optimal policy – see Remark 4. From a practical standpoint how-

ever, the discount factor is commonly used in trajectory-based transitions for giving more importance

to rewards closer to the current state. This may be desirable, as the observed long-term outcomes have

a lower probability to happen under the optimal policy than short-term observations. Let us elaborate

on this point and consider our setting, where a state can only be reached from a unique predecessor

(recall that a state comprises any information collected so far). Assuming that the current policy is

of the form π “ βπ˚ ` p1 ´ βqUJ ztπ˚u which is interpreted here as a probability β P r0, 1s to select

the optimal action and 1 ´ β to select uniformly a sub-optimal one. Then, if we observe a sequence

ts0, s1, . . . , stu, we have by hypothesis the probability of reaching st starting from s0 and following the

optimal policy π˚

ppst|s0, π˚q “ βt (4.20)

which is a decreasing function of t. Thus, long-term observations should be less trusted than closer

ones, which justifies the use of the discount factor in the value function. Such reasoning is independent

of the stochasticity or episodic nature of the considered MDP, which are the classical justifications for

the discount factor, and hence applies to our setting.

Another point stemming from Equation (4.20) is that the ratio
ppst1 |s0,π˚q

ppst|s0,π˚q
with t ď t1 is an increasing

function of β. It illustrates that long-term observations are less reliable when the policy is far from

the optimal one. Thus, the discount factor also smooths the value function to make it less dependent

on the quality of the current policy, which provides more stable targets during the agent training from

Algorithm 6, especially in the early episodes.

This simple reasoning allows to understand why the discount factor may be beneficial from a practical
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standpoint even if not justified by the considered objective. Other justifications have been highlighted,

for example the fact that a lower discount factor allows to tighten error bounds [30] or simply to

decrease the targets’ standard deviation, hence the needed complexity for the Q-network [32].

Discount factor in tree-based transitions with unitary cost model

The above reasoning still holds when considering tree-based transitions, and the discount factor

still makes the value function less dependent on both the quality of the agent and remote states.

However, additional remarks can be done when considering a unitary cost model in our specific MDP

with tree-based transitions.

First, let us recall that, when γ is set to 1, the value function (4.17) is the subtree size. Such value

function induces a high variability in the values used for learning, highly mitigated by the use of a low

discount factor. To see this, let us consider a B&B tree of size N “ 2p`1 ´ 1 with p ď n and let s be

the state corresponding to its root node. No matter the shape of this tree, we have V1psq “ N (the

index indicates the value of γ). On the contrary, Proposition 4.2.6 gives an upper bound for Vγpsq

which scales much more nicely with respect to N .

Proposition 4.2.6. The discounted value function (4.17) for a state s with subtree size V1psq “ N “

2p`1 ´ 1 is upper bounded by 1´p2γqlog2pN`1q

1´2γ for γ ‰ 0.5 and by log2pN ` 1q if γ “ 0.5

Proof . A (sub)tree is said full-width when 2d nodes are visited at depth d, except potentially for the

maximal depth. When the tree size is N “ 2p`1 ´ 1 with p ď n, the number of nodes at each depth

including the maximal one is 2d and p “ log2pN ` 1q ´ 1 is the maximal depth.

When using a discount factor γ ă 1, the value function is maximized when the subtree is full-width.

This is obtained by solving the following MILP with γ ă 1:
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

max
x

rN{2s
ÿ

d“0
γdxd

s.t. x0 “ 1 ,

rN{2s
ÿ

d“0
xd “ N

xd`1 ď 2xd , d P t0, 1, . . . , rN{2s ´ 1u

x P NrN{2s`1

where xd represents the number of nodes at depth d. The value is then a geometric sum and we have

Vγpsq “
řp

d“0p2γqd which gives the result.
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In addition to limiting the scale of the value function, it also naturally decreases both the average

and standard deviation of states’ values. Especially, Proposition 4.2.7 asserts that the moments of

such values are upper bounded by a constant when using a discount factor lower than 1, whereas they

grow linearly and exponentially with the maximal depth when setting γ “ 1.

Proposition 4.2.7. Let s be the root node of a B&B full-width tree T of size N “ 2p`1 ´ 1. When

setting γ “ 1, the mean value of states encountered in such tree asymptotically grows linearly with its

depth p, while its variance grows exponentially. On the opposite, they both are upper bounded by a

constant when using γ P r0, 1q and γ P r0, 1?
2q respectively.

Proof . We write in the following µγ and σ2
γ the empirical mean and variance in a full-width tree of

size N “ 2p`1 ´ 1 when using the discount factor γ.

For γ “ 1, the value of a state at depth d is 2p´d`1 ´ 1, which yields

µ1 “
1
N

p
ÿ

d“0
2dp2p´d`1 ´ 1q “

1
N

”

p
ÿ

d“0
2p`1 ´

p
ÿ

d“0
2d
ı

“ pp ` 1q
2p`1

N
´

1
N

p2p`1 ´ 1q

“
p2p`1 ` 1

N
“ p

2p`1 ´ 1
N

`
p ` 1

N
“ p `

p ` 1
N

“ Oppq

σ2
1 “

1
N

p
ÿ

d“0
2dp2p´d`1 ´ 1 ´ µ1q2

“
1
N

˜

p
ÿ

d“0
2dp2p´d`1 ´ 1q2

¸

´ µ2
1 (classical variance reformulation)

“ ´µ2
1 `

1
N

p
ÿ

d“0
2d

´

22p´2d`2 ` 1 ´ 2p´d`2
¯

“ ´µ2
1 `

1
N

”

2p`1

˜

p
ÿ

d“0
2p´d`1

¸

` N ´ 2p`2pp ` 1q

ı

“ ´µ2
1 `

1
N

”

2p`1

˜

p`1
ÿ

d“1
2d

¸

` N ´ 2p`2pp ` 1q

ı

“ ´µ2
1 `

1
N

”

2p`2N ` N ´ 2p`2pp ` 1q

ı

“ ´µ2
1 `

1
N

”

2p`2N ` N ´ 2Npp ` 1q ´ 2pp ` 1q

ı

“ 2p`2 ´ 2p ´ 1 ´ µ2
1 ´ 2p ` 1

N
“ Op2pq

For γ P r0, 0.5q Y p0.5, 1q (the case γ “ 0.5 is omitted for the sake of simplicity), the value of a

state at depth d is p2γqp´d`1´1
2γ´1 , which gives
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µγ “
1
N

p
ÿ

d“0
2d p2γqp´d`1 ´ 1

2γ ´ 1 “
1

p2γ ´ 1qN

”

2p`1

˜

p
ÿ

d“0
γp´d`1

¸

´ N
ı

“
1

p2γ ´ 1qN

”

2p`1

˜

p`1
ÿ

d“1
γd

¸

´ N
ı

“
1

p2γ ´ 1qN

”

2p`1γ
1 ´ γp`1

1 ´ γ
´ N

ı

“
1

p2γ ´ 1qN

”

Nγ
1 ´ γp`1

1 ´ γ
` γ

1 ´ γp`1

1 ´ γ
´ N

ı

“ O
ˆ

1
p2γ ´ 1q

ˆ

γ

1 ´ γ
´ 1

̇̇

“ O p1q

When considering γ P r0, 0.5q Y p0.5, 1?
2q, we have

σ2
γ “

1
N

p
ÿ

d“0
2d

ˆ

p2γqp´d`1 ´ 1
2γ ´ 1 ´ µγ

̇2
“

1
N

˜

p
ÿ

d“0
2d

ˆ

p2γqp´d`1 ´ 1
2γ ´ 1

̇2¸

´ µ2
γ

“ ´µ2
γ `

1
Np2γ ´ 1q2

p
ÿ

d“0
2dp2γq2p´2d`2 ` 2d ´ 2p`2γp´d`1

“ ´µ2
γ `

1
Np2γ ´ 1q2

”

2p`1

˜

p
ÿ

d“0
p2γ2qp´d`1

¸

` N ´ 2p`2
p
ÿ

d“0
γp´d`1

ı

“ ´µ2
γ ` `

1
Np2γ ´ 1q2

”

2p`1

˜

p`1
ÿ

d“1
p2γ2qd

¸

` N ´ 2p`2
p`1
ÿ

d“1
γd
ı

“ ´µ2
γ `

1
Np2γ ´ 1q2

”

2p`12γ2 1 ´ p2γ2qp`1

1 ´ 2γ2 ` N ´ 2p`2γ
1 ´ γp`1

1 ´ γ

ı

“ ´µ2
γ `

1
Np2γ ´ 1q2

”

N2γ2 1 ´ p2γ2qp`1

1 ´ 2γ2 ` 2γ2 1 ´ p2γ2qp`1

1 ´ 2γ2 ` N ´ 2Nγ
1 ´ γp`1

1 ´ γ
´ 2γ

1 ´ γp`1

1 ´ γ

ı

“ O
ˆ

1
p2γ ´ 1q2

ˆ

2γ2

1 ´ 2γ2 ` 1 ´
2γ

1 ´ γ

̇̇

“ Op1q

Despite the normalizing benefits induced by using a discount factor, it also comes with the risk

of flattening too much the value function, then preventing from distinguishing between bad and good

actions. This is illustrated by Figure 4.15, where we see that using a too low value of γ makes it

difficult to make out the values of highly different states.
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Figure 4.15: Root state value Vγ for full-width trees of size N .

As pointed out in Section 4.2.2, one loses the equivalence between optimal and oracle strategies

when setting a discount factor different from 1. In fact, doing so biases the value function in favor

of imbalanced trees, as we will illustrate now by elaborating on two extreme cases. Let us consider

the root state sw of a full-width tree of size N “ 2p`1 ´ 1 and the root state sd of a full-depth tree

with the same size N . Here, we call full-depth a tree which, except for depth 0, only contains two

nodes at each depth. When such tree is of size N , its depth is N´1
2 . Figure 4.16 illustrates the two

types of trees. We have V1pswq “ V1psdq “ N , Vγpswq “
1´p2γqlog2pN`1q

1´2γ and Vγpsdq “ 1 ` 2γ 1´γ
N´1

2
1´γ

for γ P r0, 0.5q Y p0.5, 1q. Figure 4.17a, which displays the ratio Vγpswq{Vγpsdq as a function of γ,

shows that discounted value functions assign a higher value to full-width trees, with a non-monotonic

impact. Figure 4.17b represents the difference Vγpswq ´ Vγpsdq when V1psdq “ V1pswq ` 100 and

illustrates the lost of the equivalence between optimal and oracle strategies mentioned earlier. In

practice, the discount factor thus encourages the agent to make choices which allow for early pruning,

which is in general a safe strategy. This is all the more interesting as biasing the value function

towards early pruning incorporates some short-term considerations in the value function, allowing to

have meaningful feedbacks even in the early stages of training – see Equation (4.20).
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...
...

Figure 4.16: Full-width (left) and full-depth (right) trees, grey nodes representing leaves.

(a) Vγpswq{Vγpsdq as a function of γ for
trees of size V1psdq “ V1pswq “ 511. (b) Vγpswq ´ Vγpsdq when V1psdq “ V1pswq ` 100 “

N ` 100 for different values of N . This figure il-
lustrates the fact that the equivalence V π1

1 pstq ď

V π2
1 pstq ðñ V π1

γ pstq ď V π2
γ pstq in the proof of

Proposition 4.2.1 does not hold anymore when con-
sidering tree-based transitions.

Figure 4.17: Illustrations of the impact of the discount factor on full-depth and full-width trees.

Experiments on the discount factor for the unitary cost model under tree-based transitions

The influence of the discount factor on a unitary cost model is displayed in Figure 4.18. First, we

see that low values of γ prevent the agent from learning efficiently. As explained earlier, this comes

from the fact that the resulting squashing of the value function makes it less informative. Second,

one can notice when observing Figure 4.18b that the discount factor may have an unexpected effect

on the agent’s ability to find early the optimal solution. Especially, the curves associated to the value

γ “ 0.8 show a decreasing tree size with an increasing primal integral value.
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(a) Tree sizes – micro_asym_T8 (b) Primal integral scores – micro_asym_T8

(c) Tree sizes – micro_bal_T8 (d) Primal integral scores – micro_bal_T8

Figure 4.18: Training processes: impact of the discount factor (γ P t0.2, 0.5, 0.8, 1u) in the unitary
cost model under tree-based transitions.

Solving the dilemma of the discount factor for the unitary cost model

From a practical standpoint, we saw that the value function obtained when considering the unitary

cost model is not particularly well suited for the learning task. Indeed, as explained earlier in the setting

of tree-based transitions, choosing γ “ 1 makes the value function equal to the subtree size rooted in

the considered state, which implies many issues.

First, it produces a target distribution with a large support, as the value at the root node equals the

tree size whereas that at a leaf node equals one. Second, this value highly varies with the quality of

the agent and its ability to produce small trees. In other words, the targets pursued by the agent are

permanently moving along the training process as it becomes more efficient. Third, their support (and

thus the mean value) also depends on the instance sampled at a given episode, some being intrinsically

more difficult to solve than others. Last but not least, the value function may vary drastically from a

state to its direct child, as illustrated in Figure 4.19, which makes the function highly non-smooth in
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the state-space and thus makes the learning task harder.

s

s1

V psq “ 13

V ps1q “ 1

Figure 4.19: Illustration of the fact that the unitary cost model produces highly non-smooth value
functions. In this example, s and s1 may be similar states with very different values.

At this point, we are facing some kind of a dilemma. On the one hand, we saw that a low

value of gamma may be interesting as it smooths the highly volatile value function and makes it less

dependent on errors made in future choices. On the other hand, a low discount factor squashes the

value function and does not discriminate between full-width and full-depth trees. Besides, one loses

the oracle property when setting γ ă 1 under tree-based transitions.

We solve this question by considering an h-ahead score (see Section 4.1.3) instead of a unitary cost

model. By setting ν0 “ 1 and ν1 to the cardinal function in the definition of an h-ahead heuristic, we

consider the heuristic cost model cps, jq “ νhps, j, πq “ 1 `

⃓⃓⃓
Dπ,hps, jq

⃓⃓⃓
” |T π

h ps, jq|, which is the size

of the subtree of depth h rooted in s when following π after branching on j. We call this cost model

the subtree cost model, leading to the value function

V π
h,γpsq “ |T π

h psq| ` γ
”

V π
h,γ pDπ

0 ps, πpsqqq ` V π
h,γ pDπ

1 ps, πpsqqq

ı

(4.21)

Note that by setting h “ 0 we get back to our previous discounted value function under the unitary

cost model. This generalization can be seen as a way of “trusting” more the impact of an action

up to a certain horizon h. We see in Figure 4.20 that this new value function even strengthens the

discrimination between balanced and imbalanced trees.
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Figure 4.20: Vh,γpswq{Vh,γpsdq as a function of γ for trees of size V1psdq “ V1pswq “ 511, sd and sw

being root states of respectively full-depth and full-width trees.

Experiments on the subtree cost model under tree-based transitions

The solution put forward to reduce the volatility of the value function and solve the discount

factor dilemma was to use the value function defined in Equation (4.21), using the subtree cost model.

Figure 4.21 displays the results of such value function and compares it with the unitary cost model on

more difficult problems than those used in previous experiments. The results on train instances appear

systematically better when using the subtree cost model and deserve some additional investigations.

Before doing so, note that a potential undesirable outcome of using a more short-sighted value function

is given by Figure 4.21b, in which we see poorer results regarding primal integral scores.
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(a) Tree sizes – micro_asym_T12 (b) Primal integral scores – micro_asym_T12

(c) Tree sizes – micro_bal_T12 (d) Primal integral scores – micro_bal_T12

(e) Tree sizes – hydro_fix_2 (f) Primal integral scores – hydro_fix_2

(g) Tree sizes – hydro_var_2 (h) Primal integral scores – hydro_var_2

Figure 4.21: Training processes: comparison of the subtree cost model with γ “ 0.8 and h “ 6
(Uc_subtree) against the unitary cost model (Uc_tree) under tree-based transitions.



CHAPTER 4. LEARNING A DYNAMIC BRANCHING POLICY

As suggested above, the improvement of the performances may be due to the fact that this new

value function exhibits a more stable behaviour during the learning process. Indeed, Figure 4.22 shows

that both the mean and standard deviation of the targets are more stable during the learning process,

which illustrates that the targets are less dependent on the agent’s performances. To elaborate on

that matter, Figure 4.23 displays the evolution of these two statistics by depth during the learning

process. We see that the subtree cost model allows to standardize the targets along the tree and thus

helps to compare actions that may be taken at different depths. Besides, Figure 4.22c highlights that

our approximation of the Q-function is biased under both cost models, which does not appear as a

subject of concern since the more biased model here gives the best performances.

(a) Normalized mean (b) Normalized standard deviation

(c) Mean errors

Figure 4.22: Evolution of target’s statistics and errors during the training process on micro_asym_T6.
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(a) Mean for the unitary cost model (b) Mean for the subtree cost model

(c) Standard deviation for the unitary cost
model

(d) Standard deviation for the subtree cost
model

Figure 4.23: Evolution of target’s statistics by depth during the training process on micro_asym_T6.

Let us now investigate on the behaviour of the agents on test instances. Figure 4.24 shows the tree

sizes produced on test instances by a learnt agent under both the unitary and the subtree cost model.

We see that the gains are mostly obtained on the instances on which CPLEX has some difficulties. On

the contrary, the agents often show relatively low performances on instances easily solved by CPLEX.

This observation can be explained by the fact that mechanically less samples are available for learning

on “easy” instances. An exception of this fact is the case of hydro_fix_1, where almost every

instances can be solved in less than 10 nodes. Note that trained agents find the according strategies

and are able to almost systematically beat CPLEX (which is not so trivial as was shown in Figure 4.14c,

page 113, where we saw that random strategies for this problems yield large trees).

As suggested by the training processes, we see in Table 4.1 that the subtree cost model generally

produces more efficient agents, both in average and when considering only the best agents on train.

Agents are generally less efficient on test instances than on train instances, which was expected,

but do not show excessive signs of overfitting. We generally compete with the branching strategy
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of CPLEX, except on micro_bal_T12. As expected, learning an efficient strategy on this problem is

more complicated than on micro_asym_T12, the higher variability in the optimal solutions making the

branching dynamics more dependent to instances’ data.

Uc_tree Uc_subtree

Problem Train Test Train Test

Mean Best Mean Best Mean Best Mean Best

micro_asym_T6 +65% +7% +93% +91% +21% -4% +38% +4%
micro_bal_T6 +122% +64% +157% +117% +61% +37% +100% +77%
micro_asym_T12 +222% + 92% +233% +109% +6% -5% +22% +2%
micro_bal_T12 +602% +261% +618% +358% +157% +111% +183% +141%
hydro_fix_1 -33% -67% -35% -63% +31% -73% +36% -53%
hydro_var_1 +2502% +480% +1585% +570% +739% +26% +279% +81%
hydro_fix_2 +24% -29% + 24% -25% +335% -1% +32% +0%
hydro_var_2 +433% +151% +187% +187% +45% -35% +26% -24%

Table 4.1: Number of nodes on train and test instances against CPLEX. The performances are displayed
in average and for the best agent on train instances over 25 independent training processes.
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(a) micro_asym_T6 (b) micro_bal_T6

(c) micro_asym_T12 (d) micro_bal_T12

(e) hydro_fix_1 (f) hydro_var_1

(g) hydro_fix_2 (h) hydro_var_2

Figure 4.24: Tree sizes against CPLEX on test instances for an individual agent under the subtree cost
model with γ “ 0.8 and h “ 6 (Uc_subtree) and the unitary cost model (Uc_tree) under tree-based
transitions. Number in parentheses are average tree sizes.
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Last, Figure 4.25 displays the impact on the parameters γ and h on the performances under the

subtree cost model. In this regard, we see that a too high value of gamma makes the agent behave

similarly to an agent trained under a unitary cost model, and that an excessively low value makes it

too short-sighted. Naturally, low values of gamma penalize more the agent when h is also low.

(a) h “ 3 (b) h “ 6

Figure 4.25: Training processes: impact of the discount factor for different values of h in the subtree
cost model under tree-based transitions on hydro_var_1.

Remark 5. The DFS condition is not restrictive in practice

In this chapter, we used DFS so as to theoretically reconcile oracle strategies and optimal policies

for the unitary cost model with tree-based transitions. Nonetheless, minimizing the subtree size

is still a relevant objective when the node selection strategy is not DFS. This is illustrated in

Figure 4.26, where we observe similar training processes. Performances on test instances, displayed

in Table 4.2, confirm these results. Every trained agents are evaluated against CPLEX using the same

node selection strategy as they do, so as to evaluate the relative performance of the agents compared

to CPLEX under equal conditions. In other words, an agent under DFS is evaluated against CPLEX

under DFS and conversely.

Uc_subtree_noDFS Uc_subtree

Problem Train Test Train Test

Mean Best Mean Best Mean Best Mean Best

micro_asym_T12 + 66% + 35% + 88% + 95% +6% -5% +22% +2%
micro_bal_T12 + 295% + 183% + 322% + 249% +157% +111% +183% +141%
hydro_fix_2 + 29% -25% + 29% -22% + 335% -1% + 32% + 0%
hydro_var_2 + 23% -41% -0% -21% + 45% -35% + 26% -24%

Table 4.2: Number of nodes on train and test instances against CPLEX. The performances are displayed
in average and for the best agent on train instances of 25 independent training processes.
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(a) Tree sizes – micro_asym_T12 (b) Primal integral scores – micro_asym_T12

(c) Tree sizes – micro_bal_T12 (d) Primal integral scores – micro_bal_T12

(e) Tree sizes – hydro_fix_2 (f) Primal integral scores – hydro_fix_2

(g) Tree sizes – hydro_var_2 (h) Primal integral scores – hydro_var_2

Figure 4.26: Training processes: impact of the DFS restriction in the subtree cost model under tree-
based transitions.
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4.3 Variations

4.3.1 DQN loss function

When we introduced our RL methodology, we presented our loss function Lipθiq (4.12) as a coun-

terpart for the classic DQN loss LDQN
i pθiq (4.11) (see page 94). We justified our choice by the deter-

ministic and episodic properties of our environment, making the Q-value observable for the current

policy. Figure 4.27 displays training processes when using the loss function LDQN
i for different values

of the discount factor γ. We see the interest of our loss function, which learns much more rapidly than

its DQN counterpart. This result is due to the fact that DQN’s targets are nothing but noise at the

beginning of training, which explains the slower slope in the early episodes.

(a) Tree sizes – micro_asym_T12 (b) Primal integral scores – micro_asym_T12

(c) Tree sizes – micro_bal_T12 (d) Primal integral scores – micro_bal_T12

Figure 4.27: Training processes: comparison with the DQN loss function for different values of γ.
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4.3.2 State representation, network architecture and training parameters

All the parameters in the results presented in this chapter and in the next two are kept identical

to allow a fair comparison between the methods. We briefly describe here the features used as well as

some of the hyperparameters, and discuss about different variations explored around them.

As recommended in the literature [65], we use both static (related to instances) and dynamic fea-

tures (characterizing the progress of the B&B procedure) to represent states. However, we prevent

ourselves from using any statistics or inference provided by the solver, as the main idea of this work

is to discover strategies independently of the used commercial software.

Regarding static features, we use a 15-dimensional PCA [95] embedding of the instance data, and some

standardized statistics on the objective function and constraints. As for dynamic features, they consist

in a one-hot encoding of the branching state and additional statistics taken from [70] such as statistics

on the number of leaves, open nodes, LP values, etc., without considering solver’s dependent scores.

To give an idea of the gains obtained from additional dynamic features, we compare in Figure 4.28

agents using only the branching state and static features to agents using the branching state, static

and additional dynamic features.

(a) Tree sizes – micro_asym_T12 (b) Tree sizes – micro_bal_T12

Figure 4.28: Training processes: impact of the additional dynamic features. Uc_subtree_BS refers to
the case where only the branching state and static features are used.

The related question of the neural network architecture has been investigated without much suc-

cess. For the experiments displayed in this document, our Q-network is a dense architecture composed
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of 4 hidden layers, each one holding 2 |J | units with selu activation functions. The output layer has

|J | units and linear activation functions. In addition, we attempted to embed the problem’s structure

in locally dense neural networks using constraint-wise convolutions, without any improvement of the

performances. To go further in this direction, it could be interesting to use the bipartite graph convo-

lutional neural network proposed in [68]. Likewise, dueling architectures [96] have been implemented

to handle the instance-related target variability without any clear impact on the performances. Re-

garding the training parameters, we use a decreasing learning rate, a fixed-size buffer and a prioritized

experience replay scheme such that samples in the buffer with high prediction errors are more often

sampled [41].

Acknowledging that choices are more important near the root node, the results presented in this

chapter use a weighting scheme to prioritize the corresponding training samples. Concretely, we

associate to each sample the weight

ωpsq9
λdpsq

|T psq|

in the loss function (4.12), with dpsq the depth of the B&B node associated to state s and |T psq|

the size of the tree in which s has been sampled. Experiments are performed using λ “ 0.95. This

scheme gives more weight to states near the root node (when λ ă 1) and to states in small trees, as

the corresponding instances are mechanically less represented in the training set.

Tuning all the hyperparameters is a hard task, all the more so because their impact varies depending

on the configuration. To illustrate this point, we show in Figure 4.29 the impact of setting the λ

parameter in the previous weighting scheme. We see that its effect on the training process differs not

only depending on the problem but also on the cost model.
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(a) Tree sizes – micro_asym_T12 (b) Tree sizes – micro_bal_T12

Figure 4.29: Training processes: impact of the λ parameter in the sample weighting scheme, with
unitary (Uc_tree) and subtree (Uc_subtree) cost models under tree-based transitions. The dashed
lines are associated to the value λ “ 0.95 and the solid ones to λ “ 1.

4.3.3 Guiding the exploration with expert’s demonstrations

When observing the tree generated during the training process of Algorithm 6, we observe as

expected that the agents produce very large trees in the early episodes. As shown in Figure 4.14c,

which displays an example of training process on hydro_fix_1, this can happen even if the problem

is actually easy to solve. This phenomenon has two main drawbacks. Naturally, it slows down the

training process. Most importantly, it makes the value function more noisy. For instance, random

decisions may have drastic impacts on the subtree size and thus largely alter the value function under

the unitary cost model. To alleviate this issue, one idea is to use expert’s demonstrations, for instance

provided by CPLEX, to guide the agent, either at exploration time or at learning time.

Expert’s demonstrations at exploration time

An intuitive idea is to use the demonstrations for guiding the exploration. Instead of sampling

actions randomly or following the agent’s policy, some actions are taken following the expert’s decisions

with probability εi at episode i. Of course, the probability of requesting the expert should be decreasing

through episodes, so as to make the agent learn on its own distribution at the end of the training

process. This kind of approach has been for instance used in [46].
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Expert’s demonstrations at learning time

One may also leverage these demonstrations at learning time, considering they allow to get some

precious information on non-taken actions. This idea, later used in different contexts, consists in

considering that the expert’s choices should always be better than those of the agent. When updating

the weights of the agent, we use this trick to get a gradient for both the explored actions and the

expert’s recommendations.

For some state s and agent’s weight θ, let us note j the visited action and j˚ the expert’s demonstration.

As only j has been explored, only Qπθ ps, jq can be observed, which is naturally used to get a gradient

from the error Qπθ ps, jq´Q̂ps, j; θq. Here, we also use this observation to get a gradient from Qπθ ps, jq´

Q̂ps, j˚; θq, only in cases where the expert’s action is estimated at a higher cost that the visited one,

i.e. if Q̂ps, j˚; θq ą Qπθ ps, jq. To this end, we modify the loss function Lipθiq (see Equation (4.12))

and rather consider

L̃ipθiq “Es,j,j˚„∆i

„

´

Q
π

θ´
i ps, jq ´ Q̂ps, j; θiq

¯2
ȷ

`PpAqEs,j,j˚„∆i

„

U.
´

Q
π

θ´
i ps, jq ´ Q̂ps, j˚; θiq

¯2 ˇ
ˇA

ȷ (4.22)

with A “ pj ‰ j˚q X

´

Q̂ps, j˚; θiq ą Q
π

θ´
i ps, jq

¯

and ∆i the buffer joint distribution for states, visited

actions and expert’s recommendations. U „ Bpεiq is a Bernoulli random variable of parameter εi,

controlling the probability of using these recommendations.

Differentiating this loss function with respect to the weight vector gives the gradient for iteration i

∇θi
L̃ipθiq 9 K∇θi

Lipθiq

`εiEs,j„∆i

”´

Q
π

θ´
i ps, jq ´ Q̂ps, j˚; θiq

¯

∇θi
Q̂ps, j˚; θiq1A

ı (4.23)

with K some normalizing constant.

Both the approaches have pros and cons. On the one hand, using demonstrations at exploration

time should allow to produce smaller trees and thus decrease the noise around the estimation of ac-

tions’ values, but makes the agent learn on samples outside of its distribution. On the other hand,

using them at learning time allows to obtain feedback on both selected and non-selected actions, which

should increase the sample efficiency, but also assumes that experts’ decisions are better than the vis-

ited actions, which may not be true.
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Remark 6. Building its own expert with Monte Carlo Tree Search (MCTS)

An alternative to using CPLEX for demonstrations would be to build its own expert, using MCTS [97].

The idea of MCTS is to guide the exploration of the environment through sampling, maintaining

a trade-off between exploration and exploitation. We implemented such method without success.

The size of the search space and the computational cost prevented us from testing many variations,

and more work may be done in this direction in the future.

Experiments

Figure 4.30 shows the results of the two previous approaches. For these experiments, εi linearly

decreases from 0.35 to 0 and stays null in the last third of the training process, for both methods. As

expected, we observe lower tree sizes in the early episodes when the expert is used during exploration

as its decisions are better than random moves. However, the long-term gains of using the expert at

the beginning of learning tends to be non significant. Especially, we observe that the guided agent

under the unitary cost model (Uc_tree_cpx) faces a worsening of its performance at some point

(this is really salient on Figure 4.30c). We explain this phenomenon by the following argument. We

already saw that the agent tends to underestimate the targets, especially in the early phases (see

Figure 4.6). When the expert becomes less active in the exploration, the actions are taken following

the agent’s estimations. At this moment, the less explored actions (probably not so good as less taken

by the expert) appear to the agent as producing a lower cost, and thus are selected. One may then

wonder why such phenomenon does not appear for the subtree cost model. Our guess is that the more

homogeneous targets’ distribution (see Figure 4.23) helps the agent to adapt the estimations of new

actions.

Regarding the comparison of the two methods for leveraging expert demonstrations, they appear to

have similar performances. The advantage of using the expert at exploration time is to produce trees

of lower sizes, thus speeding up the training process.
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(a) Tree sizes – micro_asym_T12 (b) Primal integral scores – micro_asym_T12

(c) Tree sizes – micro_bal_T12 (d) Primal integral scores – micro_bal_T12

(e) Tree sizes – hydro_fix_2 (f) Primal integral scores – hydro_fix_2

Figure 4.30: Training processes: using expert’s demonstrations.
Uc_tree (resp. Uc_subtree) indicates the use of the unitary (resp. subtree) cost model and *_cpx

(resp. *_grad) refers to the use of CPLEX demonstrations at exploration (resp. learning) time.

4.3.4 Bounding the predictions in the unitary cost model

When training an agent using the loss function Lipθiq (see Equation (4.12)), we already mentioned

that information is only propagated in the neural network through the output neurons representing

the actions a which has been triggered, thus allowing to evaluate Qπθ ps, aq. Therefore, one does not
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have any control on the predictions made by the agent for the non-selected actions. This can lead to

the emergence of discarded actions in the case where non-visited actions have durable overestimated

value predictions.

Figure 4.31 displays the predictions at the root node for the chosen action on multiple episodes and

that of some fixed action b. As we see, this action b would never be picked at the root node if it was

not for the epsilon-greedy exploration. In addition, we observe that its predictions may reach high

values without any particular good reason since this action has been at best poorly sampled during

training.

Figure 4.31: Predictions at root node for the chosen minimal Q-valued action and a fixed arbitrary
one.

Such observation is valid for any Approximate Q-learning framework, as one needs to select first

an action in a given state to collect the associated cost. Thus, it is often recommended to design cost

signals as rich as possible. In the following, we explore an idea to control the range of the neural

network outputs, using the following proposition.

Proposition 4.3.1. Let action a be any chosen action at state s and b any other action. Then, under the

unitary cost model and tree-based transitions, a node selection strategy exists such that the following

inequality holds for the unobserved optimal Q-value of action b and for any given branching policy π:

Q˚ps, bq ď 1 ` 2Qπps, aq.

Proof . Let us call Ta the generated subtree rooted in node ζ ” ζpsq of size Qπps, aq. We must show

here that there exists a strategy πub which, selecting the action b at state s instead of a, fully expands
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the underlying subtree Tb in less than 1 ` 2Qπps, aq nodes. Let us note β the upper bound available at

s and distinguish two cases.

‚ Case 1: No better bound than β has been found in Ta. In that case, πub is built by following the policy

used in Ta under the two nodes D0pζ, bq and D1pζ, bq, starting by branching on a. Following this

strategy under these two nodes, any node ζ 1 P Tb has a distinct counterpart in Ta, equivalent to the

hypothetical node D0pζ 1, bq (resp. D1pζ 1, bq) when considering ζ 1 in the descendants of D0pζ, bq

(resp. D1pζ, bq). Thus, πub can be defined with a slight abuse of notations by πub pDips, bqq “ πpsq

with i P t0, 1u. With this strategy, any node ζ 1 pruned in Ta is associated to corresponding nodes

in Tb, equivalent to the nodes D0pζ 1, bq and D1pζ 1, bq (as no better bound has been found). Thus

they are also pruned in Tb. Indeed, if ζ 1 has been pruned

piq by infeasibility, then D0pζ 1, bq and D1pζ 1, bq are also pruned by infeasibility since their fea-

sibility set is included in that of ζ 1;

piiq by bound, then D0pζ 1, bq and D1pζ 1, bq are also pruned by bound since, for the same reason,

their relaxed optimal values are greater or equal than that of ζ 1;

piiiq by integrality, then D0pζ 1, bq and D1pζ 1, bq are pruned by bound. Indeed, as no bound better

than β has been found in Ta, the node ζ 1 can then also be pruned by bound. The point is

then proven using the same argument as in piiq.

‚ Case 2: A new bound βa has been found in Ta, given by the solution x˚ at node ζa. In this setting, we

build πub exactly as in Case 1, except that we impose the first node selection decisions to lead to

the node ζa – in particular, this is achieved by visiting first the node Dx˚
b

pζ, bq. Doing so, we get

the same new bound βa as in Ta and can apply the same reasoning as in Case 1.

In both cases, we exhibited strategies which lead to build trees smaller than Ta (or with the same size)

under D0pζ, bq and D1pζ, bq. Counting the initial node ζ, we obtain the proposed bound of 1`2Qπps, aq.

Note in the previous proof that, for the inequality to hold, one needs to take control of the node

selection strategy if a primal bound has been found under the current node. Omitting this point, we

intend to provide some gradient on non-taken actions so as to force the predictions to respect this
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bound. To this end, we use the same trick as in the previous Section and modify the loss function

Lipθiq to rather consider

L̃ipθiq “Es,j„∆i

„

´

Q
π

θ´
i ps, jq ´ Q̂ps, j; θiq

¯2
ȷ

`
ÿ

j1PJ ztju

PpAj1qEs,j„∆i

„

´

1 ` 2Q
π

θ´
i ps, jq ´ Q̂ps, j1; θiq

¯2 ˇ
ˇAj1

ȷ (4.24)

with Aj1 “

´

1 ` 2Q
π

θ´
i ps, jq ă Q̂ps, j1; θiq

¯

.

Differentiating this loss function with respect to the weight vector gives the gradient for iteration i

∇θi
L̃pθiq 9 K∇θi

Lipθiq

`
ÿ

j1PJ ztju

Es,j„∆i

”´

1 ` 2Q
π

θ´
i ps, jq ´ Q̂ps, j1; θiq

¯

∇θi
Q̂ps, j1; θiq1Aj1

ı

(4.25)

with K some normalizing constant.

Equipped with this loss function, the agent receives feedbacks on non-taken actions as soon as their

estimations violate the bound for the considered state. This loss function is supposed to increase

the competition between actions and diminish the risk of discarding unfortunately some of them.

Figure 4.32 shows the resulting training process, with and without enforcing the previous bound.

Results under the subtree cost model are also displayed, even if the bound does not theoretically

hold for the corresponding Q-function. The results are disappointing, and the agent seems to barely

improve during the process. Figure 4.33 shows the predictions at root nodes for each variable, with or

without enforcing the bound. It explains the bad results observed in Figure 4.32: equipped with the

loss function (4.24), the agent is not able to discriminate actions anymore. A potential cause for this

phenomenon could be a too high magnitude for the gradients given to non-taken actions, which could

be mitigated by tuning the normalizing constant K. Note that this behaviour may also be induced by

the fact that our estimator for the Q-function is biased (see Figure 4.22c).
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Figure 4.32: Training processes: failure of learning when bounding the predictions (*_bound).

(a) Without predictions’ bounding (b) With predictions’ bounding

Figure 4.33: Example of predictions for each variable at the root node under the unit tree model, with
or without predictions’ bounding.

4.3.5 Some room for improvement

To conclude, we measure the room for improvement of the proposed method. To do so, we place

ourselves in the idealized case where one agent is specialized on a unique instance. Figure 4.34 compares

the average training process of these specialized agents with that of a single agent learning on the whole

set of instances. The results are presented on the two most difficult problems considered in this chapter,

that is micro_bal_12 and hydro_var_2. We see that the strategies discovered by the specialized agents

are clearly outperforming that of the generic agent on micro_bal_12. This observation is mitigated

by the results obtained on hydro_var_2. On this problem, we see that specialization does not allow

to discover more effective policies. To ameliorate the efficiency of the search, many levers may be
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triggered, such as improving the state representation, the network architecture, the hyperparameters,

the exploration method, the learning process... A plethora of ideas still remain to be explored.

(a) Tree sizes – micro_bal_12 (b) Primal integral scores – micro_bal_12

(c) Tree sizes – hydro_var_2 (d) Primal integral scores – hydro_var_2

Figure 4.34: Training processes: comparison of a single agent learning on the whole set of instances
with specialized agents (Uc_subtree_spe).
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In this chapter, the objective is similar to that of the previous one: learning a strategy in a B&B

algorithm so as to perform well, on average, for a given MILP problem.

Here, we aim at learning the node selection strategy in Algorithm 4. The main difference with the

previous chapter will lie in the fact that, under certain conditions, one can derive an expensive but

tractable oracle strategy for tree size minimization. Its derivation is the purpose of Section 5.1. As

this strategy cannot be used at test time, Section 5.2 proposes different ways of learning its choices,

either by supervised learning or reinforcement learning. Last, Section 5.3 presents the performances

of the proposed approaches.

Before diving into the specifics, it is worth highlighting that the tree size is generally less sensitive

to node selection than to the branching strategy. This is illustrated in Figure 5.1, where we show

the distribution of tree sizes generated by random node selection strategies on a given instance, and

compare it with the heuristic used in the previous chapter and random branching strategies.

Figure 5.1: Histogram of tree sizes generated by 500 random node selection policies on an instance of
micro_bal_T12. Branching is performed by CPLEX in both cases, and values in parentheses are the
mean tree size for the random policies and the tree size for the heuristic. The histogram of random
branching performances is also shown for the comparison.

5.1 An oracle strategy for tree size minimization

We still consider a B&B algorithm as described in Algorithm 4. Keeping the previous notations, the

search space Π in Equation (3.2) now denotes the set of node selection strategies. Discovering a high-
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performance policy in this set will turn out to be easier than learning to branch for a fundamental

reason: we know what makes a policy efficient. In the following, we explicit the exact conditions

sufficient to derive an oracle node selection strategy.

5.1.1 A simplification hypothesis

In addition to the B&B setting defined by Algorithm 4, we make a specific assumption regarding

the branching policy, stated in Hypothesis 5.1.1.

Hypothesis 5.1.1. Deterministic branching hypothesis

The branching policy is deterministic and only depends on the set of branching constraints associated

to the current node.

Hypothesis 5.1.1 states that for a given B&B node, the branching policy is always the same, inde-

pendently from the iteration in Algorithm 4, the current primal bound, etc. As a consequence, the node

selection does not impact the set of direct children for a given non-leaf node. Concretely, let π1, π2 P Π

be two node selection strategies: for any non-leaf node ζ P N π1 X N π2 , we have Dπ1pζq “ Dπ2pζq.

Note that Hypothesis 5.1.1 allow for simplifications but may not be verified in practice, for instance

when the branching policy depends on the history of decisions and observations made before processing

the current node in the tree. Likewise, stochastic policies violate this assumption. Note also that

a similar assumption was made in the previous chapter (Hypothesis 4.1.1). Fundamentally, these

hypotheses allow to prevent cases where the non-controlled policy is built either stochastically or in

an adversarial fashion, for instance selecting the worst decisions only when we take the best ones.

5.1.2 Restriction of the search space

The two main implications of Hypothesis 5.1.1 are given by Propositions 5.1.1 and 5.1.2, which

will allow us to reduce drastically the search space.

Proposition 5.1.1. Under Hypothesis 5.1.1, the node selection strategy does not impact the B&B tree

size once the optimal solution is found.

Proof . Let π1, π2 be two node selection strategies and βπ1
t , βπ2

t their primal bounds at iteration t. The

two strategies are assumed to be identical until the optimal objective value β˚ is found at iteration t˚.
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Considering a B&B node ζ such that ζ P N π1 X N π2, let us show that as soon as ζ 1 P Dπ1pζq is visited

at iteration t1 ą t˚ following strategy π1, we have ζ 1 P pN π1 X N π2q Y pLπ1 X Lπ2q.

ζ 1 P Dπ1pζq ùñ ζ 1 P N π1 Y Lπ1. But according to Hypothesis 5.1.1, we have Dπ1pζq “ Dπ2pζq ùñ

ζ 1 P Dπ2pζq ùñ ζ 1 P N π2 Y Lπ2. Let t2 be the iteration at which ζ 1 is visited following π2.

- In case ζ 1 P N π1, ζ 1 is neither MILP-feasible nor LP-infeasible, nor pruned by bound in T π1.

But βπ1
t1 “ βπ2

t2 “ β˚ as t1 ą t˚ and t2 ą t˚. Then ζ 1 is not pruned by bound in T π2, so

ζ 1 R Lπ2 ùñ ζ 1 P N π2.

- In case ζ 1 P Lπ1, if ζ 1 is MILP-feasible or LP-infeasible, then ζ 1 P Lπ2. If ζ 1 is pruned by bound

in T π1, so it is in T π2 by the same argument as previously and ζ 1 P Lπ2.

By recurrence, the two strategies end up with the same B&B tree.

The immediate interest of such observation is the following. As the node selection strategy has no

impact on proving optimality, it implies that one could learn only on the choices made before reaching

the optimal solution, which could theoretically allow to reduce drastically the exploration cost by

stopping trees’ expansion early during training. We elaborate on this point when considering learning

methods.

A second consequence of Hypothesis 5.1.1 is that one can safely focus on the set of DFS node

selection strategies to find an oracle policy, i.e. which produces a tree of minimal size, as stated in

Proposition 5.1.2. This result justifies our choice to only consider DFS node selection strategies in the

following. Of course, plenty of such strategies should turn out to perform poorly, but our hope is here

to discover, among these policies, one which is optimal or, at least, near optimal.

Proposition 5.1.2. Under Hypothesis 5.1.1, one can always build a B&B tree of minimal size following

a DFS node selection strategy.

Proof . Let T π “ tζ0, ζ1, . . . , ζT u be a B&B tree built using a node selection policy π, ζt representing

the tth visited node. Notations are consistent with Algorithm 4 and N π, Lπ form the corresponding

partition of T π.
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Exhibition of a better strategy Let us build a DFS policy π1 which will perform at least as good

as π. We write ζφptq a node visited at time t following π1, and βπ
t (resp. βπ1

t ) the primal bound at

iteration t following π (resp. π1).

As T π is fully expanded, there exists a node ζj P Lπ such that an optimal MILP solution is found

at ζj, which depth is noted dpζjq ” d˚. Then, one can build a first dive
␣

ζφp0q, ζφp1q, . . . , ζφpd˚q

(

such that φp0q “ 0, φpd˚q “ j, and ζφpi`1q P Dπpζφpiqq for all i ă d˚. Note that this is possible

due to Hypothesis 5.1.1, which ensures branching consistency between π and π1. This first dive gives
␣

ζφp0q, . . . , ζφpd˚´1q

(

“ N π1

d˚ Ă N π,
␣

ζφpd˚q

(

“ Lπ1

d˚`1 Ă Lπ and βπ1

t ď min tβπ
t1 , t1 ď T u for any t ą d˚.

The tree T π1

corresponding to policy π1 will then be built by making the following node selections tt

iteration t:

- if t ď d˚: set φptq as previously defined;

- if t ą d˚: set φptq P arg maxζ

!

dpζq|ζ P Oπ1

t´1

)

;

- select node ζφptq.

By construction, this strategy satisfies DFS. Hence, we just need to prove that
⃓⃓⃓
T π1

⃓⃓⃓
ď |T π|. Let us

prove that T π1

Ď T π by using the same arguments as in the proof of Proposition 5.1.1 from a different

starting point.

Set of non-leaf nodes First, let us show by induction that N π1

Ă N π.

Initialization: ζ0 is the root node for both strategies, so it belongs to N π1

XN π – the case ζ0 P Lπ1

XLπ

is trivially omitted.

Induction hypothesis: let us assume that a node ζ exists such that ζ P N π1

X N π.

Heredity: let us show that if ζφptq P Dπ1

pζq belongs to N π1

, then ζφptq P N π. Since the case ζφptq P

␣

ζφpkq

(

kďd˚ has been trivially built, we omit it in the following and consider ζφptq visited in T π1

at a

time t ą d˚.

According to Hypothesis 5.1.1, ζφptq P Dπpζq, so ζφptq P N π Y Lπ. Let us show that ζφptq R Lπ.

ζφptq P N π1

, so ζφptq is neither MILP-feasible nor LP-infeasible. Besides, it was not pruned by bound

in T π1

, so it cannot be pruned by bound in T π as βπ1

t ď βπ
φptq

(t ą d˚). Then ζφptq R Lπ, which implies

that ζφptq P N π.
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Set of leaf nodes We now show that Lπ1

Ă N π Y Lπ.

Let ζ P Lπ1

. By construction, there exists a node ζ 1 P N π1

such that ζ P Dπ1

pζ 1q. As we just showed,

N π1

Ă N π so ζ 1 P N π. Due to the Hypothesis 5.1.1, we have that ζ P Dπpζ 1q, hence ζ P N π Y Lπ.

Conclusion We proved that N π1

Y Lπ1

Ď N π Y Lπ and thus T π1

Ď T π. Since N π1

X Lπ1

“ H, we

have the desired result
⃓⃓⃓
T π1

⃓⃓⃓
ď |T π|.

As a consequence, one can always build a DFS strategy which produces a tree at least as small as that

of any given node selection strategy. Applying such construction to an optimal node selection strategy

justifies the result.

Before discussing the advantages of the restriction to strategies obeying to DFS, let us first define

the considered MDP ă S ˆ J , A, T, C, γ ą corresponding to a DFS node selection policy. We use

consistent notations with respect to the MDP presented in the previous chapter (see Section 4.1.2) to

facilitate comparisons.

- a finite set of states S ˆ J : a state pst, jtq P S ˆ J is a tuple ppp, t, Htq, jtq where t is an iteration

of Algorithm 4 and Ht is the history of any decisions or observations made so far. A B&B node

ζpstq is associated to any state pst, jtq and corresponds to the node visited at iteration t. jt P J

is the output of the branching strategy for the current node, left to the solver.

- a set of actions A “ t0, 1u. Under DFS in Algorithm 4, the node selection strategy at iteration

t comes down to either selecting the unique deepest node in Oπ
t when ζt´1 P Lπ

t , or choosing

one of the two children of the last visited node ζt´1. If ζt´1 P N π
t and jt´1 is the outcome of an

exogenous branching strategy, the action at “ 0 (resp. at “ 1) will correspond to the selection

of the child node D0pζt´1, jt´1q (resp. D1pζt´1, jt´1q). When the deepest node is unique, that

is to say when a leaf node is visited at iteration t ´ 1, selection is not considered as an action

but rather as part of the transitions. Indeed, the action is totally determined by the DFS

requirement. Thus, we will only consider states corresponding to non-leaf nodes in the following.

- a transition function T pst, atq assumed to be deterministic (and thus markovian): the next

node to visit is fully determined by the action as leaf assessment is deterministic, and so is

the branching policy by Hypothesis 5.1.1. Again, this transition would also be markovian by
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construction without any assumption on branching as tjtu Y Ht Ă Ht1 for any t ă t1. Either

trajectory-based or tree-based transitions may be considered.

- a discount factor γ P r0, 1s.

- a bounded cost function c : S ˆ J ˆ A Ñ R which depends on the objective set for the strategy

to be learnt.

The advantages of enforcing DFS are twofold.

First, as shown when constructing the MDP, it reduces the action set to a set of cardinal 2, which

decreases drastically the search space S ˆ J ˆ A. Note that it also allows the action set to be fixed,

which would not trivially be the case otherwise. Indeed, without any assumption, we would have a

varying action set At “ Ot as in [76].

Second, using DFS will make it possible to reduce the credit assignment problem, exactly as in the

previous chapter (see Section 4.2.2), by confining an action’s effect on a subset of the search space –

concretely the subtree.

5.1.3 Exhibition of an oracle strategy

In this setting, it is possible to build an oracle strategy as stated in Proposition 5.1.3, whenever

the problem has a unique optimal solution x˚. Such a strategy is obtained by first performing a dive

towards x˚, and more generally due to Proposition 5.1.1 the following policy π˚ is an oracle strategy:

π˚ :

$

&

%

S ˆ J Ñ A “ t0, 1u

pst, jtq ÞÑ π˚pst, jtq “ x˚
st

pjtq

(5.1)

where x˚
st

is an optimal solution of the sub-problem associated to st.

Proposition 5.1.3. Under Hypothesis 5.1.1, executing first the dive to the optimal solution x˚ is an

oracle strategy provided the optimal solution is unique.

Proof . It directly comes from the proof of Proposition 5.1.2 as the mentioned π1 is a direct dive toward

the unique optimal solution. Note here that the result does not hold if we do not have the uniqueness

of the solution, and diving to an optimal solution of minimal depth is not sufficient to ensure the

minimality of the tree (think of a tree where diving first to an optimal solution at depth d allows to

entirely prune the branch of an optimal solution at depth d ´ 1). However, one can show that a tree

built from such strategy has at worst n more nodes than the minimal tree.
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Even though the statement of Proposition 5.1.3 is simple and intuitive, finding such a strategy is

NP-hard as it requires to actually solve the considered MILP instance. As a consequence, this strategy

cannot be used directly, since there is no interest in producing a minimal tree for solving a problem if it

has already been solved. However, assessing if an action is an oracle choice is expensive but tractable

off-line, as it only requires to check if it can lead to an optimal solution for the corresponding sub-

problem. At worst, such verification costs one call to the B&B procedure and may thus be leveraged

for learning. This is an important difference with Chapter 4 regarding learning the branching policy,

where assessing the optimality of a choice (in the sense of the minimization of the tree) would have

required an exponential number of B&B calls.

A parallel may be drawn between the oracle defined in Equation (5.1) and the BFS node selection

strategy – see Section 2.3.1. BFS selects the open node with the lowest LP value (in the minimization

case), the idea being to obtain early a good primal bound. The oracle strategy aforementioned has

the same objective, except that it knows exactly where the best primal bound can be found. In

the following, we propose different approaches for learning oracle strategies, with or without using

demonstrations from the exhibited oracle.

At this point, it may be relevant to point out that the oracle strategy is not necessarily unique, whether

DFS is enforced or not. Indeed, first visiting nodes which cannot be pruned by bound does not harm

the tree size.

5.2 Learning approaches

As proposed in [75, 76], behavioral cloning and dataset aggregation are two imitation learning

paradigms appropriate for learning a node selection strategy from demonstrations. We compare these

approaches with a RL alternative and leverage the binary nature of our action space and propose a

way of using demonstrations in RL to increase the sample efficiency.

According to Proposition 5.1.1 and acknowledging that choices are more important near the root

node than in deeper nodes, we use the following weighting scheme when learning from training samples
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ωδpstq “

$

&

%

δdpstq if βt ą β˚

0 if βt “ β˚
(5.2)

with δ P r0, 1s a hyperparameter and dpstq the depth of the node associated to state pst, jtq. In this

section, ϕ refers to a state embedding function.

5.2.1 Behavioral cloning

Behavioral cloning (see Section 2.1.2) simply consists in learning the behavior of the oracle on its

own distribution. As the oracle policy π˚ follows the optimal solution x˚
s of the sub-problem associated

to state s, we directly learn a mapping fθ : ϕpSq Ñ r0, 1s
n between our embedding space and these

solutions, e.g. parametrized by a feed forward neural network.

In this setting, behavioral cloning is then reduced to a classic multivariate supervised classification

task on oracle first dives, the target classes being the optimal solution in t0, 1u
n. It can be addressed

by ERM (see Section 2.1.1) using the weighting scheme (5.2). The weight vector θ is then calibrated

following the program

min
θPΘ

ÿ

pPDtr

ÿ

st,jtP∆˚ppq

ωδpstql
`

fθpϕpstqq, x˚
st

˘

(5.3)

with l a convex loss. ∆˚ppq denotes here the set of visited states by the oracle strategy on instance p

before reaching the optimal solution. Note that, as the oracle knows the optimal solution, a unique

target (an optimal solution) is associated to each state of a same tree. Hence, one could instead simply

learn a mapping from the instances to their optimal solutions.

Seeing ∆˚ as a probability distribution on S, the theoretical equivalent of (5.3) is

Lpθq “ Est,jt„∆˚

“

ωδpstql
`

fθpϕpstqq, x˚
st

˘‰

(5.4)

At testing time, the agent will then act according to the strategy

πθpst, jtq “ arg min
νPt0;1u

|fθpϕpstqqpjtq ´ ν| (5.5)

which simply comes down to selecting first the child node characterized by the constraint correspond-

ing to the bound closer to the predicted value fθpϕpstqqpjtq.
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Two main drawbacks of behavioral cloning can be highlighted here. First, there is no clear reason

why to chose any loss function l over another, and the usual loss functions undoubtedly do not

correspond to our objective of producing minimal trees. Second, this approach comes down to learning

the oracle distribution, and there is no guarantee on the performance of the learnt classifier when facing

nodes which do not belong to these trajectories, i.e. that may be drawn from another distribution

as the one produced by the oracle. In other words, there is a risk of overfitting in this setting, as

the learnt policy may not be robust to variations from the training dataset. On the contrary, one

may be tempted to exchange the optimal first dive ∆˚ppq for the complete tree T π˚

ppq. However, due

to Proposition 5.1.1, it may lead to underfitting as the relevant choices would likely represent only a

minority of the collected samples.

5.2.2 Dataset aggregation

The second issue raised by the behavioral cloning approach can be handled using dataset aggre-

gation (see Section 2.1.2). Rather than learning on the samples collected by the oracle, the idea is

to learn on the states visited by the agent along the training process. To do so, we use a variant of

DAgger [7] (see Section 2.1.2, Algorithm 1) authorized by the iterative training procedure of neural

networks and using a replay buffer, as described in Algorithm 7. The point of such methodology is

to transform the minimization of (5.4) into an iterative fitting procedure governed by the empirical

equivalent of the theoretical loss

Lipθq “
ÿ

kďi

Est,jt„∆θk

“

ωδpstql
`

fθpϕpstqq, x˚
st

˘‰

(5.6)

where ∆θ denotes the probability distribution for states under strategy πθ. The agent’s policy remains

the one defined by Equation (5.5).
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Algorithm 7 Adapted Dagger Algorithm for Node Selection

Initialization:
Randomly initialize θ0

Procedure:
for i “ 1 to N do:
Draw randomly an instance p from Dtr

Solve p using πθi´1

Collect dataset tpps, jq, π˚ps, jqqu of visited states from T πθi´1 ppq and oracle
actions in a buffer B
Update θi´1 to θi following the gradient derived from Equation (5.6) using data
from B

end for
Output:
Final parameter θN

Even if our objective is to leverage oracle demonstrations to learn a near-optimal strategy, one

should remember that the advantage of IL compared to vanilla SL is robustness.

An extreme case of Algorithm 7 is when our model is rich enough and the number of training itera-

tions infinite. In such a configuration, the training loss should tend to zero provided the classifier is

complex enough. Thus, the agent and oracle distributions would be aligned, which would make no

difference compared with the supervised setting (i.e. learning on the oracle distribution). To improve

generalization, one may authorize some random exploration during the learning phase, in order to

keep learning on small variations from the optimal strategy.

A limitation of the procedure described above is the lack of consideration for the cost model as-

sociated to the MDP mentioned earlier. As the agent only learns to mimic the oracle without any

information about the cost of a mistake, it will penalize equally harmless errors and those downgrading

heavily the global objective (3.2). This is easily exemplified using a worst-case argument, as an error

at depth d can potentially increase the global tree size by 2n`1´d ´ 1. Such discrepancy is illustrated

in Figure 5.2, showing that the impact of a single choice different from the oracle strategy has way

more impact on the global tree size near the root node than deeper in the tree.

This issue has been highlighted in [9] in a general context, the authors proposing to take this cost

into account using massively the oracle – see Section 2.1.2. As calling the oracle may be quite expen-

sive, especially in a tree-structured environment, we present in the following a reinforcement learning
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approach to reduce the calls to the expert.

Figure 5.2: Number of nodes on a micro_bal_12 instance when diverging from oracle choices at depth
d.

5.2.3 Reinforcement learning for node selection

In this section, the objective is to overcome the shared limitations of the two previous approaches,

by reducing the calls to the oracle, which may be expensive, and taking into account a cost model

associated to the MDP, in order to align with our objective of tree size minimization (3.2). To do

so, we propose to adapt the RL approach presented in Chapter 4 on learning the branching strategy.

We rely on Proposition 5.2.1 to immediately transpose the procedure to the node selection setting:

at state ps, jq, the value of visiting first a child node is set to the observed size of the subtree rooted

in the B&B node corresponding to s. Again, this is done by considering a unitary cost model under

tree-based transitions. Proposition 5.2.1 states that minimizing this cost at each state is an oracle

strategy. Note here that, compared with section 5.1.3, we do not need the uniqueness of the solution

to ensure the oracle property.

Proposition 5.2.1. Under Hypothesis 5.1.1, minimizing the subtree size is an oracle strategy and con-

versely.

Proof . This is essentially the same proof as that of Proposition 4.2.4, substituting Hypothesis 4.1.1

by Hypothesis 5.1.1.

Formally, the value of an action a P t0; 1u at state ps, jq when following a policy π is denoted
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Qπps, j, aq, and corresponds to the subsequent size of the subtree rooted in ps, jq. As for the branching

strategy, a discounted version Qπ
γ ps, j, aq may be encompassed.

As discussed in Section 4.2.2, the same theory can be derived in this setting and will not be repeated

at this stage. Again, this cost function is approximated by a model Q̂ps, j, a; θq parametrized by a

weight vector θ, and the iterative fitting procedure is governed by steps towards reducing the empirical

equivalent of the theoretical loss function

Lipθiq “ Es,j,a„∆i

„

ωδpsq

´

Q
π

θ´
i ps, j, aq ´ Q̂ps, j, a; θiq

¯2
ȷ

(5.7)

where θ´
i is a fixed value from previous iterations and ∆i is the probability distribution of state-action

pairs when following some previous policies. Differentiating this loss function with respect to the

weight vector gives the gradient for iteration i

∇θi
Lipθiq9Es,j,a„∆i

”

ωδpsq

´

Q
π

θ´
i ps, j, aq ´ Q̂ps, j, a; θiq

¯

∇θi
Q̂ps, j, a; θiq

ı

(5.8)

In this setting and according to Proposition 5.2.1, the agent’s policy is now to select the action with

the minimal predicted cost:

πθps, jq “ arg min
aPt0;1u

Q̂ps, j, a; θq (5.9)

Note here the fundamental difference with previous updates from (5.4) and (5.6): ∆θ is a distribution

for ps, j, aq triplets, as the cost function can only be evaluated on taken actions in a RL setting. Thus,

the exploration space (S ˆ J ˆ A) is twice as big as the data space in the two previous approaches

(S ˆ J ).

The training procedure is described in Algorithm 8, and is really a direct adaptation of Algorithm 6.

Algorithm 8 Training Algorithm: RL for Node Selection

Initialization:
Randomly initialize θ0

Procedure:
for i “ 1 to N do:
Draw randomly an instance p from the training dataset
Solve p using πθi´1

Collect dataset
␣`

ps, jq, a, Qθi´1ps, j, aq
˘(

of visited states and observed Q-values
from T πθi´1 ppq in a buffer B
Update θi´1 to θi following the gradient derived from Equation (5.7) using data
from B

end for
Output:
Final parameter θN
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Remark 1. Benefits from Proposition 5.1.1

On the one hand, a random strategy (typically at the beginning of a learning process) will be as

good as any other strategy as soon as the optimal solution is found, which reduces the occurrences

of sub-optimal choices, hence the exploration cost. On the other hand, but it is really the second

side of the same coin, the targets (e.g. the subtree size) will appear without any noise due to future

actions in the proving phase since all actions are optimal then.

5.2.4 Reinforcement learning with oracle insight

An expected benefit in integrating the cost model as defined above is quantifying the intrinsic risk

of different states. However, as the agent is trained on its own behaviour, without using any insight

from the oracle, Algorithm 8 yields a low sample efficiency, inherent to pure RL. In the following,

we propose a simple modification to the previous approach to take into account oracle insights. The

trade-off between increasing the sample efficiency and limiting the number of calls to the oracle is

controlled by a hyperparameter.

As the cost model defined earlier is coherent with the objective of minimizing the tree size (see

Proposition 5.2.1), any oracle strategy is a minimizer for the Q-function. Thus, for any DFS node

selection strategy π, the inequality

Qπ˚

ps, j, π˚psqq ď Qπps, j, aq (5.10)

holds. This lower bound can be easily incorporated in the precedent learning procedure by using the

same trick as in Section 4.3, i.e. by modifying the used loss function:

L˚
i pθiq “ Lipθiq

` P pA1q Es,j,a„∆i

„

ωδpsq U.
´

Qθ´
i ps, j, aq ´ Q̂ps, j, a˚; θiq

¯2 ⃓⃓⃓⃓
A1

ȷ

` P pA2q Es,j,a„∆i

„

ωδpsq U.
´

Qθ´
i ps, j, a˚q ´ Q̂ps, j, 1 ´ a; θiq

¯2 ⃓⃓⃓⃓
A2

ȷ

(5.11)

with U „ Bpαq an independent Bernoulli random variable, A1 “ pa ‰ a˚qX

´

Qθ´
i ps, j, aq ă Q̂ps, j, a˚; θ´

i q

¯

and A2 “ pa “ a˚q X

´

Q̂ps, j, 1 ´ a; θ´
i q ă Qθ´

i ps, j, a˚q

¯

.
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Differentiating this loss function with respect to the weight vector now gives the gradient for

iteration i ∇˚
θi

∇θi
L˚

i pθiq9 K∇θi
Lipθiq

` αEs,j,a„∆i

”

ωδpsq

´

Qθ´
i ps, j, aq ´ Q̂ps, j, a˚; θiq

¯

∇θi
Q̂ps, j, a˚; θiq1A1

ı

` αEs,j,a„∆i

”

ωδpsq

´

Qθ´
i ps, j, a˚q ´ Q̂ps, j, 1 ´ a; θiq

¯

∇θi
Q̂ps, j, 1 ´ a; θiq1A2

ı

(5.12)

with α P r0; 1s the proportion of samples where calls to the oracle should be made to augment the

gradient and K some normalizing constant.

Such modification encourages the model to satisfy the lower bound provided by any oracle (Equa-

tion (5.10)) through two additional feedbacks: piq oracle choices should have a lower cost than taken

actions and piiq the non-taken actions are at least as bad as oracle choices if the latter are taken.

These feedbacks allow the agent to learn even on non-taken actions, which should increase the sample

efficiency.

Note here that expert’s demonstrations are used only if the agent is making mistakes in ranking the

actions. Besides, Equation (5.11) does not require to compute the cost of following the oracle strategy

from state s as in [9]. Instead, we only need to determine if the taken action is an oracle choice or not,

which does not always require a call to the B&B procedure. Besides, recreating exactly the state ps, jq

may not be trivial with certain MILP solvers. It also allows to solve the corresponding sub-problem

with any desired configuration of the solver, which may permit some computational gain. On the

contrary, computing the cost of the oracle strategy Qπ˚

ps, j, aq would require to solve the sub-problem

with the exact same configuration to ensure coherence.

5.3 Experiments and discussions

In order to evaluate the sampling efficiency of the different methodologies, the behavioral cloning

agent is trained sequentially, using the same number of training samples as the other competitors.

This manoeuvre does not change the fact that data are collected once and for all by observing the

oracle, but allows to better evaluate the sample efficiency of dataset aggregation and reinforcement

learning agents.

Figure 5.3 displays training processes for the presented strategies under the subtree cost model (the

157



CHAPTER 5. LEARNING THE NODE SELECTION STRATEGY

results for the unitary cost model are similar see Figure 5.4), and Table 5.1 presents results on test

instances. If we compare these results, not only on train but also on test instances, with those obtained

when learning the branching strategy, we see that the performances are better here. This should not

come as a surprise. First, the learning task is easier as the action space is reduced. Second, many

actions do not impact the performance, according to Proposition 5.1.1. Last, we already mentioned

that the branching strategy is often more important than the node selection strategy. Here, we let

CPLEX make the branching decisions, which allows the errors in the node selection to be relatively

benign. The fact that node selection has a lower impact on the tree size than branching is illustrated

by the lower gains obtained during the learning processes than those observed in Chapter 4.

Notice here that reinforcement learning methods compare well with both BC and DA in terms of

sample efficiency. This is due to the fact that our action space contains only two elements, which

reduces drastically the need for exploration. Likewise, using additional gradients from the oracle

strategy (RL-OR) allows to improve the sample efficiency in comparison with the RL approach without

demonstrations (RL).

As expected due to the nature of the strategies, we see that they compare well with CPLEX regarding

primal integral scores.
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(a) Tree sizes – micro_asym_T12 (b) Primal integral scores – micro_asym_T12

(c) Tree sizes – micro_bal_T12 (d) Primal integral scores – micro_bal_T12

(e) Tree sizes – hydro_fix_2 (f) Primal integral scores – hydro_fix_2

(g) Tree sizes – hydro_var_2 (h) Primal integral scores – hydro_var_2

Figure 5.3: Training processes: comparison of node selection strategies.
BC refers to the behavioral cloning approach, DA to dataset aggregation, RL to “pure” reinforcement
learning and RL-OR to reinforcement learning with expert demonstrations.
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BC DA RL RL-OR

Train Test Train Test Train Test Train Test

micro_asym_T8 +16% +28% -10% +8% -4% +6% -2% -1%
micro_bal_T8 -27% -25% -49% -36% -40% -28% -48% -24%

micro_asym_T12 15% 27% -16% -12% -5% 0% -9% -2%
micro_bal_T12 -41% -30% -60% -37% -24% -14% -43% -26%
hydro_fix_2 -10% -4% -29% -18% -15% -15% -21% -16%
hydro_var_2 -21% 8% -25% -8% 0% 6% -9% 21%

Table 5.1: Tree sizes comparison against CPLEX on train and test instances for the best agent on train
over 25 seeds.

We see in Table 5.1 that taking into account the cost associated to actions (as we do in RL) do

not provide better generalization performances. Note that, contrary to the learning of the branching

strategy, the unitary and subtree cost models have similar performances, as illustrated in Figure 5.4.

(a) Tree sizes – micro_asym_T12 (b) Primal integral scores – micro_asym_T12

Figure 5.4: Training processes: comparison between the unitary (*_unit) and subtree cost models.
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In this chapter, we present different ways of combining the approaches of Chapter 4 and Chapter 5

to learn the full strategy, that is to say a policy which selects both variables and nodes. Starting from

the full RL framework presented in Section 6.1, we propose in Section 6.2 variations based on the

developments of Chapter 5. Section 6.3 presents some experimental results.

6.1 Unifying the branching and node selection strategies

The RL methodologies presented in Chapter 4 and Chapter 5 can be unified in a straightfor-

ward way to learn both strategies at the same time. Considering the MDP defined in Chapter 4

(Section 4.1.2), we only modify the action space. Instead of defining an action as the selection of a

branching variable at the current node, we set it to the choice of both a branching variable and a child

node priority. When enforcing DFS, such choice fully characterizes the two strategies.

Concretely, this is performed by considering the action space J ˆt0, 1u and an according Q-function

Qπ : S ˆ J ˆ t0, 1u Ñ R. This setting doubles the size of the search space compared with Chapter 4,

which may lead to a more tedious exploration. Let us take the example of the unit cost model under

tree-based transitions to make the analogy easier with the case of learning only the branching strategy.

Consider a state s and an action selected by policy π which is “branching on variable j and visit first

the child node associated to the additional constraint xj “ k”with j P J and k P t0, 1u. By definition,

the Q-value of this state-action pair is the subtree size rooted in the node ζpsq when following the

according strategy. Note that this construction allows us to retain the oracle property of an optimal

policy under DFS (see Proposition 5.2.1). For that matter, it is important to understand that the

Q-value is not the subtree size rooted in the node ζ pDπ
k psqq but that rooted in ζpsq, as the property

previously mentioned would not hold in such case.

The same remarks as those made in Chapter 4 regarding the impact of transitions on the credit

assignment problem can be done, hence we do not repeat them here. Likewise, the justifications for

incorporating a bias by considering the subtree cost model are identical.
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6.2 Variations

In light of the developments made in Chapter 5 when considering the learning of the node selection

strategy, different variations can be built from the direct methodology mentioned above (later referred

to as RL). Since the node selection strategy has no impact on the tree size as soon as the optimal

solution is found (see Proposition 5.1.1), it seems inefficient to learn node selection actions after this

point. In addition, the objective of node selection under DFS has been clearly set: given a branching

decision, one must prioritize the child node leading to the best solution. The variations proposed

below seek to exploit such facts.

RL-2 – The first variation consists in training two agents, which act at different locations in the

B&B tree. The first agent has to select both the branching variable and node priority for any node

prior the discovery of an optimal solution. As for the second, it only focuses on branching decisions

past this point, node priority being given by some exogenous heuristic. Of course, this strategy cannot

be maintained at test time, as one does not know anymore if a feasible solution is optimal or not.

Therefore, at test time, the second agent is to take charge as soon as a feasible solution is found.

RL-DA – The oracle node selection strategy exhibited in Chapter 5 is valid for any given branching

strategy. As a consequence, we naturally propose to learn separately branching and node selection,

the former being learnt by an agent using an MDP as defined in Chapter 4 and the latter by imitation

learning, and more precisely dataset aggregation, as proposed in Chapter 5.

RL-OR – For the same reason, one can consider to leverage oracle demonstrations for guiding a full

RL approach. Considering a unique agent with the action space J ˆt0, 1u, one can obtain cost signals

for non-taken actions as proposed in Chapter 5 by accounting for the fact that oracle actions should be

better than selected actions (see Equation (5.11)). As an oracle decision consists in selecting the child

node which contains the optimal solution under the current node, we already mentioned that using

this strategy is expensive. An alternative may consist in using the optimal solution of the instance

rather than that of the subproblem associated to the current node to derive the additional gradient.

This strategy is referred as RL-OR-partial in the experiments.
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6.3 Experiments and discussions

Figure 6.1 displays an example of training processes for the strategies mentioned above, using the

subtree cost model.

First, we observe that RL-OR-partial discovers less efficient strategies than RL-OR. This result was

expected and highlights the fact that the agent has to adapt to the case where it strays from the first

optimal dive – recall that, according to Proposition 5.1.3, the oracle strategy first performs a dive

toward the optimal solution.

Next, we note that RL-2 is the worst approach. This failure may be caused by the fact that each

agent has fewer samples at its disposal for learning. Another potential explanation is that the sample

distribution of the second agent depends on the behavior of the first, which causes coordination issues.

The two agents which discover the best strategies are RL-DA and RL-OR, before RL. This result is in

line with those observed in Chapter 5, where a similar ranking was observed.

(a) Tree sizes – micro_bal_T8 (b) Primal integral scores – micro_bal_T8

Figure 6.1: Training processes: comparison of full strategies on micro_bal_T8.

We see when looking at the primal integral scores in Figure 6.1 that performances with respect to

that score are weaker than those obtained when learning the node selection only – in the experiments

of Chapter 5, all the agents obtained comparable or better scores than CPLEX (see Figure 5.3). An

explanation of this phenomenon may lie in the fact that the distribution of the learning samples is

evolving with the branching strategy, which makes the learning task more difficult. Of course, the

quality of the branching strategy may also play some role. In that matter, Figure 6.2 shows experiments

on more difficult problems, and also displays as a reference the training process observed when learning
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only the branching strategy. We see that we do not manage to obtain better performances when

learning the full strategy compared with learning only the branching strategy. Actually, we even

observe poorer performances on hydro_var_2. Except for hydro_fix_2, the primal integral scores do

not decrease faster compared with branching only, which uses a stationary node selection strategy.

These difficulties are also explained by the enlargement of the search space, even in RL-DA where the

node selection is learnt by dataset aggregation. Indeed, even if the state space is actually identical

between RL-DA and RL-branch, the latter samples states in a more restrained area of the search space

due to the stationarity of the node selection strategy. Thus, even RL-DA faces in practice a greater

variance in the training samples, which can be assimilated as an increase of the search space and a

greater need for generalization.

When looking into the results on test instances (Table 6.1), we see that the performances of the best

agent are generally better when focusing on learning the branching strategy. Note however that it is

not the case on hydro_fix_2, where the invariance of the feasible set allows an agent learning both

strategies to obtain better performances.
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(a) Tree sizes – micro_asym_T12 (b) Primal integral scores – micro_asym_T12

(c) Tree sizes – micro_bal_T12 (d) Primal integral scores – micro_bal_T12

(e) Tree sizes – hydro_fix_2 (f) Primal integral scores – hydro_fix_2

(g) Tree sizes – hydro_var_2 (h) Primal integral scores – hydro_var_2

Figure 6.2: Training processes: comparison of complete strategies, using a branch-only agent as bench-
mark (RL-branch). 166
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RL RL-branch RL-DA RL-OR

micro_asym_12 +156% +267% -5% + 2% +98% +127% +104% +184%
micro_bal_12 +529% +511% +111% +141% +296% +340% +425% +478%
hydro_fix_2 +63% +79% -1% + 0% +0% -2% -25% -19%
hydro_var_2 +270% +300% -35% -24% +275% +219% 38% +20%

Table 6.1: Performances on test instances against CPLEX for the best agents on train instances over 25
independent training processes.

Figure 6.3 shows a comparison with the training processes obtained when using the unitary cost

model. As for the branching case, we see that performances are lower than those obtained under the

subtree cost model.

(a) Tree sizes – micro_bal_12 (b) Primal integral scores – micro_bal_12

(c) Tree sizes – hydro_var_2 (d) Primal integral scores – hydro_var_2

Figure 6.3: Training processes: comparison between the unitary and subtree cost models when learning
complete strategies.
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Part III

Exploiting the Problems’ Structure
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This part briefly presents some attempts to leverage the structure of the considered problems to

reduce the computational effort. To this end, we encompass different approaches such as heuristic

branching, decomposition techniques and objective disruption. Although these axes are independent,

they all share the same interest in using the underlying structure of the considered problems.
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Although the most used branching heuristics are LP-based (see Section 2.3.1), various branching

strategies have been developed using a score based on the problem data. For example, orbital branch-

ing [98] leverages the problem information encoded in symmetry groups to build a new branching

dichotomy. With a different approach, [91] builds a set of clauses from fathomed nodes to guide the

branching decision toward early infeasible or sub-optimal nodes.

In this chapter, we propose a new kind of heuristic for performing variable selection in a B&B al-

gorithm, based on a graph representation of the problem data. This graph representation appears

to partly encode the underlying structure of the problem and thus may be used for branching. Sec-

tion 7.1 proposes a graph representation for any node in a B&B tree and interpret it as an influence

graph. Next, Section 7.2 presents a new branching heuristic based on this graph representation of the

problem data. An alternative PCA-flavoured interpretation of such heuristic is also given. Last, we

conduct some experiments in Section 7.3 and discuss briefly the impact and limitations inherent in

this approach.

7.1 Leveraging the problem’s structure through a graph representation

Taking some distances with LP-based heuristics, we propose a branching heuristic based on the

problem’s structure, using a graph representation of the interactions between variables. Using this

representation, we later define a heuristic which can be interpreted in two distinct ways.

7.1.1 Graph representation

Graphs have already been used in the literature for the design of branching heuristics. For instance,

a bipartite graph is used in [98] to compute symmetry groups for orbital branching. Here we propose

different variants of a graph representation, that we use actively for performing variable selection.

Through this representation, our conviction is that we can roughly model the influence that branching

on a variable has on other variables, in the sense of its tightening impact on the LP relaxation in

the corresponding dimensions. Intuitively, this influence is the result of a complex combination of

various effects, induced not only by the constraints but also by the objective function. The raw matrix

representation of the constraint matrix is clearly not adequate to capture these effects (for instance,

it is not invariant to indices’ permutation), and we believe that a graph representation is more suited

to this end. Let us first define what we mean by influence, and then propose a class of graphs used to
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represent these influences for any MILP instance.

Definition 7.1.1. Local influence

We say that variable i has a non-zero local influence on variable j with respect to constraint k if

1Aki
1Akj

“ 1, with Aki the coefficient of variable i in constraint k. At this point, the quantification of

this influence ωk
ij is not specified and may be any function of the problem data A, b, c – see Section 1,

Problem (1.2), for notations.

Definition 7.1.2. Direct influence

We define the direct influence ωij of variable i on variable j as the sum over the constraints of the

local influences:

ωij “ 1i‰j

m
ÿ

k“1
ωk

ij

Building on these definitions, we define the class of influence graphs, whose weight matrix is built

according to the notion of influence as defined above.

Definition 7.1.3. Influence graph for MILP

In the MILP setting, we say that a directed graph G “ pV, E, W q is an influence graph if V “ t1, ..., nu,

E “ V ˆ V and the edges’ weights W P Rnˆn satisfy the definition of direct influence.

By construction, an influence graph is a primal graph for the considered instance, i.e. a graph

where nodes correspond to variables and an edge may exist between two variables only if they appear

in a same constraint. Note that vertices are associated to variables, both binary and continuous.

We voluntarily keep this class of influence graphs large, so as to be in a position to consider different

definitions of the direct influence.

However, regardless of the quantification of the weights, the definition of local influence and the additive

nature of direct influence enforce a particular structure for influence graphs. Especially, theses graphs

not only naturally exhibit the block structure often observed in the constraint matrix of real-world

problems, but also the interconnections between these blocks. Figure 7.1 shows examples of influence

graphs for two instances of the microgrid and hydro problems. We see in these examples that the

influence graph representation allows to exhibit in our problems a “ladder structure”, produced by

temporal and spatial interconnections between variables.
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7.1.2 Examples of influence graphs

(a) binary_graph for a micro_asym_6 in-
stance

(b) binary_graph for a hydro_fix_2 in-
stance

Figure 7.1: Examples of influence graphs.

We present here some examples of influence graphs, based on different definitions of local influence.

Perhaps the most basic example of such graphs is obtained by defining the local influence of a variable

i on variable j with respect to constraint k as

ωk
ij “ 1Aki1Akj

Using this definition, we obtain the count_graph where the weight of an edge between two nodes is

the number of constraints linking the two corresponding variables. In a more agnostic manner, the

binary_graph is obtained by setting

ωk
ij “

1Aki1Akj

max t1,
řm

l“1 1Ali1Alju

In this setting, the weight of an edge is the indicator of an existing constraint between the two

considered variables.

Remark 1. Constraint-based influence graphs and B&B tree

An influence graph is a way of representing a MILP instance. As a consequence, it can be used to

represent any node in a B&B tree. Along such tree, the evolution of the influence graphs associated

to nodes is governed by the branching strategy. When considering pure constraint-based influence

graphs as binary_graph and count_graph, they become sparser as the nodes are deeper. When a

variable is fixed, the adjacent edges are removed. If we denote Wt the weight matrix of the influence
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graph associated to some node ζt and Wt1 that of a descendant node, then a binary matrix Bt,t1

of dimension pm, nq exists such that Wt1 “ Bt,t1 ˝ Wt with ˝ the Hadamard product. Especially, it

implies that the adjacency matrix becomes sparser as we move down along a branch of the B&B

tree.

The two graphs presented above only use the information provided by the constraints, without any

consideration regarding the objective function. To encode this function in an influence graph, one can

use LP-related data to weight the constraints. Rather than weighting equally the constraints, the idea

is to put more mass on the binding constraints, that is to say on constraints which have a non-zero

optimal value in the dual LP associated to the current node. Writing y˚ P Rm the optimal solution

of the dual, the binary_dual_graph puts a zero mass on non-biding constraints and the others are

weighted equally:

ωk
ij “ 1Aki1Akj1y˚

k
‰0

A natural generalization is the dual_graph, obtained by setting

ωk
ij “ 1Aki1Akj |y˚

k |

Remark 2. Influence graphs and invariance to reformulation

Contrary to the matrix representation, influences graph are invariant to index permutations. How-

ever, we see in the examples using LP information that it is not invariant to a rescaling of the

data A, b and c. To ensure a coherence in the constraints’ weighting, some standardization may

be performed whenever the constraint coefficients Aij appear directly in the definition of the local

influence. For instance, we may apply:

- c Ð c
σpcq

if σpcq ‰ 0 where σpcq is the standard deviation of the coefficients in c;

- Ak. Ð
Ak.
bk

for any row Ak. associated to a non-zero coefficient bk;

- Ak. Ð
Ak.

σpAk.q
if σpAk.q ‰ 0 where σpAk.q is the standard deviation of the coefficients of the

row Ak. associated to a zero coefficient bk.
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7.1.3 Using the graph representation for branching

Naturally, when looking at Figure 7.1, it comes that not only a variable i has a direct influence on

adjacent variables, but also indirect influence on any other variable j such that a path exists from i to

j in the graph. Therefore, a natural heuristic for variable selection would be to branch on the integer

variable with the highest influence on other integer variables. Depending on the chosen definition of

the local influence, the stress may be put on the ability to create infeasible descendant nodes or early

primal solutions.

This question of Influence Maximization on graphs (IM) has been widely studied in the past decades

and is still an active field of research, especially with the emergence of social networks. In addition to

the adequate definition of the direct influence for the problem of interest, one of the main challenges

of IM is the definition of a diffusion process of the influence (see [99] for a recent survey). Note here

that it has been proven for different diffusion processes that the IM problem is NP-hard.

Unfortunately, a requirement for a good branching strategy is its fast computation. Therefore, it

seems useless to look for an exact solution of an ill-defined (i.e. heuristic) IM problem in this setting.

This is the reason why we rather look for potentially non-accurate but fast approximation for IM.

We propose to take inspiration from [100], where the authors use the MinCut algorithm for detecting

influence communities in a social graph.

In the setting of variable selection, we want two variables to belong to the same community if branching

on one of them has a strong impact of the second. If the influence is seen as a proxy for the tightening

of the LP relaxation following a branching decision, branching consecutively on two variables of the

same community would likely be inefficient. To avoid that, one can define K clusters with at most

one representative by cluster and take them as candidates for branching.
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7.2 Branching strategy

7.2.1 Selecting high-influential variables

As discussed above, using exact IM to perform variable selection in a B&B algorithm may be coun-

terproductive. Therefore, we propose to approximate IM and select various high-influential variables

in different locations of the influence graph.

To reach that objective, we use a two-stage approach. First, we exhibit K communities of comparable

influence. This is done by approximating RatioCut through Spectral Clustering on a given influence

graph, which allows to obtain clusters of comparable sizes and relatively independent from each other

(see [101] for a detailed tutorial on Spectral Clustering). Next, we select in each group the integer

variable with the highest total influence (see the definition below). These variables are then taken as

candidates for branching, a natural ordering being given by their total influence.

Definition 7.2.1. Total influence

We define the total influence ωi of variable i as the sum over its direct influences:

ωi “
ÿ

j‰i

ωij

Formally, let W be the weight matrix of an influence graph associated with the current node of the

B&B tree and L “ D ´ W the associated Laplacian with D the diagonal of W . Let V P RnˆK be the

matrix obtained by stacking the K eigenvectors associated to the K lowest eigenvalues of L ordered

increasingly. The influence communities pCkq
K
k“1 then form a partition of the index set t1, ..., nu and

are obtained by performing a K-means clustering on V, i.e. is the solution of

arg min
tC1,...,CKuPC

K
ÿ

k“1

ÿ

viPCk

||vi ´ µk||22 (7.1)

with C the set of K-partitions of the index set, pviqi“1,...,n the rows of V and µk “ 1
|Ck|

ř

viPCk
.

Using these clusters, the set SK of branching candidates is then defined as

SK “

"

arg max
iPCkXJ

ωi , k “ 1, . . . , K

*

.

These variables are then ordered following the total influence of each variable: for two variables

i, j P SK , we say that i is prioritized over j (written i ľ j) if it has a greater total influence

i ľ j ðñ ωi ě ωj
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x2 “ 0

x3 “ 0 x3 “ 1

x2 “ 1

x1 “ 0

x2 “ 0

x3 “ 0 x3 “ 1

x2 “ 1

x1 “ 1

Figure 7.2: Branching decisions from the root node with SK “ tx1, x2, x3u with 1 ľ 2 ľ 3.

If we consider now SK as an ordered set following the previous ordering rule, branching is performed

on the first variable of such set at the current node, on the second at the immediate child nodes and

so on in the subtree rooted in the current node. This is illustrated by Figure 7.2 Of course, one can

set K “ 1 and repeat the procedure at each node while bypassing the clustering part.

7.2.2 Alternative interpretation

Let us consider X P Rnˆm a row-wise L2-standardized matrix such that the dot product W “ XXJ

is a weight matrix associated to an influence graph. For instance, X may be the standardized version

of the transpose of the constraint matrix A. A MILP instance is then represented by X as a scatter

of n points living in Rm. The L2 standardization of each point can be seen as a way of uniforming the

importance of each variable, thus preventing undesirable effects due to a potential bad conditioning

of the problem formulation (see Remark 2).

Proposition 7.2.1. Under the above assumptions, performing a K-means clustering on the K-dimensional

projection of a non-centered PCA on X is equivalent to the K-spectral clustering on W .

Proof .

Let us call P P RKˆm the projection matrix obtained from a non-centered K-PCA on X, i.e. P

obtained by solving
$

&

%

max
P PRKˆm

Tr
`

PXJXP J
˘

s.t. PP J “ IK

. (7.2)

It is well known that P is obtained by stacking the K eigenvectors associated with the K largest

eigenvalues of XJX.
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Let us set U “ XPJ P RnˆK the matrix composed of the projected points u1, ..., un as rows. To assert

the equivalence of the two methods, we shall demonstrate that U “ V with V previously mentioned.

As stated above, V is obtained by stacking the K lowest eigenvectors of L “ D ´ W “ D ´ XXJ

where D is the diagonal of XXJ, hence is the solution of

$

&

%

min
V PRnˆK

Tr
`

V J
`

D ´ XXJ
˘

V
˘

s.t. V JV “ IK

. (7.3)

As X is row-wise standardized, we have D “ In. Then V is the solution of

$

&

%

max
V PRnˆK

Tr
`

V JXXJV
˘

s.t. V JV “ IK

. (7.4)

As a consequence, V is obtained by stacking the K eigenvectors associated to the K largest eigenvalues

of XXJ. Since we want to show that V “ XPJ, it is sufficient to show that if u is an eigenvector of

XJX associated to the eigenvalue λ, then v “ Xu is an eigenvector of XXJ associated to the same

eigenvalue λ. This result is trivial, since

XJXu “ λu ùñ
`

XXJ
˘

Xu “ λXu.

Proposition 7.2.1 has the merit to present a different representation of a MILP, not as a weighted

graph but as a scatter of points assumed to live in an Euclidean space. However, a disadvantage of

this representation is that incorporating LP information in the embedding is less straightforward.

7.3 Experiments

We ran experiments on the influence graphs presented above. To avoid the open question of

selecting the pertinent heuristic along the Branch and Bound tree, we only use our heuristic at the

root node. Hence the procedure is as previously illustrated in Figure 7.2:

1. At the root node, compute the influence graph.

2. For a given K, compute the ordered set SK .

3. On each branch, branch successively on each variables in SK .
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The averaged performances on 500 instances of microgrid and hydro problems are available in

Table 7.1. More detailed results are presented in Figure 7.3. The first point that we highlight is that

we did not observe any hierarchy in the performances obtained for each graph. However, the problem

considered has a huge impact on the heuristic’s performance. This illustrates the fact that our graphs

do not fully model the influence that branching may have on each variable. For instance, if we con-

sider two binary variables, the two constraints xi ` xj “ 1 and xi ` xj ď 2 are equally considered in

binary_graph and base_graph, which can heavily pollute the modeling.

Except for micro_asym_T24, the proposed heuristic is all the more efficient as the instances are diffi-

cult to solve for CPLEX. This is a rather encouraging result. Naturally, there is not much one can do to

downsize already small trees. However, the fact that the heuristic performs relatively well on difficult

instances seems to advocate that it allows to take advantage of the problem’s structure. This is sup-

ported by the fact that the best value of K for each graph is generally higher when the performances

on the problem are good.

The results presented here seem to advocate that MILP instances can be represented by graphs.

Actually, the interest in using graphs and especially graph neural networks to encode combinatorial

tasks has now been identified by the community. A recent survey on the use of such graph neural

networks for combinatorial tasks can be found in [69].

CPLEX binary count bin_dual dual

micro_asym_T12 434.3 -93.7 (K=2) -74.2 (K=2) -101.2 (K=5) -103.6 (K=4)
micro_bal_T12 329.8 -6.9 (K=1) +21.2 (K=4) +1.2 (K=1) -0.7 (K=1)
micro_asym_T24 1325.8 -12.6 (K=1) +142.7 (K=2) +21.9 (K=1) -26.5 (K=1)
micro_bal_T24 13474.9 -6525.1 (K=5) -5625.8 (K=4) -5530.4 (K=4) -3765.7 (K=5)
hydro_fix_2 446.0 +37.4 (K=1) +37.9 (K=1) +35.1 (K=1) +37.6 (K=1)
hydro_var_2 1628.6 -261.5 (K=3) -257.4 (K=3) -108.0 (K=3) -265.7 (K=5)
hydro_var_3 28678.8 -10728.2 (K = 2) -12786.3 (K = 1) -8748.5 (K = 1) -9020.1 (K = 1)

Table 7.1: Average tree size difference between graph heuristics and CPLEX. For each problem, the
best value of K is considered for each heuristic.
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(a) micro_asym_T12 (b) micro_bal_T12

(c) micro_asym_T24 (d) micro_bal_T24

(e) hydro_fix_2 (f) hydro_var_2

(g) hydro_var_3

Figure 7.3: Average tree size difference between graph heuristics and CPLEX, displayed per quantile of
the CPLEX’s distribution. Each curve represents a pair (influence graph, K). We do not identify each
graph as no pattern emerges.
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CHAPTER 8. A DECOMPOSITION-COORDINATION APPROACH

Solving MILPs can turn out to be prohibitively computationally expensive. Decomposition meth-

ods may be used to leverage the structure of a particular problem, hence alleviating the computational

burden. In this chapter, we introduce a decomposition-coordination approach designed to address

problems with specific structure. This structure may be known a priori or discovered through Spec-

tral Clustering [101] on the primal graph.

First, Section 8.1 details the specific structure to be leveraged in this chapter and introduce the reader

with the Relax and Fix procedure. A parallel is drawn with Lagrangian Decomposition to introduce

the philosophy of our approach, detailed in Section 8.2. Finally, Section 8.3 reports some experimental

results.

8.1 Decoupling problems

8.1.1 Setting

Before going through the method, let us specify the scope of problems we are interested in and, at

the same time, some notations which will be useful in the remainder.

The problems considered in this document, as presented in Chapter 3, can be seen as the juxtaposition

of dependent subproblems, linked through constraints involving a set of coupling variables.

Mathematically, this structure is reflected by a block-diagonal constraint matrix, as represented in

Figure 8.1. Formally, such problems can be written as

p :

$

’

’

’

’

’

&

’

’

’

’

’

%

max
pxGk q

k“1...K
,xC

K
ÿ

k“1
fJ

Gk
xGk

` fJ
C xC

s.t. AGk
rxGk

xCs
J

ď bGk
, k P t1, ..., Ku

xGk
P XGk

, xC P XC , k P t1, ..., Ku

(8.1)

or, in a more specific case,

p :

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

max
pxGk q

k“1...K
,pxCk q

k“1...K´1

K
ÿ

k“1
fJ

Gk
xGk

` fJ
Ck

xCk

s.t. AGk

“

xGk
xGk`1 xCk

‰J
ď bGk

, k P t1, ..., K ´ 1u

AGK
rxGK

s
J

ď bGK

xGk
P XGk

, k P t1, ..., Ku

xCk
P XCk

, k P t1, ..., K ´ 1u

(8.2)
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where XGk
defines the integer constraints for the set of variables Gk: XGk

“ RnGk
´|BGk | ˆ t0, 1u|BGk |

with nGk
the number of variables belonging to block Gk and Bk the indices of integer variables in this

same block. The variables xC or pxCk
q
K
k“1 in problem (8.2) are the so-called coupling variables. As an

example, when a complex system is to be optimized once for multiple time steps, blocks may naturally

be formed by regrouping the variables corresponding to the same time step. The coupling variables

are in this case the variables appearing in the constraints which link the different time steps.

The methodology presented in this Section is inspired by these structures, but does not strictly require

them to be applied.

G1

G2

G3

C

(a) The coupling variables tie the
blocks together, general case (8.1)

G1

G2

G3

C1

C2

(b) The coupling variables tie consecu-
tive blocks together, specific case (8.2)

Figure 8.1: Structures of interest in the constraint matrices of the considered problems. Case 8.1b is
a specific case of 8.1a.

We write S the feasible set of p and P the polytope corresponding to the feasible set of the linear

relaxation of p. xC are seen here as complicating variables, in the sense that, if they were fixed, the

problem would decouple as defined below.

Definition 8.1.1. We say that a MILP decouples if its feasible set S can be rewritten as a cartesian

product S “ bK
k“1Sk with K ą 1.

We call decomposition an ordered partition of the index set and we say that a decomposition G “

tGku
K
k“1 decouples a MILP if its feasible set can be rewritten as

S “ tx “ rxG1 ... xGK
s , xGk

P Sk @k P t1, ..., Kuu.

The principal interest of a decoupling decomposition is that we have the equivalence between the
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two problems max
xPbK

k“1Sk

fJx and
řK

k“1 max
xGk

PSk

fJ
Gk

xGk
.

The challenge addressed in the following is to take advantage of the structure exhibited in Equa-

tion (8.1) to heuristically solve decoupled sub-problems, in ways which do not harm too much the

objective function. This comes with coordination and monitoring some trade-off between the granu-

larity of the decomposition and the number of processed nodes.

8.1.2 Relax and Fix

For the sake of convenience, we introduce the notation ρ pxI1 |xI2 “ yq with y P R|I2|, referring to

the problem p while adding the constraint xI2 “ y for some index set I2 and relaxing the integrity

constraints on any variable whose index does not belong to some index set I1:

ρ pxI1 |xI2 “ yq :

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

max
pxGiqi“1,...,K

xC

K
ÿ

i“1
fJ

Gi
xGi ` fJ

C xC

s.t. x P P

xI2 “ y

xI1 P t0, 1u
|I1|

(8.3)

ρ pxI1q will refer to the linear relaxation of p where only the binary variables in I1 are not relaxed

and ρ p.|xI2 “ yq the linear relaxation of p with the additional constraint xI2 “ y. This constraint is

perceived here as a collection of individual constraints, and the reader should not be surprised to see

notations such as ρ p.|xI2 “ y2, xI1 “ y1q or again ρ p.| txI2 “ y2u Y txI1 “ y1uq.

The Relax and Fix procedure (RF) is then a natural heuristic for finding a solution associated with,

hopefully, a good lower bound. Algorithm 9 presents the basic RF procedure applied to p with any

decomposition G “ tGkuK
k“1 which partitions the integer variables set into disjunctive sets tBkuK

k“1.

By convention, we write x˚ppq the optimal solution of a problem p obtained by any given method, and

z˚ppq its objective value, with z˚ppq “ ´8 if p is not feasible.
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Algorithm 9 Relax-and-Fix: RF pp, Gq

Input:
A decomposition tGkuK

k“1 for a problem p with tBkuK
k“1 its associated integer sets.

Initialization:
xp1q Ð x˚ pρ pxB1qq

zp1q Ð z˚ pρ pxB1qq

Procedure:
for k in 2...K:

zpkq Ð z˚

ˆ

ρ

ˆ

xBk
|

!

xBj “ x
pjq

Bj

)k´1

j“1

̇̇

if zpkq “ ´8:
Return:

z˚
RF ” ´8 and x˚

RF ” nan

else:

xpkq Ð x˚

ˆ

ρ

ˆ

xBk
|

!

xBj “ x
pjq

Bj

)k´1

j“1

̇̇

end if
end for

Return:
z˚

RF ” zpKq and x˚
RF ” xpKq.

A usual variant of RF is obtained by fixing only a subset of the integer variables of each block.

Although it increases the odds of obtaining a feasible solution, it requires the selection of a relevant

subset in each block, which is an open question (see for instance [102]). Note that this could be an

opportunity for machine learning, but this axis is not developed here.

Considering the standard RF procedure as described in Algorithm 9, it provides a lower bound for p

and turns out to reach optimality when the used decomposition decouples p. These points are stated

in the following two propositions.

Proposition 8.1.1. Let z˚ be the optimal value of p. If zp1q ą ´8 , z˚
RF ď z˚ ď zp1q holds.

Proof . Let S and S1 be the feasible sets of respectively p and ρ pxB1q. If zp1q ą ´8, S1 is non-

empty. As ρ pxB1q is a relaxation of p, the two problems share the same objective function and S Ď S1,

which implies zp1q ě z˚. Conversely, with Sk the feasible set of ρ

ˆ

xBk
|

!

xBj “ x
pjq

Bj

)k´1

j“1

̇

, we have

Sk “

"

x P S |

!

xBj “ x
pjq

Bj

)k´1

j“1

*

ùñ Sk Ď S ùñ z˚ ě z˚
RF .

Proposition 8.1.2. When a problem p decouples, a decomposition G exists such that RF pp, Gq is optimal.
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Proof . Let S be the feasible set for p and G “ tGku
K
k“1 be a decoupling decomposition such that

S “ bK
k“1SGk

and PGk
is the set SGk

without integrity constraints. Considering the case K “ 2 and

only considering bounded sets, the RF problem for p can be rewritten as

max
xG2 PSG2

"

fJ
G2xG2 ` max

xG1 PSG1 ,yPPG2

␣

fJ
G1xG1 ` fJ

G2y
(

´ fJ
G2 ỹ

*

with ỹ the solution for group G2 in the inner problem. G decouples the inner problem when it decouples

p, therefore it is equivalent to

max
xG2 PSG2

"

fJ
G2xG2 ` max

xG1 PSG1

␣

fJ
G1xG1

(

` fJ
G2 ỹ ´ fJ

G2 ỹ

*

ðñ max
xG2 PSG2

"

fJ
G2xG2 ` max

xG1 PSG1

␣

fJ
G1xG1

(

*

ðñ max
xG2 PSG2

␣

fJ
G2xG2

(

` max
xG1 PSG1

␣

fJ
G1xG1

(

ðñ max
xPS

␣

fJ
G1xG1 ` fJ

G2xG2

(

(as G decouples p)

The result can be extended to any K ą 2 by induction.

8.1.3 Parallel with Lagrangian Decomposition

In the following, we introduce a link between Relax and Fix and a constrained version of Lagrangian

Decomposition (LD [103]), which will help us to introduce the philosophy of our methodology. We

take K “ 2 for the sake of conciseness.

Without assuming any special structure, any problem p can always be rewritten as

p :

$

&

%

max
x

fJx

s.t. x P S1 X S2
(8.4)

with Sk “ tx P P | xGk
P XGk

u for k “ 1, 2 with tG1, G2u a partition of the index set. The Lagrangian

decomposition on the two sets S1, S2 comes down to solving the problem

pLDq : min
λPΛ”Rn

¨

˝

$

&

%

max
x

pf ´ λqJx

s.t. x P S1
`

$

&

%

max
x

λJx

s.t. x P S2

˛

‚

It is straightforward to see that LD provides an upper bound for z˚ppq. Let us assume that λ exists such

that z˚
`␣

maxxpf ´ λqJx | x P S1
(˘

`z˚
`␣

maxx λJx | x P S2
(˘

ă z˚
`␣

maxx fJx | x P S1 X S2
(˘

. Tak-

ing x˚ the solution of the right-hand-side problem and acknowledging that x˚ P S1 X S2, we obtain
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the contradiction pf ´ λqJx˚ ` λJx˚ ă fJx˚.

Note that the set Λ “ Rn can be safely restricted to Λ “ tλ P Rn, λ ě 0u.

Lagrangian decomposition has two main drawbacks. First, it gives no guarantee of finding an

integer solution satisfying both S1 and S2, it only aims at providing an upper bound for the solution

in S. Second, the number of multipliers (the dimension of λ, n here) can be large enough to make the

search over λ prohibitive.

In this context, Relax and Fix may appear as a way of tackling heuristically the first issue. Writing

p1 :
␣

maxx fJx | x P S1
(

, RF can be formulated as

0 ˆ

$

&

%

max
x

1
2fJx

s.t. x P S1

` 2 ˆ

$

’

’

’

’

&

’

’

’

’

%

max
x

1
2fJx

s.t. xB1 “ x˚pp1qB1

x P S2

(8.5)

They are three differences compared with Lagrangian decomposition. First, the search for λ over Rn

is discarded by considering only the case λ “
f
2 (or more generally λ “ αf , α ą 0). Second, the

constraint xB1 “ x˚pp1qB1 is added to enforce the feasibility of the potential solution. Last, the two

problems are weighted so as to give all the weight to the second problem. Note that the feasibility

constraint on its own already invalids the upper bound property.

We see through this comparison that Relax and Fix is a very drastic way to obtain a lower bound,

especially by heavily restricting the search over the set of multipliers λ. Besides, one has no guarantee

of actually finding such lower bound, as x˚pp1qG1 may not be compatible with S2. Therefore, such

approach may not be efficient in many cases. In the following, we investigate a Relax and Fix scheme

similar to Equation (8.5) but using a less restrictive multiplier set. The multipliers are seen as a

potential way of guiding the solution of the first problem towards the optimal solution, giving rise to

the optimization problem

max
λPΛ

¨

˚

˚

˚

˝

0 ˆ

$

&

%

max
x

pf ´ λqJx

s.t. x P S1
` 1 ˆ

$

’

’

’

&

’

’

’

%

max
x

fJx

s.t. xB1 “ x˚ pp1pλqqB1

x P S2

˛

‹

‹

‹

‚

(8.6)

where p1pλq refers to the first inner problem for a given value of λ. As stated in Proposition 8.1.3,

this is equivalent to p when Λ “ Rn.
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Lemma 8.1.1. Let x P t0, 1u
n

ˆ Rm and S “
␣

xpjq P r0, 1s
n(

j“1,...,q
ˆ F with F some countable and

finite set in Rm, then x P convpSq implies that an extreme point y of convpSq exists such that y:n “ x:n

where x:n refers to the first n coordinates of x.

Proof of Lemma 8.1.1. Let us consider wlog that x “
řq

j“1 λpjqypjq with λpjq P p0, 1s,
řq

j“1 λpjq ď 1,

and ypjq P EpSq for any j P t1, . . . , qu with EpSq the set of extreme points of convpSq and show that j

exists such that y
pjq
:n “ x:n.

Considering the k-th coordinate with k ď n:

1. if xk “ 1, take i P t1, . . . , qu, then 1 “ λpiqy
piq
k `

ř

j‰i λpjqy
pjq

k ùñ λpiqy
piq
k “ 1 ´

ř

j‰i λpjqy
pjq

k .

Besides, y
piq
k ą 0 as otherwise we would have 1 “

ř

j‰i λpjqy
pjq

k ùñ 1 “
ř

j‰i λpjq ùñ λpiq “ 0

which is impossible by assumption.

If y
piq
k ă 1, we then have λpiq ą 1 ´

ř

j‰i λpjqy
pjq

k ą 1 ´
ř

j‰i λpjq as y
pjq

k ď 1 for any j, hence
řq

j“1 λpjq ą 1 which is impossible. Therefore y
piq
k “ y

pjq

k “ xk “ 1 for any j “ 1, . . . , q.

2. if xk “ 0, take i P t1, . . . , qu, then 0 “
řq

j“1 λpjqy
pjq

k ě λpiqy
piq
k which implies y

piq
k “ 0. Therefore

y
piq
k “ y

pjq

k “ xk “ 0 for any j “ 1, . . . , q.

Proposition 8.1.3. Problems (8.6) and p as defined in (8.4) are equivalent when Λ “ Rn.

Proof . Let us denote the two inner problems in program (8.6) p1pλq and p2pλq so that it can be

rewritten as maxλPRn t0 ˆ z˚ pp1pλqq ` 1 ˆ z˚ pp2pλqqu.

First, we know that problem (8.6) yields a lower bound for p as the feasible set of p2pλq is a subset of

S for any λ P Rn. Let us show that a specific value λ˚ gives an optimal solution.

By construction, x˚ P S1 so we also have x˚ P convpS1q. In other words, x˚ is a convex combination of

the extreme points EpS1q of convpS1q. Lemma 8.1.1 implies that EpS1q X
␣

x P Rn | xB1 “ x˚
B1

(

‰ H.

In that case, taking λ˚ such that λ˚
j “ 1 (resp. λ˚

j “ ´1q if x˚
j “ 1 (resp. x˚

j “ 0) for any j in B1 and

0 elsewhere necessarily gives x˚ pp1pλ˚qqB1
“ x˚

B1
. As a consequence, x˚ pp2pλ˚qq “ x˚ by construction.

Combining Relax and Fix and Lagrangian decomposition, we obtained an equivalent formulation

of any MILP which is decomposed in two subproblems, supposed to be easier to solve than p. However,
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the cost of such approach is that one has to search over the multipliers space Λ to guarantee optimality,

which is in general a very high cost to pay. In the following, we derive an approach to reduce such

search in our setting of nearly decoupled problems.

8.2 Decouple, Relax and Fix

8.2.1 The generic methodology

Taking as starting point the problem (8.6), we aim at reducing the search space Λ to a finite set

of interesting points, if possible countable with low cardinality. This would allow us to perform a full

exploration of this set, hence avoiding to rely on methods such as gradient descent, the efficiency of

which may be uncertain on high dimensional spaces.

We consider in the following with no loss of generality the case of a problem p formulated as (8.1)

which we can write as

p :

$

’

’

’

’

’

&

’

’

’

’

’

%

max
pxGk q

k“1...K
,xC

K
ÿ

k“1
fJ

Gk
xGk

` fJ
C xC

s.t. xGk
P SkpxCq “ PGk

pxCq X XGk

xC P XC

(8.7)

with PGk
pxCq “

!

x P R|Gk| | AGk
rxGk

xCs
J

ď bGk

)

.

The challenge addressed in the following is that of reducing the initial search space Λ “ Rn while

keeping the solution optimal, or at least not decreasing it too much. To this end, we switch the lens

used so far and, rather than using multipliers to guide the first inner problem toward the optimal

solution, we will directly search over the variables’ domain. We introduce in Proposition 8.2.1 the

generic formulation of the program we will consider in the remainder. Named Decouple, Relax and

Fix (DRF ), this program is designed to be equivalent to the initial problem p due to the structure of

p.

Proposition 8.2.1. When considering K “ 2, problem p as defined equivalently in Equations (8.7)
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and (8.6) is equivalent to the Decouple, Relax and Fix problem (DRF ):

pDRF q : max
xcPXC

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 ˆ

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

max
x

fJx

s.t. xC “ xc

xG2 P PG2pxcq

xG1 P S1pxcq

` 1 ˆ

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

max
x

fJx

s.t. xB1 “ x˚pp1qB1

xC “ xc

xG2 P S2pxcq

˛

‹

‹

‹

‹

‹

‹

‹

‚

(8.8)

Proof . Let us denote p1pxcq and p2pxcq the two inner problems in DRF so that it can be rewritten

as maxxcPXC t0 ˆ z˚ pp1pxcqq ` 1 ˆ z˚ pp2pxcqqu.

First, we know that DRF yields a lower bound for p as the feasible set of p2pxcq is a subset of S for

any xc P XC. Let us show that if we take xc “ x˚
C, then pDRF q yields an optimal solution of p with

x˚ any optimal solution for p.

When considering a fixed value xc for the coupling variables, p1pxcq can be rewritten as

maxxG1 ,xG2

␣

fJ
G1

xG1 ` fJ
G2

xG2 ` fJ
C xc | rxG1 xG2s P S1pxcq ˆ PG2pxcq

(

and p as

maxxG1 ,xG2

␣

fJ
G1

xG1 ` fJ
G2

xG2 ` fJ
C xc | rxG1 xG2s P S1pxcq ˆ S2pxcq

(

.

Hence, tG1, G2u decouples these two problems, which are thus respectively equivalent to
!

fJ
C xc ` maxxG1

␣

fJ
G1

xG1 | xG1 P S1pxcq
(

` maxxG2

␣

fJ
G2

xG2 | xG2 P PG2pxcq
(

)

and
!

fJ
C xc ` maxxG1

␣

fJ
G1

xG1 | xG1 P S1pxcq
(

` maxxG2

␣

fJ
G2

xG2 | xG2 P S2pxcq
(

)

.

The two problems in xG1 are identical and thus yield solutions with equal objective values for a given

xc. Considering the value x˚
C, we obtain fJ

G1
x˚ pp1 px˚

CqqG1
“ fJ

G1
x˚

G1
and thus fJx˚ pp2 px˚

Cqq “ fJx˚

as the problem (8.7) is decoupled by tG1, G2u once the coupling variables are fixed.

The only difference with RF is the introduction of the master problem over XC , which guar-

antees the equivalence with our initial structured problem. If we write ppxcq the problem p aug-

mented with the constraint xC “ xc, DRF applied to p with the decomposition G can be written

maxxcPXC tRF pppxcq, Gqu.

To properly define a DRF procedure, one still needs to characterize the search over XC . In the fol-

lowing, we incorporate the RF procedure in a Branch and Bound algorithm on the set of coupling

variables to solve the DRF problem (8.8). For the sake of simplicity, we restrict to the cases where

the coupling variables are either binary or continuous.
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8.2.2 Decouple, Relax and Fix with binary coupling variables

From now on, the decomposition used is the one naturally induced by the formulations (8.1)

or (8.2), then RF psq will stand for RF
´

s, G “ tGku
K
k“1

¯

with s a subproblem of p as defined in

Equation (8.7). Considering the case where coupling variables are only binary, we propose in this

section an algorithm, referred to as Decouple, Relax and Fix for Binary coupling variables (DRFB)

to solve the DRF problem (8.8). The search over XC is embedded in a B&B procedure by first

branching on coupling variables and solving the decoupled sub-problems separately, as presented in

Algorithm 10. It is illustrated in Figure 8.2.

Definition 8.2.1. Decoupling tree.

We call decoupling tree the subtree rooted in p and built from branching on the set of binary coupling

variables C only. We write LC the set of leaves of such tree.

Algorithm 10 Decouple, Relax and Fix for Binary Coupling Variables (DRFB)

Branch only on binary coupling variables C to build the decoupling tree by B&B.
When a decoupling leaf s is met, set zs “ RF psq and fathom s.
Continue until the entire decoupling tree is fathomed and set LC the set of leaves.
z˚ “ maxsPLC tzsu.
Return: z˚.

ζ10 “ ρ pxB1 |xC “ 0q

ζ20 “ ρ
`

xB2 |xC “ 0, xB1 “ x˚ pζ10qB1

˘

ζ11 “ ρ pxB1 |xC “ 1q

ζ21 “ ρ
`

xB2 |xC “ 1, xB1 “ x˚ pζ11qB1

˘

p

s0

ζ10

ζ20

xC “ 0

s1

ζ11

ζ21

xC “ 1

Figure 8.2: Tree created by DRFB in case of a unique binary coupling variable for K “ 2. Red circles
represent nodes of the decoupling tree and blue triangles are rooted subproblems solved separately by
Branch and Bound.

We make here some remarks on this algorithm, which naturally stems from the use of B&B in our

setting.
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Remark 1. Optimality guarantee

When coupling variables are only binary, the problem solved by DRFB is exactly DRF , as the

feasible set XC is entirely explored unless suboptimality or infeasibility is proven. Hence DRFB is

optimal by Proposition 8.2.1.

However, it is important to note that the optimality guarantee is lost as soon as some coupling

variables are continuous. This is shown by the following counter example, with C “ t0u, G1 “ t1u,

G2 “ t2u.

p :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

max
x0,x1,x2

0.5x0 ` 2x1 ´ 2x2

s.t. x1 ` x0 ď 1

x2 ` x0 ě 0.5

px1, x2q P t0, 1u2, x0 P r0, 1s

The solution for RF pp, t1, 2uq is r0 1 1s with value 0, whereas the solution for p is r1 0 0s with value

0.5.

Remark 2. Primal bounds

The LP solution of any visited node in the whole procedure can be used for pruning. Let us exhibit

the different cases with K “ 2, taking s the subproblem associated to:

1. a node ζ1 in the decoupling tree. Any RF procedure under ζ1 only solves LP relaxations of

subproblems of s. Thus the LP solution at ζ1 is a valid upper bound to be used for pruning;

2. a node ζ2 in the second stage of a RF procedure (when k “ 2 in Algorithm 9, i.e. when

solving the second problem in the procedure, the variables of the first block being fixed), the

LP solution is valid as usual in B&B;

3. a node ζ3 in the first stage of a RF procedure. Two cases appear: either the optimal solution

of this stage is or is not to be found at a descendant node of ζ3. If it is not, it can be pruned

safely. If it is, it is enough to remark that first stage’s descendants are naturally associated to

subproblems of ζ3, but also are all nodes of the second stage.
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8.2.3 Decouple, Relax and Fix with continuous coupling variables: K “ 2

We now consider the case where the number of blocks is K “ 2 and the coupling variables are only

continuous. In this context, XC is an interval in R|C| and therefore cannot be explored exhaustively as

done previously. A natural solution for guaranteeing the optimality of the solution is to discretize the

continuous coupling variables onto a sufficiently narrow grid H Ă R|C|, which gives rise to the Decou-

ple, Relax and Fix for Continuous coupling variables (DRFCG,C), presented in Algorithm 12. In the

following, GRFG,C refers to the function defined by Algorithm 11 when applied to a problem p and a

grid H with decomposition G and coupling variables C. When the choice of a decomposition and cou-

pling variables raises no doubt, we omit it to alleviate the notations and only refer to DRFC and GRF .

Algorithm 11 Guided Relax-and-Fix (GRFG,C)

Input:
u P H, G “ tG1, G2u, C

Procedure:
z˚

GRF Ð z˚ pρ pxB1 |xC “ uqq.
if z˚

GRF “ ´8:
Return z˚

GRF

else:
x1 Ð x˚ pρ pxB1 |xC “ uqq

z˚
GRF Ð z˚

`

ρ
`

xB2 |xB1 “ x1
B1

˘˘

.
Return: z˚

GRF

end if

Algorithm 12 Decouple, Relax and Fix for Continuous Coupling Variables (DRFCG,C)

Input: H, G “ tG1, G2u, C
for u in H do:

zu
GRF Ð GRFG,Cpuq

end for
z˚ ” maxuPH zu

GRF .
Return: z˚

Such approach suffers heavily from the curse of dimensionality. If we consider a uniform grid H

of step-size L, the number of GRF evaluations becomes |H| “ L|C|. Therefore, our interest in the

following will be to reduce the decoupling grid size |H| used in DRFC. To this aim, let us exhibit

some characteristics of GRF as a function of the fixed value xC “ u.
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Sensitivity Analysis

First, let us focus on the linear relaxation ρ p.|xC “ uq of the first problem that is to be solved when

calling GRF . The consequence of modifying the constraint xC “ u is a translation of the right-hand

side, in a single or most likely multiple constraints. Sensitivity analysis in Linear Programming tells

us that the effect of such translation depends on whether the affected constraints are binding or not.

The case of a single affected constraint is simpler to interpret. If the constraint is binding, a change

in u will always (except in some degenerated cases) affect the solution of ρ p.|xC “ uq, decreasing its

value if the constraint is tightened and vice versa. If the affected constraint is non-binding, the value

may be decreased if the tightening is strong enough to make the constraint becomes binding – on the

contrary, the value is not affected if the change in u is small enough. The constraints’ translation

is linear in u, which in turn makes the function z˚ pρ p.|xC “ uqq continuous (Lipschitz continuity is

stated by Theorem 2.4 in [104]), piecewise linear and concave in u (see Proposition 2.3 in [105] and

Figure 8.4 for an illustration).

Let us see how this information can be leveraged in the context of the GRF procedure. In Algo-

rithm 11, the only effect of a change in u which matters is its impact on the integer solution of

ρ pxB1 |xC “ uq. Since the constraints translation is linear and z˚pρ pxB1 |xC “ uqq is piecewise linear

in u, the integer solution x˚pρ pxB1 |xC “ uqqB1 is piecewise constant due to the integrity constraints

(assuming the considered solver will always find the same solution in case multiple optimal solutions

exist). As a consequence, GRF puq is also piecewise constant as the second inner problem in GRF

(i.e. ρ pxB2 |xB1 “ yB1q) remains identical for two values of u which give the same integer solution

x˚pρ pxB1 |xC “ uqqB1 . This is illustrated in Figure 8.3 and a comparison with the LP case on a con-

crete example is given in Figure 8.4 for an instance of micro_asym_T12.

Note here that, contrary to what is suggested by Figure 8.3, GRF is not necessarily monotonic (see

Figure 8.4). Besides, two different plateaus may a priori have the same value and discontinuities are

not determined only by new feasible integer solutions, as detailed in the following.
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pu1q

pu2q

pu3q

pu4q

c

(a)

u

GRF

u1 u2 u3 u4

(b)

Figure 8.3: Illustration of the fact that GRF is piecewise constant. Black dots in Figure 8.3a represent
the feasible set for a maximisation problem, the objective direction being represented by the blue arrow.
The effect of changing the value of u is a translation of some linear constraints, represented by the
red lines discarding any point above. In Figure 8.3b, GRF jumps whenever a new solution induced
by the translated constraints is found.

Figure 8.4: This figure illustrates on a micro_asym_T12 instance the effect of fixing a unique continuous
coupling variable to some value u (namely the mid-horizon inventory when considering a two-block
temporal partition). LP is the value of the linear relaxation as a function of u, GRF is the value returned
by Algorithm 11 (i.e. z˚ pρ pxB2 |xB1 “ yB1qq) and GRF-cont is the value of Algorithm 11 when adding
the constraint xC “ u in the second inner problem (i.e. z˚ pρ pxB2 |xB1 “ yB1 , xC “ uqq).

Our method will rely on an exploration of a discrete subset of the space XC guided by the structure

of the GRF function. To simplify the exposition, we only consider the case of a unique continuous

coupling variable C “ t0u. If we write α, β the bounds of x0, we seek a grid H in rα, βs of limited

length which allows to find an optimal solution in DRFC. In other words, we want to guide the search
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in XC with the aim of evaluating once GRF puq P maxvPrα,βs GRF pvq while keeping low the number of

evaluations.

At this point, we acknowledge that the choice of discretizing XC may harm the quality of the solution

in some extreme cases. This is illustrated by Proposition 8.2.2, which states that some plateaus may

actually be isolated points, even when considering the interior of XC .

Proposition 8.2.2. One can build pathological cases where some plateaus of GRF measure zero. As a

consequence, discretizing XC does not guarantee to find an optimal solution through DRFC.

Proof . Let us consider the problem

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

max
x,u

x1 ` x2 ´ x3 ` x4

s.t. x1 ` x2 ` x3 ě u

x1 ` x2 ` x3 ě 4 ´ u

x4 ď u

u P r1, 3s , x P t0, 1u
4

which is decoupled by tG1 “ t1, 2, 3u , G2 “ t4uu when u is fixed. In this case, we obtain

GRF puq “

$

&

%

3 if u “ 2

2 if u P r1, 2q Y p2, 3s

Exploration of XC

In order to build a relevant grid limited in size, we take advantage of the fact that GRF is piecewise

constant on rα, βs. This structure is convenient for our case of study as, in this setting, a point of

H does not need to be evaluated as soon as another point belonging to the same plateau has already

been evaluated. Thus, the objective is to run GRF a minimal number of times per plateau. Such

methodology guarantees optimality by Proposition 8.2.3 provided GRF exhibits no isolated point.

Proposition 8.2.3. Let z˚ be the optimal value for a problem p with C “ t0u, then it exists u P rα, βs

such that GRF puq “ z˚, with XC “ rα, βs.

Proof . The problem is decoupled by tG1, G2u as soon as xC is fixed and DRFC is optimal, see Propo-

sition 8.2.1.
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If the locations of the flat regions were to be known, DRFC would be optimal using a non-uniform

grid of size N , N being the number of plateaus. As knowing the plateau locations is unlikely, our aim

is then to design a strategy for evaluating GRF on a (non-uniform) grid H whose size compares well

with respect to N .

We know by Proposition 8.2.3 that a plateau associated with an optimal integer solution for B1

exists, and this plateau is found as soon as one of its extremities is found. Our method relies on the

reasons why the discontinuities of GRF appear. GRF may jump for two reasons: the integer solution

becomes either piq infeasible or piiq sub-optimal after translating the constraints. Formally, for any

u P rα, βs, let x̄B1 “ x˚ pρ pxB1 |x0 “ uqqB1
. The first point of discontinuity of GRF at the right of u is

u ` δ for δ P p0, β ´ us, with δ “ min pδ1, δ2q and

(i) δ1 “ min
!

λ P p0, β ´ uq | Px̄B1
pu ` λq “ H

)

(ii) δ2 “ min tλ P p0, β ´ uq | Dx1 P S1pu ` λq, η px1, u ` λq ą η px̄B1 , u ` λqu

Here, Px̄B1
puq denotes the polytope of the LP ρ p.|x0 “ u, xB1 “ x̄B1q, and ηpx̄B1 , uq is the optimal

value of such LP: η px̄B1 , uqq ” z˚ pρ p.|x0 “ u, xB1 “ x̄B1qq.

We call first-order discontinuities the points satisfying piq. They are easy to exhibit, in the sense that

we only need to check if a polytope is empty or not (see Remark 3), which is negligible compared with

evaluating GRF . On the contrary, those satisfying piiq, referred to as second-order discontinuities, are

expensive to find, as they require a MILP solving.

Algorithm 13 finds first-order discontinuities and works as follows. For any given integer solution

x̄B1 of ρ pxB1 |x0 “ uq, the left and right discontinuity points are found by checking the emptiness of

Px̄B1
pvq with v moving away from u. At each discontinuity, a new integer solution is computed and

the process is iterated until no more new points are found.

If we write N1 ď N the number of plateaus exhibited by Algorithm 13, the latter performs in the

worst case N1 |H| emptiness checks and this number can be reduced to N1 log2 p|H|q using a dichotomic

search.

Note that searching for the closest discontinuity points is sufficient as dompηpx, .qq is convex (see

Proposition 8.2.4), which ensures that Px̄B1
puq cannot be empty at u “ u2 and non-empty at u “ u1
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and u “ u3 if u1 ă u2 ă u3.

Proposition 8.2.4. Let x̄B1 be a feasible integer solution for ρ pxB1q, then dompηpx̄B1 , .qq is convex.

Proof . Let Px̄B1
be the polytope of ρt.|xB1 “ x̄B1u, we must show that if η px̄B1 , uq and η px̄B1 , vq are

defined, so is η px̄B1 , τu ` p1 ´ τqvq for any τ in r0, 1s.

If η px̄B1 , uq and η px̄B1 , vq are defined, then a P Px̄B1
puq and b P Px̄B1

pvq exist. As Px̄B1
pwq “

Px̄B1
X tx P Rn | x0 “ wu for any w P rα, βs, we have y “ τa ` p1 ´ τqb P Px̄B1

by convexity

of Px̄B1
. In addition, y0 “ τa0 ` p1 ´ τqb0 “ τu ` p1 ´ τqv, i.e. y P Px̄B1

pτu ` p1 ´ τqvq “

Px̄B1
X tx P Rn | x0 “ τu ` p1 ´ τqvu, which is a bounded convex set. Thus η px̄B1 , τu ` p1 ´ τqvq is

defined.

Algorithm 13 Finding first-order discontinuities for coupling variable x0

Input:
A coupling variable x0 with domain rα, βs

Initialization:
B “ tαu, V “ H

while B ‰ H do:
Let u be an element of B and set B “ Bztuu, V “ V Y tuu

Let x “ x˚ pρ pxB1 |x0 “ uqq

Set u1 “ maxvPHXrα,uq

!

PxB1
pvq “ H

)

Ð dichotomic or linear search

if u1 is defined and u1 R B Y V :
B “ B Y tu1u

end if
Set u2 “ minvPHXpu,βs

!

PxB1
pvq “ H

)

Ð dichotomic or linear search

if u2 is defined and u2 R B Y V :
B “ B Y tu2u

end if
end while

Return: V

Remark 3. Emptiness check for polyhedra

Checking the emptiness of a polyhedron is here considered as simple in the sense that it only requires

to solve a linear program. A basic way of assessing if a polyhedron is empty is to use a variant of

Farkas’ lemma, also know as Theorem of the Alternatives: either the system Ax ď b for x P Rn

has a solution, or the system AJy “ 0, bJy ă 0 for y ě 0 has a solution. Then, assessing if the

polyhedron P “ tx P Rn | Ax ď bu is empty is done by solving the second linear system.
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Remark 4. Bound tightening

The above considerations use the bounds of the coupling variable α, β. A naive application would

be to use the bounds provided by the formulation of the considered problem. However, poor bounds

may be provided and thus mechanically increase the number of emptiness checks. In practice, we

use a bound tightening technique, known as OBBT (Optimization Based Bounds Tightening [106]).

This method consists in maximizing and minimizing the value of each variable in the linear relaxation

of the initial problem.

Remark 5. Algorithm 13 does not exhibit all first-order discontinuities

Situations may arise when a first-order discontinuity appears at an integer solution associated with

a second-order discontinuity, not found by Algorithm 13. This situation is illustrated in Figure 8.5.

u

ηpx, uq

ηpx1, .q

ηpx2, .q

ηpx3, .q

α β

Figure 8.5: Illustration of ηpx, .q functions for three optimal integer solutions x1, x2, x3. x1 and x3 are
found by Algorithm 13 along with the associated first-order discontinuities labelled by blue crosses.
However, the first-order discontinuity labelled by a red cross is not found, thus neither is x2. This is
due to the fact that the change to the plateau corresponding to x2 when moving along u is perceived
as a second-order discontinuity by the algorithm, using either x1 or x3 as a starting point.

Remark 6. Approximation

The number of emptiness checks can be reduced by considering Algorithm 14, which limits the

search of new points to the area between already found discontinuities (rather than considering the

whole grid each time).
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Algorithm 14 Approximation for Algorithm 13

Input:
A coupling variable x0 with domain rα, βs

Initialization:
B “ tαu, V “ H

while B ‰ H do:
Let u be an element of B and set B “ Bztuu, V “ V Y tuu

Let x “ x˚ pρ pxB1 |x0 “ uqq

Set v1 “ minvPH tv ą maxwPV tw ă uuu, v2 “ maxvPH tv ă minwPV tw ą uuu

if v1 is defined:
Set u1 “ maxvPHXrv1,uq tPxpvq “ Hu Ð dichotomic or linear search
if u1 is defined and u1 R B Y V :

B “ B Y tu1u

end if
end if
if v2 is defined:
Set u2 “ minvPHXrv1,uq tPxpvq “ Hu Ð dichotomic or linear search
if u2 is defined and u2 R B Y V :

B “ B Y tu2u

end if
end if

end while
Return: V

Detecting second-order discontinuities will then allow us to find the remaining discontinuities, as

it will also enable to solve the problem raised in Remark 5. However, we argue that it is not a very

concerning issue, as this type of discontinuities does not appear that often in practice compared to

first-order ones if the problem has a significant level of constraints. This intuition is confirmed on a

microgrid example in Figure 8.6.
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Figure 8.6: ηpx, uq for 250 different integer solutions of a micro_asym_T12 instance, taking the mid-
period inventory level as coupling variable.

Remark 7. ηpx, .q is concave

As suggested by Figure 8.6, ηpx, .q is concave on its domain as we show here.

We know that there exists λ ě 0 such that ηpx, uq ” maxz

␣

cJz|z P Px X tx P Rn | x0 “ uu
(

can be

rewritten as ηspx, uq “ maxz

!

cJz ´ λ px0 ´ uq
2

|z P Px

)

“ minz tfpz, uq|z P Pxu with Px a convex

set and f concave and defined over Px. Then

η px, τu1 ` p1 ´ τqu2q “ max
zPPx

f pz, τu1 ` p1 ´ τqu2q

ě f pz, τu1 ` p1 ´ τqu2q @z P Px

ě f pτz1 ` p1 ´ τqz2, τu1 ` p1 ´ τqu2q @z1, z2 P Px as Px is convex

ě τf pz1, u1q ` p1 ´ τqf pz2, u2q @z1, z2 P Px as f is concave

ě τη px, u1q ` p1 ´ τqη px, u2q

8.2.4 Generalization of DRFC to any K

We saw in the previous section that continuous coupling variables is a complication for our de-

coupling approach, as it requires to explore a continuous space when solving DRF . Thus, we resort

to approximations by considering only a finite subset of points. Similarly, DRF highly suffers from

the curse of dimensionality. Therefore, an additional approximation should be made to make DRFC

tractable when K ą 2. Concretely, we regard our problems using formulation (8.2) and only consider
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one continuous coupling variable between two consecutive blocks. The others are associated to groups

of the decomposition. Our belief is that this approximation should not be too harmful provided the

considered coupling variable is selected carefully and implies structural asymmetries.

With a slight abuse of notations, we write Ck the selected coupling variable between groups k and

k ` 1. Writing tαk, βku
K´1
k“1 the associated bounds, we then explore a subset of XC “

K´1
Ś

k“1
rαk, βks by

using a B&B-like approach, presented in Algorithm 15. It progressively solves the relaxed subprob-

lems while branching on the continuous coupling variables, as illustrated in Figure 8.7. To make the

parallel with B&B perfectly transparent, the tree nodes are here associated to relaxed subproblems

ρ

ˆ

xBk
|

!

xBj “ x
pj´1q

Bj

)k´1

j“1
, xCk

“ u

̇

where xpjq is the solution found in the ascendant node at depth j

and u is a discontinuity point found by Algorithm 14 when considering Gk as one set of a two-member

partition. We use a DFS node selection, the branching strategy being defined by the order of the de-

composition. Note here that, in the same way as DRFB, pruning by bound is performed in DRFC-K.

Algorithm 15 DRFC-KpG, C, k “ 1, z˚ “ ´8, H “ Hq

Procedure:
if k “ K:

z “ z˚ pρ pxGK
|Hqq

z˚ “ max tz, z˚u

Return: z˚

else (if k ă K):

Let G1 be the partition G1 “

!

Gk;
Ť

j‰k Gj

)

Let U be the first-order discontinuities for GRFG1,Ck

for u in U do:
Set z “ z˚ pρ pxBk

|H Y txCk
“ uuqq

if z ď z˚:
pass Ð pruning by bound or infeasibility

else:
Set xpuq “ x˚ pρ pxBk

|H Y txCk
“ uuqq

z˚
u “ DRFC-K

´

G, C, k ` 1, z˚, H Y

!

xBk
“ x

puq

Bk

)¯

end if
end for
Set z˚ P minuPU z˚

u

Return: z˚

end if
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xC1 xG1
xC2 xG2

xC3 xG3 xG4

Fixed coupling variable
at a discontinuity point

Solving the subproblem

ρ

ˆ

xBk
|

!

xBj “ x
pj´1q

Bj

)k´1

j“1
, xCk

“ u

̇

Suboptimal or infeasible
subproblem

Figure 8.7: Illustration for DRFC-K with K “ 4

8.2.5 Heuristics for decomposition

The DRF problem and its adaptations to the different cases presented above rely on a decom-

position, and so is their efficiency. Of course, the problem of finding an “optimal” decomposition is

not at stake, since the very notion of optimality is subject to debate when considering approximate

methods. Indeed, two criteria may be taken into consideration: the number of nodes and the lower

bound induced by the decomposition.

In the following, we propose heuristics for defining a decomposition which may fit the structure of

problems encountered by EDF.

8.2.5.1 Temporal decomposition

The vast majority of EDF’s MILPs carries an important temporal structure. A system, whatever

it may be (e.g. a microgrid, a nuclear plant, a hydroelectric valley, etc.), is to be optimized over

multiple time steps. In this setting, variables are often indexed by time steps and it is really natural

to associate a group of variables in a decomposition with a set of time steps.

Formally, we call temporal decomposition a decomposition G “ tGku
K
k“1 which satisfies

`

xi P Gk, xj P Gk1 , k ă k1
˘

ðñ ti ă tj

where ti refers to the time step of variable i.
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t1

Reservoir 1 Turbine 1 Reservoir 2 Turbine 2

t2

Figure 8.8: Spatial (blue dashed line) vs temporal (red dashed line) decomposition

8.2.5.2 Spatial decomposition

Sometimes, time may not be as structural as space, and using the system’s units may be more

justified than time steps. Hydroelectric valleys (see Section 3.2) is a sound example of such phe-

nomenon. Consider for simplicity the case where K “ T “ 2 with two power units (see Figure 8.8).

If one considers a temporal decomposition, many coupling variables will appear in various locations

of the valley due to the temporal inertia of the problem, specified by the water flowing and the unit

temporal constraints. In the opposite, if we consider a decomposition using the power units to define

blocks, the water flow between units account for the main coupling variables. Of course, the number

of such variables will grow as the number of considered time steps increases, and considering such a

decomposition when T is extremely high may not be wise.

In other words, time may not be considered as a relevant criterion for decomposition if it does not

create a bottleneck, allowing a single (or limited amount of) variable(s) to impact two consecutive

blocks, as illustrated in Figure 8.8. Keeping that in mind, an alternative for temporal decomposition

is spatial decomposition, which is formally a decomposition G “ tGku
K
k“1 which satisfies

`

xi P Gk, xj P Gk1 , k ‰ k1
˘

ðñ ei ‰ ej

where ei refers to the equipment associated with variable i.
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8.2.5.3 Spectral decomposition

When introducing spatial decomposition, we mentioned an intuitive criterion, similar to a “thumb

rule”, for using either temporal or spatial decomposition. In the following, we take further this idea of

selecting the decomposition which induces few and discriminating coupling variables, by casting the

decomposition process into a clustering task. In the most general case (i.e. DRFC-K), the process

to be automated is then piq build a K-partition of the index set by clustering, piiq order heuristically

this partition and piiiq select the coupling variables of interest. This is the object of Algorithm 16,

that we explain in the following.

Partitioning the index set

We can list different attributes that we may want our decomposition to have. First, as said above,

the number of coupling variables between groups should be low. Second, the groups should be of

similar size to avoid solving large subproblems. Third, we want to select coupling variables which have

a strong impact on the consecutive blocks. Such criteria are similar to those considered in the previous

chapter. As a consequence, we propose to partition the index set again by Spectral Clustering (see

Chapter 7) on a primal graph.

Selecting the coupling variables and ordering the decomposition

Let tG1, ..., GKu be the partition obtained by Spectral Clustering, we still need to extract relevant

coupling variables and order the groups. Denoting Wij the weight between variables i and j in the

considered primal graph, we define a local score

s pGk1 , Gk2q “
ÿ

iPGk1

ÿ

jPGk2

Wi,j

which quantifies the intensity of the links (in the sense of the considered primal graph) between Gk1

and Gk2 . We then define a non-oriented complete aggregated graph where vertices are associated to

the groups G1, . . . , GK , the weight of an edge between two vertices associated with Gk1 , Gk2 being

s pGk1 , Gk2q. The ordering is then obtained by finding the maximal hamiltonian chain on this graph,

and the selected coupling variable Ck1 between two consecutive groups k1, k2 is defined by

Ck1 “ arg max
iPGk1 zBk1

ÿ

jPGk2

Wij
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Note that the problem of finding a maximal hamiltonian chain is NP-hard. However, it can be solved

by complete enumeration as, in practice, K is kept low.

Algorithm 16 Spectral Decomposition

Input:
A number groups K

Procedure:
Build a primal graph of weights pWijq

n
i,j“1

Apply Spectral Clustering to obtain a partition tG1, ..., GKu

Build the aggregated graph associated to tG1, ..., GKu

Find a maximal hamiltonian chain on the aggregated graph and set tr1, ..., rKu

the indices of its nodes
Set Crk

“ arg maxiPGrk
zBrk`1

ř

jPGrk`1
Wij for k in 1, . . . , K ´ 1

Return:
G “ tGr1 , . . . , GrK u

C “ tCr1 , . . . , CrK u

Remark 8. Some remarks on the hyperparameter K

In the previous procedure, K is considered as a given hyperparameter and a trade-off actually

appears when setting its value. On the one hand, increasing the value of K allows to handle lower

subproblems. On the other hand, it also increases the search space XC , which may increase the

number of subproblems to solve and/or decrease the lower bound.

8.3 Experiments

To evaluate the DRF methodology, we compare the two variants DRFB and DRFC with RF

and CPLEX. The three decomposition methods (temporal, spatial and spectral) are tested on mi-

cro_bal_T12, micro_bal_T12, hydro_var_2, hydro_var_3 and hydro_var_4, except for the spatial

decomposition which is not used on microgrid problems, as it makes less sense than for hydro prob-

lems. In DRFC, we select a unique coupling variable and look for first-order discontinuities using a

grid of length 200. We heuristically select the coupling variable by maximizing the score

σuPrα,βs pρp.|xc “ uqq (8.9)

with αc, βc the bounds obtained by OBBT for the coupling variable c P C and σuPrα,βs pfpuqqq the

standard deviation of f values on a uniform grid over rα, βs. The idea of this heuristic is to select a
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coupling variable which has a strong influence on the objective.

Table 8.1 and Table 8.2 present the results obtained on 500 instances of each problem when follow-

ing either the order proposed in the spectral decomposition or the natural order for temporal and

spatial decompositions, i.e. solving first the subproblem associated with lower time steps or the one

associated with the upstream units. DRFB is only used with the temporal decomposition as the spa-

tial decomposition only contains continuous coupling variables in hydro problems. Likewise, spectral

decomposition may fall into the same case.

micro_bal_T12 micro_bal_T24

CPLEX (336, 0.0, 0.0 ) (13629, 0.0 , 0.0 )

RF-temporal ( 71, 0.0, -5.14) ( 726, 0.0 , -3.54)
DRFC-temporal (858, 0.0, -2.78) ( 4608, 0.0 , -1.46)
DRFB-temporal (310, 0.0, -0.8 ) ( 2678, 0.0 , -0.57)

RF-spectral ( 80, 0.0, -16.22) ( 697, 0.49, -17.78)
DRFC-spectral (928, 0.0, -14.27) ( 4872, 0.0 , -15.43)

Table 8.1: Respectively nodes, proportions of unsolved instances and relative optimality gaps on
microgrid problems. Bold characters point out the best approaches regarding the proportion of
unsolved instances, with an optimality gap lower than 5%. K “ 2.

hydro_var_2 hydro_var_3 hydro_var_4

CPLEX (1650, 0.0, 0.0 ) ( 28679, 0.0, 0.0 ) (46339, 0.0, 0.0 )

RF-temporal ( 100, 5.4, -0.79) ( 501, 2.6, -0.62) ( 592, 10.6, -0.54)
DRFC-temporal ( 792, 0.0, -0.85) ( 3496, 0.2, -0.91) ( 3454, 0.0, -0.84)
DRFB-temporal ( 641, 0.8, -0.39) ( 4028, 0.4, -0.18) (18688, 1.0, -0.21)

RF-spectral ( 141, 5.0, -0.35) ( 1303, 44.2, -0.68) ( 1158, 2.6, -0.32)
DRFC-spectral ( 244, 0.0, -0.63) (222215, 11.8, -1.56) ( 8216, 0.2, -0.59)

RF-spatial ( 126, 12.4, -0.41) ( 1402, 2.4, -0.12) ( 905, 13.6, -0.3 )
DRFC-spatial ( 844, 0.0, -1.15) ( 3955, 0.0, -0.77) ( 3809, 0.6, -0.7 )

Table 8.2: Respectively nodes, proportions of unsolved instances and relative optimality gaps on
hydro problems. Bold characters points out the best approaches regarding the proportion of unsolved
instances, with an optimality gap lower than 5%. K “ 2.

We see that both DRFB and DRFC systematically decrease the proportion of unsolved instances

and the gap compared to RF . These gains are obtained at the cost of a higher number of processed

nodes, which is nonetheless much lower than the nodes processed by CPLEX on the majority of the prob-

lems considered. The temporal decomposition appears to have relatively more stable performances

than its competitors. We note that the spectral decomposition exhibits very poor performances on
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hydro_var_3 when setting K “ 2.

Generally, DRFB appears to find better solutions that DRFC. However, it fails more often to obtain

a feasible solution. This can be explained by the fact that DRFB explores the entire set of possibilities

for all the binary coupling variables, whereas DRFC only explores a subset of the possible values of

a single coupling variable. Thus, the exploration is more thorough in the DRFB case. However, the

choices made are non reversible in DRFB as we actually branch on the coupling variables, whereas

DRFC fixes their value only temporarily.

Table 8.3 presents the results for DRFC-K using the spectral and spatial decompositions, where

K is set to the number of units of the considered problem. We see that the effect is ambiguous, as

it makes the spectral decomposition more efficient on hydro_var_3 and conversely on hydro_var_4.

Otherwise, results are less convincing but still comparable to that of Table 8.2.

hydro_var_3 hydro_var_4

CPLEX (28679, 0.0, 0.0 ) (46339, 0.0, 0.0 )

RF-spectral ( 297, 2.4, -0.15) ( 421, 25.0, -0.6 )
DRFC-spectral ( 2442, 0.0, -0.51) (33351, 2.0, -1.82)

RF-spatial ( 297, 2.4, -0.15) ( 220, 24.8, -0.44)
DRFC-spatial ( 2290, 0.0, -0.82) ( 7685, 3.6, -1.7 )

Table 8.3: Respectively nodes, proportions of unsolved instances and relative optimality gaps on
hydro problems. Bold characters points out the best approaches regarding the proportion of unsolved
instances, with an optimality gap lower than 5%. K is set to the number of units in hydro problems.

Table 8.4 and Table 8.5 present the results when considering the same decomposition with a

reversed order compared with Table 8.1 and Table 8.2 respectively. We see that it yields lower per-

formances as it allows to find fewer solutions in case of hydro problems or higher gaps on microgrid,

whether we consider RF or DRF approaches. These results confirm that the order matters in such

methods, and that the natural order induced by the formulation is more relevant than the opposite.
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micro_bal_T12 micro_bal_T24

CPLEX (336, 0.0, 0.0 ) (13629, 0.0, 0.0 )

RF-temporal ( 89, 0.0, -9.85) ( 2578, 0.0, -14.76)
DRFC-temporal (861, 0.0, -6.08) ( 9144, 0.0, -7.2 )
DRFB-temporal (276, 0.0, -1.76) ( 5405, 0.0, -3.0 )

RF-spectral ( 88, 0.0, -9.85) (20143, 0.0, -14.75)
DRFC-spectral (805, 0.0, -6.03) (26560, 0.0, -7.2 )

Table 8.4: Results when using the reverse order compared to Table 8.1. K “ 2.

hydro_var_2 hydro_var_3 hydro_var_4

CPLEX (1650, 0.0, 0.0) (28679, 0.0, 0.0 ) (46339, 0.0, 0.0 )

RF-temporal ( 87, 9.2, -1.06) ( 428, 34.2, -1.2 ) ( 528, 46.2, -0.67)
DRFC-temporal (622, 0.4, -0.75) ( 4027, 0.8, -2.36) (10908, 1.8, -1.03)
DRFB-temporal (775, 1.2, -0.53) ( 5206, 3.2, -0.5 ) (76882, 2.6, -0.31)

RF-spectral (126, 12.4, -0.41) ( 1402, 2.4, -0.12) ( 1180, 13.2, -0.15)
DRFC-spectral (1266, 2.2, -0.43) ( 2539, 0.0, -0.16) ( 8549, 5.6, -0.18)

RF-spatial (141, 5.0, -0.35) ( 1303, 44.2, -0.68) ( 612, 49.4, -0.8 )
DRFC-spatial (599, 0.0, -1.14) (29497, 2.2, -2.25) (34732, 6.6, -0.99)

Table 8.5: Results when using the reverse order compared to Table 8.2. K “ 2.
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CHAPTER 9. PERTURBATION OF THE OBJECTIVE FUNCTION

This chapter presents an attempt to learn an efficient objective function’s disruption for a given

problem. First, Section 9.1 casts this objective as a black-box optimization problem and presents

some observations in that matter. The impact of a disruption on the optimal value is also questioned.

Section 9.2 presents the methodology used to solve this problem, especially using auto-encoders to

downsize the search space and therefore to handle the curse of dimensionality. Last, Section 9.3

displays some brief experiments.

9.1 Preliminaries

9.1.1 Objective - BBO

One of the identified sources of difficulties for solving MILPs by means of a B&B procedure is

the presence of symmetries, e.g. when the problem contains identical variables (same objective coef-

ficients, same constraints). As explained in [107], these symmetries considerably increase the size of

the search space. For instance, if a problem exhibits N interchangeable variables, breaking symmetry

could reduce the size of the search space by a factor N .

A variable symmetry is a permutation of the variables that preserves the solution’s value. In other

words, a bijection σ : t1, . . . , nu Ñ t1, . . . , nu on the n indices of the variables exists such that if for

every i, xi “ di is a solution, then xσpiq “ di is a solution as well with the same value [108]. At a high

level, one can then see objective disruptions as a way to produce an ordering for B&B nodes with

same initial LP values, breaking these symmetries and thus, hopefully, producing smaller B&B trees.

Perturbing the objective function has already been identified as a way to break the symmetries

of a problem. However, as pointed out in [108], it turns out to be less efficient than problem-specific

methods (see [109] for recent advances on the subject). Besides, a major inconvenient is that one

cannot know in advance if the perturbation will reduce the B&B tree or if, on the contrary, it will

increase its size. When facing repeated problems coming from an unknown distribution, one may be

tempted to learn the optimal perturbation for this distribution.

This task is naturally defined as a Black-Box Optimization (BBO) problem. Let Ω Ă Rn be the

set of admissible perturbations for a given instance distribution L (i.e. a given problem). Given a
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perturbation ε P Ω, the perturbed (or disrupted) problem refers in the following to

pε :

$

&

%

min
x

pc ` εqJx

s.t. Ax ď b ; x P t0, 1u
|J |

ˆ Rn´|J |
(9.1)

One can define a black-box evaluation function µ such that

µ :

$

&

%

Ω Ñ R

ε ÞÑ µpεq “ Ep„L rfpp, εqs

where fpp, εq can be any statistic (e.g. the number of nodes) produced on the instance p by applying

a disruption ε on the objective function. Such definition remains valid under any configuration of the

B&B solver considered. In this setting, we are looking for the optimal perturbation ε˚ which satisfies

ε˚ P arg min
εPΩ

µpεq. (BBO)

for a given distribution L. As the analytic form of µ is obviously not known, ε˚ is to be approximated

by sampling techniques.

A more ambitious objective would be to generate individual perturbations, i.e. one optimal per-

turbation per instance. This task would then formally be defined as finding an optimal generator

γ˚ : p ÞÑ γ˚ppq “ ε P Ω, which satisfies

γ˚ P arg min
γPΓ

Ep„D rf pp, γppqqs (BBO2)

where Γ is some function space mapping the set of instances to Ω.

9.1.2 Observations

Figure 9.1 shows the histogram of the averaged performance over 300 instances of micro_asym_T6

for M “ 500 normalized random perturbations, generated from a gaussian distribution. More formally,

Figure 9.1 displays the histogram of µ̂pεjq ” 1
N

řN
i“1 fppi, εjq with fpp, εq “

|T pp,εq|´|T pp,0q|
|T pp,0q| , |T pp, εq|

denoting the size of the B&B tree for the instance p perturbed with ε and N the number of instances

in the selected set. This metric will be referred as the relative performance in the following.
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(a) Averaged relative performance by
perturbation.

(b) Relative performance of the best per-
turbation by instance.

Figure 9.1: Histograms of the relative performance over 500 random perturbations on 300 instances
of the micro_asym_T6 problem. The L2 norm of the perturbations is 10´6.

Figure 9.1 lets us think that there is actually some potential in the subject. The black-box opti-

mization program (BBO) is typically addressed by designing a sampling scheme towards the left tail

of the histogram in Figure 9.1a, i.e. to design a perturbation which performs well in average. As

for (BBO), its objective is to reach similar results as those of Figure 9.1b, where the perturbation is

dependent on the instance. Although this approach seems more promising, it may be harder to obtain

a satisfying perturbation generator.

A major issue is to be tackled before using standard techniques to solve the optimization prob-

lem (BBO): the so-called curse of dimensionality. Indeed, BBO relies on sampling procedures in Ω,

which size directly depends on the number of variables n. Hence, before applying BBO techniques, it

is important to make sure that one could find a low-dimensional space where the evaluation function

is smooth.

Let us leverage the problem’s structure to visualize the black-box function in a low-dimensional space

S Ă Ω. We take the weight matrix of an influence graph as defined previously (see Chapter 7) and

draw perturbations on a η-sphere in the span of the eigenvectors associated with the two highest

eigenvalues of this graph. More concretely, let W be the weight matrix of an influence graph and

v1, v2 the two eigenvectors associated with its two highest eigenvalues. We then consider η-spheres in

the span of pv1, v2q, i.e.

Ωη “

"

ε P Rn, ε “ η
cospθqv1 ` sinpθqv2

|| cospθqv1 ` sinpθqv2||

*

.
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Figure 9.2 shows the average node reduction of such perturbations using coun_graph, for different

values of η and compare it with some drawn in a random 2D space. Two observations can be made.

First, the performance of a perturbation seems to be relatively independent of its norm, at least

in such low-dimensional spaces, which advocates for considering only spherical spaces. Second, the

evaluation function µ appears to be relatively smooth in these low-dimensional spaces, hence allowing

to encompass BBO techniques.

(a) Projection in the 2VP space (b) Projection in a 2D random space

Figure 9.2: Average nodes reduction for 2D random perturbations on the micro_asym_T6 problem

Apart from these observations, it appeared that heterogeneous characteristics influence the per-

formance of a perturbation. For instance, regarding the microgrid problem, disrupting only binary

variables seems to be more efficient than disrupting all variables or only continuous ones. Besides,

applying the same perturbation to every coefficient belonging to the same time step turned out to be

as efficient as random perturbations.

9.1.3 Is it legitimate to disrupt the objective function?

Let us restrict the perturbations to the η-sphere in Rn, that is to say Ω “ tε P Rn, ||ε|| “ ηu where

||.|| stands for the standard Euclidean norm. Such a choice is made as we consider that the tuning of

the norm of the perturbation is independent to that of its shape (here, two colinear perturbations are

said to have the same shape). In other words, we assume that if we can optimize the perturbation’s

shape for a given norm, the optimization process still stands for any desired norm. This assumption

is based on the previous observations.
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Before tackling the question of the tuning of the shape of the perturbation, it is necessary to ensure

that one can disrupt the objective function without downgrading the quality of the solution. In case

of a pure Binary Linear Problem (BLP), Propositions 9.1.1 and 9.1.2 state that the solution’s value is

kept unchanged provided that the norm of the perturbation is small enough. As a consequence, the

perturbation’s shape can be safely tuned as soon as one controls the norm of the perturbation.

Here, the original problem pP q and its perturbed counterpart pPεq are written

pP q

$

&

%

min
x

cJx

s.t. Ax ď b, x P t0, 1u
n

pPεq

$

&

%

min
x

pc ` εqJx

s.t. Ax ď b, x P t0, 1u
n

(9.2)

Proposition 9.1.1. For any BLP pP q, a positive real number η exists such that for any ε lying on the

hypercube Ωη “ tε P Rn, ||ε||8 ď ηu, the solution of pP q and that of the disrupted problem pPεq have

the same objective value in pP q.

Proof . Let us select an appropriate value for η and show the proposition by contradiction. We write

∆ “ t´1, 0, 1un, ∆` “ tδ P ∆, cJδ ą 0u and set η such that

0 ă η ă min
αP∆`

cJα

n
.

Such value trivially exists except for c “ 0, but in that case the proof is direct as any feasible solution

have the same objective value in pP q.

Let x˚ and x be two optimal solutions of respectively pP q and pPεq, and assume x ‰ x˚ so that

x “ x˚ ` δ with δ P ∆zt0u and that cJx˚ ‰ cJx.

As x˚ is the solution of pP q, we have that cJx˚ ă cJpx˚ ` δq since x˚ ` δ is a feasible solution for

both problems, so δ P ∆`. Besides, as x is the solution of pPεq, we have

pc ` εqJx ď pc ` εqJx˚

ùñ cJδ ď ´εJδ ď

⃓⃓⃓
εJδ

⃓⃓⃓
ď |ε|J |δ|

ùñ cJδ ď

n
ÿ

j“1
|εj | ď nη

which is in contradiction with the definition of η.

Proposition 9.1.2. For any BLP pP q, a positive real number η exists such that for any ε lying on the

ball Ωη “ tε P Rn, ||ε|| ď ηu, the solution of pP q and that of the disrupted problem pPεq have the same

objective value in pP q.

220



CHAPTER 9. PERTURBATION OF THE OBJECTIVE FUNCTION

Proof . The proof directly stems from Proposition 9.1.1 as a non-empty hypercube always contains a

non-empty ball.

In the following, Ωη will refer to the sphere of radius η.

Remark 1. Disrupting the constraints’ right-hand side seems less conceivable

Note that disrupting the objective function is less hazardous than disrupting the right-hand side

(rhs). Indeed, the latter may discard integer solutions and potentially heavily harm the value of the

found solution. Think for example of a constraint xi ` xj ď 1 with i, j P J : if the disrupted rhs

value was lower than 1, the solutions pxi “ 1, xj “ 0q and pxi “ 0, xj “ 1q would be removed from

the feasible set. More generally, constraints involving integer variables are often designed to be tight

so as to find earlier feasible solutions. This characteristic is hardly compatible with disruptions.

9.1.4 Choice of the statistic f

So far, we have not discussed the choice of the statistic f and only mentioned the absolute perfor-

mance, i.e. the average node reduction. Actually, this natural idea may be a poor choice. Figure 9.3

shows the histogram of the number of nodes for several instances of a given problem. Naturally, trying

to solve the problem (BBO) using the absolute performance would lead to overfitting to the training

set, as the few difficult instances (right tail) are the one with the highest potential decrease. An alter-

native is to consider the relative decrease as statistic of interest fpp, εq “
|T pp,εq|´|T pp,0q|

|T pp,0q| . It appears to

be a more robust measure of performance, as it gives more weight to the easier instances, which are

more numerous thus more statistically significant. However, it is important to acknowledge that this

measure does not fully reflect the objective pursued in the rest of this document.

Another approach would be to consider the hardest instances as outliers and discard them from the

analysis. Again, it does not seem satisfying in our context.
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Figure 9.3: Histogram of the number of nodes without perturbation for 500 instances of the mi-

cro_asym_T6 problem.

9.2 Dimension reduction and surrogate models

9.2.1 BBO with dimension reduction

BBO aims at finding a minimum of a black-box function, without any assumption on such function.

A plethora of methodologies have been introduced on this matter (see for instance [110, 111, 112]), and

we restrict ourselves to those designed to handle the case of expensive functions. In a BBO setting, we

call expensive a black-box function which requires many resources (i.e. time) to be evaluated. This

is the case of the performance as defined above, as it requires to solve as many MILPs as the size of

the training set. BBO usually works by sampling and evaluating in an iterative manner new points

in the search space. The difficulty of the task is to design an efficient sampling procedure, allowing

to hopefully find the optimum in few iterations. In this context, one of the most used strategies is to

use surrogate models and merit functions to guide the exploration of the search space. Let us precise

these notions.

A surrogate model is a predictor h : Ω Ñ R of the black-box evaluation function µ. This predic-

tor allows to make fast approximations of the black-box function and thus to reduce the number of

expensive calls. At each iteration, new points are sampled and evaluated by the black-box function

µ. This sampling is usually performed through the use of a merit function ν : Ω Ñ R, which gives a

score to any new point using its expected performance based on the surrogate model h. Usually, merit

functions define an exploration-exploitation trade-off, arbitrating between sampling promising points

and exploring new areas of the search space. Note here the parallel with RL, where the same trade-off
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appears (see [113] for a parallel between the two approaches).

Algorithm 17 presents a generic iterative procedure for performing BBO in the context of pro-

gram (BBO).

Algorithm 17 BBO - Generic

Input:
µ, ν, h : Ω Ñ R
pεi, µpεiqq

n0
i“1

Procedure:
for t in 0, . . . , T ´ 1 do:
Calibrate h using pεi, µpεiqq

nt
i“1

Sample N new points pεiq
nt`1“nt`N
i“nt`1 in Ω using ν and h

Compute the evaluations of the new sampled points pµpεiqq
nt`1
i“nt`1

end for
Return:
The best ε obtained.

BBO techniques suffer from the curse of dimensionality as sampling must be performed in the search

space Ω. To overcome this issue, we opted for projecting the perturbations into a low-dimensional and

structured space S through a projection (or encoding) function ϕ

ϕ :

$

&

%

Ω Ñ S

ε ÞÑ ϕpεq “ u

Assuming that this projection admits a decoding function ϕ´, the sampling is to be performed in the

low-dimensional space S to mitigate the curse of dimensionality. Algorithm 18 presents the procedure

we use for performing BBO with dimension reduction.
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Algorithm 18 BBO with dimension reduction - Generic

Input:
µ, ν, h : S Ñ R
ϕ : Ω Ñ S, ϕ´ : S Ñ Ω
pεi, µpεiqq

n0
i“1

Procedure:
for t in 0, . . . , T ´ 1 do:
Calibrate h using pϕ pεiq , µpεiqq

nt
i“1

Update ϕ and ϕ´ if needed
Sample N new points puiq

nt`1“nt`N
i“nt`1 in S using ν and h and compute the

corresponding perturbations pεi “ ϕ´puiqq
nt`1
i“nt`1

Compute the evaluations of the new sampled points pµpεiqq
nt`1
i“nt`1

end for
Return:
The best ε obtained.

In the following, we explore the use of auto-encoders to perform this embedding in a low-dimensional

space.

9.2.2 Supervised auto-encoder

First, we implemented a Supervised Auto-Encoder (SAE [114]), which is an auto-encoder with the

addition of a supervised loss on the representation layer. As shown in Figure 9.4a, SAE is made of an

encoding function ϕ, its decoding counterpart ϕ´ and a predictor in the encoding space h. The two

losses governing SAE are the supervised loss (ls) as well as the classical reconstruction error (lr)

$

&

%

ls ph, ϕq “ Eε„ρ

“

||ph ˝ ϕq pεq ´ µpεq||22
‰

lr
`

ϕ, ϕ´
˘

“ Eε„ρ

“

||
`

ϕ ˝ ϕ´
˘

pεq ´ ε||22
‰

(SAE)

with ρ the distribution of the so far sampled perturbations. Thus, the calibration step in Algorithm 18

comes down to fitting the SAE model through the losses in equation (SAE).

One may wonder if the reconstruction loss of (SAE), i.e. the Euclidean distance between a pertur-

bation and its reconstruction, is appropriate to our application. Implicitly, it means that it matters to

reconstruct the perturbation in each of its coordinates. This makes sense in many applications: for in-

stance in information retrieval or data compression, the only purpose of the encoding is to account for

the variations of the data. This is not the case in our application. As stated in Algorithm 18, the BBO
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procedure with Dimension Reduction will require to sample in the encoding space S some points u

with expected high performance and, then, decode these new points to obtain valid perturbations with

the same expected performance. As a consequence, we rather care about ||ph ˝ ϕ ˝ ϕ´q puq ´ hpuq||22,

as h˝ϕ predicts the performance of the decoded perturbation ϕ´puq. Indeed, as the black-box function

may not be smooth in Ω, the distance between perturbations and their images is not so relevant. On

the contrary, one wish to ensure that, when sampling points in S, the decoded perturbation performs

similarly as is expected for the encoded sample. Nonetheless, such metric contains relatively little

information and does not really help to build a rich encoding. Actually, as h will be kept linear, we

use the richer metric in the encoding space ||pϕ ˝ ϕ´q puq ´ u||22.

Using this metric, we define a new neural network architecture, SAEL (for Supervised Auto-

Encoder Looped), specially designed for our BBO task. The architecture is presented in Figure 9.4b

and the losses governing the training are

$

&

%

ls ph, ϕq “ Eε„ρ

“

||ph ˝ ϕq pεq ´ µpεq||22
‰

lr
`

ϕ, ϕ´
˘

“ Eε„ρ

“

||
`

ϕ ˝ ϕ´ ˝ ϕ
˘

pεq ´ ϕ pεq||22
‰

. (SAEL)

ϕ ϕ´

h

(a) SAE

ϕ ϕ´

h

ϕ

(b) SAEL

Figure 9.4: Neural Network Architectures. The orange layers are output layers. In SAE, the supervised
loss are backpropagated through h and ϕ, while the reconstruction information is sent through ϕ´

and ϕ. In SAEL, the difference lies in the fact that the reconstruction loss is backpropagated through
ϕ, ϕ´ and again ϕ.
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9.3 Experiments

First and foremost, we investigate the coherence of the proposed models. Figure 9.5 and Figure 9.6

show the projections as well as the predicted performance for SAE and SAEL on a set of random pertur-

bations. Figure 9.7 is the equivalent when using the less informative metric ||ph ˝ ϕ ˝ ϕ´q puq ´ hpuq||22

for the reconstruction loss. The colors represent the actual performance µ of these perturbations.

Figures 9.5a, 9.6a and 9.7a show the projections in a 2D space: u “ pu1, u2q “ ϕpεq. Thus, we expect

to observe a colour gradient as an illustration of the appropriate structure of the embedding space.

In Figures 9.5b, 9.6b and 9.7b, the “looped” projections pϕ ˝ ϕ´ ˝ ϕq pεq are represented. These projec-

tions are expected to be similar to the basic projections ϕpεq displayed in the previous figures. Indeed,

after sampling in the 2D space S, the actual perturbations are obtained by applying ϕ´. But the only

way to ensure that these decoded new points are consistent with their expected performance estimated

by h in S is to project them again in S, as it is the space in which the evaluation is smooth.

Pursuing the same objective, Figures 9.5c, 9.6c and 9.7c display the expected performance of the per-

turbations ph ˝ ϕq pεq and their “looped” counterpart ph ˝ ϕ ˝ ϕ´ ˝ ϕq pεq. We thus expect to see points

on the first bisector.

As expected, we can see that SAEL is more coherent than SAE, both in term of encoding reconstruc-

tion and predictions’ stability. Our hope is then to produce perturbations which have the same value

as were expected for their encodings when using SAEL, hence improving the sampling efficiency in

Algorithm 18.
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(a) Encoded perturbations ϕpεq

in a 2D space.
(b) Encoded, decoded and re-
encoded perturbations pϕ ˝ ϕ´ ˝

ϕqpεq in a 2D space.

(c) Prediction’s robustness to
encoding/decoding.

Figure 9.5: Coherence of SAE.

(a) Encoded perturbations ϕpεq

in a 2D space.
(b) Encoded, decoded and re-
encoded perturbations pϕ ˝ ϕ´ ˝

ϕqpεq in a 2D space.

(c) Prediction’s robustness to
encoding/decoding.

Figure 9.6: Coherence of SAEL.

(a) Encoded perturbations ϕpεq

in a 2D space.
(b) Encoded, decoded and re-
encoded perturbations pϕ ˝ ϕ´ ˝

ϕqpεq in a 2D space.

(c) Prediction’s robustness to
encoding/decoding.

Figure 9.7: Coherence of SAEL with the less informative metric ||ph ˝ ϕ ˝ ϕ´q puq ´ hpuq||22 in the
reconstruction loss.
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Due to the computational effort of evaluating the black-box function µ, we only ran experiments

on micro_asym_T6. For sampling in the encoding space, we draw randomly points on a cartesian grid

in that space, the probability of sampling a point u on this grid being proportional to the exponential

of the expected performance hpuq. The metric used is the relative performance, and the results are

averaged over 100 independent runs of Algorithm 18 on 200 random training instances and 300 testing

sets. Figure 9.8 shows the average performance (with gaussian confidence intervals) on train and test

sets. The L2 norm of perturbations is set to 10´6.

(a) Performances on train instances for the
best perturbation found along the training
process.

(b) Results on test after 10000 samples.

Figure 9.8: Monte Carlo estimates for BBO relative performance on micro_asym_T6.

Results are difficult to analyze. Even if we observe better performances, the little improvement

obtained using SAE and SAEL compared with a random exploration questions the utility of the

methodology. In addition to the high computational time needed to evaluate the black-box function,

this explains why we did not investigate further on this approach and focused more on more promising

ones, such as reinforcement learning.

These poor performances may come from many sources, such as the sampling method, the dimension

reduction technique, or again the fact that we tested the approach on an easy-to-solve problem.
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Conclusion and perspectives

Although we principally investigated the reinforcement learning (RL) approach, this work has also

been an opportunity to consider different paradigms, such as imitation learning, clustering and black

box optimization. For each of these paradigms, the integration in the combinatorial optimization

framework, and more specifically in the Branch and Bound algorithm (B&B), has faced limitations.

Some of them has been lifted, but others remain. We take here a critical look at the different contri-

butions displayed in this document and elaborate on various perspectives for future work.

A preliminary remark

Perhaps the first observation to be made is that our committed position was to omit an important

characteristic of the industrial context related to the solving of repeated instances. In practice, a

common scenario is to face overlapping instances. For instance, one may imagine the case where a

system is optimized at time t for the period going from t to t`h, and again at time t`k for the period

from t ` k to t ` k ` h with 0 ă k ă h. In this setting, it may seem inefficient to conceal the result of

the first optimization and start the second one from scratch. For instance, one idea may be to search

for solutions of the second instance in some neighbourhood of the solution(s) found during the first

optimization. This approach, known as reoptimization, may be combined with machine learning, for

instance to guide the neighbourhood search.

Reinforcement learning for branching

As presented in this document, we rather chose to consider instances as independent outcomes

of a single random variable. In this setting, we developed a reinforcement learning methodology
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to discover strategies by trials-and-errors on training instances. To this end, the learning task of

discovering efficient B&B strategies have been cast into a Markov Decision Process (MDP). Focus is

put on discovering oracle strategies, i.e. strategies which minimize the B&B tree size. In this case,

learning sequential policies is generally not trivial, and the success of reinforcement learning methods

often lies in an informative cost (or reward) signal and a meaningful state representation. In the

context of learning the branching strategy for tree size minimization, meeting these two criteria is not

a straightforward task.

Regarding the first point, different solutions have been tested. We first introduced the notion of

h-ahead branching heuristics and tree-based transitions. Under tree-based transitions, we presented

our generic approach as a way of learning in a tractable way these new heuristics. The choice of the

cost model is often crucial in RL, and the focus is frequently put on designing heuristic intermediary

costs, which allow to limit the credit assignment problem by observing as much as possible cost

signals. However, we experimentally showed that costs based on classic branching heuristic scores

are not suitable for our task of learning oracle strategies. This observation highlights that classic

branching heuristics are based on scores which may reflect the lack of mathematical understanding

of the branching dynamics. We proposed an alternative to such heuristic cost models and proved

that solving the MDP with a unitary cost model yields an oracle strategy (i.e. a strategy which

minimizes the B&B tree size). This property is always valid under classic trajectory-based transitions

but requires a depth-first search (DFS) node selection strategy to hold under tree-based transitions.

We experimentally observed that this necessary condition is not restrictive in practice, and that

using a non-DFS node selection strategy does not harm the performances. In this setting, tree-based

transitions make the value of a state equals to the size of the subtree rooted in the corresponding node.

We observed better results under this setting, due to more informative cost signals which alleviate the

credit assignment problem inherent to classic trajectory-based transitions. Although solving the MDP

with a unitary cost model ensures to minimize the tree size, the value function exhibits a high volatility

which makes the learning task difficult. To overcome this issue, we considered a generalization of this

cost model which allows to stabilize the targets, and consequently improve the performances of the

agent.

As for the second point, we leveraged features presented in prior related works and proposed additional

features to build a meaningful state representation. However, when comparing a generic agent designed
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to perform well on the whole problem’s distribution with the idealized case of specialized agents

trained on a single instance, we see that the learnt generic strategy has difficulties to adapt to the

specifics of each instance. This observation seems to advocate for a better and unified representation

of a state in the specified setting. To obtain such unified representation, we tried to embed the

problem’s structure in the neural network architecture through constraint-wise convolutions. However,

the experiments did not met the expectations associated with this representation. Although using a

graph representation seems appealing, for instance by embedding this graph in a neural network

(see [68, 69]), our experiments in that matter have not been conclusive so far. The idea, simple to

express but more difficult to achieve in practice, is to provide the agent with the means to leverage

the structure of the considered problem, both in terms of constraints and optimal locations in the

feasible set. Through all the experiments performed, we feel that the representation of a state in the

considered MDPs is something that merits to be improved in the future.

Widening the scope to node selection

The reinforcement learning methodology proposed for discovering a branching strategy has been

adapted to the case of the node selection strategy and the complete strategy under DFS – both

branching and node selection. Under some assumptions, we proved the oracle property of an intuitive

node selection strategy, which can directly be learnt by imitation. To improve the sample efficiency

of the reinforcement learning approach, we also leveraged demonstrations from this oracle strategy to

give additional feedbacks on non-taken actions so as to augment the gradient provided to the agent.

The results obtained when learning only the node selection strategy appear to be better than those

previously observed on the branching strategy. This is due to the fact that not only the learning task

is easier (both the action and state spaces are reduced), but bad decisions are also less penalizing, the

node selection strategy being generally less important than branching.

The combination of the two strategies generates open questions, such as coordination. For instance,

we noticed that the agent was able to produce better primal integral scores when focusing only on

node selection than when learning the complete strategy. This observation suggests that the synergy

between the two policies may be improved.

Some perspectives on the reinforcement learning training process

Regarding the use of reinforcement learning for discovering B&B strategies, we already mentioned
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the need for improving the state representation and the potential coordination between multiple agents

if any. Globally, we observe that our approach struggles to scale with the size of the problem. In that

matter, one could think of different ideas to improve its scalability.

First, one could try to improve the exploration. In this work, we encompassed the use of different

experts in the exploration and/or learning phase. Another approach which has been considered is

to use sampling methods such as MCTS (Monte Carlo Tree Search [97]) to improve the quality of

the exploration. However, the experiments performed in this direction were not conclusive and may

deserve a more in-depth study. One of the main challenge faced when considering sampling techniques

in this context is the dramatically huge size of the search space.

Rather than improving its quality, an orthogonal idea is to augment the amount of resources dedicated

to the exploration. We attempted to use asynchronous methods, where parallel agents explore different

instances simultaneously, but the learning process appeared to be destabilized by this approach. So

far, we do not have insights on the causes of this phenomenon. However, this question of scaling up

the samples collection for learning deserves to be looked into much deeper, as the greatest successes

of reinforcement learning often involve a massive amount of data.

From a different perspective, it is tempting to use the strong temporal structure of the considered

problems to improve the scalability of our methodology. For instance, one may learn strategies on

low dimensional problems and marginally adapt them to bigger ones, using some kind of transfer

learning [115]. This subject has not be treated in this work but certainly merits to be looked into.

With a similar idea of starting the learning by easy tasks, one could focus first on learning strategies

at the bottom of the trees by sampling branching constraints. The number of sampled constraints

would decrease through the learning process so as to gradually consider larger trees. This approach

may seem natural, just as beginners first practice checkmates and endgames when learning to play

chess. However, different issues may appear in our setting when considering this kind of approach.

First, the sampling of the branching constraints is crucial, as the agent should learn good strategies

for states which are likely to be visited by its future versions. Besides, the scales of the target, strongly

related to the tree size in our work, will probably get wider as bigger trees are considered, which may

cause some troubles in the training process. This kind of issue was encountered for instance when

using expert’s demonstrations when learning the branching strategy.

Last, it appears naturally more complex to learn strategies at a problem level than at an instance level.
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To obtain more specialized strategies, one may consider to clusterize the instances of a problem so as

to train one agent per cluster. Of course, such idea would suffer from the classic pitfall of clustering,

which is the use of a heuristic metric to guide the clustering. In a similar way, the training process

could be focusing on a restricted number of chosen instances to decrease the variance in the samples,

then progressively enlarge the scope to the rest of the training instances.

Considering more ambitious strategies

During this thesis, the focus has principally been put on the branching strategy, as it is often

recognized as one of the most important strategies in B&B algorithms. It is legitimate to won-

der whether there is some potential in widening the scope by considering generalized branching

decisions. In our work, we designed branching policies which split some set S into the two dis-

junctive sets tx P S; xj “ 0u and tx P S; xj “ 1u when branching on variable j. When consider-

ing generalized branching strategies, child nodes can be created by general disjunctions of the form
!

x P S;
ř

jPJ ajxj ď b
)

and
!

x P S;
ř

jPJ ajxj ą b
)

(see [116]). Such method has the potential for

drastically reducing the size of the tree, but would also heavily increase the search space in our rein-

forcement learning approach. Also, errors may lead to serious increases of tree sizes. To restrict the

search, one may perhaps focus on partial assignments, guided by a predictor of optimal solutions.

Graph branching

Using a different lens, we presented a branching heuristic based on a graph representation of a MILP,

integrating the notion of variable influences. Trivially, the limitation of such approach is its heuristic

nature, not only regarding the definition of influence but also the influence maximization scheme

adopted. However, its capacity to drastically reduce the size of B&B trees for difficult instances is

interesting, and suggests that graphs are relevant tools for encoding the structure of a problem. Note

however that among the various definitions of influence experimented, there is no clear hierarchy

regarding the performances. Therefore, different types of graphs may be considered to encode this

structure, other than primal graphs – the results in [68] seem to advocate for using a bipartite graph. To

overcome the fact that using this branching heuristic may be detrimental according to the considered

instance, an option would be to learn when to use it, for instance by training a classifier (similarly to

the work of [86], where the authors train a classifier to decide whether or not a decomposition should

be used). This learning could be performed at the instance level or, more ambitiously, at the node
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level. More generally, one could consider using a pool of branching heuristics as the action space in the

reinforcement learning methods presented in this work. In a spirit similar to the approach introduced

in [74], it would allow to drastically reduce the size of the action space and thus the exploration cost.

In addition, experiments showed that one can drastically reduce the tree size only by taking control

of branching decisions at the beginning of the tree. To go further in the parallel with reinforcement

learning, one may use the methodologies presented in Part II to learn only decisions near the root

node. On the one hand, it may heavily reduce the search space and allow to consider larger problems.

On the other hand, it relies on the efficiency of the solver for any other decisions.

Decomposition-coordination by decoupling

To decrease the computational effort necessary to solve large and difficult instances, we presented a

decomposition-coordination approach using the problem’s structure. Doing so, we lose the optimality

guarantee provided by B&B. This method relies on different heuristic choices, such as the selection

of the coupling variables for which different values are to be explored. However, the choice of these

variables is crucial for the method to find a good solution if any. One may think of learning this

selection, but this task seems difficult for two reasons. First, doubts may be raised regarding the

existence of a smooth mapping (or at least suitable for learning), between instances and relevant

coupling variables. Second, two objectives have to be considered (the number of nodes and the quality

of the found solution), the trade-off between the two being arbitrary.

Disrupting the objective function

Last, we addressed the problem of disrupting the objective function so as to decrease the B&B tree

size. This approach can be thought as exploiting the structure of the problem, such as symmetries, to

provide the B&B algorithm with an ordering for nodes with initially similar LP values. The focus has

been put on the discovery of an efficient perturbation for a given problem, which produced mitigated

results. We saw that the alternative of learning a generator so as to obtain an individual perturbation

for each instance of a same problem is much more ambitious. This axis may call for additional research.

A last word

Through all the discussions and reflections carried out during this thesis, we touched on the plethora

of possible ways to leverage machine learning in a combinatorial optimization context. This emerging
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field of research has been actively developed over the past three years, and the scientific community

is now fully acknowledging its potential. Dedicated teachings, competitions, and even programming

modules [117] have recently been created, which reflects the enthusiasm around these questions. All

these initiatives promise a durable interest in the topic, with undoubtedly answers provided to the

questions raised by our work and, hopefully, new questions to come.
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Résumé substantiel

Cette thèse a pour but d’utiliser des techniques d’apprentissage automatique pour la résolution de

problèmes d’optimisation combinatoire. De par sa position de premier producteur français d’électricité,

Electricité de France (EDF) doit continuellement piloter différents sites de production, ce qui se traduit

mathématiquement par la résolution de problèmes linéaires en nombres entiers (en anglais Mixed Inte-

ger Linear Programming problems). A cet égard, EDF doit régulièrement résoudre des instances issues

de ces problèmes, définies par des données stochastiques. Actuellement, ces instances sont résolues

par un algorithme de Branch and Bound (B&B), sans tirer profit des potentielles similarités entre

l’instance courante et celles résolues par le passé. Afin de conserver la garantie d’optimalité fournie

par l’algorithme de B&B, nous nous proposons d’exploiter ces similarités pour un problème donné

et d’apprendre différentes stratégies au sein de cet algorithme, comme par exemple la stratégie de

branchement (sélection de variable) ou de sélection de nœud. Le principal critère utilisé afin d’évaluer

la performance des stratégies proposées est la taille de l’arbre de B&B généré.

L’approche majoritairement développée dans ce travail est l’utilisation d’apprentissage par renforce-

ment pour découvrir de telles stratégies par essais/erreurs sur les instances historiques. Afin de

s’adapter à l’environnement induit par l’algorithme de B&B, nous définissons un nouveau type de

transitions au sein de processus de décision markoviens (en anglaisMarkov Decision Processes, MDPs),

basées sur la structure d’arbre binaire. Par ailleurs, nous étudions différents modèles de coût au sein

de ces MDPs. Du point de vue de la minimisation de la taille des arbres de B&B, nous prouvons

l’optimalité du modèle de coût unitaire sous le modèle de transition classique ainsi que sous le modèle

de transition binaire, dans l’apprentissage non seulement de la stratégie de branchement mais égale-

ment de la stratégie de sélection de nœud. Pour autant, les expérimentations menées pour la stratégie

de branchement suggèrent qu’il peut être préférable d’incorporer un biais dans le modèle de coût afin

d’améliorer la stabilité du processus d’apprentissage. En ce qui concerne l’apprentissage de la stratégie
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de sélection de nœud, nous démontrons l’optimalité d’une stratégie explicitement définie, qui peut être

apprise plus efficacement de manière supervisée.

En plus des approches mentionnées, nous proposons une stratégie de décomposition-coordination afin

de potentiellement permettre le passage à l’échelle de l’apprentissage par renforcement sur des prob-

lèmes de plus grande dimension. Une heuristique de branchement basée sur une représentation par

graphe d’un nœud de l’arbre de B&B est également proposée. Cette représentation peut par ailleurs

être utilisée afin de guider automatiquement la décomposition précédemment mentionnée. Enfin, nous

présentons une approche dédiée à l’apprentissage de perturbations de la fonction objectif, afin notam-

ment de briser d’éventuelles sources de symétrie.

Les différentes méthodes proposées sont évaluées sur des problèmes réels, fournis par EDF. Pour chaque

problème, deux configurations sont envisagées afin de renforcer la robustesse des résultats fournis.

Les pages suivantes fournissent un résumé détaillé du contenu du présent manuscrit. La formali-

sation est restreinte afin de permettre un accès simple aux idées présentées.

Partie 1 : Introduction

Chapitre 1 : Introduction générale

Le contexte de cette thèse CIFRE est donné par Electricité de France (EDF), qui doit régulièrement

optimiser des systèmes, qu’ils soient de production, de transport, ou plus généralement d’allocation de

ressources. Un même système doit donc être optimisé de manière répétée, ce qui produit des problèmes

d’optimisation similaires en termes à la fois de structure et de dimensionnement. Pour un système

donné, les multiples instances diffèrent du fait de la variabilité des données qui les définissent. A titre

d’exemple, EDF peut être intéressée par l’optimisation journalière d’une centrale électrique. Tous les

jours, un plan de production pour cette centrale doit être défini. La réalité matérielle de la centrale

est supposée permanente, et il en est donc de même pour la structure du problème d’optimisation

sous-jacent, le nombre et type de variables ou de contraintes. Pour autant, le contexte dans lequel le

système doit être optimisé peut différer selon le jour considéré, par exemple du fait de l’évolution de

la demande, des prix, des coûts, etc. Ces données variables induisent donc des instances différentes
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d’un même problème, associé à un système physique permanent.

Concrètement, nous considérons des problèmes d’optimisation linéaire mixte en nombres entiers

(en anglais Mixed Integer Linear Programming problems, MILPs), écrits

p :

$

&

%

min
x

cJx

s.c. Ax ď b ; x P t0, 1u
|J |

ˆ Rn´|J |

avec A P Rmˆn, b P Rm, c P Rn, m le nombre de contraintes, n le nombre de variables et J l’ensemble

des indices des variables binaires.

Ces problèmes sont communément résolus à l’aide d’un algorithme de Branch and Bound (B&B), basé

sur la connaissance d’algorithmes efficaces permettant de résoudre la relaxation linéaire de p. Un al-

gorithme de B&B consiste en l’expansion d’un arbre, où les nœuds sont associés à des sous-problèmes

relâchés de l’instance initiale p. A chaque itération de l’algorithme, la politique de sélection de nœud

choisit un nœud parmi ceux n’ayant pas encore été visités. Si le sous-problème associé est infaisable

ou peut être démontré sous-optimal, le nœud est fermé et un nouveau nœud doit être exploré. Dans le

cas contraire, la politique de branchement sélectionne une variable binaire j P J et crée deux nœuds

enfants en rajoutant respectivement au sous-problème courant les contraintes xj “ 0 ou xj “ 1.

L’algorithme, illustré par la Figure ci-dessous, se termine en garantissant l’optimalité de la solution

trouvée lorsque tous les nœuds ouverts ont été visités.
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P....

P..1.

P.11.

x2 “ 1

P.01.

P101.

x1 “ 1

P001.

x1 “ 0

x2 “ 0

x3 “ 1

P..0.

P..01

x4 “ 1

P..00

x4 “ 0

x3 “ 0 Nœud visité

Nœud ouvert

Solution

Nœud infaisable

Nœud sous-optimal

Figure: Illustration d’un arbre de B&B en cours d’expansion avec t1, . . . , 4u Ď J . La stratégie de
sélection de nœud doit choisir un nœud à visiter parmi les deux nœuds ouverts. Si ce nœud ne
correspond pas à un problème infaisable ou ne peut pas être démontré sous-optimal, deux nœuds
enfants seront créés par la politique de branchement.

Actuellement, la création de l’arbre de B&B par des solveurs commerciaux est guidée par de

nombreuses stratégies heuristiques. Pour prendre en compte les similarités des différentes instances

d’un même problème, nous nous intéressons dans ce travail à la possibilité de créer de nouvelles

stratégies de B&B, efficaces pour le problème considéré. Le critère retenu pour juger de l’efficacité

d’une stratégie est la taille de l’arbre généré. C’est en effet un proxy classique du temps de calcul,

communément utilisé car indépendant de l’implémentation et plus généralement de toute considération

informatique. En considérant les instances d’un même problème comme les réalisations d’une variable

aléatoire suivant une loi inconnue L, le problème que nous chercherons à résoudre peut se formuler

comme un problème d’optimisation bôıte noire où la fonction à minimiser est

µP :

$

&

%

Π Ñ R

π ÞÑ Ep„L rµ pp, πqs

avec Π l’ensemble des stratégies de B&B d’intérêt et µ pp, πq la taille de l’arbre de B&B généré sur

l’instance p par la politique π.

Le reste du manuscrit est construit de la manière suivante. Les Chapitres 2 et 3 introduisent

les notions nécessaires pour la compréhension du document ainsi que les cas d’usage utilisés pour les

expérimentations. La Partie 2, composée des Chapitres 4, 5, et 6 présente une approche basée sur
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l’apprentissage par renforcement pour la découverte de stratégies oracles, c’est-à-dire minimisant la

taille des arbres générés. La Partie 3, quant à elle, explore différentes méthodes permettant d’exploiter

la structure des problèmes considérés et ainsi de réduire la taille des arbres de B&B.

Chapitre 2 : Background

Ce chapitre rappelle les principales notions nécessaires à la compréhension des contributions scien-

tifiques du manuscrit, issues à la fois de l’apprentissage statistique et de l’optimisation combinatoire.

Il donne également un aperçu de la littérature concernée par l’apprentissage de stratégies de B&B.

La principale approche étudiée dans la littérature consiste à apprendre des stratégies heuristiques

par imitation [63, 65, 68, 70]. L’apprentissage par imitation revient à observer les actions produites

par un expert en certains états de l’environnement considéré, et d’apprendre à les copier, par exemple

en entrâınant un classifieur. La limite intrinsèque de ces approches est donc naturellement qu’elles

n’ont pas vocation à produire des arbres de taille inférieure à ceux générés par l’expert. Par con-

séquent, nous nous tournerons plus volontiers vers de l’apprentissage par renforcement [21] (en anglais

Reinforcement Learning, RL), afin de s’affranchir des stratégies heuristiques existantes et, si possible,

de produire des politiques plus efficaces.

Le lecteur est renvoyé au manuscrit pour une introduction plus complète de l’apprentissage par

renforcement. La différence principale avec l’apprentissage par imitation réside dans le fait que l’on

n’observe pas les actions prises par un quelconque expert. A l’inverse, un modèle de coût est défini

et l’objectif de l’apprentissage est alors de trouver une politique optimale, qui permet de minimiser

les coûts associés aux actions prises dans les différents états visités. On cherchera alors à explorer

l’environnement, à collecter les différents états visités, actions prises et coûts associés afin d’apprendre

par essais/erreurs une politique visant à minimiser ces derniers.

Formalisons tout cela au moyen de l’exemple classique de l’algorithme DQN [28], basé sur l’apprentissage

de la fonction Q-valeur. Considérons un Processus de Décision Markovien (en anglais Markov Deci-

sion Process, MDP) ă S, A, T, c, γ ą avec S l’espace d’états, A l’espace d’actions, T un modèle de

transition, c un modèle de coût et γ P r0, 1s un facteur d’escompte. Une fonction valeur V π associée
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à une politique π est définie comme l’espérance de la somme escomptée des coûts futurs que l’agent

collectera en suivant la politique π depuis l’état courant st :

V πpstq “ E∆π

«

8
ÿ

k“0
γkCt`k`1|st

ff

avec ∆π la distribution des états visités en suivant π et Ct le coût observé au temps t. De manière

similaire, la fonction Q-valeur est définie comme

Qπpst, atq “ E∆π

«

8
ÿ

k“0
γkCt`k`1|st, at

ff

Avec ce cadre, nous pouvons formellement définir l’objectif de l’apprentissage par renforcement, qui

est de trouver une politique optimale π˚, i.e. une politique qui minimise la valeur de tout état:

V ˚psq “ min
πPΠ

V πpsq

Pour atteindre cet objectif, l’algorithme DQN approxime la fonction Q-valeur optimale par un réseau de

neurones Q̂p., .; θq et met à jour les poids θ de ce réseau en minimisant à chaque itération i l’équivalent

empirique de la fonction de perte

LDQN
i pθiq “ Eps,a,c,s1q„∆i

«

ˆ

c ` γ
”

min
a1

Q̂ps1, a1; θ´
i q

ı

´ Q̂ps, a; θiq

̇2
ff

avec c le coût observé depuis la paire état/action ps, aq, θ´
i une version fixée des poids mis à jour

périodiquement et ∆i la distribution de probabilité des expériences collectées dans un buffer au cours

des précédentes itérations.

Chapitre 3 : Cas d’usage

Les méthodes proposées sont évaluées sur deux problèmes fournis par EDF. Afin d’augmenter la

robustesse des expérimentations, différentes configurations sont envisagées pour chacun des deux prob-

lèmes.

Le premier problème, appelé microgrid, correspond à l’optimisation d’un réseau de chaleur et

d’électricité. L’objectif est de maximiser le profit sur le marché de l’électricité tout en satisfaisant une

demande en chaleur variable sur un horizon donné. Les moyens de production sont deux chaudières à
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gaz et une unité de cogénération, produisant simultanément de la chaleur et de l’électricité. La chaleur

produite par les trois unités peut être stockée avec perte, et la cogénération ne peut être allumée que

durant un certain temps.

La dimension du problème microgrid est définie par le nombre de pas de temps considérés. Par

ailleurs, deux configurations sont envisagées, micro_asym et micro_bal, les chaudières de la première

étant plus dissemblables que celles de la seconde. Ainsi, le degré de symétries est plus élevé dans

micro_bal.

Pour chaque configuration, les données variables sont les prix du gaz, de l’électricité et la demande en

chaleur à chaque pas de temps.

Le second problème considéré, hydro, retranscrit la gestion d’une vallée hydraulique. L’objectif

est de maximiser le profit sur différents marchés de l’électricité sur un horizon donné. L’énergie est

produite par différentes unités de production, composées de turbines, à partir du flot descendant et

contrôlé par des réservoirs.

La dimension du problème hydro est définie par le nombre d’unités de production considérées. Les

deux configurations envisagées, hydro_fix et hydro_var, diffèrent par leurs politiques de gestion des

réservoirs. Contrairement à hydro_fix, la politique de gestion du volume des réservoirs à mi-période

ainsi qu’en fin d’horizon est variable dans la configuration hydro_var. Par ailleurs, le nombre de

turbines dans chaque unité de production diffère entre les deux configurations.

Les données variables sont alors les différents prix de l’électricité et, pour la seconde configuration, les

contraintes de volume à mi-période et en fin de période.

Partie 2 : Apprentissage de stratégies oracles dans un algorithme

de B&B

Dans cette partie, nous proposons d’utiliser l’apprentissage par renforcement pour découvrir des

stratégies de branchement et de sélection de nœud efficaces au sein d’un algorithme de B&B. L’accent

est mis sur la recherche de stratégies oracles, c’est-à-dire qui minimisent la taille des arbres générés.

Nous considérons un algorithme de B&B théorique où seules les stratégies de branchement et de sélec-

tion de nœud gouvernent l’expansion de l’arbre (Algorithme 4). Les expérimentations sont effectuées
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en utilisant CPLEX, et les heuristiques de presolve et de génération de coupes sont désactivées pour

permettre une comparaison équitable des stratégies étudiées.

Chapitre 4 : Apprentissage d’une stratégie de branchement dynamique

Ce chapitre vise à définir une méthodologie permettant la découverte d’une stratégie de branche-

ment oracle. Pour ce faire, la dynamique inhérente à une telle stratégie doit être prise en compte. En

effet, il est aisé de comprendre que l’efficacité d’une décision de branchement au nœud courant dépend

des choix effectués dans le reste de l’arbre de B&B.

Processus de décision markovien – Dans un premier temps, il convient de définir un cadre permettant

l’apprentissage d’une telle stratégie. Pour ce faire, nous définissons un processus de décision markovien

(MDP) ă S, A, T, c, γ ą régissant les interactions entre la stratégie de branchement et l’algorithme

de B&B (environnement). L’espace d’états S est défini comme l’ensemble des possibles observations

effectuées au moment de prendre une décision de branchement. Les actions A sont naturellement asso-

ciées à la sélection de variables binaires (A ” J ), candidates pour le branchement. Les transitions T

sont supposées déterministes (Hypothèse 4.1.1) et peuvent être de deux ordres, trajectory-based (Déf-

inition 4.1.1) comme classiquement en RL ou tree-based (Définition 4.1.2). Les transitions tree-based

sont ici proposées afin de mieux prendre en compte la structure d’arbre binaire de l’environnement,

peu commune en RL. Le modèle de coût c reste à définir à ce stade, et le facteur d’escompte γ est un

hyperparamètre à optimiser.

Heuristique de branchement à horizon h (h´ahead branching heuristic) – En utilisant les transi-

tions tree-based, nous définissons une classe de stratégies de branchement basées sur une connaissance

du futur, c’est-à-dire des nœuds enfants créés consécutivement à une décision de branchement. No-

tamment, cette classe contient et généralise des stratégies proposées dans la littérature, comme par

exemple la stratégie de Strong Branching [51]. L’intérêt de ces stratégies est justifié par le carac-

tère dynamique de toute stratégie de branchement. Pour autant, mettre en place une heuristique de

branchement à horizon h ą 1 n’est pas réaliste, et il en est de même pour l’apprentissage supervisé

hors ligne de telles stratégies. Dès lors, une approche par renforcement est privilégiée.
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Apprentissage par renforcement avec transitions tree-based – Nous développons et étudions une

méthodologie de renforcement sous le modèle de transition tree-based déterministe proposé plus tôt.

Nous montrons notamment que l’on ne peut obtenir une politique optimale à partir de la fonction valeur

optimale, contrairement au cadre classique de l’apprentissage par renforcement (Proposition 4.1.1).

Pour autant, il est possible de redéfinir un algorithme d’itération sur les valeurs (en anglais value

iteration) afin de trouver une fonction valeur approchée V „ (Théorème 4.1.1), solution de l’équation

de programmation dynamique

V „psq “ min
jPJ

c ps, jq ` γ
”

V „ pD„
0 ps, jqq ` V „ pD„

1 ps, jqq

ı

Une politique gloutonne peut alors être définie par π̃psq “ arg minjPJ c ps, jq ` γ
”

V „ pD„
0 ps, jqq `

V „ pD„
1 ps, jqq

ı

, avec cps, jq le coût associé au couple état/action ps, jq et D„
0 ps, jq (resp. D„

1 ps, jq) les

états enfants de s associés à l’ajout de la contrainte xj “ 0 (resp. xj “ 1) en suivant ladite politique

gloutonne.

Pour apprendre une telle politique, la taille de l’espace de recherche nous force à utiliser des approx-

imations, basées sur la méthodologie de Q-learning approximé. La fonction Q-valeur est approchée

par un réseau de neurones, entrâıné pour minimiser une fonction de perte construite pour prendre

en compte le caractère épisodique et déterministe du MDP précédemment défini (Équation (4.12)).

Une fois l’apprentissage de la Q-valeur effectué (Algorithme 6), une politique gloutonne sera utilisée,

définie par

πθpsq “ arg min
jPJ

Q̂ps, j; θq

avec Q̂ps, j; θq la Q-valeur prédite par le réseau de neurones paramétré par θ pour le couple état/action

ps, jq.

Dans un premier temps, cette approche est testée sur des modèles de coût heuristiques, basés sur

des stratégies de branchement pré-existantes. Les résultats sont peu compétitifs par rapport aux

performances de CPLEX, mais indiquent une supériorité des transitions tree-based.

Apprentissage par renforcement avec modèle de coût oracle – Par la suite, nous proposons d’utiliser

un modèle de coût oracle, c’est-à-dire un modèle de coût tel que l’obtention d’une politique optimale

pour le MDP associé garantisse la définition d’une stratégie oracle, minimisant la taille des arbres de

B&B. Nous montrons que le modèle de coût unitaire, défini par cps, jq “ 1 pour tout couple état/action

247
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ps, jq, est un modèle oracle.

Sous les transitions trajectory-based, ce résultat est inconditionnel (Proposition 4.2.1). Sous les tran-

sitions tree-based, nous montrons que l’utilisation d’une stratégie de sélection de nœud Depth-First

Search (DFS) ainsi qu’un facteur d’escompte unitaire γ “ 1 est une condition suffisante pour obtenir

l’équivalence entre l’obtention d’une politique optimale et la définition d’une stratégie oracle (Propo-

sition 4.2.4). Dans le MDP correspondant, la valeur d’un état est égale à la taille du sous-arbre à

l’état courant généré par la politique utilisée. Cela permet notamment l’obtention de signaux plus

“localisés” dans l’espace, ce qui réduit drastiquement le problème de credit assignment induit par les

transitions trajectory-based.

Les performances obtenues abondent dans ce sens, l’utilisation du modèle de coût unitaire et des

transitions tree-based permettant d’obtenir des performances significativement meilleures.

Apprentissage par renforcement avec modèle de coût biaisé – Jusqu’à présent, nous avons défini des

espaces d’états et d’actions cohérents avec la politique de branchement et proposé un nouveau modèle

de transitions, adapté à l’environnement induit par l’algorithme de B&B. Par ailleurs, nous avons

proposé un modèle de coût qui permet non seulement de garantir théoriquement l’obtention d’une

stratégie oracle, mais également d’améliorer les performances empiriques. Le dernier élément du MDP

qu’il nous reste à étudier est alors le facteur d’escompte γ.

Notamment, nous montrons comment l’utilisation d’un facteur d’escompte γ ă 1 permet de réduire

la volatilité de la fonction valeur et donc des cibles utilisées lors de l’apprentissage. En effet, cela

permet de réduire la dépendance des cibles à piq la position de l’état dans l’arbre de B&B, piiq la

qualité de l’agent, et piiiq l’instance considérée. Par ailleurs, cela encourage l’agent à générer des

arbres déséquilibrés, favorisant l’apparition d’arbres en profondeur et non en largeur.

Pour autant, diminuer le facteur d’escompte comporte également des inconvénients. Théoriquement,

l’équivalence entre politique optimale et stratégie oracle ne tient plus lorsque l’on considère γ ă 1

sous des transitions tree-based. Empiriquement, le facteur d’escompte déséquilibre la répartition des

valeurs, ce qui rend difficile la différenciation des états, spécialement près du nœud racine. Pour pal-

lier ce problème, nous proposons un nouveau modèle de coût, non oracle, qui permet l’utilisation d’un

facteur d’escompte γ ă 1 et la standardisation des cibles au cours de l’apprentissage. Les expérimenta-

tions montrent que cela améliore significativement les performances, rendant les stratégies découvertes
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compétitives avec celles produites par CPLEX sur des instances de taille moyenne. Cependant, ces

résultats passent difficilement à l’échelle du fait du fléau de la dimension, subi de manière inhérente

par toute approche d’apprentissage par renforcement.

Variations – De nombreuses pistes peuvent être explorées en complément du travail effectué sur le

MDP, et nous en présentons quelques unes.

Le choix de la fonction de perte est questionné et confirmé empiriquement par la mise en comparaison

avec la fonction de perte classique de DQN.

Par ailleurs, nous montrons l’importance des features utilisées pour la représentation des états. L’architecture

du réseau utilisée, un MLP (Multi-Layer Perceptron) dense à 4 couches cachées, a également été inves-

tiguée sans succès. Une des raisons évoquées pour justifier la difficulté d’optimisation de l’architecture

est la forte dépendance des méthodes d’apprentissage profond par renforcement (Deep Reinforcement

Learning) aux nombreux hyperparamètres.

Afin d’améliorer l’exploration de l’espace de recherche, nous évaluons empiriquement l’utilisation de

CPLEX comme expert, au moment de l’exploration (sélection des actions durant l’apprentissage) ou de

la régression (augmentation de l’information). Les stratégies obtenues ne semblent pas significative-

ment meilleures sur les expérimentations menées.

De même, l’utilisation de certaines bornes théoriques dans la fonction de perte ne permet pas d’améliorer

les performances. Au contraire, les bornes utilisées empêchent l’agent d’apprendre à différencier les

actions. Cela illustre notamment le fait que l’important en RL n’est pas de bien évaluer les différentes

actions mais bel et bien de les classer efficacement.

Enfin, nous montrons que le fait d’entrâıner des agents spécialisés sur chaque instance d’un même prob-

lème est ambivalent. Sur certains problèmes, cela améliore les performances observées, comme attendu

du fait de la simplification de la tâche. Sur d’autres, les performances ne sont pas significativement

améliorées.

Chapitre 5 : Apprentissage de la stratégie de sélection de nœud

Après avoir étudié l’apprentissage d’une stratégie de branchement, nous nous intéressons à l’apprentissage

de la stratégie de sélection de nœud. Cet apprentissage s’avère plus aisé que celui de la stratégie de

branchement, et ce pour deux raisons principales. D’une part, l’espace de recherche considéré est
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moins vaste. D’autre part, nous sommes en mesure d’exhiber formellement une stratégie oracle.

Définition d’une stratégie oracle – Comme précédemment, nous effectuons l’hypothèse de transitions

déterministes, et plus précisément celle d’une stratégie de branchement déterministe. La conséquence

majeure de cette hypothèse est que l’on peut garantir l’existence et formellement exhiber une stratégie

de sélection de nœud DFS oracle (Proposition 5.1.3). Dès lors, nous pouvons nous restreindre aux

stratégies DFS et donc considérer un espace d’actions binaires au sein de notre MDP, une action

consistant à choisir un nœud à visiter parmi les deux nœuds enfants du nœud courant. De plus,

contrairement au cas de la stratégie de branchement, nous pouvons calculer hors ligne les choix oracles,

comme la sélection du nœud enfant contenant la solution optimale au sous-problème associé au nœud

courant.

Stratégies d’apprentissage – Nous proposons d’utiliser les choix oracles de plusieurs manières. Tout

d’abord, ils peuvent être utilisés hors ligne, comme déjà effectué dans la littérature [75, 76]. Un

classifieur est alors entrâıné pour imiter les choix oracles sur un ensemble d’états explorés en appren-

tissage. La distribution de ces états d’apprentissage diffèrera alors, selon qu’ils soient générés par

ladite stratégie oracle (Behavioral Cloning [4]) ou bien par une politique évoluant en même temps que

le classifieur (Dataset Aggregation [7]).

L’inconvénient partagé par ces approches est la non prise en compte du coût associé à la prise d’une

décision non oracle. Le fait que ce coût soit non constant au sein d’un même arbre de B&B nous pousse

alors à étudier l’approche par renforcement pour l’apprentissage de la stratégie de sélection de nœud.

En effet, la généralisation de la méthodologie présentée au chapitre précédent possède l’avantage de

naturellement prendre en compte ce coût en prédisant la taille du sous-arbre au nœud courant.

Malgré les mêmes garanties théoriques sur la capacité de l’approche par renforcement à trouver une

stratégie oracle, le besoin pratique d’une meilleure efficacité d’échantillonnage nous pousse à vouloir

utiliser les informations fournies par la stratégie oracle connue pour guider l’apprentissage. Nous pro-

posons alors de modifier la fonction de perte guidant l’apprentissage par renforcement en utilisant la

stratégie oracle connue pour augmenter la quantité d’information utilisée (Équation (5.11)).

Expérimentations – Nous montrons empiriquement qu’utiliser les informations fournies par l’oracle

améliore les performances de l’approche par renforcement. Pour autant, les approches supervisées
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permettent en moyenne d’obtenir de meilleurs résultats. Les stratégies découvertes, que ce soit en

supervisé ou par renforcement, sont en général meilleures que celles utilisées par CPLEX.

Chapitre 6 : Apprentissage par renforcement pour la stratégie de branche-
ment et de sélection de nœud

Nous étudions diverses approches pour combiner l’apprentissage de la stratégie de branchement et

de la sélection de nœud. Tout d’abord, le cadre de RL utilisé jusqu’à présent peut aisément être élargi

pour effectuer à la fois le branchement et la sélection de nœud. Il est également possible de combiner

cette approche avec les informations tirées de la stratégie oracle précédemment évoquée en sélection

de nœud. Enfin, nous proposons d’utiliser deux agents distincts, l’un entrâıné par renforcement pour

apprendre la stratégie de branchement et l’autre par imitation pour apprendre la stratégie de sélection

de nœud.

Cette dernière méthodologie fournit les meilleurs résultats. Cependant, ils restent inférieurs à ceux

obtenus en apprenant uniquement la stratégie de branchement, ce qui traduit un problème de coordi-

nation entre les deux agents apprenants.

Partie 3 : Exploitation de la structure des problèmes considérés

Cette partie regroupe trois approches indépendantes exploitant la structure des problèmes étudiés.

Ici, nous ne cherchons pas à garantir la découverte de stratégies oracles.

Chapitre 7 : Une heuristique de branchement basée sur une représentation
par graphe

Dans ce chapitre, nous proposons une heuristique de branchement, basée sur une représentation par

graphe de l’instance considérée. Le but de cette représentation par graphe est de modéliser l’influence

du branchement sur chaque variable binaire sur les variables restantes. Une fois ce graphe d’influence

construit, l’heuristique consistera à brancher sur les variables ayant les plus fortes influences.
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Graphe d’influence – Nous définissons un graphe d’influence pour un MILP comme étant un type

particulier de graphe primal, c’est-à-dire où les nœuds représentent les variables et où une arête existe

entre deux nœuds si les deux variables correspondantes sont présentes dans une même contrainte. Nous

construisons cette classe de graphes de manière relativement large, et nous proposons alors différentes

instanciations, où l’influence (le poids des arêtes) est définie en prenant en compte les coefficients de

la matrice de contraintes et potentiellement une solution du problème dual relâché. Intuitivement,

les définitions d’influence sont censées refléter la capacité de chaque variable à fixer les autres à leurs

bornes lors d’un branchement.

L’intérêt d’une telle représentation par graphe est notamment son invariance par permutation et sa

capacité à modéliser des liens complexes entre les différentes variables. Il est cependant à noter que

les définitions d’influence proposées sont sensibles à l’échelle des données, ce qui incite à effectuer une

standardisation de ces dernières.

Heuristique de branchement – Etant donné un graphe d’influence associé à un MILP, il semblerait

naturel de chercher à brancher sur la variable ayant l’influence maximale. Le problème de maximisation

d’influence étant en général NP-difficile, nous optons pour une méthode approchée basée sur une

partition des nœuds du graphe d’influence par Spectral Clustering, visant à sélectionner plusieurs

variables à forte influence. L’heuristique que nous proposons est alors définie comme suit. Soit K ě 1

le nombre de clusters désiré, une K-partition des variables binaires est générée au nœud racine, chaque

cluster représentant un ensemble de variables étroitement liées. Au sein de chaque cluster, la variable

de plus forte influence est sélectionnée. Les K variables ainsi définies sont ordonnées en fonction de

leurs influences respectives, et la i-ième variable est alors utilisée pour le branchement en chaque nœud

de l’arbre de B&B de profondeur i ´ 1 (cf. Figure 7.2).

Expérimentations – Les résultats observés sont relativement hétérogènes. En particulier, aucune

hiérarchie n’est constatée entre les différentes définitions d’influence testées. Cependant, nous notons

que l’heuristique proposée est généralement efficace pour les instances que CPLEX peine à résoudre, ce

qui justifie l’intérêt porté dans la littérature à la représentation par graphe pour l’étude de problèmes

combinatoires. Par ailleurs, il est intéressant de constater que les meilleurs résultats sont obtenus pour

de grandes valeurs de K, ce qui laisse penser que la stratégie de clustering est pertinente.
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Chapitre 8 : Une approche par décomposition-coordination

Contrairement au chapitre précédent, nous nous attachons ici à utiliser une structure spécifique

des problèmes qui rencontrés chez EDF, à savoir une structure bloc-diagonale.

Stratégie de découplage – Du fait de cette structure bloc-diagonale, les problèmes peuvent être

perçus comme une juxtaposition de sous-problèmes indépendants liés par un ensemble de variables

couplantes. Dès lors, si ces variables couplantes étaient fixées (par exemple du fait de décisions de

branchement), le problème correspondant serait découplé et pourrait être résolu par la résolution

parallèle des sous-problèmes indépendants. Etant donné que les variables couplantes sont rarement

toutes fixées, nous nous intéressons à une résolution heuristique, sans garantie d’optimalité. ous

nous basons notamment sur une procédure de Relax and Fix (RF , Algorithme 9), qui consiste en la

résolution successive de sous-problèmes, partiellement relâchés, en fixant progressivement les variables

aux valeurs précédemment obtenues. Lorsque le problème est découplé, une stratégie de RF permet

alors de trouver une solution optimale.

Decouple, Relax and Fix – Nous rapprochons la procédure de RF de la décomposition lagrangienne

et proposons de la généraliser afin d’obtenir de meilleures solutions. Cela est effectué en intégrant

la procédure de RF au sein d’une recherche sur un sous-ensemble faisable de variables couplantes.

Une version exacte, mais généralement non tractable, de l’algorithme proposé peut s’écrire, pour un

problème de maximisation,

max
xcPXC

tRF pppxcq, Gqu

avec ppxcq le problème p augmenté des contraintes xC “ xc, XC l’ensemble faisable pour les variables

couplantes C, et RF pp, Gq la borne obtenue par RF en utilisant la décomposition ordonnée G.

Par la suite, nous incorporons la maximisation sur XC dans un algorithme de B&B et sélectionnons un

sous-ensemble d’intérêt lorsqu’une recherche exhaustive n’est pas envisageable. Nous nous restreignons

à l’étude des cas où les variables couplantes sont uniquement binaires ou uniquement continues.

Variables couplantes binaires – Lorsque les variables couplantes sont binaires, l’exploration de XC

peut aisément s’effectuer par Branch and Bound, ce qui nous permet d’obtenir une garantie d’optimalité.

Les décisions de branchement sont alors restreintes aux variables couplantes dans un premier temps
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au sein de ce que nous appelons un arbre découplant. A chaque feuille faisable et non prouvée sous-

optimale, une procédure de RF est initiée afin d’obtenir si possible une nouvelle borne.

Variables couplantes continues – Dans le cas où les variables couplantes sont continues, la procédure

de découplage se révèle être légèrement plus complexe.

Tout d’abord, nous étudions le cas d’une décomposition en deux blocs, avec une unique variable

couplante continue. L’espace XC étant dans ce cas un intervalle, nous restreignons la recherche à un

sous-ensemble de points au sein de ce dernier. La sélection de ces points est basée sur le fait que la

fonction GRF , définie comme

GRF :

$

&

%

XC Ñ R

u ÞÑ RF pppuq, Gq

est une fonction constante par morceaux. Malgré l’existence de cas pathologiques pour lesquels certains

plateaux peuvent être de mesure nulle (Proposition 8.2.2), nous restreignons la recherche d’un plateau

de valeur optimale à une recherche discrète, basée sur les raisons pour lesquelles la fonction GRF

présente des discontinuités. Nous identifions deux types de discontinuités : piq les discontinuités de

premier ordre, induites par l’infaisabilité de la solution entière après translation des contraintes, piiq

la sous-optimalité de cette solution.

Les discontinuités de premier ordre sont relativement aisées à déterminer, puisqu’elles ne nécessitent

que de tester la mesure nulle d’un polytope. A l’inverse, les discontinuités de second ordre requièrent

la résolution d’un MILP, ce qui justifie notre choix de ne pas exhiber ces dernières. Nous proposons

alors d’effectuer une recherche dichotomique sur l’intervalle XC (potentiellement réduit par bound

tightening) afin de trouver ces discontinuités de premier ordre.

Une telle approche se généralise difficilement à plus de deux blocs du fait du fléau de la dimension.

Partant, nous proposons un algorithme arborescent permettant de restreindre la recherche. Cette

restriction repose, tout comme la procédure de RF , sur la définition d’une décomposition ordonnée

des variables.

Expérimentations – Pour les expérimentations, nous proposons trois types de décompositions ordon-

nées. Les décompositions temporelle et spatiale sont basées sur la connaissance a priori de la structure

des problèmes étudiés. Par ailleurs, nous proposons une décomposition spectrale, visant à créer une

décomposition pertinente sans connaissance a priori. Cette décomposition est ensuite heuristiquement
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RÉSUMÉ SUBSTANTIEL

exploitée en maximisant les interconnections entre les différents blocs consécutifs.

Les résultats des tests effectués montrent que les méthodes proposées permettent d’obtenir des bornes

satisfaisantes en réduisant drastiquement le nombre de nœuds explorés comparativement à CPLEX. Par

ailleurs, elles permettent de trouver plus souvent une borne par rapport à la procédure classique de

RF . Bien évidemment, la décomposition choisie ainsi que l’ordre induit par cette dernière influent sur

les performances observées.

Chapitre 9 : Perturbation de la fonction objectif

Dans ce chapitre, nous étudions l’apprentissage de perturbations visant à réduire les symétries

inhérentes au problème considéré.

Paradigme de l’optimisation bôıte noire – Soit fpp, εq une mesure évaluant l’efficacité d’appliquer

la perturbation ε P Ω Ď Rn à la fonction objectif du problème p, avec n le nombre de variables.

L’objectif recherché est alors de découvrir en moyenne la perturbation optimale pour un problème

donné, c’est-à-dire trouver le minimum de la fonction bôıte noire (black-box )

µ :

$

&

%

Ω Ñ R

ε ÞÑ µpεq “ Ep„L rfpp, εqs

avec L la distribution inconnue des instances du problème considéré.

L’ajout d’une perturbation à la fonction objectif pouvant modifier la solution trouvée, nous montrons

en se restreignant aux problèmes binaires purs qu’il suffit de contrôler la norme de la perturbation

pour garantir la non détérioration de la qualité de la solution trouvée.

Réduction de la dimension – L’espace de recherche considéré étant une boule dans Rn, nous pro-

posons de réduire sa dimension avant d’appliquer un algorithme d’optimisation bôıte noire. Dans un

premier temps, nous justifions empiriquement le choix de ne considérer qu’une sphère et non une boule,

la “forme” et la norme d’une perturbation apparaissant comme deux déterminants indépendants de

la performance. Par ailleurs, nous proposons l’utilisation d’un auto-encodeur supervisé permettant

d’encoder et de décoder les perturbations dans un espace latent de dimension réduite, tout en guidant

ce mapping pour assurer que l’espace latent soit structurellement pertinent pour l’évaluation d’une

perturbation.
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Un auto-encodeur supervisé classique est un système composé de trois fonctions : la fonction d’encodage

ϕ : Ω Ñ ϕpΩq, la fonction de décodage ϕ : ϕpΩq Ñ Ω et la fonction de prédiction h : ϕpΩq Ñ R, et

peut alors être entrâıné grâce aux fonctions de perte supervisée ls et de reconstruction lr, par exemple

:
$

&

%

ls ph, ϕq “ Eε„ρ

“

||ph ˝ ϕq pεq ´ µpεq||22
‰

lr
`

ϕ, ϕ´
˘

“ Eε„ρ

“

||
`

ϕ ˝ ϕ´
˘

pεq ´ ε||22
‰

avec ρ la distribution des perturbations générées.

Dès lors, nous proposons de traiter notre problème d’optimisation bôıte noire en générant des pertur-

bations au moyen d’itérations successives de la séquence piq générer des points dans l’espace latent

ϕpΩq, piiq décoder ces points pour obtenir des perturbations dans Ω Ă Rn, piiiq évaluer ces perturba-

tions, pivq entrâıner l’auto-encodeur supervisé en utilisant les nouvelles observations (Algorithme 18).

Par ailleurs, nous questionnons la perte de reconstruction précédente. En effet, la distance euclidienne

entre une perturbation et sa reconstruction ne semble pas pertinente dans notre cadre d’optimisation

bôıte noire. A l’inverse, il semble plus pertinent d’être capable de décoder des points de l’espace latent

en perturbations ayant la même efficacité. Dès lors, nous proposons d’utiliser la perte de reconstruc-

tion lr pϕ, ϕ´q “ Eε„ρ

“

||pϕ ˝ ϕ´ ˝ ϕq pεq ´ ϕ pεq||22
‰

, en tirant parti du fait que la distance euclidienne

dans l’espace latent est plus informationnelle que la distance dans Ω.

Expérimentations – Dans un premier temps, nous montrons que la nouvelle fonction de perte de

reconstruction améliore la stabilité de l’auto-encodeur face à un cycle complet de décodage-encodage.

Pour autant, les résultats de la procédure d’optimisation bôıte noire sont décevants, non seulement

en termes d’efficacité relative mais également en comparaison avec une stratégie d’échantillonnage

aléatoire, non guidée par l’auto-encodeur.

Conclusion

Le travail mené tout au long de cette thèse a permis de développer une approche d’apprentissage

par renforcement visant à découvrir de nouvelles stratégies de B&B, l’accent ayant été mis sur la dé-

couverte de stratégies oracles. Par ailleurs, il fut également l’occasion d’étudier d’autres paradigmes,

comme l’apprentissage par imitation, le clustering et l’optimisation bôıte noire.

Concernant l’approche par renforcement, les deux principales pistes identifiées pour améliorer les
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performances de la méthodologie proposée sont l’amélioration de la représentation des états consid-

érés ainsi que l’optimisation de la stratégie d’exploration. Ces deux pistes ne sont bien évidemment

pas indépendantes, une meilleure représentation des états permettant à l’agent d’associer ou de dis-

tinguer plus facilement différentes zones de l’espace d’états, et donc d’améliorer l’échantillonnage de

celui-ci, autrement dit l’exploration. Une des pistes envisagées pour améliorer la représentation des

états est notamment l’utilisation de Graph Convolutional Neural Networks, ainsi qu’une construction

de features spécifique au problème considéré. Afin de guider l’exploration de manière plus explicite,

l’utilisation d’experts pour guider l’apprentissage pouvait être proposé, ou encore l’utilisation de méth-

odes d’apprentissage par transfert, permettant de généraliser des stratégies découvertes en petite di-

mension à des problèmes de plus grande dimension.

Ces améliorations participeraient notamment à la possible utilisation de la méthodologie proposée à

des problèmes de plus grande dimension que ceux considérés dans ce travail.
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Marc Etheve

Using machine learning to solve repeated
optimization problems

Résumé : Cette thèse a pour but d’utiliser des techniques d’apprentissage automatique pour la
résolution de problèmes linéaires en nombres entiers issus de données stochastiques. Plutôt que de les
résoudre indépendamment, nous proposons de tirer profit des similarités entre instances en apprenant
différentes stratégies au sein d’un algorithme de Branch and Bound (B&B).
L’axe principal développé est l’utilisation d’apprentissage par renforcement pour découvrir des stratégies
minimisant la taille des arbres de B&B. Afin de s’adapter à l’environnement induit par l’algorithme
de B&B, nous définissons un nouveau type de transitions au sein de processus de décision markoviens,
basées sur la structure d’arbre binaire. Par ailleurs, nous étudions différents modèles de coûts et prouvons
l’optimalité du modèle de coût unitaire sous les transitions classiques et binaires, dans l’apprentissage
des stratégies de branchement et de sélection de nœud. Pour autant, les expérimentations menées
suggèrent qu’il peut être préférable de biaiser le modèle de coût afin d’améliorer la stabilité du processus
d’apprentissage. En ce qui concerne la stratégie de sélection de nœud, nous démontrons l’optimalité
d’une stratégie explicitement définie, qui peut être apprise plus efficacement de manière supervisée.
Par ailleurs, nous proposons d’exploiter la structure des problèmes étudiés. Nous étudions pour cela une
stratégie de décomposition-coordination, une heuristique de branchement basée sur une représentation
par graphe d’un nœud de l’arbre de B&B et enfin l’apprentissage de perturbations de la fonction objectif.

Mots clés : Apprentissage, MILP, Problèmes répétés

Abstract : This thesis aims at using machine learning techniques in the context of Mixed Integer Linear
Programming instances generated by stochastic data. Rather than solve these instances independently
using the Branch and Bound algorithm (B&B), we propose to leverage the similarities between instances
by learning inner strategies of this algorithm, such as node selection and branching.
The main approach developed in this work is to use reinforcement learning to discover by trials-and-errors
strategies which minimize the B&B tree size. To properly adapt to the B&B environment, we define
a new kind of tree-based transitions, and elaborate on different cost models in the corresponding
Markov Decision Processes. We prove the optimality of the unitary cost model under both classical and
tree-based transitions, either for branching or node selection. However, we experimentally show that it
may be beneficial to bias the cost so as to improve the learning stability. Regarding node selection, we
formally exhibit an optimal strategy which can be more efficiently learnt directly by supervised learning.
In addition, we propose to exploit the structure of the studied problems. To this end, we propose a
decomposition-coordination methodology, a branching heuristic based on a graph representation of a
B&B node and finally an approach for learning to disrupt the objective function.

Keywords: Machine Learning, MILP, Repeated problems
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