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INTRODUCTION

Since their invention in the early 1900s, RAdio Detection And Ranging (radar) became
widely used, initially for defense applications, before finding numerous applications in the
civilian sector. Nowadays, radars have applications in many fields, such as self-driving
cars, weather forecasting and geological observation. Historically, radars were composed
exclusively of analog parts which have great cost-performance ratios, but lack of flexi-
bility and integration. Indeed, although complex functions could be implemented, they
required heavy hardware to perform them. For example, obtaining Doppler frequencies,
and thus velocities, required the implementation of many parallel analog filters, whereas
the same result can now be obtained by Fast Fourier Transform in digital components.
The development of digital technologies (e.g. microprocessors, digital-to-analog converters
and programmable logic devices) led to the gradual replacement of analog components for
digital signal processing, as illustrated in Figure 1. This transition allowed to use more
complex algorithms as well as the creation of modes as diversified as tracking, imaging
and radio-communication within the same radar system. In addition, some upstream op-
erations such as down- and up-conversion (demodulation and modulation up to the X
band) can now be performed by digital components for a better integration.

Nowadays, the integration and miniaturization of radar systems allow the implemen-
tation of many transceivers in parallel. The use of transceivers array allows the electronic
steering of the antenna: the antenna array does not have to move physically to look in a
direction, hence it can look in several directions simultaneously. In addition, the capabili-
ties of analog-to-digital converters and computing systems allow the parallel computation
of these channels that can be efficiently implemented in FPGA. The modern radars are
electronically steered and multi-modes, such as those shown in Figures 2, 3 and 4.

However, the resulting increase of radar data and modes brings many challenges in em-
bedded systems, where the available computing resources are highly constrained. Specif-
ically, embedded systems have limited power consumption, computational resources and
are often subject to real-time constraints. Meanwhile, the need for performances and the
new challenging technologies, such as stealth aircraft, are keeping up the demand for ever
more capable systems. Of course the computing technologies and architectures evolve as
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(a) Analog pulse-Doppler radar
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Figure 1 – Evolution of pulse-Doppler radars: from an analog sensor (a) to the common
analog/digital hybrid solution (b) to a fully digital platform (c). The illustrations show a
single antenna for the sake of simplicity. In practice, many antennas can be implemented,
so the functions would be repeated for each antenna. An additional up/down conversion
stage may be necessary depending on the operating frequency of the radar. The more
functions are performed by digital components, the better the integration of the radar
system.

well, but they are not up to the challenge. Indeed, Moore’s law alone can not explain
why the embedded computing power keep increasing since it suffers issues such as power
consumption 1 and heating 2 which limit the performance increase. Further increasing com-
puting power is possible using specialized computational units, i.e. dedicated functions
implemented in hardware which are more efficient (in terms of throughput, latency and
energy consumption) than general processors. They can be implemented in ASIC and
FPGA to offload complex functions from the CPU, but have a footprint. Such hetero-
geneous architecture, where CPU are assisted by specialized accelerators is presented in
Figure 1 (c). With the diversity of modes required by modern radar systems, the con-
current implementation of many functions is not scalable because of their cumulative
footprint. As opposed to ASIC, the specialized functions implemented in FPGA can be
reconfigured to implement new functions, giving a solution to the scaling problem. To
achieve the best performance at a given time with given resources, we must be able to
create systems which make the most of the resources available at runtime.

1. Pollack’s rule states that the performance of processors grows is roughly linearly proportional to
the square root of complexity, while power consumption increases linearly with complexity [1].

2. The dark silicon phenomenon, for example, is the fact that some parts of the microchips silicon
remain unused due to thermal problems.
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Figure 2 – MPAR
radar: the multi-mode
phased array radar
of National Severe
Storms Laboratory.
Source: https:
//www.nssl.noaa.
gov/tools/radar/

Figure 3 – An array antenna
radar for detection and avoidance
produced by Hensoldt. Source:
https://www.hensoldt.net/
news/hensoldts-collision-
warning-system-for-drones-
ready-for-take-off/

Figure 4 – RBE2 radar model:
a multi-transceiver and
multi-mode airborne radar
produced by Thales. Source:
https://fr.wikipedia.
org/wiki/Thales_RBE2#/

Hopefully, radar does not need to use every functions and modes simultaneously dur-
ing the mission. In addition, computing resources can often be reconfigured with varying
degrees of difficulty. A solution to keep up performance in this constrained situation is to
adapt the computing resources usage to the context of the mission. A common optimiza-
tion technique is based on the reconfiguration of the radar mode by changing large code
portions and/or FPGA configuration. This is done by switching from one configuration
to another, for example from aircraft to weather tracking. These reconfigurations concern
a large part of the system and are bulky, which is acceptable for systems running in a
stable environment, like ground radars, but is prohibitive for highly dynamic systems like
UAV and aircrafts. However, FPGA also allow partial reconfiguration, i.e. reconfiguring a
small part of the system while the rest of the system continues to operate. This solution
reduces the reconfiguration time to an acceptable level, but remains underexplored in
radar processing literature.

In this PhD work, we explore the reconfiguration capabilities of embedded radar track-
ing systems evolving in an uncertain environment. The constraints of embedded and real-
time systems require solutions that overcome the problem of reconfiguration time. Based
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Introduction

on our studies, we come up with the idea that both architecture and algorithm adaptation
must be considered to benefit from hardware reconfiguration under resource constraints.
So we propose contributions in both domains and a design methodology approach to com-
bine the different solutions in a heterogeneous industrial context. We propose solutions
based on the dynamic partial reconfiguration of FPGA and algorithm adaptations. These
solutions are inspired by problems identified at Thales in the development of embed-
ded radar systems. Developing such reconfigurable systems is complex since it requires
hardware, software and application knowledge, which led us to search methodological el-
ements to design such systems. In this thesis we demonstrate the optimizations that can
enhance embedded radar systems with help of dynamic reconfiguration and then we define
a methodology to efficiently design reconfigurable radar systems across several technical
experts.

Thesis contributions
1. Description and test of two original radar case studies of optimization, inspired

from limitation of radar computing systems observed at Thales, based on hardware
dynamic reconfiguration:

• Tracking reconfigurable architecture: Two reconfigurable accelerators are im-
plemented. These accelerators can be used to run different tracking models and
an algorithmic indicator can detect if the models are adapted to the tracked
objects. The unadapted models are reconfigured at runtime to maximize the
tracking performances.

• Doppler processing reconfigurable architecture: Two algorithms can be used for
the extraction of Doppler frequencies in a radar signal. These algorithms have
different properties and this architecture adapts the tradeoff between process-
ing latency and quality by reconfiguring the current algorithm depending on
the mission context. The reconfiguration decision is based on an algorithmic
indicator. This architecture is validated by a hardware-in-the-loop simulation.

2. Revisit, modeling and test of an algorithm (the Space-Time Adaptive Processing)
adaptation, based on machine learning, to reduce execution time while keeping up
the performances. This algorithm was first tested in software, but is now compliant
and ready to use within a reconfigurable architecture high performance implemen-
tation.

10
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3. Definition of a methodology for the design of reconfigurable systems based on SoC.
A set of design patterns and rules are defined to simplify the design of reconfig-
urable systems. A case study of a development based on the two hardware dynamic
reconfiguration case studies illustrates the methodology.

Thesis organization
This thesis is composed of six additional chapters 3 ordered as follows:

Chapter 1: Research background: This chapter details important concepts used
in this thesis, so that the reader can approach the rest with a clear understanding
of the notions and stakes of radar systems reconfiguration. The considered radar,
processing and computing systems are exposed and the reconfiguration possibilities
of radar system are explored. This chapter concludes on the advantage of reconfig-
uration in the radar domain examples that introduce the rest of this thesis.

Chapter 2: State of the art: This second chapter is divided into four sections.
The first section describes use-cases of dynamic partial reconfiguration and presents
examples of radar systems DPR-based optimizations. The second section details
the three algorithms on which we based the reconfigurable systems presented in
chapters 3 and 4. The third section is about reconfigurable systems development
methods and to the multi-agent paradigm. The last section positions the thesis
work in the literature.

Chapter 3: HW Reconfiguration based on Algorithm choice: This chapter
is composed of two parts for the two case studies of FPGA-based reconfigurable
radar applications. The two sections detail the concepts and architectures created
for these case studies (contribution n°1).

Chapter 4: Algorithm adaptation to benefit from reconfiguration: This
chapter describes a machine learning system which can predict the most adapted
dimensions reduction of a Space-Time Adaptive Processing at runtime, to maximize
quality of results while reducing computing complexity (contribution n°2).

Chapter 5: Methodology for reconfigurable systems design: This chapter
proposes a methodology for the design of reconfigurable radar systems. Based on

3. Several sentences of Chapter 2 are inspired or imported from published ([2], [3]) and submitted
articles. Chapter 3 is composed of papers published in the context of this thesis with references [2], [3]
for the sections 3.1 and 3.2, respectively. I am the primary author of the articles used in this thesis.
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observations of the case studies presented in Chapter 3, we draw methodological
elements which should ease the design of a reconfigurable radar system by a team
of heterogeneous developers (contribution n°3).

Conclusion and future work: This last chapter summarizes the work done in
this thesis and outlines perspectives for future work.

12
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Chapter 1 – Research background

In this chapter, we focus on the signals and tools used in the context of this PhD
research. More specifically, Section 1.1 details the radar waveforms and antennas consid-
ered in the studies as well as the conventions used in the radar equations. Section 1.1
also describes the most common algorithms used in a radar tracking system. Section 1.2
describes the reconfiguration capabilities of computing resources commonly available in
embedded radar systems (e.g. in UAV systems). Then, it presents the tools and meth-
ods associated with these reconfiguration means. Finally, Section 1.3 concludes on the
reconfigurability of radar processing systems.

1.1 Radar

1.1.1 Signal description

There are two main categories of radar signals: pulsed and continuous wave. Both of
these signals allow to have high range and Doppler resolutions. In this thesis, we use pulsed
signals as they are more resilient to interferences (e.g. clutter and jammer) compared to
frequency modulated continuous waves (FMCW).

The simplest pulsed waveform is a monochromatic signal, (i.e., it can be defined by
a single frequency). With this waveform, we can achieve a range resolution ∆r = c

2τ ,
where c is the speed of light in the air and τ is the duration of the pulse. However,
to obtain a long detection range, we need to maximize the pulse energy. To increase the
pulse energy, we need to send longer pulses, which decreases the range resolution obtained
with a monochromatic wave. To alleviates this problem , the waveform used in this thesis
is the linear-frequency chirp pulse. This signal frequency increases linearly with time to
cover a frequency bandwidth B. The matched filter of the linear chirp (called chirp/range
compression) compresses the chirp bandwidth and outputs a cardinal sinus with a peak of
power at the location of the central time of the echoed chirp. The output of this matched
filter has an expected gain of τ · B on the signal-to-noise ratio (SNR). The attainable
range resolution with this waveform is ∆r = c

2B . The range resolution is not dependent
on the pulse duration anymore so we can have both a good range resolution and a high
energy by spreading the power over the full chirp bandwidth. In the case of pulse-Doppler
radars, the signal is the chirp and is repeated periodically (and coherently) after a period
Tr = 1/fr (fr is called the Pulse Repetition Frequency or PRF) and is active during a
portion of this time τ , with τ < Tr. This pulsed signal, of amplitude A, can be defined by

14



1.1. Radar

the function:

x(t) =
 Ae2πj(f0+B

τ
t′)t′ if 0 6 t′ < τ

0 else
, where t′ = t mod Tr (1.1)

amplitude

t

A

Tr

τ

Figure 1.1 – Example of a pulsed chirp signal

This signal is emitted by the radar, reflected by a target and propagates back to the
radar with a delay δt, a frequency shift fDopp (Doppler) and noise plus interferences n. It
can be synthesized as:

y(t) = A′x(t+ δt)ej2πfDoppt + n(t) (1.2)

where A′ is the modification of the signal amplitude at reception, which aggregates
several physical parameters such as the radar cross section of the target and radar-to-
target distance.

This signal is described for a single channel or antenna and does not contain infor-
mation about the direction of arrival of the wave. However, this spatial information is
essential to locate the targets and improve signal processing gains. This can be achieved
with multi-element antennas such as the AESA.

1.1.2 Active Electronically Scanned Array (AESA)

In modern radar applications, the antenna has usually multiple transceivers. This
enables the electronic steering of the antenna which is quicker and more reliable than a
mechanical steering, while allowing to scan many directions at the same time. Moreover,
these transceivers arrays allows the use of the antenna for different purposes at the same
time, such as communication and tracking. The processing can take advantage of the
spatial information brought by the signal arriving at different times on the antenna sensors

15



Chapter 1 – Research background

to perform spatial filtering. Figure 1.2 depicts a linear phased array receiving a signal from
a θ elevation. We see that the wavefront is not aligned with the antenna and that the
information will arrive on the different sensors with a phase shift of 2π

λ
d cos(θ) rad often

referred to as spatial frequency.

pr
op

ag
at

ion

d · cos(θ)

d

θ

wavefront

Figure 1.2 – Radar wave propagation viewed from a 1D AESA

AESA comes in two forms: the planar active electronically scanned array (AESA), and
the conformal antenna. Conformal antenna sensors cover a curved surface, for instance
the skin of an aircraft. Their study is complex since the multidimensional coupling be-
tween the sensors must be compensated by electronic phase shifts. To avoid unnecessary
problems, we use a planar AESA such as the one presented on Fig. 1.3a. The colored
dots represent hundreds of antenna elements, that we cannot process in parallel due to
processing resources limitations. Hence, we group them into clusters represented by the
different colors. These clusters are associated with a phase center, represented by the
black dots.

(a) Example of theoretical 2D AESA

x

y
z

clutter
patch

iso-
rang

e

(φ, θ)

(b) Geometry of airborne radar (adapted from
[4])
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1.1. Radar

AESA can be steered electronically and/or numerically depending on the underlying
implementation of the system. The theoretical array factor (gain provided by the electronic
steering) of such an antenna can be easily computed, with a scalar product of the steering
vector Gθ,φ = sHθ,φsθa,φa with θ, φ and a denoting the elevation, the bearing and the
aiming direction of the antenna, respectively. Figure 1.3b shows the geometry involved in
the airborne radar system and the creation of steering vectors. The steering vector sθ,φ
contains the difference of phase between the different sensors, for a signal arriving from a
direction defined by θ and φ. It can be written as:

sTθ,φ = [ejϕ0(θ,φ), ejϕ1(θ,φ), ..., ejϕN (θ,φ)] (1.3)

where ϕn(θ, φ) is the phase shift (relative to a reference point) for element n. In the 1D
antenna of Fig. 1.2, Eq.(1.3) expands to:

sTθ,φ = [ej 2π
λ
d cos(θ) sin(φ), ej2

2π
λ
d cos(θ) sin(φ), ..., ejN

2π
λ
d cos(θ) sin(φ)] (1.4)

Figure 1.4 shows the theoretical gain of the antenna presented in Fig. 1.3a.

Figure 1.4 – Antenna theoretical array factor

The signal y(t) received from a specific direction on an AESA can be expressed by:

y(t) = y(t).sθ,φ (1.5)

In practice, since the antenna is imperfect, the exact steering vectors are unknown.
Approached steering vectors can be measured during a factory calibration and stored

17



Chapter 1 – Research background

in the computing system. They can be corrected online, to compensate imperfections or
stress degradation of electronic components, by hardware or algorithmic auto-calibrations.

1.1.3 Tracking radar processing

This thesis focuses on embedded tracking radar processing. This section presents the
most common signal processing algorithms used for tracking with a pulse-Doppler AESA
radar. The considered input signal is digital and represented with in-phase and quadrature
components (I/Q samples).

Frequency shift

At emission, the carrier frequency of the radar signal can range from a few MHz to a
hundred GHz. At reception, down-conversion can be performed with analog components.
However, high frequency up/down-conversion are often performed in several steps which
required many components. This is an issue for UAV-borne which requires the electronic
subsystem to be small and power efficient. To overcome this problem, we perform only
a part of the (de)modulation with analog components and to perform the remaining
frequency shift in the digital system. Between the analog and the digital modulation, the
signal is modulated by what is called an intermediate frequency. The Analog to Digital
Converters (ADC) must be able to perform acquisition at a frequency equal to at least two
times the maximum frequency of the signal 1 modulated by the intermediate frequency.
This high sampling rate results in a large amount of data to process. However, since the
relevant information lies in the chirp frequency bandwidth [−B

2 ,
B
2 ], the computational

load can be reduced. First, we perform a frequency shift to center the bandwidth around
zero (which is equivalent to a demodulation) with:

ybb(t) = y(t) · e−j2πfct (1.6)

where ybb is the baseband signal vector, and fc = f0 + B
2 is the central chirp frequency

(i.e. the intermediate frequency). We can now reduce the sampling rate, but this can result
in aliasing. To avoid signal distortion, we perform low-pass filtering before down-sampling
the signal. The cutoff frequency of the low-pass filter must be greater than B

2 . After this

1. Some techniques enable the use of a lower acquisition rate through frequency planning, but this
is out of the scope of this PhD work. See https://training.ti.com/frequency-and-sample-rate-
planning-understanding-sampling-nyquist-zones-harmonics-and-spurious.
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1.1. Radar

Figure 1.5 – Baseband radar signal 2D visualization (dB)

filtering step, we select a new sampling frequency to decimate the digital signal. Figure 1.5
shows such a signal which now contains the minimum number of samples needed to keep
the useful information. This signal is presented as a matrix (a common representation of
Doppler radar signals) where the data arrives from bottom left to top right, line after
line. The fast time step is equal to the sampling period and the slow time step is equal
to the pulse repetition period Tr. We can see that three targets backscatters (in yellow in
Fig. 1.5) are present in the signal. However, noise and interference still coexist with this
information. These perturbations can be thermal noise and other radio-waves emissions
sources .

As we stated, radar data is often represented and treated as a matrix. This matrix ex-
ists for each processing channel (i.e. each antenna array or subarray elements). Therefore,
the total data to process can be represented as a data cube, shown in Fig. 1.6.

Range compression

Since we know the sent signal, we can improve the SNR with a filter h tuned to
our specific signal known as ‘matched filter’. it consists in a convolution between the
received signal y(t) and the emitted (or reference) signal. Since we performed frequency
shift, low-pass filtering and sub-sampling on the received signal, we must apply the same

19



Chapter 1 – Research background

slo
w

tim
e

array elements

= one I/Q sample

fast time

Figure 1.6 – Radar data cube

transformations to the reference signal. The filter output is:

ymatched(t) =


(ybb,0 ∗ h)(t)
(ybb,1 ∗ h)(t)

...

(ybb,N ∗ h)(t)

 (1.7)

where ymatched is the filtered signal vector and h = e2πjB
τ
t is the conjugated time-reversed

reference signal (which is the baseband version of the chirp signal). Due to the convolution
computing complexity, this filter is often implemented as an element-wise multiplication
in the frequency domain, resulting in:

ymatched(t) =


F−1(Ybb,0 ·H)(t)
F−1(Ybb,1 ·H)(t)

...

F−1(Ybb,N ·H)(t)

 (1.8)

where F−1 denotes the inverse Fourier transform. Ybb,n and H are the Fourier transforms
of the baseband signal and the reference signal, respectively. This filter output is a signal
with peaks where signal echoes are present. The time difference between the emission
and the peaks location (∆t) shows how long it takes for the EM waves to go back and
forth between our transceiver and the scanned objects. Since EM waves travel at light
speed, this time is proportional to the distance d = ∆t. c2 . Figure 1.7 shows the result of
range compression on the signal presented in Fig. 1.5. We can now observe the distance
of reflecting objects (from the yellow vertical lines in Fig. 1.7). In addition, radar also
allows to extract the speed of the objects which interact with the EM waves, thanks to
the Doppler effect.
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Figure 1.7 – Range-compressed baseband radar signal (dB)

Doppler processing

The Doppler effects is a signal frequency shift induced by the motion of objects rel-
ative to the wave source. To observe this frequency shift, we perform a filtering of the
signal frequencies, usually performed by Fourier transforms. In the pulse-Doppler radars,
it consists of sub-sampling the signal at frequency fr and performing a DFT over this
sub-signal. This process is repeated for each sample of the first pulse interval. This trans-
forms the signal containing only information about the objects distance into range-speed
maps of the scene (one per channel). Figure 1.8 shows the results of performing DFT on
the signal of Fig.1.7.

The hardware implementation of this processing is highly challenging since it is not
performed in the data arrival order. Indeed, we must perform a corner-turn (a data re-
ordering operation) on a large data amount with one or several memories with limited
bandwidths. This issue is further explained in Section 3.2.1.

AESA filtering algorithms

After the classic preprocessing steps, we exploit the capabilities offered by the AESA
to filter out noises and interferences remaining in the signal. This kind of antenna allows
further filtering operations, involving spacial filtering. The simplest spacial filter is the
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Figure 1.8 – Range-Doppler map (dB)

beamforming. It consists in multiplying the received signals vector with the transpose
conjugate of the steering vector to maximize the signal coming from a direction. This is
actually a matched filter, based on the phase rotation due to the delays at which the signal
arrive on the different AESA sensors. The signal filtered for a couple elevation-bearing
(θ, φ) is given by:

yθ,φ(t) = sHθ,φymatched(t) (1.9)

where yθ,φ is the received signal filtered to observe a specific direction. This filter theo-
retical gain is given by the antenna theoretical diagram (Figure 1.4). A radar antennas
property is: the larger the antenna, the sharper the beam; and so is the beamforming
filter response.

More complex spatial filtering can be performed at a higher computational cost. For
example, the adaptive beamforming algorithm uses the background signal covariance to
discriminate and filter out jamming interference. Similarly, the Space-Time Adaptive Pro-
cessing (STAP) uses the space-Doppler dimension to filter out jammer and clutter (this
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processing is further detailed in Section 4.1).

Detection algorithm

Once the AESA spatial filtering is performed on the input data, the signal is trans-
formed into a range-speed map which can be seen as an image. We now find targets by
searching peaks in this image. To find these peaks we define a thresholds to compare with
the pixel under test. The signal SNR is apriori unknown, so a fixed threshold would be
inefficient. Adaptive thresholds based on the noise background are created with Constant
False Alarm Rate (CFAR) algorithms. Two major CFAR algorithms are the CA-CFAR
and the OS-CFAR[5]. The former one computes the mean value of the pixels around the
pixel under tests to set the threshold (to be compared to the cell under test) and is the
simplest one. The latter sorts the pixels around the pixel under test and picks one of
them (usually the 3N

4 th value, N being the index of the largest pixel value) to set the
threshold and is more robust than CA-CFAR, especially in presence of multiple targets
and/or clutter.

Both algorithms use the cells around the cell under test to compute a threshold. They
can be implemented either in one dimension (flatten version of the signal), or in two
dimensions (on the range-speed map). The two dimensions CFAR operations is equiv-
alent to image processing: we use a kernel, which can be a binary cross or square, or
a weighted kernel which adapts to the known target signal shape in the range-Doppler
domain. Figure 1.9 presents two binary CFAR kernels examples (at the left side) as well
as the detection result (with either of the kernels) on the signal presented in Fig. 1.8 (at
the right side) where valid detection pixels are colored in red.

If no target is detected, the system can perform additional steps of AESA filtering and
detection until a target is detected, before running the next algorithms.

Direction of arrival

When targets are detected, the system knows their range, speed and approximative
direction of arrival. However, accurate angular tracking is often required. This is achieved
by a direction finder algorithm which improve accuracy by orders of magnitudes. For
AESA, it is possible to achieve high angular resolution with several algorithms such as
MUSIC[6], ESPRIT[7] and their variants. These methods use the eigendecomposition
of the measurement covariance and the orthogonality between the noise and the signal
subspaces. Based on the eigenvalues, whose values are equal to the noise variance for the
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Figure 1.9 – Examples of CFAR detection mask (left) and detection results (right)

noise subspaces and greater for the signal subspaces, the signal is decomposed into signal
and noise subspaces.

The MUSIC algorithm finds the directions of arrival by scanning different directions
until it finds the directions where the noise subspace contains the less power, by searching
the maximums of the MUSIC pseudo-specter P (θ, φ) (Eq. 1.10), where En is the matrix
of eigenvectors spanning the noise subspace.

P (θ, φ) = 1
sHθ,φEnEH

n sθ,φ
(1.10)

The ESPRIT algorithm uses two separated sensors arrays (Zx and Zy), the second being a
displaced doublet of the former one. The first step is to extract the matrix of eigenvectors
spanning the signal subspace for these two arrays (Ex and Ey). The second step is to
solve an equation of the angular phase with the signal subspaces. Since the two arrays are
related by a displacement, we have a relation between Ex and Ey such that:

Ψ = EyE−1
x (1.11)

where Ψ eigenvalues contain the angle of arrival of the targets (see [7] for the demonstra-

24



1.1. Radar

tion).

These methods rely on the antenna geometry, but as we said, the antenna is imperfect
and its properties can evolve during the mission. Hence, we do not know the exact positions
and phase shifts of the antenna elements which greatly condition the performance of
direction finding algorithms. In [8], an algorithm based on MUSIC is presented to improve
performance in the case of partly calibrated radar antennas.

Tracking and association

The targets tracking consist in filtering detected plots (that contains only informations
on targets at the time of the measurement) with the help of previous measurements. One
of the most common algorithms used for tracking is the Kalman Filter (KF). This filter
is based on a modeling of the trajectory of an object relatively to the radar system.
The implemented models are often non-linear, and extended and unscented KF (which
are non-linear extensions of the otherwise linear KF algorithm) perform often better.
Extended KF are preferred in embedded systems since they are less computing intensive
than unscented Kalman filters. There are many ways to model a target trajectory that
will perform differently depending on the observed target. The Kalman filter performance
is highly dependent on the quality of the model and on the estimation of parameters such
as the model and measurement noises covariance. The measurement noise can be easily
estimated as we usually know the accuracy of measurement. However, the model noise
can be complex to obtain since it depends on model uncertainties, but can be tuned using
the innovation likelihood of the filter which gives an estimation of the model-observation
consistency[9].

Some detection plots may be spurious and can be filtered out by a Probabilistic Data
Association Filter (PDAF)[10]. This algorithm is an add-on to the KF, and consists in
observing the innovation likelihood of the KF for each plots. If the value of the innovation
likelihood drops under a defined threshold, it is considered as spurious, otherwise the
detected plot is treated as a valid detection. The PDAF is also used to decide whether to
create a trajectory for a series of plots.

Once the detection plots are filtered and associated to trajectories, it is interesting to
classify and identify the targets.
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Automatic Target Recognition (ATR)

The automatic target recognition is a process which takes inputs of different natures
(speed, acceleration, ESM signature, SAR image) and returns the class of detected objects
(e.g. drone, civil aircraft or military aircraft model), possibly associated with a confidence
level. The inputs of ATR come from the aforementioned processing and from ancillary
processing channels (e.g. the extraction of the micro-Doppler signature of the target)
which can help the classifier to identify the target. The first problem is to decide which
inputs, or features, must be used to classify the objects. This depends on both the available
data and the application, but has to be sufficient to discriminate objects of different class.
For an early-warning radar, this can be the ESM signature, speed and acceleration of the
objects.

Apriori knowledge can be used to define the classification mechanisms. For example,
defense companies may have access to the characteristics of many aircrafts. In some cases,
we may find the range of possible classes of an object from its maneuvers. However, since
we have noise and uncertainties, we cannot fix strict rules to classify objects. This rigidity
can be mitigated using fuzzy logic [11].

Moderns classification methods of radar systems are intelligent and/or knowledge-
based, such as HMM [12] or neural networks [13]. Several reviews of state of the art ATR
systems can be found in the literature [14], [15].

The aforementioned algorithms must run in real-time in embedded radar systems
equipped with various computing resources. These resources are limited, so they must
be allocated to portions of the computations. In the next section, we will show that
this allocation can be either static or adaptive and that adaptability can greatly benefit
embedded radars performance.

1.2 Hardware/Software self-adaptive systems

In air and UAV-borne radars, the processing techniques and modes diversity as well
as the evolving environment show the need for self-adaptive systems. This adaptation can
be performed by means of the dynamic reconfiguration of HW and SW resources. In the
following section, we present the principle of HW/SW resources dynamic reconfiguration.
Then, we describe how a reconfigurable system can be characterized based on previous
works on adaptive systems, with a focus on the radar reconfiguration problematic.
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1.2.1 Principle

Computing systems involve various resources. In this study we focus on Systems on
a Chip (SoC) composed of a CPU, a FPGA (Field Programmable Gate Arrays), mem-
ories and other resources such as communication buses. The two types of resources that
we consider in our study are the computing time of CPU and the hardware resources
of FPGA. Other types of resources can be considered. The dynamic reconfiguration of
computing resources aims to re-attribute the available resources to the current systems
needs, as opposed to a static system where the resources are attributed at design time,
regardless of the execution context. A static system cannot fully benefit from the available
resources since they are attributed to tasks that may or may not be useful at different
time of the mission. In HW, this means that some FPGA resources will be unused during
periods of the mission. Since the resources are limited, this also means that the designer
must choose a tradeoff between algorithms performances (in terms of processing quality,
speed or both) and resources usage. In a static system, this tradeoff will of course have
higher constraints on the resources usage, and thus the performances. The reconfiguration
allows to maximize the use of the resources to improve performances.

The reconfiguration of SW and HW resources are based on different mechanisms.
Since SW is mostly based on the execution of sequential instructions, configuration is
performed by changing this sequence. This task is fast and straightforward, so most of the
challenge lies in the configuration control. However, HW reconfiguration implies change
of values in many configuration memory registers, resulting in a long process. Moreover,
HW architectures are often pipelined and must wait for data in pipelines to be processed
before moving to a new configuration, further slowing the process. To fasten and simplify
reconfiguration, we can reconfigure a subset (or partition) of the FPGA configuration.
This process is called Dynamic Partial Reconfiguration (DPR).

The different reconfigurations of a system can be categorized, depending on the mech-
anisms used. Figure 1.10 defines three levels of reconfiguration:

1. Application reconfiguration.

2. Algorithm reconfiguration.

3. Parameter configuration.

These reconfiguration can be performed through different techniques. We categorize them
as:

1. Full reconfiguration.
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2. Partial reconfiguration

3. Register configuration.

The three reconfiguration levels cannot be directly mapped to one of the three configura-
tion means. Indeed, any mean can be used for any kind of reconfiguration. The relevance
of the configuration technique is application specific. According to [16], we specify recon-
figuration based on a tree represented in Figure 1.11. We detail some of the following
main concepts presented in Figure 1.11:

• Reason.
• Level.

• Time.
• Technique.

• Adaptation Control.

in the following sections, with a focus on radar systems.

Level Technique Mean¶ SW HW ¶

Application

Algorithm

Parameter

Full
reconfiguration

Partial
reconfiguration

Register
configuration

New task Full reconf.

New function DPR

New value AXI Slave

allows more
optimizations

uses less
memory

allows more
optimizations

faster
reconf.

Figure 1.10 – Dynamic reconfiguration levels and methods for SoC FPGA

Reason

The rationales for reconfiguration schemes in radar systems are manifold. First, the
most common reconfiguration occurring in a radar processing chain is based on context
changes. The simplest example is the PRF. When a target is far away, the radar will
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Self
adaptation Reason

Level

Time

Technique

Adaptation
Control

Context Change
Resources Change
User command
Application
System Software
Communication
Resources
Context
Proactive
Reactive
Parameter
Structure
Context
Approach
Decision Criteria
Degree of Decentralization

Internal
External
Models
Policies
Goals
Utility
Decentralized
Hybrid
Centralized

Figure 1.11 – Taxonomy of self-adaptation (adapted from [16] and [17])

reduce its PRF to increase Tr and thus the maximum unambiguous range 2. As this target
gets closer, the radar will increase PRF. Radar systems may have to modify configuration
because of resources change, for example in the case of a transceiver malfunction. Finally,
another reconfiguration source is based on the user, or more generally on a master system.
For example, the master can force the radar system to focus on one particular target and
to revise its algorithms accordingly.

Level

Radar processing is an interesting case study for reconfigurable computing. Since this
system requires software and hardware, the reconfiguration can happen at many levels.

• The executing application can drastically change. Indeed, modern radar antennas
(AESA, MIMO) support different modes to perform, for example, SAR algorithms
or tracking (range / Doppler extraction) depending on the context. In this case,
a large part of the system will be reconfigured: the system software, the hardware

2. The longest range for which the target echo is received between the corresponding pulse and the
next one, equal to: c(Tr−τ)

2 .
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Figure 1.12 – Example of an aircraft radar reconfigurable FPGA architecture

resources (through DPR) as well as the communication means.

• Reconfiguration can also happen at the algorithmic level. In tracking systems, direc-
tion finding algorithms and ATR are useless if no target is detected. The resources
should be first allocated to enhance detection and then reallocated to these algo-
rithms once detection is successful. In this case, a smaller part of the resources will
be reconfigured in SW or HW, but the communication means should not change.

Figure 1.12 depicts an example of a radar FPGA architecture with two level of re-
configuration: applicative and algorithmic. We see on this figure that the multiplicity of
configuration levels involves hierarchical configurations. In this example, a reconfigurable
algorithm is included in a reconfigurable application.

Time

Most of the time, radar reconfiguration arise in reaction to an event like a context
change or a user command. Therefore, reconfiguration arise in reaction to an event. How-
ever, proactive reconfiguration is possible in some cases. For example, if a radar detects a
target and this target seeks to hide, it can try to disappear in the clutter. The radar can
anticipate this behavior by looking at the target trajectory and proact by adapting the
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algorithms to be more efficient in presence of a clutter.

Technique

Since the radar reconfiguration can happen on many levels, the techniques used for
reconfiguration can take many forms. The faster reconfiguration technique, either for
hardware or software is based on parameter changes. The most common example in radar
systems is the PRF. However, this type of reconfiguration only allows minor changes.
When a whole algorithm must be adapted, the implemented structure is affected. The
designer has two choices. Either the different algorithms are implemented and we switch
between them with a parameter, or we replace the whole structure. The former is faster in
hardware but uses more logic. In software, it can be slower because it requires additional
logical tests. The later results in faster execution in every case, but the reconfiguration
process takes time in hardware (since it is done by DPR).

Adaptation control

In our example, the adaptation control must be knowledge-based. This kind of control
system can be based on the Monitor, Analyse, Plan and Execute (based on Knowledge,
a.k.a. MAPE-K) principle. Figure 1.13 shows an adaptation control system managing a
radar configuration. There is a hierarchical relation between a slave (radar) and a master
(e.g. an aircraft system). The master system has a global view on the mission and a
strategic vision. Its goal is to optimize the system to the mission. The master has its own
adaptation system, whose decisions directly affects the slave system. The slave adaptation
system transmits information to the master, either directly or after transformations, to
improve reconfiguration decisions. The slave system also locally adapts by optimizing its
configuration according to the master demands (e.g. the direction to observe, the target
to track). The radar adaptation control system is therefore both internal and external.
The degree of centralization of this adaptation is hybrid. However, even if both adaptation
control can take its own decisions, if one of the two adaptation control encounter a failure,
the whole system optimization is compromised. This can be mitigated if the master and /
or slave MAPE-K is duplicated. In this hierarchical MAPE-K arrangement, the knowledge
of the radar slave is limited to its local vision and is shared with the master to enhance
its global vision on the mission.

31



Chapter 1 – Research background

M A P E

M A P E M A P E

Master system
reconf. process

(global/strategic vision)

Radar
reconf. process

(direct app. concerns)

Other subsystems
reconf. process

(direct app. concerns)

Concrete group of
MAPE-K components

Abstract group of
MAPE-K components Managed subsystem

Managing-managed
subsystem interaction

Inter-component
interaction

Figure 1.13 – Hierarchical MAPE-K process of a reconfigurable radar system (adapted
from the hierarchical model from [18])

1.2.2 Common tools for Dynamic Partial Reconfiguration (DPR)

The dynamic partial reconfiguration requires offline and online operations. The imple-
mentation of the computing architecture on the FPGA and the different configurations
that must be used by the system is performed offline. The system embeds the bitstreams
of the different configurations in memories and must control this reconfiguration through
HW and/or SW online.

Implementation workflow

The implementation of HW reconfigurable architecture is supported by several tools
from the main FPGA vendors (Intel and Xilinx). The workflow is similar and is based on
a hierarchical implementation. Its is composed of the six steps depicted in Fig. 1.14:

1. Logic synthesis of the hardware architecture (block-based transformation of Hard-
ware Description Language (HDL) code to netlists).

2. Reconfigurable partitions (RP) definition in the reconfigurable logic and association
of the reconfigurable netlists to RP.

3. Placement and routing of the architecture with one configuration in each RP and
writing of the bitstreams.

4. Replacement of the RP by black-boxes.

5. Locking of the static architecture placement and routes.

32



1.2. Hardware/Software self-adaptive systems
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Figure 1.14 – Example of a reconfigurable system implementation with Vivado

6. Placement and routing of the remaining configurations in place of the black-boxes
and writing of the bitstreams.

This workflow is straightforward and well integrated in the vendors design tools with
many provided tutorials. However, this simple workflow does not allow some optimiza-
tions, for example hierarchical reconfiguration 3 (reconfiguration of a partition which is
a subset of another partition, which would be required to implement the architecture
of Fig. 1.12). Some academic tools provide frameworks to allow more optimizations (see
Chapter 2) but are usually also less robust and up to date.

3. Intel FPGA supports hierarchical reconfiguration with a slightly different workflow, see [19]. At the
time of writing, Xilinx still does not support this kind of implementation.
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Reconfiguration control

The control of DPR is composed of HW and SW parts. In HW, the designer must
implement a device interfaced to the configuration port to perform DPR. This is not re-
quired in the ZynQ SoC if the reconfiguration is controlled from software since a dedicated
device, the Processor Configuration Access Port (PCAP), is available. The designer must
also implement logic to freeze the communications on the extent of the reconfigurable
logic during the reconfiguration time.

The vendors provide configurable IPs to implement the reconfiguration device and the
freeze functions. The FPGA vendors provide APIs to control the DPR from software.
This is convenient for SoC platforms such as the Zynq[20] and the Arria[21] SoC FPGAs.
However, these API only allow to perform a standard reconfiguration and as explained
afore, in embedded systems we might have to perform several reconfigurations depending
on context changes. A critical task is to gather information on the mission context to
adequately adapt the system configuration. This requires integration of application expert
knowledge in the reconfiguration control (e.g. through a MAPE-K control) and this is not
supported by standard tools since they are designed for HW and SW experts.

1.3 Conclusion: radar reconfigurability
Table 1.1 lists configurations examples of an hypothetical aircraft AESA radar. In

practice, some configurations are selected at design time, and implemented side-by-side.
Several works have proposed reconfigurable radar architectures [22], [23], but these recon-
figurable systems are based on an external command to take the reconfiguration decision.
It might be viable for some types of radar reconfiguration (e.g. from tracking to commu-
nication) but has limitations.

System automatic reconfiguration must be based on criteria to take the right decisions
at the right moments. While for a lot of systems it is possible to rely on well understood
criteria (e.g. power consumption, resources availability and execution time), airborne radar
systems require more subtle criteria in order to understand the system situation and
environment. Table 1.2 presents criteria examples which can be used in radar to monitor
the mission context and to measure the system QoS. We observe that these criteria are
far from the more usual ones of power consumption and speed of execution used in many
reconfigurable systems.

Identifying reconfiguration opportunities and criteria is not an easy task and requires
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application expertise. For example, if we imagine a system with active or passive tracking
implementation when the target uses a jammer. How can the system determine that the
jamming is too strong and requires to use passive tracking to have better performances
than active tracking? In addition, how to be sure that the jammer effectively comes from
the target and not from another object? This example gives an insight on the importance
to have QoS indicators of the radar processing chain to help the reconfiguration choices.
Examples of reconfigurable radar architecture developed in this thesis will give more
precision on the forms that QoS-based reconfiguration of radar systems can take. We chose
to work on three reconfigurations examples, which are developed in Chapters 3 and 4, to
demonstrate the importance of reconfiguration in airborne radars:

• The tracking algorithm with an algorithmic reconfiguration based on the innovation
likelihood criteria,

• The Doppler extraction with an algorithmic reconfiguration based on the PDAF
validation criteria,

• STAP dimensions with an parameter-based reconfiguration based on machine learn-
ing prediction.

In this chapter, we presented an overview of the diversity of radar algorithms and the
benefit that reconfiguration can offer to modern radar systems. We will now present a
state of the art focused on the technologies and processing studied in depth throughout
this thesis.
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Table 1.1 – Radar configurations (non-exhaustive list for airborne AESA)

Configuration Level Description
Pulsed1,2,3 Application Uses a chirp waveform (long range).

CW1,2,3 Application Uses a continuous waveform
(short range if their is no need to know the range).

FMCW1,2,3 Application Uses a frequency modulated continuous waveform
(short range or target-clutter discrimination).

Air-air active
search-and-track1,2,3 Application Performs air-air detection and tracking with pulse or FMCW.

Air-air passive λ : cm→ m Application Performs air-air detection and tracking from
search-and-track3 jamming signal or target radar emission. (time reversal method?)

Air-air passive λ : mm Application Performs air-air detection and tracking from
search-and-track3 the thermal signature of target against background

Air-ground Application Uses air-ground steering to estimate ground variations
Ground ranging1 and allows very-low-flying.

Air-ground Application Performs air-ground detection through radar imaging.SAR1,2,3

High rate Uses the antenna to communicate
communications6 Application (e.g. for identification or cooperation).
Constant velocity2

tracking Algorithm The Kalman model considers that the target velocity is constant.

Constant acceleration2
tracking Algorithm The Kalman model considers that the target acceleration is constant.

Highly maneuvering2 The Kalman model considers a highly maneuvering target
target tracking Algorithm (can require IMM).
Doppler DFT5 Algorithm Uses DFT to perform Doppler extraction.
Doppler FFT5 Algorithm Uses FFT to perform Doppler extraction.
Antenna online Solves direction of arrival equations to deduce
auto-calibration4 Algorithm antenna characteristics (e.g. based on RARE and MUSIC).

HPRF1,2 Parameter High pulse repetition frequency (short range).
MPRF1,2 Parameter Mean pulse repetition frequency (mean or unknown range).
LPRF1,2 Parameter Low pulse repetition frequency (long range).

Range-Doppler selection5 Parameter Selection of the range-Doppler map window to observe.
Coherent / noncoherent Selects the number of CPI to integrate.

integration2 Parameter (can be high to improve SNR, or low for better reactivity).
Reverse engineering
countermeasures Other Modify the implementation to make reverse engineering more difficult.

Sources: 1[24]; 2[25]; 3 [26]; 4 [27]; 5 [3]; 6 [28], [29]



Table 1.2 – Radar QoS criteria

Criterion Level Source Description
Target property change Context Algorithmic The target changed its range, speed and/or trajectory.

Kalman
Innovation likelihood Context Algorithmic Coherency between measurement and tracking model.

The target is associated to a valid track.PDAF validation Context Algorithmic Derived from the innovation likelihood.
Clutter identification Context Algorithmic Identification of clutter in the signal.
Jamming identification Context Algorithmic Identification of a jamming source.

Algorithmic Antenna performances degradationAntenna fault Resources or hardware or an antenna element failure.
Calibration DoA difference between robust and non-robust algorithm or
uncertainty Resources Algorithmic DoA likelihood in Kalman filter.

AlgorithmicRadar fault Resources or hardware Fault in the radar processing system.

AlgorithmicRadome attenuation Resources or hardware The radome is wet so the antenna performance is reduced.

Algorithmic An active attack is detected by hardwareAttack detection Resources or hardware (either fixed or configured on FPGA).
Change focused target User External The radar is expected to track one or several specific target.
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Chapter 2 – State of the art

This chapter present a state of the art composed of three sections. The first section is
dedicated to dynamic partial reconfiguration with a focus on radar systems. The second
section is devoted to the three algorithms studied in our reconfiguration case-studies. The
last section presents a state of the art of methodologies and frameworks available to design
HW/SW reconfigurable systems.

2.1 Dynamic partial reconfiguration
DPR allows runtime adaptation while exploiting FPGA features, such as speedup

and energy efficiency. Indeed, for target domains well suited for FPGA that benefit from
parallel computation, bit-wise operations and fixed-point arithmetic, DPR provides a
more efficient solution than GPU and multi-CPU while ensuring flexibility [30]. Moreover,
a reconfigurable FPGA-based system allows the use of smaller chips, which offers a cost
advantage over an equivalent multi-board solution [22]. The flexibility provided by DPR
can be leveraged in different ways detailed in the next section.

2.1.1 DPR use-cases

As mentioned in [31], the reconfigurable systems discussed in the literature serve dif-
ferent purposes, such as application acceleration, reliability improvement and adaptivity:

• Application acceleration by scheduling: some examples handle reconfigurable
modules (RM) like tasks. In [32], the authors use DPR to implement computing
tasks on the FPGA, in a sequential order given by the application. Figure 2.1 il-
lustrates the advantage of DPR-based scheduling approach (at the bottom) versus
the equivalent static implementation (at the top) which requires a larger FPGA.
In this work, the software is bare machine and the scheduling is static, i.e. defined
offline by a finite state machine such as the one at the top right of Fig. 2.1. In
[33], the authors propose an OS for real-time tasks online scheduling on HW. This
type of system is meant to reduce the global power cost and increase performance
using FPGA. In this case, the reconfiguration decision only depends on the software
system scheduling.

• Self-repairing: some applications use DPR to enable HW logic self-repairing. To
do so, two techniques are used. The first is based on scrubbing and consists in peri-
odically rewriting the critical reconfigurable partitions configuration, to ensure that
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Figure 2.1 – Comparison of static implementation and static scheduling (Fig. 1 from [32])

this configuration is valid. This method downside is that we lose time reconfiguring
even if the logic is not compromised. The second, based on fault detection with
HW logic duplication or triplication[34], [35] 1, reconfigures if the replicas outputs
differ. At this end, [34] presents a tool to automatically implement triple module
redundancy at the most critical sections of a FPGA design, for efficient fault de-
tection and configuration scrubbing. Fig. 2.2 presents the case of duplication-based
self-repairing, where the output of duplicated modules are compared. If these out-
puts are equal, we keep the configuration unchanged. Otherwise, it is impossible to
know which partition is faulty, so we have to rewrite both. In the triplication case,
it is likely that only one faulty partition appears so we know that the replica which
outputs a different result is faulty, so we can reconfigure only this partition. In [37]
the redundancy-based self-repairing is extended to multi-FPGA platforms.

• QoS maximization: DPR may be used to improve the system QoS. In [38], an ap-
proach that considers application QoS is described. In this work, the system embeds
several configurations from an offline design space exploration. These configurations
are associated to their resources consumption, execution time and rules which tell

1. Although it is possible to detect a certain range of defects without duplication. E.g. in [36], authors
use the digital root to detect computation faults.
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Figure 2.2 – Fault recovery based on a duplicated reconfigurable module

the configurations impact on the QoS. The system then adapt its allocation online
from this information. Nevertheless, this work assumes that the system knows every
configuration impact on the QoS. In real-life applications this assumption is not al-
ways possible. Anyway, the DPR is simulated but not implemented in this work. In
[39], authors have designed a system which decides whether to reconfigure according
to diagnostic indicators that include application QoS values. The decision method
is based on Markov decision process and Bayesian networks, and consider available
QoS criteria. However, once again, this work doesn’t fully demonstrate the full DPR
implementation and suppose available QoS metrics and policies. The real-time oper-
ating system proposed in [40] adapts its configuration according to QoS objectives,
the position prediction errors in the case study. In [41], authors describe a reconfig-
urable architecture that replaces HW accelerators to provide required functions to a
network infrastructure. This architecture uses a function list to be implemented as
well as CPU time and FPGA available space to coordinate the resources allocation.
Since the decision is based on the current network state, this coordination leads
to the network QoS improvement. In [42] a QoS-driven reconfigurable system uses
the application heartbeat to select the best implementation at runtime. Figure 2.3
illustrates the effect of the reconfiguration control implemented in [42] on the QoS
(the heartbeat). We can see that, when the QoS curve dives below the defined limit
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Figure 2.3 – QoS improvement based on reconfiguration (Fig. 4 from [42])

m, the system use DPR to implement a more adapted configuration so the QoS
improves.

Generally speaking, architecture optimizations based on HW reconfiguration are mainly
considered to enhance performances and reduce power consumption [32], [41], [43]. How-
ever, the best HW/SW configuration must first meet the functional requirements which
can depend on the operating context. Within this uncertain environment, the choice
of used functions and algorithms may change. It results from a large design space and
depends on the environment and the execution condition (e.g. mission hazards for an
autonomous system). So the configuration choice must be related to the QoS indica-
tors evaluation. QoS designates a measurement of either the system performance or the
algorithm-scenario matching. As previously stated, our study focuses on airborne radars,
which are confronted with a constantly changing environment. Hence, in this thesis, we
focused on QoS-based reconfiguration which allows to analyze the current performance
and the system situation to adapt accordingly.

2.1.2 Radar systems DPR

Few works have addressed the question of improving radar systems from DPR [22], [23],
[44]. In [22], [23], authors propose to use DPR to switch between radar modes. In [22],
the radar system uses DPR to modify the digital beamforming accelerator to perform
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aircraft or weather tracking, which require a different number of beams and operating
frequencies. In [23], the radar is able to perform tracking or communication by replacing
the signal processing module with DPR. These are good examples of DPR use to adapt
to different situations. However, in [22], [23], the reconfiguration controls are external and
not based on any QoS indicator. In [44], authors optimize a radar application from a
simple criterion, which is the distance to the target. In this study, the optimization does
not consist in switching between optimal or degraded algorithm but instead choosing the
most adapted algorithm depending on the current situation.

We observe from the literature that the reconfiguration criteria are diversified and
domain-dependent, and that only application experts can choose and formalize them.
In this thesis, we chose to explore three case-studies to expose the radar reconfigurable
processing possibilities and challenges.

2.2 Reconfigured application

We identified three reconfiguration examples which can benefit to UAV/airborne radar
systems. The following sections present a state of the art for these algorithms.

2.2.1 Kalman filter

Kalman filters are widely used for tracking in systems equipped with various sensors
such as cameras (e.g. [45], [46]) or radars (e.g. [47], [48]). These filters, based on a system
modeling, allow to compute an object trajectory and its evolution through time. For a
unique system, there may be several ways to model trajectories, with more or less success
and computing complexity.

In radar systems, we observe different kind of targets, hence various motion dynamics.
Moreover, a single target may radically change its trajectory. In these situations, there is
not one efficient model but several ones, and it can be interesting to run several models to
enhance the tracking. We can simply run several models separately and identify which one
performs the best (see [49], section IV), by observing the KF innovation likelihood which
estimates the model-observation adequacy. For examples, Figure 2.4 shows the tracking
output of Kalman filters on different models. The input trajectories at the left and right
side of the figure are created from ’Model 1’ and ’Model 2’, respectively. A noise is added
to the trajectories to create measurements, which are filtered by two KF based on the
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Figure 2.4 – Example of two trajectories and tracking results using Kalman filters (at
the top), and histograms of innovation likelihood (at the bottom). The trajectory are
generated from ’Model 1’ and ’Model 2’ at the left and the right of the figure, respectively.

two models. We see for each tracking plots that when the KF model is well adapted to
the real trajectory, the filtering is more accurate. In addition, the innovation likelihood
histogram is presented for the two trajectories at the bottom of the figure. We observe
that the likelihood of the filter is close to zero when the model is not adapted to the
measurement, while it is mostly greater than 0.5 when it is adapted. Consequently, it is
possible to know which filter performs the best.

A better solution is to use an interacting multiple model (IMM) Kalman filter [50]
which runs several models and recombines their state estimates.

However, running a single Kalman filter model in embedded radars is already highly
computing intensive, since its complexity grows exponentially as the state space increases
linearly. A multiple-model Kalman filter requires more models, depending on the diversity
of targets we need to deal with. If we consider a SoC FPGA platform, it is possible to
implement two or three Kalman filters in SW and in HW as accelerators. However, with
only few models implemented, we must make specific assumptions about the target to
track. If these first assumptions are wrong, we should be able to adapt the model during
the mission. In SW it is straightforward but for HW, no literature example demonstrates
the Kalman filters adaptation in HW from a performance criterion. The closest example
in the literature is presented in [44], where the system adapts the Kalman model based
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on the distance to targets. However, the criterion used in this example is not adapted to
airborne radar tracking, since it is not based on the targets trajectory models.

2.2.2 Discrete Fourier transform

In radar tracking systems, the environment is composed of targets, clutter and other
perturbations, which can be characterized by computing a radar signal range-Doppler map
(i.e. a discrete version of the time-frequency analysis first described in [51]). In practice,
this function is composed of a matched filter and a series of Fourier transforms. This trans-
form can be performed with different methods, as described in [52]. The main methods
are the FFT (see [53], [54] for implementation examples) and the classic DFT summation
(see [55], [56] for implementation examples for a passive and a pulse-Doppler radar, re-
spectively). The two approaches present different characteristics in terms of throughput,
latency, processing and memory resources, that can benefit to different phases of applica-
tion scenarios. In the multi-channel radars context, the range-Doppler function becomes
a major concern [57]. Indeed, although the AESA spatial degrees of freedom give extra
information on the targets, this function must be computed for every channel, consum-
ing a lot of logic resources. In this context, the DFT method used for the range-Doppler
transform is fixed at design time. Hence, the system cannot benefit from different DFT
architectures. DPR, which is proved to be particularly efficient in the signal processing
field [58]–[60], permits to overcome this limitation.

2.2.3 Reduced dimensions STAP

The signal measured with a radar is composed of target returns, noise and pertur-
bations. The power of jammer and clutter can be times stronger than the sought signal.
AESA are composed of many antennas, allowing the use of Space-Time Adaptive Pro-
cessing (STAP)[61]. STAP discriminates interferences based on correlations in the space-
Doppler domain. This two-dimensional filter offers considerable signal to interference plus
noise ratio improvements, the huge computational complexity and memory usage are pro-
hibitive. Full STAP algorithms (i.e. with the maximal dimensions allowed by the radar)
include the estimation and inversion of a NM matrix for every range cell, with N the
number of antenna elements and M the number of pulses. In addition, several drawbacks
exist to the full STAP implementation. Firstly, the number of samples required to esti-
mate the covariance matrix must be equal or greater than NM (ideally 2NM). Secondly,
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larger dimensions of a matrix contribute to the condition number increase which is an
indicator of the computing errors which can occur on matrix inversion. In practice, ex-
perts use reduced STAP algorithms [62]–[66], for a tradeoff between quality of results and
computing efficiency. Two methods can be employed:

• Fixed reduced dimensions: N and M are fixed at design time,

• Adaptive dimensions: N and M are computed at runtime, e.g. from eigenvalues.
This subject to computational round-off errors (see [67] for a discussion on random
eigenvalues of large covariance matrices).

Optimally, the STAP dimensions adaptation should depend on the interferences corre-
lations in the space-time domain. Jammer and ground clutter, exhibit different properties;
hence they have various space-time correlations. Since these correlations are a priori un-
known, designers usually fix empiric dimensions (e.g. N = M). In some situations, we
could further reduce the STAP filter dimensions by predicting the most appropriate N
and M values at runtime. For instance, a broadband jammer can be effectively filtered
out using only the spatial dimension (N > 1, M = 1). In contrast, a clutter seen from a
low speed aircraft will be better filtered with M > N .

Several authors [68]–[70] proposed approaches for the STAP dimensions dynamic al-
location. The approach proposed in [68] requires performing STAP with the maximum
number of cells of one dimension for both STAP dimensions and computing the obtained
residual noise levels ratio. The solution presented in [70] uses an iterative algorithm which
performs a series of channels tests/selections to select the most relevant antenna elements
and backscattering pulses among the N/M dimensions. The dimension selection from
these algorithms is computing intensive.

2.3 Methodology and tools for reconfigurable sys-
tems design

2.3.1 DPR computer aided design

Since HW systems are still more difficult and costly to develop than SW ones, spe-
cial academic efforts are made to create CAD tools to ease the design process. DPR is
no exception, and many tools were proposed to ease the reconfigurable systems imple-
mentation [31]. These tools enable the DPR description from low level [71], [72] up to
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C++/SystemC level [73]. Some tools allow to implement and replace OpenCL kernels
thanks to DPR [74]. However, the description of efficient HW accelerators with C++ or
SystemC already imposes specialized code which requires good HW skills, far from the
usual knowledge of application experts [75]. With the DPR additional complexity layer,
we see that these efforts do not allow an application expert to efficiently benefit from
reconfigurable FPGA.

Designers could benefit from a framework which eases the reconfigurable systems de-
sign by different experts (specialized in application, HW or SW). Creating such design
framework can be a difficult task with many considerations. In order to define the method-
ology and the associated tools, we need a way to model how the agents collaborate to
create an efficient design. Since there are similarities between cooperative design and
multi-agent systems, the design framework could be inspired by the multi-agent domain.

2.3.2 Multi-agent development framework

Literature provides many definition of the agent concept[76], [77]. As there is no stan-
dard agent definition, we select characteristics which are commonly attributed to the
agents and which can support our methodology representation. The agent most impor-
tant characteristics are that it is self-organized, cooperative, communicative, has a specific
skill set, is reactive and proactive.

For J. Ferber[76], there are several reasons to create a multi-agent problem represen-
tation:

• “The problem is physically distributed”: the agents are at a different place. For
human agents, this is particularly true with the recent teleworking development.

• “The problem is functionally distributed”: it requires various knowledge and points
of view.

• “The problem is too complex and vast to be completely analysed by one agent”:
SoC are complex systems which mix HW, SW and application considerations.

• “The system must adapt to structural changes”: Some agents can appear, disappear
or be replaced without compromising the system. In addition, an increasing number
of tasks will be performed by automated processes and AI, which will either increase
the number of agents or replace human agents.

This corresponds to some of the problems posed by a SoC design methodology. Multi-
agent systems have already been used for the multi-disciplinary design of complex systems.
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However, these approaches are often too conceptual and generic and lack the specifications
to be applied to a particular application area, as in [78]. It is, however, possible to draw
elements of response from the work of Y. Chen et al. [78], such as the driving of solution
by the functional requirements, the need for clear functional knowledge representations,
the management of knowledge and the sharing of a common solutions pool.

2.4 Positioning of the thesis work
In previous works DPR has been widely used. However, most of them focus on changing

implemented logic based on application scheduling or external commands. Several works
focus on maximizing application QoS, but only a few studies address the case of embedded
radar systems. In order to further explore the possibilities of embedded radar systems
dynamic reconfiguration, this thesis presents three original reconfigurable radar algorithms
case-studies:

• In Section 3.1, we propose a reconfigurable architecture for Kalman filters which
modify the implemented models, using innovation likelihood as a QoS criterion.

• In Section 3.2, we propose two contributions for the discrete Fourier transform in
the context of Doppler radar:

. A reconfigurable architecture which allows to use the proper version of DFT
algorithms according to application needs, without the resource consumption
overhead. This architecture limits the impact of the reconfiguration time by
performing an original progressive reconfiguration that opens new perspectives,

. A method to take the reconfiguration decision at the right time in a radar
application.

• In Chapter 4, we propose a lighter method for STAP dimensions reduction based
on light neural networks and random forests. Indeed, we came to the conclusion
that a machine learning process could extract fine information from the noise plus
interferences covariance matrix to adjust the N andM dimensions while the system
is running. Thus, we propose STAPLE, a method based on machine learning predic-
tion models to determine the most adapted N andM dimensions of the STAP before
performing the costly computation. Our prediction models base the inferences on
the interference condensed observation (being the prediction models input) offered
by a reduced dimension covariance matrix, this matrix being first estimated in the
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online process (and then avoiding the tedious full dimension matrix estimation).
The prediction models are based on a combination of light Convolutional Neural
Networks (CNN) and Random Forests (RF), which have good characteristics to
be implemented within highly parallel and pipelined architectures (e.g. FPGA or
GPU implementations[79]–[81]). We compare our approach to the standard N = M

approach using the Improvement Factor (IF), matrix condition number and com-
puting complexity as metrics. Our solution holds a lower computing complexity and
exhibits more computation parallelism, thus shorter response times.

From the observations made on these case-studies, we then propose a methodology in
Chapter 5 to ease the reconfigurable systems design by different experts and using existing
tools. This methodology aims to raise the reconfigurable system description level in order
to make it accessible to application experts, while letting the implementation considera-
tions to the HW experts. It means that our methodology must be compliant with most
flows and tools for the final implementation. Hence, we use a multi-agent representation
to formalize the relations between the designer and the development environment towards
a common goal: the design of an efficient HW/SW computing core. This formalism allows
to foresee the extension of such methodology to include AI and autonomous agents.
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This chapter presents two case studies of radar processing hardware reconfiguration
based on algorithmic QoS indicators. Firstly, Section 3.1 propose a basic methodology
to design a reconfiguration controller based on quality of service (QoS) indicators to be
specified by experts. This controller monitors the reconfigurable partitions (RP) and can
make DPR decisions to optimize the global QoS. We illustrate our methodology in the
Radar domain with a tracking system based on Kalman filters implemented on a Zynq
Ultrascale+. This study highlights expected gains and obstacles, it presents the different
strategies to cope with the issues and draws perspectives. Secondly, Section 3.2 presents
a reconfigurable system which switch between a classic discrete Fourier transform (DFT)
sum and a fast Fourier transform (FFT) to enhance Doppler extraction. This section
explores the pros and cons of both methods. Based on these observations, we propose a
new architecture and decision method that relies on radar QoS for enabling an efficient
self-adaptive solution. This method is tested in a hardware-in-loop simulation with a DPR
radar implementation. These two studies have been published in the in the context of this
thesis, and correspond to references [2] and [3] for sections 3.1 and 3.2, respectively.

3.1 QoS Driven Dynamic Partial Reconfiguration:
Tracking Case Study

This work proposes a simple methodology to control QoS-based reconfiguration and
demonstrates this methodology with a case-study based on radar tracking.

In section 3.1.1, we present a methodology to create an adaptive reconfigurable system
to reconfigure regarding application QoS feedback. The case study of Tracking method,
based on Kalman filters and implemented with the proposed QoS driven reconfigurable
architecture, is described in section 3.1.2. Section 5.6 concludes the study and draws
directions for future work.

3.1.1 Methodology

Separation of concerns

To take advantage of a QoS driven reconfiguration, the signal processing experts must
be DPR aware so that they can have in mind the possibility to switch between different
algorithm modes or configurations. However, these experts should not have to care about
the implementation details. Thus, the design of a QoS driven DPR needs to be based
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on the separation of concerns scheme depicted in Figure 3.1. Once the signal processing
experts know they can use several HW configurations in one mission, they can explore
more ambitious strategies. First, they need to specify the algorithms to implement and the
different versions they need, in terms of performances and resources cost. Secondly, they
have to define the QoS indicators they need to implement such decisions. The SoC design-
ers then can provide the required feedback in the same way as in a classic development
process.

Run_rm()
Get_qos()
Load_rm()
...

Request for functionalities

Feedback on performances
and resources

Config. decision
of reconfiguration

Signal Processing
Expert

RM1
RM2

...
RMi

RP1 RP2

RP3 RP4

CPU

Reconfigurable SoC
Expert

Figure 3.1 – Schematic representation of the separation of concerns in the QoS driven
DPR methodology

After a few cycles, the reconfigurable SoC experts have to bring to the signal processing
experts a library of the different configurations (RMi in Figure 3.1). They must also
provide simple API for the experts to implement the reconfiguration decision system.

Reconfigurable architecture model

The architectures considered in this study target SoC FPGA devices. They are com-
posed of a FPGA (PL) and a processing system (PS). Several partitions are defined to
be reconfigurable. The reconfigurable partitions (RP) communicate with one another and
with the PS through buses. The more generic the buses are, the more heterogeneous the
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Figure 3.2 – Example of a SoC reconfigurable architecture.

RM can be. The reconfiguration can be triggered either by the PS or by the PL part. The
reconfiguration controller must also access the partial configuration bitstreams that can
be stored in the main shared DDR memory or in dedicated one. However, a QoS driven
methodology must be accessible to algorithm experts who are not familiar with FPGA.
So, if the configuration delay is compliant with the application time constraints, a SW
implementation is the best solution. As a SW program, the configuration decision and
the configuration control can simply be tested and modified by algorithm experts. Figure
3.2 illustrates an example of such an architecture with six RPs implemented on a SoC
FPGA.

Reconfiguration control system

Besides the execution flow, the QoS-based controller can be decomposed into four
parts: 1) Monitor, 2) Analyze, 3) Plan and 4) Execute. The monitor function is in charge
of collecting data and computing at least one QoS indicator per RM. These indicators
can be computed directly by the algorithm, for example the error in an automation pro-
cess. If it requires additional computation (e.g. estimation of the next state), the designer
can choose to implement it in either the PL or the PS part. The analyze function must
determine if a reconfiguration is needed, with regard to the QoS indicators. The plan
function decides when to trigger a reconfiguration, and which configurations must be re-
placed. Finally, the execute function is in charge of loading the right bitstream at the right
time according to application execution flows and architecture constraints. In all cases the
decision-making based on the indicator is co-designed with application experts and so is
preferably implemented in SW. This allows experts to evaluate different strategies. Figure
3.3 illustrates the DPR control flow, step-by-step.
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Figure 3.3 – Diagram of the DPR control system

3.1.2 Case study : Kalman-based tracking

We are interested in optimizing the tracking of a target by selecting the best Kalman
Filter (KF) chosen in a library of KFs which differ from each other by their process
models, i.e., the way they model the trajectory of the target. Ideally we could execute
all the models in parallel and select the best one after each iteration according to QoS
indicators. However, our major constraint is that all the KFs available in the library
cannot be executed simultaneously because of real-time constraints and hardware resource
availability. So, only a subset of the library must be implemented. In our study we consider
that two KFs can run simultaneously. KFs can be implemented either in the PS or the PL
part. The advantage of the HW version is twofold. First, it improves the execution time
and so the response time of the system. Secondly, it allows the execution of multiple KFs
in parallel while having the PS available for running other application and system tasks.
We choose a model with different KFs running in parallel in separate RPs.

In real tracking systems, such Kalman filters can be very large (more than 10 states in
the aircraft dynamic navigation filter in [82]). Hardware optimization based on constant
matrix elements is then required. Reconfiguration based only on parameter changes is,
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therefore, inefficient. Moreover, DPR allows to implement Kalman filters with completely
different behaviours (e.g., EKF, UKF and IEKF). In this study, we use simpler Kalman
filters to illustrate the method without loss of generality.

Reconfigurable architecture model

The architecture used for the study is based on the one defined in 3.1.1. In this example,
two RP are defined. These RP can host a KF implementation. Each RP can be configured
with seven different state models, each model corresponding to a different trajectory
assumption. This means that they do different computations and use different matrix
sizes. The KF gets the measurements from the PS through a direct memory access (DMA)
interface. This DMA is included into the RP. The buses use a generic AXI4 interface for
PL to PS communications. In this example, there is no communication between both RP.

QoS estimation and DPR decision

The QoS estimator at time k is chosen as the log likelihood of the measurements
collected at time k. This criterion can be used as an efficient estimator of the KF model
correctness[9]. It can be computed using the innovation and the innovation covariance
computed by each KF under test:

fQoS(k) = iT
kΣ−1

i ik (3.1)

where:
fQoS = QoS function

i = innovation vector
Σi = innovation covariance

We observe that this function requires matrix multiplication, so it can benefit from a
parallel HW implementation. This is a typical point of useful discussion that authorize the
proposed methodology. The QoS indicator is specified by the application designers and
the reconfigurable SoC designers can work on the best implementation. In this case, they
can reuse the inverse of the innovation covariance matrix which needs to be computed to
get the optimal Kalman gain (equation 3.2). Therefore, we chose to implement fQoS in
hardware, using Newton division to increase performance while reducing PL footprint.

Kk = (Pk|k−1H
T
k Σ−1

i ) (3.2)
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where:
K = optimal Kalman gain

Pk|k−1 = predicted error covariance
H = observation model
Σi = innovation covariance

Once this indicator is computed, the IP sends it back to the PS. The application then
has access to a QoS value for each of the KF modules. This allows the program to identify
which filter is the most adapted to the current situation. In this way, the PS can replace
the worst one and implement another IP to test another trajectory hypothesis.

Figure 3.4 shows an illustrative example of the control principle while considering 2
DPR partitions that can implement different Kalman models. The first and second lines
draw the evolution of the configurations implemented on the RP1 and RP2 over time.

The method we chose to control the reconfiguration from the QoS values relies on 4
phases:

1. Initialization: Two configurations are chosen at the beginning of the tracking. This
choice can rely on mission indicators. For example, in radar systems, the target
trajectory can be classified with the help of a priori knowledge.

2. Observation and decision: QoS-driven adaptation is strongly specific to the ap-
plication and must therefore be flexible, as a software it can be easily modified
according to test results. In our case study different strategies are possible. We have
implemented a solution that combines long-term observations and reactivity. The
QoS estimator gives a new value at each Kalman call. However, we cannot reconfig-
ure each time we get a new QoS value. Nevertheless, a very bad QoS value means
that we need to change the configuration as soon as possible. Therefore, we need
to have two kinds of reconfiguration: The first one computes the average QoS over
an observation window (shown in Figure 3.4), the KF with the worst QoS score is
replaced by a new one according to a round-robin mechanism (Reconf. decision n
in Figure 3.4). The second one is based on thresholds, when both KF QoS exceed
the maximum values then KF are interrupted before the end of the window and
replaced by two new ones (triggered-based reconfiguration decision in Figure 3.4).

3. Reconfiguration: The reconfiguration takes time to perform. In some radar appli-
cations, there can be no down time. In our system, the reconfiguration time can be
hidden since there are two RP running concurrently and only one will be stopped on
reconfiguration. The only situation where a timeout occurs is when the threshold-
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Figure 3.4 – Example of QoS driven DPR control

based reconfiguration is triggered for both RP. In such case, none of the Kalman
filters can achieve a good tracking so a HW reconfiguration is required.

4. Convergence: When using a Kalman filter, there is a convergence time. This hap-
pens because the starting point of the algorithm is not perfect. This time causes the
filter to output inaccurate points and can cause the QoS estimator to output bad
scores during the convergence interval. In this experiment, we consider this training
phase as an additional reconfiguration time. We don’t observe the QoS during this
phase to avoid penalizing new implemented filters.

Experimental setup

HW/SW platform The reconfiguration strategy as well as the KFs are implemented
in a Zynq Ultrascale+, a SoC made up of a multi-core ARM and a FPGA that supports
DPR. Figure 3.5 presents the layout of the FPGA, with the two reconfigurable parti-
tions delimited by the purple areas. With this layout, the reconfiguration of a RP takes
8.7ms using PCAP. This time depends on the size of the partial bitstream as well as the
bandwidth of the configuration method. The configuration remains static outside these
two boxes. In this experiment, we use only one processor core as well as the PL part.
In real-life tracking systems, the other cores would likely be running other tasks such as
detection.

The different Kalman filters are generated using Vivado HLS, a high-level synthesis
tool. This allows to generate different configuration quickly, while ensuring that the differ-
ent configurations are compatible. Indeed, the RM needs to have the same inputs, outputs
and operating frequency. In our tracking example, the target lies on a plane whose axis
are x and y, x ⊥ y (Figure 3.6). The observation vector is z = [x, y, sx, sy], with sx and
sy the speeds respectively along the x and y axis.
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RP1

RP2

Figure 3.5 – Layout of the FPGA with the two reconfigurable partitions (RP1 and RP2).
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KF / EKF models The generated Kalman filters are listed below. They correspond
to different trajectories assumptions. Note that a state is considered constant when it is
not to be seen in the list.
Linear Kalman filters:

KF-1 : State vector Xn = [xn, yn, sxn, syn]
State transition equations : xn = xn−1 + sxn−1 ∗ dt

yn = yn−1 + syn−1 ∗ dt
(3.3)

KF-2 : State vector Xn = [xn, yn, sxn, syn, axn]
State transition equations :xn=xn−1 +sxn−1 ∗dt ;sxn=sxn−1 +axn−1 ∗dt

yn=yn−1 +syn−1 ∗dt
(3.4)

KF-3 : State vector Xn = [xn, yn, sxn, syn, ayn]
State transition equations :xn=xn−1 +sxn−1 ∗dt

yn=yn−1 +syn−1 ∗dt ;syn=syn−1 +ayn−1 ∗dt
(3.5)

KF-4 : State vector Xn = [xn, yn, sxn, syn, axn, ayn]
State transition equations :xn=xn−1 +sxn−1 ∗dt ;sxn=sxn−1 +axn−1 ∗dt

yn=yn−1 +syn−1 ∗dt ; syn=syn−1 +ayn−1 ∗dt
(3.6)

Extended Kalman filters:

EKF-1 : State vector Xn = [xn, yn, sxn, syn]
State transition equations : xn = yn−1 ∗ yn−1

yn = yn−1 + syn−1 ∗ dt
(3.7)

EKF-2 : State vector Xn = [xn, yn, sxn, syn]
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State transition equations : xn = xn−1 + sxn−1 ∗ dt
yn = xn−1 ∗ xn−1

(3.8)

EKF-3 : State vector Xn = [xn, yn, sxn, syn]
State transition equations :xn = −9.81

2 ∗ (yn−1 − cst)2 ∗ 1
(30∗cst) + sy0 ∗ sin(π2 ) ∗ (yn−1 − cst) + cst

yn = yn−1 + syn−1 ∗ dt
(3.9)

Benchmark trajectory The trajectory used for the tests is based on a combination
of sub-trajectories that follow different Kalman models. In this work, we use a trajectory
where the first part corresponds to the equation yn = x2

n. In the second sub-trajectory,
both x and y have constant speed. In the third part, x and y have constant accelerations.
The fourth and last part follows the equation of EKF-3. The green curve in Figure 3.6a
shows the complete composed trajectory. Finally, the observed values, which are the blue
crosses in Figure 3.6a, result from the addition of the target trajectory and a proportional
Gaussian noise. These data are processed by the implemented Kalman filters used for the
experiments.

Experimental procedure When the designs are synthesized and implemented, the
partial bitstreams are loaded in a flash memory. At power-up, the PS loads all the bit-
streams in DDR RAM. When a reconfiguration is triggered, the PS feeds the processor
configuration access port (PCAP) with the corresponding bitstream.
On power-up, the PS starts a benchmark to test our design. First, the input data is ex-
tracted from the SD card and stored in DDR4. Then, the application reconfigures the
two RP to set the system into a known state. Depending on the scenario, the two initial
configurations may differ. Finally, the processor transmits the data samples and gets the
results along with QoS values. The output of the best KF is first stored into DDR4, and
then saved to the SD card to be plotted and analyzed.

In our test bed we consider three different scenarios. In the first one, the two initial
configurations are the KF-1 and the EKF-3. Since these systems have strongly different
behaviours, the system should easily find the best KF. The second scenario starts with
EKF-1 and EKF-3. None of these configurations is a good model at the beginning of the
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Figure 3.6 – Tracking results

tracking. This scenario can show if the system is able to react fast to a situation where
none of the configurations is good and there is a risk to lose the target. The third and
last scenario begins with KF-3 and KF-4. As these configurations are close to each other,
it will make the configuration choice more challenging.

Results and analysis

These tests involve a reconfigurable architecture with active QoS-driven DPR and the
best Kalman without reconfiguration (model described in equations of KF-4). The results
obtained with the benchmarks are given in Table 3.1. To compare the different approaches,
we measure the likelihood and compute its median. We also collect the maximum and
more importantly the minimum measurement of the likelihood, as a small value could
cause the system to lose the target. We can observe that for the third scenario, the
likelihood median is only slightly better when using DPR. However, for the second scenario
where the system starts with bad configurations, the QoS value is much better with the
reconfiguration system. Hence, the DPR system is better at tracking a target with an
a priori unknown trajectory. We also notice that the minimum likelihood measurement
is higher with reconfiguration. This implies that the DPR system has less risk of losing
the target than the one without DPR. All three scenarios show the same minimum and
median values of the likelihood. This shows that our system is robust against its initial
condition.

Figure 3.6a shows the third scenario case of a tracking using DPR. The green curve
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Table 3.1 – Results of tracking

Tracking Sub-trajectory2 Likelihood DPR No DPRScenario1

Scenario 1

Part 1
Min 0.4156 0.4232
Max 0.9970 0.9984

Median 0.8074 0.8077

Part 2
Min 0.3898 0.3889
Max 0.9936 0.9938

Median 0.6915 0.6910

Part 3
Min 0.2580 0.2529
Max 0.9835 0.9777

Median 0.6103 0.6100

Part 4
Min 0.2144 0.2128
Max 0.9939 0.9812

Median 0.5848 0.5790

Scenario 2

Part 1
Min 0.4301 0.1640
Max 0.9939 0.9796

Median 0.8025 0.4567

Part 2
Min 0.3915 0.1198
Max 0.9853 0.8620

Median 0.6968 0.3708

Part 3
Min 0.2582 0.1177
Max 0.9934 0.9445

Median 0.6119 0.2874

Part 4
Min 0.2144 0.0868
Max 0.9894 0.9872

Median 0.5845 0.2954

Scenario 3

Part 1
Min 0.4156 0.4227
Max 0.9976 0.9982

Median 0.8063 0.8077

Part 2
Min 0.3898 0.3897
Max 0.9936 0.9966

Median 0.6915 0.6922

Part 3
Min 0.2580 0.2529
Max 0.9835 0.9955

Median 0.6103 0.6098

Part 4
Min 0.2144 0.2114
Max 0.9939 0.9748

Median 0.5848 0.5803
1Scenarios are described in subsection 3.1.2
2Sub-trajectories are defined in 3.1.2
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represents the real trajectory, while the red one shows the outputs of the reconfigurable
Kalman system. In this example the Triggered-based reconfiguration (namely when the
distance to the model exceed the threshold value) occurs once at x = 6314 when the
trajectory radically changes. All other reconfigurations occur periodically at the end of
each time-window and can provide the best KF that will be eventually selected according
to the QoS comparisons, this is for instance what happens at x = 3715. Figure 3.6b shows
the output trajectories for the three scenarios and without DPR. The differences between
Figures 3.6a and 3.6b highlight the influence of reconfiguration on the Kalman filtering.

These improvements are allowed by the knowledge of the QoS value throughout the
process. Thanks to this value, the system can choose the best model at a given time.
Moreover, the likelihood also allows to know when the models are not adapted and the
system can adapt early. This method requires good knowledge about the application, and
extracting a QoS indicator may not always be straightforward.

3.1.3 Case study conclusion

This study first demonstrates the opportunity of using DPR to virtually extend avail-
able HW resource of an embedded system in the domain of Radar. The embedded system
can dynamically implement tracking HW accelerators according to application require-
ments in order to speed-up the application execution while saving CPU time. The study
also shows the importance of considering the QoS to drive the configuration. This point
is rarely considered in the DPR literature since it requires transdisciplinarity. However, it
is crucial to fully benefit from the expert knowledge (radar, signal processing in our case
study). This knowledge can be captured and efficiently used only with a methodology
that clearly separates concerns.

The next section presents another example of QoS-based dynamic partial reconfigura-
tion which optimize another radar processing block.

3.2 A seamless DFT/FFT self-adaptive architecture
for embedded radar applications

In radar tracking systems, the environment is composed of targets, clutter and other
perturbations, which can be characterized by computing a range-Doppler map of the
radar signal (i.e. a discrete version of the time-frequency analysis first described in [51]).
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In practice, this function is composed of a matched filter and a series of Fourier transforms.
This transform is the core of our study, it can be performed with different methods [52].
The main methods are the FFT [53], [54] and the classic DFT summation [55], [56]. The
two approaches present different characteristics in terms of throughput, latency, processing
and memory resources, that can benefit to different phases of application scenarios. In
the context of multi-channel radars, the range-Doppler function becomes a major concern
[57]. Indeed, although the AESA spatial degrees of freedom give extra information on
the targets, this function must be computed for every channel, consuming a lot of logic
resources. In this context, the DFT method used for the range-Doppler transform is fixed
at design time. Hence, the system cannot benefit from different DFT architectures. DPR,
which is proved to be particularly efficient in the signal processing field [58]–[60], permits
to overcome this limitation.

This work presents a reconfigurable architecture which allows to use the proper version
of DFT algorithms according to application needs, without the resource consumption
overhead. This architecture limits the impact of the reconfiguration time by performing an
original progressive reconfiguration that opens new perspectives. The second contribution
is a method to take the reconfiguration decision at the right time in a radar application.

Section 3.2.1 details the DFT algorithm in the context of radar systems and explains
the two main methods to compute it. Section 3.2.2 proposes a methodology to take efficient
reconfiguration decisions at runtime. A methodology to create an adaptive reconfigurable
DFT for radar, is described in section 3.2.3. Section 3.2.4 shows and comments the results
obtained through a hardware in the loop (HIL) implementation on a case study. Section
3.2.5 concludes the work and draws directions for future work.

3.2.1 DFT options for radar processing

DFT algorithm

The DFT algorithm (defined by Eq. (3.10)) is used to extract the spectral distribution
of a discrete signal.

Ak =
N−1∑
n=0

W kn
N an where W kn

N = e−i
2π
N
×kn (3.10)

This equation allows the DFT computation of any size N of discrete signal. However,
all the temporal samples an are required to compute a single spectral sample Ak, k ∈
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[0, N [. This algorithm is well known and many implementations exist in the literature, with
complexities going from O(Nlog(N)) for the FFT to O(N2) for a direct implementation of
Eq. (3.10). However, in some applications, this direct DFT implementation can be useful
to order certain operations.

DFT concerns in radar processing

The DFT in radar processing is used to extract a Doppler frequency from the temporal
signal. To this end, the system downsamples the input data and performs a DFT over the
different sub-signals. The combination of a matched filter and this transform is known as
‘range-Doppler processing’. Fig. 3.7-a) depicts this downsampling and the DFT processing
to illustrate our statements. This manipulation is known as a ‘corner turn’ in radar and
sonar domains [53], [54].
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Figure 3.7 – Constitution of a range-Doppler radar map. a) down-sampling and DFT. b)
Representation of the computing capacities of DFT and FFT.

Fig. 3.7 a) shows that to complete the first DFT, we need to wait for (N − 1)×M + 1
points to arrive. However, some DFT algorithms allow to begin the computation earlier.
If we can process the input data as soon as we receive it, it is possible to reduce the DFT
latency. Otherwise, we have to wait for a significant amount of data to arrive, which leads
to a higher latency. This latency depends on the algorithm used for DFT.

Discrete Fourier transform for dataflow

An important property of the direct implementation of DFT, which we refer to as DFT
in the rest of this study, is its ability to process inputs equally in any order. It is widely
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used in radar systems to overcome the difficulty of processing the data in a different order
from arrival (Fig. 3.7-a)).

Consuming the data in the natural order of arrival minimizes latency since compu-
tations start earlier and the O(N2) computations are then covered as the data comes
in. However, all partial sums of Eq.(3.10) need to be stored locally in the FPGA for ev-
ery output, in order to keep the short latency benefit. But in contrast with FFT, DFT
can compute a selected part of the spectral domain from the full time domain, reduc-
ing the number of computation while ensuring spectral accuracy. Hence, DFT allows to
adapt the size of the explored spectrum to available storage and logic resources on FPGA.
Eventually, we can summarize as follows:

• pros: dataflow processing, low latency, no need to buffer the input data, possibility
to compute a selected interval

• cons: high DSP and BRAM consumption per output sample, limited range-Doppler
exploration because of the limited output samples

Fast Fourier transform for block processing

In contrast to DFT, FFT algorithms use more efficiently both processing and memory
resources, by means of computation results reuse. However, a drawback of FFT is the in-
ability to process the inputs in order of arrival. With the DIF FFT algorithm for instance,
N
2 + 1 input samples are required before the first computation can start. The main issue
is the latency penalty. A second one is the incapacity to store all the input samples in
the FPGA (N2 × number of distance gates × number of channels). Hence, an external
DDR memory is used and introduces an additional latency, but it also frees up resources
that can be used to compute the full spectral domain. Eventually, we can summarize as
follows:

• pros: low resources consumption per output sample, full size range-Doppler explo-
ration

• cons: high latency, data buffering is mandatory

Conclusion on DFT algorithms for radar applications

At radar startup, the system does not know the exact position of the tracked objects in
Doppler and space domains. At this time of the mission, it is critical to have information on
the full space to emphasize detection. Moreover, the latency is not critical since no tracking
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is launched, thus a FFT is the right solution. Once detection is successful the system has to
start tracking, which requires other algorithms (e.g. angle of arrival estimation, filtering
with Kalman filters). The latency constraint is strengthened. Furthermore, the system
now has a precise estimation of the target range and speed. So, the extensive overview on
the range-Doppler domain can be exchanged for reduced latency, allowing the system to
perform additional required functions. This trade-off on the exploration space of the two
algorithms is illustrated in Fig. 3.7-b).

This describes the original idea of our study, but we still need to define the reconfig-
uration decision-making.

3.2.2 QoS aware reconfiguration controller

Upon startup, the system uses the FFT algorithm. Once detection is successful, we
could change for the DFT algorithm. However, a successful detection cannot guarantee
a positive detection in the next radar coherent processing interval (CPI). Indeed, a poor
signal to noise ratio (SNR) or signal to clutter ratio (SCR) may result in the loss of the
target. Such changes in SNR and SCR can come from radar cross section (RCS) changes,
fluctuation loss or environment configuration.

The decision to reconfigure the system requires a more accurate QoS indicator than
the simple Boolean one. We need a value which reflects the probability to successfully
detect the target. A good solution is to use the probability of detection (Pd), which is
in practice unknown but can be approximated from a quantifiable variable. One possible
approach is to record the positive and negative detections of the target, and compute the
target detection frequency. To use this approach, we need to ensure that the plots (i.e.
positions where detection is positive) come from the same object. This can be achieved
by a probabilistic data association filter (PDAF)[10]. This filter uses the log-likelihood of
the innovation (`) computed by a Kalman filter to determine if the plot is likely to be
related to the observed target. The PDAF associates the plots to a track with a validate
function V (k) described in Eq. (3.11).

V (k) =
1, if `(k) > γ

0, if `(k) < γ
(3.11) Lq(k + q) = 1

q

q∑
i=1
V (k + i) (3.12)

68



3.2. A seamless DFT/FFT self-adaptive architecture
for embedded radar applications

Where : `(k) : log-likelihood of the innovation at plot k
γ : validation threshold

The detection ratio over q samples is given by Eq. (3.12). The target detection is
confirmed when the frequency exceeds a defined threshold λ, so we can simply define the
QoS criterion as the detection ratio: fQoS(k+ q) = Lq(k+ q). A PDAF is required in any
radar tracking system, so the QoS function does not introduce a computational overhead.

The required configuration sk can take one of the two states of S : {SDFT , SFFT}, which
are the DFT and the FFT respectively, depending on the QoS criterion. Eq. (3.13, 3.14)
describe the state of the configuration with regard to the QoS criterion. Fig. 3.8 gives
another representation of this system through a cyclic graph and a transition hysteresis.

sk =
 SDFT , if SDFT · ā+ SFFT · b
SFFT , if SDFT · a+ SFFT · b̄

(3.13)

Where: a = b̄ = fQoS(k + q) < λ (3.14)

SDF T SF F T

a
ā

b

b̄
fQoS(k + q)

λDF T

λF F T

λ

SF F T SDF T

Transitions
with one threshold
Transitions
with hysteresis

Figure 3.8 – Control graph and associated transition hysteresis

A transition based on Eq. (3.14) induces a risk of constant reconfiguration. For exam-
ple, with λ = 2.5

3 , if the QoS value follows the sequence: [3
5 ,

2
5 ,

3
5 ,

2
5 ], the reconfiguration

happens at every radar CPI. Therefore, we adopt an hysteresis model with two different
thresholds λ for the two state changes. λFFT is used for the transition from DFT to FFT
and λDFT for the reconfiguration from FFT to DFT. With λDFT > λFFT , the transition
functions are given by Eq. (3.15).

a = fQoS(k + q) 6 λFFT ; b = fQoS(k + q) > λDFT
(3.15)
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Fig. 3.8 shows that Eq. (3.15) results in a more stable controller, which is unlikely to
cause ceaseless reconfigurations. This automaton is synchronous with the radar CPI end.

It is worth mentioning that the QoS criterion is specific to one target and must be
computed independently for every distinguished target. Once all the criteria are computed,
an external operator can choose where to place the DFT window at reconfiguration time.
In this study, we suppose this operator wants the window to be centered on the last
detected plot.

Since the concept and the benefits of the DFT reconfiguration have been exposed, we
present an architecture allowing to efficiently implement a reconfigurable DFT.
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Figure 3.9 – a) Switch block to adapt input data ordering for DFT. b) The two configu-
rations of the DFT IP.

3.2.3 Implementation of a reconfigurable DFT

Problem of channel reconfiguration

In a radar system, the data is processed from the sensors to the software in a dataflow
way. The reconfiguration of part of this processing flow requires to interrupt the flow.
The DPR introduces a delay which is not compliant with most of radar systems that
may lose the track of targets during the interruption. However, we consider multi-channel
radar, whose channels can be processed independently when DFT is performed. Hence, it
provides an opportunity to reconfigure channels by blocks, from one single channel, up to
all channels. Nevertheless, the number of channels to reconfigure at the same time deter-
mines the number of resources to reconfigure. Reconfiguration time increases linearly with
the reconfigurable partition (RP) size. Our reconfiguration paradigm can be formalized
as the following problem. Determine the best trade-off between stopping the process for a
long time to reconfigure all the channels and reconfiguring only one channel at a time,
but running in a degraded mode with the other channels. Fig. 3.10 shows a sixteen sensors
radar system which implements DFT reconfiguration, where each RP performs four DFT
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Figure 3.10 – Architecture used for the final results

to divide the reconfiguration time in four steps. During this process, the radar system is
still running with 3/4 of the channels.

Data reordering

As introduced in Sec. 3.2.1, DFT and FFT inputs are not processed in the same order.
For the DFT, samples are processed in arrival order without having to reorder input data.
Unlike DFT, FFT receives the data after downsampling, and thus store batches of data
in DDR until it has enough data in the processing core. It means that a switch is required
before the reconfigurable DFT to act either as a passthrough or as a store and load device.
Fig. 3.9-a) represents this block which uses a small amount of resources, thus we keep it
out of the RP. However, this block is mandatory when using FFT, to deal with the ‘corner
turn’, but AXI (Data) is used only with the FFT configuration. An additional AXI lite
slave port is required to configure the switch block in FFT or DFT modes.

Architectures of DFT/FFT configurations

An efficient DPR requires that the configurations sharing the same RP have similar
amount of resources since the RP is sized for the worst case, so a mismatch may result in
an excessive waste of hardware resources.

The DFT uses a lot of memory but only few DSP per channel whereas an efficient
FFT implementation demands a lot of memory but also a lot of DSP. So we can balance
the resource consumption disparity by implementing n DFT per FFT block. This implies
no latency issue since most of this latency is due to data movements with the FFT model.
Fig. 3.9-b) shows how the configurations design can balance resources usage by using the
same FFT core for n = 3 channels.

It is important to note that if only the FFT needs to access to the DDR for the Data
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though an AXI (Data) bus, the situation is different for the DFT since only the DFT
needs to read the coefficients from the DDR using an AXI (Coeff) bus which is unused
with the FFT configuration. Merging the AXI (Coeff) and AXI (Data) requires more Mux
resources and architecture complexity, hence we keep a solution with two distinct bus.

A second consideration is the DDR bandwidth limit. Indeed, the pipelined versions
of the FFT can read a new input at each clock cycle. If we can read up to N values per
clock cycle from the DDR, it is useless to implement more than N FFT.

Conclusion on the DFT implementation

Multiple parameters impact the implementation results (e.g., DFT window size, com-
putations parallelism, reconfiguration speed and channel number per FFT). Therefore,
the design space exploration is made by means of a HLS specification that allows to get
resource / performance estimations in a reasonable amount of time. In this study, we
implement a versatile IP resulting in different implementation from preprocessing direc-
tives. We have three distinct configurable specifications: a DFT, a wrapper to the FFT
of Xilinx with the pipeline configuration, and a homemade pipelined FFT with resources
consumption and latency close to the proprietary IP. We implement our own pipelined
FFT on Vivado HLS to generate a HLS synthesis estimation of resources consumption.
Indeed, the Vivado FFT uses incorrect precomputed HLS results with the tool current
version (2019.1) as indicated in Table 3.2 as the HLS estimation quality. Our HLS code
allows to choose the number of channels per FFT in the reconfigurable IP.

3.2.4 Case study

System description

To study the performance of our architecture, we implement the system described in
Fig. 3.10 on a ZCU102 board. This board includes a Zynq Ultrascale+ circuit, two DPR
are attached to the ARM (PS) processor and FPGA (PL) respectively.

The input signal is a synthetic radar signal, transporting information on a target
through delay, Doppler frequency and direction (phase shift). This signal is injected at
the DFT Switch input of Fig. 3.10. The filtering is a simple beamformer which projects
the signal in a spatial direction, and write the result to the PS DDR memory. The de-
tection is then performed with a CA-CFAR [83] (Cell-Averaging Constant False Alarm
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Rate) implemented in software. The reconfiguration controller defined in Section 3.2.2 is
implemented in software as well.

We use the Gazebo simulator[84] to compute the target movement and provide a
graphical output for the HIL demonstrator. The simulator sends the target position and
speed to a Python 3 process that generates the signals. This process sends the signal
through an Ethernet link to the board. The reconfigurable modules of the FPGA computes
the DFT and the static part filters the data with the beamforming. Detection is executed
by the Zynq ARM as well as the reconfiguration controller (described in Sec. 3.2.2) which
is updated accordingly. The board sends the output signal and the detection plots to our
Python 3 interface through Ethernet, for graphical plots.

PCAP API improvement

DPR is performed through the processor configuration port (PCAP). But we have
modified the Xilinx PCAP API to add a non-blocking reconfiguration command. When the
reconfiguration is launched, the task is suspended. When the PCAP is done, a CSUDMA
interruption resumes the task. Furthermore, this API greatly reduces the reconfiguration
time by avoiding data cache flush. Unlike the Xilinx API, we control the memory range and
perform the flush operation out of the reconfiguration time. The impact on performance
is given in the Sec. 3.2.4: Performance results.

Scenario description

We choose to highlight our architecture benefits in terms of performance and adapt-
ability. Without loss of generality and to avoid interference with phenomenons out of the
scope of this study, the scenario features one target in white noise, without clutter. This
simplification does not invalidate the key concept since the DFT reconfiguration process
would be the same with a target in a clutter. Besides, changing the architecture to a
multi-target version would only add a selection method which is application specific and
usually implemented out of the radar system itself. However, the simplification results
in a simpler QoS function. The association result is considered as correct when a plot is
detected. We fix the QoS thresholds λDFT = 3

5 and λFFT = 1
5 . This configuration implies

that the target is still present in the DFT scope (and will likely be detected again) if at
least three detections were successfully performed in the last five radar CPI. However, if
less than two detections are successful, the system should explore the entire range-speed
space. To observe the reconfiguration stability, we use the Swerling I model of RCS [85].
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Figure 3.11 – Case study scenario

The scenario is composed of three phases depicted in Fig. 3.11. At the beginning of
the mission, the target is distant. The radar system does not know the target position in
the range-Doppler space and is in FFT configuration. At first, the RCS ensures a good
SNR. At this time of the mission, our system should detect the target and switch to
DFT configuration. Later, the target orientation changes, lowering the RCS. The SNR
falls, leading to the target loss. The system should then switch to FFT configuration.
The target speed direction changes in the time it was lost. When the target is close to
the radar, the system detects it again (at a different place in the range-Doppler map), it
should switch to DFT configuration and the mission ends. We use this scenario to test
our HIL system and provide a demonstration video available online[86].

Implementation results

As we stated in Sec. 3.2.3, the whole architecture is generated with HLS codes. The
main parts are the DFT Switch and the different configuration of DFT. The implemen-
tation can be parameterized with six variables: (1) Ns is the maximum signal size (radar
CPI), (2) Nd is maximum DFT size, (3) Nc is total number of channels, (4) Ndfts is num-
ber of samples per DFT, (5) Nipc is channels per IP, (6) Nfft is FFT per IP (FFT mode).
The first three parameters depend on the application. We choose the parameters as follow
in our case study:

(1) Ns = 16000 (2) Nd = 1024 (3) Nc = 16

The next parameters need exploration to choose the best channels slicing and to control
its impact on the radar performances. In a first step, we carry out different Vivado HLS
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Table 3.2 – Resources consumption of the different configurations

IP configuration for
four channels

Precision LUT FF BRAM DSP

DFT (32 × 32 samples) full 4889 2648 43 48
Xilinx FFT (8 to 1024 samples) scaled 24bits 6697 9136 6 24

FFT (8 to 1024 samples) scaled 24bits 7496 7407 14 24

Previous HLS estimation quality: Accurate Approx. False

synthesis to observe the number of DFT we can implement for one FFT to have equivalent
resources usage. The DFT and FFT sizes result in an optimal ratio of four DFT per FFT
(resource consumption from logical synthesis in Table 3.2). Furthermore, the maximum
DDR bandwidth allows us to read up to 4 values per clock cycle. Therefore, we implement
one FFT per IP, for a total of four IP. We determine the best configuration:

(4) Ndfts = 1024 (5) Nipc = 4 (6) Nfft = 1

In our study, the PRF is not a relevant parameter and remains unchanged. The two
important observed metrics are the latency and the size of the speed-range domain.

The full architecture is depicted in Fig. 3.10. The input signal is injected to the DFT
Switch and the matched filter is performed beforehand by a Python 3 code. This archi-
tecture is based on the parts described in Sec. 3.2.3. Decouplers are connected to the
RP to guarantee isolation at reconfiguration time. These decouplers can isolate the four
partitions independently to allow the reconfiguration of only a subset of the channels.

Performance results

With this configuration, the observed system response meets the expected response
described in Sec. 3.2.4. We measured a latency of 6.6ms for the DFT configuration, which
coincides with the sum of the CPI and the beamformer latencies, so DFT latency is neg-
ligible compared to the other latency sources. However, with the FFT configuration, the
latency is higher with a total of 9.3ms. The major improvement offered by this architec-
ture is the 2.7ms measured gain on the system latency when using DFT instead of FFT,
2.7
6.4 × 100 = 42% of the CPI in our example. It means that the system is more responsive
and this time is available for complex algorithms for tracking.

The RP reconfiguration time of each reconfigurable DFT block takes from 4.4ms to
5.8ms with the Xilinx PCAP API, and 2.2ms to 2.8ms with our modified API. This
reconfiguration time is smaller than the CPI of 6.4ms, enabling to reconfigure without
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interruption of the radar processing flow. Indeed, although an expected degradation of
the signal quality is observed during the four cycles needed to reconfigure all the RP, the
radar signal consistency is preserved.

3.2.5 Case study conclusion

To the best of our knowledge this work presents the first self-adaptive architecture
in the embedded radar field that tracks the best trade-off between latency and detec-
tion space by means of smooth DFT / FFT reconfiguration per channels group. Our
reconfigurable architecture allows to take full benefit of the conventional DFT and FFT
respective strengths. The decision method is the first contribution detailed in Sec.3.2.2,
it relies on the use of QoS specific to our Radar application. The second contribution is
a dynamically reconfigurable architecture which is optimized for the implementation of
DFT / FFT configurations as well as fast and flexible enough to avoid interruption of the
radar function during transitions.

Through a case study implemented by means of a realistic HIL approach, we demon-
strate the efficiency of the architecture implementation. Our solution is valid for a large
range of radar applications and can be parameterized to fit with different system config-
urations (e.g. number of channels, ranges, etc.). In real-life applications, it is possible to
observe objects at different speeds and ranges. So a future work will allow to isolate and
process several areas in the range-speed map. The proposed approach remains relevant,
but modifications have to be considered in the DFT IP and in the downstream processing.

3.3 Conclusion

Through two cases studies, we showed the improvements that can be made by re-
configure computing hardware based on QoS criteria, as opposed to external commands.
The reconfigured algorithms and QoS criteria were specified by application experts us-
ing knowledge that is unknown to the hardware experts. However, the application expert
does not have the knowledge required to efficiently implement reconfiguration. Thus, this
work also showed that good communication between hardware and application designers
is essential to achieve maximum system performance. In this chapter, we worked on pro-
cessing for which there are several versions with different quality results, but this is not
always the case. In the next chapter, we provide an example of modifying an algorithm
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to make it reconfigurable.
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In this chapter, we present a modification of an existing algorithm to make it re-
configurable and to be able to envision reconfigurable architectures to optimize it. This
algorithm is the space-time adaptive processing (STAP), which is proved to be an effi-
cient filter for clutter and jamming rejection. However, the dimensions of the whitening
matrix used to filter out interferences can be very large to ensure good disturbance re-
jection capabilities. These matrix dimensions result in a huge computing complexity, a
possibly ill-conditioned matrix and a high number of required training samples. Previous
work propose to cope with this complexity by projecting the signal in a space with re-
duced dimensions, which decreases computation cost while ensuring a correct quality of
processing. However, these projections require eigendecompositions which are also com-
puting intensive and subjects to computational errors. We introduce a new alternative
and complementary method which uses a reduced version of the sample matrix in order
to choose the best STAP dimensions at run-time by means of supervised learning. In this
work, we present a method based on a convolutional neural network and a random forest
to reduce the problem of the STAP complexity. We demonstrate the effectiveness of this
concept on synthetic noises and interferences with a reduction of more than eight times
the computing load of the STAP at the cost of a small loss of processing quality.

When detecting targets, radar systems encounter a range of perturbations that must be
filtered out to preserve detection capabilities. The power of these interferences (e.g. clutter,
jamming) can be times stronger than that of the signal of interest. The properties of these
perturbations make 1-D filtering (e.g. MTI) insufficient. Modern sensors are composed of
many antennas (flat or conformal phased arrays), allowing the use of Space-Time Adaptive
Processing (STAP)[61]. STAP discriminates the interferences based on correlations in the
space-Doppler domain. While this two-dimensional filter offers considerable signal noise
clutter ratio improvements, it comes at the price of a huge computational complexity and
memory usage. In fact, the ‘full’ STAP algorithms include the estimation of a NM matrix
and its inversion for every resolution cell under inspection and Doppler gate, with N the
number of antenna elements andM the number of backscattering pulses. The practitioner
encounters several drawbacks when trying to apply STAP in real cases.

• First, obviously the memory needed to store the STAP code and the data is a
limiting parameter in particular for UAV-borne sensors for which the footprint of
the signal processing embedded subsystem is limited.

• Similarly, the time needed to process the data for a full STAP processing could imply
that the processing component does not have enough time to inspect the entire
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scene or/and the Doppler space. Moreover the computational load could induce
that the radar is only devoted to the target detection while modern radar systems
are designed to perform several missions, such as target tracking or scene imaging
through Synthetic Aperture Radar (SAR) processing for instance.

• As seen below, the covariance matrix estimation involves a large number of ancillary
data (at least equal to matrix dimension; optimally twice) with the usual assumption
that time-Doppler statistical properties of the interference are the same as for the
tested cell range-Doppler gate and do not contain any spurious target, hypotheses
that could not be fulfilled when the number of ancillary data is large.

• Finally, the matrix inversion is an overlooked problem since the inversion of such
large random matrices is subject to significant computing errors, due to a mas-
sive accumulation of numerical quantification noise and round off. Indeed, the ratio
between the maximal and minimal eigenvalues is more likely to be large, hence in-
creasing the matrices conditioning number as seen below. This implies that even
if the estimated covariance matrix is close to the true matrix, thus the inverse of
the estimated matrix is far from the true one and the radar data whitening is not
efficiently performed.

In practice, experts use reduced STAP algorithms (see [62]–[66] among an important
literature), trading quality of results for computing efficiency and numerical stability. In
some cases, reduced N and M dimensions are fixed by the user at design time. In other
cases, an adaptive reduction is performed. However the new matrix dimension is based
on the estimated random eigenvalues subject to computational round off and errors (see
[67] for a discussion on random eigenvalues of large covariance matrices). Thus for opera-
tional purposes, it is of primary importance to design an efficient filter. Ideally, dimensions
should be adapted depending on the interferences correlations in the space-time domain
(not necessary on the eigenvalues). The different interferences, such as jammer and ground
clutter, exhibit different properties; hence they have various space-time correlations. Since
these correlations are a priori unknown, the usual solution is to set N = M . But we can
further reduce the dimensions of the STAP filter by predicting the most appropriate N
andM values at runtime. For instance, a broadband jammer can be effectively filtered out
using only the spatial dimension (N > 1, M = 1). On the other hand, the clutter ridge
is located along the line M = N (e.g. [61], [87], [88]). In this work, we assume that, if
we can first observe such patterns in the covariance matrix, then a machine learning pro-
cess could extract fine information to adjust the N and M dimensions while the system
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is running. Machine learning has already proven to be very effective in radar process-
ing [89], [90]. Thus, we propose STAPLE, a method based on machine learning prediction
models to determine the most adapted N andM dimensions of the STAP before perform-
ing the costly computation. Our prediction models base the inferences on the condensed
observation of the interference (being the input of our prediction models) offered by a re-
duced dimension covariance matrix, this matrix being first estimated in the online process
(and then avoiding the tedious estimation of the full dimension matrix). The prediction
models are based on a combination of light Convolutional Neural Networks (CNN) and
Random Forests (RF), which have good characteristics to be implemented within highly
parallel and pipelined architectures (e.g. FPGA or GPU implementations[79]–[81]). We
compare our approach to the standard N = M approach using the Improvement Fac-
tor (IF), matrix condition number and computing complexity as metrics. Several authors
[68]–[70] proposed other approaches for the dynamic allocation of STAP dimensions with-
out machine learning. The approach proposed in [68] requires performing STAP with the
maximum number of cells of one dimension for both STAP dimensions and computing
the ratio of obtained residual noise levels. The solution presented in [70] uses an iter-
ative algorithm which performs a series of channels tests/selections to select the most
relevant antenna elements and backscattering pulses among the N/M dimensions. Our
solution holds a lower computing complexity and exhibits more computation parallelism,
thus shorter response times.

STAPLE can be considered as Knowledge-Aided STAP (see [91]–[93] among recent
literature), where the knowledge is assimilated offline during learning.

As previously stated, our study focuses on airborne radars, which are confronted with
a constantly changing environment. These systems can benefit the most from the proposed
approach as they are often limited in terms of hardware resources, memory and computing
time. For the sake of generality, we consider a monochromatic radar waveform as well as
a chirp waveform to achieve high range resolution radar.

Section 4.1 describes the estimation of the covariance matrix from a radar data cube
and the impact of the size of the STAP filter on the computing complexity. Section 4.2
details the selection of our dataset and defines the physical models used to simulate clutter,
jamming and Radio Frequency Interference (RFI). These models describe the covariance of
interferences for a monochromatic waveform and a chirp waveform with range compression
as stated above. Section 4.3 proposes to infer the optimal distribution of the filter in the
spatial /Doppler domains using a reduced covariance matrix and describes the prediction
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models selected for the tests. Section 4.4 presents the predictions accuracy and highlights
the gains obtained on the computing complexity of the STAP filtering compared to the
standard approach. Section 4.5 concludes this work, discusses the limits of the method
and draws directions for future work.

4.1 STAP and Sample covariance matrix estimate
In this work, we consider the detection of a target through an air / UAV borne radar,

using a monochromatic pulse or a chirp to achieve higher resolution cell. Then the isor-
ange/isoelevation is a circle centered on the radar covering 360° for the azimuth angle (see
Fig. 1.3b). Obviously this isorange is given the round trip travelling time of the emitted
pulse (as depicted in Fig. 6 of [4] for instance). We do not make any assumption on the
radar frequency band for the sake of generality. STAP processing involves filtering out
electromagnetic perturbations for a given range (or elevation for an air/UAV borne radar)
and a given azimuth. It deals with the data cube gathering the backscattered voltage for
each range/elevation gate (fast time), the number of range gate being limited by the
propagation conditions of the EM wave, for each pulse (slow time) the maximum num-
ber of pulses denoted Mf being fixed either by the operator or by the storage capability
and obviously each antenna element. The maximum number of antennas, denoted Nf , is
set by the sensor design (see Fig. 4.1). In what follows (Nf ,Mf ) refers to the full STAP
dimensions and Q, defined as the product of the number of antennas and the number of
pulses is referred as the degrees of freedom of the STAP filter and as seen below, it is a
key parameter for operational STAP approaches (e.g Q = NfMf in the full dimension
case). The first step of STAP involves stacking for each range/elevation gate, the received
voltage of each pulse of all the antenna elements into an array denoted yr (the subscript
is an integer r referring to the range gate). Figure 4.1 shows that the measurement vector
yr of size NfMf is created from a slice of the radar data cube. The decision on the target
presence is based on the filtered value of yr, that is on wH .yr, H denoting the Hermitian
transpose. The STAP weights, denoted w, are given (under the Gaussian assumption, see
[4], [61]) by:

w = γR−1
r s with Rr = E{yryHr } (4.1)

Where γ is a constant that does not affect the detection process and s is a Nf .Mf space-
time steering vector which performs a matched filtering in the space-Doppler domain and
then depends on the target Doppler (i.e. target velocity) and azimuth. Rr is the covariance
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matrix of noises and interferences (E{} is the mathematical expectation). Then, Rr as its
estimate, denoted R̃r, are Hermitian. In order to carefully define the statistical properties
of Rr and their effect on the sample covariance matrix in Section 4.2.1, Eq. (4.2) gives
the indexing of a matrix Rr of dimensions (NfMf ×NfMf ) with Nf = Mf = 2.

Rr =


r(0,0),(0,0) r(0,1),(0,0) r(1,0),(0,0) r(1,1),(0,0)

r(0,0),(0,1) r(0,1),(0,1) r(1,0),(0,1) r(1,1),(0,1)

r(0,0),(1,0) r(0,1),(1,0) r(1,0),(1,0) r(1,1),(1,0)

r(0,0),(1,1) r(0,1),(1,1) r(1,0),(1,1) r(1,1),(1,1)

 (4.2)

Target detection involves choosing the modelling of the measurements yr as a function of
covariance matrix between the two hypotheses of Eq. (4.3) through Neyman-Pearson test
for instance.

H0 : yr = R1/2
r u

H1 : yr = xr + R1/2
r u

(4.3)

Where xr is the the signal of interest array, that is a possible target response, and u is a
zero-mean random vector of normal distribution. Thus, H0 is the absence and H1 is the
presence of a target. As previously stated, the STAP filtering implies to verify that the
filter data can be modeled as a white complex noise vector (i.e. u) in Eq. (4.1). However, in
operational cases Rr is unknown. Hence, the sample matrix inversion technique of STAP
filtering estimates an approximation of the exact covariance matrix from collected samples
in order to have an estimate of the noise / clutter time / space statistical properties. In fact,
to have an estimation R̃r of the covariance matrix Rr at range r, we sum the covariance
matrices obtained on several range gates as in Eq. (4.4).

R̃r = 1
|K|

∑
k∈K

ykyHk (4.4)

where K is a set of unique range gate indices (that does not contain r), with a total of
|K| training samples.

Since the matrix R̃r is Hermitian, the upper triangle contains the whole information on
the signal. To filter a sample at range r, we usually use several neighbour range covariance
matrix. For example in Fig. 4.1, the measurements y5 are filtered using covariance matrices
computed from measurements y2, y3, y7 and y8. [94] proved that the total number of
training samples must be greater or equal to 2Q for a proper training of the STAP
filter, which demonstrates the interest in N and M reduction as stated in introduction.
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Figure 4.1 – STAP data cube and creation of yr

The obtained matrix carries information on the noise contained in the radar signal. This
matrix also sets the complexity of the STAP processing as the costliest operation consists
in inverting this matrix. The inversion of this matrix holds a O(Q3) complexity. It is
exponentially complex to compute the inverse of this matrix as we increase one of the
dimensions N and M . [68] emphasized that the value of Q is constrained by three values:
Q1 imposed by the computational load,Q2 imposed by the limited number of cells available
for training and Q3 imposed by the number of antenna elements and slow-time cells
available for processing, thus we have to verify Q ≤ min(Q1, Q2, Q3). To respect these
constraints on Q, we must reduce the sample vector yr, the steering vector s and the
covariance matrix Rr sizes. Equation (4.5) projects the problem in a new space with a
matrix T of dimensions (NfMf ×NM).

y′r = THyr, s′ = THs, R′r = THRrT (4.5)

Where y′r, s′ and R′r are the projections of the sample vector, the steering vector and
the covariance matrix, respectively. For the sake of simplicity, T will be omitted in the
remainder of this work and is implicit when NM < NfMf . Different techniques can be
used to create the projection matrix. Some methods use an eigendecomposition of the
matrix R̃r but this is time consuming and prone to errors with a large condition number.
Another solution is to recombine antennas and slow-time samples into new channels (see
[95] for an example of dimension reduction by antennas recombination). Even though this
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method preserves a theoretical filtering improvement close to the full STAP one, it also
significantly decrease the stability of the inversion process of matrix R′r. The solution
used in our method is to select the first N and M channels with T. Equation (4.6) shows
how the entries of matrices T of size (NfMf ×NM) are created in this work.

t(n,m),(n1,m1) =


1

n = n1
n < N

m = m1
m < M

0 otherwise

(4.6)

To evaluate the performance of our proposed approach, the profit and loss of STAPLE,
we consider three points of view and derive three different metrics.

1. The first is the efficiency of the filtering, i.e the capability of the STAP filter to
reject out the disturbances. For measuring the filtering performance, we use the
improvement factor defined as the ratio between the input and the output Signal-
to-Interference-plus-Noise Ratio (SINR), which is computed with Eq. (4.7).

IF = SINRin

SINRout

= wHsHsw · tr(Rr)
wHRrwsHs = sHR−1

r s · tr(Rr)
sHs

(4.7)

Obviously, this quantity has to be higher than 1 (or 0 in dB). The improvement factor
can be defined for the full dimension but also for a reduced version by replacing s
and Rr by s′ and R′r in Eq. (4.7). The IF is expected to be lower in the reduced
dimension case and for this reason we define:

GIF = IFr
IFf

(4.8)

where IFf and IFr are the improvement factors of the full and reduced STAP
respectively. GIF is smaller than 1, but must be the closest possible to unity to
mean that the reduced dimension do not induce a filtering capability loss.

2. The second point of view is the estimation of the inverse covariance matrix. The
conditioning number κ of a matrix to be inverted is defined as Eq. (4.9).

κ = |λmax||λmin|
(4.9)
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No noise Noise Jammer Clutter

Figure 4.2 – Covariance pattern examples

Where λmax and λmin are the maximum and minimum eigenvalues of the covariance
matrix (Rr or R′r), respectively. κ is also higher than 1 and must be close to unity
to ensure a stable inversion, that is an inverse of the estimated matrix close to
the inverse of the exact matrix. For reduced dimension, the conditioning number is
higher than in the full dimension case (since we work on subspaces). We define as
metric:

GCN = κr
κf

(4.10)

where κf and κr are the conditioning number of the full dimension and the reduced
dimension, respectively. For a higher stability this ratio must be the closest to 0.

3. The last metric is a computational point of view. The overall complexity of our
decision algorithm should be less than the saved complexity on the original STAP
computation. Equation (4.11) gives the gain on the complexity GO compared to the
full STAP that can be achieved by a prediction system.

GO = N3M3 +X

N3
fM

3
f

(4.11)

Where X is the complexity of inference with the decision method, i.e. during the
target detection (the high offline computational complexity, i.e. the learning step,
has not to be account in this metric), and N and M are the selected reduced STAP
dimensions. The learning of such process requires a dataset containing different
interferences and the associated NM optimal dimensions.
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Table 4.1 – Notation summary

va/ha Aircraft velocity/altitude.

δr Range cell resolution
~kp, kp, λ EM wavevector/norm/wavelength.

θJ/φJ jammer elevation/azimuth.

θRFI/φRFI RFI elevation/azimuth.

τ/Tr Pulse duration/pulse repetition period

ωc/Kω carrier angular frequency/compression factor.

B/c Bandwidth (chirp)/speed of light in the air.

|A(φ)|2 Mean far field radiation intensity per unit of time time.

4.2 Covariance matrix dataset
From the aforementioned observations on the covariance matrix, we propose the fol-

lowing method: The first step is the creation of the upper triangle of the reduced-size
covariance matrix R̃r,p (with dimensions NI and MI the values of these hyperparameters
being discussed in 4.3.2). Next, a CNN extracts information from patterns in this matrix.
Then, this CNN outputs the optimal dimensions N and M . Eventually, the system uses
the predicted dimensions NM to create a covariance matrix and run STAP. Supervised
learning requires a dataset of many samples to train and test learning models. Our system
relies on the prediction of optimal filtering dimensions for each specific electromagnetic
interference. Hence, Section 4.2.1 defines several interference models and the effects of
their physical properties on the covariance matrix Rr. Then, the rules for optimal dimen-
sions selection are described in Section 4.2.2. Eventually, Section 4.2.3 details how our
learning set is build up.

4.2.1 Physical models

In what follows, we consider a plane or an UAV flying at ha with velocity va. As stated
in introduction, we first consider a monochromatic waveform, that is a radar emitting a
pulse of duration τ only on a carrier angular frequency ωc (usual assumption when dealing
with STAP). Thus, the electromagnetic wave propagates as ej(ωct−~kp~r). In this case, the
range cell resolution is δr = cτ/2, c being the speed of light. In order to achieve high
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range resolution, the emitted wave form is a chirp, this chirp being centered at ωc, the
compression factor is equal to Kw and thus the instantaneous angular frequency is given
by ω = ωc + Kω.t for −τ/2 ≤ t ≤ τ/2. The bandwidth is given by B = Kωτ and the
resolution cell is δr = c/2B. The antenna elements are assumed to be equally spaced by
the half wavelength at ωc, i.e. d = λ/2 with λ = 2π.c/ωc (usual configuration). The Pulse
Repetition Period is denoted Tr. We use the side-looking hypothesis and thus the azimuth
reference, i.e. φ = 0, is given by the normal to the linear antenna array. This assumption
eases the selection of the optimal (N,M) couple in the dataset (cf. Section 4.2.3). The
physical/radar parameters are summed up in Table 4.2.

Several noises and clutters must be computed to train and validate our intelligent
system. Our simulation features one noise and three interference types:

• Complex gaussian noise

• Ground clutter

• RFI

• Wideband jammer

We describe the noises and interferences equations in the following Sections, with and
without pulse compression.

Complex Gaussian noise

In radar systems, complex Gaussian noise (that is a complex random process with
independent real and imaginary part, each following an identical and zero mean normal
distribution) can come from different sources, such as thermal noise or natural atmospheric
noise (see [96] for a description). Its covariance matrix can be represented by a diagonal
matrix as shown in Eq. (4.12).

r(n,m),(n1,m1) =
 σ2 if n = n1 and m = m1

0 otherwise
(4.12)

Where σ2 is the complex Gaussian noise variance. i.e the noise power [97].

Ground clutter

In order to calculate, the clutter contribution for each antenna and each pulse, we make
the usual assumption of clutter patch-to-patch independence (see [98]). Fig. 1.3b illustrates
the clutter calculation geometry. For the monochromatic wave radar, we straightforwardly
use the calculation of [98] i.e. the clutter contribution to the covariance matrix Rr is

89



Chapter 4 – Algorithm adaptation to benefit from reconfiguration

computed from the series defined by Eq. (4.13) which quickly converge (we use this fast
calculation due to the large amount of data to be generated during the learning, see
Section 4.2.3).

r(n,m),(n1,m1) = C0J0(|z|) +
∞∑
k=1

C2kJ2k(|z|) cos(ψ2k + ϕ2k)+

∞∑
k=0

C2k+1J2k+1(|z|) sin(ψ2k+1 + ϕ2k+1)
(4.13)

Where Jν() is the Bessel function of first kind of order ν and

β = 4va.TR/λ

ξ = π
√

1− ( ha
r·δr )2, for r ≥ ha

δr

z = ξ(β(m−m1) + (n− n1))

ψk = k

 0 if z ≥ 0
π if z < 0

AkBk

 = τ 2 ∫ π
−π |A(φ)|2. sinc2(ΩC .τ/2)

cos(kφ)
sin(kφ)

 dφ
Ck =

√
A2
k +B2

k

ϕk = arg (Ak, Bk)
ΩC = 2.ωcva. cos(θ) sin(φ)/c

A(φ) is the backscattered wave by a clutter patch at azimuth φ and unit of time. This
term aggregates several physical parameter, such as the pulse power, the backscattered
Radar Cross Section of the patch, the EM losses for propagating in the air and obvi-
ously the antenna pattern. Second order (i.e Bragg) backscattering depends mainly on
the elevation angle θ. For this reason, an identical electromagnetic backscattering over
the isorange/isoelevation circle, i.e. A(φ) constant, that is an isotropic clutter model, is
realistic. A clutter model, for A(φ) varying with φ, such as the sea clutter for instance, is
out of the scope of this work, but would not drastically change our results. For the chirp
waveform with range compression, the weighting sinc2(ΩC .τ/2) is exact for monochro-
matic wave but it is an approximation for chirps, valid with the radar parameter exposed
in section 4.4. Moreover, we also assume that the backscattered energy remains constant
during the pulse illumination, i.e. the backscattering is not frequency dependent, in order
to achieve an effective bandwidth equal to B and thus an effective resolution equals to
δr = c/2B (see [99] for range defocusing problems).

Radio Frequency Interferences (RFI)

Unlike the jammer disturbance, the RFI are generally unwilled emissions within the
radar band by another electromagnetic source (e.g. for radio-communication purpose).
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This source is spatially located in an azimuth and elevation direction denoted φRFI and
θRFI respectively, and although fixed it exhibits a Doppler fDopp component to fit with the
aircraft context. The RFI are characterized by quiet periods of random duration Tq and
strong emission (bursts) of random duration denoted Tb (see [100]). During an emission,
the received voltage from a RFI (i.e. the RFI power), although random, remains constant
(and then it is considered as equal for all the pulses for which the RFI occurs unlike the
Jammers as seen below). Thus, the RFI covariance matrix entries can be derived from
Eq. (4.14), where J(t− t1,m,m1) depends on the power of the RFI PRFI , on the random
quiet and burst periods as well as on voltage RFI, brief details are given in List of Tables.
For a chirp waveform the covariance entry are given by:

r(n,m),(n1,m1) = PRFIe
−j(n−n1)π cos(θRFI) sin(φRFI)

e2jπ(m−m1)
fDopp
fr∫ τ/2

−τ/2

∫ τ/2

−τ/2
ej(ωc+Kωt)te−j(ωc+Kωt1)t1J(t− t1,m,m1)dtdt1

(4.14)

Where:
fDopp = va

2
λ

cos(θRFI) sin(φRFI)

Jammer

Finally, for the jammer model, we use a simple barrage jammer model. In other words,
it is a strong emission over the whole radar frequency band and for all the backscattered
pulses. For the sake of simplicity the received voltage is considered independent from one
pulse to another, but the signal properties as constant over the observation time. Moreover
this emission is spatially located in azimuth and elevation direction denoted φJ and θJ ,
respectively. Thus, the covariance matrix is computed from Eq. (4.15), where PJ is the
power of the signal received from the jammer, which follows a Rayleigh distribution.

r(n,m),(n1,m1) = PJτ
2 sinc2(ωc.τ/2)e−j(n−n1)π cos(θJ ) sin(φJ )C(m−m1) (4.15)

Where C(m−m1) is a function which associates a random complex number for each value
m−m1, with |C(m−m1)| = 1 and arg(C(m−m1)) ∼ U(0, 2π). As with the clutter model,
the weighting sinc2(ωc.τ/2) is exact for monochromatic wave but it is an approximation
for chirps, valid with the radar parameters exposed in section 4.4 (see List of Tables).

Fig. 4.3 shows an example of a synthetic signal distribution in the space-Doppler
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Figure 4.3 – Example of synthetic noises power generated from equations defined in
Sec. 4.2.1.

domain where we observe Gaussian noise, jammer, clutter and RFI. On the right part
of Fig. 4.3, we see the jammer signal which is highly correlated in the space domain
and can be filtered using only the spatial dimension of the STAP filter. On the left part
of Fig. 4.3, the RFI is also highly correlated in the spatial domain but can be filtered
more efficiently if the STAP filter also uses the Doppler domain, in particular when the
target comes from the same direction. On the diagonal of the image, the clutter exhibits
correlations along a ridge whose slope can differ depending on the aircraft speed, so the
optimal filtering dimensions will be different for two distinct clutters. The Gaussian noise
creates a background power which is not clearly visible in Fig. 4.3 because its power is
several orders of magnitudes under the interference power.

We can see on simple noise and interference models that the sample matrix observes
different patterns related to the properties of each disturbance. Fig. 4.2 shows a simplified
example of the patterns that can be recognized and linked to a type of noise (details are
given in the next section).
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Optimizations

Due to the large amount of data to be generated in the learning step, as shown in
Section 4.2.3, the generation of the disturbance matrices has to be optimized. The noise
and clutter generation can be time consuming, but the models described in this section
can be efficiently implemented. Three optimizations are performed:

1. The matrix is Hermitian. With this hypothesis, it is possible to compute Rr only
for (n− n1) ≥ 0 and (m−m1) ≥ 0.

2. Some computations which depend on (n− n1) and (m−m1) can be pre-computed
in lookup tables. Indeed, because n, n1 ∈ {0, ..., N − 1} and m,m1 ∈ {0, ...,M − 1},
there are only 2N − 1 values for (n− n1) and 2M − 1 values for (m−m1). This is
related to the block Toeplitz property of the covariance matrix.

3. Parts of the equations are independent and can therefore be computed in parallel.

4.2.2 Dimension Reduction Rules

Each covariance matrix must be associated to a couple (N,M) for the learning phase.
First, the following rules are used to select the N/M ratio:

R1 For clutter, the N/M ratio is deduced from the clutter ridge angle in the space-
Doppler plan.

R2 For jammer, N = Nf and M = 1.

R3 For RFI, we fix an empiric ratio where N/M ≈ 9/4 since this type of noise is mainly
spatially correlated but can also be distinguished from its Doppler correlation.

R4 If several interferences are present, the ratio N/M is fixed as the mean of the inter-
ferences ratio.

R5 If only Gaussian noise is present, the simple space-time matched filter is used instead
of STAP (i.e. w = s, IF = NfMf with an operational complexity of O(NfMf )).

Once the ratio has been fixed, the NM dimensions are selected by taking the closest ratio
available in the solution space (except for R5). These rules allow the validation of our
concept but can be refined again. The best method for real-case applications would be
to perform an exhaustive test of all (N,M) couples for every input noises and to select
the best one regarding a loss function depending on the improvement factor and the
computing complexity.
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Another constraint, not included in the learning rules is that the predicted dimension
values have to verify NM < Q as stated in section 4.1. However, since the database does
not contain matrix sample with NM > Q (by the learning database construction as seen
in the next section), it is very infrequent that this condition is violated for prediction step
(less than 1% of our results). When this situation occurs, the larger value between N and
M is truncated so that NM ≤ Q.

4.2.3 Covariance matrix dataset generation

As usual when using machine learning, the learning dataset has to be carefully de-
signed, even when the data is synthetic.

Input variables selection

A crucial point of the design of a good dataset is the selection of the input variables.
In our case, this corresponds to the covariance matrix at the network input. A straight-
forward approach would be to use the dimensions NfMf for prediction and to perform
the dimension reduction from the full dimension matrix with the predicted dimensions
NM . However, this approach has two drawbacks. The first is the great number of inputs
which requires a large Artificial Neural Network (ANN) to fit the data during the offline
process and leads to a higher computing complexity and a more difficult training[101].
The second drawback is the huge amount of ancillary data required to estimate R̃r (as
stated in section 4.1) during the online process. A most refined approach is to use already
reduced matrices of dimension NI andMI for the ANN learning and for the online optimal
matrix selection. These reduced matrices do not necessarily contain all the interference
statistical properties as seen in section 4.2.1 but are large enough to select the optimal
dimensions (i.e. N and M), which contain all this information.

Completeness

We also generate the most complete dataset possible to anticipate all situations that
may occur. The signal can contain target returns and several interferences. The number
of interferences nb≤3 (i.e. noise/clutter/jammer/RFI) is picked up with the probabilities
P (nb=0) = 0.1, P (nb=1) = P (nb=2) = P (nb=3) = 0.3. These interferences are randomly
picked up with the probabilities PC = 0.5, PJ = 0.25 and PRFI = 0.25 for clutter, jammer
and RFI, respectively. This choice is meant to increase the weight of the clutter model
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that comes with more diverse cases. If the ground clutter is selected several times, the
duplicates are removed. The selected interferences are applied to several range gates and
Gaussian noise is always added to the signal. Algorithm 1 describes the process that select
noises.

Algorithm 1 Choice of interferences
inter_list← {}
(PC , PJ , PRFI) ← (0.5, 0.25, 0.25)
Pick a random integer nb ∈ {0, 1, 2, 3} with probabilities (0.1, 0.3, 0.3, 0.3)
while nb > 0 do
Pick a random integer inter ∈ {0, 1, 2} with probabilities (PC , PJ , PRFI)
// 0: Clutter, 1: Jammer, 2: RFI.
Push inter in inter_list
nb← nb− 1

end while
// Only one ground clutter can be present.
Remove duplicates 0 in inter_list
return inter_list

Once the interferences parameters are picked up, the corresponding matrix Rr of size
NfMf is created using the models described in Section 4.2.1. Synthetic measurements
yr are created for several range gates from Rr and the random coefficient array u (see
Eq. (4.3)). A covariance matrix R̃r,p of size NIMI is estimated from these synthetic mea-
surements with the sample matrix method described in Section 4.1 (we are close to the
operational conditions). Then, each matrix R̃r,p is associated to optimal NM dimensions
according to the rules described in Section 4.2.2. Then, each dataset sample is composed
of an input: a matrix R̃r,p, and two outputs: the optimal N and M dimensions, used both
in the learning step and the prediction step as detailed in the next section.

4.3 Optimal dimension learning and prediction

In this section, we first detail the models used to predict the optimal matrix dimen-
sion for STAP processing. Then, we discuss our choice of the size of the reduced matrix
dimension serving as input of the prediction models.
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Start

Load R̃r,p
(NI ×MI )

and

(N, M) from dataset

Normalize R̃r,p
(NI ×MI )

Balance and
shuffle data

Learn

Validate

Lock the best branch
reset the other one

Learn

Validate

Select the best model
for implementation

Stop

k-fold

k-fold

Offline (training)

Start

Create
normalized R̃r,p

(NI ×MI )

Predict (N, M)

Create R̃r
(N×M)

Run STAP with R̃r
(N×M)

Stop

Online (pipeline)

Figure 4.4 – Flowchart of the STAPLE algorithm

4.3.1 Models definition

To solve this prediction problem, we train a machine learning process to take full
a advantage of the available knowledge held by R̃r,p. Moreover, the possible predicted
couples (N,M) are constrained such that NM ≤ Q as stated in section 4.1. We choose
to use only odd values for the dimensions.

We propose two models: the former is based on a CNN, and the latter combines a
CNN and a RF. These two models have two different branches to separately predict N
and M as outputs. Figure 4.4 left flowchart presents the training phase. The dataset
generated as described in Section 4.2.3 is loaded and the inputs are normalized (i.e. each
input is scaled over the interval [−1, 1]). The dataset is balanced by replication of the
under-represented samples and is shuffled. K-fold cross-validation is used to check the
models ability to generalize on different datasets; that is, the dataset is divided into k
equal sized partitions and k training are performed sequentially on k-1 partitions and is
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Table 4.2 – Learning setup

Neural network Random forest

Framework Keras Framework Scikit-learn

Loss function Huber Loss function MSE

Datatype (training) float32 Datatype (training) float32

Datatype (test) float16 Datatype (test) float16

Cross-validation 6-fold Cross-validation 6-fold

Optimizer Adam Number of tree 50

Epochs 200 Max depth 100

Batch size 32

Learning rate 0.001

tested on the remaining partition. The trained algorithm which obtains the best results is
kept. A second training starts after locking weights on the shared part of the model and
on the branch which performs the best (branch N or M). This second training also runs
with k-fold cross-validation. After this second pass, we keep the model that performs the
best. The macro-parameters used for learning are summarized in Tab. 4.2. We present the
parameters that worked best for our application with a reasonable computing complexity.

Model 1 (CNN)

A fully connected neural network holds a huge complexity, which would limit the
optimisation offered by our solution. Therefore, we choose a 2D convolutional first hidden
layer to reduce the computational load in the online processing. This layer performs a 2D
filtering of the input data by learned kernels. It is composed of 8 triangle-shaped kernels
of size 6 × 2 (2 for real and imaginary parts). For the sake of clarity, Fig. 4.5 shows how
the convolution layer extracts features for the rest of the network.

The network then splits into two independent branches for the estimation of N and
M. The prediction being performed independently for dimensions N and M , an error in
the prediction of N does not imply an error in the prediction of M . Therefore, this seems
a better option than the prediction of a couple (N,M) by a single classifier. The two first
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Input (36x2) Features map (21x8)

convolution

Dense layers (64x1) Dense layers (64x1) Outputs N , M
(Dense layers (1x1))

Forward propagation

Figure 4.5 – CNN-based approach (Model 1)

layers of each branches are fully connected. The third layer of each branch is composed of
a single neuron fully connected to the previous layer. This last layers has a single outputs
which is trained with a regression method (with a Huber loss function) to give the required
dimension for N and M . For both offline and online processes, the output of the network
is a floating point value which is rounded to integer to dimension the STAP filter.

Fig. 4.5 presents the resulting neural network which holds the gain on complexity
described by Eq. (4.16).

GO = N3M3 + kc+ 2∑L
i=1 nini−1

N3
fM

3
f

(4.16)

Where:
L: the number of layers per branch
k: the number of connections of one convolution kernel
c: the number of convolution outputs
ni: the number of neurons on layer i

Model 2 (CNN + RF)

A common practice to reduce prediction variance in machine learning is to implement
redundancy. Instead of having a unique prediction system trained on a dataset, it is
possible to implement more neurons or branches and train them on different subsets of
data. In neural network, it is possible by using pruning (with more neurons) or model
averaging (multiplication of branches/models). However, redundancy in neural networks
has a high computational cost. Hence, we propose to use random forests, which exploit
model redundancy with a low computational effort. The proposed model is as follows: The
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Input (36x2) Features map (21x8)

convolution

Random forests
(50 trees/ 100 depth)

Outputs N , M

Forward propagation

Figure 4.6 – CNN + random forest approach (Model 2)

model described in Section 4.3.1 is trained to extract features after the convolutional layer.
If the neural network can extract features with the convolutional layer, then a random
forest should be able to extract information as well. We then cut the neural network
after the convolutional layer, and we connect a random forest that learns with the same
dataset. Fig. 4.6 shows the model from Fig. 4.5 modified to replace the last layers by
random forest predictors. Results from the neural network and this hybrid prediction
model are compared in Section 4.4. Equation (4.17) shows the complexity gain of this
second model.

GO = N3M3 + kc+ 2td
N3
fM

3
f

(4.17)

Where:
tn: the number of trees
d: the trees maximum depth

4.3.2 MI and NI values

Initially, our idea was to empirically determine the optimal dimension, by testing
several values under the assumption MI = NI . It was obvious that these dimensions have
to be strictly higher than 2 in order to identify patterns within the estimated covariance
matrix. We find that the values NI = MI = 3 lead to optimal values to perform this
selection as detailed in section 4.4.1. For this reason, all the results presented in section
4.4 are based on these values. Thus, for MI = NI = 3 the top triangle, excluding the
diagonal, is composed of complex numbers, for a total of 2(9 · 8

2) = 72 values. The input
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size of our CNN is therefore 72. Testing highest values would not improve our prediction
results, but would strongly increase the computational load.

4.3.3 Prediction and filtering

Once the model is trained, we can use it to enhance the STAP. Figure 4.4 right
flowchart shows the processing that must be performed online. The matrix R̃r is created
and the model predicts dimensions (N,M). We create the covariance matrix R̃r with the
predicted dimensions and run the STAP with R̃r. This algorithm is direct and thus can
be pipelined to cover the computing cost of our prediction model.

4.4 Results
In order to simulate the covariance matrix estimate, we use the radar parameters

τ = 20 µs, Tr = 1000 µs, ωc
2π = 5 MHz, Kω

2π = 0.05 µs−2. The plane parameters are picked
from uniform distributions so that 100 m s−1 < va < 1000 m s−1 and 500 m < ha < 1500 m.
In fact, while the radar parameters are generally fixed the operational conditions change
and for the sake of reality, we randomly chose them. The interferences power, PJ and
PRFI are picked following Rayleigh distributions. The numerical values used to generate
the interferences are reported in Table 4.3. In our case study, we use the arbitrary value of
Q1 = 170. The limit Q3 is fixed by the available number of antennas and slow-time cells:
Nf = Mf = 35. Thus in our case, the predicted values have to verifyMN < Q = 170 (the
limiting criterion being the complexity). Figure 4.7 shows the possible (N,M) solutions
which are such as N ∈ [1, 35], M ∈ [1, 35] and NM < 170. In the next two sections,
we detail first the results of the optimal dimension prediction for the two models (CNN
and CNN+RF) while the second section is focused on the STAP performance metrics
previously defined. In particular, the comparison is made with respect to the full STAP
performance but also to stand reduction dimension approach involving choosing a value
N = M such as the values verify MN < Q.

4.4.1 Dimension prediction performance

We further reduce the number of solutions by taking the envelope of the solution space.
To show that the designer can choose different compromises (i.e. the upper bound of Q)
between quality of results and computing complexity, we use two solution sets for the case
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Figure 4.7 – Solutions space of NM dimensions.

Table 4.3 – Test values

τ / Tr 20 µs / 100 µs
ωc
2π / Kω

2π 1 GHz / 0.05 µs−2

E[PJ ] / E[PRFI ] 1 GW/15 kW

Nf / Mf 35 / 35

study. The first, referred to as ‘envelope 1’ in Fig. 4.7, is constituted of the frontier of
the solution space. The second, referred to as ‘envelope 2’ in Fig. 4.7, is composed of the
frontier of the solution space after exclusion of the solutions in envelope 1.

The training of the models is performed on a dataset of 10000 samples created as
described in Section 4.2. We balance the dataset by replicating data for the underrepre-
sented N and M values and shuffle the resulting dataset before learning. During the two
k-fold cross-validation, we observe correct results on each subsets, which means that the
models can be generalized on different datasets. Equations (4.18) and (4.19), derived from
Eq. (4.16) and (4.17), show the complexity gain and bounds (for envelope 1) for the CNN
model and the CNN + RF model, respectively.

GO = N3M3 + 3.2e4
1.8e9 ; −47.5dB ≤ GO ≤ −25.7dB (4.18)

GO = N3M3 + 1.2e4
1.8e9 ; −51.7dB ≤ GO ≤ −25.7dB (4.19)
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Figure 4.8 – Prediction of N and M on a random test set (ordered).

Figure 4.8 shows the result of predictions on a random subset of 1000 samples (reduced
subset for the sake of a correct visualisation) for model 1 and model 2. We observe that
the model 1 is able to predict the correct value in most case but the prediction accuracy is
not good. However, model 2 prediction performs generally very well and most errors are
small. For this reason, we only detail the second model results in the following. Figure 4.9
shows the complexity of the different versions of the STAP filtering and of the prediction
algorithm. We see that a lot of complexity is saved by our method over the (N = M)
approach. Moreover, the complexity of our algorithm is negligible compared to the full
STAP and to the STAP13×13. However, this complexity is high compared to the predicted
complexity in the situation where STAP is not required (N = M = 1).

Fig. 4.10 shows the confusion matrix for the branch N and M for the CNN + RF
model. The true values to predict are on the left column. The cells show the ratio of
predicted values for the true value of the corresponding row. The last column of the
matrices gives the number of sample for the corresponding value of N orM . These results
show that the prediction algorithm performs well on most data. However, the algorithm
is not efficient when N is close to 1. We can also see that some (N,M) couples are absent
from the dataset. This probably comes from the realistic aspect of our dataset and the
rules defined in Section 4.2.3 which limit the possible configurations. We observe that even
when the predicted value is not exact, it is nevertheless generally close to the expected
value.

We noticed that even though an increase of the model complexity slightly improves
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Figure 4.9 – Computing complexity on a random test set (ordered).
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1 0.26 0.28 0.22 0.15 0.01 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 53
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
5 0.00 0.00 0.97 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 193
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9 0.00 0.00 0.00 0.00 0.98 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 72
11 0.00 0.00 0.00 0.00 0.00 0.96 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 76
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15 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.84 0.05 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 73
17 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.18 0.72 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 58
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 51
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.93 0.00 0.00 0.00 0.00 0.00 64
25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.17 0.80 0.00 0.00 0.00 0.00 47
27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.04 0.90 41

(a) N confusion matrix
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1 0.53 0.27 0.12 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 105
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
5 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 119
7 0.00 0.00 0.00 0.87 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 115
9 0.00 0.00 0.00 0.03 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 65
11 0.00 0.00 0.00 0.00 0.20 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 68
13 0.00 0.00 0.00 0.00 0.01 0.02 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 72
15 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 69
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 60
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 47
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.97 0.00 0.00 0.00 0.00 0.00 0.00 44
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.93 0.00 0.00 0.00 0.00 0.00 48
25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.95 0.00 0.00 0.00 0.00 44
27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.90 0.00 0.00 0.00 41
29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 40
31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.97 43

(b) M confusion matrix

Figure 4.10 – Confusion matrices of the CNN + RF model for 1000 samples (%)

the prediction, it does not bring a significant accuracy gain. However, the key for a better
prediction accuracy may be a better estimation of the optimal dimensions. Indeed, the
rules exposed in Section 4.2.2 take into account the interference angle but not other
aspects like the relative power of each interference present in the signal. This may make
regression more difficult for the neural network. This was confirmed in tests on a smaller
dataset where each interference had the same power, on which we obtained a prediction
accuracy of over 97%.

The results of the prediction are used to create the appropriated covariance matrices,
and the performance are compared with the N = M STAP filter, with the same constraint
on Q1 as detailed in the next section.
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Chapter 4 – Algorithm adaptation to benefit from reconfiguration

Table 4.4 – Performances of the static and the adaptive method (dB ratio w.r.t. full
STAP).

GIF GCN GO
STAP13×13(dB) -9.04 -8.61 -25.8
STAPLE1(dB) -7.09 � -9.35 � -28.8 �
STAPLE2(dB) -7.69 � -10.7 � -35.1 �

4.4.2 STAP performance Metrics

Table 4.4 shows the ratio of the IF, the condition number of the matrix and the
computational load of the standard N = M approach (STAP13×13, so that NM < Q)
and our adaptive system (STAPLE1 and STAPLE2 for envelope 1 and 2 from Fig. 4.7,
respectively) compared to the full STAP. The IF and the computing complexity ratio are
computed from the mean dB ratio and the condition number ratio is computed from the
median dB ratio to cope with extreme values of κ which might appear when λmin → 0.

As expected, we observe a lower improvement factor for all the reduced dimension
algorithms compared to full STAP (GIF < 0), which is balanced by gains on other metrics
(GCN and GO). Comparing now, our approach with the usual/rough dimension reduction
(N = M = 13), STAPLE1 and STAPLE2 offer a mean improvement of 1.95dB and
1.35dB (difference between the second and first line in table 4.4 for GIF , and difference
between the third line and the first line) respectively. Thus our approach outperform the
disturbance rejection of the usual dimension reduction approach.

For both standard and adaptive reduction dimension approaches, the measured matrix
condition number is lower than that of the full STAP, thus matrix inversion is strongly
more precise in operational conditions for these two approaches with regards to the full
STAP. Comparing again the standard reduction with our approach, the improvement
of the condition number is much higher for STAPLE than for the standard approach
(−0.74dB and −2.09dB) (difference between the second and first line in table 4.4 for
GIF , and difference between the third line and the first line) showing that our adaptive
dimension reduction provides more stable matrix inversion and thus more stable effective
filtering in operational conditions.

However the main improvement of our approach is for the computational load. com-
putational load of the reduced solutions is also way lower than with the full STAP. This
allows realistic implementations of the algorithm. STAPLE1 and STAPLE2 allows the
reduction of −3.0dB and −9.3dB, respectively, on the computational load compared to
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the standard approach. This means that two to more than eight times less computations
are required to obtain a filtering quality better than the N = M approach. Consequently,
the radar system can perform up to eight times as many scans than the static approach
in the same time frame. This gain is observed for our specific application and is expected
to be even more significant if used on larger systems. The selection of the solution set
(e.g. envelope 1 or envelope 2) allows to choose a compromise between the quality and
complexity of the calculation but must be set manually.

The correctness of N and M prediction limits the loss of filtering quality of our re-
duced STAP algorithm while reducing the processing complexity. We observe that the
computational cost of the prediction algorithm is negligible compared to the STAP itself
and thus saves a lot of processing time. Moreover since our approach is based on physical
models allowing us to derive interference statistical properties, i.e. covariance matrices, we
can expect that the result improvements, in particular the computational load reduction,
are not affected by the radar/plane/RFI/Jammer parameters. Possibly, others empirical
values, such as that of rules three in section 4.2.2, could be refined in order to improve
the results, but this optimization is out of the scope of our work.

4.5 Conclusion

This work presents STAPLE, a new method which reduces the dimension of STAP by
inferring the optimal filtering dimensions at runtime from a reduced interferences covari-
ance matrix. To the best of our knowledge, this is the first method which successfully uses
machine learning to select STAP dimensions at runtime. We have defined several models
of clutter interference to test this concept. The results show that STAPLE is a promis-
ing solution for the implementation of efficient reduced STAP, for both computational
complexity reduction and quality the filtering and then target detection improvement.
Through the use of learning algorithms, STAPLE can be adapted to a wide range of
radar applications and STAP techniques with little effort. Hence, this method of STAP
adaptation to interference correlations in the space-Doppler plan is particularly relevant
in aircraft systems where the computing system has strong limitations and evolves in an
uncertain environment. Indeed, this method does not rely on assumptions on the aircraft
environment to be efficient (e.g. aircraft speed to locate the clutter ridge). This method
may require a lot of data to be applied to a specific application. If measured data is not
available in large quantities, the available data may be enriched with synthetic signal.
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Like most learning techniques, the quality of results is highly dependant on the quality
of training data. Experts must give special attention to the creation of their dataset to
benefit from STAPLE. More specifically, the selection of the NM dimensions for a given
covariance matrix depends on a tradeoff between quality of results and computing com-
plexity which is application specific. This work allows us to consider dedicated hardware
reconfigurable architectures, in order to fully benefit from the acceleration potential of
STAPLE.

In Chapters 3 and 4 we presented adaptive systems which reconfigure themselves
according to the current context to improve performance and quality of results. These op-
timizations are only possible because they embed application knowledge. This knowledge
belongs to application experts, who do not have the skills to implement the solutions in
hardware and/or software. Hence, to design adaptive systems, we need a methodology
that ease the communication between hardware, software and application experts. The
goal is to have these experts to efficiently work together to get the best of all worlds. In
the following chapter, we propose such a methodology to enable a heterogeneous team of
experts to design an embedded adaptive system in a SoC FPGA.
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Chapter 5 – Methodology for reconfigurable systems design

As the implementation of dynamic partial reconfiguration (DPR) of FPGA is getting
easier and the use of SoC architectures increase, we observe that DPR is not yet widely
used in industrial projects. Although some researchers blame the long reconfiguration
time, this time is getting lower and can be seamless if some strategies are well employed.
The reluctance of DPR use in Industry may come from the difficulty to design efficient
and safe adaptive systems. The application knowledge is mandatory to create efficient
reconfigurable systems, and this knowledge often belongs to experts who are unaware of
underlying architectures. Hence, they require high level definitions of the reconfigurable
application and decisions. However, while many academic and industrial tools support the
implementation of reconfiguration at low level (Vivado, GoAhead, IMPRESS, etc.), there
is yet no tool to support a high level definition of these adaptive systems. Hence, this
chapter presents CANDID, a framework for the design and development of application
driven reconfigurable systems. This methodology can be viewed as a multi-agent process,
whose agents can be various specialists and/or AI. This methodology is designed to be
compatible with the Agile development paradigm. This chapter also describes a set of
tools to support this methodology. Eventually, we present a case study which uses this
methodology to create an embedded reconfigurable radar tracking system.

5.1 Introduction

Reconfigurable computing has been a research subject for several decades. Many mod-
els, methods and tools have been proposed for the design of architectures that can effi-
ciently be reconfigured to implement multiple different specialized accelerators with the
same limited hardware resources. We observe the emergence of many reconfigurable archi-
tectures, that rely on two main categories: coarse-grained reconfigurable array (CGRA)
and reconfigurable FPGA. The CGRA are easier to program and faster to reconfigure,
but they are less flexible than FPGA which are fine-grain reconfigurable architectures.
Despite first attempts 20 years ago, few commercial products and tools are available for
CGRA compared to FPGA which benefit from decades of experience. However, FPGA are
costly to develop, and the reconfiguration time used to be prohibitive for runtime adapta-
tion. The support of reconfiguration was also poor and developing these architectures was
error-prone and time consuming. Nowadays, the reconfiguration time has been lowered
and the support for DPR improved. Recent tools benefit from the introduction of recon-
figurable design flows in vendors tools, and the creation of software driven reconfiguration
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(e.g. through the processor configuration access port (PCAP)) with its associated appli-
cation programming interface (API). Furthermore, several academic tools were proposed
to improve the support of DPR by supporting hierarchical DPR and offering multi-grain
reconfigurations to improve flexibility and to offer faster reconfiguration [71], [72].

Yet the use of DPR does not seem to spread in industrial projects. This reluctance
may come from the difficulty to design efficient and reliable reconfigurable architectures
at a reasonable cost with current Industry development processes. Indeed, considering
execution time, power consumption as well as design and product costs is not sufficient.
The quality of service (QoS) is of course of prime importance. Nevertheless, the appli-
cation knowledge is mandatory in QoS-based reconfiguration for two reasons. The first
one is to know which parts of the processing systems can be reconfigured, and the second
is to find relevant QoS criteria. The application knowledge belongs to experts which are
not necessarily aware of the underlying implementation of the system and by extension
of the reconfiguration process. As a matter of fact, the development of efficient adaptive
systems requires a variety of experts with different skills in application, hardware (HW)
and software (SW) who must cooperate. The analysis of current practices and available
tools lead to the conclusion that a new global methodology is actually required to guar-
antee the separation of concerns between multiple agents who must collaborate according
to their respective expertise and skills.

In addition to these considerations, we believe that this methodology must be compli-
ant with the Agile development approach which is increasingly used in industrial projects
[102] and well adapted to the nature of such complex adaptive systems that can benefit
from an iterative design process. Agile concept was first used for SW development, but as
the abstraction level of HW development rises (e.g. with the HLS tools) the same princi-
ples can be applied to HW[103]. To be compatible with Agile approaches, our methodology
must allow to modify the system design after the first development. Therefore, the frame-
work must allow incremental design with minimal overhead. Furthermore, there is no
hierarchy in an Agile development team, so we must consider that the difference between
agents is only based on their respective skills.

We detail our methodology in this chapter which is organized as follows. Section 5.2
first presents a state of the art on QoS-driven adaptive architectures to expose the need
for such architectures. It then provides a state of the art on CAD tools which support
DPR. Section 5.3 first defines what is considered as an agent in our framework, and how
we categorize agents to guarantee separation of concerns in the collaborative environment.
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Then, we present the methodology to define the adaptive system. Section 5.4 presents the
CAD implementations of our methodology. Eventually, Section 5.5 details a case study
to show the process of developing a realistic radar tracking processing system with our
framework.

5.2 State of the art

Architecture optimisation based on HW reconfiguration is mainly considered to en-
hance performances and reduce power consumption [32], [41], [43]. However the best
HW/SW configuration may first meet the functional requirements. In [2], [3], [44] radar
applications are reconfigured regarding various QoS criteria. In these studies, the op-
timization is not about switching between optimal or degraded algorithm but instead
choosing the most adapted algorithm depending on the current situation. The reconfig-
uration criteria are diversified and domain-dependent, and only application experts can
choose and formalize them.

Several tools were proposed to ease the implementation of reconfigurable systems (see
[31] for a survey on DPR tools). Some tools enable the description of DPR at a description
level which requires good HW skills, far from the usual knowledge of application experts
[75]. DPR adds a layer of complexity to the already difficult task of hardware architecture
design, and we see that efforts to facilitate the design of DPR architectures do not allow an
application expert to effectively benefit from reconfigurable FPGA. In this work, we target
the design of adaptive systems and therefore seek to rise the level of description of the
reconfigurable system in order to make it accessible to application experts, while letting
the implementation considerations to the HW experts. It means that our methodology
must be compatible with most flows and tools for the final implementation.

Creating a design framework can be a difficult task with many considerations. In order
to define the methodology and the associated tools, we need a way to model how the agents
collaborate to create an efficient design. Because of the similarities between a cooperative
design and the multi-agent systems, we use the definitions from the multi-agent domain
to support our work.
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5.3 Multi-agent methodology

5.3.1 Multi-agent design

5.3.1.1 Definition and specification of Agents

The design of many systems requires the cooperation of various specialists. This coop-
eration through a common methodology or CAD tools can be analysed as a multi-agent
systems. The agents have different skills and can contribute at different points of the
design process, with their respective skills and points of view. Some agents could even be
AI, which learned to solve some design issues [104]. In Agile frameworks, the development
team has no hierarchical organization but is multidisciplinary. The team must avoid de-
pendence towards omniscient developer as much as possible. But of course, all the agents
still have specialties. They can be application experts, HW experts or SW experts. More-
over, some experts may have hybrid specializations. The difference of specialization must
be considered while developing a collaborative multi-agent system. The concerns of each
agent is different, and this must influence the spectrum of actions and the interface of
the different agents. Therefore, in Table 5.1a we propose to define the agents skills in the
three main expertise domains and on two levels: developer for a level of knowledge good
enough to develop a block in this domain, and architect for a level required to design the
system at full-scale. Table 5.1b shows an example of specification of several agents skills.

5.3.1.2 Agents action space

Given the skills of each agent, they can contribute to specific parts of the design. We
now define two types of contributions: observations and actions. Observations are issued
queries about the modifications and decisions made in the domain they are observing.
Actions are direct contributions/modifications related to their domains. Hence, agents can
communicate directly through queries and answers and indirectly through their actions
on environment. The following statements are true for each expertise domain:

1. The expert of domain A can issue observations for any domain B including A.
2. The expert of domain A, with developer skills can take actions on domain A devel-

opment, and issue observations on domain A architecture.
3. The expert of domain A, with architect skills can take actions on domain A archi-

tecture, and issue observations on domain A development.
Figure 5.1 shows the actions spectrum of agents 2 and 3 of Table 5.1b.
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Table 5.1 – Agents skills levels

(a) Association of skills and spectrum of actions
Skills level

Exp. domain Developer Architect
App. Designs an app. blockα Designs the applicationA
HW Designs a HW acceleratorθ Designs the HW architectureΘ

SW Designs a piece of codeσ Designs the SW architectureΣ

(OS, scheduling)

(b) Example of agent specification (from Section 5.5)
Agent 1 Agent 2 Agent 3

Exp. domain Dev. Archi. Dev. Archi. Dev. Archi.
App. Ë Ë Ë

HW Ë Ë Ë

SW Ë Ë Ë Ë

• HW developer
• SW developer

• App. architect
• App developer
• SW developer

App. development

App. architecture

HW. development

HW. architecture

SW. development

SW. architecture

Agent 2 Agent 3

Action space

Observe and query Act

Figure 5.1 – Actions spectrum for two agents

5.3.1.3 Design philosophy

Our approach does not limit the solution space by anticipating possible further con-
straints. Thus it favors the generation of solutions that can be pruned later. A first example
is the configuration controller that initially produces solutions that are correct but cannot
happen. They will be pruned by an Application Architect who will introduce explicit ban-
ning rules. Another example is the possibility to propose a large number of configuration
including impossible or costly mappings. These solutions will be easily eliminated by a
HW Architect.
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5.3.1.4 Working assumptions

To define a design framework we need to make assumptions to simplify a problem
otherwise too large. We assume that:

• Targeted architecture is a SoC with a reconfigurable FPGA and a processor.

• Application can be modeled as a dataflow.

• The interconnect are of two types: wired dataflow and shared memory. Another
option is a NoC which is not considered in this work.

• Self-organization capabilities of Agents mean they can synchronize their actions.

• Agents are aware of constraints specific to SoC design (e.g. limited memory band-
width, conditional statements potential overhead).

• Agents are able to validate solutions they propose at every step of the design,
through external tools/methodologies.

The industrial constraints impose strict reliability, so we consider the following limitations
without loss of generalities:

• Scheduling is static and does not include DPR which can only occur between two
configurations. Future work could include approach such as the real-time scheduling
of DPR proposed in [105]. Such tool would be available for SW architects but would
require the cooperation of HW architects since it requires HW/SW synchronization
mechanisms.

• Partitioning of reconfigurable partitions (RP) is done manually. Solutions such as the
one proposed in [106] could be used by HW architects when available at industrial
grade.

Now that agents specialties and specters of actions are defined, we will categorize every
action (with the tags from Table 5.1) to guarantee a good separation of concerns between
experts.

5.3.2 Adaptive system definition

This section describes the required steps to define an adaptive architecture with our
methodology. The different steps can overlap in time thanks to the communications be-
tween agents. As soon as enough information is available to start the next step, agents
can begin to work on the next phase.

113



Chapter 5 – Methodology for reconfigurable systems design

acto r Name :
inputs :

type input i [ nbChannels i ]
outputs :

type outputj [ nbChannelsj ]
sparameters :

#Change at graph iterations
#Parameter sk belong to set Ek

sk ∈ Ek

cparameters :
#Change at actor iteration
#Parameter cl belong to set El

cl ∈ El

tokens :
input i => nbTokensi
outputj => nbTokensj

d e s c r i p t i o n :
Literal description of the actor
computations.

end

Figure 5.2 – Description of a PiSDF actor.

Step 1 Static application definition

The first task is to define the application in a static form. Application experts are able
to design a processing flow with a high level language such as Python or Matlab. They
must describe the application as a block diagram, as it offers a natural representation for
application experts [107, Chapter 2]. More specifically, we use the parameterized and in-
terfaced dataflow model (PiSDF)[108] for the application definition. PiSDF is particularly
adapted to model reconfigurable dataflow applications, such as radar, networking and im-
agery. To create the block diagram, the application expert must divide the processing into
processing blocks (actors) and connections (arcs)A. The description granularity should be
coarse at first place and can evolve during the project based on exchanges between ex-
perts (for example at Step 2 and Step 3). App. architects must define the important global
constraints, such as required latency and throughputA.
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Table 5.2 – Specifications of a reconfigurable actor

Question Answer type
Reconfigurable Boolean
Always active Boolean

MIB Boolean
Configurations List
QoS criteria List

Actor description (Fig. 5.2) Files list
Test vectors Files list

HW implementable Boolean list
SW implementable Boolean list
Data parallelism Boolean

Minimal version exists Boolean
Minimal version Config. name

Implem. strategy (Fig. 5.4) Integer
Required at step:

Step 3 Step 4/Step 5 Step 4

Step 2 Reconfigurability specification

Once the static system is well defined, we need to specify which actors can be recon-
figured, and which blocks are not always active (as it is another kind of reconfiguration)A.
We can also tag some processes as ‘multiple instances benefit’ (MIB)α, which means that
at least one instance must be launched, but if we have enough resources, we should run
as many instances as possible. The team must then detail what are the different configu-
rationsα. This step is an application development action, because it takes place at actor
scale and developers can suggest configurations because of performances concerns (algo-
rithm complexity / quality of processing). The team must also specify which QoS criteria
are available in the application, and in which actors we get themα. If the system is a
sub-system of a larger one, external QoS criteria can be specifiedA. Fig. 5.11 present a
block diagram where the configurations, the MIB and QoS criterion are specified. Even-
tually, actors must be described (what computation is done, what are the input/output
format and what are the valid set of PiSDF parameters)A. Fig. 5.2 provides an example
of an actor description. The QoS criteria computation description must be described in
the actor description and an output port should be declared.
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From these primary specifications, the developers must define the way that the system
switches between configurationsα. To simplify the specification of configuration changes,
one controller per reconfigurable actor is defined. An additional controller can be defined
to deal with the PiSDF configurations changes (to set the parameters defined in Fig. 5.2).
Fig. 5.12 is a shared block diagram which represent how the application configuration
changes regarding the QoS criteria. Once this part of the work is done, we can simulate
the system to observe which states and combinations of configurations are reached. Some
configurations combination can be eliminated if app. agents consider that it does not
make any sense (an example is given in section 5.5)A. The remaining combinations must
be validated at application level (e.g. by Python simulations)A. This validation must verify
computation correctness at different checkpoints (between all actors), and provides the
results as input test vectors for HW/SW experts. Table 5.2 formalizes all the specifications
which must be made for every actors.

Step 3 Design space exploration

Once the system reconfiguration has been specified at application level, we need to
define how the implementation is done. Fig. 5.3 presents several ways to implement the
parametrization of the dataflow actors: with a configuration port (StrategyP1), or through
the data channel (StrategyP2). This design choice is left to the discretion of the SW and
HW architects and can evolve between development iterations. This specification must
be made for the whole system (for HW and SW) to mitigate errors. We must now define
what actors will run exclusively in HW or SW, and what will be able to run in both HW
and SW. While HW/SW codesign is a well known problem, there is no perfect solution
to explore the full design exploration space. But we have HW and SW experts, who can
help to tackle this problem. In most application specific designs, the experts know that
some actors can be implemented exclusively in HW, SW or both. A first step is to tag
the actors that can run in HW or in SW from experts knowledgeσθ. This action must
be done per application static actor, and per configuration for the reconfigurable actors.
Now that the first exploration space reduction is done, we must do exploration for the
actor we are not sure where they should run. The HW exploration can be done with the
help of HLS tools (such as Vivado HLS)θ, while the SW exploration can be performed
directly by running cross-compiled code on target processor using Xilinx SDK or Intel
SoC FPGA EDSσ. We can estimate the execution time and resources consumption of
every actor which is not already fixed in HW or SW. These estimation data as well as
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Figure 5.3 – Two propositions of strategies for the parametrization of actors

the already available SW and HW versions are archived in a formal way (e.g. using an
extended version of IP-XACT such as the one proposed in [109]) since they can strongly
benefit to design reuse, which is a key cost factor in Industry.

Step 4 HW selection and reconfiguration model

After the design space exploration, we can decide which actors can be implemented
in HWΘ. After this step and for a specific architecture, we can deduce an approximate
reconfiguration time for each HW configuration, as the size of the bitstream (and by
extension the resource consumption) is near linearly dependant on reconfiguration time
[110]. The application experts define the way the application can adapt. But the team still
needs to express the way it is implemented. Fig. 5.4 presents different ways to implement
the reconfiguration of an actor in HW. But first some information is mandatory to choose
the best implementation. Then, the following questions, summed up in Table 5.2, must
be answered for each reconfigurable actorA:

Q1. Is the actor always active? If not, we can stop it to reconfigure as is done usually
in systems using DRP (StrategyR1). This solution may require data buffering as detailed
in [111]. If the process is always active (e.g. in some dataflow applications), we need to
perform a seamless reconfiguration.

Q2. Is data parallelism applicable? (i.e. does this fall within the definition of ‘single
process multiple data’ (SPMD)? [112]). If we can perform the computation on multiple
data simultaneously (e.g. in radar and sonar systems), we can perform a reconfiguration
per group of channels (StrategyR2). The quality of processing decrease but service is not
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interrupted.

Q3. Is there a minimal version of this actor (a version of the algorithm which guarantees
a minimum QoS)? If yes, an application expert must specify the minimal version and the
HW architect have two choices: either we divide the processing in a static minimal block
and a reconfigurable part (StrategyR3), or, if design space exploration showed that we
can implement the process in SW, we can bypass the HW block during configuration
so the computation is done in SW (StrategyR4). With StrategyR3 and StrategyR4,
we can implement another accelerator in the RP using the optional I/O if the actor’s
computations are already done in the static part or in SW.

Finally, if none of these solutions is suitable, we can implement application reconfigu-
ration as a reconfiguration by registers, i.e. the different configurations are implemented
on the FPGA and we switch between configurations at runtime with a control bus (Strat-
egyR5). One of these strategies must be chosen for every reconfigurable actor implemented
in HW, with help of the application expert answersΘ. These decisions will come with a
choice of interconnect types for each partition.

Our framework targets dataflow applications, thus it would not make sense to move
actors implemented with StrategyR2, R3 or R4 in another actor partition, as the benefits
from their reconfiguration is based on a permanent availability of a minimal version in the
dataflow graph. However, actors from StrategyR1 can be implemented in the resources
available from any other actor designed with StrategyR2. Moreover, they can also be
implemented in the reconfigurable partition of an actor designed with StrategyR3 or R4
and configured in its minimal version. Formally, let Pn,m be the partition designed for
actor an,m with n the actor id and m the implementation strategy. Any actor an,1 can be
implemented in partitions Pi,1 if actor ai is not implemented or in partitions Pi,3 or Pi,4
if actor ai is configured in a minimal version.

Step 5 SW selection and reconfiguration management

After the design space exploration, we can decide which actors can be implemented
in SWΣ. The reconfiguration of SW processing is quite straightforward. But SW can
benefit from the acceleration offered by actors implemented HW. The information of the
implemented HW accelerators can be retrieved from the configuration controller and the
SW architects must make sure that these accelerators are well used (write inputs, fire, read
outputs). Furthermore, the SW experts must prepare the HW reconfiguration support at
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Figure 5.4 – Five propositions of strategies for reconfigurable HW blocks

SW level. For an efficient reconfiguration, the bitstreams must be prefetched from a static
to a dynamic memory (e.g. SD to DDR4). Depending on the available resources and
the number and size of bitstreams (either estimated or final), the SW expert can choose
to prefetch either all the bitstreams or only the next possible configurations. The next
possible configurations can be deduced from the configuration controller.

5.3.3 Agile compatibility

The clear definition of the design steps, the separation of concerns and the use of high
level tools allow to modify the system easily after a first production run. We can face
several modifications of the project:

1. Inclusion of new configurations: The Agile team can add configuration to existing
processes to add new functionalities to the product. This can be done in the ap-
plication expert’s interface. The team can now follow the steps and apply minor
modifications to integrate the new functionality into the product.

2. Introduction of new actors: The Agile team can add actors to enhance the system
performances. This can be done in the application expert’s interface. The team can
now follow the steps and apply minor modifications to integrate the new processing
into the product.

3. Decomposition of an actor into several actors: Based to the initial coarse-grain
specification, the application experts can decide to split an actor into several actors
to make one (or several) of the resulting actors reconfigurable. This is the most
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Figure 5.5 – Adaptive system incremental design

difficult modification as this requires to perform the HW/SW exploration with the
new sub-blocks.

Our framework allows all these modifications at a low extra cost.
Figure 5.5 shows an example of methodology steps, for application composed of five

sets of features (F1 to F5, which represents increment of the processing flow or the inclu-
sion of new configurations), through time with waterfall (Fig. 5.5a) and Agile (Fig. 5.5b)
methodologies. With the waterfall methodology (Fig. 5.5a), all features are included in
the product, which results in long and costly development steps. With the Agile method-
ology (Fig. 5.5b), only a subset of the functionalities are included in the product at each
iteration, which results in faster development steps. The later allows early deliveries and
adaptability to customer requirements.

To support the development of a complex product in faster steps, the different experts
must be able to communicate and design efficiently the system. Therefore, we need to
define a communication tool to ease the design of reconfigurable systems by experts with
different skills and concerns.

5.4 Computer-Aided-Design tools

5.4.1 CCAD: Communication tool for agile CAD

In our framework, the agents have different views and use different tools, so they
must have different interfaces to avoid information overload and guarantee separation of
concerns. We decided to create an interface per speciality, so three interfaces. Figure 5.6
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Figure 5.6 – Ensuring separation of concerns with CCAD

emphasizes how this concept can guarantee a good separation of concerns. Each expert has
his/her own skills and tools and can interact with other experts through an appropriate
interface.

As the system must be designed at high level and must be suitable for incremental
design, we choose to use a visual definition. All agents can have access to all types of
interfaces, but their spectrum of actions is limited according to their own skills.

5.4.1.1 Application interface

This interface is a drag-and-drop interface, where the architect can create actors, and
connect them to form the block diagram. The agents can name the actors. The actors
can be tagged as reconfigurable. The agents can indicate that a QoS indicator can be
extracted from an actor, and provide a short label and a full description. A panel is asso-
ciated to each actor. This panel lists the different options from Table 5.3. This panel also
lists the configurations, and shows the reconfiguration controller. This controller diagram
is automatically created and modified when creating new configurations, and transitions
can be customized. This graphical definition will be automatically translated into a Hep-
tagon/BZR program. When customizing controller transitions, auto-completion encourage
the use of the QoS criteria previously defined. For the QoS criteria available in the ac-
tors tagged as MIB, two functions are available: lowest(<qos label>) and highest(<qos
label>) which returns respectively the lowest or the highest QoS value among instances.
A checklist allows the application architect to give details about the reconfigurable actor
(cf. questions from Step 4).

Once the system is fully described at application level, the controller must be gener-
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ated, and the behaviour of the adaptive system can be observed. Application experts can
eliminate configurations by adding rules all along the design process, such as: configura-
tion C1 and C5 can not be implemented simultaneously. These rules are expressed with
the syntax of Heptagon/BZR contracts[113]. The application experts must validate the
remaining configurations and provide test files in the interface.

5.4.1.2 HW interface

The interface is a graphical view generated from the application block diagram. It
features static processes and dynamic processes. A panel is associated with each actor and
lists the options from Table 5.3 filed by the application experts and the configurations if
the actor is reconfigurable. These information are in read-only mode from the HW experts
perspective. The HW experts can tag the actors to tell that they can be implemented in
HW. They can fill resource consumption and execution time information in the properties
list while doing design space exploration with Vivado HLS of Intel HLS compiler. When a
HW actor is reconfigurable, they must specify the reconfiguration strategy (Fig. 5.4) and
the reconfiguration time (estimated at Step 3 and measured at Step 4).

The HW experts can now simulate the system with post-codesign information (re-
sources usage, latency) to see which configurations can be reached and eliminate the
configurations which do not seem implementable because of resources consumption with
Heptagon/BZR contracts. They must validate the HW actors for remaining configura-
tions using the test files provided by application experts. They must provide their test
files as they may differ from the application ones (e.g. because of the use of fixed-point
computations).

5.4.1.3 SW interface

The interface is a graphical view generated from the application block diagram. It
features static processes and dynamic processes. A panel is associated with each actor and
lists the options from Table 5.3 filed by the application experts and the configurations if
the actor is reconfigurable. These information are in read-only mode from the SW expert
perspective. They can fill execution time information in the properties list while doing
design space exploration by running cross-compiled code on target processor using Xilinx
SDK or Intel SoC FPGA EDS.

The SW experts can now simulate the system with post-codesign information (latency)
to see which configurations can be reached and eliminate the configurations which do

122



5.4. Computer-Aided-Design tools

Prop.
List

(Table 5.2)

PiSDF control

selected actor

block diagram
panel

drag-and-drop
panel

config.
panel actor

specifications

reconf. diagram
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not respect latency constraints with Heptagon/BZR contracts (explained in 5.4.2). They
must validate the SW actors for remaining configurations using the test files provided
by application experts. They must provide their test files as they may differ from the
application ones.

5.4.1.4 Inter-agent communications

The first communication medium is the development environment. Through the in-
terfaces, the agents modify the definition of the system and every agent can observe the
current state of the system description. The second communication medium is a messag-
ing interface in the CCAD tool where agents can send queries related to specific points
or system design choices. The agents specialized in the domain of the questioned design
choice can answer the queries.

5.4.2 Automatically generated reconfiguration control

The different experts created a controller for every configurations and partitions in
the GUI. These controllers need to be generated, tested and implemented. To do so, we
use Heptagon/BZR as a backend. The Heptagon/BZR tools allow to generate a correct-
by-construction global controller from several small controllers. Our methodology would
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Figure 5.8 – Lists of configurations. Simplified and non-exhaustive list from the example
of Section 5.5.

benefit from a way to list configurations to allow experts to find flaws in their original
specifications. However, displaying an exhaustive list of reachable configurations make no
sense as the configuration space grows exponentially w.r.t. the number of states. The rep-
resentation of the configuration space to human operators is an active research field. For
our methodology we use the interim solution which to simulate the generated controller
and observe the reached configurations, so that the experts can eliminate some combina-
tions based on application or performances aspects. This action can be performed after
Step 2 and Step 3. Fig. 5.8a shows a snippet of the configurations listing of the case study
from Section 5.5 at application level. It shows that the configurations must be either
eliminated or validated after Step 2. Fig. 5.8b shows the same operation after Step 3.

5.5 Case study

5.5.1 Agents team specification

To evaluate our framework, we develop an architecture combining our previous work
and extended with reconfiguration of the detection process. We will present the develop-
ment of the radar chain following our design rules. Our case study features three agents:

Agent 1. HW architect/developer, SW architect/developer, application developer
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multi-config node conditionally-active node + MIB not included in
first Agile iteration

Sensors Matched filter Doppler STAP Detection DoA KF Association Classification Output

Figure 5.9 – Static application description

Agent 2. Application architect/developer, SW developer

Agent 3. HW developer, SW developer

Table 5.1b presents these specifications. With these agents, we followed the methodology
steps to develop an adaptive radar architecture. Section 5.5.2 describes the development
step-by-step.

5.5.2 Adaptive radar system definition

Step 1 Static application definition

Fig. 5.9 presents the description of the static radar processing system defined by
Agent 2 (actors with double gray lines are not implemented in this first implementation).
We can see that the actors describe classic elements of a radar tracking system. First,
a matched filter filters sensors data in the range axis. Then, a Doppler extraction is
performed by Fourier transform. CA-CFAR detection is performed on the signal and the
detected plots are subject to a direction of arrival estimation. The trajectory of detected
objects are filtered by Kalman filters. An Association filter create and delete tracks and
associate plots on a track based on the Kalman filters innovation likelihood. Eventually,
a classification tree select labels to identify the tracked objects. Agent 2 specifies that the
maximum latency should be 4ms to ensure that the radar system is responsive enough.

Step 2 Application reconfiguration

Agent 2 knows that there are several ways to perform the Doppler processing. He de-
fines this actor as reconfigurable, and lists two configurations (inspired from [3]). Fig. 5.10
shows an example of the definition of the Doppler actor for the two configurations. The
slowt static parameter is used to modify the radar repetition frequency, and can be mod-
ified between two graphs iterations. The value of slowt is used by several actors in our
example and will be modified at runtime by a PiSDF controller. Therefore, our actors
implementations are compatible with slowt changes. Agent 2 also knows that an object
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acto r Doppler :
inputs :

fp <16, 2> inChannels [ 4 ]
outputs :

fp <16, 2> outChannels [ 4 ]
sparameters :

s lowt ∈ {32 , 64 , 128}
cparameters :

N.A.
tokens :

inChannels => 125 × 128
outChannels => 125 × 128

d e s c r i p t i o n :
Compute FFT in the slow time axis.
Perform a FFT of size slowt.

end

(a) FFT mode PiSDF description

ac to r Doppler :
inputs :

fp <16, 2> inChannels [ 4 ]
fp <16, 2> inCoe f s

outputs :
fp <16, 2> outChannels [ 4 ]

sparameters :
s lowt ∈ {32 , 64 , 128}
r s h i f t ∈ {0 , . . . , 125 − 32}
d s h i f t ∈ {0 , . . . , 128 − 32}

cparameters :
N.A.

tokens :
inChannels => 125 × 128
outChannels => 32 × 32
inCoe f s => slowt × 32

d e s c r i p t i o n :
Compute DFT in the slow time axis.
DFT input size is slowt.
Keep 32 of 128 spectral samples
(shifted by dshift)
for 32 of 125 ranges samples
(shifted by rshift).

end

(b) DFT mode PiSDF description

Figure 5.10 – PiSDF description of Doppler processing. Description details are omitted
for clarity.

can be tracked by different Kalman filter (KF) models, and that we can change the model
depending on the object dynamic. He identifies five interesting models. Agent 1, who has
application knowledge, notes that we can reduce the detection window when the object is
already detected to reduce execution time. He defines two configurations for the detection
actor: full for a detection on the whole radar image, and win for a windowed detection.
Agent 2 tags the direction-of-arrival (DoA), KF, association and classification actors as
conditionally active, because they don’t have to run if no target is detected. Agent 2 now
describes the reconfigurable aspect of the application. To take reconfiguration decision, he
must propose QoS criteria. He knows that the validation score of the association process
can be used to confirm detection [10] and adds it as a QoS criterion. He knows that the
innovation likelihood of the Kalman filter can be used to estimate the model-measurement
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Figure 5.11 – Dynamic application description
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Figure 5.12 – Dynamic application reconfiguration control description

adequacy, which is a Kalman filter QoS indicator [9], and adds it as another QoS criterion.
Eventually, he adds the number of detection as a QoS criterion, because some process will
only be active if detection is successful. Fig. 5.11 presents the description of available
configurations, conditionally active actors, MIB and available QoS criteria.

Fig. 5.12 illustrates the reconfiguration control designed by the application architect.
The reconfiguration of the Doppler actor should occur when an object of interest detec-
tion is confirmed. This information is obtained by comparing the validation score to a
threshold. In Fig. 5.12, the reconfiguration diagram over the Doppler block, defined by
Agent 2, implements this strategy. Fig. 5.12 also shows the control designed by the ap-
plication architect to describe the conditions in which the conditionally active processes
goes idle or active. Agent 2 list the configurations and prune the configurations where
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Figure 5.13 – HW/SW first partitioning

KF2 and KF5 are implemented together because the models are too close from each other
(Fig. 5.8a). Agent 2 validates the remaining configurations with Python3 and stores test
vectors to allow implementation verification.

Step 3 Design space exploration

Agent 1 and 3 agree to implement the dataflow parametrization with StrategyP1 to be
able to easily debug the application as this is the first development iteration. This design
choice may change in a later development iteration. Fig. 5.13 illustrates the observations
made by the HW and SW experts during codesign. Agents 1 and 3 tag the actors which
they are sure can be implemented in HW and SW. The answer is really straightforward for
some actors. Matched filter and Doppler are massively parallel process which must be exe-
cuted for every radar channels (SPMD on 16 channels in our example), so they are tagged
as HW blocks. For the other actors, design exploration is performed. Agents 1 and 3 carry
out fast prototyping of the actors, with Vivado HLS for the HW and on the ARM Cortex
A53 for the SW. They report execution times and resource consumption in their respec-
tive interface (see Table 5.4 for resource consumption and latency on a Zynq Ultrascale+
XCZU9EG target). Agent 1 simulate the controller behaviour and prune configurations
where the resource consumption or the latency is too high (Fig. 5.8b). He then validates
the remaining configurations by using the test vectors provided by Agent 2. If the output
results differ from the original test vectors, e.g. because of the use of fixed-point, they
must be subject to approval by Agent 2.
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Table 5.3 – Filled specifications for reconfigurable actors

Question Doppler Detection KF
Reconfigurable Ë Ë Ë

Always active Ë Ë é

MIB é é Ë

Configurations DFT, FFT full, win 1, 2, ..., 5
QoS criteria — # of detections Innov. likelihood

Actor description Fig. 5.10b, Fig. 5.10a omitted omitted
HW implementable Ë, Ë Ë, Ë Ë, Ë, ..., Ë
SW implementable é, é é, Ë Ë, Ë, ..., Ë
Data parallelism Ë é é

Minimal version exists é Ë é

Minimal version — win —
Implem. strategy Strategy R2 Strategy R4 Strategy R4

Required at step:
Step 3 Step 4/Step 5 Step 4

Step 4 HW selection and reconfiguration model

The full Detection actor is selected for a HW implementation because the execution is
way faster than the SW implementation. The win Detection actor could be implemented
in SW or HW because the computation is lighter than the full Detection mode. The
Kalman actor could be implemented in SW or HW, and as we need a maximum number
of Kalman filters to run simultaneously, we choose to implement Kalman filters in HW
and SW.

Agent 2 answers the three questions from Section 5.3.2 Step 4 about the reconfigurable
actors. Table 5.3 presents the answers to the questions for the three reconfigurable actors.
From these information, agent 1 chooses to implement the Doppler actor with channel
reconfiguration (StrategyR2). Agent 1 chooses to implement the Detection actor with a
a data redirection to SW and a RP (StrategyR4). With this strategy, we can free HW to
implement an additional Kalman filter when detection is transferred to SW.

Step 5 SW selection and reconfiguration management

Agents 1 and 3 conclude from Step 3 that the DoA and Association actors should be
implemented in SW. The Classification actor could be implemented in both HW and SW,
but the chosen algorithm is light so agents 1 and 3 decide to implement it as SW. This
could be changed in a later iteration on the project (e.g. a new story imposes that a new
category of objects should be recognized, and therefore acceleration is mandatory).

The bitstreams generated at Step 4 take a total size of about 100Mb (21Mb for
DFT/FFT + ∼ 84Mb for detec + KF) while the available DDR memory size is 2Gb.
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Chapter 5 – Methodology for reconfigurable systems design

Agent 1 decides to prefetch all the bitstreams in DDR as the application is not memory
bound.

5.5.3 Expected gains

5.5.3.1 Architecture gains

Table 5.4 presents the resource consumption and the latency of each actors and config-
urations, obtained with Vivado HLS and on a Zynq Ultrascale+ XCZU9EG. The execution
time is reduced by 2.7ms when the system switches from FFT to DFT, thus freeing time
for other tasks. When the system is in DFT mode, the detection is transferred to SW
and the RP can be exploited by a Kalman filter to speed up further the application.
These two optimizations save a lot of computing time while switching from to a radar
searching to tracking mode which means that we can implement more and/or better per-
formance processes on the platform. This can be done in a future project iteration (e.g.
in Section 5.5.3.2).

The saved resources, compared to an implementation where all the HW configurations
are implemented, are at least equal to the minimum of each resources used by accelerators
which share partitions:

• DFT/FFT : 4889 LUT, 2648 FF, 24 DSP, 48 BRAM

• Detec./KF1-5 : 16964 LUT, 20881 FF, 82 DSP, 36 BRAM

These optimizations freed a lot of resources, thus allowing us to implement the same sys-
tem on a cheaper system or to implement more accelerators in HW in a future development
iteration.

5.5.3.2 Future functionalities

After this first development iteration, it is possible to improve the system by adding
new functionalities. The actors with double gray lines in Fig. 5.9 and 5.11 shows an
example of the incrementation of the previous solution. We can see that two Kalman
filter models were added to the KF actor, and that one actors was added to the processing
chain. Following the different methodology steps and reusing previous definitions and costs
estimations for the implementation of existing functions, the incrementation is possible
at a lower cost than if we had to redesign the whole system.
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5.6. Conclusion and future work

Table 5.4 – Resource consumption and latency of actors from Fig. 5.13

Actor Config. LUT FF DSP BRAM latency(ms)
HW SW

Match. (×4) — 25020 28290 50 22 0.14 —

Doppler (×4) DFT 4889 2648 43 48 0.2 —
FFT 6697 9136 24 6 2.9 —

Detection full 16964 20881 82 42 0.09 —
win — — — — — 0.6

DoA — — — — — — 2.5

KF

KF1 32688 29582 154 30 0.07 0.3
KF2 41398 40674 174 34 0.12 0.4
KF3 41398 40674 174 34 0.12 0.4
KF4 43095 34562 186 165 0.17 0.6
KF5 42337 42750 202 36 0.12 0.4

Assoc. — — — — — — ∼ 0
Classif. — — — — — — ∼ 0

5.6 Conclusion and future work
We propose CANDID, a methodology for the high level specification of reconfigurable

SoC designs. This methodology allows to leverage application knowledge to make appli-
cation specific optimizations by adapting the resources use at runtime. CAD tools for the
support of this methodology are described. Eventually, a case study describe the virtual
development of a realistic radar tracking system.

Although the case study does not prove the efficiency of our methodology for every
application, it illustrates how this framework could be used in an industrial project. All
of our framework guidelines are justified. A future work is to apply this methodology
in an industrial development team, to confirm the framework relevance and to propose
adjustments when necessary. This future work could also offer new innovative adaptive
architectures. Another future work would be to consider hierarchical reconfiguration in
the methodology. For example in radar systems, we can use either classic radar tracking or
synthetic aperture radar. We could reconfigure the system to switch between these modes,
but we can also modify some sub-processes. Eventually, the CANDID methodology will
be integrated as a plugin in the Capella model-based system engineering tool[114] to ease
the adoption of this methodology in Industry.
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CONCLUSION AND FUTURE WORK

Conclusion

The arise of multi-transceivers antennas in air- and UAV-borne systems has allowed
the use of many modes and efficient algorithms. However, this has led to the complication
and enlargement the RF front end. To reduce the size of these systems and enhance
radar integration, many functions were transfered into the digital part of the system. But
scanning several antennas at high rates produces huge amounts of data, that must be
processed by the on-board computing resources. In addition, the several modes available
on radar systems require different processing, implemented in both HW and SW. This
continuous increase of data and modes available on embedded radar systems puts pressure
on the processing systems that must adapt to meet the challenge. To relax the pressure
on these systems, the improvement rate of computing hardware, such as CPU and FPGA,
is not sufficient. However, it is possible to enhance systems by reallocating computational
components at runtime. This can be performed by HW or SW dynamic reconfiguration.

In the first chapter, we introduced key concepts of radar tracking processing and
computational systems, necessary for understanding the rest of the thesis. We first detailed
the processing blocks commonly implemented in tracking radars. Then, we explained the
concept of reconfigurable HW and SW systems. Finally, we demonstrated the need for
reconfigurable systems and criteria, which can enable highly integrated radars to handle
more modes and achieve higher performance than static systems.

In the second chapter, we presented a state of the art divided in three sections. Firstly,
we introduced the dynamic partial reconfiguration of computational systems based on
FPGA. This technology allows optimizations and self repairing of computing systems,
but sometimes the best configuration depends on the mission context and quality of
service criteria must be used to select the best configuration at runtime. We observed
that literature is not extensive on radar systems dynamic partial reconfiguration based on
application criteria. Secondly, we presented the three algorithms used as case studies in
this thesis. Even though these algorithms have been widely studied, the application of the
adaptivity concept permits new optimizations. Thirdly, we presented the reconfiguration
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methodologies used for the design of HW/SW reconfigurable systems. Although methods
were proposed for the design of reconfigurable systems, these works often require deep
technical knowledges. Therefore, they neglect application experts who often have limited
knowledge of the underlying implementation target. Finally, we conclude this chapter by
positioning the thesis work in the literature.

We divided the third chapter in two sections which present architecture case studies
based on QoS criteria. The first section presents a tracking system which use seven different
models to track virtual targets. Only two filters can be implemented at the same time
and the system does not know apriori which model is the most adapted. The quality of
tracking is analyzed to know which model is most adapted in order to reconfigure the other
accordingly. We showed that the use of this criterion can drive the system reconfiguration
with success and we demonstrated that their reconfiguration can improve tracking. The
second section presents a reconfigurable architecture for a sixteen-sensor radar which
switches between two well-known algorithms, the discrete Fourier transform sum and the
fast Fourier transform, to improve the latency of a radar system during tracking. This
switch is controlled by a criterion which confirms the correct detection of a target. We
implemented and tested this system in a hardware-in-the-loop simulation that showed
the principle of switching between DFT and FFT and confirmed the expected gains on
both latency and FPGA resources consumption, thus demonstrating the relevance of our
approach.

In the fourth chapter, we presented an original method for the adaptation of space-
time adaptive processing. This method, based on machine learning, predicts the most
adapted filtering dimensions at runtime, in order to reduce computing complexity while
maximizing the quality of results. We tested this method on a dataset created from various
interferences models. This preliminary work shows encouraging results for predicting op-
timal filtering dimensions using machine learning. The resulting algorithm is reconfigured
at runtime in software.

In the fifth chapter, we presented a methodology for efficient design of reconfigurable
HW/SW processing systems, with existing tools. To facilitate the exchanges between
heterogeneous experts, we specified the actors, their respective roles and we defined design
patterns. A case study involving the development of a reconfigurable system based on the
architectures presented in Chapter 3 illustrates this methodology. We believe that this
high abstraction level methodology can help to design reconfigurable systems with the
current tools and independently from the used tools (e.g. Xilinx or Intel frameworks).
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In this work, we explored and demonstrated improvements which can be obtained
by the reconfiguration of embedded radar systems. It showed that for a state-of-the-
art computing platform, we can only reach maximum performances by reallocating the
computing resources to the algorithms which are the most adapted to the current mission
context.

Limitations
This section presents the limits of the solutions proposed in this document. The first

limitation is the limited availability of real data to conduct our tests. Indeed, since Thales
is specialized in defense, we could not use real data to test our systems, so we used
synthetic data. We also observe specific limitations in the different works:

1. For the Kalman filter reconfiguration, our models are simple and elaborated for proof
of concept. To obtain similar results in real-life tracking, we would need real targets
measurements as well as various models specific to the different targets types. In
addition, the next models after reconfiguration are selected in a round-robin fashion,
whereas the next model could be selected in a more intelligent way.

2. For the reconfigurable Doppler processing, our architecture was tested only for a
subset of parameters, such as range-Doppler map size and PRF, so the achieved gains
in performances and saved hardware logic are not guarantied for every architecture.
In real-life application this gain could be either higher or lower.

3. For the reconfigurable Space-Time Adaptive Processing, the optimal dimensions
selection is based on empiric rules, hence it is not strictly optimal. In addition,
the method used for dimensions reduction is suboptimal. Indeed, event though this
method reduces the complexity and the condition number, it drops samples and
hence reduces the SINR as well as Doppler and angle resolution. Even considering
this drawback, this study provides a proof of concept that needs to be improved
before it can be used in real systems.

4. The HW/SW reconfigurable embedded systems design methodology has interesting
concepts, but was not tested by a development team to confirm the relevance of the
method. In addition, we described a software interface to support our methodology
but we did not have the time to develop it. However, the methodology can be used
without a software interface and with current development tools.
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Like many studies, ours has several limitations. However, all of these limitations can
be pushed back, and much future work can improve the results already obtained in this
thesis.

Future work

This section presents the most relevant perspectives that arise from our work. The
reconfiguration was explored in several fields, but the reconfiguration of embedded radar
systems has received little attention in the literature. This thesis covers radar problems
ranging from signal processing applications to hardware implementations. The result is
a wide scope of application that has left us with many avenues to explore, the most
important of which are:

1. Firstly, based on the identified criteria and with the help of the CANDID methodol-
ogy, we could conduct a systematic study of hardware/software reconfiguration for
all the main radar function.

2. Secondly, we can foresee future work specific to each case study:

(a) For the reconfigurable Kalman filter, but we could further enhance perfor-
mances by combining our architecture with the principle of interacting multi-
ple model [50]. We would get a system which not only select the most suitable
models, but also combine the prediction of available models to improve track-
ing. In addition, the current model selection at reconfiguration time is based on
round-robin scheduling, but we could create a scheduling based on similarity
between models. Indeed, if a model is not adapted, it is unlikely that a similar
model will perform well. A more intelligent model selection would be a step
forward from QoS-based to QoS-driven reconfiguration.

(b) For the reconfigurable Doppler processing, our architecture is rigid. The PRF
and the reduced DFT window dimensions are fixed. We could include this
architecture into a real radar system which tracks multiple target and adapts
its PRF to observe and solve the inherent problems of these adaptations.

(c) For the Space-Time Adaptive Processing, the proposed approach is based on
machine-learning. The performance depends on the database, and in our case
the database outputs (the optimal filtering dimensions) depend on empiric
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rules. We could adapt our approach to select them through performances cri-
teria, i.e. the improvement factor, the computing complexity and the condition
number. In addition, we could find a simple algorithm method to filter out the
cases where there are no interferences, since these case are where the ratio of
prediction and computing complexity is the higher, hence the cases where our
algorithm is the less efficient. This could be achieved with a method based on
the kurtosis computation [115], which gives results close to zeros on Gaussian
noises. Finally, a hardware architecture could be created to fully benefit from
our algorithm.

3. Finally, the proposed methodology for the design of reconfigurable HW/SW systems
could be applied to a full-scale project to confirm its relevance, find imperfections to
improve it. In addition, we could create a tool to support this methodology, possibly
as an extension to current design tools such as Capella.

This thesis focused on the optimization of embedded radar applications through recon-
figuration, and we did not consider fault detection and correction through reconfiguration.
This is a critical problem for maximizing processing quality. For example, multiple sensors
antennas may encounter a transceiver failure. Since processing is performed for multiple
channels in parallel, it would be interesting to detect transceiver failures and reconfigure
the processing resources dedicated to that transceiver’s channel to improve the processing
performed on the other channels.

Published work
Two papers were published during this thesis:
1. Section 3.1 was published under the following reference:

J. Mazuet, I.-h. Atchadam, D. Heller, et al., « QoS Driven Dynamic Partial Reconfig-
uration: Tracking Case Study », in 14th International Symposium on Reconfigurable
Communication-Centric Systems-on-Chip (ReCoSoC 2019), York, United Kingdom,
Jul. 2019.

2. Section 3.2 was published under the following reference:
J. Mazuet, M. Narozny, C. Dezan, et al., « A Seamless DFT/FFT Self-Adaptive
Architecture for Embedded Radar Applications », in The International Conference
on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, Aug.
2020.
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Two additional papers, based on the content of Chapters 4 and 5, will be submitted to
journals.
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Appendix A

INTERFERENCE MODELS

In this appendix, we detail, the correlation between pulse and antenna voltage at a
given range gate. The angular frequency ω is constant and equal to ωc for monochromatic
wave and it is given by given by ωc + Kωt, for −τ/2 ≤ t ≤ τ/2, and the corresponding
wavevector norm kp = ω/c (constant for monochromatic wave, time dependent for chirps)

Mimicking [100], considering the emission of the first pulse as the time origin, the
received voltage at antenna n and for m for a given, elevation θ, that is an isorange or
equivalently for the travelling time t0, is given by

v(t) =
∫ +π

−π
B(φ)ejω(t+t0+mTr)

(
1+2 va. cos(θ) sin(φ)

c

)
e−jnkpd cos(θ) sin(φ)dφ

(A.1)

where B(φ) is the backscattered field from azimuth φ per unit of angle and per unit
of time. The range compression is given by the convolution of the received voltage by the
reverse chirp c(−t) = e−jωt over a time duration τ centered in t0. Thus, neglecting the

156



second order term we have

V (m,n) =
∫ τ/2

−τ/2
v(t− t0)e−jωtdt

'
∫ +π

−π

∫ τ/2

−τ/2
B(φ)e

jω(t+mTr)
(

1+2 va. cos(θ) sin(φ)
c

)

e−jnkpd cos(θ) sin(φ)e−jωtdtdφ

=
∫ +π

−π
B(φ)ejωc

(
1+2 va. cos(θ) sin(φ)

c

)
m.Tr

e−jn
ωc
c
d cos(θ) sin(φ).∫ τ/2

−τ/2
e
j

(
KωmTr(1+2 va. cos(θ) sin(φ)

c
)
)
t
e
j

(
2.ωc va. cos(θ) sin(φ)

c

)
t

e−jn
Kω
c
d cos(θ) sin(φ)tdtdφ

=
∫ +π

−π
B(φ)ejωc(

(
1+2 va. cos(θ) sin(φ)

c

)
m.Tr

.e−jn
ωc
c
d cos(θ) sin(φ)

2sin(ΩC(m,n)τ/2)
ΩC(m,n) dφ

(A.2)

with

ΩC(m,n) =mKωTr
(
1 + 2va. cos(θ) sin(φ)

c

)
+ 2.ωc

va. cos(θ) sin(φ)
c

− nKω

c
d cos(θ) sin(φ)

(A.3)

by neglecting the second order term. According to the values exposed in section 4.4,
we can make the approximations MfKωTr � ωc and Nf

Kω
c
d � ωc, (A.3) becomes inde-

pendent of m and n and we obtain:

ΩC =2.ωc
va. cos(θ) sin(φ)

c
(A.4)

The results is that obtain for a monochromatic wave (i.e. Kω = 0).
In order to calculate the clutter covariance matrix entryR(n,m)(n1,m1) = E{V (m,n).V H(m1, n1)},
we have to calculate the expectation of a product of integrals over φ and φ′ (see [98]).
By transforming the product into double integral, permuting the integral and the ex-
pectation and observation the random backscattered field B(φ) verifies E{B(φ).B(φ′)} =
|A(φ)|2δ(φ−φ′) and preceding similarly to [98] for a fast computation, we obtain Eq. (4.13)
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by observing that ωc
c
.d. cos(θ) = π cos(θ) = π

√
1− ( ha

r·δr )2, for r ≥ ha
δr

with the hypothesis
d = λ/2.

For the RFI interference, we reuses the model of [100], derived from [116], although
initially defined in the HF/UHF bands in Eq. (4.14), we have

J(u,m,m1) = TQ
TB + TQ

(1− Fq(|u+ (m−m1)Tr|))∫ VT

0
v2fV (v)dv

+ TB
TB + TQ

(1− Fb(|u+ (m−m1)T − r|))∫ +∞

VT
v2fV (v)dv

(A.5)

where Fq and Fp are the CDF of the quite and burst period given in the two cases by

F|b,q(t) = 1− e
−C1
C2

(
1−e−C2t

)
−C3t

(A.6)

and TB = 26ms and TQ = 247ms leading the constants C1 = 57.43, C2 = 32.23 and
C3 = 12.68 for burst and C1 = 18.62, C2 = 16.62 and C3 = 1.49 quite period. The voltage
envelop pdf in Eq. (A.5) being given by

fV (V ) = (µ− 1)γµ−1V

(V 2 + γ2)(µ+1)/2 (A.7)

in Eq. (A.6). VT is threshold below which, we consider to be a in quiet period, above which
we have a burst i.e

∫ VT

0
fV (V )dV = TQ

TB + TQ
. In Eq. (A.7), the parameter µ is related

to Vd (see Fig. 3 of [116]) while γ is related to the power of the voltage envelope (i.e.
PRFI = 2γ2/(µ− 3)). Herman and DeAngelis [117] proposed the law :

Vd = 0.609V0 + (0.910 + 0.250V0) log(B) (A.8)

where B is the waveform bandwidth and V0 is the reference of Vd for a bandwidth of
200 Hz. As observed in Eq. (A.7), the voltage envelope pdf exhibits a heavy tail (due
to burst) and the RFI statistics are non Gaussian. For chirp waveform, the compression
factor sinc(Kω.τ/2) has to be added, but as previously stated we can approximate this
factor by the unity.
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For the broadband jammer interference, we consider the case where the signal is uncor-
related from one pulse to another. The received voltage after range compression is given
by

V (m,n) =
∫ τ/2

−τ/2
AJe

−jnkpd cos(θJ ) sin(φJ )C(m)e−jωtdt

= AJe
−jnωc

c
d cos(θJ ) sin(φJ )C(m)∫ τ/2

−τ/2
e−jn

Kω
c
d cos(θJ ) sin(φJ )te−jωcte−jKωt

2
dt

= AJ .τ.e
−jnωc

c
d cos(θJ ) sin(φJ )C(m) sinc(ΩJ(n))

(A.9)

with

ΩJ(n) = ωc + n
Kω

c
d cos(θJ) sin(φJ) (A.10)

As in the previous cases, we can neglect the second term of ΩJ(n) and then retrieve
the monochromatic case:

ΩJ = ωc (A.11)

AJ is the random amplitude of the jammer signal with variance σ2
J (PJ = σ2

J). Aj re-
mains consnat during all the radar observation. Thus, C(m) is a random complex number
for each index m, with |C(m)| = 1 and arg(C(m)) ∼ U(0, 2π). C(m) reflects the uncor-
relation of the signal in the slow-time domain, which makes the inclusion of the Doppler
irrelevant in the broadband jammer model.

159



Titre : Reconfiguration des ressources matérielles et logicielles d’un système radar embarqué
en mission d’interception

Mot clés : Radar, traitement du signal numérique, reconfiguration dynamique partielle

Résumé : Les systèmes radar embarqués
sont limités en ressources de calcul. Dans le
même temps, ces systèmes doivent utiliser
des algorithmes toujours plus complexes et
demandant de plus en plus de ressources de
calcul. De plus, les radars modernes doivent
être capables d’utiliser plusieurs modes de
fonctionnement durant une même mission.
Dans un système classique, les ressources
sont attribués au moment de la conception
du système et un compromis doit être trouvé
entre la qualité des algorithmes implémentés
et leur consommation en ressources, toujours
au détriment des performances de traitement.
Afin d’obtenir de meilleurs performances, il est
possible de réattribuer les ressources de cal-
culs au cours de la mission par reconfiguration

dynamique.
Ces travaux de thèse se consacrent dans

un premier temps à optimiser des applications
de radars embarqués par le biais de la re-
configuration dynamique. Deux architectures
matérielles reconfigurables, ainsi qu’un algo-
rithme pouvant améliorer les performances de
traitements radar sont présentés. Dans un se-
cond temps, partant du constat que les sys-
tèmes reconfigurables sont difficiles à déve-
lopper car ils doivent prendre en compte des
aspects algorithmiques, matériels et logiciels,
une méthodologie de développement pluridis-
ciplinaire est proposée pour faciliter le déve-
loppement de systèmes reconfigurables effi-
caces.

Title: Reconfiguration of the hardware and software resources of an embedded radar system
in an interception mission

Keywords: Radar, digital signal processing, dynamic partial reconfiguration

Abstract: Embedded radar systems are lim-
ited in computing resources. At the same time,
these systems must use increasingly complex
algorithms that require more and more com-
puting resources. In addition, modern radars
must use several operating modes during a
single mission. In a classical system, the re-
sources are allocated at the system design
time and a compromise must be found be-
tween the implemented algorithms quality and
their resources consumption, always at the ex-
pense of processing performance. In order to
obtain better performances, it is possible to
reallocate the computational resources during

the mission by dynamic reconfiguration.
This thesis work is first dedicated to the

optimization of onboard radar applications
through dynamic reconfiguration. Two recon-
figurable hardware architectures, as well as an
algorithm that can improve the performance of
radar processing are presented. In a second
step, starting from the fact that reconfigurable
systems are difficult to develop because they
must take into account algorithmic, hardware
and software aspects, a multidisciplinary de-
velopment methodology is proposed to facil-
itate the efficient reconfigurable systems de-
velopment.
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